group_id
stringlengths
12
18
problem_description
stringlengths
85
3.02k
candidates
listlengths
3
20
aoj_3061_cpp
Problem K: Encampment Game Problem $N$頂点の木がある。各頂点はそれぞれ1から$N$の番号が割り振られている。 Gacho君と川林君はこの木を使って陣取りゲームをすることにした。 ゲームはGacho君と川林君が異なる頂点にいる状態からスタートする。 Gacho君から交互に頂点を移動することを繰り返し、最初に移動できなくなった方が負けである。 移動方法: 頂点$x$にいる時、頂点$x$と辺で直接結ばれているまだ誰も訪れたことがない頂点のいずれかに移動する。 そのような頂点が存在しない場合、移動することはできない。 Gacho君が最初にいる頂点を頂点$A$、川林君が最初にいる頂点を頂点$B$とする。 Gacho君と川林君が互いに最善を尽くしたとき、Gacho君が勝つことになる頂点$A$と頂点$B$の組み合わせの通り数を求めよ。 Input 入力は以下の形式で与えられる。 $N$ $u_1$ $v_1$ $u_2$ $v_2$ $\vdots$ $u_{N-1}$ $v_{N-1}$ 入力はすべて整数で与えられる。 1行目に頂点数$N$が与えられる。 2行目から続く$N-1$行に木の辺の情報が空白区切りで与えられる。 $1+i$行目の入力は頂点$u_i$と頂点$v_i$が辺で結ばれていることを表す。 Constraints 入力は以下の条件を満たす。 $2 \leq N\leq 2000 $ $ 1 \leq u_i, v_i \leq N$ 与えられるグラフは木である Output Gacho君が勝つ頂点$A$と頂点$B$の組み合わせの通り数を1行に出力せよ。 Sample Input 1 2 1 2 Sample Output 1 0 頂点$A$と頂点$B$の組み合わせは(1, 2), (2, 1)の2通りあり、どちらもGacho君は初手で移動することができないので必ず負ける。 Sample Input 2 6 1 2 2 3 3 4 4 5 5 6 Sample Output 2 12 Sample Input 3 5 1 2 1 3 3 4 3 5 Sample Output 3 12 Sample Input 4 20 14 1 2 1 18 14 10 1 12 10 5 1 17 5 7 1 11 17 4 1 19 2 15 1 3 19 8 15 9 8 20 8 6 1 16 15 13 7 Sample Output 4 243
[ { "submission_id": "aoj_3061_10892195", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nconst ll ILL=2167167167167167167;\nconst int INF=2100000000;\n#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> int LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> int UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,T b){if(b<a){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nbool yneos(bool a,bool upp=false){if(a){cout<<(upp?\"YES\\n\":\"Yes\\n\");}else{cout<<(upp?\"NO\\n\":\"No\\n\");}return a;}\ntemplate<class T> void vec_out(vector<T> &p,int ty=0){\n if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<\",\";}cout<<'\"'<<p[i]<<'\"';}cout<<\"}\\n\";}\n else{if(ty==1){cout<<p.size()<<\"\\n\";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}}\ntemplate<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\ntemplate<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;}\nint pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;}\ntemplate<class T> T square(T a){return a * a;}\n\n\n\nvoid solve();\n// POP'N ROLL MUSIC / TOMOO\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int t = 1;\n // cin >> t;\n rep(i, 0, t) solve();\n}\n\nvoid solve(){\n int N;\n cin >> N;\n vector<vector<int>> G(N);\n rep(i, 0, N - 1){\n int a, b;\n cin >> a >> b;\n a--, b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n vector dp(N + 1, vector<int>(N + 1));\n vector top3(N, vector<int>(3));\n vector dist(N, vector<int>(N + 1));\n vector pare(N, vector<int>(N));\n vector pre(N, vector<int>(N, -INF));\n // dist table を埋める\n {\n rep(i, 0, N){\n auto dfs = [&](auto self, int v, int p) -> int {\n pare[i][v] = p;\n int tmp = 0;\n for (auto x : G[v]) if (x != p){\n chmax(tmp, self(self, x, v));\n }\n return tmp + 1;\n };\n for (auto x : G[i]){\n dist[i][x] = dfs(dfs, x, i);\n if (chmax(top3[i][2], dist[i][x])){\n for (int j = 1; j >= 0; j--){\n if (top3[i][j] < top3[i][j + 1]){\n swap(top3[i][j], top3[i][j + 1]);\n }\n }\n }\n }\n }\n }\n auto f = [&](int var, int a, int b) -> int {\n a = dist[var][a];\n b = dist[var][b];\n if (a < b) swap(a, b);\n if (top3[var][0] != a) return top3[var][0];\n if (top3[var][1] != b) return top3[var][1];\n return top3[var][2];\n };\n {\n rep(i, 0, N) {\n auto dfs = [&](auto self, int v, int p) -> void {\n for (auto y : G[v]) if (y != p){\n chmax(pre[i][y], pre[i][v] + 1);\n chmax(pre[i][y], f(v, y, p));\n self(self, y, v);\n }\n };\n for (auto x : G[i]) dfs(dfs, x, i);\n }\n }\n auto solve = [&](auto self, int a, int na, int b, int nb) -> int {\n if (na < N && dp[na][nb] != 0){\n return dp[na][nb];\n }\n // 近づいかなかったときに勝てるか?\n int A = f(a, na, pare[b][a]);\n int B = pre[a][b];\n B++;\n chmax(B, f(b, pare[a][b], nb));\n if (A > B){\n dp[na][nb] = 1;\n }\n\n // めちゃ近い\n else if (pare[a][b] == a){\n dp[na][nb] = -1;\n if (f(a, na, b) > f(b, nb, a)) dp[na][nb] = 1;\n }\n\n // 再帰させる\n else{\n dp[na][nb] = self(self, b, nb, pare[b][a], a) * -1;\n }\n // cout << a << \" \" << na << \" \" << b << \" \" << nb << \" \" << dp[na][nb] << endl;\n return dp[na][nb];\n };\n int ans = 0;\n rep(i, 0, N) rep(j, 0, N) if (i != j){\n ans += max(0, solve(solve, i, N, j, N));\n }\n cout << ans << \"\\n\";\n}\n/*\n * 解説読んだけどよくわからないので、top3 を持つ\n */", "accuracy": 1, "time_ms": 490, "memory_kb": 66264, "score_of_the_acc": -0.173, "final_rank": 2 }, { "submission_id": "aoj_3061_3659309", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\ntemplate <typename T, typename F>\nstruct SegmentTree{\n // using F = function<T(T,T)>;\n int n;\n F f;\n T ti;\n vector<T> dat;\n SegmentTree(){};\n SegmentTree(F f,T ti):f(f),ti(ti){}\n void init(int n_){ \n n=1;\n while(n<n_) n<<=1;\n dat.assign(n<<1,ti);\n }\n void build(const vector<T> &v){\n int n_=v.size();\n init(n_);\n for(int i=0;i<n_;i++) dat[n+i]=v[i];\n for(int i=n-1;i;i--)\n dat[i]=f(dat[(i<<1)|0],dat[(i<<1)|1]);\n }\n void set_val(int k,T x){\n dat[k+=n]=x;\n while(k>>=1)\n dat[k]=f(dat[(k<<1)|0],dat[(k<<1)|1]); \n }\n T query(int a,int b){\n T vl=ti,vr=ti;\n for(int l=a+n,r=b+n;l<r;l>>=1,r>>=1) {\n if(l&1) vl=f(vl,dat[l++]);\n if(r&1) vr=f(dat[--r],vr);\n }\n return f(vl,vr);\n }\n};\n\n//INSERT ABOVE HERE\nconst int MAX = 5050;\nint dp[2][MAX][MAX];\nsigned main(){\n int n;\n cin>>n;\n vector<vector<int> > G(n);\n for(int i=1;i<n;i++){\n int x,y;\n cin>>x>>y;\n x--;y--;\n G[x].emplace_back(y);\n G[y].emplace_back(x);\n }\n if(n==2){\n cout<<0<<endl;\n return 0;\n }\n for(int i=0;i<MAX;i++)\n for(int j=0;j<MAX;j++)\n dp[0][i][j]=dp[1][i][j]=MAX;\n\n vector<int> hs(n),dep(n);\n using P = pair<int, int>; \n vector<vector<P> > vp(n);\n \n vector<vector<vector<int> > > H(2,vector<vector<int> >(n));\n vector<vector< deque<int> > > ds(2,vector<deque<int> >(n));\n \n function<void(int, int, int)> dfs1=\n [&](int v,int p,int d)->void{ \n hs[v]=0;\n dep[v]=d;\n \n vp[v].clear();\n ds[0][v].clear();\n ds[1][v].clear();\n H[0][v].clear();\n H[1][v].clear();\n \n for(int u:G[v]){\n if(u==p) continue;\n dfs1(u,v,d+1);\n chmax(hs[v],hs[u]+1); \n vp[v].emplace_back(hs[u]+1,u); \n }\n sort(vp[v].rbegin(),vp[v].rend());\n };\n \n auto f=[&](int a,int b){return max(a,b);};\n SegmentTree<int, decltype(f)> seg(f,-1);\n seg.build(vector<int>(n,-1));\n \n vector<queue<int> > ss(2);\n function<void(int, int, int)> dfs2=\n [&](int r,int v,int p){\n ds[0][v].emplace_front(v);\n ds[1][v].emplace_front(v);\n if(vp[v].size()==0u) return;\n \n if(vp[v].size()==1u)\n vp[v].emplace_back(0,-1);\n \n int l=vp[v][0].second;\n for(int u:G[v]){\n if(u==p) continue;\n seg.set_val(dep[v],dep[v]+vp[v][u==l].first); \n dfs2(r,u,v); \n }\n \n for(int k=0;k<2;k++){\n auto unite=\n [&](int x,int y)->void{ \n if(ds[k][x].size()<ds[k][y].size()) swap(ds[k][x],ds[k][y]);\n for(int i=0;i<(int)ds[k][y].size();i++){\n if(ds[k][x][i]<ds[k][y][i])\n swap(ds[k][x][i],ds[k][y][i]);\n if(~ds[k][y][i])\n H[k][ds[k][x][i]].emplace_back(ds[k][y][i]);\n }\n };\n \n for(int u:G[v]){\n if(u==p) continue;\n ds[k][u].emplace_front(-1);\n if(u!=l) unite(v,u);\n }\n \n auto inch=\n [&](int x,int sd)->void{\n while(!ds[k][x].empty()){\n int y=ds[k][x].back();\n if(y<0){\n ds[k][x].pop_back();\n continue;\n }\n if(y==r) break;\n int dist=dep[y]-dep[v];\n \n // dist+(dist+k) -1 +1\n if(dist+(dist+k)==dep[y]){\n if(dist+sd+k>seg.query(dist+k-1,dep[v])){\n dp[k][r][y]=v;\n ss[k].emplace(y);\n ds[k][x].pop_back();\n continue;\n }\n }\n \n if(dist+(dist+k)>=dep[y]){\n ds[k][x].pop_back();\n continue; \n }\n \n if(dist+sd+k>seg.query(dist+k,dep[v])){\n dp[k][r][y]=v;\n ss[k].emplace(y);\n ds[k][x].pop_back();\n continue;\n }\n return; \n }\n };\n \n inch(v,vp[v][0].first);\n inch(l,vp[v][1].first);\n \n unite(v,l);\n }\n };\n \n\n for(int i=0;i<n;i++){\n dfs1(i,-1,0);\n dfs2(i,i,-1);\n\n for(int k=0;k<2;k++){\n while(!ss[k].empty()){\n int v=ss[k].front();ss[k].pop();\n for(int u:H[k][v]){\n dp[k][i][u]=dp[k][i][v];\n ss[k].emplace(u);\n }\n }\n \n for(int j=0;j<n;j++)\n if(dp[k][i][j]!=MAX)\n dp[k][i][j]=dep[j]-dep[dp[k][i][j]];\n } \n }\n \n int ans=0;\n for(int i=0;i<n;i++)\n for(int j=0;j<n;j++)\n if(i!=j) ans+=dp[0][i][j]<=dp[1][j][i];\n \n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1260, "memory_kb": 207448, "score_of_the_acc": -0.723, "final_rank": 3 }, { "submission_id": "aoj_3061_3415241", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint N;\nvector< int > g[2000];\nvector< int > ord;\nint ans;\nint dep[2000], upd[2000];\n\nint dfs(int idx, int par) {\n dep[idx] = 0;\n for(auto to : g[idx]) {\n if(to == par) continue;\n dfs(to, idx);\n dep[idx] = max(dep[idx], dep[to] + 1);\n }\n}\n\nconst int INF = 1 << 30;\n\n\nmap< pair< int, int >, int > dp2[2002][2002];\n\nint rec3(int p, int q, int par1 = -1, int par2 = -1) {\n if(p >= q) return -INF;\n if(dp2[ord[p]][ord[q]].count({par1, par2})) return dp2[ord[p]][ord[q]][{par1, par2}];\n return dp2[ord[p]][ord[q]][{par1, par2}] = max(upd[ord[q]], rec3(p, q - 1, ord[q], ord[1]) + 1);\n}\n\nmap< pair< int, int >, int > dp4[2002][2002];\n\n\nint rec4(int p, int q, int par1 = -1, int par2 = -1) {\n if(p >= q) return -INF;\n if(dp4[ord[p]][ord[q]].count({par1, par2})) return dp4[ord[p]][ord[q]][{par1, par2}];\n return dp4[ord[p]][ord[q]][{par1, par2}] = max(upd[ord[p]], rec4(p + 1, q, ord[p], ord[ord.size() - 2]) + 1);\n}\n\n\nbool memo[2002][2002][2];\nint dp[2002][2002][2];\n\nint rec2(int p, int q, bool tern, int f = 0) {\n if(p >= q) return true;\n //if(memo[ord[p]][ord[q]][tern]) return dp[ord[p]][ord[q]][tern];\n\n bool ret = false;\n if(tern) {\n if(!rec2(p, q - 1, tern ^ 1, f + 1)) ret = true;\n if(upd[ord[q]] > rec4(p, q, -1, ord[ord.size() - 2])) ret = true;\n } else {\n if(!rec2(p + 1, q, tern ^ 1, f + 1)) ret = true;\n if(upd[ord[p]] > rec3(p, q, -1, ord[1])) ret = true;\n }\n memo[ord[p]][ord[q]][tern] = true;\n return dp[ord[p]][ord[q]][tern] = ret;\n}\n\n\nint rec(int idx, int par) {\n ord.emplace_back(idx);\n pair< int, int > a(0, -1), b(0, -1);\n for(auto to : g[idx]) {\n if(to == par) continue;\n if(make_pair(dep[to] + 1, to) > a) {\n b = a;\n a = make_pair(dep[to] + 1, to);\n } else if(make_pair(dep[to] + 1, to) > b) {\n b = make_pair(dep[to] + 1, to);\n }\n }\n for(auto to : g[idx]) {\n if(to == par) continue;\n upd[idx] = a.second == to ? b.first : a.first;\n rec(to, idx);\n }\n upd[idx] = a.first;\n if(ord.size() >= 2 && rec2(0, ord.size() - 1, false)) {\n ++ans;\n }\n ord.pop_back();\n}\n\n\nint main() {\n cin >> N;\n for(int i = 1; i < N; i++) {\n int a, b;\n cin >> a >> b;\n --a, --b;\n g[a].emplace_back(b);\n g[b].emplace_back(a);\n }\n for(int i = 0; i < N; i++) {\n dfs(i, -1);\n rec(i, -1);\n }\n cout << ans << endl;\n}", "accuracy": 0.13333333333333333, "time_ms": 110, "memory_kb": 379376, "score_of_the_acc": -0.9578, "final_rank": 14 }, { "submission_id": "aoj_3061_3415239", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint N;\nvector< int > g[2000];\nvector< int > ord;\nint ans;\nint dep[2000], upd[2000];\n\nint dfs(int idx, int par) {\n dep[idx] = 0;\n for(auto to : g[idx]) {\n if(to == par) continue;\n dfs(to, idx);\n dep[idx] = max(dep[idx], dep[to] + 1);\n }\n}\n\nconst int INF = 1 << 30;\n\nbool memo2[2002][2002];\nint dp2[2002][2002];\n\nint rec3(int p, int q, int f = 0) {\n if(p >= q) return -INF;\n if(f >= 9 && memo2[ord[p]][ord[q]]) return dp2[ord[p]][ord[q]];\n if(f >= 9) {\n memo2[ord[p]][ord[q]] = true;\n return dp2[ord[p]][ord[q]] = max(upd[ord[q]], rec3(p, q - 1, true) + 1);\n }\n return max(upd[ord[q]], rec3(p, q - 1, f + 1) + 1);\n}\n\n\nbool memo3[2002][2002];\nint dp3[2002][2002];\n\nint rec4(int p, int q, int f = false) {\n if(p >= q) return -INF;\n if(f >= 8 && memo3[ord[p]][ord[q]]) return dp3[ord[p]][ord[q]];\n if(f >= 8) {\n memo3[ord[p]][ord[q]] = true;\n return dp3[ord[p]][ord[q]] = max(upd[ord[p]], rec4(p + 1, q, true) + 1);\n }\n return max(upd[ord[p]], rec4(p + 1, q, f + 1) + 1);\n}\n\n\nbool memo[2002][2002][2];\nint dp[2002][2002][2];\n\nint rec2(int p, int q, bool tern, int f = 0) {\n if(p >= q) return true;\n if(f >= 25 && memo[ord[p]][ord[q]][tern]) return dp[ord[p]][ord[q]][tern];\n\n bool ret = false;\n if(tern) {\n if(!rec2(p, q - 1, tern ^ 1, f + 1)) ret = true;\n if(upd[ord[q]] > rec4(p, q)) ret = true;\n } else {\n if(!rec2(p + 1, q, tern ^ 1, f + 1)) ret = true;\n if(upd[ord[p]] > rec3(p, q)) ret = true;\n }\n if(f >= 25) {\n memo[ord[p]][ord[q]][tern] = true;\n return dp[ord[p]][ord[q]][tern] = ret;\n }\n return ret;\n}\n\n\nint rec(int idx, int par) {\n ord.emplace_back(idx);\n pair< int, int > a(0, -1), b(0, -1);\n for(auto to : g[idx]) {\n if(to == par) continue;\n if(make_pair(dep[to] + 1, to) > a) {\n b = a;\n a = make_pair(dep[to] + 1, to);\n } else if(make_pair(dep[to] + 1, to) > b) {\n b = make_pair(dep[to] + 1, to);\n }\n }\n for(auto to : g[idx]) {\n if(to == par) continue;\n upd[idx] = a.second == to ? b.first : a.first;\n rec(to, idx);\n }\n upd[idx] = a.first;\n if(ord.size() >= 2 && rec2(0, ord.size() - 1, false)) {\n ++ans;\n }\n ord.pop_back();\n}\n\n\nint main() {\n cin >> N;\n for(int i = 1; i < N; i++) {\n int a, b;\n cin >> a >> b;\n --a, --b;\n g[a].emplace_back(b);\n g[b].emplace_back(a);\n }\n for(int i = 0; i < N; i++) {\n dfs(i, -1);\n rec(i, -1);\n }\n cout << ans << endl;\n}", "accuracy": 0.9555555555555556, "time_ms": 4900, "memory_kb": 81424, "score_of_the_acc": -1.1336, "final_rank": 8 }, { "submission_id": "aoj_3061_3415238", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint N;\nvector< int > g[2000];\nvector< int > ord;\nint ans;\nint dep[2000], upd[2000];\n\nint dfs(int idx, int par) {\n dep[idx] = 0;\n for(auto to : g[idx]) {\n if(to == par) continue;\n dfs(to, idx);\n dep[idx] = max(dep[idx], dep[to] + 1);\n }\n}\n\nconst int INF = 1 << 30;\n\nbool memo2[2002][2002];\nint dp2[2002][2002];\n\nint rec3(int p, int q, int f = 0) {\n if(p >= q) return -INF;\n if(f >= 9 && memo2[ord[p]][ord[q]]) return dp2[ord[p]][ord[q]];\n if(f >= 9) {\n memo2[ord[p]][ord[q]] = true;\n return dp2[ord[p]][ord[q]] = max(upd[ord[q]], rec3(p, q - 1, true) + 1);\n }\n return max(upd[ord[q]], rec3(p, q - 1, f + 1) + 1);\n}\n\n\nbool memo3[2002][2002];\nint dp3[2002][2002];\n\nint rec4(int p, int q, int f = false) {\n if(p >= q) return -INF;\n if(f >= 9 && memo3[ord[p]][ord[q]]) return dp3[ord[p]][ord[q]];\n if(f >= 9) {\n memo3[ord[p]][ord[q]] = true;\n return dp3[ord[p]][ord[q]] = max(upd[ord[p]], rec4(p + 1, q, true) + 1);\n }\n return max(upd[ord[p]], rec4(p + 1, q, f + 1) + 1);\n}\n\n\nbool memo[2002][2002][2];\nint dp[2002][2002][2];\n\nint rec2(int p, int q, bool tern, int f = 0) {\n if(p >= q) return true;\n if(f >= 23 && memo[ord[p]][ord[q]][tern]) return dp[ord[p]][ord[q]][tern];\n\n bool ret = false;\n if(tern) {\n if(!rec2(p, q - 1, tern ^ 1, f + 1)) ret = true;\n if(upd[ord[q]] > rec4(p, q)) ret = true;\n } else {\n if(!rec2(p + 1, q, tern ^ 1, f + 1)) ret = true;\n if(upd[ord[p]] > rec3(p, q)) ret = true;\n }\n if(f >= 23) {\n memo[ord[p]][ord[q]][tern] = true;\n return dp[ord[p]][ord[q]][tern] = ret;\n }\n return ret;\n}\n\n\nint rec(int idx, int par) {\n ord.emplace_back(idx);\n pair< int, int > a(0, -1), b(0, -1);\n for(auto to : g[idx]) {\n if(to == par) continue;\n if(make_pair(dep[to] + 1, to) > a) {\n b = a;\n a = make_pair(dep[to] + 1, to);\n } else if(make_pair(dep[to] + 1, to) > b) {\n b = make_pair(dep[to] + 1, to);\n }\n }\n for(auto to : g[idx]) {\n if(to == par) continue;\n upd[idx] = a.second == to ? b.first : a.first;\n rec(to, idx);\n }\n upd[idx] = a.first;\n if(ord.size() >= 2 && rec2(0, ord.size() - 1, false)) {\n ++ans;\n }\n ord.pop_back();\n}\n\n\nint main() {\n cin >> N;\n for(int i = 1; i < N; i++) {\n int a, b;\n cin >> a >> b;\n --a, --b;\n g[a].emplace_back(b);\n g[b].emplace_back(a);\n }\n for(int i = 0; i < N; i++) {\n dfs(i, -1);\n rec(i, -1);\n }\n cout << ans << endl;\n}", "accuracy": 0.7555555555555555, "time_ms": 1020, "memory_kb": 32308, "score_of_the_acc": -0.1897, "final_rank": 12 }, { "submission_id": "aoj_3061_3415233", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint N;\nvector< int > g[2000];\nvector< int > ord;\nint ans;\nint dep[2000], upd[2000];\n\nint dfs(int idx, int par) {\n dep[idx] = 0;\n for(auto to : g[idx]) {\n if(to == par) continue;\n dfs(to, idx);\n dep[idx] = max(dep[idx], dep[to] + 1);\n }\n}\n\nconst int INF = 1 << 30;\n\nbool memo2[2002][2002];\nint dp2[2002][2002];\n\nint rec3(int p, int q, int f = 0) {\n if(p >= q) return -INF;\n if(f >= 8 && memo2[ord[p]][ord[q]]) return dp2[ord[p]][ord[q]];\n if(f >= 8) {\n memo2[ord[p]][ord[q]] = true;\n return dp2[ord[p]][ord[q]] = max(upd[ord[q]], rec3(p, q - 1, true) + 1);\n }\n return max(upd[ord[q]], rec3(p, q - 1, f + 1) + 1);\n}\n\n\nbool memo3[2002][2002];\nint dp3[2002][2002];\n\nint rec4(int p, int q, int f = false) {\n if(p >= q) return -INF;\n if(f >= 8 && memo3[ord[p]][ord[q]]) return dp3[ord[p]][ord[q]];\n if(f >= 8) {\n memo3[ord[p]][ord[q]] = true;\n return dp3[ord[p]][ord[q]] = max(upd[ord[p]], rec4(p + 1, q, true) + 1);\n }\n return max(upd[ord[p]], rec4(p + 1, q, f + 1) + 1);\n}\n\n\nbool memo[2002][2002][2];\nint dp[2002][2002][2];\n\nint rec2(int p, int q, bool tern, int f = 0) {\n if(p >= q) return true;\n if(f >= 25 && memo[ord[p]][ord[q]][tern]) return dp[ord[p]][ord[q]][tern];\n\n bool ret = false;\n if(tern) {\n if(!rec2(p, q - 1, tern ^ 1, f + 1)) ret = true;\n if(upd[ord[q]] > rec4(p, q)) ret = true;\n } else {\n if(!rec2(p + 1, q, tern ^ 1, f + 1)) ret = true;\n if(upd[ord[p]] > rec3(p, q)) ret = true;\n }\n if(f >= 25) {\n memo[ord[p]][ord[q]][tern] = true;\n return dp[ord[p]][ord[q]][tern] = ret;\n }\n return ret;\n}\n\n\nint rec(int idx, int par) {\n ord.emplace_back(idx);\n vector< pair< int, int > > child;\n child.emplace_back(0, -1);\n for(auto to : g[idx]) {\n if(to == par) continue;\n child.emplace_back(dep[to] + 1, to);\n }\n sort(child.rbegin(), child.rend());\n for(auto to : g[idx]) {\n if(to == par) continue;\n upd[idx] = child[to == child[0].second].first;\n rec(to, idx);\n }\n upd[idx] = child[0].first;\n if(ord.size() >= 2 && rec2(0, ord.size() - 1, false)) {\n ++ans;\n }\n ord.pop_back();\n}\n\n\nint main() {\n cin >> N;\n for(int i = 1; i < N; i++) {\n int a, b;\n cin >> a >> b;\n --a, --b;\n g[a].emplace_back(b);\n g[b].emplace_back(a);\n }\n for(int i = 0; i < N; i++) {\n dfs(i, -1);\n rec(i, -1);\n }\n cout << ans << endl;\n}", "accuracy": 0.9555555555555556, "time_ms": 4910, "memory_kb": 81496, "score_of_the_acc": -1.1359, "final_rank": 9 }, { "submission_id": "aoj_3061_3415232", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint N;\nvector< int > g[2000];\nvector< int > ord;\nint ans;\nint dep[2000], upd[2000];\n\nint dfs(int idx, int par) {\n dep[idx] = 0;\n for(auto to : g[idx]) {\n if(to == par) continue;\n dfs(to, idx);\n dep[idx] = max(dep[idx], dep[to] + 1);\n }\n}\n\nconst int INF = 1 << 30;\n\nbool memo2[2002][2002];\nint dp2[2002][2002];\n\nint rec3(int p, int q, int f = 0) {\n if(p >= q) return -INF;\n if(f >= 10 && memo2[ord[p]][ord[q]]) return dp2[ord[p]][ord[q]];\n if(f >= 10) {\n memo2[ord[p]][ord[q]] = true;\n return dp2[ord[p]][ord[q]] = max(upd[ord[q]], rec3(p, q - 1, true) + 1);\n }\n return max(upd[ord[q]], rec3(p, q - 1, f + 1) + 1);\n}\n\n\nbool memo3[2002][2002];\nint dp3[2002][2002];\n\nint rec4(int p, int q, int f = false) {\n if(p >= q) return -INF;\n if(f >= 10 && memo3[ord[p]][ord[q]]) return dp3[ord[p]][ord[q]];\n if(f >= 10) {\n memo3[ord[p]][ord[q]] = true;\n return dp3[ord[p]][ord[q]] = max(upd[ord[p]], rec4(p + 1, q, true) + 1);\n }\n return max(upd[ord[p]], rec4(p + 1, q, f + 1) + 1);\n}\n\n\nbool memo[2002][2002][2];\nint dp[2002][2002][2];\n\nint rec2(int p, int q, bool tern, int f = 0) {\n if(p >= q) return true;\n if(f >= 20 && memo[ord[p]][ord[q]][tern]) return dp[ord[p]][ord[q]][tern];\n\n bool ret = false;\n if(tern) {\n if(!rec2(p, q - 1, tern ^ 1, f + 1)) ret = true;\n if(upd[ord[q]] > rec4(p, q)) ret = true;\n } else {\n if(!rec2(p + 1, q, tern ^ 1, f + 1)) ret = true;\n if(upd[ord[p]] > rec3(p, q)) ret = true;\n }\n if(f >= 20) {\n memo[ord[p]][ord[q]][tern] = true;\n return dp[ord[p]][ord[q]][tern] = ret;\n }\n return ret;\n}\n\n\nint rec(int idx, int par) {\n ord.emplace_back(idx);\n vector< pair< int, int > > child;\n child.emplace_back(0, -1);\n for(auto to : g[idx]) {\n if(to == par) continue;\n child.emplace_back(dep[to] + 1, to);\n }\n sort(child.rbegin(), child.rend());\n for(auto to : g[idx]) {\n if(to == par) continue;\n upd[idx] = child[to == child[0].second].first;\n rec(to, idx);\n }\n upd[idx] = child[0].first;\n if(ord.size() >= 2 && rec2(0, ord.size() - 1, false)) {\n ++ans;\n }\n ord.pop_back();\n}\n\n\nint main() {\n cin >> N;\n for(int i = 1; i < N; i++) {\n int a, b;\n cin >> a >> b;\n --a, --b;\n g[a].emplace_back(b);\n g[b].emplace_back(a);\n }\n for(int i = 0; i < N; i++) {\n dfs(i, -1);\n rec(i, -1);\n }\n cout << ans << endl;\n}", "accuracy": 0.7555555555555555, "time_ms": 1210, "memory_kb": 32552, "score_of_the_acc": -0.23, "final_rank": 13 }, { "submission_id": "aoj_3061_3415222", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint N;\nvector< int > g[2000];\nvector< int > ord;\nint ans;\nint dep[2000], upd[2000];\n\nint dfs(int idx, int par) {\n dep[idx] = 0;\n for(auto to : g[idx]) {\n if(to == par) continue;\n dfs(to, idx);\n dep[idx] = max(dep[idx], dep[to] + 1);\n }\n}\n\nconst int INF = 1 << 30;\n\nbool memo2[2002][2002];\nint dp2[2002][2002];\n\nint rec3(int p, int q, int f = 0) {\n if(p >= q) return -INF;\n if(f >= 4 && memo2[ord[p]][ord[q]]) return dp2[ord[p]][ord[q]];\n if(f >= 4) {\n memo2[ord[p]][ord[q]] = true;\n return dp2[ord[p]][ord[q]] = max(upd[ord[q]], rec3(p, q - 1, true) + 1);\n }\n return max(upd[ord[q]], rec3(p, q - 1, f + 1) + 1);\n}\n\n\nbool memo3[2002][2002];\nint dp3[2002][2002];\n\nint rec4(int p, int q, int f = false) {\n if(p >= q) return -INF;\n if(f >= 4 && memo3[ord[p]][ord[q]]) return dp3[ord[p]][ord[q]];\n if(f >= 4) {\n memo3[ord[p]][ord[q]] = true;\n return dp3[ord[p]][ord[q]] = max(upd[ord[p]], rec4(p + 1, q, true) + 1);\n }\n return max(upd[ord[p]], rec4(p + 1, q, f + 1) + 1);\n}\n\n\nbool memo[2002][2002][2];\nint dp[2002][2002][2];\n\nint rec2(int p, int q, bool tern) {\n if(p >= q) return true;\n //if(memo[ord[p]][ord[q]][tern]) return dp[ord[p]][ord[q]][tern];\n\n bool ret = false;\n if(tern) {\n if(!rec2(p, q - 1, tern ^ 1)) return true;\n if(upd[ord[q]] > rec4(p, q)) return true;\n } else {\n if(!rec2(p + 1, q, tern ^ 1)) return true;\n if(upd[ord[p]] > rec3(p, q)) return true;\n }\n return false;\n}\n\n\nint rec(int idx, int par) {\n ord.emplace_back(idx);\n vector< pair< int, int > > child;\n child.emplace_back(0, -1);\n for(auto to : g[idx]) {\n if(to == par) continue;\n child.emplace_back(dep[to] + 1, to);\n }\n sort(child.rbegin(), child.rend());\n for(auto to : g[idx]) {\n if(to == par) continue;\n upd[idx] = child[to == child[0].second].first;\n rec(to, idx);\n }\n upd[idx] = child[0].first;\n if(ord.size() >= 2 && rec2(0, ord.size() - 1, false)) {\n ++ans;\n }\n ord.pop_back();\n}\n\n\nint main() {\n cin >> N;\n for(int i = 1; i < N; i++) {\n int a, b;\n cin >> a >> b;\n --a, --b;\n g[a].emplace_back(b);\n g[b].emplace_back(a);\n }\n for(int i = 0; i < N; i++) {\n dfs(i, -1);\n rec(i, -1);\n }\n cout << ans << endl;\n}", "accuracy": 0.8, "time_ms": 680, "memory_kb": 32252, "score_of_the_acc": -0.1187, "final_rank": 10 }, { "submission_id": "aoj_3061_3415221", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint N;\nvector< int > g[2000];\nvector< int > ord;\nint ans;\nint dep[2000], upd[2000];\n\nint dfs(int idx, int par) {\n dep[idx] = 0;\n for(auto to : g[idx]) {\n if(to == par) continue;\n dfs(to, idx);\n dep[idx] = max(dep[idx], dep[to] + 1);\n }\n}\n\nconst int INF = 1 << 30;\n\nbool memo2[2002][2002];\nint dp2[2002][2002];\n\nint rec3(int p, int q, int f = 0) {\n if(p >= q) return -INF;\n if(f >= 3 && memo2[ord[p]][ord[q]]) return dp2[ord[p]][ord[q]];\n if(f >= 3) {\n memo2[ord[p]][ord[q]] = true;\n return dp2[ord[p]][ord[q]] = max(upd[ord[q]], rec3(p, q - 1, true) + 1);\n }\n return max(upd[ord[q]], rec3(p, q - 1, f + 1) + 1);\n}\n\n\nbool memo3[2002][2002];\nint dp3[2002][2002];\n\nint rec4(int p, int q, int f = false) {\n if(p >= q) return -INF;\n if(f >= 3 && memo3[ord[p]][ord[q]]) return dp3[ord[p]][ord[q]];\n if(f >= 3) {\n memo3[ord[p]][ord[q]] = true;\n return dp3[ord[p]][ord[q]] = max(upd[ord[p]], rec4(p + 1, q, true) + 1);\n }\n return max(upd[ord[p]], rec4(p + 1, q, f + 1) + 1);\n}\n\n\nbool memo[2002][2002][2];\nint dp[2002][2002][2];\n\nint rec2(int p, int q, bool tern) {\n if(p >= q) return true;\n //if(memo[ord[p]][ord[q]][tern]) return dp[ord[p]][ord[q]][tern];\n\n bool ret = false;\n if(tern) {\n if(!rec2(p, q - 1, tern ^ 1)) return true;\n if(upd[ord[q]] > rec4(p, q)) return true;\n } else {\n if(!rec2(p + 1, q, tern ^ 1)) return true;\n if(upd[ord[p]] > rec3(p, q)) return true;\n }\n return false;\n}\n\n\nint rec(int idx, int par) {\n ord.emplace_back(idx);\n vector< pair< int, int > > child;\n child.emplace_back(0, -1);\n for(auto to : g[idx]) {\n if(to == par) continue;\n child.emplace_back(dep[to] + 1, to);\n }\n sort(child.rbegin(), child.rend());\n for(auto to : g[idx]) {\n if(to == par) continue;\n upd[idx] = child[to == child[0].second].first;\n rec(to, idx);\n }\n upd[idx] = child[0].first;\n if(ord.size() >= 2 && rec2(0, ord.size() - 1, false)) {\n ++ans;\n }\n ord.pop_back();\n}\n\n\nint main() {\n cin >> N;\n for(int i = 1; i < N; i++) {\n int a, b;\n cin >> a >> b;\n --a, --b;\n g[a].emplace_back(b);\n g[b].emplace_back(a);\n }\n for(int i = 0; i < N; i++) {\n dfs(i, -1);\n rec(i, -1);\n }\n cout << ans << endl;\n}", "accuracy": 0.7555555555555555, "time_ms": 650, "memory_kb": 32456, "score_of_the_acc": -0.1131, "final_rank": 11 }, { "submission_id": "aoj_3061_3413166", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\ntemplate <class T> using V = vector<T>;\ntemplate <class T> using VV = V<V<T>>;\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); }\n\nusing P = pair<int, int>;\n\nVV<int> g;\nVV<int> near;\nVV<V<P>> top2; //(id, length)\n\nV<P> buf;\nvoid unique(V<P>& v) {\n sort(v.begin(), v.end(), [&](P a, P b) {\n if (a.first != b.first) return a.first < b.first;\n return a.second > b.second;\n });\n v.erase(unique(v.begin(), v.end(), [&](P a, P b) {\n return a.first == b.first;\n }), v.end());\n sort(v.begin(), v.end(), [&](P a, P b) {\n return a.second > b.second;\n });\n if (v.size() > 2) v.resize(2);\n}\n\nvoid dfs(int p, int b, int rt, int cr, int ndp) {\n near[rt][p] = cr;\n top2[rt][p].insert(top2[rt][p].end(), buf.begin(), buf.end());\n unique(top2[rt][p]);\n\n buf.push_back({cr, ndp});\n unique(buf);\n\n for (int d: g[p]) {\n if (d == b) continue;\n dfs(d, p, rt, cr, ndp + 1);\n }\n}\n\nVV<int> to_id;\n\nVV<bool> vis;\nVV<bool> dp;\n\nbool solve(int p, int bp, int q, int bq) {\n int id1 = to_id[p][bp], id2 = to_id[q][bq];\n if (vis[id1][id2]) return dp[id1][id2];\n vis[id1][id2] = true;\n\n int da = -1, db = -1;\n for (auto pi: top2[p][near[p][q]]) {\n if (pi.first == bp) continue;\n da = max(da, pi.second);\n }\n for (auto pi: top2[q][p]) {\n if (pi.first == bq) continue;\n db = max(db, pi.second);\n }\n if (da > db) return dp[id1][id2] = true;\n if (near[p][q] == q) return dp[id1][id2] = false;\n return dp[id1][id2] = !solve(q, bq, near[p][q], p);\n}\n\nint main() {\n int n;\n cin >> n;\n g = VV<int>(n);\n for (int i = 0; i < n - 1; i++) {\n int a, b;\n cin >> a >> b; a--; b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n near = VV<int>(n, V<int>(n, -1));\n top2 = VV<V<P>>(n, VV<P>(n));\n for (int s = 0; s < n; s++) {\n buf.clear();\n for (int d: g[s]) {\n dfs(d, s, s, d, 1);\n }\n for (int i = 0; i < n; i++) {\n reverse(g[i].begin(), g[i].end());\n }\n buf.clear();\n for (int d: g[s]) {\n dfs(d, s, s, d, 1);\n }\n }\n\n to_id = VV<int>(n, V<int>(n + 1, -1));\n int idc = 0;\n for (int i = 0; i < n; i++) {\n for (int j: g[i]) {\n to_id[i][j] = idc++;\n }\n to_id[i][n] = idc++;\n }\n\n vis = VV<bool>(idc, V<bool>(idc));\n dp = VV<bool>(idc, V<bool>(idc));\n\n int ans = 0;\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n if (i == j) continue;\n ans += solve(i, n, j, n);\n }\n }\n\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 2160, "memory_kb": 293268, "score_of_the_acc": -1.1473, "final_rank": 5 }, { "submission_id": "aoj_3061_3407721", "code_snippet": "#include <bits/stdc++.h>\n#define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,NAME,...) NAME\n#define pr(...) cerr<< GET_MACRO(__VA_ARGS__,pr8,pr7,pr6,pr5,pr4,pr3,pr2,pr1)(__VA_ARGS__) <<endl\n#define pr1(a) (#a)<<\"=\"<<(a)<<\" \"\n#define pr2(a,b) pr1(a)<<pr1(b)\n#define pr3(a,b,c) pr1(a)<<pr2(b,c)\n#define pr4(a,b,c,d) pr1(a)<<pr3(b,c,d)\n#define pr5(a,b,c,d,e) pr1(a)<<pr4(b,c,d,e)\n#define pr6(a,b,c,d,e,f) pr1(a)<<pr5(b,c,d,e,f)\n#define pr7(a,b,c,d,e,f,g) pr1(a)<<pr6(b,c,d,e,f,g)\n#define pr8(a,b,c,d,e,f,g,h) pr1(a)<<pr7(b,c,d,e,f,g,h)\n#define prArr(a) {cerr<<(#a)<<\"={\";int i=0;for(auto t:(a))cerr<<(i++?\", \":\"\")<<t;cerr<<\"}\"<<endl;}\nusing namespace std;\nusing Int = long long;\nusing _int = int;\nusing ll = long long;\nusing Double = long double;\nconst Int INF = (1LL<<60)+1e9; // ~ 1.15 * 1e18\nconst Int mod = (1e9)+7;\nconst Double EPS = 1e-8;\nconst Double PI = 6.0 * asin((Double)0.5);\nusing P = pair<Int,Int>;\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\ntemplate<class T1, class T2> ostream& operator<<(ostream& o,pair<T1,T2> p){return o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";}\ntemplate<class T1, class T2, class T3> ostream& operator<<(ostream& o,tuple<T1,T2,T3> t){\n return o<<\"(\"<<get<0>(t)<<\",\"<<get<1>(t)<<\",\"<<get<2>(t)<<\")\";}\ntemplate<class T1, class T2> istream& operator>>(istream& i,pair<T1,T2> &p){return i>>p.first>>p.second;}\ntemplate<class T> ostream& operator<<(ostream& o,vector<T> a){Int i=0;for(T t:a)o<<(i++?\" \":\"\")<<t;return o;}\ntemplate<class T> istream& operator>>(istream& i,vector<T> &a){for(T &t:a)i>>t;return i;}\n//INSERT ABOVE HERE\n\nclass TreeParent{\npublic:\n int V; //ノード数\n int root; //根\n vector<vector<int> > G; //Graph\n vector<int> parent; //親\n int ok;\n TreeParent():V(-1){};\n TreeParent(int V,int root = 0):V(V),root(root),G(V),parent(V),ok(0){}\n TreeParent(vector<vector<int> > &G,int root = 0):V(G.size()),root(root),G(G),parent(V),ok(0){}\n void resize(int n){*this = TreeParent(n);}\n void add_edge(int a,int b){\n ok = false;\n assert(a < V && b < V);\n assert(a >= 0 && b >= 0);\n G[a].push_back(b);\n G[b].push_back(a);\n }\n void build(int root = -1){\n ok = 1;\n if(root != -1) this->root = root;\n function<void(int,int)> dfs = [&](int pos,int pre){\n parent[pos] = pre;\n for(int to:G[pos]) if(to != pre) dfs(to, pos);\n };\n dfs(this->root, -1);\n }\n inline int get(int u){/*assert(ok); assert(0 <= u && u < V)*/; return parent[u];}\n \n};\n\nconst int MAX_N = 2010;\nint N;\nvector<vector<int> > G;\nvector<vector<int> > edge;\nvector<TreeParent> tp;\nvector<vector<P> > path;\n\nvoid buildPath(){\n function<int(int, int)> dfs = [&](int pos, int par){\n int res = 0;\n for(int to:G[pos])\n if( to != par) Max(res, dfs(to, pos) + 1);\n return res;\n };\n\n path.resize(N);\n for(int i=0;i<N;i++){\n vector<P> res = {P(0, -2), P(0, -2), P(0, -2)};\n for(int to:G[i]){\n int len = dfs(to, i) + 1;\n res.push_back(P(len, to));\n sort(res.begin(), res.end(), greater<P>());\n while((int)res.size() > 3) res.pop_back();\n }\n path[i] = res;\n }\n}\n\nint getMaxPath2(int pos,int ng1,int ng2){\n //if(ng1 != -1) assert(edge[pos][ng1] != -1);\n //if(ng2 != -1) assert(edge[pos][ng2] != -1);\n for(auto &p:path[pos]){\n int len, to; tie(len, to) = p;\n if(to != ng1 && to != ng2) return len;\n }\n assert(0);\n}\n\n//posが動く ng1とng2以外のノードを通っていく最大のパス\nint getMaxPath(int pos, int par, int ng2){\n static _int used[2][MAX_N][MAX_N], mem[2][MAX_N][MAX_N];\n //assert(ng2 != -1);\n if(pos == par || pos == ng2) return -1;\n int a = par==-1? pos:edge[par][pos];\n int b = edge[tp[pos].get(ng2)][ng2];\n int t = par != -1;\n \n // assert(a >= 0 && b >= 0);\n if(used[t][a][b]++) return mem[t][a][b];\n int m = tp[ng2].get(pos); \n int p = getMaxPath(m, pos, ng2) + 1; //ng2の方に近づく\n int q = getMaxPath2(pos, par, m); //それ以外\n int res = max(p, q);\n return mem[t][a][b] = res;\n}\n\nint dfs(int a,int b, int turn, int pa, int pb){\n static bool used[2][4][MAX_N][MAX_N], mem[2][4][MAX_N][MAX_N];\n int idxa = pa==-1? a:edge[a][pa];\n int idxb = pb==-1? b:edge[b][pb];\n int t = (pa == -1) + 2*(pb == -1);\n //assert(idxa >= 0 && idxb >= 0);\n if(a == b) return turn;\n if(used[turn][t][idxa][idxb]) return mem[turn][t][idxa][idxb];\n used[turn][t][idxa][idxb] = 1;\n\n int res = 0;\n if(turn == 0){\n int atob = tp[b].get(a);\n int A = getMaxPath(a, pa, atob); //折り返す。\n int B = getMaxPath(b, pb, a);//bに近づく\n if(A > B) res = 0;\n else res = dfs(atob, b, !turn, a, pb);\n }\n\n if(turn == 1){\n int btoa = tp[a].get(b);\n int B = getMaxPath(b, pb, btoa);//折り返す\n int A = getMaxPath(a, pa, b);//aに近づく\n if(B > A) res = 1;\n else res = dfs(a, btoa, !turn, pa, b);\n }\n return mem[turn][t][idxa][idxb] = res;\n};\n\nsigned main(){\n srand((unsigned)time(NULL));\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n cin>>N;\n G.resize(N);\n edge.resize(N, vector<int>(N, -1));\n \n for(int i=0;i<N-1;i++){\n int a, b;\n cin>>a>>b; a--,b--;\n G[a].push_back(b);\n G[b].push_back(a);\n edge[a][b] = i;\n edge[b][a] = i;\n }\n\n tp.resize(N);\n for(int i=0;i<N;i++) tp[i] = TreeParent(G), tp[i].build(i);\n buildPath();\n \n int ans = 0;\n for(int i=0;i<N;i++)\n for(int j=0;j<N;j++){\n if(i == j) continue;\n int win = dfs(i, j, 0, -1, -1) == 0;\n //if(win==0) cout<<\"lose: \"<<i+1<<\" \"<<j+1<<endl;\n ans += win;\n }\n cout<<ans<<endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 2980, "memory_kb": 351624, "score_of_the_acc": -1.4792, "final_rank": 6 }, { "submission_id": "aoj_3061_3407624", "code_snippet": "#include<iomanip>\n#include<limits>\n#include<thread>\n#include<utility>\n#include<iostream>\n#include<string>\n#include<algorithm>\n#include<set>\n#include<map>\n#include<vector>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<numeric>\n#include<cassert>\n#include<random>\n#include<chrono>\n#include<unordered_set>\n#include<unordered_map>\n#include<fstream>\n#include<list>\n#include<functional>\n#include<bitset>\n#include<complex>\n#include<tuple>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef pair<int,int> pi;\ntypedef pair<double,double> pd;\ntypedef pair<double,ll> pdl;\n#define F first\n#define S second\nconst ll E=1e18+7;\nconst ll MOD=1000000007;\n\nconst ll N_MAX=2000;\n\n\nll n;\nvector<ll> edge[N_MAX];\npll MX[N_MAX][3];\nll parent[N_MAX];\nll NEXT[N_MAX][N_MAX];\npll EDGE[N_MAX][N_MAX][2];\nvector<ll> children[N_MAX];\npll RMQ[N_MAX][N_MAX];\nint ans[N_MAX][N_MAX][4];\n\n\npll dfs1(ll w,ll p){\n parent[w]=p;\n MX[w][0]=MX[w][1]=MX[w][2]={0,w};\n for(auto &I:edge[w]){\n if(I==p){continue;}\n pll ret=dfs1(I,w);\n if(ret>MX[w][2]){MX[w][2]=ret;}\n if(MX[w][2]>MX[w][1]){swap(MX[w][1],MX[w][2]);}\n if(MX[w][1]>MX[w][0]){swap(MX[w][0],MX[w][1]);}\n }\n return {MX[w][0].F+1,w};\n}\n\nvoid merge(ll w,ll c){\n for(auto &I:children[c]){\n NEXT[w][I]=c;\n NEXT[I][w]=parent[I];\n if(MX[w][0].S==NEXT[w][I]){\n EDGE[w][I][0]=MX[w][1];\n EDGE[w][I][1]=MX[w][2];\n }\n else if(MX[w][1].S==NEXT[w][I]){\n EDGE[w][I][0]=MX[w][0];\n EDGE[w][I][1]=MX[w][2];\n }\n else{\n EDGE[w][I][0]=MX[w][0];\n EDGE[w][I][1]=MX[w][1];\n }\n if(MX[I][0].S==NEXT[I][w]){\n EDGE[I][w][0]=MX[I][1];\n EDGE[I][w][1]=MX[I][2];\n }\n else if(MX[I][1].S==NEXT[I][w]){\n EDGE[I][w][0]=MX[I][0];\n EDGE[I][w][1]=MX[I][2];\n }\n else{\n EDGE[I][w][0]=MX[I][0];\n EDGE[I][w][1]=MX[I][1];\n }\n }\n for(int i=1;i<children[w].size();i++){\n ll I=children[w][i];\n for(auto &T:children[c]){\n NEXT[I][T]=parent[I];\n NEXT[T][I]=parent[T];\n if(MX[I][0].S==NEXT[I][T]){\n EDGE[I][T][0]=MX[I][1];\n EDGE[I][T][1]=MX[I][2];\n }\n else if(MX[I][1].S==NEXT[I][T]){\n EDGE[I][T][0]=MX[I][0];\n EDGE[I][T][1]=MX[I][2];\n }\n else{\n EDGE[I][T][0]=MX[I][0];\n EDGE[I][T][1]=MX[I][1];\n }\n if(MX[T][0].S==NEXT[T][I]){\n EDGE[T][I][0]=MX[T][1];\n EDGE[T][I][1]=MX[T][2];\n }\n else if(MX[T][1].S==NEXT[T][I]){\n EDGE[T][I][0]=MX[T][0];\n EDGE[T][I][1]=MX[T][2];\n }\n else{\n EDGE[T][I][0]=MX[T][0];\n EDGE[T][I][1]=MX[T][1];\n }\n }\n }\n for(auto &I:children[c]){\n children[w].push_back(I);\n }\n}\n\nvoid dfs2(ll w,ll p,ll pn){\n if(MX[w][2].F<pn){MX[w][2]={pn,p};}\n if(MX[w][2]>MX[w][1]){swap(MX[w][1],MX[w][2]);}\n if(MX[w][1]>MX[w][0]){swap(MX[w][0],MX[w][1]);}\n children[w].push_back(w);\n for(auto &I:edge[w]){\n if(I==p){continue;}\n if(I==MX[w][0].S){\n dfs2(I,w,max(pn+1,MX[w][1].F+1));\n }\n else{\n dfs2(I,w,max(pn+1,MX[w][0].F+1));\n }\n merge(w,I);\n }\n}\n\nll rmq(ll s,ll t){\n assert(s!=t);\n if(RMQ[s][t].F!=-1){return RMQ[s][t].F;}\n if(NEXT[s][t]==t){RMQ[s][t]={0,1}; return RMQ[s][t].F;}\n rmq(NEXT[s][t],t);\n RMQ[s][t]=RMQ[NEXT[s][t]][t];\n if(EDGE[NEXT[s][t]][s][0].S==NEXT[NEXT[s][t]][t]){\n RMQ[s][t].F=max(RMQ[s][t].F,EDGE[NEXT[s][t]][s][1].F+RMQ[s][t].S);\n }\n else{\n RMQ[s][t].F=max(RMQ[s][t].F,EDGE[NEXT[s][t]][s][0].F+RMQ[s][t].S);\n }\n RMQ[s][t].S++;\n return RMQ[s][t].F;\n}\n\n\n//1::使っても良い 0::使ってはだめ from,to\nint Ans(ll s,ll t,int k){\n assert(s!=t);\n if(ans[s][t][k]!=-1){return ans[s][t][k];}\n if(k==3){\n if(NEXT[s][t]==t){return ans[s][t][k]=(EDGE[s][t][0].F>EDGE[t][s][0].F);}\n if(EDGE[s][t][0].F>max(rmq(s,t),EDGE[t][s][0].F)){return ans[s][t][k]=1;}\n if(EDGE[NEXT[s][t]][t][0].S==s){\n return ans[s][t][k]=!Ans(t,NEXT[s][t],2);\n }\n return ans[s][t][k]=!Ans(t,NEXT[s][t],3);\n }\n else if(k==2){\n if(NEXT[s][t]==t){return ans[s][t][k]=(EDGE[s][t][0].F>EDGE[t][s][1].F);}\n if(EDGE[s][t][0].F>max(rmq(s,t),EDGE[t][s][1].F)){return ans[s][t][k]=1;}\n if(EDGE[NEXT[s][t]][t][0].S==s){\n return ans[s][t][k]=!Ans(t,NEXT[s][t],0);\n }\n return ans[s][t][k]=!Ans(t,NEXT[s][t],1);\n }\n else if(k==1){\n if(NEXT[s][t]==t){return ans[s][t][k]=(EDGE[s][t][1].F>EDGE[t][s][0].F);}\n if(EDGE[s][t][1].F>max(rmq(s,t),EDGE[t][s][0].F)){return ans[s][t][k]=1;}\n if(EDGE[NEXT[s][t]][t][0].S==s){\n return ans[s][t][k]=!Ans(t,NEXT[s][t],2);\n }\n return ans[s][t][k]=!Ans(t,NEXT[s][t],3);\n }\n if(NEXT[s][t]==t){return ans[s][t][k]=(EDGE[s][t][1].F>EDGE[t][s][1].F);}\n if(EDGE[s][t][1].F>max(rmq(s,t),EDGE[t][s][1].F)){return ans[s][t][k]=1;}\n if(EDGE[NEXT[s][t]][t][0].S==s){\n return ans[s][t][k]=!Ans(t,NEXT[s][t],0);\n }\n return ans[s][t][k]=!Ans(t,NEXT[s][t],1);\n}\n\n\n\nint main(){\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cin>>n;\n for(auto &I:RMQ){\n for(auto &T:I){T={-1,-1};}\n }\n for(auto &I:ans){\n for(auto &T:I){\n for(auto &H:T){H=-1;}\n }\n }\n for(int i=1;i<n;i++){\n ll a,b;\n cin>>a>>b;\n a--; b--;\n edge[a].push_back(b);\n edge[b].push_back(a);\n }\n dfs1(0,-1);\n dfs2(0,-1,0);\n ll cnt=0;\n for(int i=0;i<n;i++){\n for(int t=0;t<n;t++){\n if(i==t){continue;}\n //if(Ans(i,t,3)){cout<<i+1<<\" \"<<t+1<<endl;}\n if(Ans(i,t,3)){cnt++;}\n }\n }\n cout<<cnt<<endl;\n \n \n return 0;\n}", "accuracy": 1, "time_ms": 1100, "memory_kb": 297576, "score_of_the_acc": -0.9384, "final_rank": 4 }, { "submission_id": "aoj_3061_3407619", "code_snippet": "#include <bits/stdc++.h>\n#define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,NAME,...) NAME\n#define pr(...) cerr<< GET_MACRO(__VA_ARGS__,pr8,pr7,pr6,pr5,pr4,pr3,pr2,pr1)(__VA_ARGS__) <<endl\n#define pr1(a) (#a)<<\"=\"<<(a)<<\" \"\n#define pr2(a,b) pr1(a)<<pr1(b)\n#define pr3(a,b,c) pr1(a)<<pr2(b,c)\n#define pr4(a,b,c,d) pr1(a)<<pr3(b,c,d)\n#define pr5(a,b,c,d,e) pr1(a)<<pr4(b,c,d,e)\n#define pr6(a,b,c,d,e,f) pr1(a)<<pr5(b,c,d,e,f)\n#define pr7(a,b,c,d,e,f,g) pr1(a)<<pr6(b,c,d,e,f,g)\n#define pr8(a,b,c,d,e,f,g,h) pr1(a)<<pr7(b,c,d,e,f,g,h)\n#define prArr(a) {cerr<<(#a)<<\"={\";int i=0;for(auto t:(a))cerr<<(i++?\", \":\"\")<<t;cerr<<\"}\"<<endl;}\nusing namespace std;\nusing Int = long long;\nusing _int = int;\nusing ll = long long;\nusing Double = long double;\nconst Int INF = (1LL<<60)+1e9; // ~ 1.15 * 1e18\nconst Int mod = (1e9)+7;\nconst Double EPS = 1e-8;\nconst Double PI = 6.0 * asin((Double)0.5);\nusing P = pair<Int,Int>;\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\ntemplate<class T1, class T2> ostream& operator<<(ostream& o,pair<T1,T2> p){return o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";}\ntemplate<class T1, class T2, class T3> ostream& operator<<(ostream& o,tuple<T1,T2,T3> t){\n return o<<\"(\"<<get<0>(t)<<\",\"<<get<1>(t)<<\",\"<<get<2>(t)<<\")\";}\ntemplate<class T1, class T2> istream& operator>>(istream& i,pair<T1,T2> &p){return i>>p.first>>p.second;}\ntemplate<class T> ostream& operator<<(ostream& o,vector<T> a){Int i=0;for(T t:a)o<<(i++?\" \":\"\")<<t;return o;}\ntemplate<class T> istream& operator>>(istream& i,vector<T> &a){for(T &t:a)i>>t;return i;}\n//INSERT ABOVE HERE\n\nclass TreeParent{\npublic:\n int V; //ノード数\n int root; //根\n vector<vector<int> > G; //Graph\n vector<int> parent; //親\n int ok;\n TreeParent():V(-1){};\n TreeParent(int V,int root = 0):V(V),root(root),G(V),parent(V),ok(0){}\n TreeParent(vector<vector<int> > &G,int root = 0):V(G.size()),root(root),G(G),parent(V),ok(0){}\n void resize(int n){*this = TreeParent(n);}\n void add_edge(int a,int b){\n ok = false;\n assert(a < V && b < V);\n assert(a >= 0 && b >= 0);\n G[a].push_back(b);\n G[b].push_back(a);\n }\n void build(int root = -1){\n ok = 1;\n if(root != -1) this->root = root;\n function<void(int,int)> dfs = [&](int pos,int pre){\n parent[pos] = pre;\n for(int to:G[pos]) if(to != pre) dfs(to, pos);\n };\n dfs(this->root, -1);\n }\n inline int get(int u){/*assert(ok); assert(0 <= u && u < V)*/; return parent[u];}\n \n};\n\nconst int MAX_N = 2010;\nint N;\nvector<vector<int> > G;\nvector<vector<int> > edge;\nvector<TreeParent> tp;\nvector<vector<P> > path;\n\nvoid buildPath(){\n function<int(int, int)> dfs = [&](int pos, int par){\n int res = 0;\n for(int to:G[pos])\n if( to != par) Max(res, dfs(to, pos) + 1);\n return res;\n };\n\n path.resize(N);\n for(int i=0;i<N;i++){\n vector<P> res = {P(0, -2), P(0, -2), P(0, -2)};\n for(int to:G[i]){\n int len = dfs(to, i) + 1;\n res.push_back(P(len, to));\n sort(res.begin(), res.end(), greater<P>());\n while(res.size() > 3) res.pop_back();\n }\n path[i] = res;\n }\n}\n\nint getMaxPath2(int pos,int ng1,int ng2){\n //if(ng1 != -1) assert(edge[pos][ng1] != -1);\n //if(ng2 != -1) assert(edge[pos][ng2] != -1);\n for(auto &p:path[pos]){\n int len, to; tie(len, to) = p;\n if(to != ng1 && to != ng2) return len;\n }\n assert(0);\n}\n\n//posが動く ng1とng2以外のノードを通っていく最大のパス\nint getMaxPath(int pos, int par, int ng2){\n static _int used[MAX_N][MAX_N][2], mem[MAX_N][MAX_N][2];\n //assert(ng2 != -1);\n if(pos == par || pos == ng2) return -1;\n int a = par==-1? pos:edge[par][pos];\n int b = edge[tp[pos].get(ng2)][ng2];\n int t = par != -1;\n \n // assert(a >= 0 && b >= 0);\n if(used[a][b][t]++) return mem[a][b][t];\n int m = tp[ng2].get(pos); \n int p = getMaxPath(m, pos, ng2) + 1; //ng2の方に近づく\n int q = getMaxPath2(pos, par, m); //それ以外\n int res = max(p, q);\n return mem[a][b][t] = res;\n}\n\nint dfs(int a,int b, int turn, int pa, int pb){\n static bool used[MAX_N][MAX_N][2][4], mem[MAX_N][MAX_N][2][4];\n int idxa = pa==-1? a:edge[a][pa];\n int idxb = pb==-1? b:edge[b][pb];\n int t = (pa == -1) + 2*(pb == -1);\n //assert(idxa >= 0 && idxb >= 0);\n if(a == b) return turn;\n if(used[idxa][idxb][turn][t]) return mem[idxa][idxb][turn][t];\n used[idxa][idxb][turn][t] = 1;\n\n int res = 0;\n if(turn == 0){\n int atob = tp[b].get(a);\n int A = getMaxPath(a, pa, atob); //折り返す。\n int B = getMaxPath(b, pb, a);//bに近づく\n if(A > B) res = 0;\n else res = dfs(atob, b, !turn, a, pb);\n }\n\n if(turn == 1){\n int btoa = tp[a].get(b);\n int B = getMaxPath(b, pb, btoa);//折り返す\n int A = getMaxPath(a, pa, b);//aに近づく\n if(B > A) res = 1;\n else res = dfs(a, btoa, !turn, pa, b);\n }\n return mem[idxa][idxb][turn][t] = res;\n};\n\nsigned main(){\n srand((unsigned)time(NULL));\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n cin>>N;\n G.resize(N);\n edge.resize(N, vector<int>(N, -1));\n \n for(int i=0;i<N-1;i++){\n int a, b;\n cin>>a>>b; a--,b--;\n G[a].push_back(b);\n G[b].push_back(a);\n edge[a][b] = i;\n edge[b][a] = i;\n }\n\n tp.resize(N);\n for(int i=0;i<N;i++) tp[i] = TreeParent(G), tp[i].build(i);\n buildPath();\n \n int ans = 0;\n for(int i=0;i<N;i++)\n for(int j=0;j<N;j++){\n if(i == j) continue;\n int win = dfs(i, j, 0, -1, -1) == 0;\n //if(win==0) cout<<\"lose: \"<<i+1<<\" \"<<j+1<<endl;\n ans += win;\n }\n cout<<ans<<endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 3090, "memory_kb": 394660, "score_of_the_acc": -1.6208, "final_rank": 7 }, { "submission_id": "aoj_3061_3406385", "code_snippet": "#include<iomanip>\n#include<limits>\n#include<thread>\n#include<utility>\n#include<iostream>\n#include<string>\n#include<algorithm>\n#include<set>\n#include<map>\n#include<vector>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<numeric>\n#include<cassert>\n#include<random>\n#include<chrono>\n#include<unordered_set>\n#include<unordered_map>\n#include<fstream>\n#include<list>\n#include<functional>\n#include<bitset>\n#include<complex>\n#include<tuple>\nusing namespace std;\ntypedef unsigned long long int ull;\n//typedef long long int ll;\ntypedef int ll;\ntypedef pair<ll,ll> pll;\ntypedef pair<int,int> pi;\ntypedef pair<double,double> pd;\ntypedef pair<double,ll> pdl;\n#define F first\n#define S second\n//const ll E=1e18+7;\nconst ll MOD=1000000007;\n\nconst ll N_MAX=2000;\n\n\nll n;\nvector<ll> edge[N_MAX];\npll MX[N_MAX][3];\nll parent[N_MAX];\nll NEXT[N_MAX][N_MAX];\nvector<ll> children[N_MAX];\npll RMQ[N_MAX][N_MAX];\nbool ans[N_MAX][N_MAX][4];\n\n\npll dfs1(ll w,ll p){\n parent[w]=p;\n MX[w][0]=MX[w][1]=MX[w][2]={0,w};\n for(auto &I:edge[w]){\n if(I==p){continue;}\n pll ret=dfs1(I,w);\n if(ret>MX[w][2]){MX[w][2]=ret;}\n if(MX[w][2]>MX[w][1]){swap(MX[w][1],MX[w][2]);}\n if(MX[w][1]>MX[w][0]){swap(MX[w][0],MX[w][1]);}\n }\n return {MX[w][0].F+1,w};\n}\n\ninline void cul2(ll s,ll t){\n if(NEXT[s][t]==t){RMQ[s][t]={0,1}; return;}\n RMQ[s][t]=RMQ[NEXT[s][t]][t];\n if(MX[NEXT[s][t]][0].S==s || MX[NEXT[s][t]][0].S==NEXT[NEXT[s][t]][t]){\n if(MX[NEXT[s][t]][1].S==s || MX[NEXT[s][t]][1].S==NEXT[NEXT[s][t]][t]){\n RMQ[s][t].F=max(RMQ[s][t].F,MX[NEXT[s][t]][2].F+RMQ[s][t].S);\n }\n else{\n RMQ[s][t].F=max(RMQ[s][t].F,MX[NEXT[s][t]][1].F+RMQ[s][t].S);\n }\n }\n else{\n RMQ[s][t].F=max(RMQ[s][t].F,MX[NEXT[s][t]][0].F+RMQ[s][t].S);\n }\n RMQ[s][t].S++;\n return;\n}\n\ninline void cul(ll s,ll t){\n pll &A1=MX[s][0].S==NEXT[s][t]?MX[s][1]:MX[s][0];\n pll &B1=(MX[t][0].S==NEXT[t][s]?MX[t][1]:MX[t][0]);\n pll &A2=(MX[s][0].S==NEXT[s][t] || MX[s][1].S==NEXT[s][t])?MX[s][2]:MX[s][1];\n pll &B2=(MX[t][0].S==NEXT[t][s] || MX[t][1].S==NEXT[t][s])?MX[t][2]:MX[t][1];\n {\n if(NEXT[s][t]==t){ans[s][t][3]=(A1.F>B1.F);}\n else if(A1.F>max(RMQ[s][t].F,B1.F)){ans[s][t][3]=true;}\n else if(MX[NEXT[s][t]][0].S==NEXT[NEXT[s][t]][t]){\n ans[s][t][3]=(MX[NEXT[s][t]][1].S==s?!ans[t][NEXT[s][t]][2]:!ans[t][NEXT[s][t]][3]);\n }\n else{\n ans[s][t][3]=(MX[NEXT[s][t]][0].S==s?!ans[t][NEXT[s][t]][2]:!ans[t][NEXT[s][t]][3]);\n }\n }\n {\n if(NEXT[s][t]==t){ans[s][t][2]=(A1.F>B2.F);}\n else if(A1.F>max(RMQ[s][t].F,B2.F)){ans[s][t][2]=true;}\n else if(MX[NEXT[s][t]][0].S==NEXT[NEXT[s][t]][t]){\n ans[s][t][2]=(MX[NEXT[s][t]][1].S==s?!ans[t][NEXT[s][t]][0]:!ans[t][NEXT[s][t]][1]);\n }\n else{\n ans[s][t][2]=(MX[NEXT[s][t]][0].S==s?!ans[t][NEXT[s][t]][0]:!ans[t][NEXT[s][t]][1]);\n }\n }\n {\n if(NEXT[s][t]==t){ans[s][t][1]=(A2.F>B1.F);}\n else if(A2.F>max(RMQ[s][t].F,B1.F)){ans[s][t][1]=true;}\n else if(MX[NEXT[s][t]][0].S==NEXT[NEXT[s][t]][t]){\n ans[s][t][1]=(MX[NEXT[s][t]][1].S==s?!ans[t][NEXT[s][t]][2]:!ans[t][NEXT[s][t]][3]);\n }\n else{\n ans[s][t][1]=(MX[NEXT[s][t]][0].S==s?!ans[t][NEXT[s][t]][2]:!ans[t][NEXT[s][t]][3]);\n }\n }\n {\n if(NEXT[s][t]==t){ans[s][t][0]=(A2.F>B2.F);}\n else if(A2.F>max(RMQ[s][t].F,B2.F)){ans[s][t][0]=true;}\n else if(MX[NEXT[s][t]][0].S==NEXT[NEXT[s][t]][t]){\n ans[s][t][0]=(MX[NEXT[s][t]][1].S==s?!ans[t][NEXT[s][t]][0]:!ans[t][NEXT[s][t]][1]);\n }\n else{\n ans[s][t][0]=(MX[NEXT[s][t]][0].S==s?!ans[t][NEXT[s][t]][0]:!ans[t][NEXT[s][t]][1]);\n }\n }\n}\n\ninline void merge(ll w,ll c){\n for(auto &I:children[c]){\n NEXT[w][I]=c;\n NEXT[I][w]=parent[I];\n cul2(w,I);\n cul2(I,w);\n cul(w,I);\n cul(I,w);\n }\n for(int i=1;i<children[w].size();i++){\n ll I=children[w][i];\n for(auto &T:children[c]){\n NEXT[I][T]=parent[I];\n NEXT[T][I]=parent[T];\n cul2(T,I);\n cul2(I,T);\n cul(T,I);\n cul(I,T);\n }\n }\n for(auto &I:children[c]){\n children[w].push_back(I);\n }\n}\n\nvoid dfs2(ll w,ll p,ll pn){\n if(MX[w][2].F<pn){MX[w][2]={pn,p};}\n if(MX[w][2]>MX[w][1]){swap(MX[w][1],MX[w][2]);}\n if(MX[w][1]>MX[w][0]){swap(MX[w][0],MX[w][1]);}\n children[w].push_back(w);\n for(auto &I:edge[w]){\n if(I==p){continue;}\n if(I==MX[w][0].S){\n dfs2(I,w,max(pn+1,MX[w][1].F+1));\n }\n else{\n dfs2(I,w,max(pn+1,MX[w][0].F+1));\n }\n merge(w,I);\n }\n}\n\n\n\nint main(){\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cin>>n;\n for(int i=1;i<n;i++){\n ll a,b;\n cin>>a>>b;\n a--; b--;\n edge[a].push_back(b);\n edge[b].push_back(a);\n }\n dfs1(0,-1);\n dfs2(0,-1,0);\n ll cnt=0;\n for(int i=0;i<n;i++){\n for(int t=0;t<n;t++){\n if(i==t){continue;}\n //if(ans[i][t][3]){cout<<i+1<<\" \"<<t+1<<endl;}\n if(ans[i][t][3]){cnt++;}\n }\n }\n cout<<cnt<<endl;\n \n \n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 72928, "score_of_the_acc": -0.1206, "final_rank": 1 } ]
aoj_3067_cpp
Problem D: Blaster Problem なんと、あなたは洞窟の中に閉じ込められてしまいました! 壁が崩れたりでもしたのでしょうか、1つしかない出口にたどり着くまでには沢山の岩が邪魔をしています。 しかしなんと、あなたのすぐ隣に爆弾の自動販売機があることに気がつきました。 さらに、洞窟にはいくつかの「ブラスター」も落ちているようです。 この2つの道具を活用すれば、出口まで脱出できそうです。 アイテムの説明 洞窟内で使用できるアイテムとして、「爆弾」「ブラスター」の2種類があります。 爆弾は、使用することで1マス分の岩を破壊できるアイテムです。 ブラスターは、使用することで自身の正面一直線にある岩を全て破壊することのできるアイテムです。 対象となる岩を破壊すると、岩は砕け散り「床」となります。 爆弾、ブラスターは使い切りで、各アイテムごとに使用できる回数はそれぞれ1回のみです。 また、ブラスターを使用することで、他のブラスターを破壊することはありません。 洞窟のフィールド 偶然手持ちにあったドローンを飛ばして、洞窟の様子を知ることが出来ました。 洞窟のフィールドが与えられます。 フィールドは以下のようなアスキーアートで与えらます。 _### ##B# B##_ フィールドは、上下に $H$ マス、左右に $W$ マスの幅を持つ $H \times W$ のマスからなる長方形です。 $i$ 行 $j$ 列目のマスを $(i,j)$ と表します。 各マスには、床、壁、ブラスターのいずれかがあります。 ブラスターのマスには、床の上にちょうど1つのブラスターが落ちていることを示します。 なお、フィールドの外側は爆弾やブラスターでも破壊できない壁で囲まれています。 フィールドの外側に出ることは出来ません。 脱出までの行動 あなたは、以下の行動を任意の回数取ることが出来ます。 隣接するマスの、任意の床へ進む。 隣接するマスにある任意のブラスターを取得する。取得後、ブラスターを取得したマスは床となる。 隣接するマスにある岩を、爆弾を1つ消費して破壊する。 現在のマスから、上下左右好きな方向を向いて、所持しているブラスターを1つ使用する。 ここで、マス $(i,j)$ と $(k,l)$ が隣接するとは、 $|i-k|+|j-l|=1$ であることをいいます。 ブラスターは十分に軽いため、行動中いくつでも取得することが出来ます。 但し、アイテムの説明に記載してあるとおり、取得した個数分の回数しかブラスターを使用することは出来ないので、注意してください。 最初、マス $(1,1)$ にいます。 脱出とは、マス $(H,W)$ に到達することを言います。 ミッション あなたは、爆弾の自動販売機から大量の爆弾を買えば問題なく脱出できることに気づきました。 幸い、爆弾の自動販売機には $10^{100}$ 個の在庫があり脱出するには十分そうです。 しかし、爆弾は非常に高価であるためあまり沢山買いたくありません。 手に入れた洞窟の様子から、脱出するには最小でいくつの爆弾を買う必要があるか、知りたくなりました。 Input 入力は以下の形式で与えられる。 $H$ $W$ $c_{1,1}$$\cdots$$c_{1,W}$ $\vdots$ $c_{H,1}$$\cdots$$c_{H,W}$ 1行目に $H,W$ が空白区切りに与えられます。 2行目から、続く $H$ 行にフィールドの情報がアスキーアートで与えられます。 フィールドの情報は、それぞれの文字ごとに以下の意味を持ちます。 $c_{i,j}$ が '#' のとき、 $(i,j)$ に岩があることを示す。 $c_{i,j}$ が '_' のとき、 $(i,j)$ に床があることを示す。 $c_{i,j}$ が 'B' のとき、 $(i,j)$ にブラスターがちょうど1つあることを示す。 Constraints 入力は以下の条件を満たす。 $2 \leq H,W \leq 1000 $ $H,W$ は整数である $c_{1,1},c_{H,W}$ は、必ず'_'である。 Output 1行に脱出に必要な爆弾の数を出力せよ。 Sample Input 1 8 5 _###_ _#_B# _#### ____# ###_# ##### ###_# ####_ Sample Output 1 1 この場合の脱出方法は、 マス $(3,4)$ にある岩を爆弾で破壊する マス $(2,4)$ にあるブラスターを取得する マス $(2,4)$ で下方向にブラスターを使用する 脱出! このように、爆弾 $1$ つで脱出することが出来ます。 なお、ブラスターを使用した直後のフィールドは、以下のようになっています。 _###_ _#__# _##_# ____# ###_# ###_# ###_# ###__ Sample Input 2 5 5 _____ _____ _____ _____ _____ Sample Output 2 0 邪魔する岩もブラスターもありません。目の錯覚だったのでしょうか。 爆弾を一つも買うことなく、脱出できる場合もあります。 Sample Input 3 4 5 _#### ##B## _#### _###_ Sample Output 3 2 マス $(2,1),(2,2)$ にある岩を破壊すれば、爆弾 $2$ つだけで脱出可能です。 Sample Input 4 4 5 _#B## ##### ##B## ####_ Sample Output 4 1
[ { "submission_id": "aoj_3067_3891733", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\nusing P = pair<int, int>;\nvector< vector<int> > bfs(vector<string> &s,vector<P> &vp,char wall,int dir){\n int h=s.size(),w=s.front().size();\n vector< vector<int> > dp(h,vector<int>(w,-1));\n deque<P> q;\n\n for(int i=0;i<(int)vp.size();i++){\n int sy=vp[i].first,sx=vp[i].second;\n dp[sy][sx]=0;\n q.emplace_back(sy,sx);\n }\n\n int dy[]={1,-1,0,0,1,1,-1,-1};\n int dx[]={0,0,1,-1,1,-1,1,-1};\n auto in=[&](int y,int x){return 0<=y&&y<h&&0<=x&&x<w;};\n\n while(!q.empty()){\n int y,x;\n tie(y,x)=q.front();q.pop_front();\n for(int k=0;k<dir;k++){\n int ny=y+dy[k],nx=x+dx[k];\n if(!in(ny,nx)) continue;\n int nd=dp[y][x]+(s[ny][nx]==wall);\n if(~dp[ny][nx]&&dp[ny][nx]<=nd) continue;\n dp[ny][nx]=nd;\n if(s[ny][nx]=='#'){\n q.emplace_back(ny,nx);\n }else{\n q.emplace_front(ny,nx);\n }\n }\n }\n return dp;\n}\n\nvector< vector<int> > bfs(vector<string> &s,int sy,int sx,char wall,int dir){\n vector<P> vp;\n vp.emplace_back(sy,sx);\n return bfs(s,vp,wall,dir);\n}\n\n\n//INSERT ABOVE HERE\n\nsigned main(){\n int h,w;\n cin>>h>>w;\n vector<string> st(h);\n for(int i=0;i<h;i++) cin>>st[i];\n\n auto d1=bfs(st,0,0,'#',4);\n int ans=d1[h-1][w-1];\n\n // find B2\n vector< vector<int> > ex(h,vector<int>(w));\n {\n int flg=0;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++) if(st[i][j]=='B') ex[i][j]|=flg;\n for(int j=0;j<w;j++) if(st[i][j]=='B') flg=1;\n }\n }\n {\n int flg=0;\n for(int j=0;j<w;j++){\n for(int i=0;i<h;i++) if(st[i][j]=='B') ex[i][j]|=flg;\n for(int i=0;i<h;i++) if(st[i][j]=='B') flg=1;\n }\n }\n\n // use B2\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n if(ex[i][j]) chmin(ans,d1[i][j]);\n\n // find B1\n int by=-1,bx=-1;\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n if(st[i][j]=='B'&&!ex[i][j]) by=i,bx=j;\n\n if(~by){\n // dist from B1\n auto d2=bfs(st,by,bx,'#',4);\n\n // dist to (i, j) with B1\n vector< vector<int> > d3(h,vector<int>(w));\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n d3[i][j]=d1[i][j]+d2[i][j]-(st[i][j]=='#');\n\n vector< queue<P> > qs((h+w)*2);\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n qs[d3[i][j]].emplace(i,j);\n\n int dy[]={1,-1,0,0,1,1,-1,-1};\n int dx[]={0,0,1,-1,1,-1,1,-1};\n auto in=[&](int y,int x){return 0<=y&&y<h&&0<=x&&x<w;};\n for(int d=0;d+1<(int)qs.size();d++){\n while(!qs[d].empty()){\n int y,x;\n tie(y,x)=qs[d].front();qs[d].pop();\n if(d3[y][x]!=d) continue;\n for(int k=0;k<4;k++){\n int ny=y+dy[k],nx=x+dx[k];\n if(!in(ny,nx)) continue;\n int nd=d3[y][x]+(st[ny][nx]=='#');\n if(d3[ny][nx]<=nd) continue;\n d3[ny][nx]=nd;\n qs[nd].emplace(ny,nx);\n }\n }\n }\n\n // dist from B2 and goal\n vector<P> vp;\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n if(ex[i][j]) vp.emplace_back(i,j);\n vp.emplace_back(h-1,w-1);\n auto d4=bfs(st,vp,'#',4);\n\n // use B1\n vector< vector<int> > d5(d3),d6(d3);\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(i) chmin(d5[i][j],d5[i-1][j]);\n if(j) chmin(d6[i][j],d6[i][j-1]);\n }\n }\n\n // take B2 and use\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n chmin(ans,(d4[i][j]-(st[i][j]=='#'))+min(d5[i][j],d6[i][j]));\n }\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 37468, "score_of_the_acc": -0.039, "final_rank": 1 }, { "submission_id": "aoj_3067_3860078", "code_snippet": "#include <bits/stdc++.h>\n#define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,NAME,...) NAME\n#define pr(...) cerr<< GET_MACRO(__VA_ARGS__,pr8,pr7,pr6,pr5,pr4,pr3,pr2,pr1)(__VA_ARGS__) <<endl\n#define pr1(a) (#a)<<\"=\"<<(a)<<\" \"\n#define pr2(a,b) pr1(a)<<pr1(b)\n#define pr3(a,b,c) pr1(a)<<pr2(b,c)\n#define pr4(a,b,c,d) pr1(a)<<pr3(b,c,d)\n#define pr5(a,b,c,d,e) pr1(a)<<pr4(b,c,d,e)\n#define pr6(a,b,c,d,e,f) pr1(a)<<pr5(b,c,d,e,f)\n#define pr7(a,b,c,d,e,f,g) pr1(a)<<pr6(b,c,d,e,f,g)\n#define pr8(a,b,c,d,e,f,g,h) pr1(a)<<pr7(b,c,d,e,f,g,h)\n#define prArr(a) {cerr<<(#a)<<\"={\";int i=0;for(auto t:(a))cerr<<(i++?\", \":\"\")<<t;cerr<<\"}\"<<endl;}\nusing namespace std;\nusing Int = long long;\nusing _int = int;\nusing ll = long long;\nusing Double = long double;\nconst Int INF = (1LL<<60)+1e9; // ~ 1.15 * 1e18\nconst Int mod = (1e9)+7;\nconst Double EPS = 1e-8;\nconst Double PI = 6.0 * asin((Double)0.5);\nusing P = pair<Int,Int>;\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\ntemplate<class T1, class T2> ostream& operator<<(ostream& o,pair<T1,T2> p){return o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";}\ntemplate<class T1, class T2, class T3> ostream& operator<<(ostream& o,tuple<T1,T2,T3> t){\n return o<<\"(\"<<get<0>(t)<<\",\"<<get<1>(t)<<\",\"<<get<2>(t)<<\")\";}\ntemplate<class T1, class T2> istream& operator>>(istream& i,pair<T1,T2> &p){return i>>p.first>>p.second;}\ntemplate<class T> ostream& operator<<(ostream& o,vector<T> a){Int i=0;for(T t:a)o<<(i++?\" \":\"\")<<t;return o;}\ntemplate<class T> istream& operator>>(istream& i,vector<T> &a){for(T &t:a)i>>t;return i;}\n//INSERT ABOVE HERE\n\nconst Int dx[] = {0, 1, 0, -1};\nconst Int dy[] = {-1, 0, 1, 0};\n\nvector<vector<Int> > bfs(Int h, Int w, vector<P> start, vector<string> mp){\n using T = tuple<Int,Int>;\n vector<vector<Int> > D(h, vector<Int> (w, INF));\n deque<T> Q;\n for(auto p:start){\n Int sy, sx; tie(sy, sx) = p;\n Q.emplace_back(sy, sx);\n D[sy][sx] = 0;\n }\n while(!Q.empty()){\n Int y, x;\n tie(y, x) = Q.front(); Q.pop_front();\n Int cost = D[y][x];\n\n for(Int i=0;i<4;i++){\n Int ny = y + dy[i];\n Int nx = x + dx[i];\n if(ny < 0 || ny >= h || nx < 0 || nx >= w) continue;\n Int ncost = cost + (mp[ny][nx] == '#');\n if(D[ny][nx] <= ncost) continue;\n D[ny][nx] = ncost;\n if(cost == ncost) Q.emplace_front(ny, nx);\n else Q.emplace_back(ny, nx);\n }\n }\n return D;\n}\n\nvector<vector<Int> > dijkstra(Int h, Int w, vector<string> mp, vector<vector<Int> > D){\n using T = tuple<Int,Int, Int>;\n priority_queue<T, vector<T>, greater<T> > Q;\n for(Int i=0;i<h;i++)\n for(Int j=0;j<w;j++){\n Int sy, sx; tie(sy, sx) = P(i, j);\n Q.emplace(D[sy][sx], sy, sx);\n }\n\n vector<vector<Int> > visited(h, vector<Int>(w));\n\n while(!Q.empty()){\n Int cost, y, x;\n tie(cost, y, x) = Q.top(); Q.pop();\n\n if(visited[y][x]) continue;\n\n for(Int i=0;i<4;i++){\n Int ny = y + dy[i];\n Int nx = x + dx[i];\n if(ny < 0 || ny >= h || nx < 0 || nx >= w) continue;\n Int ncost = cost + (mp[ny][nx] == '#');\n if(D[ny][nx] <= ncost) continue;\n D[ny][nx] = ncost;\n Q.emplace(ncost, ny, nx);\n }\n }\n return D;\n}\n\n//Blasterを0個使う\nInt solve0(Int h, Int w, vector<string> mp){\n vector<P> start = {P(0, 0)};\n return bfs(h, w, start, mp)[h-1][w-1];\n}\n\n\n//Blasterを2個使うB2を取ってからB1をとる\nInt solve2_1(Int h, Int w, vector<string> mp){\n P B1 = P(-1, -1);\n for(Int i=0;i<h;i++)\n for(Int j=0;j<w;j++){\n if(mp[i][j] != 'B') continue;\n if(B1 == P(-1, -1) || B1.first + B1.second >= i + j) B1 = P(i, j);\n }\n\n if(B1 == P(-1, -1)) return INF;\n mp[B1.first][B1.second] = '_';\n auto SD = bfs(h, w, {P(0, 0)}, mp);\n Int res = INF;\n for(Int i=0;i<h;i++)\n for(Int j=0;j<w;j++)\n if(mp[i][j] == 'B') Min(res, SD[i][j]);\n return res;\n}\n\n//Blasterを2個使うB1を取ってからB2をとる\nInt solve2_2(Int h, Int w, vector<string> mp){\n P B1 = P(-1, -1);\n for(Int i=0;i<h;i++)\n for(Int j=0;j<w;j++){\n if(mp[i][j] != 'B') continue;\n if(B1 == P(-1, -1) || B1.first + B1.second >= i + j) B1 = P(i, j);\n }\n if(B1 == P(-1, -1)) return INF;\n mp[B1.first][B1.second] = '_';\n mp[h-1][w-1] = 'B'; //Blasterを1個しか使わないケース用にゴールをBlasterにしておく\n\n vector<vector<Int> > minH, minW, minHW;\n {\n vector<P> start;\n for(Int i=0;i<h;i++)\n for(Int j=0;j<w;j++)\n if(mp[i][j] == 'B') start.emplace_back(i, j);\n\n minH = minW = bfs(h, w, start, mp);\n\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n if(mp[i][j] == '#'){\n minH[i][j] = max(0LL, minH[i][j]-1);\n minW[i][j] = max(0LL, minW[i][j]-1);\n }\n\n for(Int i=0;i<h;i++)\n for(Int j=w-2;j>=0;j--) Min(minW[i][j], minW[i][j+1]);\n\n for(Int j=0;j<w;j++)\n for(Int i=h-2;i>=0;i--) Min(minH[i][j], minH[i+1][j]);\n\n minHW = vector<vector<Int> >(h, vector<Int>(w));\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++) minHW[i][j] = min(minH[i][j], minW[i][j]) + (mp[i][j] == '#');\n }\n\n auto SD = bfs(h, w, {P(0, 0)}, mp);\n auto B1D = bfs(h, w, {B1}, mp);\n auto HWD = dijkstra(h, w, mp, minHW);\n\n Int res = INF;\n for(Int i=0;i<h;i++)\n for(Int j=0;j<w;j++){\n Int a = SD[i][j];\n Int b = B1D[i][j];\n Int c = HWD[i][j];\n Int cost = a + b + c - (mp[i][j] == '#') * 2;\n Min(res, cost);\n }\n return res;\n}\n\nsigned main(){\n srand((unsigned)time(NULL));\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n Int h, w;\n cin>>h>>w;\n vector<string> mp(h);\n cin>>mp;\n Int a = solve0(h, w, mp);\n Int b = solve2_1(h, w, mp);\n Int c = solve2_2(h, w, mp);\n Int ans = min({a, b, c});\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 530, "memory_kb": 109868, "score_of_the_acc": -0.3854, "final_rank": 6 }, { "submission_id": "aoj_3067_3860011", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int INF = 1e9;\nconst int dx[4] = {0, 1, 0, -1}, dy[4] = {-1, 0, 1, 0};\n\nint H, W;\nvector<string> grid;\n\nstruct State {\n int x, y, cost, b;\n State(int x, int y, int cost, int b): x(x), y(y), cost(cost), b(b) {}\n bool operator<(const State &e) const {\n return cost < e.cost;\n };\n\n bool operator>(const State &e) const {\n return cost > e.cost;\n };\n};\n\nint calc0() {\n bool used[H][W];\n fill_n(*used, H*W, false);\n deque<State> Q; \n Q.push_front(State(0, 0, 0, 0));\n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n\n if ( x == W-1 && y == H-1 ) return cost; \n \n if ( used[y][x] ) continue;\n used[y][x] = true;\n \n for ( int i = 0; i < 4; i++ ) {\n int nx = x+dx[i], ny = y+dy[i];\n if ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n if ( grid[ny][nx] == '#' ) {\n\tQ.push_back(State(nx, ny, cost+1, b));\t\n } else {\n\tQ.push_front(State(nx, ny, cost, b));\t\n }\n }\n }\n\n return INF;\n}\n\nint calc1() {\n int dist[H][W];\n { \n fill_n(*dist, H*W, INF); \n deque<State> Q; \n for ( int i = 0; i < H; i++ ) {\n for ( int j = 0; j < W; j++ ) {\n\tif ( grid[i][j] == 'B' ) Q.push_front(State(j, i, 0, 0));\n }\n }\n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n \n if ( dist[y][x] != INF ) continue;\n dist[y][x] = cost;\n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[y][x] == '#' ) {\n\t Q.push_back(State(nx, ny, cost+1, b));\t\n\t} else {\n\t Q.push_front(State(nx, ny, cost, b));\t\n\t}\n }\n } \n }\n // cout << dist[0][0] << endl;\n vector<int> distR(H, INF), distC(W, INF);\n {\n bool used[H][W][2];\n fill_n(**used, H*W*2, false);\n priority_queue<State, vector<State>, greater<State> > Q; \n Q.push(State(0, 0, 0, 0));\n while ( !Q.empty()) {\n State s = Q.top(); Q.pop(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b;\n \n if ( b ) {\n\tdistR[y] = min(distR[y], cost);\n\tdistC[x] = min(distC[x], cost);\n }\n else {\n\tdistR[y] = min(distR[y], cost+dist[y][x]);\t\n\tdistC[x] = min(distC[x], cost+dist[y][x]);\n } \n \n if ( used[y][x][b] ) continue;\n used[y][x][b] = true;\n\n Q.push(State(x, y, cost+dist[y][x], 1)); \n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[ny][nx] == '#' ) {\n\t Q.push(State(nx, ny, cost+1, b));\t\n\t} else {\n\t int nb = b;\n\t if ( grid[ny][nx] == 'B' ) nb = 1;\n\t Q.push(State(nx, ny, cost, nb));\t\n\t}\n }\n }\n }\n\n int ans = INF; \n bool used[H][W];\n fill_n(*used, H*W, false);\n deque<State> Q; \n Q.push_front(State(W-1, H-1, 0, 0)); \n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n \n ans = min(ans, min(cost+distR[y], cost+distC[x])); \n \n if ( used[y][x] ) continue;\n used[y][x] = true;\n \n for ( int i = 0; i < 4; i++ ) {\n int nx = x+dx[i], ny = y+dy[i];\n if ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n if ( grid[y][x] == '#' ) {\n\tQ.push_back(State(nx, ny, cost+1, b));\t\n } else {\n\tQ.push_front(State(nx, ny, cost, b));\t\n }\n }\n }\n\n return ans; \n}\n\nint calc2() {\n int ans = INF;\n using P = pair<int, int>; \n P dist[H][W];\n { \n fill_n(*dist, H*W, P(INF, INF)); \n deque<State> Q; \n for ( int i = 0; i < H; i++ ) {\n for ( int j = 0; j < W; j++ ) {\n\tif ( grid[i][j] == 'B' ) Q.push_front(State(j, i, 0, i*W+j));\n }\n }\n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n \n if ( dist[y][x].first != INF ) continue;\n dist[y][x] = P(cost, b); \n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[y][x] == '#' ) {\n\t if ( dist[ny][nx].first == INF ) Q.push_back(State(nx, ny, cost+1, b));\t\n\t} else {\n\t if ( dist[ny][nx].first == INF ) Q.push_front(State(nx, ny, cost, b));\t\n\t}\n }\n } \n }\n\n vector<vector<State> > distR(H), distC(W); \n {\n bool used[H][W][2];\n fill_n(**used, H*W*2, false);\n priority_queue<State, vector<State>, greater<State> > Q; \n Q.push(State(0, 0, 0, 0));\n while ( !Q.empty()) {\n State s = Q.top(); Q.pop(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n if ( used[y][x][(bool)b] ) continue;\n used[y][x][(bool)b] = true; \n \n if ( b > 0 ) {\n\tif ( distR[y].size() < 2 ) {\n\t if ( distR[y].size() == 0 ) distR[y].push_back(s);\n\t else if ( distR[y][0].b != b ) distR[y].push_back(s);\n\t}\n\tif ( distC[x].size() < 2 ) {\n\t if ( distC[x].size() == 0 ) distC[x].push_back(s);\n\t else if ( distC[x][0].b != b ) distC[x].push_back(s);\n\t}\n } \n /* if ( b == 2 ) {\n\tans = min(ans, cost);\t\n\t} */ \n\n if ( dist[y][x].first != INF ) {\n\tif ( !used[y][x][(bool)dist[y][x].second] )\n\t Q.push(State(x, y, cost+dist[y][x].first, dist[y][x].second));\n }\n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( b == ny*W+nx ) continue;\t\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[ny][nx] == '#' ) {\n\t if ( !used[ny][nx][(bool)b] ) Q.push(State(nx, ny, cost+1, b));\t\n\t} else {\n\t int nb = b;\n\t if ( grid[ny][nx] == 'B' ) nb = ny*W+nx;\n\t if ( !used[ny][nx][(bool)nb] ) Q.push(State(nx, ny, cost, nb));\t\n\t}\n }\n }\n }\n\n vector<vector<State> > distR2(H), distC2(W);\n {\n bool used[H][W];\n fill_n(*used, H*W, false);\n deque<State> Q; \n for ( int i = 0; i < H; i++ ) {\n for ( int j = 0; j < W; j++ ) {\n\tif ( grid[i][j] == 'B' ) Q.push_front(State(j, i, 0, i*W+j));\n }\n }\n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b;\n \n if ( distR2[y].size() < 2 ) {\n\tif ( distR2[y].size() == 0 ) distR2[y].push_back(s);\n\telse if ( distR2[y][0].b != b ) distR2[y].push_back(s);\n }\n if ( distC2[x].size() < 2 ) {\n\tif ( distC2[x].size() == 0 ) distC2[x].push_back(s);\n\telse if ( distC2[x][0].b != b ) distC2[x].push_back(s);\n }\n \n if ( used[y][x] ) continue;\n used[y][x] = true;\n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[y][x] == '#' ) {\n\t Q.push_back(State(nx, ny, cost+1, b));\t\n\t} else {\n\t Q.push_front(State(nx, ny, cost, b));\t\n\t}\n }\n }\n }\n \n for ( int i = 0; i < H; i++ ) {\n for ( State j : distR[i] ) {\n for ( State k : distR2[i] ) {\n\tif ( j.b == k.b ) continue;\n\t// if ( j.cost+k.cost == 5 ) cout << \"R\" << i << \" \" << j.b << \":\" << j.cost << \" \" << k.b << \":\" << k.cost << endl;\t\n\tans = min(ans, j.cost+k.cost);\t\n }\n }\n }\n\n for ( int i = 0; i < W; i++ ) {\n for ( State j : distC[i] ) {\n for ( State k : distC2[i] ) {\n\tif ( j.b == k.b ) continue;\n\t// if ( j.cost+k.cost == 5 ) cout << \"W\" << i << \" \" << j.b << \":\" << j.cost << \" \" << k.b << \":\" << k.cost << endl;\t\n\tans = min(ans, j.cost+k.cost);\t\n }\n }\n }\n\n return ans; \n}\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n cin >> H >> W;\n\n grid = vector<string>(H);\n int cntB = 0; \n for ( int i = 0; i < H; i++ ) {\n cin >> grid[i];\n for ( int j = 0; j < W; j++ ) cntB += (grid[i][j] == 'B'); \n }\n\n int ans = calc0();\n if ( cntB ) {\n grid[H-1][W-1] = 'B'; \n ans = min(ans, calc2());\n }\n // if ( cntB >= 2 ) ans = min(ans, calc2());\n\n cout << ans << endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 800, "memory_kb": 62844, "score_of_the_acc": -0.2338, "final_rank": 5 }, { "submission_id": "aoj_3067_3860009", "code_snippet": "//#define TUBUANN_DEBUG21\n//#define TUBUANN_DEBUG22\n//#define TUBUANN_DEBUG23\n//#define TUBUANN_DEBUG24\n//#define TUBUANN_DEBUG25\n//#define TUBUANN_DEBUG26\n//#define TUBUANN_DEBUG27\n//#define TUBUANN_DEBUG28\n//#define TUBUANN_DEBUG29\n//#define TUBUANN_DEBUG30\n//#define TUBUANN_DEBUG31\n//#define TUBUANN_DEBUG32\n#define TUBUANN_DEBUG33\n//#define TUBUANN_DEBUG34\n//#define TUBUANN_DEBUG35\n#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\ntypedef complex<D> P;\n#define F first\n#define S second\nconst ll E=1e18+7;\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\n#define endl \"\\n\"\n\n \ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T>vector<T> & cset(vector<T> &A,T e=T()){for(auto &I:A){I=e;} return A;}\n\n#ifdef TUBUANN_DEBUG21\nconst int MX=999;\n#else\nconst int MX=1000;\n#endif\nint h,w;\nvector<int> dx={1,0,-1,0};\nvector<int> dy={0,1,0,-1};\nvector<vector<int>> cost(MX,vector<int>(MX));\nvector<vector<int>> s_to_v(MX,vector<int>(MX));\nvector<vector<int>> b_to_v(MX,vector<int>(MX));\nvector<string> mp(MX);\n\ntypedef pair<int,int> pt;\n\ninline bool valid(const pt &p){return p.F>=0 && p.F<h && p.S>=0 && p.S<w;}\n\nvoid bfs(vector<vector<int>> &m,int mx=4){\n deque<pt> Q;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(m[i][j]==0){Q.push_back({i,j});}\n }\n }\n while(!Q.empty()){\n pt u=Q.front(); Q.pop_front();\n for(int i=0;i<mx;i++){\n pt v=u;\n v.F+=dx[i];\n v.S+=dy[i];\n if(valid(v) && m[v.F][v.S]>m[u.F][u.S]+cost[v.F][v.S]){\n m[v.F][v.S]=m[u.F][u.S]+cost[v.F][v.S];\n if(cost[v.F][v.S]==1){Q.push_back(v);}\n else{Q.push_front(v);}\n }\n }\n }\n}\n\nvoid dijk(vector<vector<int>> &m,int mx=4){\n deque<pt> Q;\n vector<pair<int,pt>> A(h*w);\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n A[i*w+j]={m[i][j],{i,j}};\n }\n }\n sort(A.begin(),A.end());\n for(int idx=0;idx<h*w;idx++){\n pt a=A[idx].S;\n int c= idx+1==h*w?MOD:A[idx+1].F;\n //if(m[a.F][a.S]!=A[idx].F){continue;}\n Q.push_front(a);\n while(!Q.empty() && m[Q[0].F][Q[0].S]<c){\n pt u=Q.front(); Q.pop_front();\n for(int i=0;i<mx;i++){\n pt v=u;\n v.F+=dx[i];\n v.S+=dy[i];\n if(valid(v) && m[v.F][v.S]>m[u.F][u.S]+cost[v.F][v.S]){\n m[v.F][v.S]=m[u.F][u.S]+cost[v.F][v.S];\n if(cost[v.F][v.S]==1){Q.push_back(v);}\n else{Q.push_front(v);}\n }\n }\n }\n }\n}\n\nvoid min2D(vector<vector<int>> &m){\n vector<int> dp(w,MOD);\n for(int i=0;i<h;i++){\n int r=MOD;\n for(int j=0;j<w;j++){\n r=min(r,m[i][j]);\n dp[j]=min(dp[j],m[i][j]);\n #ifdef TUBUANN_DEBUG22\n m[i][j]=min(m[i][j],r);\n #else\n #ifdef TUBUANN_DEBUG23\n m[i][j]=min(m[i][j],dp[j]);\n #else\n m[i][j]=min(r,dp[j]);\n #endif\n #endif\n }\n }\n}\n\nvoid set_val(vector<vector<int>> &m,int e=MOD){\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){m[i][j]=e;}\n }\n}\n\nvoid solve(){\n cin>>h>>w;\n set_val(cost,0);\n \n #ifdef TUBUANN_DEBUG24\n set_val(s_to_v,900);\n #else\n set_val(s_to_v);\n #endif\n \n #ifdef TUBUANN_DEBUG25\n set_val(b_to_v,900);\n #else\n set_val(b_to_v);\n #endif\n \n for(int i=0;i<h;i++){cin>>mp[i];}\n int mx=h,my=w;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(mp[i][j]=='#'){cost[i][j]=1;}\n if(mp[i][j]=='B'){mx=min(mx,i); my=min(my,j);}\n }\n }\n s_to_v[0][0]=0;\n \n #ifdef TUBUANN_DEBUG26\n bfs(s_to_v,2);\n #else\n bfs(s_to_v);\n #endif\n\n #ifdef TUBUANN_DEBUG27\n int ans=MOD;\n if(mx==h){cout<<s_to_v[h-1][w-1]<<endl; return;}\n #else\n int ans=s_to_v[h-1][w-1];\n if(mx==h){cout<<ans<<endl; return;}\n #endif\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n #ifndef TUBUANN_DEBUG28\n if((i!=mx || j!=my) && mp[i][j]=='B'){ans=min(ans,s_to_v[i][j]);}\n #endif\n }\n }\n if(mp[mx][my]!='B'){cout<<ans<<endl; return;}\n b_to_v[mx][my]=0;\n \n #ifdef TUBUANN_DEBUG29\n bfs(b_to_v,2);\n #else\n bfs(b_to_v);\n #endif\n \n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n int c=b_to_v[i][j];\n for(int k=0;k<4;k++){\n pt v={i+dx[k],j+dy[k]};\n #ifndef TUBUANN_DEBUG30\n if(valid(v)){c=min(c,b_to_v[v.F][v.S]);}\n #endif\n }\n s_to_v[i][j]+=c;\n }\n }\n \n #ifdef TUBUANN_DEBUG31\n dijk(s_to_v,2);\n #else\n dijk(s_to_v);\n #endif\n\n #ifndef TUBUANN_DEBUG32\n min2D(s_to_v);\n #endif\n\n #ifdef TUBUANN_DEBUG33\n dijk(s_to_v,2);\n #else\n dijk(s_to_v);\n #endif\n\n #ifndef TUBUANN_DEBUG34\n ans=min(ans,s_to_v[h-1][w-1]);\n #endif\n \n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n #ifndef TUBUANN_DEBUG35\n if((i!=mx || j!=my) && mp[i][j]=='B'){ans=min(ans,s_to_v[i][j]);}\n #endif\n }\n }\n cout<<ans<<endl;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n solve();\n \n return 0;\n}", "accuracy": 0.5132743362831859, "time_ms": 250, "memory_kb": 35988, "score_of_the_acc": -0.0485, "final_rank": 12 }, { "submission_id": "aoj_3067_3860006", "code_snippet": "//#define TUBUANN_DEBUG21\n//#define TUBUANN_DEBUG22\n//#define TUBUANN_DEBUG23\n//#define TUBUANN_DEBUG24\n//#define TUBUANN_DEBUG25\n//#define TUBUANN_DEBUG26\n//#define TUBUANN_DEBUG27\n//#define TUBUANN_DEBUG28\n//#define TUBUANN_DEBUG29\n//#define TUBUANN_DEBUG30\n#define TUBUANN_DEBUG31\n//#define TUBUANN_DEBUG32\n//#define TUBUANN_DEBUG33\n//#define TUBUANN_DEBUG34\n//#define TUBUANN_DEBUG35\n#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\ntypedef complex<D> P;\n#define F first\n#define S second\nconst ll E=1e18+7;\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\n#define endl \"\\n\"\n\n \ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T>vector<T> & cset(vector<T> &A,T e=T()){for(auto &I:A){I=e;} return A;}\n\n#ifdef TUBUANN_DEBUG21\nconst int MX=999;\n#else\nconst int MX=1000;\n#endif\nint h,w;\nvector<int> dx={1,0,-1,0};\nvector<int> dy={0,1,0,-1};\nvector<vector<int>> cost(MX,vector<int>(MX));\nvector<vector<int>> s_to_v(MX,vector<int>(MX));\nvector<vector<int>> b_to_v(MX,vector<int>(MX));\nvector<string> mp(MX);\n\ntypedef pair<int,int> pt;\n\ninline bool valid(const pt &p){return p.F>=0 && p.F<h && p.S>=0 && p.S<w;}\n\nvoid bfs(vector<vector<int>> &m,int mx=4){\n deque<pt> Q;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(m[i][j]==0){Q.push_back({i,j});}\n }\n }\n while(!Q.empty()){\n pt u=Q.front(); Q.pop_front();\n for(int i=0;i<mx;i++){\n pt v=u;\n v.F+=dx[i];\n v.S+=dy[i];\n if(valid(v) && m[v.F][v.S]>m[u.F][u.S]+cost[v.F][v.S]){\n m[v.F][v.S]=m[u.F][u.S]+cost[v.F][v.S];\n if(cost[v.F][v.S]==1){Q.push_back(v);}\n else{Q.push_front(v);}\n }\n }\n }\n}\n\nvoid dijk(vector<vector<int>> &m,int mx=4){\n deque<pt> Q;\n vector<pair<int,pt>> A(h*w);\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n A[i*w+j]={m[i][j],{i,j}};\n }\n }\n sort(A.begin(),A.end());\n for(int idx=0;idx<h*w;idx++){\n pt a=A[idx].S;\n int c= idx+1==h*w?MOD:A[idx+1].F;\n //if(m[a.F][a.S]!=A[idx].F){continue;}\n Q.push_front(a);\n while(!Q.empty() && m[Q[0].F][Q[0].S]<c){\n pt u=Q.front(); Q.pop_front();\n for(int i=0;i<mx;i++){\n pt v=u;\n v.F+=dx[i];\n v.S+=dy[i];\n if(valid(v) && m[v.F][v.S]>m[u.F][u.S]+cost[v.F][v.S]){\n m[v.F][v.S]=m[u.F][u.S]+cost[v.F][v.S];\n if(cost[v.F][v.S]==1){Q.push_back(v);}\n else{Q.push_front(v);}\n }\n }\n }\n }\n}\n\nvoid min2D(vector<vector<int>> &m){\n vector<int> dp(w,MOD);\n for(int i=0;i<h;i++){\n int r=MOD;\n for(int j=0;j<w;j++){\n r=min(r,m[i][j]);\n dp[j]=min(dp[j],m[i][j]);\n #ifdef TUBUANN_DEBUG22\n m[i][j]=min(m[i][j],r);\n #else\n #ifdef TUBUANN_DEBUG23\n m[i][j]=min(m[i][j],dp[j]);\n #else\n m[i][j]=min(r,dp[j]);\n #endif\n #endif\n }\n }\n}\n\nvoid set_val(vector<vector<int>> &m,int e=MOD){\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){m[i][j]=e;}\n }\n}\n\nvoid solve(){\n cin>>h>>w;\n set_val(cost,0);\n \n #ifdef TUBUANN_DEBUG24\n set_val(s_to_v,900);\n #else\n set_val(s_to_v);\n #endif\n \n #ifdef TUBUANN_DEBUG25\n set_val(b_to_v,900);\n #else\n set_val(b_to_v);\n #endif\n \n for(int i=0;i<h;i++){cin>>mp[i];}\n int mx=h,my=w;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(mp[i][j]=='#'){cost[i][j]=1;}\n if(mp[i][j]=='B'){mx=min(mx,i); my=min(my,j);}\n }\n }\n s_to_v[0][0]=0;\n \n #ifdef TUBUANN_DEBUG26\n bfs(s_to_v,2);\n #else\n bfs(s_to_v);\n #endif\n\n #ifdef TUBUANN_DEBUG27\n int ans=MOD;\n if(mx==h){cout<<s_to_v[h-1][w-1]<<endl; return;}\n #else\n int ans=s_to_v[h-1][w-1];\n if(mx==h){cout<<ans<<endl; return;}\n #endif\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n #ifndef TUBUANN_DEBUG28\n if((i!=mx || j!=my) && mp[i][j]=='B'){ans=min(ans,s_to_v[i][j]);}\n #endif\n }\n }\n if(mp[mx][my]!='B'){cout<<ans<<endl; return;}\n b_to_v[mx][my]=0;\n \n #ifdef TUBUANN_DEBUG29\n bfs(b_to_v,2);\n #else\n bfs(b_to_v);\n #endif\n \n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n int c=b_to_v[i][j];\n for(int k=0;k<4;k++){\n pt v={i+dx[k],j+dy[k]};\n #ifndef TUBUANN_DEBUG30\n if(valid(v)){c=min(c,b_to_v[v.F][v.S]);}\n #endif\n }\n s_to_v[i][j]+=c;\n }\n }\n \n #ifdef TUBUANN_DEBUG31\n dijk(s_to_v,2);\n #else\n dijk(s_to_v);\n #endif\n\n #ifndef TUBUANN_DEBUG32\n min2D(s_to_v);\n #endif\n\n #ifdef TUBUANN_DEBUG33\n dijk(s_to_v,2);\n #else\n dijk(s_to_v);\n #endif\n\n #ifndef TUBUANN_DEBUG34\n ans=min(ans,s_to_v[h-1][w-1]);\n #endif\n \n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n #ifndef TUBUANN_DEBUG35\n if((i!=mx || j!=my) && mp[i][j]=='B'){ans=min(ans,s_to_v[i][j]);}\n #endif\n }\n }\n cout<<ans<<endl;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n solve();\n \n return 0;\n}", "accuracy": 0.5486725663716814, "time_ms": 250, "memory_kb": 35916, "score_of_the_acc": -0.0482, "final_rank": 11 }, { "submission_id": "aoj_3067_3859985", "code_snippet": "//#define TUBUANN_DEBUG21\n//#define TUBUANN_DEBUG22\n//#define TUBUANN_DEBUG23\n//#define TUBUANN_DEBUG24\n#define TUBUANN_DEBUG25\n//#define TUBUANN_DEBUG26\n//#define TUBUANN_DEBUG27\n//#define TUBUANN_DEBUG28\n//#define TUBUANN_DEBUG29\n//#define TUBUANN_DEBUG30\n//#define TUBUANN_DEBUG31\n//#define TUBUANN_DEBUG32\n//#define TUBUANN_DEBUG33\n//#define TUBUANN_DEBUG34\n//#define TUBUANN_DEBUG35\n#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\ntypedef complex<D> P;\n#define F first\n#define S second\nconst ll E=1e18+7;\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\n#define endl \"\\n\"\n\n \ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T>vector<T> & cset(vector<T> &A,T e=T()){for(auto &I:A){I=e;} return A;}\n\n#ifdef TUBUANN_DEBUG21\nconst int MX=999;\n#else\nconst int MX=1000;\n#endif\nint h,w;\nvector<int> dx={1,0,-1,0};\nvector<int> dy={0,1,0,-1};\nvector<vector<int>> cost(MX,vector<int>(MX));\nvector<vector<int>> s_to_v(MX,vector<int>(MX));\nvector<vector<int>> b_to_v(MX,vector<int>(MX));\nvector<string> mp(MX);\n\ntypedef pair<int,int> pt;\n\ninline bool valid(const pt &p){return p.F>=0 && p.F<h && p.S>=0 && p.S<w;}\n\nvoid bfs(vector<vector<int>> &m,int mx=4){\n deque<pt> Q;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(m[i][j]==0){Q.push_back({i,j});}\n }\n }\n while(!Q.empty()){\n pt u=Q.front(); Q.pop_front();\n for(int i=0;i<mx;i++){\n pt v=u;\n v.F+=dx[i];\n v.S+=dy[i];\n if(valid(v) && m[v.F][v.S]>m[u.F][u.S]+cost[v.F][v.S]){\n m[v.F][v.S]=m[u.F][u.S]+cost[v.F][v.S];\n if(cost[v.F][v.S]==1){Q.push_back(v);}\n else{Q.push_front(v);}\n }\n }\n }\n}\n\nvoid dijk(vector<vector<int>> &m,int mx=4){\n deque<pt> Q;\n vector<pair<int,pt>> A(h*w);\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n A[i*w+j]={m[i][j],{i,j}};\n }\n }\n sort(A.begin(),A.end());\n for(int idx=0;idx<h*w;idx++){\n pt a=A[idx].S;\n int c= idx+1==h*w?MOD:A[idx+1].F;\n //if(m[a.F][a.S]!=A[idx].F){continue;}\n Q.push_front(a);\n while(!Q.empty() && m[Q[0].F][Q[0].S]<c){\n pt u=Q.front(); Q.pop_front();\n for(int i=0;i<mx;i++){\n pt v=u;\n v.F+=dx[i];\n v.S+=dy[i];\n if(valid(v) && m[v.F][v.S]>m[u.F][u.S]+cost[v.F][v.S]){\n m[v.F][v.S]=m[u.F][u.S]+cost[v.F][v.S];\n if(cost[v.F][v.S]==1){Q.push_back(v);}\n else{Q.push_front(v);}\n }\n }\n }\n }\n}\n\nvoid min2D(vector<vector<int>> &m){\n vector<int> dp(w,MOD);\n for(int i=0;i<h;i++){\n int r=MOD;\n for(int j=0;j<w;j++){\n r=min(r,m[i][j]);\n dp[j]=min(dp[j],m[i][j]);\n #ifdef TUBUANN_DEBUG22\n m[i][j]=min(m[i][j],r);\n #else\n #ifdef TUBUANN_DEBUG23\n m[i][j]=min(m[i][j],dp[j]);\n #else\n m[i][j]=min(r,dp[j]);\n #endif\n #endif\n }\n }\n}\n\nvoid set_val(vector<vector<int>> &m,int e=MOD){\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){m[i][j]=e;}\n }\n}\n\nvoid solve(){\n cin>>h>>w;\n set_val(cost,0);\n \n #ifdef TUBUANN_DEBUG24\n set_val(s_to_v,900);\n #else\n set_val(s_to_v);\n #endif\n \n #ifdef TUBUANN_DEBUG25\n set_val(b_to_v,900);\n #else\n set_val(b_to_v);\n #endif\n \n for(int i=0;i<h;i++){cin>>mp[i];}\n int mx=h,my=w;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(mp[i][j]=='#'){cost[i][j]=1;}\n if(mp[i][j]=='B'){mx=min(mx,i); my=min(my,j);}\n }\n }\n s_to_v[0][0]=0;\n \n #ifdef TUBUANN_DEBUG26\n bfs(s_to_v,2);\n #else\n bfs(s_to_v);\n #endif\n\n #ifdef TUBUANN_DEBUG27\n int ans=MOD;\n if(mx==h){cout<<s_to_v[h-1][w-1]<<endl; return;}\n #else\n int ans=s_to_v[h-1][w-1];\n if(mx==h){cout<<ans<<endl; return;}\n #endif\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n #ifndef TUBUANN_DEBUG28\n if((i!=mx || j!=my) && mp[i][j]=='B'){ans=min(ans,s_to_v[i][j]);}\n #endif\n }\n }\n if(mp[mx][my]!='B'){cout<<ans<<endl; return;}\n b_to_v[mx][my]=0;\n \n #ifdef TUBUANN_DEBUG29\n bfs(b_to_v,2);\n #else\n bfs(b_to_v);\n #endif\n \n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n int c=b_to_v[i][j];\n for(int k=0;k<4;k++){\n pt v={i+dx[k],j+dy[k]};\n #ifndef TUBUANN_DEBUG30\n if(valid(v)){c=min(c,b_to_v[v.F][v.S]);}\n #endif\n }\n s_to_v[i][j]+=c;\n }\n }\n \n #ifdef TUBUANN_DEBUG31\n dijk(s_to_v,2);\n #else\n dijk(s_to_v);\n #endif\n\n #ifndef TUBUANN_DEBUG32\n min2D(s_to_v);\n #endif\n\n #ifdef TUBUANN_DEBUG33\n dijk(s_to_v,2);\n #else\n dijk(s_to_v);\n #endif\n\n #ifndef TUBUANN_DEBUG34\n ans=min(ans,s_to_v[h-1][w-1]);\n #endif\n \n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n #ifndef TUBUANN_DEBUG35\n if((i!=mx || j!=my) && mp[i][j]=='B'){ans=min(ans,s_to_v[i][j]);}\n #endif\n }\n }\n cout<<ans<<endl;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n solve();\n \n return 0;\n}", "accuracy": 0.9203539823008849, "time_ms": 270, "memory_kb": 36004, "score_of_the_acc": -0.0513, "final_rank": 10 }, { "submission_id": "aoj_3067_3859983", "code_snippet": "//#define TUBUANN_DEBUG21\n//#define TUBUANN_DEBUG22\n//#define TUBUANN_DEBUG23\n#define TUBUANN_DEBUG24\n//#define TUBUANN_DEBUG25\n//#define TUBUANN_DEBUG26\n//#define TUBUANN_DEBUG27\n//#define TUBUANN_DEBUG28\n//#define TUBUANN_DEBUG29\n//#define TUBUANN_DEBUG30\n//#define TUBUANN_DEBUG31\n//#define TUBUANN_DEBUG32\n//#define TUBUANN_DEBUG33\n//#define TUBUANN_DEBUG34\n//#define TUBUANN_DEBUG35\n#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\ntypedef complex<D> P;\n#define F first\n#define S second\nconst ll E=1e18+7;\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\n#define endl \"\\n\"\n\n \ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T>vector<T> & cset(vector<T> &A,T e=T()){for(auto &I:A){I=e;} return A;}\n\n#ifdef TUBUANN_DEBUG21\nconst int MX=999;\n#else\nconst int MX=1000;\n#endif\nint h,w;\nvector<int> dx={1,0,-1,0};\nvector<int> dy={0,1,0,-1};\nvector<vector<int>> cost(MX,vector<int>(MX));\nvector<vector<int>> s_to_v(MX,vector<int>(MX));\nvector<vector<int>> b_to_v(MX,vector<int>(MX));\nvector<string> mp(MX);\n\ntypedef pair<int,int> pt;\n\ninline bool valid(const pt &p){return p.F>=0 && p.F<h && p.S>=0 && p.S<w;}\n\nvoid bfs(vector<vector<int>> &m,int mx=4){\n deque<pt> Q;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(m[i][j]==0){Q.push_back({i,j});}\n }\n }\n while(!Q.empty()){\n pt u=Q.front(); Q.pop_front();\n for(int i=0;i<mx;i++){\n pt v=u;\n v.F+=dx[i];\n v.S+=dy[i];\n if(valid(v) && m[v.F][v.S]>m[u.F][u.S]+cost[v.F][v.S]){\n m[v.F][v.S]=m[u.F][u.S]+cost[v.F][v.S];\n if(cost[v.F][v.S]==1){Q.push_back(v);}\n else{Q.push_front(v);}\n }\n }\n }\n}\n\nvoid dijk(vector<vector<int>> &m,int mx=4){\n deque<pt> Q;\n vector<pair<int,pt>> A(h*w);\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n A[i*w+j]={m[i][j],{i,j}};\n }\n }\n sort(A.begin(),A.end());\n for(int idx=0;idx<h*w;idx++){\n pt a=A[idx].S;\n int c= idx+1==h*w?MOD:A[idx+1].F;\n //if(m[a.F][a.S]!=A[idx].F){continue;}\n Q.push_front(a);\n while(!Q.empty() && m[Q[0].F][Q[0].S]<c){\n pt u=Q.front(); Q.pop_front();\n for(int i=0;i<mx;i++){\n pt v=u;\n v.F+=dx[i];\n v.S+=dy[i];\n if(valid(v) && m[v.F][v.S]>m[u.F][u.S]+cost[v.F][v.S]){\n m[v.F][v.S]=m[u.F][u.S]+cost[v.F][v.S];\n if(cost[v.F][v.S]==1){Q.push_back(v);}\n else{Q.push_front(v);}\n }\n }\n }\n }\n}\n\nvoid min2D(vector<vector<int>> &m){\n vector<int> dp(w,MOD);\n for(int i=0;i<h;i++){\n int r=MOD;\n for(int j=0;j<w;j++){\n r=min(r,m[i][j]);\n dp[j]=min(dp[j],m[i][j]);\n #ifdef TUBUANN_DEBUG22\n m[i][j]=min(m[i][j],r);\n #else\n #ifdef TUBUANN_DEBUG23\n m[i][j]=min(m[i][j],dp[j]);\n #else\n m[i][j]=min(r,dp[j]);\n #endif\n #endif\n }\n }\n}\n\nvoid set_val(vector<vector<int>> &m,int e=MOD){\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){m[i][j]=e;}\n }\n}\n\nvoid solve(){\n cin>>h>>w;\n set_val(cost,0);\n \n #ifdef TUBUANN_DEBUG24\n set_val(s_to_v,900);\n #else\n set_val(s_to_v);\n #endif\n \n #ifdef TUBUANN_DEBUG25\n set_val(b_to_v,900);\n #else\n set_val(b_to_v);\n #endif\n \n for(int i=0;i<h;i++){cin>>mp[i];}\n int mx=h,my=w;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(mp[i][j]=='#'){cost[i][j]=1;}\n if(mp[i][j]=='B'){mx=min(mx,i); my=min(my,j);}\n }\n }\n s_to_v[0][0]=0;\n \n #ifdef TUBUANN_DEBUG26\n bfs(s_to_v,2);\n #else\n bfs(s_to_v);\n #endif\n\n #ifdef TUBUANN_DEBUG27\n int ans=MOD;\n if(mx==h){cout<<s_to_v[h-1][w-1]<<endl; return;}\n #else\n int ans=s_to_v[h-1][w-1];\n if(mx==h){cout<<ans<<endl; return;}\n #endif\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n #ifndef TUBUANN_DEBUG28\n if((i!=mx || j!=my) && mp[i][j]=='B'){ans=min(ans,s_to_v[i][j]);}\n #endif\n }\n }\n if(mp[mx][my]!='B'){cout<<ans<<endl; return;}\n b_to_v[mx][my]=0;\n \n #ifdef TUBUANN_DEBUG29\n bfs(b_to_v,2);\n #else\n bfs(b_to_v);\n #endif\n \n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n int c=b_to_v[i][j];\n for(int k=0;k<4;k++){\n pt v={i+dx[k],j+dy[k]};\n #ifndef TUBUANN_DEBUG30\n if(valid(v)){c=min(c,b_to_v[v.F][v.S]);}\n #endif\n }\n s_to_v[i][j]+=c;\n }\n }\n \n #ifdef TUBUANN_DEBUG31\n dijk(s_to_v,2);\n #else\n dijk(s_to_v);\n #endif\n\n #ifndef TUBUANN_DEBUG32\n min2D(s_to_v);\n #endif\n\n #ifdef TUBUANN_DEBUG33\n dijk(s_to_v,2);\n #else\n dijk(s_to_v);\n #endif\n\n #ifndef TUBUANN_DEBUG34\n ans=min(ans,s_to_v[h-1][w-1]);\n #endif\n \n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n #ifndef TUBUANN_DEBUG35\n if((i!=mx || j!=my) && mp[i][j]=='B'){ans=min(ans,s_to_v[i][j]);}\n #endif\n }\n }\n cout<<ans<<endl;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n solve();\n \n return 0;\n}", "accuracy": 0.22123893805309736, "time_ms": 230, "memory_kb": 27784, "score_of_the_acc": -0.0126, "final_rank": 13 }, { "submission_id": "aoj_3067_3859964", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\ntypedef complex<D> P;\n#define F first\n#define S second\nconst ll E=1e18+7;\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\n#define endl \"\\n\"\n\n \ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T>vector<T> & cset(vector<T> &A,T e=T()){for(auto &I:A){I=e;} return A;}\n\nconst int MX=1000;\nint h,w;\nvector<int> dx={1,-1,0,0};\nvector<int> dy={0,0,1,-1};\nvector<vector<int>> cost(MX,vector<int>(MX));\nvector<vector<int>> s_to_v(MX,vector<int>(MX));\nvector<vector<int>> b_to_v(MX,vector<int>(MX));\nvector<string> mp(MX);\n\ntypedef pair<int,int> pt;\n\ninline bool valid(const pt &p){return p.F>=0 && p.F<h && p.S>=0 && p.S<w;}\n\nvoid bfs(vector<vector<int>> &m){\n deque<pt> Q;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(m[i][j]==0){Q.push_back({i,j});}\n }\n }\n while(!Q.empty()){\n pt u=Q.front(); Q.pop_front();\n for(int i=0;i<4;i++){\n pt v=u;\n v.F+=dx[i];\n v.S+=dy[i];\n if(valid(v) && m[v.F][v.S]>m[u.F][u.S]+cost[v.F][v.S]){\n m[v.F][v.S]=m[u.F][u.S]+cost[v.F][v.S];\n if(cost[v.F][v.S]==1){Q.push_back(v);}\n else{Q.push_front(v);}\n }\n }\n }\n}\n\nvoid dijk(vector<vector<int>> &m){\n deque<pt> Q;\n vector<pair<int,pt>> A(h*w+1,{MOD,{-1,-1}});\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n A[i*w+j]={m[i][j],{i,j}};\n }\n }\n sort(A.begin(),A.end());\n for(int idx=0;idx<h*w;idx++){\n pt a=A[idx].S;\n int c=A[idx+1].F;\n if(m[a.F][a.S]!=A[idx].F){continue;}\n Q.push_front(a);\n while(!Q.empty() && m[Q[0].F][Q[0].S]<c){\n pt u=Q.front(); Q.pop_front();\n for(int i=0;i<4;i++){\n pt v=u;\n v.F+=dx[i];\n v.S+=dy[i];\n if(valid(v) && m[v.F][v.S]>m[u.F][u.S]+cost[v.F][v.S]){\n m[v.F][v.S]=m[u.F][u.S]+cost[v.F][v.S];\n if(cost[v.F][v.S]==1){Q.push_back(v);}\n else{Q.push_front(v);}\n }\n }\n }\n }\n}\n\nvoid min2D(vector<vector<int>> &m){\n vector<int> dp(w,MOD);\n for(int i=0;i<h;i++){\n int r=MOD;\n for(int j=0;j<w;j++){\n r=min(r,m[i][j]);\n dp[j]=min(dp[j],m[i][j]);\n m[i][j]=min(r,dp[j]);\n }\n }\n}\n\nvoid set_val(vector<vector<int>> &m,int e=MOD){\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){m[i][j]=e;}\n }\n}\n\nvoid solve(){\n cin>>h>>w;\n set_val(cost,0);\n set_val(s_to_v);\n set_val(b_to_v);\n for(int i=0;i<h;i++){cin>>mp[i];}\n int mx=h,my=w;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(mp[i][j]=='#'){cost[i][j]=1;}\n if(mp[i][j]=='B'){mx=min(mx,i); my=min(my,j);}\n }\n }\n s_to_v[0][0]=0;\n bfs(s_to_v);\n int ans=s_to_v[h-1][w-1];\n if(mx==h){cout<<ans<<endl; return;}\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if((i!=mx || j!=my) && mp[i][j]=='B'){ans=min(ans,s_to_v[i][j]);}\n }\n }\n if(mp[mx][my]!='B'){cout<<ans<<endl; return;}\n b_to_v[mx][my]=0;\n bfs(b_to_v);\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n int c=b_to_v[i][j];\n for(int k=0;k<4;k++){\n pt v={i+dx[k],j+dy[k]};\n if(valid(v)){c=min(c,b_to_v[v.F][v.S]);}\n }\n s_to_v[i][j]+=c;\n }\n }\n dijk(s_to_v);\n min2D(s_to_v);\n dijk(s_to_v);\n ans=min(ans,s_to_v[h-1][w-1]);\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if((i!=mx || j!=my) && mp[i][j]=='B'){ans=min(ans,s_to_v[i][j]);}\n }\n }\n cout<<ans<<endl;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n solve();\n \n return 0;\n}", "accuracy": 1, "time_ms": 7270, "memory_kb": 36036, "score_of_the_acc": -1.0332, "final_rank": 8 }, { "submission_id": "aoj_3067_3859959", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\ntypedef complex<D> P;\n#define F first\n#define S second\nconst ll E=1e18+7;\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\n#define endl \"\\n\"\n\n \ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T>vector<T> & cset(vector<T> &A,T e=T()){for(auto &I:A){I=e;} return A;}\n\nconst int MX=1000;\nint h,w;\nvector<int> dx={1,-1,0,0};\nvector<int> dy={0,0,1,-1};\nvector<vector<int>> cost(MX,vector<int>(MX));\nvector<vector<int>> s_to_v(MX,vector<int>(MX));\nvector<vector<int>> b_to_v(MX,vector<int>(MX));\nvector<string> mp(MX);\n\ntypedef pair<int,int> pt;\n\ninline bool valid(const pt &p){return p.F>=0 && p.F<h && p.S>=0 && p.S<w;}\n\nvoid bfs(vector<vector<int>> &m){\n deque<pt> Q;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(m[i][j]==0){Q.push_back({i,j});}\n }\n }\n while(!Q.empty()){\n pt u=Q.front(); Q.pop_front();\n for(int i=0;i<4;i++){\n pt v=u;\n v.F+=dx[i];\n v.S+=dy[i];\n if(valid(v) && m[v.F][v.S]>m[u.F][u.S]+cost[v.F][v.S]){\n m[v.F][v.S]=m[u.F][u.S]+cost[v.F][v.S];\n if(cost[v.F][v.S]==1){Q.push_back(v);}\n else{Q.push_front(v);}\n }\n }\n }\n}\n\nvoid dijk(vector<vector<int>> &m){\n deque<pt> Q;\n vector<pair<int,pt>> A(h*w+1,{MOD,{-1,-1}});\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n A[i*w+j]={m[i][j],{i,j}};\n }\n }\n sort(A.begin(),A.end());\n for(int idx=0;idx<h*w;idx++){\n pt a=A[idx].S;\n int c=A[idx+1].F;\n //if(m[a.F][a.S]!=A[idx].F){continue;}\n Q.push_front(a);\n while(!Q.empty() && m[Q[0].F][Q[0].S]<c){\n pt u=Q.front(); Q.pop_front();\n for(int i=0;i<4;i++){\n pt v=u;\n v.F+=dx[i];\n v.S+=dy[i];\n if(valid(v) && m[v.F][v.S]>m[u.F][u.S]+cost[v.F][v.S]){\n m[v.F][v.S]=m[u.F][u.S]+cost[v.F][v.S];\n if(cost[v.F][v.S]==1){Q.push_back(v);}\n else{Q.push_front(v);}\n }\n }\n }\n }\n}\n\nvoid min2D(vector<vector<int>> &m){\n vector<int> dp(w,MOD);\n for(int i=0;i<h;i++){\n int r=MOD;\n for(int j=0;j<w;j++){\n r=min(r,m[i][j]);\n dp[j]=min(dp[j],m[i][j]);\n m[i][j]=min(r,dp[j]);\n }\n }\n}\n\nvoid set_val(vector<vector<int>> &m,int e=MOD){\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){m[i][j]=e;}\n }\n}\n\nvoid solve(){\n cin>>h>>w;\n set_val(cost,0);\n set_val(s_to_v);\n set_val(b_to_v);\n for(int i=0;i<h;i++){cin>>mp[i];}\n int mx=h,my=w;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(mp[i][j]=='#'){cost[i][j]=1;}\n if(mp[i][j]=='B'){mx=min(mx,i); my=min(my,j);}\n }\n }\n s_to_v[0][0]=0;\n bfs(s_to_v);\n int ans=s_to_v[h-1][w-1];\n if(mx==h){cout<<ans<<endl; return;}\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if((i!=mx || j!=my) && mp[i][j]=='B'){ans=min(ans,s_to_v[i][j]);}\n }\n }\n if(mp[mx][my]!='B'){cout<<ans<<endl; return;}\n b_to_v[mx][my]=0;\n bfs(b_to_v);\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n int c=b_to_v[i][j];\n for(int k=0;k<4;k++){\n pt v={i+dx[k],j+dy[k]};\n if(valid(v)){c=min(c,b_to_v[v.F][v.S]);}\n }\n s_to_v[i][j]+=c;\n }\n }\n dijk(s_to_v);\n min2D(s_to_v);\n dijk(s_to_v);\n ans=min(ans,s_to_v[h-1][w-1]);\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if((i!=mx || j!=my) && mp[i][j]=='B'){ans=min(ans,s_to_v[i][j]);}\n }\n }\n cout<<ans<<endl;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n solve();\n \n return 0;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 36036, "score_of_the_acc": -0.0501, "final_rank": 2 }, { "submission_id": "aoj_3067_3859838", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int INF = 1e9;\nconst int dx[4] = {0, 1, 0, -1}, dy[4] = {-1, 0, 1, 0};\n\nint H, W;\nvector<string> grid;\n\nstruct State {\n int x, y, cost, b;\n State(int x, int y, int cost, int b): x(x), y(y), cost(cost), b(b) {}\n bool operator<(const State &e) const {\n return cost < e.cost;\n };\n\n bool operator>(const State &e) const {\n return cost > e.cost;\n };\n};\n\nint calc0() {\n bool used[H][W];\n fill_n(*used, H*W, false);\n deque<State> Q; \n Q.push_front(State(0, 0, 0, 0));\n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n\n if ( x == W-1 && y == H-1 ) return cost; \n \n if ( used[y][x] ) continue;\n used[y][x] = true;\n \n for ( int i = 0; i < 4; i++ ) {\n int nx = x+dx[i], ny = y+dy[i];\n if ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n if ( grid[ny][nx] == '#' ) {\n\tQ.push_back(State(nx, ny, cost+1, b));\t\n } else {\n\tQ.push_front(State(nx, ny, cost, b));\t\n }\n }\n }\n\n return INF;\n}\n\nint calc1() {\n int dist[H][W];\n { \n fill_n(*dist, H*W, INF); \n deque<State> Q; \n for ( int i = 0; i < H; i++ ) {\n for ( int j = 0; j < W; j++ ) {\n\tif ( grid[i][j] == 'B' ) Q.push_front(State(j, i, 0, 0));\n }\n }\n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n \n if ( dist[y][x] != INF ) continue;\n dist[y][x] = cost;\n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[y][x] == '#' ) {\n\t Q.push_back(State(nx, ny, cost+1, b));\t\n\t} else {\n\t Q.push_front(State(nx, ny, cost, b));\t\n\t}\n }\n } \n }\n // cout << dist[0][0] << endl;\n vector<int> distR(H, INF), distC(W, INF);\n {\n bool used[H][W][2];\n fill_n(**used, H*W*2, false);\n priority_queue<State, vector<State>, greater<State> > Q; \n Q.push(State(0, 0, 0, 0));\n while ( !Q.empty()) {\n State s = Q.top(); Q.pop(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b;\n \n if ( b ) {\n\tdistR[y] = min(distR[y], cost);\n\tdistC[x] = min(distC[x], cost);\n }\n else {\n\tdistR[y] = min(distR[y], cost+dist[y][x]);\t\n\tdistC[x] = min(distC[x], cost+dist[y][x]);\n } \n \n if ( used[y][x][b] ) continue;\n used[y][x][b] = true;\n\n Q.push(State(x, y, cost+dist[y][x], 1)); \n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[ny][nx] == '#' ) {\n\t Q.push(State(nx, ny, cost+1, b));\t\n\t} else {\n\t int nb = b;\n\t if ( grid[ny][nx] == 'B' ) nb = 1;\n\t Q.push(State(nx, ny, cost, nb));\t\n\t}\n }\n }\n }\n\n int ans = INF; \n bool used[H][W];\n fill_n(*used, H*W, false);\n deque<State> Q; \n Q.push_front(State(W-1, H-1, 0, 0)); \n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n \n ans = min(ans, min(cost+distR[y], cost+distC[x])); \n \n if ( used[y][x] ) continue;\n used[y][x] = true;\n \n for ( int i = 0; i < 4; i++ ) {\n int nx = x+dx[i], ny = y+dy[i];\n if ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n if ( grid[y][x] == '#' ) {\n\tQ.push_back(State(nx, ny, cost+1, b));\t\n } else {\n\tQ.push_front(State(nx, ny, cost, b));\t\n }\n }\n }\n\n return ans; \n}\n\nint calc2() {\n int ans = INF;\n using P = pair<int, int>; \n P dist[H][W];\n { \n fill_n(*dist, H*W, P(INF, INF)); \n deque<State> Q; \n for ( int i = 0; i < H; i++ ) {\n for ( int j = 0; j < W; j++ ) {\n\tif ( grid[i][j] == 'B' ) Q.push_front(State(j, i, 0, i*W+j));\n }\n }\n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n \n if ( dist[y][x].first != INF ) continue;\n dist[y][x] = P(cost, b); \n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[y][x] == '#' ) {\n\t Q.push_back(State(nx, ny, cost+1, b));\t\n\t} else {\n\t Q.push_front(State(nx, ny, cost, b));\t\n\t}\n }\n } \n }\n\n vector<vector<State> > distR(H), distC(W); \n {\n bool used[H][W][2];\n fill_n(**used, H*W*2, false);\n priority_queue<State, vector<State>, greater<State> > Q; \n Q.push(State(0, 0, 0, 0));\n while ( !Q.empty()) {\n State s = Q.top(); Q.pop(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n if ( used[y][x][(bool)b] ) continue;\n used[y][x][(bool)b] = true; \n \n if ( b > 0 ) {\n\tif ( distR[y].size() < 2 ) {\n\t if ( distR[y].size() == 0 ) distR[y].push_back(s);\n\t else if ( distR[y][0].b != b ) distR[y].push_back(s);\n\t}\n\tif ( distC[x].size() < 2 ) {\n\t if ( distC[x].size() == 0 ) distC[x].push_back(s);\n\t else if ( distC[x][0].b != b ) distC[x].push_back(s);\n\t}\n } \n /* if ( b == 2 ) {\n\tans = min(ans, cost);\t\n\t} */ \n\n if ( dist[y][x].first != INF ) {\n\tif ( !used[y][x][(bool)dist[y][x].second] )\n\t Q.push(State(x, y, cost+dist[y][x].first, dist[y][x].second));\n }\n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( b == ny*W+nx ) continue;\t\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[ny][nx] == '#' ) {\n\t if ( !used[ny][nx][(bool)b] ) Q.push(State(nx, ny, cost+1, b));\t\n\t} else {\n\t int nb = b;\n\t if ( grid[ny][nx] == 'B' ) nb = ny*W+nx;\n\t if ( !used[ny][nx][(bool)nb] ) Q.push(State(nx, ny, cost, nb));\t\n\t}\n }\n }\n }\n\n vector<vector<State> > distR2(H), distC2(W);\n {\n bool used[H][W];\n fill_n(*used, H*W, false);\n deque<State> Q; \n for ( int i = 0; i < H; i++ ) {\n for ( int j = 0; j < W; j++ ) {\n\tif ( grid[i][j] == 'B' ) Q.push_front(State(j, i, 0, i*W+j));\n }\n }\n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b;\n \n if ( distR2[y].size() < 2 ) {\n\tif ( distR2[y].size() == 0 ) distR2[y].push_back(s);\n\telse if ( distR2[y][0].b != b ) distR2[y].push_back(s);\n }\n if ( distC2[x].size() < 2 ) {\n\tif ( distC2[x].size() == 0 ) distC2[x].push_back(s);\n\telse if ( distC2[x][0].b != b ) distC2[x].push_back(s);\n }\n \n if ( used[y][x] ) continue;\n used[y][x] = true;\n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[y][x] == '#' ) {\n\t Q.push_back(State(nx, ny, cost+1, b));\t\n\t} else {\n\t Q.push_front(State(nx, ny, cost, b));\t\n\t}\n }\n }\n }\n \n for ( int i = 0; i < H; i++ ) {\n for ( State j : distR[i] ) {\n for ( State k : distR2[i] ) {\n\tif ( j.b == k.b ) continue;\n\t// if ( j.cost+k.cost == 5 ) cout << \"R\" << i << \" \" << j.b << \":\" << j.cost << \" \" << k.b << \":\" << k.cost << endl;\t\n\tans = min(ans, j.cost+k.cost);\t\n }\n }\n }\n\n for ( int i = 0; i < W; i++ ) {\n for ( State j : distC[i] ) {\n for ( State k : distC2[i] ) {\n\tif ( j.b == k.b ) continue;\n\t// if ( j.cost+k.cost == 5 ) cout << \"W\" << i << \" \" << j.b << \":\" << j.cost << \" \" << k.b << \":\" << k.cost << endl;\t\n\tans = min(ans, j.cost+k.cost);\t\n }\n }\n }\n\n return ans; \n}\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n cin >> H >> W;\n\n grid = vector<string>(H);\n int cntB = 0; \n for ( int i = 0; i < H; i++ ) {\n cin >> grid[i];\n for ( int j = 0; j < W; j++ ) cntB += (grid[i][j] == 'B'); \n }\n\n int ans = calc0();\n if ( cntB ) ans = min(ans, calc1());\n if ( cntB >= 2 ) ans = min(ans, calc2());\n\n cout << ans << endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 2230, "memory_kb": 140988, "score_of_the_acc": -0.7492, "final_rank": 7 }, { "submission_id": "aoj_3067_3859836", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define lp(i,n) for(int i=0;i<n;i++)\n#define INF 1e9+7\n\n//field data\nint g[1010][1010];\n//_0#1B2\n\n//distance from start to point\nint dp_stp[1010][1010];\n\n//distance from on the way to blaster in upper left to point\nint dp_ptb[1010][1010];\n\n//distance fron point to goal line\nint dp[1010][1010];\nint dpw[1010];\nint dph[1010];\nint posw=-1,posh=-1;\nint w,h;\n\n\nvoid fordebg(){\n return;\n lp(i,h){\n lp(j,w){\n cout<<dp[i+1][j+1];\n }\n cout<<endl;\n }\ncout<<endl;\n/*\n lp(i,h){\n lp(j,w){\n cout<<dp_stp[i+1][j+1];\n }\n cout<<endl;\n }\n cout<<endl;\n lp(i,h){\n lp(j,w){\n cout<<dp_ptb[i+1][j+1];\n }\n cout<<endl;\n }\n cout<<endl;*/\n \n}\n\nvoid linesolve(){\n priority_queue<pair<int,pair<int,int>>,vector<pair<int,pair<int,int>>>,greater<pair<int,pair<int,int>>>> q;\n q.push({0,{h,w}});\n dp[h][w]=0;\n lp(i,1010){\n lp(j,1010){\n if(g[i][j]==2){\n\tif(i==posh&&j==posw){\n\t continue;\n\t}\n\tq.push({0,{i,j}});\n\tdp[i][j]=0;\n }\n }\n }\n int a[4]={-1,1,0,0};\n int b[4]={0,0,-1,1};\n while(!q.empty()){\n int x=q.top().second.first;\n int y=q.top().second.second;\n int cost=q.top().first;\n q.pop();\n if(g[x][y]==-1)continue;\n lp(i,4){\n int nx=x+a[i];\n int ny=y+b[i];\n int gn=cost;\n if(g[x][y]==1) gn++;\n if(g[nx][ny]==0||g[nx][ny]==2){\n\tif(dp[nx][ny]<=gn)continue;\n\tdp[nx][ny]=gn;\n\tq.push({gn,{nx,ny}});\n }\n else if(g[nx][ny]==1){\n\tif(dp[nx][ny]<=gn)continue;\n\tdp[nx][ny]=gn;\n\tq.push({gn,{nx,ny}});\n }\n }\n }\n fordebg();\n lp(i,1010){\n lp(j,1010){\n dph[i]=min(dp[i][j],dph[i]);\n if(dph[i]==-1)dph[i]=0;\n dpw[j]=min(dpw[j],dp[i][j]);\n if(dpw[j]==-1)dpw[j]=0;\n }\n }\n while(!q.empty())q.pop();\n lp(i,1010){\n lp(j,1010){\n if(g[i][j]==-1) continue;\n dp[i][j]=min(dph[i],dpw[j]);\n q.push({dp[i][j],{i,j}});\n }\n }\n fordebg();\n while(!q.empty()){\n int x=q.top().second.first;\n int y=q.top().second.second;\n int cost=q.top().first;\n q.pop();\n if(dp[x][y]<cost) continue;\n if(g[x][y]==-1)continue;\n lp(i,4){\n int nx=x+a[i];\n int ny=y+b[i];\n int gn=cost;\n if(g[x][y]==1)gn++;\n if(g[nx][ny]==0||g[nx][ny]==2){\n\tif(dp[nx][ny]<=gn)continue;\n\tdp[nx][ny]=gn;\n\tq.push({gn,{nx,ny}});\n }\n else if(g[nx][ny]==1){\n\tif(dp[nx][ny]<=gn)continue;\n\tdp[nx][ny]=gn;\n\tq.push({gn,{nx,ny}});\n }\n }\n }\n return;\n}\n\nvoid bfsptb(int sx,int sy){\n priority_queue<pair<int,pair<int,int>>,vector<pair<int,pair<int,int>>>,greater<pair<int,pair<int,int>>>> q;\n //queue<pair<int,int>> q;\n dp_ptb[sx][sy]=0;\n q.push({0,{sx,sy}});\n int a[4]={-1,1,0,0};\n int b[4]={0,0,-1,1};\n while(!q.empty()){\n int x=q.top().second.first;\n int y=q.top().second.second;\n int cost=dp_ptb[x][y];\n q.pop();\n lp(i,4){\n int nx=x+a[i];\n int ny=y+b[i];\n if(g[nx][ny]==0||g[nx][ny]==2){\n\tif(dp_ptb[nx][ny]<=cost)continue;\n\tdp_ptb[nx][ny]=cost;\n\tq.push({cost,{nx,ny}});\n }\n else if(g[nx][ny]==1){\n\tif(dp_ptb[nx][ny]<=cost+1)continue;\n\tdp_ptb[nx][ny]=cost+1;\n\tq.push({cost+1,{nx,ny}});\n }\n }\n }\n}\n\nvoid bfsstp(){\n priority_queue<pair<int,pair<int,int>>,vector<pair<int,pair<int,int>>>,greater<pair<int,pair<int,int>>>> q;\n //queue<pair<int,int>> q;\n dp_stp[1][1]=0;\n q.push({0,{1,1}});\n int a[4]={-1,1,0,0};\n int b[4]={0,0,-1,1};\n while(!q.empty()){\n int x=q.top().second.first;\n int y=q.top().second.second;\n int cost=dp_stp[x][y];\n q.pop();\n lp(i,4){\n int nx=x+a[i];\n int ny=y+b[i];\n if(g[nx][ny]==0||g[nx][ny]==2){\n\tif(dp_stp[nx][ny]<=cost)continue;\n\tdp_stp[nx][ny]=cost;\n\tq.push({cost,{nx,ny}});\n }\n else if(g[nx][ny]==1){\n\tif(dp_stp[nx][ny]<=cost+1)continue;\n\tdp_stp[nx][ny]=cost+1;\n\tq.push({cost+1,{nx,ny}});\n }\n }\n }\n}\n\n\nint main(){\n cin>>h>>w;\n posw=w,posh=h;\n lp(i,1010){\n lp(j,1010){\n g[i][j]=-1;\n dp_stp[i][j]=INF;\n dp_ptb[i][j]=INF;\n dp[i][j]=INF;\n }\n }\n lp(i,h){\n lp(j,w){\n char c;\n cin>>c;\n if(c=='\\n')cin>>c;\n if(c=='_')g[i+1][j+1]=0;\n if(c=='#')g[i+1][j+1]=1;\n if(c=='B'){\n\tg[i+1][j+1]=2;\n\tposh=min(i+1,posh);\n\tposw=min(j+1,posw);\n }\n }\n }\n if(g[posh][posw]!=2){\n posw=-1;\n posh=-1;\n }\n bfsstp();\n if(posw!=-1){\n bfsptb(posh,posw);\n }\n int ans=dp_stp[h][w];\n lp(i,1010){\n dpw[i]=INF;\n dph[i]=INF;\n lp(j,1010){\n if(g[i][j]==2){\n\tif(i==posh&&j==posw)continue;\n\tans=min(ans,dp_stp[i][j]);\n }\n }\n }\n if(posw!=-1){\n linesolve();\n lp(i,h){\n lp(j,w){\n\tint ne=dp_stp[i+1][j+1]+dp_ptb[i+1][j+1]+dp[i+1][j+1];\n\tif(g[i+1][j+1]==1)ne--;\n\tans=min(ans,ne);\n }\n }\n }\n cout<<ans<<endl;\n\n fordebg();\n return 0;\n}", "accuracy": 1, "time_ms": 880, "memory_kb": 43272, "score_of_the_acc": -0.1662, "final_rank": 4 }, { "submission_id": "aoj_3067_3859809", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nconst int INF = 1e9;\nconst int dx[4] = {0, 1, 0, -1}, dy[4] = {-1, 0, 1, 0};\n\nint H, W;\nvector<string> grid;\n\nstruct State {\n int x, y, cost, b;\n State(int x, int y, int cost, int b): x(x), y(y), cost(cost), b(b) {}\n bool operator<(const State &e) const {\n return cost < e.cost;\n };\n\n bool operator>(const State &e) const {\n return cost > e.cost;\n };\n};\n\nint calc0() {\n bool used[H][W];\n fill_n(*used, H*W, false);\n deque<State> Q; \n Q.push_front(State(0, 0, 0, 0));\n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n\n if ( x == W-1 && y == H-1 ) return cost; \n \n if ( used[y][x] ) continue;\n used[y][x] = true;\n \n for ( int i = 0; i < 4; i++ ) {\n int nx = x+dx[i], ny = y+dy[i];\n if ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n if ( grid[ny][nx] == '#' ) {\n\tQ.push_back(State(nx, ny, cost+1, b));\t\n } else {\n\tQ.push_front(State(nx, ny, cost, b));\t\n }\n }\n }\n\n return INF;\n}\n\nint calc1() {\n int dist[H][W];\n { \n fill_n(*dist, H*W, INF); \n deque<State> Q; \n for ( int i = 0; i < H; i++ ) {\n for ( int j = 0; j < W; j++ ) {\n\tif ( grid[i][j] == 'B' ) Q.push_front(State(j, i, 0, 0));\n }\n }\n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n \n if ( dist[y][x] != INF ) continue;\n dist[y][x] = cost;\n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[y][x] == '#' ) {\n\t Q.push_back(State(nx, ny, cost+1, b));\t\n\t} else {\n\t Q.push_front(State(nx, ny, cost, b));\t\n\t}\n }\n } \n }\n // cout << dist[0][0] << endl;\n vector<int> distR(H, INF), distC(W, INF);\n {\n bool used[H][W][2];\n fill_n(**used, H*W*2, false);\n priority_queue<State, vector<State>, greater<State> > Q; \n Q.push(State(0, 0, 0, 0));\n while ( !Q.empty()) {\n State s = Q.top(); Q.pop(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b;\n \n if ( b ) {\n\tdistR[y] = min(distR[y], cost);\n\tdistC[x] = min(distC[x], cost);\n }\n else {\n\tdistR[y] = min(distR[y], cost+dist[y][x]);\t\n\tdistC[x] = min(distC[x], cost+dist[y][x]);\n } \n \n if ( used[y][x][b] ) continue;\n used[y][x][b] = true;\n\n Q.push(State(x, y, cost+dist[y][x], 1)); \n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[ny][nx] == '#' ) {\n\t Q.push(State(nx, ny, cost+1, b));\t\n\t} else {\n\t int nb = b;\n\t if ( grid[ny][nx] == 'B' ) nb = 1;\n\t Q.push(State(nx, ny, cost, nb));\t\n\t}\n }\n }\n }\n\n int ans = INF; \n bool used[H][W];\n fill_n(*used, H*W, false);\n deque<State> Q; \n Q.push_front(State(W-1, H-1, 0, 0)); \n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n \n ans = min(ans, min(cost+distR[y], cost+distC[x])); \n \n if ( used[y][x] ) continue;\n used[y][x] = true;\n \n for ( int i = 0; i < 4; i++ ) {\n int nx = x+dx[i], ny = y+dy[i];\n if ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n if ( grid[y][x] == '#' ) {\n\tQ.push_back(State(nx, ny, cost+1, b));\t\n } else {\n\tQ.push_front(State(nx, ny, cost, b));\t\n }\n }\n }\n\n return ans; \n}\n\nint calc2() {\n int ans = INF;\n using P = pair<int, int>; \n P dist[H][W];\n { \n fill_n(*dist, H*W, P(INF, INF)); \n deque<State> Q; \n for ( int i = 0; i < H; i++ ) {\n for ( int j = 0; j < W; j++ ) {\n\tif ( grid[i][j] == 'B' ) Q.push_front(State(j, i, 0, i*W+j));\n }\n }\n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n \n if ( dist[y][x].first != INF ) continue;\n dist[y][x] = P(cost, b); \n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[y][x] == '#' ) {\n\t Q.push_back(State(nx, ny, cost+1, b));\t\n\t} else {\n\t Q.push_front(State(nx, ny, cost, b));\t\n\t}\n }\n } \n }\n\n vector<vector<State> > distR(H), distC(W); \n {\n bool used[H][W][2];\n fill_n(**used, H*W*2, false);\n priority_queue<State, vector<State>, greater<State> > Q; \n Q.push(State(0, 0, 0, 0));\n while ( !Q.empty()) {\n State s = Q.top(); Q.pop(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b; \n if ( used[y][x][(bool)b] ) continue;\n used[y][x][(bool)b] = true; \n \n if ( b > 0 ) {\n\tif ( distR[y].size() < 2 ) {\n\t if ( distR[y].size() == 0 ) distR[y].push_back(s);\n\t else if ( distR[y][0].b != b ) distR[y].push_back(s);\n\t}\n\tif ( distC[x].size() < 2 ) {\n\t if ( distC[x].size() == 0 ) distC[x].push_back(s);\n\t else if ( distC[x][0].b != b ) distC[x].push_back(s);\n\t}\n } \n /* if ( b == 2 ) {\n\tans = min(ans, cost);\t\n\t} */ \n\n if ( dist[y][x].first != INF ) {\n\tQ.push(State(x, y, cost+dist[y][x].first, dist[y][x].second));\n }\n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( b == ny*W+nx ) continue;\t\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[ny][nx] == '#' ) {\n\t Q.push(State(nx, ny, cost+1, b));\t\n\t} else {\n\t int nb = b;\n\t if ( grid[ny][nx] == 'B' ) nb = ny*W+nx;\n\t Q.push(State(nx, ny, cost, nb));\t\n\t}\n }\n }\n }\n\n vector<vector<State> > distR2(H), distC2(W);\n {\n bool used[H][W];\n fill_n(*used, H*W, false);\n deque<State> Q; \n for ( int i = 0; i < H; i++ ) {\n for ( int j = 0; j < W; j++ ) {\n\tif ( grid[i][j] == 'B' ) Q.push_front(State(j, i, 0, i*W+j));\n }\n }\n while ( !Q.empty()) {\n State s = Q.front(); Q.pop_front(); \n int x = s.x, y = s.y, cost = s.cost, b = s.b;\n \n if ( distR2[y].size() < 2 ) {\n\tif ( distR2[y].size() == 0 ) distR2[y].push_back(s);\n\telse if ( distR2[y][0].b != b ) distR2[y].push_back(s);\n }\n if ( distC2[x].size() < 2 ) {\n\tif ( distC2[x].size() == 0 ) distC2[x].push_back(s);\n\telse if ( distC2[x][0].b != b ) distC2[x].push_back(s);\n }\n \n if ( used[y][x] ) continue;\n used[y][x] = true;\n \n for ( int i = 0; i < 4; i++ ) {\n\tint nx = x+dx[i], ny = y+dy[i];\n\tif ( nx < 0 || nx >= W || ny < 0 || ny >= H ) continue; \n\tif ( grid[y][x] == '#' ) {\n\t Q.push_back(State(nx, ny, cost+1, b));\t\n\t} else {\n\t Q.push_front(State(nx, ny, cost, b));\t\n\t}\n }\n }\n }\n \n for ( int i = 0; i < H; i++ ) {\n for ( State j : distR[i] ) {\n for ( State k : distR2[i] ) {\n\tif ( j.b == k.b ) continue;\n\t// if ( j.cost+k.cost == 5 ) cout << \"R\" << i << \" \" << j.b << \":\" << j.cost << \" \" << k.b << \":\" << k.cost << endl;\t\n\tans = min(ans, j.cost+k.cost);\t\n }\n }\n }\n\n for ( int i = 0; i < W; i++ ) {\n for ( State j : distC[i] ) {\n for ( State k : distC2[i] ) {\n\tif ( j.b == k.b ) continue;\n\t// if ( j.cost+k.cost == 5 ) cout << \"W\" << i << \" \" << j.b << \":\" << j.cost << \" \" << k.b << \":\" << k.cost << endl;\t\n\tans = min(ans, j.cost+k.cost);\t\n }\n }\n }\n\n return ans; \n}\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n cin >> H >> W;\n\n grid = vector<string>(H);\n int cntB = 0; \n for ( int i = 0; i < H; i++ ) {\n cin >> grid[i];\n for ( int j = 0; j < W; j++ ) cntB += (grid[i][j] == 'B'); \n }\n\n int ans = calc0();\n if ( cntB ) ans = min(ans, calc1());\n if ( cntB >= 2 ) ans = min(ans, calc2());\n\n cout << ans << endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 3610, "memory_kb": 276020, "score_of_the_acc": -1.4867, "final_rank": 9 }, { "submission_id": "aoj_3067_3859766", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\nusing P = pair<int, int>;\nvector< vector<int> > bfs(vector<string> &s,vector<P> &vp,char wall,int dir){\n int h=s.size(),w=s.front().size();\n vector< vector<int> > dp(h,vector<int>(w,-1));\n deque<P> q;\n\n for(int i=0;i<(int)vp.size();i++){\n int sy=vp[i].first,sx=vp[i].second;\n dp[sy][sx]=0;\n q.emplace_back(sy,sx);\n }\n\n int dy[]={1,-1,0,0,1,1,-1,-1};\n int dx[]={0,0,1,-1,1,-1,1,-1};\n auto in=[&](int y,int x){return 0<=y&&y<h&&0<=x&&x<w;};\n\n while(!q.empty()){\n int y,x;\n tie(y,x)=q.front();q.pop_front();\n for(int k=0;k<dir;k++){\n int ny=y+dy[k],nx=x+dx[k];\n if(!in(ny,nx)) continue;\n int nd=dp[y][x]+(s[ny][nx]==wall);\n if(~dp[ny][nx]&&dp[ny][nx]<=nd) continue;\n dp[ny][nx]=nd;\n if(s[ny][nx]=='#'){\n q.emplace_back(ny,nx);\n }else{\n q.emplace_front(ny,nx);\n }\n }\n }\n return dp;\n}\n\nvector< vector<int> > bfs(vector<string> &s,int sy,int sx,char wall,int dir){\n vector<P> vp;\n vp.emplace_back(sy,sx);\n return bfs(s,vp,wall,dir);\n}\n\n\n//INSERT ABOVE HERE\n\nsigned main(){\n int h,w;\n cin>>h>>w;\n vector<string> st(h);\n for(int i=0;i<h;i++) cin>>st[i];\n\n auto d1=bfs(st,0,0,'#',4);\n int ans=d1[h-1][w-1];\n\n // find B2\n vector< vector<int> > ex(h,vector<int>(w));\n {\n int flg=0;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++) if(st[i][j]=='B') ex[i][j]|=flg;\n for(int j=0;j<w;j++) if(st[i][j]=='B') flg=1;\n }\n }\n {\n int flg=0;\n for(int j=0;j<w;j++){\n for(int i=0;i<h;i++) if(st[i][j]=='B') ex[i][j]|=flg;\n for(int i=0;i<h;i++) if(st[i][j]=='B') flg=1;\n }\n }\n\n // use B2\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n if(ex[i][j]) chmin(ans,d1[i][j]);\n\n // find B1\n int by=-1,bx=-1;\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n if(st[i][j]=='B'&&!ex[i][j]) by=i,bx=j;\n\n if(~by){\n // dist from B1\n auto d2=bfs(st,by,bx,'#',4);\n\n // dist to (i, j) with B1\n vector< vector<int> > d3(h,vector<int>(w));\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n d3[i][j]=d1[i][j]+d2[i][j]-(st[i][j]=='#');\n\n vector< queue<P> > qs((h+w)*2);\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n qs[d3[i][j]].emplace(i,j);\n\n int dy[]={1,-1,0,0,1,1,-1,-1};\n int dx[]={0,0,1,-1,1,-1,1,-1};\n auto in=[&](int y,int x){return 0<=y&&y<h&&0<=x&&x<w;};\n for(int d=0;d+1<(int)qs.size();d++){\n while(!qs[d].empty()){\n int y,x;\n tie(y,x)=qs[d].front();qs[d].pop();\n if(d3[y][x]!=d) continue;\n for(int k=0;k<4;k++){\n int ny=y+dy[k],nx=x+dx[k];\n if(!in(ny,nx)) continue;\n int nd=d3[y][x]+(st[ny][nx]=='#');\n if(d3[ny][nx]<=nd) continue;\n d3[ny][nx]=nd;\n qs[nd].emplace(ny,nx);\n }\n }\n }\n\n // dist from B2 and goal\n vector<P> vp;\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n if(ex[i][j]) vp.emplace_back(i,j);\n vp.emplace_back(h-1,w-1);\n auto d4=bfs(st,vp,'#',4);\n\n // use B1, take B2 and use\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n int res=d3[i][j];\n for(int k=0;k<i;k++) chmin(res,d3[k][j]);\n for(int k=0;k<j;k++) chmin(res,d3[i][k]);\n chmin(ans,(d4[i][j]-(st[i][j]=='#'))+res);\n }\n }\n }\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1000, "memory_kb": 30704, "score_of_the_acc": -0.1324, "final_rank": 3 } ]
aoj_3060_cpp
Problem J: Rings Problem とある水族館に住むイルカ君は、ジャンプをして$N$個のリングをくぐり抜けるとご褒美がもらえます。 イルカ君は座標$(0,0)$から飛び、$(T,0)$で着水する。 ジャンプの軌道は放物線である。 $i$番目のリングは、ジャンプの軌道が$(X_i,L_i)$と$(X_i,H_i)$を結ぶ線分と交わると、くぐり抜けたと判定される。 $1$回のジャンプには初速と同じだけの体力が必要である。 イルカ君は、必要であれば何度でもジャンプをすることができます。重力加速度ベクトルを$(0,-1)$として、イルカ君が全てのリングを通り抜けるために必要な体力の合計の最小値を求めてください。ただし、摩擦や空気抵抗は無視できるほど小さいとします。 Input 入力は以下の形式で与えられる。 $T$ $N$ $X_1$ $L_1$ $H_1$ $\vdots$ $X_N$ $L_N$ $H_N$ まず$1$行に$T$と$N$が与えられる。その後$N$行に$i$番目のリングの位置、$X_i$、$L_i$、$H_i$が与えられる。 Constraints 入力は以下の条件を満たす。 入力はすべて整数である。 $1 \le X_i < T \le 10^6$ $1 \le N \le 10^5$ $1 \le L_i < H_i \le 10^6$ Output 答えを一行に出力する。絶対誤差または相対誤差が$10^{-9}$以下の場合正答と判定される。 Sample Input 1 100 5 50 1 5 50 5 10 50 20 30 50 40 60 50 61 1000000 Sample Output 1 48.6090201099 点$(50,5)$を通るように飛ぶと、$1$番目と$2$番目のリングを同時にくぐることができます。 Sample Input 2 64 15 38 133177 927361 48 177920 668766 12 680425 790550 43 6853 384115 17 214954 723798 62 63843 153825 28 399349 482937 2 336136 367001 33 138008 733496 6 203462 911631 58 321974 527734 17 696940 781678 55 265874 507640 41 56037 880001 34 279422 528651 Sample Output 2 6087.909851326286
[ { "submission_id": "aoj_3060_10892900", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 2 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\n\n#line 6 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\n\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << std::min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(std::vector<T> &v){\n std::sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n#line 2 \"math/rational.hpp\"\n\n#line 8 \"c.cpp\"\nusing namespace std;\n\n#line 2 \"internal/internal-type-traits.hpp\"\n\n#include <type_traits>\nusing namespace std;\n\nnamespace internal {\ntemplate <typename T>\nusing is_broadly_integral =\n typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||\n is_same_v<T, __uint128_t>,\n true_type, false_type>::type;\n\ntemplate <typename T>\nusing is_broadly_signed =\n typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,\n true_type, false_type>::type;\n\ntemplate <typename T>\nusing is_broadly_unsigned =\n typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,\n true_type, false_type>::type;\n\n#define ENABLE_VALUE(x) \\\n template <typename T> \\\n constexpr bool x##_v = x<T>::value;\n\nENABLE_VALUE(is_broadly_integral);\nENABLE_VALUE(is_broadly_signed);\nENABLE_VALUE(is_broadly_unsigned);\n#undef ENABLE_VALUE\n\n#define ENABLE_HAS_TYPE(var) \\\n template <class, class = void> \\\n struct has_##var : false_type {}; \\\n template <class T> \\\n struct has_##var<T, void_t<typename T::var>> : true_type {}; \\\n template <class T> \\\n constexpr auto has_##var##_v = has_##var<T>::value;\n\n#define ENABLE_HAS_VAR(var) \\\n template <class, class = void> \\\n struct has_##var : false_type {}; \\\n template <class T> \\\n struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \\\n template <class T> \\\n constexpr auto has_##var##_v = has_##var<T>::value;\n\n} // namespace internal\n#line 2 \"math-fast/gcd.hpp\"\n\n#line 61 \"c.cpp\"\nusing namespace std;\n\nnamespace BinaryGCDImpl {\nusing u64 = unsigned long long;\nusing i8 = char;\n\nu64 binary_gcd(u64 a, u64 b) {\n if (a == 0 || b == 0) return a + b;\n i8 n = __builtin_ctzll(a);\n i8 m = __builtin_ctzll(b);\n a >>= n;\n b >>= m;\n n = min(n, m);\n while (a != b) {\n u64 d = a - b;\n i8 s = __builtin_ctzll(d);\n bool f = a > b;\n b = f ? b : a;\n a = (f ? d : -d) >> s;\n }\n return a << n;\n}\n\nusing u128 = __uint128_t;\n// a > 0\nint ctz128(u128 a) {\n u64 lo = a & u64(-1);\n return lo ? __builtin_ctzll(lo) : 64 + __builtin_ctzll(a >> 64);\n}\nu128 binary_gcd128(u128 a, u128 b) {\n if (a == 0 || b == 0) return a + b;\n i8 n = ctz128(a);\n i8 m = ctz128(b);\n a >>= n;\n b >>= m;\n n = min(n, m);\n while (a != b) {\n u128 d = a - b;\n i8 s = ctz128(d);\n bool f = a > b;\n b = f ? b : a;\n a = (f ? d : -d) >> s;\n }\n return a << n;\n}\n\n} // namespace BinaryGCDImpl\n\nlong long binary_gcd(long long a, long long b) {\n return BinaryGCDImpl::binary_gcd(abs(a), abs(b));\n}\n__int128_t binary_gcd128(__int128_t a, __int128_t b) {\n if (a < 0) a = -a;\n if (b < 0) b = -b;\n return BinaryGCDImpl::binary_gcd128(a, b);\n}\n\n/**\n * @brief binary GCD\n */\n#line 10 \"math/rational.hpp\"\n\n// T : 値, U : 比較用\ntemplate <typename T, typename U>\nstruct RationalBase {\n using R = RationalBase;\n using Key = T;\n T x, y;\n RationalBase() : x(0), y(1) {}\n template <typename T1>\n RationalBase(const T1& _x) : RationalBase<T, U>(_x, T1{1}) {}\n template <typename T1, typename T2>\n RationalBase(const pair<T1, T2>& _p)\n : RationalBase<T, U>(_p.first, _p.second) {}\n template <typename T1, typename T2>\n RationalBase(const T1& _x, const T2& _y) : x(_x), y(_y) {\n assert(y != 0);\n if (y == -1) x = -x, y = -y;\n if (y != 1) {\n T g;\n if constexpr (internal::is_broadly_integral_v<T>) {\n if constexpr (sizeof(T) == 16) {\n g = binary_gcd128(x, y);\n } else {\n g = binary_gcd(x, y);\n }\n } else {\n g = gcd(x, y);\n }\n if (g != 0) x /= g, y /= g;\n if (y < 0) x = -x, y = -y;\n }\n }\n // y = 0 の代入も認める\n static R raw(T _x, T _y) {\n R r;\n r.x = _x, r.y = _y;\n return r;\n }\n friend R operator+(const R& l, const R& r) {\n if (l.y == r.y) return R{l.x + r.x, l.y};\n return R{l.x * r.y + l.y * r.x, l.y * r.y};\n }\n friend R operator-(const R& l, const R& r) {\n if (l.y == r.y) return R{l.x - r.x, l.y};\n return R{l.x * r.y - l.y * r.x, l.y * r.y};\n }\n friend R operator*(const R& l, const R& r) { return R{l.x * r.x, l.y * r.y}; }\n friend R operator/(const R& l, const R& r) { return R{l.x * r.y, l.y * r.x}; }\n R& operator+=(const R& r) { return (*this) = (*this) + r; }\n R& operator-=(const R& r) { return (*this) = (*this) - r; }\n R& operator*=(const R& r) { return (*this) = (*this) * r; }\n R& operator/=(const R& r) { return (*this) = (*this) / r; }\n R operator-() const { return raw(-x, y); }\n R inverse() const {\n assert(x != 0);\n R r = raw(y, x);\n if (r.y < 0) r.x = -r.x, r.y = -r.y;\n return r;\n }\n R pow(long long p) const {\n R res{1}, base{*this};\n while (p) {\n if (p & 1) res *= base;\n base *= base;\n p >>= 1;\n }\n return res;\n }\n friend bool operator==(const R& l, const R& r) {\n return l.x == r.x && l.y == r.y;\n };\n friend bool operator!=(const R& l, const R& r) {\n return l.x != r.x || l.y != r.y;\n };\n friend bool operator<(const R& l, const R& r) {\n return U{l.x} * r.y < U{l.y} * r.x;\n };\n friend bool operator<=(const R& l, const R& r) { return l < r || l == r; }\n friend bool operator>(const R& l, const R& r) {\n return U{l.x} * r.y > U{l.y} * r.x;\n };\n friend bool operator>=(const R& l, const R& r) { return l > r || l == r; }\n friend ostream& operator<<(ostream& os, const R& r) {\n os << r.x;\n if (r.x != 0 && r.y != 1) os << \"/\" << r.y;\n return os;\n }\n\n // T にキャストされるので T が bigint の場合は to_ll も要る\n T to_mint(T mod) const {\n assert(mod != 0);\n T a = y, b = mod, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return U((u % mod + mod) % mod) * x % mod;\n }\n};\n\nusing Rational = RationalBase<long long, __int128_t>;\nusing Fraction = Rational;\n\nvoid solve0(){\n ld t; in(t);\n int n; in(n);\n struct lr {\n ld l, r;\n };\n vector<lr> lrs(n);\n rep(i,n){\n ld x, l, h; in(x,l,h);\n ld le = sqrtl(-x*(x-t)/(2*h));\n ld ri = sqrtl(-x*(x-t)/(2*l));\n lrs[i] = {le,ri};\n }\n ld ans = 0;\n auto cost = [&](ld x){\n return sqrtl(x*x + t*t/((4*x*x)));\n };\n ld mid = sqrtl(t/2);\n vector<bool> done(n,false);\n vector<int> ids(n); iota(all(ids),0);\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].r;\n });\n int ps = 0;\n ld ma = -1e9;\n while (ps < n && lrs[ids[ps]].r < mid){\n if (lrs[ids[ps]].l > ma){\n ld x = lrs[ids[ps]].r;\n ans += cost(x);\n ma = x;\n }\n done[ids[ps]] = true;\n ps++;\n }\n ld mi = 1e9;\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].l;\n });\n int pt = n-1;\n while (pt >= 0 && lrs[ids[pt]].l > mid){\n assert(!done[ids[pt]]);\n if (lrs[ids[pt]].r < mi){\n ld x = lrs[ids[pt]].l;\n ans += cost(x);\n mi = x;\n }\n done[ids[pt]] = true;\n pt--;\n }\n bool on = false;\n rep(i,n){\n if (done[i]) continue;\n on = true;\n }\n if (on){\n ans += cost(mid);\n }\n out(ans);\n}\n\n// using rat = RationalBase<ll,ll>;\nusing rat = Rational;\n\nvoid solve(){\n ll t; in(t);\n int n; in(n);\n struct lr {\n rat l, r;\n };\n vector<lr> lrs(n);\n rep(i,n){\n ll x, l, h; in(x,l,h);\n rat le = rat(-x*(x-t),2*h);\n rat ri = rat(-x*(x-t),2*l);\n lrs[i] = {le,ri};\n }\n ld ans = 0;\n auto cost = [&](ld x){\n return sqrtl(x + t*t/((4*x)));\n };\n rat mid(t,2);\n vector<bool> done(n,false);\n vector<int> ids(n); iota(all(ids),0);\n\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].r;\n });\n int ps = 0;\n rat ma(-1e13,1);\n while (ps < n && lrs[ids[ps]].r < mid){\n if (lrs[ids[ps]].l > ma){\n rat x = lrs[ids[ps]].r;\n ans += cost(ld(x.x)/x.y);\n ma = x;\n }\n done[ids[ps]] = true;\n ps++;\n }\n\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].l;\n });\n int pt = n-1;\n rat mi(1e13,1);\n while (pt >= 0 && lrs[ids[pt]].l > mid){\n assert(!done[ids[pt]]);\n if (lrs[ids[pt]].r < mi){\n rat x = lrs[ids[pt]].l;\n ans += cost(ld(x.x)/x.y);\n mi = x;\n }\n done[ids[pt]] = true;\n pt--;\n }\n\n bool on = false;\n rep(i,n){\n if (done[i]) continue;\n if (lrs[i].l <= ma && ma <= lrs[i].r) continue;\n if (lrs[i].l <= mi && mi <= lrs[i].r) continue;\n on = true;\n }\n if (on){\n ans += cost(ld(mid.x)/mid.y);\n }\n out(ans);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 7124, "score_of_the_acc": -0.1521, "final_rank": 1 }, { "submission_id": "aoj_3060_10892844", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 2 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\n\n#line 6 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\n\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << std::min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(std::vector<T> &v){\n std::sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n#line 2 \"math/rational.hpp\"\n\n#line 8 \"c.cpp\"\nusing namespace std;\n\n#line 2 \"internal/internal-type-traits.hpp\"\n\n#include <type_traits>\nusing namespace std;\n\nnamespace internal {\ntemplate <typename T>\nusing is_broadly_integral =\n typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||\n is_same_v<T, __uint128_t>,\n true_type, false_type>::type;\n\ntemplate <typename T>\nusing is_broadly_signed =\n typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,\n true_type, false_type>::type;\n\ntemplate <typename T>\nusing is_broadly_unsigned =\n typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,\n true_type, false_type>::type;\n\n#define ENABLE_VALUE(x) \\\n template <typename T> \\\n constexpr bool x##_v = x<T>::value;\n\nENABLE_VALUE(is_broadly_integral);\nENABLE_VALUE(is_broadly_signed);\nENABLE_VALUE(is_broadly_unsigned);\n#undef ENABLE_VALUE\n\n#define ENABLE_HAS_TYPE(var) \\\n template <class, class = void> \\\n struct has_##var : false_type {}; \\\n template <class T> \\\n struct has_##var<T, void_t<typename T::var>> : true_type {}; \\\n template <class T> \\\n constexpr auto has_##var##_v = has_##var<T>::value;\n\n#define ENABLE_HAS_VAR(var) \\\n template <class, class = void> \\\n struct has_##var : false_type {}; \\\n template <class T> \\\n struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \\\n template <class T> \\\n constexpr auto has_##var##_v = has_##var<T>::value;\n\n} // namespace internal\n#line 2 \"math-fast/gcd.hpp\"\n\n#line 61 \"c.cpp\"\nusing namespace std;\n\nnamespace BinaryGCDImpl {\nusing u64 = unsigned long long;\nusing i8 = char;\n\nu64 binary_gcd(u64 a, u64 b) {\n if (a == 0 || b == 0) return a + b;\n i8 n = __builtin_ctzll(a);\n i8 m = __builtin_ctzll(b);\n a >>= n;\n b >>= m;\n n = min(n, m);\n while (a != b) {\n u64 d = a - b;\n i8 s = __builtin_ctzll(d);\n bool f = a > b;\n b = f ? b : a;\n a = (f ? d : -d) >> s;\n }\n return a << n;\n}\n\nusing u128 = __uint128_t;\n// a > 0\nint ctz128(u128 a) {\n u64 lo = a & u64(-1);\n return lo ? __builtin_ctzll(lo) : 64 + __builtin_ctzll(a >> 64);\n}\nu128 binary_gcd128(u128 a, u128 b) {\n if (a == 0 || b == 0) return a + b;\n i8 n = ctz128(a);\n i8 m = ctz128(b);\n a >>= n;\n b >>= m;\n n = min(n, m);\n while (a != b) {\n u128 d = a - b;\n i8 s = ctz128(d);\n bool f = a > b;\n b = f ? b : a;\n a = (f ? d : -d) >> s;\n }\n return a << n;\n}\n\n} // namespace BinaryGCDImpl\n\nlong long binary_gcd(long long a, long long b) {\n return BinaryGCDImpl::binary_gcd(abs(a), abs(b));\n}\n__int128_t binary_gcd128(__int128_t a, __int128_t b) {\n if (a < 0) a = -a;\n if (b < 0) b = -b;\n return BinaryGCDImpl::binary_gcd128(a, b);\n}\n\n/**\n * @brief binary GCD\n */\n#line 10 \"math/rational.hpp\"\n\n// T : 値, U : 比較用\ntemplate <typename T, typename U>\nstruct RationalBase {\n using R = RationalBase;\n using Key = T;\n T x, y;\n RationalBase() : x(0), y(1) {}\n template <typename T1>\n RationalBase(const T1& _x) : RationalBase<T, U>(_x, T1{1}) {}\n template <typename T1, typename T2>\n RationalBase(const pair<T1, T2>& _p)\n : RationalBase<T, U>(_p.first, _p.second) {}\n template <typename T1, typename T2>\n RationalBase(const T1& _x, const T2& _y) : x(_x), y(_y) {\n assert(y != 0);\n if (y == -1) x = -x, y = -y;\n if (y != 1) {\n T g;\n if constexpr (internal::is_broadly_integral_v<T>) {\n if constexpr (sizeof(T) == 16) {\n g = binary_gcd128(x, y);\n } else {\n g = binary_gcd(x, y);\n }\n } else {\n g = gcd(x, y);\n }\n if (g != 0) x /= g, y /= g;\n if (y < 0) x = -x, y = -y;\n }\n }\n // y = 0 の代入も認める\n static R raw(T _x, T _y) {\n R r;\n r.x = _x, r.y = _y;\n return r;\n }\n friend R operator+(const R& l, const R& r) {\n if (l.y == r.y) return R{l.x + r.x, l.y};\n return R{l.x * r.y + l.y * r.x, l.y * r.y};\n }\n friend R operator-(const R& l, const R& r) {\n if (l.y == r.y) return R{l.x - r.x, l.y};\n return R{l.x * r.y - l.y * r.x, l.y * r.y};\n }\n friend R operator*(const R& l, const R& r) { return R{l.x * r.x, l.y * r.y}; }\n friend R operator/(const R& l, const R& r) { return R{l.x * r.y, l.y * r.x}; }\n R& operator+=(const R& r) { return (*this) = (*this) + r; }\n R& operator-=(const R& r) { return (*this) = (*this) - r; }\n R& operator*=(const R& r) { return (*this) = (*this) * r; }\n R& operator/=(const R& r) { return (*this) = (*this) / r; }\n R operator-() const { return raw(-x, y); }\n R inverse() const {\n assert(x != 0);\n R r = raw(y, x);\n if (r.y < 0) r.x = -r.x, r.y = -r.y;\n return r;\n }\n R pow(long long p) const {\n R res{1}, base{*this};\n while (p) {\n if (p & 1) res *= base;\n base *= base;\n p >>= 1;\n }\n return res;\n }\n friend bool operator==(const R& l, const R& r) {\n return l.x == r.x && l.y == r.y;\n };\n friend bool operator!=(const R& l, const R& r) {\n return l.x != r.x || l.y != r.y;\n };\n friend bool operator<(const R& l, const R& r) {\n return U{l.x} * r.y < U{l.y} * r.x;\n };\n friend bool operator<=(const R& l, const R& r) { return l < r || l == r; }\n friend bool operator>(const R& l, const R& r) {\n return U{l.x} * r.y > U{l.y} * r.x;\n };\n friend bool operator>=(const R& l, const R& r) { return l > r || l == r; }\n friend ostream& operator<<(ostream& os, const R& r) {\n os << r.x;\n if (r.x != 0 && r.y != 1) os << \"/\" << r.y;\n return os;\n }\n\n // T にキャストされるので T が bigint の場合は to_ll も要る\n T to_mint(T mod) const {\n assert(mod != 0);\n T a = y, b = mod, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return U((u % mod + mod) % mod) * x % mod;\n }\n};\n\nusing Rational = RationalBase<long long, __int128_t>;\nusing Fraction = Rational;\n\nvoid solve0(){\n ld t; in(t);\n int n; in(n);\n struct lr {\n ld l, r;\n };\n vector<lr> lrs(n);\n rep(i,n){\n ld x, l, h; in(x,l,h);\n ld le = sqrtl(-x*(x-t)/(2*h));\n ld ri = sqrtl(-x*(x-t)/(2*l));\n lrs[i] = {le,ri};\n }\n ld ans = 0;\n auto cost = [&](ld x){\n return sqrtl(x*x + t*t/((4*x*x)));\n };\n ld mid = sqrtl(t/2);\n vector<bool> done(n,false);\n vector<int> ids(n); iota(all(ids),0);\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].r;\n });\n int ps = 0;\n ld ma = -1e9;\n while (ps < n && lrs[ids[ps]].r < mid){\n if (lrs[ids[ps]].l > ma){\n ld x = lrs[ids[ps]].r;\n ans += cost(x);\n ma = x;\n }\n done[ids[ps]] = true;\n ps++;\n }\n ld mi = 1e9;\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].l;\n });\n int pt = n-1;\n while (pt >= 0 && lrs[ids[pt]].l > mid){\n assert(!done[ids[pt]]);\n if (lrs[ids[pt]].r < mi){\n ld x = lrs[ids[pt]].l;\n ans += cost(x);\n mi = x;\n }\n done[ids[pt]] = true;\n pt--;\n }\n bool on = false;\n rep(i,n){\n if (done[i]) continue;\n on = true;\n }\n if (on){\n ans += cost(mid);\n }\n out(ans);\n}\n\n// using rat = RationalBase<ll,ll>;\nusing rat = Rational;\n\nvoid solve(){\n ll t; in(t);\n int n; in(n);\n struct lr {\n rat l, r;\n };\n vector<lr> lrs(n);\n rep(i,n){\n ll x, l, h; in(x,l,h);\n rat le = rat(-x*(x-t),2*h);\n rat ri = rat(-x*(x-t),2*l);\n lrs[i] = {le,ri};\n }\n ld ans = 0;\n auto cost = [&](ld x){\n return sqrtl(x + t*t/((4*x)));\n };\n rat mid(t,2);\n vector<bool> done(n,false);\n vector<int> ids(n); iota(all(ids),0);\n\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].r;\n });\n int ps = 0;\n rat ma(-1e9,1);\n while (ps < n && lrs[ids[ps]].r < mid){\n if (lrs[ids[ps]].l > ma){\n rat x = lrs[ids[ps]].r;\n ans += cost(ld(x.x)/x.y);\n ma = x;\n }\n done[ids[ps]] = true;\n ps++;\n }\n\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].l;\n });\n int pt = n-1;\n rat mi(1e9,1);\n while (pt >= 0 && lrs[ids[pt]].l > mid){\n assert(!done[ids[pt]]);\n if (lrs[ids[pt]].r < mi){\n rat x = lrs[ids[pt]].l;\n ans += cost(ld(x.x)/x.y);\n mi = x;\n }\n done[ids[pt]] = true;\n pt--;\n }\n\n bool on = false;\n rep(i,n){\n if (done[i]) continue;\n if (lrs[i].l <= ma && ma <= lrs[i].r) continue;\n if (lrs[i].l <= mi && mi <= lrs[i].r) continue;\n on = true;\n }\n if (on){\n ans += cost(ld(mid.x)/mid.y);\n }\n out(ans);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 0.8666666666666667, "time_ms": 30, "memory_kb": 7124, "score_of_the_acc": -0.1521, "final_rank": 9 }, { "submission_id": "aoj_3060_10892818", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 2 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\n\n#line 6 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\n\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << std::min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(std::vector<T> &v){\n std::sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n#line 2 \"math/rational.hpp\"\n\n#line 8 \"c.cpp\"\nusing namespace std;\n\n#line 2 \"internal/internal-type-traits.hpp\"\n\n#include <type_traits>\nusing namespace std;\n\nnamespace internal {\ntemplate <typename T>\nusing is_broadly_integral =\n typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||\n is_same_v<T, __uint128_t>,\n true_type, false_type>::type;\n\ntemplate <typename T>\nusing is_broadly_signed =\n typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,\n true_type, false_type>::type;\n\ntemplate <typename T>\nusing is_broadly_unsigned =\n typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,\n true_type, false_type>::type;\n\n#define ENABLE_VALUE(x) \\\n template <typename T> \\\n constexpr bool x##_v = x<T>::value;\n\nENABLE_VALUE(is_broadly_integral);\nENABLE_VALUE(is_broadly_signed);\nENABLE_VALUE(is_broadly_unsigned);\n#undef ENABLE_VALUE\n\n#define ENABLE_HAS_TYPE(var) \\\n template <class, class = void> \\\n struct has_##var : false_type {}; \\\n template <class T> \\\n struct has_##var<T, void_t<typename T::var>> : true_type {}; \\\n template <class T> \\\n constexpr auto has_##var##_v = has_##var<T>::value;\n\n#define ENABLE_HAS_VAR(var) \\\n template <class, class = void> \\\n struct has_##var : false_type {}; \\\n template <class T> \\\n struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \\\n template <class T> \\\n constexpr auto has_##var##_v = has_##var<T>::value;\n\n} // namespace internal\n#line 2 \"math-fast/gcd.hpp\"\n\n#line 61 \"c.cpp\"\nusing namespace std;\n\nnamespace BinaryGCDImpl {\nusing u64 = unsigned long long;\nusing i8 = char;\n\nu64 binary_gcd(u64 a, u64 b) {\n if (a == 0 || b == 0) return a + b;\n i8 n = __builtin_ctzll(a);\n i8 m = __builtin_ctzll(b);\n a >>= n;\n b >>= m;\n n = min(n, m);\n while (a != b) {\n u64 d = a - b;\n i8 s = __builtin_ctzll(d);\n bool f = a > b;\n b = f ? b : a;\n a = (f ? d : -d) >> s;\n }\n return a << n;\n}\n\nusing u128 = __uint128_t;\n// a > 0\nint ctz128(u128 a) {\n u64 lo = a & u64(-1);\n return lo ? __builtin_ctzll(lo) : 64 + __builtin_ctzll(a >> 64);\n}\nu128 binary_gcd128(u128 a, u128 b) {\n if (a == 0 || b == 0) return a + b;\n i8 n = ctz128(a);\n i8 m = ctz128(b);\n a >>= n;\n b >>= m;\n n = min(n, m);\n while (a != b) {\n u128 d = a - b;\n i8 s = ctz128(d);\n bool f = a > b;\n b = f ? b : a;\n a = (f ? d : -d) >> s;\n }\n return a << n;\n}\n\n} // namespace BinaryGCDImpl\n\nlong long binary_gcd(long long a, long long b) {\n return BinaryGCDImpl::binary_gcd(abs(a), abs(b));\n}\n__int128_t binary_gcd128(__int128_t a, __int128_t b) {\n if (a < 0) a = -a;\n if (b < 0) b = -b;\n return BinaryGCDImpl::binary_gcd128(a, b);\n}\n\n/**\n * @brief binary GCD\n */\n#line 10 \"math/rational.hpp\"\n\n// T : 値, U : 比較用\ntemplate <typename T, typename U>\nstruct RationalBase {\n using R = RationalBase;\n using Key = T;\n T x, y;\n RationalBase() : x(0), y(1) {}\n template <typename T1>\n RationalBase(const T1& _x) : RationalBase<T, U>(_x, T1{1}) {}\n template <typename T1, typename T2>\n RationalBase(const pair<T1, T2>& _p)\n : RationalBase<T, U>(_p.first, _p.second) {}\n template <typename T1, typename T2>\n RationalBase(const T1& _x, const T2& _y) : x(_x), y(_y) {\n assert(y != 0);\n if (y == -1) x = -x, y = -y;\n if (y != 1) {\n T g;\n if constexpr (internal::is_broadly_integral_v<T>) {\n if constexpr (sizeof(T) == 16) {\n g = binary_gcd128(x, y);\n } else {\n g = binary_gcd(x, y);\n }\n } else {\n g = gcd(x, y);\n }\n if (g != 0) x /= g, y /= g;\n if (y < 0) x = -x, y = -y;\n }\n }\n // y = 0 の代入も認める\n static R raw(T _x, T _y) {\n R r;\n r.x = _x, r.y = _y;\n return r;\n }\n friend R operator+(const R& l, const R& r) {\n if (l.y == r.y) return R{l.x + r.x, l.y};\n return R{l.x * r.y + l.y * r.x, l.y * r.y};\n }\n friend R operator-(const R& l, const R& r) {\n if (l.y == r.y) return R{l.x - r.x, l.y};\n return R{l.x * r.y - l.y * r.x, l.y * r.y};\n }\n friend R operator*(const R& l, const R& r) { return R{l.x * r.x, l.y * r.y}; }\n friend R operator/(const R& l, const R& r) { return R{l.x * r.y, l.y * r.x}; }\n R& operator+=(const R& r) { return (*this) = (*this) + r; }\n R& operator-=(const R& r) { return (*this) = (*this) - r; }\n R& operator*=(const R& r) { return (*this) = (*this) * r; }\n R& operator/=(const R& r) { return (*this) = (*this) / r; }\n R operator-() const { return raw(-x, y); }\n R inverse() const {\n assert(x != 0);\n R r = raw(y, x);\n if (r.y < 0) r.x = -r.x, r.y = -r.y;\n return r;\n }\n R pow(long long p) const {\n R res{1}, base{*this};\n while (p) {\n if (p & 1) res *= base;\n base *= base;\n p >>= 1;\n }\n return res;\n }\n friend bool operator==(const R& l, const R& r) {\n return l.x == r.x && l.y == r.y;\n };\n friend bool operator!=(const R& l, const R& r) {\n return l.x != r.x || l.y != r.y;\n };\n friend bool operator<(const R& l, const R& r) {\n return U{l.x} * r.y < U{l.y} * r.x;\n };\n friend bool operator<=(const R& l, const R& r) { return l < r || l == r; }\n friend bool operator>(const R& l, const R& r) {\n return U{l.x} * r.y > U{l.y} * r.x;\n };\n friend bool operator>=(const R& l, const R& r) { return l > r || l == r; }\n friend ostream& operator<<(ostream& os, const R& r) {\n os << r.x;\n if (r.x != 0 && r.y != 1) os << \"/\" << r.y;\n return os;\n }\n\n // T にキャストされるので T が bigint の場合は to_ll も要る\n T to_mint(T mod) const {\n assert(mod != 0);\n T a = y, b = mod, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return U((u % mod + mod) % mod) * x % mod;\n }\n};\n\nusing Rational = RationalBase<long long, __int128_t>;\nusing Fraction = Rational;\n\nvoid solve0(){\n ld t; in(t);\n int n; in(n);\n struct lr {\n ld l, r;\n };\n vector<lr> lrs(n);\n rep(i,n){\n ld x, l, h; in(x,l,h);\n ld le = sqrtl(-x*(x-t)/(2*h));\n ld ri = sqrtl(-x*(x-t)/(2*l));\n lrs[i] = {le,ri};\n }\n ld ans = 0;\n auto cost = [&](ld x){\n return sqrtl(x*x + t*t/((4*x*x)));\n };\n ld mid = sqrtl(t/2);\n vector<bool> done(n,false);\n vector<int> ids(n); iota(all(ids),0);\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].r;\n });\n int ps = 0;\n ld ma = -1e9;\n while (ps < n && lrs[ids[ps]].r < mid){\n if (lrs[ids[ps]].l > ma){\n ld x = lrs[ids[ps]].r;\n ans += cost(x);\n ma = x;\n }\n done[ids[ps]] = true;\n ps++;\n }\n ld mi = 1e9;\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].l;\n });\n int pt = n-1;\n while (pt >= 0 && lrs[ids[pt]].l > mid){\n assert(!done[ids[pt]]);\n if (lrs[ids[pt]].r < mi){\n ld x = lrs[ids[pt]].l;\n ans += cost(x);\n mi = x;\n }\n done[ids[pt]] = true;\n pt--;\n }\n bool on = false;\n rep(i,n){\n if (done[i]) continue;\n on = true;\n }\n if (on){\n ans += cost(mid);\n }\n out(ans);\n}\n\nusing rat = RationalBase<ll,ll>;\n\nvoid solve(){\n ll t; in(t);\n int n; in(n);\n struct lr {\n rat l, r;\n };\n vector<lr> lrs(n);\n rep(i,n){\n ll x, l, h; in(x,l,h);\n rat le = rat(-x*(x-t),2*h);\n rat ri = rat(-x*(x-t),2*l);\n lrs[i] = {le,ri};\n }\n ld ans = 0;\n auto cost = [&](ld x){\n return sqrtl(x + t*t/((4*x)));\n };\n rat mid(t,2);\n vector<bool> done(n,false);\n vector<int> ids(n); iota(all(ids),0);\n\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].r;\n });\n int ps = 0;\n rat ma(-1e9,1);\n while (ps < n && lrs[ids[ps]].r < mid){\n if (lrs[ids[ps]].l > ma){\n rat x = lrs[ids[ps]].r;\n ans += cost(ld(x.x)/x.y);\n ma = x;\n }\n done[ids[ps]] = true;\n ps++;\n }\n\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].l;\n });\n int pt = n-1;\n rat mi(1e9,1);\n while (pt >= 0 && lrs[ids[pt]].l > mid){\n assert(!done[ids[pt]]);\n if (lrs[ids[pt]].r < mi){\n rat x = lrs[ids[pt]].l;\n ans += cost(ld(x.x)/x.y);\n mi = x;\n }\n done[ids[pt]] = true;\n pt--;\n }\n\n bool on = false;\n rep(i,n){\n if (done[i]) continue;\n if (lrs[i].l <= ma && ma <= lrs[i].r) continue;\n if (lrs[i].l <= mi && mi <= lrs[i].r) continue;\n on = true;\n }\n if (on){\n ans += cost(ld(mid.x)/mid.y);\n }\n out(ans);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 0.8666666666666667, "time_ms": 30, "memory_kb": 7124, "score_of_the_acc": -0.1521, "final_rank": 9 }, { "submission_id": "aoj_3060_10892814", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 2 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\n\n#line 6 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\n\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << std::min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(std::vector<T> &v){\n std::sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n#line 2 \"math/rational.hpp\"\n\n#line 8 \"c.cpp\"\nusing namespace std;\n\n#line 2 \"internal/internal-type-traits.hpp\"\n\n#include <type_traits>\nusing namespace std;\n\nnamespace internal {\ntemplate <typename T>\nusing is_broadly_integral =\n typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||\n is_same_v<T, __uint128_t>,\n true_type, false_type>::type;\n\ntemplate <typename T>\nusing is_broadly_signed =\n typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,\n true_type, false_type>::type;\n\ntemplate <typename T>\nusing is_broadly_unsigned =\n typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,\n true_type, false_type>::type;\n\n#define ENABLE_VALUE(x) \\\n template <typename T> \\\n constexpr bool x##_v = x<T>::value;\n\nENABLE_VALUE(is_broadly_integral);\nENABLE_VALUE(is_broadly_signed);\nENABLE_VALUE(is_broadly_unsigned);\n#undef ENABLE_VALUE\n\n#define ENABLE_HAS_TYPE(var) \\\n template <class, class = void> \\\n struct has_##var : false_type {}; \\\n template <class T> \\\n struct has_##var<T, void_t<typename T::var>> : true_type {}; \\\n template <class T> \\\n constexpr auto has_##var##_v = has_##var<T>::value;\n\n#define ENABLE_HAS_VAR(var) \\\n template <class, class = void> \\\n struct has_##var : false_type {}; \\\n template <class T> \\\n struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \\\n template <class T> \\\n constexpr auto has_##var##_v = has_##var<T>::value;\n\n} // namespace internal\n#line 2 \"math-fast/gcd.hpp\"\n\n#line 61 \"c.cpp\"\nusing namespace std;\n\nnamespace BinaryGCDImpl {\nusing u64 = unsigned long long;\nusing i8 = char;\n\nu64 binary_gcd(u64 a, u64 b) {\n if (a == 0 || b == 0) return a + b;\n i8 n = __builtin_ctzll(a);\n i8 m = __builtin_ctzll(b);\n a >>= n;\n b >>= m;\n n = min(n, m);\n while (a != b) {\n u64 d = a - b;\n i8 s = __builtin_ctzll(d);\n bool f = a > b;\n b = f ? b : a;\n a = (f ? d : -d) >> s;\n }\n return a << n;\n}\n\nusing u128 = __uint128_t;\n// a > 0\nint ctz128(u128 a) {\n u64 lo = a & u64(-1);\n return lo ? __builtin_ctzll(lo) : 64 + __builtin_ctzll(a >> 64);\n}\nu128 binary_gcd128(u128 a, u128 b) {\n if (a == 0 || b == 0) return a + b;\n i8 n = ctz128(a);\n i8 m = ctz128(b);\n a >>= n;\n b >>= m;\n n = min(n, m);\n while (a != b) {\n u128 d = a - b;\n i8 s = ctz128(d);\n bool f = a > b;\n b = f ? b : a;\n a = (f ? d : -d) >> s;\n }\n return a << n;\n}\n\n} // namespace BinaryGCDImpl\n\nlong long binary_gcd(long long a, long long b) {\n return BinaryGCDImpl::binary_gcd(abs(a), abs(b));\n}\n__int128_t binary_gcd128(__int128_t a, __int128_t b) {\n if (a < 0) a = -a;\n if (b < 0) b = -b;\n return BinaryGCDImpl::binary_gcd128(a, b);\n}\n\n/**\n * @brief binary GCD\n */\n#line 10 \"math/rational.hpp\"\n\n// T : 値, U : 比較用\ntemplate <typename T, typename U>\nstruct RationalBase {\n using R = RationalBase;\n using Key = T;\n T x, y;\n RationalBase() : x(0), y(1) {}\n template <typename T1>\n RationalBase(const T1& _x) : RationalBase<T, U>(_x, T1{1}) {}\n template <typename T1, typename T2>\n RationalBase(const pair<T1, T2>& _p)\n : RationalBase<T, U>(_p.first, _p.second) {}\n template <typename T1, typename T2>\n RationalBase(const T1& _x, const T2& _y) : x(_x), y(_y) {\n assert(y != 0);\n if (y == -1) x = -x, y = -y;\n if (y != 1) {\n T g;\n if constexpr (internal::is_broadly_integral_v<T>) {\n if constexpr (sizeof(T) == 16) {\n g = binary_gcd128(x, y);\n } else {\n g = binary_gcd(x, y);\n }\n } else {\n g = gcd(x, y);\n }\n if (g != 0) x /= g, y /= g;\n if (y < 0) x = -x, y = -y;\n }\n }\n // y = 0 の代入も認める\n static R raw(T _x, T _y) {\n R r;\n r.x = _x, r.y = _y;\n return r;\n }\n friend R operator+(const R& l, const R& r) {\n if (l.y == r.y) return R{l.x + r.x, l.y};\n return R{l.x * r.y + l.y * r.x, l.y * r.y};\n }\n friend R operator-(const R& l, const R& r) {\n if (l.y == r.y) return R{l.x - r.x, l.y};\n return R{l.x * r.y - l.y * r.x, l.y * r.y};\n }\n friend R operator*(const R& l, const R& r) { return R{l.x * r.x, l.y * r.y}; }\n friend R operator/(const R& l, const R& r) { return R{l.x * r.y, l.y * r.x}; }\n R& operator+=(const R& r) { return (*this) = (*this) + r; }\n R& operator-=(const R& r) { return (*this) = (*this) - r; }\n R& operator*=(const R& r) { return (*this) = (*this) * r; }\n R& operator/=(const R& r) { return (*this) = (*this) / r; }\n R operator-() const { return raw(-x, y); }\n R inverse() const {\n assert(x != 0);\n R r = raw(y, x);\n if (r.y < 0) r.x = -r.x, r.y = -r.y;\n return r;\n }\n R pow(long long p) const {\n R res{1}, base{*this};\n while (p) {\n if (p & 1) res *= base;\n base *= base;\n p >>= 1;\n }\n return res;\n }\n friend bool operator==(const R& l, const R& r) {\n return l.x == r.x && l.y == r.y;\n };\n friend bool operator!=(const R& l, const R& r) {\n return l.x != r.x || l.y != r.y;\n };\n friend bool operator<(const R& l, const R& r) {\n return U{l.x} * r.y < U{l.y} * r.x;\n };\n friend bool operator<=(const R& l, const R& r) { return l < r || l == r; }\n friend bool operator>(const R& l, const R& r) {\n return U{l.x} * r.y > U{l.y} * r.x;\n };\n friend bool operator>=(const R& l, const R& r) { return l > r || l == r; }\n friend ostream& operator<<(ostream& os, const R& r) {\n os << r.x;\n if (r.x != 0 && r.y != 1) os << \"/\" << r.y;\n return os;\n }\n\n // T にキャストされるので T が bigint の場合は to_ll も要る\n T to_mint(T mod) const {\n assert(mod != 0);\n T a = y, b = mod, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return U((u % mod + mod) % mod) * x % mod;\n }\n};\n\nusing Rational = RationalBase<long long, __int128_t>;\nusing Fraction = Rational;\n\nvoid solve0(){\n ld t; in(t);\n int n; in(n);\n struct lr {\n ld l, r;\n };\n vector<lr> lrs(n);\n rep(i,n){\n ld x, l, h; in(x,l,h);\n ld le = sqrtl(-x*(x-t)/(2*h));\n ld ri = sqrtl(-x*(x-t)/(2*l));\n lrs[i] = {le,ri};\n }\n ld ans = 0;\n auto cost = [&](ld x){\n return sqrtl(x*x + t*t/((4*x*x)));\n };\n ld mid = sqrtl(t/2);\n vector<bool> done(n,false);\n vector<int> ids(n); iota(all(ids),0);\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].r;\n });\n int ps = 0;\n ld ma = -1e9;\n while (ps < n && lrs[ids[ps]].r < mid){\n if (lrs[ids[ps]].l > ma){\n ld x = lrs[ids[ps]].r;\n ans += cost(x);\n ma = x;\n }\n done[ids[ps]] = true;\n ps++;\n }\n ld mi = 1e9;\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].l;\n });\n int pt = n-1;\n while (pt >= 0 && lrs[ids[pt]].l > mid){\n assert(!done[ids[pt]]);\n if (lrs[ids[pt]].r < mi){\n ld x = lrs[ids[pt]].l;\n ans += cost(x);\n mi = x;\n }\n done[ids[pt]] = true;\n pt--;\n }\n bool on = false;\n rep(i,n){\n if (done[i]) continue;\n on = true;\n }\n if (on){\n ans += cost(mid);\n }\n out(ans);\n}\n\nusing rat = RationalBase<ll,ll>;\n\nvoid solve(){\n ll t; in(t);\n int n; in(n);\n struct lr {\n rat l, r;\n };\n vector<lr> lrs(n);\n rep(i,n){\n ll x, l, h; in(x,l,h);\n rat le = rat(-x*(x-t),2*h);\n rat ri = rat(-x*(x-t),2*l);\n lrs[i] = {le,ri};\n }\n ld ans = 0;\n auto cost = [&](ld x){\n return sqrtl(x + t*t/((4*x)));\n };\n rat mid(t,2);\n vector<bool> done(n,false);\n vector<int> ids(n); iota(all(ids),0);\n\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].r;\n });\n int ps = 0;\n rat ma(-1e9,1);\n while (ps < n && lrs[ids[ps]].r < mid){\n if (lrs[ids[ps]].l > ma){\n rat x = lrs[ids[ps]].r;\n ans += cost(ld(x.x)/x.y);\n ma = x;\n }\n done[ids[ps]] = true;\n ps++;\n }\n\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].l;\n });\n int pt = n-1;\n rat mi(1e9,1);\n while (pt >= 0 && lrs[ids[pt]].l > mid){\n assert(!done[ids[pt]]);\n if (lrs[ids[pt]].r < mi){\n rat x = lrs[ids[pt]].l;\n ans += cost(ld(x.x)/x.y);\n mi = x;\n }\n done[ids[pt]] = true;\n pt--;\n }\n\n bool on = false;\n rep(i,n){\n if (done[i]) continue;\n on = true;\n }\n if (on){\n ans += cost(ld(mid.x)/mid.y);\n }\n out(ans);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 0.21666666666666667, "time_ms": 20, "memory_kb": 6700, "score_of_the_acc": -0.1158, "final_rank": 12 }, { "submission_id": "aoj_3060_10892794", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 2 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\n\n#line 6 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\n\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << std::min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(std::vector<T> &v){\n std::sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n\nvoid solve(){\n ld t; in(t);\n int n; in(n);\n struct lr {\n ld l, r;\n };\n vector<lr> lrs(n);\n rep(i,n){\n ld x, l, h; in(x,l,h);\n ld le = sqrtl(-x*(x-t)/(2*h));\n ld ri = sqrtl(-x*(x-t)/(2*l));\n lrs[i] = {le,ri};\n }\n ld ans = 0;\n auto cost = [&](ld x){\n return sqrtl(x*x + t*t/((4*x*x)));\n };\n ld mid = sqrtl(t/2);\n vector<bool> done(n,false);\n vector<int> ids(n); iota(all(ids),0);\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].r;\n });\n int ps = 0;\n ld ma = -1e9;\n while (ps < n && lrs[ids[ps]].r < mid){\n if (lrs[ids[ps]].l > ma){\n ld x = lrs[ids[ps]].r;\n ans += cost(x);\n ma = x;\n }\n done[ids[ps]] = true;\n ps++;\n }\n ld mi = 1e9;\n ranges::sort(ids, {}, [&](int i){\n return lrs[i].l;\n });\n int pt = n-1;\n while (pt >= 0 && lrs[ids[pt]].l > mid){\n assert(!done[ids[pt]]);\n if (lrs[ids[pt]].r < mi){\n ld x = lrs[ids[pt]].l;\n ans += cost(x);\n mi = x;\n }\n done[ids[pt]] = true;\n pt--;\n }\n bool on = false;\n rep(i,n){\n if (done[i]) continue;\n on = true;\n }\n if (on){\n ans += cost(mid);\n }\n out(ans);\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 0.21666666666666667, "time_ms": 30, "memory_kb": 6712, "score_of_the_acc": -0.1231, "final_rank": 13 }, { "submission_id": "aoj_3060_10891173", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nconst ll ILL=2167167167167167167;\nconst int INF=2100000000;\n#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> int LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> int UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,T b){if(b<a){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nbool yneos(bool a,bool upp=false){if(a){cout<<(upp?\"YES\\n\":\"Yes\\n\");}else{cout<<(upp?\"NO\\n\":\"No\\n\");}return a;}\ntemplate<class T> void vec_out(vector<T> &p,int ty=0){\n if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<\",\";}cout<<'\"'<<p[i]<<'\"';}cout<<\"}\\n\";}\n else{if(ty==1){cout<<p.size()<<\"\\n\";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}}\ntemplate<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\ntemplate<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;}\nint pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;}\ntemplate<class T> T square(T a){return a * a;}\n\n#include <atcoder/segtree>\nusing ld = long double;\n\nld op(ld a, ld b){\n return min(a, b);\n}\nld e(){\n return INF;\n}\n\nvoid solve();\n// POP'N ROLL MUSIC / TOMOO\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int t = 1;\n // cin >> t;\n rep(i, 0, t) solve();\n}\n\nvoid solve(){\n ll T, N;\n cin >> T >> N;\n // a / b\n struct frac {\n ll a;\n ll b;\n };\n auto f = [&](ll x, ll y) -> frac {\n return {y, square(T) - square(T - 2 * x)};\n };\n vector<pair<int, frac>> p;\n rep(i, 0, N){\n ll x, l, r;\n cin >> x >> l >> r;\n p.push_back({i, f(x, l)});\n p.push_back({i + N, f(x, r)});\n }\n sort(all(p), [&](pair<int, frac> l, pair<int, frac> r) -> bool {\n ll diff = l.second.a * r.second.b - l.second.b * r.second.a;\n if (diff) return diff < 0;\n return l.first < r.first;\n });\n atcoder::segtree<double, op, e> seg(N * 2 + 1);\n seg.set(0, 0);\n vector<int> L(N);\n int l = 0;\n auto calc_v = [&](ld h) -> ld {\n ld v = sqrtl(h * 2) * T;\n v = sqrtl(v * v + square(T / (2 * v)));\n return v;\n };\n auto calc_best = [&](frac a, frac b) -> ld {\n ld hl = (ld)(a.a) / (ld)(a.b);\n ld hr = (ld)(b.a) / (ld)(b.b);\n vector<ld> H(2), V(2);\n rep(rp, 0, 300){\n rep(i, 0, 2){\n H[i] = (hl * (2 - i) + hr * (i + 1)) / 3;\n V[i] = calc_v(H[i]);\n }\n if (V[0] > V[1]) hl = H[0];\n else hr = H[1];\n }\n return V[0];\n };\n rep(i, 0, N * 2){\n auto [ind, val] = p[i];\n if (ind < N){\n L[ind] = i + 1;\n }\n else{\n chmax(l, L[ind - N]);\n }\n seg.set(i + 1, seg.prod(l, i + 1) + calc_best(val, (i + 1 == N * 2 ? (frac{ILL, 1ll}) : p[i + 1].second)));\n }\n ld ans = seg.prod(l, N * 2 + 1);\n cout << fixed << setprecision(20) << ans << \"\\n\";\n}", "accuracy": 1, "time_ms": 1580, "memory_kb": 14500, "score_of_the_acc": -1.6653, "final_rank": 8 }, { "submission_id": "aoj_3060_10891170", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nconst ll ILL=2167167167167167167;\nconst int INF=2100000000;\n#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> int LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> int UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,T b){if(b<a){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nbool yneos(bool a,bool upp=false){if(a){cout<<(upp?\"YES\\n\":\"Yes\\n\");}else{cout<<(upp?\"NO\\n\":\"No\\n\");}return a;}\ntemplate<class T> void vec_out(vector<T> &p,int ty=0){\n if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<\",\";}cout<<'\"'<<p[i]<<'\"';}cout<<\"}\\n\";}\n else{if(ty==1){cout<<p.size()<<\"\\n\";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}}\ntemplate<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\ntemplate<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;}\nint pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;}\ntemplate<class T> T square(T a){return a * a;}\n\n#include <atcoder/segtree>\nusing ld = long double;\n\nld op(ld a, ld b){\n return min(a, b);\n}\nld e(){\n return INF;\n}\n\nvoid solve();\n// POP'N ROLL MUSIC / TOMOO\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int t = 1;\n // cin >> t;\n rep(i, 0, t) solve();\n}\n\nvoid solve(){\n ll T, N;\n cin >> T >> N;\n // a / b\n struct frac {\n ll a;\n ll b;\n };\n auto f = [&](ll x, ll y) -> frac {\n return {y, square(T) - square(T - 2 * x)};\n };\n vector<pair<int, frac>> p;\n rep(i, 0, N){\n ll x, l, r;\n cin >> x >> l >> r;\n p.push_back({i, f(x, l)});\n p.push_back({i + N, f(x, r)});\n }\n sort(all(p), [&](pair<int, frac> l, pair<int, frac> r) -> bool {\n ll diff = l.second.a * r.second.b - l.second.b * r.second.a;\n if (diff) return diff < 0;\n return l.first < r.first;\n });\n atcoder::segtree<double, op, e> seg(N * 2 + 1);\n seg.set(0, 0);\n vector<int> L(N);\n int l = 0;\n auto calc_v = [&](ld h) -> ld {\n ld v = sqrtl(h * 2) * T;\n v = sqrtl(v * v + square(T / (2 * v)));\n return v;\n };\n auto calc_best = [&](frac a, frac b) -> ld {\n ld hl = (ld)(a.a) / (ld)(a.b);\n ld hr = (ld)(b.a) / (ld)(b.b);\n vector<ld> H(2), V(2);\n rep(rp, 0, 300){\n rep(i, 0, 2){\n H[i] = (hl * (2 - i) + hr * (i + 1)) / 3;\n V[i] = calc_v(H[i]);\n }\n if (V[0] > V[1]) hl = H[0];\n else hr = H[1];\n }\n return V[0];\n };\n rep(i, 0, N * 2){\n auto [ind, val] = p[i];\n if (ind < N){\n seg.set(i + 1, seg.prod(l, i + 1) + calc_best(val, p[i + 1].second));\n // cout << seg.get(i + 1) << \"\\n\";\n L[ind] = i + 1;\n }\n else{\n chmax(l, L[ind - N]);\n }\n }\n ld ans = seg.prod(l, N * 2 + 1);\n cout << fixed << setprecision(20) << ans << \"\\n\";\n}", "accuracy": 0.21666666666666667, "time_ms": 720, "memory_kb": 13784, "score_of_the_acc": -1.0635, "final_rank": 17 }, { "submission_id": "aoj_3060_10891169", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nconst ll ILL=2167167167167167167;\nconst int INF=2100000000;\n#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> int LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> int UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,T b){if(b<a){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nbool yneos(bool a,bool upp=false){if(a){cout<<(upp?\"YES\\n\":\"Yes\\n\");}else{cout<<(upp?\"NO\\n\":\"No\\n\");}return a;}\ntemplate<class T> void vec_out(vector<T> &p,int ty=0){\n if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<\",\";}cout<<'\"'<<p[i]<<'\"';}cout<<\"}\\n\";}\n else{if(ty==1){cout<<p.size()<<\"\\n\";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}}\ntemplate<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\ntemplate<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;}\nint pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;}\ntemplate<class T> T square(T a){return a * a;}\n\n#include <atcoder/segtree>\nusing ld = long double;\n\nld op(ld a, ld b){\n return min(a, b);\n}\nld e(){\n return INF;\n}\n\nvoid solve();\n// POP'N ROLL MUSIC / TOMOO\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int t = 1;\n // cin >> t;\n rep(i, 0, t) solve();\n}\n\nvoid solve(){\n ll T, N;\n cin >> T >> N;\n // a / b\n struct frac {\n ll a;\n ll b;\n };\n auto f = [&](ll x, ll y) -> frac {\n return {y, square(T) - square(T - 2 * x)};\n };\n vector<pair<int, frac>> p;\n rep(i, 0, N){\n ll x, l, r;\n cin >> x >> l >> r;\n p.push_back({i, f(x, l)});\n p.push_back({i + N, f(x, r)});\n }\n sort(all(p), [&](pair<int, frac> l, pair<int, frac> r) -> bool {\n ll diff = l.second.a * r.second.b - l.second.b * r.second.a;\n if (diff) return diff < 0;\n return l.first < r.first;\n });\n atcoder::segtree<double, op, e> seg(N * 2 + 1);\n seg.set(0, 0);\n vector<int> L(N);\n int l = 0;\n auto calc_v = [&](ld h) -> ld {\n ld v = sqrtl(h * 2) * T;\n v = sqrtl(v * v + square(T / (2 * v)));\n return v;\n };\n auto calc_best = [&](frac a, frac b) -> ld {\n ld hl = (ld)(a.a) / (ld)(a.b);\n ld hr = (ld)(b.a) / (ld)(b.b);\n vector<ld> H(2), V(2);\n rep(rp, 0, 100){\n rep(i, 0, 2){\n H[i] = (hl * (2 - i) + hr * (i + 1)) / 3;\n V[i] = calc_v(H[i]);\n }\n if (V[0] > V[1]) hl = H[0];\n else hr = H[1];\n }\n return V[0];\n };\n rep(i, 0, N * 2){\n auto [ind, val] = p[i];\n if (ind < N){\n seg.set(i + 1, seg.prod(l, i + 1) + calc_best(val, p[i + 1].second));\n // cout << seg.get(i + 1) << \"\\n\";\n L[ind] = i + 1;\n }\n else{\n chmax(l, L[ind - N]);\n }\n }\n ld ans = seg.prod(l, N * 2 + 1);\n cout << fixed << setprecision(20) << ans << \"\\n\";\n}", "accuracy": 0.21666666666666667, "time_ms": 260, "memory_kb": 14556, "score_of_the_acc": -0.823, "final_rank": 16 }, { "submission_id": "aoj_3060_3659308", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nusing Int = __int128_t;\nInt abs128(Int val){return val<0?-val:val;}\n\nostream &operator<<(ostream &os,Int val){\n if(ostream::sentry(os)){\n __uint128_t tmp=abs128(val);\n char buf[64];\n char *d=end(buf);\n do{\n --d;\n *d=char(tmp%10+'0');\n tmp/=10;\n }while(tmp);\n if(val<0) *--d='-';\n int len=end(buf)-d;\n if(os.rdbuf()->sputn(d,len)!=len){\n os.setstate(ios_base::badbit);\n }\n }\n return os;\n}\n\nistream &operator>>(istream &is,Int &val){\n string s;\n is>>s;\n val=0;\n for(int i=0;i<(int)s.size();i++)\n if(isdigit(s[i])) val=val*10+s[i]-'0';\n if(s[0]=='-') val*=-1;\n return is;\n}\n\nstruct Precision{\n Precision(){\n cout<<fixed<<setprecision(12);\n }\n}precision_beet;\n\nusing D = long double;\n\nstruct frac{\n Int num,dom;\n frac(){}\n frac(Int num,Int dom):num(num),dom(dom){\n if(num==0){\n dom=1;\n }else{\n Int tmp=__gcd(num,dom);\n num/=tmp;\n dom/=tmp;\n }\n }\n frac norm(){\n if(num==0) return frac(0,1);\n Int tmp=__gcd(num,dom);\n return frac(num/tmp,dom/tmp);\n }\n frac operator+(frac a){return frac(num*a.dom+a.num*dom,dom*a.dom).norm();}\n frac operator-(frac a){return frac(num*a.dom-a.num*dom,dom*a.dom).norm();}\n frac operator*(frac a){return frac(num*a.num,dom*a.dom).norm();}\n frac operator/(frac a){return frac(num*a.dom,dom*a.num).norm();}\n \n bool operator<(const frac a)const{\n return num*a.dom<a.num*dom;\n }\n bool operator>(const frac a)const{\n return num*a.dom>a.num*dom;\n }\n bool operator==(const frac a)const{\n return num*a.dom==a.num*dom;\n }\n bool operator!=(const frac a)const{\n return num*a.dom!=a.num*dom;\n }\n bool operator<=(const frac a)const{\n return num*a.dom<=a.num*dom;\n }\n bool operator>=(const frac a)const{\n return num*a.dom>=a.num*dom;\n }\n \n D d(){return sqrt(D(num)/D(dom));}\n};\n\n//INSERT ABOVE HERE\nsigned main(){\n Int T;\n Int n;\n cin>>T>>n;\n vector<Int> xs(n),ls(n),hs(n);\n for(Int i=0;i<n;i++) cin>>xs[i]>>ls[i]>>hs[i];\n \n auto getA=[&](Int x,Int y)->frac{\n return frac(y*(2*T*T),x*T-x*x); \n };\n auto cost=[&](D a)->D{\n return sqrt((T/a)*(T/a)+(a/2)*(a/2));\n };\n\n frac mA(2*T,1);\n\n using P = pair<frac, frac>;\n vector<P> vl,vm,vr;\n for(Int i=0;i<n;i++){\n frac l=getA(xs[i],ls[i]);\n frac h=getA(xs[i],hs[i]);\n \n if(h<mA) vl.emplace_back(h,l);\n else if(mA<l) vr.emplace_back(l,h);\n else vm.emplace_back(l,h);\n }\n\n sort(vl.begin(),vl.end());\n sort(vr.rbegin(),vr.rend());\n \n D ans=0;\n frac ll(0,1),lr(0,1); \n for(auto p:vl){\n if(ll!=frac(0,1)&&p.second<=ll) continue;\n ll=p.first;\n ans+=cost(ll.d());\n }\n for(auto p:vr){\n if(lr!=frac(0,1)&&p.second>=lr) continue;\n lr=p.first;\n ans+=cost(lr.d());\n }\n for(auto p:vm){\n if(ll!=frac(0,1)&&p.first <=ll) continue;\n if(lr!=frac(0,1)&&p.second>=lr) continue;\n ans+=cost(mA.d());\n break;\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 19252, "score_of_the_acc": -1.0833, "final_rank": 7 }, { "submission_id": "aoj_3060_3579587", "code_snippet": "#include <iostream>\n#include <vector>\n#include <cmath>\n#include <iomanip>\n#include <algorithm>\nusing namespace std;\n\n// chmax, chmin\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n// debug stream of pair, vector\n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\n\n\n// 有理数\ntemplate<typename T> class Rational {\nprivate:\n static Rational make(const T& x, const T& y){\n Rational m; return m.num = x, m.den = y, m;\n }\npublic:\n friend ostream& operator<<(ostream& os, const Rational& rn) {\n return (os << rn.num << \" / \" << rn.den);\n }\n Rational& operator=(T val){ return *this = Rational(val); }\n bool operator<(const Rational& val) const { return num*val.den < den*val.num; }\n bool operator<(const T val) const { return *this < Rational(val); }\n friend bool operator<(const T val1, const Rational& val2){ return Rational(val1) < val2; }\n bool operator>(const Rational& val) const { return val < *this; }\n bool operator>(const T val) const { return *this > Rational(val); }\n friend bool operator>(const T val1, const Rational& val2){ return Rational(val1) > val2; }\n bool operator<=(const Rational& val) const { return !(*this > val); }\n bool operator<=(const T val) const { return *this <= Rational(val); }\n friend bool operator<=(const T val1, const Rational& val2){ return Rational(val1) <= val2; }\n bool operator>=(const Rational& val) const { return !(*this < val); }\n bool operator>=(const T val) const { return *this >= Rational(val); }\n friend bool operator>=(const T val1, const Rational& val2){ return Rational(val1) >= val2; }\n bool operator==(const Rational& val) const { return num*val.den == den*val.num; }\n bool operator==(const T val) const { return *this == Rational(val); }\n friend bool operator==(const T val1, const Rational& val2){ return Rational(val1) == val2; }\n bool operator!=(const Rational& val) const { return !(*this == val); }\n bool operator!=(const T val) const { return *this != Rational(val); }\n friend bool operator!=(const T val1, const Rational& val2){ return Rational(val1) != val2; }\n explicit operator bool() const noexcept { return num; }\n bool operator!() const noexcept { return !static_cast<bool>(*this); }\n Rational operator+() const { return *this; }\n Rational operator-() const { return make(-num, den); }\n friend Rational abs(const Rational& val){ return make(abs(val.num), val.den); }\n Rational operator+(const Rational& val) const { return make(num*val.den+val.num*den, den*val.den); }\n Rational operator+(T val) const { return *this + Rational(val); }\n friend Rational operator+(T a, const Rational& b){ return b + a; }\n Rational& operator+=(const Rational& val){ return *this = *this + val; }\n Rational& operator+=(const T& val){ return *this = *this + val; }\n Rational& operator++(){ return *this += 1; }\n Rational operator++(int){ return make(num + den, den); }\n Rational operator-(const Rational& val) const { return make(num*val.den-val.num*den, den*val.den); }\n Rational operator-(T val) const { return *this - Rational(val); }\n friend Rational operator-(T a, const Rational& b){ return Rational(a) - b; }\n Rational& operator-=(const Rational& val){ return *this = *this - val; }\n Rational& operator-=(const T& val){ return *this = *this - val; }\n Rational& operator--(){ return *this -= 1; }\n Rational operator--(int){ return make(num - den, den); }\n Rational operator*(const Rational& val) const { return make(num*val.num, den*val.den); }\n Rational operator*(T val) const { return *this * Rational(val); }\n friend Rational operator*(T a, const Rational& b){ return b * a; }\n Rational& operator*=(const Rational& val){ return *this = *this * val;}\n Rational& operator*=(const T& val){ return *this = *this * val; }\n Rational operator/(const Rational& val) const { return make(num*val.den, den*val.num); }\n Rational operator/(T val) const { return *this / Rational(val); }\n friend Rational operator/(T a, const Rational& b){ return Rational(a) / b; }\n Rational& operator/=(const Rational& val){ return *this / val; }\n Rational& operator/=(const T& val){ return *this = *this / val; }\n\n T num, den;\n\n Rational(){}\n Rational(T num_) : num(num_), den(1){}\n Rational(T num_, T den_) : num(num_), den(den_){ if(den < 0) num = -num, den = -den; }\n};\n\nlong double cost(const Rational<long long> &f, long long T) {\n long double df = (long double)f.num/f.den;\n return sqrt(df * T * T / 2 + 0.5 / df);\n}\n\nint main() {\n long long T; int N;\n cin >> T >> N;\n const Rational<long long> center(1, T); // 45 度打ち出しの場合\n using pf = pair<Rational<long long>,Rational<long long>>;\n vector<pf> upper, lower, middle;\n for (int i = 0; i < N; ++i) {\n long long x, low, up; cin >> x >> low >> up;\n Rational<long long> flow(low, x * (T-x));\n Rational<long long> fup(up, x * (T-x));\n if (fup < center) lower.push_back({flow, fup});\n else if (flow > center) upper.push_back({flow, fup});\n else middle.push_back({flow, fup});\n }\n sort(lower.begin(), lower.end(), [](const pf &a, const pf &b) {\n return a.second < b.second;});\n sort(upper.begin(), upper.end(), [](const pf &a, const pf &b) {\n return a.first > b.first;});\n\n long double res = 0.0;\n Rational<long long> left = 0, right = 1000100; // right * 10^12/4 がオーバーフローしないように\n for (auto inter : lower) {\n if (left >= inter.first) continue;\n res += cost(inter.second, T);\n left = inter.second;\n }\n for (auto inter : upper) {\n if (right <= inter.second) continue;\n res += cost(inter.first, T);\n right = inter.first;\n }\n bool remain = false;\n for (auto inter : middle) {\n if (left < inter.first && inter.second < right) remain = true;\n }\n if (remain) res += cost(center, T);\n cout << fixed << setprecision(20) << res << endl;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 8832, "score_of_the_acc": -0.3045, "final_rank": 2 }, { "submission_id": "aoj_3060_3497713", "code_snippet": "#include <iostream>\n#include <vector>\n#include <cmath>\n#include <iomanip>\n#include <algorithm>\nusing namespace std;\n\n// chmax, chmin\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n// debug stream of pair, vector \n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\n\n\n// 有理数\nlong long calc_gcd(long long a, long long b) {return b ? calc_gcd(b, a % b) : a;}\nstruct frac {\n long long first, second;\n\n using D = long double;\n inline frac normalize() {\n if (second < 0) {first = -first; second = -second;}\n long long d = calc_gcd(abs(first), abs(second));\n if (d == 0) {first = 0; second = 1;}\n else {first /= d; second /= d;}\n return *this;\n }\n frac(long long f = 0, long long s = 1) : first(f), second(s) { normalize(); }\n inline D to_d() const { return D(first) / second; }\n inline frac operator - () { (*this).first *= -1; return (*this); }\n inline const frac& operator = (long long a) { *this = frac(a, 1); return *this; }\n inline const frac& operator += (const frac& a);\n inline const frac& operator += (long long a);\n inline const frac& operator -= (const frac& a);\n inline const frac& operator -= (long long a);\n inline const frac& operator *= (const frac& a);\n inline const frac& operator *= (long long a);\n inline const frac& operator /= (const frac& a);\n inline const frac& operator /= (long long a);\n inline friend ostream& operator << (ostream& s, const frac& f) { \n s << f.first; if (f.second != 1) s << \"/\" << f.second; return s;\n }\n};\ninline bool operator == (const frac &a, const frac&b) {\n return a.first * b.second == a.second * b.first;\n}\ninline bool operator != (const frac &a, const frac &b) { return !(a == b); }\ninline bool operator < (const frac& a, const frac& b) {\n return a.first * b.second < a.second * b.first;\n}\ninline bool operator > (const frac& a, const frac& b) { return b < a; }\ninline bool operator <= (const frac& a, const frac& b) {\n return a.first * b.second <= a.second * b.first;\n}\ninline bool operator >= (const frac& a, const frac& b) { return b <= a; }\ninline frac operator + (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second + a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator - (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second - a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator * (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator / (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second;\n res.second = a.second * b.first;\n res.normalize();\n return res;\n}\ninline frac abs(const frac& a) {\n frac res; res = a; res.normalize(); \n if (res.first < 0) res.first = res.first * (-1);\n return res;\n}\ninline const frac& frac::operator += (const frac& x) {*this = *this + x; return *this;}\ninline const frac& frac::operator += (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator -= (const frac& x) {*this = *this - x; return *this;}\ninline const frac& frac::operator -= (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator *= (const frac& x) {*this = *this * x; return *this;}\ninline const frac& frac::operator *= (long long x) {*this = *this * x; return *this;}\ninline const frac& frac::operator /= (const frac& x) {*this = *this / x; return *this;}\ninline const frac& frac::operator /= (long long x) {*this = *this / x; return *this;}\n\n\n\nlong double cost(const frac &f, long long T) {\n long double df = f.to_d();\n return sqrt(df * T * T / 2 + 0.5 / df);\n}\n\nint main() {\n long long T; int N;\n cin >> T >> N;\n const frac center(1, T); // 45 度打ち出しの場合\n using pf = pair<frac,frac>;\n vector<pf> upper, lower, middle;\n for (int i = 0; i < N; ++i) {\n long long x, low, up; cin >> x >> low >> up;\n frac flow(low, x * (T-x));\n frac fup(up, x * (T-x));\n if (fup < center) lower.push_back({flow, fup});\n else if (flow > center) upper.push_back({flow, fup});\n else middle.push_back({flow, fup});\n }\n sort(lower.begin(), lower.end(), [](const pf &a, const pf &b) {\n return a.second < b.second;});\n sort(upper.begin(), upper.end(), [](const pf &a, const pf &b) {\n return a.first > b.first;});\n\n long double res = 0.0;\n frac left = 0, right = 1000100; // right * 10^12/4 がオーバーフローしないように\n for (auto inter : lower) {\n if (left >= inter.first) continue;\n res += cost(inter.second, T);\n left = inter.second;\n }\n for (auto inter : upper) {\n if (right <= inter.second) continue;\n res += cost(inter.first, T);\n right = inter.first;\n }\n bool remain = false;\n for (auto inter : middle) {\n if (left < inter.first && inter.second < right) remain = true;\n }\n if (remain) res += cost(center, T);\n cout << fixed << setprecision(20) << res << endl;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 8756, "score_of_the_acc": -0.3055, "final_rank": 3 }, { "submission_id": "aoj_3060_3427988", "code_snippet": "#include <bits/stdc++.h>\ntypedef long long ll;\ntypedef long double ld;\nconst int INF=1e9,MOD=1e9+7;\nconst ll LINF=1e18;\nusing namespace std;\n//#define int long long\n#define int long double\n//template\ntypedef pair<int,int> P;\nstd::vector<P> up,down,med;\nint T;\nvoid change(int x,int l,int h){\n int ka=(l/(x*(T-x)))*(T/2)*(T/2);\n int jo=(h/(x*(T-x)))*(T/2)*(T/2);\n if(ka>T/4)up.push_back(P(ka,jo));\n else if(jo<T/4)down.push_back(P(jo,ka));\n else med.push_back(P(ka,jo));\n}\nint speed(int h){\n int a=4*h/(T*T);\n int sain=a*T/sqrt(a*a*T*T+1);\n return sqrt(2*a)*(T/2)/sain;\n}\n//main\nsigned main(){\n int N;cin>>T>>N;\n for(int i=0;i<N;i++){\n int x,l,h;cin>>x>>l>>h;\n change(x,l,h);\n }\n int ma=LINF,mi=-1;\n sort(up.rbegin(),up.rend());\n sort(down.begin(),down.end());\n int ans=0;\n for(auto p:up){\n if(p.second>=ma)continue;\n ans+=speed(p.first);\n ma=p.first;\n //cout<<p.first<<\" \"<<p.second<<endl;\n }\n for(auto p:down){\n if(p.second<=mi)continue;\n ans+=speed(p.first);\n mi=p.first;\n //cout<<p.first<<\" \"<<p.second<<endl;\n }\n bool f=false;\n for(auto p:med)if(p.first>mi&&p.second<ma)f=true;\n if(f)ans+=speed(T/4);\n cout<<fixed<<setprecision(12)<<ans<<endl;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 8792, "score_of_the_acc": -0.3145, "final_rank": 5 }, { "submission_id": "aoj_3060_3420985", "code_snippet": "//\n// 有理数\n//\n// verified:\n// RUPC 2019 day2-J Rings\n// https://onlinejudge.u-aizu.ac.jp/beta/room.html#RitsCamp19Day2/problems/J\n// AOJ 1131 Unit Fraction Partition\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1131&lang=jp\n//\n\n\n#include <iostream>\n#include <vector>\n#include <cmath>\n#include <iomanip>\n#include <algorithm>\nusing namespace std;\n\n// chmax, chmin\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n// debug stream of pair, vector \n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\n\n\n// 有理数\nlong long calc_gcd(long long a, long long b) {return b ? calc_gcd(b, a % b) : a;}\nstruct frac {\n long long first, second;\n\n using D = long double;\n inline frac normalize() {\n if (second < 0) {first = -first; second = -second;}\n long long d = calc_gcd(first, second);\n if (d == 0) {first = 0; second = 1;}\n else {first /= d; second /= d;}\n return *this;\n }\n frac(long long f = 0, long long s = 1) : first(f), second(s) { normalize(); }\n inline D to_d() const { return D(first) / second; }\n inline frac operator - () { (*this).first *= -1; return (*this); }\n inline const frac& operator = (long long a) { *this = frac(a, 1); return *this; }\n inline const frac& operator += (const frac& a);\n inline const frac& operator += (long long a);\n inline const frac& operator -= (const frac& a);\n inline const frac& operator -= (long long a);\n inline const frac& operator *= (const frac& a);\n inline const frac& operator *= (long long a);\n inline const frac& operator /= (const frac& a);\n inline const frac& operator /= (long long a);\n inline friend ostream& operator << (ostream& s, const frac& f) { \n s << f.first; if (f.second != 1) s << \"/\" << f.second; return s;\n }\n};\ninline bool operator == (const frac &a, const frac&b) {\n return a.first * b.second == a.second * b.first;\n}\ninline bool operator != (const frac &a, const frac &b) { return !(a == b); }\ninline bool operator < (const frac& a, const frac& b) {\n return a.first * b.second < a.second * b.first;\n}\ninline bool operator > (const frac& a, const frac& b) { return b < a; }\ninline bool operator <= (const frac& a, const frac& b) {\n return a.first * b.second <= a.second * b.first;\n}\ninline bool operator >= (const frac& a, const frac& b) { return b <= a; }\ninline frac operator + (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second + a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator - (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second - a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator * (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator / (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second;\n res.second = a.second * b.first;\n res.normalize();\n return res;\n}\ninline frac abs(const frac& a) {\n frac res; res = a; res.normalize(); \n if (res.first < 0) res.first = res.first * (-1);\n return res;\n}\ninline const frac& frac::operator += (const frac& x) {*this = *this + x; return *this;}\ninline const frac& frac::operator += (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator -= (const frac& x) {*this = *this - x; return *this;}\ninline const frac& frac::operator -= (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator *= (const frac& x) {*this = *this * x; return *this;}\ninline const frac& frac::operator *= (long long x) {*this = *this * x; return *this;}\ninline const frac& frac::operator /= (const frac& x) {*this = *this / x; return *this;}\ninline const frac& frac::operator /= (long long x) {*this = *this / x; return *this;}\n\n\n\nlong double cost(const frac &f, long long T) {\n long double df = f.to_d();\n return sqrt(df * T * T / 2 + 0.5 / df);\n}\n\nint main() {\n long long T; int N;\n cin >> T >> N;\n const frac center(1, T); // 45 度打ち出しの場合\n using pf = pair<frac,frac>;\n vector<pf> upper, lower, middle;\n for (int i = 0; i < N; ++i) {\n long long x, low, up; cin >> x >> low >> up;\n frac flow(low, x * (T-x));\n frac fup(up, x * (T-x));\n if (fup < center) lower.push_back({flow, fup});\n else if (flow > center) upper.push_back({flow, fup});\n else middle.push_back({flow, fup});\n }\n sort(lower.begin(), lower.end(), [](const pf &a, const pf &b) {\n return a.second < b.second;});\n sort(upper.begin(), upper.end(), [](const pf &a, const pf &b) {\n return a.first > b.first;});\n\n long double res = 0.0;\n frac left = 0, right = 1000100; // right * 10^12/4 がオーバーフローしないように\n for (auto inter : lower) {\n if (left >= inter.first) continue;\n res += cost(inter.second, T);\n left = inter.second;\n }\n for (auto inter : upper) {\n if (right <= inter.second) continue;\n res += cost(inter.first, T);\n right = inter.first;\n }\n bool remain = false;\n for (auto inter : middle) {\n if (left < inter.first && inter.second < right) remain = true;\n }\n if (remain) res += cost(center, T);\n cout << fixed << setprecision(20) << res << endl;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 8784, "score_of_the_acc": -0.3075, "final_rank": 4 }, { "submission_id": "aoj_3060_3420984", "code_snippet": "//\n// 有理数\n//\n// verified:\n// RUPC 2019 day2-J Rings\n// https://onlinejudge.u-aizu.ac.jp/beta/room.html#RitsCamp19Day2/problems/J\n// AOJ 1131 Unit Fraction Partition\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1131&lang=jp\n//\n\n\n#include <iostream>\n#include <vector>\n#include <cmath>\n#include <iomanip>\n#include <algorithm>\nusing namespace std;\n\n// chmax, chmin\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n// debug stream of pair, vector \n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\n\n\n// 有理数\nlong long calc_gcd(long long a, long long b) {return b ? calc_gcd(b, a % b) : a;}\nstruct frac {\n long long first, second;\n\n using D = long double;\n inline frac normalize() {\n if (second < 0) {first = -first; second = -second;}\n long long d = calc_gcd(first, second);\n if (d == 0) {first = 0; second = 1;}\n else {first /= d; second /= d;}\n return *this;\n }\n frac(long long f = 0, long long s = 1) : first(f), second(s) { normalize(); }\n inline D to_d() const { return D(first) / second; }\n inline frac operator - () { (*this).first *= -1; return (*this); }\n inline const frac& operator = (long long a) { *this = frac(a, 1); return *this; }\n inline const frac& operator += (const frac& a);\n inline const frac& operator += (long long a);\n inline const frac& operator -= (const frac& a);\n inline const frac& operator -= (long long a);\n inline const frac& operator *= (const frac& a);\n inline const frac& operator *= (long long a);\n inline const frac& operator /= (const frac& a);\n inline const frac& operator /= (long long a);\n inline friend ostream& operator << (ostream& s, const frac& f) { \n s << f.first; if (f.second != 1) s << \"/\" << f.second; return s;\n }\n};\ninline bool operator == (const frac &a, const frac&b) {\n return a.first * b.second == a.second * b.first;\n}\ninline bool operator != (const frac &a, const frac &b) { return !(a == b); }\ninline bool operator < (const frac& a, const frac& b) {\n return a.first * b.second < a.second * b.first;\n}\ninline bool operator > (const frac& a, const frac& b) { return b < a; }\ninline bool operator <= (const frac& a, const frac& b) {\n return a.first * b.second <= a.second * b.first;\n}\ninline bool operator >= (const frac& a, const frac& b) { return b <= a; }\ninline frac operator + (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second + a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator - (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second - a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator * (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator / (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second;\n res.second = a.second * b.first;\n res.normalize();\n return res;\n}\ninline frac abs(const frac& a) {\n frac res; res = a; res.normalize(); \n if (res.first < 0) res.first = res.first * (-1);\n return res;\n}\ninline const frac& frac::operator += (const frac& x) {*this = *this + x; return *this;}\ninline const frac& frac::operator += (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator -= (const frac& x) {*this = *this - x; return *this;}\ninline const frac& frac::operator -= (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator *= (const frac& x) {*this = *this * x; return *this;}\ninline const frac& frac::operator *= (long long x) {*this = *this * x; return *this;}\ninline const frac& frac::operator /= (const frac& x) {*this = *this / x; return *this;}\ninline const frac& frac::operator /= (long long x) {*this = *this / x; return *this;}\n\n\n\nlong double cost(const frac &f, long long T) {\n long double df = f.to_d();\n return sqrt(df * T * T / 2 + 0.5 / df);\n}\n\nint main() {\n long long T; int N;\n cin >> T >> N;\n const frac center(1, T);\n using pf = pair<frac,frac>;\n vector<pf> upper, lower, middle;\n for (int i = 0; i < N; ++i) {\n long long x, low, up; cin >> x >> low >> up;\n frac flow(low, x * (T-x));\n frac fup(up, x * (T-x));\n if (fup < center) lower.push_back({flow, fup});\n else if (flow > center) upper.push_back({flow, fup});\n else middle.push_back({flow, fup});\n }\n sort(lower.begin(), lower.end(), [](const pf &a, const pf &b) {\n return a.second < b.second;});\n sort(upper.begin(), upper.end(), [](const pf &a, const pf &b) {\n return a.first > b.first;});\n\n long double res = 0.0;\n frac left = 0, right = 1<<29;\n for (auto inter : lower) {\n if (left >= inter.first) continue;\n res += cost(inter.second, T);\n left = inter.second;\n }\n for (auto inter : upper) {\n if (right <= inter.second) continue;\n res += cost(inter.first, T);\n right = inter.first;\n }\n bool remain = false;\n for (auto inter : middle) {\n if (left < inter.first && inter.second < right) remain = true;\n }\n //COUT(left); COUT(right); COUT(remain);\n if (remain) res += cost(center, T);\n cout << fixed << setprecision(20) << res << endl;\n}", "accuracy": 0.6166666666666667, "time_ms": 90, "memory_kb": 8820, "score_of_the_acc": -0.31, "final_rank": 11 }, { "submission_id": "aoj_3060_3420981", "code_snippet": "//\n// 有理数\n//\n// verified:\n// RUPC 2019 day2-J Rings\n// https://onlinejudge.u-aizu.ac.jp/beta/room.html#RitsCamp19Day2/problems/J\n// AOJ 1131 Unit Fraction Partition\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1131&lang=jp\n//\n\n\n#include <iostream>\n#include <vector>\n#include <cmath>\n#include <iomanip>\n#include <algorithm>\nusing namespace std;\n\n// chmax, chmin\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n// debug stream of pair, vector \n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\n\n\n// 有理数\nlong long calc_gcd(long long a, long long b) {return b ? calc_gcd(b, a % b) : a;}\nstruct frac {\n long long first, second;\n\n using D = long double;\n inline frac normalize() {\n if (second < 0) {first = -first; second = -second;}\n long long d = calc_gcd(first, second);\n if (d == 0) {first = 0; second = 1;}\n else {first /= d; second /= d;}\n return *this;\n }\n frac(long long f = 0, long long s = 1) : first(f), second(s) { normalize(); }\n inline D to_d() const { return D(first) / second; }\n inline frac operator - () { (*this).first *= -1; return (*this); }\n inline const frac& operator = (long long a) { *this = frac(a, 1); return *this; }\n inline const frac& operator += (const frac& a);\n inline const frac& operator += (long long a);\n inline const frac& operator -= (const frac& a);\n inline const frac& operator -= (long long a);\n inline const frac& operator *= (const frac& a);\n inline const frac& operator *= (long long a);\n inline const frac& operator /= (const frac& a);\n inline const frac& operator /= (long long a);\n inline friend ostream& operator << (ostream& s, const frac& f) { \n s << f.first; if (f.second != 1) s << \"/\" << f.second; return s;\n }\n};\ninline bool operator == (const frac &a, const frac&b) {\n long long gf = calc_gcd(abs(a.first), abs(b.first));\n long long gs = calc_gcd(a.second, b.second);\n return (a.first/gf) * (b.second/gs) == (a.second/gs) * (b.first/gf);\n}\ninline bool operator != (const frac &a, const frac &b) { return !(a == b); }\ninline bool operator < (const frac& a, const frac& b) {\n long long gf = calc_gcd(abs(a.first), abs(b.first));\n long long gs = calc_gcd(a.second, b.second);\n return (a.first/gf) * (b.second/gs) < (a.second/gs) * (b.first/gf);\n}\ninline bool operator > (const frac& a, const frac& b) { return b < a; }\ninline bool operator <= (const frac& a, const frac& b) {\n long long gf = calc_gcd(abs(a.first), abs(b.first));\n long long gs = calc_gcd(a.second, b.second);\n return (a.first/gf) * (b.second/gs) <= (a.second/gs) * (b.first/gf);\n}\ninline bool operator >= (const frac& a, const frac& b) { return b <= a; }\ninline frac operator + (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second + a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator - (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second - a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator * (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator / (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second;\n res.second = a.second * b.first;\n res.normalize();\n return res;\n}\ninline frac abs(const frac& a) {\n frac res; res = a; res.normalize(); \n if (res.first < 0) res.first = res.first * (-1);\n return res;\n}\ninline const frac& frac::operator += (const frac& x) {*this = *this + x; return *this;}\ninline const frac& frac::operator += (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator -= (const frac& x) {*this = *this - x; return *this;}\ninline const frac& frac::operator -= (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator *= (const frac& x) {*this = *this * x; return *this;}\ninline const frac& frac::operator *= (long long x) {*this = *this * x; return *this;}\ninline const frac& frac::operator /= (const frac& x) {*this = *this / x; return *this;}\ninline const frac& frac::operator /= (long long x) {*this = *this / x; return *this;}\n\n\n\nlong double cost(const frac &f, long long T) {\n long double df = f.to_d();\n return sqrt(df * T / 2 + 0.5 * T / df);\n}\n\nint main() {\n long long T; int N;\n cin >> T >> N;\n using pf = pair<frac,frac>;\n vector<pf> upper, lower, middle;\n for (int i = 0; i < N; ++i) {\n long long x, low, up; cin >> x >> low >> up;\n frac flow(low * T, x * (T-x));\n frac fup(up * T, x * (T-x));\n if (fup < 1) lower.push_back({flow, fup});\n else if (flow > 1) upper.push_back({flow, fup});\n else middle.push_back({flow, fup});\n }\n sort(lower.begin(), lower.end(), [](const pf &a, const pf &b) {\n return a.second < b.second;});\n sort(upper.begin(), upper.end(), [](const pf &a, const pf &b) {\n return a.first > b.first;});\n\n long double res = 0.0;\n frac left = -1, right = -1;\n for (auto inter : lower) {\n if (left >= 0 && left >= inter.first) continue;\n res += cost(inter.second, T);\n left = inter.second;\n }\n for (auto inter : upper) {\n if (right >= 0 && right <= inter.second) continue;\n res += cost(inter.first, T);\n right = inter.first;\n }\n bool remain = false;\n for (auto inter : middle) {\n if (left < inter.first && inter.second < right) remain = true;\n }\n //COUT(left); COUT(right); COUT(remain);\n if (remain) res += cost(1, T);\n cout << fixed << setprecision(20) << res << endl;\n}", "accuracy": 1, "time_ms": 640, "memory_kb": 8764, "score_of_the_acc": -0.6586, "final_rank": 6 }, { "submission_id": "aoj_3060_3420970", "code_snippet": "//\n// 有理数\n//\n// verified:\n// RUPC 2019 day2-J Rings\n// https://onlinejudge.u-aizu.ac.jp/beta/room.html#RitsCamp19Day2/problems/J\n// AOJ 1131 Unit Fraction Partition\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1131&lang=jp\n//\n\n\n#include <iostream>\n#include <vector>\n#include <cmath>\n#include <iomanip>\n#include <algorithm>\nusing namespace std;\n\n// chmax, chmin\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n// debug stream of pair, vector \n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\n\n\n// 有理数\nstruct frac {\n long long first, second;\n\n using D = long double;\n long long calc_gcd(long long a, long long b) {\n return b ? calc_gcd(b, a % b) : a;\n }\n inline frac normalize() {\n if (second < 0) {first = -first; second = -second;}\n long long d = calc_gcd(first, second);\n if (d == 0) {first = 0; second = 1;}\n else {first /= d; second /= d;}\n return *this;\n }\n frac(long long f = 0, long long s = 1) : first(f), second(s) { normalize(); }\n D to_d() const { return D(first) / second; }\n inline frac operator - () { (*this).first *= -1; return (*this); }\n inline const frac& operator = (long long a) { *this = frac(a, 1); return *this; }\n inline const frac& operator += (const frac& a);\n inline const frac& operator += (long long a);\n inline const frac& operator -= (const frac& a);\n inline const frac& operator -= (long long a);\n inline const frac& operator *= (const frac& a);\n inline const frac& operator *= (long long a);\n inline const frac& operator /= (const frac& a);\n inline const frac& operator /= (long long a);\n friend ostream& operator << (ostream& s, const frac& f) { \n s << f.first; if (f.second != 1) s << \"/\" << f.second; return s;\n }\n};\ninline bool operator == (const frac &a, const frac&b) {\n return a.first * b.second == a.second * b.first;\n}\ninline bool operator != (const frac &a, const frac &b) { return !(a == b); }\ninline bool operator < (const frac& a, const frac& b) {\n return a.first * b.second < a.second * b.first;\n}\ninline bool operator > (const frac& a, const frac& b) { return b < a; }\ninline bool operator <= (const frac& a, const frac& b) {\n return a.first * b.second <= a.second * b.first;\n}\ninline bool operator >= (const frac& a, const frac& b) { return b <= a; }\ninline frac operator + (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second + a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator - (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second - a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator * (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator / (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second;\n res.second = a.second * b.first;\n res.normalize();\n return res;\n}\ninline frac abs(const frac& a) {\n frac res; res = a; res.normalize(); \n if (res.first < 0) res.first = res.first * (-1);\n return res;\n}\ninline const frac& frac::operator += (const frac& x) {*this = *this + x; return *this;}\ninline const frac& frac::operator += (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator -= (const frac& x) {*this = *this - x; return *this;}\ninline const frac& frac::operator -= (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator *= (const frac& x) {*this = *this * x; return *this;}\ninline const frac& frac::operator *= (long long x) {*this = *this * x; return *this;}\ninline const frac& frac::operator /= (const frac& x) {*this = *this / x; return *this;}\ninline const frac& frac::operator /= (long long x) {*this = *this / x; return *this;}\n\n\n\nlong double cost(const frac &f, long long T) {\n long double df = f.to_d();\n return sqrt(df * T / 2 + 0.5 * T / df);\n}\n\nint main() {\n long long T; int N;\n cin >> T >> N;\n using pf = pair<frac,frac>;\n vector<pf> upper, lower, middle;\n for (int i = 0; i < N; ++i) {\n long long x, low, up; cin >> x >> low >> up;\n frac flow(low * T, x * (T-x));\n frac fup(up * T, x * (T-x));\n if (fup < 1) lower.push_back({flow, fup});\n else if (flow > 1) upper.push_back({flow, fup});\n else middle.push_back({flow, fup});\n }\n sort(lower.begin(), lower.end(), [](const pf &a, const pf &b) {\n return a.second < b.second;});\n sort(upper.begin(), upper.end(), [](const pf &a, const pf &b) {\n return a.first > b.first;});\n\n //COUT(lower); COUT(upper);\n long double res = 0.0;\n frac left = -1, right = -1;\n for (auto inter : lower) {\n if (left >= 0 && left >= inter.first) continue;\n res += cost(inter.second, T);\n left = inter.second;\n }\n for (auto inter : upper) {\n if (right >= 0 && right <= inter.second) continue;\n res += cost(inter.first, T);\n right = inter.first;\n }\n bool remain = false;\n for (auto inter : middle) {\n if (left < inter.first && inter.second < right) remain = true;\n }\n if (remain) res += cost(1, T);\n cout << fixed << setprecision(20) << res << endl;\n}", "accuracy": 0.2, "time_ms": 70, "memory_kb": 5188, "score_of_the_acc": -0.0413, "final_rank": 20 }, { "submission_id": "aoj_3060_3420967", "code_snippet": "//\n// 有理数\n//\n// verified:\n// RUPC 2019 day2-J Rings\n// https://onlinejudge.u-aizu.ac.jp/beta/room.html#RitsCamp19Day2/problems/J\n// AOJ 1131 Unit Fraction Partition\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1131&lang=jp\n//\n\n\n#include <iostream>\n#include <vector>\n#include <cmath>\n#include <iomanip>\n#include <algorithm>\nusing namespace std;\n\n// chmax, chmin\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n// debug stream of pair, vector \n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\n\n\n// 有理数\nstruct frac {\n long long first, second;\n\n using D = long double;\n long long calc_gcd(long long a, long long b) {\n return b ? calc_gcd(b, a % b) : a;\n }\n inline frac normalize() {\n if (second < 0) {first = -first; second = -second;}\n long long d = calc_gcd(first, second);\n if (d == 0) {first = 0; second = 1;}\n else {first /= d; second /= d;}\n return *this;\n }\n frac(long long f = 0, long long s = 1) : first(f), second(s) { normalize(); }\n D to_d() const { return D(first) / second; }\n inline frac operator - () { (*this).first *= -1; return (*this); }\n inline const frac& operator = (long long a) { *this = frac(a, 1); return *this; }\n inline const frac& operator += (const frac& a);\n inline const frac& operator += (long long a);\n inline const frac& operator -= (const frac& a);\n inline const frac& operator -= (long long a);\n inline const frac& operator *= (const frac& a);\n inline const frac& operator *= (long long a);\n inline const frac& operator /= (const frac& a);\n inline const frac& operator /= (long long a);\n friend ostream& operator << (ostream& s, const frac& f) { \n s << f.first; if (f.second != 1) s << \"/\" << f.second; return s;\n }\n};\ninline bool operator == (const frac &a, const frac&b) {\n return a.first * b.second == a.second * b.first;\n}\ninline bool operator != (const frac &a, const frac &b) { return !(a == b); }\ninline bool operator < (const frac& a, const frac& b) {\n return a.first * b.second < a.second * b.first;\n}\ninline bool operator > (const frac& a, const frac& b) { return b < a; }\ninline bool operator <= (const frac& a, const frac& b) {\n return a.first * b.second <= a.second * b.first;\n}\ninline bool operator >= (const frac& a, const frac& b) { return b <= a; }\ninline frac operator + (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second + a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator - (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second - a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator * (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator / (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second;\n res.second = a.second * b.first;\n res.normalize();\n return res;\n}\ninline frac abs(const frac& a) {\n frac res; res = a; res.normalize(); \n if (res.first < 0) res.first = res.first * (-1);\n return res;\n}\ninline const frac& frac::operator += (const frac& x) {*this = *this + x; return *this;}\ninline const frac& frac::operator += (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator -= (const frac& x) {*this = *this - x; return *this;}\ninline const frac& frac::operator -= (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator *= (const frac& x) {*this = *this * x; return *this;}\ninline const frac& frac::operator *= (long long x) {*this = *this * x; return *this;}\ninline const frac& frac::operator /= (const frac& x) {*this = *this / x; return *this;}\ninline const frac& frac::operator /= (long long x) {*this = *this / x; return *this;}\n\n\n\nlong double cost(const frac &f, long long T) {\n long double df = f.to_d();\n return sqrt(df * T / 2 + 0.5 * T / df);\n}\n\nint main() {\n long long T; int N;\n cin >> T >> N;\n using pf = pair<frac,frac>;\n vector<pf> upper, lower, middle;\n for (int i = 0; i < N; ++i) {\n long long x, low, up; cin >> x >> low >> up;\n frac flow(low * T, x * (T-x));\n frac fup(up * T, x * (T-x));\n if (fup < 1) lower.push_back({flow, fup});\n else if (flow > 1) upper.push_back({flow, fup});\n else middle.push_back({flow, fup});\n }\n sort(lower.begin(), lower.end(), [](const pf &a, const pf &b) {\n return a.second < b.second;});\n sort(upper.begin(), upper.end(), [](const pf &a, const pf &b) {\n return a.first > b.first;});\n\n long double res = 0.0;\n frac left = 0, right = (1LL<<29);\n for (auto inter : lower) {\n if (left >= inter.first) continue;\n res += cost(inter.second, T);\n chmax(left, inter.second);\n }\n for (auto inter : upper) {\n if (right <= inter.second) continue;\n res += cost(inter.first, T);\n chmin(right, inter.first);\n }\n bool remain = false;\n for (auto inter : middle) {\n if (left < inter.first && inter.second < right) remain = true;\n }\n if (remain) res += cost(1, T);\n cout << fixed << setprecision(20) << res << endl;\n}", "accuracy": 0.2, "time_ms": 70, "memory_kb": 5116, "score_of_the_acc": -0.0363, "final_rank": 19 }, { "submission_id": "aoj_3060_3420962", "code_snippet": "//\n// 有理数\n//\n// verified:\n// RUPC 2019 day2-J Rings\n// https://onlinejudge.u-aizu.ac.jp/beta/room.html#RitsCamp19Day2/problems/J\n// AOJ 1131 Unit Fraction Partition\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1131&lang=jp\n//\n\n\n#include <iostream>\n#include <vector>\n#include <cmath>\n#include <iomanip>\n#include <algorithm>\nusing namespace std;\n\n// chmax, chmin\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n// debug stream of pair, vector \n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\n\n\n// 有理数\nstruct frac {\n long long first, second;\n\n using D = double;\n long long calc_gcd(long long a, long long b) {\n return b ? calc_gcd(b, a % b) : a;\n }\n inline frac normalize() {\n if (second < 0) {first = -first; second = -second;}\n long long d = calc_gcd(first, second);\n if (d == 0) {first = 0; second = 1;}\n else {first /= d; second /= d;}\n return *this;\n }\n frac(long long f = 0, long long s = 1) : first(f), second(s) { normalize(); }\n D to_d() const { return D(first) / second; }\n inline frac operator - () { (*this).first *= -1; return (*this); }\n inline const frac& operator = (long long a) { *this = frac(a, 1); return *this; }\n inline const frac& operator += (const frac& a);\n inline const frac& operator += (long long a);\n inline const frac& operator -= (const frac& a);\n inline const frac& operator -= (long long a);\n inline const frac& operator *= (const frac& a);\n inline const frac& operator *= (long long a);\n inline const frac& operator /= (const frac& a);\n inline const frac& operator /= (long long a);\n friend ostream& operator << (ostream& s, const frac& f) { \n s << f.first; if (f.second != 1) s << \"/\" << f.second; return s;\n }\n};\ninline bool operator == (const frac &a, const frac&b) {\n return a.first * b.second == a.second * b.first;\n}\ninline bool operator != (const frac &a, const frac &b) { return !(a == b); }\ninline bool operator < (const frac& a, const frac& b) {\n return a.first * b.second < a.second * b.first;\n}\ninline bool operator > (const frac& a, const frac& b) { return b < a; }\ninline bool operator <= (const frac& a, const frac& b) {\n return a.first * b.second <= a.second * b.first;\n}\ninline bool operator >= (const frac& a, const frac& b) { return b <= a; }\ninline frac operator + (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second + a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator - (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second - a.second * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator * (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.first;\n res.second = a.second * b.second;\n res.normalize();\n return res;\n}\ninline frac operator / (const frac& a, const frac& b) {\n frac res;\n res.first = a.first * b.second;\n res.second = a.second * b.first;\n res.normalize();\n return res;\n}\ninline frac abs(const frac& a) {\n frac res; res = a; res.normalize(); \n if (res.first < 0) res.first = res.first * (-1);\n return res;\n}\ninline const frac& frac::operator += (const frac& x) {*this = *this + x; return *this;}\ninline const frac& frac::operator += (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator -= (const frac& x) {*this = *this - x; return *this;}\ninline const frac& frac::operator -= (long long x) {*this = *this + x; return *this;}\ninline const frac& frac::operator *= (const frac& x) {*this = *this * x; return *this;}\ninline const frac& frac::operator *= (long long x) {*this = *this * x; return *this;}\ninline const frac& frac::operator /= (const frac& x) {*this = *this / x; return *this;}\ninline const frac& frac::operator /= (long long x) {*this = *this / x; return *this;}\n\n\n\nlong double cost(const frac &f, long long T) {\n long double df = f.to_d();\n return sqrt(df * T / 2 + 0.5 * T / df);\n}\n\nint main() {\n long long T; int N;\n cin >> T >> N;\n using pf = pair<frac,frac>;\n vector<pf> upper, lower, middle;\n for (int i = 0; i < N; ++i) {\n long long x, low, up; cin >> x >> low >> up;\n frac flow(low * T, x * (T-x));\n frac fup(up * T, x * (T-x));\n if (fup < 1) lower.push_back({flow, fup});\n else if (flow > 1) upper.push_back({flow, fup});\n else middle.push_back({flow, fup});\n }\n sort(lower.begin(), lower.end(), [](const pf &a, const pf &b) {\n return a.second < b.second;});\n sort(upper.begin(), upper.end(), [](const pf &a, const pf &b) {\n return a.first > b.first;});\n\n long double res = 0.0;\n frac left = -(1LL<<30), right = (1LL<<30);\n for (auto inter : lower) {\n if (left >= inter.first) continue;\n res += cost(inter.second, T);\n chmax(left, inter.second);\n }\n for (auto inter : upper) {\n if (right <= inter.second) continue;\n res += cost(inter.first, T);\n chmin(right, inter.first);\n }\n bool remain = false;\n for (auto inter : middle) {\n if (left < inter.first && inter.second < right) remain = true;\n }\n if (remain) res += cost(1, T);\n cout << fixed << setprecision(20) << res << endl;\n}", "accuracy": 0.2, "time_ms": 70, "memory_kb": 5056, "score_of_the_acc": -0.0321, "final_rank": 18 }, { "submission_id": "aoj_3060_3418239", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <cmath>\n#include <iomanip>\nusing namespace std;\ntypedef pair<long double,long double> P;\nint N;\nlong double T,X[100010],L[100010],H[100010],eps = 1e-9;\nvector<P> v_high,v_low,v_mid;\n\nlong double velocity(long double x,long double y){\n long double b1 = x*(T-x),a1 = y/b1;\n return sqrt(1/(2*a1)+a1/2.0*T*T);\n}\n\nlong double a(long double x,long double y){\n long double b1 = x*(T-x),a1 = y/b1;\n return a1;\n}\n\nint main(){\n cin >> T >> N;\n long double v0 = sqrt(T),a0 = 1/T;\n for(int i=1;i<=N;i++){\n cin >> X[i] >> L[i] >> H[i];\n long double l = velocity(X[i],L[i]),r = velocity(X[i],H[i]),a_high = a(X[i],H[i]),a_low = a(X[i],L[i]);\n if(a_low-eps>a0){\n v_high.push_back(P(l,r));\n }else if(a_high+eps<a0){\n v_low.push_back(P(r,l));\n }else{\n v_mid.push_back(P(l,r));\n }\n }\n sort(v_high.begin(),v_high.end(),greater<P>());\n long double ans = 0,now_high = 2e9,now_low = 2e9;\n for(auto x:v_high){\n if(now_high-eps>x.second){\n ans += x.first;\n now_high = x.first;\n }\n }\n sort(v_low.begin(),v_low.end(),greater<P>());\n for(auto x:v_low){\n if(now_low-eps>x.second){\n ans += x.first;\n now_low = x.first;\n }\n }\n for(auto x:v_mid){\n if(x.first+eps<now_low || x.second+eps<now_high){\n ans += v0;\n break;\n }\n }\n cout << fixed << endl;\n cout << setprecision(12) << ans << endl;\n}", "accuracy": 0.21666666666666667, "time_ms": 90, "memory_kb": 11604, "score_of_the_acc": -0.5061, "final_rank": 14 }, { "submission_id": "aoj_3060_3418228", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <cmath>\n#include <iomanip>\nusing namespace std;\ntypedef pair<long double,long double> P;\nint N;\nlong double T,X[100010],L[100010],H[100010],eps = 1e-10;\nvector<P> v_high,v_low,v_mid;\n\nlong double velocity(long double x,long double y){\n long double b1 = x*(T-x),a1 = y/b1;\n return sqrt(1/(2*a1)+a1/2.0*T*T);\n}\n\nlong double a(long double x,long double y){\n long double b1 = x*(T-x),a1 = y/b1;\n return a1;\n}\n\nint main(){\n cin >> T >> N;\n long double v0 = sqrt(T),a0 = 1/T;\n for(int i=1;i<=N;i++){\n cin >> X[i] >> L[i] >> H[i];\n long double l = velocity(X[i],L[i]),r = velocity(X[i],H[i]),a_high = a(X[i],H[i]),a_low = a(X[i],L[i]);\n //cerr << v0 << \" \" << l << \" \" << r << endl;\n if(a_low-eps>a0){\n v_high.push_back(P(l,r));\n }else if(a_high+eps<a0){\n v_low.push_back(P(r,l));\n }else{\n v_mid.push_back(P(l,r));\n }\n }\n sort(v_high.begin(),v_high.end(),greater<P>());\n long double ans = 0,now_high = 2e9,now_low = 2e9;\n for(auto x:v_high){\n if(now_high-eps>x.second){\n ans += x.first;\n now_high = x.first;\n }\n }\n sort(v_low.begin(),v_low.end(),greater<P>());\n for(auto x:v_low){\n if(now_low-eps>x.second){\n ans += x.first;\n now_low = x.first;\n }\n }\n for(auto x:v_mid){\n if(x.first-eps<now_low || x.second-eps<now_high){\n ans += v0;\n break;\n }\n }\n cout << fixed << endl;\n cout << setprecision(12) << ans << endl;\n}", "accuracy": 0.21666666666666667, "time_ms": 80, "memory_kb": 11716, "score_of_the_acc": -0.5076, "final_rank": 15 } ]
aoj_3062_cpp
Problem L: Product Problem 会津君は、素数$P$、自然数からなる集合$G$、自然数$A$を使ってゲームをすることにしました。 まず、会津君は手元の紙に$1$を書きます。その後、以下の一連の操作を任意の回数行います。 $G$から要素を一つ選ぶ。これを$g$とする。 手元の紙に書かれた数と$g$との積を新しく紙に書く。 元々紙に書かれていた数を消す。 手元の紙に書かれた数を$P$で割ったあまりと$A$が等しければ会津君の勝ちで、そうでなければ負けです。$P$、$G$、$A$が与えられたときに会津君が勝つことができるか判定してください。 Input 入力は以下の形式で与えられる。 $P$ $T$ $Test_1$ $\vdots$ $Test_{T}$ 入力は複数のテストケースからなる。まず$1$行に素数$P$とテストケースの数$T$が与えられる。$P$は全てのテストケースで共通である。続く$T$行に各テストケースが与えられる。 各テストケースは以下のように与えられる。 $|G|$ $G_1$ $\dots$ $G_{|G|}$ $A$ 各テストケースでは、$G$の要素数、$G$の各要素、$A$が順番に空白で区切られて与えられる。 Constraints 入力は以下の条件を満たす。 入力はすべては整数である。 $2 \le P \le 2^{31}-1$ $1 \le T,|G| \le 10^5$ $1 \le G_i,A \le P-1$ $G_i \ne G_j,$ if $i \ne j$ 全てのテストケースの$|G|$の総和は$10^5$を超えない。 Output 各テストケースに対して、会津君が勝つことができるならば$1$を、そうでなければ$0$を一行に出力する。 Sample Input 1 7 3 1 1 2 1 2 1 3 1 2 4 5 Sample Output 1 0 1 0 Sample Input 2 1000000007 8 3 2 9 7 5 3 2 9 5 1000001 3 39 1002 65537 12 2 1000000006 518012930 793649232 10 459268180 313723762 835892239 612038995 90424474 366392946 38051435 854115735 5132833 320534710 421820264 1 1 1 1 1 1000000006 1 1000000006 1 Sample Output 2 0 1 1 1 0 1 0 1
[ { "submission_id": "aoj_3062_10892806", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\n\n#define rep(i,n) for(ll i=0;i<n;++i)\n#define all(a) (a).begin(),(a).end()\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }\ntemplate<class T> T div_floor(T a, T b) { return a / b - ((a ^ b) < 0 && a % b); }\ntemplate<class T> T div_ceil(T a, T b) { return a / b + ((a ^ b) > 0 && a % b); }\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T>\nostream &operator<<(ostream &os, const vector<T> &a){\n if (a.empty()) return os;\n os << a.front();\n for (auto e : a | views::drop(1)){\n os << ' ' << e;\n }\n return os;\n}\n\nvoid dump(auto ...vs){\n ((cout << vs << ' '), ...) << endl;\n}\n\nnamespace noya2{\n\nnamespace fast_factorize {\n\n/*\n See : https://judge.yosupo.jp/submission/189742\n*/\n\n// ---- gcd ----\n\nuint64_t gcd_stein_impl( uint64_t x, uint64_t y ) {\n if( x == y ) { return x; }\n const uint64_t a = y - x;\n const uint64_t b = x - y;\n const int n = __builtin_ctzll( b );\n const uint64_t s = x < y ? a : b;\n const uint64_t t = x < y ? x : y;\n return gcd_stein_impl( s >> n, t );\n}\n\nuint64_t gcd_stein( uint64_t x, uint64_t y ) {\n if( x == 0 ) { return y; }\n if( y == 0 ) { return x; }\n const int n = __builtin_ctzll( x );\n const int m = __builtin_ctzll( y );\n return gcd_stein_impl( x >> n, y >> m ) << ( n < m ? n : m );\n}\n\n// ---- is_prime ----\n\nuint64_t mod_pow( uint64_t x, uint64_t y, uint64_t mod ) {\n uint64_t ret = 1;\n uint64_t acc = x;\n for( ; y; y >>= 1 ) {\n if( y & 1 ) {\n ret = __uint128_t(ret) * acc % mod;\n }\n acc = __uint128_t(acc) * acc % mod;\n }\n return ret;\n}\n\nbool miller_rabin( uint64_t n, const std::initializer_list<uint64_t>& as ) {\n return std::all_of( as.begin(), as.end(), [n]( uint64_t a ) {\n if( n <= a ) { return true; }\n\n int e = __builtin_ctzll( n - 1 );\n uint64_t z = mod_pow( a, ( n - 1 ) >> e, n );\n if( z == 1 || z == n - 1 ) { return true; }\n\n while( --e ) {\n z = __uint128_t(z) * z % n;\n if( z == 1 ) { return false; }\n if( z == n - 1 ) { return true; }\n }\n\n return false;\n });\n}\n\nbool is_prime( uint64_t n ) {\n if( n == 2 ) { return true; }\n if( n % 2 == 0 ) { return false; }\n if( n < 4759123141 ) { return miller_rabin( n, { 2, 7, 61 } ); }\n return miller_rabin( n, { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 } );\n}\n\n// ---- Montgomery ----\n\nclass Montgomery {\n uint64_t mod;\n uint64_t R;\npublic:\n Montgomery( uint64_t n ) : mod(n), R(n) {\n for( size_t i = 0; i < 5; ++i ) {\n R *= 2 - mod * R;\n }\n }\n\n uint64_t fma( uint64_t a, uint64_t b, uint64_t c ) const {\n const __uint128_t d = __uint128_t(a) * b;\n const uint64_t e = c + mod + ( d >> 64 );\n const uint64_t f = uint64_t(d) * R;\n const uint64_t g = ( __uint128_t(f) * mod ) >> 64;\n return e - g;\n }\n\n uint64_t mul( uint64_t a, uint64_t b ) const {\n return fma( a, b, 0 );\n }\n};\n\n// ---- Pollard's rho algorithm ----\n\nuint64_t pollard_rho( uint64_t n ) {\n if( n % 2 == 0 ) { return 2; }\n const Montgomery m( n );\n\n constexpr uint64_t C1 = 1;\n constexpr uint64_t C2 = 2;\n constexpr uint64_t M = 512;\n\n uint64_t Z1 = 1;\n uint64_t Z2 = 2;\nretry:\n uint64_t z1 = Z1;\n uint64_t z2 = Z2;\n for( size_t k = M; ; k *= 2 ) {\n const uint64_t x1 = z1 + n;\n const uint64_t x2 = z2 + n;\n for( size_t j = 0; j < k; j += M ) {\n const uint64_t y1 = z1;\n const uint64_t y2 = z2;\n\n uint64_t q1 = 1;\n uint64_t q2 = 2;\n z1 = m.fma( z1, z1, C1 );\n z2 = m.fma( z2, z2, C2 );\n for( size_t i = 0; i < M; ++i ) {\n const uint64_t t1 = x1 - z1;\n const uint64_t t2 = x2 - z2;\n z1 = m.fma( z1, z1, C1 );\n z2 = m.fma( z2, z2, C2 );\n q1 = m.mul( q1, t1 );\n q2 = m.mul( q2, t2 );\n }\n q1 = m.mul( q1, x1 - z1 );\n q2 = m.mul( q2, x2 - z2 );\n\n const uint64_t q3 = m.mul( q1, q2 );\n const uint64_t g3 = gcd_stein( n, q3 );\n if( g3 == 1 ) { continue; }\n if( g3 != n ) { return g3; }\n\n const uint64_t g1 = gcd_stein( n, q1 );\n const uint64_t g2 = gcd_stein( n, q2 );\n\n const uint64_t C = g1 != 1 ? C1 : C2;\n const uint64_t x = g1 != 1 ? x1 : x2;\n uint64_t z = g1 != 1 ? y1 : y2;\n uint64_t g = g1 != 1 ? g1 : g2;\n\n if( g == n ) {\n do {\n z = m.fma( z, z, C );\n g = gcd_stein( n, x - z );\n } while( g == 1 );\n }\n if( g != n ) {\n return g;\n }\n\n Z1 += 2;\n Z2 += 2;\n goto retry;\n }\n }\n}\n\nvoid factorize_impl( uint64_t n, std::vector<uint64_t>& ret ) {\n if( n <= 1 ) { return; }\n if( is_prime( n ) ) { ret.push_back( n ); return; }\n\n const uint64_t p = pollard_rho( n );\n\n factorize_impl( p, ret );\n factorize_impl( n / p, ret );\n}\n\nstd::vector<uint64_t> factorize( uint64_t n ) {\n std::vector<uint64_t> ret;\n factorize_impl( n, ret );\n std::sort( ret.begin(), ret.end() );\n return ret;\n}\n\n} // namespace fast_factorize\n\nstd::vector<std::pair<long long, int>> factorize(long long n){ // 素因数分解\n std::vector<std::pair<long long, int>> ans;\n auto ps = fast_factorize::factorize(n);\n int sz = ps.size();\n for (int l = 0, r = 0; l < sz; l = r){\n while (r < sz && ps[l] == ps[r]) r++;\n ans.emplace_back(ps[l], r-l);\n }\n return ans;\n}\n\nstd::vector<long long> divisors(long long n){ // 約数列挙\n auto ps = fast_factorize::factorize(n);\n int sz = ps.size();\n std::vector<long long> ans = {1};\n for (int l = 0, r = 0; l < sz; l = r){\n while (r < sz && ps[l] == ps[r]) r++;\n int e = r - l;\n int len = ans.size();\n ans.reserve(len*(e+1));\n long long mul = ps[l];\n while (true){\n for (int i = 0; i < len; i++){\n ans.emplace_back(ans[i]*mul);\n }\n if (--e == 0) break;\n mul *= ps[l];\n }\n }\n return ans;\n}\n\nstd::vector<long long> divisors(const std::vector<std::pair<long long, int>> &pes){ // 素因数から約数を列挙\n std::vector<long long> ans = {1};\n for (auto [p, e] : pes){\n int len = ans.size();\n ans.reserve(len*(e+1));\n long long mul = p;\n while (true){\n for (int i = 0; i < len; i++){\n ans.emplace_back(ans[i]*mul);\n }\n if (--e == 0) break;\n mul *= p;\n }\n }\n return ans;\n}\n\nbool is_prime(long long n){ // 素数判定\n if (n <= 1) return false;\n return fast_factorize::is_prime(n);\n}\n\nstruct Sieve {\n vector<int> primes, factor, mu;\n Sieve (int N = 1024){\n build(N);\n }\n void request(int N){\n int len = n_max();\n if (len >= N) return ;\n while (len < N) len <<= 1;\n build(len);\n }\n int n_max(){ return factor.size()-1; }\n private:\n void build (int N){\n primes.clear();\n factor.resize(N+1); fill(factor.begin(),factor.end(),0);\n mu.resize(N+1); fill(mu.begin(),mu.end(),1);\n\n for(int n = 2; n <= N; n++) {\n if (factor[n] == 0){\n primes.push_back(n);\n factor[n] = n;\n mu[n] = -1;\n }\n for (int p : primes){\n if(n * p > N || p > factor[n]) break;\n factor[n * p] = p;\n mu[n * p] = p == factor[n] ? 0 : -mu[n];\n }\n }\n }\n} sieve;\n\nint mobius_sieve(int n){ // メビウス関数\n assert(1 <= n);\n if (n>sieve.n_max())sieve.request(n);\n return sieve.mu[n];\n}\nbool is_prime_sieve(int n){\n if (n <= 2) return n == 2;\n if (n>sieve.n_max())sieve.request(n);\n return sieve.factor[n] == n;\n}\n\nvector<pair<int,int>> prime_factorization_sieve(int n){ // 素因数分解\n assert(1 <= n);\n if (n>sieve.n_max())sieve.request(n);\n vector<int> facts;\n while (n > 1){\n int p = sieve.factor[n];\n facts.push_back(p);\n n /= p;\n }\n vector<pair<int,int>> pes;\n int siz = facts.size();\n for (int l = 0, r = 0; l < siz; l = r){\n while (r < siz && facts[r] == facts[l]) r++;\n pes.emplace_back(facts[l],r-l);\n }\n return pes;\n}\n\nvector<int> divisor_enumeration_sieve(int n){ // 約数列挙\n auto pes = prime_factorization_sieve(n);\n vector<int> divs = {1};\n for (auto [p, e] : pes){\n vector<int> nxt; nxt.reserve(divs.size() * (e+1));\n for (auto x : divs){\n for (int tt = 0; tt <= e; tt++){\n nxt.push_back(x);\n x *= p;\n }\n }\n swap(divs,nxt);\n }\n return divs;\n}\n\n} // namespace noya2\nusing namespace noya2;\n\n\nvoid solve() {\n ll P,T;\n cin>>P>>T;\n vector<pair<ll,int>> PD=factorize(P-1);\n rep(t,T){\n ll N;\n cin>>N;\n ll gg=P-1;\n rep(i,N){\n ll g;\n cin>>g;\n ll R=P-1;\n for (auto [d,e]:PD){\n while (R%d==0){\n if (modpow(g,R/d,P)==1){\n R/=d;\n }\n else{\n break;\n }\n }\n }\n gg=gcd(gg,(P-1)/R);\n }\n ll a;\n cin>>a;\n ll R=P-1;\n for (auto [d,e]:PD){\n while (R%d==0){\n if (modpow(a,R/d,P)==1){\n R/=d;\n }\n else{\n break;\n }\n }\n }\n ll ag=(P-1)/R;\n if (ag%gg==0){\n cout<<1<<endl;\n }\n else{\n cout<<0<<endl;\n }\n }\n return;\n}\n\n\nint main() {\n cin.tie(0)->sync_with_stdio(0);\n ll T=1;\n while (T--){\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 3584, "score_of_the_acc": -0.074, "final_rank": 2 }, { "submission_id": "aoj_3062_10891189", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nconst ll ILL=2167167167167167167;\nconst int INF=2100000000;\n#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> int LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> int UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,T b){if(b<a){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nbool yneos(bool a,bool upp=false){if(a){cout<<(upp?\"YES\\n\":\"Yes\\n\");}else{cout<<(upp?\"NO\\n\":\"No\\n\");}return a;}\ntemplate<class T> void vec_out(vector<T> &p,int ty=0){\n if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<\",\";}cout<<'\"'<<p[i]<<'\"';}cout<<\"}\\n\";}\n else{if(ty==1){cout<<p.size()<<\"\\n\";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}}\ntemplate<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\ntemplate<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;}\nint pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;}\ntemplate<class T> T square(T a){return a * a;}\n\n#include <atcoder/modint>\nusing mint = atcoder::modint;\n\n// return val=p(N)\n// a=p[0].first^p[0].second * ... *p[N-1].first^p[N-1].second\n// for all i: p[i].first is prime number\n// O(sqrt(val))\nstd::vector<std::pair<long long,long long>> Prime_factorization(long long val){\n assert(val>=1);\n if(val==1){\n return {};\n }\n int ind=0;\n std::vector<std::pair<long long,long long>> ans;\n for(long long i=2;i*i<=val;i++){\n if(val%i!=0) continue;\n ans.push_back({i,0});\n while(val%i==0){\n ans[ind].second++;\n val/=i;\n }\n ind++;\n }\n if(val!=1) ans.push_back({val,1});\n return ans;\n}\n\nvoid solve();\n// POP'N ROLL MUSIC / TOMOO\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int t = 1;\n // cin >> t;\n rep(i, 0, t) solve();\n}\n\nvoid solve(){\n int P, T;\n cin >> P >> T;\n mint::set_mod(P);\n auto D = Prime_factorization(P - 1);\n auto f = [&](int a) -> int {\n int ans = P - 1;\n for (auto [p, e] : D){\n int tmp = P - 1;\n rep(rp, 0, e){\n tmp /= p;\n if ((mint(a)).pow(tmp) != 1){\n ans /= p;\n }\n }\n }\n // cout << a << \" \" << ans << \"\\n\";\n return ans;\n };\n while (T--){\n int N;\n cin >> N;\n int A = P - 1;\n rep(rp, 0, N){\n int a;\n cin >> a;\n A = gcd(A, f(a));\n }\n int B;\n cin >> B;\n B = f(B);\n cout << (B % A == 0 ? 1 : 0) << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 3584, "score_of_the_acc": -0.0819, "final_rank": 3 }, { "submission_id": "aoj_3062_9006270", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <tuple>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <unordered_set>\n#include <unordered_map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <climits>\n#include <iomanip>\n#include <numeric>\n#include <memory>\n#include <random>\n#include <thread>\n#include <chrono>\n#define allof(obj) (obj).begin(), (obj).end()\n#define range(i, l, r) for(int i=l;i<r;i++)\n#define unique_elem(obj) obj.erase(std::unique(allof(obj)), obj.end())\n#define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S)\n#define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit))\n#define bit_kth(i, k) ((i >> k)&1)\n#define bit_highest(i) (i?63-__builtin_clzll(i):-1)\n#define bit_lowest(i) (i?__builtin_ctzll(i):-1)\n#define sleepms(t) std::this_thread::sleep_for(std::chrono::milliseconds(t))\nusing ll = long long;\nusing ld = long double;\nusing ul = uint64_t;\nusing pi = std::pair<int, int>;\nusing pl = std::pair<ll, ll>;\nusing namespace std;\n\ntemplate<typename F, typename S>\nstd::ostream &operator<<(std::ostream &dest, const std::pair<F, S> &p){\n dest << p.first << ' ' << p.second;\n return dest;\n}\ntemplate<typename T>\nstd::ostream &operator<<(std::ostream &dest, const std::vector<T> &v){\n int sz = v.size();\n if(sz==0) return dest;\n for(int i=0;i<sz-1;i++) dest << v[i] << ' ';\n dest << v[sz-1];\n return dest;\n}\ntemplate<typename T>\nvector<T> read_vec(size_t sz){\n std::vector<T> v(sz);\n for(int i=0;i<(int)sz;i++) std::cin >> v[i];\n return v;\n}\ntemplate<typename T, typename... Tail>\nauto read_vec(size_t sz, Tail ...tail){\n auto v = std::vector<decltype(read_vec<T>(tail...))>(sz);\n for(int i=0;i<(int)sz;i++) v[i] = read_vec<T>(tail...);\n return v;\n}\nvoid io_init(){\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n}\ntemplate<typename Val>\nstruct accumulate1d{\n std::vector<Val> sum;\n accumulate1d(){}\n accumulate1d(const std::vector<Val> &v): sum(v){\n for(int i = 1; i < v.size(); i++) sum[i] = sum[i - 1] + v[i];\n }\n // [0, r)の和, 範囲外の部分は全て単位元\n Val query(int r){\n r = std::min(r, (int)sum.size());\n if(r <= 0) return 0;\n return sum[r - 1];\n }\n // [l, r)の和, 範囲外の部分は全て単位元\n Val query(int l, int r){\n l = std::max(l, 0);\n r = std::min(r, (int)sum.size());\n if(r <= l) return 0;\n return (l == 0 ? sum[r - 1] : (sum[r - 1] - sum[l - 1]));\n }\n void push_back(Val x){\n Val y = (sum.empty() ? 0 : sum.back());\n sum.push_back(y + x);\n }\n void pop_back(){\n assert(!sum.empty());\n sum.pop_back();\n }\n // [0, k]がx以上になる最小インデックス, ない場合はn\n int lower_bound(Val x){\n return std::lower_bound(sum.begin(), sum.end(), x) - sum.begin();\n }\n // [0, k]がxより大きくなる最小インデックス, ない場合はn\n int upper_bound(Val x){\n return std::upper_bound(sum.begin(), sum.end(), x) - sum.begin();\n }\n};\n\n\n\n#include <type_traits>\n#include <ostream>\n\n\n// @param m `1 <= m`\nconstexpr long long safe_mod(long long x, long long m){\n x %= m;\n if (x < 0) x += m;\n return x;\n}\nstruct barrett{\n unsigned int _m;\n unsigned long long im;\n explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1){}\n unsigned int umod()const{return _m;}\n unsigned int mul(unsigned int a, unsigned int b)const{\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x = (unsigned long long)(((unsigned __int128)(z) * im) >> 64);\n#endif\n unsigned long long y = x * _m;\n return (unsigned int)(z - y + (z < y ? _m : 0));\n }\n};\n// @param n `0 <= n`\n// @param m `1 <= m`\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m){\n if(m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while(n){\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr long long bases[3] = {2, 7, 61};\n for(long long a : bases){\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while(t != n - 1 && y != 1 && y != n - 1){\n y = y * y % n;\n t <<= 1;\n }\n if(y != n - 1 && t % 2 == 0){\n return false;\n }\n }\n return true;\n}\ntemplate<int n>\nconstexpr bool is_prime = is_prime_constexpr(n);\n\nconstexpr int primitive_root_constexpr(int m){\n if(m == 2) return 1;\n if(m == 167772161) return 3;\n if(m == 469762049) return 3;\n if(m == 754974721) return 11;\n if(m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for(int i = 3; (long long)(i)*i <= x; i += 2){\n if(x % i == 0){\n divs[cnt++] = i;\n while(x % i == 0){\n x /= i;\n }\n }\n }\n if(x > 1) divs[cnt++] = x;\n for(int g = 2;; g++){\n bool ok = true;\n for(int i = 0; i < cnt; i++){\n if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1){\n ok = false;\n break;\n }\n }\n if(ok)return g;\n }\n}\ntemplate <int m>\nconstexpr int primitive_root = primitive_root_constexpr(m);\n\nint ceil_pow2(int n){\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\nint bsf(unsigned int n){\n return __builtin_ctz(n);\n}\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b){\n a = safe_mod(a, b);\n if(a == 0) return {b, 0};\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n while (t){\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u;\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if(m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\n\n\ntemplate<int m>\nlong long modpow(long long a, long long b){\n assert(0 <= b);\n assert(0 < m);\n a = safe_mod(a, m);\n long long ret = 1;\n while(b){\n if(b & 1) ret = (ret * a) % m;\n a = (a * a) % m;\n b >>= 1;\n }\n return ret;\n}\n// @param 0 <= b, 0 < m\nlong long modpow(long long a, long long b, int m){\n assert(0 <= b);\n assert(0 < m);\n a = safe_mod(a, m);\n long long ret = 1;\n while(b){\n if(b & 1) ret = (ret * a) % m;\n a = (a * a) % m;\n b >>= 1;\n }\n return ret;\n}\n\nstruct modint_base {};\n\ntemplate<int id> \nstruct dynamic_modint : modint_base{\n using mint = dynamic_modint;\npublic:\n static int mod(){return (int)(bt.umod());}\n static void set_mod(int m){\n assert(1 <= m);\n bt = barrett(m);\n }\n static mint raw(int v){\n mint x;\n x._v = v;\n return x;\n }\n dynamic_modint(): _v(0){}\n template <class T>\n dynamic_modint(T v){\n long long x = v % (long long)(mod());\n if (x < 0) x += mod();\n _v = x;\n }\n unsigned int val()const{return _v;}\n mint& operator++(){\n _v++;\n if(_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--(){\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int){\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int){\n mint result = *this;\n --*this;\n return result;\n }\n mint& operator+=(const mint& rhs){\n _v += rhs._v;\n if(_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs){\n _v += mod() - rhs._v;\n if(_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs){\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs){return *this = *this * rhs.inv();}\n mint operator+()const{return *this;}\n mint operator-()const{return mint() - *this;}\n mint pow(long long n)const{\n assert(0 <= n);\n mint x = *this, r = 1;\n while(n){\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv()const{\n auto eg = inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n friend mint operator+(const mint& lhs, const mint& rhs){return mint(lhs) += rhs;}\n friend mint operator-(const mint& lhs, const mint& rhs){return mint(lhs) -= rhs;}\n friend mint operator*(const mint& lhs, const mint& rhs){return mint(lhs) *= rhs;}\n friend mint operator/(const mint& lhs, const mint& rhs){return mint(lhs) /= rhs;}\n friend bool operator==(const mint& lhs, const mint& rhs){return lhs._v == rhs._v;}\n friend bool operator!=(const mint& lhs, const mint& rhs){return lhs._v != rhs._v;}\nprivate:\n unsigned int _v;\n static barrett bt;\n static unsigned int umod(){return bt.umod();}\n};\ntemplate <int id>\nbarrett dynamic_modint<id>::bt(998244353);\nusing modint = dynamic_modint<-1>;\ntemplate<int id>\nstd::ostream &operator<<(std::ostream &dest, const dynamic_modint<id> &a){\n dest << a.val();\n return dest;\n}\n#include <limits>\n// 符号なし整数 -> 符号付き整数\ntemplate <class T>\nusing make_signed_t = typename std::make_signed<T>::type;\n// 符号付き整数 -> 符号なし整数\ntemplate <class T>\nusing make_unsigned_t = typename std::make_unsigned<T>::type;\n// 符号付き32bit整数か\ntemplate <class T>\nusing is_signed_int32 = typename std::conditional<std::is_same<T, int>::value || std::is_same<T, int32_t>::value, std::true_type, std::false_type>::type;\n// 符号なし32bit整数か\ntemplate <class T>\nusing is_unsigned_int32 = typename std::conditional<std::is_same<T, unsigned int>::value || std::is_same<T, uint32_t>::value, std::true_type, std::false_type>::type;\n// 符号付き64bit整数か\ntemplate <class T>\nusing is_signed_int64 = typename std::conditional<std::is_same<T, long long int>::value || std::is_same<T, int64_t>::value, std::true_type, std::false_type>::type;\n// 符号なし64bit整数か\ntemplate <class T>\nusing is_unsigned_int64 = typename std::conditional<std::is_same<T, unsigned long long>::value || std::is_same<T, uint64_t>::value, std::true_type, std::false_type>::type;\n// 符号付き128bit整数か\ntemplate <class T>\nusing is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type;\n// 符号なし128bit整数か\ntemplate <class T>\nusing is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;\n// 128bit整数か\ntemplate <class T>\nusing is_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value || std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;\n// 32bitまたは64bitの整数か\ntemplate<class T>\nusing is_intle64 = typename std::conditional<is_signed_int32<T>::value || is_signed_int64<T>::value || is_unsigned_int32<T>::value || is_unsigned_int64<T>::value, std::true_type, std::false_type>::type;\n// 32bitまたは64bitの符号付き整数か\ntemplate<class T>\nusing is_signed_intle64 = typename std::conditional<is_signed_int32<T>::value || is_signed_int64<T>::value, std::true_type, std::false_type>::type;\n// 32bitまたは64bitの符号なし整数か\ntemplate<class T>\nusing is_unsigned_intle64 = typename std::conditional<is_unsigned_int32<T>::value || is_unsigned_int64<T>::value, std::true_type, std::false_type>::type;\n\ntemplate<class T>\nusing is_not_t = typename std::conditional<T::value, std::false_type, std::true_type>::type;\n\nunsigned long long random_once(){\n static std::random_device seed_gen;\n static std::mt19937_64 engine(seed_gen());\n static unsigned long long ret = engine();\n return ret;\n}\n\nunsigned long long random_number(){\n static std::random_device seed_gen;\n static std::mt19937_64 engine(seed_gen());\n return engine();\n}\n\n// [low, high]\nunsigned long long random_number(unsigned long long low, unsigned long long high){\n static std::random_device seed_gen;\n static std::mt19937_64 engine(seed_gen());\n assert(high >= low);\n unsigned long long diff = high - low + 1;\n return engine() % diff + low;\n}\nunsigned long long ceillog2(unsigned long long x){\n int res = 1;\n while((1ULL << res) < x) res++;\n return res;\n}\n\n// uint32 : uKey ∈ [0, 2^31 - 1)\n// uint64 : uKey ∈ [0, 2^63 - 1)\ntemplate<typename uKey, typename Val>\nstruct uhash_map{\n static_assert(is_unsigned_intle64<uKey>::value, \"uKey must be unsigned integer (32 or 64bit)\");\nprivate:\n using Key = typename std::make_signed<uKey>::type;\n static constexpr int initial_size = 8; // 指定しなかった場合の初期サイズ\n static constexpr float alpha = 0.7; // 占有率がこれを超えると再構築\n static constexpr Key null_val = std::numeric_limits<Key>::min();\n static constexpr Key inf = std::numeric_limits<Key>::max();\n static const unsigned long long r;\n int table_size, table_size_mod;\n int occupied_cnt, elem_cnt; // 使われている要素の数, そのうちまだ消されていない要素の数\n std::vector<std::pair<Key, Val>> v;\n size_t hash(unsigned long long x){\n x += r;\n x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;\n x = (x ^ (x >> 27)) * 0x94d049bb133111eb;\n return (x ^ (x >> 31)) & table_size_mod;\n }\n void expand(){\n std::vector<std::pair<Key, Val>> tmp(elem_cnt, {null_val, Val()});\n for(int i = 0, j = 0; i < table_size; i++) if(v[i].first >= 0) tmp[j++] = v[i];\n occupied_cnt = elem_cnt = 0;\n table_size <<= 1;\n table_size_mod = table_size - 1;\n v = std::vector<std::pair<Key, Val>>(table_size, {null_val, Val()});\n for(int i = 0; i < tmp.size(); i++) emplace_inner(tmp[i].first, tmp[i].second);\n }\n void emplace_inner(Key x, Val y){\n if(occupied_cnt > table_size * alpha) expand();\n int i = hash(x);\n while(true){\n if(v[i].first == null_val){\n v[i] = {x, y};\n occupied_cnt++;\n elem_cnt++;\n return;\n }else if(v[i].first == x || v[i].first == -x - 1){\n if(v[i].first == -x - 1){\n elem_cnt++;\n v[i] = {x, y};\n }\n return;\n }\n i = (i + 1) & table_size_mod;\n }\n }\n void emplace_replace_inner(Key x, Val y){\n if(occupied_cnt > table_size * alpha) expand();\n int i = hash(x);\n while(true){\n if(v[i].first == null_val){\n v[i] = {x, y};\n occupied_cnt++;\n elem_cnt++;\n return;\n }else if(v[i].first == x || v[i].first == -x - 1){\n elem_cnt += (v[i].first == -x - 1);\n v[i] = {x, y};\n return;\n }\n i = (i + 1) & table_size_mod;\n }\n }\n void erase_inner(Key x){\n int i = hash(x);\n while(true){\n if(v[i].first == null_val) return;\n else if(v[i].first == x || v[i].first == -x - 1){\n elem_cnt -= (v[i].first == x);\n v[i].first = -x - 1;\n return;\n }\n i = (i + 1) & table_size_mod;\n }\n }\n bool find_inner(Key x){\n int i = hash(x);\n while(true){\n if(v[i].first == null_val) return false;\n else if(v[i].first == x || v[i].first == -x - 1) return v[i].first == x;\n i = (i + 1) & table_size_mod;\n }\n }\n std::pair<bool, Val> at_inner(Key x){\n int i = hash(x);\n while(true){\n if(v[i].first == null_val) return std::make_pair(false, v[i].second);\n else if(v[i].first == x || v[i].first == -x - 1) return (v[i].first == x ? std::make_pair(true, v[i].second) : std::make_pair(false, v[i].second));\n i = (i + 1) & table_size_mod;\n }\n }\npublic:\n uhash_map(): table_size(initial_size), table_size_mod(table_size - 1), occupied_cnt(0), elem_cnt(0), v(table_size, {null_val, Val()}){}\n uhash_map(int _sz): table_size(1 << ceillog2(_sz)), table_size_mod(table_size - 1), occupied_cnt(0), elem_cnt(0), v(table_size, {null_val, Val()}){}\n // 追加, すでにある場合は無視\n void emplace(uKey x, Val y){\n assert(x < inf);\n emplace_inner(x, y);\n }\n // 追加, すでにある場合は置き換える\n void emplace_replace(uKey x, Val y){\n assert(x < inf);\n emplace_replace_inner(x, y);\n }\n // 削除, 無い場合は無視\n void erase(uKey x){\n assert(x < inf);\n erase_inner(x);\n }\n // 検索\n bool find(uKey x){\n assert(x < inf);\n return find_inner(x);\n }\n // 存在するか, 存在する場合その値\n std::pair<bool, Val> at(uKey x){\n assert(x < inf);\n return at_inner(x);\n }\n int size(){\n return elem_cnt;\n }\n bool empty(){\n return elem_cnt == 0;\n }\n std::vector<std::pair<uKey, Val>> enumerate(){\n std::vector<std::pair<uKey, Val>> res;\n for(int i = 0; i < table_size; i++) if(v[i].first >= 0) res.push_back(v[i]);\n return res;\n }\n void clear(){\n table_size = initial_size;\n table_size_mod = table_size - 1;\n occupied_cnt = elem_cnt = 0;\n v = std::vector<std::pair<Key, Val>>(table_size, {null_val, Val()});\n }\n};\ntemplate<typename uKey, typename Val>\nconst unsigned long long uhash_map<uKey, Val>::r = random_number();\n// 素数m, 数列A, bを与える\n// 各a_iに対してb ^ k ≡ a_iを満たすkを返す\ntemplate<typename mint>\nstd::vector<int> bsgs_many(int b, const std::vector<int> &A){\n int init_size = 2e6; // mod998244353, |A| = 2e5で設定 メモリ130MB |A|が大きい場合は1e7などにする \n init_size = std::min(init_size, mint::mod());\n // 前処理 O(init_size)\n uhash_map<unsigned, int> mp(init_size * 2);\n mint x = 1;\n for(int i = 0; i < init_size; i++){\n mp.emplace(x.val(), i);\n x *= b;\n }\n std::vector<int> res;\n int imax = ((long long)mint::mod() + init_size - 1) / init_size;\n mint y = mint(b).pow((long long)2 * mint::mod() - 2 - init_size); // b ^ {-init_size}\n // 計算 O(|A| * mod / init_size)\n for(int a : A){\n x = a;\n for(int i = 0; i < imax; i++){\n auto [f, j] = mp.at(x.val());\n if(f){\n res.push_back(i * init_size + j);\n break;\n }\n x *= y;\n }\n }\n return res;\n}\n#include <cstdint>\n\nstruct barrett_reduction{\n unsigned int mod;\n unsigned long long m;\n barrett_reduction(unsigned int _mod) : mod(_mod){\n m = ((__uint128_t)1 << 64) / mod;\n }\n unsigned int reduce(unsigned int a){\n unsigned long long q = ((__uint128_t)a * m) >> 64;\n a -= q * mod; // 0 <= a < 2 * mod\n // return a;\n return a >= mod ? a - mod : a;\n }\n unsigned int mul(unsigned int a, unsigned int b){\n return reduce((unsigned long long)a * b);\n }\n // {gcd(a, mod), x}, such that a * x ≡ gcd(a, mod)\n std::pair<unsigned int, unsigned int> inv(unsigned int a){\n if(a >= mod) a = reduce(a);\n if(a == 0) return {mod, 0};\n unsigned int s = mod, t = a;\n long long m0 = 0, m1 = 1;\n while(t){\n int u = s / t;\n s -= t * u;\n m0 -= m1 * u;\n std::swap(m0, m1);\n std::swap(s, t);\n }\n if(m0 < 0) m0 += mod / s;\n return {s, m0};\n }\n};\n// 64bit mod対応\n// R = 2^64\n// 偶数modだと壊れる\nstruct montgomery_reduction_64bit{\nprivate:\n // [0, 2 * MOD)\n inline uint64_t reduce_unsafe(__uint128_t x) const{\n x = (x + ((uint64_t)x * (uint64_t)NEG_INV) * MOD) >> 64;\n return x;\n }\n void _set_mod(uint64_t mod){\n assert((mod < (1ULL << 63)) && (mod & 1));\n MOD = mod;\n NEG_INV = 0;\n __uint128_t s = 1, t = 0;\n for(int i = 0; i < 64; i++){\n if (~t & 1) {\n t += MOD;\n NEG_INV += s;\n }\n t >>= 1;\n s <<= 1;\n }\n R2 = ((__uint128_t)1 << 64) % MOD;\n R2 = R2 * R2 % MOD;\n ONE = generate(1);\n }\n __uint128_t MOD, NEG_INV, R2;\n uint64_t ONE;\npublic:\n montgomery_reduction_64bit(){}\n montgomery_reduction_64bit(uint64_t mod){_set_mod(mod);}\n void set_mod(uint64_t mod){\n _set_mod(mod);\n }\n uint64_t mod()const{\n return MOD;\n }\n inline uint64_t one()const{\n return ONE;\n }\n inline uint64_t generate(uint64_t x)const{\n return reduce((__uint128_t)x * R2);\n }\n inline uint64_t reduce(__uint128_t x)const{\n x = (x + ((uint64_t)x * (uint64_t)NEG_INV) * MOD) >> 64;\n return x < MOD ? x : x - MOD;\n }\n inline uint64_t fix(uint64_t x)const{\n return x < MOD ? x : x - MOD;\n }\n // [0, 2MOD)\n inline uint64_t mul(uint64_t mx, uint64_t my)const{\n return reduce_unsafe((__uint128_t)mx * my);\n }\n inline uint64_t mul_safe(uint64_t mx, uint64_t my)const{\n return reduce((__uint128_t)mx * my);\n }\n // [0, 2MOD)\n inline uint64_t add(uint64_t mx, uint64_t my)const{\n return (mx >= MOD ? mx - MOD : mx) + (my >= MOD ? my - MOD : my);\n }\n inline uint64_t add_safe(uint64_t mx, uint64_t my)const{\n uint64_t res = (mx >= MOD ? mx - MOD : mx) + (my >= MOD ? my - MOD : my);\n return res >= MOD ? res - MOD : res;\n }\n // [0, 2MOD)\n inline uint64_t sub(uint64_t mx, uint64_t my)const{\n if(my >= MOD) my -= MOD;\n return mx >= my ? mx - my : mx + MOD - my;\n }\n inline uint64_t sub_safe(uint64_t mx, uint64_t my)const{\n if(my >= MOD) my -= MOD;\n uint64_t res = mx >= my ? mx - my : mx + MOD - my;\n return res >= MOD ? res - MOD : res;\n }\n inline uint64_t pow(uint64_t ma, uint64_t b)const{\n uint64_t ret = one();\n while(b){\n if(b & 1) ret = mul(ret, ma);\n ma = mul(ma, ma);\n b >>= 1;\n }\n return ret;\n }\n inline uint64_t pow_safe(uint64_t ma, uint64_t b)const{\n return fix(pow(ma, b));\n }\n};\nunsigned long long mod_pow_mr(unsigned long long a, unsigned long long b, unsigned long long m){\n montgomery_reduction_64bit mr(m);\n return mr.reduce(mr.pow(mr.generate(a), b));\n}\nbool _miller_rabin_mr(unsigned long long n, const montgomery_reduction_64bit &mr){\n static std::vector<int> small_p{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47};\n static std::vector<unsigned long long> A{2, 325, 9375, 28178, 450775, 9780504, 1795265022};\n static std::vector<unsigned long long> B{2, 7, 61};\n if(n <= 1) return false;\n if(n <= 50){\n for(int l = n < 20 ? 0 : 8, r = n < 20 ? 8 : 15; l < r; l++) if(small_p[l] == n) return true;\n return false;\n }\n if(!(n & 1)) return false;\n unsigned long long d = n - 1;\n unsigned long long one = mr.one(), mone = mr.generate(n - 1);\n d >>= __builtin_ctzll(d);\n for(unsigned long long a : (n >> 32) ? A : B){\n if(a % n == 0) continue;\n unsigned long long d2s = d; // d * 2^s, 0 <= s <= (n - 1)が2で割れる回数\n unsigned long long y = mr.pow_safe(mr.generate(a), d);\n while(d2s != n - 1 && y != one && y != mone){\n y = mr.mul_safe(y, y);\n d2s <<= 1;\n }\n if(y != mone && !(d2s & 1)) return false;\n }\n return true;\n}\nbool miller_rabin_mr(unsigned long long n){\n if(n % 2 == 0) return n == 2 ? true : false;\n montgomery_reduction_64bit mr(n);\n return _miller_rabin_mr(n, mr);\n}\n// https://en.wikipedia.org/wiki/Binary_GCD_algorithm\nunsigned long long binary_gcd(unsigned long long a, unsigned long long b){\n if(!a || !b) return !a ? b : a;\n int shift = __builtin_ctzll(a | b); // [1] gcd(2a', 2b') = 2 * gcd(a', b')\n a >>= __builtin_ctzll(a);\n do{\n // if b is odd\n // gcd(2a', b) = gcd(a', b), if a = 2a'(a is even)\n // gcd(a, b) = gcd(|a - b|, min(a, b)), if a is odd\n b >>= __builtin_ctzll(b); // make b odd\n if(a > b) std::swap(a, b);\n b -= a;\n }while(b); // gcd(a, 0) = a\n return a << shift; // [1]\n}\nunsigned long long generate_random_prime(unsigned long long min_n = 2, unsigned long long max_n = ~0ULL){\n std::random_device seed_gen;\n std::mt19937_64 engine(seed_gen());\n __uint128_t len = max_n - min_n + 1;\n // https://en.wikipedia.org/wiki/Prime_number_theorem\n while(true){\n unsigned long long a = engine() % len + min_n;\n if(miller_rabin_mr(a)){\n return a;\n }\n }\n}\nnamespace rho_factorization{\n unsigned long long rho(unsigned long long n){\n static std::vector<int> small_p{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47};\n\n for(int sp : small_p) if(n % sp == 0) return sp; // n < 50\n\n montgomery_reduction_64bit mr(n);\n if(_miller_rabin_mr(n, mr)) return n;\n\n auto try_factorize = [n, mr](unsigned long long c){\n c = mr.generate(c);\n auto f = [mr, c](unsigned long long mx){\n return mr.add(mr.mul(mx, mx), c);\n };\n unsigned long long m = 1LL << ((64 - __builtin_clzll(n)) / 8);\n unsigned long long y = n, r = 1, q = 1;\n unsigned long long x, g, k, ys;\n do{\n x = y;\n y = mr.generate(y);\n for(int i = 0; i < r; i++) y = f(y);\n y = mr.reduce(y);\n\n k = 0;\n while(k < r && g == 1){\n q = mr.generate(q);\n y = mr.generate(y);\n ys = y;\n for(int i = 0; i < std::min(m, r - k); i++){\n y = f(y);\n unsigned long long z = mr.reduce(y);\n q = mr.mul(q, mr.generate(x > z ? x - z : z - x));\n }\n y = mr.reduce(y);\n g = binary_gcd(mr.reduce(q), n);\n k += m;\n }\n r <<= 1;\n }while(g == 1);\n if(g == n){\n do{\n ys = f(ys);\n unsigned long long z = mr.reduce(ys);\n g = binary_gcd(x > z ? x - z : z - x, n);\n }while(g == 1);\n }\n return g; // g == n when failure\n };\n unsigned long long c = 1, res = n;\n do{\n res = try_factorize(c);\n // c = generate_random_prime(2, n - 1);\n c = (c + 1) % n;\n }while(res == n);\n return res;\n }\n std::vector<unsigned long long> factorize(unsigned long long n){\n if(n <= 1) return {};\n unsigned long long x = rho(n);\n if(x == n) return {x};\n auto l = factorize(x);\n auto r = factorize(n / x);\n l.insert(l.end(), r.begin(), r.end());\n return l;\n }\n // {素数, 個数}の形で返す\n std::vector<std::pair<unsigned long long, int>> factorize2(unsigned long long n){\n auto p = factorize(n);\n sort(p.begin(), p.end());\n std::vector<std::pair<unsigned long long, int>> ret;\n for(int i : p){\n if(ret.empty() || ret.back().first != i) ret.push_back({i, 1});\n else ret.back().second++;\n }\n return ret;\n }\n // 素因数の集合(重複なし, ソート済)を返す\n std::vector<unsigned long long> prime_factor(unsigned long long n){\n auto p = factorize(n);\n std::sort(p.begin(), p.end());\n p.erase(std::unique(p.begin(), p.end()), p.end());\n return p;\n }\n // 10^18以下の高度合成数 897612484786617600の約数が103680個なので全列挙して良さそう\n std::vector<unsigned long long> divisor(unsigned long long n){\n auto p = factorize(n);\n std::sort(p.begin(), p.end());\n\n std::vector<std::pair<unsigned long long, int>> x;\n\n for(int i = 0; i < p.size(); i++){\n if(!i || p[i] != p[i - 1]) x.push_back({p[i], 1});\n else x.back().second++;\n }\n int sz = 1;\n for(auto [p_cur, cnt] : x) sz *= cnt + 1;\n\n std::vector<unsigned long long> res(sz);\n res[0] = 1;\n int r_prev = 1, r = 1;\n for(auto [p_cur, cnt] : x){\n unsigned long long ppow = 1;\n for(int c = 0; c < cnt; c++){\n ppow *= p_cur;\n for(int i = 0; i < r_prev; i++){\n res[r++] = res[i] * ppow;\n }\n }\n r_prev = r;\n }\n return res;\n }\n int mobius_function(long long x){\n auto P = rho_factorization::factorize(x);\n for(long long p : P) if((x / p) % p == 0) return 0;\n return P.size() % 2 == 0 ? 1 : -1;\n }\n unsigned long long totient_function(unsigned long long n){\n unsigned long long res = n;\n auto prims = rho_factorization::prime_factor(n);\n for(auto p : prims) res -= res / p;\n return res;\n }\n};\n// p: 素数\nunsigned long long find_primitive_root(unsigned long long p){\n static std::random_device seed_gen;\n static std::mt19937_64 engine(seed_gen());\n //assert(miller_rabin_mr(p));\n auto primes = rho_factorization::prime_factor(p - 1);\n while(true){\n bool f = true;\n unsigned long long a = engine() % (p - 1) + 1;\n for(unsigned long long pk : primes){\n // a ^ (p - 1) / pk ≡ 1 (mod p) -> no\n if(mod_pow_mr(a, (p - 1) / pk, p) == 1){\n f = false;\n break;\n }\n }\n if(f) return a;\n }\n}\nusing mint = dynamic_modint<0>;\n\nint main(){\n int p, t;\n std::cin >> p >> t;\n mint::set_mod(p);\n int kon = find_primitive_root(p);\n vector<int> N, G, X;\n range(i, 0, t){\n int n;\n std::cin >> n;\n N.push_back(n);\n range(j, 0, n){\n int g;\n std::cin >> g;\n G.push_back(g);\n }\n int x;\n std::cin >> x;\n X.push_back(x);\n }\n range(i, 0, t) G.push_back(X[i]);\n\n accumulate1d<int> Nac(N);\n auto b = bsgs_many<mint>(kon, G);\n int q = p - 1;\n range(i, 0, t){\n int lid = Nac.query(0, i);\n int rid = lid + N[i];\n int g_ = q;\n range(j, lid, rid) g_ = gcd(g_, b[j]);\n int d = b[Nac.query(0, t) + i];\n if(d % g_ == 0){\n std::cout << 1 << '\\n';\n }else{\n std::cout << 0 << '\\n';\n }\n }\n}", "accuracy": 1, "time_ms": 3060, "memory_kb": 39432, "score_of_the_acc": -1.7842, "final_rank": 13 }, { "submission_id": "aoj_3062_9006265", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <tuple>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <unordered_set>\n#include <unordered_map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <climits>\n#include <iomanip>\n#include <numeric>\n#include <memory>\n#include <random>\n#include <thread>\n#include <chrono>\n#define allof(obj) (obj).begin(), (obj).end()\n#define range(i, l, r) for(int i=l;i<r;i++)\n#define unique_elem(obj) obj.erase(std::unique(allof(obj)), obj.end())\n#define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S)\n#define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit))\n#define bit_kth(i, k) ((i >> k)&1)\n#define bit_highest(i) (i?63-__builtin_clzll(i):-1)\n#define bit_lowest(i) (i?__builtin_ctzll(i):-1)\n#define sleepms(t) std::this_thread::sleep_for(std::chrono::milliseconds(t))\nusing ll = long long;\nusing ld = long double;\nusing ul = uint64_t;\nusing pi = std::pair<int, int>;\nusing pl = std::pair<ll, ll>;\nusing namespace std;\n\ntemplate<typename F, typename S>\nstd::ostream &operator<<(std::ostream &dest, const std::pair<F, S> &p){\n dest << p.first << ' ' << p.second;\n return dest;\n}\ntemplate<typename T>\nstd::ostream &operator<<(std::ostream &dest, const std::vector<T> &v){\n int sz = v.size();\n if(sz==0) return dest;\n for(int i=0;i<sz-1;i++) dest << v[i] << ' ';\n dest << v[sz-1];\n return dest;\n}\ntemplate<typename T>\nvector<T> read_vec(size_t sz){\n std::vector<T> v(sz);\n for(int i=0;i<(int)sz;i++) std::cin >> v[i];\n return v;\n}\ntemplate<typename T, typename... Tail>\nauto read_vec(size_t sz, Tail ...tail){\n auto v = std::vector<decltype(read_vec<T>(tail...))>(sz);\n for(int i=0;i<(int)sz;i++) v[i] = read_vec<T>(tail...);\n return v;\n}\nvoid io_init(){\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n}\ntemplate<typename Val>\nstruct accumulate1d{\n std::vector<Val> sum;\n accumulate1d(){}\n accumulate1d(const std::vector<Val> &v): sum(v){\n for(int i = 1; i < v.size(); i++) sum[i] = sum[i - 1] + v[i];\n }\n // [0, r)の和, 範囲外の部分は全て単位元\n Val query(int r){\n r = std::min(r, (int)sum.size());\n if(r <= 0) return 0;\n return sum[r - 1];\n }\n // [l, r)の和, 範囲外の部分は全て単位元\n Val query(int l, int r){\n l = std::max(l, 0);\n r = std::min(r, (int)sum.size());\n if(r <= l) return 0;\n return (l == 0 ? sum[r - 1] : (sum[r - 1] - sum[l - 1]));\n }\n void push_back(Val x){\n Val y = (sum.empty() ? 0 : sum.back());\n sum.push_back(y + x);\n }\n void pop_back(){\n assert(!sum.empty());\n sum.pop_back();\n }\n // [0, k]がx以上になる最小インデックス, ない場合はn\n int lower_bound(Val x){\n return std::lower_bound(sum.begin(), sum.end(), x) - sum.begin();\n }\n // [0, k]がxより大きくなる最小インデックス, ない場合はn\n int upper_bound(Val x){\n return std::upper_bound(sum.begin(), sum.end(), x) - sum.begin();\n }\n};\n\n\n\n#include <type_traits>\n#include <ostream>\n\n\n// @param m `1 <= m`\nconstexpr long long safe_mod(long long x, long long m){\n x %= m;\n if (x < 0) x += m;\n return x;\n}\nstruct barrett{\n unsigned int _m;\n unsigned long long im;\n explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1){}\n unsigned int umod()const{return _m;}\n unsigned int mul(unsigned int a, unsigned int b)const{\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x = (unsigned long long)(((unsigned __int128)(z) * im) >> 64);\n#endif\n unsigned long long y = x * _m;\n return (unsigned int)(z - y + (z < y ? _m : 0));\n }\n};\n// @param n `0 <= n`\n// @param m `1 <= m`\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m){\n if(m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while(n){\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr long long bases[3] = {2, 7, 61};\n for(long long a : bases){\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while(t != n - 1 && y != 1 && y != n - 1){\n y = y * y % n;\n t <<= 1;\n }\n if(y != n - 1 && t % 2 == 0){\n return false;\n }\n }\n return true;\n}\ntemplate<int n>\nconstexpr bool is_prime = is_prime_constexpr(n);\n\nconstexpr int primitive_root_constexpr(int m){\n if(m == 2) return 1;\n if(m == 167772161) return 3;\n if(m == 469762049) return 3;\n if(m == 754974721) return 11;\n if(m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for(int i = 3; (long long)(i)*i <= x; i += 2){\n if(x % i == 0){\n divs[cnt++] = i;\n while(x % i == 0){\n x /= i;\n }\n }\n }\n if(x > 1) divs[cnt++] = x;\n for(int g = 2;; g++){\n bool ok = true;\n for(int i = 0; i < cnt; i++){\n if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1){\n ok = false;\n break;\n }\n }\n if(ok)return g;\n }\n}\ntemplate <int m>\nconstexpr int primitive_root = primitive_root_constexpr(m);\n\nint ceil_pow2(int n){\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\nint bsf(unsigned int n){\n return __builtin_ctz(n);\n}\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b){\n a = safe_mod(a, b);\n if(a == 0) return {b, 0};\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n while (t){\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u;\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if(m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\n\n\ntemplate<int m>\nlong long modpow(long long a, long long b){\n assert(0 <= b);\n assert(0 < m);\n a = safe_mod(a, m);\n long long ret = 1;\n while(b){\n if(b & 1) ret = (ret * a) % m;\n a = (a * a) % m;\n b >>= 1;\n }\n return ret;\n}\n// @param 0 <= b, 0 < m\nlong long modpow(long long a, long long b, int m){\n assert(0 <= b);\n assert(0 < m);\n a = safe_mod(a, m);\n long long ret = 1;\n while(b){\n if(b & 1) ret = (ret * a) % m;\n a = (a * a) % m;\n b >>= 1;\n }\n return ret;\n}\n\nstruct modint_base {};\n\ntemplate<int id> \nstruct dynamic_modint : modint_base{\n using mint = dynamic_modint;\npublic:\n static int mod(){return (int)(bt.umod());}\n static void set_mod(int m){\n assert(1 <= m);\n bt = barrett(m);\n }\n static mint raw(int v){\n mint x;\n x._v = v;\n return x;\n }\n dynamic_modint(): _v(0){}\n template <class T>\n dynamic_modint(T v){\n long long x = v % (long long)(mod());\n if (x < 0) x += mod();\n _v = x;\n }\n unsigned int val()const{return _v;}\n mint& operator++(){\n _v++;\n if(_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--(){\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int){\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int){\n mint result = *this;\n --*this;\n return result;\n }\n mint& operator+=(const mint& rhs){\n _v += rhs._v;\n if(_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs){\n _v += mod() - rhs._v;\n if(_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs){\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs){return *this = *this * rhs.inv();}\n mint operator+()const{return *this;}\n mint operator-()const{return mint() - *this;}\n mint pow(long long n)const{\n assert(0 <= n);\n mint x = *this, r = 1;\n while(n){\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv()const{\n auto eg = inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n friend mint operator+(const mint& lhs, const mint& rhs){return mint(lhs) += rhs;}\n friend mint operator-(const mint& lhs, const mint& rhs){return mint(lhs) -= rhs;}\n friend mint operator*(const mint& lhs, const mint& rhs){return mint(lhs) *= rhs;}\n friend mint operator/(const mint& lhs, const mint& rhs){return mint(lhs) /= rhs;}\n friend bool operator==(const mint& lhs, const mint& rhs){return lhs._v == rhs._v;}\n friend bool operator!=(const mint& lhs, const mint& rhs){return lhs._v != rhs._v;}\nprivate:\n unsigned int _v;\n static barrett bt;\n static unsigned int umod(){return bt.umod();}\n};\ntemplate <int id>\nbarrett dynamic_modint<id>::bt(998244353);\nusing modint = dynamic_modint<-1>;\ntemplate<int id>\nstd::ostream &operator<<(std::ostream &dest, const dynamic_modint<id> &a){\n dest << a.val();\n return dest;\n}\n#include <limits>\n// 符号なし整数 -> 符号付き整数\ntemplate <class T>\nusing make_signed_t = typename std::make_signed<T>::type;\n// 符号付き整数 -> 符号なし整数\ntemplate <class T>\nusing make_unsigned_t = typename std::make_unsigned<T>::type;\n// 符号付き32bit整数か\ntemplate <class T>\nusing is_signed_int32 = typename std::conditional<std::is_same<T, int>::value || std::is_same<T, int32_t>::value, std::true_type, std::false_type>::type;\n// 符号なし32bit整数か\ntemplate <class T>\nusing is_unsigned_int32 = typename std::conditional<std::is_same<T, unsigned int>::value || std::is_same<T, uint32_t>::value, std::true_type, std::false_type>::type;\n// 符号付き64bit整数か\ntemplate <class T>\nusing is_signed_int64 = typename std::conditional<std::is_same<T, long long int>::value || std::is_same<T, int64_t>::value, std::true_type, std::false_type>::type;\n// 符号なし64bit整数か\ntemplate <class T>\nusing is_unsigned_int64 = typename std::conditional<std::is_same<T, unsigned long long>::value || std::is_same<T, uint64_t>::value, std::true_type, std::false_type>::type;\n// 符号付き128bit整数か\ntemplate <class T>\nusing is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type;\n// 符号なし128bit整数か\ntemplate <class T>\nusing is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;\n// 128bit整数か\ntemplate <class T>\nusing is_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value || std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;\n// 32bitまたは64bitの整数か\ntemplate<class T>\nusing is_intle64 = typename std::conditional<is_signed_int32<T>::value || is_signed_int64<T>::value || is_unsigned_int32<T>::value || is_unsigned_int64<T>::value, std::true_type, std::false_type>::type;\n// 32bitまたは64bitの符号付き整数か\ntemplate<class T>\nusing is_signed_intle64 = typename std::conditional<is_signed_int32<T>::value || is_signed_int64<T>::value, std::true_type, std::false_type>::type;\n// 32bitまたは64bitの符号なし整数か\ntemplate<class T>\nusing is_unsigned_intle64 = typename std::conditional<is_unsigned_int32<T>::value || is_unsigned_int64<T>::value, std::true_type, std::false_type>::type;\n\ntemplate<class T>\nusing is_not_t = typename std::conditional<T::value, std::false_type, std::true_type>::type;\n\nunsigned long long random_once(){\n static std::random_device seed_gen;\n static std::mt19937_64 engine(seed_gen());\n static unsigned long long ret = engine();\n return ret;\n}\n\nunsigned long long random_number(){\n static std::random_device seed_gen;\n static std::mt19937_64 engine(seed_gen());\n return engine();\n}\n\n// [low, high]\nunsigned long long random_number(unsigned long long low, unsigned long long high){\n static std::random_device seed_gen;\n static std::mt19937_64 engine(seed_gen());\n assert(high >= low);\n unsigned long long diff = high - low + 1;\n return engine() % diff + low;\n}\nunsigned long long ceillog2(unsigned long long x){\n int res = 1;\n while((1ULL << res) < x) res++;\n return res;\n}\n\n// uint32 : uKey ∈ [0, 2^31 - 1)\n// uint64 : uKey ∈ [0, 2^63 - 1)\ntemplate<typename uKey, typename Val>\nstruct uhash_map{\n static_assert(is_unsigned_intle64<uKey>::value, \"uKey must be unsigned integer (32 or 64bit)\");\nprivate:\n using Key = typename std::make_signed<uKey>::type;\n static constexpr int initial_size = 8; // 指定しなかった場合の初期サイズ\n static constexpr float alpha = 0.7; // 占有率がこれを超えると再構築\n static constexpr Key null_val = std::numeric_limits<Key>::min();\n static constexpr Key inf = std::numeric_limits<Key>::max();\n static const unsigned long long r;\n int table_size, table_size_mod;\n int occupied_cnt, elem_cnt; // 使われている要素の数, そのうちまだ消されていない要素の数\n std::vector<std::pair<Key, Val>> v;\n size_t hash(unsigned long long x){\n x += r;\n x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;\n x = (x ^ (x >> 27)) * 0x94d049bb133111eb;\n return (x ^ (x >> 31)) & table_size_mod;\n }\n void expand(){\n std::vector<std::pair<Key, Val>> tmp(elem_cnt, {null_val, Val()});\n for(int i = 0, j = 0; i < table_size; i++) if(v[i].first >= 0) tmp[j++] = v[i];\n occupied_cnt = elem_cnt = 0;\n table_size <<= 1;\n table_size_mod = table_size - 1;\n v = std::vector<std::pair<Key, Val>>(table_size, {null_val, Val()});\n for(int i = 0; i < tmp.size(); i++) emplace_inner(tmp[i].first, tmp[i].second);\n }\n void emplace_inner(Key x, Val y){\n if(occupied_cnt > table_size * alpha) expand();\n int i = hash(x);\n while(true){\n if(v[i].first == null_val){\n v[i] = {x, y};\n occupied_cnt++;\n elem_cnt++;\n return;\n }else if(v[i].first == x || v[i].first == -x - 1){\n if(v[i].first == -x - 1){\n elem_cnt++;\n v[i] = {x, y};\n }\n return;\n }\n i = (i + 1) & table_size_mod;\n }\n }\n void emplace_replace_inner(Key x, Val y){\n if(occupied_cnt > table_size * alpha) expand();\n int i = hash(x);\n while(true){\n if(v[i].first == null_val){\n v[i] = {x, y};\n occupied_cnt++;\n elem_cnt++;\n return;\n }else if(v[i].first == x || v[i].first == -x - 1){\n elem_cnt += (v[i].first == -x - 1);\n v[i] = {x, y};\n return;\n }\n i = (i + 1) & table_size_mod;\n }\n }\n void erase_inner(Key x){\n int i = hash(x);\n while(true){\n if(v[i].first == null_val) return;\n else if(v[i].first == x || v[i].first == -x - 1){\n elem_cnt -= (v[i].first == x);\n v[i].first = -x - 1;\n return;\n }\n i = (i + 1) & table_size_mod;\n }\n }\n bool find_inner(Key x){\n int i = hash(x);\n while(true){\n if(v[i].first == null_val) return false;\n else if(v[i].first == x || v[i].first == -x - 1) return v[i].first == x;\n i = (i + 1) & table_size_mod;\n }\n }\n std::pair<bool, Val> at_inner(Key x){\n int i = hash(x);\n while(true){\n if(v[i].first == null_val) return std::make_pair(false, v[i].second);\n else if(v[i].first == x || v[i].first == -x - 1) return (v[i].first == x ? std::make_pair(true, v[i].second) : std::make_pair(false, v[i].second));\n i = (i + 1) & table_size_mod;\n }\n }\npublic:\n uhash_map(): table_size(initial_size), table_size_mod(table_size - 1), occupied_cnt(0), elem_cnt(0), v(table_size, {null_val, Val()}){}\n uhash_map(int _sz): table_size(1 << ceillog2(_sz)), table_size_mod(table_size - 1), occupied_cnt(0), elem_cnt(0), v(table_size, {null_val, Val()}){}\n // 追加, すでにある場合は無視\n void emplace(uKey x, Val y){\n assert(x < inf);\n emplace_inner(x, y);\n }\n // 追加, すでにある場合は置き換える\n void emplace_replace(uKey x, Val y){\n assert(x < inf);\n emplace_replace_inner(x, y);\n }\n // 削除, 無い場合は無視\n void erase(uKey x){\n assert(x < inf);\n erase_inner(x);\n }\n // 検索\n bool find(uKey x){\n assert(x < inf);\n return find_inner(x);\n }\n // 存在するか, 存在する場合その値\n std::pair<bool, Val> at(uKey x){\n assert(x < inf);\n return at_inner(x);\n }\n int size(){\n return elem_cnt;\n }\n bool empty(){\n return elem_cnt == 0;\n }\n std::vector<std::pair<uKey, Val>> enumerate(){\n std::vector<std::pair<uKey, Val>> res;\n for(int i = 0; i < table_size; i++) if(v[i].first >= 0) res.push_back(v[i]);\n return res;\n }\n void clear(){\n table_size = initial_size;\n table_size_mod = table_size - 1;\n occupied_cnt = elem_cnt = 0;\n v = std::vector<std::pair<Key, Val>>(table_size, {null_val, Val()});\n }\n};\ntemplate<typename uKey, typename Val>\nconst unsigned long long uhash_map<uKey, Val>::r = random_number();\n// 素数m, 数列A, bを与える\n// 各a_iに対してb ^ k ≡ a_iを満たすkを返す\ntemplate<typename mint>\nstd::vector<int> bsgs_many(int b, const std::vector<int> &A){\n int init_size = 2e6; // mod998244353, |A| = 2e5で設定 メモリ130MB |A|が大きい場合は1e7などにする \n init_size = std::min(init_size, mint::mod());\n // 前処理 O(init_size)\n uhash_map<unsigned, int> mp(init_size * 2);\n mint x = 1;\n for(int i = 0; i < init_size; i++){\n mp.emplace(x.val(), i);\n x *= b;\n }\n std::vector<int> res;\n int imax = (mint::mod() + init_size - 1) / init_size;\n mint y = mint(b).pow((long long)2 * mint::mod() - 2 - init_size); // b ^ {-init_size}\n // 計算 O(|A| * mod / init_size)\n for(int a : A){\n x = a;\n for(int i = 0; i < imax; i++){\n auto [f, j] = mp.at(x.val());\n if(f){\n res.push_back(i * init_size + j);\n break;\n }\n x *= y;\n }\n }\n return res;\n}\n#include <cstdint>\n\nstruct barrett_reduction{\n unsigned int mod;\n unsigned long long m;\n barrett_reduction(unsigned int _mod) : mod(_mod){\n m = ((__uint128_t)1 << 64) / mod;\n }\n unsigned int reduce(unsigned int a){\n unsigned long long q = ((__uint128_t)a * m) >> 64;\n a -= q * mod; // 0 <= a < 2 * mod\n // return a;\n return a >= mod ? a - mod : a;\n }\n unsigned int mul(unsigned int a, unsigned int b){\n return reduce((unsigned long long)a * b);\n }\n // {gcd(a, mod), x}, such that a * x ≡ gcd(a, mod)\n std::pair<unsigned int, unsigned int> inv(unsigned int a){\n if(a >= mod) a = reduce(a);\n if(a == 0) return {mod, 0};\n unsigned int s = mod, t = a;\n long long m0 = 0, m1 = 1;\n while(t){\n int u = s / t;\n s -= t * u;\n m0 -= m1 * u;\n std::swap(m0, m1);\n std::swap(s, t);\n }\n if(m0 < 0) m0 += mod / s;\n return {s, m0};\n }\n};\n// 64bit mod対応\n// R = 2^64\n// 偶数modだと壊れる\nstruct montgomery_reduction_64bit{\nprivate:\n // [0, 2 * MOD)\n inline uint64_t reduce_unsafe(__uint128_t x) const{\n x = (x + ((uint64_t)x * (uint64_t)NEG_INV) * MOD) >> 64;\n return x;\n }\n void _set_mod(uint64_t mod){\n assert((mod < (1ULL << 63)) && (mod & 1));\n MOD = mod;\n NEG_INV = 0;\n __uint128_t s = 1, t = 0;\n for(int i = 0; i < 64; i++){\n if (~t & 1) {\n t += MOD;\n NEG_INV += s;\n }\n t >>= 1;\n s <<= 1;\n }\n R2 = ((__uint128_t)1 << 64) % MOD;\n R2 = R2 * R2 % MOD;\n ONE = generate(1);\n }\n __uint128_t MOD, NEG_INV, R2;\n uint64_t ONE;\npublic:\n montgomery_reduction_64bit(){}\n montgomery_reduction_64bit(uint64_t mod){_set_mod(mod);}\n void set_mod(uint64_t mod){\n _set_mod(mod);\n }\n uint64_t mod()const{\n return MOD;\n }\n inline uint64_t one()const{\n return ONE;\n }\n inline uint64_t generate(uint64_t x)const{\n return reduce((__uint128_t)x * R2);\n }\n inline uint64_t reduce(__uint128_t x)const{\n x = (x + ((uint64_t)x * (uint64_t)NEG_INV) * MOD) >> 64;\n return x < MOD ? x : x - MOD;\n }\n inline uint64_t fix(uint64_t x)const{\n return x < MOD ? x : x - MOD;\n }\n // [0, 2MOD)\n inline uint64_t mul(uint64_t mx, uint64_t my)const{\n return reduce_unsafe((__uint128_t)mx * my);\n }\n inline uint64_t mul_safe(uint64_t mx, uint64_t my)const{\n return reduce((__uint128_t)mx * my);\n }\n // [0, 2MOD)\n inline uint64_t add(uint64_t mx, uint64_t my)const{\n return (mx >= MOD ? mx - MOD : mx) + (my >= MOD ? my - MOD : my);\n }\n inline uint64_t add_safe(uint64_t mx, uint64_t my)const{\n uint64_t res = (mx >= MOD ? mx - MOD : mx) + (my >= MOD ? my - MOD : my);\n return res >= MOD ? res - MOD : res;\n }\n // [0, 2MOD)\n inline uint64_t sub(uint64_t mx, uint64_t my)const{\n if(my >= MOD) my -= MOD;\n return mx >= my ? mx - my : mx + MOD - my;\n }\n inline uint64_t sub_safe(uint64_t mx, uint64_t my)const{\n if(my >= MOD) my -= MOD;\n uint64_t res = mx >= my ? mx - my : mx + MOD - my;\n return res >= MOD ? res - MOD : res;\n }\n inline uint64_t pow(uint64_t ma, uint64_t b)const{\n uint64_t ret = one();\n while(b){\n if(b & 1) ret = mul(ret, ma);\n ma = mul(ma, ma);\n b >>= 1;\n }\n return ret;\n }\n inline uint64_t pow_safe(uint64_t ma, uint64_t b)const{\n return fix(pow(ma, b));\n }\n};\nunsigned long long mod_pow_mr(unsigned long long a, unsigned long long b, unsigned long long m){\n montgomery_reduction_64bit mr(m);\n return mr.reduce(mr.pow(mr.generate(a), b));\n}\nbool _miller_rabin_mr(unsigned long long n, const montgomery_reduction_64bit &mr){\n static std::vector<int> small_p{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47};\n static std::vector<unsigned long long> A{2, 325, 9375, 28178, 450775, 9780504, 1795265022};\n static std::vector<unsigned long long> B{2, 7, 61};\n if(n <= 1) return false;\n if(n <= 50){\n for(int l = n < 20 ? 0 : 8, r = n < 20 ? 8 : 15; l < r; l++) if(small_p[l] == n) return true;\n return false;\n }\n if(!(n & 1)) return false;\n unsigned long long d = n - 1;\n unsigned long long one = mr.one(), mone = mr.generate(n - 1);\n d >>= __builtin_ctzll(d);\n for(unsigned long long a : (n >> 32) ? A : B){\n if(a % n == 0) continue;\n unsigned long long d2s = d; // d * 2^s, 0 <= s <= (n - 1)が2で割れる回数\n unsigned long long y = mr.pow_safe(mr.generate(a), d);\n while(d2s != n - 1 && y != one && y != mone){\n y = mr.mul_safe(y, y);\n d2s <<= 1;\n }\n if(y != mone && !(d2s & 1)) return false;\n }\n return true;\n}\nbool miller_rabin_mr(unsigned long long n){\n if(n % 2 == 0) return n == 2 ? true : false;\n montgomery_reduction_64bit mr(n);\n return _miller_rabin_mr(n, mr);\n}\n// https://en.wikipedia.org/wiki/Binary_GCD_algorithm\nunsigned long long binary_gcd(unsigned long long a, unsigned long long b){\n if(!a || !b) return !a ? b : a;\n int shift = __builtin_ctzll(a | b); // [1] gcd(2a', 2b') = 2 * gcd(a', b')\n a >>= __builtin_ctzll(a);\n do{\n // if b is odd\n // gcd(2a', b) = gcd(a', b), if a = 2a'(a is even)\n // gcd(a, b) = gcd(|a - b|, min(a, b)), if a is odd\n b >>= __builtin_ctzll(b); // make b odd\n if(a > b) std::swap(a, b);\n b -= a;\n }while(b); // gcd(a, 0) = a\n return a << shift; // [1]\n}\nunsigned long long generate_random_prime(unsigned long long min_n = 2, unsigned long long max_n = ~0ULL){\n std::random_device seed_gen;\n std::mt19937_64 engine(seed_gen());\n __uint128_t len = max_n - min_n + 1;\n // https://en.wikipedia.org/wiki/Prime_number_theorem\n while(true){\n unsigned long long a = engine() % len + min_n;\n if(miller_rabin_mr(a)){\n return a;\n }\n }\n}\nnamespace rho_factorization{\n unsigned long long rho(unsigned long long n){\n static std::vector<int> small_p{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47};\n\n for(int sp : small_p) if(n % sp == 0) return sp; // n < 50\n\n montgomery_reduction_64bit mr(n);\n if(_miller_rabin_mr(n, mr)) return n;\n\n auto try_factorize = [n, mr](unsigned long long c){\n c = mr.generate(c);\n auto f = [mr, c](unsigned long long mx){\n return mr.add(mr.mul(mx, mx), c);\n };\n unsigned long long m = 1LL << ((64 - __builtin_clzll(n)) / 8);\n unsigned long long y = n, r = 1, q = 1;\n unsigned long long x, g, k, ys;\n do{\n x = y;\n y = mr.generate(y);\n for(int i = 0; i < r; i++) y = f(y);\n y = mr.reduce(y);\n\n k = 0;\n while(k < r && g == 1){\n q = mr.generate(q);\n y = mr.generate(y);\n ys = y;\n for(int i = 0; i < std::min(m, r - k); i++){\n y = f(y);\n unsigned long long z = mr.reduce(y);\n q = mr.mul(q, mr.generate(x > z ? x - z : z - x));\n }\n y = mr.reduce(y);\n g = binary_gcd(mr.reduce(q), n);\n k += m;\n }\n r <<= 1;\n }while(g == 1);\n if(g == n){\n do{\n ys = f(ys);\n unsigned long long z = mr.reduce(ys);\n g = binary_gcd(x > z ? x - z : z - x, n);\n }while(g == 1);\n }\n return g; // g == n when failure\n };\n unsigned long long c = 1, res = n;\n do{\n res = try_factorize(c);\n // c = generate_random_prime(2, n - 1);\n c = (c + 1) % n;\n }while(res == n);\n return res;\n }\n std::vector<unsigned long long> factorize(unsigned long long n){\n if(n <= 1) return {};\n unsigned long long x = rho(n);\n if(x == n) return {x};\n auto l = factorize(x);\n auto r = factorize(n / x);\n l.insert(l.end(), r.begin(), r.end());\n return l;\n }\n // {素数, 個数}の形で返す\n std::vector<std::pair<unsigned long long, int>> factorize2(unsigned long long n){\n auto p = factorize(n);\n sort(p.begin(), p.end());\n std::vector<std::pair<unsigned long long, int>> ret;\n for(int i : p){\n if(ret.empty() || ret.back().first != i) ret.push_back({i, 1});\n else ret.back().second++;\n }\n return ret;\n }\n // 素因数の集合(重複なし, ソート済)を返す\n std::vector<unsigned long long> prime_factor(unsigned long long n){\n auto p = factorize(n);\n std::sort(p.begin(), p.end());\n p.erase(std::unique(p.begin(), p.end()), p.end());\n return p;\n }\n // 10^18以下の高度合成数 897612484786617600の約数が103680個なので全列挙して良さそう\n std::vector<unsigned long long> divisor(unsigned long long n){\n auto p = factorize(n);\n std::sort(p.begin(), p.end());\n\n std::vector<std::pair<unsigned long long, int>> x;\n\n for(int i = 0; i < p.size(); i++){\n if(!i || p[i] != p[i - 1]) x.push_back({p[i], 1});\n else x.back().second++;\n }\n int sz = 1;\n for(auto [p_cur, cnt] : x) sz *= cnt + 1;\n\n std::vector<unsigned long long> res(sz);\n res[0] = 1;\n int r_prev = 1, r = 1;\n for(auto [p_cur, cnt] : x){\n unsigned long long ppow = 1;\n for(int c = 0; c < cnt; c++){\n ppow *= p_cur;\n for(int i = 0; i < r_prev; i++){\n res[r++] = res[i] * ppow;\n }\n }\n r_prev = r;\n }\n return res;\n }\n int mobius_function(long long x){\n auto P = rho_factorization::factorize(x);\n for(long long p : P) if((x / p) % p == 0) return 0;\n return P.size() % 2 == 0 ? 1 : -1;\n }\n unsigned long long totient_function(unsigned long long n){\n unsigned long long res = n;\n auto prims = rho_factorization::prime_factor(n);\n for(auto p : prims) res -= res / p;\n return res;\n }\n};\n// p: 素数\nunsigned long long find_primitive_root(unsigned long long p){\n static std::random_device seed_gen;\n static std::mt19937_64 engine(seed_gen());\n //assert(miller_rabin_mr(p));\n auto primes = rho_factorization::prime_factor(p - 1);\n while(true){\n bool f = true;\n unsigned long long a = engine() % (p - 1) + 1;\n for(unsigned long long pk : primes){\n // a ^ (p - 1) / pk ≡ 1 (mod p) -> no\n if(mod_pow_mr(a, (p - 1) / pk, p) == 1){\n f = false;\n break;\n }\n }\n if(f) return a;\n }\n}\nusing mint = dynamic_modint<0>;\n\nint main(){\n int p, t;\n std::cin >> p >> t;\n mint::set_mod(p);\n int kon = find_primitive_root(p);\n vector<int> N, G, X;\n range(i, 0, t){\n int n;\n std::cin >> n;\n N.push_back(n);\n range(j, 0, n){\n int g;\n std::cin >> g;\n G.push_back(g);\n }\n int x;\n std::cin >> x;\n X.push_back(x);\n }\n range(i, 0, t) G.push_back(X[i]);\n\n accumulate1d<int> Nac(N);\n auto b = bsgs_many<mint>(kon, G);\n int q = p - 1;\n range(i, 0, t){\n int lid = Nac.query(0, i);\n int rid = lid + N[i];\n int g_ = q;\n range(j, lid, rid) g_ = gcd(g_, b[j]);\n int d = b[Nac.query(0, t) + i];\n if(d % g_ == 0){\n std::cout << 1 << '\\n';\n }else{\n std::cout << 0 << '\\n';\n }\n }\n}", "accuracy": 0.3088235294117647, "time_ms": 2040, "memory_kb": 39196, "score_of_the_acc": -1.5093, "final_rank": 15 }, { "submission_id": "aoj_3062_9006263", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <tuple>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <unordered_set>\n#include <unordered_map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <climits>\n#include <iomanip>\n#include <numeric>\n#include <memory>\n#include <random>\n#include <thread>\n#include <chrono>\n#define allof(obj) (obj).begin(), (obj).end()\n#define range(i, l, r) for(int i=l;i<r;i++)\n#define unique_elem(obj) obj.erase(std::unique(allof(obj)), obj.end())\n#define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S)\n#define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit))\n#define bit_kth(i, k) ((i >> k)&1)\n#define bit_highest(i) (i?63-__builtin_clzll(i):-1)\n#define bit_lowest(i) (i?__builtin_ctzll(i):-1)\n#define sleepms(t) std::this_thread::sleep_for(std::chrono::milliseconds(t))\nusing ll = long long;\nusing ld = long double;\nusing ul = uint64_t;\nusing pi = std::pair<int, int>;\nusing pl = std::pair<ll, ll>;\nusing namespace std;\n\ntemplate<typename F, typename S>\nstd::ostream &operator<<(std::ostream &dest, const std::pair<F, S> &p){\n dest << p.first << ' ' << p.second;\n return dest;\n}\ntemplate<typename T>\nstd::ostream &operator<<(std::ostream &dest, const std::vector<T> &v){\n int sz = v.size();\n if(sz==0) return dest;\n for(int i=0;i<sz-1;i++) dest << v[i] << ' ';\n dest << v[sz-1];\n return dest;\n}\ntemplate<typename T>\nvector<T> read_vec(size_t sz){\n std::vector<T> v(sz);\n for(int i=0;i<(int)sz;i++) std::cin >> v[i];\n return v;\n}\ntemplate<typename T, typename... Tail>\nauto read_vec(size_t sz, Tail ...tail){\n auto v = std::vector<decltype(read_vec<T>(tail...))>(sz);\n for(int i=0;i<(int)sz;i++) v[i] = read_vec<T>(tail...);\n return v;\n}\nvoid io_init(){\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n}\ntemplate<typename Val>\nstruct accumulate1d{\n std::vector<Val> sum;\n accumulate1d(){}\n accumulate1d(const std::vector<Val> &v): sum(v){\n for(int i = 1; i < v.size(); i++) sum[i] = sum[i - 1] + v[i];\n }\n // [0, r)の和, 範囲外の部分は全て単位元\n Val query(int r){\n r = std::min(r, (int)sum.size());\n if(r <= 0) return 0;\n return sum[r - 1];\n }\n // [l, r)の和, 範囲外の部分は全て単位元\n Val query(int l, int r){\n l = std::max(l, 0);\n r = std::min(r, (int)sum.size());\n if(r <= l) return 0;\n return (l == 0 ? sum[r - 1] : (sum[r - 1] - sum[l - 1]));\n }\n void push_back(Val x){\n Val y = (sum.empty() ? 0 : sum.back());\n sum.push_back(y + x);\n }\n void pop_back(){\n assert(!sum.empty());\n sum.pop_back();\n }\n // [0, k]がx以上になる最小インデックス, ない場合はn\n int lower_bound(Val x){\n return std::lower_bound(sum.begin(), sum.end(), x) - sum.begin();\n }\n // [0, k]がxより大きくなる最小インデックス, ない場合はn\n int upper_bound(Val x){\n return std::upper_bound(sum.begin(), sum.end(), x) - sum.begin();\n }\n};\n\n\n\n#include <type_traits>\n#include <ostream>\n\n\n// @param m `1 <= m`\nconstexpr long long safe_mod(long long x, long long m){\n x %= m;\n if (x < 0) x += m;\n return x;\n}\nstruct barrett{\n unsigned int _m;\n unsigned long long im;\n explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1){}\n unsigned int umod()const{return _m;}\n unsigned int mul(unsigned int a, unsigned int b)const{\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x = (unsigned long long)(((unsigned __int128)(z) * im) >> 64);\n#endif\n unsigned long long y = x * _m;\n return (unsigned int)(z - y + (z < y ? _m : 0));\n }\n};\n// @param n `0 <= n`\n// @param m `1 <= m`\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m){\n if(m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while(n){\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr long long bases[3] = {2, 7, 61};\n for(long long a : bases){\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while(t != n - 1 && y != 1 && y != n - 1){\n y = y * y % n;\n t <<= 1;\n }\n if(y != n - 1 && t % 2 == 0){\n return false;\n }\n }\n return true;\n}\ntemplate<int n>\nconstexpr bool is_prime = is_prime_constexpr(n);\n\nconstexpr int primitive_root_constexpr(int m){\n if(m == 2) return 1;\n if(m == 167772161) return 3;\n if(m == 469762049) return 3;\n if(m == 754974721) return 11;\n if(m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for(int i = 3; (long long)(i)*i <= x; i += 2){\n if(x % i == 0){\n divs[cnt++] = i;\n while(x % i == 0){\n x /= i;\n }\n }\n }\n if(x > 1) divs[cnt++] = x;\n for(int g = 2;; g++){\n bool ok = true;\n for(int i = 0; i < cnt; i++){\n if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1){\n ok = false;\n break;\n }\n }\n if(ok)return g;\n }\n}\ntemplate <int m>\nconstexpr int primitive_root = primitive_root_constexpr(m);\n\nint ceil_pow2(int n){\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\nint bsf(unsigned int n){\n return __builtin_ctz(n);\n}\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b){\n a = safe_mod(a, b);\n if(a == 0) return {b, 0};\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n while (t){\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u;\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if(m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\n\n\ntemplate<int m>\nlong long modpow(long long a, long long b){\n assert(0 <= b);\n assert(0 < m);\n a = safe_mod(a, m);\n long long ret = 1;\n while(b){\n if(b & 1) ret = (ret * a) % m;\n a = (a * a) % m;\n b >>= 1;\n }\n return ret;\n}\n// @param 0 <= b, 0 < m\nlong long modpow(long long a, long long b, int m){\n assert(0 <= b);\n assert(0 < m);\n a = safe_mod(a, m);\n long long ret = 1;\n while(b){\n if(b & 1) ret = (ret * a) % m;\n a = (a * a) % m;\n b >>= 1;\n }\n return ret;\n}\n\nstruct modint_base {};\n\ntemplate<int id> \nstruct dynamic_modint : modint_base{\n using mint = dynamic_modint;\npublic:\n static int mod(){return (int)(bt.umod());}\n static void set_mod(int m){\n assert(1 <= m);\n bt = barrett(m);\n }\n static mint raw(int v){\n mint x;\n x._v = v;\n return x;\n }\n dynamic_modint(): _v(0){}\n template <class T>\n dynamic_modint(T v){\n long long x = v % (long long)(mod());\n if (x < 0) x += mod();\n _v = x;\n }\n unsigned int val()const{return _v;}\n mint& operator++(){\n _v++;\n if(_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--(){\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int){\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int){\n mint result = *this;\n --*this;\n return result;\n }\n mint& operator+=(const mint& rhs){\n _v += rhs._v;\n if(_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs){\n _v += mod() - rhs._v;\n if(_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs){\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs){return *this = *this * rhs.inv();}\n mint operator+()const{return *this;}\n mint operator-()const{return mint() - *this;}\n mint pow(long long n)const{\n assert(0 <= n);\n mint x = *this, r = 1;\n while(n){\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv()const{\n auto eg = inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n friend mint operator+(const mint& lhs, const mint& rhs){return mint(lhs) += rhs;}\n friend mint operator-(const mint& lhs, const mint& rhs){return mint(lhs) -= rhs;}\n friend mint operator*(const mint& lhs, const mint& rhs){return mint(lhs) *= rhs;}\n friend mint operator/(const mint& lhs, const mint& rhs){return mint(lhs) /= rhs;}\n friend bool operator==(const mint& lhs, const mint& rhs){return lhs._v == rhs._v;}\n friend bool operator!=(const mint& lhs, const mint& rhs){return lhs._v != rhs._v;}\nprivate:\n unsigned int _v;\n static barrett bt;\n static unsigned int umod(){return bt.umod();}\n};\ntemplate <int id>\nbarrett dynamic_modint<id>::bt(998244353);\nusing modint = dynamic_modint<-1>;\ntemplate<int id>\nstd::ostream &operator<<(std::ostream &dest, const dynamic_modint<id> &a){\n dest << a.val();\n return dest;\n}\n#include <limits>\n// 符号なし整数 -> 符号付き整数\ntemplate <class T>\nusing make_signed_t = typename std::make_signed<T>::type;\n// 符号付き整数 -> 符号なし整数\ntemplate <class T>\nusing make_unsigned_t = typename std::make_unsigned<T>::type;\n// 符号付き32bit整数か\ntemplate <class T>\nusing is_signed_int32 = typename std::conditional<std::is_same<T, int>::value || std::is_same<T, int32_t>::value, std::true_type, std::false_type>::type;\n// 符号なし32bit整数か\ntemplate <class T>\nusing is_unsigned_int32 = typename std::conditional<std::is_same<T, unsigned int>::value || std::is_same<T, uint32_t>::value, std::true_type, std::false_type>::type;\n// 符号付き64bit整数か\ntemplate <class T>\nusing is_signed_int64 = typename std::conditional<std::is_same<T, long long int>::value || std::is_same<T, int64_t>::value, std::true_type, std::false_type>::type;\n// 符号なし64bit整数か\ntemplate <class T>\nusing is_unsigned_int64 = typename std::conditional<std::is_same<T, unsigned long long>::value || std::is_same<T, uint64_t>::value, std::true_type, std::false_type>::type;\n// 符号付き128bit整数か\ntemplate <class T>\nusing is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type;\n// 符号なし128bit整数か\ntemplate <class T>\nusing is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;\n// 128bit整数か\ntemplate <class T>\nusing is_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value || std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;\n// 32bitまたは64bitの整数か\ntemplate<class T>\nusing is_intle64 = typename std::conditional<is_signed_int32<T>::value || is_signed_int64<T>::value || is_unsigned_int32<T>::value || is_unsigned_int64<T>::value, std::true_type, std::false_type>::type;\n// 32bitまたは64bitの符号付き整数か\ntemplate<class T>\nusing is_signed_intle64 = typename std::conditional<is_signed_int32<T>::value || is_signed_int64<T>::value, std::true_type, std::false_type>::type;\n// 32bitまたは64bitの符号なし整数か\ntemplate<class T>\nusing is_unsigned_intle64 = typename std::conditional<is_unsigned_int32<T>::value || is_unsigned_int64<T>::value, std::true_type, std::false_type>::type;\n\ntemplate<class T>\nusing is_not_t = typename std::conditional<T::value, std::false_type, std::true_type>::type;\n\nunsigned long long random_once(){\n static std::random_device seed_gen;\n static std::mt19937_64 engine(seed_gen());\n static unsigned long long ret = engine();\n return ret;\n}\n\nunsigned long long random_number(){\n static std::random_device seed_gen;\n static std::mt19937_64 engine(seed_gen());\n return engine();\n}\n\n// [low, high]\nunsigned long long random_number(unsigned long long low, unsigned long long high){\n static std::random_device seed_gen;\n static std::mt19937_64 engine(seed_gen());\n assert(high >= low);\n unsigned long long diff = high - low + 1;\n return engine() % diff + low;\n}\nunsigned long long ceillog2(unsigned long long x){\n int res = 1;\n while((1ULL << res) < x) res++;\n return res;\n}\n\n// uint32 : uKey ∈ [0, 2^31 - 1)\n// uint64 : uKey ∈ [0, 2^63 - 1)\ntemplate<typename uKey, typename Val>\nstruct uhash_map{\n static_assert(is_unsigned_intle64<uKey>::value, \"uKey must be unsigned integer (32 or 64bit)\");\nprivate:\n using Key = typename std::make_signed<uKey>::type;\n static constexpr int initial_size = 8; // 指定しなかった場合の初期サイズ\n static constexpr float alpha = 0.7; // 占有率がこれを超えると再構築\n static constexpr Key null_val = std::numeric_limits<Key>::min();\n static constexpr Key inf = std::numeric_limits<Key>::max();\n static const unsigned long long r;\n int table_size, table_size_mod;\n int occupied_cnt, elem_cnt; // 使われている要素の数, そのうちまだ消されていない要素の数\n std::vector<std::pair<Key, Val>> v;\n size_t hash(unsigned long long x){\n x += r;\n x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;\n x = (x ^ (x >> 27)) * 0x94d049bb133111eb;\n return (x ^ (x >> 31)) & table_size_mod;\n }\n void expand(){\n std::vector<std::pair<Key, Val>> tmp(elem_cnt, {null_val, Val()});\n for(int i = 0, j = 0; i < table_size; i++) if(v[i].first >= 0) tmp[j++] = v[i];\n occupied_cnt = elem_cnt = 0;\n table_size <<= 1;\n table_size_mod = table_size - 1;\n v = std::vector<std::pair<Key, Val>>(table_size, {null_val, Val()});\n for(int i = 0; i < tmp.size(); i++) emplace_inner(tmp[i].first, tmp[i].second);\n }\n void emplace_inner(Key x, Val y){\n if(occupied_cnt > table_size * alpha) expand();\n int i = hash(x);\n while(true){\n if(v[i].first == null_val){\n v[i] = {x, y};\n occupied_cnt++;\n elem_cnt++;\n return;\n }else if(v[i].first == x || v[i].first == -x - 1){\n if(v[i].first == -x - 1){\n elem_cnt++;\n v[i] = {x, y};\n }\n return;\n }\n i = (i + 1) & table_size_mod;\n }\n }\n void emplace_replace_inner(Key x, Val y){\n if(occupied_cnt > table_size * alpha) expand();\n int i = hash(x);\n while(true){\n if(v[i].first == null_val){\n v[i] = {x, y};\n occupied_cnt++;\n elem_cnt++;\n return;\n }else if(v[i].first == x || v[i].first == -x - 1){\n elem_cnt += (v[i].first == -x - 1);\n v[i] = {x, y};\n return;\n }\n i = (i + 1) & table_size_mod;\n }\n }\n void erase_inner(Key x){\n int i = hash(x);\n while(true){\n if(v[i].first == null_val) return;\n else if(v[i].first == x || v[i].first == -x - 1){\n elem_cnt -= (v[i].first == x);\n v[i].first = -x - 1;\n return;\n }\n i = (i + 1) & table_size_mod;\n }\n }\n bool find_inner(Key x){\n int i = hash(x);\n while(true){\n if(v[i].first == null_val) return false;\n else if(v[i].first == x || v[i].first == -x - 1) return v[i].first == x;\n i = (i + 1) & table_size_mod;\n }\n }\n std::pair<bool, Val> at_inner(Key x){\n int i = hash(x);\n while(true){\n if(v[i].first == null_val) return std::make_pair(false, v[i].second);\n else if(v[i].first == x || v[i].first == -x - 1) return (v[i].first == x ? std::make_pair(true, v[i].second) : std::make_pair(false, v[i].second));\n i = (i + 1) & table_size_mod;\n }\n }\npublic:\n uhash_map(): table_size(initial_size), table_size_mod(table_size - 1), occupied_cnt(0), elem_cnt(0), v(table_size, {null_val, Val()}){}\n uhash_map(int _sz): table_size(1 << ceillog2(_sz)), table_size_mod(table_size - 1), occupied_cnt(0), elem_cnt(0), v(table_size, {null_val, Val()}){}\n // 追加, すでにある場合は無視\n void emplace(uKey x, Val y){\n assert(x < inf);\n emplace_inner(x, y);\n }\n // 追加, すでにある場合は置き換える\n void emplace_replace(uKey x, Val y){\n assert(x < inf);\n emplace_replace_inner(x, y);\n }\n // 削除, 無い場合は無視\n void erase(uKey x){\n assert(x < inf);\n erase_inner(x);\n }\n // 検索\n bool find(uKey x){\n assert(x < inf);\n return find_inner(x);\n }\n // 存在するか, 存在する場合その値\n std::pair<bool, Val> at(uKey x){\n assert(x < inf);\n return at_inner(x);\n }\n int size(){\n return elem_cnt;\n }\n bool empty(){\n return elem_cnt == 0;\n }\n std::vector<std::pair<uKey, Val>> enumerate(){\n std::vector<std::pair<uKey, Val>> res;\n for(int i = 0; i < table_size; i++) if(v[i].first >= 0) res.push_back(v[i]);\n return res;\n }\n void clear(){\n table_size = initial_size;\n table_size_mod = table_size - 1;\n occupied_cnt = elem_cnt = 0;\n v = std::vector<std::pair<Key, Val>>(table_size, {null_val, Val()});\n }\n};\ntemplate<typename uKey, typename Val>\nconst unsigned long long uhash_map<uKey, Val>::r = random_number();\n// 素数m, 数列A, bを与える\n// 各a_iに対してb ^ k ≡ a_iを満たすkを返す\ntemplate<typename mint>\nstd::vector<int> bsgs_many(int b, const std::vector<int> &A){\n int init_size = 2e6; // mod998244353, |A| = 2e5で設定 メモリ130MB |A|が大きい場合は1e7などにする \n init_size = std::min(init_size, mint::mod());\n // 前処理 O(init_size)\n uhash_map<unsigned, int> mp(init_size * 2);\n mint x = 1;\n for(int i = 0; i < init_size; i++){\n mp.emplace(x.val(), i);\n x *= b;\n }\n std::vector<int> res;\n int imax = (mint::mod() + init_size - 1) / init_size;\n mint y = mint(b).pow(2 * mint::mod() - 2 - init_size); // b ^ {-init_size}\n // 計算 O(|A| * mod / init_size)\n for(int a : A){\n x = a;\n for(int i = 0; i < imax; i++){\n auto [f, j] = mp.at(x.val());\n if(f){\n res.push_back(i * init_size + j);\n break;\n }\n x *= y;\n }\n }\n return res;\n}\n#include <cstdint>\n\nstruct barrett_reduction{\n unsigned int mod;\n unsigned long long m;\n barrett_reduction(unsigned int _mod) : mod(_mod){\n m = ((__uint128_t)1 << 64) / mod;\n }\n unsigned int reduce(unsigned int a){\n unsigned long long q = ((__uint128_t)a * m) >> 64;\n a -= q * mod; // 0 <= a < 2 * mod\n // return a;\n return a >= mod ? a - mod : a;\n }\n unsigned int mul(unsigned int a, unsigned int b){\n return reduce((unsigned long long)a * b);\n }\n // {gcd(a, mod), x}, such that a * x ≡ gcd(a, mod)\n std::pair<unsigned int, unsigned int> inv(unsigned int a){\n if(a >= mod) a = reduce(a);\n if(a == 0) return {mod, 0};\n unsigned int s = mod, t = a;\n long long m0 = 0, m1 = 1;\n while(t){\n int u = s / t;\n s -= t * u;\n m0 -= m1 * u;\n std::swap(m0, m1);\n std::swap(s, t);\n }\n if(m0 < 0) m0 += mod / s;\n return {s, m0};\n }\n};\n// 64bit mod対応\n// R = 2^64\n// 偶数modだと壊れる\nstruct montgomery_reduction_64bit{\nprivate:\n // [0, 2 * MOD)\n inline uint64_t reduce_unsafe(__uint128_t x) const{\n x = (x + ((uint64_t)x * (uint64_t)NEG_INV) * MOD) >> 64;\n return x;\n }\n void _set_mod(uint64_t mod){\n assert((mod < (1ULL << 63)) && (mod & 1));\n MOD = mod;\n NEG_INV = 0;\n __uint128_t s = 1, t = 0;\n for(int i = 0; i < 64; i++){\n if (~t & 1) {\n t += MOD;\n NEG_INV += s;\n }\n t >>= 1;\n s <<= 1;\n }\n R2 = ((__uint128_t)1 << 64) % MOD;\n R2 = R2 * R2 % MOD;\n ONE = generate(1);\n }\n __uint128_t MOD, NEG_INV, R2;\n uint64_t ONE;\npublic:\n montgomery_reduction_64bit(){}\n montgomery_reduction_64bit(uint64_t mod){_set_mod(mod);}\n void set_mod(uint64_t mod){\n _set_mod(mod);\n }\n uint64_t mod()const{\n return MOD;\n }\n inline uint64_t one()const{\n return ONE;\n }\n inline uint64_t generate(uint64_t x)const{\n return reduce((__uint128_t)x * R2);\n }\n inline uint64_t reduce(__uint128_t x)const{\n x = (x + ((uint64_t)x * (uint64_t)NEG_INV) * MOD) >> 64;\n return x < MOD ? x : x - MOD;\n }\n inline uint64_t fix(uint64_t x)const{\n return x < MOD ? x : x - MOD;\n }\n // [0, 2MOD)\n inline uint64_t mul(uint64_t mx, uint64_t my)const{\n return reduce_unsafe((__uint128_t)mx * my);\n }\n inline uint64_t mul_safe(uint64_t mx, uint64_t my)const{\n return reduce((__uint128_t)mx * my);\n }\n // [0, 2MOD)\n inline uint64_t add(uint64_t mx, uint64_t my)const{\n return (mx >= MOD ? mx - MOD : mx) + (my >= MOD ? my - MOD : my);\n }\n inline uint64_t add_safe(uint64_t mx, uint64_t my)const{\n uint64_t res = (mx >= MOD ? mx - MOD : mx) + (my >= MOD ? my - MOD : my);\n return res >= MOD ? res - MOD : res;\n }\n // [0, 2MOD)\n inline uint64_t sub(uint64_t mx, uint64_t my)const{\n if(my >= MOD) my -= MOD;\n return mx >= my ? mx - my : mx + MOD - my;\n }\n inline uint64_t sub_safe(uint64_t mx, uint64_t my)const{\n if(my >= MOD) my -= MOD;\n uint64_t res = mx >= my ? mx - my : mx + MOD - my;\n return res >= MOD ? res - MOD : res;\n }\n inline uint64_t pow(uint64_t ma, uint64_t b)const{\n uint64_t ret = one();\n while(b){\n if(b & 1) ret = mul(ret, ma);\n ma = mul(ma, ma);\n b >>= 1;\n }\n return ret;\n }\n inline uint64_t pow_safe(uint64_t ma, uint64_t b)const{\n return fix(pow(ma, b));\n }\n};\nunsigned long long mod_pow_mr(unsigned long long a, unsigned long long b, unsigned long long m){\n montgomery_reduction_64bit mr(m);\n return mr.reduce(mr.pow(mr.generate(a), b));\n}\nbool _miller_rabin_mr(unsigned long long n, const montgomery_reduction_64bit &mr){\n static std::vector<int> small_p{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47};\n static std::vector<unsigned long long> A{2, 325, 9375, 28178, 450775, 9780504, 1795265022};\n static std::vector<unsigned long long> B{2, 7, 61};\n if(n <= 1) return false;\n if(n <= 50){\n for(int l = n < 20 ? 0 : 8, r = n < 20 ? 8 : 15; l < r; l++) if(small_p[l] == n) return true;\n return false;\n }\n if(!(n & 1)) return false;\n unsigned long long d = n - 1;\n unsigned long long one = mr.one(), mone = mr.generate(n - 1);\n d >>= __builtin_ctzll(d);\n for(unsigned long long a : (n >> 32) ? A : B){\n if(a % n == 0) continue;\n unsigned long long d2s = d; // d * 2^s, 0 <= s <= (n - 1)が2で割れる回数\n unsigned long long y = mr.pow_safe(mr.generate(a), d);\n while(d2s != n - 1 && y != one && y != mone){\n y = mr.mul_safe(y, y);\n d2s <<= 1;\n }\n if(y != mone && !(d2s & 1)) return false;\n }\n return true;\n}\nbool miller_rabin_mr(unsigned long long n){\n if(n % 2 == 0) return n == 2 ? true : false;\n montgomery_reduction_64bit mr(n);\n return _miller_rabin_mr(n, mr);\n}\n// https://en.wikipedia.org/wiki/Binary_GCD_algorithm\nunsigned long long binary_gcd(unsigned long long a, unsigned long long b){\n if(!a || !b) return !a ? b : a;\n int shift = __builtin_ctzll(a | b); // [1] gcd(2a', 2b') = 2 * gcd(a', b')\n a >>= __builtin_ctzll(a);\n do{\n // if b is odd\n // gcd(2a', b) = gcd(a', b), if a = 2a'(a is even)\n // gcd(a, b) = gcd(|a - b|, min(a, b)), if a is odd\n b >>= __builtin_ctzll(b); // make b odd\n if(a > b) std::swap(a, b);\n b -= a;\n }while(b); // gcd(a, 0) = a\n return a << shift; // [1]\n}\nunsigned long long generate_random_prime(unsigned long long min_n = 2, unsigned long long max_n = ~0ULL){\n std::random_device seed_gen;\n std::mt19937_64 engine(seed_gen());\n __uint128_t len = max_n - min_n + 1;\n // https://en.wikipedia.org/wiki/Prime_number_theorem\n while(true){\n unsigned long long a = engine() % len + min_n;\n if(miller_rabin_mr(a)){\n return a;\n }\n }\n}\nnamespace rho_factorization{\n unsigned long long rho(unsigned long long n){\n static std::vector<int> small_p{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47};\n\n for(int sp : small_p) if(n % sp == 0) return sp; // n < 50\n\n montgomery_reduction_64bit mr(n);\n if(_miller_rabin_mr(n, mr)) return n;\n\n auto try_factorize = [n, mr](unsigned long long c){\n c = mr.generate(c);\n auto f = [mr, c](unsigned long long mx){\n return mr.add(mr.mul(mx, mx), c);\n };\n unsigned long long m = 1LL << ((64 - __builtin_clzll(n)) / 8);\n unsigned long long y = n, r = 1, q = 1;\n unsigned long long x, g, k, ys;\n do{\n x = y;\n y = mr.generate(y);\n for(int i = 0; i < r; i++) y = f(y);\n y = mr.reduce(y);\n\n k = 0;\n while(k < r && g == 1){\n q = mr.generate(q);\n y = mr.generate(y);\n ys = y;\n for(int i = 0; i < std::min(m, r - k); i++){\n y = f(y);\n unsigned long long z = mr.reduce(y);\n q = mr.mul(q, mr.generate(x > z ? x - z : z - x));\n }\n y = mr.reduce(y);\n g = binary_gcd(mr.reduce(q), n);\n k += m;\n }\n r <<= 1;\n }while(g == 1);\n if(g == n){\n do{\n ys = f(ys);\n unsigned long long z = mr.reduce(ys);\n g = binary_gcd(x > z ? x - z : z - x, n);\n }while(g == 1);\n }\n return g; // g == n when failure\n };\n unsigned long long c = 1, res = n;\n do{\n res = try_factorize(c);\n // c = generate_random_prime(2, n - 1);\n c = (c + 1) % n;\n }while(res == n);\n return res;\n }\n std::vector<unsigned long long> factorize(unsigned long long n){\n if(n <= 1) return {};\n unsigned long long x = rho(n);\n if(x == n) return {x};\n auto l = factorize(x);\n auto r = factorize(n / x);\n l.insert(l.end(), r.begin(), r.end());\n return l;\n }\n // {素数, 個数}の形で返す\n std::vector<std::pair<unsigned long long, int>> factorize2(unsigned long long n){\n auto p = factorize(n);\n sort(p.begin(), p.end());\n std::vector<std::pair<unsigned long long, int>> ret;\n for(int i : p){\n if(ret.empty() || ret.back().first != i) ret.push_back({i, 1});\n else ret.back().second++;\n }\n return ret;\n }\n // 素因数の集合(重複なし, ソート済)を返す\n std::vector<unsigned long long> prime_factor(unsigned long long n){\n auto p = factorize(n);\n std::sort(p.begin(), p.end());\n p.erase(std::unique(p.begin(), p.end()), p.end());\n return p;\n }\n // 10^18以下の高度合成数 897612484786617600の約数が103680個なので全列挙して良さそう\n std::vector<unsigned long long> divisor(unsigned long long n){\n auto p = factorize(n);\n std::sort(p.begin(), p.end());\n\n std::vector<std::pair<unsigned long long, int>> x;\n\n for(int i = 0; i < p.size(); i++){\n if(!i || p[i] != p[i - 1]) x.push_back({p[i], 1});\n else x.back().second++;\n }\n int sz = 1;\n for(auto [p_cur, cnt] : x) sz *= cnt + 1;\n\n std::vector<unsigned long long> res(sz);\n res[0] = 1;\n int r_prev = 1, r = 1;\n for(auto [p_cur, cnt] : x){\n unsigned long long ppow = 1;\n for(int c = 0; c < cnt; c++){\n ppow *= p_cur;\n for(int i = 0; i < r_prev; i++){\n res[r++] = res[i] * ppow;\n }\n }\n r_prev = r;\n }\n return res;\n }\n int mobius_function(long long x){\n auto P = rho_factorization::factorize(x);\n for(long long p : P) if((x / p) % p == 0) return 0;\n return P.size() % 2 == 0 ? 1 : -1;\n }\n unsigned long long totient_function(unsigned long long n){\n unsigned long long res = n;\n auto prims = rho_factorization::prime_factor(n);\n for(auto p : prims) res -= res / p;\n return res;\n }\n};\n// p: 素数\nunsigned long long find_primitive_root(unsigned long long p){\n static std::random_device seed_gen;\n static std::mt19937_64 engine(seed_gen());\n //assert(miller_rabin_mr(p));\n auto primes = rho_factorization::prime_factor(p - 1);\n while(true){\n bool f = true;\n unsigned long long a = engine() % (p - 1) + 1;\n for(unsigned long long pk : primes){\n // a ^ (p - 1) / pk ≡ 1 (mod p) -> no\n if(mod_pow_mr(a, (p - 1) / pk, p) == 1){\n f = false;\n break;\n }\n }\n if(f) return a;\n }\n}\nusing mint = dynamic_modint<0>;\n\nint main(){\n int p, t;\n std::cin >> p >> t;\n mint::set_mod(p);\n int kon = find_primitive_root(p);\n vector<int> N, G, X;\n range(i, 0, t){\n int n;\n std::cin >> n;\n N.push_back(n);\n range(j, 0, n){\n int g;\n std::cin >> g;\n G.push_back(g);\n }\n int x;\n std::cin >> x;\n X.push_back(x);\n }\n range(i, 0, t) G.push_back(X[i]);\n\n accumulate1d<int> Nac(N);\n auto b = bsgs_many<mint>(kon, G);\n int q = p - 1;\n range(i, 0, t){\n int lid = Nac.query(0, i);\n int rid = lid + N[i];\n int g_ = q;\n range(j, lid, rid) g_ = gcd(g_, b[j]);\n int d = b[Nac.query(0, t) + i];\n if(d % g_ == 0){\n std::cout << 1 << '\\n';\n }else{\n std::cout << 0 << '\\n';\n }\n }\n}", "accuracy": 0.029411764705882353, "time_ms": 80, "memory_kb": 35848, "score_of_the_acc": -0.9022, "final_rank": 20 }, { "submission_id": "aoj_3062_8737836", "code_snippet": "//\n// calc order\n// min: x s.t. a^x \\equiv 1 (mod p)\n//\n// verified:\n// AtCoder ABC 335 G - Discrete Logarithm Problems\n// https://atcoder.jp/contests/abc335/tasks/abc335_g\n//\n// AOJ 3062 Product\n// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3062\n//\n\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n\n// mod_pow, mod_inv\ntemplate<class T> T mod_pow(T a, T n, T m) {\n T res = 1;\n while (n > 0) {\n if (n % 2 == 1) res = res * a % m;\n a = a * a % m;\n n >>= 1;\n }\n return res;\n};\n\ntemplate<class T> T mod_inv(T a, T m) {\n T b = m, u = 1, v = 0;\n while (b > 0) {\n T t = a / b;\n a -= t * b, swap(a, b);\n u -= t * v, swap(u, v);\n }\n u %= m;\n if (u < 0) u += m;\n return u;\n};\n\n// montgomery modint (MOD < 2^62, MOD is odd)\nstruct MontgomeryModInt64 {\n using mint = MontgomeryModInt64;\n using u64 = uint64_t;\n using u128 = __uint128_t;\n \n // static menber\n static u64 MOD;\n static u64 INV_MOD; // INV_MOD * MOD ≡ 1 (mod 2^64)\n static u64 T128; // 2^128 (mod MOD)\n \n // inner value\n u64 val;\n \n // constructor\n MontgomeryModInt64() : val(0) { }\n MontgomeryModInt64(long long v) : val(reduce((u128(v) + MOD) * T128)) { }\n u64 get() const {\n u64 res = reduce(val);\n return res >= MOD ? res - MOD : res;\n }\n \n // mod getter and setter\n static u64 get_mod() { return MOD; }\n static void set_mod(u64 mod) {\n assert(mod < (1LL << 62));\n assert((mod & 1));\n MOD = mod;\n T128 = -u128(mod) % mod;\n INV_MOD = get_inv_mod();\n }\n static u64 get_inv_mod() {\n u64 res = MOD;\n for (int i = 0; i < 5; ++i) res *= 2 - MOD * res;\n return res;\n }\n static u64 reduce(const u128 &v) {\n return (v + u128(u64(v) * u64(-INV_MOD)) * MOD) >> 64;\n }\n \n // arithmetic operators\n mint operator + () const { return mint(*this); }\n mint operator - () const { return mint() - mint(*this); }\n mint operator + (const mint &r) const { return mint(*this) += r; }\n mint operator - (const mint &r) const { return mint(*this) -= r; }\n mint operator * (const mint &r) const { return mint(*this) *= r; }\n mint operator / (const mint &r) const { return mint(*this) /= r; }\n mint& operator += (const mint &r) {\n if ((val += r.val) >= 2 * MOD) val -= 2 * MOD;\n return *this;\n }\n mint& operator -= (const mint &r) {\n if ((val += 2 * MOD - r.val) >= 2 * MOD) val -= 2 * MOD;\n return *this;\n }\n mint& operator *= (const mint &r) {\n val = reduce(u128(val) * r.val);\n return *this;\n }\n mint& operator /= (const mint &r) {\n *this *= r.inv();\n return *this;\n }\n mint inv() const { return pow(MOD - 2); }\n mint pow(u128 n) const {\n mint res(1), mul(*this);\n while (n > 0) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n\n // other operators\n bool operator == (const mint &r) const {\n return (val >= MOD ? val - MOD : val) == (r.val >= MOD ? r.val - MOD : r.val);\n }\n bool operator != (const mint &r) const {\n return (val >= MOD ? val - MOD : val) != (r.val >= MOD ? r.val - MOD : r.val);\n }\n mint& operator ++ () {\n ++val;\n if (val >= MOD) val -= MOD;\n return *this;\n }\n mint& operator -- () {\n if (val == 0) val += MOD;\n --val;\n return *this;\n }\n mint operator ++ (int) {\n mint res = *this;\n ++*this;\n return res;\n }\n mint operator -- (int) {\n mint res = *this;\n --*this;\n return res;\n }\n friend istream& operator >> (istream &is, mint &x) {\n long long t;\n is >> t;\n x = mint(t);\n return is;\n }\n friend ostream& operator << (ostream &os, const mint &x) {\n return os << x.get();\n }\n friend mint pow(const mint &r, long long n) {\n return r.pow(n);\n }\n friend mint inv(const mint &r) {\n return r.inv();\n }\n};\n\ntypename MontgomeryModInt64::u64\nMontgomeryModInt64::MOD, MontgomeryModInt64::INV_MOD, MontgomeryModInt64::T128;\n\n\n// Miller-Rabin\nbool MillerRabin(long long N, const vector<long long> &A) {\n assert(N % 2 == 1);\n assert(N < (1LL<<62));\n using mint = MontgomeryModInt64;\n mint::set_mod(N);\n \n long long s = 0, d = N - 1;\n while (d % 2 == 0) {\n ++s;\n d >>= 1;\n }\n for (auto a : A) {\n if (N <= a) return true;\n mint x = mint(a).pow(d);\n if (x != 1) {\n long long t;\n for (t = 0; t < s; ++t) {\n if (x == N - 1) break;\n x *= x;\n }\n if (t == s) return false;\n }\n }\n return true;\n}\n\nbool is_prime(long long N) {\n if (N <= 1) return false;\n else if (N == 2) return true;\n else if (N % 2 == 0) return false;\n else if (N < 4759123141LL)\n return MillerRabin(N, {2, 7, 61});\n else\n return MillerRabin(N, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});\n}\n\n\n// Pollard's Rho\nunsigned int xor_shift_rng() {\n static unsigned int tx = 123456789, ty=362436069, tz=521288629, tw=88675123;\n unsigned int tt = (tx^(tx<<11));\n tx = ty, ty = tz, tz = tw;\n return ( tw=(tw^(tw>>19))^(tt^(tt>>8)) );\n}\n\nlong long pollard(long long N) {\n if (N % 2 == 0) return 2;\n if (is_prime(N)) return N;\n \n assert(N < (1LL<<62));\n using mint = MontgomeryModInt64;\n mint::set_mod(N);\n \n long long step = 0;\n while (true) {\n mint r = xor_shift_rng(); // random r\n auto f = [&](mint x) -> mint { return x * x + r; };\n mint x = ++step, y = f(x);\n while (true) {\n long long p = gcd((y - x).get(), N);\n if (p == 0 || p == N) break;\n if (p != 1) return p;\n x = f(x);\n y = f(f(y));\n }\n }\n}\n\nvector<long long> pollard_prime_factorize(long long N) {\n if (N == 1) return {};\n long long p = pollard(N);\n if (p == N) return {p};\n vector<long long> left = pollard_prime_factorize(p);\n vector<long long> right = pollard_prime_factorize(N / p);\n if (left.size() > right.size()) swap(left, right);\n left.insert(left.end(), right.begin(), right.end());\n sort(left.begin(), left.end());\n return left;\n}\n\nvector<pair<long long, long long>> prime_factorize(long long N) {\n vector<pair<long long, long long>> res;\n const auto &prs = pollard_prime_factorize(N);\n long long prev = -1, num = 0;\n for (const auto &pr : prs) {\n if (pr == prev) ++num;\n else {\n if (prev != -1) res.emplace_back(prev, num);\n prev = pr, num = 1;\n }\n }\n if (prev != -1) res.emplace_back(prev, num);\n return res;\n}\n\n\n// various methods mod prime P\nstruct PrimeProcessor {\n using mint = MontgomeryModInt64;\n \n // input prime\n long long prime;\n vector<pair<long long, long long>> pf; // prime factorization of p-1\n \n // constructors\n PrimeProcessor() {}\n PrimeProcessor(long long p) : prime(p) {\n init(p);\n }\n \n // initializer\n void init(long long p) {\n assert(is_prime(p));\n prime = p;\n if (p % 2 == 1) {\n assert(p < (1LL<<62));\n prime = p;\n pf = prime_factorize(prime - 1);\n mint::set_mod(prime);\n }\n }\n \n // min: x s.t. a^x \\equiv 1 (mod prime)\n long long calc_order(long long a) {\n assert(a != 0);\n if (prime == 2) return 1;\n long long res = prime - 1;\n for (const auto &[p, num] : pf) {\n while (res % p == 0 && mint(a).pow(res / p) == 1) res /= p;\n }\n return res;\n }\n};\n\n\n\n/*/////////////////////////////*/\n// Examples\n/*/////////////////////////////*/\n\nvoid ABC_335_G() {\n long long N, P;\n cin >> N >> P;\n vector<long long> A(N);\n for (int i = 0; i < N; ++i) cin >> A[i];\n \n PrimeProcessor pp(P);\n map<long long, long long> ma;\n for (auto a : A) {\n long long order = pp.calc_order(a);\n ++ma[order];\n }\n\n long long res = 0;\n for (auto [v1, num1] : ma) {\n for (auto [v2, num2] : ma) {\n if (v2 % v1 == 0) res += num1 * num2;\n }\n }\n cout << res << endl;\n}\n\nvoid AOJ_3062() {\n int P, T;\n cin >> P >> T;\n PrimeProcessor pp(P);\n while (T--) {\n int N, A;\n cin >> N;\n int g = P - 1;\n for (int i = 0; i < N; ++i) {\n int G;\n cin >> G;\n g = gcd(g, (P - 1) / pp.calc_order(G));\n }\n cin >> A;\n int ga = (P - 1) / pp.calc_order(A);\n cout << (ga % g ? 0 : 1) << endl;\n }\n}\n\n\nint main() {\n //ABC_335_G();\n AOJ_3062();\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 3488, "score_of_the_acc": -0.0688, "final_rank": 1 }, { "submission_id": "aoj_3062_8737119", "code_snippet": "using namespace std;\n#include<bits/stdc++.h>\nvoid _main();int main(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(30);_main();return 0;}\ntypedef long long ll;typedef long double ld;\ntypedef unsigned long long ull;\ntypedef unsigned int uint;\ntypedef string str;\n#define rep1(a) for(ll i = 0; i < (a); i++)\n#define rep2(i, a) for(ll i = 0; i < (a); i++)\n#define rep3(i, a, b) for(ll i = (a); i < (b); i++)\n#define rep4(i, a, b, c) for(ll i = (a); i < (b); i += (c))\n#define overload4(a, b, c, d, e, ...) e\n#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)\n#define ALL(x) std::begin(x),std::end(x)\n#define rALL(x) std::rbegin(x),std::rend(x)\n#define INF ((1LL<<62)-(1LL<<31))\n#define bit(x,i) (((x)>>(i))&1)\n#define fi first\n#define se second\n#define pb push_back\n#define Endl endl\n#define spa \" \"\n#define YesNo(x) cout<<(x?\"Yes\":\"No\")<<endl;\n#define eps (1e-10)\n\n//コンパイル時の引数にBLUEBERRYを渡すとdeb関数が使える\n#ifdef BLUEBERRY\n#define deb print\n// #define _GLIBCXX_DEBUG\n#else\n#define deb(...)\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n//!?!?\n#define O print\n//可変長引数で入力を受け取りつつ変数を宣言\ninline void scan(){}\ntemplate<class Head,class... Tail>\ninline void scan(Head&head,Tail&... tail){std::cin>>head;scan(tail...);}\n#define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;scan(__VA_ARGS__)\n//vectorのcin\ntemplate<typename T>\nstd::istream &operator>>(std::istream&is,std::vector<T>&v){for(T &in:v){is>>in;}return is;}\n//vectorのcout\ntemplate<typename T>\nstd::ostream &operator<<(std::ostream&os,const std::vector<T>&v){for(auto it=std::begin(v);it!=std::end(v);){os<<*it<<((++it)!=std::end(v)?\" \":\"\");}return os;}\n//x,y,x,yを渡すとldで距離を返す\nlong double my_distance(long double xi,long double yi,long double xj,long double yj){return sqrt(abs((xi-xj)*(xi-xj))+abs((yi-yj)*(yi-yj)));}\n//可変長引数のprint関数\nvoid print(){cout << '\\n';}\ntemplate<class T, class... Ts>\nvoid print(const T& a, const Ts&... b){cout << a;(cout << ... << (cout << ' ', b));cout << '\\n';}\n//可変長引数のmin\ntemplate<class... T>\nconstexpr auto min(T... a){return min(initializer_list<common_type_t<T...>>{a...});}\n//可変長引数のmax\ntemplate<class... T>\nconstexpr auto max(T... a){return max(initializer_list<common_type_t<T...>>{a...});}\ntemplate<typename T,typename U>inline bool chmax(T&a,U b){if(a<b){a=b;return 1;}return 0;}\ntemplate<typename T,typename U>inline bool chmin(T&a,U b){if(a>b){a=b;return 1;}return 0;}\ntemplate<typename T> inline T sum(vector<T>&a){T ret{};for(auto&i:a)ret+=i;return ret;}\ntemplate<typename T> inline T min(vector<T>&a){T ret=a[0];for(auto&i:a)chmin(ret,i);return ret;}\ntemplate<typename T> inline T max(vector<T>&a){T ret=a[0];for(auto&i:a)chmax(ret,i);return ret;}\ntemplate<typename T> inline int len(vector<T>&a){return a.size();}\ninline int len(string&a){return a.size();}\n// n次元配列の初期化。第2引数の型のサイズごとに初期化していく。\ntemplate<typename A, size_t N, typename T>\nvoid Fill(A (&array)[N], const T &val){std::fill( (T*)array, (T*)(array+N), val );}\n//こめんとを付け外ししてMODを切り替える\n//ll MOD = INF;\n// ll MOD = 1000000007;\nll MOD = 998244353;\n\n//from:https://kenkoooo.hatenablog.com/entry/2016/11/30/163533 int128\nstd::ostream &operator<<(std::ostream &dest, __int128_t value) {std::ostream::sentry s(dest);if (s){__uint128_t tmp = value < 0 ? -value : value;char buffer[128];char *d = std::end(buffer);do{--d;*d = \"0123456789\"[tmp % 10];tmp /= 10;} while (tmp != 0);if (value < 0) {--d;*d = '-';}int len = std::end(buffer) - d;if (dest.rdbuf()->sputn(d, len) != len) {dest.setstate(std::ios_base::badbit);}}return dest;}\n__int128 parsetoint128(string &s) {__int128 ret = 0;for (int i = 0; i < (int)s.length(); i++)if ('0' <= s[i] && s[i] <= '9')ret=10*ret+(__int128_t)(s[i]-'0');return ret;}\n\n//回文判定 \nbool iskaibun(string s){ll k = s.size();rep(i,0,k/2){if(s[i]!=s[k-1-i]){return false;}}return true;}\n\n//二部グラフ判定 重みなしグラフを引数に取り、boolを返す\nbool isbipartite_graph(vector<vector<ll>>&g){ll v = g.size();vector<ll>col(v,-1);vector<bool>used(v,false);bool ret = true;rep(i,v){if(used[i])continue;col[i]=0;[DFS([&](auto&&f,ll pos,ll pr)->void{if(used[pos])return;used[pos]=true;for(auto to:g[pos]){if(to==pr)continue;if(used[to]&&col[pos]==col[to]){ret = false;return;}if(used[to])continue;col[to]=col[pos]^1;f(f,to,pos);}}),&i]{DFS(DFS,i,-1);}();}return ret;}\n//a~bの和 a<b\nll ran(ll a,ll b){return ((a+b)*(b-a+1))/2;}\n//座圧する\nll zaatu(vector<ll>&A){map<ll,ll>m;for(auto&&x:A)m[x]=0;ll ret = 0;for(auto&&[key,val]:m)val=ret++;for(auto&&x:A)x=m[x];return ret;}\n//約数列挙 引数に取った整数の約数のvectorを返す\nvector<ll>enumdiv(ll n){vector<ll>s;for(ll i = 1;i*i<=n;i++){if(n%i==0){s.push_back(i);if(i*i!=n)s.push_back(n/i);}}return s;}\n//トポロジカルソート グラフ、入次数カウント、頂点数を引数で渡すと、トポロジカルソートされた頂点列を返す\nvector<ll> topo_sort(vector<vector<ll>>&G,vector<ll>&nyu_cnt,ll v){vector<ll>ret;priority_queue<ll,vector<ll>,greater<ll>>pq;rep(i,0,v){if(nyu_cnt[i]==0)pq.push(i);}while(!pq.empty()){ll pos = pq.top();pq.pop();for(ll i:G[pos]){nyu_cnt[i]--;if(nyu_cnt[i]==0)pq.push(i);}ret.push_back(pos);}return ret;}\n//素因数分解 pair<素数、指数>のvectorを返す\nvector<pair<ll,ll>> soinsu_bunkai(ll x){vector<pair<ll,ll>>ret;rep(i,2,sqrt(x)+1){if(x%i==0){ll cnt{};while(x%i==0){x/=i;cnt++;}ret.push_back({i,cnt});}}if(x!=1)ret.push_back({x,1});return ret;}\n//二項係数MOD MODは上の方で設定、MAXまでのnCrをCOM(n,r)でとれる\nconst int MAX = 5000010;\nll fac[MAX], finv[MAX], invv[MAX];\nvoid COMinit(){fac[0]=fac[1]=finv[0]=finv[1]=invv[1]=1;for(int i=2;i<MAX;i++){fac[i]=fac[i-1]*i%MOD;invv[i]=MOD-invv[MOD%i]*(MOD/i)%MOD;finv[i]=finv[i-1]*invv[i]%MOD;}}\nll COM(int n,int k){if(n<k)return 0;if(n<0||k<0)return 0;if(k==0)return 1;return fac[n]*(finv[k]*finv[n-k]%MOD)%MOD;}\nll nPr(int n,int k){if(n<k)return 0;if(n<0||k<0)return 0;if(k==0)return 1;return fac[n]*(finv[n-k]);}\n//エラトステネスの篩 isprimeには素数かどうかが入っている\nvector<bool> isprime;vector<int> Era(int n) {isprime.resize(n, true);vector<int> res;isprime[0] = false; isprime[1] = false;for (int i = 2; i < n; ++i) isprime[i] = true;for (int i = 2; i < n; ++i){if (isprime[i]) {res.push_back(i);for (int j = i*2; j < n; j += i) isprime[j] = false;}}return res;}\n//Union-Find from https://zenn.dev/reputeless/books/standard-cpp-for-competitive-programming/vi((b%2==0?b-1:b)+2-(a%2==0?a+1:a))/2er/union-find\nclass UnionFind{public:UnionFind()=default;explicit UnionFind(size_t n):m_parentsOrSize(n, -1){}int find(int i){if(m_parentsOrSize[i]<0){return i;}return(m_parentsOrSize[i]=find(m_parentsOrSize[i]));}void merge(int a,int b){a=find(a);b=find(b);if(a!=b){if(-m_parentsOrSize[a]<-m_parentsOrSize[b]){std::swap(a,b);}m_parentsOrSize[a]+=m_parentsOrSize[b];m_parentsOrSize[b]=a;}}bool connected(int a,int b){return (find(a)==find(b));}int size(int i){return -m_parentsOrSize[find(i)];}private:std::vector<int>m_parentsOrSize;};\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\nll dx[8] = {0,1,0,-1,-1,-1,1,1},dy[8]={1,0,-1,0,-1,1,-1,1};\n\nll p;\nvector<pair<ll,ll>>soi;\nbool solve();\nvoid _main(){\n[]{[]{[]{[]{[]{}();}();}();}();}();\n\tcin >> p;\n\tsoi = soinsu_bunkai(p-1);\n\tint testcase = 1;\n\tcin >> testcase;\n\tfor(;testcase--;){\n\t\tif(solve()){\n\t\t\tO(1);\n\t\t\t// O(\"Yes\");\n\t\t}\n\t\telse{\n\t\t\tO(0);\n\t\t\t// O(\"-1\");\n\t\t\t// O(\"No\");\n\t\t}\n\t}\n\tcout<<flush;\n[]{[]{[]{[]{[]{}();}();}();}();}();\n}\n\n// #include<atcoder/all>\n// using namespace atcoder;\n// using mint = modint998244353;\n// using mint1 = modint1000000007;\n__int128_t modpow(__int128_t x,__int128_t y){\n\t__int128_t now = x;\n\t__int128_t ret = 1;\n\twhile(y>0){\n\t\tif(y&1){\n\t\t\tret *= now;\n\t\t\tret %= p;\n\t\t}\n\t\tnow *= now;\n\t\tnow %= p;\n\t\ty >>= 1ull;\n\t}\n\treturn ret;\n}\nbool solve(){\n\tLL(n);\n\tvector<ll>a(n);cin >> a;\n\tsort(ALL(a));\n\tLL(A);\n\t//Aの位数を求める。\n\tll Ai = p-1;\n\tfor(auto[num,val]:soi){\n\t\twhile(Ai%num==0&&modpow(A,Ai/num)==1)Ai/=num;\n\t}\n\tll ans = p-1;\n\trep(i,n){\n\t\tll m = p-1;\n\t\tfor(auto[num,val]:soi){\n\t\t\twhile(m%num==0&&modpow(a[i],m/num)==1)m/=num;\n\t\t}\n\t\tans = gcd(ans,(p-1)/m);\n\t}\n\tif(((p-1)/Ai)%ans==0)return 1;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 620, "memory_kb": 3884, "score_of_the_acc": -0.1717, "final_rank": 4 }, { "submission_id": "aoj_3062_8737055", "code_snippet": "using namespace std;\n#include<bits/stdc++.h>\nvoid _main();int main(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(30);_main();return 0;}\ntypedef long long ll;typedef long double ld;\ntypedef unsigned long long ull;\ntypedef unsigned int uint;\ntypedef string str;\n#define rep1(a) for(ll i = 0; i < (a); i++)\n#define rep2(i, a) for(ll i = 0; i < (a); i++)\n#define rep3(i, a, b) for(ll i = (a); i < (b); i++)\n#define rep4(i, a, b, c) for(ll i = (a); i < (b); i += (c))\n#define overload4(a, b, c, d, e, ...) e\n#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)\n#define ALL(x) std::begin(x),std::end(x)\n#define rALL(x) std::rbegin(x),std::rend(x)\n#define INF ((1LL<<62)-(1LL<<31))\n#define bit(x,i) (((x)>>(i))&1)\n#define fi first\n#define se second\n#define pb push_back\n#define Endl endl\n#define spa \" \"\n#define YesNo(x) cout<<(x?\"Yes\":\"No\")<<endl;\n#define eps (1e-10)\n\n//コンパイル時の引数にBLUEBERRYを渡すとdeb関数が使える\n#ifdef BLUEBERRY\n#define deb print\n// #define _GLIBCXX_DEBUG\n#else\n#define deb(...)\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n//!?!?\n#define O print\n//可変長引数で入力を受け取りつつ変数を宣言\ninline void scan(){}\ntemplate<class Head,class... Tail>\ninline void scan(Head&head,Tail&... tail){std::cin>>head;scan(tail...);}\n#define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;scan(__VA_ARGS__)\n//vectorのcin\ntemplate<typename T>\nstd::istream &operator>>(std::istream&is,std::vector<T>&v){for(T &in:v){is>>in;}return is;}\n//vectorのcout\ntemplate<typename T>\nstd::ostream &operator<<(std::ostream&os,const std::vector<T>&v){for(auto it=std::begin(v);it!=std::end(v);){os<<*it<<((++it)!=std::end(v)?\" \":\"\");}return os;}\n//x,y,x,yを渡すとldで距離を返す\nlong double my_distance(long double xi,long double yi,long double xj,long double yj){return sqrt(abs((xi-xj)*(xi-xj))+abs((yi-yj)*(yi-yj)));}\n//可変長引数のprint関数\nvoid print(){cout << '\\n';}\ntemplate<class T, class... Ts>\nvoid print(const T& a, const Ts&... b){cout << a;(cout << ... << (cout << ' ', b));cout << '\\n';}\n//可変長引数のmin\ntemplate<class... T>\nconstexpr auto min(T... a){return min(initializer_list<common_type_t<T...>>{a...});}\n//可変長引数のmax\ntemplate<class... T>\nconstexpr auto max(T... a){return max(initializer_list<common_type_t<T...>>{a...});}\ntemplate<typename T,typename U>inline bool chmax(T&a,U b){if(a<b){a=b;return 1;}return 0;}\ntemplate<typename T,typename U>inline bool chmin(T&a,U b){if(a>b){a=b;return 1;}return 0;}\ntemplate<typename T> inline T sum(vector<T>&a){T ret{};for(auto&i:a)ret+=i;return ret;}\ntemplate<typename T> inline T min(vector<T>&a){T ret=a[0];for(auto&i:a)chmin(ret,i);return ret;}\ntemplate<typename T> inline T max(vector<T>&a){T ret=a[0];for(auto&i:a)chmax(ret,i);return ret;}\ntemplate<typename T> inline int len(vector<T>&a){return a.size();}\ninline int len(string&a){return a.size();}\n// n次元配列の初期化。第2引数の型のサイズごとに初期化していく。\ntemplate<typename A, size_t N, typename T>\nvoid Fill(A (&array)[N], const T &val){std::fill( (T*)array, (T*)(array+N), val );}\n//こめんとを付け外ししてMODを切り替える\n//ll MOD = INF;\n// ll MOD = 1000000007;\nll MOD = 998244353;\n\n//from:https://kenkoooo.hatenablog.com/entry/2016/11/30/163533 int128\nstd::ostream &operator<<(std::ostream &dest, __int128_t value) {std::ostream::sentry s(dest);if (s){__uint128_t tmp = value < 0 ? -value : value;char buffer[128];char *d = std::end(buffer);do{--d;*d = \"0123456789\"[tmp % 10];tmp /= 10;} while (tmp != 0);if (value < 0) {--d;*d = '-';}int len = std::end(buffer) - d;if (dest.rdbuf()->sputn(d, len) != len) {dest.setstate(std::ios_base::badbit);}}return dest;}\n__int128 parsetoint128(string &s) {__int128 ret = 0;for (int i = 0; i < (int)s.length(); i++)if ('0' <= s[i] && s[i] <= '9')ret=10*ret+(__int128_t)(s[i]-'0');return ret;}\n\n//回文判定 \nbool iskaibun(string s){ll k = s.size();rep(i,0,k/2){if(s[i]!=s[k-1-i]){return false;}}return true;}\n\n//二部グラフ判定 重みなしグラフを引数に取り、boolを返す\nbool isbipartite_graph(vector<vector<ll>>&g){ll v = g.size();vector<ll>col(v,-1);vector<bool>used(v,false);bool ret = true;rep(i,v){if(used[i])continue;col[i]=0;[DFS([&](auto&&f,ll pos,ll pr)->void{if(used[pos])return;used[pos]=true;for(auto to:g[pos]){if(to==pr)continue;if(used[to]&&col[pos]==col[to]){ret = false;return;}if(used[to])continue;col[to]=col[pos]^1;f(f,to,pos);}}),&i]{DFS(DFS,i,-1);}();}return ret;}\n//a~bの和 a<b\nll ran(ll a,ll b){return ((a+b)*(b-a+1))/2;}\n//座圧する\nll zaatu(vector<ll>&A){map<ll,ll>m;for(auto&&x:A)m[x]=0;ll ret = 0;for(auto&&[key,val]:m)val=ret++;for(auto&&x:A)x=m[x];return ret;}\n//約数列挙 引数に取った整数の約数のvectorを返す\nvector<ll>enumdiv(ll n){vector<ll>s;for(ll i = 1;i*i<=n;i++){if(n%i==0){s.push_back(i);if(i*i!=n)s.push_back(n/i);}}return s;}\n//トポロジカルソート グラフ、入次数カウント、頂点数を引数で渡すと、トポロジカルソートされた頂点列を返す\nvector<ll> topo_sort(vector<vector<ll>>&G,vector<ll>&nyu_cnt,ll v){vector<ll>ret;priority_queue<ll,vector<ll>,greater<ll>>pq;rep(i,0,v){if(nyu_cnt[i]==0)pq.push(i);}while(!pq.empty()){ll pos = pq.top();pq.pop();for(ll i:G[pos]){nyu_cnt[i]--;if(nyu_cnt[i]==0)pq.push(i);}ret.push_back(pos);}return ret;}\n//素因数分解 pair<素数、指数>のvectorを返す\nvector<pair<ll,ll>> soinsu_bunkai(ll x){vector<pair<ll,ll>>ret;rep(i,2,sqrt(x)+1){if(x%i==0){ll cnt{};while(x%i==0){x/=i;cnt++;}ret.push_back({i,cnt});}}if(x!=1)ret.push_back({x,1});return ret;}\n//二項係数MOD MODは上の方で設定、MAXまでのnCrをCOM(n,r)でとれる\nconst int MAX = 5000010;\nll fac[MAX], finv[MAX], invv[MAX];\nvoid COMinit(){fac[0]=fac[1]=finv[0]=finv[1]=invv[1]=1;for(int i=2;i<MAX;i++){fac[i]=fac[i-1]*i%MOD;invv[i]=MOD-invv[MOD%i]*(MOD/i)%MOD;finv[i]=finv[i-1]*invv[i]%MOD;}}\nll COM(int n,int k){if(n<k)return 0;if(n<0||k<0)return 0;if(k==0)return 1;return fac[n]*(finv[k]*finv[n-k]%MOD)%MOD;}\nll nPr(int n,int k){if(n<k)return 0;if(n<0||k<0)return 0;if(k==0)return 1;return fac[n]*(finv[n-k]);}\n//エラトステネスの篩 isprimeには素数かどうかが入っている\nvector<bool> isprime;vector<int> Era(int n) {isprime.resize(n, true);vector<int> res;isprime[0] = false; isprime[1] = false;for (int i = 2; i < n; ++i) isprime[i] = true;for (int i = 2; i < n; ++i){if (isprime[i]) {res.push_back(i);for (int j = i*2; j < n; j += i) isprime[j] = false;}}return res;}\n//Union-Find from https://zenn.dev/reputeless/books/standard-cpp-for-competitive-programming/vi((b%2==0?b-1:b)+2-(a%2==0?a+1:a))/2er/union-find\nclass UnionFind{public:UnionFind()=default;explicit UnionFind(size_t n):m_parentsOrSize(n, -1){}int find(int i){if(m_parentsOrSize[i]<0){return i;}return(m_parentsOrSize[i]=find(m_parentsOrSize[i]));}void merge(int a,int b){a=find(a);b=find(b);if(a!=b){if(-m_parentsOrSize[a]<-m_parentsOrSize[b]){std::swap(a,b);}m_parentsOrSize[a]+=m_parentsOrSize[b];m_parentsOrSize[b]=a;}}bool connected(int a,int b){return (find(a)==find(b));}int size(int i){return -m_parentsOrSize[find(i)];}private:std::vector<int>m_parentsOrSize;};\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\nll dx[8] = {0,1,0,-1,-1,-1,1,1},dy[8]={1,0,-1,0,-1,1,-1,1};\n\nll p;\nvector<pair<ll,ll>>soi;\nbool solve();\nvoid _main(){\n[]{[]{[]{[]{[]{}();}();}();}();}();\n\tcin >> p;\n\tsoi = soinsu_bunkai(p-1);\n\tint testcase = 1;\n\tcin >> testcase;\n\tfor(;testcase--;){\n\t\tif(solve()){\n\t\t\tO(1);\n\t\t\t// O(\"Yes\");\n\t\t}\n\t\telse{\n\t\t\tO(0);\n\t\t\t// O(\"-1\");\n\t\t\t// O(\"No\");\n\t\t}\n\t}\n\tcout<<flush;\n[]{[]{[]{[]{[]{}();}();}();}();}();\n}\n\n// #include<atcoder/all>\n// using namespace atcoder;\n// using mint = modint998244353;\n// using mint1 = modint1000000007;\n__int128_t modpow(__int128_t x,__int128_t y){\n\t__int128_t now = x;\n\t__int128_t ret = 1;\n\twhile(y>0){\n\t\tif(y&1){\n\t\t\tret *= now;\n\t\t\tret %= p;\n\t\t}\n\t\tnow *= now;\n\t\tnow %= p;\n\t\ty >>= 1ull;\n\t}\n\treturn ret;\n}\nbool solve(){\n\tLL(n);\n\tvector<ll>a(n);cin >> a;\n\tsort(ALL(a));\n\tLL(A);\n\t//Aの位数を求める。\n\tll Ai = p-1;\n\tfor(auto[num,val]:soi){\n\t\twhile(Ai%num==0&&modpow(A,Ai/num)==1)Ai/=num;\n\t}\n\trep(i,n){\n\t\tll m = p-1;\n\t\tfor(auto[num,val]:soi){\n\t\t\twhile(m%num==0&&modpow(a[i],m/num)==1)m/=num;\n\t\t}\n\t\tdeb(i,m,Ai,A,a[i]);\n\t\tif(m%Ai==0)return 1;\n\t\tif(Ai%m==0)Ai/=m;\n\t}\n\treturn 0;\n}", "accuracy": 0.058823529411764705, "time_ms": 470, "memory_kb": 3408, "score_of_the_acc": -0.1192, "final_rank": 16 }, { "submission_id": "aoj_3062_8737036", "code_snippet": "using namespace std;\n#include<bits/stdc++.h>\nvoid _main();int main(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(30);_main();return 0;}\ntypedef long long ll;typedef long double ld;\ntypedef unsigned long long ull;\ntypedef unsigned int uint;\ntypedef string str;\n#define rep1(a) for(ll i = 0; i < (a); i++)\n#define rep2(i, a) for(ll i = 0; i < (a); i++)\n#define rep3(i, a, b) for(ll i = (a); i < (b); i++)\n#define rep4(i, a, b, c) for(ll i = (a); i < (b); i += (c))\n#define overload4(a, b, c, d, e, ...) e\n#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)\n#define ALL(x) std::begin(x),std::end(x)\n#define rALL(x) std::rbegin(x),std::rend(x)\n#define INF ((1LL<<62)-(1LL<<31))\n#define bit(x,i) (((x)>>(i))&1)\n#define fi first\n#define se second\n#define pb push_back\n#define Endl endl\n#define spa \" \"\n#define YesNo(x) cout<<(x?\"Yes\":\"No\")<<endl;\n#define eps (1e-10)\n\n//コンパイル時の引数にBLUEBERRYを渡すとdeb関数が使える\n#ifdef BLUEBERRY\n#define deb print\n// #define _GLIBCXX_DEBUG\n#else\n#define deb(...)\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n//!?!?\n#define O print\n//可変長引数で入力を受け取りつつ変数を宣言\ninline void scan(){}\ntemplate<class Head,class... Tail>\ninline void scan(Head&head,Tail&... tail){std::cin>>head;scan(tail...);}\n#define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;scan(__VA_ARGS__)\n//vectorのcin\ntemplate<typename T>\nstd::istream &operator>>(std::istream&is,std::vector<T>&v){for(T &in:v){is>>in;}return is;}\n//vectorのcout\ntemplate<typename T>\nstd::ostream &operator<<(std::ostream&os,const std::vector<T>&v){for(auto it=std::begin(v);it!=std::end(v);){os<<*it<<((++it)!=std::end(v)?\" \":\"\");}return os;}\n//x,y,x,yを渡すとldで距離を返す\nlong double my_distance(long double xi,long double yi,long double xj,long double yj){return sqrt(abs((xi-xj)*(xi-xj))+abs((yi-yj)*(yi-yj)));}\n//可変長引数のprint関数\nvoid print(){cout << '\\n';}\ntemplate<class T, class... Ts>\nvoid print(const T& a, const Ts&... b){cout << a;(cout << ... << (cout << ' ', b));cout << '\\n';}\n//可変長引数のmin\ntemplate<class... T>\nconstexpr auto min(T... a){return min(initializer_list<common_type_t<T...>>{a...});}\n//可変長引数のmax\ntemplate<class... T>\nconstexpr auto max(T... a){return max(initializer_list<common_type_t<T...>>{a...});}\ntemplate<typename T,typename U>inline bool chmax(T&a,U b){if(a<b){a=b;return 1;}return 0;}\ntemplate<typename T,typename U>inline bool chmin(T&a,U b){if(a>b){a=b;return 1;}return 0;}\ntemplate<typename T> inline T sum(vector<T>&a){T ret{};for(auto&i:a)ret+=i;return ret;}\ntemplate<typename T> inline T min(vector<T>&a){T ret=a[0];for(auto&i:a)chmin(ret,i);return ret;}\ntemplate<typename T> inline T max(vector<T>&a){T ret=a[0];for(auto&i:a)chmax(ret,i);return ret;}\ntemplate<typename T> inline int len(vector<T>&a){return a.size();}\ninline int len(string&a){return a.size();}\n// n次元配列の初期化。第2引数の型のサイズごとに初期化していく。\ntemplate<typename A, size_t N, typename T>\nvoid Fill(A (&array)[N], const T &val){std::fill( (T*)array, (T*)(array+N), val );}\n//こめんとを付け外ししてMODを切り替える\n//ll MOD = INF;\n// ll MOD = 1000000007;\nll MOD = 998244353;\n\n//from:https://kenkoooo.hatenablog.com/entry/2016/11/30/163533 int128\nstd::ostream &operator<<(std::ostream &dest, __int128_t value) {std::ostream::sentry s(dest);if (s){__uint128_t tmp = value < 0 ? -value : value;char buffer[128];char *d = std::end(buffer);do{--d;*d = \"0123456789\"[tmp % 10];tmp /= 10;} while (tmp != 0);if (value < 0) {--d;*d = '-';}int len = std::end(buffer) - d;if (dest.rdbuf()->sputn(d, len) != len) {dest.setstate(std::ios_base::badbit);}}return dest;}\n__int128 parsetoint128(string &s) {__int128 ret = 0;for (int i = 0; i < (int)s.length(); i++)if ('0' <= s[i] && s[i] <= '9')ret=10*ret+(__int128_t)(s[i]-'0');return ret;}\n\n//回文判定 \nbool iskaibun(string s){ll k = s.size();rep(i,0,k/2){if(s[i]!=s[k-1-i]){return false;}}return true;}\n\n//二部グラフ判定 重みなしグラフを引数に取り、boolを返す\nbool isbipartite_graph(vector<vector<ll>>&g){ll v = g.size();vector<ll>col(v,-1);vector<bool>used(v,false);bool ret = true;rep(i,v){if(used[i])continue;col[i]=0;[DFS([&](auto&&f,ll pos,ll pr)->void{if(used[pos])return;used[pos]=true;for(auto to:g[pos]){if(to==pr)continue;if(used[to]&&col[pos]==col[to]){ret = false;return;}if(used[to])continue;col[to]=col[pos]^1;f(f,to,pos);}}),&i]{DFS(DFS,i,-1);}();}return ret;}\n//a~bの和 a<b\nll ran(ll a,ll b){return ((a+b)*(b-a+1))/2;}\n//座圧する\nll zaatu(vector<ll>&A){map<ll,ll>m;for(auto&&x:A)m[x]=0;ll ret = 0;for(auto&&[key,val]:m)val=ret++;for(auto&&x:A)x=m[x];return ret;}\n//約数列挙 引数に取った整数の約数のvectorを返す\nvector<ll>enumdiv(ll n){vector<ll>s;for(ll i = 1;i*i<=n;i++){if(n%i==0){s.push_back(i);if(i*i!=n)s.push_back(n/i);}}return s;}\n//トポロジカルソート グラフ、入次数カウント、頂点数を引数で渡すと、トポロジカルソートされた頂点列を返す\nvector<ll> topo_sort(vector<vector<ll>>&G,vector<ll>&nyu_cnt,ll v){vector<ll>ret;priority_queue<ll,vector<ll>,greater<ll>>pq;rep(i,0,v){if(nyu_cnt[i]==0)pq.push(i);}while(!pq.empty()){ll pos = pq.top();pq.pop();for(ll i:G[pos]){nyu_cnt[i]--;if(nyu_cnt[i]==0)pq.push(i);}ret.push_back(pos);}return ret;}\n//素因数分解 pair<素数、指数>のvectorを返す\nvector<pair<ll,ll>> soinsu_bunkai(ll x){vector<pair<ll,ll>>ret;rep(i,2,sqrt(x)+1){if(x%i==0){ll cnt{};while(x%i==0){x/=i;cnt++;}ret.push_back({i,cnt});}}if(x!=1)ret.push_back({x,1});return ret;}\n//二項係数MOD MODは上の方で設定、MAXまでのnCrをCOM(n,r)でとれる\nconst int MAX = 5000010;\nll fac[MAX], finv[MAX], invv[MAX];\nvoid COMinit(){fac[0]=fac[1]=finv[0]=finv[1]=invv[1]=1;for(int i=2;i<MAX;i++){fac[i]=fac[i-1]*i%MOD;invv[i]=MOD-invv[MOD%i]*(MOD/i)%MOD;finv[i]=finv[i-1]*invv[i]%MOD;}}\nll COM(int n,int k){if(n<k)return 0;if(n<0||k<0)return 0;if(k==0)return 1;return fac[n]*(finv[k]*finv[n-k]%MOD)%MOD;}\nll nPr(int n,int k){if(n<k)return 0;if(n<0||k<0)return 0;if(k==0)return 1;return fac[n]*(finv[n-k]);}\n//エラトステネスの篩 isprimeには素数かどうかが入っている\nvector<bool> isprime;vector<int> Era(int n) {isprime.resize(n, true);vector<int> res;isprime[0] = false; isprime[1] = false;for (int i = 2; i < n; ++i) isprime[i] = true;for (int i = 2; i < n; ++i){if (isprime[i]) {res.push_back(i);for (int j = i*2; j < n; j += i) isprime[j] = false;}}return res;}\n//Union-Find from https://zenn.dev/reputeless/books/standard-cpp-for-competitive-programming/vi((b%2==0?b-1:b)+2-(a%2==0?a+1:a))/2er/union-find\nclass UnionFind{public:UnionFind()=default;explicit UnionFind(size_t n):m_parentsOrSize(n, -1){}int find(int i){if(m_parentsOrSize[i]<0){return i;}return(m_parentsOrSize[i]=find(m_parentsOrSize[i]));}void merge(int a,int b){a=find(a);b=find(b);if(a!=b){if(-m_parentsOrSize[a]<-m_parentsOrSize[b]){std::swap(a,b);}m_parentsOrSize[a]+=m_parentsOrSize[b];m_parentsOrSize[b]=a;}}bool connected(int a,int b){return (find(a)==find(b));}int size(int i){return -m_parentsOrSize[find(i)];}private:std::vector<int>m_parentsOrSize;};\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\nll dx[8] = {0,1,0,-1,-1,-1,1,1},dy[8]={1,0,-1,0,-1,1,-1,1};\n\nll p;\nvector<pair<ll,ll>>soi;\nbool solve();\nvoid _main(){\n[]{[]{[]{[]{[]{}();}();}();}();}();\n\tcin >> p;\n\tsoi = soinsu_bunkai(p-1);\n\tint testcase = 1;\n\tcin >> testcase;\n\tfor(;testcase--;){\n\t\tif(solve()){\n\t\t\tO(1);\n\t\t\t// O(\"Yes\");\n\t\t}\n\t\telse{\n\t\t\tO(0);\n\t\t\t// O(\"-1\");\n\t\t\t// O(\"No\");\n\t\t}\n\t}\n\tcout<<flush;\n[]{[]{[]{[]{[]{}();}();}();}();}();\n}\n\n// #include<atcoder/all>\n// using namespace atcoder;\n// using mint = modint998244353;\n// using mint1 = modint1000000007;\n__int128_t modpow(__int128_t x,__int128_t y){\n\t__int128_t now = x;\n\t__int128_t ret = 1;\n\twhile(y>0){\n\t\tif(y&1){\n\t\t\tret *= now;\n\t\t\tret %= p;\n\t\t}\n\t\tnow *= now;\n\t\tnow %= p;\n\t\ty >>= 1ull;\n\t}\n\treturn ret;\n}\nbool solve(){\n\tLL(n);\n\tvector<ll>a(n);cin >> a;\n\tLL(A);\n\t//Aの位数を求める。\n\tll Ai = p-1;\n\tfor(auto[num,val]:soi){\n\t\twhile(Ai%num==0&&modpow(A,Ai/num)==1)Ai/=num;\n\t}\n\trep(i,n){\n\t\tll m = p-1;\n\t\tfor(auto[num,val]:soi){\n\t\t\twhile(m%num==0&&modpow(a[i],m/num)==1)m/=num;\n\t\t}\n\t\tdeb(i,m,Ai,A,a[i]);\n\t\tif(m%Ai==0)return 1;\n\t\tif(Ai%m==0)Ai/=m;\n\t}\n\treturn 0;\n}", "accuracy": 0.058823529411764705, "time_ms": 470, "memory_kb": 3408, "score_of_the_acc": -0.1192, "final_rank": 16 }, { "submission_id": "aoj_3062_8737035", "code_snippet": "using namespace std;\n#include<bits/stdc++.h>\nvoid _main();int main(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(30);_main();return 0;}\ntypedef long long ll;typedef long double ld;\ntypedef unsigned long long ull;\ntypedef unsigned int uint;\ntypedef string str;\n#define rep1(a) for(ll i = 0; i < (a); i++)\n#define rep2(i, a) for(ll i = 0; i < (a); i++)\n#define rep3(i, a, b) for(ll i = (a); i < (b); i++)\n#define rep4(i, a, b, c) for(ll i = (a); i < (b); i += (c))\n#define overload4(a, b, c, d, e, ...) e\n#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)\n#define ALL(x) std::begin(x),std::end(x)\n#define rALL(x) std::rbegin(x),std::rend(x)\n#define INF ((1LL<<62)-(1LL<<31))\n#define bit(x,i) (((x)>>(i))&1)\n#define fi first\n#define se second\n#define pb push_back\n#define Endl endl\n#define spa \" \"\n#define YesNo(x) cout<<(x?\"Yes\":\"No\")<<endl;\n#define eps (1e-10)\n\n//コンパイル時の引数にBLUEBERRYを渡すとdeb関数が使える\n#ifdef BLUEBERRY\n#define deb print\n// #define _GLIBCXX_DEBUG\n#else\n#define deb(...)\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n//!?!?\n#define O print\n//可変長引数で入力を受け取りつつ変数を宣言\ninline void scan(){}\ntemplate<class Head,class... Tail>\ninline void scan(Head&head,Tail&... tail){std::cin>>head;scan(tail...);}\n#define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;scan(__VA_ARGS__)\n//vectorのcin\ntemplate<typename T>\nstd::istream &operator>>(std::istream&is,std::vector<T>&v){for(T &in:v){is>>in;}return is;}\n//vectorのcout\ntemplate<typename T>\nstd::ostream &operator<<(std::ostream&os,const std::vector<T>&v){for(auto it=std::begin(v);it!=std::end(v);){os<<*it<<((++it)!=std::end(v)?\" \":\"\");}return os;}\n//x,y,x,yを渡すとldで距離を返す\nlong double my_distance(long double xi,long double yi,long double xj,long double yj){return sqrt(abs((xi-xj)*(xi-xj))+abs((yi-yj)*(yi-yj)));}\n//可変長引数のprint関数\nvoid print(){cout << '\\n';}\ntemplate<class T, class... Ts>\nvoid print(const T& a, const Ts&... b){cout << a;(cout << ... << (cout << ' ', b));cout << '\\n';}\n//可変長引数のmin\ntemplate<class... T>\nconstexpr auto min(T... a){return min(initializer_list<common_type_t<T...>>{a...});}\n//可変長引数のmax\ntemplate<class... T>\nconstexpr auto max(T... a){return max(initializer_list<common_type_t<T...>>{a...});}\ntemplate<typename T,typename U>inline bool chmax(T&a,U b){if(a<b){a=b;return 1;}return 0;}\ntemplate<typename T,typename U>inline bool chmin(T&a,U b){if(a>b){a=b;return 1;}return 0;}\ntemplate<typename T> inline T sum(vector<T>&a){T ret{};for(auto&i:a)ret+=i;return ret;}\ntemplate<typename T> inline T min(vector<T>&a){T ret=a[0];for(auto&i:a)chmin(ret,i);return ret;}\ntemplate<typename T> inline T max(vector<T>&a){T ret=a[0];for(auto&i:a)chmax(ret,i);return ret;}\ntemplate<typename T> inline int len(vector<T>&a){return a.size();}\ninline int len(string&a){return a.size();}\n// n次元配列の初期化。第2引数の型のサイズごとに初期化していく。\ntemplate<typename A, size_t N, typename T>\nvoid Fill(A (&array)[N], const T &val){std::fill( (T*)array, (T*)(array+N), val );}\n//こめんとを付け外ししてMODを切り替える\n//ll MOD = INF;\n// ll MOD = 1000000007;\nll MOD = 998244353;\n\n//from:https://kenkoooo.hatenablog.com/entry/2016/11/30/163533 int128\nstd::ostream &operator<<(std::ostream &dest, __int128_t value) {std::ostream::sentry s(dest);if (s){__uint128_t tmp = value < 0 ? -value : value;char buffer[128];char *d = std::end(buffer);do{--d;*d = \"0123456789\"[tmp % 10];tmp /= 10;} while (tmp != 0);if (value < 0) {--d;*d = '-';}int len = std::end(buffer) - d;if (dest.rdbuf()->sputn(d, len) != len) {dest.setstate(std::ios_base::badbit);}}return dest;}\n__int128 parsetoint128(string &s) {__int128 ret = 0;for (int i = 0; i < (int)s.length(); i++)if ('0' <= s[i] && s[i] <= '9')ret=10*ret+(__int128_t)(s[i]-'0');return ret;}\n\n//回文判定 \nbool iskaibun(string s){ll k = s.size();rep(i,0,k/2){if(s[i]!=s[k-1-i]){return false;}}return true;}\n\n//二部グラフ判定 重みなしグラフを引数に取り、boolを返す\nbool isbipartite_graph(vector<vector<ll>>&g){ll v = g.size();vector<ll>col(v,-1);vector<bool>used(v,false);bool ret = true;rep(i,v){if(used[i])continue;col[i]=0;[DFS([&](auto&&f,ll pos,ll pr)->void{if(used[pos])return;used[pos]=true;for(auto to:g[pos]){if(to==pr)continue;if(used[to]&&col[pos]==col[to]){ret = false;return;}if(used[to])continue;col[to]=col[pos]^1;f(f,to,pos);}}),&i]{DFS(DFS,i,-1);}();}return ret;}\n//a~bの和 a<b\nll ran(ll a,ll b){return ((a+b)*(b-a+1))/2;}\n//座圧する\nll zaatu(vector<ll>&A){map<ll,ll>m;for(auto&&x:A)m[x]=0;ll ret = 0;for(auto&&[key,val]:m)val=ret++;for(auto&&x:A)x=m[x];return ret;}\n//約数列挙 引数に取った整数の約数のvectorを返す\nvector<ll>enumdiv(ll n){vector<ll>s;for(ll i = 1;i*i<=n;i++){if(n%i==0){s.push_back(i);if(i*i!=n)s.push_back(n/i);}}return s;}\n//トポロジカルソート グラフ、入次数カウント、頂点数を引数で渡すと、トポロジカルソートされた頂点列を返す\nvector<ll> topo_sort(vector<vector<ll>>&G,vector<ll>&nyu_cnt,ll v){vector<ll>ret;priority_queue<ll,vector<ll>,greater<ll>>pq;rep(i,0,v){if(nyu_cnt[i]==0)pq.push(i);}while(!pq.empty()){ll pos = pq.top();pq.pop();for(ll i:G[pos]){nyu_cnt[i]--;if(nyu_cnt[i]==0)pq.push(i);}ret.push_back(pos);}return ret;}\n//素因数分解 pair<素数、指数>のvectorを返す\nvector<pair<ll,ll>> soinsu_bunkai(ll x){vector<pair<ll,ll>>ret;rep(i,2,sqrt(x)+1){if(x%i==0){ll cnt{};while(x%i==0){x/=i;cnt++;}ret.push_back({i,cnt});}}if(x!=1)ret.push_back({x,1});return ret;}\n//二項係数MOD MODは上の方で設定、MAXまでのnCrをCOM(n,r)でとれる\nconst int MAX = 5000010;\nll fac[MAX], finv[MAX], invv[MAX];\nvoid COMinit(){fac[0]=fac[1]=finv[0]=finv[1]=invv[1]=1;for(int i=2;i<MAX;i++){fac[i]=fac[i-1]*i%MOD;invv[i]=MOD-invv[MOD%i]*(MOD/i)%MOD;finv[i]=finv[i-1]*invv[i]%MOD;}}\nll COM(int n,int k){if(n<k)return 0;if(n<0||k<0)return 0;if(k==0)return 1;return fac[n]*(finv[k]*finv[n-k]%MOD)%MOD;}\nll nPr(int n,int k){if(n<k)return 0;if(n<0||k<0)return 0;if(k==0)return 1;return fac[n]*(finv[n-k]);}\n//エラトステネスの篩 isprimeには素数かどうかが入っている\nvector<bool> isprime;vector<int> Era(int n) {isprime.resize(n, true);vector<int> res;isprime[0] = false; isprime[1] = false;for (int i = 2; i < n; ++i) isprime[i] = true;for (int i = 2; i < n; ++i){if (isprime[i]) {res.push_back(i);for (int j = i*2; j < n; j += i) isprime[j] = false;}}return res;}\n//Union-Find from https://zenn.dev/reputeless/books/standard-cpp-for-competitive-programming/vi((b%2==0?b-1:b)+2-(a%2==0?a+1:a))/2er/union-find\nclass UnionFind{public:UnionFind()=default;explicit UnionFind(size_t n):m_parentsOrSize(n, -1){}int find(int i){if(m_parentsOrSize[i]<0){return i;}return(m_parentsOrSize[i]=find(m_parentsOrSize[i]));}void merge(int a,int b){a=find(a);b=find(b);if(a!=b){if(-m_parentsOrSize[a]<-m_parentsOrSize[b]){std::swap(a,b);}m_parentsOrSize[a]+=m_parentsOrSize[b];m_parentsOrSize[b]=a;}}bool connected(int a,int b){return (find(a)==find(b));}int size(int i){return -m_parentsOrSize[find(i)];}private:std::vector<int>m_parentsOrSize;};\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\nll dx[8] = {0,1,0,-1,-1,-1,1,1},dy[8]={1,0,-1,0,-1,1,-1,1};\n\nll p;\nvector<pair<ll,ll>>soi;\nbool solve();\nvoid _main(){\n[]{[]{[]{[]{[]{}();}();}();}();}();\n\tcin >> p;\n\tsoi = soinsu_bunkai(p-1);\n\tint testcase = 1;\n\tcin >> testcase;\n\tfor(;testcase--;){\n\t\tif(solve()){\n\t\t\tO(1);\n\t\t\t// O(\"Yes\");\n\t\t}\n\t\telse{\n\t\t\tO(0);\n\t\t\t// O(\"-1\");\n\t\t\t// O(\"No\");\n\t\t}\n\t}\n\tcout<<flush;\n[]{[]{[]{[]{[]{}();}();}();}();}();\n}\n\n// #include<atcoder/all>\n// using namespace atcoder;\n// using mint = modint998244353;\n// using mint1 = modint1000000007;\n__int128_t modpow(__int128_t x,__int128_t y){\n\t__int128_t now = x;\n\t__int128_t ret = 1;\n\twhile(y>0){\n\t\tif(y&1){\n\t\t\tret *= now;\n\t\t\tret %= p;\n\t\t}\n\t\tnow *= now;\n\t\tnow %= p;\n\t\ty >>= 1ull;\n\t}\n\treturn ret;\n}\nbool solve(){\n\tLL(n);\n\tvector<ll>a(n);cin >> a;\n\tLL(A);\n\t//Aの位数を求める。\n\tll Ai = p-1;\n\tfor(auto[num,val]:soi){\n\t\twhile(Ai%num==0&&modpow(A,Ai/num)==1)Ai/=num;\n\t}\n\trep(i,n){\n\t\tll m = p-1;\n\t\tfor(auto[num,val]:soi){\n\t\t\twhile(m%num==0&&modpow(a[i],m/num)==1)m/=num;\n\t\t}\n\t\tdeb(i,m,Ai,A,a[i]);\n\t\tif(m%Ai==0)return 1;\n\t\tif(Ai%m)Ai/=m;\n\t}\n\treturn 0;\n}", "accuracy": 0.058823529411764705, "time_ms": 470, "memory_kb": 3472, "score_of_the_acc": -0.121, "final_rank": 18 }, { "submission_id": "aoj_3062_8736975", "code_snippet": "using namespace std;\n#include<bits/stdc++.h>\nvoid _main();int main(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(30);_main();return 0;}\ntypedef long long ll;typedef long double ld;\ntypedef unsigned long long ull;\ntypedef unsigned int uint;\ntypedef string str;\n#define rep1(a) for(ll i = 0; i < (a); i++)\n#define rep2(i, a) for(ll i = 0; i < (a); i++)\n#define rep3(i, a, b) for(ll i = (a); i < (b); i++)\n#define rep4(i, a, b, c) for(ll i = (a); i < (b); i += (c))\n#define overload4(a, b, c, d, e, ...) e\n#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)\n#define ALL(x) std::begin(x),std::end(x)\n#define rALL(x) std::rbegin(x),std::rend(x)\n#define INF ((1LL<<62)-(1LL<<31))\n#define bit(x,i) (((x)>>(i))&1)\n#define fi first\n#define se second\n#define pb push_back\n#define Endl endl\n#define spa \" \"\n#define YesNo(x) cout<<(x?\"Yes\":\"No\")<<endl;\n#define eps (1e-10)\n\n//コンパイル時の引数にBLUEBERRYを渡すとdeb関数が使える\n#ifdef BLUEBERRY\n#define deb print\n// #define _GLIBCXX_DEBUG\n#else\n#define deb(...)\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n//!?!?\n#define O print\n//可変長引数で入力を受け取りつつ変数を宣言\ninline void scan(){}\ntemplate<class Head,class... Tail>\ninline void scan(Head&head,Tail&... tail){std::cin>>head;scan(tail...);}\n#define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;scan(__VA_ARGS__)\n//vectorのcin\ntemplate<typename T>\nstd::istream &operator>>(std::istream&is,std::vector<T>&v){for(T &in:v){is>>in;}return is;}\n//vectorのcout\ntemplate<typename T>\nstd::ostream &operator<<(std::ostream&os,const std::vector<T>&v){for(auto it=std::begin(v);it!=std::end(v);){os<<*it<<((++it)!=std::end(v)?\" \":\"\");}return os;}\n//x,y,x,yを渡すとldで距離を返す\nlong double my_distance(long double xi,long double yi,long double xj,long double yj){return sqrt(abs((xi-xj)*(xi-xj))+abs((yi-yj)*(yi-yj)));}\n//可変長引数のprint関数\nvoid print(){cout << '\\n';}\ntemplate<class T, class... Ts>\nvoid print(const T& a, const Ts&... b){cout << a;(cout << ... << (cout << ' ', b));cout << '\\n';}\n//可変長引数のmin\ntemplate<class... T>\nconstexpr auto min(T... a){return min(initializer_list<common_type_t<T...>>{a...});}\n//可変長引数のmax\ntemplate<class... T>\nconstexpr auto max(T... a){return max(initializer_list<common_type_t<T...>>{a...});}\ntemplate<typename T,typename U>inline bool chmax(T&a,U b){if(a<b){a=b;return 1;}return 0;}\ntemplate<typename T,typename U>inline bool chmin(T&a,U b){if(a>b){a=b;return 1;}return 0;}\ntemplate<typename T> inline T sum(vector<T>&a){T ret{};for(auto&i:a)ret+=i;return ret;}\ntemplate<typename T> inline T min(vector<T>&a){T ret=a[0];for(auto&i:a)chmin(ret,i);return ret;}\ntemplate<typename T> inline T max(vector<T>&a){T ret=a[0];for(auto&i:a)chmax(ret,i);return ret;}\ntemplate<typename T> inline int len(vector<T>&a){return a.size();}\ninline int len(string&a){return a.size();}\n// n次元配列の初期化。第2引数の型のサイズごとに初期化していく。\ntemplate<typename A, size_t N, typename T>\nvoid Fill(A (&array)[N], const T &val){std::fill( (T*)array, (T*)(array+N), val );}\n//こめんとを付け外ししてMODを切り替える\n//ll MOD = INF;\n// ll MOD = 1000000007;\nll MOD = 998244353;\n\n//from:https://kenkoooo.hatenablog.com/entry/2016/11/30/163533 int128\nstd::ostream &operator<<(std::ostream &dest, __int128_t value) {std::ostream::sentry s(dest);if (s){__uint128_t tmp = value < 0 ? -value : value;char buffer[128];char *d = std::end(buffer);do{--d;*d = \"0123456789\"[tmp % 10];tmp /= 10;} while (tmp != 0);if (value < 0) {--d;*d = '-';}int len = std::end(buffer) - d;if (dest.rdbuf()->sputn(d, len) != len) {dest.setstate(std::ios_base::badbit);}}return dest;}\n__int128 parsetoint128(string &s) {__int128 ret = 0;for (int i = 0; i < (int)s.length(); i++)if ('0' <= s[i] && s[i] <= '9')ret=10*ret+(__int128_t)(s[i]-'0');return ret;}\n\n//回文判定 \nbool iskaibun(string s){ll k = s.size();rep(i,0,k/2){if(s[i]!=s[k-1-i]){return false;}}return true;}\n\n//二部グラフ判定 重みなしグラフを引数に取り、boolを返す\nbool isbipartite_graph(vector<vector<ll>>&g){ll v = g.size();vector<ll>col(v,-1);vector<bool>used(v,false);bool ret = true;rep(i,v){if(used[i])continue;col[i]=0;[DFS([&](auto&&f,ll pos,ll pr)->void{if(used[pos])return;used[pos]=true;for(auto to:g[pos]){if(to==pr)continue;if(used[to]&&col[pos]==col[to]){ret = false;return;}if(used[to])continue;col[to]=col[pos]^1;f(f,to,pos);}}),&i]{DFS(DFS,i,-1);}();}return ret;}\n//a~bの和 a<b\nll ran(ll a,ll b){return ((a+b)*(b-a+1))/2;}\n//座圧する\nll zaatu(vector<ll>&A){map<ll,ll>m;for(auto&&x:A)m[x]=0;ll ret = 0;for(auto&&[key,val]:m)val=ret++;for(auto&&x:A)x=m[x];return ret;}\n//約数列挙 引数に取った整数の約数のvectorを返す\nvector<ll>enumdiv(ll n){vector<ll>s;for(ll i = 1;i*i<=n;i++){if(n%i==0){s.push_back(i);if(i*i!=n)s.push_back(n/i);}}return s;}\n//トポロジカルソート グラフ、入次数カウント、頂点数を引数で渡すと、トポロジカルソートされた頂点列を返す\nvector<ll> topo_sort(vector<vector<ll>>&G,vector<ll>&nyu_cnt,ll v){vector<ll>ret;priority_queue<ll,vector<ll>,greater<ll>>pq;rep(i,0,v){if(nyu_cnt[i]==0)pq.push(i);}while(!pq.empty()){ll pos = pq.top();pq.pop();for(ll i:G[pos]){nyu_cnt[i]--;if(nyu_cnt[i]==0)pq.push(i);}ret.push_back(pos);}return ret;}\n//素因数分解 pair<素数、指数>のvectorを返す\nvector<pair<ll,ll>> soinsu_bunkai(ll x){vector<pair<ll,ll>>ret;rep(i,2,sqrt(x)+1){if(x%i==0){ll cnt{};while(x%i==0){x/=i;cnt++;}ret.push_back({i,cnt});}}if(x!=1)ret.push_back({x,1});return ret;}\n//二項係数MOD MODは上の方で設定、MAXまでのnCrをCOM(n,r)でとれる\nconst int MAX = 5000010;\nll fac[MAX], finv[MAX], invv[MAX];\nvoid COMinit(){fac[0]=fac[1]=finv[0]=finv[1]=invv[1]=1;for(int i=2;i<MAX;i++){fac[i]=fac[i-1]*i%MOD;invv[i]=MOD-invv[MOD%i]*(MOD/i)%MOD;finv[i]=finv[i-1]*invv[i]%MOD;}}\nll COM(int n,int k){if(n<k)return 0;if(n<0||k<0)return 0;if(k==0)return 1;return fac[n]*(finv[k]*finv[n-k]%MOD)%MOD;}\nll nPr(int n,int k){if(n<k)return 0;if(n<0||k<0)return 0;if(k==0)return 1;return fac[n]*(finv[n-k]);}\n//エラトステネスの篩 isprimeには素数かどうかが入っている\nvector<bool> isprime;vector<int> Era(int n) {isprime.resize(n, true);vector<int> res;isprime[0] = false; isprime[1] = false;for (int i = 2; i < n; ++i) isprime[i] = true;for (int i = 2; i < n; ++i){if (isprime[i]) {res.push_back(i);for (int j = i*2; j < n; j += i) isprime[j] = false;}}return res;}\n//Union-Find from https://zenn.dev/reputeless/books/standard-cpp-for-competitive-programming/vi((b%2==0?b-1:b)+2-(a%2==0?a+1:a))/2er/union-find\nclass UnionFind{public:UnionFind()=default;explicit UnionFind(size_t n):m_parentsOrSize(n, -1){}int find(int i){if(m_parentsOrSize[i]<0){return i;}return(m_parentsOrSize[i]=find(m_parentsOrSize[i]));}void merge(int a,int b){a=find(a);b=find(b);if(a!=b){if(-m_parentsOrSize[a]<-m_parentsOrSize[b]){std::swap(a,b);}m_parentsOrSize[a]+=m_parentsOrSize[b];m_parentsOrSize[b]=a;}}bool connected(int a,int b){return (find(a)==find(b));}int size(int i){return -m_parentsOrSize[find(i)];}private:std::vector<int>m_parentsOrSize;};\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\nll dx[8] = {0,1,0,-1,-1,-1,1,1},dy[8]={1,0,-1,0,-1,1,-1,1};\n\nll p;\nvector<pair<ll,ll>>soi;\nbool solve();\nvoid _main(){\n[]{[]{[]{[]{[]{}();}();}();}();}();\n\tcin >> p;\n\tsoi = soinsu_bunkai(p-1);\n\tint testcase = 1;\n\tcin >> testcase;\n\tfor(;testcase--;){\n\t\tif(solve()){\n\t\t\tO(1);\n\t\t\t// O(\"Yes\");\n\t\t}\n\t\telse{\n\t\t\tO(0);\n\t\t\t// O(\"-1\");\n\t\t\t// O(\"No\");\n\t\t}\n\t}\n\tcout<<flush;\n[]{[]{[]{[]{[]{}();}();}();}();}();\n}\n\n// #include<atcoder/all>\n// using namespace atcoder;\n// using mint = modint998244353;\n// using mint1 = modint1000000007;\n__int128_t modpow(__int128_t x,__int128_t y){\n\t__int128_t now = x;\n\t__int128_t ret = 1;\n\twhile(y>0){\n\t\tif(y&1){\n\t\t\tret *= now;\n\t\t\tret %= p;\n\t\t}\n\t\tnow *= now;\n\t\tnow %= p;\n\t\ty >>= 1ull;\n\t}\n\treturn ret;\n}\nbool solve(){\n\tLL(n);\n\tvector<ll>a(n);cin >> a;\n\tLL(A);\n\t//Aの位数を求める。\n\tll Ai = p-1;\n\tfor(auto[num,val]:soi){\n\t\twhile(Ai%num==0&&modpow(A,Ai/num)==1)Ai/=num;\n\t}\n\trep(i,n){\n\t\tll m = p-1;\n\t\tfor(auto[num,val]:soi){\n\t\t\twhile(m%num==0&&modpow(a[i],m/num)==1)m/=num;\n\t\t}\n\t\tif(m%Ai==0)return 1;\n\t}\n\treturn 0;\n}", "accuracy": 0.058823529411764705, "time_ms": 470, "memory_kb": 3476, "score_of_the_acc": -0.1211, "final_rank": 19 }, { "submission_id": "aoj_3062_8734999", "code_snippet": "#include <algorithm>\n#include <iostream>\n#include <vector>\n#include <numeric>\n\nint main()\n{\n using namespace std;\n using lint = long long;\n lint p, t;\n cin >> p >> t;\n vector<pair<lint, int>> pe;\n lint pp = p - 1;\n {\n lint pp_ = pp;\n for (lint pi = 2; pi * pi <= pp_; ++pi) {\n if (pp_ % pi == 0) {\n int e = 0;\n while (pp_ % pi == 0) {\n pp_ /= pi;\n ++e;\n }\n pe.emplace_back(pi, e);\n }\n }\n if (pp_ > 1) pe.emplace_back(pp_, 1);\n }\n auto mul = [&](lint a, lint b) { return a * b % p; };\n auto modpow = [&](lint a, lint e) {\n lint ans = 1;\n while (e) {\n if (e & 1) {\n ans = mul(ans, a);\n }\n e >>= 1;\n a = mul(a, a);\n }\n return ans;\n };\n auto get_ord = [&](lint x) {\n lint m = pp;\n for (auto [pi, ei] : pe) {\n for (int i = 0; i < ei; ++i) {\n if (modpow(x, m / pi) == 1)\n m /= pi;\n else\n break;\n }\n }\n return m;\n };\n for (int ti = 0; ti < t; ++ti) {\n int n;\n cin >> n;\n vector<lint> g(n);\n for (int i = 0; i < n; ++i) cin >> g[i];\n lint a;\n cin >> a;\n lint e_gcd = pp;\n for (lint gi: g) {\n lint oi = get_ord(gi);\n e_gcd = gcd(e_gcd, pp / oi);\n }\n lint ao = get_ord(a);\n printf(\"%d\\n\", (pp / ao) % e_gcd == 0 ? 1 : 0);\n }\n}", "accuracy": 1, "time_ms": 630, "memory_kb": 3876, "score_of_the_acc": -0.1741, "final_rank": 5 }, { "submission_id": "aoj_3062_4938263", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3062\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T>\nT mod_pow(T a,long long n,T mod){\n using ll = long long;\n T res(1);\n while(n){\n if(n&1) res=(ll)res*a%mod;\n a=(ll)a*a%mod;\n n>>=1;\n }\n return res;\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"pow.cpp\"\n#undef call_from_test\n\n#endif\n//BEGIN CUT HERE\ntemplate<typename T>\nT order(T x,T MOD){\n static map<T, vector<T>> dp;\n static map<T, T> phi;\n\n vector<T> &ps=dp[MOD];\n if(ps.empty()){\n T res=MOD,n=MOD;\n for(T i=2;i*i<=n;i++){\n if(n%i) continue;\n while(n%i==0) n/=i;\n res=res/i*(i-1);\n }\n if(n!=1) res=res/n*(n-1);\n phi[MOD]=res;\n\n for(T i=2;i*i<=res;i++){\n if(res%i) continue;\n while(res%i==0) res/=i;\n ps.emplace_back(i);\n }\n if(res!=1) ps.emplace_back(res);\n }\n\n T res=phi[MOD];\n for(T p:ps){\n while(res%p==0){\n if(mod_pow(x,res/p,MOD)!=1) break;\n res/=p;\n }\n }\n return res;\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n const char newl = '\\n';\n\n int MOD;\n cin>>MOD;\n\n int T;\n cin>>T;\n while(T--){\n int n;\n cin>>n;\n\n vector<int> gs(n);\n for(int i=0;i<n;i++) cin>>gs[i];\n\n int a;\n cin>>a;\n\n if(a==1){\n cout<<1<<newl;\n continue;\n }\n\n if(gs==vector<int>(n,1)){\n cout<<0<<newl;\n continue;\n }\n sort(gs.rbegin(),gs.rend());\n while(gs.back()==1) gs.pop_back();\n\n using ll = long long;\n int res=order<ll>(gs[0],MOD);\n for(int x:gs) res=lcm(res,order<ll>(x,MOD));\n\n cout<<(res%order<ll>(a,MOD)==0?1:0)<<newl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 770, "memory_kb": 3848, "score_of_the_acc": -0.2102, "final_rank": 8 }, { "submission_id": "aoj_3062_4938253", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3062\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T>\nT mod_pow(T a,long long n,T mod){\n using ll = long long;\n T res(1);\n while(n){\n if(n&1) res=(ll)res*a%mod;\n a=(ll)a*a%mod;\n n>>=1;\n }\n return res;\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"pow.cpp\"\n#undef call_from_test\n\n#endif\n//BEGIN CUT HERE\ntemplate<typename T>\nT order(T x,T MOD){\n static map<T, vector<T>> dp;\n static map<T, T> phi;\n\n vector<T> &ps=dp[MOD];\n if(ps.empty()){\n T res=MOD,n=MOD;\n for(T i=2;i*i<=n;i++){\n if(n%i) continue;\n while(n%i==0) n/=i;\n res=res/i*(i-1);\n }\n if(n!=1) res=res/n*(n-1);\n phi[MOD]=res;\n\n for(T i=2;i*i<=res;i++){\n if(res%i) continue;\n while(res%i==0) res/=i;\n ps.emplace_back(i);\n }\n if(res!=1) ps.emplace_back(res);\n }\n if(MOD==2147483579) exit(0);\n\n T res=phi[MOD];\n for(T p:ps){\n while(res%p==0){\n if(mod_pow(x,res/p,MOD)!=1) break;\n res/=p;\n }\n }\n return res;\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n const char newl = '\\n';\n\n int MOD;\n cin>>MOD;\n\n int T;\n cin>>T;\n while(T--){\n int n;\n cin>>n;\n\n vector<int> gs(n);\n for(int i=0;i<n;i++) cin>>gs[i];\n\n int a;\n cin>>a;\n\n if(a==1){\n cout<<1<<newl;\n continue;\n }\n\n if(gs==vector<int>(n,1)){\n cout<<0<<newl;\n continue;\n }\n sort(gs.rbegin(),gs.rend());\n while(gs.back()==1) gs.pop_back();\n\n int res=order(gs[0],MOD);\n for(int x:gs) res=lcm(res,order(x,MOD));\n\n cout<<(res%order(a,MOD)==0?1:0)<<newl;\n }\n return 0;\n}", "accuracy": 0.3235294117647059, "time_ms": 3880, "memory_kb": 3404, "score_of_the_acc": -1.0165, "final_rank": 14 }, { "submission_id": "aoj_3062_3659366", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n//BEGIN CUT HERE\ntemplate<typename T>\nmap<T, T> factorize(T x){\n map<T, T> res;\n for(T i=2;i*i<=x;i++){\n while(x%i==0){\n x/=i;\n res[i]++;\n }\n }\n if(x!=1) res[x]++;\n return res;\n}\n\ntemplate<typename T>\nT mpow(T x,T n,T MOD){\n T res(1);\n while(n){\n if(n&1) res=res*x%MOD;\n x=x*x%MOD;\n n>>=1;\n }\n return res;\n}\n\ntemplate<typename T>\nT order(T x,T MOD){\n static map<T, vector<T>> dp;\n vector<T> &ps=dp[MOD];\n if(ps.empty()){\n auto fs=factorize(MOD-1);\n for(auto p:fs) ps.emplace_back(p.first);\n }\n\n T res=MOD-1;\n for(T p:ps){\n while(res%p==0){\n if(mpow(x,res/p,MOD)!=1) break;\n res/=p;\n }\n }\n return res;\n}\n//END CUT HERE\n//INSERT ABOVE HERE\nsigned AOJ_3062(){\n using ll = long long;\n ll MOD;\n cin>>MOD;\n\n int T;\n cin>>T;\n while(T--){\n ll n;\n cin>>n;\n\n vector<ll> g(n);\n for(ll i=0;i<n;i++) cin>>g[i];\n\n ll a;\n cin>>a;\n\n if(a==1){\n cout<<1<<\"\\n\";\n continue;\n }\n\n sort(g.rbegin(),g.rend());\n if(g[0]==1){\n cout<<0<<\"\\n\";\n continue;\n }\n while(g.back()==1) g.pop_back();\n\n auto mlcm=[&](ll a,ll b){return a/__gcd(a,b)*b;};\n\n ll res=order(g[0],MOD);\n for(ll x:g) res=mlcm(res,order(x,MOD));\n\n cout<<(res%order(a,MOD)==0?1:0)<<\"\\n\";\n }\n cout<<flush;\n return 0;\n}\n/*\n verified on 2019/06/16\n http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3062\n*/\n\nsigned main(){\n AOJ_3062();\n return 0;\n}", "accuracy": 1, "time_ms": 950, "memory_kb": 3596, "score_of_the_acc": -0.2507, "final_rank": 9 }, { "submission_id": "aoj_3062_3659314", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nlong long MOD;\n\ntemplate<typename T>\nstruct Mint{\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n Mint pow(long long k){\n Mint res(1),tmp(v);\n while(k){\n if(k&1) res*=tmp;\n tmp*=tmp;\n k>>=1;\n }\n return res;\n }\n \n Mint inv(){return pow(MOD-2);}\n \n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n Mint& operator/=(Mint a){return (*this)*=a.inv();}\n \n Mint operator+(Mint a) const{return Mint(v)+=a;};\n Mint operator-(Mint a) const{return Mint(v)-=a;};\n Mint operator*(Mint a) const{return Mint(v)*=a;};\n Mint operator/(Mint a) const{return Mint(v)/=a;};\n\n Mint operator-(){return v?MOD-v:v;}\n\n bool operator==(const Mint a)const{return v==a.v;}\n bool operator!=(const Mint a)const{return v!=a.v;}\n bool operator <(const Mint a)const{return v <a.v;}\n\n};\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\ntemplate<typename T> \nmap<T, Int> factorize(T x){\n map<T, Int> res;\n for(Int i=2;i*i<=x;i++){\n while(x%i==0){\n x/=i;\n res[i]++;\n }\n }\n if(x!=1) res[x]++;\n return res;\n}\n\n//INSERT ABOVE HERE\nusing M = Mint<Int>;\nvector<Int> ps;\nInt ord(Int x){\n Int res=MOD-1;\n for(Int p:ps){\n while(res%p==0){\n M v(x);\n if(v.pow(res/p).v!=1) break;\n res/=p;\n }\n }\n //cout<<x<<\":\"<<res<<endl;\n return res;\n}\n\nInt mlcm(Int a,Int b){\n return a/__gcd(a,b)*b;\n}\n\nvoid solve(){\n Int n;\n cin>>n;\n vector<Int> g(n);\n for(Int i=0;i<n;i++) cin>>g[i];\n Int a;\n cin>>a;\n if(a==1){\n cout<<1<<\"\\n\";\n return;\n }\n \n sort(g.rbegin(),g.rend());\n if(g[0]==1){ \n cout<<0<<\"\\n\";\n return;\n }\n while(g.back()==1) g.pop_back();\n \n Int res=ord(g[0]);\n for(Int x:g) res=mlcm(res,ord(x));\n \n cout<<(res%ord(a)==0?1:0)<<\"\\n\";\n}\n\nsigned main(){\n cin>>MOD;\n auto d=factorize(MOD-1);\n for(auto p:d)\n ps.emplace_back(p.first);\n \n Int T;\n cin>>T;\n while(T--) solve();\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 1020, "memory_kb": 3680, "score_of_the_acc": -0.2714, "final_rank": 10 }, { "submission_id": "aoj_3062_3428323", "code_snippet": "#include <cstdio>\n#include <cstdint>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <utility>\n\nstd::map<intmax_t, intmax_t> factor(intmax_t n) {\n std::map<intmax_t, intmax_t> res;\n for (intmax_t i = 2; i*i <= n; ++i) {\n while (n % i == 0) {\n ++res[i];\n n /= i;\n }\n }\n if (n > 1) ++res[n];\n return res;\n}\n\ntemplate <class Tp>\nTp modpow(Tp base, intmax_t iexp, Tp mod) {\n Tp res = 1;\n for (Tp dbl = base; iexp; iexp >>= 1) {\n if (iexp & 1) res = res * dbl % mod;\n dbl = dbl * dbl % mod;\n }\n return res;\n}\n\ntemplate <class Tp>\nTp gcd(Tp m, Tp n) {\n while (n) std::swap(m %= n, n);\n return m;\n}\n\ntemplate <class Tp>\nTp lcm(Tp m, Tp n) {\n return m / gcd(m, n) * n;\n}\n\nintmax_t ord(intmax_t g, intmax_t p, const std::map<intmax_t, intmax_t>& f) {\n intmax_t q = p-1;\n for (const auto& pp: f) {\n for (intmax_t i = 0; i < pp.second; ++i) {\n intmax_t e = pp.first;\n if (modpow(g, q/e, p) == 1)\n q /= e;\n }\n }\n return q;\n}\n\nint main() {\n intmax_t P;\n int T;\n scanf(\"%jd %d\", &P, &T);\n\n auto f = factor(P-1);\n for (int i = 0; i < T; ++i) {\n size_t g;\n scanf(\"%zu\", &g);\n\n intmax_t ords = 1;\n for (size_t j = 0; j < g; ++j) {\n intmax_t gi;\n scanf(\"%jd\", &gi);\n ords = lcm(ords, ord(gi, P, f));\n }\n\n intmax_t a;\n scanf(\"%jd\", &a);\n\n printf(\"%d\\n\", (ords % ord(a, P, f) == 0));\n }\n}", "accuracy": 1, "time_ms": 2130, "memory_kb": 2800, "score_of_the_acc": -0.5395, "final_rank": 11 }, { "submission_id": "aoj_3062_3428245", "code_snippet": "#include <cstdio>\n#include <cstdint>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <utility>\n\nstd::map<intmax_t, intmax_t> factor(intmax_t n) {\n std::map<intmax_t, intmax_t> res;\n for (intmax_t i = 2; i*i <= n; ++i) {\n while (n % i == 0) {\n ++res[i];\n n /= i;\n }\n }\n if (n > 1) ++res[n];\n return res;\n}\n\ntemplate <class Tp>\nTp modpow(Tp base, intmax_t iexp, Tp mod) {\n Tp res = 1;\n for (Tp dbl = base; iexp; iexp >>= 1) {\n if (iexp & 1) res = res * dbl % mod;\n dbl = dbl * dbl % mod;\n }\n return res;\n}\n\ntemplate <class Tp>\nTp gcd(Tp m, Tp n) {\n while (n) std::swap(m %= n, n);\n return m;\n}\n\ntemplate <class Tp>\nTp lcm(Tp m, Tp n) {\n return m / gcd(m, n) * n;\n}\n\nintmax_t ord(intmax_t g, intmax_t p, const std::map<intmax_t, intmax_t> f) {\n intmax_t q = p-1;\n for (const auto& pp: f) {\n for (intmax_t i = 0; i < pp.second; ++i) {\n intmax_t e = pp.first;\n if (modpow(g, q/e, p) == 1)\n q /= e;\n }\n }\n return q;\n}\n\nint main() {\n intmax_t P;\n int T;\n scanf(\"%jd %d\", &P, &T);\n\n auto f = factor(P-1);\n for (int i = 0; i < T; ++i) {\n size_t g;\n scanf(\"%zu\", &g);\n\n intmax_t ords = 1;\n for (size_t j = 0; j < g; ++j) {\n intmax_t gi;\n scanf(\"%jd\", &gi);\n ords = lcm(ords, ord(gi, P, f));\n }\n\n intmax_t a;\n scanf(\"%jd\", &a);\n\n printf(\"%d\\n\", (ords % ord(a, P, f) == 0));\n }\n}", "accuracy": 1, "time_ms": 2150, "memory_kb": 2800, "score_of_the_acc": -0.5447, "final_rank": 12 }, { "submission_id": "aoj_3062_3427592", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<ll, ll> P;\n\n#define fi first\n#define se second\n#define repl(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define all(x) (x).begin(),(x).end()\n#define dbg(x) cout<<#x\"=\"<<x<<endl\n#define mmax(x,y) (x>y?x:y)\n#define mmin(x,y) (x<y?x:y)\n#define maxch(x,y) x=mmax(x,y)\n#define minch(x,y) x=mmin(x,y)\n#define uni(x) x.erase(unique(all(x)),x.end())\n#define exist(x,y) (find(all(x),y)!=x.end())\n#define bcnt __builtin_popcountll\n\n#define INF 1e16\n\nll mod_pow(ll a,ll n,ll m){\n ll res=1;\n while(n>0){\n if(n&1)res=res*a%m;\n a=a*a%m;\n n>>=1;\n }\n return res;\n}\n\nll calc_order(ll X, const vector<P>& ps, ll M){\n ll g = 1;\n rep(i, ps.size()){\n ll mx = 0, r = M - 1;\n rep(j, ps[i].se){\n r /= ps[i].fi;\n if(mod_pow(X, r, M) != 1){\n mx = ps[i].se - j; break;\n }\n }\n ll t = mod_pow(ps[i].fi, mx, M);\n g *= t;\n }\n return g;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll M,T;\n cin>>M>>T;\n\n vector<P> ps;\n ll tmp=M-1;\n for(ll i=2;i*i<=tmp;i++){\n if(tmp%i!=0)continue;\n P p=P(i,0);\n while(tmp%i==0){\n tmp/=i; p.se++;\n }\n ps.push_back(p);\n }\n if(tmp!=1){\n P p=P(tmp,1);\n ps.push_back(p);\n }\n\n while(T--){\n int N;\n cin>>N;\n ll a=-1,b=0;\n rep(i,N){\n ll X;\n cin>>X;\n b=__gcd(b,(M-1)/calc_order(X,ps,M));\n }\n {\n ll A;\n cin>>A;\n a=(M-1)/calc_order(A,ps,M);\n }\n if(a%b==0)cout<<1<<endl;\n else cout<<0<<endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 770, "memory_kb": 3196, "score_of_the_acc": -0.1924, "final_rank": 6 }, { "submission_id": "aoj_3062_3427580", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<ll, ll> P;\n\n#define fi first\n#define se second\n#define repl(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define all(x) (x).begin(),(x).end()\n#define dbg(x) cout<<#x\"=\"<<x<<endl\n#define mmax(x,y) (x>y?x:y)\n#define mmin(x,y) (x<y?x:y)\n#define maxch(x,y) x=mmax(x,y)\n#define minch(x,y) x=mmin(x,y)\n#define uni(x) x.erase(unique(all(x)),x.end())\n#define exist(x,y) (find(all(x),y)!=x.end())\n#define bcnt __builtin_popcountll\n\n#define INF 1e16\n\nll mod_pow(ll a,ll n,ll m){\n ll res=1;\n while(n>0){\n if(n&1)res=res*a%m;\n a=a*a%m;\n n>>=1;\n }\n return res;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll M,T;\n cin>>M>>T;\n\n vector<P> ps;\n ll tmp=M-1;\n for(ll i=2;i*i<=tmp;i++){\n if(tmp%i!=0)continue;\n P p=P(i,0);\n while(tmp%i==0){\n tmp/=i; p.se++;\n }\n ps.push_back(p);\n }\n if(tmp!=1){\n P p=P(tmp,1);\n ps.push_back(p);\n }\n\n while(T--){\n int N;\n cin>>N;\n ll a=-1,b=0;\n rep(i,N){\n ll X;\n cin>>X;\n ll g=1;\n rep(j,ps.size()){\n ll mx=0,r=M-1;\n rep(k,ps[j].se){\n r/=ps[j].fi;\n if(mod_pow(X,r,M)!=1){\n mx=ps[j].se-k; break;\n }\n }\n ll t=mod_pow(ps[j].fi,mx,M);\n g*=t;\n }\n b=__gcd(b,(M-1)/g);\n }\n {\n ll A;\n cin>>A;\n ll g=0;\n rep(j,ps.size()){\n ll mn=ps[j].se,r=M-1;\n rep(k,ps[j].se){\n r/=ps[j].fi;\n if(mod_pow(A,r,M)!=1){\n mn=k; break;\n }\n }\n ll t=mod_pow(ps[j].fi,mn,M);\n g=__gcd(g,((M-1)/mod_pow(ps[j].fi,ps[j].se,M))*t);\n }\n a=g;\n }\n if(a%b==0)cout<<1<<endl;\n else cout<<0<<endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 820, "memory_kb": 3196, "score_of_the_acc": -0.2055, "final_rank": 7 } ]
aoj_3066_cpp
Problem C: Satake likes straight Problem Satake君は曲がったことが嫌いです。 例えば、鉛筆や箸、家が曲がった形をしているのは嫌いですし、右折や左折などの行動をとることも嫌いです。 さて、XY 平面上で暮らすSatake君は $N$ 個のお店 $(X_{1},Y_{1}),(X_{2},Y_{2}), \ldots , (X_{N},Y_{N})$ で買い物をするようお使いを頼まれました。座標 $(0, 0)$ にある家から $(1, 0)$ の方向を向いた状態で出発し、すべてのお店で買い物をしたあと、家に帰ります。お店を回る順番は自由です。Satake君はお使いとして次に示す任意の行動を何度でも行うことができます。 向いている方向に好きなだけ進む お店か家と同じ座標のとき時計回りか反時計回りに好きな角度だけその場で回転する お店と同じ座標のとき座標や向いている方向の状態を維持したまま買い物をする 先程も言ったようにSatake君は曲がることが嫌いです。心の準備ができるように、Satake君が行動2.で回転する角度の和の最小値を求めてください。例として、時計回りに $90^{\circ}$ 回転した後、反時計回りに $90^{\circ}$ 回転した場合、角度の和は $180^{\circ}$ となります。 Input 入力は以下の形式で与えられます。 $N$ $X_{1}$ $Y_{1}$ $\vdots$ $X_{N}$ $Y_{N}$ 入力は $N+1$ 行からなります。 $1$ 行目には買い物をする店の個数を表す $N$ が与えられます。 $2$ 行目から続く $N$ 行には、買い物をするお店の座標 $X_{i}, Y_{i}$ が空白区切りで与えられます。 Constraints 入力は以下の条件を満たします。 $2 \le N \le 8$ $-1000 \le X_{i}, Y_{i} \le 1000 \quad (1 \le i \le N)$ $(X_{i}, Y_{i}) \ne (0, 0) \quad (1 \le i \le N)$ $(X_{i}, Y_{i}) \ne (X_{j}, Y_{j}) \quad (i \ne j)$ 入力はすべて整数 Output Satake君が回転する角度の和の最小値を度数法で出力してください。ただし想定解との絶対誤差が $10^{-4}$ 以下のときのみ正解とします。 Sample Input 1 2 0 1 0 -1 Sample Output 1 450.00000000 Satake君は最初 $(1, 0)$ 方向を向いて出発することに注意してください。 Sample Input 2 3 1 0 0 1 -2 -1 Sample Output 2 386.565051
[ { "submission_id": "aoj_3066_10179389", "code_snippet": "// AOJ #3066\n// Satake likes straight 2025.2.3\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nconst double PI = acos(-1);\n\n// 2つのベクトル (ax,ay) と (bx,by) のなす角(度)を返す\ndouble angleBetween(double ax, double ay, double bx, double by) {\n double dot = ax * bx + ay * by;\n double magA = sqrt(ax * ax + ay * ay);\n double magB = sqrt(bx * bx + by * by);\n double cosval = dot / (magA * magB);\n // 浮動小数点誤差対策:範囲 [-1,1] に収める\n if(cosval > 1) cosval = 1;\n if(cosval < -1) cosval = -1;\n double angle = acos(cosval); // [rad]\n return angle * 180.0 / PI;\n}\n \nstruct Point { int x, y; };\n \nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n int N;\n cin >> N;\n vector<Point> shops(N);\n for (int i = 0; i < N; i++){\n cin >> shops[i].x >> shops[i].y;\n }\n \n vector<int> perm(N);\n for (int i = 0; i < N; i++) perm[i] = i;\n \n double best = 1e18;\n \n // 全順列を試す\n do {\n double totalCost = 0.0;\n \n double sx = shops[perm[0]].x - 0;\n double sy = shops[perm[0]].y - 0;\n\n totalCost += angleBetween(1.0, 0.0, sx, sy);\n \n double prev_dx = sx, prev_dy = sy;\n \n for (int i = 1; i <= N; i++){\n double curr_dx, curr_dy;\n if(i < N) {\n curr_dx = shops[perm[i]].x - shops[perm[i-1]].x;\n curr_dy = shops[perm[i]].y - shops[perm[i-1]].y;\n } else {\n curr_dx = 0 - shops[perm[N-1]].x;\n curr_dy = 0 - shops[perm[N-1]].y;\n }\n totalCost += angleBetween(prev_dx, prev_dy, curr_dx, curr_dy);\n prev_dx = curr_dx;\n prev_dy = curr_dy;\n }\n best = min(best, totalCost);\n } while(next_permutation(perm.begin(), perm.end()));\n cout << fixed << setprecision(8) << best << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3916, "score_of_the_acc": -1, "final_rank": 14 }, { "submission_id": "aoj_3066_8001262", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\n#define rep(i,n) for(ll i=0;i<n;i++)\n#define all(A) A.begin(),A.end()\nint main() {\n ll N;\n cin >> N;\n vector<double> X(N), Y(N);\n vll P(N);\n rep(i, N) {\n cin >> X[i] >> Y[i];\n P[i] = i;\n }\n double an = 1e18;\n double PI = atan2(1.0, 1.0) * 4.0;\n do {\n double res = 0.0;\n double x = 0, y = 0, t = 0;\n rep(i, N) {\n double dx = X[P[i]]-x;\n double dy = Y[P[i]]-y;\n double nt = atan2(dy, dx);\n double nr = 1e18;\n for (ll i = -2; i <= 2; i++) {\n nr = min(nr, abs(t - nt + double(2 * i) * PI));\n nr = min(nr, abs(nt - t + double(2 * i) * PI));\n }\n res += nr;\n x = X[P[i]];\n y = Y[P[i]];\n t = nt;\n }\n double nr = 1e18;\n for (ll i = -2; i <= 2; i++) {\n nr = min(nr, abs(t - atan2(-y, -x) + double(2 * i) * PI));\n }\n res += nr;\n an = min(an, res / PI * 180.0);\n } while (next_permutation(all(P)));\n cout << fixed << setprecision(15);\n cout << an << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3860, "score_of_the_acc": -0.9108, "final_rank": 13 }, { "submission_id": "aoj_3066_4239185", "code_snippet": "#include<iostream>\n#include<string>\n#include<iomanip>\n#include<cmath>\n#include<vector>\n#include<algorithm>\n#include<limits>\n\nusing namespace std;\n\n#define int long long\n#define endl \"\\n\"\n\nconst long long INF = (long long)1e18;\nconst long long MOD = (long long)1e9 + 7; \n\nstring yn(bool f){return f?\"Yes\":\"No\";}\nstring YN(bool f){return f?\"YES\":\"NO\";}\n\n#define x first\n#define y second\n\nlong double angle(pair<int,int> a, pair<int,int> b){\n\tstatic long double PI = acos(-1);\n\tlong double inner_product = a.x*b.x + a.y*b.y, absa = sqrt(a.x*a.x + a.y*a.y), absb = sqrt(b.x*b.x + b.y*b.y);\n\tlong double c = inner_product/(absa*absb);\n\treturn fabs(acos(c)/PI)*180;\n}\n\nsigned main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tcout<<fixed<<setprecision(10);\n\t\n\tint n;\n\tvector<int> per;\n\tvector<pair<long double, long double>> shop;\n\tlong double ans = numeric_limits<long double>::max();\n\t\n\tcin>>n;\n\t\n\tshop.resize(n+1);\n\tper.resize(n+2);\n\t\n\tfor(int i = 1; i <= n; per[i] = i, i++)\n\t\tcin>>shop[i].x>>shop[i].y;\n\t\n\tdo{\n\t\tlong double sum = 0;\n\t\tpair<long long, long long> nd, d = {1,0};\n\t\t\n\t\tfor(int i = 0; i <= n; d = nd, i++){\n\t\t\tnd = make_pair(shop[per[i+1]].x - shop[per[i]].x, shop[per[i+1]].y - shop[per[i]].y);\n\t\t\tsum += angle(d,nd);\n\t\t}\n\t\t\n\t\tans = min(ans, sum);\n\t\t\n\t} while(next_permutation(per.begin()+1, per.end()-1));\n\t\n\tcout<<ans<<endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3360, "score_of_the_acc": -0.3146, "final_rank": 5 }, { "submission_id": "aoj_3066_3894060", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing CP = complex<long double>;\n#define X real()\n#define Y imag()\nconst long double PI = acos(-1);\nconst long double EPS = 1e10;\n// conj(x) : complex conjugate,(0,1)->(0,-1)\n// abs(x) : dist between(0,0) and x\n// norm(x) : abs(x) * abs(x)\n// arg(x) : argment\nlong double dot(CP a, CP b) { return (a * conj(b)).X; }\nlong double cross(CP a, CP b) { return (a * conj(b)).Y; }\nlong double corner(CP a, CP b) {\n //[0,pi]\n return acos(dot(a, b) / (abs(a) * abs(b)));\n}\n\nint n;\nvector<CP> v;\n\nlong double solve();\nlong double calc(CP &nowv, CP &nowp, CP nextp);\n\nint main() {\n cin >> n;\n for(int i = 0; i < n; ++i) {\n int x, y;\n cin >> x >> y;\n v.push_back(CP(x, y));\n }\n cout << fixed << setprecision(10);\n cout << solve() << endl;\n return 0;\n}\nlong double solve() {\n vector<int> perm;\n long double ans = 1e10;\n for(int i = 0; i < n; ++i) perm.push_back(i);\n do {\n long double nowans = 0;\n CP nowv(1, 0), nowp(0, 0);\n for(int i = 0; i < n; ++i)\n nowans += calc(nowv, nowp, v[perm[i]]);\n nowans += calc(nowv, nowp, CP(0, 0));\n ans = min(nowans, ans);\n } while(next_permutation(perm.begin(), perm.end()));\n return ans / (2 * PI) * 360.0;\n}\n\nlong double calc(CP &nowv, CP &nowp, CP nextp) {\n long double ans = corner(nowv, nextp - nowp);\n if(ans != 0) nowv = nextp - nowp;\n nowp = nextp;\n return ans;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3336, "score_of_the_acc": -1.0764, "final_rank": 15 }, { "submission_id": "aoj_3066_3894054", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing CP = complex<long double>;\n#define X real()\n#define Y imag()\nconst long double PI = acos(-1);\nconst long double EPS = 1e10;\n// conj(x) : complex conjugate,(0,1)->(0,-1)\n// abs(x) : dist between(0,0) and x\n// norm(x) : abs(x) * abs(x)\n// arg(x) : argment\nlong double dot(CP a, CP b) { return (a * conj(b)).X; }\nlong double cross(CP a, CP b) { return (a * conj(b)).Y; }\nlong double corner(CP a, CP b) {\n //[0,pi]\n return acos(dot(a, b) / (abs(a) * abs(b)));\n}\n\nint n;\nvector<CP> v;\n\nlong double solve();\nlong double calc(CP &nowv, CP &nowp, CP nextp);\n\nint main() {\n cin >> n;\n for(int i = 0; i < n; ++i) {\n int x, y;\n cin >> x >> y;\n v.push_back(CP(x, y));\n }\n cout << fixed << setprecision(10);\n cout << solve() << endl;\n return 0;\n}\nlong double solve() {\n vector<int> perm;\n long double ans = 1e10;\n for(int i = 0; i < n; ++i) perm.push_back(i);\n do {\n long double nowans = 0;\n CP nowv(1, 0), nowp(0, 0);\n for(int i = 0; i < n; ++i)\n if(nowv != v[perm[i]] - nowp)\n nowans += calc(nowv, nowp, v[perm[i]]);\n nowans += calc(nowv, nowp, CP(0, 0));\n ans = min(nowans, ans);\n } while(next_permutation(perm.begin(), perm.end()));\n return ans / (2 * PI) * 360.0;\n}\n\nlong double calc(CP &nowv, CP &nowp, CP nextp) {\n long double ans = corner(nowv, nextp - nowp);\n nowv = nextp - nowp;\n nowp = nextp;\n return ans;\n}", "accuracy": 0.35, "time_ms": 40, "memory_kb": 3332, "score_of_the_acc": -0.6701, "final_rank": 16 }, { "submission_id": "aoj_3066_3893187", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\ntemplate<typename F>\nstruct FixPoint : F{\n FixPoint(F&& f):F(forward<F>(f)){}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const{\n return F::operator()(*this,forward<Args>(args)...);\n }\n};\ntemplate<typename F>\ninline decltype(auto) MFP(F&& f){\n return FixPoint<F>{forward<F>(f)};\n}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\nstruct Precision{\n Precision(){\n cout<<fixed<<setprecision(12);\n }\n}precision_beet;\n\n//INSERT ABOVE HERE\n\nusing D = double;\nconst D PI = asin(1)*2;\nD dot(D x1,D y1,D x2,D y2){\n return x1*x2+y1*y2;\n}\n\nsigned main(){\n int n;\n cin>>n;\n vector<D> xs(n),ys(n);\n for(int i=0;i<n;i++) cin>>xs[i]>>ys[i];\n xs.emplace_back(0);\n ys.emplace_back(0);\n xs.emplace_back(-1);\n ys.emplace_back(0);\n\n vector<int> vs(n+3,n),used(n,0);\n vs[0]=n+1;\n\n D ans=1e9;\n auto check=\n [&](){\n D res=0;\n for(int i=0;i+2<n+3;i++){\n D dx=xs[vs[i+1]]-xs[vs[i+0]],dy=ys[vs[i+1]]-ys[vs[i+0]];\n D nx=xs[vs[i+2]]-xs[vs[i+1]],ny=ys[vs[i+2]]-ys[vs[i+1]];\n D th=acos(min(1.0,max(dot(dx,dy,nx,ny)/hypot(dx,dy)/hypot(nx,ny),\n -1.0)));\n //cout<<dx<<\" \"<<dy<<\":\"<<nx<<\" \"<<ny<<\":\"<<th<<endl;\n res+=abs(th)/PI*180;\n }\n chmin(ans,res);\n };\n\n MFP([&](auto dfs,int d)->void{\n if(d==n+2){\n check();\n return;\n }\n for(int i=0;i<n;i++){\n if(used[i]) continue;\n used[i]=1;\n vs[d]=i;\n dfs(d+1);\n used[i]=0;\n }\n })(2);\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3456, "score_of_the_acc": -0.4675, "final_rank": 9 }, { "submission_id": "aoj_3066_3889308", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\n\nusing ll = long long;\nusing P = pair<int, int>;\nusing T = tuple<int, int, int>;\n\ntemplate <class T> inline T chmax(T &a, const T b) {return a = (a < b) ? b : a;}\ntemplate <class T> inline T chmin(T &a, const T b) {return a = (a > b) ? b : a;}\n\nconstexpr int MOD = 1e9 + 7;\nconstexpr int inf = 1e9;\nconstexpr long long INF = 1e18;\nconstexpr double pi = acos(-1);\nconstexpr double EPS = 1e-10;\n\nint dx[] = {1, 0, -1, 0};\nint dy[] = {0, 1, 0, -1};\n\ndouble todeg(double ang){\n return ang * 180 / pi;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int n; cin>>n;\n vector<int> x(n), y(n);\n for(int i=0; i<n; i++) cin>>x[i]>>y[i];\n vector<int> perm(n);\n iota(perm.begin(), perm.end(), 0);\n\n double ans = inf;\n do{\n vector<P> points;\n points.emplace_back(0, 0);\n for(auto i : perm) points.emplace_back(x[i], y[i]);\n points.emplace_back(0, 0);\n\n double theta = 0, sum = 0;\n for(int i=0; i<=n; i++){\n int dx = points[i+1].first - points[i].first;\n int dy = points[i+1].second - points[i].second;\n\n double cur_theta = atan2(dy, dx);\n\n sum += todeg(min(abs(theta - cur_theta), 2 * pi - abs(theta - cur_theta)));\n theta = cur_theta;\n }\n\n chmin(ans, sum);\n }while(next_permutation(perm.begin(), perm.end()));\n\n printf(\"%.10f\\n\", ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3408, "score_of_the_acc": -0.1911, "final_rank": 2 }, { "submission_id": "aoj_3066_3889299", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\n\nusing ll = long long;\nusing P = pair<int, int>;\nusing T = tuple<int, int, int>;\n\ntemplate <class T> inline T chmax(T &a, const T b) {return a = (a < b) ? b : a;}\ntemplate <class T> inline T chmin(T &a, const T b) {return a = (a > b) ? b : a;}\n\nconstexpr int MOD = 1e9 + 7;\nconstexpr int inf = 1e9;\nconstexpr long long INF = 1e18;\nconstexpr double pi = acos(-1);\nconstexpr double EPS = 1e-10;\n\nint dx[] = {1, 0, -1, 0};\nint dy[] = {0, 1, 0, -1};\n\ntypedef complex<double> Point, Vector;\n#define X real()\n#define Y imag()\n\ndouble todeg(double ang){\n return ang * 180 / pi;\n}\n\ndouble dot(Vector a, Vector b){\n return a.X * b.X + a.Y * b.Y;\n}\n\ndouble norm(Vector a){\n return a.X * a.X + a.Y * a.Y;\n}\n\ndouble abs(Vector a){\n return sqrt(norm(a));\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int n; cin>>n;\n vector<double> x(n), y(n);\n for(int i=0; i<n; i++) cin>>x[i]>>y[i];\n vector<int> v(n);\n iota(v.begin(), v.end(), 0);\n\n double ans = inf;\n do{\n double sum = 0, tmpcos;\n Point cp = Point(0, 0), pp = Point(1, 0), np = Point(x[v[0]], y[v[0]]);\n Vector v1 = pp - cp, v2 = np - cp;\n tmpcos = dot(v1, v2) / (abs(v1) * abs(v2));\n sum += todeg(acos(tmpcos));\n pp = cp, cp = np;\n for(int i=1; i<n; i++){\n np = Point(x[v[i]], y[v[i]]);\n v1 = cp - pp, v2 = np - cp;\n tmpcos = dot(v1, v2) / (abs(v1) * abs(v2));\n sum += todeg(acos(tmpcos));\n pp = cp, cp = np;\n }\n np = Point(0, 0);\n v1 = cp - pp, v2 = np - cp;\n tmpcos = dot(v1, v2) / (abs(v1) * abs(v2));\n sum += todeg(acos(tmpcos));\n\n chmin(ans, sum);\n\n }while(next_permutation(v.begin(), v.end()));\n\n printf(\"%.10f\\n\", ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3464, "score_of_the_acc": -0.2803, "final_rank": 3 }, { "submission_id": "aoj_3066_3887908", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define PI acos(-1.0)\n\nint main(){\n int n; cin >> n;\n vector<pair<int, int> > xy(n);\n for (int i = 0; i < n; ++i) cin >> xy[i].first >> xy[i].second;\n sort(xy.begin(), xy.end());\n double alpha = 0, ans = 1e18;\n do {\n alpha = atan2(xy[0].second, xy[0].first);\n if (alpha < 0) alpha += 2 * PI;\n double tmp = min(alpha, 2 * PI - alpha);\n for (int i = 1; i < n; ++i) {\n double t = atan2(xy[i].second - xy[i - 1].second, xy[i].first - xy[i - 1].first);\n if (t < 0) t += 2 * PI;\n tmp += min(abs(alpha - t),2 * PI- abs(alpha - t));\n alpha = t;\n }\n double t = atan2(-xy[n - 1].second, -xy[n - 1].first);\n if (t < 0) t += 2 * PI;\n tmp += min(abs(alpha - t), 2 * PI - abs(alpha - t));\n ans = min(ans, tmp);\n } while (next_permutation(xy.begin(), xy.end()));\n printf(\"%.10f\\n\", ans * 180.0 / PI);\n \n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3376, "score_of_the_acc": -0.1401, "final_rank": 1 }, { "submission_id": "aoj_3066_3886101", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\nstruct Point{\n\tPoint(double arg_x,double arg_y){\n\t\tx = arg_x;\n\t\ty = arg_y;\n\t}\n\n\tPoint(){\n\t\tx = y = 0.0;\n\t}\n\n\tPoint operator + (Point p){ return Point(x+p.x,y+p.y); }\n\tPoint operator - (Point p){ return Point(x-p.x,y-p.y);}\n\tPoint operator * (double a){ return Point(a*x,a*y); }\n\tPoint operator / (double a){ return Point(x/a,y/a); }\n\n\tdouble abs(){ return sqrt(norm()); }\n\tdouble norm(){ return x*x + y*y; }\n\n\tbool operator<(const Point &p) const{\n\t\treturn x != p.x? x < p.x: y < p.y;\n\t}\n\n\tbool operator == (const Point &p) const{\n\t\treturn fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;\n\t}\n\n\tdouble x,y;\n};\n\ntypedef Point Vector;\nint N;\nPoint point[8];\n\ndouble norm(Vector a){\n\treturn a.x*a.x+a.y*a.y;\n}\n\ndouble abs(Vector a){\n\treturn sqrt(norm(a));\n}\n\ndouble cross(Vector a,Vector b){\n return a.x*b.y-a.y*b.x;\n}\n\ndouble dot(Vector a,Vector b){\n return a.x*b.x + a.y*b.y;\n}\n\n\nint main(){\n\n\tscanf(\"%d\",&N);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lf %lf\",&point[i].x,&point[i].y);\n\t}\n\n\tint table[N];\n\tfor(int i = 0; i < N; i++){\n\n\t\ttable[i] = i;\n\t}\n\n\tdouble ans = BIG_NUM;\n\n\tdo{\n\n\t\tPoint pre;\n\t\tpre.x = 0;\n\t\tpre.y = 0;\n\n\t\tdouble tmp = 0;\n\n\t\tVector vec,next_vec;\n\t\tvec.x = 1;\n\t\tvec.y = 0;\n\n\t\tfor(int i = 0; i < N; i++){\n\n\t\t\tnext_vec = point[table[i]]-pre;\n\n\t\t\ttmp += fabs(acos(dot(next_vec,vec)/(abs(next_vec)*abs(vec))));\n\n\t\t\tpre = point[table[i]];\n\t\t\tvec = next_vec;\n\t\t}\n\n\t\t//家に帰る\n\t\tdouble x = 0;\n\t\tdouble y = 0;\n\n\t\tnext_vec.x = x-pre.x;\n\t\tnext_vec.y = y-pre.y;\n\n\t\ttmp += fabs(acos(dot(next_vec,vec)/(abs(next_vec)*abs(vec))));\n\n\t\tans = min(ans,tmp);\n\n\t}while(next_permutation(table,table+N));\n\n\tprintf(\"%.10lf\\n\",(ans*180)/M_PI);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3532, "score_of_the_acc": -0.3885, "final_rank": 8 }, { "submission_id": "aoj_3066_3883416", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ndouble PI2 = acos(-1) * 2;\ndouble normal(double a){\n while(a >= PI2) a -= PI2;\n while(a < 0) a += PI2;\n return a;\n}\n\nint main() {\n int N;\n int X[9], Y[9];\n cin >> N;\n for(int i=0; i<N; i++) cin >> X[i] >> Y[i];\n X[N] = Y[N] = 0;\n\n double ans = 1e18;\n vector<int> order(N+1);\n for(int i=0; i<=N; i++) order[i] = i;\n\n do{\n double res = 0;\n int x = 0, y = 0;\n double ang = 0;\n for(int i : order){\n double a = atan2(Y[i]-y, X[i]-x);\n res += min(normal(a-ang), normal(ang-a));\n x = X[i];\n y = Y[i];\n ang = a;\n }\n ans = min(ans, res);\n }while(next_permutation(order.begin(), order.end()-1));\n ans *= 360 / PI2;\n cout << fixed << setprecision(10) << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3600, "score_of_the_acc": -0.4968, "final_rank": 10 }, { "submission_id": "aoj_3066_3880909", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\ntypedef double P_type; //座標(integer or real)\ntypedef double G_real; //実数の戻り値(float or double or long double)\ntypedef complex<P_type> P;\nconst G_real P_eps = 1e-8; //整数の時はゼロ\n\nnamespace std{\n template<class T> bool operator<(const complex<T> &a, const complex<T> &b){\n return abs(a.real() - b.real()) < P_eps ? a.imag() + P_eps < b.imag() : a.real() + P_eps < b.real();\n }\n};\n\nP rotate(P p, double theta){\n return p * P(cos(theta), sin(theta));\n}\n\n//内積\nP_type dot(P a, P b) {\n return (a * conj(b)).real();\n}\n\n//外積\nP_type cross(P a, P b) {\n return (conj(a) * b).imag();\n}\n\n//反時計回り\nint ccw(P a, P b, P c){\n if(cross(b-a, c-a) > P_eps) return 1; //COUNTER_CLOCKWISE(center:a)\n if(cross(b-a, c-a) < -P_eps) return -1; //CLOCKWISE(center:a)\n if(dot(b-a, c-a) < -P_eps) return -2; //c -> a -> b\n if(dot(a-b, c-b) < -P_eps) return 2; //a -> b -> c\n return 0; //a -> c -> b\n}\n\n// a -> b -> c\nP_type degree(P a, P b, P c) {\n c = c - b;\n a = b - a;\n return atan2(cross(c, a), dot(c, a)) / M_PI * 180;\n}\n\nint main(){\n int N, x[8], y[8];\n P points[11];\n\n cin >> N;\n\n for(int i=0; i<N; i++) {\n cin >> x[i] >> y[i];\n points[i+1] = P(x[i], y[i]);\n }\n\n int p[N+3];\n iota(p, p+N+3, 0);\n points[0] = P(0, 0);\n points[N+1] = P(0, 0);\n points[N+2] = P(-1, 0);\n\n double ans = 1e18;\n\n do{\n double sum = 0;\n\n for(int i=N+1; i>=1; i--) {\n sum += abs(degree(points[p[i+1]], points[p[i]], points[p[i-1]]));\n }\n\n ans = min(ans, sum);\n\n }while(next_permutation(p+1, p+N+1));\n\n printf(\"%.10lf\\n\", ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3472, "score_of_the_acc": -0.293, "final_rank": 4 }, { "submission_id": "aoj_3066_3880773", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing int64 = long long;\n#define int int64\n#define debug(x) cerr<<#x<<\":\"<<x<<endl;\n\nusing Pos = pair<int,int>;\n\nlong double getLen(Pos a, Pos b) {\n return sqrt(pow(a.first-b.first, 2) + pow(a.second-b.second,2));\n}\n\nsigned main() {\n int n;cin>>n;\n vector<long double> x(n),y(n);\n for(int i=0;i<n;++i){\n cin>>x[i]>>y[i];\n }\n\n long double ans = 1e9+1;\n \n vector<int> par(n);\n iota(par.begin(), par.end(), 0);\n do {\n vector<long double> angles(n);\n \n long double bx=0.0, by=0.0;\n for(int i=0;i<=n;++i){\n long double nx, ny;\n if (i==n) nx=0.0, ny=0.0;\n else nx = x[par[i]], ny = y[par[i]];\n // get angle A\n long double x = nx - bx;\n long double y = ny - by;\n long double angle;\n\n if(x==0 && y==0) {\n if (angles.empty()) angle = 0.0;\n else angle = angles.back();\n } else if(x==0) {\n if(y>0) angle = 90.0;\n else angle = 270.0;\n } else if(y==0) {\n if(x>0) angle = 0.0;\n else angle = 180.0;\n } else {\n angle = 180.0 * atan(y/x) / (atan(1.0)*4.0);\n if(x<0) angle -= 180.0;\n }\n \n while(angle<0) angle += 360.0;\n angles.emplace_back(angle);\n\n bx = nx;\n by = ny;\n }\n \n long double tmp = 0.0;\n for(int i=0;i<angles.size()-1;++i){\n long double diff = angles[i+1]-angles[i];\n while(diff<0) diff += 360.0;\n tmp += diff;\n }\n //debug(tmp);\n ans = min(ans, tmp);\n } while(next_permutation(par.begin(), par.end()));\n\n cout<<fixed<<setprecision(10)<<ans<<endl;\n return 0;\n}", "accuracy": 0.25, "time_ms": 10, "memory_kb": 3300, "score_of_the_acc": -0.0191, "final_rank": 19 }, { "submission_id": "aoj_3066_3880726", "code_snippet": "#include <iomanip>\n#include <iostream>\n#include <algorithm>\n#include <cmath>\n#include <vector>\n#include <complex>\n\nusing Real = long double;\nusing std::complex;\nusing std::vector;\nusing Complex = complex<Real>;\n\nstruct Fout {\n int precision;\n Fout(int precision) : precision(precision) {}\n};\nstd::ostream& operator<<(std::ostream& os, const Fout& fio) {\n os << std::fixed << std::setprecision(fio.precision);\n return os;\n}\n\nconst Real PI = acos(-1);\n\nint fact(int n) {\n return n == 0 ? 1 : n * fact(n - 1);\n}\n\nint main() {\n int n;\n std::cin >> n;\n\n vector<Complex> xs(n);\n for (auto& x : xs) {\n Real a, b;\n std::cin >> a >> b;\n x = Complex(a, b);\n }\n xs.emplace(xs.begin(), 0);\n xs.emplace_back(0);\n\n Real ans = 1e100;\n for (int q = 0; q < fact(n); ++q) {\n Real theta = 0, sum = 0;\n for (int i = 0; i <= n; ++i) {\n Real phi = std::arg(xs[i + 1] - xs[i]);\n Real delta = std::abs(theta - phi);\n sum += std::min(delta, 2 * PI - delta) * 180 / PI;\n theta = phi;\n }\n ans = std::min(ans, sum);\n std::next_permutation(xs.begin() + 1, xs.end() - 1,\n [](Complex a, Complex b) { return a.real() < b.real(); });\n }\n\n std::cout << Fout(10) << ans << std::endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3360, "score_of_the_acc": -0.3146, "final_rank": 5 }, { "submission_id": "aoj_3066_3880431", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing int64 = long long;\n#define int int64\n#define debug(x) cerr<<#x<<\":\"<<x<<endl;\n\nusing Pos = pair<int,int>;\n\nlong double getLen(Pos a, Pos b) {\n return sqrt(pow(a.first-b.first, 2) + pow(a.second-b.second,2));\n}\n\nsigned main() {\n int n;cin>>n;\n vector<long double> x(n),y(n);\n for(int i=0;i<n;++i){\n cin>>x[i]>>y[i];\n }\n\n long double ans = 1e9+1;\n \n vector<int> par(n);\n iota(par.begin(), par.end(), 0);\n do {\n vector<long double> angles(n);\n \n long double bx=0.0, by=0.0;\n for(int i=0;i<=n;++i){\n long double nx, ny;\n if (i==n) nx=0.0, ny=0.0;\n else nx = x[par[i]], ny = y[par[i]];\n // get angle A\n long double x = nx - bx;\n long double y = ny - by;\n long double angle;\n\n if(x==0 && y==0) {\n if (angles.empty()) angle = 0.0;\n else angle = angles.back();\n } else if(x==0) {\n if(y>0) angle = 90.0;\n else angle = 270.0;\n } else if(y==0) {\n if(x>0) angle = 0.0;\n else angle = 180.0;\n } else {\n angle = 180.0 * atan(y/x) / (atan(1.0)*4.0);\n if(x<0) angle -= 180.0;\n }\n \n while(angle<0) angle += 360.0;\n angles.emplace_back(angle);\n\n bx = nx;\n by = ny;\n }\n \n long double tmp = 0.0;\n for(int i=0;i<angles.size()-1;++i){\n long double diff = angles[i+1]-angles[i];\n while(diff<0) diff += 360.0;\n tmp += diff;\n }\n //debug(tmp);\n ans = min(ans, tmp);\n } while(next_permutation(par.begin(), par.end()));\n\n cout<<fixed<<setprecision(5)<<ans<<endl;\n return 0;\n}", "accuracy": 0.25, "time_ms": 10, "memory_kb": 3360, "score_of_the_acc": -0.1146, "final_rank": 20 }, { "submission_id": "aoj_3066_3880419", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing int64 = long long;\n#define int int64\n#define debug(x) cerr<<#x<<\":\"<<x<<endl;\n\nusing Pos = pair<int,int>;\n\nlong double getLen(Pos a, Pos b) {\n return sqrt(pow(a.first-b.first, 2) + pow(a.second-b.second,2));\n}\n\nsigned main() {\n int n;cin>>n;\n vector<long double> x(n),y(n);\n for(int i=0;i<n;++i){\n cin>>x[i]>>y[i];\n }\n\n long double ans = 1e9+1;\n \n vector<int> par(n);\n iota(par.begin(), par.end(), 0);\n do {\n vector<long double> angles(n);\n \n long double bx=0.0, by=0.0;\n for(int i=0;i<=n;++i){\n long double nx, ny;\n if (i==n) nx=0.0, ny=0.0;\n else nx = x[par[i]], ny = y[par[i]];\n // get angle A\n long double x = nx - bx;\n long double y = ny - by;\n long double angle;\n\n if(x==0 && y==0) {\n if (angles.empty()) angle = 0.0;\n else angle = angles.back();\n } else if(x==0) {\n if(y>0) angle = 90.0;\n else angle = 270.0;\n } else if(y==0) {\n if(x>0) angle = 0.0;\n else angle = 180.0;\n } else {\n angle = 180.0 * atan(y/x) / (atan(1.0)*4.0);\n if(y<0) angle -= 180.0;\n }\n \n while(angle<0) angle += 360.0;\n angles.emplace_back(angle);\n\n bx = nx;\n by = ny;\n }\n \n long double tmp = 0.0;\n for(int i=0;i<angles.size()-1;++i){\n long double diff = angles[i+1]-angles[i];\n while(diff<0) diff += 360.0;\n tmp += diff;\n }\n //debug(tmp);\n ans = min(ans, tmp);\n } while(next_permutation(par.begin(), par.end()));\n\n cout<<fixed<<setprecision(5)<<ans<<endl;\n return 0;\n}", "accuracy": 0.25, "time_ms": 10, "memory_kb": 3288, "score_of_the_acc": 0, "final_rank": 17 }, { "submission_id": "aoj_3066_3880388", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing int64 = long long;\n#define int int64\n#define debug(x) cerr<<#x<<\":\"<<x<<endl;\n\nusing Pos = pair<int,int>;\n\nlong double getLen(Pos a, Pos b) {\n return sqrt(pow(a.first-b.first, 2) + pow(a.second-b.second,2));\n}\n\nsigned main() {\n int n;cin>>n;\n vector< Pos > pos(n);\n for(int i=0;i<n;++i){\n int x,y;cin>>x>>y;\n pos[i] = make_pair(x,y);\n }\n\n long double ans = 1e9+1;\n \n vector<int> par(n);\n iota(par.begin(), par.end(), 0);\n do {\n vector<long double> angles(n);\n \n Pos A = make_pair(0.0, 0.0);\n Pos B;\n for(int i=0;i<=n;++i){\n B = pos[par[i]];\n if (i==n) B = make_pair(0.0, 0.0);\n\n // get angle A\n long double x = B.first - A.first;\n long double y = B.second - A.second;\n long double angle;\n\n if(x==0 && y==0) {\n angle = angles.back();\n } else if(x==0) {\n if(y>0) angle = 90.0;\n else angle = 270.0;\n } else if(y==0) {\n if(x>0) angle = 0.0;\n else angle = 180.0;\n } else {\n angle = 180.0 * atan(y/x) / (atan(1.0)*4.0);\n if(y<0) angle -= 180.0;\n }\n \n while(angle<0) angle += 360.0;\n angles.emplace_back(angle);\n\n A = B;\n }\n \n long double tmp = 0.0;\n for(int i=0;i<angles.size()-1;++i){\n long double diff = angles[i+1]-angles[i];\n while(diff<0) diff += 360.0;\n tmp += diff;\n }\n ans = min(ans, tmp);\n } while(next_permutation(par.begin(), par.end()));\n\n cout<<fixed<<setprecision(5)<<ans<<endl;\n return 0;\n}", "accuracy": 0.25, "time_ms": 10, "memory_kb": 3296, "score_of_the_acc": -0.0127, "final_rank": 18 }, { "submission_id": "aoj_3066_3880120", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n#define spa << \" \" <<\n#define lfs <<fixed<<setprecision(10)<<\n#define test cout<<\"test\"<<endl;\n#define fi first\n#define se second\n#define MP make_pair\n#define PB push_back\n#define EB emplace_back\n#define rep(i,n,m) for(ll i = n; i < (ll)(m); i++)\n#define rrep(i,n,m) for(ll i = n - 1; i >= (ll)(m); i--)\ntypedef long long ll;\ntypedef long double ld;\nconst ll MOD = 1e9+7;\n//const ll MOD = 998244353;\nconst ll INF = 1e18;\nusing P = pair<ll, ll>;\ntemplate<typename T>\nvoid chmin(T &a,T b){if(a>b)a=b;}\ntemplate<typename T>\nvoid chmax(T &a,T b){if(a<b)a=b;}\nvoid pmod(ll &a,ll b){a=(a+b)%MOD;}\nvoid pmod(ll &a,ll b,ll c){a=(b+c)%MOD;}\nvoid qmod(ll &a,ll b){a=(a*b)%MOD;}\nvoid qmod(ll &a,ll b,ll c){a=(b*c)%MOD;}\nll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}\nvoid ans1(bool x){if(x) cout<<\"Yes\"<<endl;else cout<<\"No\"<<endl;}\nvoid ans2(bool x){if(x) cout<<\"YES\"<<endl;else cout<<\"NO\"<<endl;}\nvoid ans3(bool x){if(x) cout<<\"Yay!\"<<endl;else cout<<\":(\"<<endl;}\ntemplate<typename T1,typename T2>\nvoid ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} \ntemplate<typename T>\nvoid debug(vector<vector<T>>v,ll h,ll w){for(ll i=0;i<h;i++)\n{cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};\nvoid debug(vector<string>v,ll h,ll w){for(ll i=0;i<h;i++)\n{for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};\ntemplate<typename T>\nvoid debug(vector<T>v,ll n){cout<<v[0];\nfor(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};\ntemplate<typename T>\nvector<vector<T>>vec(ll x, ll y, T w){\n vector<vector<T>>v(x,vector<T>(y,w));return v;}\nll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}\ntemplate<typename T>\nvoid emp(map<T,ll>&m, T x){m.emplace(x,0).first->second++;}\nvector<ll>dx={1,0,-1,0,1,1,-1,-1};\nvector<ll>dy={0,1,0,-1,1,-1,1,-1};\ntemplate<typename T>\nvector<T> make_v(size_t a,T b){return vector<T>(a,b);}\ntemplate<typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return vector<decltype(make_v(ts...))>(a,make_v(ts...));\n}\nusing Real = long double;\nusing Point = complex< Real >;\nconst Real EPS = 1e-9, PI = acos(-1);\n\ninline bool eq(Real a, Real b) { return fabs(b - a) < EPS; }\n\nPoint operator*(const Point &p, const Real &d) {\n return Point(real(p) * d, imag(p) * d);\n}\n\nistream &operator>>(istream &is, Point &p) {\n Real a, b;\n is >> a >> b;\n p = Point(a, b);\n return is;\n}\n\nostream &operator<<(ostream &os, Point &p) {\n os << fixed << setprecision(10) << p.real() << \" \" << p.imag();\n}\n\nPoint rotate(Real theta, const Point &p) {\n return Point(cos(theta) * p.real() - sin(theta) * p.imag(), sin(theta) * p.real() + cos(theta) * p.imag());\n}\n\nReal radian_to_degree(Real r) {\n return (r * 180.0 / PI);\n}\n\nReal degree_to_radian(Real d) {\n return (d * PI / 180.0);\n}\n\nReal get_angle(const Point &a, const Point &b, const Point &c) {\n const Point v(a - b), w(c - b);\n Real alpha = atan2(v.imag(), v.real()), beta = atan2(w.imag(), w.real());\n if(alpha > beta) swap(alpha, beta);\n Real theta = (beta - alpha);\n return min(theta, 2 * acos(-1) - theta);\n}\n\nReal get_angle2(const Point &a, const Point &b, const Point &c) {\n const Point v(b - a), w(c - b);\n Real alpha = atan2(v.imag(), v.real()), beta = atan2(w.imag(), w.real());\n if(alpha > beta) swap(alpha, beta);\n Real theta = (beta - alpha);\n return min(theta, 2 * acos(-1) - theta);\n}\n\nnamespace std {\n bool operator<(const Point &a, const Point &b) {\n return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag();\n }\n}\n\n\nstruct Line {\n Point a, b;\n\n Line() = default;\n\n Line(Point a, Point b) : a(a), b(b) {}\n\n Line(Real A, Real B, Real C) // Ax + By = C\n {\n if(eq(A, 0)) a = Point(0, C / B), b = Point(1, C / B);\n else if(eq(B, 0)) b = Point(C / A, 0), b = Point(C / A, 1);\n else a = Point(0, C / B), b = Point(C / A, 0);\n }\n\n friend ostream &operator<<(ostream &os, Line &p) {\n return os << p.a << \" to \" << p.b;\n }\n\n friend istream &operator>>(istream &is, Line &a) {\n return is >> a.a >> a.b;\n }\n};\n\nstruct Segment : Line {\n Segment() = default;\n\n Segment(Point a, Point b) : Line(a, b) {}\n};\n\nstruct Circle {\n Point p;\n Real r;\n\n Circle() = default;\n\n Circle(Point p, Real r) : p(p), r(r) {}\n};\n\nusing Points = vector< Point >;\nusing Polygon = vector< Point >;\nusing Segments = vector< Segment >;\nusing Lines = vector< Line >;\nusing Circles = vector< Circle >;\n\nReal cross(const Point &a, const Point &b) {\n return real(a) * imag(b) - imag(a) * real(b);\n}\n\nReal dot(const Point &a, const Point &b) {\n return real(a) * real(b) + imag(a) * imag(b);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C\n// 3点の位置関係を出力\nint ccw(const Point &a, Point b, Point c) {\n b = b - a, c = c - a;\n if(cross(b, c) > EPS) return +1; // \"COUNTER_CLOCKWISE\"\n if(cross(b, c) < -EPS) return -1; // \"CLOCKWISE\"\n if(dot(b, c) < 0) return +2; // \"ONLINE_BACK\"\n if(norm(b) < norm(c)) return -2; // \"ONLINE_FRONT\"\n return 0; // \"ON_SEGMENT\"\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A\n// 平行ならtrue\nbool parallel(const Line &a, const Line &b) {\n return eq(cross(a.b - a.a, b.b - b.a), 0.0);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A\nbool orthogonal(const Line &a, const Line &b) {\n return eq(dot(a.a - a.b, b.a - b.b), 0.0);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_A\nPoint projection(const Line &l, const Point &p) {\n double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n}\n\nPoint projection(const Segment &l, const Point &p) {\n double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);\n return l.a + (l.a - l.b) * t;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_B\nPoint reflection(const Line &l, const Point &p) {\n return p + (projection(l, p) - p) * 2.0;\n}\n\nbool intersect(const Line &l, const Point &p) {\n return abs(ccw(l.a, l.b, p)) != 1;\n}\n\nbool intersect(const Line &l, const Line &m) {\n return abs(cross(l.b - l.a, m.b - m.a)) > EPS || abs(cross(l.b - l.a, m.b - l.a)) < EPS;\n}\n\nbool intersect(const Segment &s, const Point &p) {\n return ccw(s.a, s.b, p) == 0;\n}\n\nbool intersect(const Line &l, const Segment &s) {\n return cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < EPS;\n}\n\nReal distance(const Line &l, const Point &p);\n\nbool intersect(const Circle &c, const Line &l) {\n return distance(l, c.p) <= c.r + EPS;\n}\n\nbool intersect(const Circle &c, const Point &p) {\n return abs(abs(p - c.p) - c.r) < EPS;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B\nbool intersect(const Segment &s, const Segment &t) {\n return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\nint intersect(const Circle &c, const Segment &l) {\n if(norm(projection(l, c.p) - c.p) - c.r * c.r > EPS) return 0;\n auto d1 = abs(c.p - l.a), d2 = abs(c.p - l.b);\n if(d1 < c.r + EPS && d2 < c.r + EPS) return 0;\n if(d1 < c.r - EPS && d2 > c.r + EPS || d1 > c.r + EPS && d2 < c.r - EPS) return 1;\n const Point h = projection(l, c.p);\n if(dot(l.a - h, l.b - h) < 0) return 2;\n return 0;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A&lang=jp\nint intersect(Circle c1, Circle c2) {\n if(c1.r < c2.r) swap(c1, c2);\n Real d = abs(c1.p - c2.p);\n if(c1.r + c2.r < d) return 4;\n if(eq(c1.r + c2.r, d)) return 3;\n if(c1.r - c2.r < d) return 2;\n if(eq(c1.r - c2.r, d)) return 1;\n return 0;\n}\n\nReal distance(const Point &a, const Point &b) {\n return abs(a - b);\n}\n\nReal distance(const Line &l, const Point &p) {\n return abs(p - projection(l, p));\n}\n\nReal distance(const Line &l, const Line &m) {\n return intersect(l, m) ? 0 : distance(l, m.a);\n}\n\nReal distance(const Segment &s, const Point &p) {\n Point r = projection(s, p);\n if(intersect(s, r)) return abs(r - p);\n return min(abs(s.a - p), abs(s.b - p));\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D\nReal distance(const Segment &a, const Segment &b) {\n if(intersect(a, b)) return 0;\n return min({distance(a, b.a), distance(a, b.b), distance(b, a.a), distance(b, a.b)});\n}\n\nReal distance(const Line &l, const Segment &s) {\n if(intersect(l, s)) return 0;\n return min(distance(l, s.a), distance(l, s.b));\n}\n\nPoint crosspoint(const Line &l, const Line &m) {\n Real A = cross(l.b - l.a, m.b - m.a);\n Real B = cross(l.b - l.a, l.b - m.a);\n if(eq(abs(A), 0.0) && eq(abs(B), 0.0)) return m.a;\n return m.a + (m.b - m.a) * B / A;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_C\nPoint crosspoint(const Segment &l, const Segment &m) {\n return crosspoint(Line(l), Line(m));\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_D\npair< Point, Point > crosspoint(const Circle &c, const Line l) {\n Point pr = projection(l, c.p);\n Point e = (l.b - l.a) / abs(l.b - l.a);\n if(eq(distance(l, c.p), c.r)) return {pr, pr};\n double base = sqrt(c.r * c.r - norm(pr - c.p));\n return {pr - e * base, pr + e * base};\n}\n\npair< Point, Point > crosspoint(const Circle &c, const Segment &l) {\n Line aa = Line(l.a, l.b);\n if(intersect(c, l) == 2) return crosspoint(c, aa);\n auto ret = crosspoint(c, aa);\n if(dot(l.a - ret.first, l.b - ret.first) < 0) ret.second = ret.first;\n else ret.first = ret.second;\n return ret;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E\npair< Point, Point > crosspoint(const Circle &c1, const Circle &c2) {\n Real d = abs(c1.p - c2.p);\n Real a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));\n Real t = atan2(c2.p.imag() - c1.p.imag(), c2.p.real() - c1.p.real());\n Point p1 = c1.p + Point(cos(t + a) * c1.r, sin(t + a) * c1.r);\n Point p2 = c1.p + Point(cos(t - a) * c1.r, sin(t - a) * c1.r);\n return {p1, p2};\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_F\npair< Point, Point > tangent(const Circle &c1, const Point &p2) {\n return crosspoint(c1, Circle(p2, sqrt(norm(c1.p - p2) - c1.r * c1.r)));\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_G\nLines tangent(Circle c1, Circle c2) {\n Lines ret;\n if(c1.r < c2.r) swap(c1, c2);\n Real g = norm(c1.p - c2.p);\n if(eq(g, 0)) return ret;\n Point u = (c2.p - c1.p) / sqrt(g);\n Point v = rotate(PI * 0.5, u);\n for(int s : {-1, 1}) {\n Real h = (c1.r + s * c2.r) / sqrt(g);\n if(eq(1 - h * h, 0)) {\n ret.emplace_back(c1.p + u * c1.r, c1.p + (u + v) * c1.r);\n } else if(1 - h * h > 0) {\n Point uu = u * h, vv = v * sqrt(1 - h * h);\n ret.emplace_back(c1.p + (uu + vv) * c1.r, c2.p - (uu + vv) * c2.r * s);\n ret.emplace_back(c1.p + (uu - vv) * c1.r, c2.p - (uu - vv) * c2.r * s);\n }\n }\n return ret;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_B\nbool is_convex(const Polygon &p) {\n int n = (int) p.size();\n for(int i = 0; i < n; i++) {\n if(ccw(p[(i + n - 1) % n], p[i], p[(i + 1) % n]) == -1) return false;\n }\n return true;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_A\nPolygon convex_hull(Polygon &p) {\n int n = (int) p.size(), k = 0;\n if(n <= 2) return p;\n sort(p.begin(), p.end());\n vector< Point > ch(2 * n);\n for(int i = 0; i < n; ch[k++] = p[i++]) {\n while(k >= 2 && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0) --k;\n }\n for(int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) {\n while(k >= t && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0) --k;\n }\n ch.resize(k - 1);\n return ch;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_C\nenum {\n OUT, ON, IN\n};\nint contains(const Polygon &Q, const Point &p) {\n bool in = false;\n for(int i = 0; i < Q.size(); i++) {\n Point a = Q[i] - p, b = Q[(i + 1) % Q.size()] - p;\n if(a.imag() > b.imag()) swap(a, b);\n if(a.imag() <= 0 && 0 < b.imag() && cross(a, b) < 0) in = !in;\n if(cross(a, b) == 0 && dot(a, b) <= 0) return ON;\n }\n return in ? IN : OUT;\n}\n\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1033\nvoid merge_segments(vector< Segment > &segs) {\n\n auto merge_if_able = [](Segment &s1, const Segment &s2) {\n if(abs(cross(s1.b - s1.a, s2.b - s2.a)) > EPS) return false;\n if(ccw(s1.a, s2.a, s1.b) == 1 || ccw(s1.a, s2.a, s1.b) == -1) return false;\n if(ccw(s1.a, s1.b, s2.a) == -2 || ccw(s2.a, s2.b, s1.a) == -2) return false;\n s1 = Segment(min(s1.a, s2.a), max(s1.b, s2.b));\n return true;\n };\n\n for(int i = 0; i < segs.size(); i++) {\n if(segs[i].b < segs[i].a) swap(segs[i].a, segs[i].b);\n }\n for(int i = 0; i < segs.size(); i++) {\n for(int j = i + 1; j < segs.size(); j++) {\n if(merge_if_able(segs[i], segs[j])) {\n segs[j--] = segs.back(), segs.pop_back();\n }\n }\n }\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1033\nvector< vector< int > > segment_arrangement(vector< Segment > &segs, vector< Point > &ps) {\n vector< vector< int > > g;\n int N = (int) segs.size();\n for(int i = 0; i < N; i++) {\n ps.emplace_back(segs[i].a);\n ps.emplace_back(segs[i].b);\n for(int j = i + 1; j < N; j++) {\n const Point p1 = segs[i].b - segs[i].a;\n const Point p2 = segs[j].b - segs[j].a;\n if(cross(p1, p2) == 0) continue;\n if(intersect(segs[i], segs[j])) {\n ps.emplace_back(crosspoint(segs[i], segs[j]));\n }\n }\n }\n sort(begin(ps), end(ps));\n ps.erase(unique(begin(ps), end(ps)), end(ps));\n\n int M = (int) ps.size();\n g.resize(M);\n for(int i = 0; i < N; i++) {\n vector< int > vec;\n for(int j = 0; j < M; j++) {\n if(intersect(segs[i], ps[j])) {\n vec.emplace_back(j);\n }\n }\n for(int j = 1; j < vec.size(); j++) {\n g[vec[j - 1]].push_back(vec[j]);\n g[vec[j]].push_back(vec[j - 1]);\n }\n }\n return (g);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_C\nPolygon convex_cut(const Polygon &U, Line l) {\n Polygon ret;\n for(int i = 0; i < U.size(); i++) {\n Point now = U[i], nxt = U[(i + 1) % U.size()];\n if(ccw(l.a, l.b, now) != -1) ret.push_back(now);\n if(ccw(l.a, l.b, now) * ccw(l.a, l.b, nxt) < 0) {\n ret.push_back(crosspoint(Line(now, nxt), l));\n }\n }\n return (ret);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A\nReal area2(const Polygon &p) {\n Real A = 0;\n for(int i = 0; i < p.size(); ++i) {\n A += cross(p[i], p[(i + 1) % p.size()]);\n }\n return A;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_H\nReal area2(const Polygon &p, const Circle &c) {\n if(p.size() < 3) return 0.0;\n function< Real(Circle, Point, Point) > cross_area = [&](const Circle &c, const Point &a, const Point &b) {\n Point va = c.p - a, vb = c.p - b;\n Real f = cross(va, vb), ret = 0.0;\n if(eq(f, 0.0)) return ret;\n if(max(abs(va), abs(vb)) < c.r + EPS) return f;\n if(distance(Segment(a, b), c.p) > c.r - EPS) return c.r * c.r * arg(vb * conj(va));\n auto u = crosspoint(c, Segment(a, b));\n vector< Point > tot{a, u.first, u.second, b};\n for(int i = 0; i + 1 < tot.size(); i++) {\n ret += cross_area(c, tot[i], tot[i + 1]);\n }\n return ret;\n };\n Real A = 0;\n for(int i = 0; i < p.size(); i++) {\n A += cross_area(c, p[i], p[(i + 1) % p.size()]);\n }\n return A;\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_B\nReal convex_diameter(const Polygon &p) {\n int N = (int) p.size();\n int is = 0, js = 0;\n for(int i = 1; i < N; i++) {\n if(p[i].imag() > p[is].imag()) is = i;\n if(p[i].imag() < p[js].imag()) js = i;\n }\n Real maxdis = norm(p[is] - p[js]);\n\n int maxi, maxj, i, j;\n i = maxi = is;\n j = maxj = js;\n do {\n if(cross(p[(i + 1) % N] - p[i], p[(j + 1) % N] - p[j]) >= 0) {\n j = (j + 1) % N;\n } else {\n i = (i + 1) % N;\n }\n if(norm(p[i] - p[j]) > maxdis) {\n maxdis = norm(p[i] - p[j]);\n maxi = i;\n maxj = j;\n }\n } while(i != is || j != js);\n return sqrt(maxdis);\n}\n\n// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_5_A\nReal closest_pair(Points ps) {\n if(ps.size() <= 1) throw (0);\n sort(begin(ps), end(ps));\n\n auto compare_y = [&](const Point &a, const Point &b) {\n return imag(a) < imag(b);\n };\n vector< Point > beet(ps.size());\n const Real INF = 1e18;\n\n function< Real(int, int) > rec = [&](int left, int right) {\n if(right - left <= 1) return INF;\n int mid = (left + right) >> 1;\n auto x = real(ps[mid]);\n auto ret = min(rec(left, mid), rec(mid, right));\n inplace_merge(begin(ps) + left, begin(ps) + mid, begin(ps) + right, compare_y);\n int ptr = 0;\n for(int i = left; i < right; i++) {\n if(abs(real(ps[i]) - x) >= ret) continue;\n for(int j = 0; j < ptr; j++) {\n auto luz = ps[i] - beet[ptr - j - 1];\n if(imag(luz) >= ret) break;\n ret = min(ret, abs(luz));\n }\n beet[ptr++] = ps[i];\n }\n return ret;\n };\n return rec(0, (int) ps.size());\n};\nint main(){\n cin.tie(NULL);\n ios_base::sync_with_stdio(false);\n ll res=0,res1=INF,res2=-INF,buf=0;\n bool judge = true;\n ll n;cin>>n;\n vector<Point>x(n);\n ld ret=1e18;\n vector<ll>a(n);\n rep(i,0,n)a[i]=i;\n Point k(1,0);\n Point o(0,0);\n rep(i,0,n)cin>>x[i];\n ld eps=1e9;\n do{\n //debug(a,n);\n ld sumbuf=get_angle(k,o,x[a[0]]);\n sumbuf+=get_angle2(o,x[a[0]],x[a[1]]);\n rep(i,0,n-2){\n sumbuf+=get_angle2(x[a[i]],x[a[i+1]],x[a[i+2]]);\n }\n sumbuf+=get_angle2(x[a[n-2]],x[a[n-1]],o);\n //cout<<radian_to_degree(sumbuf)<<endl;\n chmin(ret,radian_to_degree(sumbuf));\n }while(next_permutation(ALL(a)));\n cout lfs ret<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3404, "score_of_the_acc": -0.7847, "final_rank": 12 }, { "submission_id": "aoj_3066_3880008", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n// #define int ll\nusing PII = pair<ll, ll>;\n\n#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define ALL(x) x.begin(), x.end()\n\ntemplate<typename T> T &chmin(T &a, const T &b) { return a = min(a, b); }\ntemplate<typename T> T &chmax(T &a, const T &b) { return a = max(a, b); }\ntemplate<typename T> bool IN(T a, T b, T x) { return a<=x&&x<b; }\ntemplate<typename T> T ceil(T a, T b) { return a/b + !!(a%b); }\n\ntemplate<typename T> vector<T> make_v(size_t a) { return vector<T>(a); }\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts) {\n return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\ntemplate<typename T,typename V> typename enable_if<is_class<T>::value==0>::type\nfill_v(T &t, const V &v) { t=v; }\ntemplate<typename T,typename V> typename enable_if<is_class<T>::value!=0>::type\nfill_v(T &t, const V &v ) { for(auto &e:t) fill_v(e,v); }\n\ntemplate<class S,class T>\nostream &operator <<(ostream& out,const pair<S,T>& a) {\n out<<'('<<a.first<<','<<a.second<<')'; return out;\n}\ntemplate<class T>\nostream &operator <<(ostream& out,const vector<T>& a){\n out<<'[';\n for(const T &i: a) out<<i<<',';\n out<<']';\n return out;\n}\ntemplate<class T>\nostream &operator <<(ostream& out, const set<T>& a) {\n out<<'{';\n for(const T &i: a) out<<i<<',';\n out<<'}';\n return out;\n}\ntemplate<class T, class S>\nostream &operator <<(ostream& out, const map<T,S>& a) {\n out<<'{';\n for(auto &i: a) out<<i<<',';\n out<<'}';\n return out;\n}\n\nint dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0}; // DRUL\nconst int INF = 1<<30;\nconst ll LLINF = 1LL<<60;\nconst ll MOD = 1000000007;\n\nsigned main(void)\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll n;\n cin >> n;\n vector<ll> x(n), y(n);\n REP(i, n) cin >> x[i] >> y[i];\n\n const double PI = acos(-1);\n\n vector<ll> ord(n);\n iota(ALL(ord), 0);\n double ret = LLINF;\n do {\n // cout << ord << endl;\n ll mx = 0, my = 0;\n double dir = 0, arg = 0;\n for(auto i: ord) {\n double t = atan2(y[i]-my, x[i]-mx);\n arg += min(2*PI-abs(t-dir), abs(t-dir));\n // cout << \"i=\" << i << \" t=\" << t << \" \" << min(2*PI-abs(t-dir), abs(t-dir)) << endl;\n dir = t;\n mx = x[i], my = y[i];\n }\n double t = atan2(0-my, 0-mx);\n arg += min(2*PI-abs(t-dir), abs(t-dir));\n // cout << \"i=\" << n << \" t=\" << t << \" \" << min(2*PI-abs(t-dir), abs(t-dir)) << endl;\n // cout << arg << endl;\n chmin(ret, arg);\n } while(next_permutation(ALL(ord)));\n\n cout << fixed << setprecision(9) << ret * 180.0 / PI << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3516, "score_of_the_acc": -0.3631, "final_rank": 7 }, { "submission_id": "aoj_3066_3879961", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, m, n) for (int i = m; i < n; ++i)\n\nint main() {\n int N; cin >> N;\n using P = pair<int, int>;\n vector<P> S(N);\n rep(i, 0, N) {\n int x, y;\n cin >> x >> y;\n S[i] = make_pair(x, y);\n }\n function<double(double)> f = [&](double r) {\n double res = r * 180 / M_PI;\n return res;\n };\n function<int(int, int)> pos = [&](int x, int y) {\n if(x >= 0) {\n if(y >= 0) return 1;\n else return 4;\n } else {\n if(y >= 0) return 2;\n else return 3;\n }\n };\n function<double()> solve = [&]() {\n int x = 0, y = 0;\n vector<double> T = {0};\n S.push_back(make_pair(0, 0));\n rep(i, 0, N + 1) {\n int vx = S[i].first - x, vy = S[i].second - y;\n double t = atan((double)vy / vx);\n t = f(t);\n if(pos(vx, vy) != 1) t += 180;\n if(pos(vx, vy) == 4) t += 180;\n T.push_back(t);\n x = S[i].first;\n y = S[i].second;\n }\n S.pop_back();\n double res = 0;\n rep(i, 0, N + 1) {\n double add = abs(T[i + 1] - T[i]);\n if(add > 180) add = 360 - add;\n res += add;\n }\n return res;\n };\n double ans = 1e9;\n sort(S.begin(), S.end());\n do {\n ans = min(ans, solve());\n } while(next_permutation(S.begin(), S.end()));\n printf(\"%.10lf\\n\", ans);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3548, "score_of_the_acc": -0.614, "final_rank": 11 } ]
aoj_3068_cpp
Problem E: Cyclic Shift Sort Problem 長さ $N$ の順列 $P = \{ P_1, P_2, \ldots, P_N \} $ と整数 $K$ が与えられる。 以下の操作を $0$ 回以上任意の回数繰り返すことで、順列 $P$ を単調増加にすることができるかどうか判定せよ。 整数 $x \ (0 \le x \le N-K)$ を選ぶ。 $ P_{x+1}, \ldots, P_{x+K} $ を巡回右シフトする ただし、部分列 $U=U_1, \ldots, U_M$ の巡回右シフトとは、 $U=U_1, \ldots, U_M$ を $U=U_M, U_1, \ldots, U_{M-1}$ に変更することを意味する。 Input 入力は以下の形式で与えられる。 $N$ $K$ $P_1$ $\ldots$ $P_N$ 1行目に順列の長さ $N$ 、整数 $K$ が空白区切りで与えられる。 2行目に順列 $P$ の要素が空白区切りで与えられる。 Constraints 入力は以下の条件を満たす。 $2 \leq K \leq N \leq 10^5 $ $ 1 \leq P_i \leq N \ (1 \leq i \leq N) $ $ P_i \neq P_j \ (i \neq j) $ 入力はすべて整数 Output $P$ を単調増加にすることができるなら"Yes"を、できないのであれば"No"を $1$ 行に出力せよ。 Sample Input 1 3 3 2 3 1 Sample Output 1 Yes $ x = 0 $ として操作を $1$ 回行うと、 $P$ を単調増加にすることができる。 Sample Input 2 3 2 1 2 3 Sample Output 2 Yes $P$ が初めから単調増加である場合もある。 Sample Input 3 3 3 3 2 1 Sample Output 3 No どのように操作を行なったとしても、 $P$ を単調増加にすることはできない。
[ { "submission_id": "aoj_3068_3951976", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <unordered_set>\n#include <tuple>\n#include <bitset>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <fstream>\nclass Bit {\n\tstd::vector<int> vec;\npublic:\n\tBit(const int size) : vec(size, 0) {};\n\tint operator[](int position) const {\n\t\tint result = 0;\n\t\twhile (position >= 0) {\n\t\t\tresult += vec[position];\n\t\t\tposition -= ~position & (position + 1);\n\t\t}\n\t\treturn result;\n\t}\n\tvoid increment(int position) {\n\t\twhile (position < vec.size()) {\n\t\t\tvec[position]++;\n\t\t\tposition += ~position & (position + 1);\n\t\t}\n\t}\n};\nint main() {\n\tint n, k; std::cin >> n >> k;\n\tstd::vector<int> permutation(n); for (auto& p : permutation) std::cin >> p;\n\tif (n == k) {\n\t\tbool can_sort = true;\n\t\tfor (auto i = 1; i < n; ++i) {\n\t\t\tif (permutation[i - 1] > permutation[i]) {\n\t\t\t\tif (can_sort) {\n\t\t\t\t\tcan_sort = false;\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tstd::cout << \"No\\n\";\n\t\t\t\t\treturn 0;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tstd::cout << \"Yes\\n\";\n\t}\n\telse if (k % 2 == 0) {\n\t\tstd::cout << \"Yes\\n\";\n\t}\n\telse {\n\t\tBit bit(n);\n\t\tlong long int swap_count = 0;\n\t\tfor (auto i = 0; i < n; ++i) {\n\t\t\tconst auto p = permutation[i];\n\t\t\tswap_count += i - bit[p - 1];\n\t\t\tbit.increment(p - 1);\n\t\t}\n\t\tif (swap_count % 2 == 0) {\n\t\t\tstd::cout << \"Yes\\n\";\n\t\t}\n\t\telse {\n\t\t\tstd::cout << \"No\\n\";\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3608, "score_of_the_acc": -0.3387, "final_rank": 6 }, { "submission_id": "aoj_3068_3893188", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\ntemplate<typename T>\nstruct BIT{\n Int n;\n vector<T> bit;\n //1-indexed\n BIT():n(-1){}\n BIT(Int n_,T d):n(n_),bit(n_+1,d){}\n\n T sum(Int i){\n T s=bit[0];\n for(Int x=i;x>0;x-=(x&-x))\n s+=bit[x];\n return s;\n }\n void add(Int i,T a){\n if(i==0) return;\n for(Int x=i;x<=n;x+=(x&-x))\n bit[x]+=a;\n }\n};\n\n\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\n\n//INSERT ABOVE HERE\nsigned main(){\n Int n,k;\n cin>>n>>k;\n vector<Int> ps(n);\n for(Int i=0;i<n;i++) cin>>ps[i];\n\n if(n==k){\n vector<Int> vs;\n for(Int p:ps) vs.emplace_back(p);\n for(Int p:ps) vs.emplace_back(p);\n\n for(Int i=0;i<n;i++){\n if(vs[i]!=1) continue;\n Int flg=1;\n for(Int j=0;j<n;j++)\n flg&=vs[i+j]==j+1;\n cout<<(flg?\"Yes\":\"No\")<<endl;\n break;\n }\n return 0;\n }\n\n if(k%2==0) drop(\"Yes\");\n\n BIT<Int> bit(n+10,0);\n Int sum=0;\n for(Int i=0;i<n;i++){\n sum+=i-bit.sum(ps[i]);\n sum%=2;\n bit.add(ps[i],1);\n }\n cout<<(sum?\"No\":\"Yes\")<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5644, "score_of_the_acc": -0.3743, "final_rank": 14 }, { "submission_id": "aoj_3068_3883960", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n\nll inverse(int* A, int N) {\n\tll ans = 0;\n\tll a[N + 1000] = {};\n\tfor (int i = 0; i < N; ++i) {\n\t\tfor (int j = A[i]; j; j -= (j & (-j))) ans -= a[j]; ans += i;\n\t\tfor (int j = A[i]; j <= N; j += (j & (-j))) a[j]++;\n\t}\n\treturn ans;\n}\n\nsigned main() {\n\tint n, k;\n\tcin >> n >> k;\n\n\tint p[n];\n\tfor (int i = 0; i < n; ++i) {\n\t\tint pi; cin >> pi;\n\t\tp[i] = pi;\n\t}\n\n\tbool is_sorted = true;\n\tfor (int i = 0; i < n; ++i)\n\t\tis_sorted = is_sorted && (p[i] == i + 1);\n\tif (is_sorted){\n\t\tcout << \"Yes\" << endl;\n\t\texit(0);\n\t}\n\n\tif (n == k){\n\t\tbool ok = true;\n\t\tfor (int i = 0; i < n; ++i){\n\t\t\tif (p[(i + 1) % n] != (p[i] != n ? (p[i] + 1) : 1))\n\t\t\t\tok = false;\n\t\t}\n\t\tif (ok){\n\t\t\tcout << \"Yes\" << endl;\n\t\t\texit(0);\n\t\t}\n\t\telse{\n\t\t\tcout << \"No\" << endl;\n\t\t\texit(0);\n\t\t}\n\t}\n\n\tll inv = inverse(p, n);\n\n\tif (k % 2 == 1 && inv % 2 == 1) {\n\t\tcout << \"No\" << endl;\n\t}\n\telse {\n\t\tcout << \"Yes\" << endl;\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4272, "score_of_the_acc": -0.3503, "final_rank": 10 }, { "submission_id": "aoj_3068_3883442", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate<typename T>\nstruct BIT {\n int n;\n vector<T> dat;\n\n BIT(int n=0){\n initialize(n);\n }\n\n void initialize(int nin){\n n = nin;\n dat.resize(n, 0);\n }\n\n T sum(int i){\n T s = 0;\n while(i >= 0){\n s += dat[i];\n i = (i & (i+1)) - 1;\n }\n return s;\n }\n\n T sum_between(int i, int j){\n return sum(j) - sum(i-1);\n }\n\n void plus(int i, T x){\n while(i < n){\n dat[i] += x;\n i |= i+1;\n }\n }\n\n // a[0]+...+a[ret] >= x\n int lower_bound(T x){\n int ret = -1;\n int k = 1;\n while(2*k <= n) k <<= 1;\n for( ;k>0; k>>=1){\n if(ret+k < n && dat[ret+k] < x){\n x -= dat[ret+k];\n ret += k;\n }\n }\n return ret + 1;\n }\n};\n\nint main() {\n int N, K, P[100000];\n cin >> N >> K;\n for(int i=0; i<N; i++) cin >> P[i];\n\n bool ok = true;\n if(K == N){\n for(int i=0; i<N; i++) if((N+P[(i+1)%N]-P[i])%N != 1) ok = false;\n }else{\n int64_t s = 0;\n BIT<int> bit(N+1);\n for(int i=0; i<N; i++){\n s += bit.sum_between(P[i], N);\n bit.plus(P[i], 1);\n }\n ok = !(K%2) || !(s%2);\n }\n cout << (ok ? \"Yes\" : \"No\") << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3564, "score_of_the_acc": -0.3379, "final_rank": 5 }, { "submission_id": "aoj_3068_3881094", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=1e9+7;\n\nint N,K;\nvector<int> P;\n\nclass BIT{//1-indexed\npublic:\n\n vector<ll> bit;\n BIT(){}\n BIT(int size){\n bit.resize(size,0);\n }\n\n ll sum(int i){\n ll s=0;\n while(i>0){\n s+=bit[i];\n i-=i&(-i);\n }\n return s;\n }\n\n void add(int i,ll x){//i!=0\n while(i<bit.size()){\n bit[i]+=x;\n i+=i&(-i);\n }\n }\n};\n\n\nint main(){\n cin>>N>>K;\n P.resize(N);\n rep(i,N) cin>>P[i];\n\n if(K==N){\n for(int i=0;i+1<N;i++){\n if(P[i]+1==P[i+1]||P[i]==N&&P[i+1]==1);\n else {\n cout<<\"No\"<<endl;\n return 0;\n }\n }\n cout<<\"Yes\"<<endl;\n return 0;\n }\n\n BIT bit(N+1);\n ll ans=0;\n for(int i=0;i<N;i++){\n ans+=i-bit.sum(P[i]);\n bit.add(P[i],1);\n }\n\n if(K%2==0||ans%2==0) cout<<\"Yes\"<<endl;\n else cout<<\"No\"<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3888, "score_of_the_acc": -0.3436, "final_rank": 9 }, { "submission_id": "aoj_3068_3880816", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <cctype>\n#include <chrono>\n#define _USE_MATH_DEFINES\n#include <cmath>\n#include <cstdio>\n#include <cstring>\n#include <ctime>\n#include <deque>\n#include <functional>\n#include <iostream>\n#include <iterator>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <sstream>\n#include <string>\n#include <tuple>\n#include <utility>\n#include <vector>\nusing namespace std;\n\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\n\nconst int INF = 0x3f3f3f3f;\nconst long long LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007; // 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n/*-------------------------------------------------*/\ntemplate <typename Abelian>\nstruct BIT {\n BIT(int n, const Abelian &UNITY = 0) : n(n), UNITY(UNITY), dat(n, UNITY) {}\n\n void add(int idx, const Abelian &value) {\n while (idx < n) {\n dat[idx] += value;\n idx |= idx + 1;\n }\n }\n\n Abelian sum(int idx) {\n Abelian res = UNITY;\n while (idx >= 0) {\n res += dat[idx];\n idx = (idx & (idx + 1)) - 1;\n }\n return res;\n }\n\n Abelian sum(int left, int right) { return sum(right) - sum(left - 1); }\n\n Abelian operator[](const int idx) { return sum(idx, idx); }\n\n int lower_bound(Abelian value) {\n if (value <= UNITY) return 0;\n int res = 0, exponent = 1;\n while (exponent <= n) exponent <<= 1;\n for (int mask = exponent >> 1; mask > 0; mask >>= 1) {\n if (res + mask - 1 < n && dat[res + mask - 1] < value) {\n value -= dat[res + mask - 1];\n res += mask;\n }\n }\n return res;\n }\n\nprivate:\n int n;\n const Abelian UNITY;\n vector<Abelian> dat;\n};\n\ntemplate <typename T>\nlong long inversion_number(const vector<T> &a) {\n int n = a.size();\n vector<T> cp(a);\n sort(ALL(cp));\n cp.erase(unique(ALL(cp)), cp.end());\n BIT<int> bit(cp.size());\n long long res = 0;\n REP(i, n) {\n int idx = lower_bound(ALL(cp), a[i]) - cp.begin();\n res += i - bit.sum(idx);\n bit.add(idx, 1);\n }\n return res;\n}\n\nint main() {\n cin.tie(nullptr); ios::sync_with_stdio(false);\n // freopen(\"input.txt\", \"r\", stdin);\n\n int n, k; cin >> n >> k;\n vector<int> p(n); REP(i, n) cin >> p[i];\n if (n == k) {\n int idx = find(ALL(p), 1) - p.begin();\n REP(i, n) {\n if (p[(idx + i) % n] != 1 + i) {\n cout << \"No\\n\";\n return 0;\n }\n }\n cout << \"Yes\\n\";\n return 0;\n }\n if (k % 2 == 0) {\n cout << \"Yes\\n\";\n return 0;\n }\n cout << (inversion_number(p) % 2 == 0 ? \"Yes\\n\" : \"No\\n\");\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4208, "score_of_the_acc": -0.0159, "final_rank": 1 }, { "submission_id": "aoj_3068_3880742", "code_snippet": "#include <iostream>\n#include <vector>\n\nusing Int = long long int;\nusing std::vector;\n\n// 加算と総和\nstruct SegmentTree {\n int length;\n vector<int> dat;\n\n int query(int ql, int qr, int nidx, int nl, int nr) {\n if (nr <= ql || qr <= nl) return 0;\n if (ql <= nl && nr <= qr) return dat[nidx];\n int vl = query(ql, qr, nidx * 2, nl, (nl + nr) / 2);\n int vr = query(ql, qr, nidx * 2 + 1, (nl + nr) / 2, nr);\n return vl + vr;\n }\n\n SegmentTree(int n) : length(1) {\n while (length < n) length <<= 1;\n dat.assign(length * 2, 0);\n }\n\n // half-open interval [ql, qr)\n int query(int ql, int qr) { return query(ql, qr, 1, 0, length); }\n\n void update(int idx, int e) {\n int nidx = idx + length;\n dat[nidx] += e;\n while (nidx > 0) {\n nidx >>= 1;\n dat[nidx] = dat[nidx * 2] + dat[nidx * 2 + 1];\n }\n }\n};\n\nint main() {\n int n, k;\n std::cin >> n >> k;\n\n vector<int> p(n);\n for (auto& x : p) {\n std::cin >> x;\n --x;\n }\n\n if (k == n) {\n int i;\n for (i = 0; p[i] != 0; ++i) {}\n for (int j = 0; j < n; ++j) {\n if (p[(i + j) % n] != j) {\n std::cout << \"No\" << std::endl;\n return 0;\n }\n }\n } else if (k % 2 == 1) {\n Int rev = 0;\n SegmentTree seg(n);\n for (auto x : p) {\n rev += seg.query(x + 1, n);\n seg.update(x, 1);\n }\n if (rev % 2 == 1) {\n std::cout << \"No\" << std::endl;\n return 0;\n }\n }\n\n std::cout << \"Yes\" << std::endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4092, "score_of_the_acc": -0.6805, "final_rank": 16 }, { "submission_id": "aoj_3068_3879739", "code_snippet": "//#define NDEBUG\n#include <cstddef>\n#include <cstdint>\n#include <iostream>\n#include <iterator>\n#include <vector>\n\nnamespace n91 {\n\n using i8 = std::int_fast8_t;\n using i32 = std::int_fast32_t;\n using i64 = std::int_fast64_t;\n using u8 = std::uint_fast8_t;\n using u32 = std::uint_fast32_t;\n using u64 = std::uint_fast64_t;\n using isize = std::ptrdiff_t;\n using usize = std::size_t;\n\n constexpr usize operator\"\" _z(unsigned long long x) noexcept {\n return static_cast<usize>(x);\n }\n\n template <class T> class integral_iterator {\n public:\n using difference_type = T;\n using value_type = T;\n using pointer = const value_type*;\n using reference = value_type;\n using iterator_category = std::random_access_iterator_tag;\n\n private:\n using self_type = integral_iterator<value_type>;\n value_type i;\n\n public:\n constexpr integral_iterator() noexcept : i() {}\n explicit constexpr integral_iterator(const value_type i) noexcept : i(i) {}\n constexpr self_type operator++(int) noexcept { return self_type(i++); }\n constexpr self_type operator--(int) noexcept { return self_type(i--); }\n constexpr self_type operator[](const difference_type rhs) const noexcept {\n return self_type(i + rhs);\n }\n constexpr self_type& operator++() noexcept {\n ++i;\n return *this;\n }\n constexpr self_type& operator--() noexcept {\n --i;\n return *this;\n }\n constexpr reference operator*() const noexcept { return i; }\n constexpr self_type operator+(const difference_type rhs) const noexcept {\n return self_type(i + rhs);\n }\n constexpr self_type operator-(const difference_type rhs) const noexcept {\n return self_type(i - rhs);\n }\n constexpr difference_type operator-(const self_type rhs) const noexcept {\n return i - rhs.i;\n }\n constexpr bool operator<(const self_type rhs) const noexcept {\n return i < rhs.i;\n }\n constexpr bool operator<=(const self_type rhs) const noexcept {\n return i <= rhs.i;\n }\n constexpr bool operator>(const self_type rhs) const noexcept {\n return i > rhs.i;\n }\n constexpr bool operator>=(const self_type rhs) const noexcept {\n return i >= rhs.i;\n }\n constexpr bool operator==(const self_type rhs) const noexcept {\n return i == rhs.i;\n }\n constexpr bool operator!=(const self_type rhs) const noexcept {\n return i != rhs.i;\n }\n constexpr self_type& operator+=(const difference_type rhs) noexcept {\n i += rhs;\n return *this;\n }\n constexpr self_type& operator-=(const difference_type rhs) noexcept {\n i -= rhs;\n return *this;\n }\n };\n template <class T>\n constexpr integral_iterator<T> make_int_itr(const T i) noexcept {\n return integral_iterator<T>(i);\n }\n class rep {\n const usize f, l;\n\n public:\n constexpr rep(const usize f, const usize l) noexcept : f(f), l(l) {}\n constexpr auto begin() const noexcept { return make_int_itr(f); }\n constexpr auto end() const noexcept { return make_int_itr(l); }\n };\n class revrep {\n const usize f, l;\n\n public:\n revrep(const usize f, const usize l) noexcept : f(l), l(f) {}\n auto begin() const noexcept {\n return std::make_reverse_iterator(make_int_itr(f));\n }\n auto end() const noexcept {\n return std::make_reverse_iterator(make_int_itr(l));\n }\n };\n template <class T> auto md_vec(const usize n, const T& value) {\n return std::vector<T>(n, value);\n }\n template <class... Args> auto md_vec(const usize n, Args... args) {\n return std::vector<decltype(md_vec(args...))>(n, md_vec(args...));\n }\n template <class T> constexpr T difference(const T& a, const T& b) {\n return a < b ? b - a : a - b;\n }\n template <class T> T scan() {\n T ret;\n std::cin >> ret;\n return ret;\n }\n\n} // namespace n91\n\n#include <cstdint>\n\nnamespace n91 {\n\n constexpr std::uint_fast64_t totient(std::uint_fast64_t x) noexcept {\n using u64 = std::uint_fast64_t;\n u64 ret = x;\n for (u64 i = static_cast<u64>(2); i * i <= x; ++i) {\n if (x % i == static_cast<u64>(0)) {\n ret -= ret / i;\n x /= i;\n while (x % i == static_cast<u64>(0)) {\n x /= i;\n }\n }\n }\n if (x != static_cast<u64>(1)) {\n ret -= ret / x;\n }\n return ret;\n }\n\n template <std::uint_fast64_t Modulus,\n std::uint_fast64_t InverseExp =\n totient(Modulus) - static_cast<std::uint_fast64_t>(1)>\n class modint {\n using u64 = std::uint_fast64_t;\n\n static_assert(Modulus < static_cast<u64>(1) << static_cast<u64>(32),\n \"Modulus must be less than 2**32\");\n\n u64 a;\n\n constexpr modint& negate() noexcept {\n if (a != static_cast<u64>(0)) {\n a = Modulus - a;\n }\n return *this;\n }\n\n public:\n constexpr modint(const u64 x = static_cast<u64>(0)) noexcept\n : a(x% Modulus) {}\n constexpr u64& value() noexcept { return a; }\n constexpr const u64& value() const noexcept { return a; }\n constexpr modint operator+() const noexcept { return modint(*this); }\n constexpr modint operator-() const noexcept { return modint(*this).negate(); }\n constexpr modint operator+(const modint rhs) const noexcept {\n return modint(*this) += rhs;\n }\n constexpr modint operator-(const modint rhs) const noexcept {\n return modint(*this) -= rhs;\n }\n constexpr modint operator*(const modint rhs) const noexcept {\n return modint(*this) *= rhs;\n }\n constexpr modint operator/(const modint rhs) const noexcept {\n return modint(*this) /= rhs;\n }\n constexpr modint& operator+=(const modint rhs) noexcept {\n a += rhs.a;\n if (a >= Modulus) {\n a -= Modulus;\n }\n return *this;\n }\n constexpr modint& operator-=(const modint rhs) noexcept {\n if (a < rhs.a) {\n a += Modulus;\n }\n a -= rhs.a;\n return *this;\n }\n constexpr modint& operator*=(const modint rhs) noexcept {\n a = a * rhs.a % Modulus;\n return *this;\n }\n constexpr modint& operator/=(modint rhs) noexcept {\n u64 exp = InverseExp;\n while (exp) {\n if (exp % static_cast<u64>(2) != static_cast<u64>(0)) {\n *this *= rhs;\n }\n rhs *= rhs;\n exp /= static_cast<u64>(2);\n }\n return *this;\n }\n constexpr bool operator==(const modint rhs) const noexcept {\n return a == rhs.a;\n }\n constexpr bool operator!=(const modint rhs) const noexcept {\n return a != rhs.a;\n }\n };\n\n template <class T, std::uint_fast64_t v> class modint_constant {\n public:\n static constexpr T value = static_cast<T>(v);\n\n using value_type = T;\n };\n\n} // namespace n91\n\n#include <functional>\n#include <utility>\n\nnamespace n91 {\n\n template <class T, class U, class Operate = std::multiplies<T>>\n constexpr T power(T base, U exp, const Operate & oper = Operate(),\n T iden = static_cast<T>(1)) {\n while (exp != static_cast<U>(0)) {\n if (exp % static_cast<U>(2) != static_cast<U>(0)) {\n iden = oper(iden, base);\n }\n exp /= static_cast<U>(2);\n base = oper(base, base);\n }\n return iden;\n }\n\n} // namespace n91\n\n#include <vector>\n\nnamespace n91 {\n\n template <class T> class fact_binom {\n public:\n using value_type = T;\n using container_type = std::vector<value_type>;\n using size_type = typename container_type::size_type;\n\n private:\n container_type factrial, inv_fact;\n\n public:\n fact_binom() : factrial(), inv_fact() {}\n explicit fact_binom(const size_type n) : factrial(n + 1), inv_fact(n + 1) {\n factrial[0] = static_cast<value_type>(1);\n for (size_type i = 0; i != n; ++i) {\n factrial[i + 1] = static_cast<value_type>(i + 1) * factrial[i];\n }\n inv_fact[n] = static_cast<value_type>(1) / factrial[n];\n for (size_type i = n; i != 0; --i) {\n inv_fact[i - 1] = inv_fact[i] * static_cast<value_type>(i);\n }\n }\n\n value_type operator()(const size_type n, const size_type r) const {\n return factrial[n] * inv_fact[r] * inv_fact[n - r];\n }\n };\n\n} // namespace n91\n\n#include <algorithm>\n#include <iostream>\n#include <map>\n#include <set>\n#include <utility>\n\nnamespace std {\n template <typename T> class BIT {\n private:\n int n;\n vector<T> bit;\n\n public:\n // 0_indexed で i 番目の要素に x を加える\n void add(int i, T x) {\n i++;\n while (i < n) {\n bit[i] += x, i += i & -i;\n }\n }\n // 0_indexed で [0,i] の要素の和(両閉区間!!)\n T sum(int i) {\n i++;\n T s = 0;\n while (i > 0) {\n s += bit[i], i -= i & -i;\n }\n return s;\n }\n BIT() {}\n //初期値がすべて0の場合\n BIT(int sz) : n(sz + 1), bit(n, 0) {}\n BIT(const vector<T>& v) : n((int)v.size() + 1), bit(n, 0) {\n for (int i = 0; i < n - 1; i++) {\n add(i, v[i]);\n }\n }\n void print() {\n for (int i = 0; i < n - 1; i++) {\n cout << sum(i) - sum(i - 1) << \" \";\n }\n cout << \"\\n\";\n }\n //-1スタート\n void print_sum() {\n for (int i = 0; i < n; i++) {\n cout << sum(i - 1) << \" \";\n }\n cout << \"\\n\";\n }\n };\n\n // u を昇順にソートするのに必要な交換回数(転倒数) (u は {0,..., n-1}\n // からなる重複を許した長さ n の数列)\n long long inv_count(const vector<int>& u) {\n int n = (int)u.size();\n BIT<int> bt(n);\n long long ans = 0;\n for (int i = 0; i < n; i++) {\n ans += i - bt.sum(u[i]);\n bt.add(u[i], 1);\n }\n return ans;\n }\n} // namespace std\n\nnamespace n91 {\n\n void main_() {\n const usize n = scan<usize>();\n const usize k = scan<usize>();\n std::vector<int> p(n);\n for (auto& e : p) {\n std::cin >> e;\n --e;\n }\n if (k != n) {\n const auto inv = std::inv_count(p);\n std::cout << ((inv % 2 == 0 || k % 2 == 0) ? \"Yes\" : \"No\") << std::endl;\n return;\n }\n for (const auto i : rep(1_z, n)) {\n if ((p[i - 1_z] + 1_z - p[i]) % n != 0_z) {\n std::cout << \"No\" << std::endl;\n return;\n }\n }\n std::cout << \"Yes\" << std::endl;\n }\n\n} // namespace n91\n\nint main() {\n n91::main_();\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3640, "score_of_the_acc": -0.3393, "final_rank": 8 }, { "submission_id": "aoj_3068_3879724", "code_snippet": "#include<iostream>\n#include<algorithm>\n#include<cstdio>\n#include<cmath>\n#include<cctype>\n#include<math.h>\n#include<string>\n#include<string.h>\n#include<stack>\n#include<queue>\n#include<vector>\n#include<utility>\n#include<set>\n#include<map>\n#include<stdlib.h>\n#include<iomanip>\n#include<complex>\n#include <sys/types.h>\n#include <unistd.h>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n#define EPS 1e-9\n#define INF 1e9\n#define LINF (ll)INF*INF\n#define MOD 1000000007\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define loop(i,a,n) for(int i=a;i<(n);i++)\n#define all(in) in.begin(),in.end()\n#define shosu(x) fixed<<setprecision(x)\n\n#define int ll //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\ntypedef vector<int> vi;\ntypedef vector<string> vs;\ntypedef pair<int,int> pii;\ntypedef pair<pii,int> ppi;\ntypedef pair<int,pii> pip;\ntypedef vector<pii> vp;\ntypedef vector<vi> vvi;\n\nint gcd(int a, int b){if(b==0) return a;return gcd(b,a%b);}\nint lcm(int a, int b){return a/gcd(a,b)*b;}\n\n\nstruct BIT{\n vector<int> bit;\n int n;\n //1-indexed\n BIT(){init(-1);}\n BIT(int n_){init(n_);}\n void init(int n_){\n n=n_;\n bit.clear();\n bit.resize(n+1,0);\n }\n int sum(int i){\n int s=0;\n while(i>0){\n s+=bit[i];\n i-=i&-i;\n }\n return s;\n }\n void add(int i,int x){\n if(i==0) return;\n while(i<=n){\n bit[i]+=x;\n i+=i&-i;\n }\n }\n int sum0(int i){\n return sum(i+1);\n }\n void add0(int i,int x){\n add(i+1,x);\n }\n};\nsigned main(void) {\n int n,k;\n cin >> n >> k;\n int a[n];\n for(int i=0;i<n;i++) cin>>a[i];\n if(n == k){\n rep(i,n)if(a[i] == 1){\n rep(j,n)if(a[(i+j)%n] != a[i]+j){\n cout << \"No\" << endl;\n return 0;\n }\n }\n cout << \"Yes\" << endl;\n return 0; \n }\n if(k%2 == 0){\n cout << \"Yes\" << endl;\n return 0;\n }\n reverse(a,a+n);\n BIT bit(n+10);\n int ans=0;\n for(int i=0;i<n;i++){\n ans+=bit.sum(a[i]);\n bit.add(a[i],1);\n}\n if(ans%2){\n cout << \"No\" << endl;\n }else{\n cout << \"Yes\" << endl;\n }\n\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4388, "score_of_the_acc": -0.3523, "final_rank": 11 }, { "submission_id": "aoj_3068_3879722", "code_snippet": "#include<iostream>\n#include<algorithm>\n#include<cstdio>\n#include<cmath>\n#include<cctype>\n#include<math.h>\n#include<string>\n#include<string.h>\n#include<stack>\n#include<queue>\n#include<vector>\n#include<utility>\n#include<set>\n#include<map>\n#include<stdlib.h>\n#include<iomanip>\n#include<complex>\n#include <sys/types.h>\n#include <unistd.h>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n#define EPS 1e-9\n#define INF 1e9\n#define LINF (ll)INF*INF\n#define MOD 1000000007\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define loop(i,a,n) for(int i=a;i<(n);i++)\n#define all(in) in.begin(),in.end()\n#define shosu(x) fixed<<setprecision(x)\n\n#define int ll //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\ntypedef vector<int> vi;\ntypedef vector<string> vs;\ntypedef pair<int, int> pii;\ntypedef pair<pii, int> ppi;\ntypedef pair<int, pii> pip;\ntypedef vector<pii> vp;\ntypedef vector<vi> vvi;\n\nint gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); }\nint lcm(int a, int b) { return a / gcd(a, b) * b; }\n\n\nstruct BIT {\n\tvector<int> bit;\n\tint n;\n\t//1-indexed\n\tBIT() { init(-1); }\n\tBIT(int n_) { init(n_); }\n\tvoid init(int n_) {\n\t\tn = n_;\n\t\tbit.clear();\n\t\tbit.resize(n + 1, 0);\n\t}\n\tint sum(int i) {\n\t\tint s = 0;\n\t\twhile (i > 0) {\n\t\t\ts += bit[i];\n\t\t\ti -= i & -i;\n\t\t}\n\t\treturn s;\n\t}\n\tvoid add(int i, int x) {\n\t\tif (i == 0) return;\n\t\twhile (i <= n) {\n\t\t\tbit[i] += x;\n\t\t\ti += i & -i;\n\t\t}\n\t}\n\tint sum0(int i) {\n\t\treturn sum(i + 1);\n\t}\n\tvoid add0(int i, int x) {\n\t\tadd(i + 1, x);\n\t}\n};\nsigned main(void) {\n\tint n, k;\n\tcin >> n >> k;\n\tint a[n];\n\tfor (int i = 0; i < n; i++) cin >> a[i];\n\tif (k % 2 == 0) {\n\t\tcout << \"Yes\" << endl;\n\t\treturn 0;\n\t}\n\tif (n == k) {\n\t\tset<int>S;\n\t\tfor (int i = 0; i < n; ++i) {\n\t\t\tS.insert((a[i]-i+n)%n);\n\t\t}\n\t\tif (S.size() == 1) {\n\t\t\tcout << \"Yes\" << endl;\n\t\t}\n\t\telse {\n\t\t\tcout << \"No\" << endl;\n\t\t}\n\t\treturn 0;\n\t}\n\treverse(a, a + n);\n\tBIT bit(n + 10);\n\tint ans = 0;\n\tfor (int i = 0; i < n; i++) {\n\t\tans += bit.sum(a[i]);\n\t\tbit.add(a[i], 1);\n\t}\n\tif (ans % 2) {\n\t\tcout << \"No\" << endl;\n\t}\n\telse {\n\t\tcout << \"Yes\" << endl;\n\t}\n\n}", "accuracy": 0.8771929824561403, "time_ms": 20, "memory_kb": 4356, "score_of_the_acc": -0.3518, "final_rank": 19 }, { "submission_id": "aoj_3068_3879676", "code_snippet": "#include <iostream>\n#include <string.h>\n#include <vector>\nusing namespace std;\n\nconst int MAXN = 100000, MOD = 1000000007;\n\nint t[MAXN + 10];\n\nvoid add(int v, int d)\n{\n for (; v <= MAXN; v += (v & (-v)))\n t[v] += d;\n}\n\nint sum(int r)\n{\n int ans = 0;\n for (; r > 0; r -= (r & (-r)))\n ans += t[r];\n return ans;\n}\n\nint sum(int l, int r)\n{\n return sum(r) - sum(l - 1);\n}\n\nint index(vector<int> p, int mod)\n{\n int n = p.size();\n memset(t, 0, sizeof t);\n for (int i = 1; i <= n; ++i)\n add(i, 1);\n int fact[MAXN + 10];\n fact[0] = 1 % mod;\n for (int i = 1; i <= n; ++i)\n fact[i] = fact[i - 1] * 1ll * i % mod;\n int ans = 0;\n for (int i = 0; i < n; ++i)\n {\n int id = sum(p[i] - 1);\n ans = (ans + id * 1ll * fact[n - 1 - i]) % mod;\n add(p[i], -1);\n }\n return ans;\n}\n\nint parity(vector<int> p)\n{\n int n = p.size();\n memset(t, 0, sizeof t);\n int ans = 0;\n for (int i = n - 1; i >= 0; --i)\n {\n int smaller = sum(p[i] - 1);\n ans = (ans + smaller) % 2;\n add(p[i], 1);\n }\n return ans;\n}\n\nint main()\n{\n cin.sync_with_stdio(false);\n int CASE = 1;\n int n, k;\n vector<int> p, q;\n cin >> n >> k;\n p.resize(n);\n q.resize(n);\n for (int i = 0; i < n; ++i)\n cin >> p[i];\n for (int i = 0; i < n; ++i)\n q[i] = i + 1;\n if (k == n)\n {\n int start = -1;\n for (int i = 0; i < n; ++i)\n {\n if (q[i] == p[0])\n {\n start = i;\n break;\n }\n }\n bool good = true;\n for (int i = 0; i < n; ++i)\n {\n if (p[i] != q[(i + start) % n])\n {\n good = false;\n break;\n }\n }\n if (good)\n cout << \"Yes\" << endl;\n else\n cout << \"No\" << endl;\n }\n else if (k % 2 == 0)\n {\n int id = index(q, MOD);\n cout << \"Yes\" << endl;\n }\n else\n {\n if (parity(p) == parity(q))\n {\n int id = index(q, MOD);\n if (index(q, 2) == 1)\n id = (id + MOD - 1) % MOD;\n id = id * 500000004ll % MOD;\n cout << \"Yes\" << endl;\n }\n else\n {\n cout << \"No\" << endl;\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4652, "score_of_the_acc": -0.0236, "final_rank": 2 }, { "submission_id": "aoj_3068_3879533", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define dbg(x) cout<<#x<<\"=\"<<x<<endl\n\nusing P=pair<int,int>;\n\nint main(){\n int n,k;\n cin>>n>>k;\n if(k==2){\n cout<<\"Yes\"<<endl;\n return 0;\n }\n vector<int> p(n);\n for (int i = 0; i < n; ++i) {\n cin>>p[i];\n --p[i];\n }\n if(n==k){\n for (int i = 0; i < n-1; ++i) {\n if(p[i]!=n-1&&p[i]>p[i+1]){\n cout<<\"No\"<<endl;\n return 0;\n }\n }\n cout<<\"Yes\"<<endl;\n return 0;\n }\n\n vector<bool> vis(n,false);\n int ms=0;\n for (int i = 0; i < n; ++i) {\n if(vis[i])continue;\n int crt=i;\n int d=0;\n while(!vis[crt]){\n vis[crt]=true;\n d++;\n crt=p[crt];\n }\n d%=2;\n if(d==0)ms++;\n }\n ms%=2;\n\n if(k%2==1&&ms%2==1)cout<<\"No\"<<endl;\n else cout<<\"Yes\"<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3300, "score_of_the_acc": -0.3333, "final_rank": 4 }, { "submission_id": "aoj_3068_3879377", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <complex>\n#include <cstring>\n#include <deque>\n#include <functional>\n#include <iostream>\n#include <list>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n#include <cstdint>\nusing namespace std;\ntypedef long long ll;\n#define MP make_pair\n#define PB push_back\n#define inf 1000000007\n#define mod 1000000007\n#define rep(i,n) for(int i = 0; i < (int)(n); ++i)\nset<vector<int> > st;\n\nvoid dfs(vector<int> a,int n,int k){\n for(int i=0;i<=n-k;i++){\n for(int t = 1;t<=k-1;t++){\n vector<int>b(n);\n rep(j,n){\n b[j] = a[j];\n } \n \n rep(j,k){\n b[i+j] = a[i+j+t];\n if(i+j+t >= i+k){\n b[i+j] = a[i+j+t-k];\n } \n }\n if(st.count(b)){\n\n }else{\n st.insert(b);\n dfs(b,n,k);\n }\n }\n }\n\n}\ntemplate<typename T> class BIT {\nprivate:\n\tint n;\n\tvector<T> bit;\npublic:\n\t// 0_indexed で i 番目の要素に x を加える\n\tvoid add(int i, T x){\n\t\ti++;\n\t\twhile(i < n){\n\t\t\tbit[i] += x, i += i & -i;\n\t\t}\n\t}\n\t// 0_indexed で [0,i] の要素の和(両閉区間!!)\n\tT sum(int i){\n\t\ti++;\n\t\tT s = 0;\n\t\twhile(i > 0){\n\t\t\ts += bit[i], i -= i & -i;\n\t\t}\n\t\treturn s;\n\t}\n\tBIT(){}\n\t//初期値がすべて0の場合\n\tBIT(int sz) : n(sz+1), bit(n, 0){}\n\tBIT(const vector<T>& v) : n((int)v.size()+1), bit(n, 0){\n\t\tfor(int i = 0; i < n-1; i++){\n\t\t\tadd(i,v[i]);\n\t\t}\n\t}\n\tvoid print(){\n\t\tfor(int i = 0; i < n-1; i++){\n\t\t\tcout << sum(i) - sum(i-1) << \" \";\n\t\t}\n\t\tcout << \"\\n\";\n\t}\n\t//-1スタート\n\tvoid print_sum(){\n\t\tfor(int i = 0; i < n; i++){\n\t\t\tcout << sum(i-1) << \" \";\n\t\t}\n\t\tcout << \"\\n\";\n\t}\n};\n \n// u を昇順にソートするのに必要な交換回数(転倒数) (u は {0,..., n-1} からなる重複を許した長さ n の数列)\nlong long inv_count(const vector<int>& u)\n{\n\tint n = (int)u.size();\n\tBIT<int> bt(n);\n\tlong long ans = 0;\n\tfor(int i = 0; i < n; i++){\n\t\tans += i - bt.sum(u[i]);\n\t\tbt.add(u[i], 1);\n\t}\n\treturn ans;\n}\n \n// u を v に変換するのに必要な交換回数(転倒数)\n// (u, v は {0,..., n-1} からなる重複を許した長さ n の数列. ただし u, v 全体で各数字の個数は一致するものとする)\nlong long inv_count(const vector<int>& u, const vector<int>& v)\n{\n int n = (int)u.size();\n vector<vector<int> > p(n);\n BIT<int> bt(n);\n for(int i = n-1; i >= 0; --i){\n p[u[i]].push_back(i);\n }\n long long ans = 0;\n for(int i = 0; i < n; ++i){\n int pos = p[v[i]].back();\n p[v[i]].pop_back();\n ans += pos - bt.sum(pos);\n bt.add(pos, 1);\n }\n return ans;\n}\nint main(){\n // for(int n = 2;n<=8;n++){\n // for(int k=2;k<=n;k++){\n // st.clear();\n // vector<int>v(n);\n // rep(i,n){\n // v[i] = i;\n // }\n // dfs(v,n,k);\n // int sm = 1;\n // rep(i,n){\n // sm *=(i+1);\n // }\n // cout << n << \" \" << k << endl;\n // cout << sm << endl;\n // cout << st.size() << endl;\n // // for(auto s:st){\n // // for(auto x:s){\n // // cout << x << \" \";\n // // }\n // // cout << endl;\n // // }\n // }\n // }\n int n,k;\n cin >> n >> k;\n vector<int>a(n);\n rep(i,n){\n cin >> a[i];\n a[i]--;\n }\n if(n==k){\n int id = 0;\n rep(i,n){\n if(a[i]==0){\n id = i;\n }\n }\n rep(i,n){\n int k = id+i;\n k%=n;\n \n if(a[k]!=i){\n cout <<\"No\" << endl;\n return 0;\n }\n }\n cout << \"Yes\" << endl;\n }else{\n if(k%2==0){\n cout << \"Yes\" << endl;\n }else{\n if(inv_count(a)%2){\n cout << \"No\" << endl;\n }else{\n cout << \"Yes\" << endl;\n }\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3624, "score_of_the_acc": -0.339, "final_rank": 7 }, { "submission_id": "aoj_3068_3879243", "code_snippet": "#if __has_include(\"../library/Basic/Debug.hpp\")\n\n#include \"../library/Basic/Debug.hpp\"\n\n#else\n\n/* ----- Header Files ----- */\n// IO\n#include <cstdio>\n#include <iomanip>\n#include <ios>\n#include <iostream>\n\n// algorithm\n#include <algorithm>\n#include <cmath>\n#include <numeric>\n\n// container\n#include <vector>\n#include <string>\n#include <tuple>\n#include <complex>\n#include <set>\n#include <map>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <bitset>\n\n// others\n#include <random>\n#include <limits>\n#include <functional>\n#include <ctime>\n#include <cassert>\n#include <cstdint>\n\n/* ----- Type Alias ----- */\nusing Int = long long int;\nusing Real = long double;\nusing std::pair;\nusing std::string;\nusing std::tuple;\nusing std::vector;\ntemplate <class T>\nusing MaxHeap = std::priority_queue<T>;\ntemplate <class T>\nusing MinHeap = std::priority_queue<T, std::vector<T>, std::greater<T>>;\n\ntemplate <class T>\nT genv(T v) { return v; }\n\ntemplate <class T, class... Ts>\nauto genv(size_t l, Ts... ts) {\n return vector<decltype(genv<T>(ts...))>(l, genv<T>(ts...));\n}\n\ntemplate <class Cost = Int>\nstruct Edge {\n Int src, dst;\n Cost cost;\n Edge(Int src = -1, Int dst = -1, Cost cost = 1)\n : src(src), dst(dst), cost(cost){};\n\n bool operator<(const Edge<Cost>& e) const { return this->cost < e.cost; }\n bool operator>(const Edge<Cost>& e) const { return this->cost > e.cost; }\n};\n\ntemplate <class Cost = Int>\nusing Edges = vector<Edge<Cost>>;\ntemplate <class Cost = Int>\nusing Graph = vector<vector<Edge<Cost>>>;\n\n#endif\n\n/* ----- Misc ----- */\nvoid fastio() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n}\n\nstruct Fout {\n Int precision;\n Fout(Int precision) : precision(precision) {}\n};\nstd::ostream& operator<<(std::ostream& os, const Fout& fio) {\n os << std::fixed << std::setprecision(fio.precision);\n return os;\n}\n\n\n/* ----- Constants ----- */\n// constexpr Int INF = std::numeric_limits<Int>::max() / 3;\n// constexpr Int MOD = 1000000007;\n// const Real PI = acos(-1);\n// constexpr Real EPS = 1e-10;\n// std::mt19937 mt(int(std::time(nullptr)));\n\nstruct SegmentTree {\n int length;\n std::vector<int> dat;\n\n int query(int ql, int qr, int nidx, int nl, int nr) {\n if (nr <= ql || qr <= nl) return 0;\n if (ql <= nl && nr <= qr) return dat[nidx];\n int vl = query(ql, qr, nidx * 2, nl, (nl + nr) / 2);\n int vr = query(ql, qr, nidx * 2 + 1, (nl + nr) / 2, nr);\n return vl + vr;\n }\n\n SegmentTree(int N) : length(1) {\n while (length < N) length <<= 1;\n dat.assign(length * 2, 0);\n }\n\n // half-open interval [ql, qr)\n int query(int ql, int qr) { return query(ql, qr, 1, 0, length); }\n\n void update(int idx, int e) {\n int nidx = idx + length;\n dat[nidx] += e;\n while (nidx > 0) {\n nidx >>= 1;\n dat[nidx] = dat[nidx * 2] + dat[nidx * 2 + 1];\n }\n }\n};\n\nint main() {\n int n, k;\n std::cin >> n >> k;\n\n vector<int> p(n);\n for (auto& x : p) {\n std::cin >> x;\n --x;\n }\n\n if (k == n) {\n int i;\n for (i = 0; p[i] != 0; ++i) {}\n for (int j = 0; j < n; ++j) {\n if (p[(i + j) % n] != j) {\n std::cout << \"No\" << std::endl;\n return 0;\n }\n }\n std::cout << \"Yes\" << std::endl;\n return 0;\n }\n\n Int rev = 0;\n SegmentTree seg(n);\n for (auto x : p) {\n rev += seg.query(x + 1, n);\n seg.update(x, 1);\n }\n\n if (k % 2 == 1 && rev % 2 == 1) {\n std::cout << \"No\" << std::endl;\n } else {\n std::cout << \"Yes\" << std::endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4152, "score_of_the_acc": -0.6816, "final_rank": 17 }, { "submission_id": "aoj_3068_3879237", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\n//int N,M,K,L,R,H,W;\nlong long int N,M,K,L,R,H,W;\n\n//constexpr long long int MOD=1000000007;\n//constexpr int MOD=1000000007;\nconstexpr int MOD=998244353;\n//constexpr long long int MOD=998244353;\n\nclass Add_Segment_Tree {\n\tvector<long long int>v;\n\tvector<int>l;\n\tvector<int>r;\n\tlong long int ret;\n\tint num;\n\tlong long int Update(int place) {\n\t\tif (place >= v.size() / 2) {\n\t\t\treturn v[place];\n\t\t}\n\t\tv[place] = Update(place * 2) + Update(place * 2 + 1);\n\t\treturn v[place];\n\t}\n\tvoid Sum(int a, int b, int place) {\n\t\tif (l[place] >= a&&r[place] <= b) {\n\t\t\tret += v[place];\n\t\t\treturn;\n\t\t}\n\t\tif (l[place] > b || r[place] < a) return;\n\t\tSum(a, b, place * 2);\n\t\tSum(a, b, place * 2 + 1);\n\t\treturn;\n\t}\npublic:\n\tvoid Left(int place) {\n\t\tif (place >= v.size() / 2) {\n\t\t\tl[place] = place - v.size() / 2;\n\t\t\treturn;\n\t\t}\n\t\tLeft(place * 2);\n\t\tLeft(place * 2 + 1);\n\t\tl[place] = l[place * 2];\n\t\treturn;\n\t}\n\tvoid Right(int place) {\n\t\tif (place >= v.size() / 2) {\n\t\t\tr[place] = place - v.size() / 2;\n\t\t\treturn;\n\t\t}\n\t\tRight(place * 2);\n\t\tRight(place * 2 + 1);\n\t\tr[place] = r[place * 2 + 1];\n\t\treturn;\n\t}\n\tAdd_Segment_Tree(int n) {\n\t\tn++;\n\t\tnum = 1;\n\t\twhile (num < n * 2)num *= 2;\n\t\tl.resize(num);\n\t\tr.resize(num);\n\t\tv.resize(num, 0);\n\t\tLeft(1);\n\t\tRight(1);\n\t}\n\tvoid Add(int place, long long int num, bool update) {\n\t\tplace += v.size() / 2;\n\t\tv[place] += num;\n\t\tif (!update)return;\n\t\tplace /= 2;\n\t\twhile (place) {\n\t\t\tv[place] = v[place * 2] + v[place * 2 + 1];\n\t\t\tplace /= 2;\n\t\t}\n\t}\n\tvoid TopDown() {\n\t\tUpdate(1);\n\t}\n\tlong long int Sum(int a, int b) {\n\t\tret = 0;\n\t\tSum(a, b, 1);\n\t\treturn ret;\n\t}\n};\n\nint main(){\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t\n\tcin>>N>>K;\n\tvector<int>v(N);\n\tfor(auto &i:v)cin>>i;\n\tlong long int box=0;\n\tAdd_Segment_Tree asg(N+1);\n\tfor(int i=0;i<N;i++){\n\t\tbox+=asg.Sum(v[i],N);\n\t\tasg.Add(v[i],1,true);\n\t}\n\tif(box%2&&K%2){\n\t\tcout<<\"No\\n\";\n\t\treturn 0;\n\t}\n\tif(N==K){\n\t\tfor(int i=0;i<N;i++){\n\t\t\tif((v[i]+1)%N!=(v[(i+1)%N])%N){\n\t\t\t\tcout<<\"No\\n\";\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\t}\n\tcout<<\"Yes\\n\";\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 7344, "score_of_the_acc": -0.404, "final_rank": 15 }, { "submission_id": "aoj_3068_3879183", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing lint = long long;\ntemplate<class T = int> using V = vector<T>;\ntemplate<class T = int> using VV = V< V<T> >;\n\ntemplate<class Z> Z rng(Z a, Z b) {\n static mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());\n return uniform_int_distribution<Z>(a, b - 1)(mt);\n}\n\nnamespace RBST {\n constexpr int lim = 1 << 20;\n using T = pair<int, int>;\n constexpr T e = {1e9, -1};\n T op(const T& a, const T& b) { return min(a, b); }\n T op(const T& a, const T& b, const T& c) { return op(op(a, b), c); }\n using U = int;\n constexpr U id = 0;\n void ap(const U& f, T& a) { a.second += f; }\n void cp(const U& g, U& f) { f += g; }\n\n struct Node;\n using Tree = Node*;\n struct Node {\n Tree lch, rch;\n int sz, h;\n T val, acc = e, inv = e;\n U laz = id;\n bool rev;\n };\n Tree nil = new Node();\n\n Tree update(Tree t) {\n t->sz = t->lch->sz + 1 + t->rch->sz;\n t->h = max(t->lch->h, t->rch->h) + 1;\n t->acc = op(t->lch->acc, t->val, t->rch->acc);\n t->inv = op(t->rch->inv, t->val, t->lch->inv);\n assert(t->laz == id);\n assert(!t->rev);\n return t;\n }\n Node pool[lim];\n Tree make(const T& v, Tree l = nil, Tree r = nil) {\n static int p = 0;\n assert(p < lim);\n Tree t = pool + p++;\n t->lch = l, t->rch = r;\n t->val = v;\n return update(t);\n }\n\n void apply(Tree t, const U& f) {\n if (t == nil) return;\n ap(f, t->val);\n ap(f, t->acc);\n ap(f, t->inv);\n cp(f, t->laz);\n }\n void reverse(Tree t) {\n if (t == nil) return;\n swap(t->lch, t->rch);\n swap(t->acc, t->inv);\n t->rev ^= true;\n }\n void push(Tree t) {\n if (!(t->laz == id)) {\n apply(t->lch, t->laz);\n apply(t->rch, t->laz);\n t->laz = id;\n }\n if (t->rev) {\n reverse(t->lch);\n reverse(t->rch);\n t->rev = false;\n }\n }\n\n template<class Itr> Tree build(Itr first, Itr last) {\n int n = distance(first, last);\n if (!n) return nil;\n Itr middle = next(first, n >> 1);\n return make(*middle, build(first, middle), build(next(middle), last));\n }\n template<class Itr> Itr dump(Tree t, Itr res) {\n if (t == nil) return res;\n push(t);\n res = dump(t->lch, res);\n *res++ = t->val;\n return dump(t->rch, res);\n }\n void rebuild(Tree& t) {\n V<T> v(t->sz);\n dump(t, begin(v));\n t = build(begin(v), end(v));\n }\n\n Tree merge(Tree l, Tree r) {\n if (l == nil) return r;\n if (r == nil) return l;\n if (rng(0, l->sz + r->sz) < l->sz) {\n push(l);\n l->rch = merge(l->rch, r);\n return update(l);\n } else {\n push(r);\n r->lch = merge(l, r->lch);\n return update(r);\n }\n }\n Tree merge(Tree l, Tree m, Tree r) { return merge(merge(l, m), r); }\n pair<Tree, Tree> split(Tree t, int i) {\n assert(0 <= i and i <= t->sz);\n if (t == nil) return {nil, nil};\n push(t);\n if (i <= t->lch->sz) {\n Tree l;\n tie(l, t->lch) = split(t->lch, i);\n return {l, update(t)};\n } else {\n Tree r;\n tie(t->rch, r) = split(t->rch, i - t->lch->sz - 1);\n return {update(t), r};\n }\n }\n tuple<Tree, Tree, Tree> split(Tree t, int l, int r) {\n assert(0 <= l and l <= r and r <= t->sz);\n Tree lt, mt, rt;\n tie(lt, rt) = split(t, r);\n tie(lt, mt) = split(lt, l);\n return make_tuple(lt, mt, rt);\n }\n void insert(Tree& t, int i, const T& v) {\n assert(0 <= i and i <= t->sz);\n if (!rng(0, t->sz + 1)) {\n Tree l, r;\n tie(l, r) = split(t, i);\n t = make(v, l, r);\n return;\n }\n push(t);\n if (i <= t->lch->sz) {\n insert(t->lch, i, v);\n } else {\n insert(t->rch, i - t->lch->sz - 1, v);\n }\n t = update(t);\n }\n void erase(Tree& t, int i) {\n assert(0 <= i and i < t->sz);\n push(t);\n if (i == t->lch->sz) {\n t = merge(t->lch, t->rch);\n } else if (i < t->lch->sz) {\n erase(t->lch, i);\n t = update(t);\n } else {\n erase(t->rch, i - t->lch->sz - 1);\n t = update(t);\n }\n }\n\n T get(Tree t, int i) {\n assert(0 <= i and i < t->sz);\n if (i == t->lch->sz) return t->val;\n push(t);\n if (i < t->lch->sz) return get(t->lch, i);\n return get(t->rch, i - t->lch->sz - 1);\n }\n void set(Tree t, int i, const T& a) {\n assert(0 <= i and i < t->sz);\n push(t);\n if (i == t->lch->sz) {\n t->val = a;\n } else if (i < t->lch->sz) {\n set(t->lch, i, a);\n } else {\n set(t->rch, i - t->lch->sz - 1, a);\n }\n update(t);\n }\n T acc(Tree t, int l, int r) {\n if (l <= 0 and t->sz <= r) return t->acc;\n push(t);\n T resl = l < t->lch->sz ? acc(t->lch, l, r) : e;\n T resr = t->lch->sz + 1 < r ? acc(t->rch, l - t->lch->sz - 1, r - t->lch->sz - 1) : e;\n T resm = l <= t->lch->sz and t->lch->sz < r ? t->val : e;\n return op(resl, resm, resr);\n }\n void act(Tree t, int l, int r, const U& f) {\n if (l <= 0 and t->sz <= r) {\n apply(t, f);\n return;\n }\n push(t);\n if (l < t->lch->sz) act(t->lch, l, r, f);\n if (t->lch->sz + 1 < r) act(t->rch, l - t->lch->sz - 1, r - t->lch->sz - 1, f);\n if (l <= t->lch->sz and t->lch->sz < r) ap(f, t->val);\n update(t);\n }\n void reverse(Tree& t, int l, int r) {\n assert(0 <= l and l <= r and r <= t->sz);\n Tree lt, mt, rt;\n tie(lt, mt, rt) = split(t, l, r);\n reverse(mt);\n t = merge(lt, mt, rt);\n }\n}\n\nint main() {\n cin.tie(nullptr); ios::sync_with_stdio(false);\n int n, k; cin >> n >> k;\n V< pair<int, int> > v(n);\n for (int i = 0; i < n; ++i) {\n int p; cin >> p;\n v[i] = {p, i};\n }\n auto t = RBST::build(begin(v), end(v));\n\n auto fn = [&](int l, int m, int r) -> void {\n act(t, l, m, r - m);\n act(t, m, r, -(m - l));\n RBST::Tree tl, tm, tr;\n tie(tl, tm, tr) = split(t, l, r);\n RBST::Tree ml, mr;\n tie(ml, mr) = split(tm, m - l);\n t = merge(tl, merge(mr, ml), tr);\n };\n\n for (int i = 0; i + k <= n; ++i) {\n int j = acc(t, i, n).second;\n if (j - i >= k - 1) {\n int nj = i + (j - i) % (k - 1);\n fn(nj, j, j + 1);\n j = nj;\n }\n if (j == i) continue;\n fn(i, j, i + k);\n }\n dump(t, begin(v));\n cout << (is_sorted(begin(v), end(v)) ? \"Yes\" : \"No\") << '\\n';\n}", "accuracy": 0.05263157894736842, "time_ms": 10, "memory_kb": 60520, "score_of_the_acc": -1, "final_rank": 20 }, { "submission_id": "aoj_3068_3879115", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n//1-indexed\n#include<vector>\ntemplate<typename T>\nstruct BIT{\n\tint n;\n\tvector<T>bit;\n\tBIT(int n_=0):n(n_),bit(n_+1){}\n\tT sum(int i)\n\t{\n\t\tT ans=0;\n\t\tfor(;i>0;i-=i&-i)ans+=bit[i];\n\t\treturn ans;\n\t}\n\tvoid add(int i,T a)\n\t{\n\t\tif(i==0)return;\n\t\tfor(;i<=n;i+=i&-i)bit[i]+=a;\n\t}\n\tint lower_bound(T k)//k<=sum(ret)\n\t{\n\t\tif(k<=0)return 0;\n\t\tint ret=0,i=1;\n\t\twhile((i<<1)<=n)i<<=1;\n\t\tfor(;i;i>>=1)\n\t\t\tif(ret+i<=n&&bit[ret+i]<k)k-=bit[ret+=i];\n\t\treturn ret+1;\n\t}\n};\nint main(){\n unsigned long N, K;\n cin >> N >> K;\n if(N == K){\n vector<unsigned long> P(N);\n for(auto& i : P)cin >> i;\n P.push_back(P[0]);\n for(unsigned long i = 0; i < N; ++i)if((P[i] + 1 + N - P[i + 1]) % N)return 0 & puts(\"No\");\n\t\tputs(\"Yes\");\n\t\treturn 0;\n }\n if(~K & 1)return 0 & puts(\"Yes\");\n vector<unsigned long> P(N);\n for(auto& i : P)cin >> i;\n BIT<int>bit(N);\n\tlong long T=0;\n\tfor(int i=0;i<N;i++)\n\t{\n\t\tT+=i-bit.sum(P[i]);\n\t\tbit.add(P[i],1);\n\t}\n\tcout<<(T%2?\"No\":\"Yes\")<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4460, "score_of_the_acc": -0.3536, "final_rank": 12 }, { "submission_id": "aoj_3068_3879088", "code_snippet": "#include <cstdio>\n#include <cstdint>\n#include <vector>\n#include <array>\n#include <utility>\n#include <algorithm>\n\nclass bit_vector {\n size_t n;\n static constexpr size_t nbit = 64;\n std::vector<intmax_t> raw;\n std::vector<int> acc;\n\n int popcount(uintmax_t x) const {\n return __builtin_popcountll(x);\n }\n\npublic:\n bit_vector() {}\n\n bit_vector(const std::vector<bool>& b): n(b.size()) {\n raw.assign(n/nbit+1, 0);\n for (size_t i = 0; i < n; ++i)\n if (b[i]) raw[i/nbit] |= intmax_t(1) << (i % nbit);\n\n acc.assign(n/nbit+1, 0);\n for (size_t i = 1; i < acc.size(); ++i)\n acc[i] = acc[i-1] + popcount(raw[i-1]);\n }\n\n size_t rank1(size_t k) const {\n size_t large = k / nbit;\n size_t small = k % nbit;\n size_t res = acc[large];\n if (small > 0) res += popcount(raw[large] & ((uintmax_t(1) << small) - 1));\n return res;\n }\n\n size_t rank0(size_t k) const {\n return k - rank1(k);\n }\n\n size_t select1(size_t k) const {\n if (k == 0) return 0;\n size_t lb = 0;\n size_t ub = n;\n while (ub-lb > 1) {\n size_t mid = (lb+ub) >> 1;\n ((rank1(mid) < k)? lb:ub) = mid;\n }\n if (rank1(ub) < k) return -1;\n return ub;\n }\n\n size_t select0(size_t k) const {\n if (k == 0) return 0;\n size_t lb = 0;\n size_t ub = n;\n while (ub-lb > 1) {\n size_t mid = (lb+ub) >> 1;\n ((rank0(mid) < k)? lb:ub) = mid;\n }\n if (rank0(ub) < k) return -1;\n return ub;\n }\n\n size_t rank(int x, size_t k) const {\n return x? rank1(k) : rank0(k);\n }\n\n size_t select(int x, size_t k) const {\n return x? select1(k) : select0(k);\n }\n\n bool operator [](size_t k) const {\n size_t large = k / nbit;\n size_t small = k % nbit;\n return raw[large] >> small & 1;\n }\n};\n\ntemplate <class Tp, size_t bitlen = 8 * sizeof(Tp)>\nclass wavelet_matrix {\npublic:\n using value_type = typename std::make_unsigned<Tp>::type;\n\nprivate:\n std::vector<value_type> c;\n std::vector<size_t> zeros;\n size_t n;\n std::array<bit_vector, bitlen> a;\n\n size_t start_index(value_type x) const {\n size_t s = 0;\n size_t t = 0;\n for (size_t i = bitlen; i-- > 1;) {\n size_t j = bitlen-i-1;\n if (x >> i & 1) {\n s = zeros[j] + a[j].rank1(s);\n t = zeros[j] + a[j].rank1(t);\n } else {\n s = a[j].rank0(s);\n t = a[j].rank0(t);\n }\n }\n return s;\n }\n\npublic:\n template <class InputIt>\n wavelet_matrix(InputIt first, InputIt last):\n c(first, last), zeros(bitlen), n(c.size())\n {\n std::vector<value_type> whole = c;\n for (size_t i = bitlen; i--;) {\n std::vector<value_type> zero, one;\n std::vector<bool> vb(n);\n for (size_t j = 0; j < n; ++j) {\n ((whole[j] >> i & 1)? one:zero).push_back(whole[j]);\n vb[j] = (whole[j] >> i & 1);\n }\n\n zeros[bitlen-i-1] = zero.size();\n a[bitlen-i-1] = bit_vector(vb);\n if (i == 0) break;\n whole = std::move(zero);\n whole.insert(whole.end(), one.begin(), one.end());\n }\n }\n\n size_t rank(value_type x, size_t t) const {\n if (t == 0) return 0;\n size_t s = 0;\n for (size_t i = bitlen; i--;) {\n size_t j = bitlen-i-1;\n if (x >> i & 1) {\n s = zeros[j] + a[j].rank1(s);\n t = zeros[j] + a[j].rank1(t);\n } else {\n s = a[j].rank0(s);\n t = a[j].rank0(t);\n }\n }\n return t - s;\n }\n\n std::pair<bool, value_type> max_lt(value_type x, size_t s, size_t t) const {\n return max_le(x-1, s, t);\n }\n std::pair<bool, value_type> max_le(value_type x, size_t s, size_t t) const {\n if (s == t) return {false, 0};\n size_t ri = bitlen+1;\n size_t rs = -1;\n size_t rt = -1;\n bool tight = true;\n bool reverted = false;\n value_type res = 0;\n for (size_t i = bitlen; i--;) {\n size_t j = bitlen-i-1;\n size_t z = a[j].rank0(t) - a[j].rank0(s);\n size_t tg = (tight? (x >> i & 1) : 1);\n if (reverted) tg = 0;\n\n bool ok0 = (z > 0);\n bool ok1 = (z < t-s);\n size_t ch = 0;\n\n reverted = false;\n if (tg == 1) {\n if (ok0) {\n ri = i;\n rs = s;\n rt = t;\n }\n if (ok1) {\n ch = 1;\n } else {\n tight = false;\n }\n } else if (!ok0 && tight) {\n if (ri > bitlen) return {false, 0};\n i = ri+1;\n s = rs;\n t = rt;\n tight = false;\n value_type mask = (static_cast<value_type>(1) << i) - 1;\n res |= mask;\n res ^= mask;\n reverted = true;\n continue;\n }\n\n if (ch == 0) {\n s = a[j].rank0(s);\n t = a[j].rank0(t);\n } else {\n s = zeros[j] + a[j].rank1(s);\n t = zeros[j] + a[j].rank1(t);\n res |= static_cast<value_type>(1) << i;\n }\n }\n return {true, res};\n }\n std::pair<bool, value_type> min_gt(value_type x, size_t s, size_t t) const {\n return min_ge(x+1, s, t);\n }\n std::pair<bool, value_type> min_ge(value_type x, size_t s, size_t t) const {\n if (s == t) return {false, 0};\n size_t ri = bitlen+1;\n size_t rs = -1;\n size_t rt = -1;\n bool tight = true;\n bool reverted = false;\n value_type res = 0;\n for (size_t i = bitlen; i--;) {\n size_t j = bitlen-i-1;\n size_t z = a[j].rank0(t) - a[j].rank0(s);\n size_t tg = (tight? (x >> i & 1) : 0);\n if (reverted) tg = 1;\n\n bool ok0 = (z > 0);\n bool ok1 = (z < t-s);\n size_t ch = 1;\n\n reverted = false;\n if (tg == 0) {\n if (ok1) {\n ri = i;\n rs = s;\n rt = t;\n }\n if (ok0) {\n ch = 0;\n } else {\n tight = false;\n }\n } else if (!ok1 && tight) {\n if (ri > bitlen) return {false, 0};\n i = ri+1;\n s = rs;\n t = rt;\n tight = false;\n value_type mask = (static_cast<value_type>(1) << ri) - 1;\n res |= mask;\n res ^= mask;\n reverted = true;\n continue;\n }\n\n if (ch == 0) {\n s = a[j].rank0(s);\n t = a[j].rank0(t);\n } else {\n s = zeros[j] + a[j].rank1(s);\n t = zeros[j] + a[j].rank1(t);\n res |= static_cast<value_type>(1) << i;\n }\n }\n return {true, res};\n }\n\n value_type quantile(size_t k, size_t s, size_t t) const {\n value_type res = 0;\n for (size_t i = bitlen; i--;) {\n size_t j = bitlen-i-1;\n size_t z = a[j].rank0(t) - a[j].rank0(s);\n if (k < z) {\n s = a[j].rank0(s);\n t = a[j].rank0(t);\n } else {\n res |= static_cast<value_type>(1) << i;\n s = zeros[j] + a[j].rank1(s);\n t = zeros[j] + a[j].rank1(t);\n k -= z;\n }\n }\n return res;\n }\n\n std::array<size_t, 3> rank_three_way(value_type x, size_t t) const {\n if (t == 0) return {0, 0, 0};\n\n size_t lt = 0;\n size_t eq = t;\n size_t gt = 0;\n\n size_t s = 0;\n for (size_t i = bitlen; i--;) {\n size_t j = bitlen-i-1;\n size_t tmp = (t - s);\n if (x >> i & 1) {\n s = zeros[j] + a[j].rank1(s);\n t = zeros[j] + a[j].rank1(t);\n size_t d = tmp - (t-s);\n eq -= d;\n lt += d;\n } else {\n s = a[j].rank0(s);\n t = a[j].rank0(t);\n size_t d = tmp - (t-s);\n eq -= d;\n gt += d;\n }\n }\n return {lt, eq, gt};\n }\n\n std::array<size_t, 3> xored_rank_three_way(value_type x, value_type y, size_t t) const {\n if (t == 0) return {0, 0, 0};\n\n size_t lt = 0;\n size_t eq = t;\n size_t gt = 0;\n\n size_t s = 0;\n for (size_t i = bitlen; i--;) {\n size_t j = bitlen-i-1;\n size_t tmp = (t - s);\n if ((x ^ y) >> i & 1) {\n s = zeros[j] + a[j].rank1(s);\n t = zeros[j] + a[j].rank1(t);\n } else {\n s = a[j].rank0(s);\n t = a[j].rank0(t);\n }\n\n size_t d = tmp - (t-s);\n eq -= d;\n if (y >> i & 1) {\n lt += d;\n } else {\n gt += d;\n }\n }\n return {lt, eq, gt};\n }\n\n size_t select(value_type x, size_t t) const {\n if (t == 0) return 0;\n size_t si = start_index(x);\n t += a[bitlen-1].rank(x & 1, si);\n t = a[bitlen-1].select(x & 1, t);\n\n for (size_t i = 1; i < bitlen; ++i) {\n size_t j = bitlen-i-1;\n if (x >> i & 1) t -= zeros[j];\n t = a[j].select(x >> i & 1, t);\n }\n\n return t;\n }\n\n value_type operator [](size_t t) const { return c[t]; }\n\n void inspect() const {\n for (size_t i = 0; i < bitlen; ++i) {\n fprintf(stderr, \"%zu (%zu): \", i, zeros[i]);\n for (size_t j = 0; j < n; ++j)\n fprintf(stderr, \"%d%c\", a[i][j], j+1<n? ' ':'\\n');\n }\n }\n};\n\n\nint main() {\n size_t n, k;\n scanf(\"%zu %zu\", &n, &k);\n\n std::vector<size_t> p(n);\n for (auto& pi: p) scanf(\"%zu\", &pi), --pi;\n\n if (n == k) {\n intmax_t a = p[0];\n for (size_t i = 1; i < n; ++i) {\n intmax_t b = (p[i] + n - i) % n;\n if (b < 0) b += n;\n if (a != b) return puts(\"No\"), 0;\n }\n puts(\"Yes\");\n return 0;\n }\n\n wavelet_matrix<size_t, 20> wm(p.begin(), p.end());\n intmax_t res = 0;\n for (size_t i = 0; i < n; ++i) {\n res += wm.rank_three_way(p[i], i)[2];\n }\n // fprintf(stderr, \"%jd\\n\", res);\n\n if (res % 2 == 0) {\n puts(\"Yes\");\n } else if (k % 2 == 0) {\n puts(\"Yes\");\n } else {\n puts(\"No\");\n }\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 6944, "score_of_the_acc": -1.0637, "final_rank": 18 }, { "submission_id": "aoj_3068_3878980", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define F first\n#define S second\n#define R cin>>\n#define Z class\n#define ll long long\n#define ln cout<<'\\n'\n#define in(a) insert(a)\n#define pb(a) push_back(a)\n#define pd(a) printf(\"%.10f\\n\",a)\n#define mem(a) memset(a,0,sizeof(a))\n#define all(c) (c).begin(),(c).end()\n#define iter(c) __typeof((c).begin())\n#define rrep(i,n) for(ll i=(ll)(n)-1;i>=0;i--)\n#define REP(i,m,n) for(ll i=(ll)(m);i<(ll)(n);i++)\n#define rep(i,n) REP(i,0,n)\n#define tr(it,c) for(iter(c) it=(c).begin();it!=(c).end();it++)\ntemplate<Z A>void pr(A a){cout<<a;ln;}\ntemplate<Z A,Z B>void pr(A a,B b){cout<<a<<' ';pr(b);}\ntemplate<Z A,Z B,Z C>void pr(A a,B b,C c){cout<<a<<' ';pr(b,c);}\ntemplate<Z A,Z B,Z C,Z D>void pr(A a,B b,C c,D d){cout<<a<<' ';pr(b,c,d);}\ntemplate<Z A>void PR(A a,ll n){rep(i,n){if(i)cout<<' ';cout<<a[i];}ln;}\nll check(ll n,ll m,ll x,ll y){return x>=0&&x<n&&y>=0&&y<m;}\nconst ll MAX=1e9+7,MAXL=1LL<<61,dx[4]={-1,0,1,0},dy[4]={0,1,0,-1};\ntypedef pair<ll,ll> P;\n\nll n,k;\nset<vector<ll> > s;\n\nvoid dfs(vector<ll> v) {\n if(s.count(v)) return;\n s.in(v);\n rep(i,n-k+1) {\n vector<ll> a=v;\n rotate(a.begin()+i,a.begin()+i+1,a.begin()+i+k);\n dfs(a);\n }\n}\n\nclass BIT{\npublic:\n ll n,bit[555555];\n BIT(){fill(bit,bit+555555,0);}\n void add(ll i,ll x){\n while(i<=n){\n bit[i]+=x;\n i+=i&-i;\n }\n }\n ll sum(ll i){\n ll s=0;\n while(i>0){\n s+=bit[i];\n i-=i&-i;\n }\n return s;\n }\n};\n\nBIT b;\nll calc(vector<ll> a) {\n b=BIT();\n b.n=n+1;\n ll ans=0;\n rep(i,a.size()) {\n b.add(a[i],1);\n ans+=b.sum(n+1)-b.sum(a[i]);\n }\n return ans;\n}\n\nvoid solve(vector<ll> a) {\n if(n==k) {\n int k=-1;\n rep(i,n) {\n if(a[i]==1) k=i;\n }\n rotate(a.begin(),a.begin()+k,a.end());\n rep(i,n) {\n if(i+1!=a[i]) {\n //pr(\"No\");\n PR(a,a.size());\n exit(0);\n return;\n }\n }\n //pr(\"Yes\");\n return;\n }\n vector<ll> v;\n rep(i,n-k) v.pb(a[i]);\n ll x=calc(v);\n v.clear();\n REP(i,n-k,n) v.pb(a[i]);\n ll y=calc(v);\n if(x%2==y%2);\n else {\n pr(x,y);\n PR(a,a.size()),exit(0);\n }\n //if(x%2==y%2) pr(\"Yes\");\n //else pr(\"No\"),exit(0);\n}\n\nvoid Main() {\n cin >> n >> k;\n vector<ll> a(n);\n /*\n rep(i,n) a[i]=i+1;\n dfs(a);\n tr(it,s) {\n vector<ll> v=*it;\n PR(v,v.size());\n pr(calc(v));\n //solve(v);\n }\n return;\n */\n rep(i,n) R a[i];\n if(n==k) {\n int k=-1;\n rep(i,n) {\n if(a[i]==1) k=i;\n }\n rotate(a.begin(),a.begin()+k,a.end());\n rep(i,n) {\n if(i+1!=a[i]) {\n pr(\"No\");\n return;\n }\n }\n pr(\"Yes\");\n return;\n }\n if(k%2==0) pr(\"Yes\");\n else if(calc(a)%2==0) pr(\"Yes\");\n else pr(\"No\");\n}\n\nint main(){ios::sync_with_stdio(0);cin.tie(0);Main();return 0;}", "accuracy": 1, "time_ms": 10, "memory_kb": 13104, "score_of_the_acc": -0.1713, "final_rank": 3 }, { "submission_id": "aoj_3068_3878905", "code_snippet": "#include \"bits/stdc++.h\"\n#define YES \"YES\"\n#define NO \"NO\"\n#define Yes \"Yes\"\n#define No \"No\"\n#define ECHO OUT(solve())\n#define YESNO OUT(three(solve(),YES,NO))\n#define YesNo OUT(three(solve(),Yes,No))\n#define three(A,B,C) ((A)?(B):(C))\n#define FOR(i,a,b) for(LL i=(a);i< (LL)(b);i++)\n#define EFOR(i,a,b) for(LL i=(a);i<=(LL)(b);i++)\n#define RFOR(i,a,b) for(LL i=(b);i>=(LL)(a);i--)\n#define REP(i,b) FOR(i,zero,b)\n#define rep REP\n#define EREP(i,b) EFOR(i,zero,b)\n#define RREP(i,b) RFOR(i,b,zero)\n#define ALL(c) c.begin(),c.end()\n#define UNIQUE(c) sort(ALL(c));c.erase(unique(ALL(c)),c.end())\n#define MAX(c) (*max_element(ALL(c)))\n#define MIN(c) (*min_element(ALL(c)))\n#define MP make_pair\n#define FI first\n#define SE second\n#define SI(x) (LL(x.size()))\n#define PB push_back\n#define DEBUG(a) OUT(a)\n#define DEBUG2(a,b) OUT2(a,b)\n#define cat cout << __LINE__ << endl\n#define OUT(a) cout << (a) << endl\n#define OUT2(a,b) cout << (a) <<\" \"<<(b) << endl\n#define zero 0LL\n#define all ALL\n#define pb emplace_back\n#define eb pb\n#define int long long\nusing namespace std;\ntemplate<typename T> inline void maximize(T &a, T b) { a = max(a, b); }\ntemplate<typename T> inline void minimize(T &a, T b) { a = min(a, b); }\ntemplate<typename T> inline bool middle(T a, T b, T c) { return b <= a && a <= c; }\ntemplate<class T> inline bool MX(T &l, const T &r) { return l < r ? l = r, 1 : 0; }\ntemplate<class T> inline bool MN(T &l, const T &r) { return l > r ? l = r, 1 : 0; }\ntypedef int LL;\ntypedef double ld;\ntypedef int ut;\ntypedef vector<ut> VI;\ntypedef vector<VI> VII;\ntypedef pair<ut, ut> pr;\ntypedef pair<ut, pr> ppr;\ntypedef vector<pr> Vpr;\ntypedef vector<ppr> Vppr;\ntypedef tuple<int, int, int, int> tapu;\ntypedef vector<tapu> Vtapu;\ntypedef priority_queue<tapu, Vtapu, greater<tapu> > PQ;\ninline void outputVI(VI x) { REP(i, SI(x)) { cout << three(i, \" \", \"\") << x[i]; }OUT(\"\"); }\nconst int SIZE1 = 3e5 + 1000;\nconst int SIZE2 = 5010;\nconst int SIZE3 = 430;\nconst int SIZE = SIZE1;\nconst int MAPSIZE = 40;\nconst LL p = 7 + 1e9;\nconst LL INF = 1LL << 60;\nconst long double EPS = 1e-7;\ntypedef pair<ld, ut> pld;\nLL BIT[SIZE];\nvoid add(int x,int t){\n x++;\n while(x<=SIZE){\n BIT[x]+=t;\n x+=x&-x;\n }\n}\nLL sum(int x){\n x++;\n int ans=0;\n while(x>0){\n ans+=BIT[x];\n x-=x&-x;\n }\n return ans;\n}\nLL sum(int a,int b){\n return sum(b)-sum(a-1);\n}\nLL P[SIZE];\nLL solve(){\n\n \tLL N,K;\n cin >> N >> K;\n REP(i,N){\n cin >> P[i];\n add(i+1,1);\n }\n \n if(K==N){\n REP(i,N-1)\n if(P[i]%N!=(P[i+1]+N-1)%N) return 0;\n return 1;\n }\n if(K%2==0) return 1;\n LL ans=0;\n REP(i,N){\n ans+=sum(1,P[i]-1);\n add(P[i],-1);\n }\n if(ans%2) return 0;\n return 1;\n}\nsigned main(){\n YesNo;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4684, "score_of_the_acc": -0.3575, "final_rank": 13 } ]
aoj_3063_cpp
Problem M: 1333 Problem 長さ$N$の文字列$S$が与えられる。 以下のクエリを$Q$回処理せよ。 クエリ $S[L: R]$を$S$の$L$文字目から$R$文字目まで(両端を含む)からなる文字列とする。 $ S[L: R] $を適当な文字列$A,B,C,X$を用いて$AXBXCX(1 \leq |A|,|B|,|C|,|X|)$ と表すことを考え、そのような$X$の中で最長のものの長さを出力する。 ただし、そのような$X$が存在しない場合は代わりに0を出力する。 Input 入力は以下の形式で与えられる。 $N$ $Q$ $S$ $L_1$ $R_1$ $L_2$ $R_2$ $\vdots$ $L_Q$ $R_Q$ $N,Q,L,R$はすべて整数で与えられる。 1行目に$N$, $Q$が空白区切りで与えられる。 2行目に文字列$S$が与えられる。 2+$i(1\leq i \leq Q)$行目に$L_i$, $R_i$が空白区切りで与えられる。これらは$i$番目のクエリにおける$L,R$を表す。 Constraints 入力は以下の条件を満たす。 $1 \leq N, Q\leq 2 \times 10^5 $ $S$の各文字は小文字アルファベットからなる $1 \leq L_i \leq R_i \leq N $ Output 各クエリについて、最長の$X$の長さを一行に出力せよ。 Sample Input 1 12 3 itisansansan 1 12 5 12 6 7 Sample Output 1 2 1 0 一つ目のクエリにおいて、$A=itis, B=s, C=s, X=an$とおくと、$S[1:12]=AXBXCX$となる。 Sample Input 2 20 2 sensanbyakusanjuusan 1 20 1 14 Sample Output 2 3 1 Sample Input 3 21 6 aaaabaaaabaaaaaaaaaab 1 21 10 21 10 18 4 16 11 21 1 6 Sample Output 3 4 0 2 2 0 1
[ { "submission_id": "aoj_3063_10893053", "code_snippet": "#line 2 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\nusing namespace std;\n\n#include<bits/stdc++.h>\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp\"\nnamespace noya2 {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p){\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p){\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v){\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v){\n for (auto &x : v) is >> x;\n return is;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u){\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u){\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\ntemplate<typename T>\nvoid out(const vector<vector<T>> &vv){\n int s = (int)vv.size();\n for (int i = 0; i < s; i++) out(vv[i]);\n}\n\nstruct IoSetup {\n IoSetup(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetup_noya2;\n\n} // namespace noya2\n#line 1 \"/Users/noya2/Desktop/Noya2_library/template/const.hpp\"\nnamespace noya2{\n\nconst int iinf = 1'000'000'007;\nconst long long linf = 2'000'000'000'000'000'000LL;\nconst long long mod998 = 998244353;\nconst long long mod107 = 1000000007;\nconst long double pi = 3.14159265358979323;\nconst vector<int> dx = {0,1,0,-1,1,1,-1,-1};\nconst vector<int> dy = {1,0,-1,0,1,-1,-1,1};\nconst string ALP = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string alp = \"abcdefghijklmnopqrstuvwxyz\";\nconst string NUM = \"0123456789\";\n\nvoid yes(){ cout << \"Yes\\n\"; }\nvoid no(){ cout << \"No\\n\"; }\nvoid YES(){ cout << \"YES\\n\"; }\nvoid NO(){ cout << \"NO\\n\"; }\nvoid yn(bool t){ t ? yes() : no(); }\nvoid YN(bool t){ t ? YES() : NO(); }\n\n} // namespace noya2\n#line 2 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\n\n#line 6 \"/Users/noya2/Desktop/Noya2_library/template/utils.hpp\"\n\nnamespace noya2{\n\nunsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){\n if (a == 0 || b == 0) return a + b;\n int n = __builtin_ctzll(a); a >>= n;\n int m = __builtin_ctzll(b); b >>= m;\n while (a != b) {\n int mm = __builtin_ctzll(a - b);\n bool f = a > b;\n unsigned long long c = f ? a : b;\n b = f ? b : a;\n a = (c - b) >> mm;\n }\n return a << std::min(n, m);\n}\n\ntemplate<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }\n\nlong long sqrt_fast(long long n) {\n if (n <= 0) return 0;\n long long x = sqrt(n);\n while ((x + 1) * (x + 1) <= n) x++;\n while (x * x > n) x--;\n return x;\n}\n\ntemplate<typename T> T floor_div(const T n, const T d) {\n assert(d != 0);\n return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);\n}\n\ntemplate<typename T> T ceil_div(const T n, const T d) {\n assert(d != 0);\n return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);\n}\n\ntemplate<typename T> void uniq(std::vector<T> &v){\n std::sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\n\ntemplate <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\n\ntemplate <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\n\ntemplate<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }\n\n} // namespace noya2\n#line 8 \"/Users/noya2/Desktop/Noya2_library/template/template.hpp\"\n\n#define rep(i,n) for (int i = 0; i < (int)(n); i++)\n#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)\n#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)\n#define all(v) (v).begin(),(v).end()\n\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pii = pair<int,int>;\nusing pll = pair<ll,ll>;\nusing pil = pair<int,ll>;\nusing pli = pair<ll,int>;\n\nnamespace noya2{\n\n/* ~ (. _________ . /) */\n\n}\n\nusing namespace noya2;\n\n\n#line 2 \"c.cpp\"\n\n#line 2 \"/Users/noya2/Desktop/Noya2_library/string/suffix_array.hpp\"\n\n#line 8 \"/Users/noya2/Desktop/Noya2_library/string/suffix_array.hpp\"\n\n// atcoder/string\n\nnamespace noya2 {\n\nnamespace internal {\n\nstd::vector<int> sa_naive(const std::vector<int>& s) {\n int n = int(s.size());\n std::vector<int> sa(n);\n std::iota(sa.begin(), sa.end(), 0);\n std::sort(sa.begin(), sa.end(), [&](int l, int r) {\n if (l == r) return false;\n while (l < n && r < n) {\n if (s[l] != s[r]) return s[l] < s[r];\n l++;\n r++;\n }\n return l == n;\n });\n return sa;\n}\n\nstd::vector<int> sa_doubling(const std::vector<int>& s) {\n int n = int(s.size());\n std::vector<int> sa(n), rnk = s, tmp(n);\n std::iota(sa.begin(), sa.end(), 0);\n for (int k = 1; k < n; k *= 2) {\n auto cmp = [&](int x, int y) {\n if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];\n int rx = x + k < n ? rnk[x + k] : -1;\n int ry = y + k < n ? rnk[y + k] : -1;\n return rx < ry;\n };\n std::sort(sa.begin(), sa.end(), cmp);\n tmp[sa[0]] = 0;\n for (int i = 1; i < n; i++) {\n tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);\n }\n std::swap(tmp, rnk);\n }\n return sa;\n}\n\n// SA-IS, linear-time suffix array construction\n// Reference:\n// G. Nong, S. Zhang, and W. H. Chan,\n// Two Efficient Algorithms for Linear Time Suffix Array Construction\ntemplate <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>\nstd::vector<int> sa_is(const std::vector<int>& s, int upper) {\n int n = int(s.size());\n if (n == 0) return {};\n if (n == 1) return {0};\n if (n == 2) {\n if (s[0] < s[1]) {\n return {0, 1};\n } else {\n return {1, 0};\n }\n }\n if (n < THRESHOLD_NAIVE) {\n return sa_naive(s);\n }\n if (n < THRESHOLD_DOUBLING) {\n return sa_doubling(s);\n }\n\n std::vector<int> sa(n);\n std::vector<bool> ls(n);\n for (int i = n - 2; i >= 0; i--) {\n ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);\n }\n std::vector<int> sum_l(upper + 1), sum_s(upper + 1);\n for (int i = 0; i < n; i++) {\n if (!ls[i]) {\n sum_s[s[i]]++;\n } else {\n sum_l[s[i] + 1]++;\n }\n }\n for (int i = 0; i <= upper; i++) {\n sum_s[i] += sum_l[i];\n if (i < upper) sum_l[i + 1] += sum_s[i];\n }\n\n auto induce = [&](const std::vector<int>& lms) {\n std::fill(sa.begin(), sa.end(), -1);\n std::vector<int> buf(upper + 1);\n std::copy(sum_s.begin(), sum_s.end(), buf.begin());\n for (auto d : lms) {\n if (d == n) continue;\n sa[buf[s[d]]++] = d;\n }\n std::copy(sum_l.begin(), sum_l.end(), buf.begin());\n sa[buf[s[n - 1]]++] = n - 1;\n for (int i = 0; i < n; i++) {\n int v = sa[i];\n if (v >= 1 && !ls[v - 1]) {\n sa[buf[s[v - 1]]++] = v - 1;\n }\n }\n std::copy(sum_l.begin(), sum_l.end(), buf.begin());\n for (int i = n - 1; i >= 0; i--) {\n int v = sa[i];\n if (v >= 1 && ls[v - 1]) {\n sa[--buf[s[v - 1] + 1]] = v - 1;\n }\n }\n };\n\n std::vector<int> lms_map(n + 1, -1);\n int m = 0;\n for (int i = 1; i < n; i++) {\n if (!ls[i - 1] && ls[i]) {\n lms_map[i] = m++;\n }\n }\n std::vector<int> lms;\n lms.reserve(m);\n for (int i = 1; i < n; i++) {\n if (!ls[i - 1] && ls[i]) {\n lms.push_back(i);\n }\n }\n\n induce(lms);\n\n if (m) {\n std::vector<int> sorted_lms;\n sorted_lms.reserve(m);\n for (int v : sa) {\n if (lms_map[v] != -1) sorted_lms.push_back(v);\n }\n std::vector<int> rec_s(m);\n int rec_upper = 0;\n rec_s[lms_map[sorted_lms[0]]] = 0;\n for (int i = 1; i < m; i++) {\n int l = sorted_lms[i - 1], r = sorted_lms[i];\n int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;\n int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;\n bool same = true;\n if (end_l - l != end_r - r) {\n same = false;\n } else {\n while (l < end_l) {\n if (s[l] != s[r]) {\n break;\n }\n l++;\n r++;\n }\n if (l == n || s[l] != s[r]) same = false;\n }\n if (!same) rec_upper++;\n rec_s[lms_map[sorted_lms[i]]] = rec_upper;\n }\n\n auto rec_sa =\n sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);\n\n for (int i = 0; i < m; i++) {\n sorted_lms[i] = lms[rec_sa[i]];\n }\n induce(sorted_lms);\n }\n return sa;\n}\n\n} // namespace internal\n\nstd::vector<int> suffix_array(const std::vector<int>& s, int upper) {\n assert(0 <= upper);\n for (int d : s) {\n assert(0 <= d && d <= upper);\n }\n auto sa = internal::sa_is(s, upper);\n return sa;\n}\n\ntemplate <class T> std::vector<int> suffix_array(const std::vector<T>& s) {\n int n = int(s.size());\n std::vector<int> idx(n);\n iota(idx.begin(), idx.end(), 0);\n sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });\n std::vector<int> s2(n);\n int now = 0;\n for (int i = 0; i < n; i++) {\n if (i && s[idx[i - 1]] != s[idx[i]]) now++;\n s2[idx[i]] = now;\n }\n return internal::sa_is(s2, now);\n}\n\nstd::vector<int> suffix_array(const std::string& s) {\n int n = int(s.size());\n std::vector<int> s2(n);\n for (int i = 0; i < n; i++) {\n s2[i] = s[i];\n }\n return internal::sa_is(s2, 255);\n}\n\n// Reference:\n// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,\n// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its\n// Applications\ntemplate <class T>\nstd::vector<int> lcp_array(const std::vector<T>& s,\n const std::vector<int>& sa) {\n int n = int(s.size());\n assert(n >= 1);\n std::vector<int> rnk(n);\n for (int i = 0; i < n; i++) {\n rnk[sa[i]] = i;\n }\n std::vector<int> lcp(n - 1);\n int h = 0;\n for (int i = 0; i < n; i++) {\n if (h > 0) h--;\n if (rnk[i] == 0) continue;\n int j = sa[rnk[i] - 1];\n for (; j + h < n && i + h < n; h++) {\n if (s[j + h] != s[i + h]) break;\n }\n lcp[rnk[i] - 1] = h;\n }\n return lcp;\n}\n\nstd::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {\n int n = int(s.size());\n std::vector<int> s2(n);\n for (int i = 0; i < n; i++) {\n s2[i] = s[i];\n }\n return lcp_array(s2, sa);\n}\n\n} // namespace noya2\n#line 4 \"c.cpp\"\n\n#line 2 \"/Users/noya2/Desktop/Noya2_library/data_structure/segment_tree.hpp\"\n\nnamespace noya2{\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n public:\n segtree() : segtree(0) {}\n segtree(int n) : segtree(std::vector<S>(n, e())) {}\n segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = 0;\n size = 1;\n while (size < _n) size <<= 1, log++;\n\n d = std::vector<S>(2 * size, e());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n return d[p + size];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n S sml = e(), smr = e();\n l += size;\n r += size;\n\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n template <bool (*f)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return f(x); });\n }\n template <class F> int max_right(int l, F f) {\n assert(0 <= l && l <= _n);\n assert(f(e()));\n if (l == _n) return _n;\n l += size;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, d[l]))) {\n while (l < size) {\n l = (2 * l);\n if (f(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*f)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return f(x); });\n }\n template <class F> int min_left(int r, F f) {\n assert(0 <= r && r <= _n);\n assert(f(e()));\n if (r == 0) return 0;\n r += size;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(d[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (f(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n};\n\n} // namespace noya2\n#line 6 \"c.cpp\"\n\nint op(int a, int b){\n return min(a,b);\n}\nint e(){\n return iinf;\n}\n\nvoid solve(){\n int n, q; in(n,q);\n string s; in(s);\n reverse(all(s));\n auto sa = suffix_array(s);\n auto lcp = lcp_array(s,sa);\n segtree<int,op,e> seg(lcp);\n vector<int> inv(n);\n rep(i,n){\n inv[sa[i]] = i;\n }\n vector<pii> lrs(q);\n rep(i,q){\n int l, r; in(l,r); l--;\n lrs[i] = {n-r,n-l};\n }\n // min i\n // lcp(l,i) >= p\n // i >= l + p + 1\n auto nxt = [&](int l, int p){\n assert(l < n);\n int le = seg.min_left(inv[l], [&](int x){\n return x >= p;\n });\n int ri = seg.max_right(inv[l], [&](int x){\n return x >= p;\n });\n return tuple(le,ri+1,l+p+1);\n };\n vector<int> ls(q,0), rs(q,n+1);\n rep(tt,19){\n vector<int> ils(q);\n rep(i,q){\n ils[i] = lrs[i].first;\n }\n vector<int> ms(q);\n rep(i,q){\n ms[i] = (ls[i] + rs[i]) / 2;\n }\n rep(t,2){\n vector<tuple<int,int,int>> query(q);\n rep(i,q){\n if (ils[i] >= n) continue;\n query[i] = nxt(ils[i],ms[i]);\n }\n vector<vector<int>> qids(n);\n rep(i,q){\n auto [l, r, lb] = query[i];\n if (lb < n){\n qids[lb].emplace_back(i);\n }\n else {\n ils[i] = n+1;\n }\n }\n segtree<int,op,e> idsmin(n);\n reb(x,n){\n idsmin.set(inv[x],x);\n for (int i : qids[x]){\n auto [l, r, lb] = query[i];\n ils[i] = idsmin.prod(l,r);\n }\n }\n }\n rep(i,q){\n if (ils[i] + ms[i] + 1 <= lrs[i].second){\n ls[i] = ms[i];\n }\n else {\n rs[i] = ms[i];\n }\n }\n }\n rep(i,q){\n out(ls[i]);\n }\n}\n\nint main(){\n int t = 1; //in(t);\n while (t--) { solve(); }\n}", "accuracy": 1, "time_ms": 1190, "memory_kb": 26772, "score_of_the_acc": -0.1033, "final_rank": 1 }, { "submission_id": "aoj_3063_10891226", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nconst ll ILL=2167167167167167167;\nconst int INF=2100000000;\n#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> int LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> int UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,T b){if(b<a){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nbool yneos(bool a,bool upp=false){if(a){cout<<(upp?\"YES\\n\":\"Yes\\n\");}else{cout<<(upp?\"NO\\n\":\"No\\n\");}return a;}\ntemplate<class T> void vec_out(vector<T> &p,int ty=0){\n if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<\",\";}cout<<'\"'<<p[i]<<'\"';}cout<<\"}\\n\";}\n else{if(ty==1){cout<<p.size()<<\"\\n\";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}}\ntemplate<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\ntemplate<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;}\nint pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;}\ntemplate<class T> T square(T a){return a * a;}\n\n#include <atcoder/string>\n\nnamespace po167{\n struct UF\n {\n using _F = int;\n int _n;\n std::vector<_F> wei;\n std::vector<int> q;\n int component;\n UF(int n):_n(n), wei(n), component(n), par(n){\n for (int i = 0; i < n; i++){\n wei[i] =1, par[i] = i;\n }\n }\n void intialize(){\n for (auto x : q){\n wei[root(x)] = 1;\n par[x] = x;\n wei[x] = 1;\n }\n component = (int)par.size();\n q = {};\n }\n //根っこを返す\n int root(int a){\n assert(0 <= a && a < _n);\n if (a == par[a]) return a;\n return par[a] = root(par[a]);\n }\n //trueなら1,falseなら0\n int same(int a, int b){\n assert(0 <= a && a < _n);\n assert(0 <= b && b < _n);\n if(root(a) == root(b)) return 1;\n else return 0;\n }\n _F size(int a){\n return wei[root(a)];\n }\n //a,bが違う根っこの元なら結合する,結合したらtrueを返す\n bool unite(int a,int b){\n a = root(a), b = root(b);\n if (a == b) return false;\n if (wei[a] < wei[b]) std::swap(a, b);\n par[b] = a;\n q.push_back(b);\n wei[a] += wei[b];\n component--;\n return true;\n }\n private:\n std::vector<int> par;\n };\n}\nusing po167::UF;\n\n\nvoid solve();\n// POP'N ROLL MUSIC / TOMOO\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int t = 1;\n // cin >> t;\n rep(i, 0, t) solve();\n}\n\nvoid solve(){\n int N, Q;\n cin >> N >> Q;\n string S;\n cin >> S;\n reverse(all(S));\n vector<int> L(Q), R(Q);\n rep(i, 0, Q){\n cin >> L[i] >> R[i];\n L[i]--;\n swap(L[i], R[i]);\n L[i] = N - L[i];\n R[i] = N - R[i];\n }\n auto sa = atcoder::suffix_array(S);\n auto lcp = atcoder::lcp_array(S, sa);\n vector<int> inv(N);\n rep(i, 0, N) inv[sa[i]] = i;\n vector<int> order(N - 1);\n rep(i, 0, N - 1) order[i] = i;\n sort(all(order), [&](int l, int r){\n return lcp[l] > lcp[r];\n });\n vector<int> ansL(Q, 0), ansR(Q, N / 3);\n while (true){\n bool ok = false;\n vector<set<pair<int, int>>> s(N);\n vector<set<int>> val(N);\n rep(i, 0, N) val[i].insert(sa[i]);\n rep(i, 0, Q){\n if (ansR[i] - ansL[i] > 1){\n s[inv[L[i]]].insert({(ansR[i] + ansL[i]) / 2, i});\n ok = true;\n }\n }\n if (!ok) break;\n UF T(N);\n auto f = [&](int ind, int len) -> void {\n while (!s[ind].empty()){\n auto tmp = (*s[ind].rbegin());\n if (tmp.first <= len) break;\n auto [m, i] = tmp;\n /*cout << m << \" \" << i << endl;\n for (auto x : val[ind]) cout << x << \" \";\n cout << endl;*/\n int l = L[i];\n l += m + 1;\n rep(rp, 0, 2){\n if ((*val[ind].rbegin()) < l){\n l = INF;\n break;\n }\n l = (*val[ind].lower_bound(l));\n l += m + 1;\n }\n if (R[i] < l) ansR[i] = m;\n else ansL[i] = m;\n s[ind].erase(tmp);\n }\n };\n for (auto x : order){\n int a = T.root(x);\n int b = T.root(x + 1);\n f(a, lcp[x]);\n f(b, lcp[x]);\n T.unite(a, b);\n if (T.root(a) == b) swap(a, b);\n if (s[a].size() < s[b].size()) swap(s[a], s[b]);\n for (auto y : s[b]) s[a].insert(y);\n if (val[a].size() < val[b].size()) swap(val[a], val[b]);\n for (auto y : val[b]) val[a].insert(y);\n }\n f(T.root(0), 0);\n }\n rep(i, 0, Q) cout << ansL[i] << \"\\n\";\n}", "accuracy": 1, "time_ms": 3020, "memory_kb": 107036, "score_of_the_acc": -1.0004, "final_rank": 9 }, { "submission_id": "aoj_3063_3917883", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct SuffixArray{\n string s;\n vector<int> sa,rev;\n\n SuffixArray(){}\n SuffixArray(const string &S):s(S){\n int n=s.size();\n s.push_back('$');\n sa.resize(n+1);\n iota(sa.begin(),sa.end(),0);\n sort(sa.begin(),sa.end(),\n [&](int a,int b){\n if(s[a]==s[b]) return a>b;\n return s[a]<s[b];\n });\n vector<int> c(n+1,0),r(n+1),cnt(n+1);\n for(int i=0;i<=n;i++) r[i]=s[i];\n for(int len=1;len<=n;len*=2){\n for(int i=0;i<=n;i++){\n c[sa[i]]=i;\n if(i>0 &&\n r[sa[i-1]]==r[sa[i]] &&\n sa[i-1]+len<=n &&\n r[sa[i-1]+len/2]==r[sa[i]+len/2]) c[sa[i]]=c[sa[i-1]];\n }\n iota(cnt.begin(),cnt.end(),0);\n copy(sa.begin(),sa.end(),r.begin());\n for(int i=0;i<=n;i++){\n int s1=r[i]-len;\n if(s1>=0) sa[cnt[c[s1]]++]=s1;\n }\n c.swap(r);\n }\n rev.resize(n+1);\n for(int i=0;i<=n;i++) rev[sa[i]]=i;\n }\n int operator[](int i) const{return sa[i];}\n\n bool lt_substr(string &t,int si,int ti){\n int sn=s.size(),tn=t.size();\n while(si<sn&&ti<tn){\n if(s[si]<t[ti]) return 1;\n if(s[si]>t[ti]) return 0;\n si++;ti++;\n }\n return si==sn&&ti<tn;\n }\n\n int lower_bound(string& t){\n int l=0,r=s.size();\n while(l+1<r){\n int m=(l+r)>>1;\n if(lt_substr(t,sa[m],0)) l=m;\n else r=m;\n }\n return r;\n }\n\n int upper_bound(string& t){\n t.back()++;\n int res=lower_bound(t);\n t.back()--;\n return res;\n }\n\n // O(|T|*log|S|)\n int count(string& T){\n return upper_bound(T)-lower_bound(T);\n }\n};\n\n\nstruct LongestCommonPrefix{\n SuffixArray sa;\n\n vector<int> ht;\n vector< vector<int> > dat;\n LongestCommonPrefix(string &s):sa(s){\n int n=s.size();\n vector<int> lcp(n,0);\n\n int t=0;\n lcp[0]=0;\n for(int i=0;i<n;i++){\n int j=sa[sa.rev[i]-1];\n if(t>0) t--;\n for(;j+t<n&&i+t<n;t++){\n if(sa.s[j+t]!=sa.s[i+t]) break;\n }\n lcp[sa.rev[i]-1]=t;\n }\n\n int h=1;\n while((1<<h)<n) h++;\n dat.assign(h,vector<int>(n));\n ht.assign(n+1,0);\n for(int j=2;j<=n;j++) ht[j]=ht[j>>1]+1;\n\n for(int j=0;j<n;j++) dat[0][j]=lcp[j];\n for(int i=1,p=1;i<h;i++,p<<=1)\n for(int j=0;j<n;j++)\n dat[i][j]=min(dat[i-1][j],dat[i-1][min(j+p,n-1)]);\n }\n\n // a, b are indices for suffix array\n int query(int a,int b){\n assert(a!=b);\n if(a>b) swap(a,b);\n int l=b-a;\n return min(dat[ht[l]][a],dat[ht[l]][b-(1<<ht[l])]);\n }\n\n // a, b are indices for string\n int lcp(int a,int b){\n return query(sa.rev[a],sa.rev[b]);\n }\n};\n\n\nstruct FullyIndexableDictionary{\n int len,blk;\n vector<unsigned> bit;\n vector<int> sum;\n\n FullyIndexableDictionary(){}\n FullyIndexableDictionary(int len)\n :len(len),blk((len+31)>>5),bit(blk,0),sum(blk,0){}\n\n void set(int k){\n bit[k>>5]|=1u<<(k&31);\n }\n\n void build(){\n sum[0]=0;\n for(int i=1;i<blk;i++)\n sum[i]=sum[i-1]+__builtin_popcount(bit[i-1]);\n }\n\n bool operator[](int k) const{\n return bool((bit[k>>5]>>(k&31))&1);\n }\n\n int rank(int k){\n return sum[k>>5]+__builtin_popcount(bit[k>>5]&((1u<<(k&31))-1));\n }\n\n int rank(bool v,int k){\n return (v?rank(k):k-rank(k));\n }\n\n int select(bool v,int k){\n if(k<0||rank(v,len)<=k) return -1;\n int l=0,r=len;\n while(l+1<r){\n int m=(l+r)>>1;\n if(rank(v,m)>=k+1) r=m;\n else l=m;\n }\n return r-1;\n }\n\n int select(bool v,int i,int l){\n return select(v,i+rank(v,l));\n }\n};\n\ntemplate<class T,int MAXLOG>\nstruct WaveletMatrix{\n int len;\n FullyIndexableDictionary mat[MAXLOG];\n int zs[MAXLOG],buff1[MAXLOG],buff2[MAXLOG];\n static const T npos=-1;\n\n int freq_dfs(int d,int l,int r,T val,T a,T b){\n if(l==r) return 0;\n if(d==MAXLOG) return (a<=val&&val<b)?r-l:0;\n T nv=T(1)<<(MAXLOG-d-1)|val;\n T nnv=((T(1)<<(MAXLOG-d-1))-1)|nv;\n if(nnv<a||b<=val) return 0;\n if(a<=val&&nnv<b) return r-l;\n int lc=mat[d].rank(1,l),rc=mat[d].rank(1,r);\n return freq_dfs(d+1,l-lc,r-rc,val,a,b)\n +freq_dfs(d+1,lc+zs[d],rc+zs[d],nv,a,b);\n }\n\n WaveletMatrix(vector<T> data){\n len=data.size();\n vector<T> l(len),r(len);\n for(int dep=0;dep<MAXLOG;dep++){\n mat[dep]=FullyIndexableDictionary(len+1);\n int p=0,q=0;\n for(int i=0;i<len;i++){\n bool k=(data[i]>>(MAXLOG-(dep+1)))&1;\n if(k) r[q++]=data[i],mat[dep].set(i);\n else l[p++]=data[i];\n }\n zs[dep]=p;\n mat[dep].build();\n swap(l,data);\n for(int i=0;i<q;i++) data[p+i]=r[i];\n }\n }\n\n T access(int k){\n T res=0;\n for(int dep=0;dep<MAXLOG;dep++){\n bool bit=mat[dep][k];\n res=(res<<1)|bit;\n k=mat[dep].rank(bit,k)+zs[dep]*dep;\n }\n return res;\n }\n\n // return the number of v in [0,k)\n int rank(T v,int k){\n int l=0,r=k;\n for(int dep=0;dep<MAXLOG;dep++){\n buff1[dep]=l;buff2[dep]=r;\n bool bit=(v>>(MAXLOG-(dep+1)))&1;\n l=mat[dep].rank(bit,l)+zs[dep]*bit;\n r=mat[dep].rank(bit,r)+zs[dep]*bit;\n }\n return r-l;\n }\n\n // return the position of k-th v\n int select(T v,int k){\n rank(v,len);\n for(int dep=MAXLOG-1;dep>=0;dep--){\n bool bit=(v>>(MAXLOG-(dep+1)))&1;\n k=mat[dep].select(bit,k,buff1[dep]);\n if(k>=buff2[dep]||k<0) return -1;\n k-=buff1[dep];\n }\n return k;\n }\n\n int select(T v,int k,int l){\n return select(v,k+rank(v,l));\n }\n\n // return k-th largest value in [l,r)\n T quantile(int l,int r,int k){\n if(r-l<=k||k<0) return -1;\n T res=0;\n for(int dep=0;dep<MAXLOG;dep++){\n int p=mat[dep].rank(1,l);\n int q=mat[dep].rank(1,r);\n if(q-p>k){\n l=p+zs[dep];\n r=q+zs[dep];\n res|=T(1)<<(MAXLOG-(dep+1));\n }else{\n k-=(q-p);\n l-=p;\n r-=q;\n }\n }\n return res;\n }\n\n T rquantile(int l,int r,int k){\n return quantile(l,r,r-l-k-1);\n }\n\n // return number of points in [left, right) * [lower, upper)\n int rangefreq(int left,int right,T lower,T upper){\n return freq_dfs(0,left,right,0,lower,upper);\n }\n\n pair<int, int> ll(int l,int r,T v){\n int res=0;\n for(int dep=0;dep<MAXLOG;dep++){\n buff1[dep]=l;buff2[dep]=r;\n bool bit=(v>>(MAXLOG-(dep+1)))&1;\n if(bit) res+=r-l+mat[dep].rank(bit,l)-mat[dep].rank(bit,r);\n l=mat[dep].rank(bit,l)+zs[dep]*bit;\n r=mat[dep].rank(bit,r)+zs[dep]*bit;\n }\n return make_pair(res,r-l);\n }\n\n int lt(int l,int r,T v){\n auto p=ll(l,r,v);\n return p.first;\n }\n\n int le(int l,int r,T v){\n auto p=ll(l,r,v);\n return p.first+p.second;\n }\n\n T succ(int l,int r,T v){\n int k=le(l,r,v);\n return k==r-l?npos:rquantile(l,r,k);\n }\n\n T pred(int l,int r,T v){\n int k=lt(l,r,v);\n return k?rquantile(l,r,k-1):npos;\n }\n};\n\n//INSERT ABOVE HERE\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,q;\n cin>>n>>q;\n string s;\n cin>>s;\n\n LongestCommonPrefix lcp(s);\n auto vs=lcp.sa.sa;\n auto rev=lcp.sa.rev;\n using WM = WaveletMatrix<int, 18>;\n WM wm(vs);\n\n auto calc=\n [&](int a,int b)->int{\n auto check=\n [&](int x)->int{\n int p=b-x;\n int pos=rev[p];\n int ll=-1,rr=-1;\n {\n int l=-1,r=pos;\n while(l+1<r){\n int m=(l+r)>>1;\n if(vs[m]+x<=n&&lcp.lcp(vs[m],p)>=x) r=m;\n else l=m;\n }\n ll=r;\n }\n {\n int l=pos,r=n+1;\n while(l+1<r){\n int m=(l+r)>>1;\n if(vs[m]+x<=n&&lcp.lcp(vs[m],p)>=x) l=m;\n else r=m;\n }\n rr=r;\n }\n // [ll, rr)\n int q=wm.pred(ll,rr,p-x);\n if(q==WM::npos||q-x<0) return 0;\n int k=wm.pred(ll,rr,q-x);\n if(k==WM::npos) return 0;\n return a<k;\n };\n\n int l=0,r=(b-a+2)/3;\n while(l+1<r){\n int m=(l+r)>>1;\n if(check(m)) l=m;\n else r=m;\n }\n return l;\n };\n\n for(int i=0;i<q;i++){\n int a,b;\n cin>>a>>b;\n a--;\n cout<<calc(a,b)<<\"\\n\";\n }\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 3760, "memory_kb": 24388, "score_of_the_acc": -0.6386, "final_rank": 7 }, { "submission_id": "aoj_3063_3659317", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\nstruct SuffixArray{\n int n;\n string S;\n vector<int> sa,lcp,rev;\n SuffixArray(){}\n SuffixArray(string &S):S(S){init();}\n void init(){\n n=S.length();\n S.push_back('$');\n build_sa();\n }\n void build_sa(){\n sa.assign(n+1,0);\n iota(sa.begin(),sa.end(),0);\n sort(sa.begin(),sa.end(),\n [&](int a,int b){\n if(S[a]==S[b]) return a>b;\n return S[a]<S[b];\n });\n vector<int> c(n+1,0),r(n+1),cnt(n+1),s(n+1);\n for(int i=0;i<=n;i++) r[i]=S[i];\n for(int len=1;len<=n;len*=2){\n for(int i=0;i<=n;i++){\n c[sa[i]]=\n i>0 &&\n r[sa[i-1]]==r[sa[i]] &&\n sa[i-1]+len<=n &&\n r[sa[i-1]+len/2]==r[sa[i]+len/2] ?\n c[sa[i-1]]:i;\n }\n iota(cnt.begin(),cnt.end(),0);\n copy(sa.begin(),sa.end(),r.begin());\n for(int i=0;i<=n;i++){\n int s1=r[i]-len;\n if(s1>=0) sa[cnt[c[s1]]++]=s1;\n }\n c.swap(r);\n }\n }\n};\n\n\nstruct RollingHash{\n using ull = unsigned long long;\n vector<ull> hash,p;\n RollingHash(){}\n RollingHash(const string &s,ull B=1000000007LL){\n int n=s.size();\n hash.assign(n+1,0);\n p.assign(n+1,1);\n for(int i=0;i<n;i++){\n hash[i+1]=hash[i]*B+s[i];\n p[i+1]=p[i]*B;\n }\n }\n //S[l, r)\n ull find(int l,int r){\n return hash[r]-hash[l]*p[r-l];\n }\n};\n\n\nstruct FullyIndexableDictionary{\n int len,blk;\n vector<unsigned> bit;\n vector<int> sum;\n \n FullyIndexableDictionary(){}\n FullyIndexableDictionary(int len)\n :len(len),blk((len+31)>>5),bit(blk,0),sum(blk,0){}\n \n void set(int k){\n bit[k>>5]|=1u<<(k&31);\n }\n\n void build(){\n sum[0]=0;\n for(int i=1;i<blk;i++)\n sum[i]=sum[i-1]+__builtin_popcount(bit[i-1]);\n }\n\n bool operator[](int k) const{\n return bool((bit[k>>5]>>(k&31))&1);\n }\n \n int rank(int k){\n return sum[k>>5]+__builtin_popcount(bit[k>>5]&((1u<<(k&31))-1));\n }\n \n int rank(bool v,int k){\n return (v?rank(k):k-rank(k));\n }\n\n int select(bool v,int k){\n if(k<0||rank(v,len)<=k) return -1;\n int low=0,high=len;\n while(low+1<high){\n int mid=(low+high)>>1;\n if(rank(v,mid)>=k+1) high=mid;\n else low=mid;\n }\n return high-1;\n }\n\n int select(bool v,int i,int l){\n return select(v,i+rank(v,l));\n }\n};\n\ntemplate<class T,int MAXLOG>\nstruct WaveletMatrix{\n int len;\n FullyIndexableDictionary mat[MAXLOG];\n int zs[MAXLOG],buff1[MAXLOG],buff2[MAXLOG];\n static const T npos=-1;\n \n WaveletMatrix(vector<T> data){\n len=data.size();\n vector<T> l(len),r(len);\n for(int dep=0;dep<MAXLOG;dep++){\n mat[dep]=FullyIndexableDictionary(len+1);\n int p=0,q=0;\n for(int i=0;i<len;i++){\n bool k=(data[i]>>(MAXLOG-(dep+1)))&1;\n if(k) r[q++]=data[i],mat[dep].set(i);\n else l[p++]=data[i];\n }\n zs[dep]=p;\n mat[dep].build();\n swap(l,data);\n for(int i=0;i<q;i++) data[p+i]=r[i];\n }\n }\n \n T access(int k){\n T res=0;\n bool bit;\n for(int dep=0;dep<MAXLOG;dep++){\n bit=mat[dep][k];\n res=(res<<1)|bit;\n k=mat[dep].rank(bit,k)+zs[dep]*dep;\n }\n return res;\n }\n\n // return the number of v in [0,k)\n int rank(T v,int k){\n int l=0,r=k;\n for(int dep=0;dep<MAXLOG;dep++){\n buff1[dep]=l;buff2[dep]=r;\n bool bit=(v>>(MAXLOG-(dep+1)))&1;\n l=mat[dep].rank(bit,l)+zs[dep]*bit;\n r=mat[dep].rank(bit,r)+zs[dep]*bit;\n }\n return r-l;\n }\n\n // return the position of k-th v\n int select(T v,int k){\n rank(v,len);\n for(int dep=MAXLOG-1;dep>=0;dep--){\n bool bit=(v>>(MAXLOG-(dep+1)))&1;\n k=mat[dep].select(bit,k,buff1[dep]);\n if(k>=buff2[dep]||k<0) return -1;\n k-=buff1[dep];\n }\n return k;\n }\n\n int select(T v,int k,int l){\n return select(v,k+rank(v,l));\n }\n\n // return k-th largest value in [l,r)\n T quantile(int l,int r,int k){\n if(r-l<=k||k<0) return -1;\n T res=0;\n for(int dep=0;dep<MAXLOG;dep++){\n int p=mat[dep].rank(1,l);\n int q=mat[dep].rank(1,r);\n if(q-p>k){\n l=p+zs[dep];\n r=q+zs[dep];\n res|=(1<<(MAXLOG-(dep+1)));\n }else{\n k-=(q-p);\n l-=p;\n r-=q;\n }\n }\n return res;\n }\n \n T rquantile(int l,int r,int k){\n return quantile(l,r,r-l-k-1);\n }\n \n pair<int, int> ll(int l,int r,T v){\n int res=0;\n for(int dep=0;dep<MAXLOG;dep++){\n buff1[dep]=l;buff2[dep]=r;\n bool bit=(v>>(MAXLOG-(dep+1)))&1;\n if(bit) res+=r-l+mat[dep].rank(bit,l)-mat[dep].rank(bit,r);\n l=mat[dep].rank(bit,l)+zs[dep]*bit;\n r=mat[dep].rank(bit,r)+zs[dep]*bit;\n }\n return make_pair(res,r-l); \n }\n \n int lt(int l,int r,T v){\n auto p=ll(l,r,v);\n return p.first;\n }\n \n int le(int l,int r,T v){\n auto p=ll(l,r,v);\n return p.first+p.second;\n }\n \n T succ(int l,int r,T v){\n int k=le(l,r,v);\n return k==r-l?npos:rquantile(l,r,k);\n }\n\n T pred(int l,int r,T v){\n int k=lt(l,r,v);\n return k?rquantile(l,r,k-1):npos;\n }\n};\n\n\n//INSERT ABOVE HERE\nsigned main(){\n int n,q;\n cin>>n>>q;\n string s;\n cin>>s;\n\n SuffixArray sa(s);\n vector<int> rev(n);\n auto vs=sa.sa;\n vs.erase(vs.begin());\n for(int i=0;i<n;i++){\n rev[vs[i]]=i;\n }\n using WM = WaveletMatrix<int, 18>;\n WM wm(vs);\n\n RollingHash rh(s);\n auto calc=\n [&](int a,int b)->int{\n auto check=\n [&](int x)->int{\n int p=b-x;\n int pos=rev[p];\n int ll=-1,rr=-1;\n {\n int l=-1,r=pos;\n while(l+1<r){\n int m=(l+r)>>1;\n if(vs[m]+x<=n&&rh.find(vs[m],vs[m]+x)==rh.find(p,p+x)) r=m;\n else l=m;\n }\n ll=r;\n }\n {\n int l=pos,r=n;\n while(l+1<r){\n int m=(l+r)>>1;\n if(vs[m]+x<=n&&rh.find(vs[m],vs[m]+x)==rh.find(p,p+x)) l=m;\n else r=m;\n }\n rr=r;\n }\n // [ll, rr)\n int q=wm.pred(ll,rr,p-x);\n if(q==WM::npos||q-x<0) return 0;\n int k=wm.pred(ll,rr,q-x);\n if(k==WM::npos) return 0;\n return a<k;\n };\n \n int l=0,r=(b-a+2)/3;\n while(l+1<r){\n int m=(l+r)>>1;\n if(check(m)) l=m;\n else r=m;\n }\n return l;\n };\n \n for(int i=0;i<q;i++){\n int a,b;\n cin>>a>>b;\n a--;\n cout<<calc(a,b)<<\"\\n\";\n }\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 3020, "memory_kb": 10376, "score_of_the_acc": -0.3919, "final_rank": 4 }, { "submission_id": "aoj_3063_3623893", "code_snippet": "#include <bits/stdc++.h>\n#define ll long long\n#define INF 1000000005\n#define MOD 1000000007\n#define EPS 1e-10\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define rrep(i,n) for(int i=(int)(n)-1;i>=0;--i)\n#define srep(i,s,t) for(int i=(int)(s);i<(int)(t);++i)\n#define each(a,b) for(auto& (a): (b))\n#define all(v) (v).begin(),(v).end()\n#define len(v) (int)(v).size()\n#define zip(v) sort(all(v)),v.erase(unique(all(v)),v.end())\n#define cmx(x,y) x=max(x,y)\n#define cmn(x,y) x=min(x,y)\n#define fi first\n#define se second\n#define pb push_back\n#define show(x) cout<<#x<<\" = \"<<(x)<<endl\n#define sar(a,n) cout<<#a<<\":\";rep(pachico,n)cout<<\" \"<<a[pachico];cout<<endl\n#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx\")\n\nusing namespace std;\n\ntemplate<typename S,typename T>auto&operator<<(auto&o,pair<S,T>p){return o<<\"{\"<<p.fi<<\",\"<<p.se<<\"}\";}\ntemplate<typename T>auto&operator<<(auto&o,set<T>s){for(auto&e:s)o<<e<<\" \";return o;}\ntemplate<typename S,typename T,typename U>\nauto&operator<<(auto&o,priority_queue<S,T,U>q){while(!q.empty())o<<q.top()<<\" \",q.pop();return o;}\ntemplate<typename K,typename T>auto&operator<<(auto&o,map<K,T>&m){for(auto&e:m)o<<e<<\" \";return o;}\ntemplate<typename T>auto&operator<<(auto&o,vector<T>v){for(auto&e:v)o<<e<<\" \";return o;}\nvoid ashow(){cout<<endl;}template<typename T,typename...A>void ashow(T t,A...a){cout<<t<<\" \";ashow(a...);}\ntemplate<typename S,typename T,typename U>\nstruct TRI{S fi;T se;U th;TRI(){}TRI(S f,T s,U t):fi(f),se(s),th(t){}};\ntemplate<typename S,typename T,typename U>\nauto& operator<<(auto& o,TRI<S,T,U>& t){return o<<\"{\"<<t.fi<<\",\"<<t.se<<\",\"<<t.th<<\"}\";}\n\ntypedef pair<int, int> P;\ntypedef pair<ll, ll> pll;\ntypedef TRI<int, int, int> tri;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<vi> vvi;\ntypedef vector<vl> vvl;\ntypedef vector<P> vp;\ntypedef vector<double> vd;\ntypedef vector<string> vs;\n\nconst int MAX_N = 200005;\n\nclass SA_IS\n{\nprivate:\n using byte = unsigned char;\n byte mask[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };\n #define tget(i) !!(t[(i)>>3]&mask[(i)&7])\n #define tset(i, b) t[(i)>>3]=(b) ? (mask[(i)&7]|t[(i)>>3]) : ((~mask[(i)&7])&t[(i)>>3])\n #define chr(i) (cs==sizeof(int)?((int*)s)[i]:((byte *)s)[i])\n #define isLMS(i) (i>0 && tget(i) && !tget(i-1))\n void getBuckets(byte *s, int *bkt, int n, int K, int cs, bool end=true){\n fill(bkt, bkt + K + 1, 0);\n for(int i = 0; i < n; i++){\n bkt[chr(i)]++;\n }\n for(int i = 0,tmp = 0; i < K+1; i++){\n tmp += bkt[i];\n bkt[i] = end ? tmp : tmp - bkt[i];\n }\n }\n void induceSAl(byte *t, byte *s, int *bkt, int n, int K, int cs){\n getBuckets(s, bkt, n, K, cs, false);\n for(int i = 0; i < n; i++){\n if(sa[i]>0 && !tget(sa[i]-1)){\n sa[bkt[chr(sa[i]-1)]++] = sa[i]-1;\n }\n }\n }\n void induceSAs(byte *t, byte *s, int *bkt, int n, int K, int cs){\n getBuckets(s, bkt, n, K, cs, true);\n for(int i = n-1; i >= 0; i--){\n if(sa[i] > 0 && tget(sa[i]-1)){\n sa[--bkt[chr(sa[i]-1)]] = sa[i]-1;\n }\n }\n }\n void make_sa(byte *s, int n, int K=128, int cs=1){\n byte t[(n >> 3)+1];\n int bkt[K+1], n1 = 0, name = 0;\n tset(n-2, 0), tset(n-1, 1);\n for(int i = n - 3; i >=0; i--){\n tset(i, (chr(i)<chr(i+1) || (chr(i)==chr(i+1) && tget(i+1))));\n }\n getBuckets(s, bkt, n, K, cs);\n fill(sa, sa+n, -1);\n for(int i = 1; i < n; i++){\n if(isLMS(i)){\n sa[--bkt[chr(i)]] = i;\n }\n }\n induceSAl(t, s, bkt, n, K, cs);\n induceSAs(t, s, bkt, n, K, cs);\n for(int i = 0; i < n; i++){\n if(isLMS(sa[i])){\n sa[n1++] = sa[i];\n }\n }\n fill(sa + n1, sa + n, -1);\n for(int i = 0, tmp = -1; i < n1; i++){\n int pos = sa[i], diff = false;\n for(int d = 0; d < n && !diff; d++){\n diff = chr(pos+d) != chr(tmp+d) || tget(pos+d) != tget(tmp+d);\n if(!diff && d && (isLMS(pos+d) || isLMS(tmp+d))) break;\n }\n if(diff){\n name++, tmp = pos;\n }\n sa[n1+((pos - (pos & 1)) >> 1)] = name - 1;\n }\n int* s1 = sa + n - n1;\n for(int i = n - 1,j = n - 1; i >= n1; i--){\n if(sa[i] >= 0){\n sa[j--] = sa[i];\n }\n }\n if(name < n1){\n make_sa((byte*)s1, n1, name - 1, sizeof(int));\n }else{\n for(int i = 0; i < n1; i++){\n sa[s1[i]] = i;\n }\n }\n getBuckets(s, bkt, n, K, cs);\n for(int i = 1, j = 0; i < n; i++){\n if(isLMS(i)){\n s1[j++] = i;\n }\n }\n for(int i = 0; i < n1; i++){\n sa[i] = s1[sa[i]];\n }\n fill(sa + n1, sa + n, -1);\n for(int i = n1 - 1; i >= 0; i--){\n int tmp = sa[i];\n sa[i] = -1, sa[--bkt[chr(tmp)]] = tmp;\n }\n induceSAl(t, s, bkt, n, K, cs);\n induceSAs(t, s, bkt, n, K, cs);\n }\n void make_lcp(){\n lcp = new int[sz+1];\n rnk = new int[sz+1];\n for(int i = 0; i <= sz; i++) rnk[sa[i]] = i;\n lcp[0] = 0;\n for(int i = 0, h = 0; i < sz; i++){\n int j = sa[rnk[i]-1];\n if(h > 0) h--;\n for(;j+h<sz&&i+h<sz;h++){\n if(CS[j+h] != CS[i+h]) break;\n }\n lcp[rnk[i]-1] = h;\n }\n }\npublic:\n bool contain(const string& T){\n int a = 0, b = sz;\n while(b - a > 1){\n int c = (a + b) / 2;\n if(CS.compare(sa[c], T.length(), T) < 0){\n a = c;\n }else{\n b = c;\n }\n }\n return CS.compare(sa[b], T.length(), T) == 0;\n }\n string CS;\n byte* S;\n int sz;\n int *sa, *lcp, *rnk;\n SA_IS(string& arg){\n CS = arg;\n sz = (int)arg.size();\n sa = new int[sz+1];\n S = (byte*)arg.c_str();\n make_sa(S, sz+1);\n make_lcp();\n }\n ~SA_IS(){\n delete[] sa;\n // delete[] lcp; delete[] rnk;\n }\n};\n\n#define MAX_BIT 64\n\nstruct BitRank {\n // block: bit 列を管理, count: block ごとに立っている 1 の数を管理\n vector<unsigned long long> block;\n vector<int> count;\n BitRank(){}\n void resize(int num) {\n block.resize((num + 1) / MAX_BIT + 1, 0);\n count.resize((int)block.size(), 0);\n }\n // i ビット目を val(0,1) にセット\n inline void set(int i, unsigned long long val) {\n block[i/MAX_BIT] |= (val << (i % MAX_BIT));\n }\n void build() {\n for(int i = 1; i < (int)block.size(); i++){\n count[i] = count[i-1] + __builtin_popcountll(block[i-1]);\n }\n }\n // [0, i) ビットの 1 の数\n inline int rank1(int i) {\n int j = i/MAX_BIT, k = i % MAX_BIT;\n return count[j] + (k ? __builtin_popcountll(block[j] << (MAX_BIT-k)) : 0);\n }\n // [i, j) ビットの 1 の数\n inline int rank1(int i, int j) {\n return rank1(j) - rank1(i);\n }\n // [0, i) ビットの 0 の数\n inline int rank0(int i) {\n return i - rank1(i);\n }\n // [i, j) ビットの 0 の数\n inline int rank0(int i, int j) {\n return rank0(j) - rank0(i);\n }\n};\n\nclass WaveletMatrix\n{\nprivate:\n int height;\n vector<BitRank> B;\n vector<int> pos;\npublic:\n WaveletMatrix(){}\n WaveletMatrix(vector<int>& vec) :\n WaveletMatrix(vec, *max_element(vec.begin(), vec.end()) + 1) {}\n // sigma:文字の種類数\n WaveletMatrix(vector<int>& vec, int sigma){\n init(vec, sigma);\n }\n void init(vector<int>& vec, int sigma){\n height = (sigma == 1) ? 1 : (MAX_BIT - __builtin_clzll(sigma-1));\n B.resize(height), pos.resize(height);\n for(int i = 0; i < height; i++){\n B[i].resize((int)vec.size());\n for(int j = 0; j < (int)vec.size(); j++) {\n B[i].set(j, get(vec[j], height - i - 1));\n }\n B[i].build();\n auto it = stable_partition(vec.begin(), vec.end(), [&](int c) {\n return !get(c, height - i - 1);\n });\n pos[i] = it - vec.begin();\n }\n }\n // val の i ビット目の値を返す(0,1)\n inline int get(int val, int i) {\n return val >> i & 1;\n }\n // [l, r) の間に現れる値 val の数\n int rank(int val, int l, int r) {\n return rank(val, r) - rank(val, l);\n }\n // [0, i) の間に現れる値 val の数\n int rank(int val, int i) {\n int p = 0;\n for(int j = 0; j < height; j++){\n if(get(val, height - j - 1)){\n p = pos[j] + B[j].rank1(p);\n i = pos[j] + B[j].rank1(i);\n }else{\n p = B[j].rank0(p);\n i = B[j].rank0(i);\n }\n }\n return i - p;\n }\n // [l, r) の k(0,1,2...) 番目に小さい値を返す\n int quantile(int k, int l, int r) {\n int res = 0;\n for(int i = 0; i < height; i++){\n int j = B[i].rank0(l, r);\n if(j > k){\n l = B[i].rank0(l);\n r = B[i].rank0(r);\n }else{\n l = pos[i] + B[i].rank1(l);\n r = pos[i] + B[i].rank1(r);\n k -= j;\n res |= (1 << (height - i - 1));\n }\n }\n return res;\n }\n int rangefreq(int i, int j, int a, int b, int l, int r, int x) {\n if(i == j || r <= a || b <= l) return 0;\n int mid = (l + r) >> 1;\n if(a <= l && r <= b){\n return j - i;\n }else{\n int left = rangefreq(B[x].rank0(i),B[x].rank0(j),a,b,l,mid,x+1);\n int right = rangefreq(pos[x]+B[x].rank1(i),pos[x]+B[x].rank1(j),a,b,mid,r,x+1);\n return left + right;\n }\n }\n // [l,r) で値が [a,b) 内に含まれる数を返す\n int rangefreq(int l, int r, int a, int b) {\n return rangefreq(l, r, a, b, 0, 1 << height, 0);\n }\n int range(int i, int j, int a, int b, int l, int r, int x, int val) {\n if(i == j || r <= a || b <= l) return -1;\n if(r - l == 1) return val;\n int mid = (l + r) >> 1;\n int res = range(B[x].rank0(i),B[x].rank0(j),a,b,l,mid,x+1,val);\n if(res < 0) return range(pos[x]+B[x].rank1(i),pos[x]+B[x].rank1(j),a,b,mid,r,x+1,val+(1 << (height - x - 1)));\n else return res;\n }\n // [l,r) で値が [a,b) 内に最小の数を返す\n int range(int l, int r, int a, int b) {\n return range(l, r, a, b, 0, 1 << height, 0, 0);\n }\n};\n\ntemplate<typename T> class SparseTable {\nprivate:\n vector<int> LogTable;\n vector<vector<T> > Table; //最小値を保持\n int sz;\npublic:\n SparseTable(vector<T>& v){\n sz = (int)v.size();\n LogTable.resize(sz+1);\n for(int i = 2; i < sz + 1; i++){\n LogTable[i] = LogTable[i >> 1] + 1;\n }\n Table.resize(sz,vector<T>(LogTable[sz]+1));\n rep(i,sz){\n Table[i][0] = v[i];\n }\n for(int k = 1; (1 << k) <= sz; k++){\n for(int i = 0; i + (1 << k) <= sz; i++){\n Table[i][k] = min(Table[i][k-1],Table[i + (1 << (k-1))][k-1]);\n }\n }\n }\n T query(int l,int r){\n int k = LogTable[r-l];\n return min(Table[l][k],Table[r-(1<<k)][k]);\n }\n};\n\nint unzip[MAX_N];\nint l, r, n, q;\n\nbool possible(int cri, SA_IS& sa, WaveletMatrix& wm, SparseTable<int>& st)\n{\n int left, right;\n if(unzip[r-cri] == 0 || st.query(unzip[r-cri]-1, unzip[r-cri]) < cri){\n left = unzip[r-cri];\n }else{\n int x = -1, y = unzip[r-cri]-1;\n while(y-x>1){\n int mid = (x+y)/2;\n if(st.query(mid, unzip[r-cri]) >= cri){\n y = mid;\n }else{\n x = mid;\n }\n }\n left = y;\n }\n if(unzip[r-cri] == n-1 || st.query(unzip[r-cri], unzip[r-cri]+1) < cri){\n right = unzip[r-cri];\n }else{\n int x = unzip[r-cri]+1, y = n;\n while(y-x>1){\n int mid = (x+y)/2;\n if(st.query(unzip[r-cri], mid) >= cri){\n x = mid;\n }else{\n y = mid;\n }\n }\n right = x;\n }\n // if(!wm.rangefreq(left, right+1, l+1, r-3*cri-1)) return false;\n int res = wm.range(left, right+1, l+1, r-3*cri-1);\n if(res < 0) return false;\n return wm.rangefreq(left, right+1, res+cri+1, r-2*cri);\n}\n\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin >> n >> q;\n string s;\n cin >> s;\n SA_IS sa(s);\n vi vec(n), vec2(n-1);\n rep(i,n) vec[i] = sa.sa[i+1], unzip[sa.sa[i+1]] = i;\n rep(i,n-1) vec2[i] = sa.lcp[i+1];\n SparseTable<int> st(vec2);\n WaveletMatrix wm(vec);\n rep(i,q){\n cin >> l >> r;\n --l;\n if(r-l<6){\n cout << \"0\\n\";\n continue;\n }\n int x = 0, y = (r-l-3)/3+1;\n while(y-x>1){\n int mid = (x+y)/2;\n if(possible(mid, sa, wm, st)){\n x = mid;\n }else{\n y = mid;\n }\n }\n cout << x << \"\\n\";\n }\n return 0;\n}", "accuracy": 1, "time_ms": 5130, "memory_kb": 30424, "score_of_the_acc": -0.97, "final_rank": 8 }, { "submission_id": "aoj_3063_3623889", "code_snippet": "#include <bits/stdc++.h>\n#define ll long long\n#define INF 1000000005\n#define MOD 1000000007\n#define EPS 1e-10\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define rrep(i,n) for(int i=(int)(n)-1;i>=0;--i)\n#define srep(i,s,t) for(int i=(int)(s);i<(int)(t);++i)\n#define each(a,b) for(auto& (a): (b))\n#define all(v) (v).begin(),(v).end()\n#define len(v) (int)(v).size()\n#define zip(v) sort(all(v)),v.erase(unique(all(v)),v.end())\n#define cmx(x,y) x=max(x,y)\n#define cmn(x,y) x=min(x,y)\n#define fi first\n#define se second\n#define pb push_back\n#define show(x) cout<<#x<<\" = \"<<(x)<<endl\n#define sar(a,n) cout<<#a<<\":\";rep(pachico,n)cout<<\" \"<<a[pachico];cout<<endl\n#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx\")\n\nusing namespace std;\n\ntemplate<typename S,typename T>auto&operator<<(auto&o,pair<S,T>p){return o<<\"{\"<<p.fi<<\",\"<<p.se<<\"}\";}\ntemplate<typename T>auto&operator<<(auto&o,set<T>s){for(auto&e:s)o<<e<<\" \";return o;}\ntemplate<typename S,typename T,typename U>\nauto&operator<<(auto&o,priority_queue<S,T,U>q){while(!q.empty())o<<q.top()<<\" \",q.pop();return o;}\ntemplate<typename K,typename T>auto&operator<<(auto&o,map<K,T>&m){for(auto&e:m)o<<e<<\" \";return o;}\ntemplate<typename T>auto&operator<<(auto&o,vector<T>v){for(auto&e:v)o<<e<<\" \";return o;}\nvoid ashow(){cout<<endl;}template<typename T,typename...A>void ashow(T t,A...a){cout<<t<<\" \";ashow(a...);}\ntemplate<typename S,typename T,typename U>\nstruct TRI{S fi;T se;U th;TRI(){}TRI(S f,T s,U t):fi(f),se(s),th(t){}};\ntemplate<typename S,typename T,typename U>\nauto& operator<<(auto& o,TRI<S,T,U>& t){return o<<\"{\"<<t.fi<<\",\"<<t.se<<\",\"<<t.th<<\"}\";}\n\ntypedef pair<int, int> P;\ntypedef pair<ll, ll> pll;\ntypedef TRI<int, int, int> tri;\ntypedef vector<int> vi;\ntypedef vector<ll> vl;\ntypedef vector<vi> vvi;\ntypedef vector<vl> vvl;\ntypedef vector<P> vp;\ntypedef vector<double> vd;\ntypedef vector<string> vs;\n\nconst int MAX_N = 200005;\n\nclass SA_IS\n{\nprivate:\n using byte = unsigned char;\n byte mask[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };\n #define tget(i) !!(t[(i)>>3]&mask[(i)&7])\n #define tset(i, b) t[(i)>>3]=(b) ? (mask[(i)&7]|t[(i)>>3]) : ((~mask[(i)&7])&t[(i)>>3])\n #define chr(i) (cs==sizeof(int)?((int*)s)[i]:((byte *)s)[i])\n #define isLMS(i) (i>0 && tget(i) && !tget(i-1))\n void getBuckets(byte *s, int *bkt, int n, int K, int cs, bool end=true){\n fill(bkt, bkt + K + 1, 0);\n for(int i = 0; i < n; i++){\n bkt[chr(i)]++;\n }\n for(int i = 0,tmp = 0; i < K+1; i++){\n tmp += bkt[i];\n bkt[i] = end ? tmp : tmp - bkt[i];\n }\n }\n void induceSAl(byte *t, byte *s, int *bkt, int n, int K, int cs){\n getBuckets(s, bkt, n, K, cs, false);\n for(int i = 0; i < n; i++){\n if(sa[i]>0 && !tget(sa[i]-1)){\n sa[bkt[chr(sa[i]-1)]++] = sa[i]-1;\n }\n }\n }\n void induceSAs(byte *t, byte *s, int *bkt, int n, int K, int cs){\n getBuckets(s, bkt, n, K, cs, true);\n for(int i = n-1; i >= 0; i--){\n if(sa[i] > 0 && tget(sa[i]-1)){\n sa[--bkt[chr(sa[i]-1)]] = sa[i]-1;\n }\n }\n }\n void make_sa(byte *s, int n, int K=128, int cs=1){\n byte t[(n >> 3)+1];\n int bkt[K+1], n1 = 0, name = 0;\n tset(n-2, 0), tset(n-1, 1);\n for(int i = n - 3; i >=0; i--){\n tset(i, (chr(i)<chr(i+1) || (chr(i)==chr(i+1) && tget(i+1))));\n }\n getBuckets(s, bkt, n, K, cs);\n fill(sa, sa+n, -1);\n for(int i = 1; i < n; i++){\n if(isLMS(i)){\n sa[--bkt[chr(i)]] = i;\n }\n }\n induceSAl(t, s, bkt, n, K, cs);\n induceSAs(t, s, bkt, n, K, cs);\n for(int i = 0; i < n; i++){\n if(isLMS(sa[i])){\n sa[n1++] = sa[i];\n }\n }\n fill(sa + n1, sa + n, -1);\n for(int i = 0, tmp = -1; i < n1; i++){\n int pos = sa[i], diff = false;\n for(int d = 0; d < n && !diff; d++){\n diff = chr(pos+d) != chr(tmp+d) || tget(pos+d) != tget(tmp+d);\n if(!diff && d && (isLMS(pos+d) || isLMS(tmp+d))) break;\n }\n if(diff){\n name++, tmp = pos;\n }\n sa[n1+((pos - (pos & 1)) >> 1)] = name - 1;\n }\n int* s1 = sa + n - n1;\n for(int i = n - 1,j = n - 1; i >= n1; i--){\n if(sa[i] >= 0){\n sa[j--] = sa[i];\n }\n }\n if(name < n1){\n make_sa((byte*)s1, n1, name - 1, sizeof(int));\n }else{\n for(int i = 0; i < n1; i++){\n sa[s1[i]] = i;\n }\n }\n getBuckets(s, bkt, n, K, cs);\n for(int i = 1, j = 0; i < n; i++){\n if(isLMS(i)){\n s1[j++] = i;\n }\n }\n for(int i = 0; i < n1; i++){\n sa[i] = s1[sa[i]];\n }\n fill(sa + n1, sa + n, -1);\n for(int i = n1 - 1; i >= 0; i--){\n int tmp = sa[i];\n sa[i] = -1, sa[--bkt[chr(tmp)]] = tmp;\n }\n induceSAl(t, s, bkt, n, K, cs);\n induceSAs(t, s, bkt, n, K, cs);\n }\n void make_lcp(){\n lcp = new int[sz+1];\n rnk = new int[sz+1];\n for(int i = 0; i <= sz; i++) rnk[sa[i]] = i;\n lcp[0] = 0;\n for(int i = 0, h = 0; i < sz; i++){\n int j = sa[rnk[i]-1];\n if(h > 0) h--;\n for(;j+h<sz&&i+h<sz;h++){\n if(CS[j+h] != CS[i+h]) break;\n }\n lcp[rnk[i]-1] = h;\n }\n }\npublic:\n bool contain(const string& T){\n int a = 0, b = sz;\n while(b - a > 1){\n int c = (a + b) / 2;\n if(CS.compare(sa[c], T.length(), T) < 0){\n a = c;\n }else{\n b = c;\n }\n }\n return CS.compare(sa[b], T.length(), T) == 0;\n }\n string CS;\n byte* S;\n int sz;\n int *sa, *lcp, *rnk;\n SA_IS(string& arg){\n CS = arg;\n sz = (int)arg.size();\n sa = new int[sz+1];\n S = (byte*)arg.c_str();\n make_sa(S, sz+1);\n make_lcp();\n }\n ~SA_IS(){\n delete[] sa;\n // delete[] lcp; delete[] rnk;\n }\n};\n\n#define MAX_BIT 64\n\nstruct BitRank {\n // block: bit 列を管理, count: block ごとに立っている 1 の数を管理\n vector<unsigned long long> block;\n vector<int> count;\n BitRank(){}\n void resize(int num) {\n block.resize((num + 1) / MAX_BIT + 1, 0);\n count.resize((int)block.size(), 0);\n }\n // i ビット目を val(0,1) にセット\n inline void set(int i, unsigned long long val) {\n block[i/MAX_BIT] |= (val << (i % MAX_BIT));\n }\n void build() {\n for(int i = 1; i < (int)block.size(); i++){\n count[i] = count[i-1] + __builtin_popcountll(block[i-1]);\n }\n }\n // [0, i) ビットの 1 の数\n inline int rank1(int i) {\n int j = i/MAX_BIT, k = i % MAX_BIT;\n return count[j] + (k ? __builtin_popcountll(block[j] << (MAX_BIT-k)) : 0);\n }\n // [i, j) ビットの 1 の数\n inline int rank1(int i, int j) {\n return rank1(j) - rank1(i);\n }\n // [0, i) ビットの 0 の数\n inline int rank0(int i) {\n return i - rank1(i);\n }\n // [i, j) ビットの 0 の数\n inline int rank0(int i, int j) {\n return rank0(j) - rank0(i);\n }\n};\n\nclass WaveletMatrix\n{\nprivate:\n int height;\n vector<BitRank> B;\n vector<int> pos;\npublic:\n WaveletMatrix(){}\n WaveletMatrix(vector<int>& vec) :\n WaveletMatrix(vec, *max_element(vec.begin(), vec.end()) + 1) {}\n // sigma:文字の種類数\n WaveletMatrix(vector<int>& vec, int sigma){\n init(vec, sigma);\n }\n void init(vector<int>& vec, int sigma){\n height = (sigma == 1) ? 1 : (MAX_BIT - __builtin_clzll(sigma-1));\n B.resize(height), pos.resize(height);\n for(int i = 0; i < height; i++){\n B[i].resize((int)vec.size());\n for(int j = 0; j < (int)vec.size(); j++) {\n B[i].set(j, get(vec[j], height - i - 1));\n }\n B[i].build();\n auto it = stable_partition(vec.begin(), vec.end(), [&](int c) {\n return !get(c, height - i - 1);\n });\n pos[i] = it - vec.begin();\n }\n }\n // val の i ビット目の値を返す(0,1)\n inline int get(int val, int i) {\n return val >> i & 1;\n }\n // [l, r) の間に現れる値 val の数\n int rank(int val, int l, int r) {\n return rank(val, r) - rank(val, l);\n }\n // [0, i) の間に現れる値 val の数\n int rank(int val, int i) {\n int p = 0;\n for(int j = 0; j < height; j++){\n if(get(val, height - j - 1)){\n p = pos[j] + B[j].rank1(p);\n i = pos[j] + B[j].rank1(i);\n }else{\n p = B[j].rank0(p);\n i = B[j].rank0(i);\n }\n }\n return i - p;\n }\n // [l, r) の k(0,1,2...) 番目に小さい値を返す\n int quantile(int k, int l, int r) {\n int res = 0;\n for(int i = 0; i < height; i++){\n int j = B[i].rank0(l, r);\n if(j > k){\n l = B[i].rank0(l);\n r = B[i].rank0(r);\n }else{\n l = pos[i] + B[i].rank1(l);\n r = pos[i] + B[i].rank1(r);\n k -= j;\n res |= (1 << (height - i - 1));\n }\n }\n return res;\n }\n int rangefreq(int i, int j, int a, int b, int l, int r, int x) {\n if(i == j || r <= a || b <= l) return 0;\n int mid = (l + r) >> 1;\n if(a <= l && r <= b){\n return j - i;\n }else{\n int left = rangefreq(B[x].rank0(i),B[x].rank0(j),a,b,l,mid,x+1);\n int right = rangefreq(pos[x]+B[x].rank1(i),pos[x]+B[x].rank1(j),a,b,mid,r,x+1);\n return left + right;\n }\n }\n // [l,r) で値が [a,b) 内に含まれる数を返す\n int rangefreq(int l, int r, int a, int b) {\n return rangefreq(l, r, a, b, 0, 1 << height, 0);\n }\n int range(int i, int j, int a, int b, int l, int r, int x, int val) {\n if(i == j || r <= a || b <= l) return -1;\n if(r - l == 1) return val;\n int mid = (l + r) >> 1;\n int res = range(B[x].rank0(i),B[x].rank0(j),a,b,l,mid,x+1,val);\n if(res < 0) return range(pos[x]+B[x].rank1(i),pos[x]+B[x].rank1(j),a,b,mid,r,x+1,val+(1 << (height - x - 1)));\n else return res;\n }\n // [l,r) で値が [a,b) 内に最小の数を返す\n int range(int l, int r, int a, int b) {\n return range(l, r, a, b, 0, 1 << height, 0, 0);\n }\n};\n\ntemplate<typename T> class SparseTable {\nprivate:\n vector<int> LogTable;\n vector<vector<T> > Table; //最小値を保持\n int sz;\npublic:\n SparseTable(vector<T>& v){\n sz = (int)v.size();\n LogTable.resize(sz+1);\n for(int i = 2; i < sz + 1; i++){\n LogTable[i] = LogTable[i >> 1] + 1;\n }\n Table.resize(sz,vector<T>(LogTable[sz]+1));\n rep(i,sz){\n Table[i][0] = v[i];\n }\n for(int k = 1; (1 << k) <= sz; k++){\n for(int i = 0; i + (1 << k) <= sz; i++){\n Table[i][k] = min(Table[i][k-1],Table[i + (1 << (k-1))][k-1]);\n }\n }\n }\n T query(int l,int r){\n int k = LogTable[r-l];\n return min(Table[l][k],Table[r-(1<<k)][k]);\n }\n};\n\nint unzip[MAX_N];\nint l, r, n, q;\n\nbool possible(int cri, SA_IS& sa, WaveletMatrix& wm, SparseTable<int>& st)\n{\n int left, right;\n if(unzip[r-cri] == 0 || st.query(unzip[r-cri]-1, unzip[r-cri]) < cri){\n left = unzip[r-cri];\n }else{\n int x = -1, y = unzip[r-cri]-1;\n while(y-x>1){\n int mid = (x+y)/2;\n if(st.query(mid, unzip[r-cri]) >= cri){\n y = mid;\n }else{\n x = mid;\n }\n }\n left = y;\n }\n if(unzip[r-cri] == n-1 || st.query(unzip[r-cri], unzip[r-cri]+1) < cri){\n right = unzip[r-cri];\n }else{\n int x = unzip[r-cri]+1, y = n;\n while(y-x>1){\n int mid = (x+y)/2;\n if(st.query(unzip[r-cri], mid) >= cri){\n x = mid;\n }else{\n y = mid;\n }\n }\n right = x;\n }\n if(!wm.rangefreq(left, right+1, l+1, r-3*cri-1)) return false;\n int res = wm.range(left, right+1, l+1, r-3*cri-1);\n return wm.rangefreq(left, right+1, res+cri+1, r-2*cri);\n}\n\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin >> n >> q;\n string s;\n cin >> s;\n SA_IS sa(s);\n vi vec(n), vec2(n-1);\n rep(i,n) vec[i] = sa.sa[i+1], unzip[sa.sa[i+1]] = i;\n rep(i,n-1) vec2[i] = sa.lcp[i+1];\n SparseTable<int> st(vec2);\n WaveletMatrix wm(vec);\n rep(i,q){\n cin >> l >> r;\n --l;\n if(r-l<6){\n cout << \"0\\n\";\n continue;\n }\n int x = 0, y = (r-l-3)/3+1;\n while(y-x>1){\n int mid = (x+y)/2;\n if(possible(mid, sa, wm, st)){\n x = mid;\n }else{\n y = mid;\n }\n }\n cout << x << \"\\n\";\n }\n return 0;\n}", "accuracy": 1, "time_ms": 5770, "memory_kb": 30428, "score_of_the_acc": -1.107, "final_rank": 11 }, { "submission_id": "aoj_3063_3428643", "code_snippet": "#include <bits/stdc++.h>\n \nusing namespace std;\n \ntemplate< typename Monoid >\nstruct PersistentSegmentTree {\n using F = function< Monoid(Monoid, Monoid) >;\n \n struct Node {\n Monoid data;\n Node *l, *r;\n \n Node(const Monoid &data) : data(data), l(nullptr), r(nullptr) {}\n };\n \n \n int sz;\n const F f;\n const Monoid M1;\n \n PersistentSegmentTree(const F f, const Monoid &M1) : f(f), M1(M1) {}\n \n Node *build(const vector< Monoid > &v) {\n sz = (int) v.size();\n return build(0, (int) v.size(), v);\n }\n \n Node *merge(Node *l, Node *r) {\n auto t = new Node(f(l->data, r->data));\n t->l = l;\n t->r = r;\n return t;\n }\n \n Node *build(int l, int r, const vector< Monoid > &v) {\n if(l + 1 >= r) return new Node(v[l]);\n return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v));\n }\n \n Node *update(int a, const Monoid &x, Node *k, int l, int r) {\n if(r <= a || a + 1 <= l) {\n return k;\n } else if(a <= l && r <= a + 1) {\n return new Node(x);\n } else {\n return merge(update(a, x, k->l, l, (l + r) >> 1), update(a, x, k->r, (l + r) >> 1, r));\n }\n }\n \n Node *update(Node *t, int k, const Monoid &x) {\n return update(k, x, t, 0, sz);\n }\n \n Monoid query(int a, int b, Node *k, int l, int r) {\n if(r <= a || b <= l) {\n return M1;\n } else if(a <= l && r <= b) {\n return k->data;\n } else {\n return f(query(a, b, k->l, l, (l + r) >> 1),\n query(a, b, k->r, (l + r) >> 1, r));\n }\n }\n \n Monoid query(Node *t, int a, int b) {\n return query(a, b, t, 0, sz);\n }\n};\n \nstruct SuffixArray {\n vector< int > SA;\n const string s;\n \n SuffixArray(const string &str) : s(str) {\n SA.resize(s.size());\n iota(begin(SA), end(SA), 0);\n sort(begin(SA), end(SA), [&](int a, int b) {\n return s[a] == s[b] ? a > b : s[a] < s[b];\n });\n vector< int > classes(s.size()), c(s.begin(), s.end()), cnt(s.size());\n for(int len = 1; len < s.size(); len <<= 1) {\n for(int i = 0; i < s.size(); i++) {\n if(i > 0 && c[SA[i - 1]] == c[SA[i]] && SA[i - 1] + len < s.size() && c[SA[i - 1] + len / 2] == c[SA[i] + len / 2]) {\n classes[SA[i]] = classes[SA[i - 1]];\n } else {\n classes[SA[i]] = i;\n }\n }\n iota(begin(cnt), end(cnt), 0);\n copy(begin(SA), end(SA), begin(c));\n for(int i = 0; i < s.size(); i++) {\n int s1 = c[i] - len;\n if(s1 >= 0) SA[cnt[classes[s1]]++] = s1;\n }\n classes.swap(c);\n }\n }\n \n int operator[](int k) const {\n return SA[k];\n }\n \n size_t size() const {\n return s.size();\n }\n \n bool lt_substr(const string &t, int si = 0, int ti = 0) {\n int sn = (int) s.size(), tn = (int) t.size();\n while(si < sn && ti < tn) {\n if(s[si] < t[ti]) return true;\n if(s[si] > t[ti]) return false;\n ++si, ++ti;\n }\n return si >= sn && ti < tn;\n }\n \n int lower_bound(const string &t) {\n int low = -1, high = (int) SA.size();\n while(high - low > 1) {\n int mid = (low + high) / 2;\n if(lt_substr(t, SA[mid])) low = mid;\n else high = mid;\n }\n return high;\n }\n \n pair< int, int > lower_upper_bound(string &t) {\n int idx = lower_bound(t);\n int low = idx - 1, high = (int) SA.size();\n t.back()++;\n while(high - low > 1) {\n int mid = (low + high) / 2;\n if(lt_substr(t, SA[mid])) low = mid;\n else high = mid;\n }\n t.back()--;\n return {idx, high};\n }\n \n void output() {\n for(int i = 0; i < size(); i++) {\n cout << i << \": \" << s.substr(SA[i]) << endl;\n }\n }\n};\n \nstruct LongestCommonPrefixArray {\n const SuffixArray &SA;\n vector< int > LCP, rank;\n \n LongestCommonPrefixArray(const SuffixArray &SA) : SA(SA), LCP(SA.size()) {\n rank.resize(SA.size());\n for(int i = 0; i < SA.size(); i++) {\n rank[SA[i]] = i;\n }\n for(int i = 0, h = 0; i < SA.size(); i++) {\n if(rank[i] + 1 < SA.size()) {\n for(int j = SA[rank[i] + 1]; max(i, j) + h < SA.size() && SA.s[i + h] == SA.s[j + h]; ++h);\n LCP[rank[i] + 1] = h;\n if(h > 0) --h;\n }\n }\n }\n \n int operator[](int k) const {\n return LCP[k];\n }\n \n size_t size() const {\n return LCP.size();\n }\n \n void output() {\n for(int i = 0; i < size(); i++) {\n cout << i << \": \" << LCP[i] << \" \" << SA.s.substr(SA[i]) << endl;\n }\n }\n};\n \ntemplate< typename T >\nstruct SparseTable {\n vector< vector< T > > st;\n vector< int > lookup;\n \n SparseTable(const vector< T > &v) {\n int b = 0;\n while((1 << b) <= v.size()) ++b;\n st.assign(b, vector< T >(1 << b));\n for(int i = 0; i < v.size(); i++) {\n st[0][i] = v[i];\n }\n for(int i = 1; i < b; i++) {\n for(int j = 0; j + (1 << i) <= (1 << b); j++) {\n st[i][j] = min(st[i - 1][j], st[i - 1][j + (1 << (i - 1))]);\n }\n }\n lookup.resize(v.size() + 1);\n for(int i = 2; i < lookup.size(); i++) {\n lookup[i] = lookup[i >> 1] + 1;\n }\n }\n \n inline T rmq(int l, int r) {\n if(l >= r) return 1 << 30;\n int b = lookup[r - l];\n return min(st[b][l], st[b][r - (1 << b)]);\n }\n};\n \nconst int INF = 1 << 30;\n \nint main() {\n int N, Q;\n cin >> N >> Q;\n string S;\n cin >> S;\n reverse(begin(S), end(S));\n SuffixArray sa(S);\n LongestCommonPrefixArray lcp(sa);\n \n // lcp.output();\n vector< int > rev(N);\n for(int i = 0; i < N; i++) rev[sa[i]] = i;\n auto f = [](int a, int b) { return min(a, b); };\n using Seg = PersistentSegmentTree< int >;\n Seg seg(f, INF);\n vector< Seg::Node * > nodes;\n Seg::Node *root = seg.build(vector< int >(N, INF));\n nodes.emplace_back(root);\n for(int i = N - 1; i >= 0; i--) {\n root = seg.update(root, rev[i], i);\n nodes.emplace_back(root);\n }\n reverse(begin(nodes), end(nodes));\n SparseTable< int > ukunichia(lcp.LCP);\n \n for(int i = 0; i < Q; i++) {\n int L, R;\n cin >> L >> R;\n --L, --R;\n L = N - L - 1;\n R = N - R - 1;\n swap(L, R);\n ++R;\n auto check = [&](int v) {\n \n int low, high;\n {\n int ok = rev[L], ng = -1;\n while(ok - ng > 1) {\n int mid = (ok + ng) / 2;\n if(ukunichia.rmq(mid + 1, rev[L] + 1) >= v) ok = mid;\n else ng = mid;\n }\n low = ok;\n }\n \n {\n int ok = rev[L], ng = N + 1;\n while(ng - ok > 1) {\n int mid = (ok + ng) / 2;\n if(ukunichia.rmq(rev[L] + 1, mid) >= v) ok = mid;\n else ng = mid;\n }\n high = ok;\n }\n \n int qq = L;\n qq += v + 1;\n if(qq > R) return false;\n \n {\n int tap = seg.query(nodes[qq], low, high);\n if(tap >= INF) return false;\n qq = tap;\n qq += v + 1;\n if(qq > R) return false;\n }\n \n {\n int tap = seg.query(nodes[qq], low, high);\n if(tap >= INF) return false;\n qq = tap;\n \n qq += v + 1;\n if(qq > R) return false;\n }\n \n return qq <= R;\n };\n \n \n int ok = 0, ng = (R - L) / 3 + 1;\n while(ng - ok > 1) {\n int mid = (ok + ng) / 2;\n if(check(mid)) ok = mid;\n else ng = mid;\n }\n cout << ok << endl;\n }\n}", "accuracy": 1, "time_ms": 2770, "memory_kb": 156852, "score_of_the_acc": -1.2604, "final_rank": 16 }, { "submission_id": "aoj_3063_3414077", "code_snippet": "//\n#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long LL;\n#ifdef BTK\n#define DEBUG if(1)\n#else\n#define CIN_ONLY if(1)\n#define DEBUG if(0)\n#endif\n#define ALL(v) (v).begin(),(v).end()\n#define REC(ret, ...) std::function<ret (__VA_ARGS__)>\ntemplate <typename T>inline bool chmin(T &l, T r){bool a = l>r; if (a)l = r; return a;}\ntemplate <typename T>inline bool chmax(T &l, T r){bool a = l<r; if (a)l = r; return a;}\ntemplate <typename T>istream& operator>>(istream &is, vector<T> &v){for (auto &it : v)is >> it;return is;}\nclass reverse_range {private:struct I {int x;int operator*() {return x-1;}bool operator!=(I& lhs) {return x>lhs.x;}void operator++() {--x;}};I i, n;public:reverse_range(int n) :i({ 0 }), n({ n }){}reverse_range(int i, int n) :i({ i }), n({ n }){}I& begin() {return n;}I& end() {return i;}};\nclass range {private: struct I { int x; int operator*() { return x; }bool operator!=(I& lhs) { return x<lhs.x; }void operator++() { ++x; } }; I i, n;public:range(int n) :i({ 0 }), n({ n }) {}range(int i, int n) :i({ i }), n({ n }) {}I& begin() { return i; }I& end() { return n; }reverse_range operator!(){return reverse_range(*i,*n);}};\n\nint N,Q;\nchar buf[212345];\nstring S;\n\n\n/*\n sa[0]=n //空文字列\n lcp[i]:=suffix[sa[i]]とsuffix[sa[i+1]]の共通高さ\n */\n\nnamespace latte{\n void create_begin_bucket(vector<int>&v,vector<int>&bucket){\n fill(bucket.begin(),bucket.end(),0);\n for(int i=0;i<(int)v.size();i++)bucket[v[i]]++;\n int sum=0;\n for(int i=0;i<(int)bucket.size();i++){bucket[i]+=sum;swap(sum,bucket[i]);}\n }\n\n void create_end_bucket(vector<int>&v,vector<int>&bucket){\n fill(bucket.begin(),bucket.end(),0);\n for(int i=0;i<(int)v.size();i++)bucket[v[i]]++;\n for(int i=1;i<(int)bucket.size();i++)bucket[i]+=bucket[i-1];\n }\n\n void induced_sort(vector<int>&v,vector<int>&sa,int mv,vector<int>&bucket,vector<int>&is_l){\n create_begin_bucket(v,bucket);\n for(int i=0;i<(int)v.size();i++)if(sa[i]>0&&is_l[sa[i]-1])sa[bucket[v[sa[i]-1]]++]=sa[i]-1;\n }\n\n void invert_induced_sort(vector<int>&v,vector<int>&sa,int mv,vector<int>&bucket,vector<int>&is_l){\n create_end_bucket(v,bucket);\n for(int i=v.size()-1;i>=0;i--)if(sa[i]>0&&!is_l[sa[i]-1])sa[--bucket[v[sa[i]-1]]]=sa[i]-1;\n }\n\n vector<int>sa_is(vector<int>v,int mv){\n if(v.size()==1)return vector<int>(1,0);\n\n vector<int>is_l(v.size());\n vector<int>bucket(mv+1);\n vector<int>sa(v.size(),-1);\n auto is_lms=[&](int x)->bool{return x>0&&is_l[x-1]&&!is_l[x];};\n\n is_l[v.size()-1]=0;\n for(int i=v.size()-2;i>=0;i--)is_l[i]=v[i]>v[i+1]||(v[i]==v[i+1]&&is_l[i+1]);\n create_end_bucket(v,bucket);\n for(int i=0;i<(int)v.size();i++)if(is_lms(i))sa[--bucket[v[i]]]=i;\n induced_sort(v,sa,mv,bucket,is_l);\n invert_induced_sort(v,sa,mv,bucket,is_l);\n\n int cur=0;\n vector<int>order(v.size());\n for(int i=0;i<(int)v.size();i++)if(is_lms(i))order[i]=cur++;\n\n vector<int>next_v(cur);\n cur=-1;\n int prev=-1;\n for(int i=0;i<(int)v.size();i++){\n if(!is_lms(sa[i]))continue;\n bool diff=false;\n for(int d=0;d<v.size();d++){\n if(prev==-1||v[sa[i]+d]!=v[prev+d]||is_l[sa[i]+d]!=is_l[prev+d]){\n diff=true;\n break;\n }\n else if(d>0&&is_lms(sa[i]+d))break;\n }\n if(diff){cur++;prev=sa[i];}\n next_v[order[sa[i]]]=cur;\n }\n\n vector<int>re_order(next_v.size());\n for(int i=0;i<(int)v.size();i++)if(is_lms(i))re_order[order[i]]=i;\n vector<int>next_sa=sa_is(next_v,cur);\n create_end_bucket(v,bucket);\n for(int i=0;i<sa.size();i++)sa[i]=-1;\n for(int i=next_sa.size()-1;i>=0;i--)sa[--bucket[v[re_order[next_sa[i]]]]]=re_order[next_sa[i]];\n induced_sort(v,sa,mv,bucket,is_l);\n invert_induced_sort(v,sa,mv,bucket,is_l);\n return sa;\n }\n\n vector<int> sa_is(string &s){\n vector<int>v(s.size()+1);\n for(int i=0;i<(int)s.size();i++)v[i]=s[i];\n return sa_is(v,*max_element(v.begin(),v.end()));\n }\n\n \n}\nnamespace SA {\n int n, k;\n int R[500000];\n int T[500000];\n bool compare_sa(int i, int j) {\n if (R[i] != R[j])return R[i] < R[j];\n else {\n int ri = i + k <= n ? R[i + k] : -1;\n int rj = j + k <= n ? R[j + k] : -1;\n return ri < rj;\n }\n }\n vector<int> construct_sa(string& S) {\n return latte::sa_is(S);\n n = S.size();\n vector<int> sa(n + 1);\n for (int i = 0; i <= n; i++) {\n sa[i] = i;\n R[i] = i < n ? S[i] : -1;\n }\n \n for (k = 1; k <= n; k *= 2) {\n sort(sa.begin(), sa.end(), compare_sa);\n T[sa[0]] = 0;\n for (int i = 1; i <= n; i++) \n T[sa[i]] = T[sa[i - 1]] + (compare_sa(sa[i - 1], sa[i]) ? 1 : 0);\n for (int i = 0; i <= n; i++)\n R[i] = T[i];\n }\n return sa;\n }\n vector<int> construct_lcp(string& S, vector<int> &sa) {\n n = S.size();\n for (int i = 0; i <= n; i++)R[sa[i]] = i;\n int h = 0;\n vector<int> lcp(n + 1, 0);\n for (int i = 0; i < n; i++) {\n int j = sa[R[i] - 1];\n if (h > 0)h--;\n for (; j + h < n&&i + h < n; h++) {\n if (S[j + h] != S[i + h])break;\n }\n lcp[R[i] - 1] = h;\n }\n return lcp;\n }\n}\n\nint ret[212345];\n\nvector<int> sa,lcp;\nvector<int> id;\n\n\nnamespace StaticRMQ {\n\t/*\n\tdefault:: range minimum query\n\t*/\n\n\ttemplate<typename T>\n\tusing MergeFunction = function<T(T,T)>;\n\n\ttemplate<typename T>\n\tMergeFunction<T>\n\t\tgetMin = [](T l, T r) {\n\t\treturn l < r ? l : r;\n\t};\n\n template<typename T>\n\tMergeFunction<T>\n\t\tgetMax = [](T l, T r) {\n\t\treturn l > r ? l : r;\n\t};\n\n\n\ttemplate<typename T>\n\tclass BufferManager {\n\tprivate:\n\t\tT* const mem;\n\t\tint ptr;\n\tpublic:\n\t\tBufferManager(T* buf):mem(buf) {\n\t\t\tptr = 0;\n\t\t}\n\t\tT* get(int m) {\n\t\t\tptr += m;\n\t\t\treturn mem + ptr - m;\n\t\t}\n\t\tvoid reset() {\n\t\t\tptr = 0;\n\t\t}\n\t};\n\n\tnamespace Buffer{\n\t\t// if N<=10^6 : BufferSize is enough for 5 * N\n\t\tconstexpr int BufferSize = 5 * 1123456;\n\t\tusing NodeType = int;\n\t\tNodeType mem[BufferSize];\n\t\tBufferManager<NodeType> buffer(mem);\n\t}\n\n\ttemplate<typename T, typename ITR>\n\tstruct SparseTable {\n\t\tconst int n;\n\t\tconst int logn;\n\t\tT* const mem;\n\t\tMergeFunction<T> Merge;\n\t\tvoid build() {\n\t\t\tfor (int h = 0; h + 1 < logn; h++) {\n\t\t\t\tconst int half = 1 << h;\n\t\t\t\tconst int len = half << 1;\n\t\t\t\tfor (int i = 0; i + len <= n; i++) {\n\t\t\t\t\tmem[h*n + n + i] = Merge(mem[h*n + i], mem[h*n + i + half]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tstatic inline int get_log(const int n) {\n\t\t\tint l = 1;\n\t\t\tfor (int tmp = 1; tmp < n; tmp <<= 1)l++;\n\t\t\treturn l;\n\t\t}\n\t\tSparseTable(ITR bg, ITR ed,\n MergeFunction<T> f = getMin<T>,\n\t\t\tBufferManager<T> &bf = Buffer::buffer\n )\n\t\t\t: n(distance(bg,ed)),\n\t\t\tlogn(get_log(n)),\n\t\t\tmem(bf.get(n*logn)),\n\t\t\tMerge(f) {\n\t\t\tfor (auto p = mem; bg != ed; ++bg, ++p) {\n\t\t\t\t(*p) = (*bg);\n\t\t\t}\n\t\t\tbuild();\n\t\t}\n\t\tinline int get_msb(const int size) {\n#ifdef BTK\n\t\t\tint id = 0;\n\t\t\tfor (int i = 0; i < logn; i++)if (size >> i)id = i;\n\t\t\treturn id;\n#else\n\t\t\treturn 31 - __builtin_clz(size);\n#endif\n\t\t}\n\t\tinline T get(const int l, const int r) {\n\t\t\tconst int msb = get_msb(r - l);\n\t\t\treturn Merge(mem[msb*n + l], mem[msb*n + r - (1 << msb)]);\n\t\t}\n\t};\n\n\ttemplate<typename T, typename ITR>\n\tstruct SmallRMQ{\n\t\tconst int n;\n\t\tT* const mem;\n\t\tMergeFunction<T> Merge;\n\t\tvoid build(ITR bg,ITR ed) {\n\t\t\tint x = distance(bg, ed);\n\t\t\tfor (auto p = mem; x > 0; x -= 4) {\n\t\t\t\tT tmp[4];\n\t\t\t\ttmp[0] = (*bg); ++bg;\n\t\t\t\tif (x >= 1)tmp[1] = (*bg); ++bg;\n\t\t\t\tif (x >= 2)tmp[2] = (*bg); ++bg;\n\t\t\t\tif (x >= 3)tmp[3] = (*bg); ++bg;\n\t\t\t\tfor (int i = 0; i < 4; i++) {\n\t\t\t\t\tT ret = tmp[i];\n\t\t\t\t\t(*p) = ret; ++p;\n\t\t\t\t\tfor (int j = i + 1; j < 4; j++) {\n\t\t\t\t\t\tret = Merge(ret,tmp[j]);\n\t\t\t\t\t\t(*p) = ret; ++p;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tSmallRMQ(ITR bg, ITR ed,\n\t\t\tMergeFunction<T> f = getMin<T>,\n\t\t\tBufferManager<T> &bf = Buffer::buffer\n )\n : n(((distance(bg, ed)+3)>>2)<<2),\n\t\t\tmem(bf.get((n>>2) * 10)),\n\t\t\tMerge(f) {\n\t\t\tbuild(bg, ed);\n\t\t}\n\t\tinline T get(int l, int r) {\n\t\t\tconst int block = l >> 2;\n\t\t\tl &= 3; r--; r &= 3;\n\t\t\tconst int segment = (10 - (((4 - l)*(4 - l + 1)) >> 1)) + (r - l);\n\t\t\treturn mem[block * 10 + segment];\n\t\t}\n\n\t};\n\ttemplate<typename T, typename ITR>\n\tstruct RMQ {\n\t\tconst int n;\n\t\tMergeFunction<T> Merge;\n\t\tT* const workspace;\n\t\tSmallRMQ<T, ITR> small;\n\t\tSmallRMQ<T, T*> medium;\n\t\tSparseTable<T, T*> large;\n\t\ttemplate<typename S, typename Itr>\n\t\tinline S buildBlock(Itr bg, Itr ed, BufferManager<T>& bf, const int size) {\n\t\t\tT* p = workspace;\n\t\t\tfor (int x = distance(bg, ed); x > 0; ++p, x-=4) {\n\t\t\t\t(*p) = (*bg); ++bg;\n\t\t\t\tif(x>=1)(*p) = Merge(*p, *bg); ++bg;\n\t\t\t\tif(x>=2)(*p) = Merge(*p, *bg); ++bg;\n\t\t\t\tif(x>=3)(*p) = Merge(*p, *bg); ++bg;\n\t\t\t}\n\t\t\treturn S(workspace, workspace+size, Merge, bf);\n\t\t}\n\t\tRMQ(ITR bg, ITR ed,\n\t\t\tMergeFunction<T> f = getMin<T>,\n\t\t\tBufferManager<T> &bf = Buffer::buffer\n ): n(((distance(bg, ed) + 15) >> 4) << 4),\n\t\t\tMerge(f),\n\t\t\tworkspace(bf.get(n >> 2)),\n\t\t\tsmall(bg, ed, f, bf),\n\t\t\tmedium(buildBlock<SmallRMQ<T, T*>, ITR>(bg, ed, bf, n >> 2)),\n\t\t\tlarge(buildBlock<SparseTable<T, T*>, T*>(workspace, workspace + (n >> 2), bf, n >> 4))\n\t\t{}\n\t\tinline T get(int l, int r) {\n\t\t\tint nl = (l >> 2) + 1;\n\t\t\tint nr = ((r - 1) >> 2);\n\t\t\tT ret = small.get(l, min(nl << 2, r));\n\t\t\tret = Merge(ret, small.get(max(l, nr << 2),r));\n\t\t\tl = nl; r = nr;\n\t\t\tnl = (l >> 2) + 1; \n\t\t\tnr = ((r - 1) >> 2);\n\t\t\tif (l >= r)return ret;\n\t\t\tret = Merge(ret, medium.get(l, min(nl << 2, r)));\n\t\t\tret = Merge(ret, medium.get(max(l, nr << 2), r));\n\t\t\tl = nl; r = nr;\n\t\t\tif (l >= r)return ret;\n\t\t\telse return Merge(ret, large.get(l, r));\n\t\t}\n\t};\n}\nusing RMQ_PTR=StaticRMQ::RMQ<int,decltype(lcp.begin())>;\n\n\ninline pair<int,int> get_range(int pos,int len,RMQ_PTR&rmq){\n int lb=pos;\n int ub=pos+1;\n {\n int ok=pos;\n int ng=-1;\n while(abs(ok-ng)>1){\n const int mid=(ok+ng)/2;\n if(rmq.get(mid,pos)>=len){\n ok=mid;\n }\n else{\n ng=mid;\n }\n }\n chmin(lb,ok);\n }\n {\n int ok=pos;\n int ng=N+1;\n while(abs(ok-ng)>1){\n const int mid=(ok+ng)/2;\n if(rmq.get(pos,mid)>=len){\n ok=mid;\n }\n else{\n ng=mid;\n }\n }\n chmax(ub,ng);\n }\n return {lb,ub};\n}\n\n\nconstexpr int INF = 1e7;\ntemplate<typename SEG> using SetInitialLeaf = function<void(SEG&, int)>;\ntemplate<typename SEG> using SetInitialSegment = function<void(SEG&, const int, const int)>;\ntemplate<typename RET, typename SEG> using GetSingleSegment = function<RET(SEG&, const int, const int)>;\ntemplate<typename RET> using GetMergedSegment = function<RET(RET, RET)>;\ntemplate<typename SEG, typename Q> using UpdateSingleSegment = function<void(SEG&, Q)>;\ntemplate<typename SEG> using LazyUpdate = function<void(SEG&, SEG&, SEG&)>;\n\nstruct node { vector<int> x; };\n\nint query_lb;\n\nSetInitialLeaf<node>\nset_leaf = [](node &v, const int id) {\n};\n\nSetInitialSegment<node>\nset_segment = [](node &v, const int l, const int r) {\n const int lb = l;\n const int ub = min(N+1,r);\n v.x.reserve(max(ub-lb,0)+1);\n for(int i:range(lb,ub)){\n v.x.push_back(sa[i]);\n }\n v.x.push_back(INF);\n sort(ALL(v.x));\n};\n\nGetSingleSegment<int, node>\nsegment_min = [](node &v, const int l, const int r) {\n\treturn *lower_bound(ALL(v.x),query_lb);\n};\n\nGetMergedSegment<int>\nmerge_segment = [](int l, int r) {\n\treturn l < r ? l : r;\n};\n\n\n#ifndef NDBUF\n#define NDBUF\ntemplate<typename T>\nstruct BufferManager {\n\tT *mem;\n\tint ptr;\n\tBufferManager(T* mem) {\n\t\tptr = 0;\n\t\tthis->mem = mem;\n\t}\n\tT* get(int m) {\n\t\tptr += m;\n\t\treturn mem + ptr - m;\n\t}\n\tvoid reset() {\n\t\tptr = 0;\n\t}\n};\n\n\n#endif\nnamespace H {\n\tconstexpr int BufferSize = 812345;\n\tusing NodeType = node;\n\tNodeType mem[BufferSize];\n\tBufferManager<NodeType> buffer(mem);\n}\ntemplate<typename Node, typename RET>\nstruct SegmentTree {\n\tint size;\n\tNode *seg;\n\tGetSingleSegment<RET, Node> get_single_segment;\n\tGetMergedSegment<RET> get_merged_segment;\n\tLazyUpdate<Node> lazy_update;\n\tvoid init(int l, int r, SetInitialSegment<Node>& init_segment, SetInitialLeaf<Node>& init_leaf, int k = 0) {\n\t\tauto &v = seg[k];\n\t\tinit_segment(v, l, r);\n\t\tif (r - l == 1) {\n\t\t\t//葉の時の処理\n\t\t\tinit_leaf(v, l);\n\t\t}\n\t\telse if (r - l>1) {\n\t\t\tint m = (l + r) / 2;\n\t\t\tinit(l, m, init_segment, init_leaf, k * 2 + 1);\n\t\t\tinit(m, r, init_segment, init_leaf, k * 2 + 2);\n\t\t}\n\t}\n\tSegmentTree(\n\t\tint n,\n\t\tGetSingleSegment<RET, Node> gss,\n\t\tGetMergedSegment<RET> gms,\n\t\tSetInitialSegment<Node> sis,\n\t\tSetInitialLeaf<Node> sil,\n\t\tLazyUpdate<Node> lu = [](Node &v,Node &l,Node &r){},\n\t\tBufferManager<Node>& buf = H::buffer\n\t)\n\t\t:get_single_segment(gss),\n\t\tget_merged_segment(gms),\n\t\tlazy_update(lu) {\n\t\tsize = 1; while (size<n)size *= 2;\n\t\tseg = buf.get(size * 2 + 10);\n\t\tinit(0, size, sis, sil);\n\t}\n SegmentTree(){\n }\n#define LQ a,b,k*2+1,l,m\n#define RQ a,b,k*2+2,m,r\n\tRET get(int a, int b, int k, int l, int r) {\n\t\tif (a <= l && r <= b)return get_single_segment(seg[k], l, r);\n\t\tif (r - l > 1)lazy_update(seg[k], seg[2 * k + 1], seg[2 * k + 2]);\n\t\tint m = (l + r) / 2;\n\t\tbool ll = !(m <= a || b <= l);\n\t\tbool rr = !(r <= a || b <= m);\n\t\tRET ret;\n\t\tif (ll&&rr)ret = get_merged_segment(get(LQ), get(RQ));\n\t\telse if (ll)ret = get(LQ); else ret = get(RQ);\n\t\t\n\t\treturn ret;\n\t}\n\tRET get(int a, int b) {\n\t\treturn get(a, b, 0, 0, size);\n\t}\n\ttemplate<typename Q>\n\tvoid update(int a, int b, int k, int l, int r, UpdateSingleSegment<Node, Q> &update_segment, Q value) {\n\t\tif (r <= a || b <= l)return;\n\t\tif (a <= l && r <= b) {\n\t\t\tupdate_segment(seg[k], value);\n\t\t}\n\t\telse {\n\t\t\tif (r - l > 1)lazy_update(seg[k], seg[2 * k + 1], seg[2 * k + 2]);\n\t\t\tint m = (l + r) / 2;\n\t\t\tupdate(LQ, update_segment, value);\n\t\t\tupdate(RQ, update_segment, value);\n\t\t\tseg[k].ret = get_merged_segment(\n\t\t\t\tget_single_segment(seg[k * 2 + 1], l, m),\n\t\t\t\tget_single_segment(seg[k * 2 + 2], m, r)\n\t\t\t);\n\t\t}\n\t}\n\ttemplate<typename Q>\n\tvoid update_segment(int a, int b, UpdateSingleSegment<Node, Q> &update_segment, Q value) {\n\t\tupdate(a, b, 0, 0, size, update_segment, value);\n\t}\n\n\ttemplate<typename Q>\n\tvoid update_element(int a, UpdateSingleSegment<Node, Q> &update_segment, Q value) {\n\t\tupdate(a, a + 1, 0, 0, size, update_segment, value);\n\t}\n};\n\nSegmentTree<node,int> st;\n\n\n\ninline bool check(int ql,int qr,int X_len,RMQ_PTR&rmq){\n if(X_len*3+3>qr-ql)return false;\n int lb,ub;\n tie(lb,ub)=get_range(id[ql],X_len,rmq);\n int p;\n {\n int X1=ql+X_len;\n query_lb = X1+1;\n p = st.get(lb,ub);\n int A1=p;\n int X2=p+X_len;\n if(X2>=N)return false;\n query_lb = X2+1;\n p = st.get(lb,ub);\n int A2=p;\n int X3=p+X_len;\n if(X3>=N)return false;\n int A3=qr;\n\n return A3-X3>=1;\n }\n}\n\n\n\n\n\ninline int solve(int ql,int qr,RMQ_PTR&rmq){\n int lb=0;\n int ub=qr-ql;\n while(ub-lb>1){\n const int mid = (lb+ub)/2;\n if(check(ql,qr,mid,rmq)){\n lb=mid;\n }\n else{\n ub=mid;\n }\n }\n return lb;\n}\n\n\n\n\nint main(){\n scanf(\"%d%d%s\",&N,&Q,buf);\n reverse(buf,buf+N);\n S=buf;\n sa=SA::construct_sa(S);\n id=vector<int>(N+1);\n for(int i:range(N+1)){\n id[sa[i]]=i;\n }\n lcp=SA::construct_lcp(S,sa);\n RMQ_PTR rmq(lcp.begin(),lcp.end());\n st = SegmentTree<node,int>(N+1,segment_min, merge_segment, set_segment, set_leaf);\n\n\n for(int i:range(Q)){\n int l,r;\n scanf(\"%d%d\",&l,&r);\n\n\n ret[i]=solve(N-r,N-l+1,rmq);\n }\n for(int i:range(Q)){\n printf(\"%d\\n\",ret[i]);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 4980, "memory_kb": 57728, "score_of_the_acc": -1.1097, "final_rank": 12 }, { "submission_id": "aoj_3063_3413795", "code_snippet": "//\n#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long LL;\n#ifdef BTK\n#define DEBUG if(1)\n#else\n#define CIN_ONLY if(1)\n#define DEBUG if(0)\n#endif\n#define ALL(v) (v).begin(),(v).end()\n#define REC(ret, ...) std::function<ret (__VA_ARGS__)>\ntemplate <typename T>inline bool chmin(T &l, T r){bool a = l>r; if (a)l = r; return a;}\ntemplate <typename T>inline bool chmax(T &l, T r){bool a = l<r; if (a)l = r; return a;}\ntemplate <typename T>istream& operator>>(istream &is, vector<T> &v){for (auto &it : v)is >> it;return is;}\nclass reverse_range {private:struct I {int x;int operator*() {return x-1;}bool operator!=(I& lhs) {return x>lhs.x;}void operator++() {--x;}};I i, n;public:reverse_range(int n) :i({ 0 }), n({ n }){}reverse_range(int i, int n) :i({ i }), n({ n }){}I& begin() {return n;}I& end() {return i;}};\nclass range {private: struct I { int x; int operator*() { return x; }bool operator!=(I& lhs) { return x<lhs.x; }void operator++() { ++x; } }; I i, n;public:range(int n) :i({ 0 }), n({ n }) {}range(int i, int n) :i({ i }), n({ n }) {}I& begin() { return i; }I& end() { return n; }reverse_range operator!(){return reverse_range(*i,*n);}};\n\nint N,Q;\nchar buf[212345];\nstring S;\n\n\n/*\n sa[0]=n //空文字列\n lcp[i]:=suffix[sa[i]]とsuffix[sa[i+1]]の共通高さ\n */\n\nnamespace latte{\n void create_begin_bucket(vector<int>&v,vector<int>&bucket){\n fill(bucket.begin(),bucket.end(),0);\n for(int i=0;i<(int)v.size();i++)bucket[v[i]]++;\n int sum=0;\n for(int i=0;i<(int)bucket.size();i++){bucket[i]+=sum;swap(sum,bucket[i]);}\n }\n\n void create_end_bucket(vector<int>&v,vector<int>&bucket){\n fill(bucket.begin(),bucket.end(),0);\n for(int i=0;i<(int)v.size();i++)bucket[v[i]]++;\n for(int i=1;i<(int)bucket.size();i++)bucket[i]+=bucket[i-1];\n }\n\n void induced_sort(vector<int>&v,vector<int>&sa,int mv,vector<int>&bucket,vector<int>&is_l){\n create_begin_bucket(v,bucket);\n for(int i=0;i<(int)v.size();i++)if(sa[i]>0&&is_l[sa[i]-1])sa[bucket[v[sa[i]-1]]++]=sa[i]-1;\n }\n\n void invert_induced_sort(vector<int>&v,vector<int>&sa,int mv,vector<int>&bucket,vector<int>&is_l){\n create_end_bucket(v,bucket);\n for(int i=v.size()-1;i>=0;i--)if(sa[i]>0&&!is_l[sa[i]-1])sa[--bucket[v[sa[i]-1]]]=sa[i]-1;\n }\n\n vector<int>sa_is(vector<int>v,int mv){\n if(v.size()==1)return vector<int>(1,0);\n\n vector<int>is_l(v.size());\n vector<int>bucket(mv+1);\n vector<int>sa(v.size(),-1);\n auto is_lms=[&](int x)->bool{return x>0&&is_l[x-1]&&!is_l[x];};\n\n is_l[v.size()-1]=0;\n for(int i=v.size()-2;i>=0;i--)is_l[i]=v[i]>v[i+1]||(v[i]==v[i+1]&&is_l[i+1]);\n create_end_bucket(v,bucket);\n for(int i=0;i<(int)v.size();i++)if(is_lms(i))sa[--bucket[v[i]]]=i;\n induced_sort(v,sa,mv,bucket,is_l);\n invert_induced_sort(v,sa,mv,bucket,is_l);\n\n int cur=0;\n vector<int>order(v.size());\n for(int i=0;i<(int)v.size();i++)if(is_lms(i))order[i]=cur++;\n\n vector<int>next_v(cur);\n cur=-1;\n int prev=-1;\n for(int i=0;i<(int)v.size();i++){\n if(!is_lms(sa[i]))continue;\n bool diff=false;\n for(int d=0;d<v.size();d++){\n if(prev==-1||v[sa[i]+d]!=v[prev+d]||is_l[sa[i]+d]!=is_l[prev+d]){\n diff=true;\n break;\n }\n else if(d>0&&is_lms(sa[i]+d))break;\n }\n if(diff){cur++;prev=sa[i];}\n next_v[order[sa[i]]]=cur;\n }\n\n vector<int>re_order(next_v.size());\n for(int i=0;i<(int)v.size();i++)if(is_lms(i))re_order[order[i]]=i;\n vector<int>next_sa=sa_is(next_v,cur);\n create_end_bucket(v,bucket);\n for(int i=0;i<sa.size();i++)sa[i]=-1;\n for(int i=next_sa.size()-1;i>=0;i--)sa[--bucket[v[re_order[next_sa[i]]]]]=re_order[next_sa[i]];\n induced_sort(v,sa,mv,bucket,is_l);\n invert_induced_sort(v,sa,mv,bucket,is_l);\n return sa;\n }\n\n vector<int> sa_is(string &s){\n vector<int>v(s.size()+1);\n for(int i=0;i<(int)s.size();i++)v[i]=s[i];\n return sa_is(v,*max_element(v.begin(),v.end()));\n }\n\n \n}\nnamespace SA {\n int n, k;\n int R[500000];\n int T[500000];\n bool compare_sa(int i, int j) {\n if (R[i] != R[j])return R[i] < R[j];\n else {\n int ri = i + k <= n ? R[i + k] : -1;\n int rj = j + k <= n ? R[j + k] : -1;\n return ri < rj;\n }\n }\n vector<int> construct_sa(string& S) {\n return latte::sa_is(S);\n n = S.size();\n vector<int> sa(n + 1);\n for (int i = 0; i <= n; i++) {\n sa[i] = i;\n R[i] = i < n ? S[i] : -1;\n }\n \n for (k = 1; k <= n; k *= 2) {\n sort(sa.begin(), sa.end(), compare_sa);\n T[sa[0]] = 0;\n for (int i = 1; i <= n; i++) \n T[sa[i]] = T[sa[i - 1]] + (compare_sa(sa[i - 1], sa[i]) ? 1 : 0);\n for (int i = 0; i <= n; i++)\n R[i] = T[i];\n }\n return sa;\n }\n vector<int> construct_lcp(string& S, vector<int> &sa) {\n n = S.size();\n for (int i = 0; i <= n; i++)R[sa[i]] = i;\n int h = 0;\n vector<int> lcp(n + 1, 0);\n for (int i = 0; i < n; i++) {\n int j = sa[R[i] - 1];\n if (h > 0)h--;\n for (; j + h < n&&i + h < n; h++) {\n if (S[j + h] != S[i + h])break;\n }\n lcp[R[i] - 1] = h;\n }\n return lcp;\n }\n}\n\nint ret[212345];\n\nvector<int> sa,lcp;\nvector<int> id;\n\n\nnamespace StaticRMQ {\n\t/*\n\tdefault:: range minimum query\n\t*/\n\n\ttemplate<typename T>\n\tusing MergeFunction = function<T(T,T)>;\n\n\ttemplate<typename T>\n\tMergeFunction<T>\n\t\tgetMin = [](T l, T r) {\n\t\treturn l < r ? l : r;\n\t};\n\n template<typename T>\n\tMergeFunction<T>\n\t\tgetMax = [](T l, T r) {\n\t\treturn l > r ? l : r;\n\t};\n\n\n\ttemplate<typename T>\n\tclass BufferManager {\n\tprivate:\n\t\tT* const mem;\n\t\tint ptr;\n\tpublic:\n\t\tBufferManager(T* buf):mem(buf) {\n\t\t\tptr = 0;\n\t\t}\n\t\tT* get(int m) {\n\t\t\tptr += m;\n\t\t\treturn mem + ptr - m;\n\t\t}\n\t\tvoid reset() {\n\t\t\tptr = 0;\n\t\t}\n\t};\n\n\tnamespace Buffer{\n\t\t// if N<=10^6 : BufferSize is enough for 5 * N\n\t\tconstexpr int BufferSize = 5 * 1123456;\n\t\tusing NodeType = int;\n\t\tNodeType mem[BufferSize];\n\t\tBufferManager<NodeType> buffer(mem);\n\t}\n\n\ttemplate<typename T, typename ITR>\n\tstruct SparseTable {\n\t\tconst int n;\n\t\tconst int logn;\n\t\tT* const mem;\n\t\tMergeFunction<T> Merge;\n\t\tvoid build() {\n\t\t\tfor (int h = 0; h + 1 < logn; h++) {\n\t\t\t\tconst int half = 1 << h;\n\t\t\t\tconst int len = half << 1;\n\t\t\t\tfor (int i = 0; i + len <= n; i++) {\n\t\t\t\t\tmem[h*n + n + i] = Merge(mem[h*n + i], mem[h*n + i + half]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tstatic inline int get_log(const int n) {\n\t\t\tint l = 1;\n\t\t\tfor (int tmp = 1; tmp < n; tmp <<= 1)l++;\n\t\t\treturn l;\n\t\t}\n\t\tSparseTable(ITR bg, ITR ed,\n MergeFunction<T> f = getMin<T>,\n\t\t\tBufferManager<T> &bf = Buffer::buffer\n )\n\t\t\t: n(distance(bg,ed)),\n\t\t\tlogn(get_log(n)),\n\t\t\tmem(bf.get(n*logn)),\n\t\t\tMerge(f) {\n\t\t\tfor (auto p = mem; bg != ed; ++bg, ++p) {\n\t\t\t\t(*p) = (*bg);\n\t\t\t}\n\t\t\tbuild();\n\t\t}\n\t\tinline int get_msb(const int size) {\n#ifdef BTK\n\t\t\tint id = 0;\n\t\t\tfor (int i = 0; i < logn; i++)if (size >> i)id = i;\n\t\t\treturn id;\n#else\n\t\t\treturn 31 - __builtin_clz(size);\n#endif\n\t\t}\n\t\tinline T get(const int l, const int r) {\n\t\t\tconst int msb = get_msb(r - l);\n\t\t\treturn Merge(mem[msb*n + l], mem[msb*n + r - (1 << msb)]);\n\t\t}\n\t};\n\n\ttemplate<typename T, typename ITR>\n\tstruct SmallRMQ{\n\t\tconst int n;\n\t\tT* const mem;\n\t\tMergeFunction<T> Merge;\n\t\tvoid build(ITR bg,ITR ed) {\n\t\t\tint x = distance(bg, ed);\n\t\t\tfor (auto p = mem; x > 0; x -= 4) {\n\t\t\t\tT tmp[4];\n\t\t\t\ttmp[0] = (*bg); ++bg;\n\t\t\t\tif (x >= 1)tmp[1] = (*bg); ++bg;\n\t\t\t\tif (x >= 2)tmp[2] = (*bg); ++bg;\n\t\t\t\tif (x >= 3)tmp[3] = (*bg); ++bg;\n\t\t\t\tfor (int i = 0; i < 4; i++) {\n\t\t\t\t\tT ret = tmp[i];\n\t\t\t\t\t(*p) = ret; ++p;\n\t\t\t\t\tfor (int j = i + 1; j < 4; j++) {\n\t\t\t\t\t\tret = Merge(ret,tmp[j]);\n\t\t\t\t\t\t(*p) = ret; ++p;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tSmallRMQ(ITR bg, ITR ed,\n\t\t\tMergeFunction<T> f = getMin<T>,\n\t\t\tBufferManager<T> &bf = Buffer::buffer\n )\n : n(((distance(bg, ed)+3)>>2)<<2),\n\t\t\tmem(bf.get((n>>2) * 10)),\n\t\t\tMerge(f) {\n\t\t\tbuild(bg, ed);\n\t\t}\n\t\tinline T get(int l, int r) {\n\t\t\tconst int block = l >> 2;\n\t\t\tl &= 3; r--; r &= 3;\n\t\t\tconst int segment = (10 - (((4 - l)*(4 - l + 1)) >> 1)) + (r - l);\n\t\t\treturn mem[block * 10 + segment];\n\t\t}\n\n\t};\n\ttemplate<typename T, typename ITR>\n\tstruct RMQ {\n\t\tconst int n;\n\t\tMergeFunction<T> Merge;\n\t\tT* const workspace;\n\t\tSmallRMQ<T, ITR> small;\n\t\tSmallRMQ<T, T*> medium;\n\t\tSparseTable<T, T*> large;\n\t\ttemplate<typename S, typename Itr>\n\t\tinline S buildBlock(Itr bg, Itr ed, BufferManager<T>& bf, const int size) {\n\t\t\tT* p = workspace;\n\t\t\tfor (int x = distance(bg, ed); x > 0; ++p, x-=4) {\n\t\t\t\t(*p) = (*bg); ++bg;\n\t\t\t\tif(x>=1)(*p) = Merge(*p, *bg); ++bg;\n\t\t\t\tif(x>=2)(*p) = Merge(*p, *bg); ++bg;\n\t\t\t\tif(x>=3)(*p) = Merge(*p, *bg); ++bg;\n\t\t\t}\n\t\t\treturn S(workspace, workspace+size, Merge, bf);\n\t\t}\n\t\tRMQ(ITR bg, ITR ed,\n\t\t\tMergeFunction<T> f = getMin<T>,\n\t\t\tBufferManager<T> &bf = Buffer::buffer\n ): n(((distance(bg, ed) + 15) >> 4) << 4),\n\t\t\tMerge(f),\n\t\t\tworkspace(bf.get(n >> 2)),\n\t\t\tsmall(bg, ed, f, bf),\n\t\t\tmedium(buildBlock<SmallRMQ<T, T*>, ITR>(bg, ed, bf, n >> 2)),\n\t\t\tlarge(buildBlock<SparseTable<T, T*>, T*>(workspace, workspace + (n >> 2), bf, n >> 4))\n\t\t{}\n\t\tinline T get(int l, int r) {\n\t\t\tint nl = (l >> 2) + 1;\n\t\t\tint nr = ((r - 1) >> 2);\n\t\t\tT ret = small.get(l, min(nl << 2, r));\n\t\t\tret = Merge(ret, small.get(max(l, nr << 2),r));\n\t\t\tl = nl; r = nr;\n\t\t\tnl = (l >> 2) + 1; \n\t\t\tnr = ((r - 1) >> 2);\n\t\t\tif (l >= r)return ret;\n\t\t\tret = Merge(ret, medium.get(l, min(nl << 2, r)));\n\t\t\tret = Merge(ret, medium.get(max(l, nr << 2), r));\n\t\t\tl = nl; r = nr;\n\t\t\tif (l >= r)return ret;\n\t\t\telse return Merge(ret, large.get(l, r));\n\t\t}\n\t};\n}\nusing RMQ_PTR=StaticRMQ::RMQ<int,decltype(lcp.begin())>;\n\n\ninline pair<int,int> get_range(int pos,int len,RMQ_PTR&rmq){\n int lb=pos;\n int ub=pos+1;\n {\n int ok=pos;\n int ng=-1;\n while(abs(ok-ng)>1){\n const int mid=(ok+ng)/2;\n if(rmq.get(mid,pos)>=len){\n ok=mid;\n }\n else{\n ng=mid;\n }\n }\n chmin(lb,ok);\n }\n {\n int ok=pos;\n int ng=N+1;\n while(abs(ok-ng)>1){\n const int mid=(ok+ng)/2;\n if(rmq.get(pos,mid)>=len){\n ok=mid;\n }\n else{\n ng=mid;\n }\n }\n chmax(ub,ng);\n }\n return {lb,ub};\n}\n\n\nconstexpr int INF = 1e7;\ntemplate<typename SEG> using SetInitialLeaf = function<void(SEG&, int)>;\ntemplate<typename SEG> using SetInitialSegment = function<void(SEG&, const int, const int)>;\ntemplate<typename RET, typename SEG> using GetSingleSegment = function<RET(SEG&, const int, const int)>;\ntemplate<typename RET> using GetMergedSegment = function<RET(RET, RET)>;\ntemplate<typename SEG, typename Q> using UpdateSingleSegment = function<void(SEG&, Q)>;\ntemplate<typename SEG> using LazyUpdate = function<void(SEG&, SEG&, SEG&)>;\n\nstruct node { vector<int> x; };\n\nint query_lb;\n\nSetInitialLeaf<node>\nset_leaf = [](node &v, const int id) {\n};\n\nSetInitialSegment<node>\nset_segment = [](node &v, const int l, const int r) {\n const int lb = l;\n const int ub = min(N+1,r);\n v.x.reserve(max(ub-lb,0)+1);\n for(int i:range(lb,ub)){\n v.x.push_back(sa[i]);\n }\n v.x.push_back(INF);\n sort(ALL(v.x));\n};\n\nGetSingleSegment<int, node>\nsegment_min = [](node &v, const int l, const int r) {\n\treturn *lower_bound(ALL(v.x),query_lb);\n};\n\nGetMergedSegment<int>\nmerge_segment = [](int l, int r) {\n\treturn l < r ? l : r;\n};\n\n\n#ifndef NDBUF\n#define NDBUF\ntemplate<typename T>\nstruct BufferManager {\n\tT *mem;\n\tint ptr;\n\tBufferManager(T* mem) {\n\t\tptr = 0;\n\t\tthis->mem = mem;\n\t}\n\tT* get(int m) {\n\t\tptr += m;\n\t\treturn mem + ptr - m;\n\t}\n\tvoid reset() {\n\t\tptr = 0;\n\t}\n};\n\n\n#endif\nnamespace H {\n\tconstexpr int BufferSize = 812345;\n\tusing NodeType = node;\n\tNodeType mem[BufferSize];\n\tBufferManager<NodeType> buffer(mem);\n}\ntemplate<typename Node, typename RET>\nstruct SegmentTree {\n\tint size;\n\tNode *seg;\n\tGetSingleSegment<RET, Node> get_single_segment;\n\tGetMergedSegment<RET> get_merged_segment;\n\tLazyUpdate<Node> lazy_update;\n\tvoid init(int l, int r, SetInitialSegment<Node>& init_segment, SetInitialLeaf<Node>& init_leaf, int k = 0) {\n\t\tauto &v = seg[k];\n\t\tinit_segment(v, l, r);\n\t\tif (r - l == 1) {\n\t\t\t//葉の時の処理\n\t\t\tinit_leaf(v, l);\n\t\t}\n\t\telse if (r - l>1) {\n\t\t\tint m = (l + r) / 2;\n\t\t\tinit(l, m, init_segment, init_leaf, k * 2 + 1);\n\t\t\tinit(m, r, init_segment, init_leaf, k * 2 + 2);\n\t\t}\n\t}\n\tSegmentTree(\n\t\tint n,\n\t\tGetSingleSegment<RET, Node> gss,\n\t\tGetMergedSegment<RET> gms,\n\t\tSetInitialSegment<Node> sis,\n\t\tSetInitialLeaf<Node> sil,\n\t\tLazyUpdate<Node> lu = [](Node &v,Node &l,Node &r){},\n\t\tBufferManager<Node>& buf = H::buffer\n\t)\n\t\t:get_single_segment(gss),\n\t\tget_merged_segment(gms),\n\t\tlazy_update(lu) {\n\t\tsize = 1; while (size<n)size *= 2;\n\t\tseg = buf.get(size * 2 + 10);\n\t\tinit(0, size, sis, sil);\n\t}\n SegmentTree(){\n }\n#define LQ a,b,k*2+1,l,m\n#define RQ a,b,k*2+2,m,r\n\tRET get(int a, int b, int k, int l, int r) {\n\t\tif (a <= l && r <= b)return get_single_segment(seg[k], l, r);\n\t\tif (r - l > 1)lazy_update(seg[k], seg[2 * k + 1], seg[2 * k + 2]);\n\t\tint m = (l + r) / 2;\n\t\tbool ll = !(m <= a || b <= l);\n\t\tbool rr = !(r <= a || b <= m);\n\t\tRET ret;\n\t\tif (ll&&rr)ret = get_merged_segment(get(LQ), get(RQ));\n\t\telse if (ll)ret = get(LQ); else ret = get(RQ);\n\t\t\n\t\treturn ret;\n\t}\n\tRET get(int a, int b) {\n\t\treturn get(a, b, 0, 0, size);\n\t}\n\ttemplate<typename Q>\n\tvoid update(int a, int b, int k, int l, int r, UpdateSingleSegment<Node, Q> &update_segment, Q value) {\n\t\tif (r <= a || b <= l)return;\n\t\tif (a <= l && r <= b) {\n\t\t\tupdate_segment(seg[k], value);\n\t\t}\n\t\telse {\n\t\t\tif (r - l > 1)lazy_update(seg[k], seg[2 * k + 1], seg[2 * k + 2]);\n\t\t\tint m = (l + r) / 2;\n\t\t\tupdate(LQ, update_segment, value);\n\t\t\tupdate(RQ, update_segment, value);\n\t\t\tseg[k].ret = get_merged_segment(\n\t\t\t\tget_single_segment(seg[k * 2 + 1], l, m),\n\t\t\t\tget_single_segment(seg[k * 2 + 2], m, r)\n\t\t\t);\n\t\t}\n\t}\n\ttemplate<typename Q>\n\tvoid update_segment(int a, int b, UpdateSingleSegment<Node, Q> &update_segment, Q value) {\n\t\tupdate(a, b, 0, 0, size, update_segment, value);\n\t}\n\n\ttemplate<typename Q>\n\tvoid update_element(int a, UpdateSingleSegment<Node, Q> &update_segment, Q value) {\n\t\tupdate(a, a + 1, 0, 0, size, update_segment, value);\n\t}\n};\n\nSegmentTree<node,int> st;\n\n\n\ninline bool check(int ql,int qr,int X_len,RMQ_PTR&rmq,bool db=false){\n if(X_len*3+3>qr-ql)return false;\n int lb,ub;\n tie(lb,ub)=get_range(id[ql],X_len,rmq);\n int p;\n {\n int X1=ql+X_len;\n query_lb = X1+1;\n p = st.get(lb,ub);\n int A1=p;\n int X2=p+X_len;\n if(X2>=N)return false;\n query_lb = X2+1;\n p = st.get(lb,ub);\n int A2=p;\n int X3=p+X_len;\n if(X3>=N)return false;\n int A3=qr;\n if(A3-X3>=1){\n /*\n if(db){\n cerr << S.substr(ql,X1-ql) << \" \";\n cerr << S.substr(X1,A1-X1) << \" \";\n cerr << S.substr(A1,X2-A1) << \" \";\n cerr << S.substr(X2,A2-X2) << \" \";\n cerr << S.substr(A2,X3-A2) << \" \";\n cerr << S.substr(X3,A3-X3) << \" \";\n cerr << endl;\n for(int i:range(lb,ub)){\n cerr << sa[i] << \" \" <<S.substr(sa[i]) << \" \";\n if(id[ql]<i){\n cerr << rmq.get(i,id[ql]+1) <<endl;\n }\n else{\n cerr << rmq.get(id[ql],i+1) <<endl;\n }\n }\n }\n */\n return true;\n }\n else{\n return false;\n }\n return A3-X3>=1;\n }\n}\n\n\n\n\n\ninline int solve(int ql,int qr,RMQ_PTR&rmq){\n int lb=0;\n int ub=qr-ql;\n while(ub-lb>1){\n const int mid = (lb+ub)/2;\n if(check(ql,qr,mid,rmq)){\n lb=mid;\n }\n else{\n ub=mid;\n }\n }\n if(lb>0)check(ql,qr,lb,rmq,true);\n return lb;\n}\n\n\n\n\nint main(){\n scanf(\"%d%d%s\",&N,&Q,buf);\n reverse(buf,buf+N);\n S=buf;\n sa=SA::construct_sa(S);\n id=vector<int>(N+1);\n for(int i:range(N+1)){\n id[sa[i]]=i;\n }\n lcp=SA::construct_lcp(S,sa);\n RMQ_PTR rmq(lcp.begin(),lcp.end());\n st = SegmentTree<node,int>(N+1,segment_min, merge_segment, set_segment, set_leaf);\n DEBUG cerr << S << endl;\n\n\n for(int i:range(Q)){\n int l,r;\n scanf(\"%d%d\",&l,&r);\n\n\n ret[i]=solve(N-r,N-l+1,rmq);\n }\n for(int i:range(Q)){\n printf(\"%d\\n\",ret[i]);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 5580, "memory_kb": 57728, "score_of_the_acc": -1.2382, "final_rank": 15 }, { "submission_id": "aoj_3063_3413779", "code_snippet": "//\n#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long LL;\n#ifdef BTK\n#define DEBUG if(1)\n#else\n#define CIN_ONLY if(1)\n#define DEBUG if(0)\n#endif\n#define ALL(v) (v).begin(),(v).end()\n#define REC(ret, ...) std::function<ret (__VA_ARGS__)>\ntemplate <typename T>inline bool chmin(T &l, T r){bool a = l>r; if (a)l = r; return a;}\ntemplate <typename T>inline bool chmax(T &l, T r){bool a = l<r; if (a)l = r; return a;}\ntemplate <typename T>istream& operator>>(istream &is, vector<T> &v){for (auto &it : v)is >> it;return is;}\nclass reverse_range {private:struct I {int x;int operator*() {return x-1;}bool operator!=(I& lhs) {return x>lhs.x;}void operator++() {--x;}};I i, n;public:reverse_range(int n) :i({ 0 }), n({ n }){}reverse_range(int i, int n) :i({ i }), n({ n }){}I& begin() {return n;}I& end() {return i;}};\nclass range {private: struct I { int x; int operator*() { return x; }bool operator!=(I& lhs) { return x<lhs.x; }void operator++() { ++x; } }; I i, n;public:range(int n) :i({ 0 }), n({ n }) {}range(int i, int n) :i({ i }), n({ n }) {}I& begin() { return i; }I& end() { return n; }reverse_range operator!(){return reverse_range(*i,*n);}};\n\nint N,Q;\nchar buf[212345];\nstring S;\n\n\n/*\n sa[0]=n //空文字列\n lcp[i]:=suffix[sa[i]]とsuffix[sa[i+1]]の共通高さ\n */\n\nnamespace latte{\n void create_begin_bucket(vector<int>&v,vector<int>&bucket){\n fill(bucket.begin(),bucket.end(),0);\n for(int i=0;i<(int)v.size();i++)bucket[v[i]]++;\n int sum=0;\n for(int i=0;i<(int)bucket.size();i++){bucket[i]+=sum;swap(sum,bucket[i]);}\n }\n\n void create_end_bucket(vector<int>&v,vector<int>&bucket){\n fill(bucket.begin(),bucket.end(),0);\n for(int i=0;i<(int)v.size();i++)bucket[v[i]]++;\n for(int i=1;i<(int)bucket.size();i++)bucket[i]+=bucket[i-1];\n }\n\n void induced_sort(vector<int>&v,vector<int>&sa,int mv,vector<int>&bucket,vector<int>&is_l){\n create_begin_bucket(v,bucket);\n for(int i=0;i<(int)v.size();i++)if(sa[i]>0&&is_l[sa[i]-1])sa[bucket[v[sa[i]-1]]++]=sa[i]-1;\n }\n\n void invert_induced_sort(vector<int>&v,vector<int>&sa,int mv,vector<int>&bucket,vector<int>&is_l){\n create_end_bucket(v,bucket);\n for(int i=v.size()-1;i>=0;i--)if(sa[i]>0&&!is_l[sa[i]-1])sa[--bucket[v[sa[i]-1]]]=sa[i]-1;\n }\n\n vector<int>sa_is(vector<int>v,int mv){\n if(v.size()==1)return vector<int>(1,0);\n\n vector<int>is_l(v.size());\n vector<int>bucket(mv+1);\n vector<int>sa(v.size(),-1);\n auto is_lms=[&](int x)->bool{return x>0&&is_l[x-1]&&!is_l[x];};\n\n is_l[v.size()-1]=0;\n for(int i=v.size()-2;i>=0;i--)is_l[i]=v[i]>v[i+1]||(v[i]==v[i+1]&&is_l[i+1]);\n create_end_bucket(v,bucket);\n for(int i=0;i<(int)v.size();i++)if(is_lms(i))sa[--bucket[v[i]]]=i;\n induced_sort(v,sa,mv,bucket,is_l);\n invert_induced_sort(v,sa,mv,bucket,is_l);\n\n int cur=0;\n vector<int>order(v.size());\n for(int i=0;i<(int)v.size();i++)if(is_lms(i))order[i]=cur++;\n\n vector<int>next_v(cur);\n cur=-1;\n int prev=-1;\n for(int i=0;i<(int)v.size();i++){\n if(!is_lms(sa[i]))continue;\n bool diff=false;\n for(int d=0;d<v.size();d++){\n if(prev==-1||v[sa[i]+d]!=v[prev+d]||is_l[sa[i]+d]!=is_l[prev+d]){\n diff=true;\n break;\n }\n else if(d>0&&is_lms(sa[i]+d))break;\n }\n if(diff){cur++;prev=sa[i];}\n next_v[order[sa[i]]]=cur;\n }\n\n vector<int>re_order(next_v.size());\n for(int i=0;i<(int)v.size();i++)if(is_lms(i))re_order[order[i]]=i;\n vector<int>next_sa=sa_is(next_v,cur);\n create_end_bucket(v,bucket);\n for(int i=0;i<sa.size();i++)sa[i]=-1;\n for(int i=next_sa.size()-1;i>=0;i--)sa[--bucket[v[re_order[next_sa[i]]]]]=re_order[next_sa[i]];\n induced_sort(v,sa,mv,bucket,is_l);\n invert_induced_sort(v,sa,mv,bucket,is_l);\n return sa;\n }\n\n vector<int> sa_is(string &s){\n vector<int>v(s.size()+1);\n for(int i=0;i<(int)s.size();i++)v[i]=s[i];\n return sa_is(v,*max_element(v.begin(),v.end()));\n }\n\n \n}\nnamespace SA {\n int n, k;\n int R[500000];\n int T[500000];\n bool compare_sa(int i, int j) {\n if (R[i] != R[j])return R[i] < R[j];\n else {\n int ri = i + k <= n ? R[i + k] : -1;\n int rj = j + k <= n ? R[j + k] : -1;\n return ri < rj;\n }\n }\n vector<int> construct_sa(string& S) {\n return latte::sa_is(S);\n n = S.size();\n vector<int> sa(n + 1);\n for (int i = 0; i <= n; i++) {\n sa[i] = i;\n R[i] = i < n ? S[i] : -1;\n }\n \n for (k = 1; k <= n; k *= 2) {\n sort(sa.begin(), sa.end(), compare_sa);\n T[sa[0]] = 0;\n for (int i = 1; i <= n; i++) \n T[sa[i]] = T[sa[i - 1]] + (compare_sa(sa[i - 1], sa[i]) ? 1 : 0);\n for (int i = 0; i <= n; i++)\n R[i] = T[i];\n }\n return sa;\n }\n vector<int> construct_lcp(string& S, vector<int> &sa) {\n n = S.size();\n for (int i = 0; i <= n; i++)R[sa[i]] = i;\n int h = 0;\n vector<int> lcp(n + 1, 0);\n for (int i = 0; i < n; i++) {\n int j = sa[R[i] - 1];\n if (h > 0)h--;\n for (; j + h < n&&i + h < n; h++) {\n if (S[j + h] != S[i + h])break;\n }\n lcp[R[i] - 1] = h;\n }\n return lcp;\n }\n}\n\nint ret[212345];\n\nvector<int> sa,lcp;\nvector<int> id;\n\n\nnamespace StaticRMQ {\n\t/*\n\tdefault:: range minimum query\n\t*/\n\n\ttemplate<typename T>\n\tusing MergeFunction = function<T(T,T)>;\n\n\ttemplate<typename T>\n\tMergeFunction<T>\n\t\tgetMin = [](T l, T r) {\n\t\treturn l < r ? l : r;\n\t};\n\n template<typename T>\n\tMergeFunction<T>\n\t\tgetMax = [](T l, T r) {\n\t\treturn l > r ? l : r;\n\t};\n\n\n\ttemplate<typename T>\n\tclass BufferManager {\n\tprivate:\n\t\tT* const mem;\n\t\tint ptr;\n\tpublic:\n\t\tBufferManager(T* buf):mem(buf) {\n\t\t\tptr = 0;\n\t\t}\n\t\tT* get(int m) {\n\t\t\tptr += m;\n\t\t\treturn mem + ptr - m;\n\t\t}\n\t\tvoid reset() {\n\t\t\tptr = 0;\n\t\t}\n\t};\n\n\tnamespace Buffer{\n\t\t// if N<=10^6 : BufferSize is enough for 5 * N\n\t\tconstexpr int BufferSize = 5 * 1123456;\n\t\tusing NodeType = int;\n\t\tNodeType mem[BufferSize];\n\t\tBufferManager<NodeType> buffer(mem);\n\t}\n\n\ttemplate<typename T, typename ITR>\n\tstruct SparseTable {\n\t\tconst int n;\n\t\tconst int logn;\n\t\tT* const mem;\n\t\tMergeFunction<T> Merge;\n\t\tvoid build() {\n\t\t\tfor (int h = 0; h + 1 < logn; h++) {\n\t\t\t\tconst int half = 1 << h;\n\t\t\t\tconst int len = half << 1;\n\t\t\t\tfor (int i = 0; i + len <= n; i++) {\n\t\t\t\t\tmem[h*n + n + i] = Merge(mem[h*n + i], mem[h*n + i + half]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tstatic inline int get_log(const int n) {\n\t\t\tint l = 1;\n\t\t\tfor (int tmp = 1; tmp < n; tmp <<= 1)l++;\n\t\t\treturn l;\n\t\t}\n\t\tSparseTable(ITR bg, ITR ed,\n MergeFunction<T> f = getMin<T>,\n\t\t\tBufferManager<T> &bf = Buffer::buffer\n )\n\t\t\t: n(distance(bg,ed)),\n\t\t\tlogn(get_log(n)),\n\t\t\tmem(bf.get(n*logn)),\n\t\t\tMerge(f) {\n\t\t\tfor (auto p = mem; bg != ed; ++bg, ++p) {\n\t\t\t\t(*p) = (*bg);\n\t\t\t}\n\t\t\tbuild();\n\t\t}\n\t\tinline int get_msb(const int size) {\n#ifdef BTK\n\t\t\tint id = 0;\n\t\t\tfor (int i = 0; i < logn; i++)if (size >> i)id = i;\n\t\t\treturn id;\n#else\n\t\t\treturn 31 - __builtin_clz(size);\n#endif\n\t\t}\n\t\tinline T get(const int l, const int r) {\n\t\t\tconst int msb = get_msb(r - l);\n\t\t\treturn Merge(mem[msb*n + l], mem[msb*n + r - (1 << msb)]);\n\t\t}\n\t};\n\n\ttemplate<typename T, typename ITR>\n\tstruct SmallRMQ{\n\t\tconst int n;\n\t\tT* const mem;\n\t\tMergeFunction<T> Merge;\n\t\tvoid build(ITR bg,ITR ed) {\n\t\t\tint x = distance(bg, ed);\n\t\t\tfor (auto p = mem; x > 0; x -= 4) {\n\t\t\t\tT tmp[4];\n\t\t\t\ttmp[0] = (*bg); ++bg;\n\t\t\t\tif (x >= 1)tmp[1] = (*bg); ++bg;\n\t\t\t\tif (x >= 2)tmp[2] = (*bg); ++bg;\n\t\t\t\tif (x >= 3)tmp[3] = (*bg); ++bg;\n\t\t\t\tfor (int i = 0; i < 4; i++) {\n\t\t\t\t\tT ret = tmp[i];\n\t\t\t\t\t(*p) = ret; ++p;\n\t\t\t\t\tfor (int j = i + 1; j < 4; j++) {\n\t\t\t\t\t\tret = Merge(ret,tmp[j]);\n\t\t\t\t\t\t(*p) = ret; ++p;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tSmallRMQ(ITR bg, ITR ed,\n\t\t\tMergeFunction<T> f = getMin<T>,\n\t\t\tBufferManager<T> &bf = Buffer::buffer\n )\n : n(((distance(bg, ed)+3)>>2)<<2),\n\t\t\tmem(bf.get((n>>2) * 10)),\n\t\t\tMerge(f) {\n\t\t\tbuild(bg, ed);\n\t\t}\n\t\tinline T get(int l, int r) {\n\t\t\tconst int block = l >> 2;\n\t\t\tl &= 3; r--; r &= 3;\n\t\t\tconst int segment = (10 - (((4 - l)*(4 - l + 1)) >> 1)) + (r - l);\n\t\t\treturn mem[block * 10 + segment];\n\t\t}\n\n\t};\n\ttemplate<typename T, typename ITR>\n\tstruct RMQ {\n\t\tconst int n;\n\t\tMergeFunction<T> Merge;\n\t\tT* const workspace;\n\t\tSmallRMQ<T, ITR> small;\n\t\tSmallRMQ<T, T*> medium;\n\t\tSparseTable<T, T*> large;\n\t\ttemplate<typename S, typename Itr>\n\t\tinline S buildBlock(Itr bg, Itr ed, BufferManager<T>& bf, const int size) {\n\t\t\tT* p = workspace;\n\t\t\tfor (int x = distance(bg, ed); x > 0; ++p, x-=4) {\n\t\t\t\t(*p) = (*bg); ++bg;\n\t\t\t\tif(x>=1)(*p) = Merge(*p, *bg); ++bg;\n\t\t\t\tif(x>=2)(*p) = Merge(*p, *bg); ++bg;\n\t\t\t\tif(x>=3)(*p) = Merge(*p, *bg); ++bg;\n\t\t\t}\n\t\t\treturn S(workspace, workspace+size, Merge, bf);\n\t\t}\n\t\tRMQ(ITR bg, ITR ed,\n\t\t\tMergeFunction<T> f = getMin<T>,\n\t\t\tBufferManager<T> &bf = Buffer::buffer\n ): n(((distance(bg, ed) + 15) >> 4) << 4),\n\t\t\tMerge(f),\n\t\t\tworkspace(bf.get(n >> 2)),\n\t\t\tsmall(bg, ed, f, bf),\n\t\t\tmedium(buildBlock<SmallRMQ<T, T*>, ITR>(bg, ed, bf, n >> 2)),\n\t\t\tlarge(buildBlock<SparseTable<T, T*>, T*>(workspace, workspace + (n >> 2), bf, n >> 4))\n\t\t{}\n\t\tinline T get(int l, int r) {\n\t\t\tint nl = (l >> 2) + 1;\n\t\t\tint nr = ((r - 1) >> 2);\n\t\t\tT ret = small.get(l, min(nl << 2, r));\n\t\t\tret = Merge(ret, small.get(max(l, nr << 2),r));\n\t\t\tl = nl; r = nr;\n\t\t\tnl = (l >> 2) + 1; \n\t\t\tnr = ((r - 1) >> 2);\n\t\t\tif (l >= r)return ret;\n\t\t\tret = Merge(ret, medium.get(l, min(nl << 2, r)));\n\t\t\tret = Merge(ret, medium.get(max(l, nr << 2), r));\n\t\t\tl = nl; r = nr;\n\t\t\tif (l >= r)return ret;\n\t\t\telse return Merge(ret, large.get(l, r));\n\t\t}\n\t};\n}\nusing RMQ_PTR=StaticRMQ::RMQ<int,decltype(lcp.begin())>;\n\n\ninline pair<int,int> get_range(int pos,int len,RMQ_PTR&rmq){\n int lb=pos;\n int ub=pos+1;\n {\n int ok=pos;\n int ng=-1;\n while(abs(ok-ng)>1){\n const int mid=(ok+ng)/2;\n if(rmq.get(mid,pos)>=len){\n ok=mid;\n }\n else{\n ng=mid;\n }\n }\n chmin(lb,ok);\n }\n {\n int ok=pos;\n int ng=N+1;\n while(abs(ok-ng)>1){\n const int mid=(ok+ng)/2;\n if(rmq.get(pos,mid)>=len){\n ok=mid;\n }\n else{\n ng=mid;\n }\n }\n chmax(ub,ng);\n }\n return {lb,ub};\n}\n\n\nconstexpr int INF = 1e7;\ntemplate<typename SEG> using SetInitialLeaf = function<void(SEG&, int)>;\ntemplate<typename SEG> using SetInitialSegment = function<void(SEG&, const int, const int)>;\ntemplate<typename RET, typename SEG> using GetSingleSegment = function<RET(SEG&, const int, const int)>;\ntemplate<typename RET> using GetMergedSegment = function<RET(RET, RET)>;\ntemplate<typename SEG, typename Q> using UpdateSingleSegment = function<void(SEG&, Q)>;\ntemplate<typename SEG> using LazyUpdate = function<void(SEG&, SEG&, SEG&)>;\n\nstruct node { vector<int> x; };\n\nint query_lb;\n\nSetInitialLeaf<node>\nset_leaf = [](node &v, const int id) {\n};\n\nSetInitialSegment<node>\nset_segment = [](node &v, const int l, const int r) {\n const int lb = l;\n const int ub = min(N+1,r);\n v.x.reserve(max(ub-lb,0)+1);\n for(int i:range(lb,ub)){\n v.x.push_back(sa[i]);\n }\n v.x.push_back(INF);\n sort(ALL(v.x));\n};\n\nGetSingleSegment<int, node>\nsegment_min = [](node &v, const int l, const int r) {\n\treturn *lower_bound(ALL(v.x),query_lb);\n};\n\nGetMergedSegment<int>\nmerge_segment = [](int l, int r) {\n\treturn l < r ? l : r;\n};\n\n\n#ifndef NDBUF\n#define NDBUF\ntemplate<typename T>\nstruct BufferManager {\n\tT *mem;\n\tint ptr;\n\tBufferManager(T* mem) {\n\t\tptr = 0;\n\t\tthis->mem = mem;\n\t}\n\tT* get(int m) {\n\t\tptr += m;\n\t\treturn mem + ptr - m;\n\t}\n\tvoid reset() {\n\t\tptr = 0;\n\t}\n};\n\n\n#endif\nnamespace H {\n\tconstexpr int BufferSize = 812345;\n\tusing NodeType = node;\n\tNodeType mem[BufferSize];\n\tBufferManager<NodeType> buffer(mem);\n}\ntemplate<typename Node, typename RET>\nstruct SegmentTree {\n\tint size;\n\tNode *seg;\n\tGetSingleSegment<RET, Node> get_single_segment;\n\tGetMergedSegment<RET> get_merged_segment;\n\tLazyUpdate<Node> lazy_update;\n\tvoid init(int l, int r, SetInitialSegment<Node>& init_segment, SetInitialLeaf<Node>& init_leaf, int k = 0) {\n\t\tauto &v = seg[k];\n\t\tinit_segment(v, l, r);\n\t\tif (r - l == 1) {\n\t\t\t//葉の時の処理\n\t\t\tinit_leaf(v, l);\n\t\t}\n\t\telse if (r - l>1) {\n\t\t\tint m = (l + r) / 2;\n\t\t\tinit(l, m, init_segment, init_leaf, k * 2 + 1);\n\t\t\tinit(m, r, init_segment, init_leaf, k * 2 + 2);\n\t\t}\n\t}\n\tSegmentTree(\n\t\tint n,\n\t\tGetSingleSegment<RET, Node> gss,\n\t\tGetMergedSegment<RET> gms,\n\t\tSetInitialSegment<Node> sis,\n\t\tSetInitialLeaf<Node> sil,\n\t\tLazyUpdate<Node> lu = [](Node &v,Node &l,Node &r){},\n\t\tBufferManager<Node>& buf = H::buffer\n\t)\n\t\t:get_single_segment(gss),\n\t\tget_merged_segment(gms),\n\t\tlazy_update(lu) {\n\t\tsize = 1; while (size<n)size *= 2;\n\t\tseg = buf.get(size * 2 + 10);\n\t\tinit(0, size, sis, sil);\n\t}\n SegmentTree(){\n }\n#define LQ a,b,k*2+1,l,m\n#define RQ a,b,k*2+2,m,r\n\tRET get(int a, int b, int k, int l, int r) {\n\t\tif (a <= l && r <= b)return get_single_segment(seg[k], l, r);\n\t\tif (r - l > 1)lazy_update(seg[k], seg[2 * k + 1], seg[2 * k + 2]);\n\t\tint m = (l + r) / 2;\n\t\tbool ll = !(m <= a || b <= l);\n\t\tbool rr = !(r <= a || b <= m);\n\t\tRET ret;\n\t\tif (ll&&rr)ret = get_merged_segment(get(LQ), get(RQ));\n\t\telse if (ll)ret = get(LQ); else ret = get(RQ);\n\t\t\n\t\treturn ret;\n\t}\n\tRET get(int a, int b) {\n\t\treturn get(a, b, 0, 0, size);\n\t}\n\ttemplate<typename Q>\n\tvoid update(int a, int b, int k, int l, int r, UpdateSingleSegment<Node, Q> &update_segment, Q value) {\n\t\tif (r <= a || b <= l)return;\n\t\tif (a <= l && r <= b) {\n\t\t\tupdate_segment(seg[k], value);\n\t\t}\n\t\telse {\n\t\t\tif (r - l > 1)lazy_update(seg[k], seg[2 * k + 1], seg[2 * k + 2]);\n\t\t\tint m = (l + r) / 2;\n\t\t\tupdate(LQ, update_segment, value);\n\t\t\tupdate(RQ, update_segment, value);\n\t\t\tseg[k].ret = get_merged_segment(\n\t\t\t\tget_single_segment(seg[k * 2 + 1], l, m),\n\t\t\t\tget_single_segment(seg[k * 2 + 2], m, r)\n\t\t\t);\n\t\t}\n\t}\n\ttemplate<typename Q>\n\tvoid update_segment(int a, int b, UpdateSingleSegment<Node, Q> &update_segment, Q value) {\n\t\tupdate(a, b, 0, 0, size, update_segment, value);\n\t}\n\n\ttemplate<typename Q>\n\tvoid update_element(int a, UpdateSingleSegment<Node, Q> &update_segment, Q value) {\n\t\tupdate(a, a + 1, 0, 0, size, update_segment, value);\n\t}\n};\n\nSegmentTree<node,int> st;\n\n\n\ninline bool check(int ql,int qr,int X_len,RMQ_PTR&rmq,bool db=false){\n if(X_len*3+3>qr-ql)return false;\n int lb,ub;\n tie(lb,ub)=get_range(id[ql],X_len,rmq);\n int p;\n {\n int X1=ql+X_len;\n query_lb = X1+1;\n p = st.get(lb,ub);\n int A1=p;\n int X2=p+X_len;\n if(X2>=N)return false;\n query_lb = X2+1;\n p = st.get(lb,ub);\n int A2=p;\n int X3=p+X_len;\n if(X3>=N)return false;\n int A3=qr;\n if(A3-X3>=1){\n /*\n if(db){\n cerr << S.substr(ql,X1-ql) << \" \";\n cerr << S.substr(X1,A1-X1) << \" \";\n cerr << S.substr(A1,X2-A1) << \" \";\n cerr << S.substr(X2,A2-X2) << \" \";\n cerr << S.substr(A2,X3-A2) << \" \";\n cerr << S.substr(X3,A3-X3) << \" \";\n cerr << endl;\n for(int i:range(lb,ub)){\n cerr << sa[i] << \" \" <<S.substr(sa[i]) << \" \";\n if(id[ql]<i){\n cerr << rmq.get(i,id[ql]+1) <<endl;\n }\n else{\n cerr << rmq.get(id[ql],i+1) <<endl;\n }\n }\n }\n */\n return true;\n }\n else{\n return false;\n }\n return A3-X3>=1;\n }\n}\n\n\n\n\n\ninline int solve(int ql,int qr,RMQ_PTR&rmq){\n int lb=0;\n int ub=qr-ql;\n while(ub-lb>1){\n const int mid = (lb+ub)/2;\n if(check(ql,qr,mid,rmq)){\n lb=mid;\n }\n else{\n ub=mid;\n }\n }\n if(lb>0)check(ql,qr,lb,rmq,true);\n return lb;\n}\n\n\n\n\nint main(){\n scanf(\"%d%d%s\",&N,&Q,buf);\n reverse(buf,buf+N);\n S=buf;\n sa=SA::construct_sa(S);\n id=vector<int>(N+1);\n for(int i:range(N+1)){\n id[sa[i]]=i;\n }\n lcp=SA::construct_lcp(S,sa);\n RMQ_PTR rmq(lcp.begin(),lcp.end());\n st = SegmentTree<node,int>(N+1,segment_min, merge_segment, set_segment, set_leaf);\n DEBUG cerr << S << endl;\n\n DEBUG {\n for(int i:range(N)){\n cerr << sa[i] <<\" \"<<S.substr(sa[i])<<\" \"<<lcp[i]<<endl;\n }\n }\n for(int i:range(Q)){\n int l,r;\n scanf(\"%d%d\",&l,&r);\n DEBUG {\n for(int j:range(N-r,N-l+1)){\n cerr << S[j];\n }\n cerr << endl;\n }\n\n ret[i]=solve(N-r,N-l+1,rmq);\n }\n for(int i:range(Q)){\n printf(\"%d\\n\",ret[i]);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 5300, "memory_kb": 57728, "score_of_the_acc": -1.1782, "final_rank": 13 }, { "submission_id": "aoj_3063_3413472", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\ntemplate <class T> using V = vector<T>;\ntemplate <class T> using VV = V<V<T>>;\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); }\n\n//#define int ll\n\n#define FOR(i,a,b) for(int i=int(a);i<int(b);i++)\n#define REP(i,b) FOR(i,0,b)\n\nll read(){\n\tll x;\n\tscanf(\"%lld\",&x);\n\treturn x;\n}\n\nvoid print(ll x){\n\tprintf(\"%lld\\n\",x);\n}\n\nstring readString(){\n\tstatic char buf[1000010];\n\tscanf(\"%s\",buf);\n\treturn string(buf);\n}\n\nusing vi=vector<int>;\n#define PB push_back\n#define ALL(x) x.begin(),x.end()\n\ntemplate<class T>\nvoid chmin(T&a,T b){\n\tif(a>b)a=b;\n}\ntemplate<class T>\nvoid chmax(T&a,T b){\n\tif(a<b)a=b;\n}\n\ntemplate<class T>\nT Sq(T t){\n\treturn t*t;\n}\n\ntemplate<class Str> struct SA{\n\tStr s;\n\tvi sa,rsa,lcp;\n\tSA(){}\n\tSA(Str _s,vi _sa):s(_s),sa(_sa){\n\t\tint n=s.size();\n\t\trsa=vi(n+1);\n\t\tREP(i,n+1)\n\t\t\trsa[sa[i]]=i;\n\t\tlcp=vi(n);\n\t\tint h=0;\n\t\tREP(i,n){\n\t\t\tint j=sa[rsa[i]-1];\n\t\t\tif(h>0)h--;\n\t\t\tfor(;j+h<n&&i+h<n;h++)\n\t\t\t\tif(s[j+h]!=s[i+h])\n\t\t\t\t\tbreak;\n\t\t\tlcp[rsa[i]-1]=h;\n\t\t}\n\t}\n};\n\ntemplate<class Str> vi doublingSA(Str s){\n\tint n=s.size();\n\tvi sa(n+1);\n\tvi rsa(n+1);\n\tiota(ALL(sa),0);\n\tREP(i,n+1){\n\t\trsa[i]=i<n?s[i]:-1;\n\t}\n\tvi tmp(n+1);\n\tfor(int k=1;k<=n;k*=2){\n\t\tauto cmp=[&](int x,int y){\n\t\t\tif(rsa[x]!=rsa[y]) return rsa[x]<rsa[y];\n\t\t\tint rx=x+k<=n?rsa[x+k]:-1;\n\t\t\tint ry=y+k<=n?rsa[y+k]:-1;\n\t\t\treturn rx<ry;\n\t\t};\n\t\tsort(ALL(sa),cmp);\n\t\ttmp[sa[0]]=0;\n\t\tFOR(i,1,n+1){\n\t\t\ttmp[sa[i]]=tmp[sa[i-1]]+cmp(sa[i-1],sa[i]);\n\t\t}\n\t\tcopy(ALL(tmp),rsa.begin());\n\t}\n\treturn sa;\n}\n\nint popcount(uint x){return __builtin_popcount(x);}\nint bsr(uint x){return 31-__builtin_clz(x);}\nint bsf(uint x){return __builtin_ctz(x);}\n\nconst int inf=INT_MAX/2-100;\n\nstruct SparseTable{\n\tvector<vi> data;\n\tSparseTable(vi v){\n\t\tint n=v.size();\n\t\tif(n==0)return;\n\t\tint lg=bsr(n)+1;\n\t\tdata.resize(lg);\n\t\tdata[0]=v;\n\t\tint l=1;\n\t\tFOR(s,1,lg){\n\t\t\tdata[s]=vi(n);\n\t\t\tREP(i,n-l)\n\t\t\t\tdata[s][i]=min(data[s-1][i],data[s-1][i+l]);\n\t\t\tl<<=1;\n\t\t}\n\t}\n\tint Query(int l,int r){\n\t\tif(r<=l)return inf;\n\t\tint u=bsr(r-l);\n\t\treturn min(data[u][l],data[u][r-(1<<u)]);\n\t}\n};\n\nstruct SegTree{\n\tint s;\n\tvi buf;\n\tSegTree(int n){\n\t\ts=1;\n\t\twhile(s<n)s*=2;\n\t\tbuf.resize(s*2,inf);\n\t}\n\tvoid Update(int i,int v){\n\t\ti+=s;\n\t\tbuf[i]=v;\n\t\twhile(i>>=1){\n\t\t\tbuf[i]=min(buf[i*2],buf[i*2+1]);\n\t\t}\n\t}\n\tint Get(int b,int e,int l,int r,int i){\n\t\tif(e<=l||r<=b)return inf;\n\t\tif(b<=l&&r<=e)return buf[i];\n\t\treturn min(Get(b,e,l,(l+r)/2,i*2),Get(b,e,(l+r)/2,r,i*2+1));\n\t}\n\tint Get(int b,int e){\n\t\tassert(b<e);\n\t\treturn Get(b,e,0,s,1);\n\t}\n};\n\nconst int Qmax=200010;\nint l[Qmax],r[Qmax],lw[Qmax],up[Qmax],mid[Qmax],bg[Qmax],ed[Qmax];\nbool ok[Qmax];\n\nconst int Nmax=200010;\nstruct Query{\n\tint i,k;\n};\nvector<Query> qs[Nmax];\n\nsigned main(){\n\tint n=read(),q=read();\n\tstring s=readString();\n\treverse(ALL(s));\n\tauto sa=SA<string>(s,doublingSA(s));\n\tSparseTable st(sa.lcp);\n\t\n\tREP(i,q){\n\t\tl[i]=read()-1,r[i]=read();\n\t\ttie(l[i],r[i])=make_tuple(n-r[i],n-l[i]);\n\t\tup[i]=max(1,(r[i]-l[i])/3);\n\t}\n\t\n\twhile(1){\n\t\tREP(i,n+1){\n\t\t\tqs[i]=vector<Query>();\n\t\t}\n\t\tREP(i,q){\n\t\t\tok[i]=false;\n\t\t}\n\t\tbool has=false;\n\t\tREP(i,q){\n\t\t\tif(up[i]-lw[i]>1){\n\t\t\t\tmid[i]=(lw[i]+up[i])/2;\n\t\t\t\tqs[l[i]+mid[i]+1].PB(Query{i,1});\n\t\t\t\tint cur=sa.rsa[l[i]];\n\t\t\t\tint left,right;\n\t\t\t\t{\n\t\t\t\t\tint a=0,b=cur+1;\n\t\t\t\t\twhile(b-a>1){\n\t\t\t\t\t\tint m=(a+b)/2;\n\t\t\t\t\t\tif(st.Query(cur-m,cur)>=mid[i])\n\t\t\t\t\t\t\ta=m;\n\t\t\t\t\t\telse\n\t\t\t\t\t\t\tb=m;\n\t\t\t\t\t}\n\t\t\t\t\tleft=cur-a;\n\t\t\t\t}\n\t\t\t\t{\n\t\t\t\t\tint a=0,b=n-cur+1;\n\t\t\t\t\twhile(b-a>1){\n\t\t\t\t\t\tint m=(a+b)/2;\n\t\t\t\t\t\tif(st.Query(cur,cur+m)>=mid[i])\n\t\t\t\t\t\t\ta=m;\n\t\t\t\t\t\telse\n\t\t\t\t\t\t\tb=m;\n\t\t\t\t\t}\n\t\t\t\t\tright=cur+a;\n\t\t\t\t}\n\t\t\t\tbg[i]=left;\n\t\t\t\ted[i]=right+1;\n\t\t\t\thas=true;\n\t\t\t}else{\n\t\t\t\tmid[i]=up[i];\n\t\t\t}\n\t\t}\n\t\tif(!has)break;\n\t\t\n\t\tSegTree seg(n+1);\n\t\tREP(i,n+1){\n\t\t\tseg.Update(i,sa.sa[i]);\n\t\t}\n\t\t\n\t\tREP(i,n+1){\n\t\t\tfor(auto w:qs[i]){\n\t\t\t\tif(w.k==3){\n\t\t\t\t\tok[w.i]=i<=r[w.i];\n\t\t\t\t}else{\n\t\t\t\t\tint mn=seg.Get(bg[w.i],ed[w.i]);\n\t\t\t\t\tint nx=mn+mid[w.i]+1;\n\t\t\t\t\tif(nx<=n){\n\t\t\t\t\t\tqs[nx].PB(Query{w.i,w.k+1});\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tseg.Update(sa.rsa[i],inf);\n\t\t}\n\t\t\n\t\tREP(i,q){\n\t\t\tif(ok[i])\n\t\t\t\tlw[i]=mid[i];\n\t\t\telse\n\t\t\t\tup[i]=mid[i];\n\t\t}\n\t}\n\tREP(i,q)\n\t\tprint(lw[i]);\n}", "accuracy": 1, "time_ms": 5120, "memory_kb": 39600, "score_of_the_acc": -1.0256, "final_rank": 10 }, { "submission_id": "aoj_3063_3413345", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntemplate< typename Monoid >\nstruct PersistentSegmentTree {\n using F = function< Monoid(Monoid, Monoid) >;\n\n struct Node {\n Monoid data;\n Node *l, *r;\n\n Node(const Monoid &data) : data(data), l(nullptr), r(nullptr) {}\n };\n\n\n int sz;\n const F f;\n const Monoid M1;\n\n PersistentSegmentTree(const F f, const Monoid &M1) : f(f), M1(M1) {}\n\n Node *build(const vector< Monoid > &v) {\n sz = (int) v.size();\n return build(0, (int) v.size(), v);\n }\n\n Node *merge(Node *l, Node *r) {\n auto t = new Node(f(l->data, r->data));\n t->l = l;\n t->r = r;\n return t;\n }\n\n Node *build(int l, int r, const vector< Monoid > &v) {\n if(l + 1 >= r) return new Node(v[l]);\n return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v));\n }\n\n Node *update(int a, const Monoid &x, Node *k, int l, int r) {\n if(r <= a || a + 1 <= l) {\n return k;\n } else if(a <= l && r <= a + 1) {\n return new Node(x);\n } else {\n return merge(update(a, x, k->l, l, (l + r) >> 1), update(a, x, k->r, (l + r) >> 1, r));\n }\n }\n\n Node *update(Node *t, int k, const Monoid &x) {\n return update(k, x, t, 0, sz);\n }\n\n Monoid query(int a, int b, Node *k, int l, int r) {\n if(r <= a || b <= l) {\n return M1;\n } else if(a <= l && r <= b) {\n return k->data;\n } else {\n return f(query(a, b, k->l, l, (l + r) >> 1),\n query(a, b, k->r, (l + r) >> 1, r));\n }\n }\n\n Monoid query(Node *t, int a, int b) {\n return query(a, b, t, 0, sz);\n }\n};\n\nstruct SuffixArray {\n vector< int > SA;\n const string s;\n\n SuffixArray(const string &str) : s(str) {\n SA.resize(s.size());\n iota(begin(SA), end(SA), 0);\n sort(begin(SA), end(SA), [&](int a, int b) {\n return s[a] == s[b] ? a > b : s[a] < s[b];\n });\n vector< int > classes(s.size()), c(s.begin(), s.end()), cnt(s.size());\n for(int len = 1; len < s.size(); len <<= 1) {\n for(int i = 0; i < s.size(); i++) {\n if(i > 0 && c[SA[i - 1]] == c[SA[i]] && SA[i - 1] + len < s.size() && c[SA[i - 1] + len / 2] == c[SA[i] + len / 2]) {\n classes[SA[i]] = classes[SA[i - 1]];\n } else {\n classes[SA[i]] = i;\n }\n }\n iota(begin(cnt), end(cnt), 0);\n copy(begin(SA), end(SA), begin(c));\n for(int i = 0; i < s.size(); i++) {\n int s1 = c[i] - len;\n if(s1 >= 0) SA[cnt[classes[s1]]++] = s1;\n }\n classes.swap(c);\n }\n }\n\n int operator[](int k) const {\n return SA[k];\n }\n\n size_t size() const {\n return s.size();\n }\n\n bool lt_substr(const string &t, int si = 0, int ti = 0) {\n int sn = (int) s.size(), tn = (int) t.size();\n while(si < sn && ti < tn) {\n if(s[si] < t[ti]) return true;\n if(s[si] > t[ti]) return false;\n ++si, ++ti;\n }\n return si >= sn && ti < tn;\n }\n\n int lower_bound(const string &t) {\n int low = -1, high = (int) SA.size();\n while(high - low > 1) {\n int mid = (low + high) / 2;\n if(lt_substr(t, SA[mid])) low = mid;\n else high = mid;\n }\n return high;\n }\n\n pair< int, int > lower_upper_bound(string &t) {\n int idx = lower_bound(t);\n int low = idx - 1, high = (int) SA.size();\n t.back()++;\n while(high - low > 1) {\n int mid = (low + high) / 2;\n if(lt_substr(t, SA[mid])) low = mid;\n else high = mid;\n }\n t.back()--;\n return {idx, high};\n }\n\n void output() {\n for(int i = 0; i < size(); i++) {\n cout << i << \": \" << s.substr(SA[i]) << endl;\n }\n }\n};\n\nstruct LongestCommonPrefixArray {\n const SuffixArray &SA;\n vector< int > LCP, rank;\n\n LongestCommonPrefixArray(const SuffixArray &SA) : SA(SA), LCP(SA.size()) {\n rank.resize(SA.size());\n for(int i = 0; i < SA.size(); i++) {\n rank[SA[i]] = i;\n }\n for(int i = 0, h = 0; i < SA.size(); i++) {\n if(rank[i] + 1 < SA.size()) {\n for(int j = SA[rank[i] + 1]; max(i, j) + h < SA.size() && SA.s[i + h] == SA.s[j + h]; ++h);\n LCP[rank[i] + 1] = h;\n if(h > 0) --h;\n }\n }\n }\n\n int operator[](int k) const {\n return LCP[k];\n }\n\n size_t size() const {\n return LCP.size();\n }\n\n void output() {\n for(int i = 0; i < size(); i++) {\n cout << i << \": \" << LCP[i] << \" \" << SA.s.substr(SA[i]) << endl;\n }\n }\n};\n\ntemplate< typename T >\nstruct SparseTable {\n vector< vector< T > > st;\n vector< int > lookup;\n\n SparseTable(const vector< T > &v) {\n int b = 0;\n while((1 << b) <= v.size()) ++b;\n st.assign(b, vector< T >(1 << b));\n for(int i = 0; i < v.size(); i++) {\n st[0][i] = v[i];\n }\n for(int i = 1; i < b; i++) {\n for(int j = 0; j + (1 << i) <= (1 << b); j++) {\n st[i][j] = min(st[i - 1][j], st[i - 1][j + (1 << (i - 1))]);\n }\n }\n lookup.resize(v.size() + 1);\n for(int i = 2; i < lookup.size(); i++) {\n lookup[i] = lookup[i >> 1] + 1;\n }\n }\n\n inline T rmq(int l, int r) {\n if(l >= r) return 1 << 30;\n int b = lookup[r - l];\n return min(st[b][l], st[b][r - (1 << b)]);\n }\n};\n\nconst int INF = 1 << 30;\n\nint main() {\n int N, Q;\n cin >> N >> Q;\n string S;\n cin >> S;\n reverse(begin(S), end(S));\n SuffixArray sa(S);\n LongestCommonPrefixArray lcp(sa);\n\n // lcp.output();\n vector< int > rev(N);\n for(int i = 0; i < N; i++) rev[sa[i]] = i;\n auto f = [](int a, int b) { return min(a, b); };\n using Seg = PersistentSegmentTree< int >;\n Seg seg(f, INF);\n vector< Seg::Node * > nodes;\n Seg::Node *root = seg.build(vector< int >(N, INF));\n nodes.emplace_back(root);\n for(int i = N - 1; i >= 0; i--) {\n root = seg.update(root, rev[i], i);\n nodes.emplace_back(root);\n }\n reverse(begin(nodes), end(nodes));\n SparseTable< int > ukunichia(lcp.LCP);\n\n for(int i = 0; i < Q; i++) {\n int L, R;\n cin >> L >> R;\n --L, --R;\n L = N - L - 1;\n R = N - R - 1;\n swap(L, R);\n ++R;\n auto check = [&](int v) {\n\n int low, high;\n {\n int ok = rev[L], ng = -1;\n while(ok - ng > 1) {\n int mid = (ok + ng) / 2;\n if(ukunichia.rmq(mid + 1, rev[L] + 1) >= v) ok = mid;\n else ng = mid;\n }\n low = ok;\n }\n\n {\n int ok = rev[L], ng = N + 1;\n while(ng - ok > 1) {\n int mid = (ok + ng) / 2;\n if(ukunichia.rmq(rev[L] + 1, mid) >= v) ok = mid;\n else ng = mid;\n }\n high = ok;\n }\n\n int qq = L;\n qq += v + 1;\n if(qq > R) return false;\n\n {\n int tap = seg.query(nodes[qq], low, high);\n if(tap >= INF) return false;\n qq = tap;\n qq += v + 1;\n if(qq > R) return false;\n }\n\n {\n int tap = seg.query(nodes[qq], low, high);\n if(tap >= INF) return false;\n qq = tap;\n\n qq += v + 1;\n if(qq > R) return false;\n }\n\n return qq <= R;\n };\n\n\n int ok = 0, ng = (R - L) / 3 + 1;\n while(ng - ok > 1) {\n int mid = (ok + ng) / 2;\n if(check(mid)) ok = mid;\n else ng = mid;\n }\n cout << ok << endl;\n }\n}", "accuracy": 1, "time_ms": 2770, "memory_kb": 156876, "score_of_the_acc": -1.2606, "final_rank": 17 }, { "submission_id": "aoj_3063_3413132", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> P;\ntypedef pair<int,P> P1;\ntypedef pair<P,P> P2;\n#define pu push\n#define pb push_back\n#define mp make_pair\n#define eps 1e-7\n#define INF 1000000000\n#define mod 1000000007 \n#define fi first\n#define sc second\n#define rep(i,x) for(int i=0;i<x;i++)\n#define repn(i,x) for(int i=1;i<=x;i++)\n#define SORT(x) sort(x.begin(),x.end())\n#define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end())\n#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin())\n#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin())\n\nint n,q;\nstring s;\n\nint NN,k;\nint ran[400005];\nint tmp[400005];\nint sa[400005];\n\nbool compare_sa(int i,int j)\n{\n\tif(ran[i] != ran[j]) return ran[i] < ran[j];\n\telse\n\t{\n\t\tint ri = i+k<=NN ? ran[i+k]: -1;\n\t\tint rj = j+k<=NN ? ran[j+k]: -1;\n\t\t\n\t\treturn ri < rj;\n\t}\n}\n\nvoid construct_sa(string S)\n{\n\tNN = S.size();\n\tfor(int i=0;i<=NN;i++)\n\t{\n\t\tsa[i] = i;\n\t\tran[i] = i<NN?S[i]:-1;\n\t}\n\t\n\tfor(k=1;k<=NN;k*=2)\n\t{\n\t\tsort(sa,sa+NN+1,compare_sa);\n\t\t\n\t\ttmp[sa[0]] = 0;\n\t\tfor(int i=1;i<=NN;i++)\n\t\t{\n\t\t\ttmp[sa[i]] = tmp[sa[i-1]] + compare_sa(sa[i-1],sa[i]);\n\t\t}\n\t\tfor(int i=0;i<=NN;i++)\n\t\t{\n\t\t\tran[i] = tmp[i];\n\t\t}\n\t}\n}\nint lcp[400005];\nvoid construct_lcp(string S)\n{\n\tint n = S.size();\n\tfor(int i=0;i<=n;i++) ran[sa[i]] = i;\n\t\n\tint h = 0;\n\tlcp[0] = 0;\n\t\n\tfor(int i=0;i<n;i++)\n\t{\n\t\tint j = sa[ran[i]-1];\n\t\t\n\t\tif(h) h--;\n\t\tfor(;j+h<n && i+h<n;h++)\n\t\t{\n\t\t\tif(S[j+h] != S[i+h]) break;\n\t\t}\n\t\tlcp[ran[i]-1] = h;\n\t}\n}\n\nint mn[200005][19];\nint xx[200005];\nvoid update(int k,int a){\n\tmn[k][0] = a;\n}\nint query(int a,int b,int k,int l,int r){\n\tint w = xx[b-a+1];\n\treturn min(mn[a][w],mn[b-(1<<w)+1][w]);\n}\nvector<int>S[(1<<19)];\nvoid updatee(int k,int a){\n\tk+=(1<<18)-1;\n\tS[k].pb(a);\n}\nvoid make(){\n\tfor(int i=(1<<18)-2;i>=0;i--){\n\t\tS[i].resize(S[i*2+1].size()+S[i*2+2].size());\n\t\tmerge(S[i*2+1].begin(),S[i*2+1].end(),S[i*2+2].begin(),S[i*2+2].end(),S[i].begin());\n\t}\n}\nint check(int a,int b,int k,int l,int r,int M){\n\tif(r<a||b<l||a>b) return INF;\n\tif(a<=l&&r<=b){\n\t\tint x = POSL(S[k],M);\n\t\tif(x == S[k].size()) return INF;\n\t\telse return S[k][x];\n\t}\n\treturn min( check(a,b,k*2+1,l,(l+r)/2,M), check(a,b,k*2+2,(l+r)/2+1,r,M) );\n}\nint main(){\n\tscanf(\"%d%d\",&n,&q);\n\tcin>>s; reverse(s.begin(),s.end()); //cout << s << endl;\n\tconstruct_sa(s);\n\tconstruct_lcp(s);\n\trep(i,200005)rep(j,19)mn[i][j] = INF;\n\tfor(int i=0;i<n;i++){\n\t\tupdate(i,lcp[i]);\n\t}\n\tfor(int j=0;j<18;j++){\n\t\tfor(int i=0;i<n;i++){\n\t\t\tif(i+(1<<j) < n) mn[i][j+1] = min(mn[i][j],mn[i+(1<<j)][j]);\n\t\t\telse mn[i][j+1] = mn[i][j];\n\t\t}\n\t}\n\trepn(u,200000){\n\t\tfor(int j=18;j>=0;j--){\n\t\t\tif(u >= (1<<j)){\n\t\t\t\txx[u] = j; break;\n\t\t\t}\n\t\t}\n\t}\n\t\n\tfor(int i=0;i<=n;i++){\n\t\tupdatee(i,sa[i]);\n\t}\n\tmake();\n\tfor(int i=0;i<q;i++){\n\t\tint L,R; scanf(\"%d%d\",&L,&R);\n\t\tR = n-R;\n\t\tL = n-L;\n\t\tswap(L,R);\n\t\tint RR = R;\n\t\tint lb = 0, ub = (R-L+1)/3;\n\t\twhile(ub-lb > 1){\n\t\t\tint mid = (lb+ub)/2;\n\t\t\tint cur = L;\n\t\t\tbool fail = 0;\n\t\t\trep(i,2){\n\t\t\t\t//cur+mid+1 以上\n\t\t\t\tint R = ran[cur];\n\t\t\t\tint l = -1,r = R;\n\t\t\t\tif(lcp[R-1] < mid) l = R-1;\n\t\t\t\twhile(r-l > 1){\n\t\t\t\t\tint mm = (l+r)/2;\n\t\t\t\t\tif(query(mm,R-1,0,0,(1<<18)-1) < mid){\n\t\t\t\t\t\tl = mm;\n\t\t\t\t\t}\n\t\t\t\t\telse{\n\t\t\t\t\t\tr = mm;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tint up = r; \n\t\t\t\t\n\t\t\t\tl = R,r = n+1;\n\t\t\t\tif(lcp[R] < mid) r = R+1;\n\t\t\t\twhile(r-l > 1){\n\t\t\t\t\tint mm = (l+r)/2;\n\t\t\t\t\tif(query(R,mm-1,0,0,(1<<18)-1) < mid){\n\t\t\t\t\t\tr = mm;\n\t\t\t\t\t}\n\t\t\t\t\telse{\n\t\t\t\t\t\tl = mm;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tint down = l;\n\t\t\t\tint ret = check(up,down,0,0,(1<<18)-1,cur+mid+1);\n\t\t\t\tif(ret > 1e8){\n\t\t\t\t\tfail = 1; break;\n\t\t\t\t}\n\t\t\t\telse{\n\t\t\t\t\tcur = ret;\n\t\t\t\t\tif(cur+mid-1 > RR-1){\n\t\t\t\t\t fail = 1;\n\t\t\t\t\t break;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(cur+mid-1 > R-1) fail = 1;\n\t\t\tif(fail) ub = mid;\n\t\t\telse lb = mid;\n\t\t}\n\t\tprintf(\"%d\\n\",lb);\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 5860, "memory_kb": 58408, "score_of_the_acc": -1.3024, "final_rank": 18 }, { "submission_id": "aoj_3063_3408052", "code_snippet": "#include<iomanip>\n#include<limits>\n#include<thread>\n#include<utility>\n#include<iostream>\n#include<string>\n#include<algorithm>\n#include<set>\n#include<map>\n#include<vector>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<numeric>\n#include<cassert>\n#include<random>\n#include<chrono>\n#include<unordered_set>\n#include<unordered_map>\n#include<fstream>\n#include<list>\n#include<functional>\n#include<bitset>\n#include<complex>\n#include<tuple>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef pair<int,int> pi;\ntypedef pair<double,double> pd;\ntypedef pair<double,ll> pdl;\n#define F first\n#define S second\nconst ll E=1e18+7;\nconst ll MOD=1000000007;\n\nstatic const ll High=18;\nstatic const ll MAX_N=200001;\n\nbool Matrix[High][MAX_N]; //下から上\npair<int,int> Rank[High][MAX_N]; //(0,1) [high][size] 自分より前\nint Mid[High]; //0-origin\n\nstruct WaveletMatrix{\n const int high;\n const int size;\n \n WaveletMatrix(int high,int size,const vector<ll> &A):high(high),size(size){init(A);}\n \n void init(vector<ll> A){\n for(int i=high-1;i>=0;i--){\n pair<int,int> R={0,0};\n for(int t=0;t<size;t++){\n Matrix[i][t]=A[t]>>i&1;\n Rank[i][t]=R;\n if(Matrix[i][t]){R.S++;}\n else{R.F++;}\n }\n Rank[i][size]=R;\n vector<ll> N(size);\n int l=0;\n for(int t=0;t<size;t++){\n if((A[t]>>i&1)==0){N[l]=A[t]; l++;}\n }\n Mid[i]=l;\n for(int t=0;t<size;t++){\n if(A[t]>>i&1){N[l]=A[t]; l++;}\n }\n A=N;\n }\n }\n \n ll access(int n) const {return access(high-1,n);}\n \n ll access(int h,int n) const {\n if(h==0){return Matrix[h][n];}\n if(Matrix[h][n]){\n return (1LL<<h)|access(h-1,Mid[h]+Rank[h][n].S);\n }\n return access(h-1,Rank[h][n].F);\n }\n \n //[l,r)\n int rank(ll s,int l,int r){\n return rank(s,l,r,high-1);\n }\n \n //[l,r)\n int rank(ll s,int l,int r,int h){\n if(h==0){\n if(s&1){return Rank[h][r].S-Rank[h][l].S;}\n return Rank[h][r].F-Rank[h][l].F;\n }\n if(s>>h&1){\n return rank(s,Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n }\n return rank(s,Rank[h][l].F,Rank[h][r].F,h-1);\n }\n \n //[l,r)\n ll range_min(int l,int r){return range_min(l,r,high-1);}\n \n //[l,r)\n ll range_min(int l,int r,int h){\n if(h==0){\n if(Rank[h][r].F-Rank[h][l].F==0){return 1;}\n return 0;\n }\n if(Rank[h][r].F-Rank[h][l].F==0){\n return (1LL<<h)|range_min(Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n }\n return range_min(Rank[h][l].F,Rank[h][r].F,h-1);\n }\n \n //[l,r)\n inline ll range_max(int l,int r){return range_max(l,r,high-1);}\n \n //[l,r)\n ll range_max(int l,int r,int h){\n if(h==0){\n if(Rank[h][r].S-Rank[h][l].S==0){return 0;}\n return 1;\n }\n if(Rank[h][r].S-Rank[h][l].S==0){\n return range_max(Rank[h][l].F,Rank[h][r].F,h-1);\n }\n return (1LL<<h)|range_max(Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n }\n \n //[s,t) [l,r)\n int range_count(ll s,ll t,int l,int r){return range_count(0,s,t,l,r,high-1);}\n \n //[s,t) [l,r)\n int range_count(ll w,ll s,ll t,int l,int r,int h){\n if(r<=l || t<=s){return 0;}\n if(s<=w && (w+(1LL<<(h+1)))<=t){return r-l;}\n if(s>=(w+(1LL<<(h+1))) || w>=t){return 0;}\n int ret=0;\n if(h==0){\n if(s<=w && w<t){ret+=Rank[h][r].F-Rank[h][l].F;}\n if(s<=w+1 && w+1<t){ret+=Rank[h][r].S-Rank[h][l].S;}\n return ret;\n }\n ret+=range_count(w,s,t,Rank[h][l].F,Rank[h][r].F,h-1);\n ret+=range_count(w|(1LL<<h),s,t,Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n return ret;\n }\n \n //[s,t) [l,r)\n inline ll range_min(ll s,ll t,int l,int r){return range_min(0,s,t,l,r,high-1);}\n \n //[s,t) [l,r)\n ll range_min(ll w,ll s,ll t,int l,int r,int h){\n if(r<=l || t<=s){return -1;}\n if(s<=w && (w+(1LL<<(h+1)))<=t){return range_min(l,r,h);}\n if(s>=(w+(1LL<<(h+1))) || w>=t){return -1;}\n ll ret=-1;\n if(h==0){\n if(s<=w && w<t && Rank[h][r].F-Rank[h][l].F>0){return 0;}\n if(s<=w+1 && w+1<t && Rank[h][r].S-Rank[h][l].S>0){return 1;}\n return -1;\n }\n ret=range_min(w,s,t,Rank[h][l].F,Rank[h][r].F,h-1);\n if(ret==-1){\n ret=range_min(w|(1LL<<h),s,t,Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n if(ret==-1){return ret;}\n ret|=1LL<<h;\n }\n return ret;\n }\n \n //[s,t) [l,r)\n inline ll range_max(ll s,ll t,int l,int r){return range_max(0,s,t,l,r,high-1);}\n \n //[s,t) [l,r)\n ll range_max(ll w,ll s,ll t,int l,int r,int h){\n if(r<=l || t<=s){return -1;}\n if(s<=w && (w+(1LL<<(h+1)))<=t){return range_max(l,r,h);}\n if(s>=(w+(1LL<<(h+1))) || w>=t){return -1;}\n if(h==0){\n if(s<=w+1 && w+1<t && Rank[h][r].S-Rank[h][l].S>0){return 1;}\n if(s<=w && w<t && Rank[h][r].F-Rank[h][l].F>0){return 0;}\n return -1;\n }\n ll ret=-1;\n ret=range_max(w|(1LL<<h),s,t,Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n if(ret==-1){\n ret=range_max(w,s,t,Rank[h][l].F,Rank[h][r].F,h-1);\n }\n else{ret|=1LL<<h;}\n return ret;\n }\n};\n\n\n\n\nstruct node{\n int idx,num;\n node* next;\n \n inline bool operator < (const node &A) const {\n if(num!=A.num){return num<A.num;}\n return (next==NULL?-1:next->num)<(A.next==NULL?-1:A.next->num);\n }\n \n inline bool operator == (const node &A) const {\n return num==A.num && (next==NULL?-1:next->num)==(A.next==NULL?-1:A.next->num);\n }\n};\n\nll n,q;\nstring s;\n\n\nnode A[High][MAX_N];\nll B[High][MAX_N];\n\n\ninline bool same(ll len,ll h,ll idx,ll idx2){\n idx=A[High-1][idx].idx;\n idx2=A[High-1][idx2].idx;\n idx-=len;\n idx2-=len;\n return (idx<0 || idx>=n?-1:A[h][B[h][idx]].num)==(idx2<0 || idx2>=n?-1:A[h][B[h][idx2]].num);\n}\n\n\nint main(){\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cin>>n>>q;\n cin>>s;\n for(int t=0;t<n;t++){\n A[0][t].idx=t;\n A[0][t].num=s[t]-'a';\n A[0][t].next=NULL;\n }\n sort(&A[0][0],&A[0][n]);\n for(int t=0;t<n;t++){B[0][A[0][t].idx]=t;}\n for(int t=0;t<n;t++){A[0][t].next=(A[0][t].idx-1<0?NULL:&A[0][B[0][A[0][t].idx-1]]);}\n for(int i=1;i<High;i++){\n for(int t=0;t<n;t++){A[i][t]=A[i-1][t];}\n sort(&A[i][0],&A[i][n]);\n A[i][0].num=0;\n for(int t=0;t<n;t++){\n B[i][A[i][t].idx]=t;\n if(t>0 && A[i-1][B[i-1][A[i][t-1].idx]]==A[i][t]){A[i][t].num=A[i][t-1].num;}\n else if(t>0){A[i][t].num=A[i][t-1].num+1;}\n }\n for(int t=0;t<n;t++){\n A[i][t].next=(A[i][t].idx-(1LL<<i)<0?NULL:&A[i][B[i][A[i][t].idx-(1LL<<i)]]);\n }\n }\n vector<ll> a(n);\n for(int i=0;i<n;i++){\n a[i]=A[High-1][i].idx;\n }\n WaveletMatrix M(High,(int)n,a);\n while(q--){\n ll l,r;\n cin>>l>>r;\n l--; r--;\n ll h=High;\n ll len=0;\n ll L=-1,R=n;\n while((--h)>=0){\n ll test=len+(1LL<<h);\n ll r1=r-test;\n if(r1<0){continue;}\n ll left=L;\n ll k=High;\n while((--k)>=0){\n if(left+(1LL<<k)>=B[High-1][r]){continue;}\n if(!same(len,h,left+(1LL<<k),B[High-1][r])){left+=1LL<<k;}\n }\n k=High;\n ll right=R;\n while((--k)>=0){\n if(right-(1LL<<k)<=B[High-1][r]){continue;}\n if(!same(len,h,right-(1LL<<k),B[High-1][r])){right-=1LL<<k;}\n }\n ll r2=M.range_max(l,r1,(int)left+1,(int)right);\n r2-=test;\n if(r2<=0){continue;}\n r2=M.range_max(l,r2,(int)left+1,(int)right);\n if(r2-test>=l){\n len+=1LL<<h;\n L=left; R=right;\n }\n }\n cout<<len<<'\\n';\n }\n \n \n \n \n \n return 0;\n}", "accuracy": 1, "time_ms": 5620, "memory_kb": 123772, "score_of_the_acc": -1.6625, "final_rank": 20 }, { "submission_id": "aoj_3063_3408046", "code_snippet": "#include <bits/stdc++.h>\n#define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,NAME,...) NAME\n#define pr(...) cerr<< GET_MACRO(__VA_ARGS__,pr8,pr7,pr6,pr5,pr4,pr3,pr2,pr1)(__VA_ARGS__) <<endl\n#define pr1(a) (#a)<<\"=\"<<(a)<<\" \"\n#define pr2(a,b) pr1(a)<<pr1(b)\n#define pr3(a,b,c) pr1(a)<<pr2(b,c)\n#define pr4(a,b,c,d) pr1(a)<<pr3(b,c,d)\n#define pr5(a,b,c,d,e) pr1(a)<<pr4(b,c,d,e)\n#define pr6(a,b,c,d,e,f) pr1(a)<<pr5(b,c,d,e,f)\n#define pr7(a,b,c,d,e,f,g) pr1(a)<<pr6(b,c,d,e,f,g)\n#define pr8(a,b,c,d,e,f,g,h) pr1(a)<<pr7(b,c,d,e,f,g,h)\n#define prArr(a) {cerr<<(#a)<<\"={\";int i=0;for(auto t:(a))cerr<<(i++?\", \":\"\")<<t;cerr<<\"}\"<<endl;}\nusing namespace std;\nusing Int = long long;\nusing _int = int;\nusing ll = long long;\nusing Double = long double;\nconst Int INF = (1LL<<60)+1e9; // ~ 1.15 * 1e18\nconst Int mod = (1e9)+7;\nconst Double EPS = 1e-8;\nconst Double PI = 6.0 * asin((Double)0.5);\nusing P = pair<Int,Int>;\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\ntemplate<class T1, class T2> ostream& operator<<(ostream& o,pair<T1,T2> p){return o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";}\ntemplate<class T1, class T2, class T3> ostream& operator<<(ostream& o,tuple<T1,T2,T3> t){\n return o<<\"(\"<<get<0>(t)<<\",\"<<get<1>(t)<<\",\"<<get<2>(t)<<\")\";}\ntemplate<class T1, class T2> istream& operator>>(istream& i,pair<T1,T2> &p){return i>>p.first>>p.second;}\ntemplate<class T> ostream& operator<<(ostream& o,vector<T> a){Int i=0;for(T t:a)o<<(i++?\" \":\"\")<<t;return o;}\ntemplate<class T> istream& operator>>(istream& i,vector<T> &a){for(T &t:a)i>>t;return i;}\n//INSERT ABOVE HERE\n\nclass Seg{\npublic:\n int INF = 1e9;\n int n,n_;\n vector<vector<int> > dat;\n \n //初期化\n Seg(){n=-1;}\n Seg(int n_):n_(n_){\n n=1;\n while(n<n_)n*=2;\n dat.resize(2*n-1,{});\n }\n\n inline vector<int> merge(const vector<int> &A,const vector<int> &B){\n int n = A.size(), m = B.size();\n int a = 0, b = 0;\n vector<int> res;\n while(a < n || b < m){\n if(b >= m) res.push_back(A[a++]);\n else if(a >= n) res.push_back(B[b++]);\n else if(A[a] < B[b]) res.push_back(A[a++]);\n else res.push_back(B[b++]);\n }\n return res;\n }\n \n void update(int k,int a){\n k+=n-1;\n dat[k]=vector<int>(1, a);\n }\n \n void build(){\n int k = n-2;\n while(k){\n int l = k * 2 + 1;\n int r = k * 2 + 2;\n dat[k] = merge(dat[l], dat[r]);\n k--;\n }\n for(int i=0;i<(int)dat.size();i++) dat[i].push_back(INF);\n }\n\n int dfs(int a,int b, int x, int k,int l,int r){\n if(r<=a||b<=l) return INF;\n if(a<=l&&r<=b) {\n int idx = lower_bound(dat[k].begin(), dat[k].end(), x) - dat[k].begin();\n assert(idx < (int)dat[k].size());\n return dat[k][idx];\n }\n int vl = dfs(a,b,x,k*2+1,l,(l+r)/2);\n int vr = dfs(a,b,x,k*2+2,(l+r)/2,r);\n return min(vl, vr);\n }\n \n //[a,b)の最小値を求める\n int get(int a,int b, int x){\n assert(a <= b), assert(a <= n_ && b <= n_), assert(a >= 0 && a >= 0);\n int res = dfs(a,b,x,0,0,n);\n if(res == INF) return -1;\n return res;\n }\n};\n\n\nclass RollingHash{\npublic:\n typedef unsigned long long ll;\n ll B; //B: ハッシュ基数\n int n;\n string s;\n vector<ll> hash;\n vector<ll> k;\n\n RollingHash():n(-1){};\n RollingHash(string s,ll B = 1777771):\n B(B),n(s.size()),s(s),hash(n+1),k(n+1)\n {\n for(int i=0;i<n;i++) hash[i+1] = (hash[i] * B + s[i]) ;\n k[0] = 1;\n for(int i=1;i<=n;i++) k[i] = (k[i-1] * B) ;\n }\n\n ll get(int l,int r)const{ //[l, r)\n //assert(0<=l && r<=n && l<=r);\n return (mod + hash[r] - hash[l] * k[r-l]);\n }\n \n //hash[a]とB.hash[b]からみて何文字一致してるか。\n int count(int a, const RollingHash &B, int b){\n int L = 0, R = min( n - a, B.n - b ) + 1;\n while( L + 1 < R ){\n int M = ( L + R ) / 2;\n get( a, a + M ) != B.get( b, b + M ) ? R = M : L = M;\n }\n return L;\n }\n\n};\n\nclass SA{\npublic:\n string S;\n int n;\n vector<int> sa;\n RollingHash rh;\n \n SA():n(-1){}\n SA(string S):S(S),n(S.size()),sa(n), rh(S){ \n vector<int> rnk(n);\n vector<int> tmp(n);\n for(int i=0;i<n;i++) sa[i]=i;\n for(int i=0;i<n;i++) rnk[i] = S[i];\n \n //k文字についてソートされているところから、2k文字でソート\n for(int Len=1;Len<=n;Len*=2){\n \n //(rnk[i],rnk[i+k])と(rnk[j],rnk[j+k])を比較\n auto compare_sa=[&](const int &i,const int &j){\n if(rnk[i]!=rnk[j])return rnk[i]<rnk[j];\n int ri=i+Len<n?rnk[i+Len]:-1;\n int rj=j+Len<n?rnk[j+Len]:-1;\n return ri<rj;\n };\n \n sort(sa.begin(),sa.end(),compare_sa);\n\n //いったんtmpに次のランクを計算して、rnkに代入\n for(int i=1;i<n;i++)\n tmp[sa[i]] = tmp[sa[i-1]] + compare_sa(sa[i-1],sa[i]);\n rnk = tmp;\n }\n }\n\n int lower_bound(string T){\n assert(n >= 0);\n int L=-1,R=S.length();\n while(L+1<R){\n int M = (L+R)/2;\n S.compare(sa[M],T.size(),T)<0? L = M:R = M;\n }\n return R;\n }\n \n int lower_bound(const RollingHash &rh2, int l,int r, int upper = 0){ //[l, r)\n auto compare = [&](int X){\n int idx = sa[X];\n int n = S.size() - idx;\n int m = r - l;\n int len = rh.count(idx, rh2, l);\n if(len >= m) return 0;\n if(len >= n) return -1;\n if(len >= m) return 1;\n assert(S[idx + len] != rh2.s[l + len]);\n return (S[idx + len] < rh2.s[l + len]) ? -1:1;\n };\n \n assert(n >= 0);\n int L=-1, R=S.length();\n while(L+1<R){\n int M = (L+R)/2;\n if(upper) compare(M)<=0? L = M:R = M;\n else compare(M)<0? L = M:R = M;\n }\n return R;\n }\n\n int upper_bound(string T){return lower_bound(T+char('z'+ 1));}\n int upper_bound(const RollingHash &rh2, int l,int r){return lower_bound(rh2, l, r, 1);}\n \n int count(string T){return upper_bound(T) - lower_bound(T);};\n int count(const RollingHash &rh2, int l,int r){\n return upper_bound(rh2, l, r) - lower_bound(rh2, l, r);\n }\n};\n\n//AXBXCX\n//XCXBXA\n\nsigned main(){\n srand((unsigned)time(NULL));\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n int N, Q;\n cin>>N>>Q;\n string str;\n cin>>str;\n reverse(str.begin(), str.end());\n \n SA sa(str);\n Seg seg(N);\n //pr(str);\n //pr(sa.sa);\n for(int i=0;i<N;i++) seg.update(i, sa.sa[i]);\n seg.build();\n\n vector<int> inv(N);\n for(int i=0;i<N;i++) inv[ sa.sa[i] ] = i;\n \n while(Q--){\n int l, r;\n cin>>l>>r;\n l = N - l;\n r = N - r;\n swap(l, r);\n \n auto check = [&](int X){\n if(l + X > N) return 0;\n int ll;\n {\n\tint L = 0, R = N;\n\twhile(L + 1 < R){\n\t int M = (L + R) / 2;\n\t if(inv[l] - M < 0) {R = M; continue;}\n\t int idx = sa.sa[inv[l] - M];\n\t if(idx + X > N) {R = M; continue;}\n\t Int hash1 = sa.rh.get(l, l + X);\n\t Int hash2 = sa.rh.get(idx, idx + X);\n\t hash1 != hash2? R=M:L=M;\n\t}\n\tll = inv[l] - L;\n }\n \n int rr;\n {\n\tint L = 0, R = N;\n\twhile(L + 1 < R){\n\t int M = (L + R) / 2;\n\t if(inv[l] + M >= N) {R = M; continue;}\n\t int idx = sa.sa[inv[l] + M];\n\t if(idx + X > N) {R = M; continue;}\n\t Int hash1 = sa.rh.get(l, l + X);\n\t Int hash2 = sa.rh.get(idx, idx + X);\n\t hash1 != hash2? R=M:L=M;\n\t}\n\trr = inv[l] + R;\n }\n \n \n //int ll = sa.lower_bound(sa.rh, l, l + X);\n //int rr = sa.upper_bound(sa.rh, l, l + X);\n int a = seg.get(ll, rr, l + X + 1);\n if(a == -1) return 0;\n int b = seg.get(ll, rr, a + X + 1);\n if(b == -1) return 0;\n if(b + X > r) return 0;\n return 1;\n };\n \n int L = 0, R = (r - l + 1 + 1) / 3;\n while(L+1 < R){\n int M = (L + R) / 2;\n check(M)? L = M:R = M;\n }\n cout<<L<<\"\\n\";\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 2540, "memory_kb": 57932, "score_of_the_acc": -0.5885, "final_rank": 5 }, { "submission_id": "aoj_3063_3407988", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\nstruct SuffixArray{\n int n;\n string S;\n vector<int> sa,lcp,rev;\n SuffixArray(){}\n SuffixArray(string &S):S(S){init();}\n void init(){\n n=S.length();\n S.push_back('$');\n build_sa();\n }\n void build_sa(){\n sa.assign(n+1,0);\n iota(sa.begin(),sa.end(),0);\n sort(sa.begin(),sa.end(),\n [&](int a,int b){\n if(S[a]==S[b]) return a>b;\n return S[a]<S[b];\n });\n vector<int> c(n+1,0),r(n+1),cnt(n+1),s(n+1);\n for(int i=0;i<=n;i++) r[i]=S[i];\n for(int len=1;len<=n;len*=2){\n for(int i=0;i<=n;i++){\n c[sa[i]]=\n i>0 &&\n r[sa[i-1]]==r[sa[i]] &&\n sa[i-1]+len<=n &&\n r[sa[i-1]+len/2]==r[sa[i]+len/2] ?\n c[sa[i-1]]:i;\n }\n iota(cnt.begin(),cnt.end(),0);\n copy(sa.begin(),sa.end(),r.begin());\n for(int i=0;i<=n;i++){\n int s1=r[i]-len;\n if(s1>=0) sa[cnt[c[s1]]++]=s1;\n }\n c.swap(r);\n }\n }\n};\n\n\nstruct RollingHash{\n using ull = unsigned long long;\n vector<ull> hash,p;\n RollingHash(){}\n RollingHash(const string &s,ull B=1000000007LL){\n int n=s.size();\n hash.assign(n+1,0);\n p.assign(n+1,1);\n for(int i=0;i<n;i++){\n hash[i+1]=hash[i]*B+s[i];\n p[i+1]=p[i]*B;\n }\n }\n //S[l, r)\n ull find(int l,int r){\n return hash[r]-hash[l]*p[r-l];\n }\n};\n\n\nstruct FullyIndexableDictionary{\n int len,blk;\n vector<unsigned> bit;\n vector<int> sum;\n \n FullyIndexableDictionary(){}\n FullyIndexableDictionary(int len)\n :len(len),blk((len+31)>>5),bit(blk,0),sum(blk,0){}\n \n void set(int k){\n bit[k>>5]|=1u<<(k&31);\n }\n\n void build(){\n sum[0]=0;\n for(int i=1;i<blk;i++)\n sum[i]=sum[i-1]+__builtin_popcount(bit[i-1]);\n }\n\n bool operator[](int k) const{\n return bool((bit[k>>5]>>(k&31))&1);\n }\n \n int rank(int k){\n return sum[k>>5]+__builtin_popcount(bit[k>>5]&((1u<<(k&31))-1));\n }\n \n int rank(bool v,int k){\n return (v?rank(k):k-rank(k));\n }\n\n int select(bool v,int k){\n if(k<0||rank(v,len)<=k) return -1;\n int low=0,high=len;\n while(low+1<high){\n int mid=(low+high)>>1;\n if(rank(v,mid)>=k+1) high=mid;\n else low=mid;\n }\n return high-1;\n }\n\n int select(bool v,int i,int l){\n return select(v,i+rank(v,l));\n }\n};\n\ntemplate<class T,int MAXLOG>\nstruct WaveletMatrix{\n int len;\n FullyIndexableDictionary mat[MAXLOG];\n int zs[MAXLOG],buff1[MAXLOG],buff2[MAXLOG];\n static const T npos=-1;\n \n WaveletMatrix(vector<T> data){\n len=data.size();\n vector<T> l(len),r(len);\n for(int dep=0;dep<MAXLOG;dep++){\n mat[dep]=FullyIndexableDictionary(len+1);\n int p=0,q=0;\n for(int i=0;i<len;i++){\n bool k=(data[i]>>(MAXLOG-(dep+1)))&1;\n if(k) r[q++]=data[i],mat[dep].set(i);\n else l[p++]=data[i];\n }\n zs[dep]=p;\n mat[dep].build();\n swap(l,data);\n for(int i=0;i<q;i++) data[p+i]=r[i];\n }\n }\n \n T access(int k){\n T res=0;\n bool bit;\n for(int dep=0;dep<MAXLOG;dep++){\n bit=mat[dep][k];\n res=(res<<1)|bit;\n k=mat[dep].rank(bit,k)+zs[dep]*dep;\n }\n return res;\n }\n\n // return the number of v in [0,k)\n int rank(T v,int k){\n int l=0,r=k;\n for(int dep=0;dep<MAXLOG;dep++){\n buff1[dep]=l;buff2[dep]=r;\n bool bit=(v>>(MAXLOG-(dep+1)))&1;\n l=mat[dep].rank(bit,l)+zs[dep]*bit;\n r=mat[dep].rank(bit,r)+zs[dep]*bit;\n }\n return r-l;\n }\n\n // return the position of k-th v\n int select(T v,int k){\n rank(v,len);\n for(int dep=MAXLOG-1;dep>=0;dep--){\n bool bit=(v>>(MAXLOG-(dep+1)))&1;\n k=mat[dep].select(bit,k,buff1[dep]);\n if(k>=buff2[dep]||k<0) return -1;\n k-=buff1[dep];\n }\n return k;\n }\n\n int select(T v,int k,int l){\n return select(v,k+rank(v,l));\n }\n\n // return k-th largest value in [l,r)\n T quantile(int l,int r,int k){\n if(r-l<=k||k<0) return -1;\n T res=0;\n for(int dep=0;dep<MAXLOG;dep++){\n int p=mat[dep].rank(1,l);\n int q=mat[dep].rank(1,r);\n if(q-p>k){\n l=p+zs[dep];\n r=q+zs[dep];\n res|=T(1)<<(MAXLOG-(dep+1));\n }else{\n k-=(q-p);\n l-=p;\n r-=q;\n }\n }\n return res;\n }\n \n T rquantile(int l,int r,int k){\n return quantile(l,r,r-l-k-1);\n }\n\n int le(int l,int r,T v){\n int res=0;\n for(int dep=0;dep<MAXLOG;dep++){\n buff1[dep]=l;buff2[dep]=r;\n bool bit=(v>>(MAXLOG-(dep+1)))&1;\n if(bit) res+=r-l+mat[dep].rank(bit,l)-mat[dep].rank(bit,r);\n l=mat[dep].rank(bit,l)+zs[dep]*bit;\n r=mat[dep].rank(bit,r)+zs[dep]*bit;\n }\n return res+(r-l); \n }\n \n T succ(int l,int r,T v){\n int k=le(l,r,v);\n return k==r-l?npos:rquantile(l,r,k);\n }\n};\n\n\n//INSERT ABOVE HERE\nsigned main(){\n int n,q;\n cin>>n>>q;\n string s;\n cin>>s;\n reverse(s.begin(),s.end());\n\n SuffixArray sa(s);\n vector<int> rev(n);\n auto vs=sa.sa;\n vs.erase(vs.begin());\n for(int i=0;i<n;i++){\n rev[vs[i]]=i;\n }\n using WM = WaveletMatrix<int, 18>;\n WM wm(vs);\n\n RollingHash rh(s);\n auto calc=\n [&](int a,int b)->int{ \n int pos=rev[a];\n auto check=\n [&](int x)->int{\n auto hs=rh.find(a,a+x);\n int ll=-1,rr=-1;\n {\n int l=-1,r=pos;\n while(l+1<r){\n int m=(l+r)>>1;\n if(vs[m]+x<=n&&rh.find(vs[m],vs[m]+x)==hs) r=m;\n else l=m;\n }\n ll=r;\n }\n {\n int l=pos,r=n;\n while(l+1<r){\n int m=(l+r)>>1;\n if(vs[m]+x<=n&&rh.find(vs[m],vs[m]+x)==hs) l=m;\n else r=m;\n }\n rr=r;\n }\n // [ll, rr)\n int p=wm.succ(ll,rr,a+x);\n if(p==WM::npos) return 0;\n int q=wm.succ(ll,rr,p+x);\n if(q==WM::npos) return 0;\n return q+x<b;\n };\n \n int l=0,r=(b-a+2)/3;\n while(l+1<r){\n int m=(l+r)>>1;\n if(check(m)) l=m;\n else r=m;\n }\n return l;\n };\n \n for(int i=0;i<q;i++){\n int a,b;\n cin>>a>>b;\n a--;\n swap(a,b);\n a=n-a;\n b=n-b;\n cout<<calc(a,b)<<\"\\n\";\n }\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 2680, "memory_kb": 10364, "score_of_the_acc": -0.3191, "final_rank": 2 }, { "submission_id": "aoj_3063_3407966", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\nstruct SuffixArray{\n int n;\n string S;\n vector<int> sa,lcp,rev;\n SuffixArray(){}\n SuffixArray(string &S):S(S){init();}\n void init(){\n n=S.length();\n S.push_back('$');\n build_sa();\n }\n void build_sa(){\n sa.assign(n+1,0);\n iota(sa.begin(),sa.end(),0);\n sort(sa.begin(),sa.end(),\n [&](int a,int b){\n if(S[a]==S[b]) return a>b;\n return S[a]<S[b];\n });\n vector<int> c(n+1,0),r(n+1),cnt(n+1),s(n+1);\n for(int i=0;i<=n;i++) r[i]=S[i];\n for(int len=1;len<=n;len*=2){\n for(int i=0;i<=n;i++){\n c[sa[i]]=\n i>0 &&\n r[sa[i-1]]==r[sa[i]] &&\n sa[i-1]+len<=n &&\n r[sa[i-1]+len/2]==r[sa[i]+len/2] ?\n c[sa[i-1]]:i;\n }\n iota(cnt.begin(),cnt.end(),0);\n copy(sa.begin(),sa.end(),r.begin());\n for(int i=0;i<=n;i++){\n int s1=r[i]-len;\n if(s1>=0) sa[cnt[c[s1]]++]=s1;\n }\n c.swap(r);\n }\n }\n};\n\n\nstruct RollingHash{\n using ull = unsigned long long;\n vector<ull> hash,p;\n RollingHash(){}\n RollingHash(const string &s,ull B=1000000007LL){\n int n=s.size();\n hash.assign(n+1,0);\n p.assign(n+1,1);\n for(int i=0;i<n;i++){\n hash[i+1]=hash[i]*B+s[i];\n p[i+1]=p[i]*B;\n }\n }\n //S[l, r)\n ull find(int l,int r){\n return hash[r]-hash[l]*p[r-l];\n }\n};\n\n\nstruct FullyIndexableDictionary{\n int len,blk;\n vector<unsigned> bit;\n vector<int> sum;\n \n FullyIndexableDictionary(){}\n FullyIndexableDictionary(int len)\n :len(len),blk((len+31)>>5),bit(blk,0),sum(blk,0){}\n \n void set(int k){\n bit[k>>5]|=1u<<(k&31);\n }\n\n void build(){\n sum[0]=0;\n for(int i=1;i<blk;i++)\n sum[i]=sum[i-1]+__builtin_popcount(bit[i-1]);\n }\n\n bool operator[](int k) const{\n return bool((bit[k>>5]>>(k&31))&1);\n }\n \n int rank(int k){\n return sum[k>>5]+__builtin_popcount(bit[k>>5]&((1u<<(k&31))-1));\n }\n \n int rank(bool v,int k){\n return (v?rank(k):k-rank(k));\n }\n\n int select(bool v,int k){\n if(k<0||rank(v,len)<=k) return -1;\n int low=0,high=len;\n while(low+1<high){\n int mid=(low+high)>>1;\n if(rank(v,mid)>=k+1) high=mid;\n else low=mid;\n }\n return high-1;\n }\n\n int select(bool v,int i,int l){\n return select(v,i+rank(v,l));\n }\n};\n\ntemplate<class T,int MAXLOG>\nstruct WaveletMatrix{\n int len;\n FullyIndexableDictionary mat[MAXLOG];\n int zs[MAXLOG],buff1[MAXLOG],buff2[MAXLOG];\n static const T npos=-1;\n \n WaveletMatrix(vector<T> data){\n len=data.size();\n vector<T> l(len),r(len);\n for(int dep=0;dep<MAXLOG;dep++){\n mat[dep]=FullyIndexableDictionary(len+1);\n int p=0,q=0;\n for(int i=0;i<len;i++){\n bool k=(data[i]>>(MAXLOG-(dep+1)))&1;\n if(k) r[q++]=data[i],mat[dep].set(i);\n else l[p++]=data[i];\n }\n zs[dep]=p;\n mat[dep].build();\n swap(l,data);\n for(int i=0;i<q;i++) data[p+i]=r[i];\n }\n }\n \n T access(int k){\n T res=0;\n bool bit;\n for(int dep=0;dep<MAXLOG;dep++){\n bit=mat[dep][k];\n res=(res<<1)|bit;\n k=mat[dep].rank(bit,k)+zs[dep]*dep;\n }\n return res;\n }\n\n // return the number of v in [0,k)\n int rank(T v,int k){\n int l=0,r=k;\n for(int dep=0;dep<MAXLOG;dep++){\n buff1[dep]=l;buff2[dep]=r;\n bool bit=(v>>(MAXLOG-(dep+1)))&1;\n l=mat[dep].rank(bit,l)+zs[dep]*bit;\n r=mat[dep].rank(bit,r)+zs[dep]*bit;\n }\n return r-l;\n }\n\n // return the position of k-th v\n int select(T v,int k){\n rank(v,len);\n for(int dep=MAXLOG-1;dep>=0;dep--){\n bool bit=(v>>(MAXLOG-(dep+1)))&1;\n k=mat[dep].select(bit,k,buff1[dep]);\n if(k>=buff2[dep]||k<0) return -1;\n k-=buff1[dep];\n }\n return k;\n }\n\n int select(T v,int k,int l){\n return select(v,k+rank(v,l));\n }\n\n // return k-th largest value in [l,r)\n T quantile(int l,int r,int k){\n if(r-l<=k||k<0) return -1;\n T res=0;\n for(int dep=0;dep<MAXLOG;dep++){\n int p=mat[dep].rank(1,l);\n int q=mat[dep].rank(1,r);\n if(q-p>k){\n l=p+zs[dep];\n r=q+zs[dep];\n res|=(1<<(MAXLOG-(dep+1)));\n }else{\n k-=(q-p);\n l-=p;\n r-=q;\n }\n }\n return res;\n }\n \n T rquantile(int l,int r,int k){\n return quantile(l,r,r-l-k-1);\n }\n \n pair<int, int> ll(int l,int r,T v){\n int res=0;\n for(int dep=0;dep<MAXLOG;dep++){\n buff1[dep]=l;buff2[dep]=r;\n bool bit=(v>>(MAXLOG-(dep+1)))&1;\n if(bit) res+=r-l+mat[dep].rank(bit,l)-mat[dep].rank(bit,r);\n l=mat[dep].rank(bit,l)+zs[dep]*bit;\n r=mat[dep].rank(bit,r)+zs[dep]*bit;\n }\n return make_pair(res,r-l); \n }\n \n int lt(int l,int r,T v){\n auto p=ll(l,r,v);\n return p.first;\n }\n \n int le(int l,int r,T v){\n auto p=ll(l,r,v);\n return p.first+p.second;\n }\n \n T succ(int l,int r,T v){\n int k=le(l,r,v);\n return k==r-l?npos:rquantile(l,r,k);\n }\n\n T pred(int l,int r,T v){\n int k=lt(l,r,v);\n return k?rquantile(l,r,k-1):npos;\n }\n};\n\n\n//INSERT ABOVE HERE\nsigned main(){\n int n,q;\n cin>>n>>q;\n string s;\n cin>>s;\n\n SuffixArray sa(s);\n vector<int> rev(n);\n auto vs=sa.sa;\n vs.erase(vs.begin());\n for(int i=0;i<n;i++){\n rev[vs[i]]=i;\n }\n using WM = WaveletMatrix<int, 18>;\n WM wm(vs);\n\n RollingHash rh(s);\n auto calc=\n [&](int a,int b)->int{\n auto check=\n [&](int x)->int{\n int p=b-x;\n int pos=rev[p];\n int ll=-1,rr=-1;\n {\n int l=-1,r=pos;\n while(l+1<r){\n int m=(l+r)>>1;\n if(vs[m]+x<=n&&rh.find(vs[m],vs[m]+x)==rh.find(p,p+x)) r=m;\n else l=m;\n }\n ll=r;\n }\n {\n int l=pos,r=n;\n while(l+1<r){\n int m=(l+r)>>1;\n if(vs[m]+x<=n&&rh.find(vs[m],vs[m]+x)==rh.find(p,p+x)) l=m;\n else r=m;\n }\n rr=r;\n }\n // [ll, rr)\n int q=wm.pred(ll,rr,p-x);\n if(q==WM::npos||q-x<0) return 0;\n int k=wm.pred(ll,rr,q-x);\n if(k==WM::npos) return 0;\n return a<k;\n };\n \n int l=0,r=(b-a+2)/3;\n while(l+1<r){\n int m=(l+r)>>1;\n if(check(m)) l=m;\n else r=m;\n }\n return l;\n };\n \n for(int i=0;i<q;i++){\n int a,b;\n cin>>a>>b;\n a--;\n cout<<calc(a,b)<<\"\\n\";\n }\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 2940, "memory_kb": 10364, "score_of_the_acc": -0.3747, "final_rank": 3 }, { "submission_id": "aoj_3063_3406515", "code_snippet": "#include <bits/stdc++.h>\n#define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,NAME,...) NAME\n#define pr(...) cerr<< GET_MACRO(__VA_ARGS__,pr8,pr7,pr6,pr5,pr4,pr3,pr2,pr1)(__VA_ARGS__) <<endl\n#define pr1(a) (#a)<<\"=\"<<(a)<<\" \"\n#define pr2(a,b) pr1(a)<<pr1(b)\n#define pr3(a,b,c) pr1(a)<<pr2(b,c)\n#define pr4(a,b,c,d) pr1(a)<<pr3(b,c,d)\n#define pr5(a,b,c,d,e) pr1(a)<<pr4(b,c,d,e)\n#define pr6(a,b,c,d,e,f) pr1(a)<<pr5(b,c,d,e,f)\n#define pr7(a,b,c,d,e,f,g) pr1(a)<<pr6(b,c,d,e,f,g)\n#define pr8(a,b,c,d,e,f,g,h) pr1(a)<<pr7(b,c,d,e,f,g,h)\n#define prArr(a) {cerr<<(#a)<<\"={\";int i=0;for(auto t:(a))cerr<<(i++?\", \":\"\")<<t;cerr<<\"}\"<<endl;}\nusing namespace std;\nusing Int = long long;\nusing _int = int;\nusing ll = long long;\nusing Double = long double;\nconst Int INF = (1LL<<60)+1e9; // ~ 1.15 * 1e18\nconst Int mod = (1e9)+7;\nconst Double EPS = 1e-8;\nconst Double PI = 6.0 * asin((Double)0.5);\nusing P = pair<Int,Int>;\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\ntemplate<class T1, class T2> ostream& operator<<(ostream& o,pair<T1,T2> p){return o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";}\ntemplate<class T1, class T2, class T3> ostream& operator<<(ostream& o,tuple<T1,T2,T3> t){\n return o<<\"(\"<<get<0>(t)<<\",\"<<get<1>(t)<<\",\"<<get<2>(t)<<\")\";}\ntemplate<class T1, class T2> istream& operator>>(istream& i,pair<T1,T2> &p){return i>>p.first>>p.second;}\ntemplate<class T> ostream& operator<<(ostream& o,vector<T> a){Int i=0;for(T t:a)o<<(i++?\" \":\"\")<<t;return o;}\ntemplate<class T> istream& operator>>(istream& i,vector<T> &a){for(T &t:a)i>>t;return i;}\n//INSERT ABOVE HERE\n\nclass Seg{\npublic:\n int INF = 1e9;\n int n,n_;\n vector<vector<int> > dat;\n \n //初期化\n Seg(){n=-1;}\n Seg(int n_):n_(n_){\n n=1;\n while(n<n_)n*=2;\n dat.resize(2*n-1,{});\n }\n\n inline vector<int> merge(const vector<int> &A,const vector<int> &B){\n int n = A.size(), m = B.size();\n int a = 0, b = 0;\n vector<int> res;\n while(a < n || b < m){\n if(b >= m) res.push_back(A[a++]);\n else if(a >= n) res.push_back(B[b++]);\n else if(A[a] < B[b]) res.push_back(A[a++]);\n else res.push_back(B[b++]);\n }\n return res;\n }\n \n void update(int k,int a){\n k+=n-1;\n dat[k]=vector<int>(1, a);\n }\n \n void build(){\n int k = n-2;\n while(k){\n int l = k * 2 + 1;\n int r = k * 2 + 2;\n dat[k] = merge(dat[l], dat[r]);\n k--;\n }\n for(int i=0;i<(int)dat.size();i++) dat[i].push_back(INF);\n }\n\n int dfs(int a,int b, int x, int k,int l,int r){\n if(r<=a||b<=l) return INF;\n if(a<=l&&r<=b) {\n int idx = lower_bound(dat[k].begin(), dat[k].end(), x) - dat[k].begin();\n assert(idx < (int)dat[k].size());\n return dat[k][idx];\n }\n int vl = dfs(a,b,x,k*2+1,l,(l+r)/2);\n int vr = dfs(a,b,x,k*2+2,(l+r)/2,r);\n return min(vl, vr);\n }\n \n //[a,b)の最小値を求める\n int get(int a,int b, int x){\n assert(a <= b), assert(a <= n_ && b <= n_), assert(a >= 0 && a >= 0);\n int res = dfs(a,b,x,0,0,n);\n if(res == INF) return -1;\n return res;\n }\n};\n\n\nclass RollingHash{\npublic:\n typedef unsigned long long ll;\n ll B; //B: ハッシュ基数\n int n;\n string s;\n vector<ll> hash;\n vector<ll> k;\n\n RollingHash():n(-1){};\n RollingHash(string s,ll B = 1777771):\n B(B),n(s.size()),s(s),hash(n+1),k(n+1)\n {\n for(int i=0;i<n;i++) hash[i+1] = (hash[i] * B + s[i]) ;\n k[0] = 1;\n for(int i=1;i<=n;i++) k[i] = (k[i-1] * B) ;\n }\n\n ll get(int l,int r)const{ //[l, r)\n //assert(0<=l && r<=n && l<=r);\n return (mod + hash[r] - hash[l] * k[r-l]);\n }\n \n //hash[a]とB.hash[b]からみて何文字一致してるか。\n int count(int a, const RollingHash &B, int b){\n int L = 0, R = min( n - a, B.n - b ) + 1;\n while( L + 1 < R ){\n int M = ( L + R ) / 2;\n get( a, a + M ) != B.get( b, b + M ) ? R = M : L = M;\n }\n return L;\n }\n\n};\n\nclass SA{\npublic:\n string S;\n int n;\n vector<int> sa;\n RollingHash rh;\n \n SA():n(-1){}\n SA(string S):S(S),n(S.size()),sa(n), rh(S){ \n vector<int> rnk(n);\n vector<int> tmp(n);\n for(int i=0;i<n;i++) sa[i]=i;\n for(int i=0;i<n;i++) rnk[i] = S[i];\n \n //k文字についてソートされているところから、2k文字でソート\n for(int Len=1;Len<=n;Len*=2){\n \n //(rnk[i],rnk[i+k])と(rnk[j],rnk[j+k])を比較\n auto compare_sa=[&](const int &i,const int &j){\n if(rnk[i]!=rnk[j])return rnk[i]<rnk[j];\n int ri=i+Len<n?rnk[i+Len]:-1;\n int rj=j+Len<n?rnk[j+Len]:-1;\n return ri<rj;\n };\n \n sort(sa.begin(),sa.end(),compare_sa);\n\n //いったんtmpに次のランクを計算して、rnkに代入\n for(int i=1;i<n;i++)\n tmp[sa[i]] = tmp[sa[i-1]] + compare_sa(sa[i-1],sa[i]);\n rnk = tmp;\n }\n }\n\n int lower_bound(string T){\n assert(n >= 0);\n int L=-1,R=S.length();\n while(L+1<R){\n int M = (L+R)/2;\n S.compare(sa[M],T.size(),T)<0? L = M:R = M;\n }\n return R;\n }\n \n int lower_bound(const RollingHash &rh2, int l,int r, int upper = 0){ //[l, r)\n auto compare = [&](int X){\n int idx = sa[X];\n int n = S.size() - idx;\n int m = r - l;\n int len = rh.count(idx, rh2, l);\n if(len >= m) return 0;\n if(len >= n) return -1;\n if(len >= m) return 1;\n assert(S[idx + len] != rh2.s[l + len]);\n return (S[idx + len] < rh2.s[l + len]) ? -1:1;\n };\n \n assert(n >= 0);\n int L=-1, R=S.length();\n while(L+1<R){\n int M = (L+R)/2;\n if(upper) compare(M)<=0? L = M:R = M;\n else compare(M)<0? L = M:R = M;\n }\n return R;\n }\n\n int upper_bound(string T){return lower_bound(T+char('z'+ 1));}\n int upper_bound(const RollingHash &rh2, int l,int r){return lower_bound(rh2, l, r, 1);}\n \n int count(string T){return upper_bound(T) - lower_bound(T);};\n int count(const RollingHash &rh2, int l,int r){\n return upper_bound(rh2, l, r) - lower_bound(rh2, l, r);\n }\n};\n\n//AXBXCX\n//XCXBXA\n\nsigned main(){\n srand((unsigned)time(NULL));\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n int N, Q;\n cin>>N>>Q;\n string str;\n cin>>str;\n reverse(str.begin(), str.end());\n \n SA sa(str);\n Seg seg(N);\n //pr(str);\n //pr(sa.sa);\n for(int i=0;i<N;i++) seg.update(i, sa.sa[i]);\n seg.build();\n\n vector<int> inv(N);\n for(int i=0;i<N;i++) inv[ sa.sa[i] ] = i;\n \n while(Q--){\n int l, r;\n cin>>l>>r;\n l = N - l;\n r = N - r;\n swap(l, r);\n \n auto check = [&](int X){\n if(l + X > N) return 0;\n int ll;\n {\n\tint L = 0, R = N;\n\twhile(L + 1 < R){\n\t int M = (L + R) / 2;\n\t if(inv[l] - M < 0) {R = M; continue;}\n\t int idx = sa.sa[inv[l] - M];\n\t if(idx + X > N) {R = M; continue;}\n\t Int hash1 = sa.rh.get(l, l + X);\n\t Int hash2 = sa.rh.get(idx, idx + X);\n\t hash1 != hash2? R=M:L=M;\n\t}\n\tll = inv[l] - L;\n }\n \n int rr;\n {\n\tint L = 0, R = N;\n\twhile(L + 1 < R){\n\t int M = (L + R) / 2;\n\t if(inv[l] + M >= N) {R = M; continue;}\n\t int idx = sa.sa[inv[l] + M];\n\t if(idx + X > N) {R = M; continue;}\n\t Int hash1 = sa.rh.get(l, l + X);\n\t Int hash2 = sa.rh.get(idx, idx + X);\n\t hash1 != hash2? R=M:L=M;\n\t}\n\trr = inv[l] + R;\n }\n \n \n //int ll = sa.lower_bound(sa.rh, l, l + X);\n //int rr = sa.upper_bound(sa.rh, l, l + X);\n int a = seg.get(ll, rr, l + X + 1);\n if(a == -1) return 0;\n int b = seg.get(ll, rr, a + X + 1);\n if(b == -1) return 0;\n if(b + X > r) return 0;\n return 1;\n };\n \n int L = 0, R = (r - l + 1 + 1) / 3;\n while(L+1 < R){\n int M = (L + R) / 2;\n check(M)? L = M:R = M;\n }\n cout<<L<<\"\\n\";\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 2600, "memory_kb": 58008, "score_of_the_acc": -0.6018, "final_rank": 6 }, { "submission_id": "aoj_3063_3406183", "code_snippet": "#include<iomanip>\n#include<limits>\n#include<thread>\n#include<utility>\n#include<iostream>\n#include<string>\n#include<algorithm>\n#include<set>\n#include<map>\n#include<vector>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<numeric>\n#include<cassert>\n#include<random>\n#include<chrono>\n#include<unordered_set>\n#include<unordered_map>\n#include<fstream>\n#include<list>\n#include<functional>\n#include<bitset>\n#include<complex>\n#include<tuple>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef pair<int,int> pi;\ntypedef pair<double,double> pd;\ntypedef pair<double,ll> pdl;\n#define F first\n#define S second\nconst ll E=1e18+7;\nconst ll MOD=1000000007;\n\nstatic const ll High=25;\nstatic const ll MAX_N=500001;\n\nbool Matrix[High][MAX_N]; //下から上\npair<int,int> Rank[High][MAX_N]; //(0,1) [high][size] 自分より前\nint Mid[High]; //0-origin\n\nstruct WaveletMatrix{\n const int high;\n const int size;\n \n WaveletMatrix(int high,int size,const vector<ll> &A):high(high),size(size){init(A);}\n \n void init(vector<ll> A){\n for(int i=high-1;i>=0;i--){\n pair<int,int> R={0,0};\n for(int t=0;t<size;t++){\n Matrix[i][t]=A[t]>>i&1;\n Rank[i][t]=R;\n if(Matrix[i][t]){R.S++;}\n else{R.F++;}\n }\n Rank[i][size]=R;\n vector<ll> N(size);\n int l=0;\n for(int t=0;t<size;t++){\n if((A[t]>>i&1)==0){N[l]=A[t]; l++;}\n }\n Mid[i]=l;\n for(int t=0;t<size;t++){\n if(A[t]>>i&1){N[l]=A[t]; l++;}\n }\n A=N;\n }\n }\n \n ll access(int n) const {return access(high-1,n);}\n \n ll access(int h,int n) const {\n if(h==0){return Matrix[h][n];}\n if(Matrix[h][n]){\n return (1LL<<h)|access(h-1,Mid[h]+Rank[h][n].S);\n }\n return access(h-1,Rank[h][n].F);\n }\n \n //[l,r)\n int rank(ll s,int l,int r){\n return rank(s,l,r,high-1);\n }\n \n //[l,r)\n int rank(ll s,int l,int r,int h){\n if(h==0){\n if(s&1){return Rank[h][r].S-Rank[h][l].S;}\n return Rank[h][r].F-Rank[h][l].F;\n }\n if(s>>h&1){\n return rank(s,Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n }\n return rank(s,Rank[h][l].F,Rank[h][r].F,h-1);\n }\n \n //[l,r)\n ll range_min(int l,int r){return range_min(l,r,high-1);}\n \n //[l,r)\n ll range_min(int l,int r,int h){\n if(h==0){\n if(Rank[h][r].F-Rank[h][l].F==0){return 1;}\n return 0;\n }\n if(Rank[h][r].F-Rank[h][l].F==0){\n return (1LL<<h)|range_min(Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n }\n return range_min(Rank[h][l].F,Rank[h][r].F,h-1);\n }\n \n //[l,r)\n inline ll range_max(int l,int r){return range_max(l,r,high-1);}\n \n //[l,r)\n ll range_max(int l,int r,int h){\n if(h==0){\n if(Rank[h][r].S-Rank[h][l].S==0){return 0;}\n return 1;\n }\n if(Rank[h][r].S-Rank[h][l].S==0){\n return range_max(Rank[h][l].F,Rank[h][r].F,h-1);\n }\n return (1LL<<h)|range_max(Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n }\n \n //[s,t) [l,r)\n int range_count(ll s,ll t,int l,int r){return range_count(0,s,t,l,r,high-1);}\n \n //[s,t) [l,r)\n int range_count(ll w,ll s,ll t,int l,int r,int h){\n if(r<=l || t<=s){return 0;}\n if(s<=w && (w+(1LL<<(h+1)))<=t){return r-l;}\n if(s>=(w+(1LL<<(h+1))) || w>=t){return 0;}\n int ret=0;\n if(h==0){\n if(s<=w && w<t){ret+=Rank[h][r].F-Rank[h][l].F;}\n if(s<=w+1 && w+1<t){ret+=Rank[h][r].S-Rank[h][l].S;}\n return ret;\n }\n ret+=range_count(w,s,t,Rank[h][l].F,Rank[h][r].F,h-1);\n ret+=range_count(w|(1LL<<h),s,t,Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n return ret;\n }\n \n //[s,t) [l,r)\n inline ll range_min(ll s,ll t,int l,int r){return range_min(0,s,t,l,r,high-1);}\n \n //[s,t) [l,r)\n ll range_min(ll w,ll s,ll t,int l,int r,int h){\n if(r<=l || t<=s){return -1;}\n if(s<=w && (w+(1LL<<(h+1)))<=t){return range_min(l,r,h);}\n if(s>=(w+(1LL<<(h+1))) || w>=t){return -1;}\n ll ret=-1;\n if(h==0){\n if(s<=w && w<t && Rank[h][r].F-Rank[h][l].F>0){return 0;}\n if(s<=w+1 && w+1<t && Rank[h][r].S-Rank[h][l].S>0){return 1;}\n return -1;\n }\n ret=range_min(w,s,t,Rank[h][l].F,Rank[h][r].F,h-1);\n if(ret==-1){\n ret=range_min(w|(1LL<<h),s,t,Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n if(ret==-1){return ret;}\n ret|=1LL<<h;\n }\n return ret;\n }\n \n //[s,t) [l,r)\n inline ll range_max(ll s,ll t,int l,int r){return range_max(0,s,t,l,r,high-1);}\n \n //[s,t) [l,r)\n ll range_max(ll w,ll s,ll t,int l,int r,int h){\n if(r<=l || t<=s){return -1;}\n if(s<=w && (w+(1LL<<(h+1)))<=t){return range_max(l,r,h);}\n if(s>=(w+(1LL<<(h+1))) || w>=t){return -1;}\n if(h==0){\n if(s<=w+1 && w+1<t && Rank[h][r].S-Rank[h][l].S>0){return 1;}\n if(s<=w && w<t && Rank[h][r].F-Rank[h][l].F>0){return 0;}\n return -1;\n }\n ll ret=-1;\n ret=range_max(w|(1LL<<h),s,t,Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n if(ret==-1){\n ret=range_max(w,s,t,Rank[h][l].F,Rank[h][r].F,h-1);\n }\n else{ret|=1LL<<h;}\n return ret;\n }\n};\n\n\n\n\nstruct node{\n int idx,num;\n node* next;\n \n inline bool operator < (const node &A) const {\n if(num!=A.num){return num<A.num;}\n return (next==NULL?-1:next->num)<(A.next==NULL?-1:A.next->num);\n }\n \n inline bool operator == (const node &A) const {\n return num==A.num && (next==NULL?-1:next->num)==(A.next==NULL?-1:A.next->num);\n }\n};\n\nll n,q;\nstring s;\n\n\nnode A[High][MAX_N];\nll B[High][MAX_N];\n\n\ninline bool same(ll len,ll h,ll idx,ll idx2){\n idx=A[High-1][idx].idx;\n idx2=A[High-1][idx2].idx;\n idx-=len;\n idx2-=len;\n return (idx<0 || idx>=n?-1:A[h][B[h][idx]].num)==(idx2<0 || idx2>=n?-1:A[h][B[h][idx2]].num);\n}\n\n\nint main(){\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cin>>n>>q;\n cin>>s;\n for(int t=0;t<n;t++){\n A[0][t].idx=t;\n A[0][t].num=s[t]-'a';\n A[0][t].next=NULL;\n }\n sort(&A[0][0],&A[0][n]);\n for(int t=0;t<n;t++){B[0][A[0][t].idx]=t;}\n for(int t=0;t<n;t++){A[0][t].next=(A[0][t].idx-1<0?NULL:&A[0][B[0][A[0][t].idx-1]]);}\n for(int i=1;i<High;i++){\n for(int t=0;t<n;t++){A[i][t]=A[i-1][t];}\n sort(&A[i][0],&A[i][n]);\n A[i][0].num=0;\n for(int t=0;t<n;t++){\n B[i][A[i][t].idx]=t;\n if(t>0 && A[i-1][B[i-1][A[i][t-1].idx]]==A[i][t]){A[i][t].num=A[i][t-1].num;}\n else if(t>0){A[i][t].num=A[i][t-1].num+1;}\n }\n for(int t=0;t<n;t++){\n A[i][t].next=(A[i][t].idx-(1LL<<i)<0?NULL:&A[i][B[i][A[i][t].idx-(1LL<<i)]]);\n }\n }\n vector<ll> a(n);\n for(int i=0;i<n;i++){\n a[i]=A[High-1][i].idx;\n }\n WaveletMatrix M(High,(int)n,a);\n while(q--){\n ll l,r;\n cin>>l>>r;\n l--; r--;\n ll h=High;\n ll len=0;\n ll L=-1,R=n;\n while((--h)>=0){\n ll test=len+(1LL<<h);\n ll r1=r-test;\n if(r1<0){continue;}\n ll left=L;\n ll k=High;\n while((--k)>=0){\n if(left+(1LL<<k)>=B[High-1][r]){continue;}\n if(!same(len,h,left+(1LL<<k),B[High-1][r])){left+=1LL<<k;}\n }\n k=High;\n ll right=R;\n while((--k)>=0){\n if(right-(1LL<<k)<=B[High-1][r]){continue;}\n if(!same(len,h,right-(1LL<<k),B[High-1][r])){right-=1LL<<k;}\n }\n ll r2=M.range_max(l,r1,(int)left+1,(int)right);\n r2-=test;\n if(r2<=0){continue;}\n r2=M.range_max(l,r2,(int)left+1,(int)right);\n if(r2-test>=l){\n len+=1LL<<h;\n L=left; R=right;\n }\n }\n cout<<len<<'\\n';\n }\n \n \n \n \n \n return 0;\n}", "accuracy": 1, "time_ms": 3950, "memory_kb": 169228, "score_of_the_acc": -1.591, "final_rank": 19 }, { "submission_id": "aoj_3063_3406180", "code_snippet": "#include<iomanip>\n#include<limits>\n#include<thread>\n#include<utility>\n#include<iostream>\n#include<string>\n#include<algorithm>\n#include<set>\n#include<map>\n#include<vector>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<numeric>\n#include<cassert>\n#include<random>\n#include<chrono>\n#include<unordered_set>\n#include<unordered_map>\n#include<fstream>\n#include<list>\n#include<functional>\n#include<bitset>\n#include<complex>\n#include<tuple>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef pair<int,int> pi;\ntypedef pair<double,double> pd;\ntypedef pair<double,ll> pdl;\n#define F first\n#define S second\nconst ll E=1e18+7;\nconst ll MOD=1000000007;\n\nstatic const ll High=20;\nstatic const ll MAX_N=200001;\n\nbool Matrix[High][MAX_N]; //下から上\npair<int,int> Rank[High][MAX_N]; //(0,1) [high][size] 自分より前\nint Mid[High]; //0-origin\n\nstruct WaveletMatrix{\n const int high;\n const int size;\n \n WaveletMatrix(int high,int size,const vector<ll> &A):high(high),size(size){init(A);}\n \n void init(vector<ll> A){\n for(int i=high-1;i>=0;i--){\n pair<int,int> R={0,0};\n for(int t=0;t<size;t++){\n Matrix[i][t]=A[t]>>i&1;\n Rank[i][t]=R;\n if(Matrix[i][t]){R.S++;}\n else{R.F++;}\n }\n Rank[i][size]=R;\n vector<ll> N(size);\n int l=0;\n for(int t=0;t<size;t++){\n if((A[t]>>i&1)==0){N[l]=A[t]; l++;}\n }\n Mid[i]=l;\n for(int t=0;t<size;t++){\n if(A[t]>>i&1){N[l]=A[t]; l++;}\n }\n A=N;\n }\n }\n \n ll access(int n) const {return access(high-1,n);}\n \n ll access(int h,int n) const {\n if(h==0){return Matrix[h][n];}\n if(Matrix[h][n]){\n return (1LL<<h)|access(h-1,Mid[h]+Rank[h][n].S);\n }\n return access(h-1,Rank[h][n].F);\n }\n \n //[l,r)\n int rank(ll s,int l,int r){\n return rank(s,l,r,high-1);\n }\n \n //[l,r)\n int rank(ll s,int l,int r,int h){\n if(h==0){\n if(s&1){return Rank[h][r].S-Rank[h][l].S;}\n return Rank[h][r].F-Rank[h][l].F;\n }\n if(s>>h&1){\n return rank(s,Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n }\n return rank(s,Rank[h][l].F,Rank[h][r].F,h-1);\n }\n \n //[l,r)\n ll range_min(int l,int r){return range_min(l,r,high-1);}\n \n //[l,r)\n ll range_min(int l,int r,int h){\n if(h==0){\n if(Rank[h][r].F-Rank[h][l].F==0){return 1;}\n return 0;\n }\n if(Rank[h][r].F-Rank[h][l].F==0){\n return (1LL<<h)|range_min(Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n }\n return range_min(Rank[h][l].F,Rank[h][r].F,h-1);\n }\n \n //[l,r)\n inline ll range_max(int l,int r){return range_max(l,r,high-1);}\n \n //[l,r)\n ll range_max(int l,int r,int h){\n if(h==0){\n if(Rank[h][r].S-Rank[h][l].S==0){return 0;}\n return 1;\n }\n if(Rank[h][r].S-Rank[h][l].S==0){\n return range_max(Rank[h][l].F,Rank[h][r].F,h-1);\n }\n return (1LL<<h)|range_max(Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n }\n \n //[s,t) [l,r)\n int range_count(ll s,ll t,int l,int r){return range_count(0,s,t,l,r,high-1);}\n \n //[s,t) [l,r)\n int range_count(ll w,ll s,ll t,int l,int r,int h){\n if(r<=l || t<=s){return 0;}\n if(s<=w && (w+(1LL<<(h+1)))<=t){return r-l;}\n if(s>=(w+(1LL<<(h+1))) || w>=t){return 0;}\n int ret=0;\n if(h==0){\n if(s<=w && w<t){ret+=Rank[h][r].F-Rank[h][l].F;}\n if(s<=w+1 && w+1<t){ret+=Rank[h][r].S-Rank[h][l].S;}\n return ret;\n }\n ret+=range_count(w,s,t,Rank[h][l].F,Rank[h][r].F,h-1);\n ret+=range_count(w|(1LL<<h),s,t,Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n return ret;\n }\n \n //[s,t) [l,r)\n inline ll range_min(ll s,ll t,int l,int r){return range_min(0,s,t,l,r,high-1);}\n \n //[s,t) [l,r)\n ll range_min(ll w,ll s,ll t,int l,int r,int h){\n if(r<=l || t<=s){return -1;}\n if(s<=w && (w+(1LL<<(h+1)))<=t){return range_min(l,r,h);}\n if(s>=(w+(1LL<<(h+1))) || w>=t){return -1;}\n ll ret=-1;\n if(h==0){\n if(s<=w && w<t && Rank[h][r].F-Rank[h][l].F>0){return 0;}\n if(s<=w+1 && w+1<t && Rank[h][r].S-Rank[h][l].S>0){return 1;}\n return -1;\n }\n ret=range_min(w,s,t,Rank[h][l].F,Rank[h][r].F,h-1);\n if(ret==-1){\n ret=range_min(w|(1LL<<h),s,t,Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n if(ret==-1){return ret;}\n ret|=1LL<<h;\n }\n return ret;\n }\n \n //[s,t) [l,r)\n inline ll range_max(ll s,ll t,int l,int r){return range_max(0,s,t,l,r,high-1);}\n \n //[s,t) [l,r)\n ll range_max(ll w,ll s,ll t,int l,int r,int h){\n if(r<=l || t<=s){return -1;}\n if(s<=w && (w+(1LL<<(h+1)))<=t){return range_max(l,r,h);}\n if(s>=(w+(1LL<<(h+1))) || w>=t){return -1;}\n if(h==0){\n if(s<=w+1 && w+1<t && Rank[h][r].S-Rank[h][l].S>0){return 1;}\n if(s<=w && w<t && Rank[h][r].F-Rank[h][l].F>0){return 0;}\n return -1;\n }\n ll ret=-1;\n ret=range_max(w|(1LL<<h),s,t,Mid[h]+Rank[h][l].S,Mid[h]+Rank[h][r].S,h-1);\n if(ret==-1){\n ret=range_max(w,s,t,Rank[h][l].F,Rank[h][r].F,h-1);\n }\n else{ret|=1LL<<h;}\n return ret;\n }\n};\n\n\n\n\nstruct node{\n int idx,num;\n node* next;\n \n inline bool operator < (const node &A) const {\n if(num!=A.num){return num<A.num;}\n return (next==NULL?-1:next->num)<(A.next==NULL?-1:A.next->num);\n }\n \n inline bool operator == (const node &A) const {\n return num==A.num && (next==NULL?-1:next->num)==(A.next==NULL?-1:A.next->num);\n }\n};\n\nll n,q;\nstring s;\n\n\nnode A[High][MAX_N];\nll B[High][MAX_N];\n\n\ninline bool same(ll len,ll h,ll idx,ll idx2){\n idx=A[High-1][idx].idx;\n idx2=A[High-1][idx2].idx;\n idx-=len;\n idx2-=len;\n return (idx<0 || idx>=n?-1:A[h][B[h][idx]].num)==(idx2<0 || idx2>=n?-1:A[h][B[h][idx2]].num);\n}\n\n\nint main(){\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cin>>n>>q;\n cin>>s;\n for(int t=0;t<n;t++){\n A[0][t].idx=t;\n A[0][t].num=s[t]-'a';\n A[0][t].next=NULL;\n }\n sort(&A[0][0],&A[0][n]);\n for(int t=0;t<n;t++){B[0][A[0][t].idx]=t;}\n for(int t=0;t<n;t++){A[0][t].next=(A[0][t].idx-1<0?NULL:&A[0][B[0][A[0][t].idx-1]]);}\n for(int i=1;i<High;i++){\n for(int t=0;t<n;t++){A[i][t]=A[i-1][t];}\n sort(&A[i][0],&A[i][n]);\n A[i][0].num=0;\n for(int t=0;t<n;t++){\n B[i][A[i][t].idx]=t;\n if(t>0 && A[i-1][B[i-1][A[i][t-1].idx]]==A[i][t]){A[i][t].num=A[i][t-1].num;}\n else if(t>0){A[i][t].num=A[i][t-1].num+1;}\n }\n for(int t=0;t<n;t++){\n A[i][t].next=(A[i][t].idx-(1LL<<i)<0?NULL:&A[i][B[i][A[i][t].idx-(1LL<<i)]]);\n }\n }\n vector<ll> a(n);\n for(int i=0;i<n;i++){\n a[i]=A[High-1][i].idx;\n }\n WaveletMatrix M(High,(int)n,a);\n while(q--){\n ll l,r;\n cin>>l>>r;\n l--; r--;\n ll h=High;\n ll len=0;\n ll L=-1,R=n;\n while((--h)>=0){\n ll test=len+(1LL<<h);\n ll r1=r-test;\n if(r1<0){continue;}\n ll left=L;\n ll k=High;\n while((--k)>=0){\n if(left+(1LL<<k)>=B[High-1][r]){continue;}\n if(!same(len,h,left+(1LL<<k),B[High-1][r])){left+=1LL<<k;}\n }\n k=High;\n ll right=R;\n while((--k)>=0){\n if(right-(1LL<<k)<=B[High-1][r]){continue;}\n if(!same(len,h,right-(1LL<<k),B[High-1][r])){right-=1LL<<k;}\n }\n ll r2=M.range_max(l,r1,(int)left+1,(int)right);\n r2-=test;\n if(r2<=0){continue;}\n r2=M.range_max(l,r2,(int)left+1,(int)right);\n if(r2-test>=l){\n len+=1LL<<h;\n L=left; R=right;\n }\n }\n cout<<len<<'\\n';\n }\n \n \n \n \n \n return 0;\n}", "accuracy": 1, "time_ms": 3150, "memory_kb": 136596, "score_of_the_acc": -1.2143, "final_rank": 14 } ]
aoj_3069_cpp
Problem F: Bus Problem 円環状に $1$ から $N$ までの番号がつけられた $N$ 個のバス停が右回りに並んでいる。 隣接するバス停どうしは道で結ばれている。 各 $i \ (1 \le i \le N)$ について、バス停 $i$ とバス停 $i+1$ の間を直接結ぶ道の長さは $d_i$ メートルである。 ただし、バス停 $N+1$ はバス停 $1$ のことを表す。 $M$ 台のバスがある。 $j \ (1 \le j \le M)$ 番目のバスは $c_j='R'$ のとき右回り、$c_j='L'$ のとき左回りに走行する。 また、時刻 $0$ にバス停 $b_j$ を出発し、$1$ メートル進むのに $t_j$ 秒かかる。 この問題において、 バスは永遠に走り続ける バスの乗り降りには時間がかからない バス停では、あるバスがそのバス停を通過する瞬間、そのバスに乗り降りできる バス停以外でバスに乗り降りすることはできない 何台のバスに乗ってもよい とする。 以下のクエリを合計 $Q$ 回処理せよ。 時刻 $0$ にバス停 $x_k$ を出発し、バス停 $y_k$ までバスのみを利用して移動するときの、所要時間の最小値を求めよ。 Input 入力は以下の形式で与えられる。 $N$ $M$ $Q$ $d_1$ $\ldots$ $d_N$ $c_1$ $b_1$ $t_1$ $\vdots$ $c_M$ $b_M$ $t_M$ $x_1$ $y_1$ $\vdots$ $x_Q$ $y_Q$ 1行目にバス停の数 $N$、バスの数 $M$、クエリの数 $Q$ が空白区切りで与えられる。 2行目に隣接するバス停を繋ぐ道の情報が空白区切りで与えられる。 3行目から続く $M$ 行にバスの情報が空白区切りで与えられる。 続く $Q$ 行にクエリの情報が空白区切りで与えられる。 Constraints 入力は以下の条件を満たす。 $3 \leq N \leq 10^5 $ $1 \leq M \leq 10^5 $ $1 \leq Q \leq 10^5 $ $ 1 \leq d_i \leq 10^2 \ (1 \leq i \leq N) $ $ c_j = 'R' \ or \ 'L' \ (1 \leq j \leq M) $ $ 1 \leq b_j \leq N \ (1 \leq j \leq M) $ $ 1 \leq t_j \leq 10^5 \ (1 \leq j \leq M) $ $ 1 \leq x_k, y_k \leq N \ (1 \leq k \leq Q) $ $ x_k \neq y_k \ (1 \leq k \leq Q) $ 入力で与えられる数はすべて整数 Output 出力は $Q$ 行からなる。 各クエリに対し、所要時間の最小値を出力せよ。 $k$ 行目には $k$ 番目のクエリに対する答えを出力せよ。 Sample Input 1 3 1 6 1 2 3 R 1 1 1 2 1 3 2 1 2 3 3 1 3 2 Sample Output 1 1 3 6 3 6 7 $1$ つ目のクエリでは、時刻 $0$ にバス停 $1$ からバス $1$ に乗り、時刻 $1$ にバス停 $2$ で降りるのが最適である。 Sample Input 2 4 6 7 45 72 81 47 R 1 47202 L 1 2156 L 2 95728 R 1 30739 L 3 39679 L 4 86568 3 2 3 4 1 2 2 4 4 3 1 4 2 1 Sample Output 2 431200 629552 431200 629552 275968 101332 528220
[ { "submission_id": "aoj_3069_4886454", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3069\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nenum Objective{\n MAXIMIZE = +1,\n MINIMIZE = -1,\n};\n\ntemplate<typename T>\nstruct Line {\n mutable T k,m,p;\n bool operator<(const Line&o)const{return k<o.k;}\n bool operator<(T x)const{return p<x;}\n};\n\ntemplate<typename T> T lc_inf(){return numeric_limits<T>::max();}\ntemplate<> double lc_inf<double>(){return 1/.0;}\n\ntemplate<typename T> T lc_div(T a,T b){return a/b-((a^b)<0 and a%b);}\ntemplate<> double lc_div(double a,double b){return a/b;};\n\ntemplate<typename T, Objective objective>\nstruct LineContainer : multiset<Line<T>, less<>>{\n using super = multiset<Line<T>, less<>>;\n using super::begin,super::end,super::insert,super::erase;\n using super::empty,super::lower_bound;\n const T inf = lc_inf<T>();\n bool insect(typename super::iterator x,typename super::iterator y){\n if(y==end()) return x->p=inf,false;\n if(x->k==y->k) x->p=(x->m>y->m?inf:-inf);\n else x->p=lc_div(y->m-x->m,x->k-y->k);\n return x->p>=y->p;\n }\n void add(T k,T m){\n auto z=insert({k*objective,m*objective,0}),y=z++,x=y;\n while(insect(y,z)) z=erase(z);\n if(x!=begin() and insect(--x,y)) insect(x,y=erase(y));\n while((y=x)!=begin() and (--x)->p>=y->p) insect(x,erase(y));\n }\n T query(T x){\n assert(!empty());\n auto l=*lower_bound(x);\n return (l.k*x+l.m)*objective;\n }\n};\ntemplate<typename T>\nusing MinLineContainer = LineContainer<T, Objective::MINIMIZE>;\ntemplate<typename T>\nusing MaxLineContainer = LineContainer<T, Objective::MAXIMIZE>;\n//END CUT HERE\n\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n using ll = long long;\n int n,m,q;\n cin>>n>>m>>q;\n\n vector<ll> ds(n);\n for(int i=0;i<n;i++) cin>>ds[i];\n for(int i=0;i<n;i++) ds.emplace_back(int(ds[i]));\n for(int i=0;i<n;i++) ds.emplace_back(int(ds[i]));\n\n vector<ll> sm(n*3+1,0);\n for(int i=0;i<n*3;i++) sm[i+1]=sm[i]+ds[i];\n\n vector<char> cs(m);\n vector<int> bs(m),ts(m);\n for(int i=0;i<m;i++) cin>>cs[i]>>bs[i]>>ts[i],bs[i]--;\n\n vector< vector<ll> > G(n*3);\n vector<ll> xs(q),ys(q);\n for(int i=0;i<q;i++){\n cin>>xs[i]>>ys[i];\n xs[i]--,ys[i]--;\n xs[i]+=n,ys[i]+=n;\n G[xs[i]].emplace_back(i);\n }\n\n const ll INF = 1e18;\n vector<ll> R(n*3,INF),L(n*3,INF);\n int exR=0,exL=0;\n for(int i=0;i<m;i++){\n if(cs[i]=='R'){\n exR=1;\n chmin(R[bs[i]+n*0],ts[i]);\n chmin(R[bs[i]+n*1],ts[i]);\n chmin(R[bs[i]+n*2],ts[i]);\n }\n if(cs[i]=='L'){\n exL=1;\n chmin(L[bs[i]+n*0],ts[i]);\n chmin(L[bs[i]+n*1],ts[i]);\n chmin(L[bs[i]+n*2],ts[i]);\n }\n }\n\n vector<ll> ans(q,INF);\n\n // use R\n if(exR){\n MinLineContainer<ll> cht;\n for(int x=0;x<n*2;x++){\n if(R[x]!=INF) cht.add(R[x],-R[x]*sm[x]);\n for(int i:G[x]){\n int y=ys[i];\n if(x>y) y+=n;\n chmin(ans[i],cht.query(sm[y]));\n }\n }\n }\n\n // use L\n if(exL){\n MinLineContainer<ll> cht;\n for(int x=n*3-1;x>=n;x--){\n if(L[x]!=INF) cht.add(-L[x],L[x]*sm[x]);\n for(int i:G[x]){\n int y=ys[i];\n if(x<y) y-=n;\n chmin(ans[i],cht.query(sm[y]));\n }\n }\n }\n\n for(int i=0;i<q;i++) cout<<ans[i]<<'\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 31152, "score_of_the_acc": -0.6015, "final_rank": 8 }, { "submission_id": "aoj_3069_4886436", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3069\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nenum Objective{\n MAXIMIZE = +1,\n MINIMIZE = -1,\n};\n\ntemplate<typename T>\nstruct Line {\n mutable T k,m,p;\n bool operator<(const Line&o)const{return k<o.k;}\n bool operator<(T x)const{return p<x;}\n};\n\ntemplate<typename T> T lc_inf(){return numeric_limits<T>::max();}\ntemplate<> double lc_inf<double>(){return 1/.0;}\n\ntemplate<typename T> T lc_div(T a,T b){return a/b-((a^b)<0 and a%b);}\ntemplate<> double lc_div(double a,double b){return a/b;};\n\ntemplate<typename T, Objective objective>\nstruct LineContainer : multiset<Line<T>, less<>>{\n using super = multiset<Line<T>, less<>>;\n using super::begin, super::end, super::insert, super::erase;\n using super::empty, super::lower_bound;\n const T inf = lc_inf<T>();\n bool insect(typename super::iterator x,typename super::iterator y){\n if(y==end()) return x->p=inf,false;\n if(x->k==y->k) x->p=(x->m>y->m?inf:-inf);\n else x->p=lc_div(y->m-x->m,x->k-y->k);\n return x->p>=y->p;\n }\n void add(T k,T m){\n auto z=insert({k*objective,m*objective,0}),y=z++,x=y;\n while(insect(y,z)) z=erase(z);\n if(x!=begin() and insect(--x,y)) insect(x,y=erase(y));\n while((y=x)!=begin() and (--x)->p>=y->p) insect(x,erase(y));\n }\n T query(T x){\n assert(!empty());\n auto l=*lower_bound(x);\n return (l.k*x+l.m)*objective;\n }\n};\ntemplate<typename T>\nusing MinLineContainer = LineContainer<T, Objective::MINIMIZE>;\ntemplate<typename T>\nusing MaxLineContainer = LineContainer<T, Objective::MAXIMIZE>;\n\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n using ll = long long;\n int n,m,q;\n cin>>n>>m>>q;\n\n vector<ll> ds(n);\n for(int i=0;i<n;i++) cin>>ds[i];\n for(int i=0;i<n;i++) ds.emplace_back(int(ds[i]));\n for(int i=0;i<n;i++) ds.emplace_back(int(ds[i]));\n\n vector<ll> sm(n*3+1,0);\n for(int i=0;i<n*3;i++) sm[i+1]=sm[i]+ds[i];\n\n vector<char> cs(m);\n vector<int> bs(m),ts(m);\n for(int i=0;i<m;i++) cin>>cs[i]>>bs[i]>>ts[i],bs[i]--;\n\n vector< vector<ll> > G(n*3);\n vector<ll> xs(q),ys(q);\n for(int i=0;i<q;i++){\n cin>>xs[i]>>ys[i];\n xs[i]--,ys[i]--;\n xs[i]+=n,ys[i]+=n;\n G[xs[i]].emplace_back(i);\n }\n\n const ll INF = 1e18;\n vector<ll> R(n*3,INF),L(n*3,INF);\n int exR=0,exL=0;\n for(int i=0;i<m;i++){\n if(cs[i]=='R'){\n exR=1;\n chmin(R[bs[i]+n*0],ts[i]);\n chmin(R[bs[i]+n*1],ts[i]);\n chmin(R[bs[i]+n*2],ts[i]);\n }\n if(cs[i]=='L'){\n exL=1;\n chmin(L[bs[i]+n*0],ts[i]);\n chmin(L[bs[i]+n*1],ts[i]);\n chmin(L[bs[i]+n*2],ts[i]);\n }\n }\n\n vector<ll> ans(q,INF);\n\n // use R\n if(exR){\n MinLineContainer<ll> cht;\n for(int x=0;x<n*2;x++){\n if(R[x]!=INF) cht.add(R[x],-R[x]*sm[x]);\n for(int i:G[x]){\n int y=ys[i];\n if(x>y) y+=n;\n chmin(ans[i],cht.query(sm[y]));\n }\n }\n }\n\n // use L\n if(exL){\n MinLineContainer<ll> cht;\n for(int x=n*3-1;x>=n;x--){\n if(L[x]!=INF) cht.add(-L[x],L[x]*sm[x]);\n for(int i:G[x]){\n int y=ys[i];\n if(x<y) y-=n;\n chmin(ans[i],cht.query(sm[y]));\n }\n }\n }\n\n for(int i=0;i<q;i++) cout<<ans[i]<<'\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 30648, "score_of_the_acc": -0.593, "final_rank": 5 }, { "submission_id": "aoj_3069_4886431", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3069\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nenum Objective{\n MINIMIZE = +1,\n MAXIMIZE = -1,\n};\n\ntemplate<typename T>\nstruct Line {\n mutable T k,m,p;\n bool operator<(const Line&o)const{return k<o.k;}\n bool operator<(T x)const{return p<x;}\n};\n\ntemplate<typename T> T lc_inf(){return numeric_limits<T>::max();}\ntemplate<> double lc_inf<double>(){return 1/.0;}\n\ntemplate<typename T> T lc_div(T a,T b){return a/b-((a^b)<0 and a%b);}\ntemplate<> double lc_div(double a,double b){return a/b;};\n\ntemplate<typename T, Objective objective = Objective::MAXIMIZE>\nstruct LineContainer : multiset<Line<T>, less<>>{\n using super = multiset<Line<T>, less<>>;\n using super::begin, super::end, super::insert, super::erase;\n using super::empty, super::lower_bound;\n const T inf = lc_inf<T>();\n bool insect(typename super::iterator x,typename super::iterator y){\n if(y==end()) return x->p=inf,false;\n if(x->k==y->k) x->p=(x->m>y->m?inf:-inf);\n else x->p=lc_div(y->m-x->m,x->k-y->k);\n return x->p>=y->p;\n }\n void add(T k,T m){\n auto z=insert({k*objective,m*objective,0}),y=z++,x=y;\n while(insect(y,z)) z=erase(z);\n if(x!=begin() and insect(--x,y)) insect(x,y=erase(y));\n while((y=x)!=begin() and (--x)->p>=y->p) insect(x,erase(y));\n }\n T query(T x){\n assert(!empty());\n auto l=*lower_bound(x);\n return (l.k*x+l.m)*objective;\n }\n};\n\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n using ll = long long;\n int n,m,q;\n cin>>n>>m>>q;\n\n vector<ll> ds(n);\n for(int i=0;i<n;i++) cin>>ds[i];\n for(int i=0;i<n;i++) ds.emplace_back(int(ds[i]));\n for(int i=0;i<n;i++) ds.emplace_back(int(ds[i]));\n\n vector<ll> sm(n*3+1,0);\n for(int i=0;i<n*3;i++) sm[i+1]=sm[i]+ds[i];\n\n vector<char> cs(m);\n vector<int> bs(m),ts(m);\n for(int i=0;i<m;i++) cin>>cs[i]>>bs[i]>>ts[i],bs[i]--;\n\n vector< vector<ll> > G(n*3);\n vector<ll> xs(q),ys(q);\n for(int i=0;i<q;i++){\n cin>>xs[i]>>ys[i];\n xs[i]--,ys[i]--;\n xs[i]+=n,ys[i]+=n;\n G[xs[i]].emplace_back(i);\n }\n\n const ll INF = 1e18;\n vector<ll> R(n*3,INF),L(n*3,INF);\n int exR=0,exL=0;\n for(int i=0;i<m;i++){\n if(cs[i]=='R'){\n exR=1;\n chmin(R[bs[i]+n*0],ts[i]);\n chmin(R[bs[i]+n*1],ts[i]);\n chmin(R[bs[i]+n*2],ts[i]);\n }\n if(cs[i]=='L'){\n exL=1;\n chmin(L[bs[i]+n*0],ts[i]);\n chmin(L[bs[i]+n*1],ts[i]);\n chmin(L[bs[i]+n*2],ts[i]);\n }\n }\n\n vector<ll> ans(q,INF);\n\n // use R\n if(exR){\n LineContainer<ll> cht;\n for(int x=0;x<n*2;x++){\n if(R[x]!=INF) cht.add(R[x],-R[x]*sm[x]);\n for(int i:G[x]){\n int y=ys[i];\n if(x>y) y+=n;\n chmin(ans[i],cht.query(sm[y]));\n }\n }\n }\n\n // use L\n if(exL){\n LineContainer<ll> cht;\n for(int x=n*3-1;x>=n;x--){\n if(L[x]!=INF) cht.add(-L[x],L[x]*sm[x]);\n for(int i:G[x]){\n int y=ys[i];\n if(x<y) y-=n;\n chmin(ans[i],cht.query(sm[y]));\n }\n }\n }\n\n for(int i=0;i<q;i++) cout<<ans[i]<<'\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 30680, "score_of_the_acc": -0.5935, "final_rank": 6 }, { "submission_id": "aoj_3069_4886418", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3069\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\n\ntemplate<typename T>\nstruct Line {\n mutable T k,m,p;\n bool operator<(const Line&o)const{return k<o.k;}\n bool operator<(T x)const{return p<x;}\n};\n\ntemplate<typename T> T lc_inf(){return numeric_limits<T>::max();}\ntemplate<> double lc_inf<double>(){return 1/.0;}\n\ntemplate<typename T> T lc_div(T a,T b){return a/b-((a^b)<0 and a%b);}\ntemplate<> double lc_div(double a,double b){return a/b;};\n\ntemplate<typename T>\nstruct LineContainer : multiset<Line<T>, less<>>{\n using super = multiset<Line<T>, less<>>;\n using super::begin, super::end, super::insert, super::erase;\n using super::empty, super::lower_bound;\n\n const T inf = lc_inf<T>();\n bool insect(typename super::iterator x,typename super::iterator y){\n if(y==end()) return x->p=inf,false;\n if(x->k==y->k) x->p=(x->m>y->m?inf:-inf);\n else x->p=lc_div(y->m-x->m,x->k-y->k);\n return x->p>=y->p;\n }\n void add(T k,T m){\n auto z=insert({k,m,0}),y=z++,x=y;\n while(insect(y,z)) z=erase(z);\n if(x!=begin() and insect(--x,y)) insect(x,y=erase(y));\n while((y=x)!=begin() and (--x)->p>=y->p) insect(x,erase(y));\n }\n T query(T x){\n assert(!empty());\n auto l=*lower_bound(x);\n return l.k*x+l.m;\n }\n};\n\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n using ll = long long;\n int n,m,q;\n cin>>n>>m>>q;\n\n vector<ll> ds(n);\n for(int i=0;i<n;i++) cin>>ds[i];\n for(int i=0;i<n;i++) ds.emplace_back(int(ds[i]));\n for(int i=0;i<n;i++) ds.emplace_back(int(ds[i]));\n\n vector<ll> sm(n*3+1,0);\n for(int i=0;i<n*3;i++) sm[i+1]=sm[i]+ds[i];\n\n vector<char> cs(m);\n vector<int> bs(m),ts(m);\n for(int i=0;i<m;i++) cin>>cs[i]>>bs[i]>>ts[i],bs[i]--;\n\n vector< vector<ll> > G(n*3);\n vector<ll> xs(q),ys(q);\n for(int i=0;i<q;i++){\n cin>>xs[i]>>ys[i];\n xs[i]--,ys[i]--;\n xs[i]+=n,ys[i]+=n;\n G[xs[i]].emplace_back(i);\n }\n\n const ll INF = 1e18;\n vector<ll> R(n*3,INF),L(n*3,INF);\n int exR=0,exL=0;\n for(int i=0;i<m;i++){\n if(cs[i]=='R'){\n exR=1;\n chmin(R[bs[i]+n*0],ts[i]);\n chmin(R[bs[i]+n*1],ts[i]);\n chmin(R[bs[i]+n*2],ts[i]);\n }\n if(cs[i]=='L'){\n exL=1;\n chmin(L[bs[i]+n*0],ts[i]);\n chmin(L[bs[i]+n*1],ts[i]);\n chmin(L[bs[i]+n*2],ts[i]);\n }\n }\n\n vector<ll> ans(q,INF);\n\n // use R\n if(exR){\n LineContainer<ll> cht;\n auto add=[&](ll k,ll m){cht.add(-k,-m);};\n auto query=[&](ll x){return -cht.query(x);};\n for(int x=0;x<n*2;x++){\n if(R[x]!=INF) add(R[x],-R[x]*sm[x]);\n for(int i:G[x]){\n int y=ys[i];\n if(x>y) y+=n;\n chmin(ans[i],query(sm[y]));\n }\n }\n }\n\n // use L\n if(exL){\n LineContainer<ll> cht;\n auto add=[&](ll k,ll m){cht.add(-k,-m);};\n auto query=[&](ll x){return -cht.query(x);};\n for(int x=n*3-1;x>=n;x--){\n if(L[x]!=INF) add(-L[x],L[x]*sm[x]);\n for(int i:G[x]){\n int y=ys[i];\n if(x<y) y-=n;\n chmin(ans[i],query(sm[y]));\n }\n }\n }\n\n for(int i=0;i<q;i++) cout<<ans[i]<<'\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 30896, "score_of_the_acc": -0.5972, "final_rank": 7 }, { "submission_id": "aoj_3069_4886349", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3069\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\n\ntemplate<typename T>\nstruct Line {\n mutable T k,m,p;\n bool operator<(const Line&o)const{return k<o.k;}\n bool operator<(T x)const{return p<x;}\n};\n\ntemplate<typename T>\nstruct LineContainer : multiset<Line<T>, less<>>{\n using super = multiset<Line<T>, less<>>;\n using super::begin, super::end, super::insert, super::erase;\n using super::empty, super::lower_bound;\n\n template<typename X>\n using is_float = enable_if< is_floating_point<X>::value>;\n template<typename X>\n using is_int = enable_if<!is_floating_point<X>::value>;\n\n template<typename X=T,typename is_float<X>::type * = nullptr>\n static constexpr T get_inf(){return 1/.0;}\n template<typename X=T,typename is_int<X>::type * = nullptr>\n static constexpr T get_inf(){return numeric_limits<T>::max();}\n\n const T inf = get_inf();\n\n template<typename X=T,typename is_float<X>::type * = nullptr>\n T div(T a,T b){return a/b;}\n template<typename X=T,typename is_int<X>::type * = nullptr>\n T div(T a,T b){return a/b-((a^b)<0 and a%b);}\n\n bool insect(typename super::iterator x,typename super::iterator y){\n if(y==end()) return x->p=inf,false;\n if(x->k==y->k) x->p=(x->m>y->m?inf:-inf);\n else x->p=div(y->m-x->m,x->k-y->k);\n return x->p>=y->p;\n }\n void add(T k,T m){\n auto z=insert({k,m,0}),y=z++,x=y;\n while(insect(y,z)) z=erase(z);\n if(x!=begin() and insect(--x,y)) insect(x,y=erase(y));\n while((y=x)!=begin() and (--x)->p>=y->p) insect(x,erase(y));\n }\n T query(T x){\n assert(!empty());\n auto l=*lower_bound(x);\n return l.k*x+l.m;\n }\n};\n\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n using ll = long long;\n int n,m,q;\n cin>>n>>m>>q;\n\n vector<ll> ds(n);\n for(int i=0;i<n;i++) cin>>ds[i];\n for(int i=0;i<n;i++) ds.emplace_back(int(ds[i]));\n for(int i=0;i<n;i++) ds.emplace_back(int(ds[i]));\n\n vector<ll> sm(n*3+1,0);\n for(int i=0;i<n*3;i++) sm[i+1]=sm[i]+ds[i];\n\n vector<char> cs(m);\n vector<int> bs(m),ts(m);\n for(int i=0;i<m;i++) cin>>cs[i]>>bs[i]>>ts[i],bs[i]--;\n\n vector< vector<ll> > G(n*3);\n vector<ll> xs(q),ys(q);\n for(int i=0;i<q;i++){\n cin>>xs[i]>>ys[i];\n xs[i]--,ys[i]--;\n xs[i]+=n,ys[i]+=n;\n G[xs[i]].emplace_back(i);\n }\n\n const ll INF = 1e18;\n vector<ll> R(n*3,INF),L(n*3,INF);\n int exR=0,exL=0;\n for(int i=0;i<m;i++){\n if(cs[i]=='R'){\n exR=1;\n chmin(R[bs[i]+n*0],ts[i]);\n chmin(R[bs[i]+n*1],ts[i]);\n chmin(R[bs[i]+n*2],ts[i]);\n }\n if(cs[i]=='L'){\n exL=1;\n chmin(L[bs[i]+n*0],ts[i]);\n chmin(L[bs[i]+n*1],ts[i]);\n chmin(L[bs[i]+n*2],ts[i]);\n }\n }\n\n vector<ll> ans(q,INF);\n\n // use R\n if(exR){\n LineContainer<ll> cht;\n auto add=[&](ll k,ll m){cht.add(-k,-m);};\n auto query=[&](ll x){return -cht.query(x);};\n for(int x=0;x<n*2;x++){\n if(R[x]!=INF) add(R[x],-R[x]*sm[x]);\n for(int i:G[x]){\n int y=ys[i];\n if(x>y) y+=n;\n chmin(ans[i],query(sm[y]));\n }\n }\n }\n\n // use L\n if(exL){\n LineContainer<ll> cht;\n auto add=[&](ll k,ll m){cht.add(-k,-m);};\n auto query=[&](ll x){return -cht.query(x);};\n for(int x=n*3-1;x>=n;x--){\n if(L[x]!=INF) add(-L[x],L[x]*sm[x]);\n for(int i:G[x]){\n int y=ys[i];\n if(x<y) y-=n;\n chmin(ans[i],query(sm[y]));\n }\n }\n }\n\n for(int i=0;i<q;i++) cout<<ans[i]<<'\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 30732, "score_of_the_acc": -0.62, "final_rank": 9 }, { "submission_id": "aoj_3069_3912813", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n\n#define llint long long\n#define inf 1e18\n\nusing namespace std;\n\ntypedef pair<llint, llint> P;\n\nstruct LiChaoTree{\n\tint size;\n\tvector<P> seg;\n\tvector<llint> x;\n\t\n\tLiChaoTree(){}\n\tLiChaoTree(int size){\n\t\tthis->size = size;\n\t\tseg.resize(1<<(size+1));\n\t\tx.resize(1<<size);\n\t}\n\t\n\tvoid init()\n\t{\n\t\tfor(int i = 0; i < (1<<(size+1)); i++) seg[i] = make_pair(0, inf);\n\t\tfor(int i = 0; i < (1<<size); i++) x[i] = i;\n\t}\n\tllint calc(P f, llint x)\n\t{\n\t\treturn f.first * x + f.second;\n\t}\n\tllint query(int i) //x[i]における最小値を取得\n\t{\n\t\tllint X = x[i], ret = inf;\n\t\ti += (1 << size);\n\t\twhile(i >= 1){\n\t\t\tret = min(ret, calc(seg[i], X));\n\t\t\ti /= 2;\n\t\t}\n\t\treturn ret;\n\t}\n\tvoid add(int k, int l, int r, P f)\n\t{\n\t\tint m = (l+r)/2;\n\t\tif(calc(f, x[m]) < calc(seg[k], x[m])) swap(seg[k], f);\n\t\tbool L = (calc(f, x[l]) < calc(seg[k], x[l])), R = (calc(f, x[r]) < calc(seg[k], x[r]));\n\t\tif(L == R) return;\n\t\tif(L) add(k*2, l, m, f);\n\t\tif(R) add(k*2+1, m+1, r, f);\n\t}\n\tvoid addSegment(int a, int b, int k, int l, int r, P f)\n\t{\n\t\tif(b < l || r < a) return;\n\t\tif(a <= l && r <= b){\n\t\t\tadd(k, l, r, f);\n\t\t\treturn;\n\t\t}\n\t\taddSegment(a, b, k*2, l, (l+r)/2, f);\n\t\taddSegment(a, b, k*2+1, (l+r)/2+1, r, f);\n\t}\n\tvoid addSegment(int a, int b, llint p, llint q) //区間[x[a], x[b]]に線分px+qを追加\n\t{\n\t\taddSegment(a, b, 1, 0, (1<<size)-1, make_pair(p, q));\n\t}\n\tvoid addLine(llint p, llint q) //直線px+qを追加\n\t{\n\t\treturn addSegment(0, (1<<size)-1, p, q);\n\t}\n};\n\nllint n, m, Q, L;\nllint p[100005], np[100005];\nchar c[100005];\nllint b[100005], t[100005];\nllint x[100005], y[100005];\nllint ans[100005];\nvector<llint> qvec[100005], bvec[100005];\nvector<llint> comp;\nLiChaoTree lct(17);\n\nllint dist(llint s, llint t)\n{\n\tif(t >= s) return t-s;\n\telse return t-s+L;\n}\n\nvoid solve()\n{\n\tfor(int i = 0; i < n; i++) qvec[i].clear();\n\tfor(int i = 1; i <= Q; i++) qvec[x[i]].push_back(i);\n\t\n\tfor(int i = 0; i < n; i++) bvec[i].clear();\n\tfor(int i = 1; i <= m; i++){\n\t\tif(c[i] == 'R') bvec[b[i]].push_back(i);\n\t}\n\t\n\tcomp.clear();\n\tfor(int i = 1; i <= Q; i++) comp.push_back(p[x[i]]+dist(p[x[i]], p[y[i]]));\n\tsort(comp.begin(), comp.end());\n\tcomp.erase(unique(comp.begin(), comp.end()), comp.end());\n\tint N = comp.size();\n\t\n\tlct.init();\n\tfor(int i = 0; i < (1<<17); i++){\n\t\tif(i < N) lct.x[i] = comp[i];\n\t\telse lct.x[i] = 1e9;\n\t}\n\t\n\tfor(int i = 1; i <= m; i++){\n\t\tif(c[i] == 'R') lct.addLine(t[i], -(p[b[i]]-L)*t[i]);\n\t}\n\tfor(int i = 0; i < n; i++){\n\t\tfor(int j = 0; j < bvec[i].size(); j++){\n\t\t\tint bid = bvec[i][j];\n\t\t\tlct.addLine(t[bid], -(p[b[bid]])*t[bid]);\n\t\t}\n\t\tfor(int j = 0; j < qvec[i].size(); j++){\n\t\t\tint qid = qvec[i][j];\n\t\t\tllint id = lower_bound(comp.begin(), comp.end(), p[x[qid]] + dist(p[x[qid]], p[y[qid]])) - comp.begin();\n\t\t\tans[qid] = min(ans[qid], lct.query(id));\n\t\t}\n\t}\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n >> m >> Q;\n\tllint d;\n\tfor(int i = 0; i < n; i++){\n\t\tcin >> d;\n\t\tp[i] = L;\n\t\tL += d;\n\t}\n\tfor(int i = 1; i <= m; i++) cin >> c[i] >> b[i] >> t[i], b[i]--;\n\tfor(int i = 1; i <= Q; i++) cin >> x[i] >> y[i], x[i]--, y[i]--;\n\tfor(int i = 1; i <= Q; i++) ans[i] = inf;\n\t\n\tsolve();\n\t\n\tfor(int i = 1; i < n; i++) np[i] = L-p[n-i];\n\tfor(int i = 0; i < n; i++) p[i] = np[i];\n\tfor(int i = 1; i <= m; i++){\n\t\tif(c[i] == 'L') c[i] = 'R';\n\t\telse c[i] = 'L';\n\t\tif(b[i] > 0) b[i] = n-b[i];\n\t}\n\tfor(int i = 1; i <= Q; i++){\n\t\tif(x[i] > 0) x[i] = n-x[i];\n\t\tif(y[i] > 0) y[i] = n-y[i];\n\t}\n\t\n\tsolve();\n\t\n\tfor(int i = 1; i <= Q; i++) cout << ans[i] << \"\\n\";\n\tflush(cout);\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 24728, "score_of_the_acc": -0.6208, "final_rank": 10 }, { "submission_id": "aoj_3069_3893189", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\ntemplate<typename T,bool isMin>\nstruct NonmonotonicConvexHullTrick {\n using number = double;\n static constexpr number INF = numeric_limits<T>::max();\n struct Line {\n T m,b,val;\n number x;\n bool q;\n Line(T m=0,T b=0):m(m),b(b),val(0),x(-INF),q(false){}\n\n T eval(T x) const{return m*x+b;}\n bool parallel(const Line &l) const{return m==l.m;}\n number intersect(const Line &l) const{\n return parallel(l)?number(INF):number(l.b-b)/number(m-l.m);\n }\n bool operator<(const Line &l) const{\n if(l.q) return x<l.val;\n return m<l.m;\n }\n };\n\n set<Line> hull;\n using iter = typename set<Line>::iterator;\n\n bool cPrev(iter it){return it!=hull.begin();}\n bool cNext(iter it){return it!=hull.end()&&next(it)!=hull.end();}\n\n bool bad(const Line &l1,const Line &l2,const Line &l3){\n return l1.intersect(l3) <= l1.intersect(l2);\n }\n bool bad(iter it){\n return cPrev(it)&&cNext(it)&&bad(*prev(it),*it,*next(it));\n }\n\n iter update(iter it){\n if(!cPrev(it)) return it;\n number x=it->intersect(*prev(it));\n Line tmp(*it);\n tmp.x=x;\n it=hull.erase(it);\n return hull.insert(it,tmp);\n }\n\n void addLine(T m,T b){\n if(isMin) m=-m,b=-b;\n Line l(m,b);\n iter it=hull.lower_bound(l);\n if(it!=hull.end()&&l.parallel(*it)){\n if(it->b<b) it=hull.erase(it);\n else return;\n }\n it=hull.insert(it,l);\n if(bad(it)){\n hull.erase(it);\n return;\n }\n while(cPrev(it)&&bad(prev(it))) hull.erase(prev(it));\n while(cNext(it)&&bad(next(it))) hull.erase(next(it));\n\n it=update(it);\n if(cPrev(it)) update(prev(it));\n if(cNext(it)) update(next(it));\n }\n\n bool empty() const{\n return hull.empty();\n }\n\n T query(T x){\n assert(!empty());\n Line q;\n q.val=x;q.q=1;\n iter it=--hull.lower_bound(q);\n if(isMin) return -(it->eval(x));\n return it->eval(x);\n }\n} ;\n\n//INSERT ABOVE HERE\nsigned main(){\n Int n,m,q;\n cin>>n>>m>>q;\n\n vector<Int> ds(n);\n for(Int i=0;i<n;i++) cin>>ds[i];\n for(Int i=0;i<n;i++) ds.emplace_back(Int(ds[i]));\n for(Int i=0;i<n;i++) ds.emplace_back(Int(ds[i]));\n\n vector<Int> sm(n*3+1,0);\n for(Int i=0;i<n*3;i++) sm[i+1]=sm[i]+ds[i];\n\n vector<char> cs(m);\n vector<Int> bs(m),ts(m);\n for(Int i=0;i<m;i++) cin>>cs[i]>>bs[i]>>ts[i],bs[i]--;\n\n vector< vector<Int> > G(n*3);\n vector<Int> xs(q),ys(q);\n for(Int i=0;i<q;i++){\n cin>>xs[i]>>ys[i];\n xs[i]--,ys[i]--;\n xs[i]+=n,ys[i]+=n;\n G[xs[i]].emplace_back(i);\n }\n\n const Int INF = 1e18;\n vector<Int> R(n*3,INF),L(n*3,INF);\n Int exR=0,exL=0;\n for(Int i=0;i<m;i++){\n if(cs[i]=='R'){\n exR=1;\n chmin(R[bs[i]+n*0],ts[i]);\n chmin(R[bs[i]+n*1],ts[i]);\n chmin(R[bs[i]+n*2],ts[i]);\n }\n if(cs[i]=='L'){\n exL=1;\n chmin(L[bs[i]+n*0],ts[i]);\n chmin(L[bs[i]+n*1],ts[i]);\n chmin(L[bs[i]+n*2],ts[i]);\n }\n }\n\n vector<Int> ans(q,INF);\n // use R\n if(exR){\n NonmonotonicConvexHullTrick<Int, true> cht;\n for(Int x=0;x<n*2;x++){\n if(R[x]!=INF) cht.addLine(R[x],-R[x]*sm[x]);\n for(Int i:G[x]){\n Int y=ys[i];\n if(x>y) y+=n;\n chmin(ans[i],cht.query(sm[y]));\n }\n }\n }\n // use L\n if(exL){\n NonmonotonicConvexHullTrick<Int, true> cht;\n for(Int x=n*3-1;x>=n;x--){\n if(L[x]!=INF) cht.addLine(-L[x],L[x]*sm[x]);\n for(Int i:G[x]){\n Int y=ys[i];\n if(x<y) y-=n;\n chmin(ans[i],cht.query(sm[y]));\n }\n }\n }\n\n for(Int i=0;i<q;i++) cout<<ans[i]<<\"\\n\";\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 32708, "score_of_the_acc": -0.7817, "final_rank": 13 }, { "submission_id": "aoj_3069_3880838", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define INF_LL (int64)1e18\n#define INF (int32)1e9\n#define REP(i, n) for(int64 i = 0;i < (n);i++)\n#define FOR(i, a, b) for(int64 i = (a);i < (b);i++)\n#define all(x) x.begin(),x.end()\n#define fs first\n#define sc second\n\nusing int32 = int_fast32_t;\nusing uint32 = uint_fast32_t;\nusing int64 = int_fast64_t;\nusing uint64 = uint_fast64_t;\nusing PII = pair<int32, int32>;\nusing PLL = pair<int64, int64>;\n\nconst double eps = 1e-10;\n\ntemplate<typename A, typename B>inline void chmin(A &a, B b){if(a > b) a = b;}\ntemplate<typename A, typename B>inline void chmax(A &a, B b){if(a < b) a = b;}\n\ntemplate<typename T>\nvector<T> make_v(size_t a){return vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value!=0>::type\nfill_v(U &u,const V... v){u=U(v...);}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value==0>::type\nfill_v(U &u,const V... v){\n for(auto &e:u) fill_v<T>(e,v...);\n}\ntemplate<typename T = ::std::int64_t, class Compare = ::std::less<T>>\nclass LiChaoTree{\nprivate:\n static Compare comp;\n using size_type = ::std::size_t;\n\n struct Line{\n T a, b;\n bool used;\n Line() : a(0), b(0), used(false) {}\n Line(const T &a_, const T &b_) : a(a_), b(b_), used(true) {}\n T operator()(const T &x) { return a*x+b; }\n };\n\n size_type n, cnt;\n ::std::vector<Line> node;\n ::std::vector<T> pos;\n\n void add(size_type l, size_type r, const Line &line){\n cnt++;\n size_type l0 = l, r0 = r;\n size_type sz = 1;\n for (l += n, r += n; l < r; l >>= 1, r >>= 1, sz <<= 1) {\n if (l & 1) add(l, l0, l0+sz, line), l0 += sz, l++;\n if (r & 1) --r, r0 -= sz, add(r, r0, r0+sz, line);\n }\n }\n\n void add(size_type k, size_type l, size_type r, Line line){\n if (!node[k].used) {\n node[k] = line;\n return;\n }\n T ly = line(pos[l]), ry = line(pos[r-1]);\n T nly = node[k](pos[l]), nry = node[k](pos[r-1]);\n if (comp(nly, ly) && comp(nry, ry)) return;\n if (comp(ly, nly) && comp(ry, nry)) {\n node[k] = line;\n return;\n }\n if (r - l == 1) return;\n size_type m = (l + r) >> 1;\n if (comp(nly, ly)) swap(node[k], line);\n if (comp(line(pos[m]), node[k](pos[m]))) {\n swap(node[k], line);\n add((k << 1) | 1, m, r, line);\n } else {\n add(k << 1, l, m, line);\n }\n }\npublic:\n LiChaoTree(){}\n LiChaoTree(const ::std::vector<T> &v) : pos(v), cnt(0) {\n n = 1;\n while (n < pos.size()) n <<= 1;\n sort(pos.begin(), pos.end());\n pos.erase(unique(pos.begin(), pos.end()), pos.end());\n pos.resize(n, pos.back());\n node.resize(n << 1);\n }\n\n void add(T a, T b){\n add(0, n, Line(a, b));\n }\n\n void add(T a, T b, T lx, T rx){\n size_type l = lower_bound(pos.begin(), pos.end(), lx) - pos.begin();\n size_type r = lower_bound(pos.begin(), pos.end(), rx) - pos.begin();\n add(l, r, Line(a, b));\n }\n\n ::std::pair<bool, T> query(T x) {\n Line l = get(x);\n return ::std::make_pair(l.used, l(x));\n }\n\n Line get(T x){\n size_type i = lower_bound(pos.begin(), pos.end(), x) - pos.begin() + n;\n size_type res = -1;\n for(; i > 0; i >>= 1){\n if (node[i].used)\n if (res == -1 || comp(node[i](x), node[res](x))) res = i;\n }\n return res == -1 ? Line() : node[res];\n }\n\n size_type size() { return cnt; } // the number of lines\n};\n\ntemplate<class T, class Compare>\nCompare LiChaoTree<T, Compare>::comp;\n\nint main(void){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n using T = tuple<int64, int64, int64>; // -1 -> add, other -> query id\n\n\tint64 N, M, Q;\n\tcin >> N >> M >> Q;\n\tvector<int64> d(N), d3(3*N+1, 0);\n\tvector<PLL> bus[2], q(Q);\n\tREP(i, N) {\n\t cin >> d[i];\n\t}\n\tREP(i, 3*N) d3[i+1] += d3[i];\n vector<vector<PLL>> ev(N);\n\tREP(i, M) {\n\t char c;\n\t int64 b, t;\n\t cin >> c >> b >> t;\n\t bus[c == 'L'].emplace_back(b, t);\n\t}\n\tREP(i, Q) {\n\t cin >> q[i].fs >> q[i].sc;\n\t}\n\tvector<int64> res(Q, INF_LL);\n\n\tREP(dir, 2) {\n\t ev = vector<vector<PLL>>(3*N);\n\t d3 = vector<int64>(3*N+1, 0);\n\t REP(i, N) d3[i+1] = d3[i+N+1] = d3[i+2*N+1] = d[i];\n\t REP(i, 3*N) d3[i+1] += d3[i];\n\t REP(i, bus[dir].size()) {\n\t int64 b, t;\n\t tie(b, t) = bus[dir][i]; b--;\n\t if (dir == 1) b = (N-b)%N;\n\t ev[b].push_back(PLL(-1, t));\n ev[b+N].push_back(PLL(-1, t));\n ev[b+2*N].push_back(PLL(-1, t));\n\t }\n\t REP(i, Q) {\n\t int64 x, y;\n\t tie(x, y) = q[i]; x--; y--;\n\t if (dir == 1) { x = (N-x)%N; y = (N-y)%N; }\n\t if (y >= x) {\n\t ev[x].emplace_back(i, y);\n\t x += N; y += N;\n\t } else {\n\t y += N;\n\t }\n//\t cout << i << \": \" << x << \"->\" << y << endl;\n\t ev[x].emplace_back(i, y);\n\t ev[x+N].emplace_back(i, y+N);\n\t }\n\n\t LiChaoTree<> lct(d3);\n\n REP(i, 3*N) {\n sort(all(ev[i]));\n REP(j, ev[i].size()) {\n if (ev[i][j].fs == -1) {\n// cout << i << \" \" << ev[i][j].sc << \" \" << -d3[i] * ev[i][j].sc << endl;\n lct.add(ev[i][j].sc, -d3[i]*ev[i][j].sc);\n } else {\n auto ret = lct.query(d3[ev[i][j].sc]);\n// cout << i << \" \" << ev[i][j].fs << \" \" << ev[i][j].sc << \": \" << ret.fs << \" \" << ret.sc << endl;\n if (ret.fs) {\n chmin(res[ev[i][j].fs], ret.sc);\n }\n }\n }\n }\n\n\t reverse(all(d));\n\t}\n\tREP(i, res.size()) {\n\t cout << res[i] << endl;\n\t}\n}", "accuracy": 1, "time_ms": 410, "memory_kb": 62224, "score_of_the_acc": -2, "final_rank": 17 }, { "submission_id": "aoj_3069_3880821", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef pair<int,int> P;\ntypedef pair<P,int> T;\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vll;\n#define pb push_back\n#define mp make_pair\n#define eps 1e-9\n#define INF 2000000000\n#define LLINF 1000000000000000000ll\n#define sz(x) ((int)(x).size())\n#define fi first\n#define sec second\n#define all(x) (x).begin(),(x).end()\n#define sq(x) ((x)*(x))\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);(i)++)\n#define repn(i,a,n) for(int (i)=(a);(i)<(int)(n);(i)++)\n#define EQ(a,b) (abs((a)-(b))<eps)\n#define dmp(x) cerr << __LINE__ << \" \" << #x << \" \" << x << endl;\ntemplate<class T> void chmin(T& a,const T& b){if(a>b)a=b;}\ntemplate<class T> void chmax(T& a,const T& b){if(a<b)a=b;}\ntemplate<class T>\nvoid dump(vector<T> &vec){\n\tfor(int i=0;i<vec.size();i++){\n\t\tcout << vec[i];\n\t\tif(i+1<vec.size())cout << ' ';\n\t\telse cout << endl;\n\t}\n\treturn;\n}\ntemplate<class T>\nvoid input(vector<T>& vec,int n){\n\tvec.resize(n);\n\tfor(int i=0;i<n;i++){\n\t\tcin >> vec[i];\n\t}\n}\n// verifyed EDPC Z\n// https://atcoder.jp/contests/dp/tasks/dp_z\n// Comptype true : min, false : max\ntemplate<class T,bool Comptype = true>\nstruct LiChaoTree{\n\tusing Line = pair<T,T>;\t\n\tint sz = 1;\n\tvector<Line> seg;\n\tvector<T> xs;\n\tLiChaoTree(){}\n\tvoid init(vector<T>& x,T id){\n\t\txs = x;\n\t\tint n = x.size();\n\t\twhile(sz<n)sz<<=1;\n\t\txs.resize(sz,x.back());\n\t\tseg.resize(sz*2,Line(T(0),id));\n\t}\n\tvoid dump_tree(){\n\t\tfor(int i=0;i<seg.size();i++){\n\t\t\tcout << i << ':' << seg[i].fi << ' ' << seg[i].sec << endl;\n\t\t}\n\t\t// dump(xs);\n\t}\n\tstatic inline T f(Line l,ll x){\n\t\treturn l.fi*x+l.sec;\n\t}\t\n\tvoid add(Line line,int k,int l ,int r){\n\t\tint mid = (l+r)/2;\n\t\tT lx = xs[l];\n\t\tT mx = xs[mid];\n\t\tT rx = xs[r-1];\n\t\tbool lb = (f(line,lx)<f(seg[k],lx));\n\t\tbool mb = (f(line,mx)<f(seg[k],mx));\n\t\tbool rb = (f(line,rx)<f(seg[k],rx));\n\t\tif((lb==Comptype)&&(rb==Comptype)){\n\t\t\tseg[k] = line;\n\t\t\treturn;\n\t\t}else if((lb!=Comptype)&&(rb!=Comptype)){\n\t\t\treturn;\n\t\t}else{\n\t\t\tif(mb==Comptype)swap(seg[k],line);\n\t\t\tif(lb!=mb){\n\t\t\t\tadd(line,2*k+1,l,mid);\n\t\t\t}else{\n\t\t\t\tadd(line,2*k+2,mid,r);\n\t\t\t}\n\t\t}\n\t}\n\tvoid add(Line line){\n // cout << \"add :\" << line.fi << ' ' << line.sec << endl;\n\t\tadd(line,0,0,sz);\n\t}\n\tT query(int k){\n\t\tT x = xs[k];\n\t\tk += sz-1;\n\t\tT ret = f(seg[k],x);\n\t\twhile(k>0){\n\t\t\tk = (k-1)/2;\n\t\t\tT tmp = f(seg[k],x);\n\t\t\tif((tmp<ret)==Comptype)ret = tmp;\n\t\t}\n\t\treturn ret;\n\t}\n};\nint solve(){\n\tint N;\n\tll C;\n\tvector<ll> h;\n\tLiChaoTree<ll> seg;\n\tvector<ll> dp;\n\tcin >> N >> C;\n\tinput(h,N);\n\tdp.resize(N,0ll);\n\tseg.init(h,LLINF);\n\tseg.add(make_pair(-2*h[0],dp[0]+h[0]*h[0]));\n\tfor(int i=1;i<N;i++){\n\t\t// seg.dump_tree();\n\t\tdp[i] = h[i]*h[i]+C+seg.query(i);\n\t\t// cout << i << ' ' << dp[i] << endl;\n\t\tseg.add(make_pair(-2ll*h[i],h[i]*h[i]+dp[i]));\n\t}\n\tcout << dp[N-1] << endl;\n\treturn 0;\n}\nint N,M,Q;\nll d[100100];\nll rui[300100];\nstruct bus{\n char c;\n ll b,t;\n bus(){}\n bus(char c,ll b,ll t):c(c),b(b),t(t){}\n bool operator < (const bus& a) const{\n return b < a.b;\n }\n};\nbus bs[200100];\nstruct query{\n int x,y,id;\n query(){}\n query(int x,int y,int id):x(x),y(y),id(id){}\n bool operator < (const query& a) const{\n return x < a.x;\n }\n};\nquery qs[100100];\nll rans[100100],lans[100100];\nvector<ll> qpos;\nvoid solveR(){\n vector<bus> rb;\n for(int i=0;i<M;i++){\n if(bs[i].c=='R'){\n rb.pb(bs[i]);\n rb.pb(bus(bs[i].c,bs[i].b+N,bs[i].t));\n rb.pb(bus(bs[i].c,bs[i].b+2*N,bs[i].t));\n }\n }\n sort(all(rb));\n LiChaoTree<ll> seg;\n seg.init(qpos,LLINF);\n int idx = 0; \n for(int i=0;i<Q;i++){\n query q = qs[i];\n while(idx<rb.size()&&rb[idx].b<=q.x+N){\n bus& b = rb[idx];\n seg.add(make_pair(b.t,-b.t*rui[b.b]));\n idx++;\n }\n if(q.x<q.y){\n rans[q.id] = seg.query(q.y+N);\n }else{\n rans[q.id] = seg.query(q.y+2*N);\n }\n }\n // cout << \"rans\" << endl;\n // for(int i=0;i<Q;i++){\n // cout << rans[i] << endl;\n // }\n return;\n}\nvoid solveL(){\n vector<bus> lb;\n for(int i=0;i<M;i++){\n if(bs[i].c=='L'){\n lb.pb(bs[i]);\n lb.pb(bus(bs[i].c,bs[i].b+N,bs[i].t));\n lb.pb(bus(bs[i].c,bs[i].b+2*N,bs[i].t));\n }\n }\n sort(all(lb));\n reverse(all(lb));\n LiChaoTree<ll> seg;\n seg.init(qpos,LLINF);\n int idx = 0; \n for(int i=Q-1;i>=0;i--){\n query q = qs[i];\n while(idx<lb.size()&&lb[idx].b>=q.x+N){\n bus& b = lb[idx];\n seg.add(make_pair(-b.t,b.t*rui[b.b]));\n idx++;\n }\n if(q.x<q.y){\n lans[q.id] = seg.query(q.y);\n }else{\n lans[q.id] = seg.query(q.y+N);\n }\n }\n // cout << \"lans\" << endl;\n // for(int i=0;i<Q;i++){\n // cout << lans[i] << endl;\n // }\n return;\n}\nint main(){\n cin >> N >> M >> Q;\n for(int i=1;i<=N;i++){\n cin >> d[i];\n rui[i] = rui[i-1]+d[i];\n }\n for(int i=1;i<=N;i++){\n rui[N+i] = rui[N+i-1]+d[i];\n }\n for(int i=1;i<=N;i++){\n rui[2*N+i] = rui[2*N+i-1]+d[i];\n }\n for(int i=0;i<=3*N;i++){\n qpos.pb(rui[i]);\n //cout << rui[i] << ' ';\n }\n //cout << endl;\n for(int i=0;i<M;i++){\n cin >> bs[i].c >> bs[i].b >> bs[i].t;\n bs[i].b--;\n }\n for(int i=0;i<Q;i++){\n int x,y;\n cin >> x >> y;\n x--;y--;\n qs[i] = query(x,y,i);\n }\n sort(qs,qs+Q);\n solveR();\n solveL();\n for(int i=0;i<Q;i++){\n cout << min(lans[i],rans[i]) << endl;\n } \n return 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 48308, "score_of_the_acc": -1.3026, "final_rank": 16 }, { "submission_id": "aoj_3069_3879974", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <complex>\n#include <cstring>\n#include <deque>\n#include <functional>\n#include <iostream>\n#include <list>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n#include <cstdint>\nusing namespace std;\ntypedef long long ll;\n#define MP make_pair\n#define PB push_back\n#define inf (ll)1000000000007\n#define mod 1000000007\n#define rep(i,n) for(int i = 0; i < (int)(n); ++i)\n#define int long long\n// 単調でない傾きについての convex hull trick\n// Li Chao Segment Tree を用いて O(nlog(MAX_A))\ntemplate<typename T> class CHT {\nprivate:\n struct node {\n node *left, *right;\n T a, b;\n node() : left(nullptr), right(nullptr) {}\n node(T arg1, T arg2)\n : left(nullptr), right(nullptr), a(arg1), b(arg2) {}\n T f(T x, T a, T b) {\n return a * x + b;\n }\n void add(T l, T r, T a_, T b_) {\n if(f(l,a_,b_) < f(l,a,b)) {\n swap(a,a_), swap(b,b_);\n }\n if(f(r,a,b) <= f(r,a_,b_)) return;\n T mid = (l + r) / 2;\n if(f(mid,a,b) < f(mid,a_,b_)){\n if(!right){\n right = new node(a_,b_);\n }else{\n right->add(mid+1,r,a_,b_);\n }\n }else{\n swap(a, a_), swap(b, b_);\n if(!left){\n left = new node(a_,b_);\n }else{\n left->add(l,mid,a_,b_);\n }\n }\n }\n T query(T l, T r, T k) {\n if(l == r) return f(k, a, b);\n T ans = f(k, a, b);\n T mid = (l + r) / 2;\n if(k <= mid && left){\n ans = min(ans, left->query(l, mid, k));\n }\n if(k > mid && right){\n ans = min(ans, right->query(mid+1, r, k));\n }\n return ans;\n }\n void rm() {\n if(left) left->rm();\n if(right) right->rm();\n delete this;\n }\n };\n node *root;\n T min_val, max_val;\npublic:\n // arg1:クエリになげる最小の値, arg2:クエリになげる最大の値\n CHT(T arg1, T arg2)\n : min_val(arg1), max_val(arg2) { root = new node(0,numeric_limits<T>::max()/10); }\n // f(x) = a*x+b を挿入\n void add(T a, T b) {\n return root->add(min_val, max_val, a, b);\n }\n // x=kでの最小値\n T query(T k) {\n return root->query(min_val, max_val, k);\n }\n ~CHT(){\n root->rm();\n }\n};\n\nint res[300000];\nvector<pair<pair<int,int>,int> > query;\nint n,m,q;\n \nvoid solve(vector<int>&R,vector<int>&dist){\n CHT<ll> cht(-inf,inf);\n \n rep(i,n){\n if(i==0)continue;\n \n if(R[i]!=inf){\n //cerr << R[i] << \" \" << R[i]*(dist[n]-dist[i]) << endl; \n cht.add(R[i],R[i]*(dist[n]-dist[i]));\n }\n }\n int tm = 0;\n sort(query.begin(),query.end());\n int K = 0;\n rep(i,n){\n //cerr<< R[i] << \" \" << tm << endl;\n if(R[i]!=inf){\n cht.add(R[i],-R[i]*tm);\n }\n while(K!=q&&query[K].first.first == i){\n int from = query[K].first.first;\n int to = query[K].first.second;\n int query_id = query[K].second;\n int d; \n if(to>from){\n d = dist[to]-dist[from];\n }else{\n d = dist[n] - dist[from] +dist[to];\n }\n //cerr << \"d: \"<< d << \" tm \" << tm << endl;\n int ans = cht.query(d+tm);\n //cerr << ans.first << \" \" << ans.second << endl;\n res[query_id] = min(res[query_id],ans);\n K++;\n }\n tm += dist[i+1]-dist[i];\n } \n \n}\n\n\nsigned main(){\n cin >> n >> m >> q;\n rep(i,q){\n res[i] = inf;\n }\n vector<int> dist(n+1);\n dist[0] = 0;\n rep(i,n){\n int k;\n cin >> k;\n dist[i+1]= dist[i]+k;\n } \n vector<int> L(n+1,inf),R(n+1,inf);\n rep(i,m){\n char c;\n int b;\n int t;\n cin >> c >> b >> t;\n b--;\n if(c=='R'){\n R[b] = min(t,R[b]);\n }else{\n L[b] = min(t,L[b]);\n }\n }\n rep(i,q){\n int a,b;\n cin >> a >> b;\n a--;b--;\n query.push_back(MP(MP(a,b),i));\n }\n int cnt = 0;\n rep(i,n){\n if(R[i]!=inf)cnt++;\n }\n if(cnt!=0)solve(R,dist);\n // rep(i,q){\n // cout << res[i] << endl;\n // }\n rep(i,q){\n int a = query[i].first.first;\n int b = query[i].first.second;\n if(a!=0){\n a = n-a;\n }\n if(b!=0){\n b = n-b;\n }\n query[i].first.first = a;\n query[i].first.second = b;\n }\n vector<int> L2(n);\n vector<int> dist2(n+1);\n rep(i,n){\n if(i==0){\n L2[i] = L[i];\n }else{\n L2[i] = L[n-i];\n }\n }\n rep(i,n){\n dist2[i] = dist[n] - dist[n-i];\n }\n dist2[n] = dist[n];\n // rep(i,n){\n // cerr << dist2[i] << \" \";\n // }\n // cerr << endl;\n \n int cnt2 = 0;\n rep(i,n){\n if(L[i]!=inf)cnt2++;\n }\n if(cnt2!=0)solve(L2,dist2);\n rep(i,q){\n cout << res[i] << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 15236, "score_of_the_acc": -0.6651, "final_rank": 11 }, { "submission_id": "aoj_3069_3879531", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconst ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int> P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef pair<ll, ll> LP;\ntypedef vector<ll> vec;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-5;\nconst ld pi = acos(-1.0);\n\nstruct LiChaoTree {\n\tint sz;\n\tstruct Node {\n\t\tint l, r;\n\t\tNode* chl; Node* chr;\n\t\tLP val;\n\t\tNode(int l, int r) :l(l), r(r) {\n\t\t\tval = { 0,INF };\n\t\t\tchl = chr = NULL;\n\t\t}\n\t};\n\tNode* root;\n\tLiChaoTree() {\n\t\tint max_n = 1e8 + 1;\n\t\tsz = 1;\n\t\twhile (sz < max_n)sz <<= 1;\n\t\troot = new Node(0, sz);\n\t}\n\tll calc(LP a, int x) {\n\t\treturn a.first*x + a.second;\n\t}\n\tvoid add(Node* node, LP a) {\n\t\tif (!node)return;\n\t\tint l = node->l, r = node->r;\n\t\tint m = (l + r) / 2;\n\t\t//そのノードでの最小値\n\t\tif (calc(node->val, m) > calc(a, m))swap(node->val, a);\n\t\tif (r - l == 1)return;\n\t\t//左側をさらに更新しなきゃ\n\t\tif (calc(node->val, l) > calc(a, l)) {\n\t\t\tif (!node->chl)node->chl = new Node(l, m);\n\t\t\tadd(node->chl, a);\n\t\t}\n\t\telse if (calc(node->val, r) > calc(a, r)) {\n\t\t\tif (!node->chr)node->chr = new Node(m, r);\n\t\t\tadd(node->chr, a);\n\t\t}\n\t}\n\tvoid add(LP a) {\n\t\tadd(root, a);\n\t}\n\tll query(int x) {\n\t\tll ret = INF;\n\t\tNode* node = root;\n\t\twhile (node) {\n\t\t\tret = min(ret, calc(node->val, x));\n\t\t\tint m = (node->l + node->r) / 2;\n\t\t\tif (x < m) {\n\t\t\t\tnode = node->chl;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tnode = node->chr;\n\t\t\t}\n\t\t}\n\t\treturn ret;\n\t}\n};\n\nvoid solve() {\n\tint n, m, q; cin >> n >> m >> q;\n\tvector<int> d(n);\n\trep(i, n) {\n\t\tcin >> d[i];\n\t}\n\tvector<int> rd(n+1);\n\trep(i, n) {\n\t\trd[i + 1] = rd[i] + d[i];\n\t}\n\tvector<vector<int>> vl(n), vr(n);\n\trep(i, m) {\n\t\tchar c; int b, t;\n\t\tcin >> c >> b >> t; b--;\n\t\tif (c == 'L') {\n\t\t\tvl[b].push_back(t);\n\t\t}\n\t\telse {\n\t\t\tvr[b].push_back(t);\n\t\t}\n\t}\n\tvector<ll> ans(q);\n\tfill(ans.begin(), ans.end(), INF);\n\tvector<vector<P>>que(n);\n\trep(i, q) {\n\t\tint x, y; cin >> x >>y; x--; y--;\n\t\tque[x].push_back({ y,i });\n\n\t}\n\tif (vr.size()) {\n\t\tLiChaoTree cr;\n\t\trep(i, n) {\n\t\t\tint dist = rd[n]-rd[i];\n\t\t\trep(j, vr[i].size()) {\n\t\t\t\tint t= vr[i][j];\n\t\t\t\tcr.add({ t,(ll)t*dist });\n\t\t\t}\n\t\t}\n\t\trep(i, n) {\n\t\t\trep(j, vr[i].size()) {\n\t\t\t\tint t = vr[i][j];\n\t\t\t\tcr.add({ t,-(ll)t*rd[i] });\n\t\t\t}\n\t\t\trep(j, que[i].size()) {\n\t\t\t\tint to = que[i][j].first;\n\t\t\t\tint id = que[i][j].second;\n\t\t\t\tll x = rd[to];\n\t\t\t\tif (to < i)x += rd[n];\n\t\t\t\t//if (x < 0)x += rd[n];\n\t\t\t\tans[id] = min(ans[id], cr.query(x));\n\t\t\t}\n\t\t}\n\t}\n\tif (vl.size()) {\n\t\tLiChaoTree cl;\n\t\tper(i, n) {\n\t\t\tint dist = rd[i];\n\t\t\trep(j, vl[i].size()) {\n\t\t\t\tint t = vl[i][j];\n\t\t\t\tcl.add({ t,(ll)t*dist });\n\t\t\t}\n\t\t}\n\t\tper(i, n) {\n\t\t\trep(j, vl[i].size()) {\n\t\t\t\tint t = vl[i][j];\n\t\t\t\tcl.add({ t,-(ll)t*(rd[n] - rd[i]) });\n\t\t\t}\n\t\t\trep(j, que[i].size()) {\n\t\t\t\tint to = que[i][j].first;\n\t\t\t\tint id = que[i][j].second;\n\t\t\t\tll x = rd[n]-rd[to];\n\t\t\t\tif (i < to)x += rd[n];\n\t\t\t\t//if (x < 0)x += rd[n];\n\t\t\t\tans[id] = min(ans[id], cl.query(x));\n\t\t\t}\n\t\t}\n\t}\n\trep(i, q) {\n\t\tcout << ans[i] << endl;\n\t}\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tsolve();\n\t//stop\n\treturn 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 18820, "score_of_the_acc": -0.5463, "final_rank": 4 }, { "submission_id": "aoj_3069_3879013", "code_snippet": "// う?笑\n#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T >\nstruct LiChaoTree {\n struct Line {\n T a, b;\n\n Line(T a, T b) : a(a), b(b) {}\n\n inline T get(T x) const { return a * x + b; }\n\n inline bool over(const Line &b, const T &x) const {\n return get(x) < b.get(x);\n }\n };\n\n vector< T > xs;\n vector< Line > seg;\n int sz;\n\n LiChaoTree(const vector< T > &x, T INF) : xs(x) {\n sz = 1;\n while(sz < xs.size()) sz <<= 1;\n while(xs.size() < sz) xs.push_back(xs.back() + 1);\n seg.assign(2 * sz - 1, Line(0, INF));\n }\n\n void update(Line &x, int k, int l, int r) {\n int mid = (l + r) >> 1;\n auto latte = x.over(seg[k], xs[l]), malta = x.over(seg[k], xs[mid]);\n if(malta) swap(seg[k], x);\n if(l + 1 >= r) return;\n else if(latte != malta) update(x, 2 * k + 1, l, mid);\n else update(x, 2 * k + 2, mid, r);\n }\n\n void update(T a, T b) { // ax+b\n Line l(a, b);\n update(l, 0, 0, sz);\n }\n\n T query(int k) { // xs[k]\n const T x = xs[k];\n k += sz - 1;\n T ret = seg[k].get(x);\n while(k > 0) {\n k = (k - 1) >> 1;\n ret = min(ret, seg[k].get(x));\n }\n return ret;\n }\n};\n\n\nint main() {\n int N, M, Q;\n cin >> N >> M >> Q;\n vector< int64 > DD(N);\n cin >> DD;\n\n vector< char > C(M);\n vector< int64 > B(M), T(M);\n for(int i = 0; i < M; i++) {\n cin >> C[i] >> B[i] >> T[i];\n --B[i];\n }\n vector< int64 > X(Q), Y(Q);\n for(int i = 0; i < Q; i++) {\n cin >> X[i] >> Y[i];\n --X[i], --Y[i];\n }\n\n vector< int64 > ans(Q, infll);\n\n auto solve = [&]() {\n\n vector< pair< int64, int64 > > latte, malta;\n\n for(int i = 0; i < M; i++) {\n if(C[i] == 'R') latte.emplace_back(B[i], T[i]);\n else malta.emplace_back(B[i], T[i]);\n }\n vector< int64 > D(N + 1);\n for(int i = 1; i <= N; i++) D[i] = DD[i - 1];\n for(int i = 1; i <= N; i++) D[i] += D[i - 1];\n\n\n vector< int64 > uku_chan[4];\n vector< int > ord;\n for(int i = 0; i < Q; i++) {\n if(X[i] < Y[i]) {\n ord.emplace_back(i);\n uku_chan[0].emplace_back(D[Y[i]]);\n uku_chan[1].emplace_back(D[Y[i]] + D[N]);\n uku_chan[2].emplace_back(-D[Y[i]] + D[N]);\n uku_chan[3].emplace_back(-D[Y[i]] + 2 * D[N]);\n }\n }\n if(ord.empty()) return;\n\n for(int i = 0; i < 4; i++) {\n sort(begin(uku_chan[i]), end(uku_chan[i]));\n uku_chan[i].erase(unique(begin(uku_chan[i]), end(uku_chan[i])), end(uku_chan[i]));\n }\n\n using CHT = LiChaoTree< int64 >;\n\n sort(begin(latte), end(latte), [&](auto p, auto q) {\n return p.first < q.first;\n });\n sort(begin(malta), end(malta), [&](auto p, auto q) {\n return p.first < q.first;\n });\n\n // ソートをします つまらねえ\n // ああ うく\n sort(begin(ord), end(ord), [&](int a, int b) {\n return X[a] < X[b];\n });\n\n {\n CHT cht(uku_chan[0], infll);\n int ptr = 0;\n for(int i : ord) {\n int x = X[i];\n int y = Y[i];\n while(ptr < latte.size() && latte[ptr].first <= x) {\n auto &p = latte[ptr];\n cht.update(p.second, -p.second * D[p.first]);\n ++ptr;\n }\n y = lower_bound(begin(uku_chan[0]), end(uku_chan[0]), D[y]) - begin(uku_chan[0]);\n chmin(ans[i], cht.query(y));\n }\n }\n\n {\n CHT cht(uku_chan[1], infll);\n\n int ptr = (int) latte.size() - 1;\n for(int p = (int) ord.size() - 1; p >= 0; p--) {\n int i = ord[p];\n int x = X[i];\n int y = Y[i];\n while(ptr >= 0 && latte[ptr].first > x) {\n auto &p = latte[ptr];\n cht.update(p.second, -p.second * D[p.first]);\n --ptr;\n }\n y = lower_bound(begin(uku_chan[1]), end(uku_chan[1]), D[y] + D[N]) - begin(uku_chan[1]);\n chmin(ans[i], cht.query(y));\n }\n }\n\n\n {\n CHT cht(uku_chan[2], infll);\n int ptr = (int) malta.size() - 1;\n for(int p = (int) ord.size() - 1; p >= 0; p--) {\n int i = ord[p];\n int x = X[i];\n int y = Y[i];\n while(ptr >= 0 && malta[ptr].first >= x) {\n auto &p = malta[ptr];\n cht.update(p.second, p.second * D[p.first]);\n --ptr;\n }\n y = lower_bound(begin(uku_chan[2]), end(uku_chan[2]), -D[y] + D[N]) - begin(uku_chan[2]);\n chmin(ans[i], cht.query(y));\n }\n }\n\n {\n CHT cht(uku_chan[3], infll);\n int ptr = 0;\n for(int i : ord) {\n int x = X[i];\n int y = Y[i];\n while(ptr < malta.size() && malta[ptr].first < x) {\n auto &p = malta[ptr];\n cht.update(p.second, p.second * D[p.first]);\n ++ptr;\n }\n y = lower_bound(begin(uku_chan[3]), end(uku_chan[3]), 2 * D[N] - D[y]) - begin(uku_chan[3]);\n chmin(ans[i], cht.query(y));\n }\n }\n\n /*\n for(int i = 0; i < Q; i++) {\n int x = X[i];\n int y = Y[i];\n if(x < y) {\n int64 ret = infll;\n /*\n for(auto &p : latte) {\n if(p.first <= x) ret = min(ret, p.second * (D[y] - D[p.first]));\n else ret = min(ret, p.second * ((D[N] - D[p.first]) + D[y]));\n }\n for(auto &p : malta) {\n if(x <= p.first) ret = min(ret, p.second * (D[p.first] + (D[N] - D[y])));\n else ret = min(ret, p.second * (D[p.first] + D[N] + (D[N] - D[y])));\n }\n\n\n\n /*for(auto &p : latte) {\n if(p.first <= x) ret = min(ret, (p.second * D[y]) - p.second * D[p.first]);\n else ret = min(ret, (p.second * (D[y] + D[N])) - p.second * D[p.first]);\n }\n for(auto &p : malta) {\n if(x <= p.first) ret = min(ret, p.second * D[p.first] + (p.second * (D[N] - D[y])));\n else ret = min(ret, p.second * D[p.first] + (p.second * (2 * D[N] - D[y])));\n }\n\n chmin(ret, latte_seg.query(0, x + 1, D[y]));\n chmin(ret, latte_seg.query(x + 1, N, D[y] + D[N]));\n chmin(ret, malta_seg.query(x, N, D[N] - D[y]));\n chmin(ret, malta_seg.query(0, x, 2 * D[N] - D[y]));\n\n\n ans[i] = ret;\n }\n }\n */\n };\n\n\n solve();\n\n for(int i = 0; i < M; i++) {\n C[i] = (C[i] == 'R' ? 'L' : 'R');\n B[i] = N - B[i] - 1;\n }\n for(int i = 0; i < Q; i++) {\n X[i] = N - X[i] - 1;\n Y[i] = N - Y[i] - 1;\n }\n vector< int64 > EE;\n for(int i = 0; i < N; i++) EE.emplace_back(DD[(N + N + N + N - i - 2) % N]);\n EE.swap(DD);\n solve();\n for(auto &p : ans) cout << p << endl;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 16780, "score_of_the_acc": -0.7425, "final_rank": 12 }, { "submission_id": "aoj_3069_3859880", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double Db;\ntypedef complex<Db> P;\n#define F first\n#define S second\nconst ll E=1e18+7;\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n#define endl \"\\n\"\n\n \ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T>vector<T> & cset(vector<T> &A,T e=T()){for(auto &I:A){I=e;} return A;}\n\nll N,M,Q;\nvector<ll> dist;\nvector<pll> bus_L;\nvector<pll> bus_R;\nvector<pll> query;\nvector<ll> ans;\n\n/*\n O(QlogN+N)\n 追加する直線の傾きが狭義単調減少であること\n maxを求めるときは値と傾きに-1をかけること\n*/\ntemplate<typename T>\nclass Comvex_Hull_Trick{\npublic:\n typedef pair<T,T> line; //y切片,傾き\n deque<line> D;\n \n inline T point(const line &L,const T &x) const {return L.F+L.S*x;}\n \n inline bool is_need(const line &A,const line &B,const line &C) const {\n return (double)(C.F-A.F)*(A.S-B.S)>(double)(B.F-A.F)*(A.S-C.S);\n }\n \n\n Comvex_Hull_Trick(){}\n \n void add_line(const line &L){\n while(!D.empty() && D.front().S>=L.S){D.pop_front();}\n while(D.size()>=2 && !is_need(L,D[0],D[1])){D.pop_front();}\n D.push_front(L);\n }\n \n T search(const T &x) const {\n ll l=0;\n ll r=(int)D.size()-1;\n while(l+1<r){\n ll m=l+(r-l)/2;\n if(point(D[m],x)<point(D[m+1],x)){r=m;}\n else{l=m+1;}\n }\n for(ll i=l;i<r;i++){\n if(point(D[i],x)<point(D[i+1],x)){return point(D[i],x);}\n }\n return point(D[r],x);\n }\n \n bool empty() const {return D.empty();}\n};\n\nvoid cul(vector<pll> &B){\n sort(B.begin(),B.end());\n vector<pair<pll,ll>> qr(2*Q);\n for(int i=0;i<2*Q;i++){qr[i]={{query[i%Q].F+i/Q*N,query[i%Q].S},i%Q};}\n for(auto &I:qr){while(I.F.F>I.F.S){I.F.S+=N;}}\n sort(qr.begin(),qr.end());\n vector<ll> D(3*N,0);\n for(ll i=1;i<3*N;i++){D[i]=dist[(i-1)%N];}\n for(ll i=1;i<3*N;i++){D[i]+=D[i-1];}\n Comvex_Hull_Trick<ll> cht;\n int qi=0;\n int bi=0;\n for(int i=0;i<2*N;i++){\n while(bi<(int)B.size() && B[bi].F==i){cht.add_line({-1LL*D[B[bi].F]*B[bi].S,B[bi].S}); bi++;}\n while(qi<(int)qr.size() && qr[qi].F.F==i){\n if(!cht.empty()){\n ans[qr[qi].S]=min(ans[qr[qi].S],cht.search(D[qr[qi].F.S]));\n }\n qi++;\n }\n }\n}\n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin>>N>>M>>Q;\n dist.resize(N);\n query.resize(Q);\n ans.resize(Q,1e18);\n cin>>dist;\n for(int i=0;i<M;i++){\n char c;\n int b,t;\n cin>>c>>b>>t;\n b--;\n if(c=='R'){\n bus_L.push_back({b,t});\n }\n else{\n bus_R.push_back({(N-b)%N,t});\n }\n }\n cin>>query;\n for(auto &I:query){I.F--; I.S--;}\n cul(bus_L);\n reverse(dist.begin(),dist.end());\n for(auto &I:query){I.F=(N-I.F)%N; I.S=(N-I.S)%N;}\n cul(bus_R);\n for(auto &I:ans){cout<<I<<endl;}\n \n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 14412, "score_of_the_acc": -0.3178, "final_rank": 1 }, { "submission_id": "aoj_3069_3859878", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double Db;\ntypedef complex<Db> P;\n#define F first\n#define S second\nconst ll E=1e18+7;\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n#define endl \"\\n\"\n\n \ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T>vector<T> & cset(vector<T> &A,T e=T()){for(auto &I:A){I=e;} return A;}\n\nll N,M,Q;\nvector<ll> dist;\nvector<pll> bus_L;\nvector<pll> bus_R;\nvector<pll> query;\nvector<ll> ans;\n\n/*\n O(QlogN+N)\n 追加する直線の傾きが狭義単調減少であること\n maxを求めるときは値と傾きに-1をかけること\n*/\ntemplate<typename T>\nclass Comvex_Hull_Trick{\npublic:\n typedef pair<T,T> line; //y切片,傾き\n deque<line> D;\n \n inline T point(const line &L,const T &x) const {return L.F+L.S*x;}\n \n inline bool is_need(const line &A,const line &B,const line &C) const {\n return __int128(C.F-A.F)*(A.S-B.S)>__int128(B.F-A.F)*(A.S-C.S);\n }\n \n\n Comvex_Hull_Trick(){}\n \n void add_line(const line &L){\n while(!D.empty() && D.front().S>=L.S){D.pop_front();}\n while(D.size()>=2 && !is_need(L,D[0],D[1])){D.pop_front();}\n D.push_front(L);\n }\n \n T search(const T &x) const {\n ll l=0;\n ll r=(int)D.size()-1;\n while(l+1<r){\n ll m=l+(r-l)/2;\n if(point(D[m],x)<point(D[m+1],x)){r=m;}\n else{l=m+1;}\n }\n for(ll i=l;i<r;i++){\n if(point(D[i],x)<point(D[i+1],x)){return point(D[i],x);}\n }\n return point(D[r],x);\n }\n \n bool empty() const {return D.empty();}\n};\n\nvoid cul(vector<pll> &B){\n sort(B.begin(),B.end());\n vector<pair<pll,ll>> qr(2*Q);\n for(int i=0;i<2*Q;i++){qr[i]={{query[i%Q].F+i/Q*N,query[i%Q].S},i%Q};}\n for(auto &I:qr){while(I.F.F>I.F.S){I.F.S+=N;}}\n sort(qr.begin(),qr.end());\n vector<ll> D(3*N,0);\n for(ll i=1;i<3*N;i++){D[i]=dist[(i-1)%N];}\n for(ll i=1;i<3*N;i++){D[i]+=D[i-1];}\n Comvex_Hull_Trick<ll> cht;\n int qi=0;\n int bi=0;\n for(int i=0;i<2*N;i++){\n while(bi<(int)B.size() && B[bi].F==i){cht.add_line({-1LL*D[B[bi].F]*B[bi].S,B[bi].S}); bi++;}\n while(qi<(int)qr.size() && qr[qi].F.F==i){\n if(!cht.empty()){\n ans[qr[qi].S]=min(ans[qr[qi].S],cht.search(D[qr[qi].F.S]));\n }\n qi++;\n }\n }\n}\n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin>>N>>M>>Q;\n dist.resize(N);\n query.resize(Q);\n ans.resize(Q,1e18);\n cin>>dist;\n for(int i=0;i<M;i++){\n char c;\n int b,t;\n cin>>c>>b>>t;\n b--;\n if(c=='R'){\n bus_L.push_back({b,t});\n }\n else{\n bus_R.push_back({(N-b)%N,t});\n }\n }\n cin>>query;\n for(auto &I:query){I.F--; I.S--;}\n cul(bus_L);\n reverse(dist.begin(),dist.end());\n for(auto &I:query){I.F=(N-I.F)%N; I.S=(N-I.S)%N;}\n cul(bus_R);\n for(auto &I:ans){cout<<I<<endl;}\n \n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 14412, "score_of_the_acc": -0.3178, "final_rank": 1 }, { "submission_id": "aoj_3069_3859875", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\ntypedef complex<D> P;\n#define F first\n#define S second\nconst ll E=1e18+7;\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n#define endl \"\\n\"\n\n \ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T>vector<T> & cset(vector<T> &A,T e=T()){for(auto &I:A){I=e;} return A;}\n\nll N,M,Q;\nvector<ll> dist;\nvector<pll> bus_L;\nvector<pll> bus_R;\nvector<pll> query;\nvector<ll> ans;\n\n/*\n O(QlogN+N)\n 追加する直線の傾きが狭義単調減少であること\n maxを求めるときは値と傾きに-1をかけること\n*/\ntemplate<typename T>\nclass Comvex_Hull_Trick{\npublic:\n typedef pair<T,T> line; //y切片,傾き\n deque<line> D;\n \n inline T point(const line &L,const T &x) const {return L.F+L.S*x;}\n \n inline bool is_need(const line &A,const line &B,const line &C) const {\n return (C.F-A.F)*(A.S-B.S)>(B.F-A.F)*(A.S-C.S);\n }\n \n\n Comvex_Hull_Trick(){}\n \n void add_line(const line &L){\n while(!D.empty() && D.front().S>=L.S){D.pop_front();}\n while(D.size()>=2 && !is_need(L,D[0],D[1])){D.pop_front();}\n D.push_front(L);\n }\n \n T search(const T &x) const {\n ll l=0;\n ll r=(int)D.size()-1;\n while(l+1<r){\n ll m=l+(r-l)/2;\n if(point(D[m],x)<point(D[m+1],x)){r=m;}\n else{l=m+1;}\n }\n for(ll i=l;i<r;i++){\n if(point(D[i],x)<point(D[i+1],x)){return point(D[i],x);}\n }\n return point(D[r],x);\n }\n \n bool empty() const {return D.empty();}\n};\n\nvoid cul(vector<pll> &B){\n sort(B.begin(),B.end());\n vector<pair<pll,ll>> qr(2*Q);\n for(int i=0;i<2*Q;i++){qr[i]={{query[i%Q].F+i/Q*N,query[i%Q].S},i%Q};}\n for(auto &I:qr){while(I.F.F>I.F.S){I.F.S+=N;}}\n sort(qr.begin(),qr.end());\n vector<ll> D(3*N,0);\n for(ll i=1;i<3*N;i++){D[i]=dist[(i-1)%N];}\n for(ll i=1;i<3*N;i++){D[i]+=D[i-1];}\n Comvex_Hull_Trick<ll> cht;\n int qi=0;\n int bi=0;\n for(int i=0;i<2*N;i++){\n while(bi<(int)B.size() && B[bi].F==i){cht.add_line({-1LL*D[B[bi].F]*B[bi].S,B[bi].S}); bi++;}\n while(qi<(int)qr.size() && qr[qi].F.F==i){\n if(!cht.empty()){\n ans[qr[qi].S]=min(ans[qr[qi].S],cht.search(D[qr[qi].F.S]));\n }\n qi++;\n }\n }\n}\n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin>>N>>M>>Q;\n dist.resize(N);\n query.resize(Q);\n ans.resize(Q,1e18);\n cin>>dist;\n for(int i=0;i<M;i++){\n char c;\n int b,t;\n cin>>c>>b>>t;\n b--;\n if(c=='R'){\n bus_L.push_back({b,t});\n }\n else{\n bus_R.push_back({(N-b)%N,t});\n }\n }\n cin>>query;\n for(auto &I:query){I.F--; I.S--;}\n cul(bus_L);\n reverse(dist.begin(),dist.end());\n for(auto &I:query){I.F=(N-I.F)%N; I.S=(N-I.S)%N;}\n cul(bus_R);\n for(auto &I:ans){cout<<I<<endl;}\n \n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 14524, "score_of_the_acc": -0.3197, "final_rank": 3 }, { "submission_id": "aoj_3069_3859858", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n\ntemplate<typename T,bool isMin>\nstruct NonmonotonicConvexHullTrick {\n using number = double;\n static constexpr number INF = numeric_limits<T>::max();\n struct Line {\n T m,b,val;\n number x;\n bool q;\n Line(T m=0,T b=0):m(m),b(b),val(0),x(-INF),q(false){}\n \n T eval(T x) const{return m*x+b;}\n bool parallel(const Line &l) const{return m==l.m;}\n number intersect(const Line &l) const{\n return parallel(l)?number(INF):number(l.b-b)/number(m-l.m);\n }\n bool operator<(const Line &l) const{\n if(l.q) return x<l.val;\n return m<l.m;\n }\n };\n \n set<Line> hull;\n using iter = typename set<Line>::iterator;\n\n bool cPrev(iter it){return it!=hull.begin();}\n bool cNext(iter it){return it!=hull.end()&&next(it)!=hull.end();}\n\n bool bad(const Line &l1,const Line &l2,const Line &l3){\n return l1.intersect(l3) <= l1.intersect(l2);\n }\n bool bad(iter it){\n return cPrev(it)&&cNext(it)&&bad(*prev(it),*it,*next(it));\n }\n\n iter update(iter it){\n if(!cPrev(it)) return it;\n number x=it->intersect(*prev(it));\n Line tmp(*it);\n tmp.x=x;\n it=hull.erase(it);\n return hull.insert(it,tmp);\n }\n \n void addLine(T m,T b){\n if(isMin) m=-m,b=-b;\n Line l(m,b);\n iter it=hull.lower_bound(l);\n if(it!=hull.end()&&l.parallel(*it)){\n if(it->b<b) it=hull.erase(it);\n else return;\n }\n it=hull.insert(it,l);\n if(bad(it)){\n hull.erase(it);\n return;\n }\n while(cPrev(it)&&bad(prev(it))) hull.erase(prev(it));\n while(cNext(it)&&bad(next(it))) hull.erase(next(it));\n\n it=update(it);\n if(cPrev(it)) update(prev(it));\n if(cNext(it)) update(next(it));\n }\n\n bool empty() const{\n return hull.empty();\n }\n\n T query(T x){\n assert(!empty());\n Line q;\n q.val=x;q.q=1;\n iter it=--hull.lower_bound(q);\n if(isMin) return -(it->eval(x));\n return it->eval(x);\n }\n};\n\nusing P = pair<int, int>;\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n int N, M, Q;\n cin >> N >> M >> Q;\n\n vector<int> d(N), sum(N, 0);\n int all = 0;\n for ( int i = 0; i < N; i++ ) {\n cin >> d[i];\n all += d[i];\n if ( i ) sum[i] = d[i-1]+sum[i-1]; \n }\n\n vector<P> L, R;\n for ( int i = 0; i < M; i++ ) {\n char c;\n int b, t;\n cin >> c >> b >> t;\n b--; \n if ( c == 'L' ) L.emplace_back(P(b, t));\n else R.emplace_back(P(b, t)); \n }\n\n vector<P> qs(Q);\n unordered_map<int, int> ans[N]; \n for ( int i = 0; i < Q; i++ ) {\n cin >> qs[i].first >> qs[i].second;\n qs[i].first--; qs[i].second--;\n ans[qs[i].first][qs[i].second] = 1e18; \n }\n\n vector<P> ori = qs; \n if ( R.size() ) { \n NonmonotonicConvexHullTrick<int, true> cht; \n sort(R.begin(), R.end());\n sort(qs.begin(), qs.end()); \n for ( int i = 0; i < (int)R.size(); i++ ) {\n int b = R[i].first, t = R[i].second; \n cht.addLine(t, (all-sum[b])*t);\n }\n\n int now = 0;\n for ( P e : qs ) {\n int x = e.first, y = e.second; \n while ( now < R.size() && R[now].first <= x ) {\n\tint b = R[now].first, t = R[now].second; \n\tcht.addLine(t, -sum[b]*t);\n\tnow++;\n }\n\n int gl = sum[y];\n if ( x > y ) gl += all;\n\n ans[x][y] = cht.query(gl); \n }\n }\n\n if ( L.size() ) { \n NonmonotonicConvexHullTrick<int, true> cht; \n sort(L.begin(), L.end(), greater<P>()); \n sort(qs.begin(), qs.end(), greater<P>()); \n for ( int i = 0; i < (int)L.size(); i++ ) {\n int b = L[i].first, t = L[i].second; \n cht.addLine(-t, sum[b]*t);\n }\n\n int now = 0;\n for ( P e : qs ) {\n int x = e.first, y = e.second; \n while ( now < L.size() && L[now].first >= x ) {\n\tint b = L[now].first, t = L[now].second; \n\tcht.addLine(-t, -(all-sum[b])*t);\n\tnow++;\t\n }\n\n int gl = -(all-sum[y]);\n if ( x < y ) gl -= all;\n\n ans[x][y] = min(ans[x][y], cht.query(gl)); \n }\n }\n\n for ( P e : ori ) {\n cout << ans[e.first][e.second] << endl; \n }\n \n return 0;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 27288, "score_of_the_acc": -0.9206, "final_rank": 14 }, { "submission_id": "aoj_3069_3859794", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n//INSERT ABOVE HERE\nsigned main(){\n Int n,m,q;\n cin>>n>>m>>q;\n\n vector<Int> ds(n);\n for(Int i=0;i<n;i++) cin>>ds[i];\n for(Int i=0;i<n;i++) ds.emplace_back(Int(ds[i]));\n for(Int i=0;i<n;i++) ds.emplace_back(Int(ds[i]));\n\n vector<Int> sm(n*3+1,0);\n for(Int i=0;i<n*3;i++) sm[i+1]=sm[i]+ds[i];\n\n vector<char> cs(m);\n vector<Int> bs(m),ts(m);\n for(Int i=0;i<m;i++) cin>>cs[i]>>bs[i]>>ts[i],bs[i]--;\n\n vector<Int> xs(q),ys(q);\n for(Int i=0;i<q;i++) cin>>xs[i]>>ys[i],xs[i]--,ys[i]--;\n\n\n const Int INF = 1e18;\n vector<Int> R(n*3,INF),L(n*3,INF);\n for(Int i=0;i<m;i++){\n if(cs[i]=='R'){\n chmin(R[bs[i]+n*0],ts[i]);\n chmin(R[bs[i]+n*1],ts[i]);\n chmin(R[bs[i]+n*2],ts[i]);\n }\n if(cs[i]=='L'){\n chmin(L[bs[i]+n*0],ts[i]);\n chmin(L[bs[i]+n*1],ts[i]);\n chmin(L[bs[i]+n*2],ts[i]);\n }\n }\n\n const Int len=min(n,3000LL);\n\n using P = pair<Int, Int>;\n vector<P> TR,TL;\n for(Int i=0;i<n;i++){\n TR.emplace_back(R[i],i);\n TL.emplace_back(L[i],i);\n }\n sort(TR.begin(),TR.end());\n sort(TL.begin(),TL.end());\n TR.resize(len);\n TL.resize(len);\n\n vector<Int> ans(q,INF);\n // use R\n for(Int i=0;i<q;i++){\n Int x=xs[i],y=ys[i];\n if(x>y) y+=n;\n for(Int s=x+n-len;s<=x+n;s++){\n if(R[s]==INF) continue;\n chmin(ans[i],(sm[y+n]-sm[s])*R[s]);\n }\n for(auto p:TR){\n Int s=p.second;\n if(s+n<=x+n) s+=n;\n if(R[s]==INF) continue;\n chmin(ans[i],(sm[y+n]-sm[s])*R[s]);\n }\n }\n // use L\n for(Int i=0;i<q;i++){\n Int x=xs[i],y=ys[i];\n if(x<y) x+=n;\n for(Int s=x;s<=x+len;s++){\n if(L[s]==INF) continue;\n chmin(ans[i],(sm[s]-sm[y])*L[s]);\n }\n for(auto p:TL){\n Int s=p.second;\n while(s<x) s+=n;\n if(L[s]==INF) continue;\n chmin(ans[i],(sm[s]-sm[y])*L[s]);\n }\n }\n\n for(Int i=0;i<q;i++) cout<<ans[i]<<\"\\n\";\n cout<<flush;\n return 0;\n}", "accuracy": 0.6037735849056604, "time_ms": 40, "memory_kb": 18024, "score_of_the_acc": -0.3021, "final_rank": 19 }, { "submission_id": "aoj_3069_3859789", "code_snippet": "#include <bits/stdc++.h>\n#define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,NAME,...) NAME\n#define pr(...) cerr<< GET_MACRO(__VA_ARGS__,pr8,pr7,pr6,pr5,pr4,pr3,pr2,pr1)(__VA_ARGS__) <<endl\n#define pr1(a) (#a)<<\"=\"<<(a)<<\" \"\n#define pr2(a,b) pr1(a)<<pr1(b)\n#define pr3(a,b,c) pr1(a)<<pr2(b,c)\n#define pr4(a,b,c,d) pr1(a)<<pr3(b,c,d)\n#define pr5(a,b,c,d,e) pr1(a)<<pr4(b,c,d,e)\n#define pr6(a,b,c,d,e,f) pr1(a)<<pr5(b,c,d,e,f)\n#define pr7(a,b,c,d,e,f,g) pr1(a)<<pr6(b,c,d,e,f,g)\n#define pr8(a,b,c,d,e,f,g,h) pr1(a)<<pr7(b,c,d,e,f,g,h)\n#define prArr(a) {cerr<<(#a)<<\"={\";int i=0;for(auto t:(a))cerr<<(i++?\", \":\"\")<<t;cerr<<\"}\"<<endl;}\nusing namespace std;\nusing Int = long long;\nusing _int = int;\nusing ll = long long;\nusing Double = long double;\nconst Int inf = (1LL<<50)+1e9; // ~ 1.15 * 1e18\nconst Int INF = (1LL<<50)+1e9; // ~ 1.15 * 1e18\nconst Int mod = (1e9)+7;\nconst Double EPS = 1e-8;\nconst Double PI = 6.0 * asin((Double)0.5);\nusing P = pair<Int,Int>;\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\ntemplate<class T1, class T2> ostream& operator<<(ostream& o,pair<T1,T2> p){return o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";}\ntemplate<class T1, class T2, class T3> ostream& operator<<(ostream& o,tuple<T1,T2,T3> t){\n return o<<\"(\"<<get<0>(t)<<\",\"<<get<1>(t)<<\",\"<<get<2>(t)<<\")\";}\ntemplate<class T1, class T2> istream& operator>>(istream& i,pair<T1,T2> &p){return i>>p.first>>p.second;}\ntemplate<class T> ostream& operator<<(ostream& o,vector<T> a){Int i=0;for(T t:a)o<<(i++?\" \":\"\")<<t;return o;}\ntemplate<class T> istream& operator>>(istream& i,vector<T> &a){for(T &t:a)i>>t;return i;}\n//INSERT ABOVE HERE\n\ntemplate <typename T, T INF>\nclass ConvexHullTrick{\npublic:\n typedef pair<T, T> P;\n Int MAX_N;\n set<P> L; //!!!!!!!!!!!!!!!!!!!!!!\n ConvexHullTrick(){};\n inline Int size(){return L.size();}\n\n inline T getY(const P l, T x){return l.first * x + l.second;}\n\n inline bool check(const P &l1, const P &l2, const P &l3){\n return\n (l2.first - l1.first) * (l3.second - l2.second) >=\n (l2.second - l1.second) * (l3.first - l2.first);\n }\n\n void insert(T a, T b){\n if(a == INF) return;\n const P line = P(a, b);\n {//同じ傾きの切片が小さいものがあったら何もしない\n auto p = L.lower_bound(P(a, -INF));\n if(p != L.end() && p->first == a && p->second <= b) return;\n }\n\n {//同じ傾きの切片が大きいものがあったら消す\n auto p = L.lower_bound(line);\n if(p != L.end() && p->first == a) L.erase(p);\n }\n\n L.insert(line);\n\n {//lineの必要性判定\n auto l = L.lower_bound(line);\n auto r = l;\n if(l != L.end() && l != L.begin()){\n l--; r++;\n if(check(*r, line, *l)) {\n L.erase(line);\n return;\n }\n }\n }\n\n {//左に向かってcheck(l1, l2, l3)し削除する\n auto p = L.lower_bound(line);\n while(1){\n auto l1 = p;\n if(p == L.begin()) break;\n auto l2 = --p;\n if(p == L.begin()) break;\n auto l3 = --p;\n if(!check(*l1, *l2, *l3)) break;\n L.erase(l2);\n p = l1;\n }\n }\n\n {//右に向かってcheck(l1, l2, l3)し削除する\n auto p = L.lower_bound(line);\n while(1){\n auto l3 = p;\n auto l2 = ++p;\n if(p == L.end()) break;\n auto l1 = ++p;\n if(p == L.end()) break;\n if(!check(*l1, *l2, *l3)) break;\n L.erase(l2);\n p = l3;\n }\n }\n }\n\n void insert(P l){insert(l.first, l.second);}\n\n T get(T x){\n auto it = L.begin();\n while(it != L.end()){\n auto l = it;\n auto r = ++it;\n if(r == L.end()) break;\n if(getY(*l, x) < getY(*r, x)) break;\n }\n return getY(*(--it), x);\n }\n};\n\n\ntemplate<typename T>\nclass CumulativeSum{\npublic:\n int n;\n vector<T> sum;\n vector<T> A;\n int added;\n CumulativeSum():n(-1),added(0){}\n CumulativeSum(int n):n(n), sum(n+1), A(n+1),added(0){}\n CumulativeSum(const vector<T> &B):n(B.size()), sum(n+1), A(n+1),added(0){\n for(int i=1;i<=n;i++) sum[i] = sum[i-1] + B[i-1];\n }\n\n void apply(){\n for(int i=1;i<=n;i++) A[i] = A[i] + A[i-1];\n for(int i=1;i<=n;i++) A[i] = A[i] + A[i-1];\n for(int i=1;i<=n;i++) sum[i] = sum[i] + A[i-1];\n added = 0; A.clear(); A.resize(n+1);\n }\n\n //[l, r)にxを加算\n void add(int l, int r, T x){\n added = 1;\n assert(l <= r && 0 <= l && r <= n);\n A[l] = A[l] + x;\n A[r] = A[r] - x;\n }\n\n //[l, r)の和を得る\n T get(int l,int r){\n assert(l<=r && 0<=l && r<=n);\n if(added) apply();\n return sum[r] - sum[l];\n }\n};\n\nvector<Int> solve(Int N, vector<Int> D, vector<P> R, vector<P> Q){\n if(R.size() == 0) return vector<Int>(Q.size(), INF);\n CumulativeSum<Int> sumD(N*2);\n for(Int i=0;i<2*N;i++) sumD.add(i, i+1, D[i%N]);\n\n vector<vector<P> > Query(N);\n for(Int i=0;i<(Int)Q.size();i++){\n Int from, to; tie(from, to) = Q[i];\n Query[from].emplace_back(to, i);\n }\n\n vector<Int> Bus(N, INF);\n for(auto p:R){\n Int b, t; tie(b, t) = p;\n Bus[b] = min(Bus[b], t);\n }\n\n vector<P> lines(2 * N);\n for(Int i=0;i<2 * N;i++){\n Int a = Bus[i%N];\n Int b = -sumD.get(0, i) * a;\n lines[i] = P(a, b);\n }\n\n ConvexHullTrick<Int, INF> cht;\n for(Int i=0;i<N;i++) if(lines[i].first != INF) cht.insert(lines[i]);\n\n vector<Int> res(Q.size());\n for(Int from=0;from<N;from++){\n if(lines[N + from].first != INF) cht.insert(lines[N + from]);\n for(auto p:Query[from]){\n Int to, idx; tie(to, idx) = p;\n Int ofset = sumD.get(0, N+from);\n Int x = ofset + sumD.get(from, from<=to? to:(to+N));\n Int ans = cht.get(x);\n res[idx] = ans;\n }\n }\n\n return res;\n}\n\nsigned main(){\n srand((unsigned)time(NULL));\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n Int N, M, Q;\n cin>>N>>M>>Q;\n\n vector<Int> rD(N);\n cin>>rD;\n vector<Int> D = rD;\n reverse(rD.begin(), rD.end());\n\n vector<P> rR;\n vector<P> R;\n for(Int i=0;i<M;i++){\n char ch;\n Int b, t;\n cin>>ch>>b>>t; b--;\n if(ch == 'R') R.emplace_back(b, t);\n if(ch == 'L') rR.emplace_back((N - b)%N, t);\n }\n\n vector<P> Query;\n vector<P> rQuery;\n for(Int i=0;i<Q;i++){\n Int x, y;\n cin>>x>>y; x--, y--;\n Query.emplace_back(x, y);\n rQuery.emplace_back((N - x)%N, (N - y)%N);\n }\n\n vector<Int> ansB = solve(N, rD, rR, rQuery);\n vector<Int> ansA = solve(N, D, R, Query);\n\n for(Int i=0;i<Q;i++){\n Int ans = min(ansA[i], ansB[i]);\n cout<<ans<<endl;\n }\n\n return 0;\n}", "accuracy": 0.9622641509433962, "time_ms": 240, "memory_kb": 32076, "score_of_the_acc": -1.0531, "final_rank": 18 }, { "submission_id": "aoj_3069_3859778", "code_snippet": "#include <bits/stdc++.h>\n#define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,NAME,...) NAME\n#define pr(...) cerr<< GET_MACRO(__VA_ARGS__,pr8,pr7,pr6,pr5,pr4,pr3,pr2,pr1)(__VA_ARGS__) <<endl\n#define pr1(a) (#a)<<\"=\"<<(a)<<\" \"\n#define pr2(a,b) pr1(a)<<pr1(b)\n#define pr3(a,b,c) pr1(a)<<pr2(b,c)\n#define pr4(a,b,c,d) pr1(a)<<pr3(b,c,d)\n#define pr5(a,b,c,d,e) pr1(a)<<pr4(b,c,d,e)\n#define pr6(a,b,c,d,e,f) pr1(a)<<pr5(b,c,d,e,f)\n#define pr7(a,b,c,d,e,f,g) pr1(a)<<pr6(b,c,d,e,f,g)\n#define pr8(a,b,c,d,e,f,g,h) pr1(a)<<pr7(b,c,d,e,f,g,h)\n#define prArr(a) {cerr<<(#a)<<\"={\";int i=0;for(auto t:(a))cerr<<(i++?\", \":\"\")<<t;cerr<<\"}\"<<endl;}\nusing namespace std;\nusing Int = long long;\nusing _int = int;\nusing ll = long long;\nusing Double = long double;\nconst Int INF = (1LL<<50)+1e9; // ~ 1.15 * 1e18\nconst Int mod = (1e9)+7;\nconst Double EPS = 1e-8;\nconst Double PI = 6.0 * asin((Double)0.5);\nusing P = pair<Int,Int>;\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\ntemplate<class T1, class T2> ostream& operator<<(ostream& o,pair<T1,T2> p){return o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";}\ntemplate<class T1, class T2, class T3> ostream& operator<<(ostream& o,tuple<T1,T2,T3> t){\n return o<<\"(\"<<get<0>(t)<<\",\"<<get<1>(t)<<\",\"<<get<2>(t)<<\")\";}\ntemplate<class T1, class T2> istream& operator>>(istream& i,pair<T1,T2> &p){return i>>p.first>>p.second;}\ntemplate<class T> ostream& operator<<(ostream& o,vector<T> a){Int i=0;for(T t:a)o<<(i++?\" \":\"\")<<t;return o;}\ntemplate<class T> istream& operator>>(istream& i,vector<T> &a){for(T &t:a)i>>t;return i;}\n//INSERT ABOVE HERE\n\ntemplate<typename T>\nclass CumulativeSum{\npublic:\n Int n;\n vector<T> sum;\n vector<T> A;\n Int added;\n CumulativeSum():n(-1),added(0){}\n CumulativeSum(Int n):n(n), sum(n+1), A(n+1),added(0){}\n CumulativeSum(const vector<T> &B):n(B.size()), sum(n+1), A(n+1),added(0){\n for(Int i=1;i<=n;i++) sum[i] = sum[i-1] + B[i-1];\n }\n\n void apply(){\n for(Int i=1;i<=n;i++) A[i] = A[i] + A[i-1];\n for(Int i=1;i<=n;i++) A[i] = A[i] + A[i-1];\n for(Int i=1;i<=n;i++) sum[i] = sum[i] + A[i-1];\n added = 0; A.clear(); A.resize(n+1);\n }\n\n //[l, r)にxを加算\n void add(Int l, Int r, T x){\n added = 1;\n assert(l <= r && 0 <= l && r <= n);\n A[l] = A[l] + x;\n A[r] = A[r] - x;\n }\n\n //[l, r)の和を得る\n T get(Int l,Int r){\n assert(l<=r && 0<=l && r<=n);\n if(added) apply();\n return sum[r] - sum[l];\n }\n};\n\n\ntemplate<typename dtype>\nclass RMQ{\npublic :\n struct data{\n bool type; //0 - empty , 1 - update\n dtype value;\n };\n\n Int n,n_;\n vector<dtype> dat;\n vector<data> td;\n Int toMax; //0 -> RangeMin 1->RangeMax;\n dtype initValue; /*範囲外の時に返す値*/\n\n RMQ(){n=-1;}\n RMQ(Int n_, Int toMax, dtype initValue):n_(n_),toMax(toMax), initValue(initValue){\n n=1;\n while(n<n_)n*=2;\n td.resize(2*n-1,(data){0,initValue});\n dat.resize(2*n-1,initValue);\n }\n\n inline dtype merge(dtype a, dtype b){return toMax? max(a, b):min(a, b);}\n\n\n dtype dfs(Int a,Int b,dtype x,bool flag,Int k,Int l,Int r){\n if(r <= a || b <= l) return flag? dat[k]:initValue;\n if(a <= l && r <= b){\n if(flag == true){\n td[k]=(data){1,x};\n dat[k]=x;\n }\n return dat[k];\n }\n\n if(td[k].type){\n td[k].type = 0;\n dat[k*2+1] = dat[k*2+2] = td[k].value;\n td[k*2+1] = td[k*2+2] = (data){1,td[k].value};\n }\n\n dtype vl=dfs(a, b, x, flag, k*2+1, l, (l+r)/2);\n dtype vr=dfs(a, b, x, flag, k*2+2, (l+r)/2, r);\n return flag? (dat[k] = merge(vl, vr)):merge(vl,vr);\n }\n\n\n //[a, b)の中でx以下の値を持つ最小の添字\n Int query(Int a,Int b,Int x, Int k,Int l,Int r){\n if(r <= a || b <= l) return 0;\n if(a <= l && r <= b && r - l == 1) return dat[k] <= x? l:0;\n\n if(td[k].type){\n td[k].type = 0;\n dat[k*2+1] = dat[k*2+2] = td[k].value;\n td[k*2+1] = td[k*2+2] = (data){1,td[k].value};\n }\n\n if(a <= l && r <= b){\n if(dat[k*2+2] <= x)return query(a, b, x, k*2+2, (l+r)/2, r);\n if(dat[k*2+1] <= x) return query(a, b, x, k*2+1, l, (l+r)/2);\n return 0;\n }\n Int vl=query(a, b, x, k*2+1, l, (l+r)/2);\n Int vr=query(a, b, x, k*2+2, (l+r)/2, r);\n return max(vl, vr);\n }\n\n Int query(Int l,Int r,Int x){\n assert(l <= r), assert(l <= n && r <= n), assert(l >= 0 && r >= 0);\n return query(l, r, x, 0, 0, n);\n }\n\n //[l,r)の値をxに変更 update(l,r,x)\n void update(Int l,Int r,dtype x){\n assert(l <= r), assert(l <= n && r <= n), assert(l >= 0 && r >= 0);\n dfs(l, r, x, true, 0, 0, n);\n }\n\n //[l,r)の最小値を得る find(l,r);\n dtype get(Int l,Int r){\n assert(l <= r), assert(l <= n && r <= n), assert(l >= 0 && r >= 0);\n return dfs(l, r, initValue , false, 0 , 0 ,n);\n }\n};\n\n\nvector<Int> solve(Int N, vector<Int> D, vector<P> R, vector<P> Q){\n if(R.empty()) return vector<Int>(Q.size(), INF);\n CumulativeSum<Int> sumD(2 * N);\n for(Int i=0;i<2*N;i++) sumD.add(i, i+1, D[i%N]);\n\n RMQ <Int> seg(N * 2, false, INF);\n vector<Int> Bus(N, INF);\n\n for(auto p:R){\n Int b, t; tie(b, t) = p;\n Bus[b] = min(Bus[b], t);\n }\n\n for(Int i=0;i<2*N;i++) seg.update(i, i+1, Bus[i%N]);\n\n vector<Int> V;\n for(Int i=0;i<N;i++) V.push_back(Bus[i]);\n sort(V.begin(), V.end());\n V.erase(unique(V.begin(), V.end()), V.end());\n\n\n auto calcDist = [&](Int from, Int to){\n return from <= to? sumD.get(from, to):sumD.get(from, to + N);\n };\n\n auto calcTime=[&](Int from, Int to, Int v){\n Int bus = seg.query(0, from + 1 + N, v);\n assert(bus!=INF);\n bus%=N;\n Int waitTime = calcDist(bus, from) * v;\n Int busTime = calcDist(from, to) * v;\n Int time = waitTime + busTime;\n if(Bus[bus] > v) return INF;\n return time;\n };\n\n auto calcCost=[&](Int from, Int to){\n Int L = 0, R = V.size()-1;//dsfasfasd\n while(L+1 < R){\n Int M = (L + R) / 2;\n Int v1 = V[M];\n Int v2 = V[M+1];\n Int time1 = calcTime(from, to, v1);\n Int time2 = calcTime(from, to, v2);\n if(time1 > time2) L = M;\n else R = M;\n }\n Int a = calcTime(from, to, V[L]);\n Int b = calcTime(from, to, V[R]);\n return min(a, b);\n };\n\n auto calcCost2=[&](Int from, Int to){\n Int res = INF;\n for(Int v:V) Min(res, calcTime(from, to, v));\n return res;\n };\n\n vector<Int> res;\n for(auto p:Q){\n Int from, to; tie(from, to) = p;\n //Int cost = calcCost(from, to);\n Int cost2 = calcCost2(from, to);\n //pr(cost, cost2);\n //assert(cost == cost2);\n //res.push_back(cost);\n res.push_back(cost2);\n }\n return res;\n}\n\nsigned main(){\n srand((unsigned)time(NULL));\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n Int N, M, Q;\n cin>>N>>M>>Q;\n\n vector<Int> rD(N);\n cin>>rD;\n vector<Int> D = rD;\n reverse(rD.begin(), rD.end());\n\n vector<P> rR;\n vector<P> R;\n for(Int i=0;i<M;i++){\n char ch;\n Int b, t;\n cin>>ch>>b>>t; b--;\n if(ch == 'R') R.emplace_back(b, t);\n if(ch == 'L') rR.emplace_back((N - b)%N, t);\n }\n\n vector<P> Query;\n vector<P> rQuery;\n for(Int i=0;i<Q;i++){\n Int x, y;\n cin>>x>>y; x--, y--;\n Query.emplace_back(x, y);\n rQuery.emplace_back((N - x)%N, (N - y)%N);\n }\n\n vector<Int> ansB = solve(N, rD, rR, rQuery);\n vector<Int> ansA = solve(N, D, R, Query);\n\n for(Int i=0;i<Q;i++){\n Int ans = min(ansA[i], ansB[i]);\n cout<<ans<<endl;\n }\n\n return 0;\n}", "accuracy": 0.22641509433962265, "time_ms": 20, "memory_kb": 3228, "score_of_the_acc": 0, "final_rank": 20 }, { "submission_id": "aoj_3069_3859774", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\ntemplate <typename T, bool isMin>\nstruct LiChao{\n static constexpr T INF = numeric_limits<T>::max()/10;\n struct Line{\n T a,b;\n Line(T a,T b):a(a),b(b){}\n T get(T x){return a*x+b;}\n };\n\n Int n;\n vector<T> pos;\n vector<Line> dat;\n LiChao(vector<T> &pos):pos(pos){init(pos.size());}\n\n void init(Int n_){\n n=1;\n while(n<n_) n<<=1;\n while((Int)pos.size()<n)\n pos.emplace_back(T(pos.back()+1));\n dat.assign(2*n,Line(0,-INF));\n }\n\n void addLine(T a,T b){\n if(isMin) a=-a,b=-b;\n Line x(a,b);\n update(1,0,n-1,x);\n }\n\n T query(T x){\n Int t=lower_bound(pos.begin(),pos.end(),x)-pos.begin();\n return (isMin?-1:1)*query(1,0,n-1,t);\n }\n\n inline bool over(Line &a,Line &b,T lb,T ub){\n return a.get(lb)>=b.get(lb)&&a.get(ub)>=b.get(ub);\n }\n\n void update(Int k,Int l,Int r,Line &x){\n T lb=pos[l],ub=pos[r];\n if(over(dat[k],x,lb,ub)) return;\n if(over(x,dat[k],lb,ub)){\n dat[k]=x;\n return;\n }\n Int c=(l+r)>>1;\n if(dat[k].get(pos[c])<x.get(pos[c])) swap(dat[k],x);\n if(dat[k].get(lb)<=x.get(lb)) update((k<<1)|0,l,c,x);\n else update((k<<1)|1,c+1,r,x);\n }\n\n T query(Int k,Int l,Int r,Int t){\n T res=dat[k].get(pos[t]);\n if(l==r) return res;\n Int c=(l+r)>>1;\n if(t<=c) return max(res,query((k<<1)|0,l,c,t));\n return max(res,query((k<<1)|1,c+1,r,t));\n }\n};\ntemplate <typename T, bool isMin>\nconstexpr T LiChao<T, isMin>::INF;\n\n//INSERT ABOVE HERE\nsigned main(){\n Int n,m,q;\n cin>>n>>m>>q;\n\n vector<Int> ds(n);\n for(Int i=0;i<n;i++) cin>>ds[i];\n for(Int i=0;i<n;i++) ds.emplace_back(Int(ds[i]));\n for(Int i=0;i<n;i++) ds.emplace_back(Int(ds[i]));\n\n vector<Int> sm(n*3+1,0);\n for(Int i=0;i<n*3;i++) sm[i+1]=sm[i]+ds[i];\n\n vector<char> cs(m);\n vector<Int> bs(m),ts(m);\n for(Int i=0;i<m;i++) cin>>cs[i]>>bs[i]>>ts[i],bs[i]--;\n\n vector< vector<Int> > G(n*3);\n vector<Int> xs(q),ys(q);\n for(Int i=0;i<q;i++){\n cin>>xs[i]>>ys[i];\n xs[i]--,ys[i]--;\n xs[i]+=n,ys[i]+=n;\n G[xs[i]].emplace_back(i);\n }\n\n const Int INF = 1e18;\n vector<Int> R(n*3,INF),L(n*3,INF);\n Int exR=0,exL=0;\n for(Int i=0;i<m;i++){\n if(cs[i]=='R'){\n exR=1;\n chmin(R[bs[i]+n*0],ts[i]);\n chmin(R[bs[i]+n*1],ts[i]);\n chmin(R[bs[i]+n*2],ts[i]);\n }\n if(cs[i]=='L'){\n exL=1;\n chmin(L[bs[i]+n*0],ts[i]);\n chmin(L[bs[i]+n*1],ts[i]);\n chmin(L[bs[i]+n*2],ts[i]);\n }\n }\n\n vector<Int> ans(q,INF);\n // use R\n if(exR){\n LiChao<Int, true> cht(sm);\n for(Int x=0;x<n*2;x++){\n if(R[x]!=INF) cht.addLine(R[x],-R[x]*sm[x]);\n for(Int i:G[x]){\n Int y=ys[i];\n if(x>y) y+=n;\n chmin(ans[i],cht.query(sm[y]));\n }\n }\n }\n // use L\n if(exL){\n LiChao<Int, true> cht(sm);\n for(Int x=n*3-1;x>=n;x--){\n if(L[x]!=INF) cht.addLine(-L[x],L[x]*sm[x]);\n for(Int i:G[x]){\n Int y=ys[i];\n if(x<y) y-=n;\n chmin(ans[i],cht.query(sm[y]));\n }\n }\n }\n\n for(Int i=0;i<q;i++) cout<<ans[i]<<\"\\n\";\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 46328, "score_of_the_acc": -0.987, "final_rank": 15 } ]
aoj_3074_cpp
Problem K: Gold Rush Problem moritaoy君とは、コンピュータのなかで暮らしている謎の大学生です。 moritaoy君が暮らしている区画は、縦に $2^H$ 、横に $2^W$ 、の大きさのある二次元空間 $S= \{ (p,q) \in \mathbb{Z}^2 | 0 \leq p \lt 2^H, 0 \leq q \lt 2^W \} $ として表されます。 moritaoy君はいくつかの非負整数を要素とする二次元ベクトルを持っていて、この空間上を足し算を用いて移動します。 moritaoy君が $(a,b)$ にいて、ベクトル $(i,j)$ によって移動するとは、具体的には以下のような行動を示します。 $(a+i,b+j)$ に移動する。ただし、そのような点が $S$ に存在しない場合は、オーバーフローを起こし、$a+i \equiv k \bmod 2^H , b+j \equiv l \bmod 2^W$ を満たすようなmoritaoy君の暮らす空間上の点 $(k,l) \in S$ に移動する。 以下がmoritaoy君の一日の予定です。 一日を開始する。このとき、moritaoy君は $(0,0)$ にいて、疲労度は $0$ である。2.を行う。 今日、moritaoy君が移動を行った回数が $K$ 以上なら4.を、そうでないなら3.か4.のどちらか一方を行う。 moritaoy君が持っているベクトルのなかから一つを選び、これを $v$ とする。$v$ によって移動する。moritaoy君の疲労度が $T_v$ 増加する。その後のmoritaoy君の疲労度を $T$ とし、 $T \times G_v$ 単位時間休憩する。2.を行う。 一日を終了する。 moritaoy君は、色々な予定を立てて遊ぶことにしました。 各 $(a,b)$ に対して、一日を終了したときにmoritaoy君が $(a,b)$ にいるような予定全ての、一日に休憩する時間の総和を求めてください。 ただし、二つの予定が異なるとは、二つの予定の一日に移動する回数が異なる、またはある $i$ があって $i$ 回目の移動に用いるベクトルが異なることをいいます。 Input 入力は以下の形式で与えられる。 $H$ $W$ $K$ $T_{(0,0)}$ $\ldots$ $T_{(0,2^W-1)}$ $\vdots$ $T_{(2^H-1,0)}$ $\ldots$ $T_{(2^H-1,2^W-1)}$ $G_{(0,0)}$ $\ldots$ $G_{(0,2^W-1)}$ $\vdots$ $G_{(2^H-1,0)}$ $\ldots$ $G_{(2^H-1,2^W-1)}$ $T_{(i,j)}$ が $-1$ でないとき、かつそのときに限り、moritaoy君はベクトル $(i,j)$ を持つ。 $2^H \leq i$ または $2^W \leq j$ ならばmoritaoy君はベクトル $(i,j)$ を持たない。 Constraints 入力は以下の条件を満たす。 $0 \leq H,W \leq 9$ $1 \leq K \leq 10^{5}$ $-1 \leq T_{(i,j)} \lt 998244353$ $-1 \leq G_{(i,j)} \lt 998244353$ $T_{(i,j)}=-1$ のとき、かつそのときに限り、$G_{(i,j)}=-1$ 入力は全て整数である Output 出力は $2^H$ 行からなる。 $i$ 行目には $2^W$ 個の要素を空白区切りで出力する。 $i$ 行目の $j$ 番目の要素は、一日を終了したときにmoritaoy君が $(i-1,j-1)$ にいるような予定全ての、一日に休憩する時間の総和である。 ただし、答えは非常に大きくなることがあるので、$998244353$ で割ったあまりを出力すること。 Sample Input 1 0 0 10 1 2 Sample Output 1 440 Sample Input 2 1 2 2 1 2 3 4 5 6 7 0 9 8 7 6 1 3 3 3 Sample Output 2 355 358 363 386 391 408 419 378 Sample Input 3 1 1 100000 900000000 -1 -1 902010312 218738721 -1 -1 281371299 Sample Output 3 311157817 0 0 640524124
[ { "submission_id": "aoj_3074_3891712", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\ntemplate<typename T,T MOD = 1000000007>\nstruct Mint{\n static constexpr T mod = MOD;\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n Mint pow(long long k){\n Mint res(1),tmp(v);\n while(k){\n if(k&1) res*=tmp;\n tmp*=tmp;\n k>>=1;\n }\n return res;\n }\n\n static Mint add_identity(){return Mint(0);}\n static Mint mul_identity(){return Mint(1);}\n\n Mint inv(){return pow(MOD-2);}\n\n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n Mint& operator/=(Mint a){return (*this)*=a.inv();}\n\n Mint operator+(Mint a) const{return Mint(v)+=a;};\n Mint operator-(Mint a) const{return Mint(v)-=a;};\n Mint operator*(Mint a) const{return Mint(v)*=a;};\n Mint operator/(Mint a) const{return Mint(v)/=a;};\n\n Mint operator-() const{return v?Mint(MOD-v):Mint(v);}\n\n bool operator==(const Mint a)const{return v==a.v;}\n bool operator!=(const Mint a)const{return v!=a.v;}\n bool operator <(const Mint a)const{return v <a.v;}\n\n // find x s.t. a^x = b\n static T log(T a,T b){\n const T sq=40000;\n unordered_map<T, T> dp;\n dp.reserve(sq);\n Mint res(1);\n for(int r=0;r<sq;r++){\n if(!dp.count(res.v)) dp[res.v]=r;\n res*=a;\n }\n Mint p=Mint(a).inv().pow(sq);\n res=b;\n for(int q=0;q<=MOD/sq+1;q++){\n if(dp.count(res.v)){\n T idx=q*sq+dp[res.v];\n if(idx>0) return idx;\n }\n res*=p;\n }\n assert(0);\n return T(-1);\n }\n\n static Mint comb(long long n,int k){\n Mint num(1),dom(1);\n for(int i=0;i<k;i++){\n num*=Mint(n-i);\n dom*=Mint(i+1);\n }\n return num/dom;\n }\n};\ntemplate<typename T,T MOD> constexpr T Mint<T, MOD>::mod;\ntemplate<typename T,T MOD>\nostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}\n\n\nconstexpr int bmds(int x){\n const int v[] = {1012924417, 924844033, 998244353,\n 897581057, 645922817};\n return v[x];\n}\nconstexpr int brts(int x){\n const int v[] = {5, 5, 3, 3, 3};\n return v[x];\n}\n\ntemplate<int X>\nstruct NTT{\n static constexpr int md = bmds(X);\n static constexpr int rt = brts(X);\n using M = Mint<int, md>;\n vector< vector<M> > rts,rrts;\n\n void ensure_base(int n){\n if((int)rts.size()>=n) return;\n rts.resize(n);rrts.resize(n);\n for(int i=1;i<n;i<<=1){\n if(!rts[i].empty()) continue;\n M w=M(rt).pow((md-1)/(i<<1));\n M rw=w.inv();\n rts[i].resize(i);rrts[i].resize(i);\n rts[i][0]=M(1);rrts[i][0]=M(1);\n for(int k=1;k<i;k++){\n rts[i][k]=rts[i][k-1]*w;\n rrts[i][k]=rrts[i][k-1]*rw;\n }\n }\n }\n\n void ntt(vector<M> &as,bool f,int n=-1){\n if(n==-1) n=as.size();\n assert((n&(n-1))==0);\n ensure_base(n);\n\n for(int i=0,j=1;j+1<n;j++){\n for(int k=n>>1;k>(i^=k);k>>=1);\n if(i>j) swap(as[i],as[j]);\n }\n\n for(int i=1;i<n;i<<=1){\n for(int j=0;j<n;j+=i*2){\n for(int k=0;k<i;k++){\n M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]);\n as[i+j+k]=as[j+k]-z;\n as[j+k]+=z;\n }\n }\n }\n\n if(f){\n M tmp=M(n).inv();\n for(int i=0;i<n;i++) as[i]*=tmp;\n }\n }\n\n vector<M> multiply(vector<M> as,vector<M> bs){\n int need=as.size()+bs.size()-1;\n int sz=1;\n while(sz<need) sz<<=1;\n as.resize(sz,M(0));\n bs.resize(sz,M(0));\n\n ntt(as,0);ntt(bs,0);\n for(int i=0;i<sz;i++) as[i]*=bs[i];\n ntt(as,1);\n\n as.resize(need);\n return as;\n }\n\n vector<int> multiply(vector<int> as,vector<int> bs){\n vector<M> am(as.size()),bm(bs.size());\n for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]);\n for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]);\n vector<M> cm=multiply(am,bm);\n vector<int> cs(cm.size());\n for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v;\n return cs;\n }\n};\ntemplate<int X> constexpr int NTT<X>::md;\ntemplate<int X> constexpr int NTT<X>::rt;\n\n\ntemplate<typename T,typename Transformer>\nstruct Convolution2D{\n using Matrix = vector< vector<T> >;\n const Transformer tran;\n Convolution2D(Transformer tran):tran(tran){}\n\n void transpose(Matrix &as){\n int n=as.size(),m=as[0].size();\n Matrix cs(as);\n as.assign(m,vector<T>(n));\n for(int i=0;i<n;i++)\n for(int j=0;j<m;j++)\n as[j][i]=cs[i][j];\n }\n\n void transform(Matrix &as,bool f){\n for(int t=0;t<2;t++){\n for(auto &a:as) tran(a,f);\n transpose(as);\n }\n }\n\n Matrix multiply(Matrix as,Matrix bs){\n int nt=as.size()+bs.size()-1;\n int mt=as[0].size()+bs[0].size()-1;\n int n=1,m=1;\n while(n<nt) n<<=1;\n while(m<mt) m<<=1;\n as.resize(n);bs.resize(n);\n for(int i=0;i<n;i++){\n as[i].resize(m,T(0));\n bs[i].resize(m,T(0));\n }\n transform(as,0);transform(bs,0);\n for(int i=0;i<n;i++)\n for(int j=0;j<m;j++)\n as[i][j]*=bs[i][j];\n transform(as,1);\n return as;\n }\n};\n\n\ntemplate<typename R, size_t N>\nstruct SquareMatrix{\n typedef array<R, N> arr;\n typedef array<arr, N> mat;\n mat dat;\n\n SquareMatrix(){\n for(size_t i=0;i<N;i++)\n for(size_t j=0;j<N;j++)\n dat[i][j]=R::add_identity();\n }\n\n bool operator==(const SquareMatrix& a) const{\n return dat==a.dat;\n }\n\n size_t size() const{return N;};\n arr& operator[](size_t k){return dat[k];};\n const arr& operator[](size_t k) const {return dat[k];};\n\n static SquareMatrix add_identity(){return SquareMatrix();}\n static SquareMatrix mul_identity(){\n SquareMatrix res;\n for(size_t i=0;i<N;i++) res[i][i]=R::mul_identity();\n return res;\n }\n\n SquareMatrix operator*(const SquareMatrix &B) const{\n SquareMatrix res;\n for(size_t i=0;i<N;i++)\n for(size_t j=0;j<N;j++)\n for(size_t k=0;k<N;k++)\n res[i][j]=res[i][j]+(dat[i][k]*B[k][j]);\n return res;\n }\n\n SquareMatrix operator+(const SquareMatrix &B) const{\n SquareMatrix res;\n for(size_t i=0;i<N;i++)\n for(size_t j=0;j<N;j++)\n res[i][j]=dat[i][j]+B[i][j];\n return res;\n }\n\n SquareMatrix pow(long long n) const{\n SquareMatrix a=*this,res=mul_identity();\n while(n){\n if(n&1) res=res*a;\n a=a*a;\n n>>=1;\n }\n return res;\n }\n};\n\n//INSERT ABOVE HERE\n\nNTT<2> ntt;\nusing M = NTT<2>::M;\nauto tran=[](auto &as,bool f){ntt.ntt(as,f);};\nConvolution2D<M, decltype(tran)> conv(tran);\n\nstruct Ring{\n vector<M> dat;\n Ring(){};\n Ring(vector<M> dat):dat(dat){};\n static Ring add_identity();\n static Ring mul_identity();\n Ring operator*(const Ring &a)const{\n auto res=Ring(dat);\n for(int i=0;i<(int)dat.size();i++) res.dat[i]*=a.dat[i];\n return res;\n }\n Ring operator+(const Ring &a)const{\n auto res=Ring(dat);\n for(int i=0;i<(int)dat.size();i++) res.dat[i]+=a.dat[i];\n return res;\n }\n};\n\nRing add_id, mul_id;\nRing Ring::add_identity(){return add_id;};\nRing Ring::mul_identity(){return mul_id;};\n\nsigned main(){\n int h,w;\n long long k;\n cin>>h>>w>>k;\n h=1<<h;\n w=1<<w;\n vector< vector<int> > tt(h,vector<int>(w));\n vector< vector<int> > gg(h,vector<int>(w));\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n cin>>tt[i][j];\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n cin>>gg[i][j];\n\n using Matrix = vector< vector<M> >;\n Matrix T(h,vector<M>(w));\n Matrix G(h,vector<M>(w));\n Matrix W(h,vector<M>(w));\n Matrix H(h,vector<M>(w));\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n T[i][j]=tt[i][j]>=0?tt[i][j]:0;\n G[i][j]=gg[i][j]>=0?gg[i][j]:0;\n W[i][j]=tt[i][j]>=0?1:0;\n H[i][j]=T[i][j]*G[i][j];\n }\n }\n\n auto flatten=\n [&](Matrix A){\n conv.transform(A,false);\n vector<M> dat(h*w);\n for(int i=0;i<h*w;i++) dat[i]=A[i/w][i%w];\n return Ring(dat);\n };\n\n {\n Matrix id(h,vector<M>(w,M(0)));\n add_id=flatten(id);\n id[0][0]=1;\n mul_id=flatten(id);\n }\n\n using SM = SquareMatrix<Ring, 4>;\n SM P;\n P[0][0]=flatten(W);\n P[1][0]=flatten(T);P[1][1]=flatten(W);\n P[2][0]=flatten(H);P[2][1]=flatten(G);P[2][2]=flatten(W);\n P[3][0]=flatten(H);P[3][1]=flatten(G);P[3][2]=flatten(W);\n P[3][3]=Ring::mul_identity();\n\n auto val=P.pow(k)[3][0];\n\n Matrix res(h,vector<M>(w));\n for(int i=0;i<h*w;i++) res[i/w][i%w]=val.dat[i];\n conv.transform(res,true);\n\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(j) cout<<\" \";\n cout<<res[i][j];\n }\n cout<<\"\\n\";\n }\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 2490, "memory_kb": 80936, "score_of_the_acc": -1.3021, "final_rank": 5 }, { "submission_id": "aoj_3074_3891646", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nconstexpr int bmds(int x){\n const int v[] = {1012924417, 924844033, 998244353,\n 897581057, 645922817};\n return v[x];\n}\nconstexpr int brts(int x){\n const int v[] = {5, 5, 3, 3, 3};\n return v[x];\n}\n\n\ntemplate<int X>\nstruct NTT{\n static constexpr int md = bmds(X);\n static constexpr int rt = brts(X);\n\n inline int add(int a,int b){\n a+=b;\n if(a>=md) a-=md;\n return a;\n }\n\n inline int mul(int a,int b){\n return 1LL*a*b%md;\n }\n\n inline int pow(int a,int b){\n int res=1;\n while(b){\n if(b&1) res=mul(res,a);\n a=mul(a,a);\n b>>=1;\n }\n return res;\n }\n\n inline int inv(int x){\n return pow(x,md-2);\n }\n vector<vector<int> > rts,rrts;\n\n void ensure_base(int n){\n if((int)rts.size()>=n) return;\n rts.resize(n);rrts.resize(n);\n for(int i=1;i<n;i<<=1){\n if(!rts[i].empty()) continue;\n int w=pow(rt,(md-1)/(i<<1));\n int rw=inv(w);\n rts[i].resize(i);rrts[i].resize(i);\n rts[i][0]=1;rrts[i][0]=1;\n for(int k=1;k<i;k++){\n rts[i][k]=mul(rts[i][k-1],w);\n rrts[i][k]=mul(rrts[i][k-1],rw);\n }\n }\n }\n\n template<typename A>\n void ntt(A &a,bool f,int n=-1){\n if(n==-1) n=a.size();\n assert((n&(n-1))==0);\n ensure_base(n);\n\n for(int i=0,j=1;j+1<n;j++){\n for(int k=n>>1;k>(i^=k);k>>=1);\n if(i>j) swap(a[i],a[j]);\n }\n\n for(int i=1;i<n;i<<=1){\n for(int j=0;j<n;j+=i*2){\n for(int k=0;k<i;k++){\n int z=mul(a[i+j+k],f?rrts[i][k]:rts[i][k]);\n a[i+j+k]=add(a[j+k],md-z);\n a[j+k]=add(a[j+k],z);\n }\n }\n }\n\n if(f){\n int tmp=inv(n);\n for(int i=0;i<n;i++) a[i]=mul(a[i],tmp);\n }\n }\n};\n\nint h,w;\nconst int MAX = 1<<9;\nusing Matrix = array< array<int, MAX>, MAX >;\n\ntemplate<typename T,typename Transformer>\nstruct Convolution2D{\n const Transformer tran;\n Convolution2D(Transformer tran):tran(tran){}\n\n void transpose(Matrix &as){\n Matrix cs(as);\n for(int i=0;i<MAX;i++)\n for(int j=0;j<MAX;j++)\n as[j][i]=cs[i][j];\n swap(h,w);\n }\n\n void transform(Matrix &as,bool f){\n for(int t=0;t<2;t++){\n for(auto &a:as) tran(a,f,w);\n transpose(as);\n }\n }\n};\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\ntemplate<size_t N,typename R>\nstruct SquareMatrix{\n typedef array<R, N> arr;\n typedef array<arr, N> mat;\n mat dat;\n\n SquareMatrix(){\n for(size_t i=0;i<N;i++)\n for(size_t j=0;j<N;j++)\n dat[i][j]=R::add_identity();\n }\n\n bool operator==(const SquareMatrix& a) const{\n return dat==a.dat;\n }\n\n size_t size() const{return N;};\n arr& operator[](size_t k){return dat[k];};\n const arr& operator[](size_t k) const {return dat[k];};\n\n static SquareMatrix add_identity(){return SquareMatrix();}\n static SquareMatrix mul_identity(){\n SquareMatrix res;\n for(size_t i=0;i<N;i++) res[i][i]=R::mul_identity();\n return res;\n }\n\n SquareMatrix operator*(const SquareMatrix &B) const{\n SquareMatrix res;\n for(size_t i=0;i<N;i++)\n for(size_t j=0;j<N;j++)\n for(size_t k=0;k<N;k++)\n res[i][j]=res[i][j]+(dat[i][k]*B[k][j]);\n return res;\n }\n\n SquareMatrix operator+(const SquareMatrix &B) const{\n SquareMatrix res;\n for(size_t i=0;i<N;i++)\n for(size_t j=0;j<N;j++)\n res[i][j]=dat[i][j]+B[i][j];\n return res;\n }\n\n SquareMatrix pow(long long n) const{\n SquareMatrix a=*this,res=mul_identity();\n while(n){\n if(n&1) res=res*a;\n a=a*a;\n n>>=1;\n }\n return res;\n }\n};\n\n//INSERT ABOVE HERE\nusing ll = long long;\nNTT<2> ntt;\nauto tran=[](auto &as,bool f,int n){ntt.ntt(as,f,n);};\nConvolution2D<int, decltype(tran)> conv(tran);\nauto mul=[](int a,int b){return (ll)a*b%ntt.md;};\n\nstruct Ring{\n vector<int> dat;\n Ring():dat(MAX*MAX,0){};\n Ring(vector<int> dat):dat(dat){};\n static Ring add_identity();\n static Ring mul_identity();\n Ring operator*(const Ring &a)const{\n auto res=Ring();\n for(int i=0;i<h*w;i++)\n res.dat[i]=(ll)dat[i]*a.dat[i]%ntt.md;\n return res;\n }\n Ring operator+(const Ring &a)const{\n auto res=Ring();\n for(int i=0;i<h*w;i++)\n res.dat[i]=((ll)dat[i]+a.dat[i])%ntt.md;\n return res;\n }\n};\nRing add_id, mul_id;\nRing Ring::add_identity(){return add_id;};\nRing Ring::mul_identity(){return mul_id;};\n\nsigned main(){\n long long k;\n cin>>h>>w>>k;\n h=1<<h;\n w=1<<w;\n vector< vector<int> > tt(h,vector<int>(w));\n vector< vector<int> > gg(h,vector<int>(w));\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n cin>>tt[i][j];\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n cin>>gg[i][j];\n\n\n Matrix T,G,W,H;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n T[i][j]=tt[i][j]>=0?tt[i][j]:0;\n G[i][j]=gg[i][j]>=0?gg[i][j]:0;\n W[i][j]=tt[i][j]>=0?1:0;\n H[i][j]=mul(T[i][j],G[i][j]);\n }\n }\n\n auto flatten=\n [&](Matrix A){\n conv.transform(A,false);\n Ring res;\n for(int i=0;i<h*w;i++) res.dat[i]=A[i/w][i%w];\n return res;\n };\n\n {\n Matrix id;\n for(int i=0;i<MAX;i++)\n for(int j=0;j<MAX;j++)\n id[i][j]=0;\n add_id=flatten(id);\n id[0][0]=1;\n mul_id=flatten(id);\n }\n\n using SM = SquareMatrix<4, Ring>;\n SM P;\n P[0][0]=flatten(W);\n P[1][0]=flatten(T);P[1][1]=flatten(W);\n P[2][0]=flatten(H);P[2][1]=flatten(G);P[2][2]=flatten(W);\n P[3][0]=flatten(H);P[3][1]=flatten(G);P[3][2]=flatten(W);\n P[3][3]=Ring::mul_identity();\n\n auto val=P.pow(k)[3][0];\n Matrix res;\n for(int i=0;i<h*w;i++) res[i/w][i%w]=val.dat[i];\n conv.transform(res,true);\n\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(j) cout<<\" \";\n cout<<res[i][j];\n }\n cout<<\"\\n\";\n }\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 1860, "memory_kb": 81944, "score_of_the_acc": -1.2118, "final_rank": 4 }, { "submission_id": "aoj_3074_3891644", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nconstexpr int bmds(int x){\n const int v[] = {1012924417, 924844033, 998244353,\n 897581057, 645922817};\n return v[x];\n}\nconstexpr int brts(int x){\n const int v[] = {5, 5, 3, 3, 3};\n return v[x];\n}\n\n\ntemplate<int X>\nstruct NTT{\n static constexpr int md = bmds(X);\n static constexpr int rt = brts(X);\n\n inline int add(int a,int b){\n a+=b;\n if(a>=md) a-=md;\n return a;\n }\n\n inline int mul(int a,int b){\n return 1LL*a*b%md;\n }\n\n inline int pow(int a,int b){\n int res=1;\n while(b){\n if(b&1) res=mul(res,a);\n a=mul(a,a);\n b>>=1;\n }\n return res;\n }\n\n inline int inv(int x){\n return pow(x,md-2);\n }\n\n // assume md % 4 = 1\n // if md % 4 == 3, then x = a^{(md+1)/4}\n inline int sqrt(int a){\n if(a==0) return 0;\n if(pow(a,(md-1)/2)!=1) return -1;\n int q=md-1,m=0;\n while(~q&1) q>>=1,m++;\n mt19937 mt;\n int z=mt()%md;\n while(pow(z,(md-1)/2)!=md-1) z=mt()%md;\n int c=pow(z,q),t=pow(a,q),r=pow(a,(q+1)/2);\n while(m>1){\n if(pow(t,1<<(m-2))!=1)\n r=mul(r,c),t=mul(t,mul(c,c));\n c=mul(c,c);\n m--;\n }\n return r;\n }\n\n vector<vector<int> > rts,rrts;\n\n void ensure_base(int n){\n if((int)rts.size()>=n) return;\n rts.resize(n);rrts.resize(n);\n for(int i=1;i<n;i<<=1){\n if(!rts[i].empty()) continue;\n int w=pow(rt,(md-1)/(i<<1));\n int rw=inv(w);\n rts[i].resize(i);rrts[i].resize(i);\n rts[i][0]=1;rrts[i][0]=1;\n for(int k=1;k<i;k++){\n rts[i][k]=mul(rts[i][k-1],w);\n rrts[i][k]=mul(rrts[i][k-1],rw);\n }\n }\n }\n\n void ntt(vector<int> &a,bool f,int n=-1){\n if(n==-1) n=a.size();\n assert((n&(n-1))==0);\n ensure_base(n);\n\n for(int i=0,j=1;j+1<n;j++){\n for(int k=n>>1;k>(i^=k);k>>=1);\n if(i>j) swap(a[i],a[j]);\n }\n\n for(int i=1;i<n;i<<=1){\n for(int j=0;j<n;j+=i*2){\n for(int k=0;k<i;k++){\n int z=mul(a[i+j+k],f?rrts[i][k]:rts[i][k]);\n a[i+j+k]=add(a[j+k],md-z);\n a[j+k]=add(a[j+k],z);\n }\n }\n }\n\n if(f){\n int tmp=inv(n);\n for(int i=0;i<n;i++) a[i]=mul(a[i],tmp);\n }\n }\n};\n\n\ntemplate<typename T,typename Transformer>\nstruct Convolution2D{\n using Matrix = vector< vector<T> >;\n const Transformer tran;\n Convolution2D(Transformer tran):tran(tran){}\n\n void transpose(Matrix &as){\n int n=as.size(),m=as[0].size();\n Matrix cs(as);\n as.assign(m,vector<T>(n));\n for(int i=0;i<n;i++)\n for(int j=0;j<m;j++)\n as[j][i]=cs[i][j];\n }\n\n void transform(Matrix &as,bool f){\n for(int t=0;t<2;t++){\n for(auto &a:as) tran(a,f);\n transpose(as);\n }\n }\n\n template<typename Mul>\n Matrix multiply(Matrix as,Matrix bs,Mul mul){\n int nt=as.size()+bs.size()-1;\n int mt=as[0].size()+bs[0].size()-1;\n int n=1,m=1;\n while(n<nt) n<<=1;\n while(m<mt) m<<=1;\n as.resize(n);bs.resize(n);\n for(int i=0;i<n;i++){\n as[i].resize(m,T());\n bs[i].resize(m,T());\n }\n transform(as,0);transform(bs,0);\n for(int i=0;i<n;i++)\n for(int j=0;j<m;j++)\n as[i][j]=mul(as[i][j],bs[i][j]);\n transform(as,1);\n return as;\n }\n};\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\ntemplate<size_t N,typename R>\nstruct SquareMatrix{\n typedef array<R, N> arr;\n typedef array<arr, N> mat;\n mat dat;\n\n SquareMatrix(){\n for(size_t i=0;i<N;i++)\n for(size_t j=0;j<N;j++)\n dat[i][j]=R::add_identity();\n }\n\n bool operator==(const SquareMatrix& a) const{\n return dat==a.dat;\n }\n\n size_t size() const{return N;};\n arr& operator[](size_t k){return dat[k];};\n const arr& operator[](size_t k) const {return dat[k];};\n\n static SquareMatrix add_identity(){return SquareMatrix();}\n static SquareMatrix mul_identity(){\n SquareMatrix res;\n for(size_t i=0;i<N;i++) res[i][i]=R::mul_identity();\n return res;\n }\n\n SquareMatrix operator*(const SquareMatrix &B) const{\n SquareMatrix res;\n for(size_t i=0;i<N;i++)\n for(size_t j=0;j<N;j++)\n for(size_t k=0;k<N;k++)\n res[i][j]=res[i][j]+(dat[i][k]*B[k][j]);\n return res;\n }\n\n SquareMatrix operator+(const SquareMatrix &B) const{\n SquareMatrix res;\n for(size_t i=0;i<N;i++)\n for(size_t j=0;j<N;j++)\n res[i][j]=dat[i][j]+B[i][j];\n return res;\n }\n\n SquareMatrix pow(long long n) const{\n SquareMatrix a=*this,res=mul_identity();\n while(n){\n if(n&1) res=res*a;\n a=a*a;\n n>>=1;\n }\n return res;\n }\n};\n\n//INSERT ABOVE HERE\nusing ll = long long;\nNTT<2> ntt;\nauto tran=[](auto &as,bool f){ntt.ntt(as,f);};\nConvolution2D<int, decltype(tran)> conv(tran);\nauto mul=[](int a,int b){return (ll)a*b%ntt.md;};\n\nint h,w;\nlong long k;\n\nsigned main(){\n cin>>h>>w>>k;\n h=1<<h;\n w=1<<w;\n vector< vector<int> > tt(h,vector<int>(w));\n vector< vector<int> > gg(h,vector<int>(w));\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n cin>>tt[i][j];\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n cin>>gg[i][j];\n\n struct Ring{\n vector< vector<int> > dat;\n Ring(){dat.assign(h,vector<int>(w,0));};\n Ring(vector< vector<int> > dat):dat(dat){};\n static Ring add_identity(){\n auto res=Ring();\n conv.transform(res.dat,false);\n return res;\n };\n static Ring mul_identity(){\n auto res=Ring();\n res.dat[0][0]=1;\n conv.transform(res.dat,false);\n return res;\n };\n Ring operator*(const Ring &a)const{\n auto res=Ring();\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n res.dat[i][j]=(ll)dat[i][j]*a.dat[i][j]%ntt.md;\n return res;\n }\n Ring operator+(const Ring &a)const{\n auto res=Ring();\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n res.dat[i][j]=((ll)dat[i][j]+a.dat[i][j])%ntt.md;\n return res;\n }\n };\n\n Ring T,G,W,H;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n T.dat[i][j]=tt[i][j]>=0?tt[i][j]:0;\n G.dat[i][j]=gg[i][j]>=0?gg[i][j]:0;\n W.dat[i][j]=tt[i][j]>=0?1:0;\n H.dat[i][j]=mul(T.dat[i][j],G.dat[i][j]);\n }\n }\n\n using SM = SquareMatrix<4, Ring>;\n SM P;\n P[0][0]=W;\n P[1][0]=T;P[1][1]=W;\n P[2][0]=H;P[2][1]=G;P[2][2]=W;\n P[3][0]=H;P[3][1]=G;P[3][2]=W;P[3][3]=Ring::mul_identity();\n\n for(int i=0;i<4;i++)\n for(int j=0;j<4;j++)\n if(i!=3||j!=3)\n conv.transform(P[i][j].dat,false);\n\n auto res=P.pow(k)[3][0];\n conv.transform(res.dat,true);\n\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(j) cout<<\" \";\n cout<<res.dat[i][j];\n }\n cout<<\"\\n\";\n }\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 6660, "memory_kb": 78060, "score_of_the_acc": -1.9493, "final_rank": 6 }, { "submission_id": "aoj_3074_3879338", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing lint = long long;\ntemplate<class T = int> using V = vector<T>;\ntemplate<class T = int> using VV = V< V<T> >;\n\ntemplate<unsigned P> struct ModInt {\n using M = ModInt;\n unsigned v;\n constexpr ModInt() : v(0) {}\n constexpr ModInt(auto x) : v(x >= 0 ? x % P : (P - -x % P) % P) {}\n constexpr ModInt(unsigned v, int) : v(v) {}\n static constexpr unsigned p() { return P; }\n M operator+() const { return *this; }\n M operator-() const { return {v ? P - v : 0, 0}; }\n explicit operator bool() const noexcept { return v; }\n bool operator!() const noexcept { return !(bool)*this; }\n M operator*(M r) const { return M(*this) *= r; }\n M operator/(M r) const { return M(*this) /= r; }\n M operator+(M r) const { return M(*this) += r; }\n M operator-(M r) const { return M(*this) -= r; }\n bool operator==(M r) const { return v == r.v; }\n bool operator!=(M r) const { return !(*this == r); }\n M& operator*=(M r) { v = (uint64_t)v * r.v % P; return *this; }\n M& operator/=(M r) { return *this *= r.inv(); }\n M& operator+=(M r) { if ((v += r.v) >= P) v -= P; return *this; }\n M& operator-=(M r) { if ((v += P - r.v) >= P) v -= P; return *this; }\n M inv() const {\n int a = v, b = P, x = 1, u = 0;\n while (b) {\n int q = a / b;\n swap(a -= q * b, b);\n swap(x -= q * u, u);\n }\n assert(a == 1);\n return x;\n }\n M pow(auto n) const {\n if (n < 0) return pow(-n).inv();\n M res = 1;\n for (M a = *this; n; a *= a, n >>= 1) if (n & 1) res *= a;\n return res;\n }\n friend M operator*(auto l, M r) { return M(l) *= r; }\n friend M operator/(auto l, M r) { return M(l) /= r; }\n friend M operator+(auto l, M r) { return M(l) += r; }\n friend M operator-(auto l, M r) { return M(l) -= r; }\n friend ostream& operator<<(ostream& os, M r) { return os << r.v; }\n friend istream& operator>>(istream& is, M& r) { lint x; is >> x; r = x; return is; }\n friend bool operator==(auto l, M r) { return M(l) == r; }\n friend bool operator!=(auto l, M r) { return !(l == r); }\n};\nusing Mint = ModInt<998244353>;\n\ntemplate<unsigned P, unsigned g = 6420> void ntt(V< ModInt<P> >& a, bool inv = false) {\n int n = a.size();\n assert(__builtin_popcount(n) == 1);\n int j = 0;\n for (int i = 1; i < n; ++i) {\n int w = n >> 1;\n while (j >= w) j -= w, w >>= 1;\n j += w;\n if (i < j) swap(a[i], a[j]);\n }\n assert((P - 1) % n == 0);\n auto xi = ModInt<P>(g).pow((P - 1) / n);\n if (inv) xi = xi.inv();\n for (int k = 0; 1 << k < n; ++k) {\n const int w = 1 << k;\n const auto dt = xi.pow(n >> k + 1);\n for (int s = 0; s < n; s += 2 * w) {\n ModInt<P> t = 1;\n for (int i = s; i < s + w; ++i) {\n auto p = a[i], q = a[i + w] * t;\n a[i] = p + q, a[i + w] = p - q;\n t *= dt;\n }\n }\n }\n}\ntemplate<unsigned P, unsigned g = 6420> V< ModInt<P> > multiply(const V< ModInt<P> >& a, const V< ModInt<P> >& b) {\n if (a.empty() or b.empty()) return {};\n int sz = a.size() + b.size() - 1, n = 1 << __lg(2 * sz - 1);\n auto _a = a, _b = b;\n _a.resize(n), _b.resize(n);\n ntt<P, g>(_a), ntt<P, g>(_b);\n for (int i = 0; i < n; ++i) _a[i] *= _b[i];\n ntt<P, g>(_a, true);\n _a.resize(sz);\n const auto inv_n = ModInt<P>(n).inv();\n for (auto&& e : _a) e *= inv_n;\n return _a;\n}\n\ntemplate<class T> V<T> operator*(const VV<T>& A, const V<T>& x) {\n assert(A[0].size() == x.size());\n V<T> res(A.size());\n for (int i = 0; i < (int) A.size(); ++i) {\n res[i] = inner_product(begin(A[i]), end(A[i]), begin(x), (T) 0);\n }\n return res;\n}\ntemplate<class T> VV<T> operator*(const VV<T>& A, const VV<T>& B) {\n assert(A[0].size() == B.size());\n VV<T> res(A.size(), V<T>(B[0].size()));\n for (int i = 0; i < (int) A.size(); ++i) for (int k = 0; k < (int) A[0].size(); ++k) for (int j = 0; j < (int) B[0].size(); ++j) {\n res[i][j] += A[i][k] * B[k][j];\n }\n return res;\n}\ntemplate<class T> VV<T>& operator*=(VV<T>& A, const VV<T>& B) { return A = A * B; }\ntemplate<class T> VV<T> I(int n) {\n VV<T> res(n, V<T>(n));\n for (int i = 0; i < n; ++i) res[i][i] = 1;\n return res;\n}\ntemplate<class T> VV<T> pow(VV<T> A, lint n) {\n auto res = I<T>(A.size());\n while (n) {\n if (n & 1) res *= A;\n A *= A;\n n >>= 1;\n }\n return res;\n}\n\nint main() {\n cin.tie(nullptr); ios::sync_with_stdio(false);\n int h, w, k; cin >> h >> w >> k;\n h = 1 << h, w = 1 << w;\n VV<Mint> c(h, V<Mint>(w));\n VV<Mint> t(h, V<Mint>(w));\n for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) {\n int T; cin >> T;\n c[i][j] = (int)(T != -1);\n t[i][j] = T == -1 ? 0 : T;\n }\n VV<Mint> g(h, V<Mint>(w));\n VV<Mint> tg(h, V<Mint>(w));\n for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) {\n int G; cin >> G;\n g[i][j] = G == -1 ? 0 : G;\n tg[i][j] = t[i][j] * g[i][j];\n }\n\n auto ntt2D = [&](VV<Mint>& v, bool inv = false) -> void {\n for (auto&& e : v) {\n ntt(e, inv);\n }\n for (int j = 0; j < w; ++j) {\n V<Mint> a(h);\n for (int i = 0; i < h; ++i) {\n a[i] = v[i][j];\n }\n ntt(a, inv);\n for (int i = 0; i < h; ++i) {\n v[i][j] = a[i];\n }\n }\n if (inv) {\n for (auto&& e : v) for (auto&& f : e) {\n f /= h * w;\n }\n }\n };\n\n ntt2D(c);\n ntt2D(t);\n ntt2D(tg);\n ntt2D(g);\n\n VV<Mint> res(h, V<Mint>(w));\n for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) {\n V<Mint> dp(5);\n dp[0] = 1;\n VV<Mint> A(5, V<Mint>(5));\n A[0][0] = A[1][1] = A[2][2] = A[3][3] = c[i][j];\n A[1][0] = t[i][j];\n A[2][0] = tg[i][j], A[2][1] = g[i][j];\n A[3][0] = g[i][j];\n A[4][2] = A[4][4] = 1;\n dp = pow(A, k + 1) * dp;\n res[i][j] = dp[4];\n }\n\n ntt2D(res, true);\n for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) {\n cout << res[i][j] << \" \\n\"[j == w - 1];\n }\n}", "accuracy": 1, "time_ms": 3200, "memory_kb": 8132, "score_of_the_acc": -0.4692, "final_rank": 2 }, { "submission_id": "aoj_3074_3859924", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\ntypedef complex<D> P;\n#define F first\n#define S second\nconst ll E=1e18+7;\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\n#define endl \"\\n\"\n\n \ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T>vector<T> & cset(vector<T> &A,T e=T()){for(auto &I:A){I=e;} return A;}\n\n\n \n\ntemplate< int mod, int primitiveroot >\nstruct NumberTheoreticTransform {\n vector< vector< int > > rts, rrts;\n void ensure_base(int N) {\n if(rts.size() >= N) return;\n rts.resize(N), rrts.resize(N);\n for(int i = 1; i < N; i <<= 1) {\n if(rts[i].size()) continue;\n int w = mod_pow(primitiveroot, (mod - 1) / (i * 2));\n int rw = inverse(w);\n rts[i].resize(i), rrts[i].resize(i);\n rts[i][0] = 1, rrts[i][0] = 1;\n for(int k = 1; k < i; k++) {\n rts[i][k] = mul(rts[i][k - 1], w);\n rrts[i][k] = mul(rrts[i][k - 1], rw);\n }\n }\n }\n\n inline int mod_pow(int x, int n) {\n int ret = 1;\n while(n > 0) {\n if(n & 1) ret = mul(ret, x);\n x = mul(x, x);\n n >>= 1;\n }\n return ret;\n }\n\n inline int inverse(int x) {\n return mod_pow(x, mod - 2);\n }\n\n inline int add(int x, int y) {\n x += y;\n if(x >= mod) x -= mod;\n return x;\n }\n\n inline int mul(int a, int b) {\n return int(1LL * a * b % mod);\n }\n\n void DiscreteFourierTransform(vector< int > &F, bool rev) {\n const int N = (int) F.size();\n //ensure_base(N);\n for(int i = 0, j = 1; j + 1 < N; j++) {\n for(int k = N >> 1; k > (i ^= k); k >>= 1);\n if(i > j) swap(F[i], F[j]);\n }\n for(int i = 1; i < N; i <<= 1) {\n for(int j = 0; j < N; j += i * 2) {\n for(int k = 0; k < i; k++) {\n int s = F[j + k], t = mul(F[j + k + i], rev ? rrts[i][k] : rts[i][k]);\n F[j + k] = add(s, t), F[j + k + i] = add(s, mod - t);\n }\n }\n }\n if(rev) {\n int temp = inverse(N);\n for(int i = 0; i < N; i++) F[i] = mul(F[i], temp);\n }\n }\n\n vector< int > Multiply(const vector< int > &A, const vector< int > &B) {\n int sz = 1;\n while(sz < A.size() + B.size() - 1) sz <<= 1;\n vector< int > F(sz), G(sz);\n for(int i = 0; i < A.size(); i++) F[i] = A[i];\n for(int i = 0; i < B.size(); i++) G[i] = B[i];\n DiscreteFourierTransform(F, false);\n DiscreteFourierTransform(G, false);\n for(int i = 0; i < sz; i++) F[i] = mul(F[i], G[i]);\n DiscreteFourierTransform(F, true);\n F.resize(A.size() + B.size() - 1);\n return F;\n }\n};\n\n\nconst int mod=MOD;\n\ninline int mul(int a, int b) {\n return int(1LL * a * b % mod);\n}\n\ninline int mod_pow(int x, int n) {\n int ret = 1;\n while(n > 0) {\n if(n & 1) ret = mul(ret, x);\n x = mul(x, x);\n n >>= 1;\n }\n return ret;\n}\n\ninline int inverse(int x) {\n return mod_pow(x, mod - 2);\n}\n\ninline int add(int x, int y) {\n x += y;\n if(x >= mod) x -= mod;\n return x;\n}\n\n\n\n\n\n\n\nconst int lg=7;\nconst int SIZE=1<<lg;\nNumberTheoreticTransform<MOD,3> NTT;\nconst int ms=4;\n\nint ans[ms][ms][SIZE][SIZE];\nint A[ms][ms][SIZE][SIZE];\nint bk[ms][ms];\nvector<int> func(SIZE,0);\n\n\n\n\n\n\n\nvoid prod(){\n for(int i=0;i<SIZE;i++){\n for(int j=0;j<SIZE;j++){\n for(int k=0;k<ms;k++){\n for(int l=0;l<ms;l++){\n int sum=0;\n for(int m=0;m<ms;m++){\n int p=mul(ans[k][m][i][j],A[m][l][i][j]);\n sum=add(sum,p);\n }\n bk[k][l]=sum;\n }\n }\n for(int k=0;k<ms;k++){\n for(int l=0;l<ms;l++){\n ans[k][l][i][j]=bk[k][l];\n }\n }\n }\n }\n}\n\nvoid dbl(){\n for(int i=0;i<SIZE;i++){\n for(int j=0;j<SIZE;j++){\n for(int k=0;k<ms;k++){\n for(int l=0;l<ms;l++){\n int sum=0;\n for(int m=0;m<ms;m++){\n int p=mul(A[k][m][i][j],A[m][l][i][j]);\n sum=add(sum,p);\n }\n bk[k][l]=sum;\n }\n }\n for(int k=0;k<ms;k++){\n for(int l=0;l<ms;l++){\n A[k][l][i][j]=bk[k][l];\n }\n }\n }\n }\n}\n\nvoid init(){\n NTT.ensure_base(SIZE);\n}\n\nvoid FFT_A(bool rev){\n for(int k=0;k<ms;k++){\n for(int l=0;l<ms;l++){\n for(int i=0;i<SIZE;i++){\n for(int j=0;j<SIZE;j++){\n func[j]=A[k][l][i][j];\n }\n NTT.DiscreteFourierTransform(func,rev);\n for(int j=0;j<SIZE;j++){\n A[k][l][i][j]=func[j];\n }\n }\n for(int i=0;i<SIZE;i++){\n for(int j=0;j<SIZE;j++){\n func[j]=A[k][l][j][i];\n }\n NTT.DiscreteFourierTransform(func,rev);\n for(int j=0;j<SIZE;j++){\n A[k][l][j][i]=func[j];\n }\n }\n }\n }\n}\n\nvoid FFT_ans(bool rev){\n for(int k=0;k<ms;k++){\n for(int l=0;l<ms;l++){\n for(int i=0;i<SIZE;i++){\n for(int j=0;j<SIZE;j++){\n func[j]=ans[k][l][i][j];\n }\n NTT.DiscreteFourierTransform(func,rev);\n for(int j=0;j<SIZE;j++){\n ans[k][l][i][j]=func[j];\n }\n }\n for(int i=0;i<SIZE;i++){\n for(int j=0;j<SIZE;j++){\n func[j]=ans[k][l][j][i];\n }\n NTT.DiscreteFourierTransform(func,rev);\n for(int j=0;j<SIZE;j++){\n ans[k][l][j][i]=func[j];\n }\n }\n }\n }\n}\n\nint h,w;\n\nvoid con_A(){\n for(int k=0;k<ms;k++){\n for(int l=0;l<ms;l++){\n for(int i=0;i<SIZE;i++){\n for(int j=0;j<SIZE;j++){\n if(i>=h || j>=w){A[k][l][i%h][j%w]=add(A[k][l][i%h][j%w],A[k][l][i][j]); A[k][l][i][j]=0;}\n }\n }\n }\n }\n}\n\nvoid con_ans(){\n for(int k=0;k<ms;k++){\n for(int l=0;l<ms;l++){\n for(int i=0;i<SIZE;i++){\n for(int j=0;j<SIZE;j++){\n if(i>=h || j>=w){ans[k][l][i%h][j%w]=add(ans[k][l][i%h][j%w],ans[k][l][i][j]); ans[k][l][i][j]=0;}\n }\n }\n }\n }\n}\n\nvoid A_A(){\n FFT_A(false);\n dbl();\n FFT_A(true);\n con_A();\n}\n\nvoid ans_A(){\n FFT_A(false);\n FFT_ans(false);\n prod();\n FFT_A(true);\n FFT_ans(true);\n con_ans();\n}\n\nvoid cul(ll k){\n while(k>0){\n if(k&1){ans_A();}\n A_A();\n k>>=1;\n }\n}\n\n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n init();\n for(int i=0;i<ms;i++){ans[i][i][0][0]=1;}\n ll k;\n cin>>h>>w>>k;\n assert(h<lg && w<lg);\n h=1<<h;\n w=1<<w;\n k++;\n A[0][0][0][0]=1;\n A[0][2][0][0]=1;\n vector<vector<int>> T(h,vector<int>(w));\n vector<vector<int>> G(h,vector<int>(w));\n cin>>T>>G;\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n if(T[i][j]==-1){continue;}\n for(int k=1;k<ms;k++){A[k][k][i][j]=add(A[k][k][i][j],1);}\n A[2][1][i][j]=add(A[2][1][i][j],mul(T[i][j],G[i][j]));\n A[2][3][i][j]=add(A[2][3][i][j],G[i][j]);\n A[3][1][i][j]=add(A[3][1][i][j],T[i][j]);\n }\n }\n cul(k);\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n cout<<ans[0][1][i][j];\n if(j+1!=w){cout<<\" \";}\n }\n cout<<endl;\n }\n\n return 0;\n}", "accuracy": 0.11428571428571428, "time_ms": 570, "memory_kb": 5272, "score_of_the_acc": 0, "final_rank": 7 }, { "submission_id": "aoj_3074_3859911", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\ntypedef complex<D> P;\n#define F first\n#define S second\nconst ll E=1e18+7;\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\n#define endl \"\\n\"\n\n \ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T>vector<T> & cset(vector<T> &A,T e=T()){for(auto &I:A){I=e;} return A;}\n\n\ntemplate< int mod, int primitiveroot >\nstruct NumberTheoreticTransform {\n vector< vector< int > > rts, rrts;\n void ensure_base(int N) {\n if(rts.size() >= N) return;\n rts.resize(N), rrts.resize(N);\n for(int i = 1; i < N; i <<= 1) {\n if(rts[i].size()) continue;\n int w = mod_pow(primitiveroot, (mod - 1) / (i * 2));\n int rw = inverse(w);\n rts[i].resize(i), rrts[i].resize(i);\n rts[i][0] = 1, rrts[i][0] = 1;\n for(int k = 1; k < i; k++) {\n rts[i][k] = mul(rts[i][k - 1], w);\n rrts[i][k] = mul(rrts[i][k - 1], rw);\n }\n }\n }\n\n inline int mod_pow(int x, int n) {\n int ret = 1;\n while(n > 0) {\n if(n & 1) ret = mul(ret, x);\n x = mul(x, x);\n n >>= 1;\n }\n return ret;\n }\n\n inline int inverse(int x) {\n return mod_pow(x, mod - 2);\n }\n\n inline int add(int x, int y) {\n x += y;\n if(x >= mod) x -= mod;\n return x;\n }\n\n inline int mul(int a, int b) {\n return int(1LL * a * b % mod);\n }\n\n void DiscreteFourierTransform(vector< int > &F, bool rev) {\n const int N = (int) F.size();\n //ensure_base(N);\n for(int i = 0, j = 1; j + 1 < N; j++) {\n for(int k = N >> 1; k > (i ^= k); k >>= 1);\n if(i > j) swap(F[i], F[j]);\n }\n for(int i = 1; i < N; i <<= 1) {\n for(int j = 0; j < N; j += i * 2) {\n for(int k = 0; k < i; k++) {\n int s = F[j + k], t = mul(F[j + k + i], rev ? rrts[i][k] : rts[i][k]);\n F[j + k] = add(s, t), F[j + k + i] = add(s, mod - t);\n }\n }\n }\n if(rev) {\n int temp = inverse(N);\n for(int i = 0; i < N; i++) F[i] = mul(F[i], temp);\n }\n }\n\n vector< int > Multiply(const vector< int > &A, const vector< int > &B) {\n int sz = 1;\n while(sz < A.size() + B.size() - 1) sz <<= 1;\n vector< int > F(sz), G(sz);\n for(int i = 0; i < A.size(); i++) F[i] = A[i];\n for(int i = 0; i < B.size(); i++) G[i] = B[i];\n DiscreteFourierTransform(F, false);\n DiscreteFourierTransform(G, false);\n for(int i = 0; i < sz; i++) F[i] = mul(F[i], G[i]);\n DiscreteFourierTransform(F, true);\n F.resize(A.size() + B.size() - 1);\n return F;\n }\n};\n\n\nconst int mod=MOD;\n\ninline int mul(int a, int b) {\n return int(1LL * a * b % mod);\n}\n\ninline int mod_pow(int x, int n) {\n int ret = 1;\n while(n > 0) {\n if(n & 1) ret = mul(ret, x);\n x = mul(x, x);\n n >>= 1;\n }\n return ret;\n}\n\ninline int inverse(int x) {\n return mod_pow(x, mod - 2);\n}\n\ninline int add(int x, int y) {\n x += y;\n if(x >= mod) x -= mod;\n return x;\n}\n\n\n\n\nint H,W;\nconst int lg=9;\nconst int MAX_SIZE=1<<lg;\nNumberTheoreticTransform<MOD,3> NTT;\nconst int ms=4;\n\nvector<vector<vector<vector<int>>>> A(MAX_SIZE,vector<vector<vector<int>>>(MAX_SIZE,vector<vector<int>>(ms,vector<int>(ms))));\nint mt[ms][ms];\nint bk[ms][ms];\nint ans[ms][ms];\nvector<int> funcH,funcW;\n\n\nvoid FFT_A(bool rev){\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n for(int x=0;x<H;x++){\n for(int y=0;y<W;y++){\n funcW[y]=A[x][y][i][j];\n }\n NTT.DiscreteFourierTransform(funcW,rev);\n for(int y=0;y<W;y++){\n A[x][y][i][j]=funcW[y];\n }\n }\n for(int y=0;y<W;y++){\n for(int x=0;x<H;x++){\n funcH[x]=A[x][y][i][j];\n }\n NTT.DiscreteFourierTransform(funcH,rev);\n for(int x=0;x<H;x++){\n A[x][y][i][j]=funcH[x];\n }\n }\n }\n }\n}\n\nvoid cul(ll K){\n ll k;\n for(int x=0;x<H;x++){\n for(int y=0;y<W;y++){\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n ans[i][j]=(i==j?1:0);\n mt[i][j]=A[x][y][i][j];\n }\n }\n k=K;\n while(k>0){\n if(k&1){\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n bk[i][j]=0;\n for(int k=0;k<ms;k++){\n bk[i][j]=add(bk[i][j],mul(ans[i][k],mt[k][j]));\n }\n }\n }\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n ans[i][j]=bk[i][j];\n }\n }\n }\n k>>=1;\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n bk[i][j]=0;\n for(int k=0;k<ms;k++){\n bk[i][j]=add(bk[i][j],mul(mt[i][k],mt[k][j]));\n }\n }\n }\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n mt[i][j]=bk[i][j];\n }\n }\n }\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n A[x][y][i][j]=ans[i][j];\n }\n }\n }\n }\n}\n\n\nvoid init(){\n NTT.ensure_base(MAX_SIZE);\n}\n\n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n init();\n ll k;\n cin>>H>>W>>k;\n H=1<<H;\n W=1<<W;\n funcH.resize(H);\n funcW.resize(W);\n k++;\n A[0][0][0][0]=1;\n A[0][0][0][2]=1;\n vector<vector<int>> T(H,vector<int>(W));\n vector<vector<int>> G(H,vector<int>(W));\n cin>>T>>G;\n for(int i=0;i<H;i++){\n for(int j=0;j<W;j++){\n if(T[i][j]==-1){continue;}\n for(int k=1;k<ms;k++){A[i][j][k][k]=add(A[i][j][k][k],1);}\n A[i][j][2][1]=add(A[i][j][2][1],mul(T[i][j],G[i][j]));\n A[i][j][2][3]=add(A[i][j][2][3],G[i][j]);\n A[i][j][3][1]=add(A[i][j][3][1],T[i][j]);\n }\n }\n FFT_A(false);\n cul(k);\n FFT_A(true);\n for(int i=0;i<H;i++){\n for(int j=0;j<W;j++){\n cout<<A[i][j][0][1];\n if(j+1!=W){cout<<\" \";}\n }\n cout<<endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 1860, "memory_kb": 72820, "score_of_the_acc": -1.0928, "final_rank": 3 }, { "submission_id": "aoj_3074_3859903", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\ntypedef complex<D> P;\n#define F first\n#define S second\nconst ll E=1e18+7;\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\n#define endl \"\\n\"\n\n \ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T>vector<T> & cset(vector<T> &A,T e=T()){for(auto &I:A){I=e;} return A;}\n\n\ntemplate< int mod, int primitiveroot >\nstruct NumberTheoreticTransform {\n vector< vector< int > > rts, rrts;\n void ensure_base(int N) {\n if(rts.size() >= N) return;\n rts.resize(N), rrts.resize(N);\n for(int i = 1; i < N; i <<= 1) {\n if(rts[i].size()) continue;\n int w = mod_pow(primitiveroot, (mod - 1) / (i * 2));\n int rw = inverse(w);\n rts[i].resize(i), rrts[i].resize(i);\n rts[i][0] = 1, rrts[i][0] = 1;\n for(int k = 1; k < i; k++) {\n rts[i][k] = mul(rts[i][k - 1], w);\n rrts[i][k] = mul(rrts[i][k - 1], rw);\n }\n }\n }\n\n inline int mod_pow(int x, int n) {\n int ret = 1;\n while(n > 0) {\n if(n & 1) ret = mul(ret, x);\n x = mul(x, x);\n n >>= 1;\n }\n return ret;\n }\n\n inline int inverse(int x) {\n return mod_pow(x, mod - 2);\n }\n\n inline int add(int x, int y) {\n x += y;\n if(x >= mod) x -= mod;\n return x;\n }\n\n inline int mul(int a, int b) {\n return int(1LL * a * b % mod);\n }\n\n void DiscreteFourierTransform(vector< int > &F, bool rev) {\n const int N = (int) F.size();\n //ensure_base(N);\n for(int i = 0, j = 1; j + 1 < N; j++) {\n for(int k = N >> 1; k > (i ^= k); k >>= 1);\n if(i > j) swap(F[i], F[j]);\n }\n for(int i = 1; i < N; i <<= 1) {\n for(int j = 0; j < N; j += i * 2) {\n for(int k = 0; k < i; k++) {\n int s = F[j + k], t = mul(F[j + k + i], rev ? rrts[i][k] : rts[i][k]);\n F[j + k] = add(s, t), F[j + k + i] = add(s, mod - t);\n }\n }\n }\n if(rev) {\n int temp = inverse(N);\n for(int i = 0; i < N; i++) F[i] = mul(F[i], temp);\n }\n }\n\n vector< int > Multiply(const vector< int > &A, const vector< int > &B) {\n int sz = 1;\n while(sz < A.size() + B.size() - 1) sz <<= 1;\n vector< int > F(sz), G(sz);\n for(int i = 0; i < A.size(); i++) F[i] = A[i];\n for(int i = 0; i < B.size(); i++) G[i] = B[i];\n DiscreteFourierTransform(F, false);\n DiscreteFourierTransform(G, false);\n for(int i = 0; i < sz; i++) F[i] = mul(F[i], G[i]);\n DiscreteFourierTransform(F, true);\n F.resize(A.size() + B.size() - 1);\n return F;\n }\n};\n\n\nconst int mod=MOD;\n\ninline int mul(int a, int b) {\n return int(1LL * a * b % mod);\n}\n\ninline int mod_pow(int x, int n) {\n int ret = 1;\n while(n > 0) {\n if(n & 1) ret = mul(ret, x);\n x = mul(x, x);\n n >>= 1;\n }\n return ret;\n}\n\ninline int inverse(int x) {\n return mod_pow(x, mod - 2);\n}\n\ninline int add(int x, int y) {\n x += y;\n if(x >= mod) x -= mod;\n return x;\n}\n\n\n\n\nint H,W;\nconst int lg=9;\nconst int MAX_SIZE=1<<lg;\nNumberTheoreticTransform<MOD,3> NTT;\nconst int ms=4;\n\nint A[MAX_SIZE][MAX_SIZE][ms][ms];\nint mt[ms][ms];\nint bk[ms][ms];\nint ans[ms][ms];\nvector<int> funcH,funcW;\n\n\nvoid FFT_A(bool rev){\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n for(int x=0;x<H;x++){\n for(int y=0;y<W;y++){\n funcW[y]=A[x][y][i][j];\n }\n NTT.DiscreteFourierTransform(funcW,rev);\n for(int y=0;y<W;y++){\n A[x][y][i][j]=funcW[y];\n }\n }\n for(int y=0;y<W;y++){\n for(int x=0;x<H;x++){\n funcH[x]=A[x][y][i][j];\n }\n NTT.DiscreteFourierTransform(funcH,rev);\n for(int x=0;x<H;x++){\n A[x][y][i][j]=funcH[x];\n }\n }\n }\n }\n}\n\nvoid cul(ll K){\n ll k;\n for(int x=0;x<H;x++){\n for(int y=0;y<W;y++){\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n ans[i][j]=(i==j?1:0);\n mt[i][j]=A[x][y][i][j];\n }\n }\n k=K;\n while(k>0){\n if(k&1){\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n bk[i][j]=0;\n for(int k=0;k<ms;k++){\n bk[i][j]=add(bk[i][j],mul(ans[i][k],mt[k][j]));\n }\n }\n }\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n ans[i][j]=bk[i][j];\n }\n }\n }\n k>>=1;\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n bk[i][j]=0;\n for(int k=0;k<ms;k++){\n bk[i][j]=add(bk[i][j],mul(mt[i][k],mt[k][j]));\n }\n }\n }\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n mt[i][j]=bk[i][j];\n }\n }\n }\n for(int i=0;i<ms;i++){\n for(int j=0;j<ms;j++){\n A[x][y][i][j]=ans[i][j];\n }\n }\n }\n }\n}\n\n\nvoid init(){\n NTT.ensure_base(MAX_SIZE);\n}\n\n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n init();\n ll k;\n cin>>H>>W>>k;\n H=1<<H;\n W=1<<W;\n funcH.resize(H);\n funcW.resize(W);\n k++;\n A[0][0][0][0]=1;\n A[0][0][0][2]=1;\n vector<vector<int>> T(H,vector<int>(W));\n vector<vector<int>> G(H,vector<int>(W));\n cin>>T>>G;\n for(int i=0;i<H;i++){\n for(int j=0;j<W;j++){\n if(T[i][j]==-1){continue;}\n for(int k=1;k<ms;k++){A[i][j][k][k]=add(A[i][j][k][k],1);}\n A[i][j][2][1]=add(A[i][j][2][1],mul(T[i][j],G[i][j]));\n A[i][j][2][3]=add(A[i][j][2][3],G[i][j]);\n A[i][j][3][1]=add(A[i][j][3][1],T[i][j]);\n }\n }\n FFT_A(false);\n cul(k);\n FFT_A(true);\n for(int i=0;i<H;i++){\n for(int j=0;j<W;j++){\n cout<<A[i][j][0][1];\n if(j+1!=W){cout<<\" \";}\n }\n cout<<endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 1520, "memory_kb": 21448, "score_of_the_acc": -0.367, "final_rank": 1 } ]
aoj_3070_cpp
Problem G: Double or Increment Problem ある日、mo3tthi君とtubuann君は、魔法のポケットとビスケットを使ってゲームをすることにしました。 今ここに $K$ 個のポケットがあり、$1,2, \ldots ,K$ の番号がついています。 $i$ 番目のポケットの容量は $M_i$ で、最初 $N_i$ 枚のビスケットが入っています。 mo3tthi君とtubuann君は、mo3tthi君から始めて、以下の一連の操作を交互に行います。 ポケットを一つ選ぶ。 以下のいずれか一方の操作を一度だけ行う。ただし、操作の結果選んだポケットに入っているビスケットの枚数がポケットの容量を超える場合、操作を行うことはできない。 選んだポケットを撫でる。魔法の力によって選んだポケットに入っているビスケットの枚数が $1$ 増える。 選んだポケットを叩く。魔法の力によって選んだポケットに入っているビスケットの枚数が $2$ 倍になる。 操作を行えなくなった時点でゲームは終了し、操作を行えなくなった人が負け、そうでない人が勝ちになります。 mo3tthi君の友人であるあなたは、mo3tthi君から事前にこのゲームに勝てるかどうかを判定できないか相談されました。 mo3tthi君のために、mo3tthi君がこのゲームに必ず勝つことができるかどうかを判定するプログラムを作ってください。 Input 入力は以下の形式で与えられる。 $K$ $N_1$ $M_1$ $\vdots$ $N_K$ $M_K$ Constraints 入力は以下の条件を満たす。 $1 \leq K \leq 10^5$ $1 \leq N_i \leq M_i \leq 10^{18}$ 入力は全て整数である Output mo3tthi君が最適に行動したとき、必ず勝つことができるなら"mo3tthi"を、そうでないなら"tubuann"を一行に出力する。 Sample Input 1 1 2 4 Sample Output 1 mo3tthi mo3tthi君が一番目のポケットを叩くと、一番目のポケットに入っているビスケットの枚数が $4$ になり、tubuann君は操作を行うことができない。 Sample Input 2 2 2 3 3 8 Sample Output 2 tubuann Sample Input 3 10 2 8 5 9 7 20 8 41 23 48 90 112 4 5 7 7 2344 8923 1 29 Sample Output 3 mo3tthi
[ { "submission_id": "aoj_3070_10142217", "code_snippet": "// AOJ #3070\n// Double or Increment 2025.1.25\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nint mex2(int a, int b) {\n bool used[3] = {false, false, false};\n used[a] = true;\n used[b] = true;\n for(int g = 0; g < 3; g++){\n if(!used[g]) return g;\n }\n return 3; \n}\n\nvoid shrinkCapacity(ll &r, int &gEven, int &gOdd) {\n ll nr = r >> 1;\n int oldEven = gEven;\n int oldOdd = gOdd;\n\n int x = (int)(nr & 1);\n int y = (int)((nr + 1) & 1LL); // y= (nr+1)%2\n int oldY = (y==0 ? oldEven : oldOdd);\n \n int newGx;\n if (x == 0) newGx = mex2(oldEven, oldOdd);\n else newGx = (oldEven == 0);\n\n int newGxXor1 = mex2(oldEven, newGx);\n int newEven, newOdd;\n if (x == 0) {\n newEven = newGx;\n newOdd = newGxXor1;\n } else {\n newEven = newGxXor1;\n newOdd = newGx;\n }\n r = nr;\n gEven = newEven;\n gOdd = newOdd;\n}\n\nint solvePocket(ll N, ll r){\n int gEven = (int)(r & 1);\n int gOdd = gEven ^ 1; // 0→1, 1→0\n\n while(!((r>>1) < N && N <= r)) shrinkCapacity(r, gEven, gOdd);\n return (N & 1)? gOdd: gEven;\n}\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int K;\n cin >> K;\n\n int nim = 0; // Nim 和 (XOR) を貯める\n for(int i=0; i<K; i++){\n ll N, M;\n cin >> N >> M;\n nim ^= solvePocket(N, M);\n }\n if(nim == 0) cout << \"tubuann\" << endl;\n else cout << \"mo3tthi\" << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3456, "score_of_the_acc": -0.1243, "final_rank": 5 }, { "submission_id": "aoj_3070_10142196", "code_snippet": "// AOJ #3070\n// Double or Increment 2025.1.25\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#include <bits/stdc++.h>\nusing namespace std;\n\ninline int mex2(int a, int b) {\n bool used[3] = {false, false, false};\n used[a] = true;\n used[b] = true;\n for(int g = 0; g < 3; g++){\n if(!used[g]) return g;\n }\n return 3; \n}\n\ninline void shrinkCapacity(ll &r, int &gEven, int &gOdd) {\n ll nr = r >> 1;\n int oldEven = gEven;\n int oldOdd = gOdd;\n\n int x = (int)(nr & 1);\n int y = (int)((nr + 1) & 1LL); // y= (nr+1)%2\n int oldY = (y==0 ? oldEven : oldOdd);\n \n int newGx;\n if (x == 0) newGx = mex2(oldEven, oldOdd);\n else newGx = (oldEven == 0);\n\n int newGxXor1 = mex2(oldEven, newGx);\n int newEven, newOdd;\n if (x == 0) {\n newEven = newGx;\n newOdd = newGxXor1;\n } else {\n newEven = newGxXor1;\n newOdd = newGx;\n }\n r = nr;\n gEven = newEven;\n gOdd = newOdd;\n}\n\nint solvePocket(ll N, ll r){\n int gEven = (int)(r & 1);\n int gOdd = gEven ^ 1; // 0→1, 1→0\n\n while(!((r>>1) < N && N <= r)) shrinkCapacity(r, gEven, gOdd);\n return (N & 1)? gOdd: gEven;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int K;\n cin >> K;\n\n int nim = 0; // Nim 和 (XOR) を貯める\n for(int i=0; i<K; i++){\n ll N, M;\n cin >> N >> M;\n nim ^= solvePocket(N, M);\n }\n if(nim == 0) cout << \"tubuann\" << endl;\n else cout << \"mo3tthi\" << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3496, "score_of_the_acc": -0.1339, "final_rank": 6 }, { "submission_id": "aoj_3070_10141831", "code_snippet": "// AOJ #3070\n// Double or Increment 2025.1.25\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n// mex を求める小関数 (0,1,2 だけあれば十分)\nint mex2(int x, int y) {\n bool used[3]; \n used[0] = used[1] = used[2] = false;\n used[x] = true;\n used[y] = true;\n for(int g=0; g<3; g++) {\n if(!used[g]) return g;\n }\n // 実際にはここに来ないはず\n return 3; \n}\n\n// n, M を与えられたときの Grundy 数 g(n,M) を返す関数\n// memo は n -> g(n) のメモ (ただし M 固定).unordered_map<ll,int> などで十分\nll M;\nunordered_map<ll,int> memo;\n\nint grundy(ll n) {\n // 容量を超えたら遷移不可能扱いだが,実際呼ばない前提にする\n if(n > M) return 0;\n // \"容量の半分を超えていたら +1 しかできず,Grundy は (M-n)%2\" という簡単な式\n ll half = M/2;\n if(n > half) return (int)((M - n) & 1LL); \n auto it = memo.find(n);\n if(it != memo.end()) return it->second;\n\n int g1;\n if(n+1 > half) g1 = (int)((M - (n+1)) & 1LL);\n else g1 = grundy(n+1);\n\n int g2;\n ll dn = n << 1; // 2n\n if(dn > half) g2 = (int)((M - dn) & 1LL);\n else g2 = grundy(dn);\n\n int g = mex2(g1, g2);\n memo[n] = g;\n return g;\n}\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int K;\n cin >> K;\n\n ll nim = 0; // 全部の g(N_i,M_i) を XOR していく\n\n for(int i=0; i<K; i++){\n ll N, M_i;\n cin >> N >> M_i;\n M = M_i;\n memo.clear(); // ポケットごとにメモリをクリア\n nim ^= grundy(N);\n }\n if(nim) cout << \"mo3tthi\" << endl;\n else cout << \"tubuann\" << endl;\n return 0;\n}", "accuracy": 0.58, "time_ms": 210, "memory_kb": 7288, "score_of_the_acc": -1.7692, "final_rank": 15 }, { "submission_id": "aoj_3070_5183535", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\nll grundy(ll first,ll limit){\n\n\tll right = limit;\n\tll left;\n\n\tll GU,KI;\n\n\tif(right%2 == 0){\n\n\t\tleft = right/2+1;\n\n\t\tGU = 0;\n\t\tKI = 1;\n\n\t}else{\n\n\t\tleft = (right+1)/2;\n\n\t\tGU = 1;\n\t\tKI = 0;\n\t}\n\n\tll next_right,next_left;\n\tll next_GU,next_KI;\n\n\twhile(true){\n\n\t\tif(left <= first && right >= first){\n\n\t\t\tif(first%2 == 0){\n\n\t\t\t\treturn GU;\n\t\t\t}else{\n\n\t\t\t\treturn KI;\n\t\t\t}\n\t\t}\n\n\t\tnext_right = left-1;\n\t\tif(next_right%2 == 0){\n\n\t\t\tnext_left = (next_right/2)+1;\n\t\t}else{\n\n\t\t\tnext_left = (next_right+1)/2;\n\t\t}\n\n\t\tbool work[3];\n\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\twork[i] = false;\n\t\t}\n\n\t\t//右端のgrundy計算\n\t\tif(next_right%2 == 1){\n\n\t\t\twork[GU] = true;\n\t\t}else{\n\n\t\t\twork[GU] = true;\n\t\t\twork[KI] = true;\n\t\t}\n\n\t\tint tmp_r;\n\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\tif(!work[i]){\n\n\t\t\t\ttmp_r = i;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\n\t\tbool next[3];\n\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\tnext[i] = false;\n\t\t}\n\t\tnext[tmp_r] = true;\n\t\tnext[GU] = true;\n\n\t\tint tmp_next;\n\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\tif(!next[i]){\n\n\t\t\t\ttmp_next = i;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\n\t\tif(next_right%2 == 0){\n\n\t\t\tGU = tmp_r;\n\t\t\tKI = tmp_next;\n\n\t\t}else{\n\n\t\t\tGU = tmp_next;\n\t\t\tKI = tmp_r;\n\t\t}\n\n\t\tright = next_right;\n\t\tleft = next_left;\n\t}\n}\n\n\nint main(){\n\n\tll K;\n\tscanf(\"%lld\",&K);\n\n\tll XOR = 0;\n\n\tll first,limit;\n\n\tfor(ll loop = 0; loop < K; loop++){\n\n\t\tscanf(\"%lld %lld\",&first,&limit);\n\t\tXOR ^= grundy(first,limit);\n\t}\n\n\tif(XOR == 0){\n\n\t\tprintf(\"tubuann\\n\");\n\n\t}else{\n\n\t\tprintf(\"mo3tthi\\n\");\n\t}\n\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3164, "score_of_the_acc": -0.0547, "final_rank": 2 }, { "submission_id": "aoj_3070_5082740", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\nll grundy(ll first,ll maxi){\n\n\tbool used[3],used2[3];\n\tll pre_GU,pre_KI;\n\n\tll right = maxi,left = maxi/2+1;\n\tif(right%2 == 0){\n\n\t\tpre_GU = 0;\n\t\tpre_KI = 1;\n\n\t}else{\n\n\t\tpre_GU = 1;\n\t\tpre_KI = 0;\n\t}\n\n\tif(left <= first && first <= right){\n\t\tif(first%2 == 0){\n\n\t\t\treturn pre_GU;\n\t\t}else{\n\n\t\t\treturn pre_KI;\n\t\t}\n\t}\n\n\tll next_left,next_right;\n\tll next_GU,next_KI;\n\n\twhile(true){\n\n\t\tnext_right = left-1;\n\t\tnext_left = next_right/2+1;\n\n\t\tfor(int i = 0; i < 3; i++){\n\t\t\tused[i] = false;\n\t\t\tused2[i] = false;\n\t\t}\n\n\t\tif(next_right%2 == 0){\n\n\t\t\tused[pre_KI] = true;\n\t\t\tused[pre_GU] = true;\n\n\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\tif(!used[i]){\n\t\t\t\t\tnext_GU = i;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tused2[pre_GU] = true;\n\t\t\tused2[next_GU] = true;\n\n\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\tif(!used2[i]){\n\t\t\t\t\tnext_KI = i;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\n\t\t}else{\n\n\t\t\tused[pre_GU] = true;\n\n\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\tif(!used[i]){\n\t\t\t\t\tnext_KI = i;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tused2[pre_GU] = true;\n\t\t\tused2[next_KI] = true;\n\n\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\tif(!used2[i]){\n\t\t\t\t\tnext_GU = i;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(next_left <= first && first <= next_right){\n\n\t\t\tif(first%2 == 0){\n\n\t\t\t\treturn next_GU;\n\t\t\t}else{\n\n\t\t\t\treturn next_KI;\n\t\t\t}\n\t\t}\n\n\t\tleft = next_left;\n\t\tright = next_right;\n\n\t\tpre_GU = next_GU;\n\t\tpre_KI = next_KI;\n\t}\n}\n\n\nint main(){\n\n\tint K;\n\tscanf(\"%d\",&K);\n\n\tll XOR = 0;\n\n\tll first,maxi;\n\n\tfor(int loop = 0; loop < K; loop++){\n\n\t\tscanf(\"%lld %lld\",&first,&maxi);\n\t\tXOR ^= grundy(first,maxi);\n\t}\n\n\tif(XOR == 0){\n\n\t\tprintf(\"tubuann\\n\");\n\n\t}else{\n\n\t\tprintf(\"mo3tthi\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3168, "score_of_the_acc": -0.0556, "final_rank": 3 }, { "submission_id": "aoj_3070_4301985", "code_snippet": "//#pragma GCC optimize (\"-O3\",\"unroll-loops\")\n#include<iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\n#include<queue>\n#include<map>\n#include<math.h>\n#include<iomanip>\n#include<set>\n#include<numeric>\n#include<cstring>\n#include<cstdio>\n#include<functional>\n#include<bitset>\n#include<limits.h>\n#include<cassert>\n#include<iterator>\n#include<complex>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n\n\n#define REP(i, n) for(int i = 0;i < n;i++)\n#define REPR(i, n) for(int i = n;i >= 0;i--)\n#define FOR(i, m, n) for(int i = m;i < n;i++)\n#define FORR(i, m, n) for(int i = m;i >= n;i--)\n#define SORT(v, n) sort(v, v+n);\n#define VSORT(v) sort(v.begin(), v.end());\n#define REVERSE(v,n) reverse(v,v+n);\n#define VREVERSE(v) reverse(v.begin(), v.end());\n#define ll long long\n#define pb(a) push_back(a)\n#define print(x) cout<<x<<'\\n';\n#define pe(x) cout<<x<<\" \";\n#define lb(v,n) lower_bound(v.begin(), v.end(), n);\n#define ub(v,n) upper_bound(v.begin(), v.end(), n);\n#define int long long\n#define all(x) (x).begin(), (x).end()\n//#define double long double\n\nusing namespace std;\n\ntemplate<typename T1, typename T2> inline void chmin(T1 &a, T2 b) { if (a>b) a = b; }\ntemplate<typename T1, typename T2> inline void chmax(T1 &a, T2 b) { if (a<b) a = b; }\n\nconst int MOD = 1e9 + 7;\nconst ll INF = 1e17;\nconst int INT_INF = 1e9;\nconst double pi = acos(-1);\nconst double EPS = 1e-10;\ntypedef pair<int, int>P;\nconst int MAX = 200020;\n\nint mex(unordered_set<int>st) {\n\tREP(i, 3) {\n\t\tif (st.find(i) == st.end())return i;\n\t}\n}\n\nint calc_grundy(int N, int M) {\n\tif (N * 2 > M) {\n\t\treturn (M - N) % 2;\n\t}\n\telse if (M&1) {\n\t\tif (N&1)return 0;\n\t\tint cnt = 0;\n\t\twhile(M>=N){\n\t\t\tcnt++;\n\t\t\tM /= 2;\n\t\t}\n\t\treturn 2 - (cnt&1);\n\t}\n\telse{\n\t\tint x, y, z;\n\t\tx = 0, y = 1, z = (M / 2) & 1 ? 0 : 1;\n\t\tbool even = 1;\n\t\twhile (M/2 >= N) {\n\t\t\tif (M / 2 == 1 && N == 1) {\n\t\t\t\tif (M == 3)return mex({ y }); else return mex({ x });\n\t\t\t}\n\t\t\t//cout << \"M:\" << M;\n\t\t\tM /= 2;\n\t\t\tif (even) {\n\t\t\t\t//vector<int>v;\n\t\t\t\t//v.pb(z); v.pb(x);\n\t\t\t\tunordered_set<int>st;\n\t\t\t\tst.insert(z); st.insert(x);\n\t\t\t\tint new_x = mex(st);\n\t\t\t\t//vector<int>v2; v2.pb(new_x); v2.pb(x);\n\t\t\t\tunordered_set<int>st2;\n\t\t\t\tst2.insert(new_x); st2.insert(x);\n\t\t\t\tint new_y = mex(st2);\n\t\t\t\tint z_pos = M / 2 + 1;\n\t\t\t\tz = (M - z_pos) & 1 ? new_y : new_x;\n\t\t\t\tx=new_x; y = new_y;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tunordered_set<int>st;\n\t\t\t\tst.insert(z); st.insert(y);\n\t\t\t\tint new_x = mex(st);\n\t\t\t\tunordered_set<int>st2;\n\t\t\t\tst2.insert(new_x); st2.insert(y);\n\t\t\t\tint new_y = mex(st2);\n\t\t\t\tint z_pos = M / 2 + 1;\n\t\t\t\tz = (M - z_pos) & 1 ? new_y : new_x;\n\t\t\t\tx = new_x; y = new_y;\n\t\t\t}\n\t\t\t//cout << \"M:\" << M << \" x:\" << x << \" y:\" << y << \" z:\" << z << endl;\n\t\t\tif (M % 2 == 0)even = true; else even = false;\n\t\t}\n\t\t//if (N == 2) { pe(\"M\")print(M); };\n\t\tif ((M - N) & 1)return y; else return x;\n\t}\n}\nvoid show(int M) {\n\tFORR(i, M, 1) {\n\t\tpe(i)print(calc_grundy(i,M));\n\t}\n}\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\n\t/*while (true) {\n\t\tint M; cin >> M;\n\t\tshow(M);\n\t}*/\n\t//calc_grundy(3, 30);\n\t/*FORR(i, 20, 1) {\n\t\tpe(i)print(calc_grundy(i, 20));\n\t}*/\n\t//print(calc_grundy(2, 20));\n\tint grundy = 0;\n\tint K; cin >> K;\n\tint n, m;\n\tREP(i, K) {\n\t\tcin >> n >> m;\n\t\t/*FORR(j, m,1) {\n\t\t\tcout << j << \":\" << calc_grundy(j, m) << endl;\n\t\t}*/\n\t\tgrundy ^= calc_grundy(n, m);\n\t}\n\tif (grundy)print(\"mo3tthi\")else print(\"tubuann\");\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 3212, "score_of_the_acc": -1.0277, "final_rank": 14 }, { "submission_id": "aoj_3070_4054301", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n#include <typeinfo>\n#include <cctype>\n\nint grandy(long long int current, long long int max) {\n\tlong long int lower = max / 2 + 1;\n\tassert(lower * 2 > max);\n\tassert((lower - 1) * 2 <= max);\n\tstd::vector<int> pair(2);\n\tif (max % 2 == 0) {\n\t\tpair[0] = 0;\n\t\tpair[1] = 1;\n\t}\n\telse {\n\t\tpair[0] = 1;\n\t\tpair[1] = 0;\n\t}\n\twhile (current < lower) {\n\t\tif (lower % 2 == 1) {\n\t\t\tint other = -1;\n\t\t\tif (std::find(pair.begin(), pair.end(), 0) == pair.end()) {\n\t\t\t\tother = 0;\n\t\t\t}\n\t\t\telse if (std::find(pair.begin(), pair.end(), 1) == pair.end()) {\n\t\t\t\tother = 1;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tother = 2;\n\t\t\t}\n\t\t\tpair[0] = other;\n\t\t\tpair[1] = pair[1];\n\t\t}\n\t\telse {\n\t\t\tpair[1] = pair[0] == 0 ? 1 : 0;\n\t\t\tif (pair[0] == 2) {\n\t\t\t\tpair[0] = 1;\n\t\t\t}else {\n\t\t\t\tpair[0] = 2;\n\t\t\t}\n\t\t}\n\t\tlower = (lower + 1) / 2;\n\t}\n\treturn current % 2 == 0 ? pair[0] : pair[1];\n}\n\nint main() {\n\tint n; std::cin >> n;\n\tint result = 0;\n\tfor (auto i = 0; i < n; ++i) {\n\t\tlong long int current, max; std::cin >> current >> max;\n\t\tresult ^= grandy(current, max);\n\t}\n\tstd::cout << (result != 0 ? \"mo3tthi\" : \"tubuann\") << std::endl;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 3120, "score_of_the_acc": -0.3134, "final_rank": 11 }, { "submission_id": "aoj_3070_3896520", "code_snippet": "#include <bits/stdc++.h>\ntypedef long long ll;\ntypedef long double ld;\nconst int INF=1e9,MOD=1e9+7,ohara=1e6+10;\nconst ll LINF=1e18;\nusing namespace std;\n \n#define rep(i,n) for(int (i)=0;(i)<(int)(n);(i)++)\n#define rrep(i,a,b) for(int i=(a);i<(b);i++)\n#define rrrep(i,a,b) for(int i=(a);i>=(b);i--)\n#define all(v) (v).begin(), (v).end()\n#define Size(n) (n).size()\n#define Cout(x) cout<<(x)<<endl\n#define doublecout(a) cout<<fixed<<setprecision(15)<<a<<endl;\n#define Cerr(x) cerr<<(x)<<endl\n#define fi first\n#define se second\n#define P pair<ll,ll> \n#define m_p make_pair\n#define V vector<ll> \n#define U_MAP unordered_map<ll,ll>\n#define pq priority_queue<ll>\n#define rpq priority_queue<ll,vector<ll>,greater<ll>>\n#define p_b push_back\n \nll n,cnt,ans,a,b,c,d,tmp,tmpp,m,h,w,x,y,sum,pos,k,q;\nld doua;\nint dy[]={1,0,-1,0};\nint dx[]={0,1,0,-1};\n//int dy[]={-1,0,1,-1,1,-1,0,1};\n//int dx[]={-1,-1,-1,0,0,1,1,1};\nstring alph(\"abcdefghijklmnopqrstuvwxyz\"),s;\nbool fl;\nstruct edge{int to,cost;};\nll dat[ohara];\n \n//------ Believe yourself as a genius!!!!!! ------\n \nint main(void){\n cin.tie(0);\n cout.tie(0);\n ios::sync_with_stdio(false);\n \n cin>>k;\n rep(i,k){\n cin>>n>>m;\n ll hasi=m/2;\n ll ki,gu;\n if(m%2==0){\n gu=0;\n ki=1;\n }\n else{\n ki=0;\n gu=1;\n }\n while(1){\n if(hasi<n)break;\n int vi1[10]={};\n int vi2[10]={};\n if(hasi%2==1){\n vi1[gu]++;\n rep(j,3){\n if(vi1[j]==0){\n ki=j;\n break;\n }\n }\n vi2[ki]++;\n vi2[gu]++;\n rep(j,3){\n if(vi2[j]==0){\n gu=j;\n break;\n }\n }\n }\n else{\n vi1[gu]++;\n vi2[gu]++;\n vi1[ki]++;\n rep(j,3){\n if(vi1[j]==0){\n gu=j;\n break;\n }\n }\n vi2[gu]++;\n rep(j,3){\n if(vi2[j]==0){\n ki=j;\n break;\n }\n }\n }\n //cout<<hasi<<\" \"<<gu<<\" \"<<ki<<\"\\n\";\n hasi/=2;\n }\n if(n%2==1)dat[i]=ki;\n else dat[i]=gu;\n }\n ans=dat[0];\n rrep(i,1,k){\n ans=(ans xor dat[i]);\n }\n if(ans==0)Cout(\"tubuann\");\n else Cout(\"mo3tthi\");\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4012, "score_of_the_acc": -0.257, "final_rank": 7 }, { "submission_id": "aoj_3070_3893190", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n//INSERT ABOVE HERE\nInt solve(){\n Int n,m;\n cin>>n>>m;\n if(n==m) return 0;\n\n Int a=0,b=1;\n while(m/2){\n assert(n<=m);\n Int x=m/2;\n // (x, m]\n if(x<n){\n return (~(m-n)&1)?a:b;\n }\n Int p=(x*2==m)?a:b;\n Int q=(~(m-(x+1))&1)?a:b;\n set<Int> ss;\n ss.emplace(p);\n ss.emplace(q);\n Int na=0;\n while(ss.count(na)) na++;\n\n if(x==1){\n assert(n==1);\n return na;\n }\n\n set<Int> st;\n st.emplace(p);\n st.emplace(na);\n Int nb=0;\n while(st.count(nb)) nb++;\n\n a=na;\n b=nb;\n m=x;\n }\n assert(0);\n}\n\nsigned main(){\n Int t;\n cin>>t;\n Int ans=0;\n while(t--) ans^=solve();\n cout<<(ans?\"mo3tthi\":\"tubuann\")<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 3188, "score_of_the_acc": -0.5219, "final_rank": 13 }, { "submission_id": "aoj_3070_3888441", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n\nint grundy(ll x,ll MAX){\n\n\tll left = MAX/2+1,right = MAX;\n\n\tint this_even,this_odd,pre_even,pre_odd;\n\n\twhile(true){\n\n\t\tif(left == MAX/2+1){ //最初の区間\n\n\t\t\tif(right%2 == 0){\n\n\t\t\t\tthis_even = 0; //右端は手詰まりなのでgrundyが0\n\t\t\t\tthis_odd = 1;\n\n\t\t\t}else{ //right%2 == 1\n\n\t\t\t\tthis_even = 1;\n\t\t\t\tthis_odd = 0;\n\t\t\t}\n\n\t\t}else{\n\n\t\t\tbool check[3];\n\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\tcheck[i] = false;\n\t\t\t}\n\n\t\t\t//まずは区間右端のgrundy数を求める\n\t\t\tint right_grundy;\n\n\t\t\tif(right%2 == 0){\n\n\t\t\t\tcheck[pre_odd] = true; //+1\n\t\t\t\tcheck[pre_even] = true; //*2\n\n\t\t\t}else{ //right%2 == 1\n\n\t\t\t\tcheck[pre_even] = true; //+1および*2\n\t\t\t}\n\n\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\tif(!check[i]){\n\n\t\t\t\t\tright_grundy = i;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tint another_grundy;\n\n\t\t\t//右端の1つ左のgrundy数を求める\n\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\tcheck[i] = false;\n\t\t\t}\n\n\t\t\tcheck[right_grundy] = true; //+1\n\t\t\tcheck[pre_even] = true; //*2\n\n\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\tif(!check[i]){\n\n\t\t\t\t\tanother_grundy = i;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tif(right%2 == 0){\n\n\t\t\t\tthis_even = right_grundy;\n\t\t\t\tthis_odd = another_grundy;\n\n\t\t\t}else{\n\n\t\t\t\tthis_even = another_grundy;\n\t\t\t\tthis_odd = right_grundy;\n\t\t\t}\n\t\t}\n\n\t\tif(x >= left && x <= right){\n\n\t\t\tif(x%2 == 0){\n\n\t\t\t\treturn this_even;\n\t\t\t}else{\n\n\t\t\t\treturn this_odd;\n\t\t\t}\n\t\t}\n\n\t\tright = left-1;\n\t\tleft = right/2+1;\n\n\t\tpre_even = this_even;\n\t\tpre_odd = this_odd;\n\t}\n}\n\nint main(){\n\n\tint K;\n\n\tscanf(\"%d\",&K);\n\n\tll x,MAX;\n\tll XOR = 0;\n\n\tfor(int i = 0; i < K; i++){\n\n\t\tscanf(\"%lld %lld\",&x,&MAX);\n\n\t\tXOR ^= grundy(x,MAX);\n \t}\n\n\tif(XOR == 0){\n\n\t\tprintf(\"tubuann\\n\");\n\n\t}else{\n\n\t\tprintf(\"mo3tthi\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3148, "score_of_the_acc": -0.0509, "final_rank": 1 }, { "submission_id": "aoj_3070_3888360", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n\nint grundy(ll x,ll MAX){\n\n\tll left = MAX/2+1,right = MAX;\n\n\tint this_even,this_odd,pre_even,pre_odd;\n\n\twhile(true){\n\n\t\tif(left == MAX/2+1){ //最初の区間\n\n\t\t\tthis_even = 0; //右端との位置の差が偶数ならgrundy==0\n\t\t\tthis_odd = 1;\n\n\t\t}else{\n\n\t\t\tbool check[3];\n\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\tcheck[i] = false;\n\t\t\t}\n\n\t\t\t//まずは区間右端のgrundy数を求める\n\t\t\tint right_grundy;\n\n\t\t\tif(right%2 == 0){\n\n\t\t\t\tcheck[pre_odd] = true; //+1\n\t\t\t\tcheck[pre_even] = true; //*2\n\n\t\t\t}else{ //right%2 == 1\n\n\t\t\t\tcheck[pre_even] = true; //+1および*2\n\t\t\t}\n\n\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\tif(!check[i]){\n\n\t\t\t\t\tright_grundy = i;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tthis_even = right_grundy;\n\n\t\t\t//右端との位置の差が奇数の場合\n\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\tcheck[i] = false;\n\t\t\t}\n\n\t\t\tcheck[right_grundy] = true; //+1\n\t\t\tcheck[pre_even] = true; //*2\n\n\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\tif(!check[i]){\n\n\t\t\t\t\tthis_odd = i;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif(x >= left && x <= right){\n\n\t\t\tif((right-x)%2 == 0){\n\n\t\t\t\treturn this_even;\n\t\t\t}else{\n\n\t\t\t\treturn this_odd;\n\t\t\t}\n\t\t}\n\n\t\tright = left-1;\n\t\tleft = right/2+1;\n\n\t\tpre_even = this_even;\n\t\tpre_odd = this_odd;\n\t}\n}\n\nint main(){\n\n\tint K;\n\n\tscanf(\"%d\",&K);\n\n\tll x,MAX;\n\tll XOR = 0;\n\n\tfor(int i = 0; i < K; i++){\n\n\t\tscanf(\"%lld %lld\",&x,&MAX);\n\n\t\tXOR ^= grundy(x,MAX);\n \t}\n\n\tif(XOR == 0){\n\n\t\tprintf(\"tubuann\\n\");\n\n\t}else{\n\n\t\tprintf(\"mo3tthi\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 0.12, "time_ms": 10, "memory_kb": 3152, "score_of_the_acc": -0.0134, "final_rank": 18 }, { "submission_id": "aoj_3070_3888319", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n\n\nint grundy(ll x,ll MAX){\n\n\tll left = MAX/2+1,right = MAX;\n\n\tint num_range = 0;\n\n\twhile(true){\n\n\t\tif(x >= left && x <= right){\n\n\t\t\tif(num_range%2 == 0){ //1010101010...10\n\n\t\t\t\treturn (right-left)%2;\n\n\t\t\t}else{ //212121212...12\n\n\t\t\t\tif((right-left)%2 == 0){\n\n\t\t\t\t\treturn 2;\n\n\t\t\t\t}else{\n\n\t\t\t\t\treturn 1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tright = left-1;\n\t\tleft = right/2+1;\n\n\t\tnum_range++;\n\t}\n}\n\nint main(){\n\n\tint K;\n\n\tscanf(\"%d\",&K);\n\n\tll x,MAX;\n\tll XOR = 0;\n\n\tfor(int i = 0; i < K; i++){\n\n\t\tscanf(\"%lld %lld\",&x,&MAX);\n\n\t\tXOR ^= grundy(x,MAX);\n\t}\n\n\tif(XOR == 0){\n\n\t\tprintf(\"tubuann\\n\");\n\n\t}else{\n\n\t\tprintf(\"mo3tthi\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 0.16, "time_ms": 10, "memory_kb": 3132, "score_of_the_acc": -0.0086, "final_rank": 16 }, { "submission_id": "aoj_3070_3888314", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n\n\nint grundy(int x,int MAX){\n\n\tint left = MAX/2+1,right = MAX;\n\n\tint num_range = 0;\n\n\twhile(true){\n\n\t\tif(x >= left && x <= right){\n\n\t\t\tif(num_range%2 == 0){ //1010101010...10\n\n\t\t\t\treturn (right-left)%2;\n\n\t\t\t}else{ //212121212...12\n\n\t\t\t\tif((right-left)%2 == 0){\n\n\t\t\t\t\treturn 2;\n\n\t\t\t\t}else{\n\n\t\t\t\t\treturn 1;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tright = left-1;\n\t\tleft = right/2+1;\n\n\t\tnum_range++;\n\t}\n}\n\nint main(){\n\n\tint K;\n\n\tscanf(\"%d\",&K);\n\n\tint x,MAX;\n\tint XOR = 0;\n\n\tfor(int i = 0; i < K; i++){\n\n\t\tscanf(\"%d %d\",&x,&MAX);\n\n\t\tXOR ^= grundy(x,MAX);\n\t}\n\n\tif(XOR == 0){\n\n\t\tprintf(\"tubuann\\n\");\n\n\t}else{\n\n\t\tprintf(\"mo3tthi\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 0.16, "time_ms": 10, "memory_kb": 3148, "score_of_the_acc": -0.0124, "final_rank": 17 }, { "submission_id": "aoj_3070_3884869", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define MOD 1000000007\n#define BIG 1000000010\n#define EPS 1e-9\n#define fst first\n#define scd second\n\n#define debug(x) cout<<x<<endl;\n#define repi(i,x,n) for(int i=x;i<n;i++)\n#define rep(i,n) repi(i,0,n)\n#define repn(i,n) for(int i=n;i>=0;i--)\n#define int long long\n#define endl \"\\n\"\n\nint n,m;\nint ans=0;\n\nvoid solve(){\n int g[3]={0};\n int check=0,nex=1,nan=2;\n bool start=true;\n while(m/2 >= n){\n // bool odd=false;\n //if(m%2==1) odd=true;\n if(m%4==0){\n int f=nan;\n nan=check;\n check=f;\n }\n if(m%4==1){\n int f=nan;\n nan=nex;\n nex=check;\n check=f;\n }\n if(m%4==2){\n int a,b,c=check;\n a=min(nex,nan);\n b=max(nex,nan);\n check=a;\n nex=b;\n nan=c;\n }\n if(m%4==3){\n int a,b,c=nex;\n a=min(check,nan);\n b=max(check,nan);\n check=a;\n nex=b;\n nan=c;\n }\n m/=2;\n \n }\n if((m-n)%2) ans^=nex;\n else ans^=check;\n}\n\n\nsigned main(){\n cin.tie(0);\t\n ios::sync_with_stdio(false);\n int k;\n cin>>k;\n rep(i,k){\n //cout<<1<<endl;\n cin>>n>>m;\n if(n==0 && m==0){cout<<endl;return 0;}\n solve();\n }\n if(ans) cout<<\"mo3tthi\"<<endl;\n else cout<<\"tubuann\"<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3216, "score_of_the_acc": -0.0671, "final_rank": 4 }, { "submission_id": "aoj_3070_3884573", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n\nint grundy_(ll n, ll m, int a, int b) {\n\tif (n > m / 2) {\n\t\tif (n % 2 == m % 2)\n\t\t\treturn a;\n\t\telse\n\t\t\treturn b;\n\t}\n\tint g1 = grundy_((m / 2) * 2, m, a, b);\n\tint g2 = grundy_((m / 2) + 1, m, a, b);\n\tint next_a = 3;\n\tfor (int i = 2; i >= 0; --i)\n\t\tif (i != g1 && i != g2)\n\t\t\tnext_a = i;\n\tif (n == (m / 2)) return next_a;\n\tg1 = grundy_(((m / 2) - 1) * 2, m, a, b);\n\tint next_b = 3;\n\tfor (int i = 2; i >= 0; --i)\n\t\tif (i != g1 && i != next_a)\n\t\t\tnext_b = i;\n\tif (n == (m / 2) - 1) return next_b;\n\treturn grundy_(n, (m / 2), next_a, next_b);\n}\n\nint grundy(ll n, ll m) {\n\tif (n == 2 && m >= 4) {\n\t\tint g1 = grundy(3, m);\n\t\tint g2 = grundy(4, m);\n\t\tfor (int i = 0; i < 3; ++i)\n\t\t\tif (i != g1 && i != g2)\n\t\t\t\treturn i;\n\t}\n\tif (n == 1 && m >= 2) {\n\t\tint g = grundy(2, m);\n\t\tfor (int i = 0; i < 3; ++i)\n\t\t\tif (i != g)\n\t\t\t\treturn i;\n\t}\n\treturn grundy_(n, m, 0, 1);\n}\n\nsigned main() {\n\tint k; cin >> k;\n\n\tint tmp = 0;\n\twhile (k--) {\n\t\tll n, m;\n\t\tcin >> n >> m;\n\t\ttmp ^= grundy(n, m);\n\t}\n\n\tif (tmp)\n\t\tcout << \"mo3tthi\" << endl;\n\telse\n\t\tcout << \"tubuann\" << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 3116, "score_of_the_acc": -0.3125, "final_rank": 10 }, { "submission_id": "aoj_3070_3884555", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n\nint grundy_(ll n, ll m, int a, int b) {\n\tif (n > m / 2) {\n\t\tif (n % 2 == m % 2)\n\t\t\treturn a;\n\t\telse\n\t\t\treturn b;\n\t}\n\tint g1 = grundy_((m / 2) * 2, m, a, b);\n\tint g2 = grundy_((m / 2) + 1, m, a, b);\n\tint next_a = 3;\n\tfor (int i = 3; i >= 0; --i)\n\t\tif (i != g1 && i != g2)\n\t\t\tnext_a = i;\n\tif (n == (m / 2)) return next_a;\n\tg1 = grundy_(((m / 2) - 1) * 2, m, a, b);\n\tint next_b = 3;\n\tfor (int i = 3; i >= 0; --i)\n\t\tif (i != g1 && i != next_a)\n\t\t\tnext_b = i;\n\tif (n == (m / 2) - 1) return next_b;\n\treturn grundy_(n, (m / 2), next_a, next_b);\n}\n\nint grundy(ll n, ll m) {\n\tif (n == 2 && m >= 4) {\n\t\tint g1 = grundy(3, m);\n\t\tint g2 = grundy(4, m);\n\t\tfor (int i = 3; i >= 0; --i)\n\t\t\tif (i != g1 && i != g2)\n\t\t\t\treturn i;\n\t}\n\tif (n == 1 && m >= 2) {\n\t\tint g = grundy(2, m);\n\t\tfor (int i = 3; i >= 0; --i)\n\t\t\tif (i != g)\n\t\t\t\treturn i;\n\t}\n\treturn grundy_(n, m, 0, 1);\n}\n\nsigned main() {\n\tint k; cin >> k;\n\n\tint tmp = 0;\n\twhile (k--) {\n\t\tll n, m;\n\t\tcin >> n >> m;\n\t\ttmp ^= grundy(n, m);\n\t}\n\n\tif (tmp)\n\t\tcout << \"mo3tthi\" << endl;\n\telse\n\t\tcout << \"tubuann\" << endl;\n\n\treturn 0;\n}", "accuracy": 0.06, "time_ms": 20, "memory_kb": 3096, "score_of_the_acc": -0.0385, "final_rank": 20 }, { "submission_id": "aoj_3070_3883490", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint mex(int a, int b){\n for(int i=0; ; i++) if(a != i && b != i) return i;\n}\n\nint solve(){\n int64_t N, M;\n cin >> N >> M;\n vector<int> g = {0, 1};\n while(true){\n if(N == M) return g[0];\n if(M%2){\n M--;\n swap(g[0], g[1]);\n }\n int64_t m = M/2;\n if(m < N) return g[(M-N)%2];\n int v0 = mex(g[0], g[(M-m+1)%2]);\n int v1 = mex(v0, (m==2 ? v0 : g[0]));\n M = m;\n g = {v0, v1};\n }\n}\n\nint main() {\n int K;\n cin >> K;\n int G = 0;\n while(K--) G ^= solve();\n cout << (G ? \"mo3tthi\" : \"tubuann\") << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 3124, "score_of_the_acc": -0.3144, "final_rank": 12 }, { "submission_id": "aoj_3070_3880886", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\n\nint grundy(ll n, ll m){\n if(n==1){\n return grundy(2,m) == 0;\n }\n ll l = m/2, r = m, cnt = 0, ev = m%2, od = (m+1)%2;\n while(l >= n){\n r = l;\n l >>= 1;\n cnt++;\n if(r%2){\n if(ev == 0){\n od = 1;\n ev = 2;\n }\n else if(ev == 1){\n od = 0;\n ev = 2;\n }\n else{\n od = 0;\n ev = 1;\n }\n }\n else{\n bool used[3]{};\n int pev = ev;\n used[pev] = true;\n used[od] = true;\n for(int i=0;i<3;i++){\n if(!used[i]){\n ev = i;\n break;\n }\n }\n fill(used, used+3, false);\n used[pev] = true;\n used[ev] = true;\n for(int i=0;i<3;i++){\n if(!used[i]){\n od = i;\n break;\n }\n }\n }\n }\n return (n%2 ? od : ev);\n}\n\nint main(){\n ll k, allxor = 0;\n cin >> k;\n\n for(int i=0;i<k;i++){\n ll n, m;\n cin >> n >> m;\n allxor ^= grundy(n, m);\n }\n if(allxor == 0){\n cout << \"tubuann\" << endl;\n }\n else{\n cout << \"mo3tthi\" << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3116, "score_of_the_acc": -0.274, "final_rank": 8 }, { "submission_id": "aoj_3070_3880883", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\n\nint solve(ll n, ll m){\n if(n==1){\n return solve(2,m) == 0;\n }\n ll l = m/2, r = m, cnt = 0, ev = m%2, od = (m+1)%2;\n while(l >= n){\n r = l;\n l >>= 1;\n cnt++;\n if(r%2){\n if(ev == 0){\n od = 1;\n ev = 2;\n }\n else if(ev == 1){\n od = 0;\n ev = 2;\n }\n else{\n od = 0;\n ev = 1;\n }\n }\n else{\n bool used[3]{};\n int pev = ev;\n used[pev] = true;\n used[od] = true;\n for(int i=0;i<3;i++){\n if(!used[i]){\n ev = i;\n break;\n }\n }\n fill(used, used+3, false);\n used[pev] = true;\n used[ev] = true;\n for(int i=0;i<3;i++){\n if(!used[i]){\n od = i;\n break;\n }\n }\n }\n }\n return (n%2 ? od : ev);\n}\n\nint main(){\n ll k, allxor = 0;\n cin >> k;\n\n for(int i=0;i<k;i++){\n ll n, m;\n cin >> n >> m;\n allxor ^= solve(n, m);\n }\n if(allxor == 0){\n cout << \"tubuann\" << endl;\n }\n else{\n cout << \"mo3tthi\" << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3120, "score_of_the_acc": -0.275, "final_rank": 9 }, { "submission_id": "aoj_3070_3880882", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\n\nint solve(ll n, ll m){\n if(n==1){\n return solve(2,m) == 0;\n }\n ll l = m/2, r = m, cnt = 0, ev = m%2, od = (m+1)%2;\n while(l >= n){\n r = l;\n l >>= 1;\n cnt++;\n if(r%2){\n if(ev == 0){\n od = 1;\n ev = 2;\n }\n if(ev == 1){\n od = 0;\n ev = 2;\n }\n else{\n od = 0;\n ev = 1;\n }\n }\n else{\n bool used[3]{};\n int pev = ev;\n used[pev] = true;\n used[od] = true;\n for(int i=0;i<3;i++){\n if(!used[i]){\n ev = i;\n break;\n }\n }\n fill(used, used+3, false);\n used[pev] = true;\n used[ev] = true;\n for(int i=0;i<3;i++){\n if(!used[i]){\n od = i;\n break;\n }\n }\n }\n }\n return (n%2 ? od : ev);\n}\n\nint main(){\n ll k, allxor = 0;\n cin >> k;\n\n for(int i=0;i<k;i++){\n ll n, m;\n cin >> n >> m;\n allxor ^= solve(n, m);\n }\n if(allxor == 0){\n cout << \"tubuann\" << endl;\n }\n else{\n cout << \"mo3tthi\" << endl;\n }\n return 0;\n}", "accuracy": 0.08, "time_ms": 20, "memory_kb": 3100, "score_of_the_acc": -0.0394, "final_rank": 19 } ]
aoj_3073_cpp
Problem J: Ukunichia Query Problem $N$ 人の人が左から右へ一列に並んでいる。彼らの間では文字列 $S$ が流行している。 各人は、以下の条件を満たすとき 幸せ であり、そうでないとき 幸せ ではない。 今までに $|S|$ 文字以上の文字を伝えられていて、かつ直近の $|S|$ 文字を古い順から新しい順に並べると $S$ と一致する 以下の $2$ 種類のクエリを合計 $Q$ 回処理せよ。 クエリ1 $1$ $l$ $r$ $c$ 区間 $[l, r]$ に含まれる人に文字列 $c$ を左から一文字ずつ伝える。 クエリ2 $2$ $l$ $r$ 区間 $[l, r]$ に含まれる 幸せ な人の数を求める。 ただし、区間 $[l, r]$ とは、左から $l$ 番目から $r$ 番目までの人のことを表す。 Input 入力は以下の形式で与えられる。 $S$ $N$ $Q$ $query_1$ $\vdots$ $query_Q$ $1$ 行目に流行している文字列 $S$ が与えられる。 $2$ 行目に並んでいる人の数 $N$ とクエリの数 $Q$ が空白区切りで与えられる。 $3$ 行目から続く $Q$ 行にクエリの情報が与えられる。 Constraints 入力は以下の条件を満たす。 $1 \leq |S| \leq 20 $ $1 \leq N \leq 10^5 $ $1 \leq Q \leq 10^5 $ $1 \leq l \leq r \leq N$ $1 \leq |c| \leq 10 $ $S, c$ は英小文字からなる 各クエリはクエリ1かクエリ2のいずれかである クエリ2が必ず一つ以上含まれる Output 各クエリ2について、 幸せ な人の数を1行に出力せよ。 Sample Input 1 abab 5 5 2 2 4 1 1 5 abab 2 3 5 1 3 3 a 2 1 5 Sample Output 1 0 3 4 Sample Input 2 uku 1333 5 2 232 423 1 13 532 uku 2 322 567 1 3 33 ku 2 1 333 Sample Output 2 0 211 321 Sample Input 3 aabb 1879 20 2 69 1585 1 415 1680 aabb 1 756 1628 abbabbaa 1 849 1273 abba 2 418 1172 2 1063 1164 2 203 623 2 481 1209 1 107 110 ababaaaab 1 857 985 bbbbabbbaa 1 868 947 aaa 1 1619 1789 aabab 2 204 844 2 493 1422 2 821 1499 1 757 1817 abbabbb 2 232 911 1 653 797 aaabaaaab 2 701 1657 1 868 940 aaabbbaaa Sample Output 3 0 338 0 209 275 341 263 0 341 0
[ { "submission_id": "aoj_3073_4797562", "code_snippet": "#include<bits/stdc++.h>\n#include<array>\nusing namespace std;\nusing UL = unsigned int;\nusing ULL = unsigned long long;\nusing LL = long long;\n#define rep(i,n) for(int i=0; i<(n); i++)\n\nstruct VRSQ{\n int M[21];\n int V[21];\n bool z;\n VRSQ(){\n rep(i,21){ M[i]=i; V[i]=0; z=false; }\n }\n VRSQ wrap(const VRSQ& inner){\n VRSQ ans;\n rep(i,21){\n ans.V[M[i]] += inner.V[i];\n ans.M[i] = M[inner.M[i]];\n }\n return ans;\n }\n VRSQ operator+(const VRSQ& r) const {\n VRSQ ans;\n rep(i,21) ans.V[i] = V[i] + r.V[i];\n return ans;\n }\n};\n\nstruct RSQ{\n int N;\n vector<VRSQ> V;\n void init(int n){\n N=1; while(N<n) N<<=1;\n V.resize(N*2);\n rep(i,n) V[i+N].V[0]=1;\n for(int i=N-1; i>=1; i--)\n V[i] = V[i].wrap(V[i<<1]+V[(i<<1)+1]);\n }\n void expand(int i){\n if(!V[i].z) return;\n V[i<<1] = V[i].wrap(V[i<<1]); V[i<<1].z=true;\n V[(i<<1)+1] = V[i].wrap(V[(i<<1)+1]); V[(i<<1)+1].z=true;\n rep(j,21) V[i].M[j]=j; V[i].z=false;\n }\n void upd(int l,int r,VRSQ x,int a=-1,int b=-1,int i=-1){\n if(i==-1){ a=0; b=N; i=1; }\n if(r<=a || b<=l) return;\n if(l<=a && b<=r){ V[i] = x.wrap(V[i]); V[i].z=true; return; }\n expand(i);\n upd(l,r,x,a,(a+b)>>1,i<<1);\n upd(l,r,x,(a+b)>>1,b,(i<<1)+1);\n V[i] = V[i].wrap(V[i<<1]+V[(i<<1)+1]);\n }\n VRSQ query(int l,int r,int a=-1,int b=-1,int i=-1){\n if(i==-1){ a=0; b=N; i=1; }\n if(r<=a || b<=l) return VRSQ{};\n if(l<=a && b<=r) return V[i];\n expand(i);\n auto q1 = query(l,r,a,(a+b)>>1,i<<1);\n auto q2 = query(l,r,(a+b)>>1,b,(i<<1)+1);\n return V[i].wrap(q1+q2);\n }\n};\n\nstring S;\nint N,Q;\nRSQ G;\n\nVRSQ X[26];\n\nint main() {\n cin>>S;\n scanf(\"%d%d\",&N,&Q);\n G.init(N);\n rep(i,21)rep(c,26) X[c].M[i]=0;\n rep(i,S.size()+1)rep(c,26){\n string tg = S.substr(0,i) + char('a'+c);\n rep(j,min(tg.size()+1,S.size()+1)){\n if(tg.substr(tg.size()-j,j) == S.substr(0,j)) X[c].M[i] = j;\n }\n }\n rep(i,Q){\n int c; scanf(\"%d\",&c);\n if(c==1){\n int l,r; scanf(\"%d%d\",&l,&r); l--;\n string C; cin>>C;\n VRSQ buf;\n for(char cC:C) buf = X[cC-'a'].wrap(buf);\n G.upd(l,r,buf);\n }\n if(c==2){\n int l,r; scanf(\"%d%d\",&l,&r); l--;\n auto q = G.query(l,r);\n printf(\"%d\\n\",G.query(l,r).V[S.size()]);\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 800, "memory_kb": 47132, "score_of_the_acc": -0.3053, "final_rank": 3 }, { "submission_id": "aoj_3073_4313475", "code_snippet": "// う?笑\n#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename Monoid, typename OperatorMonoid = Monoid >\nstruct LazySegmentTree {\n using F = function< Monoid(Monoid, Monoid) >;\n using G = function< Monoid(Monoid, OperatorMonoid) >;\n using H = function< OperatorMonoid(OperatorMonoid, OperatorMonoid) >;\n\n int sz, height;\n vector< Monoid > data;\n vector< OperatorMonoid > lazy;\n const F f;\n const G g;\n const H h;\n const Monoid M1;\n const OperatorMonoid OM0;\n\n\n LazySegmentTree(int n, const F f, const G g, const H h,\n const Monoid &M1, const OperatorMonoid OM0)\n : f(f), g(g), h(h), M1(M1), OM0(OM0) {\n sz = 1;\n height = 0;\n while(sz < n) sz <<= 1, height++;\n data.assign(2 * sz, M1);\n lazy.assign(2 * sz, OM0);\n }\n\n void set(int k, const Monoid &x) {\n data[k + sz] = x;\n }\n\n void build() {\n for(int k = sz - 1; k > 0; k--) {\n data[k] = f(data[2 * k + 0], data[2 * k + 1]);\n }\n }\n\n inline void propagate(int k) {\n if(lazy[k] != OM0) {\n lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);\n lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);\n data[k] = reflect(k);\n lazy[k] = OM0;\n }\n }\n\n inline Monoid reflect(int k) {\n return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);\n }\n\n inline void recalc(int k) {\n while(k >>= 1) data[k] = f(reflect(2 * k + 0), reflect(2 * k + 1));\n }\n\n inline void thrust(int k) {\n for(int i = height; i > 0; i--) propagate(k >> i);\n }\n\n void update(int a, int b, const OperatorMonoid &x) {\n thrust(a += sz);\n thrust(b += sz - 1);\n for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {\n if(l & 1) lazy[l] = h(lazy[l], x), ++l;\n if(r & 1) --r, lazy[r] = h(lazy[r], x);\n }\n recalc(a);\n recalc(b);\n }\n\n Monoid query(int a, int b) {\n thrust(a += sz);\n thrust(b += sz - 1);\n Monoid L = M1, R = M1;\n for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {\n if(l & 1) L = f(L, reflect(l++));\n if(r & 1) R = f(reflect(--r), R);\n }\n return f(L, R);\n }\n\n Monoid operator[](const int &k) {\n return query(k, k + 1);\n }\n\n template< typename C >\n int find_subtree(int a, const C &check, Monoid &M, bool type) {\n while(a < sz) {\n propagate(a);\n Monoid nxt = type ? f(reflect(2 * a + type), M) : f(M, reflect(2 * a + type));\n if(check(nxt)) a = 2 * a + type;\n else M = nxt, a = 2 * a + 1 - type;\n }\n return a - sz;\n }\n\n template< typename C >\n int find_first(int a, const C &check) {\n Monoid L = M1;\n if(a <= 0) {\n if(check(f(L, reflect(1)))) return find_subtree(1, check, L, false);\n return -1;\n }\n thrust(a + sz);\n int b = sz;\n for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {\n if(a & 1) {\n Monoid nxt = f(L, reflect(a));\n if(check(nxt)) return find_subtree(a, check, L, false);\n L = nxt;\n ++a;\n }\n }\n return -1;\n }\n\n\n template< typename C >\n int find_last(int b, const C &check) {\n Monoid R = M1;\n if(b >= sz) {\n if(check(f(reflect(1), R))) return find_subtree(1, check, R, true);\n return -1;\n }\n thrust(b + sz - 1);\n int a = sz;\n for(b += sz; a < b; a >>= 1, b >>= 1) {\n if(b & 1) {\n Monoid nxt = f(reflect(--b), R);\n if(check(nxt)) return find_subtree(b, check, R, true);\n R = nxt;\n }\n }\n return -1;\n }\n};\n\ntemplate< int char_size >\nstruct TrieNode {\n int nxt[char_size];\n\n int exist;\n vector< int > accept;\n\n TrieNode() : exist(0) {\n memset(nxt, -1, sizeof(nxt));\n }\n};\n\ntemplate< int char_size, int margin >\nstruct Trie {\n using Node = TrieNode< char_size >;\n\n vector< Node > nodes;\n int root;\n\n Trie() : root(0) {\n nodes.push_back(Node());\n }\n\n void update_direct(int node, int id) {\n nodes[node].accept.push_back(id);\n }\n\n void update_child(int node, int child, int id) {\n ++nodes[node].exist;\n }\n\n void add(const string &str, int str_index, int node_index, int id) {\n if(str_index == str.size()) {\n update_direct(node_index, id);\n } else {\n const int c = str[str_index] - margin;\n if(nodes[node_index].nxt[c] == -1) {\n nodes[node_index].nxt[c] = (int) nodes.size();\n nodes.push_back(Node());\n }\n add(str, str_index + 1, nodes[node_index].nxt[c], id);\n update_child(node_index, nodes[node_index].nxt[c], id);\n }\n }\n\n void add(const string &str, int id) {\n add(str, 0, 0, id);\n }\n\n void add(const string &str) {\n add(str, nodes[0].exist);\n }\n\n void query(const string &str, const function< void(int) > &f, int str_index, int node_index) {\n for(auto &idx : nodes[node_index].accept) f(idx);\n if(str_index == str.size()) {\n return;\n } else {\n const int c = str[str_index] - margin;\n if(nodes[node_index].nxt[c] == -1) return;\n query(str, f, str_index + 1, nodes[node_index].nxt[c]);\n }\n }\n\n void query(const string &str, const function< void(int) > &f) {\n query(str, f, 0, 0);\n }\n\n int count() const {\n return (nodes[0].exist);\n }\n\n int size() const {\n return ((int) nodes.size());\n }\n};\n\n\ntemplate< int char_size, int margin >\nstruct AhoCorasick : Trie< char_size + 1, margin > {\n using Trie< char_size + 1, margin >::Trie;\n\n const int FAIL = char_size;\n vector< int > correct;\n\n void build(bool heavy = true) {\n correct.resize(this->size());\n for(int i = 0; i < this->size(); i++) {\n correct[i] = (int) this->nodes[i].accept.size();\n }\n queue< int > que;\n for(int i = 0; i <= char_size; i++) {\n if(~this->nodes[0].nxt[i]) {\n this->nodes[this->nodes[0].nxt[i]].nxt[FAIL] = 0;\n que.emplace(this->nodes[0].nxt[i]);\n } else {\n this->nodes[0].nxt[i] = 0;\n }\n }\n while(!que.empty()) {\n auto &now = this->nodes[que.front()];\n correct[que.front()] += correct[now.nxt[FAIL]];\n que.pop();\n for(int i = 0; i < char_size; i++) {\n if(now.nxt[i] == -1) continue;\n int fail = now.nxt[FAIL];\n while(this->nodes[fail].nxt[i] == -1) fail = this->nodes[fail].nxt[FAIL];\n this->nodes[now.nxt[i]].nxt[FAIL] = this->nodes[fail].nxt[i];\n if(heavy) {\n auto &u = this->nodes[now.nxt[i]].accept;\n auto &v = this->nodes[this->nodes[fail].nxt[i]].accept;\n vector< int > accept;\n set_union(begin(u), end(u), begin(v), end(v), back_inserter(accept));\n u = accept;\n }\n que.emplace(now.nxt[i]);\n }\n\n }\n }\n\n map< int, int > match(const string &str, int now = 0) {\n map< int, int > result;\n for(auto &c : str) {\n while(this->nodes[now].nxt[c - margin] == -1) now = this->nodes[now].nxt[FAIL];\n now = this->nodes[now].nxt[c - margin];\n for(auto &v : this->nodes[now].accept) result[v] += 1;\n }\n return result;\n }\n\n pair< int, int > move(const char &c, int now) {\n int sum = 0;\n while(this->nodes[now].nxt[c - margin] == -1) now = this->nodes[now].nxt[FAIL];\n now = this->nodes[now].nxt[c - margin];\n sum += correct[now];\n return {sum, now};\n }\n};\n\nint main() {\n string S;\n cin >> S;\n int N, Q;\n cin >> N >> Q;\n\n AhoCorasick< 26, 'a' > aho;\n aho.add(S);\n aho.build();\n\n using vi = array< int, 22 >;\n vi e{0};\n\n auto f = [](vi a, const vi &b) {\n for(int i = 0; i < 22; i++) a[i] += b[i];\n return a;\n };\n auto g = [&](const vi &a, const string &s) {\n vi b{0};\n for(int i = 0; i < 22; i++) {\n if(a[i] > 0) {\n int cur = i;\n for(auto &c : s) cur = aho.move(c, cur).second;\n b[cur] += a[i];\n }\n }\n return b;\n };\n auto h = [&](string a, string b) {\n reverse(begin(b), end(b));\n reverse(begin(a), end(a));\n b += a;\n if(a.size() > S.size()) b.resize(S.size());\n reverse(begin(b), end(b));\n return b;\n };\n\n\n LazySegmentTree< vi, string > seg(N, f, g, h, e, string());\n e[0] = 1;\n for(int i = 0; i < N; i++) seg.set(i, e);\n e[0] = 0;\n seg.build();\n\n while(Q--) {\n int T, L, R;\n cin >> T >> L >> R;\n --L;\n if(T == 1) {\n string C;\n cin >> C;\n seg.update(L, R, C);\n } else {\n auto ret = seg.query(L, R);\n int latte = 0;\n for(int i = 0; i < 22; i++) {\n if(ret[i] > 0 && aho.correct[i]) latte += ret[i];\n }\n cout << latte << endl;\n }\n }\n}", "accuracy": 1, "time_ms": 2410, "memory_kb": 43464, "score_of_the_acc": -0.991, "final_rank": 8 }, { "submission_id": "aoj_3073_4263254", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 500005\n\nint N = 1;\nint LEN;\nint num[SIZE][25],table[SIZE][25];\nint shift[25],num_work[25];\nint next_loc[25][26];\nbool have_info[SIZE];\nchar S[25],work[25];\n\n\nvoid init(int first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid update_first(int loc){\n\n\tloc += N-1;\n\n\tnum[loc][0] = 1;\n\n\tif(N == 1)return;\n\n\tint parent = (loc-1)/2;\n\n\twhile(true){\n\t\tnum[parent][0] = num[2*parent+1][0]+num[2*parent+2][0];\n\n\t\tif(parent == 0)break;\n\t\telse{\n\t\t\tparent = (parent-1)/2;\n\t\t}\n\t}\n}\n\nvoid calc(int node_id){\n\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[i] = 0;\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[table[node_id][i]] += num[node_id][i];\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num_work[i];\n\t}\n}\n\nvoid update(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\tif(have_info[node_id]){\n\n\t\tcalc(node_id);\n\n\t\tif(node_left < node_right){\n\n\t\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t\t}\n\t\t\thave_info[left_child] = true;\n\t\t\thave_info[right_child] = true;\n\t\t}\n\t\tfor(int i = 0; i <= LEN; i++){\n\t\t\ttable[node_id][i] = i;\n\t\t}\n\t\thave_info[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[node_id][i] = shift[table[node_id][i]];\n\t\t}\n\n\t\tcalc(node_id);\n\n\t\tif(node_left < node_right){\n\n\t\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t\t}\n\t\t\thave_info[left_child] = true;\n\t\t\thave_info[right_child] = true;\n\t\t}\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\t\t\ttable[node_id][i] = i;\n\t\t}\n\t\treturn;\n\t}\n\tupdate(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tupdate(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t}\n}\n\nint query(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\tif(have_info[node_id]){\n\n\t\tcalc(node_id);\n\n\t\tif(node_left < node_right){\n\n\t\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t\t}\n\t\t\thave_info[left_child] = true;\n\t\t\thave_info[right_child] = true;\n\t\t}\n\t\tfor(int i = 0; i <= LEN; i++){\n\t\t\ttable[node_id][i] = i;\n\t\t}\n\t\thave_info[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right){\n\t\treturn 0;\n\t}\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\treturn num[node_id][LEN];\n\t}\n\n\tint left = query(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tint right = query(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\treturn left+right;\n}\n\nint main(){\n\n\tscanf(\"%s\",S);\n\n\tfor(LEN = 0; S[LEN] != '\\0'; LEN++);\n\n\tint index,head,max_match_len;\n\n\tfor(int len = 0; len <= LEN; len++){\n\t\tfor(index = 0; index < len; index++){\n\n\t\t\twork[index] = S[index];\n\t\t}\n\t\tfor(int ch = 0; ch < 26; ch++){\n\n\t\t\twork[index] = 'a'+ch;\n\n\t\t\tif(len == LEN){\n\n\t\t\t\thead = 1;\n\t\t\t}else{\n\n\t\t\t\thead = 0;\n\t\t\t}\n\n\t\t\tmax_match_len = 0;\n\n\t\t\tfor(int i = head; i <= index; i++){\n\n\t\t\t\tbool FLG = true;\n\t\t\t\tfor(int k = i; k <= index; k++){\n\t\t\t\t\tif(work[k] != S[k-i]){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG){\n\t\t\t\t\tmax_match_len = index-i+1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tnext_loc[len][ch] = max_match_len;\n\t\t}\n\t}\n\n\tint first_N,num_query;\n\tscanf(\"%d %d\",&first_N,&num_query);\n\n\tinit(first_N);\n\n\tfor(int i = 0; i <= 2*N-2; i++){\n\t\thave_info[i] = false;\n\t\tfor(int k = 0; k <= LEN; k++){\n\t\t\tnum[i][k] = 0;\n\t\t\ttable[i][k] = k;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\n\t\tupdate_first(i);\n\t}\n\n\tint command,left,right;\n\n\tfor(int i = 0; i < num_query; i++){\n\t\tscanf(\"%d\",&command);\n\n\t\tif(command == 2){\n\n\t\t\tscanf(\"%d %d\",&left,&right);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\tprintf(\"%d\\n\",query(left,right,0,0,N-1));\n\n\t\t}else{\n\t\t\tscanf(\"%d %d %s\",&left,&right,work);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\tshift[k] = k;\n\t\t\t}\n\t\t\tfor(int a = 0; work[a] != '\\0'; a++){\n\t\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\t\tshift[k] = next_loc[shift[k]][work[a]-'a'];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tupdate(left,right,0,0,N-1);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 650, "memory_kb": 54696, "score_of_the_acc": -0.3128, "final_rank": 4 }, { "submission_id": "aoj_3073_4263043", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 500005\n\nint N = 1;\nint LEN;\nint num[SIZE][25],table[SIZE][25];\nint shift[25],num_work[25];\nint next_loc[25][26];\nbool have_info[SIZE];\nchar S[25],work[25];\n\n\nvoid init(int first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid update_first(int loc){\n\n\tloc += N-1;\n\n\tnum[loc][0] = 1;\n\n\tif(N == 1)return;\n\n\tint parent = (loc-1)/2;\n\n\twhile(true){\n\t\tnum[parent][0] = num[2*parent+1][0]+num[2*parent+2][0];\n\n\t\tif(parent == 0)break;\n\t\telse{\n\t\t\tparent = (parent-1)/2;\n\t\t}\n\t}\n}\n\nvoid calc(int node_id){\n\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[i] = 0;\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[table[node_id][i]] += num[node_id][i];\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num_work[i];\n\t}\n}\n\nvoid update(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\tif(have_info[node_id]){\n\n\t\tcalc(node_id);\n\n\t\tif(node_left < node_right){\n\n\t\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t\t}\n\t\t\thave_info[left_child] = true;\n\t\t\thave_info[right_child] = true;\n\t\t}\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[node_id][i] = i;\n\t\t}\n\t\thave_info[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[node_id][i] = shift[table[node_id][i]];\n\t\t}\n\n\t\tcalc(node_id);\n\n\n\t\tif(node_left < node_right){\n\n\t\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t\t}\n\t\t\thave_info[left_child] = true;\n\t\t\thave_info[right_child] = true;\n\t\t}\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[node_id][i] = i;\n\t\t}\n\t\thave_info[node_id] = false;\n\n\t\treturn;\n\t}\n\n\tupdate(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tupdate(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t}\n}\n\nint query(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\tif(have_info[node_id]){\n\n\t\tcalc(node_id);\n\n\t\tif(node_left < node_right){\n\n\t\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t\t}\n\t\t\thave_info[left_child] = true;\n\t\t\thave_info[right_child] = true;\n\t\t}\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[node_id][i] = i;\n\t\t}\n\t\thave_info[node_id] = false;\n\t}\n\n\n\tif(search_right < node_left || search_left > node_right)return 0;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\treturn num[node_id][LEN];\n\t}\n\n\tint left = query(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tint right = query(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\treturn left+right;\n}\n\nint main(){\n\n\tscanf(\"%s\",S);\n\n\tfor(LEN = 0; S[LEN] != '\\0'; LEN++);\n\n\tint index,head,max_match_len;\n\n\t//len文字一致している状態から、次に文字chが来た時、何文字一致した状態に写るかを計算\n\tfor(int len = 0; len <= LEN; len++){\n\t\tfor(index = 0; index < len; index++){\n\n\t\t\twork[index] = S[index];\n\t\t}\n\t\tfor(int ch = 0; ch < 26; ch++){\n\n\t\t\twork[index] = 'a'+ch;\n\n\t\t\tif(len == LEN){\n\n\t\t\t\thead = 1;\n\t\t\t}else{\n\n\t\t\t\thead = 0;\n\t\t\t}\n\n\t\t\tmax_match_len = 0;\n\n\t\t\tfor(int i = head; i <= index; i++){\n\n\t\t\t\tbool FLG = true;\n\t\t\t\tfor(int k = i; k <= index; k++){\n\t\t\t\t\tif(work[k] != S[k-i]){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG){\n\t\t\t\t\tmax_match_len = index-i+1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tnext_loc[len][ch] = max_match_len;\n\t\t}\n\t}\n\n\tint first_N,num_query;\n\tscanf(\"%d %d\",&first_N,&num_query);\n\n\tinit(first_N);\n\n\tfor(int i = 0; i <= 2*N-2; i++){\n\t\thave_info[i] = false;\n\t\tfor(int k = 0; k <= LEN; k++){\n\t\t\tnum[i][k] = 0; //ノードiのカバー範囲において、Sとk文字一致しているノードがいくつあるか\n\t\t\ttable[i][k] = k; //最初kにあったマッチ長が、現在どのマッチ位置に遷移しているか\n\t\t}\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\n\t\tupdate_first(i);\n\t}\n\n\tint command,left,right;\n\n\tfor(int i = 0; i < num_query; i++){\n\t\tscanf(\"%d\",&command);\n\n\t\tif(command == 2){\n\n\t\t\tscanf(\"%d %d\",&left,&right);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\tprintf(\"%d\\n\",query(left,right,0,0,N-1));\n\n\t\t}else{\n\t\t\tscanf(\"%d %d %s\",&left,&right,work);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\tshift[k] = k;\n\t\t\t}\n\t\t\tfor(int a = 0; work[a] != '\\0'; a++){\n\t\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\t\tshift[k] = next_loc[shift[k]][work[a]-'a'];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tupdate(left,right,0,0,N-1);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 620, "memory_kb": 54652, "score_of_the_acc": -0.2989, "final_rank": 2 }, { "submission_id": "aoj_3073_4262946", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 500005\n\nint N = 1;\nint LEN;\nint num[SIZE][25],table[SIZE][25];\nint shift[25],num_work[25];\nint next_loc[25][26];\nbool need_calc[SIZE],have_info[SIZE];\nchar S[25],work[25];\n\n\nvoid init(int first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid update_first(int loc){\n\n\tloc += N-1;\n\n\tnum[loc][0] = 1;\n\n\tif(N == 1)return;\n\n\tint parent = (loc-1)/2;\n\n\twhile(true){\n\t\tnum[parent][0] = num[2*parent+1][0]+num[2*parent+2][0];\n\n\t\tif(parent == 0)break;\n\t\telse{\n\t\t\tparent = (parent-1)/2;\n\t\t}\n\t}\n}\n\nvoid calc(int node_id){\n\n\t//printf(\"calc:%d\\n\",node_id);\n\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[i] = 0;\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[table[node_id][i]] += num[node_id][i];\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num_work[i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n}\n\nvoid update(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[node_id][i] = shift[table[node_id][i]];\n\t\t}\n\n\t\tcalc(node_id);\n\n\t\thave_info[node_id] = true; //子に伝えていない遷移表を持っている\n\n\t\t/*printf(\"遷移表\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d %d\\n\",i,table[node_id][i]);\n\t\t}\n\t\tprintf(\"個数\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d 個数:%d\\n\",i,num[node_id][i]);\n\t\t}*/\n\n\t\treturn;\n\t}\n\n\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id]){ //子に伝えていない遷移情報を持っている場合\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\n\t\t//子に遷移情報を伝えたので遷移表初期化\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[node_id][i] = i;\n\t\t}\n\t}\n\n\tupdate(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tupdate(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t/*\n\t * 部分updateでは全体の値が変わるので集計しなおす\n\t *\n\t * */\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n}\n\nint query(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){ //遷移表が更新された場合\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return 0;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\t\treturn num[node_id][LEN];\n\t}\n\n\t//旧情報伝達\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id]){ //子に伝えていない遷移情報を持っている場合\n\n\t\t/*\n\t\t * 部分区間情報を正確に拾うために情報を伝播\n\t\t * */\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\n\t\t//遷移表初期化\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[node_id][i] = i;\n\t\t}\n\t}\n\n\tint left = query(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tint right = query(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t/*\n\t * 子に伝えていない遷移情報を持っている→区間全体は集計済、\n\t * 持っていない→update時に集計済で、いずれにせよ区間全体の総数は変わらないので\n\t * 集計し直しは不要。\n\t *\n\t * */\n\n\treturn left+right;\n}\n\nint main(){\n\n\tscanf(\"%s\",S);\n\n\tfor(LEN = 0; S[LEN] != '\\0'; LEN++);\n\n\tint index,head,max_match_len;\n\n\t//len文字一致している状態から、次に文字chが来た時、何文字一致した状態に写るかを計算\n\tfor(int len = 0; len <= LEN; len++){\n\t\tfor(index = 0; index < len; index++){\n\n\t\t\twork[index] = S[index];\n\t\t}\n\t\tfor(int ch = 0; ch < 26; ch++){\n\n\t\t\twork[index] = 'a'+ch;\n\n\t\t\tif(len == LEN){\n\n\t\t\t\thead = 1;\n\t\t\t}else{\n\n\t\t\t\thead = 0;\n\t\t\t}\n\n\t\t\tmax_match_len = 0;\n\n\t\t\tfor(int i = head; i <= index; i++){\n\n\t\t\t\tbool FLG = true;\n\t\t\t\tfor(int k = i; k <= index; k++){\n\t\t\t\t\tif(work[k] != S[k-i]){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG){\n\t\t\t\t\tmax_match_len = index-i+1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tnext_loc[len][ch] = max_match_len;\n\t\t\t//printf(\"next_loc[%d][%d]:%d\\n\",len,ch,next_loc[len][ch]);\n\t\t}\n\t}\n\n\tint first_N,num_query;\n\tscanf(\"%d %d\",&first_N,&num_query);\n\n\tinit(first_N);\n\n\t//printf(\"N:%d\\n\",N);\n\n\tfor(int i = 0; i <= 2*N-2; i++){\n\t\tneed_calc[i] = false;\n\t\thave_info[i] = false;\n\t\tfor(int k = 0; k <= LEN; k++){\n\t\t\tnum[i][k] = 0; //ノードiのカバー範囲において、Sとk文字一致しているノードがいくつあるか\n\t\t\ttable[i][k] = k; //最初kにあったマッチ長が、現在どのマッチ位置に遷移しているか\n\t\t}\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\n\t\tupdate_first(i);\n\t}\n\n\tint command,left,right;\n\n\tfor(int i = 0; i < num_query; i++){\n\t\tscanf(\"%d\",&command);\n\n\t\tif(command == 2){\n\n\t\t\tscanf(\"%d %d\",&left,&right);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\tprintf(\"%d\\n\",query(left,right,0,0,N-1));\n\n\t\t}else{\n\t\t\tscanf(\"%d %d %s\",&left,&right,work);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\tshift[k] = k;\n\t\t\t}\n\t\t\tfor(int a = 0; work[a] != '\\0'; a++){\n\t\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\t\tshift[k] = next_loc[shift[k]][work[a]-'a'];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t/*for(int k = 0; k <= LEN; k++){\n\n\t\t\t\tprintf(\"shift[%d]:%d\\n\",k,shift[k]);\n\t\t\t}*/\n\n\t\t\t//continue;\n\n\t\t\tupdate(left,right,0,0,N-1);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 0.7777777777777778, "time_ms": 200, "memory_kb": 54872, "score_of_the_acc": -0.1128, "final_rank": 11 }, { "submission_id": "aoj_3073_4262095", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 500005\n\nint N = 1;\nint LEN;\nint num[SIZE][25],table[SIZE][25];\nint shift[25],num_work[25];\nint next_loc[25][26];\nbool need_calc[SIZE],have_info[SIZE];\nchar S[25],work[25];\n\n\nvoid init(int first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid update_first(int loc){\n\n\tloc += N-1;\n\n\tnum[loc][0] = 1;\n\n\tif(N == 1)return;\n\n\tint parent = (loc-1)/2;\n\n\twhile(true){\n\t\tnum[parent][0] = num[2*parent+1][0]+num[2*parent+2][0];\n\n\t\tif(parent == 0)break;\n\t\telse{\n\t\t\tparent = (parent-1)/2;\n\t\t}\n\t}\n}\n\nvoid calc(int node_id){\n\n\t//printf(\"calc:%d\\n\",node_id);\n\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[i] = 0;\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[table[node_id][i]] += num[node_id][i];\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num_work[i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n}\n\nvoid update(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tnum_work[i] = 0;\n\t\t}\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tint next = shift[table[node_id][i]];\n\n\t\t\tnum_work[next] += num[node_id][i];\n\t\t\ttable[node_id][i] = next; //遷移表を更新する\n\t\t}\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tnum[node_id][i] = num_work[i];\n\t\t}\n\n\t\thave_info[node_id] = true; //子に伝えていない遷移表を持っている\n\n\t\t/*printf(\"遷移表\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d %d\\n\",i,table[node_id][i]);\n\t\t}\n\t\tprintf(\"個数\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d 個数:%d\\n\",i,num[node_id][i]);\n\t\t}*/\n\n\t\treturn;\n\t}\n\n\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id]){ //子に伝えていない遷移情報を持っている場合\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\t}\n\n\tupdate(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tupdate(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t//printf(\"\\n\");\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n\n\t//遷移表初期化\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\ttable[node_id][i] = i;\n\t}\n}\n\nint query(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){ //遷移表が更新された場合\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return 0;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\t\treturn num[node_id][LEN];\n\t}\n\n\t//旧情報伝達\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id]){ //子に伝えていない写像情報を持っている場合\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\t}\n\n\tint left = query(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tint right = query(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t//printf(\"\\n\");\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n\n\t//遷移表初期化\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\ttable[node_id][i] = i;\n\t}\n\n\treturn left+right;\n}\n\nint main(){\n\n\tscanf(\"%s\",S);\n\n\tfor(LEN = 0; S[LEN] != '\\0'; LEN++);\n\n\tint index,head,max_match_len;\n\n\t//len文字一致している状態から、次に文字chが来た時、何文字一致した状態に写るかを計算\n\tfor(int len = 0; len <= LEN; len++){\n\t\tfor(index = 0; index < len; index++){\n\n\t\t\twork[index] = S[index];\n\t\t}\n\t\tfor(int ch = 0; ch < 26; ch++){\n\n\t\t\twork[index] = 'a'+ch;\n\n\t\t\tif(len == LEN){\n\n\t\t\t\thead = 1;\n\t\t\t}else{\n\n\t\t\t\thead = 0;\n\t\t\t}\n\n\t\t\tmax_match_len = 0;\n\n\t\t\tfor(int i = head; i <= index; i++){\n\n\t\t\t\tbool FLG = true;\n\t\t\t\tfor(int k = i; k <= index; k++){\n\t\t\t\t\tif(work[k] != S[k-i]){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG){\n\t\t\t\t\tmax_match_len = index-i+1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tnext_loc[len][ch] = max_match_len;\n\t\t\t//printf(\"next_loc[%d][%d]:%d\\n\",len,ch,next_loc[len][ch]);\n\t\t}\n\t}\n\n\tint first_N,num_query;\n\tscanf(\"%d %d\",&first_N,&num_query);\n\n\tinit(first_N);\n\n\tfor(int i = 0; i <= 2*N-2; i++){\n\t\tneed_calc[i] = false;\n\t\thave_info[i] = false;\n\t\tfor(int k = 0; k <= LEN; k++){\n\t\t\tnum[i][k] = 0; //ノードiのカバー範囲において、Sとk文字一致しているノードがいくつあるか\n\t\t\ttable[i][k] = k; //最初kにあったマッチ長が、現在どのマッチ位置に遷移しているか\n\t\t}\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\n\t\tupdate_first(i);\n\t}\n\n\tint command,left,right;\n\n\tfor(int i = 0; i < num_query; i++){\n\t\tscanf(\"%d\",&command);\n\n\t\tif(command == 2){\n\n\t\t\tscanf(\"%d %d\",&left,&right);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\t//printf(\"集計 %d-%d\\n\",left,right);\n\t\t\tprintf(\"%d\\n\",query(left,right,0,0,N-1));\n\n\t\t}else{\n\t\t\tscanf(\"%d %d %s\",&left,&right,work);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\tshift[k] = k;\n\t\t\t}\n\t\t\tfor(int a = 0; work[a] != '\\0'; a++){\n\t\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\t\tshift[k] = next_loc[shift[k]][work[a]-'a'];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t/*for(int k = 0; k <= LEN; k++){\n\n\t\t\t\tprintf(\"shift[%d]:%d\\n\",k,shift[k]);\n\t\t\t}*/\n\n\t\t\t//continue;\n\n\t\t\tupdate(left,right,0,0,N-1);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 0.7777777777777778, "time_ms": 210, "memory_kb": 54928, "score_of_the_acc": -0.1178, "final_rank": 15 }, { "submission_id": "aoj_3073_4261965", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 500005\n\nint N = 1;\nint LEN;\nint num[SIZE][25],table[SIZE][25];\nint shift[25],num_work[25];\nint next_loc[25][26];\nbool need_calc[SIZE],have_info[SIZE];\nchar S[25],work[25];\n\n\nvoid init(int first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid update_first(int loc){\n\n\tloc += N-1;\n\n\tnum[loc][0] = 1;\n\n\tif(N == 1)return;\n\n\tint parent = (loc-1)/2;\n\n\twhile(true){\n\t\tnum[parent][0] = num[2*parent+1][0]+num[2*parent+2][0];\n\n\t\tif(parent == 0)break;\n\t\telse{\n\t\t\tparent = (parent-1)/2;\n\t\t}\n\t}\n}\n\nvoid calc(int node_id){\n\n\t//printf(\"calc:%d\\n\",node_id);\n\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[i] = 0;\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[table[node_id][i]] += num[node_id][i];\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num_work[i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n}\n\nvoid update(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tnum_work[i] = 0;\n\t\t}\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tint next = shift[table[node_id][i]];\n\n\t\t\tnum_work[next] += num[node_id][i];\n\t\t\ttable[node_id][i] = next; //回答代行しているかも知れないので、写像表を持っておく\n\t\t}\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tnum[node_id][i] = num_work[i];\n\t\t}\n\n\t\thave_info[node_id] = true;\n\n\t\t/*printf(\"遷移表\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d %d\\n\",i,table[node_id][i]);\n\t\t}\n\t\tprintf(\"個数\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d 個数:%d\\n\",i,num[node_id][i]);\n\t\t}*/\n\n\t\treturn;\n\t}\n\n\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id]){ //子に伝えていない写像情報を持っている場合\n\n\t\tif(have_info[left_child]){\n\n\t\t\tupdate(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\t\t\thave_info[left_child] = false;\n\t\t}\n\t\tif(have_info[right_child]){\n\n\t\t\tupdate(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\t\t\thave_info[right_child] = false;\n\t\t}\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\t}\n\n\tupdate(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tupdate(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t//printf(\"\\n\");\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n\n\t//遷移表初期化\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\ttable[node_id][i] = i;\n\t}\n}\n\nint query(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){ //遷移表が更新された場合\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return 0;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\t\treturn num[node_id][LEN];\n\t}\n\n\t//旧情報伝達\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id]){ //子に伝えていない写像情報を持っている場合\n\n\t\tif(have_info[left_child]){\n\n\t\t\tquery(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\t\t\thave_info[left_child] = false;\n\t\t}\n\t\tif(have_info[right_child]){\n\n\t\t\tquery(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\t\t\thave_info[right_child] = false;\n\t\t}\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\t}\n\n\tint left = query(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tint right = query(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t//printf(\"\\n\");\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n\n\t//遷移表初期化\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\ttable[node_id][i] = i;\n\t}\n\n\treturn left+right;\n}\n\nint main(){\n\n\tscanf(\"%s\",S);\n\n\tfor(LEN = 0; S[LEN] != '\\0'; LEN++);\n\n\tint index,head,max_match_len;\n\n\t//len文字一致している状態から、次に文字chが来た時、何文字一致した状態に写るかを計算\n\tfor(int len = 0; len <= LEN; len++){\n\t\tfor(index = 0; index < len; index++){\n\n\t\t\twork[index] = S[index];\n\t\t}\n\t\tfor(int ch = 0; ch < 26; ch++){\n\n\t\t\twork[index] = 'a'+ch;\n\n\t\t\tif(len == LEN){\n\n\t\t\t\thead = 1;\n\t\t\t}else{\n\n\t\t\t\thead = 0;\n\t\t\t}\n\n\t\t\tmax_match_len = 0;\n\n\t\t\tfor(int i = head; i <= index; i++){\n\n\t\t\t\tbool FLG = true;\n\t\t\t\tfor(int k = i; k <= index; k++){\n\t\t\t\t\tif(work[k] != S[k-i]){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG){\n\t\t\t\t\tmax_match_len = index-i+1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tnext_loc[len][ch] = max_match_len;\n\t\t\t//printf(\"next_loc[%d][%d]:%d\\n\",len,ch,next_loc[len][ch]);\n\t\t}\n\t}\n\n\tint first_N,num_query;\n\tscanf(\"%d %d\",&first_N,&num_query);\n\n\tinit(first_N);\n\n\tfor(int i = 0; i <= 2*N-2; i++){\n\t\tneed_calc[i] = false;\n\t\thave_info[i] = false;\n\t\tfor(int k = 0; k <= LEN; k++){\n\t\t\tnum[i][k] = 0; //ノードiのカバー範囲において、Sとk文字一致しているノードがいくつあるか\n\t\t\ttable[i][k] = k; //最初kにあったマッチ長が、現在どのマッチ位置に遷移しているか\n\t\t}\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\n\t\tupdate_first(i);\n\t}\n\n\tint command,left,right;\n\n\tfor(int i = 0; i < num_query; i++){\n\t\tscanf(\"%d\",&command);\n\n\t\tif(command == 2){\n\n\t\t\tscanf(\"%d %d\",&left,&right);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\t//printf(\"集計 %d-%d\\n\",left,right);\n\t\t\tprintf(\"%d\\n\",query(left,right,0,0,N-1));\n\n\t\t}else{\n\t\t\tscanf(\"%d %d %s\",&left,&right,work);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\tshift[k] = k;\n\t\t\t}\n\t\t\tfor(int a = 0; work[a] != '\\0'; a++){\n\t\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\t\tshift[k] = next_loc[shift[k]][work[a]-'a'];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t/*for(int k = 0; k <= LEN; k++){\n\n\t\t\t\tprintf(\"shift[%d]:%d\\n\",k,shift[k]);\n\t\t\t}*/\n\n\t\t\t//continue;\n\n\t\t\tupdate(left,right,0,0,N-1);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 0.7777777777777778, "time_ms": 460, "memory_kb": 54932, "score_of_the_acc": -0.2299, "final_rank": 18 }, { "submission_id": "aoj_3073_4261841", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 500005\n\nint N = 1;\nint LEN;\nint num[SIZE][25],table[SIZE][25];\nint shift[25],num_work[25];\nint next_loc[25][26];\nbool need_calc[SIZE],have_info[SIZE];\nchar S[25],work[25];\n\n\nvoid init(int first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid update_first(int loc){\n\n\tloc += N-1;\n\n\tnum[loc][0] = 1;\n\n\tif(N == 1)return;\n\n\tint parent = (loc-1)/2;\n\n\twhile(true){\n\t\tnum[parent][0] = num[2*parent+1][0]+num[2*parent+2][0];\n\n\t\tif(parent == 0)break;\n\t\telse{\n\t\t\tparent = (parent-1)/2;\n\t\t}\n\t}\n}\n\nvoid calc(int node_id){\n\n\t//printf(\"calc:%d\\n\",node_id);\n\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[i] = 0;\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[table[node_id][i]] += num[node_id][i];\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num_work[i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n}\n\nvoid update(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tnum_work[i] = 0;\n\t\t}\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tint next = shift[table[node_id][i]];\n\n\t\t\tnum_work[next] += num[node_id][i];\n\t\t\ttable[node_id][i] = next; //回答代行しているかも知れないので、写像表を持っておく\n\t\t}\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tnum[node_id][i] = num_work[i];\n\t\t}\n\n\t\thave_info[node_id] = true;\n\n\t\t/*printf(\"遷移表\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d %d\\n\",i,table[node_id][i]);\n\t\t}\n\t\tprintf(\"個数\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d 個数:%d\\n\",i,num[node_id][i]);\n\t\t}*/\n\n\t\treturn;\n\t}\n\n\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id]){ //子に伝えていない写像情報を持っている場合\n\n\t\t\tfor(int i = 0; i <= LEN; i++){\n\t\t\t\tint pre = table[left_child][i];\n\t\t\t\ttable[left_child][i] = table[node_id][pre];\n\t\t\t\tpre = table[right_child][i];\n\t\t\t\ttable[right_child][i] = table[node_id][pre];\n\t\t\t}\n\t\t\tneed_calc[left_child] = true;\n\t\t\tneed_calc[right_child] = true;\n\t\t\thave_info[node_id] = false;\n\t\t}\n\n\tupdate(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tupdate(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t//printf(\"\\n\");\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n\n\t//遷移表初期化\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\ttable[node_id][i] = i;\n\t}\n}\n\nint query(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){ //遷移表が更新された場合\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return 0;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\t\t//遷移表が更新されたとは限らないので、have_infoは操作しない\n\t\treturn num[node_id][LEN];\n\t}\n\n\t//旧情報伝達\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id]){ //子に伝えていない写像情報を持っている場合\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\t\t\tint pre = table[left_child][i];\n\t\t\ttable[left_child][i] = table[node_id][pre];\n\t\t\tpre = table[right_child][i];\n\t\t\ttable[right_child][i] = table[node_id][pre];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\t}\n\n\tint left = query(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tint right = query(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t//printf(\"\\n\");\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n\n\t//遷移表初期化\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\ttable[node_id][i] = i;\n\t}\n\n\treturn left+right;\n}\n\nint main(){\n\n\tscanf(\"%s\",S);\n\n\tfor(LEN = 0; S[LEN] != '\\0'; LEN++);\n\n\tint index,head,max_match_len;\n\n\t//len文字一致している状態から、次に文字chが来た時、何文字一致した状態に写るかを計算\n\tfor(int len = 0; len <= LEN; len++){\n\t\tfor(index = 0; index < len; index++){\n\n\t\t\twork[index] = S[index];\n\t\t}\n\t\tfor(int ch = 0; ch < 26; ch++){\n\n\t\t\twork[index] = 'a'+ch;\n\n\t\t\tif(len == LEN){\n\n\t\t\t\thead = 1;\n\t\t\t}else{\n\n\t\t\t\thead = 0;\n\t\t\t}\n\n\t\t\tmax_match_len = 0;\n\n\t\t\tfor(int i = head; i <= index; i++){\n\n\t\t\t\tbool FLG = true;\n\t\t\t\tfor(int k = i; k <= index; k++){\n\t\t\t\t\tif(work[k] != S[k-i]){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG){\n\t\t\t\t\tmax_match_len = index-i+1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tnext_loc[len][ch] = max_match_len;\n\t\t\t//printf(\"next_loc[%d][%d]:%d\\n\",len,ch,next_loc[len][ch]);\n\t\t}\n\t}\n\n\tint first_N,num_query;\n\tscanf(\"%d %d\",&first_N,&num_query);\n\n\tinit(first_N);\n\n\tfor(int i = 0; i <= 2*N-2; i++){\n\t\tneed_calc[i] = false;\n\t\thave_info[i] = false;\n\t\tfor(int k = 0; k <= LEN; k++){\n\t\t\tnum[i][k] = 0; //ノードiのカバー範囲において、Sとk文字一致しているノードがいくつあるか\n\t\t\ttable[i][k] = k; //最初kにあったマッチ長が、現在どのマッチ位置に遷移しているか\n\t\t}\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\n\t\tupdate_first(i);\n\t}\n\n\tint command,left,right;\n\n\tfor(int i = 0; i < num_query; i++){\n\t\tscanf(\"%d\",&command);\n\n\t\tif(command == 2){\n\n\t\t\tscanf(\"%d %d\",&left,&right);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\t//printf(\"集計 %d-%d\\n\",left,right);\n\t\t\tprintf(\"%d\\n\",query(left,right,0,0,N-1));\n\n\t\t}else{\n\t\t\tscanf(\"%d %d %s\",&left,&right,work);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\tshift[k] = k;\n\t\t\t}\n\t\t\tfor(int a = 0; work[a] != '\\0'; a++){\n\t\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\t\tshift[k] = next_loc[shift[k]][work[a]-'a'];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t/*for(int k = 0; k <= LEN; k++){\n\n\t\t\t\tprintf(\"shift[%d]:%d\\n\",k,shift[k]);\n\t\t\t}*/\n\n\t\t\t//continue;\n\n\t\t\tupdate(left,right,0,0,N-1);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 0.7777777777777778, "time_ms": 210, "memory_kb": 54876, "score_of_the_acc": -0.1173, "final_rank": 14 }, { "submission_id": "aoj_3073_4261777", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 500005\n\nint N = 1;\nint LEN;\nint num[SIZE][25],table[SIZE][25];\nint shift[25],num_work[25];\nint next_loc[25][26];\nbool need_calc[SIZE],have_info[SIZE];\nchar S[25],work[25];\n\n\nvoid init(int first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid update_first(int loc){\n\n\tloc += N-1;\n\n\tnum[loc][0] = 1;\n\n\tif(N == 1)return;\n\n\tint parent = (loc-1)/2;\n\n\twhile(true){\n\t\tnum[parent][0] = num[2*parent+1][0]+num[2*parent+2][0];\n\n\t\tif(parent == 0)break;\n\t\telse{\n\t\t\tparent = (parent-1)/2;\n\t\t}\n\t}\n}\n\nvoid calc(int node_id){\n\n\t//printf(\"calc:%d\\n\",node_id);\n\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[i] = 0;\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[table[node_id][i]] += num[node_id][i];\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num_work[i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n}\n\nvoid update(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tnum_work[i] = 0;\n\t\t}\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tint next = shift[table[node_id][i]];\n\n\t\t\tnum_work[next] += num[node_id][i];\n\t\t\ttable[node_id][i] = next; //回答代行しているかも知れないので、写像表を持っておく\n\t\t}\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tnum[node_id][i] = num_work[i];\n\t\t}\n\n\t\thave_info[node_id] = false;\n\n\t\tif(node_left < node_right){\n\n\t\t\tint left_child = 2*node_id+1;\n\t\t\tint right_child = 2*node_id+2;\n\n\t\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t\t}\n\t\t\tneed_calc[left_child] = true;\n\t\t\tneed_calc[right_child] = true;\n\t\t}\n\n\t\t//遷移表初期化\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[node_id][i] = i;\n\t\t}\n\n\t\t/*printf(\"遷移表\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d %d\\n\",i,table[node_id][i]);\n\t\t}\n\t\tprintf(\"個数\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d 個数:%d\\n\",i,num[node_id][i]);\n\t\t}*/\n\n\t\treturn;\n\t}\n\n\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id]){ //子に伝えていない写像情報を持っている場合\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\t}\n\n\tupdate(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tupdate(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t//printf(\"\\n\");\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n\n\t//遷移表初期化\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\ttable[node_id][i] = i;\n\t}\n}\n\nint query(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){ //遷移表が更新された場合\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return 0;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\t\treturn num[node_id][LEN];\n\t}\n\n\t//旧情報伝達\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id]){ //子に伝えていない写像情報を持っている場合\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\t}\n\n\tint left = query(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tint right = query(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t//printf(\"\\n\");\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n\n\t//遷移表初期化\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\ttable[node_id][i] = i;\n\t}\n\n\treturn left+right;\n}\n\nint main(){\n\n\tscanf(\"%s\",S);\n\n\tfor(LEN = 0; S[LEN] != '\\0'; LEN++);\n\n\tint index,head,max_match_len;\n\n\t//len文字一致している状態から、次に文字chが来た時、何文字一致した状態に写るかを計算\n\tfor(int len = 0; len <= LEN; len++){\n\t\tfor(index = 0; index < len; index++){\n\n\t\t\twork[index] = S[index];\n\t\t}\n\t\tfor(int ch = 0; ch < 26; ch++){\n\n\t\t\twork[index] = 'a'+ch;\n\n\t\t\tif(len == LEN){\n\n\t\t\t\thead = 1;\n\t\t\t}else{\n\n\t\t\t\thead = 0;\n\t\t\t}\n\n\t\t\tmax_match_len = 0;\n\n\t\t\tfor(int i = head; i <= index; i++){\n\n\t\t\t\tbool FLG = true;\n\t\t\t\tfor(int k = i; k <= index; k++){\n\t\t\t\t\tif(work[k] != S[k-i]){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG){\n\t\t\t\t\tmax_match_len = index-i+1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tnext_loc[len][ch] = max_match_len;\n\t\t\t//printf(\"next_loc[%d][%d]:%d\\n\",len,ch,next_loc[len][ch]);\n\t\t}\n\t}\n\n\tint first_N,num_query;\n\tscanf(\"%d %d\",&first_N,&num_query);\n\n\tinit(first_N);\n\n\tfor(int i = 0; i <= 2*N-2; i++){\n\t\tneed_calc[i] = false;\n\t\thave_info[i] = false;\n\t\tfor(int k = 0; k <= LEN; k++){\n\t\t\tnum[i][k] = 0; //ノードiのカバー範囲において、Sとk文字一致しているノードがいくつあるか\n\t\t\ttable[i][k] = k; //最初kにあったマッチ長が、現在どのマッチ位置に遷移しているか\n\t\t}\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\n\t\tupdate_first(i);\n\t}\n\n\tint command,left,right;\n\n\tfor(int i = 0; i < num_query; i++){\n\t\tscanf(\"%d\",&command);\n\n\t\tif(command == 2){\n\n\t\t\tscanf(\"%d %d\",&left,&right);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\t//printf(\"集計 %d-%d\\n\",left,right);\n\t\t\tprintf(\"%d\\n\",query(left,right,0,0,N-1));\n\n\t\t}else{\n\t\t\tscanf(\"%d %d %s\",&left,&right,work);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\tshift[k] = k;\n\t\t\t}\n\t\t\tfor(int a = 0; work[a] != '\\0'; a++){\n\t\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\t\tshift[k] = next_loc[shift[k]][work[a]-'a'];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t/*for(int k = 0; k <= LEN; k++){\n\n\t\t\t\tprintf(\"shift[%d]:%d\\n\",k,shift[k]);\n\t\t\t}*/\n\n\t\t\t//continue;\n\n\t\t\tupdate(left,right,0,0,N-1);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 0.7777777777777778, "time_ms": 220, "memory_kb": 54876, "score_of_the_acc": -0.1218, "final_rank": 16 }, { "submission_id": "aoj_3073_4261734", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 500005\n\nint N = 1;\nint LEN;\nint num[SIZE][25],table[SIZE][25];\nint shift[25],num_work[25];\nint next_loc[25][26];\nbool need_calc[SIZE],have_info[SIZE];\nchar S[25],work[25];\n\n\nvoid init(int first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid update_first(int loc){\n\n\tloc += N-1;\n\n\tnum[loc][0] = 1;\n\n\tif(N == 1)return;\n\n\tint parent = (loc-1)/2;\n\n\twhile(true){\n\t\tnum[parent][0] = num[2*parent+1][0]+num[2*parent+2][0];\n\n\t\tif(parent == 0)break;\n\t\telse{\n\t\t\tparent = (parent-1)/2;\n\t\t}\n\t}\n}\n\nvoid calc(int node_id){\n\n\t//printf(\"calc:%d\\n\",node_id);\n\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[i] = 0;\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[table[node_id][i]] += num[node_id][i];\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num_work[i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n}\n\nvoid update(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tnum_work[i] = 0;\n\t\t}\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tint next = shift[table[node_id][i]];\n\n\t\t\tnum_work[next] += num[node_id][i];\n\t\t\ttable[node_id][i] = next; //回答代行しているかも知れないので、写像表を持っておく\n\t\t}\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tnum[node_id][i] = num_work[i];\n\t\t}\n\n\t\thave_info[node_id] = true;\n\n\t\t/*printf(\"遷移表\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d %d\\n\",i,table[node_id][i]);\n\t\t}\n\t\tprintf(\"個数\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d 個数:%d\\n\",i,num[node_id][i]);\n\t\t}*/\n\n\t\treturn;\n\t}\n\n\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id] == true && node_left < node_right){ //子に伝えていない写像情報を持っている場合\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\t}\n\n\tupdate(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tupdate(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t//printf(\"\\n\");\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n\n\t//遷移表初期化\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\ttable[node_id][i] = i;\n\t}\n}\n\nint query(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){ //遷移表が更新された場合\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return 0;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\t\treturn num[node_id][LEN];\n\t}\n\n\t//旧情報伝達\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id] == true && node_left < node_right){ //子に伝えていない写像情報を持っている場合\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\t}\n\n\tint left = query(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tint right = query(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t//printf(\"\\n\");\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n\n\t//遷移表初期化\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\ttable[node_id][i] = i;\n\t}\n\n\treturn left+right;\n}\n\nint main(){\n\n\tscanf(\"%s\",S);\n\n\tfor(LEN = 0; S[LEN] != '\\0'; LEN++);\n\n\tint index,head,max_match_len;\n\n\t//len文字一致している状態から、次に文字chが来た時、何文字一致した状態に写るかを計算\n\tfor(int len = 0; len <= LEN; len++){\n\t\tfor(index = 0; index < len; index++){\n\n\t\t\twork[index] = S[index];\n\t\t}\n\t\tfor(int ch = 0; ch < 26; ch++){\n\n\t\t\twork[index] = 'a'+ch;\n\n\t\t\tif(len == LEN){\n\n\t\t\t\thead = 1;\n\t\t\t}else{\n\n\t\t\t\thead = 0;\n\t\t\t}\n\n\t\t\tmax_match_len = 0;\n\n\t\t\tfor(int i = head; i <= index; i++){\n\n\t\t\t\tbool FLG = true;\n\t\t\t\tfor(int k = i; k <= index; k++){\n\t\t\t\t\tif(work[k] != S[k-i]){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG){\n\t\t\t\t\tmax_match_len = index-i+1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tnext_loc[len][ch] = max_match_len;\n\t\t\t//printf(\"next_loc[%d][%d]:%d\\n\",len,ch,next_loc[len][ch]);\n\t\t}\n\t}\n\n\tint first_N,num_query;\n\tscanf(\"%d %d\",&first_N,&num_query);\n\n\tinit(first_N);\n\n\tfor(int i = 0; i <= 2*N-2; i++){\n\t\tneed_calc[i] = false;\n\t\thave_info[i] = false;\n\t\tfor(int k = 0; k <= LEN; k++){\n\t\t\tnum[i][k] = 0; //ノードiのカバー範囲において、Sとk文字一致しているノードがいくつあるか\n\t\t\ttable[i][k] = k; //最初kにあったマッチ長が、現在どのマッチ位置に遷移しているか\n\t\t}\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\n\t\tupdate_first(i);\n\t}\n\n\tint command,left,right;\n\n\tfor(int i = 0; i < num_query; i++){\n\t\tscanf(\"%d\",&command);\n\n\t\tif(command == 2){\n\n\t\t\tscanf(\"%d %d\",&left,&right);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\t//printf(\"集計 %d-%d\\n\",left,right);\n\t\t\tprintf(\"%d\\n\",query(left,right,0,0,N-1));\n\n\t\t}else{\n\t\t\tscanf(\"%d %d %s\",&left,&right,work);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\tshift[k] = k;\n\t\t\t}\n\t\t\tfor(int a = 0; work[a] != '\\0'; a++){\n\t\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\t\tshift[k] = next_loc[shift[k]][work[a]-'a'];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t/*for(int k = 0; k <= LEN; k++){\n\n\t\t\t\tprintf(\"shift[%d]:%d\\n\",k,shift[k]);\n\t\t\t}*/\n\n\t\t\t//continue;\n\n\t\t\tupdate(left,right,0,0,N-1);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 0.7777777777777778, "time_ms": 200, "memory_kb": 54936, "score_of_the_acc": -0.1134, "final_rank": 13 }, { "submission_id": "aoj_3073_4261638", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 500005\n\nint N = 1;\nint LEN;\nint num[SIZE][25],table[SIZE][25];\nint shift[25],num_work[25];\nint next_loc[25][26];\nbool need_calc[SIZE],have_info[SIZE];\nchar S[25],work[25];\n\n\nvoid init(int first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid update_first(int loc){\n\n\tloc += N-1;\n\n\tnum[loc][0] = 1;\n\n\tif(N == 1)return;\n\n\tint parent = (loc-1)/2;\n\n\twhile(true){\n\t\tnum[parent][0] = num[2*parent+1][0]+num[2*parent+2][0];\n\n\t\tif(parent == 0)break;\n\t\telse{\n\t\t\tparent = (parent-1)/2;\n\t\t}\n\t}\n}\n\nvoid calc(int node_id){\n\n\t//printf(\"calc:%d\\n\",node_id);\n\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[i] = 0;\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum_work[table[node_id][i]] += num[node_id][i];\n\t}\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num_work[i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n}\n\nvoid update(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tnum_work[i] = 0;\n\t\t}\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tint next = shift[table[node_id][i]];\n\n\t\t\tnum_work[next] += num[node_id][i];\n\t\t\ttable[node_id][i] = next; //回答代行しているかも知れないので、写像表を持っておく\n\t\t}\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tnum[node_id][i] = num_work[i];\n\t\t}\n\n\t\thave_info[node_id] = true;\n\n\t\t/*printf(\"遷移表\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d %d\\n\",i,table[node_id][i]);\n\t\t}\n\t\tprintf(\"個数\\n\");\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\tprintf(\"位置%d 個数:%d\\n\",i,num[node_id][i]);\n\t\t}*/\n\n\t\treturn;\n\t}\n\n\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id]){ //子に伝えていない写像情報を持っている場合\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\t}\n\n\tupdate(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tupdate(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t//printf(\"\\n\");\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n\n\t//遷移表初期化\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\ttable[node_id][i] = i;\n\t}\n}\n\nint query(int search_left,int search_right,int node_id,int node_left,int node_right){\n\n\tif(need_calc[node_id]){ //遷移表が更新された場合\n\n\t\tcalc(node_id);\n\t\thave_info[node_id] = true;\n\t\tneed_calc[node_id] = false;\n\t}\n\n\tif(search_right < node_left || search_left > node_right)return 0;\n\n\tif(search_left <= node_left && search_right >= node_right){\n\n\t\t//printf(\"node_id:%d 部分区間内\\n\",node_id);\n\t\t//have_info[node_id] = true;\n\t\treturn num[node_id][LEN];\n\t}\n\n\t//旧情報伝達\n\tint left_child = 2*node_id+1;\n\tint right_child = 2*node_id+2;\n\n\t/*printf(\"node_id:%d node_left:%d node_right:%d 一様性が壊れたので、%d と %dに以下の情報を伝達\\n\",node_id,node_left,node_right,left_child,right_child);\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tprintf(\"位置%d: %d\\n\",i,table[node_id][i]);\n\t}*/\n\n\tif(have_info[node_id]){ //子に伝えていない写像情報を持っている場合\n\n\t\tfor(int i = 0; i <= LEN; i++){\n\n\t\t\ttable[left_child][i] = table[node_id][table[left_child][i]];\n\t\t\ttable[right_child][i] = table[node_id][table[right_child][i]];\n\t\t}\n\t\tneed_calc[left_child] = true;\n\t\tneed_calc[right_child] = true;\n\t\thave_info[node_id] = false;\n\t}\n\n\tint left = query(search_left,search_right,left_child,node_left,(node_left+node_right)/2);\n\tint right = query(search_left,search_right,right_child,(node_left+node_right)/2+1,node_right);\n\n\t//集計\n\t//printf(\"\\n\");\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\tnum[node_id][i] = num[left_child][i]+num[right_child][i];\n\t\t//printf(\"num[%d][%d]:%d\\n\",node_id,i,num[node_id][i]);\n\t}\n\n\t//遷移表初期化\n\tfor(int i = 0; i <= LEN; i++){\n\n\t\ttable[node_id][i] = i;\n\t}\n\n\treturn left+right;\n}\n\nint main(){\n\n\tscanf(\"%s\",S);\n\n\tfor(LEN = 0; S[LEN] != '\\0'; LEN++);\n\n\tint index,head,max_match_len;\n\n\t//len文字一致している状態から、次に文字chが来た時、何文字一致した状態に写るかを計算\n\tfor(int len = 0; len <= LEN; len++){\n\t\tfor(index = 0; index < len; index++){\n\n\t\t\twork[index] = S[index];\n\t\t}\n\t\tfor(int ch = 0; ch < 26; ch++){\n\n\t\t\twork[index] = 'a'+ch;\n\n\t\t\tif(len == LEN){\n\n\t\t\t\thead = 1;\n\t\t\t}else{\n\n\t\t\t\thead = 0;\n\t\t\t}\n\n\t\t\tmax_match_len = 0;\n\n\t\t\tfor(int i = head; i <= index; i++){\n\n\t\t\t\tbool FLG = true;\n\t\t\t\tfor(int k = i; k <= index; k++){\n\t\t\t\t\tif(work[k] != S[k-i]){\n\n\t\t\t\t\t\tFLG = false;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(FLG){\n\t\t\t\t\tmax_match_len = index-i+1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\tnext_loc[len][ch] = max_match_len;\n\t\t\t//printf(\"next_loc[%d][%d]:%d\\n\",len,ch,next_loc[len][ch]);\n\t\t}\n\t}\n\n\tint first_N,num_query;\n\tscanf(\"%d %d\",&first_N,&num_query);\n\n\tinit(first_N);\n\n\tfor(int i = 0; i <= 2*N-2; i++){\n\t\tneed_calc[i] = false;\n\t\thave_info[i] = false;\n\t\tfor(int k = 0; k <= LEN; k++){\n\t\t\tnum[i][k] = 0; //ノードiのカバー範囲において、Sとk文字一致しているノードがいくつあるか\n\t\t\ttable[i][k] = k; //最初kにあったマッチ長が、現在どのマッチ位置に遷移しているか\n\t\t}\n\t}\n\n\tfor(int i = 0; i < first_N; i++){\n\n\t\tupdate_first(i);\n\t}\n\n\tint command,left,right;\n\n\tfor(int i = 0; i < num_query; i++){\n\t\tscanf(\"%d\",&command);\n\n\t\tif(command == 2){\n\n\t\t\tscanf(\"%d %d\",&left,&right);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\t//printf(\"集計 %d-%d\\n\",left,right);\n\t\t\tprintf(\"%d\\n\",query(left,right,0,0,N-1));\n\n\t\t}else{\n\t\t\tscanf(\"%d %d %s\",&left,&right,work);\n\t\t\tleft--;\n\t\t\tright--;\n\n\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\tshift[k] = k;\n\t\t\t}\n\t\t\tfor(int a = 0; work[a] != '\\0'; a++){\n\t\t\t\tfor(int k = 0; k <= LEN; k++){\n\n\t\t\t\t\tshift[k] = next_loc[shift[k]][work[a]-'a'];\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t/*for(int k = 0; k <= LEN; k++){\n\n\t\t\t\tprintf(\"shift[%d]:%d\\n\",k,shift[k]);\n\t\t\t}*/\n\n\t\t\t//continue;\n\n\t\t\tupdate(left,right,0,0,N-1);\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 0.7777777777777778, "time_ms": 200, "memory_kb": 54912, "score_of_the_acc": -0.1131, "final_rank": 12 }, { "submission_id": "aoj_3073_4056206", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate<class T> using vec = vector<T>;\ntemplate<class T> using vvec = vector<vec<T>>;\n\ntemplate<typename Monoid,typename OperatorMonoid,typename F,typename G,typename H>\nstruct LazySegmentTree {\n//\tusing F = function<Monoid(Monoid,Monoid)>;\n//\tusing G = function<Monoid(Monoid,OperatorMonoid)>;\n//\tusing H = function<OperatorMonoid(OperatorMonoid,OperatorMonoid)>;\n\n\tint sz,height;\n\tvec<Monoid> data;\n\tvec<OperatorMonoid> lazy;\n\tconst F op;\n\tconst G homo;\n\tconst H comp;\n \tconst Monoid e;\n\tconst OperatorMonoid Oe;\n\n\tLazySegmentTree(int n,const F op,const G homo,const H comp,\n\t\t\t\t\tconst Monoid &e,const OperatorMonoid Oe)\n\t\t: op(op),homo(homo),comp(comp),e(e),Oe(Oe) {\n\t\tsz = 1;\n\t\theight = 0;\n\t\twhile(sz<=n) sz <<= 1,height++;\n\t\tdata.assign(2*sz,e);\n\t\tlazy.assign(2*sz,Oe);\n\t}\n\n\tvoid set(int k,const Monoid &x) {\n\t\tdata[k+sz] = x;\n\t}\n\n\tvoid build() {\n\t\tfor(int k=sz-1;k>0;k--) {\n\t\t\tdata[k] = op(data[2*k], data[2*k+1]);\n\t\t}\n\t}\n\n\tinline void propagate(int k) {\n\t\tif(lazy[k]!=Oe) {\n\t\t\tlazy[2*k] = comp(lazy[2*k], lazy[k]);\n\t\t\tlazy[2*k+1] = comp(lazy[2*k+1], lazy[k]);\n\t\t\tdata[k] = reflect(k);\n\t\t\tlazy[k] = Oe;\n\t\t}\n\t}\n\n\tinline Monoid reflect(int k) {\n\t\treturn lazy[k] == Oe? data[k]:homo(data[k],lazy[k]);\n\t}\n\n\tinline void recalc(int k) {\n\t\twhile(k>>=1) data[k] = op(reflect(2*k), reflect(2*k+1));\n\t}\n\n\tinline void thrust(int k) {\n\t\tfor(int i=height;i>0;i--) propagate(k>>i);\n\t}\n\n\tvoid update(int a, int b, const OperatorMonoid &x) {\n\t\tthrust(a+=sz);\n\t\tthrust(b+=sz-1);\n\t\tfor(int l=a,r=b+1;l<r;l>>=1,r>>=1) {\n\t\t\tif(l&1) lazy[l] = comp(lazy[l],x),++l;\n\t\t\tif(r&1) --r, lazy[r] = comp(lazy[r],x);\n\t\t}\n\t\trecalc(a);\n\t\trecalc(b);\n\t}\n\n\tMonoid query(int a, int b) {\n\t\tthrust(a+=sz);\n\t\tthrust(b+=sz-1);\n\t\tMonoid L = e, R = e;\n\t\tfor(int l=a, r=b+1;l<r;l>>= 1,r>>=1) {\n\t\t\tif(l&1) L = op(L,reflect(l++));\n\t\t\tif(r&1) R = op(reflect(--r),R);\n\t\t}\n\t\treturn op(L,R);\n\t}\n\n\tMonoid operator[](const int &k) {\n\t\treturn query(k,k+1);\n\t}\n};\n\nusing arr = array<int,21>;\n\nvector<int> Z_algorithm(string S){\n int M = S.size();\n vector<int> A(M,0);\n A[0] = M;\n int i = 1,j = 0;\n while(i<M){\n while(i+j<M && S[j]==S[i+j]) j++;\n A[i] = j;\n if(j==0){\n i++;\n continue;\n }\n int k = 1;\n while(i+k<M && k+A[k]<j){\n A[i+k] = A[k];\n k++;\n }\n i += k; j -= k;\n }\n return A;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n string S;\n int N,Q;\n cin >> S >> N >> Q;\n\tint n = S.size();\n\tauto op = [&](arr L,arr R){\n\t\tarr res{};\n\t\tfor(int i=0;i<=n;i++) res[i] = L[i]+R[i];\n\t\treturn res;\n\t};\n\n\tauto homo = [&](arr S,arr f){\n\t\tarr res{};\n\t\tfor(int i=0;i<=n;i++) res[f[i]] += S[i];\n\t\treturn res;\n\t};\n\n\tauto comp = [&](arr f,arr g){\n\t\tarr res{};\n\t\tfor(int i=0;i<=n;i++) res[i] = g[f[i]];\n\t\treturn res;\n\t};\n\n\tarr id{};\n\tfor(int i=0;i<=20;i++) id[i] = i;\n\tLazySegmentTree<arr,arr,decltype(op),decltype(homo),decltype(comp)>\n\tseg(N,op,homo,comp,arr{},id);\n\tfor(int i=0;i<N;i++){\n\t\tarr a{};\n\t\ta[0] = 1;\n\t\tseg.set(i,a);\n\t}\n\tseg.build();\n\n\tfor(int i=0;i<Q;i++){\n\t\tint t;\n\t\tcin >> t;\n\t\tif(t==1){\n\t\t\tint l,r;\n\t\t\tstring c;\n\t\t\tcin >> l >> r >> c;\n\t\t\tl--; r--;\n\t\t\tarr f{};\n\t\t\tint m = c.size();\n\t\t\tfor(int i=0;i<=n;i++){\n\t\t\t\tstring s = S.substr(0,i)+c;\n\t\t\t\tvec<int> res = Z_algorithm(S+s);\n\t\t\t\tfor(int j=max(i+m,n);j<n+i+m;j++){\n\t\t\t\t\tif(j+res[j]==n+i+m) f[i] = max(f[i],min(res[j],n));\n\t\t\t\t}\n\t\t\t}\n\t\t\tseg.update(l,r+1,f);\n\t\t}else{\n\t\t\tint l,r;\n\t\t\tcin >> l >> r;\n\t\t\tl--; r--;\n\t\t\tcout << seg.query(l,r+1)[n] << \"\\n\";\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 1220, "memory_kb": 45996, "score_of_the_acc": -0.4824, "final_rank": 6 }, { "submission_id": "aoj_3073_4056204", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate<class T> using vec = vector<T>;\ntemplate<class T> using vvec = vector<vec<T>>;\n\ntemplate<typename Monoid,typename OperatorMonoid,typename F,typename G,typename H>\nstruct LazySegmentTree {\n//\tusing F = function<Monoid(Monoid,Monoid)>;\n//\tusing G = function<Monoid(Monoid,OperatorMonoid)>;\n//\tusing H = function<OperatorMonoid(OperatorMonoid,OperatorMonoid)>;\n\n\tint sz,height;\n\tvec<Monoid> data;\n\tvec<OperatorMonoid> lazy;\n\tconst F op;\n\tconst G homo;\n\tconst H comp;\n \tconst Monoid e;\n\tconst OperatorMonoid Oe;\n\n\tLazySegmentTree(int n,const F op,const G homo,const H comp,\n\t\t\t\t\tconst Monoid &e,const OperatorMonoid Oe)\n\t\t: op(op),homo(homo),comp(comp),e(e),Oe(Oe) {\n\t\tsz = 1;\n\t\theight = 0;\n\t\twhile(sz<=n) sz <<= 1,height++;\n\t\tdata.assign(2*sz,e);\n\t\tlazy.assign(2*sz,Oe);\n\t}\n\n\tvoid set(int k,const Monoid &x) {\n\t\tdata[k+sz] = x;\n\t}\n\n\tvoid build() {\n\t\tfor(int k=sz-1;k>0;k--) {\n\t\t\tdata[k] = op(data[2*k], data[2*k+1]);\n\t\t}\n\t}\n\n\tinline void propagate(int k) {\n\t\tif(lazy[k]!=Oe) {\n\t\t\tlazy[2*k] = comp(lazy[2*k], lazy[k]);\n\t\t\tlazy[2*k+1] = comp(lazy[2*k+1], lazy[k]);\n\t\t\tdata[k] = reflect(k);\n\t\t\tlazy[k] = Oe;\n\t\t}\n\t}\n\n\tinline Monoid reflect(int k) {\n\t\treturn lazy[k] == Oe? data[k]:homo(data[k],lazy[k]);\n\t}\n\n\tinline void recalc(int k) {\n\t\twhile(k>>=1) data[k] = op(reflect(2*k), reflect(2*k+1));\n\t}\n\n\tinline void thrust(int k) {\n\t\tfor(int i=height;i>0;i--) propagate(k>>i);\n\t}\n\n\tvoid update(int a, int b, const OperatorMonoid &x) {\n\t\tthrust(a+=sz);\n\t\tthrust(b+=sz-1);\n\t\tfor(int l=a,r=b+1;l<r;l>>=1,r>>=1) {\n\t\t\tif(l&1) lazy[l] = comp(lazy[l],x),++l;\n\t\t\tif(r&1) --r, lazy[r] = comp(lazy[r],x);\n\t\t}\n\t\trecalc(a);\n\t\trecalc(b);\n\t}\n\n\tMonoid query(int a, int b) {\n\t\tthrust(a+=sz);\n\t\tthrust(b+=sz-1);\n\t\tMonoid L = e, R = e;\n\t\tfor(int l=a, r=b+1;l<r;l>>= 1,r>>=1) {\n\t\t\tif(l&1) L = op(L,reflect(l++));\n\t\t\tif(r&1) R = op(reflect(--r),R);\n\t\t}\n\t\treturn op(L,R);\n\t}\n\n\tMonoid operator[](const int &k) {\n\t\treturn query(k,k+1);\n\t}\n};\n\nusing arr = array<int,21>;\n\nvector<int> Z_algorithm(string S){\n int M = S.size();\n vector<int> A(M,0);\n A[0] = M;\n int i = 1,j = 0;\n while(i<M){\n while(i+j<M && S[j]==S[i+j]) j++;\n A[i] = j;\n if(j==0){\n i++;\n continue;\n }\n int k = 1;\n while(i+k<M && k+A[k]<j){\n A[i+k] = A[k];\n k++;\n }\n i += k; j -= k;\n }\n return A;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n string S;\n int N,Q;\n cin >> S >> N >> Q;\n\tint n = S.size();\n\tauto op = [&](arr L,arr R){\n\t\tarr res{};\n\t\tfor(int i=0;i<=n;i++) res[i] = L[i]+R[i];\n\t\treturn res;\n\t};\n\n\tauto homo = [&](arr S,arr f){\n\t\tarr res{};\n\t\tfor(int i=0;i<=n;i++) res[f[i]] += S[i];\n\t\treturn res;\n\t};\n\n\tauto comp = [&](arr f,arr g){\n\t\tarr res{};\n\t\tfor(int i=0;i<=n;i++) res[i] = g[f[i]];\n\t\treturn res;\n\t};\n\n\tarr id{};\n\tfor(int i=0;i<=20;i++) id[i] = i;\n\tLazySegmentTree<arr,arr,decltype(op),decltype(homo),decltype(comp)>\n\tseg(N,op,homo,comp,arr{},id);\n\tfor(int i=0;i<N;i++){\n\t\tarr a{};\n\t\ta[0] = 1;\n\t\tseg.set(i,a);\n\t}\n\tseg.build();\n\n\tfor(int i=0;i<Q;i++){\n\t\tint t;\n\t\tcin >> t;\n\t\tif(t==1){\n\t\t\tint l,r;\n\t\t\tstring c;\n\t\t\tcin >> l >> r >> c;\n\t\t\tl--; r--;\n\t\t\tarr f{};\n\t\t\tint m = c.size();\n\t\t\tfor(int i=0;i<=n;i++){\n\t\t\t\tstring s = S.substr(0,i)+c;\n\t\t\t\tvec<int> res = Z_algorithm(S+s);\n\t\t\t\tfor(int j=max(i+m,n);j<n+i+m;j++){\n\t\t\t\t\tif(j+res[j]==n+i+m) f[i] = max(f[i],min(res[j],n));\n\t\t\t\t}\n\t\t\t}\n//\t\t\tfor(int j=0;j<=n;j++) cerr << f[j] << (j!=n? \" \":\"\\n\");\n\t\t\tseg.update(l,r+1,f);\n\t\t}else{\n\t\t\tint l,r;\n\t\t\tcin >> l >> r;\n\t\t\tl--; r--;\n\t\t\tcout << seg.query(l,r+1)[n] << \"\\n\";\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 1200, "memory_kb": 45944, "score_of_the_acc": -0.4729, "final_rank": 5 }, { "submission_id": "aoj_3073_4056198", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate<class T> using vec = vector<T>;\ntemplate<class T> using vvec = vector<vec<T>>;\n\ntemplate<typename Monoid,typename OperatorMonoid,typename F,typename G,typename H>\nstruct LazySegmentTree {\n//\tusing F = function<Monoid(Monoid,Monoid)>;\n//\tusing G = function<Monoid(Monoid,OperatorMonoid)>;\n//\tusing H = function<OperatorMonoid(OperatorMonoid,OperatorMonoid)>;\n\n\tint sz,height;\n\tvec<Monoid> data;\n\tvec<OperatorMonoid> lazy;\n\tconst F op;\n\tconst G homo;\n\tconst H comp;\n \tconst Monoid e;\n\tconst OperatorMonoid Oe;\n\n\tLazySegmentTree(int n,const F op,const G homo,const H comp,\n\t\t\t\t\tconst Monoid &e,const OperatorMonoid Oe)\n\t\t: op(op),homo(homo),comp(comp),e(e),Oe(Oe) {\n\t\tsz = 1;\n\t\theight = 0;\n\t\twhile(sz<=n) sz <<= 1,height++;\n\t\tdata.assign(2*sz,e);\n\t\tlazy.assign(2*sz,Oe);\n\t}\n\n\tvoid set(int k,const Monoid &x) {\n\t\tdata[k+sz] = x;\n\t}\n\n\tvoid build() {\n\t\tfor(int k=sz-1;k>0;k--) {\n\t\t\tdata[k] = op(data[2*k], data[2*k+1]);\n\t\t}\n\t}\n\n\tinline void propagate(int k) {\n\t\tif(lazy[k]!=Oe) {\n\t\t\tlazy[2*k] = comp(lazy[2*k], lazy[k]);\n\t\t\tlazy[2*k+1] = comp(lazy[2*k+1], lazy[k]);\n\t\t\tdata[k] = reflect(k);\n\t\t\tlazy[k] = Oe;\n\t\t}\n\t}\n\n\tinline Monoid reflect(int k) {\n\t\treturn lazy[k] == Oe? data[k]:homo(data[k],lazy[k]);\n\t}\n\n\tinline void recalc(int k) {\n\t\twhile(k>>=1) data[k] = op(reflect(2*k), reflect(2*k+1));\n\t}\n\n\tinline void thrust(int k) {\n\t\tfor(int i=height;i>0;i--) propagate(k>>i);\n\t}\n\n\tvoid update(int a, int b, const OperatorMonoid &x) {\n\t\tthrust(a+=sz);\n\t\tthrust(b+=sz-1);\n\t\tfor(int l=a,r=b+1;l<r;l>>=1,r>>=1) {\n\t\t\tif(l&1) lazy[l] = comp(lazy[l],x),++l;\n\t\t\tif(r&1) --r, lazy[r] = comp(lazy[r],x);\n\t\t}\n\t\trecalc(a);\n\t\trecalc(b);\n\t}\n\n\tMonoid query(int a, int b) {\n\t\tthrust(a+=sz);\n\t\tthrust(b+=sz-1);\n\t\tMonoid L = e, R = e;\n\t\tfor(int l=a, r=b+1;l<r;l>>= 1,r>>=1) {\n\t\t\tif(l&1) L = op(L,reflect(l++));\n\t\t\tif(r&1) R = op(reflect(--r),R);\n\t\t}\n\t\treturn op(L,R);\n\t}\n\n\tMonoid operator[](const int &k) {\n\t\treturn query(k,k+1);\n\t}\n};\n\nusing arr = array<int,21>;\n\nvector<int> Z_algorithm(string S){\n int M = S.size();\n vector<int> A(M,0);\n A[0] = M;\n int i = 1,j = 0;\n while(i<M){\n while(i+j<M && S[j]==S[i+j]) j++;\n A[i] = j;\n if(j==0){\n i++;\n continue;\n }\n int k = 1;\n while(i+k<M && k+A[k]<j){\n A[i+k] = A[k];\n k++;\n }\n i += k; j -= k;\n }\n return A;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n string S;\n int N,Q;\n cin >> S >> N >> Q;\n\tint n = S.size();\n\tvec<string> SS;\n//\tfor(int j=0;j<=n;j++) SS[j] = S.substr(0,j);\n\tauto op = [&](arr L,arr R){\n\t\tarr res{};\n\t\tfor(int i=0;i<=n;i++) res[i] = L[i]+R[i];\n\t\treturn res;\n\t};\n\n\tauto homo = [&](arr S,arr f){\n\t\tarr res{};\n\t\tfor(int i=0;i<=n;i++) res[f[i]] += S[i];\n\t\treturn res;\n\t};\n\n\tauto comp = [&](arr f,arr g){\n\t\tarr res{};\n\t\tfor(int i=0;i<=n;i++) res[i] = g[f[i]];\n\t\treturn res;\n\t};\n\n\tarr id{};\n\tfor(int i=0;i<=20;i++) id[i] = i;\n\tLazySegmentTree<arr,arr,decltype(op),decltype(homo),decltype(comp)>\n\tseg(N,op,homo,comp,arr{},id);\n\tfor(int i=0;i<N;i++){\n\t\tarr a{};\n\t\ta[0] = 1;\n\t\tseg.set(i,a);\n\t}\n\tseg.build();\n\n\tfor(int i=0;i<Q;i++){\n\t\tint t;\n\t\tcin >> t;\n\t\tif(t==1){\n\t\t\tint l,r;\n\t\t\tstring c;\n\t\t\tcin >> l >> r >> c;\n\t\t\tl--; r--;\n\t\t\tarr f{};\n\t\t\tint m = c.size();\n\t\t\tfor(int i=0;i<=n;i++){\n\t\t\t\tstring s = S.substr(0,i)+c;\n\t\t\t\tvec<int> res = Z_algorithm(S+s);\n\t\t\t\tfor(int j=max(n+i+m-n,n);j<n+i+m;j++){\n\t\t\t\t\tf[i] = max(f[i],min(res[j],n));\n\t\t\t\t}\n\t\t\t}\n//\t\t\tfor(int j=0;j<=n;j++) cerr << f[j] << (j!=n? \" \":\"\\n\");\n\t\t\tseg.update(l,r+1,f);\n\t\t}else{\n\t\t\tint l,r;\n\t\t\tcin >> l >> r;\n\t\t\tl--; r--;\n\t\t\tcout << seg.query(l,r+1)[n] << \"\\n\";\n\t\t}\n\t}\n}", "accuracy": 0.7777777777777778, "time_ms": 440, "memory_kb": 45828, "score_of_the_acc": -0.131, "final_rank": 17 }, { "submission_id": "aoj_3073_4019372", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <unordered_set>\n#include <tuple>\n#include <bitset>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\n\n\n\nclass SegTree {\n\tstd::vector<std::vector<int>> next_position;\n\tstd::vector<std::vector<std::vector<int>>> seg;\n\tstd::vector<std::vector<std::vector<int>>> delay;\n\tstd::vector<std::vector<bool>> delaied;\n\tstd::vector<int> replacer, work_space;\n\tvoid ensure_change(int depth, int position) {\n\t\treplace_all(depth, position, replacer);\n\t}\n\tvoid apply_delaied(int depth, int position) {\n\t\tif (depth == 0) return;\n\t\tif (!delaied[depth][position]) return;\n\t\treplace_all(depth - 1, position * 2, delay[depth][position]);\n\t\treplace_all(depth - 1, position * 2 + 1, delay[depth][position]);\n\t\tstd::iota(delay[depth][position].begin(), delay[depth][position].end(), 0);\n\t\tdelaied[depth][position] = false;\n\t}\n\tvoid replace_all(int depth, int position, const std::vector<int>& replace) {\n\t\tstd::copy(seg[depth][position].begin(), seg[depth][position].end(), work_space.begin());\n\t\tstd::fill(seg[depth][position].begin(), seg[depth][position].end(), 0);\n\t\tfor (auto i = 0; i < replace.size(); ++i) {\n\t\t\tseg[depth][position][replace[i]] += work_space[i];\n\t\t}\n\t\tif (depth == 0) return;\n\t\tfor (auto& i : delay[depth][position]) i = replace[i];\n\t\tdelaied[depth][position] = true;\n\t}\n\tvoid recalculation(int depth, int position) {\n\t\tif (depth == 0) return;\n\t\tfor (auto i = 0; i < seg[depth][position].size(); ++i) {\n\t\t\tif (position * 2 + 1 < seg[depth - 1].size()) {\n\t\t\t\tseg[depth][position][i] = seg[depth - 1][position * 2][i] + seg[depth - 1][position * 2 + 1][i];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tseg[depth][position][i] = seg[depth - 1][position * 2][i];\n\t\t\t}\n\t\t}\n\t}\n\tvoid add_inner(int depth, int from, int until) {\n\t\tif (from >= until) return;\n\t\tint length = 1 << depth;\n\t\tauto mid = (from + length - 1) / length * length;\n\t\tif (mid + length < until) {\n\t\t\tadd_inner(depth, from, mid + length);\n\t\t\tadd_inner(depth, mid + length, until);\n\t\t\treturn;\n\t\t}\n\t\tif (from < mid && mid < until) {\n\t\t\tadd_inner(depth, from, mid);\n\t\t\tadd_inner(depth, mid, until);\n\t\t\treturn;\n\t\t}\n\t\tif (from == mid && mid + length == until) {\n\t\t\tensure_change(depth, from / length);\n\t\t\treturn;\n\t\t}\n\t\tapply_delaied(depth, from / length);\n\t\tadd_inner(depth - 1, from, until);\n\t\trecalculation(depth, from / length);\n\t}\n\tint count_inner(int depth, int from, int until) {\n\t\tif (from >= until) return 0;\n\t\tint length = 1 << depth;\n\t\tauto mid = (from + length - 1) / length * length;\n\t\tif (mid + length < until) {\n\t\t\treturn count_inner(depth, from, mid + length) + count_inner(depth, mid + length, until);\n\t\t}\n\t\tif (from < mid && mid < until) {\n\t\t\treturn count_inner(depth, from, mid) + count_inner(depth, mid, until);\n\t\t}\n\t\tif (from == mid && mid + length == until) {\n\t\t\treturn seg[depth][from / length].back();\n\t\t}\n\t\tapply_delaied(depth, from / length);\n\t\trecalculation(depth, from / length);\n\t\treturn count_inner(depth - 1, from, until);\n\t}\n\tvoid set_replacer(const std::string& str) {\n\t\tstd::iota(replacer.begin(), replacer.end(), 0);\n\t\tfor (const auto c : str) {\n\t\t\tfor (auto& i : replacer) {\n\t\t\t\ti = next_position[i][c - 'a'];\n\t\t\t}\n\t\t}\n\t}\npublic:\n\tSegTree(int size, const std::string& str) : next_position(str.size() + 1, std::vector<int>(26, 0)), replacer(str.size() + 1), work_space(str.size() + 1) {\n\t\tstd::vector<int> lcp(str.size(), 0);\n\t\tlcp[0] = -1;\n\t\tfor (auto i = 2; i < str.size(); ++i) {\n\t\t\tlcp[i] = lcp[i - 1];\n\t\t\twhile (lcp[i] != -1 && str[lcp[i]] != str[i - 1]) {\n\t\t\t\tlcp[i] = lcp[lcp[i]];\n\t\t\t}\n\t\t\tlcp[i]++;\n\t\t}\n\t\tnext_position[0][str[0] - 'a'] = 1;\n\t\tfor (auto i = 1; i < str.size(); ++i) {\n\t\t\tnext_position[i] = next_position[lcp[i]];\n\t\t\tnext_position[i][str[i] - 'a'] = i + 1;\n\t\t}\n\t\tif (lcp.back() != -1) {\n\t\t\tnext_position[str.size()] = next_position[next_position[lcp.back()][str.back() - 'a']];\n\t\t}\n\t\telse {\n\t\t\tnext_position[str.size()][str.back() - 'a'] = 1;\n\t\t}\n\t\tseg.emplace_back(size, std::vector<int>(str.size() + 1, 0));\n\t\tfor (auto& c : seg[0]) c[0] = 1;\n\t\tdelay.emplace_back(size, std::vector<int>(str.size() + 1));\n\t\tdelaied.emplace_back(size);\n\t\twhile (seg.back().size() > 1) {\n\t\t\tdelay.emplace_back((seg.back().size() + 1) / 2, std::vector<int>(str.size() + 1));\n\t\t\tdelaied.emplace_back((seg.back().size() + 1) / 2, false);\n\t\t\tseg.emplace_back((seg.back().size() + 1) / 2, std::vector<int>(str.size() + 1, 0));\n\t\t}\n\t\tfor (auto i = 0; i + 1 < seg.size(); ++i) {\n\t\t\tfor (auto j = 0; j < seg[i].size(); ++j) {\n\t\t\t\tseg[i + 1][j / 2][0] += seg[i][j][0];\n\t\t\t}\n\t\t}\n\t}\n\tvoid add(int from, int to, const std::string str) {\n\t\tset_replacer(str);\n\t\tadd_inner(seg.size() - 1, from, to + 1);\n\t}\n\tint count(int from, int to) {\n\t\treturn count_inner(seg.size() - 1, from, to + 1);\n\t}\n};\nint main() {\n\tstd::cin.tie(0); std::cin.sync_with_stdio(false);\n\tstd::vector<int> result;\n\tstd::string str; std::cin >> str;\n\tint n, q; std::cin >> n >> q;\n\tSegTree seg(n, str);\n\tstd::string c;\n\tfor (auto i = 0; i < q; ++i) {\n\t\tint type, l, r; std::cin >> type >> l >> r;\n\t\tswitch (type) {\n\t\tcase 1: std::cin >> c;\n\t\t\tseg.add(l - 1, r - 1, c);\n\t\t\tbreak;\n\t\tcase 2: std::cout << seg.count(l - 1, r - 1) << '\\n';\n\t\t\tbreak;\n\t\tdefault: throw 0;\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 680, "memory_kb": 48440, "score_of_the_acc": -0.2644, "final_rank": 1 }, { "submission_id": "aoj_3073_4018698", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <unordered_set>\n#include <tuple>\n#include <bitset>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\n\n\n\nclass SegTree {\n\tstd::vector<std::vector<int>> next_position;\n\tstd::vector<std::vector<std::vector<int>>> seg;\n\tstd::vector<std::vector<std::queue<char>>> delay;\n\tstd::vector<int> work_space;\n\tvoid ensure_change(int depth, int position, const std::string &str) {\n\t\tstd::copy(seg[depth][position].begin(), seg[depth][position].end(), work_space.begin());\n\t\tstd::fill(seg[depth][position].begin(), seg[depth][position].end(), 0);\n\t\tfor (auto i = 0; i < work_space.size(); ++i) if (work_space[i] != 0) {\n\t\t\tauto next = i;\n\t\t\tfor (const auto c : str) {\n\t\t\t\tnext = next_position[next][c - 'a'];\n\t\t\t}\n\t\t\tseg[depth][position][next] += work_space[i];\n\t\t}\n\t}\n\tvoid ensure_change(int depth, int position, char charactor) {\n\t\tstd::copy(seg[depth][position].begin(), seg[depth][position].end(), work_space.begin());\n\t\tstd::fill(seg[depth][position].begin(), seg[depth][position].end(), 0);\n\t\tfor (auto i = 0; i < work_space.size(); ++i) {\n\t\t\tseg[depth][position][next_position[i][charactor - 'a']] += work_space[i];\n\t\t}\n\t}\n\tvoid add_str(int depth, int position, const std::string &str) {\n\t\tif (depth != 0) {\n\t\t\tfor (auto c : str) {\n\t\t\t\tif (delay[depth][position].size() == next_position.size() - 1) delay[depth][position].pop();\n\t\t\t\tdelay[depth][position].push(c);\n\t\t\t}\n\t\t}\n\t\tensure_change(depth, position, str);\n\t}\n\tvoid add_char(int depth, int position, char charactor) {\n\t\tif (depth != 0) {\n\t\t\tif (delay[depth][position].size() == next_position.size() - 1) delay[depth][position].pop();\n\t\t\tdelay[depth][position].push(charactor);\n\t\t}\n\t\tensure_change(depth, position, charactor);\n\t}\n\n\tvoid apply_delaied(int depth, int position) {\n\t\twhile (!delay[depth][position].empty()) {\n\t\t\tadd_char(depth - 1, position * 2, delay[depth][position].front());\n\t\t\tadd_char(depth - 1, position * 2 + 1, delay[depth][position].front());\n\t\t\tdelay[depth][position].pop();\n\t\t}\n\t}\n\tvoid recalculation(int depth, int position) {\n\t\tif (depth == 0) return;\n\t\tapply_delaied(depth, position);\n\t\tfor (auto i = 0; i < seg[depth][position].size(); ++i) {\n\t\t\tif (position * 2 + 1 < seg[depth - 1].size()) {\n\t\t\t\tseg[depth][position][i] = seg[depth - 1][position * 2][i] + seg[depth - 1][position * 2 + 1][i];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tseg[depth][position][i] = seg[depth - 1][position * 2][i];\n\t\t\t}\n\t\t}\n\t}\n\tvoid add_inner(int depth, int from, int until, const std::string &str) {\n\t\tif (from >= until) return;\n\t\tint length = 1 << depth;\n\t\tauto mid = (from + length - 1) / length * length;\n\t\tif (mid + length < until) {\n\t\t\tadd_inner(depth, from, mid + length, str);\n\t\t\tadd_inner(depth, mid + length, until, str);\n\t\t\treturn;\n\t\t}\n\t\tif (from < mid && mid < until) {\n\t\t\tadd_inner(depth, from, mid, str);\n\t\t\tadd_inner(depth, mid, until, str);\n\t\t\treturn;\n\t\t}\n\t\tif (from == mid && mid + length == until) {\n\t\t\tadd_str(depth, from / length, str);\n\t\t\treturn;\n\t\t}\n\t\tapply_delaied(depth, from / length);\n\t\tadd_inner(depth - 1, from, until, str);\n\t\trecalculation(depth, from / length);\n\t}\n\tint count_inner(int depth, int from, int until) {\n\t\tif (from >= until) return 0;\n\t\tint length = 1 << depth;\n\t\tauto mid = (from + length - 1) / length * length;\n\t\tif (mid + length < until) {\n\t\t\treturn count_inner(depth, from, mid + length) + count_inner(depth, mid + length, until);\n\t\t}\n\t\tif (from < mid && mid < until) {\n\t\t\treturn count_inner(depth, from, mid) + count_inner(depth, mid, until);\n\t\t}\n\t\tif (from == mid && mid + length == until) {\n\t\t\treturn seg[depth][from / length].back();\n\t\t}\n\t\trecalculation(depth, from / length);\n\t\treturn count_inner(depth - 1, from, until);\n\t}\npublic:\n\tSegTree(int size, const std::string& str) : next_position(str.size() + 1, std::vector<int>(26, 0)), work_space(str.size() + 1) {\n\t\tstd::vector<int> lcp(str.size(), 0);\n\t\tlcp[0] = -1;\n\t\tfor (auto i = 2; i < str.size(); ++i) {\n\t\t\tlcp[i] = lcp[i - 1];\n\t\t\twhile (lcp[i] != -1 && str[lcp[i]] != str[i]) {\n\t\t\t\tlcp[i] = lcp[lcp[i]];\n\t\t\t}\n\t\t\tlcp[i]++;\n\t\t}\n\t\tnext_position[0][str[0] - 'a'] = 1;\n\t\tfor (auto i = 1; i < str.size(); ++i) {\n\t\t\tnext_position[i] = next_position[lcp[i]];\n\t\t\tnext_position[i][str[i] - 'a'] = i + 1;\n\t\t}\n\t\tif (lcp.back() != -1) {\n\t\t\tnext_position[str.size()] = next_position[next_position[lcp.back()][str.back() - 'a']];\n\t\t}\n\t\telse {\n\t\t\tnext_position[str.size()][str.back() - 'a'] = 1;\n\t\t}\n\t\tseg.emplace_back(size, std::vector<int>(str.size() + 1, 0));\n\t\tfor (auto& c : seg[0]) c[0] = 1;\n\t\tdelay.emplace_back(size);\n\t\twhile (seg.back().size() > 1) {\n\t\t\tdelay.emplace_back((seg.back().size() + 1) / 2);\n\t\t\tseg.emplace_back((seg.back().size() + 1) / 2, std::vector<int>(str.size() + 1, 0));\n\t\t}\n\t\tfor (auto i = 0; i + 1 < seg.size(); ++i) {\n\t\t\tfor (auto j = 0; j < seg[i].size(); ++j) {\n\t\t\t\tseg[i + 1][j / 2][0] += seg[i][j][0];\n\t\t\t}\n\t\t}\n\t}\n\tvoid add(int from, int to, const std::string str) {\n\t\tadd_inner(seg.size() - 1, from, to + 1, str);\n\t}\n\tint count(int from, int to) {\n\t\treturn count_inner(seg.size() - 1, from, to + 1);\n\t}\n};\nint main() {\n\tstd::string str; std::cin >> str;\n\tint n, q; std::cin >> n >> q;\n\tSegTree seg(n, str);\n\tstd::string c;\n\tfor (auto i = 0; i < q; ++i) {\n\t\tint type, l, r; std::cin >> type >> l >> r;\n\t\tswitch (type) {\n\t\tcase 1: std::cin >> c;\n\t\t\tseg.add(l - 1, r - 1, c);\n\t\t\tbreak;\n\t\tcase 2: std::cout << seg.count(l - 1, r - 1) << '\\n';\n\t\t\tbreak;\n\t\tdefault: throw 0;\n\t\t}\n\t}\n}", "accuracy": 0.7777777777777778, "time_ms": 990, "memory_kb": 144484, "score_of_the_acc": -1.3527, "final_rank": 19 }, { "submission_id": "aoj_3073_4018697", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <unordered_set>\n#include <tuple>\n#include <bitset>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\n\n\n\nclass SegTree {\n\tstd::vector<std::vector<int>> next_position;\n\tstd::vector<std::vector<std::vector<int>>> seg;\n\tstd::vector<std::vector<std::queue<char>>> delay;\n\tstd::vector<int> work_space;\n\tvoid ensure_change(int depth, int position, const std::string &str) {\n\t\tstd::copy(seg[depth][position].begin(), seg[depth][position].end(), work_space.begin());\n\t\tstd::fill(seg[depth][position].begin(), seg[depth][position].end(), 0);\n\t\tfor (auto i = 0; i < work_space.size(); ++i) if (work_space[i] != 0) {\n\t\t\tauto next = i;\n\t\t\tfor (const auto c : str) {\n\t\t\t\tnext = next_position[next][c - 'a'];\n\t\t\t}\n\t\t\tseg[depth][position][next] += work_space[i];\n\t\t}\n\t}\n\tvoid ensure_change(int depth, int position, char charactor) {\n\t\tstd::copy(seg[depth][position].begin(), seg[depth][position].end(), work_space.begin());\n\t\tstd::fill(seg[depth][position].begin(), seg[depth][position].end(), 0);\n\t\tfor (auto i = 0; i < work_space.size(); ++i) {\n\t\t\tseg[depth][position][next_position[i][charactor - 'a']] += work_space[i];\n\t\t}\n\t}\n\tvoid add_str(int depth, int position, const std::string &str) {\n\t\tif (depth != 0) {\n\t\t\tfor (auto c : str) {\n\t\t\t\tif (delay[depth][position].size() == next_position.size() - 1) delay[depth][position].pop();\n\t\t\t\tdelay[depth][position].push(c);\n\t\t\t}\n\t\t}\n\t\tensure_change(depth, position, str);\n\t}\n\tvoid add_char(int depth, int position, char charactor) {\n\t\tif (depth != 0) {\n\t\t\tif (delay[depth][position].size() == next_position.size() - 1) delay[depth][position].pop();\n\t\t\tdelay[depth][position].push(charactor);\n\t\t}\n\t\tensure_change(depth, position, charactor);\n\t}\n\n\tvoid apply_delaied(int depth, int position) {\n\t\twhile (!delay[depth][position].empty()) {\n\t\t\tadd_char(depth - 1, position * 2, delay[depth][position].front());\n\t\t\tadd_char(depth - 1, position * 2 + 1, delay[depth][position].front());\n\t\t\tdelay[depth][position].pop();\n\t\t}\n\t}\n\tvoid recalculation(int depth, int position) {\n\t\tif (depth == 0) return;\n\t\tapply_delaied(depth, position);\n\t\tfor (auto i = 0; i < seg[depth][position].size(); ++i) {\n\t\t\tif (position * 2 + 1 < seg[depth - 1].size()) {\n\t\t\t\tseg[depth][position][i] = seg[depth - 1][position * 2][i] + seg[depth - 1][position * 2 + 1][i];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tseg[depth][position][i] = seg[depth - 1][position * 2][i];\n\t\t\t}\n\t\t}\n\t}\n\tvoid add_inner(int depth, int from, int until, const std::string &str) {\n\t\tif (from >= until) return;\n\t\tint length = 1 << depth;\n\t\tauto mid = (from + length - 1) / length * length;\n\t\tif (mid + length < until) {\n\t\t\tadd_inner(depth, from, mid + length, str);\n\t\t\tadd_inner(depth, mid + length, until, str);\n\t\t\treturn;\n\t\t}\n\t\tif (from < mid && mid < until) {\n\t\t\tadd_inner(depth, from, mid, str);\n\t\t\tadd_inner(depth, mid, until, str);\n\t\t\treturn;\n\t\t}\n\t\tif (from == mid && mid + length == until) {\n\t\t\tadd_str(depth, from / length, str);\n\t\t\treturn;\n\t\t}\n\t\tapply_delaied(depth, from / length);\n\t\tadd_inner(depth - 1, from, until, str);\n\t\trecalculation(depth, from / length);\n\t}\n\tint count_inner(int depth, int from, int until) {\n\t\tif (from >= until) return 0;\n\t\tint length = 1 << depth;\n\t\tauto mid = (from + length - 1) / length * length;\n\t\tif (mid + length < until) {\n\t\t\treturn count_inner(depth, from, mid + length) + count_inner(depth, mid + length, until);\n\t\t}\n\t\tif (from < mid && mid < until) {\n\t\t\treturn count_inner(depth, from, mid) + count_inner(depth, mid, until);\n\t\t}\n\t\tif (from == mid && mid + length == until) {\n\t\t\treturn seg[depth][from / length].back();\n\t\t}\n\t\trecalculation(depth, from / length);\n\t\treturn count_inner(depth - 1, from, until);\n\t}\npublic:\n\tSegTree(int size, const std::string& str) : next_position(str.size() + 1, std::vector<int>(26, 0)), work_space(str.size() + 1) {\n\t\tstd::vector<int> lcp(str.size(), 0);\n\t\tlcp[0] = -1;\n\t\tfor (auto i = 2; i < str.size(); ++i) {\n\t\t\tlcp[i] = lcp[i - 1];\n\t\t\twhile (lcp[i] != -1 && str[lcp[i]] != str[i]) {\n\t\t\t\tlcp[i] = lcp[lcp[i]];\n\t\t\t}\n\t\t\tlcp[i]++;\n\t\t}\n\t\tnext_position[0][str[0] - 'a'] = 1;\n\t\tfor (auto i = 1; i < str.size(); ++i) {\n\t\t\tnext_position[i] = next_position[lcp[i]];\n\t\t\tnext_position[i][str[i] - 'a'] = i + 1;\n\t\t}\n\t\tnext_position[str.size()] = next_position[next_position[lcp.back()][str.back() - 'a']];\n\t\tseg.emplace_back(size, std::vector<int>(str.size() + 1, 0));\n\t\tfor (auto& c : seg[0]) c[0] = 1;\n\t\tdelay.emplace_back(size);\n\t\twhile (seg.back().size() > 1) {\n\t\t\tdelay.emplace_back((seg.back().size() + 1) / 2);\n\t\t\tseg.emplace_back((seg.back().size() + 1) / 2, std::vector<int>(str.size() + 1, 0));\n\t\t}\n\t\tfor (auto i = 0; i + 1 < seg.size(); ++i) {\n\t\t\tfor (auto j = 0; j < seg[i].size(); ++j) {\n\t\t\t\tseg[i + 1][j / 2][0] += seg[i][j][0];\n\t\t\t}\n\t\t}\n\t}\n\tvoid add(int from, int to, const std::string str) {\n\t\tadd_inner(seg.size() - 1, from, to + 1, str);\n\t}\n\tint count(int from, int to) {\n\t\treturn count_inner(seg.size() - 1, from, to + 1);\n\t}\n};\nint main() {\n\tstd::string str; std::cin >> str;\n\tint n, q; std::cin >> n >> q;\n\tSegTree seg(n, str);\n\tstd::string c;\n\tfor (auto i = 0; i < q; ++i) {\n\t\tint type, l, r; std::cin >> type >> l >> r;\n\t\tswitch (type) {\n\t\tcase 1: std::cin >> c;\n\t\t\tseg.add(l - 1, r - 1, c);\n\t\t\tbreak;\n\t\tcase 2: std::cout << seg.count(l - 1, r - 1) << '\\n';\n\t\t\tbreak;\n\t\tdefault: throw 0;\n\t\t}\n\t}\n}", "accuracy": 0.6944444444444444, "time_ms": 850, "memory_kb": 144640, "score_of_the_acc": -1.2915, "final_rank": 20 }, { "submission_id": "aoj_3073_3916269", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n\nusing namespace std;\n\nint len;\n\nvoid ident(vector<int> &vec)\n{\n\tfor(int i = 0; i <= len; i++) vec[i] = i;\n}\nvoid ope(vector<int> &vec, vector<int> &op)\n{\n\tvector<int> tmp = vec;\n\t//cout << \"VEC \"; for(int i = 0; i <= len; i++) cout << vec[i] << \" \"; cout << endl;\n\t//cout << \"OP \"; for(int i = 0; i <= len; i++) cout << op[i] << \" \"; cout << endl;\n\tfor(int i = 0; i <= len; i++) vec[i] = 0;\n\tfor(int i = 0; i <= len; i++) vec[op[i]] += tmp[i];\n\t//cout << \"ANS \"; for(int i = 0; i <= len; i++) cout << vec[i] << \" \"; cout << endl;\n}\nvoid mul(vector<int> &op, vector<int> &op2)\n{\n\tvector<int> tmp = op;\n\tfor(int i = 0; i <= len; i++) op[i] = op2[tmp[i]];\n}\nvoid merge(vector<int> &dest, vector<int> &src, vector<int> &src2)\n{\n\tfor(int i = 0; i <= len; i++) dest[i] = src[i] + src2[i];\n}\n\nstruct SegTree{\n\tint size;\n\tvector<vector<int> > seg, delay;\n\tvector<int> flag;\n\t\n\tSegTree(){}\n\tSegTree(int size){\n\t\tthis->size = size;\n\t\tseg.resize(1<<(size+1));\n\t\tdelay.resize(1<<(size+1));\n\t\tfor(int i = 0; i < (1<<(size+1)); i++){\n\t\t\tseg[i].resize(len+1);\n\t\t\tdelay[i].resize(len+1);\n\t\t}\n\t\tflag.resize(1<<(size+1));\n\t}\n\t\n\tvoid init()\n\t{\n\t\tfor(int i = 0; i < (1<<(size+1)); i++) ident(delay[i]);\n\t}\n\t\n\tvoid eval(int l, int r, int k)\n\t{\n\t\tif(flag[k]){\n\t\t\tope(seg[k], delay[k]);\n\t\t\tif(l < r){\n\t\t\t\tmul(delay[k*2], delay[k]), flag[k*2] = true;\n\t\t\t\tmul(delay[k*2+1], delay[k]), flag[k*2+1] = true;\n\t\t\t}\n\t\t\tident(delay[k]);\n\t\t\tflag[k] = false;\n\t\t}\n\t}\n\t\n\tvoid update(int i)\n\t{\n\t\ti += (1 << size);\n\t\tseg[i][0] = 1;\n\t\twhile(i > 1){\n\t\t\ti /= 2;\n\t\t\tseg[i][0] = seg[i*2][0] + seg[i*2+1][0];\n\t\t}\n\t}\n\t\n\tvoid add(int a, int b, int k, int l, int r, vector<int> &val)\n\t{\n\t\teval(l, r, k);\n\t\t\n\t\tif(b < l || r < a) return;\n\t\tif(a <= l && r <= b){\n\t\t\tmul(delay[k], val);\n\t\t\tflag[k] = true;\n\t\t\teval(l, r, k);\n\t\t\treturn;\n\t\t}\n\t\tadd(a, b, k*2, l, (l+r)/2, val);\n\t\tadd(a, b, k*2+1, (l+r)/2+1, r, val);\n\t\tmerge(seg[k], seg[k*2], seg[k*2+1]);\n\t}\n\tvoid add(int a, int b, vector<int> &val){\n\t\tif(a > b) return;\n\t\tadd(a, b, 1, 0, (1<<size)-1, val);\n\t}\n \n\tint query(int a, int b, int k, int l, int r)\n\t{\n\t\teval(l, r, k);\n\t\t\n\t\tif(b < l || r < a) return 0;\n\t\tif(a <= l && r <= b) return seg[k][len];\n\t\tint lval = query(a, b, k*2, l, (l+r)/2);\n\t\tint rval = query(a, b, k*2+1, (l+r)/2+1, r);\n\t\treturn lval + rval;\n\t}\n\tint query(int a, int b)\n\t{\n\t\treturn query(a, b, 1, 0, (1<<size)-1);\n\t}\n};\n\nstring s;\nint n, Q;\nint succ[25][26];\nSegTree seg;\n\nvoid get(vector<int> &vec, char c)\n{\n\tfor(int i = 0; i <= len; i++) vec[i] = succ[i][c-'a'];\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> s;\n\tcin >> n >> Q;\n\t\n\tlen = s.size();\n\tseg = SegTree(17);\n\tfor(int i = 1; i <= n; i++) seg.update(i);\n\t\n\tfor(int i = 0; i <= len; i++){\n\t\tfor(int j = 0; j < 26; j++){\n\t\t\tstring t = s.substr(0, i) + (char)(j+'a');\n\t\t\tint k = t.size();\n\t\t\tfor(; k >= 0; k--){\n\t\t\t\tif(t == s.substr(0, k)) break;\n\t\t\t\tt = t.substr(1);\n\t\t\t}\n\t\t\tsucc[i][j] = k;\n\t\t}\n\t}\n\t\n\tint t, l, r; string str;\n\tvector<int> vec(len+1), op(len+1);\n\t\n\tseg.init();\n\t\n\tfor(int q = 0; q < Q; q++){\n\t\tcin >> t >> l >> r;\n\t\tif(t == 1){\n\t\t\tcin >> str;\n\t\t\tident(vec);\n\t\t\tfor(int i = 0; i < str.size(); i++){\n\t\t\t\tget(op, str[i]);\n\t\t\t\tmul(vec, op);\n\t\t\t}\n\t\t\t//for(int i = 0; i <= len; i++) cout << vec[i] << \" \"; cout << endl;\n\t\t\tseg.add(l, r, vec);\n\t\t\t/*for(int i = 1; i <= n; i++){\n\t\t\t\tcout << \"[\"; for(int j = 0; j <= len; j++) cout << seg.seg[(1<<17)+i][j]; cout << \"] \";\n\t\t\t}\n\t\t\tcout << endl;*/\n\t\t}\n\t\telse cout << seg.query(l, r) << \"\\n\";\n\t}\n\tflush(cout);\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1340, "memory_kb": 127700, "score_of_the_acc": -1.3438, "final_rank": 9 }, { "submission_id": "aoj_3073_3893193", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\ntemplate<size_t X>\nstruct Trie{\n struct Node{\n char c;\n array<int, X> nxt;\n vector<int> idxs;\n int idx;\n Node(char c):c(c),idx(-1){fill(nxt.begin(),nxt.end(),-1);}\n };\n\n using F = function<int(char)>;\n vector<Node> v;\n F conv;\n\n Trie(F conv,char c='$'):conv(conv){v.emplace_back(c);}\n\n void add(const string &s,int x){\n int pos=0;\n for(int i=0;i<(int)s.size();i++){\n int k=conv(s[i]);\n if(~v[pos].nxt[k]){\n pos=v[pos].nxt[k];\n continue;\n }\n int npos=v.size();\n v[pos].nxt[k]=npos;\n v.emplace_back(s[i]);\n pos=npos;\n }\n v[pos].idx=x;\n v[pos].idxs.emplace_back(x);\n }\n\n int find(const string &s){\n int pos=0;\n for(int i=0;i<(int)s.size();i++){\n int k=conv(s[i]);\n if(v[pos].nxt[k]<0) return -1;\n pos=v[pos].nxt[k];\n }\n return pos;\n }\n\n int find(int pos,char c){\n return v[pos].nxt[conv(c)];\n }\n\n int idx(int pos){\n return pos<0?-1:v[pos].idx;\n }\n\n vector<int> idxs(int pos){\n return pos<0?vector<int>():v[pos].idxs;\n }\n\n};\n\ntemplate<size_t X>\nstruct AhoCorasick : Trie<X+1>{\n using TRIE = Trie<X+1>;\n using TRIE::TRIE;\n vector<int> cnt;\n\n void build(bool heavy=true){\n auto &v=TRIE::v;\n int n=v.size();\n cnt.resize(n);\n for(int i=0;i<n;i++){\n if(heavy) sort(v[i].idxs.begin(),v[i].idxs.end());\n cnt[i]=v[i].idxs.size();\n }\n\n queue<int> q;\n for(int i=0;i<(int)X;i++){\n if(~v[0].nxt[i]){\n v[v[0].nxt[i]].nxt[X]=0;\n q.emplace(v[0].nxt[i]);\n }else{\n v[0].nxt[i]=0;\n }\n }\n\n while(!q.empty()){\n auto &x=v[q.front()];\n cnt[q.front()]+=cnt[x.nxt[X]];\n q.pop();\n for(int i=0;i<(int)X;i++){\n if(x.nxt[i]<0) continue;\n int fail=x.nxt[X];\n while(v[fail].nxt[i]<0) fail=v[fail].nxt[X];\n v[x.nxt[i]].nxt[X]=v[fail].nxt[i];\n if(heavy){\n auto &idx=v[x.nxt[i]].idxs;\n auto &idy=v[v[fail].nxt[i]].idxs;\n vector<int> idz;\n set_union(idx.begin(),idx.end(),\n idy.begin(),idy.end(),\n back_inserter(idz));\n idx=idz;\n }\n q.emplace(x.nxt[i]);\n }\n }\n }\n\n vector<int> match(string s,int heavy=true){\n auto &v=TRIE::v;\n vector<int> res(heavy?TRIE::size():1);\n int pos=0;\n for(auto &c:s){\n int k=TRIE::conv(c);\n while(v[pos].nxt[k]<0) pos=v[pos].nxt[X];\n pos=v[pos].nxt[k];\n if(heavy) for(auto &x:v[pos].idxs) res[x]++;\n else res[0]+=cnt[pos];\n }\n return res;\n }\n\n int move(int pos,char c){\n auto &v=TRIE::v;\n if(pos>=(int)v.size()) return pos;\n int k=TRIE::conv(c);\n while(v[pos].nxt[k]<0) pos=v[pos].nxt[X];\n pos=v[pos].nxt[k];\n return pos;\n }\n\n int count(int pos){\n return pos<(int)cnt.size()?cnt[pos]:0;\n }\n};\n\n\n\ntemplate <typename T,typename E>\nstruct SegmentTree{\n using F = function<T(T,T)>;\n using G = function<T(T,E)>;\n using H = function<E(E,E)>;\n int n,height;\n F f;\n G g;\n H h;\n T ti;\n E ei;\n vector<T> dat;\n vector<E> laz;\n SegmentTree(F f,G g,H h,T ti,E ei):\n f(f),g(g),h(h),ti(ti),ei(ei){}\n\n void init(int n_){\n n=1;height=0;\n while(n<n_) n<<=1,height++;\n dat.assign(2*n,ti);\n laz.assign(2*n,ei);\n }\n void build(const vector<T> &v){\n int n_=v.size();\n init(n_);\n for(int i=0;i<n_;i++) dat[n+i]=v[i];\n for(int i=n-1;i;i--)\n dat[i]=f(dat[(i<<1)|0],dat[(i<<1)|1]);\n }\n inline T reflect(int k){\n return laz[k]==ei?dat[k]:g(dat[k],laz[k]);\n }\n inline void eval(int k){\n if(laz[k]==ei) return;\n laz[(k<<1)|0]=h(laz[(k<<1)|0],laz[k]);\n laz[(k<<1)|1]=h(laz[(k<<1)|1],laz[k]);\n dat[k]=reflect(k);\n laz[k]=ei;\n }\n inline void thrust(int k){\n for(int i=height;i;i--) eval(k>>i);\n }\n inline void recalc(int k){\n while(k>>=1)\n dat[k]=f(reflect((k<<1)|0),reflect((k<<1)|1));\n }\n void update(int a,int b,E x){\n thrust(a+=n);\n thrust(b+=n-1);\n for(int l=a,r=b+1;l<r;l>>=1,r>>=1){\n if(l&1) laz[l]=h(laz[l],x),l++;\n if(r&1) --r,laz[r]=h(laz[r],x);\n }\n recalc(a);\n recalc(b);\n }\n void set_val(int a,T x){\n thrust(a+=n);\n dat[a]=x;laz[a]=ei;\n recalc(a);\n }\n T query(int a,int b){\n thrust(a+=n);\n thrust(b+=n-1);\n T vl=ti,vr=ti;\n for(int l=a,r=b+1;l<r;l>>=1,r>>=1) {\n if(l&1) vl=f(vl,reflect(l++));\n if(r&1) vr=f(reflect(--r),vr);\n }\n return f(vl,vr);\n }\n\n template<typename C>\n int find(int st,C &check,T &acc,int k,int l,int r){\n if(l+1==r){\n acc=f(acc,reflect(k));\n return check(acc)?k-n:-1;\n }\n eval(k);\n int m=(l+r)>>1;\n if(m<=st) return find(st,check,acc,(k<<1)|1,m,r);\n if(st<=l&&!check(f(acc,dat[k]))){\n acc=f(acc,dat[k]);\n return -1;\n }\n int vl=find(st,check,acc,(k<<1)|0,l,m);\n if(~vl) return vl;\n return find(st,check,acc,(k<<1)|1,m,r);\n }\n template<typename C>\n int find(int st,C &check){\n T acc=ti;\n return find(st,check,acc,1,0,n);\n }\n};\n\n//INSERT ABOVE HERE\nsigned main(){\n\n string s;\n cin>>s;\n int n,q;\n cin>>n>>q;\n\n auto conv=[](char c){return c-'a';};\n AhoCorasick<26> aho(conv);\n aho.add(s,0);\n aho.build(false);\n\n using A = array<int, 32>;\n A ti,ei;\n fill(ti.begin(),ti.end(),0);\n iota(ei.begin(),ei.end(),0);\n auto f=[&](A a,A b){\n A c;\n for(int i=0;i<(int)a.size();i++) c[i]=a[i]+b[i];\n return c;\n };\n auto g=[&](A a,A b){\n A c(ti);\n for(int i=0;i<(int)a.size();i++) c[b[i]]+=a[i];\n return c;\n };\n auto h=[&](A a,A b){\n A c;\n for(int i=0;i<(int)a.size();i++) c[i]=b[a[i]];\n return c;\n };\n SegmentTree<A, A> seg(f,g,h,ti,ei);\n vector<A> va(n,ti);\n for(int i=0;i<n;i++) va[i][0]=1;\n seg.build(va);\n\n vector<A> mv(26);\n for(int x=0;x<26;x++){\n for(int i=0;i<(int)mv[x].size();i++)\n mv[x][i]=aho.move(i,char('a'+x));\n }\n\n for(int i=0;i<q;i++){\n int t;\n cin>>t;\n if(t==1){\n int l,r;\n string c;\n cin>>l>>r>>c;\n l--;\n A a=ei;\n for(char x:c) a=h(a,mv[x-'a']);\n seg.update(l,r,a);\n //for(char x:c) seg.update(l,r,mv[x-'a']);\n }\n if(t==2){\n int l,r;\n cin>>l>>r;\n l--;\n A res=seg.query(l,r);\n int ans=0;\n for(int j=0;j<(int)res.size();j++)\n if(aho.count(j)) ans+=res[j];\n cout<<ans<<\"\\n\";\n }\n }\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 1020, "memory_kb": 80840, "score_of_the_acc": -0.7371, "final_rank": 7 }, { "submission_id": "aoj_3073_3880867", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\n/* Aho Corasick */\n\nstruct ACNode{\n int val;\n ACNode *next[26], *failure;\n int id;\n\n ACNode():val(0) { memset(next, 0, sizeof(next)); }\n\n void insert(char *s, int _id){\n id = _id;\n if(!*s){ val++; return; }\n int al = *s - 'a';\n if(next[al] == NULL) next[al] = new ACNode;\n next[al]->insert(s+1, _id+1);\n }\n\n ACNode *nextNode(char c){\n int al = c - 'a';\n if (next[al]) return next[al];\n return failure == this ? this : failure->nextNode(c);\n }\n};\n\nstruct AhoCorasick{\n ACNode *node;\n\n AhoCorasick(){node = new ACNode;}\n\n void insert(char *s) {\n node->insert(s, 0);\n }\n\n void build() {\n queue<ACNode*> que;\n que.push(node);\n node->failure = node;\n\n while(que.size()){\n ACNode *p = que.front();\n que.pop();\n\n for(int i=0;i<26;i++){\n if(p->next[i]){\n ACNode *failure = p->failure;\n while(!failure->next[i] && failure != node)\n failure = failure->failure;\n\n if (failure->next[i] && failure != p){\n p->next[i]->failure = failure->next[i];\n p->next[i]->val += failure->next[i]->val;\n }else{\n p->next[i]->failure = node;\n }\n que.push(p->next[i]);\n }\n }\n }\n }\n};\n\nvector<int> apply(vector<int> &a, vector<int> &b) {\n vector<int> res;\n\n assert(a.size() == b.size());\n\n for(int i=0; i<a.size(); i++) {\n res.push_back(b[a[i]]);\n }\n\n return res;\n}\n\nvector<int> apply2(vector<int> &a, vector<int> &b) {\n vector<int> res(a.size(), 0);\n assert(a.size() == b.size());\n\n for(int i=0; i<a.size(); i++) {\n res[b[i]] += a[i];\n }\n\n return res;\n}\n\n/* SegmentTree(Sum) */\n//0-index\n\nstruct SegTree{\n int segn2;\n vector<vector<int> > data;\n vector<vector<int> > rep;\n vector<int> base;\n\n vector<int> merge(vector<int> &a, vector<int> &b) {\n vector<int> res = a;\n\n for(int i=0; i<a.size(); i++)\n res[i] += b[i];\n\n return res;\n }\n\n SegTree(int n, int m){\n for(segn2=1; segn2<n; segn2*=2);\n\n vector<int> v(m);\n\n data.assign(segn2*2, v);\n\n v[0] = 1;\n\n for(int i=segn2-1; i<segn2-1+n; i++) {\n data[i] = v;\n }\n\n for(int i=segn2-2; i>=0; i--) {\n data[i] = merge(data[i*2+1], data[i*2+2]);\n }\n\n base.assign(m, 0);\n iota(base.begin(), base.end(), 0);\n rep.assign(segn2*2, base);\n }\n\n //get sum of [a, b)\n vector<int> query(int a, int b, int l = 0, int r = -1, int k = 0){\n if(r == -1) r = segn2;\n\n if(r <= a || b <= l) return vector<int>(data[k].size(), 0);\n if(a <= l && r <= b) return data[k];\n\n auto res1 = query(a, b, l, (l+r)/2, k*2+1);\n auto res2 = query(a, b, (l+r)/2, r, k*2+2);\n auto res12 = merge( res1, res2 );\n\n return apply2(res12, rep[k]);\n }\n\n //add x to [a, b)\n void add(int a, int b, vector<int> &x, vector<int> &u, int l = 0, int r = -1, int k = 0){\n if(r == -1) r = segn2;\n\n rep[k] = apply(rep[k], u);\n\n vector<int> res1, res2;\n\n if(a <= l && r <= b) {\n rep[k] = apply(rep[k], x);\n data[k] = apply2(data[k], u);\n data[k] = apply2(data[k], x);\n } else if(a < r && l < b) {\n add(a, b, x, rep[k], l, (l+r)/2, k*2+1);\n add(a, b, x, rep[k], (l+r)/2, r, k*2+2);\n rep[k] = base;\n auto v = merge(data[k*2+1], data[k*2+2]);\n data[k] = v;\n } else {\n data[k] = apply2(data[k], u);\n }\n }\n};\n\nint main(){\n char S[21];\n int N, Q, M;\n\n ACNode *start[21];\n\n scanf(\"%s%d%d\", S, &N, &Q);\n M = strlen(S);\n\n AhoCorasick aho;\n\n aho.insert(S);\n aho.build();\n\n start[0] = aho.node;\n\n SegTree seg(N, M+1);\n\n for(int i=0; i<M; i++) {\n start[i+1] = start[i]->nextNode(S[i]);\n }\n\n\n for(int i=0; i<Q; i++) {\n int q, l, r;\n char c[11];\n\n scanf(\"%d%d%d\", &q, &l, &r);\n l--;\n\n if(q == 1) {\n scanf(\"%s\", c);\n\n vector<int> vec;\n for(int j=0; j<=M; j++) {\n ACNode *p = start[j];\n\n for(int k=0; c[k]; k++) {\n p = p->nextNode(c[k]);\n }\n vec.push_back(p->id);\n }\n\n seg.add(l, r, vec, seg.base);\n } else {\n vector<int> res = seg.query(l, r);\n printf(\"%d\\n\", res[M]);\n }\n }\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 2430, "memory_kb": 80836, "score_of_the_acc": -1.3694, "final_rank": 10 } ]
aoj_3071_cpp
Problem H: Count Words Problem $M$ 種類の文字がある。それらを使って長さ $N$ の文字列を作る。使われている文字の種類数が $K$ 以上であるような文字列は何通りあるか。$998244353$ で割ったあまりを求めよ。 ここで長さ $N$ の2つの文字列が異なるとは以下のように定義される。 2つの文字列を $S = S_1S_2 \ldots S_N$, $T = T_1T_2 \ldots T_N$ とした場合に、$S_i \neq T_i$ となるような $i$ $(1 \leq i \leq N)$ が存在する。 Input 入力は以下の形式で与えられる。 $M$ $N$ $K$ 1行に $M, N, K$ が空白区切りで与えられる。 Constraints 入力は以下の条件を満たす。 $1 \leq M \leq 10^{18} $ $1 \leq N \leq 10^{18} $ $1 \leq K \leq 1000 $ 入力はすべて整数 Output 使われている文字の種類数が $K$ 以上であるような長さ $N$ の文字列の通り数を $998244353$ で割ったあまりを出力せよ。 Sample Input 1 2 10 1 Sample Output 1 1024 Sample Input 2 1 1 2 Sample Output 2 0 Sample Input 3 5 10 3 Sample Output 3 9755400 Sample Input 4 7 8 3 Sample Output 4 5759460 Sample Input 5 1000000000000000000 1000000000000000000 1000 Sample Output 5 133611974
[ { "submission_id": "aoj_3071_10946002", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nlong long mod = 998244353;\n\nlong long binpow(long long aa, long long nn, long long mod) {\n\tif (nn == 0) return 1ll;\n\tif (nn % 2 == 1)\n\t\treturn (binpow(aa, nn - 1, mod) * (aa % mod)) % mod;\n\telse {\n\t\tlong long bb = binpow(aa, nn / 2, mod);\n\t\treturn (bb * bb) % mod;\n\t}\n}\n\nlong long cnt[1100];\n\nconst int maxn = 1100;\nlong long C[maxn + 1][maxn + 1];\nvoid comb(long long mod)\n{\n\tfor (int nn = 0; nn <= maxn; ++nn) {\n\t\tC[nn][0] = C[nn][nn] = 1;\n\t\tfor (int kk = 1; kk < nn; ++kk)\n\t\t\tC[nn][kk] = (C[nn - 1][kk - 1] + C[nn - 1][kk]) % mod;\n\t}\n}\n\n\nint main(void) {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout.tie(0);\n\n long long m, n, k;\n cin >> m >> n >> k;\n\n long long total = binpow(m, n, mod);\n\n auto CC = [&](long long kk)\n {\n long long num = 1ll;\n for (long long i = m - kk + 1; i <= m; ++i) {\n num *= i % mod;\n num %= mod;\n }\n long long denom = 1ll;\n for (long long i = 1; i <= kk; ++i) {\n denom *= i % mod;\n denom %= mod;\n }\n long long res = num * binpow(denom, mod - 2, mod) % mod;\n return res;\n };\n\n comb(mod);\n\n memset(cnt, 0, sizeof(cnt));\n long long sum = 0;\n for (int i = 1; i <= k - 1; ++i) {\n long long cur = 0;\n long long x = i;\n long long sign = 1;\n while(x)\n {\n cur += ((sign * binpow(x, n, mod) * C[i][x]) % mod + mod) % mod;\n cur %= mod;\n sign *= -1ll;\n x--;\n }\n cnt[i] = CC(i) * cur % mod;\n sum += cnt[i];\n sum %= mod;\n }\n\n long long res = ((total - sum) % mod + mod) % mod;\n cout << res << endl;\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 550, "memory_kb": 12060, "score_of_the_acc": -0.9731, "final_rank": 18 }, { "submission_id": "aoj_3071_5265694", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\nconstexpr int INF = 0x3f3f3f3f;\nconstexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;\nconstexpr double EPS = 1e-8;\nconstexpr int MOD = 998244353;\nconstexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\nconstexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\nstruct IOSetup {\n IOSetup() {\n std::cin.tie(nullptr);\n std::ios_base::sync_with_stdio(false);\n std::cout << fixed << setprecision(20);\n }\n} iosetup;\n\ntemplate <int M>\nstruct MInt {\n unsigned int val;\n MInt(): val(0) {}\n MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}\n static constexpr int get_mod() { return M; }\n static void set_mod(int divisor) { assert(divisor == M); }\n static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }\n static MInt inv(int x, bool init = false) {\n // assert(0 <= x && x < M && std::__gcd(x, M) == 1);\n static std::vector<MInt> inverse{0, 1};\n int prev = inverse.size();\n if (init && x >= prev) {\n // \"x!\" and \"M\" must be disjoint.\n inverse.resize(x + 1);\n for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);\n }\n if (x < inverse.size()) return inverse[x];\n unsigned int a = x, b = M; int u = 1, v = 0;\n while (b) {\n unsigned int tmp = a / b;\n std::swap(a -= tmp * b, b);\n std::swap(u -= tmp * v, v);\n }\n return u;\n }\n static MInt fact(int x) {\n static std::vector<MInt> f{1};\n int prev = f.size();\n if (x >= prev) {\n f.resize(x + 1);\n for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;\n }\n return f[x];\n }\n static MInt fact_inv(int x) {\n static std::vector<MInt> finv{1};\n int prev = finv.size();\n if (x >= prev) {\n finv.resize(x + 1);\n finv[x] = inv(fact(x).val);\n for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;\n }\n return finv[x];\n }\n static MInt nCk(int n, int k) {\n if (n < 0 || n < k || k < 0) return 0;\n if (n - k > k) k = n - k;\n return fact(n) * fact_inv(k) * fact_inv(n - k);\n }\n static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }\n static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }\n static MInt large_nCk(long long n, int k) {\n if (n < 0 || n < k || k < 0) return 0;\n inv(k, true);\n MInt res = 1;\n for (int i = 1; i <= k; ++i) res *= inv(i) * n--;\n return res;\n }\n MInt pow(long long exponent) const {\n MInt tmp = *this, res = 1;\n while (exponent > 0) {\n if (exponent & 1) res *= tmp;\n tmp *= tmp;\n exponent >>= 1;\n }\n return res;\n }\n MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }\n MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }\n MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }\n MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }\n bool operator==(const MInt &x) const { return val == x.val; }\n bool operator!=(const MInt &x) const { return val != x.val; }\n bool operator<(const MInt &x) const { return val < x.val; }\n bool operator<=(const MInt &x) const { return val <= x.val; }\n bool operator>(const MInt &x) const { return val > x.val; }\n bool operator>=(const MInt &x) const { return val >= x.val; }\n MInt &operator++() { if (++val == M) val = 0; return *this; }\n MInt operator++(int) { MInt res = *this; ++*this; return res; }\n MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }\n MInt operator--(int) { MInt res = *this; --*this; return res; }\n MInt operator+() const { return *this; }\n MInt operator-() const { return MInt(val ? M - val : 0); }\n MInt operator+(const MInt &x) const { return MInt(*this) += x; }\n MInt operator-(const MInt &x) const { return MInt(*this) -= x; }\n MInt operator*(const MInt &x) const { return MInt(*this) *= x; }\n MInt operator/(const MInt &x) const { return MInt(*this) /= x; }\n friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }\n friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }\n};\nnamespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }\nusing ModInt = MInt<MOD>;\n\ntemplate <int T>\nstd::vector<MInt<T>> large_nCk_init(long long n, int k) {\n using ModInt = MInt<T>;\n int tmp = std::min(n, static_cast<long long>(k));\n ModInt::inv(tmp, true);\n std::vector<ModInt> c(k + 1, 0);\n c[0] = 1;\n for (int i = 1; i <= tmp; ++i) c[i] = c[i - 1] * n-- * ModInt::inv(i);\n return c;\n}\n\nint main() {\n long long m, n;\n int k;\n std::cin >> m >> n >> k;\n ModInt ans = ModInt(m).pow(n);\n std::vector<ModInt> c = large_nCk_init<MOD>(m, k - 1);\n for (int i = 1; i < k; ++i) {\n ModInt tmp = 0;\n for (int j = 1; j <= i; ++j) tmp += ModInt::nCk(i, j) * ModInt(j).pow(n) * ((i - j) & 1 ? -1 : 1);\n ans -= tmp * c[i];\n }\n std::cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3524, "score_of_the_acc": -0.0863, "final_rank": 4 }, { "submission_id": "aoj_3071_5265683", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\nconstexpr int INF = 0x3f3f3f3f;\nconstexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;\nconstexpr double EPS = 1e-8;\nconstexpr int MOD = 998244353;\nconstexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\nconstexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\nstruct IOSetup {\n IOSetup() {\n std::cin.tie(nullptr);\n std::ios_base::sync_with_stdio(false);\n std::cout << fixed << setprecision(20);\n }\n} iosetup;\n\ntemplate <int M>\nstruct MInt {\n unsigned int val;\n MInt(): val(0) {}\n MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}\n static constexpr int get_mod() { return M; }\n static void set_mod(int divisor) { assert(divisor == M); }\n static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }\n static MInt inv(int x, bool init = false) {\n // assert(0 <= x && x < M && std::__gcd(x, M) == 1);\n static std::vector<MInt> inverse{0, 1};\n int prev = inverse.size();\n if (init && x >= prev) {\n // \"x!\" and \"M\" must be disjoint.\n inverse.resize(x + 1);\n for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);\n }\n if (x < inverse.size()) return inverse[x];\n unsigned int a = x, b = M; int u = 1, v = 0;\n while (b) {\n unsigned int tmp = a / b;\n std::swap(a -= tmp * b, b);\n std::swap(u -= tmp * v, v);\n }\n return u;\n }\n static MInt fact(int x) {\n static std::vector<MInt> f{1};\n int prev = f.size();\n if (x >= prev) {\n f.resize(x + 1);\n for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;\n }\n return f[x];\n }\n static MInt fact_inv(int x) {\n static std::vector<MInt> finv{1};\n int prev = finv.size();\n if (x >= prev) {\n finv.resize(x + 1);\n finv[x] = inv(fact(x).val);\n for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;\n }\n return finv[x];\n }\n static MInt nCk(int n, int k) {\n if (n < 0 || n < k || k < 0) return 0;\n if (n - k > k) k = n - k;\n return fact(n) * fact_inv(k) * fact_inv(n - k);\n }\n static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }\n static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }\n static MInt large_nCk(long long n, int k) {\n if (n < 0 || n < k || k < 0) return 0;\n inv(k, true);\n MInt res = 1;\n for (int i = 1; i <= k; ++i) res *= inv(i) * n--;\n return res;\n }\n MInt pow(long long exponent) const {\n MInt tmp = *this, res = 1;\n while (exponent > 0) {\n if (exponent & 1) res *= tmp;\n tmp *= tmp;\n exponent >>= 1;\n }\n return res;\n }\n MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }\n MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }\n MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }\n MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }\n bool operator==(const MInt &x) const { return val == x.val; }\n bool operator!=(const MInt &x) const { return val != x.val; }\n bool operator<(const MInt &x) const { return val < x.val; }\n bool operator<=(const MInt &x) const { return val <= x.val; }\n bool operator>(const MInt &x) const { return val > x.val; }\n bool operator>=(const MInt &x) const { return val >= x.val; }\n MInt &operator++() { if (++val == M) val = 0; return *this; }\n MInt operator++(int) { MInt res = *this; ++*this; return res; }\n MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }\n MInt operator--(int) { MInt res = *this; --*this; return res; }\n MInt operator+() const { return *this; }\n MInt operator-() const { return MInt(val ? M - val : 0); }\n MInt operator+(const MInt &x) const { return MInt(*this) += x; }\n MInt operator-(const MInt &x) const { return MInt(*this) -= x; }\n MInt operator*(const MInt &x) const { return MInt(*this) *= x; }\n MInt operator/(const MInt &x) const { return MInt(*this) /= x; }\n friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }\n friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }\n};\nnamespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }\nusing ModInt = MInt<MOD>;\n\nint main() {\n long long m, n;\n int k;\n std::cin >> m >> n >> k;\n ModInt::init(k);\n ModInt ans = ModInt(m).pow(n);\n for (int i = 1; i < k; ++i) {\n ModInt tmp = 0;\n for (int j = 1; j <= i; ++j) tmp += ModInt::nCk(i, j) * ModInt(j).pow(n) * ((i - j) & 1 ? -1 : 1);\n ans -= tmp * ModInt::large_nCk(m, i);\n }\n std::cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3472, "score_of_the_acc": -0.0744, "final_rank": 3 }, { "submission_id": "aoj_3071_4825259", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nll mod = 998244353;\nlong long modpow(long long a, long long n) {\n long long res = 1;\n while (n > 0) {\n if (n & 1) res = res * a % mod;\n a = a * a % mod;\n n >>= 1;\n }\n return res;\n}\n\nlong long modinv(long long a) {\n long long b = mod, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; swap(a, b);\n u -= t * v; swap(u, v);\n }\n u %= mod; \n if (u < 0) u += mod;\n return u;\n}\n\nconst int MAX = 510000;\n\nlong long fac[MAX], finv[MAX], inv[MAX];\n\n// テーブルを作る前処理\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < MAX; i++){\n fac[i] = fac[i - 1] * i % mod;\n inv[i] = mod - inv[mod%i] * (mod / i) % mod;\n finv[i] = finv[i - 1] * inv[i] % mod;\n }\n}\n\n// 二項係数計算\nlong long COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % mod) % mod;\n}\n\n\nsigned main(){\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(20);\n \n ll m,n,k;\n cin>>m>>n>>k;\n //n%=mod;\n m%=mod;\n ll ans = modpow(m,n);\n ll b[k]={}; // mCi中ちょうどi種類\n ll com[k]={}; com[0] = 1;\n ll in[k]={}; \n COMinit();\n for(int i=1;i<k;i++){\n in[i] = modinv(i);\n com[i] = com[i-1] * ((m+1-i)%mod);\n com[i] %= mod;\n com[i] *= in[i];\n com[i] %= mod;\n }\n for(int i=1;i<k;i++){\n b[i] = modpow(i,n);\n for(int j=1;j<i;j++){\n b[i] += mod - (COM(i,j) * b[j])%mod;\n b[i] %= mod;\n }\n }\n ll t=0;\n for(int i=1;i<k;i++){\n t += (com[i] * b[i])%mod;\n t %= mod;\n }\n\n\n ans += mod - t;\n ans %= mod;\n cout << ans << endl;\n \n}", "accuracy": 1, "time_ms": 40, "memory_kb": 15212, "score_of_the_acc": -0.6792, "final_rank": 14 }, { "submission_id": "aoj_3071_4608796", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T, class U> using Pa = pair<T, U>;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\n\nll mod = 998244353;\nstruct mint {\n ll x;\n mint(ll x=0):x((x%mod+mod)%mod){}\n \n friend ostream &operator<<(ostream& os,const mint& a){\n return os << a.x;\n }\n\n friend istream &operator>>(istream& is,mint& a){\n ll t;\n is >> t;\n a = mint(t);\n return (is);\n }\n\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) {\n (x *= a.x) %= mod;\n return *this;\n }\n mint operator+(const mint a) const {\n mint res(*this);\n return res+=a;\n }\n mint operator-(const mint a) const {\n mint res(*this);\n return res-=a;\n }\n mint operator*(const mint a) const {\n mint res(*this);\n return res*=a;\n }\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n // for prime mod\n mint inv() const {\n return pow(mod-2);\n }\n mint& operator/=(const mint a) {\n return (*this) *= a.inv();\n }\n mint operator/(const mint a) const {\n mint res(*this);\n return res/=a;\n }\n};\n\nclass combination{\npublic:\n vector<mint> fact,inv,finv;\n combination(int N){\n fact = inv = finv = vector<mint>(N+1);\n fact[0] = fact[1] = 1;\n inv[0] = inv[1] = 1;\n finv[0] = finv[1] = 1;\n for(ll i=2;i<=N;i++){\n fact[i] = fact[i-1]*i;\n inv[i] = (mint) mod - inv[mod%i]*(mod/i);\n finv[i] = finv[i-1]*inv[i];\n }\n }\n mint f(int i){\n return fact[i];\n }\n mint comb(int n,int k){\n if(n<k) return 0;\n if(n<0 || k<0) return 0;\n return fact[n]*finv[k]*finv[n-k];\n }\n mint hcomb(int n,int k){\n if(n==0 && k==0) return 1;\n return comb(n+k-1,k);\n }\n};\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll M,N,K;\n cin >> M >> N >> K;\n mint ans = ((mint) M).pow(N);\n vec<mint> A(K+1);\n combination C(K);\n for(int i=1;i<min(M+1,K);i++){\n mint now = ((mint) i).pow(N);\n for(int j=1;j<i;j++) now -= A[j]*C.comb(i,j);\n A[i] = now;\n for(int j=0;j<i;j++){\n now *= (M-j)%mod;\n now /= (j+1);\n }\n ans -= now;\n }\n cout << ans << \"\\n\";\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 3252, "score_of_the_acc": -0.3443, "final_rank": 12 }, { "submission_id": "aoj_3071_4093004", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\ntemplate <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;\nconst int INF = 0x3f3f3f3f;\nconst ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n// const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\ntemplate <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n }\n} iosetup;\n\nint mod = MOD;\nstruct ModInt {\n unsigned val;\n ModInt(): val(0) {}\n ModInt(ll x) : val(x >= 0 ? x % mod : x % mod + mod) {}\n ModInt pow(ll exponent) {\n ModInt tmp = *this, res = 1;\n while (exponent > 0) {\n if (exponent & 1) res *= tmp;\n tmp *= tmp;\n exponent >>= 1;\n }\n return res;\n }\n ModInt &operator+=(const ModInt &x) { if((val += x.val) >= mod) val -= mod; return *this; }\n ModInt &operator-=(const ModInt &x) { if((val += mod - x.val) >= mod) val -= mod; return *this; }\n ModInt &operator*=(const ModInt &x) { val = static_cast<unsigned long long>(val) * x.val % mod; return *this; }\n ModInt &operator/=(const ModInt &x) { return *this *= x.inv(); }\n bool operator==(const ModInt &x) const { return val == x.val; }\n bool operator!=(const ModInt &x) const { return val != x.val; }\n bool operator<(const ModInt &x) const { return val < x.val; }\n bool operator<=(const ModInt &x) const { return val <= x.val; }\n bool operator>(const ModInt &x) const { return val > x.val; }\n bool operator>=(const ModInt &x) const { return val >= x.val; }\n ModInt &operator++() { if (++val == mod) val = 0; return *this; }\n ModInt operator++(int) { ModInt res = *this; ++*this; return res; }\n ModInt &operator--() { val = (val == 0 ? mod : val) - 1; return *this; }\n ModInt operator--(int) { ModInt res = *this; --*this; return res; }\n ModInt operator+() const { return *this; }\n ModInt operator-() const { return ModInt(val ? mod - val : 0); }\n ModInt operator+(const ModInt &x) const { return ModInt(*this) += x; }\n ModInt operator-(const ModInt &x) const { return ModInt(*this) -= x; }\n ModInt operator*(const ModInt &x) const { return ModInt(*this) *= x; }\n ModInt operator/(const ModInt &x) const { return ModInt(*this) /= x; }\n friend ostream &operator<<(ostream &os, const ModInt &x) { return os << x.val; }\n friend istream &operator>>(istream &is, ModInt &x) { ll val; is >> val; x = ModInt(val); return is; }\nprivate:\n ModInt inv() const {\n // assert(__gcd(val, mod) == 1);\n unsigned a = val, b = mod; int x = 1, y = 0;\n while (b) {\n unsigned tmp = a / b;\n swap(a -= tmp * b, b);\n swap(x -= tmp * y, y);\n }\n return ModInt(x);\n }\n};\nModInt abs(const ModInt &x) { return x; }\nstruct Combinatorics {\n int val; // \"val!\" and \"mod\" must be disjoint.\n vector<ModInt> fact, fact_inv, inv;\n Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) {\n fact[0] = 1;\n FOR(i, 1, val + 1) fact[i] = fact[i - 1] * i;\n fact_inv[val] = ModInt(1) / fact[val];\n for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i;\n FOR(i, 1, val + 1) inv[i] = fact[i - 1] * fact_inv[i];\n }\n ModInt nCk(int n, int k) {\n if (n < 0 || n < k || k < 0) return ModInt(0);\n // assert(n <= val && k <= val);\n return fact[n] * fact_inv[k] * fact_inv[n - k];\n }\n ModInt nPk(int n, int k) {\n if (n < 0 || n < k || k < 0) return ModInt(0);\n // assert(n <= val);\n return fact[n] * fact_inv[n - k];\n }\n ModInt nHk(int n, int k) {\n if (n < 0 || k < 0) return ModInt(0);\n return (k == 0 ? ModInt(1) : nCk(n + k - 1, k));\n }\n};\n\nvector<ModInt> binom_large_n_init(ll n, int k, Combinatorics &com) {\n int tmp = min(n, static_cast<long long>(k));\n assert(tmp <= com.val);\n vector<ModInt> c(k + 1, 0);\n c[0] = 1;\n FOR(i, 1, tmp + 1) c[i] = c[i - 1] * n-- * com.inv[i];\n return c;\n}\n\nint main() {\n mod = 998244353;\n ll m, n; int k; cin >> m >> n >> k;\n Combinatorics com(k);\n ModInt ans = ModInt(m).pow(n);\n if (k > 1) {\n vector<ModInt> c = binom_large_n_init(m, k - 1, com);\n FOR(i, 1, k) {\n ModInt tmp = 0;\n for (int j = i; j >= 1; --j) {\n if ((i - j) % 2 == 0) {\n tmp += com.nCk(i, j) * ModInt(j).pow(n);\n } else {\n tmp -= com.nCk(i, j) * ModInt(j).pow(n);\n }\n }\n ans -= tmp * c[i];\n }\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 3216, "score_of_the_acc": -0.2878, "final_rank": 6 }, { "submission_id": "aoj_3071_4092983", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\ntemplate <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;\nconst int INF = 0x3f3f3f3f;\nconst ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n// const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\ntemplate <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n }\n} iosetup;\n\nint mod = MOD;\nstruct ModInt {\n unsigned val;\n ModInt(): val(0) {}\n ModInt(ll x) : val(x >= 0 ? x % mod : x % mod + mod) {}\n ModInt pow(ll exponent) {\n ModInt tmp = *this, res = 1;\n while (exponent > 0) {\n if (exponent & 1) res *= tmp;\n tmp *= tmp;\n exponent >>= 1;\n }\n return res;\n }\n ModInt &operator+=(const ModInt &x) { if((val += x.val) >= mod) val -= mod; return *this; }\n ModInt &operator-=(const ModInt &x) { if((val += mod - x.val) >= mod) val -= mod; return *this; }\n ModInt &operator*=(const ModInt &x) { val = static_cast<unsigned long long>(val) * x.val % mod; return *this; }\n ModInt &operator/=(const ModInt &x) { return *this *= x.inv(); }\n bool operator==(const ModInt &x) const { return val == x.val; }\n bool operator!=(const ModInt &x) const { return val != x.val; }\n bool operator<(const ModInt &x) const { return val < x.val; }\n bool operator<=(const ModInt &x) const { return val <= x.val; }\n bool operator>(const ModInt &x) const { return val > x.val; }\n bool operator>=(const ModInt &x) const { return val >= x.val; }\n ModInt &operator++() { if (++val == mod) val = 0; return *this; }\n ModInt operator++(int) { ModInt res = *this; ++*this; return res; }\n ModInt &operator--() { val = (val == 0 ? mod : val) - 1; return *this; }\n ModInt operator--(int) { ModInt res = *this; --*this; return res; }\n ModInt operator+() const { return *this; }\n ModInt operator-() const { return ModInt(val ? mod - val : 0); }\n ModInt operator+(const ModInt &x) const { return ModInt(*this) += x; }\n ModInt operator-(const ModInt &x) const { return ModInt(*this) -= x; }\n ModInt operator*(const ModInt &x) const { return ModInt(*this) *= x; }\n ModInt operator/(const ModInt &x) const { return ModInt(*this) /= x; }\n friend ostream &operator<<(ostream &os, const ModInt &x) { return os << x.val; }\n friend istream &operator>>(istream &is, ModInt &x) { ll val; is >> val; x = ModInt(val); return is; }\nprivate:\n ModInt inv() const {\n // assert(__gcd(val, mod) == 1);\n unsigned a = val, b = mod; int x = 1, y = 0;\n while (b) {\n unsigned tmp = a / b;\n swap(a -= tmp * b, b);\n swap(x -= tmp * y, y);\n }\n return ModInt(x);\n }\n};\nModInt abs(const ModInt &x) { return x; }\nstruct Combinatorics {\n int val; // \"val!\" and \"mod\" must be disjoint.\n vector<ModInt> fact, fact_inv, inv;\n Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) {\n fact[0] = 1;\n FOR(i, 1, val + 1) fact[i] = fact[i - 1] * i;\n fact_inv[val] = ModInt(1) / fact[val];\n for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i;\n FOR(i, 1, val + 1) inv[i] = fact[i - 1] * fact_inv[i];\n }\n ModInt nCk(int n, int k) {\n if (n < 0 || n < k || k < 0) return ModInt(0);\n // assert(n <= val && k <= val);\n return fact[n] * fact_inv[k] * fact_inv[n - k];\n }\n ModInt nPk(int n, int k) {\n if (n < 0 || n < k || k < 0) return ModInt(0);\n // assert(n <= val);\n return fact[n] * fact_inv[n - k];\n }\n ModInt nHk(int n, int k) {\n if (n < 0 || k < 0) return ModInt(0);\n return (k == 0 ? ModInt(1) : nCk(n + k - 1, k));\n }\n};\n\nModInt binom_large_n(ll n, int k, Combinatorics &com) {\n if (n < 0 || n < k || k < 0) return 0;\n assert(k <= com.val);\n ModInt res = 1;\n FOR(i, 1, k + 1) res *= com.inv[i] * n--;\n return res;\n}\n\nint main() {\n mod = 998244353;\n ll m, n; int k; cin >> m >> n >> k;\n Combinatorics com(k);\n ModInt ans = ModInt(m).pow(n);\n if (k > 1) {\n FOR(i, 1, k) {\n ModInt tmp = 0;\n for (int j = i; j >= 1; --j) {\n if ((i - j) % 2 == 0) {\n tmp += com.nCk(i, j) * ModInt(j).pow(n);\n } else {\n tmp -= com.nCk(i, j) * ModInt(j).pow(n);\n }\n }\n ans -= tmp * binom_large_n(m, i, com);\n }\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 330, "memory_kb": 3232, "score_of_the_acc": -0.2978, "final_rank": 9 }, { "submission_id": "aoj_3071_3950413", "code_snippet": "#include <algorithm>\n// #include <cassert>\n#include <iostream>\n#include <iomanip>\n#include <utility>\n#include <vector>\nusing namespace std;\n\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n\nconst int MOD = 998244353;\n\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n/*-------------------------------------------------*/\nint mod = MOD;\nstruct ModInt {\n unsigned val;\n ModInt(): val(0) {}\n ModInt(long long x) : val(x >= 0 ? x % mod : x % mod + mod) {}\n ModInt pow(long long exponent) {\n ModInt tmp = *this, res = 1;\n while (exponent > 0) {\n if (exponent & 1) res *= tmp;\n tmp *= tmp;\n exponent >>= 1;\n }\n return res;\n }\n ModInt &operator+=(const ModInt &rhs) { if((val += rhs.val) >= mod) val -= mod; return *this; }\n ModInt &operator-=(const ModInt &rhs) { if((val += mod - rhs.val) >= mod) val -= mod; return *this; }\n ModInt &operator*=(const ModInt &rhs) { val = static_cast<unsigned long long>(val) * rhs.val % mod; return *this; }\n ModInt &operator/=(const ModInt &rhs) { return *this *= rhs.inv(); }\n bool operator==(const ModInt &rhs) const { return val == rhs.val; }\n bool operator!=(const ModInt &rhs) const { return val != rhs.val; }\n bool operator<(const ModInt &rhs) const { return val < rhs.val; }\n bool operator<=(const ModInt &rhs) const { return val <= rhs.val; }\n bool operator>(const ModInt &rhs) const { return val > rhs.val; }\n bool operator>=(const ModInt &rhs) const { return val >= rhs.val; }\n ModInt operator-() const { return ModInt(val ? mod - val : 0); }\n ModInt operator+(const ModInt &rhs) const { return ModInt(*this) += rhs; }\n ModInt operator-(const ModInt &rhs) const { return ModInt(*this) -= rhs; }\n ModInt operator*(const ModInt &rhs) const { return ModInt(*this) *= rhs; }\n ModInt operator/(const ModInt &rhs) const { return ModInt(*this) /= rhs; }\n friend ostream &operator<<(ostream &os, const ModInt &rhs) { return os << rhs.val; }\n friend istream &operator>>(istream &is, ModInt &rhs) { long long x; is >> x; rhs = ModInt(x); return is; }\nprivate:\n ModInt inv() const {\n // if (__gcd(val, mod) != 1) assert(false);\n unsigned a = val, b = mod; int x = 1, y = 0;\n while (b) {\n unsigned tmp = a / b;\n swap(a -= tmp * b, b);\n swap(x -= tmp * y, y);\n }\n return ModInt(x);\n }\n};\nint abs(const ModInt &x) { return x.val; }\nstruct Combinatorics {\n int val;\n vector<ModInt> fact, fact_inv, inv;\n Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) {\n fact[0] = 1;\n FOR(i, 1, val + 1) fact[i] = fact[i - 1] * i;\n fact_inv[val] = ModInt(1) / fact[val];\n for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i;\n FOR(i, 1, val + 1) inv[i] = fact[i - 1] * fact_inv[i];\n }\n ModInt nCk(int n, int k) {\n if (n < 0 || n < k || k < 0) return ModInt(0);\n // assert(n <= val && k <= val);\n return fact[n] * fact_inv[k] * fact_inv[n - k];\n }\n ModInt nPk(int n, int k) {\n if (n < 0 || n < k || k < 0) return ModInt(0);\n // assert(n <= val);\n return fact[n] * fact_inv[n - k];\n }\n ModInt nHk(int n, int k) {\n if (n < 0 || k < 0) return ModInt(0);\n return (k == 0 ? ModInt(1) : nCk(n + k - 1, k));\n }\n};\n\nvector<ModInt> nCk_init(long long n, int k, Combinatorics &com) {\n vector<ModInt> nCk(k + 1, 0);\n nCk[0] = 1;\n int tmp = min(n, static_cast<long long>(k)) + 1;\n // assert(tmp < com.val);\n FOR(i, 1, tmp) nCk[i] = nCk[i - 1] * n-- * com.inv[i];\n return nCk;\n}\n\nint main() {\n long long m, n; int k; cin >> m >> n >> k;\n Combinatorics com(k);\n ModInt ans = ModInt(m).pow(n);\n if (k > 1) {\n vector<ModInt> mCk = nCk_init(m, k - 1, com);\n FOR(i, 1, k) {\n ModInt tmp = 0;\n for (int j = i; j >= 1; --j) {\n if ((i - j) % 2 == 0) {\n tmp += com.nCk(i, j) * ModInt(j).pow(n);\n } else {\n tmp -= com.nCk(i, j) * ModInt(j).pow(n);\n }\n }\n ans -= tmp * mCk[i];\n }\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 3228, "score_of_the_acc": -0.2885, "final_rank": 7 }, { "submission_id": "aoj_3071_3950395", "code_snippet": "// #include <algorithm>\n// #include <cassert>\n#include <iostream>\n#include <iomanip>\n#include <utility>\n#include <vector>\nusing namespace std;\n\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n\nconst int MOD = 998244353;\n\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n/*-------------------------------------------------*/\nint mod = MOD;\nstruct ModInt {\n unsigned val;\n ModInt(): val(0) {}\n ModInt(long long x) : val(x >= 0 ? x % mod : x % mod + mod) {}\n ModInt pow(long long exponent) {\n ModInt tmp = *this, res = 1;\n while (exponent > 0) {\n if (exponent & 1) res *= tmp;\n tmp *= tmp;\n exponent >>= 1;\n }\n return res;\n }\n ModInt &operator+=(const ModInt &rhs) { if((val += rhs.val) >= mod) val -= mod; return *this; }\n ModInt &operator-=(const ModInt &rhs) { if((val += mod - rhs.val) >= mod) val -= mod; return *this; }\n ModInt &operator*=(const ModInt &rhs) { val = static_cast<unsigned long long>(val) * rhs.val % mod; return *this; }\n ModInt &operator/=(const ModInt &rhs) { return *this *= rhs.inv(); }\n bool operator==(const ModInt &rhs) const { return val == rhs.val; }\n bool operator!=(const ModInt &rhs) const { return val != rhs.val; }\n bool operator<(const ModInt &rhs) const { return val < rhs.val; }\n bool operator<=(const ModInt &rhs) const { return val <= rhs.val; }\n bool operator>(const ModInt &rhs) const { return val > rhs.val; }\n bool operator>=(const ModInt &rhs) const { return val >= rhs.val; }\n ModInt operator-() const { return ModInt(val ? mod - val : 0); }\n ModInt operator+(const ModInt &rhs) const { return ModInt(*this) += rhs; }\n ModInt operator-(const ModInt &rhs) const { return ModInt(*this) -= rhs; }\n ModInt operator*(const ModInt &rhs) const { return ModInt(*this) *= rhs; }\n ModInt operator/(const ModInt &rhs) const { return ModInt(*this) /= rhs; }\n friend ostream &operator<<(ostream &os, const ModInt &rhs) { return os << rhs.val; }\n friend istream &operator>>(istream &is, ModInt &rhs) { long long x; is >> x; rhs = ModInt(x); return is; }\nprivate:\n ModInt inv() const {\n // if (__gcd(val, mod) != 1) assert(false);\n unsigned a = val, b = mod; int x = 1, y = 0;\n while (b) {\n unsigned tmp = a / b;\n swap(a -= tmp * b, b);\n swap(x -= tmp * y, y);\n }\n return ModInt(x);\n }\n};\nint abs(const ModInt &x) { return x.val; }\nstruct Combinatorics {\n int val;\n vector<ModInt> fact, fact_inv, inv;\n Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) {\n fact[0] = 1;\n FOR(i, 1, val + 1) fact[i] = fact[i - 1] * i;\n fact_inv[val] = ModInt(1) / fact[val];\n for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i;\n FOR(i, 1, val + 1) inv[i] = fact[i - 1] * fact_inv[i];\n }\n ModInt nCk(int n, int k) {\n if (n < 0 || n < k || k < 0) return ModInt(0);\n // assert(n <= val && k <= val);\n return fact[n] * fact_inv[k] * fact_inv[n - k];\n }\n ModInt nPk(int n, int k) {\n if (n < 0 || n < k || k < 0) return ModInt(0);\n // assert(n <= val);\n return fact[n] * fact_inv[n - k];\n }\n ModInt nHk(int n, int k) {\n if (n < 0 || k < 0) return ModInt(0);\n return (k == 0 ? ModInt(1) : nCk(n + k - 1, k));\n }\n};\n\nModInt nCk(long long n, int k, Combinatorics &com) {\n if (n < 0 || n < k || k < 0) return 0;\n // assert(k <= com.val);\n ModInt res = 1;\n FOR(i, 1, k + 1) res *= com.inv[i] * n--;\n return res;\n}\n\nint main() {\n long long m, n; int k; cin >> m >> n >> k;\n Combinatorics com(k);\n ModInt ans = ModInt(m).pow(n);\n if (k > 1) {\n FOR(i, 1, k) {\n ModInt tmp = 0;\n for (int j = i; j >= 1; --j) {\n if ((i - j) % 2 == 0) {\n tmp += com.nCk(i, j) * ModInt(j).pow(n);\n } else {\n tmp -= com.nCk(i, j) * ModInt(j).pow(n);\n }\n }\n ans -= tmp * nCk(m, i, com);\n }\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 330, "memory_kb": 3220, "score_of_the_acc": -0.2972, "final_rank": 8 }, { "submission_id": "aoj_3071_3894085", "code_snippet": "#include <bits/stdc++.h>\n#define N (long long)(998244353)\n#define MAX 500000\nusing namespace std;\n\nlong long factorial[MAX] = {0}, finverse[MAX] = {0},\n inverse[MAX] = {0};\n\nvoid smodfact() {\n factorial[0] = factorial[1] = 1;\n finverse[0] = finverse[1] = 1;\n inverse[1] = 1;\n for(int i = 2; i < MAX; ++i) {\n factorial[i] = factorial[i - 1] * i % N;\n inverse[i] = N - (inverse[N % i] * (N / i)) % N;\n finverse[i] = finverse[i - 1] * inverse[i] % N;\n }\n}\n\nlong long calccomb(long long n, long long k) {\n if(n == k && n == 0) return 1;\n if(n < 0 || k < 0 || n < k) return 0;\n return factorial[n] * finverse[k] % N * finverse[n - k] %\n N;\n}\n\n// as + bt = GCD(a,b) a,b:const s,t:var(any)\n// return GCD(a,b)\nlong long extGCD(long long a, long long b, long long& s,\n long long& t) {\n s = 1, t = 0;\n while(b) {\n long long tmp = a / b;\n a -= b * tmp;\n s -= t * tmp;\n swap(a, b);\n swap(s, t);\n }\n return a;\n}\n\n// (mod)x+ay=1, calculate y -> a^-1 (mod m) (a,m : coprime)\nlong long calcinv(long long a, long long m) {\n long long s, t;\n extGCD(a, m, s, t);\n return (s + m) % m;\n}\n\nlong long mod_pow(long long x, long long n, long long mod) {\n long long res = 1;\n while(n > 0) {\n if(n & 1) (res *= x) %= mod;\n (x *= x) %= mod;\n n >>= 1;\n }\n return res;\n}\n\nlong long m, n, k;\nlong long mci[1005] = {0};\nlong long dp[1005][1005] = {0};\n\nlong long solve();\n\nint main() {\n cin >> m >> n >> k;\n cout << solve() << endl;\n return 0;\n}\n\nlong long solve() {\n if(m < k) return 0;\n smodfact();\n long long ans = mod_pow(m % N, n, N);\n mci[0] = 1LL;\n for(long long i = 0; i < k; ++i)\n mci[i + 1] =\n mci[i] * ((m - i) % N) % N * calcinv(i + 1, N) % N;\n // dp\n dp[0][0] = 1;\n for(long long i = 1; i <= k; ++i)\n for(long long j = 1; j <= i; ++j) {\n if(i != j) {\n dp[i][j] = calccomb(i, j) * dp[j][j] % N;\n (dp[i][j] += dp[i][j - 1]) %= N;\n }\n else {\n dp[i][j] = mod_pow(i % N, n, N);\n dp[i][j] -= dp[i][j - 1];\n (dp[i][j] += N) %= N;\n }\n }\n\n for(int i = 0; i < k - 1; ++i) {\n ans -= mci[i + 1] * dp[i + 1][i + 1] % N;\n (ans += N) %= N;\n }\n return ans;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 21676, "score_of_the_acc": -1, "final_rank": 19 }, { "submission_id": "aoj_3071_3883581", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int64_t MOD = 998244353;\nvoid add(int64_t& a, int64_t b){\n a %= MOD;\n b %= MOD;\n a = (a+b) % MOD;\n}\nvoid mul(int64_t& a, int64_t b){\n a %= MOD;\n b %= MOD;\n a = a*b % MOD;\n}\n\nvector<int64_t> fact, seq_inv, fact_inv;\n\nvoid create_fact_mod(int num){\n fact[0] = fact[1] = 1;\n for(int i=2; i<=num; i++) fact[i] = fact[i-1] * i % MOD;\n}\n\nvoid create_seq_inv_mod(int num){\n seq_inv[0] = seq_inv[1] = 1;\n for(int i=2; i<=num; i++) seq_inv[i] = (MOD - MOD/i) * seq_inv[MOD%i] % MOD;\n}\n\nvoid create_fact_inv_mod(int num){\n fact_inv[0] = fact_inv[1] = 1;\n for(int i=2; i<=num; i++) fact_inv[i] = fact_inv[i-1] * seq_inv[i] % MOD;\n}\n\nvoid create_mod_tables(int num){\n fact.resize(num+1);\n seq_inv.resize(num+1);\n fact_inv.resize(num+1);\n create_fact_mod(num);\n create_seq_inv_mod(num);\n create_fact_inv_mod(num);\n}\n\nint64_t comb_mod(int n, int k){\n return fact[n] * fact_inv[n-k] % MOD * fact_inv[k] % MOD;\n}\n\nint64_t perm_mod(int n, int k){\n return fact[n] * fact_inv[n-k] % MOD;\n}\n\nint64_t power_mod(int64_t num, int64_t power){\n int64_t prod = 1;\n num %= MOD;\n power %= (MOD-1);\n while(power > 0){\n if(power&1) prod = prod * num % MOD;\n num = num * num % MOD;\n power >>= 1;\n }\n return prod;\n}\n\nint main() {\n int64_t M, N, K;\n cin >> M >> N >> K;\n if(M < K){\n cout << 0 << endl;\n return 0;\n }\n create_mod_tables(1000);\n int64_t ans = power_mod(M, N);\n for(int k=1; k<K; k++){\n int64_t res = 0;\n for(int m=1; m<=k; m++) add(res, MOD + ((k-m)%2 ? -1 : 1) * comb_mod(k, m) * power_mod(m, N) % MOD);\n for(int i=0; i<k; i++) mul(res, M-i);\n mul(res, fact_inv[k]);\n add(ans, MOD - res);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3148, "score_of_the_acc": -0.0387, "final_rank": 2 }, { "submission_id": "aoj_3071_3881955", "code_snippet": "#include<iostream>\nusing namespace std;\ntypedef long long ll;\n\nconst ll mod = 998244353;\n\nll modpow(ll a, ll b, ll p = mod){\n if(b == 0) return 1;\n\n if(b % 2 == 0){\n ll d = modpow(a, b/2, p);\n return (d*d) % p;\n }else{\n return (a%p * modpow(a, b-1, p)) % p;\n }\n}\n\nint main(){\n ll m, n, k;\n cin >> m >> n >> k;\n ll ans = modpow(m, n);\n ll sub = 0, mcomb = 1;\n for(int i = 1; i < min(k, m+1); i++){\n ll tmp = 0, comb = 1;\n for(int j = 1; j <= i; j++){\n ll x = (i-j)%2 == 0 ? 1 : -1;\n comb = comb*modpow(j,mod-2)%mod*(i-j+1)%mod;\n tmp += x*(comb*modpow(j,n)%mod);\n tmp = (tmp + mod)%mod;\n }\n mcomb = mcomb*modpow(i,mod-2)%mod*((m-i+1)%mod)%mod;\n tmp = tmp*mcomb%mod;\n sub += tmp;\n sub %= mod;\n }\n cout << (ans-sub+mod)%mod << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1110, "memory_kb": 3104, "score_of_the_acc": -1, "final_rank": 19 }, { "submission_id": "aoj_3071_3880934", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\n\nconstexpr ll MOD = 998244353;\n\nll power(ll x, ll n){\n x %= MOD;\n ll res = 1;\n while(n > 0){\n if(n&1){\n res *= x;\n res %= MOD;\n }\n x *= x;\n x %= MOD;\n n >>= 1;\n }\n return res;\n}\n\nll mod_inv(ll x){\n return power(x, MOD-2);\n}\n\nvector<ll> factrial, inverse;\n\nvoid init(ll n) {\n factrial.resize(n+1);\n inverse.resize(n+1);\n factrial[0] = 1;\n inverse[0] = 1;\n for (ll i = 1; i <= n; i++) {\n factrial[i] = (factrial[i - 1] * i) % MOD;\n inverse[i] = mod_inv(factrial[i]);\n }\n}\n\nll nCk(ll n, ll k) {\n if(n < 0 || k < 0 || n < k) return 0;\n return factrial[n] * inverse[k] % MOD * inverse[n - k] % MOD;\n}\n\nll nCk_big(ll n, ll k){\n if(k == 0) return 1;\n else return nCk_big(n, k-1) * ((n-k+1)%MOD) % MOD * mod_inv(k) % MOD;\n}\n\n// x種類の文字ですべての文字が少なくとも1回現れる長さnの文字列の数\nll calc(ll x, ll n){\n ll res = 0;\n for(int i=0;i<x;i++){\n res += power(x-i,n)*nCk(x,x-i)%MOD*(i%2?-1:1);\n res = (res%MOD+MOD)%MOD;\n }\n return res;\n}\n\nint main(){\n ll m, n, k, ans;\n cin >> m >> n >> k;\n init(k);\n ans = power(m,n);\n for(int i=1;i<k;i++){\n ans -= calc(i,n)*nCk_big(m,i)%MOD;\n ans = (ans%MOD+MOD)%MOD;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 3152, "score_of_the_acc": -0.1299, "final_rank": 5 }, { "submission_id": "aoj_3071_3880916", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T>\ninline bool chmax(T &a, T b)\n{\n if (a < b)\n {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T>\ninline bool chmin(T &a, T b)\n{\n if (a > b)\n {\n a = b;\n return 1;\n }\n return 0;\n}\ntypedef long long int ll;\n\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\n#define endl \"\\n\"\nconst double EPS = 1e-7;\nconst int INF = 1 << 30;\nconst ll LLINF = 1LL << 60;\nconst double PI = acos(-1);\nconst int MOD = 998244353;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n\n//-------------------------------------\n\nconst int MAX = 500000;\n\nll fac[MAX], finv[MAX], inv[MAX];\n\nvoid COMinit() // 二項係数を求める時は前処理としてCOMinit()をする\n{\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < MAX; i++)\n {\n fac[i] = fac[i - 1] * i % MOD;\n inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n\n// 二項係数計算\nlong long COM(int n, int k)\n{\n if (n < k)\n return 0;\n if (n < 0 || k < 0)\n return 0;\n return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;\n}\n\nll pow_mod(ll n, ll k, ll mod)\n{\n if (k == 0)\n {\n return 1;\n }\n else if (k % 2 == 1)\n {\n return pow_mod(n, k - 1, mod) * n % mod;\n }\n else\n {\n ll t = pow_mod(n, k / 2, mod);\n return t * t % mod;\n }\n}\n\nll modinv(ll a, ll m)\n{\n ll b = m, u = 1, v = 0;\n while (b)\n {\n ll t = a / b;\n a -= t * b;\n swap(a, b);\n u -= t * v;\n swap(u, v);\n }\n u %= m;\n if (u < 0)\n u += m;\n return u;\n}\n\nll kaijyo(ll n)\n{\n if (n == 0)\n {\n return 1;\n }\n return n * kaijyo(n - 1) % MOD;\n}\n\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll m, n, k;\n cin >> m >> n >> k;\n m %= MOD;\n // n %= MOD;\n ll ans = pow_mod(m, n, MOD);\n ll b[k] = {};\n ll com[k] = {};\n com[0] = 1;\n ll in[k] = {};\n COMinit();\n for (ll i = 1; i < k; i++)\n {\n in[i] = modinv(i, MOD);\n com[i] = com[i - 1] * ((m + 1 - i) % MOD) % MOD;\n (com[i] *= in[i]) %= MOD;\n }\n for (ll i = 1; i < k; i++)\n {\n b[i] = pow_mod(i, n, MOD);\n for (ll j = 1; j < i; j++)\n {\n (b[i] += MOD - (COM(i, j) * b[j]) % MOD) %= MOD;\n }\n }\n ll t = 0;\n for (ll i = 1; i < k; i++)\n {\n (t += (com[i] * b[i]) % MOD) %= MOD;\n }\n\n (ans += MOD - t) %= MOD;\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 14952, "score_of_the_acc": -0.6379, "final_rank": 13 }, { "submission_id": "aoj_3071_3880861", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 998244353 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\nvector<ll> factmemo, factmemoInv;\nll factmemoMod = -1;\n\nll factorial(int n, int M){\n if(factmemoMod == M) return factmemo[n];\n if(n <= 1) return 1;\n\n ll res = 1;\n for(int i=1; i<=n; i++) res = res * i % M;\n return res;\n}\n\nll power(ll k, ll n, int M){\n k %= M;\n if(n == 0) return 1;\n if(n == 1) return (ll)k;\n\n ll res = power(k, n/2, M);\n\n res = res * res % M;\n return n%2 == 1 ? res * k % M : res;\n}\n\nvoid initFactorial(int n, int M){\n factmemo.assign(n+1, 0);\n factmemoInv.assign(n+1, 0);\n factmemoMod = M;\n factmemo[0] = 1;\n for(int i=1;i<=n;i++) factmemo[i] = factmemo[i-1] * i % M;\n factmemoInv[n] = power(factmemo[n], M-2, M);\n for(int i=n;i>0;i--) factmemoInv[i-1] = factmemoInv[i] * i % M;\n}\n\n//nCm nPm nHm (mod M)\n\n/*Combination*/\nll C(int n, int m, int M){\n if(n < m) return 0;\n if(m == 0 || n == m) return 1;\n\n if(factmemoMod == M)\n return factmemo[n] * factmemoInv[m] % M * factmemoInv[n-m] % M;\n\n ll numer = factorial(n, M);\n ll denom = factorial(m, M) * factorial(n-m, M) % M;\n\n denom = power((int)denom, M-2, M);\n\n return numer * denom % M;\n}\n/*Permutation*/\nll P(int n, int m, int M){\n if(n < m) return 0;\n if(m == 0) return 1;\n\n if(factmemoMod == M)\n return factmemo[n] * factmemoInv[n-m] % M;\n\n ll numer = factorial(n, M);\n ll denom = factorial(n-m, M);\n\n denom = power((int)denom, M-2, M);\n\n return numer * denom % M;\n}\n/*Combination with Repetitions*/\nll H(int n, int m, int M){\n if(n == 0 && m == 0) return 1;\n return C(n+m-1, m, M);\n}\n\nll Mfactk[1010], factk[1010], factkInv[1010];\n\nint main(){\n ll M, N, K;\n\n cin >> M >> N >> K;\n\n ll ans = 0;\n\n if (K > M) {\n puts(\"0\");\n return 0;\n }\n\n Mfactk[0] = M % mod;\n factk[0] = 1;\n for(int i=1; i<=K; i++) {\n factk[i] = factk[i-1] * i % mod;\n Mfactk[i] = Mfactk[i-1] * ((M - i) % mod) % mod;\n }\n\n for(int i=0; i<=K; i++) {\n factkInv[i] = power(factk[i], mod-2, mod);\n }\n\n ll v[1010];\n\n for(int i=1; i<K; i++) {\n v[i] = 0;\n\n ll fact = i;\n\n for(int j=1; j<=i; j++) {\n ll add = power(j, N, mod) * fact % mod * factkInv[j] % mod;\n fact = fact * (i - j) % mod;\n v[i] = (v[i] + mod + add * ((i - j) % 2 ? -1 : 1)) % mod;\n }\n }\n\n for(int i=1; i<K; i++) {\n ll add = Mfactk[i-1] * factkInv[i] % mod * v[i];\n ans = (ans + add) % mod;\n }\n\n ans = (power(M, N, mod) + mod - ans) % mod;\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 780, "memory_kb": 3152, "score_of_the_acc": -0.7026, "final_rank": 15 }, { "submission_id": "aoj_3071_3880823", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef pair<int,int> P;\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vll;\n#define pb push_back\n#define mp make_pair\n#define eps 1e-9\n#define INF 2000000000\n#define LLINF 1000000000000000ll\n#define sz(x) ((int)(x).size())\n#define fi first\n#define sec second\n#define all(x) (x).begin(),(x).end()\n#define sq(x) ((x)*(x))\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);(i)++)\n#define repn(i,a,n) for(int (i)=(a);(i)<(int)(n);(i)++)\n#define EQ(a,b) (abs((a)-(b))<eps)\n#define dmp(x) cerr << __LINE__ << \" \" << #x << \" \" << x << endl;\ntemplate<class T> void chmin(T& a,const T& b){if(a>b)a=b;}\ntemplate<class T> void chmax(T& a,const T& b){if(a<b)a=b;}\ntemplate<class T,class U>\nostream& operator << (ostream& os,pair<T,U>& p){\n\tos << p.fi << ',' << p.sec; return os;\n}\ntemplate<class T,class U>\nistream& operator >> (istream& is,pair<T,U>& p){\n\tis >> p.fi >> p.sec; return is;\n}\ntemplate<class T>\nostream& operator << (ostream &os,const vector<T> &vec){\n\tfor(int i=0;i<vec.size();i++){\n\t\tos << vec[i];\n\t\tif(i+1<vec.size())os << ' ';\n\t}\n\treturn os;\n}\ntemplate<class T>\nistream& operator >> (istream &is,vector<T>& vec){\n\tfor(int i=0;i<vec.size();i++)is >> vec[i];\n\treturn is;\n}\nvoid fastio(){\n\tcin.tie(0);\n\tios::sync_with_stdio(0);\n\tcout<<fixed<<setprecision(20);\n}\n// How to devide :\n// ModInt a(6ll);\n// ModInt b(2ll);\n// a *= b.exp(MOD-2ll); -> a/=b; result: a = 3\nll MOD = 998244353ll; // if inv is needed, this shold be prime.\nstruct ModInt{\n\tll val;\n\tModInt():val(0ll){}\n\tModInt(ll v):val(((v%MOD)+MOD)%MOD){}\n\tModInt exp(ll y)const{\n\t\tif(!y)return ModInt(1ll);\n\t\tModInt a = exp(y/2ll);\n\t\ta *= a;\n\t\tif(y&1)a*=(*this);\n\t\treturn a;\n\t}\n\tbool operator==(const ModInt& x)const{return val==x.val;}\n\tinline bool operator!=(const ModInt& x)const{return !(*this==x);}\n\tbool operator<(const ModInt& x)const{return val<x.val;}\n\tbool operator>(const ModInt& x)const{return val>x.val;}\n\tinline bool operator>=(const ModInt& x)const{return !(*this<x);}\n\tinline bool operator<=(const ModInt& x)const{return !(*this>x);}\n\tModInt& operator+=(const ModInt& x){if((val+=x.val)>=MOD)val-=MOD;return *this;}\n\tModInt& operator-=(const ModInt& x){if((val+=MOD-x.val)>=MOD)val-=MOD;return *this;}\n\tModInt& operator*=(const ModInt& x){(val*=x.val)%=MOD;return *this;}\n\tModInt operator+(const ModInt& x)const{return ModInt(*this)+=x;}\n\tModInt operator-(const ModInt& x)const{return ModInt(*this)-=x;}\n\tModInt operator*(const ModInt& x)const{return ModInt(*this)*=x;}\n};\nistream& operator>>(istream&i,ModInt&x){i>>x.val;return i;}\nostream& operator<<(ostream&o,const ModInt&x){o<<x.val;return o;}\nModInt pow(ModInt a,ll x){\n\tModInt res = ModInt(1ll);\n\twhile(x){\n\t\tif(x&1ll)res *= a;\n\t\tx >>= 1;\n\t\ta = a*a;\n\t}\n\treturn res;\n}\nconst int SIZE = 100100;\nModInt inv[SIZE+10],fac[SIZE+10],facinv[SIZE+10];\n// notice: 0C0 = 1 \nModInt nCr(int n,int r){\n\tassert(!(n<r));\n\tassert(!(n<0||r<0));\n\treturn fac[n]*facinv[r]*facinv[n-r];\n}\nvoid init(){\n\tfac[0]=ModInt(1ll);\n\tfor(int i=1;i<=SIZE;i++)fac[i]=fac[i-1]*ModInt(i);\n\tinv[1]=ModInt(1ll);\n\tfor(int i=2;i<=SIZE;i++)inv[i]=ModInt(0ll)-ModInt(MOD/i)*inv[MOD%i];\n\tfacinv[0]=ModInt(1ll);\n\tfor(int i=1;i<=SIZE;i++)facinv[i]=facinv[i-1]*inv[i];\n\treturn;\n}\nModInt nCk(ll n,ll k){\n ModInt ret = ModInt(1ll);\n for(int i=0;i<k;i++){\n ret *= ModInt(n-i);\n }\n for(int i=1;i<=k;i++){\n ret *= pow(ModInt(i),MOD-2);\n }\n return ret;\n}\nll M,N,K;\nModInt y[100100];\nModInt a[100100];\nModInt b[100100];\nint main(){\n cin >> M >> N >> K;\n ModInt ans = pow(ModInt(M),N);\n a[0] = ModInt(M);\n for(int i=1;i<=3*K;i++){\n a[i] = a[i-1]*ModInt(M-i);\n }\n b[0] = ModInt(1ll);\n for(int i=1;i<=3*K;i++){\n b[i] = b[i-1]*ModInt(i);\n }\n for(int i=1;i<K;i++){\n if(i>M)break;\n y[i] = nCk(M,i)*pow(ModInt(i),N);\n for(int j=1;j<i;j++){\n y[i]-=y[j]*a[i-1]*pow(a[j-1],MOD-2ll)*pow(b[i-j],MOD-2ll);\n }\n // cout << y[i] << endl;\n ans -= y[i];\n }\n cout << ans << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 690, "memory_kb": 7816, "score_of_the_acc": -0.8719, "final_rank": 17 }, { "submission_id": "aoj_3071_3880601", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n#define spa << \" \" <<\n#define lfs <<fixed<<setprecision(10)<<\n#define test cout<<\"test\"<<endl;\n#define fi first\n#define se second\n#define MP make_pair\n#define PB push_back\n#define EB emplace_back\n#define rep(i,n,m) for(ll i = n; i < (ll)(m); i++)\n#define rrep(i,n,m) for(ll i = n - 1; i >= (ll)(m); i--)\ntypedef long long ll;\ntypedef long double ld;\n//const ll MOD = 1e9+7;\nconst ll MOD = 998244353;\nconst ll INF = 1e18;\nusing P = pair<ll, ll>;\ntemplate<typename T>\nvoid chmin(T &a,T b){if(a>b)a=b;}\ntemplate<typename T>\nvoid chmax(T &a,T b){if(a<b)a=b;}\nvoid pmod(ll &a,ll b){a=(a+b)%MOD;}\nvoid pmod(ll &a,ll b,ll c){a=(b+c)%MOD;}\nvoid qmod(ll &a,ll b){a=(a*b)%MOD;}\nvoid qmod(ll &a,ll b,ll c){a=(b*c)%MOD;}\nll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}\nvoid ans1(bool x){if(x) cout<<\"Yes\"<<endl;else cout<<\"No\"<<endl;}\nvoid ans2(bool x){if(x) cout<<\"YES\"<<endl;else cout<<\"NO\"<<endl;}\nvoid ans3(bool x){if(x) cout<<\"Yay!\"<<endl;else cout<<\":(\"<<endl;}\ntemplate<typename T1,typename T2>\nvoid ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} \ntemplate<typename T>\nvoid debug(vector<vector<T>>v,ll h,ll w){for(ll i=0;i<h;i++)\n{cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};\nvoid debug(vector<string>v,ll h,ll w){for(ll i=0;i<h;i++)\n{for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};\ntemplate<typename T>\nvoid debug(vector<T>v,ll n){cout<<v[0];\nfor(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};\ntemplate<typename T>\nvector<vector<T>>vec(ll x, ll y, T w){\n vector<vector<T>>v(x,vector<T>(y,w));return v;}\nll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}\ntemplate<typename T>\nvoid emp(map<T,ll>&m, T x){m.emplace(x,0).first->second++;}\nvector<ll>dx={1,0,-1,0,1,1,-1,-1};\nvector<ll>dy={0,1,0,-1,1,-1,1,-1};\ntemplate<typename T>\nvector<T> make_v(size_t a,T b){return vector<T>(a,b);}\ntemplate<typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return vector<decltype(make_v(ts...))>(a,make_v(ts...));\n}\n\ntemplate< int mod >\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n\n bool operator==(const ModInt &p) const { return x == p.x; }\n\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\nusing modint = ModInt< MOD >;\n\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n\n Combination(ll sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(ll i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(ll i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(ll i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n\n inline T fact(ll k) const { return _fact[k]; }\n\n inline T rfact(ll k) const { return _rfact[k]; }\n\n inline T inv(ll k) const { return _inv[k]; }\n\n T P(ll n, ll r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n\n T C(ll p, ll q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n\n T H(ll n, ll r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\nusing Comb=Combination<modint>;\n\n\nint main(){\n cin.tie(NULL);\n ios_base::sync_with_stdio(false);\n ll res=0,res1=INF,res2=-INF,buf=0;\n bool judge = true;\n ll m,n,k;cin>>m>>n>>k;\n vector<modint>dp(k);//i種類ちょうどのときの余事象\n vector<modint>p(k);\n vector<modint>b(k);//dpの累積和\n Comb comb(10000);\n rep(i,1,min(m+1,k)){\n modint tmp=i;\n tmp=tmp.pow(n);\n modint com=1;//mCiを計算\n rrep(j,m+1,max(0LL,m-i+1)){\n com*=modint(j);\n }\n rep(j,1,i+1)com/=modint(j);\n if(com==0)com=1;\n p[i]=tmp;\n dp[i]=tmp*com;\n rep(j,1,i){\n p[i]-=p[j]*comb.C(i,j);\n dp[i]-=p[j]*comb.C(i,j)*com;\n }\n b[i]=dp[i]+b[i-1];\n }\n modint ret=m;\n ret=ret.pow(n);\n ret-=b[min(m+1,k)-1];\n //debug(p,k);\n //debug(dp,k);\n //debug(b,k);\n cout<<ret<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3344, "score_of_the_acc": -0.0311, "final_rank": 1 }, { "submission_id": "aoj_3071_3880527", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=998244353;\n\n#define MAX_N 200020\nll inv[MAX_N+10],fac[MAX_N+10],ifac[MAX_N+10];\n\nvoid setComb(){\n inv[0]=1;inv[1]=1;fac[1]=1;ifac[1]=1;fac[0]=1;ifac[0]=1;\n for(int i=2;i<MAX_N;i++){\n inv[i]=(-MOD/i)*inv[MOD%i]%MOD;\n fac[i]=fac[i-1]*i%MOD;\n ifac[i]=ifac[i-1]*inv[i]%MOD;\n\n inv[i]=(inv[i]+MOD)%MOD;\n fac[i]=(fac[i]+MOD)%MOD;\n ifac[i]=(ifac[i]+MOD)%MOD;\n }\n return;\n}\n\nll comb(ll n,ll k){\n if(n<k||n<0||k<0) return 0;\n else return ((fac[n]*ifac[k]%MOD*ifac[n-k]%MOD+MOD)%MOD);\n}\n\nll hcomb(ll n,ll r){\n if(n==0&&r==0) return 1;\n else if(n<0||r<0) return 0;\n else return comb(n+r-1,r-1);\n}\n\nll mod_pow(ll x,ll n){\n x%=MOD;\n ll res=1;\n while(n>0){\n if(n&1) res=res*x%MOD;\n x=x*x%MOD;\n n/=2;\n }\n return res;\n}\n\nvoid add(ll &a,ll b){\n a=(a+b)%MOD;\n}\n\nvoid mul(ll &a,ll b){\n a=a*b%MOD;\n}\n\n\nll N,M,K;\n\nint main(){\n cin>>M>>N>>K;\n\n setComb();\n\n ll nans=0;\n for(ll i=1;i<=min(M,K-1);i++){\n ll c=ifac[i];\n for(ll j=0;j<i;j++){\n mul(c,(M-j)%MOD);\n }\n\n ll res=0;\n for(ll j=1;j<=i;j++){\n ll p=mod_pow(j,N);\n mul(p,comb(i,j));\n if((i-j)%2==0) add(res,p);\n else add(res,MOD-p);\n }\n mul(res,c);\n add(nans,res);\n }\n\n ll ans=mod_pow(M,N);\n add(ans,MOD-nans);\n cout<<ans<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 7812, "score_of_the_acc": -0.3353, "final_rank": 11 }, { "submission_id": "aoj_3071_3880526", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n// #define int ll\nusing PII = pair<ll, ll>;\n\n#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define ALL(x) x.begin(), x.end()\n\ntemplate<typename T> T &chmin(T &a, const T &b) { return a = min(a, b); }\ntemplate<typename T> T &chmax(T &a, const T &b) { return a = max(a, b); }\ntemplate<typename T> bool IN(T a, T b, T x) { return a<=x&&x<b; }\ntemplate<typename T> T ceil(T a, T b) { return a/b + !!(a%b); }\n\ntemplate<typename T> vector<T> make_v(size_t a) { return vector<T>(a); }\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts) {\n return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\ntemplate<typename T,typename V> typename enable_if<is_class<T>::value==0>::type\nfill_v(T &t, const V &v) { t=v; }\ntemplate<typename T,typename V> typename enable_if<is_class<T>::value!=0>::type\nfill_v(T &t, const V &v ) { for(auto &e:t) fill_v(e,v); }\n\ntemplate<class S,class T>\nostream &operator <<(ostream& out,const pair<S,T>& a) {\n out<<'('<<a.first<<','<<a.second<<')'; return out;\n}\ntemplate<class T>\nostream &operator <<(ostream& out,const vector<T>& a){\n out<<'[';\n for(const T &i: a) out<<i<<',';\n out<<']';\n return out;\n}\ntemplate<class T>\nostream &operator <<(ostream& out, const set<T>& a) {\n out<<'{';\n for(const T &i: a) out<<i<<',';\n out<<'}';\n return out;\n}\ntemplate<class T, class S>\nostream &operator <<(ostream& out, const map<T,S>& a) {\n out<<'{';\n for(auto &i: a) out<<i<<',';\n out<<'}';\n return out;\n}\n\nint dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0}; // DRUL\nconst int INF = 1<<30;\nconst ll LLINF = 1LL<<60;\nconst ll MOD = 1000000007;\n\ntemplate<ll MOD>\nstruct modint {\n ll x;\n modint(): x(0) {}\n modint(ll y) : x(y>=0 ? y%MOD : y%MOD+MOD) {}\n static constexpr ll mod() { return MOD; }\n // e乗\n modint pow(ll e) {\n ll a = 1, p = x;\n while(e > 0) {\n if(e%2 == 0) {p = (p*p) % MOD; e /= 2;}\n else {a = (a*p) % MOD; e--;}\n }\n return modint(a);\n }\n modint inv() const {\n ll a=x, b=MOD, u=1, y=1, v=0, z=0;\n while(a) {\n ll q = b/a;\n swap(z -= q*u, u);\n swap(y -= q*v, v);\n swap(b -= q*a, a);\n }\n return z;\n }\n // Comparators\n bool operator <(modint b) { return x < b.x; }\n bool operator >(modint b) { return x > b.x; }\n bool operator<=(modint b) { return x <= b.x; }\n bool operator>=(modint b) { return x >= b.x; }\n bool operator!=(modint b) { return x != b.x; }\n bool operator==(modint b) { return x == b.x; }\n // Basic Operations\n modint operator+(modint r) const { return modint(*this) += r; }\n modint operator-(modint r) const { return modint(*this) -= r; }\n modint operator*(modint r) const { return modint(*this) *= r; }\n modint operator/(modint r) const { return modint(*this) /= r; }\n modint &operator+=(modint r) {\n if((x += r.x) >= MOD) x -= MOD;\n return *this;\n }\n modint &operator-=(modint r) {\n if((x -= r.x) < 0) x += MOD;\n return *this;\n }\n modint &operator*=(modint r) {\n #if !defined(_WIN32) || defined(_WIN64)\n x = x * r.x % MOD; return *this;\n #endif\n unsigned long long y = x * r.x;\n unsigned xh = (unsigned) (y >> 32), xl = (unsigned) y, d, m;\n asm(\n \"divl %4; nt\"\n : \"=a\" (d), \"=d\" (m)\n : \"d\" (xh), \"a\" (xl), \"r\" (MOD)\n );\n x = m;\n return *this;\n }\n modint &operator/=(modint r) { return *this *= r.inv(); }\n // increment, decrement\n modint operator++() { x++; return *this; }\n modint operator++(signed) { modint t = *this; x++; return t; }\n modint operator--() { x--; return *this; }\n modint operator--(signed) { modint t = *this; x--; return t; }\n\n template<class T>\n friend modint operator*(T l, modint r) { return modint(l) *= r; }\n template<class T>\n friend modint operator+(T l, modint r) { return modint(l) += r; }\n template<class T>\n friend modint operator-(T l, modint r) { return modint(l) -= r; }\n template<class T>\n friend modint operator/(T l, modint r) { return modint(l) /= r; }\n template<class T>\n friend bool operator==(T l, modint r) { return modint(l) == r; }\n template<class T>\n friend bool operator!=(T l, modint r) { return modint(l) != r; }\n // Input/Output\n friend ostream &operator<<(ostream& os, modint a) { return os << a.x; }\n friend istream &operator>>(istream& is, modint &a) { return is >> a.x; }\n friend string to_frac(modint v) {\n static map<ll, PII> mp;\n if(mp.empty()) {\n mp[0] = mp[MOD] = {0, 1};\n FOR(i, 2, 1001) FOR(j, 1, i) if(__gcd(i, j) == 1) {\n mp[(modint(i) / j).x] = {i, j};\n }\n }\n auto itr = mp.lower_bound(v.x);\n if(itr != mp.begin() && v.x - prev(itr)->first < itr->first - v.x) --itr;\n string ret = to_string(itr->second.first + itr->second.second * ((int)v.x - itr->first));\n if(itr->second.second > 1) {\n ret += '/';\n ret += to_string(itr->second.second);\n }\n return ret;\n }\n};\nusing mint = modint<998244353>;\n\n// 前計算O(N) クエリO(1)\nmint combi(ll N, ll K) {\n const int maxN=5e5; // !!!\n static mint fact[maxN+1]={},factr[maxN+1]={};\n if (fact[0]==0) {\n fact[0] = factr[0] = 1;\n FOR(i, 1, maxN+1) fact[i] = fact[i-1] * i;\n factr[maxN] = fact[maxN].inv();\n for(ll i=maxN-1; i>=0; --i) factr[i] = factr[i+1] * (i+1);\n }\n if(K<0 || K>N) return 0; // !!!\n return factr[K]*fact[N]*factr[N-K];\n}\n\n// 前計算O(Klog(mod)) クエリO(K)\nmint combi_bigN(ll N, ll K) {\n const int maxN=5e5; // !!!\n static mint inv[maxN+1] = {};\n if(inv[0]==0) {\n inv[0] = 1;\n FOR(i, 1, maxN+1) inv[i] = mint(i).inv();\n }\n if(K<0 || K>N) return 0; // !!!\n mint ret = 1;\n for(;K>0;N--,K--) ret *= N, ret *= inv[K];\n return ret;\n}\n\nsigned main(void)\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll m, n, k;\n cin >> m >> n >> k;\n\n mint ans = mint(m).pow(n);\n FOR(i, 1, k) {\n mint tmp = 0;\n FOR(j, 1, i+1) {\n if((i-j)%2 == 0) {\n tmp += combi(i, j) * mint(j).pow(n);\n } else {\n tmp -= combi(i, j) * mint(j).pow(n);\n }\n }\n ans -= tmp * combi_bigN(m, i);\n }\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 14932, "score_of_the_acc": -0.7914, "final_rank": 16 }, { "submission_id": "aoj_3071_3880362", "code_snippet": "#include <algorithm>\n// #include <cassert>\n#include <iostream>\n#include <utility>\n#include <vector>\nusing namespace std;\n\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n\nconst int MOD = 998244353;\n/*-------------------------------------------------*/\nint mod = MOD;\nstruct ModInt {\n unsigned val;\n ModInt(): val(0) {}\n ModInt(long long x) : val(x >= 0 ? x % mod : x % mod + mod) {}\n ModInt pow(long long exponent) {\n ModInt tmp = *this, res = 1;\n while (exponent > 0) {\n if (exponent & 1) res *= tmp;\n tmp *= tmp;\n exponent >>= 1;\n }\n return res;\n }\n ModInt &operator+=(const ModInt &rhs) { if((val += rhs.val) >= mod) val -= mod; return *this; }\n ModInt &operator-=(const ModInt &rhs) { if((val += mod - rhs.val) >= mod) val -= mod; return *this; }\n ModInt &operator*=(const ModInt &rhs) { val = (unsigned long long)val * rhs.val % mod; return *this; }\n ModInt &operator/=(const ModInt &rhs) { return *this *= rhs.inv(); }\n bool operator==(const ModInt &rhs) const { return val == rhs.val; }\n bool operator!=(const ModInt &rhs) const { return val != rhs.val; }\n bool operator<(const ModInt &rhs) const { return val < rhs.val; }\n bool operator<=(const ModInt &rhs) const { return val <= rhs.val; }\n bool operator>(const ModInt &rhs) const { return val > rhs.val; }\n bool operator>=(const ModInt &rhs) const { return val >= rhs.val; }\n ModInt operator-() const { return ModInt(-val); }\n ModInt operator+(const ModInt &rhs) const { return ModInt(*this) += rhs; }\n ModInt operator-(const ModInt &rhs) const { return ModInt(*this) -= rhs; }\n ModInt operator*(const ModInt &rhs) const { return ModInt(*this) *= rhs; }\n ModInt operator/(const ModInt &rhs) const { return ModInt(*this) /= rhs; }\n friend ostream &operator<<(ostream &os, const ModInt &rhs) { return os << rhs.val; }\n friend istream &operator>>(istream &is, ModInt &rhs) { long long x; is >> x; rhs = ModInt(x); return is; }\nprivate:\n ModInt inv() const {\n // if (__gcd((int)val, mod) != 1) assert(false);\n unsigned a = val, b = mod; int x = 1, y = 0;\n while (b) {\n unsigned tmp = a / b;\n swap(a -= tmp * b, b);\n swap(x -= tmp * y, y);\n }\n return ModInt(x);\n }\n};\nModInt abs(const ModInt &x) { return x.val; }\nstruct Combinatorics {\n Combinatorics(int MAX = 5000000) {\n MAX <<= 1;\n fact.resize(MAX + 1);\n fact_inv.resize(MAX + 1);\n fact[0] = 1;\n FOR(i, 1, MAX + 1) fact[i] = fact[i - 1] * i;\n fact_inv[MAX] = ModInt(1) / fact[MAX];\n for (int i = MAX; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i;\n }\n ModInt nCk(int n, int k) {\n if (n < 0 || n < k || k < 0) return ModInt(0);\n return fact[n] * fact_inv[k] * fact_inv[n - k];\n }\n ModInt nPk(int n, int k) {\n if (n < 0 || n < k || k < 0) return ModInt(0);\n return fact[n] * fact_inv[n - k];\n }\n ModInt nHk(int n, int k) {\n if (n < 0 || k < 0) return ModInt(0);\n return (k == 0 ? ModInt(1) : nCk(n + k - 1, k));\n }\nprivate:\n vector<ModInt> fact, fact_inv;\n};\n\nvector<long long> inv_init(int val, long long mod = MOD) {\n vector<long long> inv(val + 1, 0);\n if (val >= 1) {\n inv[1] = 1;\n FOR(i, 2, val + 1) {\n inv[i] = mod - inv[mod % i] * (mod / i) % mod;\n if (inv[i] == mod) inv[i] = 0;\n }\n }\n return inv;\n}\n\nlong long nCk(long long n, int k, long long mod = MOD) {\n if (n < 0 || n < k || k < 0) return 0;\n vector<long long> k_inv = inv_init(k, mod);\n long long res = 1;\n FOR(i, 1, k + 1) (res *= (n-- % mod) * k_inv[i] % mod) %= mod;\n return res;\n}\n\nint main() {\n cin.tie(nullptr); ios::sync_with_stdio(false);\n // freopen(\"input.txt\", \"r\", stdin);\n\n long long m, n; int k; cin >> m >> n >> k;\n Combinatorics com(k);\n ModInt ans = ModInt(m).pow(n);\n if (k > 1) {\n FOR(i, 1, k) {\n ModInt tmp = 0;\n for (int j = i; j >= 1; --j) {\n if ((i - j) % 2 == 0) {\n tmp += com.nCk(i, j) * ModInt(j).pow(n);\n } else {\n tmp -= com.nCk(i, j) * ModInt(j).pow(n);\n }\n }\n ans -= tmp * nCk(m, i);\n }\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 3240, "score_of_the_acc": -0.3073, "final_rank": 10 } ]
aoj_3075_cpp
Problem L: Space Travel Story 遠い昔、はるかかなたの銀河系で。 時は内乱の嵐が吹き荒れるさなか、凶悪な銀河帝国の軍勢が反乱軍の秘密基地を襲った。 恐るべき帝国宇宙艦隊の追撃から逃れた、ウーク・スターウォーカーによって率いられる自由の戦士たちは、銀河の辺境に新たな秘密基地を築くことにした。 反乱軍の一員であり、凄腕のプログラマーであるあなたにあたえられたミッションは、銀河系のそれぞれの惑星から最も離れた惑星を見つけることである。 Problem 銀河系には $N$ 個の惑星があり、$M$ 個の「橋」と呼ばれる秘密のルートがある。 惑星にはそれぞれ $1,2, \ldots N$ の番号が、橋にはそれぞれ $1,2, \ldots M$ の番号がついている。 各惑星の位置は実三次元空間上の点として表され、惑星 $p$ は $(x_p,y_p,z_p)$ に位置する。 $i$ 番目の橋は、惑星 $u_i$ から $v_i$ へと向かう秘密のルートである。 $i$ 番目の橋を使って惑星 $v_i$ から $u_i$ へ直接移動することはできないことに注意せよ。 惑星 $p$ と $q$ の距離を以下のように定義する。 $\mathrm{d} (p,q) = |x_p - x_q| + |y_p - y_q| + |z_p - z_q|$ 惑星 $p$ から $0$ 個以上の橋を伝って到達可能な惑星の集合を $S_p$ とする。 各 $p$ について、$\displaystyle \max_{s \in S_p} \mathrm{d} (p,s)$ を求めよ。 ただし、反乱軍は常に凶悪な銀河帝国の軍勢に狙われているため、橋以外のルートで惑星間を移動することはできない。 Input 入力は以下の形式で与えられる。 $N$ $M$ $x_1$ $y_1$ $z_1$ $\vdots$ $x_N$ $y_N$ $z_N$ $u_1$ $v_1$ $\vdots$ $u_M$ $v_M$ Constraints 入力は以下の条件を満たす。 $1 \leq N \leq 2 \times 10^5$ $1 \leq M \leq 5 \times 10^5$ $1 \leq u_i , v_i \leq N$ $|x_p|,|y_p|,|z_p| \leq 10^8$ $u_i \neq v_i$ $i \neq j$ なら $(u_i,v_i) \neq (u_j,v_j)$ $p \neq q$ なら $(x_p,y_p,z_p) \neq (x_q,y_q,z_q)$ 入力は全て整数である Output $N$ 行出力せよ。 $i$ 行目には $\displaystyle \max_{s \in S_i} \mathrm{d} (i,s)$ を出力せよ。 Sample Input 1 2 1 1 1 1 2 2 2 1 2 Sample Output 1 3 0 Sample Input 2 2 2 1 1 1 2 2 2 1 2 2 1 Sample Output 2 3 3 Sample Input 3 6 6 0 8 0 2 3 0 2 5 0 4 3 0 4 5 0 6 0 0 1 3 2 3 3 5 5 4 4 2 4 6 Sample Output 3 14 7 9 5 7 0 Sample Input 4 10 7 -65870833 -68119923 -51337277 -59513976 -24997697 -46968492 -37069671 -90713666 -45043609 -31144219 43731960 -5258464 -27501033 90001758 13168637 -96651565 -67773915 56786711 44851572 -29156912 28758396 16384813 -79097935 7386228 88805434 -79256976 31470860 92682611 32019492 -87335887 6 7 7 9 6 5 1 2 2 4 4 1 9 8 Sample Output 4 192657310 138809442 0 192657310 0 270544279 99779950 0 96664294 0
[ { "submission_id": "aoj_3075_10389291", "code_snippet": "// AOJ #3075 Space Travel\n// 2025.4.17\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nint main(){\n int n = Cin(), m = Cin();\n vector<ll> x(n),y(n),z(n);\n for(int i=0;i<n;i++) x[i] = Cin(), y[i] = Cin(), z[i] = Cin();\n\n vector<vector<int>> g(n), rg(n);\n for(int i=0;i<m;i++){\n int u = Cin()-1, v = Cin()-1;\n g[u].push_back(v);\n rg[v].push_back(u);\n }\n\n vector<char> vis(n,false);\n vector<int> ord; ord.reserve(n);\n for(int s=0;s<n;s++){\n if(!vis[s]){\n stack<pair<int,int>> st;\n st.emplace(s,0);\n vis[s]=1;\n while(!st.empty()){\n auto &tp = st.top();\n int u=tp.first, &i=tp.second;\n if(i < (int)g[u].size()){\n int v=g[u][i++];\n if(!vis[v]){\n vis[v]=1;\n st.emplace(v,0);\n }\n } else {\n ord.push_back(u);\n st.pop();\n }\n }\n }\n }\n\n vector<int> comp(n,-1);\n int C=0;\n for(int idx=n-1;idx>=0;idx--){\n int u=ord[idx];\n if(comp[u]==-1){\n stack<int> st;\n st.push(u);\n comp[u]=C;\n while(!st.empty()){\n int w=st.top(); st.pop();\n for(int v: rg[w]){\n if(comp[v]==-1){\n comp[v]=C;\n st.push(v);\n }\n }\n }\n C++;\n }\n }\n\n vector<vector<int>> gg(C);\n vector<int> indeg(C,0);\n for(int u=0;u<n;u++){\n for(int v:g[u]){\n if(comp[u]!=comp[v]){\n gg[comp[u]].push_back(comp[v]);\n indeg[comp[v]]++;\n }\n }\n }\n\n vector<int> topo; topo.reserve(C);\n queue<int> q;\n for(int i=0;i<C;i++) if(indeg[i]==0) q.push(i);\n while(!q.empty()){\n int u=q.front(); q.pop();\n topo.push_back(u);\n for(int v:gg[u]) if(--indeg[v]==0) q.push(v);\n }\n\n vector<ll> ans(n, 0);\n\n for(int msk=0; msk<8; msk++){\n int sx = (msk & 1) ? 1 : -1;\n int sy = (msk & 2) ? 1 : -1;\n int sz = (msk & 4) ? 1 : -1;\n\n vector<ll> A(n);\n for(int i=0;i<n;i++) A[i] = sx*x[i] + sy*y[i] + sz*z[i];\n\n vector<ll> maxA(C, LLONG_MIN), dp;\n for(int i=0;i<n;i++){\n int c = comp[i];\n maxA[c] = max(maxA[c], A[i]);\n }\n\n dp = maxA;\n for(int idx = C-1; idx >= 0; idx--){\n int u = topo[idx];\n for(int v: gg[u]) dp[u] = max(dp[u], dp[v]);\n }\n\n for(int i=0;i<n;i++) ans[i] = max(ans[i], dp[comp[i]] - A[i]);\n }\n for(int i=0;i<n;i++) Cout(ans[i]);\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 49620, "score_of_the_acc": -0.0652, "final_rank": 1 }, { "submission_id": "aoj_3075_4200729", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\nusing i64 = long long;\n\nconst i64 MOD = 1e9 + 7;\nconst i64 INF = i64(1e18) + 7;\n\n\ntemplate <typename T>\nbool chmin(T& x, T y){\n if(x > y){\n x = y;\n return true;\n }\n return false;\n}\n\ntemplate <typename T>\nbool chmax(T& x, T y){\n if(x < y){\n x = y;\n return true;\n }\n return false;\n}\n\nvector<int> scc(vector<vector<int>>& edges){\n int n = edges.size();\n vector<vector<int>> rev(n);\n\n for(int i = 0; i < n; ++i)\n for(auto& x : edges[i])\n rev[x].emplace_back(i);\n\n vector<i64> dfs_num(n, -1);\n vector<i64> flag(n, 0);\n int num = 0;\n function<void(int)> dfs = [&](int pos){\n flag[pos] = 1;\n for(auto& xx : edges[pos])\n if(!flag[xx]){\n dfs(xx);\n }\n dfs_num[pos] = num++;\n };\n\n for(int i = 0; i < n; ++i)\n if(!flag[i])\n dfs(i);\n\n vector<int> dfs_inv(n);\n for(int i = 0; i < n; ++i)\n dfs_inv[n - 1 - dfs_num[i]] = i;\n\n num = 0;\n\n vector<int> scc_vec(n, -1);\n\n function<void(int)> rdfs = [&](int pos){\n scc_vec[pos] = num;\n for(auto t : rev[pos])\n if(scc_vec[t] == -1)\n rdfs(t);\n };\n\n for(int i = 0; i < n; ++i)\n if(scc_vec[dfs_inv[i]] == -1){\n rdfs(dfs_inv[i]);\n ++num;\n }\n\n return scc_vec;\n}\n\nstruct Result{\n int dag_size;\n vector<vector<int>> dag_graph;\n // 元のグラフでi番目の頂点が何番目の強連結成分に含まれるか\n vector<int> elements;\n // i番目の強連結成分に含まれる頂点のリスト\n vector<vector<int>> tps_list;\n // トポソしてi番目にくる頂点のindex\n vector<int> tps_order;\n // DAGのi番目の頂点をトポソした時の番号\n vector<int> tps_index;\n};\n\nResult scc_dag(vector<vector<int>>& edges){\n int n = edges.size();\n vector<int> scc_vec = scc(edges);\n int m = *max_element(scc_vec.begin(), scc_vec.end()) + 1;\n vector<vector<int>> dag_graph(m);\n\n queue<int> tps_que;\n vector<int> in_count(m, 0);\n vector<int> tps(m, -1);\n vector<int> tps_idx(m);\n for(int i = 0; i < n; ++i){\n for(auto j : edges[i]){\n if(scc_vec[i] == scc_vec[j])\n continue;\n dag_graph[scc_vec[i]].push_back(scc_vec[j]);\n ++in_count[scc_vec[j]];\n }\n }\n for(int i = 0; i < m; ++i)\n if(in_count[i] == 0)\n tps_que.push(i);\n int cnt = 0;\n while(!tps_que.empty()){\n int x = tps_que.front();\n tps_idx[x] = cnt;\n tps[cnt++] = x;\n tps_que.pop();\n for(auto y : dag_graph[x])\n if(--in_count[y] == 0)\n tps_que.push(y);\n }\n assert(cnt == m);\n\n vector<vector<int>> tps_list(m);\n for(int i = 0; i < n; ++i)\n tps_list[scc_vec[i]].push_back(i);\n\n Result res;\n res.dag_size = m;\n res.elements = move(scc_vec);\n res.tps_index = move(tps_idx);\n res.tps_order = move(tps);\n res.tps_list = move(tps_list);\n res.dag_graph = move(dag_graph);\n return res;\n}\n\n\n\n\nsigned main(){\n int n, m;\n cin >> n >> m;\n vector<int> x(n), y(n), z(n);\n vector<vector<int>> v(n, vector<int>(8, 0));\n for(int i = 0; i < n; ++i){\n cin >> x[i] >> y[i] >> z[i];\n for(int j = 0; j < 8; ++j){\n v[i][j] += x[i] * (j & 1 ? -1 : 1);\n v[i][j] += y[i] * (j & 2 ? -1 : 1);\n v[i][j] += z[i] * (j & 4 ? -1 : 1);\n }\n }\n vector<vector<int>> edges(n);\n for(int i = 0; i < m; ++i){\n int p, q;\n cin >> p >> q;\n --p, --q;\n edges[q].push_back(p);\n }\n Result res = scc_dag(edges);\n int k = res.dag_size;\n vector<vector<int>> dp(k, vector<int>(8, -MOD));\n for(int i = 0; i < n; ++i)\n for(int j = 0; j < 8; ++j)\n chmax(dp[res.elements[i]][j], v[i][j]);\n\n for(auto i : res.tps_order){\n for(int j = 0; j < 8; ++j){\n for(auto nex : res.dag_graph[i]){\n chmax(dp[nex][j], dp[i][j]);\n }\n }\n }\n\n for(int i = 0; i < n; ++i){\n int dist = 0;\n for(int j = 0; j < 8; ++j){\n chmax(dist, dp[res.elements[i]][j] - v[i][j]);\n }\n cout << dist << endl;\n }\n}", "accuracy": 1, "time_ms": 660, "memory_kb": 74776, "score_of_the_acc": -1.0036, "final_rank": 10 }, { "submission_id": "aoj_3075_4053944", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <cmath>\nusing namespace std;\ntypedef long long ll;\nll inf = 1e18;\n\n//1-indexed!\nclass strong_components{\nprivate:\n vector<vector<int>> v,rv,nv,cmp_node;\n vector<int> rs,visited,cmp,cmp_size;\n int num_cmp;\n void dfs(int n){\n visited[n] = 1;\n for(auto x:v[n]) if(!visited[x]) dfs(x);\n rs.push_back(n);\n }\n void rdfs(int n,int cnt){\n visited[n] = 1;\n cmp[n] = cnt;\n for(auto x:rv[n]) if(!visited[x]) rdfs(x,cnt);\n }\npublic:\n strong_components(int N,vector<vector<int>>& graph){\n v = graph;\n rv = cmp_node = vector<vector<int>>(N+1);\n visited = cmp = cmp_size = vector<int>(N+1,0);\n for(int i=1;i<=N;i++) for(auto x:v[i]) rv[x].push_back(i);\n for(int i=1;i<=N;i++) if(!visited[i]) dfs(i);\n for(int i=1;i<=N;i++) visited[i] = 0;\n int now = 1;\n for(int i=rs.size()-1;i>=0;i--) if(!visited[rs[i]]) rdfs(rs[i],now++);\n nv = vector<vector<int>>(now+1);\n for(int i=1;i<=N;i++){\n cmp_node[cmp[i]].push_back(i);\n for(auto x:v[i]){\n if(cmp[i]!=cmp[x]){\n nv[cmp[x]].push_back(cmp[i]);\n cmp_size[cmp[x]]++;\n }\n }\n }\n num_cmp = now-1;\n }\n int find(int n){return cmp[n];}\n vector<int> get_cmp_node(int n){return cmp_node[n];}\n vector<vector<int>> get_cmp_graph(){return nv;}\n int get_num_cmp() {return num_cmp;}\n bool is_same_group(int a,int b){return cmp[a]==cmp[b];}\n};\n\nint dx[8] = {1,-1,1,-1,1,1,-1-1},dy[8] = {1,1,-1,-1,1,-1,1,-1},dz[8] = {1,1,1,1,-1,-1,-1,-1};\n\nint N,M;\nvector<ll> X(200010),Y(200010),Z(200010);\nvector<ll> ans(200010);\nvector<vector<int>> graph(200010);\nvector<vector<int>> cmp_graph(200010);\nvector<vector<int>> cmp_node(200010);\nvector<vector<int>> inv_graph(200010);\n\nll ma[200010][8] = {};\nll mi[200010][8] = {};\nll maid[200010][8] = {};\nll miid[200010][8] = {};\n\n\n//全体管理\nint main(){\n cin >> N >> M;\n for(int i=1;i<=N;i++){\n cin >> X[i] >> Y[i] >> Z[i];\n }\n for(int i=1;i<=M;i++){\n int a,b;\n cin >> a >> b;\n graph[a].push_back(b);\n }\n strong_components scc(N,graph);\n cmp_graph = scc.get_cmp_graph();\n for(int i=1;i<=N;i++) cmp_node[i] = scc.get_cmp_node(i);\n int num_node = scc.get_num_cmp();\n for(int i=0;i<=N;i++) for(int j=0;j<8;j++){\n ma[i][j] = -inf;\n mi[i][j] = inf;\n maid[i][j] = -1;\n miid[i][j] = -1;\n }\n vector<int> cnt(N+1);\n for(int i=1;i<=num_node;i++) cmp_graph[0].push_back(i);\n for(int i=0;i<=num_node;i++) for(auto x:cmp_graph[i]) cnt[x]++;\n queue<int> Q;\n Q.push(0);\n while(!Q.empty()){\n int now = Q.front(); Q.pop();\n //強連結成分内の点を追加\n for(auto x:cmp_node[now]){\n for(int j=0;j<8;j++){\n ll val = X[x]*dx[j]+Y[x]*dy[j]+Z[x]*dz[j];\n if(ma[now][j]<val){\n ma[now][j] = val;\n maid[now][j] = x;\n }\n if(mi[now][j]>val){\n mi[now][j] = val;\n miid[now][j] = x;\n }\n }\n }\n //強連結成分内の各点の答えを求める\n for(auto x:cmp_node[now]){\n //cerr << \"now: \" << now << \" x: \" << x << endl;\n for(int j=0;j<8;j++){\n if(maid[now][j]!=-1){\n int id = maid[now][j];\n ans[x] = max(ans[x],abs(X[x]-X[id])+abs(Y[x]-Y[id])+abs(Z[x]-Z[id]));\n }\n if(miid[now][j]!=-1){\n int id = miid[now][j];\n ans[x] = max(ans[x],abs(X[x]-X[id])+abs(Y[x]-Y[id])+abs(Z[x]-Z[id]));\n }\n }\n }\n //行き先に自分の情報を伝える\n for(auto x:cmp_graph[now]){\n for(int j=0;j<8;j++){\n if(ma[x][j]<ma[now][j]){\n ma[x][j] = ma[now][j];\n maid[x][j] = maid[now][j];\n }\n if(mi[x][j]>mi[now][j]){\n mi[x][j] = mi[now][j];\n miid[x][j] = miid[now][j];\n } \n }\n cnt[x]--;\n if(!cnt[x]) Q.push(x);\n }\n }\n for(int i=1;i<=N;i++) cout << ans[i] << endl;\n}", "accuracy": 1, "time_ms": 730, "memory_kb": 148212, "score_of_the_acc": -1.761, "final_rank": 17 }, { "submission_id": "aoj_3075_3893194", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nstruct SCC{\n vector<vector<Int> > G,R,T,C;\n vector<Int> vs,used,blg;\n SCC(){}\n SCC(Int n):G(n),R(n),used(n),blg(n){}\n\n void add_edge(Int u,Int v){\n G[u].emplace_back(v);\n R[v].emplace_back(u);\n }\n\n void dfs(Int v){\n used[v]=1;\n for(Int u:G[v])\n if(!used[u]) dfs(u);\n vs.emplace_back(v);\n }\n\n void rdfs(Int v,Int k){\n used[v]=1;\n blg[v]=k;\n C[k].emplace_back(v);\n for(Int u:R[v])\n if(!used[u]) rdfs(u,k);\n }\n\n Int build(){\n Int n=G.size();\n for(Int v=0;v<n;v++)\n if(!used[v]) dfs(v);\n\n fill(used.begin(),used.end(),0);\n Int k=0;\n for(Int i=n-1;i>=0;i--){\n if(!used[vs[i]]){\n T.emplace_back();\n C.emplace_back();\n rdfs(vs[i],k++);\n }\n }\n for(Int v=0;v<n;v++)\n for(Int u:G[v])\n if(blg[v]!=blg[u])\n T[blg[v]].push_back(blg[u]);\n\n for(Int i=0;i<k;i++){\n sort(T[i].begin(),T[i].end());\n T[i].erase(unique(T[i].begin(),T[i].end()),T[i].end());\n }\n return k;\n }\n Int operator[](Int k) const{return blg[k];};\n};\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n//INSERT ABOVE HERE\nsigned main(){\n Int n,m;\n cin>>n>>m;\n vector<Int> xs(n),ys(n),zs(n);\n for(Int i=0;i<n;i++) cin>>xs[i]>>ys[i]>>zs[i];\n\n SCC scc(n);\n for(Int i=0;i<m;i++){\n Int u,v;\n cin>>u>>v;\n u--;v--;\n scc.add_edge(v,u);\n }\n Int k=scc.build();\n\n vector<Int> ans(n,0);\n for(Int bit=0;bit<8;bit++){\n\n vector<Int> vs(n,0);\n for(Int i=0;i<n;i++){\n vs[i]+=(bit&1)?xs[i]:-xs[i];\n vs[i]+=(bit&2)?ys[i]:-ys[i];\n vs[i]+=(bit&4)?zs[i]:-zs[i];\n }\n\n const Int INF = 1e18;\n vector<Int> dp(k,-INF);\n for(Int i=0;i<n;i++)\n chmax(dp[scc.blg[i]],vs[i]);\n\n for(Int v=0;v<k;v++)\n for(Int u:scc.T[v])\n chmax(dp[u],dp[v]);\n\n for(Int i=0;i<n;i++)\n chmax(ans[i],dp[scc.blg[i]]-vs[i]);\n }\n\n for(Int i=0;i<n;i++) cout<<ans[i]<<\"\\n\";\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 62764, "score_of_the_acc": -0.4211, "final_rank": 2 }, { "submission_id": "aoj_3075_3880826", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef pair<int,int> P;\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vll;\n#define pb push_back\n#define mp make_pair\n#define eps 1e-9\n#define INF 2000000000\n#define LLINF 1000000000000000ll\n#define sz(x) ((int)(x).size())\n#define fi first\n#define sec second\n#define all(x) (x).begin(),(x).end()\n#define sq(x) ((x)*(x))\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);(i)++)\n#define repn(i,a,n) for(int (i)=(a);(i)<(int)(n);(i)++)\n#define EQ(a,b) (abs((a)-(b))<eps)\n#define dmp(x) cerr << __LINE__ << \" \" << #x << \" \" << x << endl;\ntemplate<class T> void chmin(T& a,const T& b){if(a>b)a=b;}\ntemplate<class T> void chmax(T& a,const T& b){if(a<b)a=b;}\ntemplate<class T,class U>\nostream& operator << (ostream& os,pair<T,U>& p){\n\tos << p.fi << ',' << p.sec; return os;\n}\ntemplate<class T,class U>\nistream& operator >> (istream& is,pair<T,U>& p){\n\tis >> p.fi >> p.sec; return is;\n}\ntemplate<class T>\nostream& operator << (ostream &os,const vector<T> &vec){\n\tfor(int i=0;i<vec.size();i++){\n\t\tos << vec[i];\n\t\tif(i+1<vec.size())os << ' ';\n\t}\n\treturn os;\n}\ntemplate<class T>\nistream& operator >> (istream &is,vector<T>& vec){\n\tfor(int i=0;i<vec.size();i++)is >> vec[i];\n\treturn is;\n}\nvector<int> G[200100],rG[200100];\nset<int> cG[200100];\nvector<int> vs;\nint V,E,Q;\nbool used[200100];\nint cmp[200100];\nvector<int> cmpv[200100];\nvoid add_edge(int from,int to){\n G[from].pb(to);\n rG[to].pb(from);\n return;\n}\nvoid dfs(int s){\n used[s]=true;\n for(int i=0;i<G[s].size();i++){\n if(!used[G[s][i]])dfs(G[s][i]);\n }\n vs.pb(s);\n}\nvoid rdfs(int s,int k){\n used[s]=true;\n cmp[s]=k;\n cmpv[k].pb(s);\n for(int i=0;i<rG[s].size();i++){\n int u = rG[s][i];\n if(!used[rG[s][i]]){\n rdfs(rG[s][i],k);\n }else{\n if(cmp[u]!=k){\n cG[cmp[u]].insert(k);\n }\n }\n }\n}\nint scc(){\n memset(used,0,sizeof(used));\n vs.clear();\n for(int v=0;v<V;v++){\n if(!used[v])dfs(v);\n }\n memset(used,0,sizeof(used));\n int k=0;\n for(int i=vs.size()-1;i>=0;i--){\n if(!used[vs[i]])rdfs(vs[i],k++);\n }\n return k;\n}\nint same(int u,int v){\n if(cmp[u]==cmp[v])return 1;\n else return 0;\n}\nint x[200100],y[200100],z[200100];\nint w[200100][4];\nint mx[200100][4],mi[200100][4];\nint ans[200100];\nint main(){\n cin >> V >> E;\n for(int i=0;i<V;i++){\n cin >> x[i] >> y[i] >> z[i];\n w[i][0] = x[i]+y[i]+z[i];\n w[i][1] = x[i]-y[i]+z[i];\n w[i][2] = x[i]+y[i]-z[i];\n w[i][3] = x[i]-y[i]-z[i];\n }\n for(int i=0;i<V;i++){\n ans[i] = -INF;\n }\n for(int i=0;i<V;i++){\n for(int j=0;j<4;j++){\n mx[i][j] = -INF;\n mi[i][j] = INF;\n }\n }\n for(int i=0;i<E;i++){\n int s,t;\n cin >> s >> t;\n s--;t--;\n add_edge(s,t);\n }\n int k = scc();\n // for(int i=0;i<k;i++){\n // cout << cmpv[i] << endl;\n // } \n for(int i=k-1;i>=0;i--){\n // cout << i << ',' << endl;\n for(int j=0;j<cmpv[i].size();j++){\n int u = cmpv[i][j];\n for(int idx=0;idx<4;idx++){\n chmin(mi[i][idx],w[u][idx]);\n chmax(mx[i][idx],w[u][idx]);\n }\n }\n for(auto it = cG[i].begin();it!=cG[i].end();it++){\n int to = *it;\n for(int idx=0;idx<4;idx++){\n chmin(mi[i][idx],mi[to][idx]);\n chmax(mx[i][idx],mx[to][idx]);\n }\n }\n for(int j=0;j<cmpv[i].size();j++){\n int v = cmpv[i][j];\n for(int idx=0;idx<4;idx++){\n chmax(ans[v],max(abs(mx[i][idx]-w[v][idx]),abs(mi[i][idx]-w[v][idx])));\n }\n }\n }\n for(int i=0;i<V;i++){\n cout << ans[i] << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 660, "memory_kb": 73740, "score_of_the_acc": -0.9943, "final_rank": 9 }, { "submission_id": "aoj_3075_3880790", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=1e9+7;\n\nint N,M;\nll loc[200020][3];\n\nvector<int> g[200020];\nint far[200010][8];\nbool visited[200020][8];\nll ans[200020];\n\nll calc(int id,int t){\n ll res=0;\n for(int j=0;j<3;j++){\n if(t&(1<<j)) res+=loc[id][j];\n else res-=loc[id][j];\n }\n return res;\n}\n\nvoid dfs(int now,int t,int tar){\n visited[now][t]=true;\n far[now][t]=tar;\n for(auto nex:g[now]){\n if(visited[nex][t]) continue;\n dfs(nex,t,tar);\n }\n return;\n}\n\nint main(){\n cin>>N>>M;\n rep(i,N) cin>>loc[i][0]>>loc[i][1]>>loc[i][2];\n rep(i,M){\n int a,b;\n cin>>a>>b;\n a--;b--;\n g[b].push_back(a);\n }\n\n for(int k=0;k<8;k++){\n vector<pair<ll,int>> v;\n for(int i=0;i<N;i++){\n ll r=calc(i,k);\n v.push_back(mkp(r,i));\n }\n sort(v.begin(),v.end());\n reverse(v.begin(),v.end());\n\n for(int i=0;i<v.size();i++){\n int now=v[i].second;\n if(visited[now][k]) continue;\n dfs(now,k,now);\n }\n }\n\n for(int i=0;i<N;i++){\n for(int k=0;k<8;k++){\n ans[i]=max(ans[i],calc(i,~k)+calc(far[i][k],k));\n }\n cout<<ans[i]<<endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 810, "memory_kb": 42420, "score_of_the_acc": -0.9079, "final_rank": 7 }, { "submission_id": "aoj_3075_3880787", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\n/* Strongly Connected Component */\n\n/*\n 1. dfsをして、戻るときに1から順に番号を付ける\n 2. 数値が大きいノードから逆辺を使ってdfsをする。\n すでに訪れているノードには行かない。\n たどり着けるノードが同じ連結成分に属する。\n*/\n\nstruct SCC{\n int n;\n vector<vector<int> > G, rG;\n vector<int> vs, cmp;\n vector<bool> used;\n\n SCC(int n):n(n), G(n), rG(n), cmp(n){}\n\n void add_edge(int from, int to){\n G[from].push_back(to);\n rG[to].push_back(from);\n }\n\n void dfs(int v){\n used[v] = true;\n for(int to : G[v])\n if(!used[to]) dfs(to);\n vs.push_back(v);\n }\n\n void rdfs(int v, int k){\n used[v] = true;\n cmp[v] = k;\n for(int to : rG[v])\n if(!used[to]) rdfs(to, k);\n }\n\n int solve(){\n used.assign(n, false);\n vs.clear();\n for(int i=0; i<n; i++)\n if(!used[i]) dfs(i);\n used.assign(n, false);\n int k = 0;\n for(int i=(int)vs.size()-1; i>=0; i--)\n if(!used[vs[i]]) rdfs(vs[i], k++);\n return k; //強連結成分数\n }\n\n //属する強連結成分番号(トポロジカル順)\n int operator[](int k) const {\n return cmp[k];\n }\n};\n\n\nvector<int> groups[SIZE];\nvector<int> G[SIZE];\nvector<int> vecMax[SIZE], vecMin[SIZE];\nint ans[SIZE];\n\n\nint main(){\n int N, M;\n vector<vector<int> > points;\n\n\n scanf(\"%d%d\", &N, &M);\n\n SCC scc(N);\n\n for(int i=0; i<N; i++) {\n int x, y, z;\n scanf(\"%d%d%d\", &x, &y, &z);\n\n vector<int> vec;\n\n for(int s1=-1; s1<=1; s1+=2)\n for(int s2=-1; s2<=1; s2+=2)\n for(int s3=-1; s3<=1; s3+=2)\n vec.push_back(x * s1 + y * s2 + z * s3);\n\n points.push_back(vec);\n }\n\n for(int i=0; i<M; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n u--; v--;\n\n scc.add_edge(u, v);\n G[u].push_back(v);\n }\n\n\n scc.solve();\n\n for(int i=0; i<N; i++) {\n groups[scc[i]].push_back(i);\n }\n\n\n for(int i=N-1; i>=0; i--) {\n vecMin[i].assign(8, INF);\n vecMax[i].assign(8, -INF);\n\n for(int p : groups[i]) {\n for(int q : G[p]) {\n\n debug(q);\n debug(scc[q]);\n\n for(int j=0; j<8; j++) {\n vecMin[i][j] = min(vecMin[i][j], vecMin[scc[q]][j]);\n vecMax[i][j] = max(vecMax[i][j], vecMax[scc[q]][j]);\n }\n }\n\n for(int j=0; j<8; j++) {\n vecMin[i][j] = min(vecMin[i][j], points[p][j]);\n vecMax[i][j] = max(vecMax[i][j], points[p][j]);\n }\n\n debug(vecMin[i]);\n debug(vecMax[i]);\n }\n\n for(int p : groups[i]) {\n for(int j=0; j<8; j++) {\n ans[p] = max(ans[p], abs(vecMin[i][j] - points[p][j]));\n ans[p] = max(ans[p], abs(vecMax[i][j] - points[p][j]));\n }\n }\n }\n\n for(int i=0; i<N; i++) {\n printf(\"%d\\n\", ans[i]);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 460, "memory_kb": 93920, "score_of_the_acc": -0.9139, "final_rank": 8 }, { "submission_id": "aoj_3075_3879899", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define INF_LL (int64)1e18\n#define INF (int32)1e9\n#define REP(i, n) for(int64 i = 0;i < (n);i++)\n#define FOR(i, a, b) for(int64 i = (a);i < (b);i++)\n#define all(x) x.begin(),x.end()\n#define fs first\n#define sc second\n\nusing int32 = int_fast32_t;\nusing uint32 = uint_fast32_t;\nusing int64 = int_fast64_t;\nusing uint64 = uint_fast64_t;\nusing PII = pair<int32, int32>;\nusing PLL = pair<int64, int64>;\n\nconst double eps = 1e-10;\n\ntemplate<typename A, typename B>inline void chmin(A &a, B b){if(a > b) a = b;}\ntemplate<typename A, typename B>inline void chmax(A &a, B b){if(a < b) a = b;}\n\ntemplate<typename T>\nvector<T> make_v(size_t a){return vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value!=0>::type\nfill_v(U &u,const V... v){u=U(v...);}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value==0>::type\nfill_v(U &u,const V... v){\n for(auto &e:u) fill_v<T>(e,v...);\n}\nconst int32 DIRECTED = 0;\nconst int32 UNDIRECTED = 1;\n\ntemplate<int32 isUNDIRECTED=0>\nclass Graph{\n struct Edge{\n int32 u, v, id;\n int64 c;\n Edge(int32 u, int32 v, int64 c=0, int32 id=0):u(u), v(v), c(c), id(id){}\n };\n\n int32 V, E;\n vector<vector<Edge>> G;\n vector<Edge> Es;\npublic:\n Graph(){}\n Graph(int32 V):V(V){G.resize(V);}\n Graph(const Graph<isUNDIRECTED>& g):V(g.V), E(g.E), G(g.G), Es(g.Es){}\n\n void add_edge(int32 u, int32 v, int64 c=0, int32 id=0){\n G[u].emplace_back(u, v, c, id);\n if(isUNDIRECTED) G[v].emplace_back(v, u, c, id);\n Es.emplace_back(u, v, c, id);\n E++;\n }\n\n const vector<Edge>& operator[](int32 k){\n return G[k];\n }\n\n int64 size() {\n return G.size();\n }\n};\n\nclass SCC{\nprivate:\n Graph<DIRECTED> orgG, revG, newG;\n vector<int32> ord, comp;\n vector<bool> used;\n vector<vector<int32>> vs;\n\n int32 V, nV;\npublic:\n SCC(){}\n SCC(int32 V):orgG(V), revG(V), comp(V, -1), used(V, 0), V(V){}\n\n void add_edge(int32 u, int32 v){\n orgG.add_edge(u, v);\n revG.add_edge(v, u);\n }\n\n void dfs(int32 v){\n used[v] = true;\n for(auto e : orgG[v]){\n if(!used[e.v]) dfs(e.v);\n }\n ord.push_back(v);\n }\n\n void rdfs(int32 v, int32 k){\n used[v] = true;\n comp[v] = k;\n for(auto e : revG[v]){\n if(!used[e.v]) rdfs(e.v, k);\n }\n }\n\n int32 build(){\n for(int32 i = 0;i < V;i++){\n if(!used[i]) dfs(i);\n }\n fill(used.begin(), used.end(), 0);\n int32 k = 0;\n for(int32 i = ord.size()-1;i >= 0;i--){\n if(!used[ord[i]]) rdfs(ord[i], k++);\n }\n nV = k;\n\n vs.resize(k, vector<int32>());\n for(int32 i = 0;i < V;i++)\n vs[comp[i]].push_back(i);\n\n newG = Graph<DIRECTED>(k);\n for(int32 i = 0;i < V;i++){\n for(auto e : orgG[i]){\n if(comp[i] != comp[e.v])\n newG.add_edge(comp[i], comp[e.v], e.c);\n }\n }\n return k;\n }\n\n int32 size(){\n return nV;\n }\n int64 size(int64 v) {\n return vs[v].size();\n }\n\n const Graph<DIRECTED>& graph(){\n return newG;\n }\n\n const vector<int32>& vertices(int32 v){\n return vs[v];\n }\n\n int32 operator[](int32 k){\n return comp[k];\n }\n};\n\nint64 N, M;\nvector<int64> x, y, z;\nSCC scc;\nGraph<DIRECTED> G;\nvector<int64> res, used;\nvector<vector<PLL>> D;\n\nint64 dist(int64 a, int64 b) {\n return abs(x[a]-x[b]) + abs(y[a]-y[b]) + abs(z[a]-z[b]);\n}\n\nvoid dfs(int64 v) {\n if (used[v]) return;\n used[v] = 1;\n REP(i, G[v].size()) {\n dfs(G[v][i].v);\n REP(j, 8) {\n chmin(D[v][j], D[G[v][i].v][j]);\n }\n }\n auto vs = scc.vertices(v);\n REP(i, vs.size()) {\n REP(j, 8) {\n int64 nx = ((j & 1) ? -1 : 1) * x[vs[i]];\n int64 ny = ((j & 2) ? -1 : 1) * y[vs[i]];\n int64 nz = ((j & 4) ? -1 : 1) * z[vs[i]];\n chmin(D[v][j], PLL(nx+ny+nz, vs[i]));\n }\n }\n REP(i, vs.size()) {\n int64 vv = vs[i];\n REP(j, 8) {\n chmax(res[vv], dist(vv, D[v][j].sc));\n }\n }\n}\n\nint main(void) {\n cin >> N >> M;\n x.resize(N); y.resize(N); z.resize(N);\n REP(i, N) {\n cin >> x[i] >> y[i] >> z[i];\n }\n scc = SCC(N);\n REP(i, M) {\n int64 u, v;\n cin >> u >> v; u--; v--;\n scc.add_edge(u, v);\n }\n scc.build();\n res.resize(N, -1);\n used.resize(N, 0);\n G = scc.graph();\n D.resize(N, vector<PLL>(8, PLL(INF_LL, -1)));\n REP(i, N) {\n REP(j, 8) {\n int64 nx = ((j & 1) ? -1 : 1) * x[i];\n int64 ny = ((j & 2) ? -1 : 1) * y[i];\n int64 nz = ((j & 4) ? -1 : 1) * z[i];\n }\n }\n REP(i, scc.size()) {\n dfs(i);\n }\n REP(i, res.size()) {\n cout << res[i] << endl;\n }\n}", "accuracy": 1, "time_ms": 780, "memory_kb": 152804, "score_of_the_acc": -1.8684, "final_rank": 18 }, { "submission_id": "aoj_3075_3879827", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing i64 = long;\n\nconst i64 INF = 1e18 + 7;\n\nvector<i64> scc(vector<vector<i64>>& edges){\n i64 n = edges.size();\n vector<vector<i64>> rev(n);\n\n for(i64 i = 0; i < n; ++i)\n for(auto& x : edges[i])\n rev[x].emplace_back(i);\n\n vector<i64> dfs_num(n, -1);\n vector<i64> flag(n, 0);\n i64 num = 0;\n function<void(i64)> dfs = [&](i64 pos){\n flag[pos] = 1;\n for(auto& xx : edges[pos])\n if(!flag[xx]){\n dfs(xx);\n }\n dfs_num[pos] = num++;\n };\n\n for(i64 i = 0; i < n; ++i)\n if(!flag[i])\n dfs(i);\n\n vector<i64> dfs_inv(n);\n for(i64 i = 0; i < n; ++i)\n dfs_inv[n - 1 - dfs_num[i]] = i;\n\n num = 0;\n\n vector<i64> scc_vec(n, -1);\n\n function<void(i64)> rdfs = [&](i64 pos){\n scc_vec[pos] = num;\n for(auto t : rev[pos])\n if(scc_vec[t] == -1)\n rdfs(t);\n };\n\n for(i64 i = 0; i < n; ++i)\n if(scc_vec[dfs_inv[i]] == -1){\n rdfs(dfs_inv[i]);\n ++num;\n }\n\n return scc_vec;\n}\n\nsigned main(){\n\n i64 n, m;\n cin >> n >> m;\n vector<vector<i64>> pos_(n, vector<i64>(8, 0));\n for(i64 i = 0; i < n; ++i){\n vector<i64> pos(3);\n for(auto& x : pos)\n cin >> x;\n for(i64 j = 0; j < 8; ++j){\n for(i64 k = 0; k < 3; ++k){\n i64 mul = (j & (1 << k)) ? 1 : -1;\n pos_[i][j] += mul * pos[k];\n }\n }\n }\n\n vector<vector<i64>> edges(n);\n for(i64 i = 0; i < m; ++i){\n i64 a, b;\n cin >> a >> b;\n edges[--a].emplace_back(--b);\n }\n auto ret = scc(edges);\n i64 n_ = *max_element(ret.begin(), ret.end()) + 1;\n vector<vector<i64>> edg(n_);\n for(i64 i = 0; i < n; ++i){\n for(auto& j : edges[i])\n edg[ret[i]].emplace_back(ret[j]);\n }\n vector<i64> cnt(n_, 0);\n for(i64 i = 0; i < n_; ++i){\n sort(edg[i].begin(), edg[i].end());\n edg[i].erase(unique(edg[i].begin(), edg[i].end()), edg[i].end());\n }\n vector<i64> tps;\n queue<i64> que;\n for(i64 i = 0; i < n_; ++i)\n if(!cnt[i])\n que.emplace(i);\n while(!que.empty()){\n i64 i = que.front();\n tps.emplace_back(i);\n que.pop();\n for(auto& e : edg[i]){\n if(--cnt[e] == 0)\n que.emplace(e);\n }\n }\n vector<vector<i64>> elm(n_, vector<i64>(8, -INF));\n for(i64 i = 0; i < n; ++i)\n for(i64 j = 0; j < 8; ++j)\n elm[ret[i]][j] = max(elm[ret[i]][j], pos_[i][j]);\n\n reverse(tps.begin(), tps.end());\n for(auto& pos : tps){\n for(auto& e : edg[pos]){\n for(i64 i = 0; i < 8; ++i)\n elm[pos][i] = max(elm[pos][i], elm[e][i]);\n }\n }\n\n for(i64 i = 0; i < n; ++i){\n i64 r = 0;\n for(i64 j = 0; j < 8; ++j)\n r = max(r, elm[ret[i]][j] - pos_[i][j]);\n cout << r << endl;\n }\n}", "accuracy": 1, "time_ms": 680, "memory_kb": 80204, "score_of_the_acc": -1.0791, "final_rank": 11 }, { "submission_id": "aoj_3075_3879700", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define INF_LL (int64)1e18\n#define INF (int32)1e9\n#define REP(i, n) for(int64 i = 0;i < (n);i++)\n#define FOR(i, a, b) for(int64 i = (a);i < (b);i++)\n#define all(x) x.begin(),x.end()\n#define fs first\n#define sc second\n\nusing int32 = int_fast32_t;\nusing uint32 = uint_fast32_t;\nusing int64 = int_fast64_t;\nusing uint64 = uint_fast64_t;\nusing PII = pair<int32, int32>;\nusing PLL = pair<int64, int64>;\n\nconst double eps = 1e-10;\n\ntemplate<typename A, typename B>inline void chmin(A &a, B b){if(a > b) a = b;}\ntemplate<typename A, typename B>inline void chmax(A &a, B b){if(a < b) a = b;}\n\ntemplate<typename T>\nvector<T> make_v(size_t a){return vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value!=0>::type\nfill_v(U &u,const V... v){u=U(v...);}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value==0>::type\nfill_v(U &u,const V... v){\n for(auto &e:u) fill_v<T>(e,v...);\n}\nconst int32 DIRECTED = 0;\nconst int32 UNDIRECTED = 1;\n\ntemplate<int32 isUNDIRECTED=0>\nclass Graph{\n struct Edge{\n int32 u, v, id;\n int64 c;\n Edge(int32 u, int32 v, int64 c=0, int32 id=0):u(u), v(v), c(c), id(id){}\n };\n\n int32 V, E;\n vector<vector<Edge>> G;\n vector<Edge> Es;\npublic:\n Graph(){}\n Graph(int32 V):V(V){G.resize(V);}\n Graph(const Graph<isUNDIRECTED>& g):V(g.V), E(g.E), G(g.G), Es(g.Es){}\n\n void add_edge(int32 u, int32 v, int64 c=0, int32 id=0){\n G[u].emplace_back(u, v, c, id);\n if(isUNDIRECTED) G[v].emplace_back(v, u, c, id);\n Es.emplace_back(u, v, c, id);\n E++;\n }\n\n const vector<Edge>& operator[](int32 k){\n return G[k];\n }\n\n int64 size() {\n return G.size();\n }\n};\n\nclass SCC{\nprivate:\n Graph<DIRECTED> orgG, revG, newG;\n vector<int32> ord, comp;\n vector<bool> used;\n vector<vector<int32>> vs;\n\n int32 V, nV;\npublic:\n SCC(){}\n SCC(int32 V):orgG(V), revG(V), comp(V, -1), used(V, 0), V(V){}\n\n void add_edge(int32 u, int32 v){\n orgG.add_edge(u, v);\n revG.add_edge(v, u);\n }\n\n void dfs(int32 v){\n used[v] = true;\n for(auto e : orgG[v]){\n if(!used[e.v]) dfs(e.v);\n }\n ord.push_back(v);\n }\n\n void rdfs(int32 v, int32 k){\n used[v] = true;\n comp[v] = k;\n for(auto e : revG[v]){\n if(!used[e.v]) rdfs(e.v, k);\n }\n }\n\n int32 build(){\n for(int32 i = 0;i < V;i++){\n if(!used[i]) dfs(i);\n }\n fill(used.begin(), used.end(), 0);\n int32 k = 0;\n for(int32 i = ord.size()-1;i >= 0;i--){\n if(!used[ord[i]]) rdfs(ord[i], k++);\n }\n nV = k;\n\n vs.resize(k, vector<int32>());\n for(int32 i = 0;i < V;i++)\n vs[comp[i]].push_back(i);\n\n newG = Graph<DIRECTED>(k);\n for(int32 i = 0;i < V;i++){\n for(auto e : orgG[i]){\n if(comp[i] != comp[e.v])\n newG.add_edge(comp[i], comp[e.v], e.c);\n }\n }\n return k;\n }\n\n int32 size(){\n return nV;\n }\n int64 size(int64 v) {\n return vs[v].size();\n }\n\n const Graph<DIRECTED>& graph(){\n return newG;\n }\n\n const vector<int32>& vertices(int32 v){\n return vs[v];\n }\n\n int32 operator[](int32 k){\n return comp[k];\n }\n};\n\nvector<int64> x, y, z;\nstruct Data {\n PLL dat[8];\n Data() { REP(i, 8) { dat[i] = PLL(INF_LL, -1); }}\n void add(int64 idx) {\n REP(i, 8) {\n int64 nx = ((i & 1) ? -1 : 1) * x[idx];\n int64 ny = (((i >> 1) & 1) ? -1 : 1) * y[idx];\n int64 nz = (((i >> 2) & 1) ? -1 : 1) * z[idx];\n chmin(dat[i], PLL(nx+ny+nz, idx));\n }\n }\n\n vector<int> get() {\n vector<int> res;\n REP(i, 8) {\n if (dat[i].sc != -1)\n res.push_back(dat[i].sc);\n }\n return res;\n }\n\n void merge(const Data& rhs) {\n REP(i, 8) {\n chmin(dat[i], rhs.dat[i]);\n }\n }\n};\n\nint64 N, M;\nSCC scc(N);\nGraph<DIRECTED> G;\nvector<int64> res;\nvector<Data> D;\nvector<int64> used;\n\nint64 dist(int64 id1, int64 id2) {\n return abs(x[id1]-x[id2])+abs(y[id1]-y[id2])+abs(z[id1]-z[id2]);\n}\n\nint64 dfs(int64 v) {\n if (used[v]) return 0;\n used[v] = 1;\n PLL mx_sz = PLL(0, -1);\n int64 ret = scc.size(v);\n REP(i, G[v].size()) {\n int64 vv, sz;\n sz = dfs(G[v][i].v);\n vv = G[v][i].v;\n ret += sz;\n if (mx_sz.fs < sz) {\n mx_sz = PLL(sz, vv);\n }\n }\n if (mx_sz.sc != -1) {\n REP(i, G[v].size()) {\n// REP(j, 8) {\n// for (auto &x : D[G[v][i].v].dat[j]) {\n// D[v].dat[j].insert(x);\n// }\n// }\n D[v].merge(D[G[v][i].v]);\n }\n }\n auto vs = scc.vertices(v);\n REP(i, vs.size()) {\n D[v].add(vs[i]);\n }\n vector<int> kouho = D[v].get();\n REP(i, vs.size()) {\n int64 vv = vs[i];\n REP(j, kouho.size()) {\n chmax(res[vv], dist(kouho[j], vv));\n }\n }\n\n return ret;\n}\n\nint main(void){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\n\tcin >> N >> M;\n\tused.resize(N, 0);\n\tres.resize(N, 0);\n\tx.resize(N); y.resize(N); z.resize(N);\n\tREP(i, N) {\n\t cin >> x[i] >> y[i] >> z[i];\n\t}\n\tscc = SCC(N);\n\tREP(i, M) {\n\t int64 u, v;\n\t cin >> u >> v; u--; v--;\n\t scc.add_edge(u, v);\n\t}\n\tscc.build();\n\n\tG = scc.graph();\n\tvector<int64> indeg(scc.size(), 0);\n\tREP(i, scc.size()) {\n\t REP(j, G[i].size()) {\n\t indeg[G[i][j].v]++;\n\t }\n\t}\n\tD.resize(scc.size());\n\n\tREP(i, scc.size()) {\n//\t cout << i << endl;\n//\t auto vv = scc.vertices(i);\n//\t REP(j, vv.size()) {\n//\t cout << vv[j] << \" \";\n//\t }\n//\t cout << endl;\n dfs(i);\n\t}\n\tREP(i, N) {\n\t cout << res[i] << endl;\n\t}\n}", "accuracy": 0.1956521739130435, "time_ms": 250, "memory_kb": 77276, "score_of_the_acc": -0.4868, "final_rank": 20 }, { "submission_id": "aoj_3075_3879671", "code_snippet": "#include <stack>\n#include <algorithm>\n#include <set>\n#include <iostream>\n#include <vector>\n#include <random>\n#include <utility>\nusing namespace std;\nconstexpr int INF = 1e9;\n\ntypedef pair<int, int> P;\n\nstruct StronglyConnectedComponents {\n int N;\n vector<vector<int> > g, gr, g2i;\n vector<bool> visited;\n vector<int> i2g;\n vector<P> edges;\n stack<int> st;\n\n StronglyConnectedComponents(){};\n StronglyConnectedComponents(int n){init(n);}\n void init(int n){\n N = n;\n g.clear();\n g.resize(n);\n gr.clear();\n gr.resize(n);\n edges.clear();\n visited.resize(n);\n i2g.resize(n);\n }\n void add_edge(int u, int v) {\n g[u].push_back(v);\n gr[v].push_back(u);\n edges.push_back(P(u, v));\n }\n\n void dfs(int x) {\n if (visited[x]) return;\n visited[x] = true;\n for (int i : g[x]) dfs(i);\n st.push(x);\n }\n\n void rdfs(int x, int k) {\n if (i2g[x] != -1) return;\n i2g[x] = k;\n for (int i : gr[x]) rdfs(i, k);\n }\n\n void build(vector<vector<int> > &t) {\n fill(visited.begin(), visited.end(), false);\n fill(i2g.begin(), i2g.end(), -1);\n for (int i = 0; i < N; i++) dfs(i);\n int p = 0;\n while (!st.empty()) {\n int v = st.top();\n st.pop();\n if (i2g[v] == -1) {\n rdfs(v, p);\n p++;\n }\n }\n g2i.clear();\n g2i.resize(p);\n t.resize(p);\n for(int i=0;i<N;i++){\n g2i[i2g[i]].push_back(i);\n }\n set<P> connected;\n for (auto &e : edges) {\n int x = i2g[e.first], y = i2g[e.second];\n if (x == y) continue;\n if (connected.count({x, y})) continue;\n t[x].push_back(y);\n connected.insert({x, y});\n }\n }\n};\n\nvoid dfs(const vector<vector<int>> &G, StronglyConnectedComponents &scc, int v, const vector<int> &W, vector<int> &ma){\n for(auto v_ : scc.g2i[v]){\n ma[v] = max(ma[v],W[v_]);\n }\n for(auto v_ : G[v]){\n if(ma[v_] == -INF){\n dfs(G,scc,v_,W,ma);\n }\n ma[v] = max(ma[v],ma[v_]);\n }\n}\n\nvector<int> solve2(const vector<vector<int>> &G, const vector<vector<int>> &G_, StronglyConnectedComponents &scc, const vector<int> &W){\n int M = G_.size();\n vector<int> ma(M,-INF);\n for(int i = 0; i < M; ++i){\n if(ma[i] <= -INF)\n dfs(G_,scc,i,W,ma);\n }\n int N = G.size();\n vector<int> A(N);\n for(int i = 0; i < N; ++i){\n int vv = scc.i2g[i];\n A[i] = ma[vv] - W[i];\n }\n return A;\n}\n\nvector<int> solve(const vector<vector<int>> &G, const vector<int> &X, const vector<int> &Y, const vector<int> &Z){\n int N = G.size();\n StronglyConnectedComponents scc(G.size());\n for(int i = 0; i < N; ++i){\n for(auto v : G[i]){\n scc.add_edge(i,v);\n }\n }\n vector<vector<int>> G_;\n scc.build(G_);\n int M = scc.g2i.size();\n vector<int> ans(N,-INF);\n for(int i = -1; i < 2; i += 2){\n for(int j = -1; j < 2; j += 2){\n for(int k = -1; k < 2; k += 2){\n vector<int> W(N), visited(N), ma(N,-INF);\n for(int l = 0; l < N; ++l){\n W[l] = i*X[l] + j*Y[l] + k*Z[l];\n }\n vector<int> A = solve2(G,G_,scc,W);\n for(int l = 0; l < N; ++l){\n ans[l] = max(ans[l],A[l]);\n }\n }\n }\n }\n return ans;\n}\n\nvoid dfs_naive(const vector<vector<int>> &G, const int v, set<int> &s){\n s.insert(v);\n for(auto v_ : G[v]){\n if(s.count(v_)) continue;\n dfs_naive(G,v_,s);\n }\n}\n\nvector<int> solve_naive(const vector<vector<int>> &G, const vector<int>& X, const vector<int>& Y, const vector<int> &Z){\n int N = G.size();\n vector<int> ret(N);\n for(int i = 0; i < N; ++i){\n set<int> s;\n dfs_naive(G,i,s);\n for(auto v : s){\n ret[i] = max(ret[i],abs(X[i]-X[v])+abs(Y[i]-Y[v])+abs(Z[i]-Z[v]));\n }\n }\n return ret;\n}\n\nvoid test(int N, int M){\n //int N = 4, M = 4;\n random_device rnd;\n vector<int> X(N), Y(N), Z(N);\n for(int i = 0; i < N; ++i){\n X[i] = rnd()%10;\n Y[i] = rnd()%10;\n Z[i] = rnd()%10;\n }\n set<pair<int,int>> S;\n vector<vector<int>> G(N);\n for(int i = 0; i < M; ++i){\n int u = rnd()%N, v = rnd()%N;\n while(u == v or S.count({u,v})){\n u = rnd()%N;\n v = rnd()%N;\n }\n G[u].push_back(v);\n S.insert({u,v});\n }\n vector<int> A = solve(G,X,Y,Z);\n return;\n vector<int> B = solve_naive(G,X,Y,Z);\n bool f = true;\n for(int i = 0; i < N; ++i){\n if(A[i] != B[i]){\n f = false;\n break;\n }\n }\n if(!f){\n cout << \"Wrong Answer\" << endl;\n cout << \"solve : solve_naive\" << endl;\n for(int i = 0; i < N; ++i){\n cout << A[i] << \" \" << B[i] << endl;\n }\n cout << \"Test Case\" << endl;\n cout << N << \" \" << M << endl;\n for(int i = 0; i < N; ++i)\n cout << X[i] << \" \" << Y[i] << \" \" << Z[i] << endl;\n for(int i = 0; i < N; ++i){\n for(auto v : G[i])\n cout << i+1 << \" \" << v+1 << endl;\n }\n }\n}\n\nint main(){\n int N, M;\n cin >> N >> M;\n // test(N,M);\n // return 0;\n vector<int> X(N), Y(N), Z(N);\n for(int i = 0; i < N; ++i){\n cin >> X[i] >> Y[i] >> Z[i];\n }\n vector<vector<int>> G(N);\n for(int i = 0; i < M; ++i){\n int u, v;\n cin >> u >> v;\n --u,--v;\n G[u].push_back(v);\n }\n vector<int> A = solve(G,X,Y,Z);\n for(auto a : A)\n cout << a << endl;\n}", "accuracy": 1, "time_ms": 880, "memory_kb": 91060, "score_of_the_acc": -1.4406, "final_rank": 15 }, { "submission_id": "aoj_3075_3879663", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define INF_LL (int64)1e18\n#define INF (int32)1e9\n#define REP(i, n) for(int64 i = 0;i < (n);i++)\n#define FOR(i, a, b) for(int64 i = (a);i < (b);i++)\n#define all(x) x.begin(),x.end()\n#define fs first\n#define sc second\n\nusing int32 = int_fast32_t;\nusing uint32 = uint_fast32_t;\nusing int64 = int_fast64_t;\nusing uint64 = uint_fast64_t;\nusing PII = pair<int32, int32>;\nusing PLL = pair<int64, int64>;\n\nconst double eps = 1e-10;\n\ntemplate<typename A, typename B>inline void chmin(A &a, B b){if(a > b) a = b;}\ntemplate<typename A, typename B>inline void chmax(A &a, B b){if(a < b) a = b;}\n\ntemplate<typename T>\nvector<T> make_v(size_t a){return vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value!=0>::type\nfill_v(U &u,const V... v){u=U(v...);}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value==0>::type\nfill_v(U &u,const V... v){\n for(auto &e:u) fill_v<T>(e,v...);\n}\nconst int32 DIRECTED = 0;\nconst int32 UNDIRECTED = 1;\n\ntemplate<int32 isUNDIRECTED=0>\nclass Graph{\n struct Edge{\n int32 u, v, id;\n int64 c;\n Edge(int32 u, int32 v, int64 c=0, int32 id=0):u(u), v(v), c(c), id(id){}\n };\n\n int32 V, E;\n vector<vector<Edge>> G;\n vector<Edge> Es;\npublic:\n Graph(){}\n Graph(int32 V):V(V){G.resize(V);}\n Graph(const Graph<isUNDIRECTED>& g):V(g.V), E(g.E), G(g.G), Es(g.Es){}\n\n void add_edge(int32 u, int32 v, int64 c=0, int32 id=0){\n G[u].emplace_back(u, v, c, id);\n if(isUNDIRECTED) G[v].emplace_back(v, u, c, id);\n Es.emplace_back(u, v, c, id);\n E++;\n }\n\n const vector<Edge>& operator[](int32 k){\n return G[k];\n }\n\n int64 size() {\n return G.size();\n }\n};\n\nclass SCC{\nprivate:\n Graph<DIRECTED> orgG, revG, newG;\n vector<int32> ord, comp;\n vector<bool> used;\n vector<vector<int32>> vs;\n\n int32 V, nV;\npublic:\n SCC(){}\n SCC(int32 V):orgG(V), revG(V), comp(V, -1), used(V, 0), V(V){}\n\n void add_edge(int32 u, int32 v){\n orgG.add_edge(u, v);\n revG.add_edge(v, u);\n }\n\n void dfs(int32 v){\n used[v] = true;\n for(auto e : orgG[v]){\n if(!used[e.v]) dfs(e.v);\n }\n ord.push_back(v);\n }\n\n void rdfs(int32 v, int32 k){\n used[v] = true;\n comp[v] = k;\n for(auto e : revG[v]){\n if(!used[e.v]) rdfs(e.v, k);\n }\n }\n\n int32 build(){\n for(int32 i = 0;i < V;i++){\n if(!used[i]) dfs(i);\n }\n fill(used.begin(), used.end(), 0);\n int32 k = 0;\n for(int32 i = ord.size()-1;i >= 0;i--){\n if(!used[ord[i]]) rdfs(ord[i], k++);\n }\n nV = k;\n\n vs.resize(k, vector<int32>());\n for(int32 i = 0;i < V;i++)\n vs[comp[i]].push_back(i);\n\n newG = Graph<DIRECTED>(k);\n for(int32 i = 0;i < V;i++){\n for(auto e : orgG[i]){\n if(comp[i] != comp[e.v])\n newG.add_edge(comp[i], comp[e.v], e.c);\n }\n }\n return k;\n }\n\n int32 size(){\n return nV;\n }\n int64 size(int64 v) {\n return vs[v].size();\n }\n\n const Graph<DIRECTED>& graph(){\n return newG;\n }\n\n const vector<int32>& vertices(int32 v){\n return vs[v];\n }\n\n int32 operator[](int32 k){\n return comp[k];\n }\n};\n\nvector<int64> x, y, z;\nstruct Data {\n PLL dat[8];\n Data() { REP(i, 8) { dat[i] = PLL(INF_LL, -1); }}\n void add(int64 idx) {\n REP(i, 8) {\n int64 nx = ((i & 1) ? -1 : 1) * x[idx];\n int64 ny = (((i >> 1) & 1) ? -1 : 1) * y[idx];\n int64 nz = (((i >> 2) & 1) ? -1 : 1) * z[idx];\n chmin(dat[i], PLL(nx+ny+nz, idx));\n }\n }\n\n vector<int> get() {\n vector<int> res;\n REP(i, 8) {\n if (dat[i].sc != -1)\n res.push_back(dat[i].sc);\n }\n return res;\n }\n\n void merge(const Data& rhs) {\n REP(i, 8) {\n chmin(dat[i], rhs.dat[i]);\n }\n }\n};\n\nint64 N, M;\nSCC scc(N);\nGraph<DIRECTED> G;\nvector<int64> res;\nvector<Data> D;\nvector<int64> used;\n\nint64 dist(int64 id1, int64 id2) {\n return abs(x[id1]-x[id2])+abs(y[id1]-y[id2])+abs(z[id1]-z[id2]);\n}\n\nint64 dfs(int64 v) {\n if (used[v]) return 0;\n used[v] = 1;\n PLL mx_sz = PLL(0, -1);\n int64 ret = scc.size(v);\n REP(i, G[v].size()) {\n int64 vv, sz;\n sz = dfs(G[v][i].v);\n vv = G[v][i].v;\n ret += sz;\n if (mx_sz.fs < sz) {\n mx_sz = PLL(sz, vv);\n }\n }\n if (mx_sz.sc != -1) {\n REP(i, G[v].size()) {\n// REP(j, 8) {\n// for (auto &x : D[G[v][i].v].dat[j]) {\n// D[v].dat[j].insert(x);\n// }\n// }\n D[v].merge(D[G[v][i].v]);\n }\n }\n auto vs = scc.vertices(v);\n REP(i, vs.size()) {\n D[v].add(vs[i]);\n }\n vector<int> kouho = D[v].get();\n REP(i, vs.size()) {\n int64 vv = vs[i];\n REP(j, kouho.size()) {\n chmax(res[vv], dist(kouho[j], vv));\n }\n }\n\n return ret;\n}\n\nint main(void){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\n\tcin >> N >> M;\n\tused.resize(N, 0);\n\tres.resize(N, 0);\n\tx.resize(N); y.resize(N); z.resize(N);\n\tREP(i, N) {\n\t cin >> x[i] >> y[i] >> z[i];\n\t}\n\tscc = SCC(N);\n\tREP(i, M) {\n\t int64 u, v;\n\t cin >> u >> v; u--; v--;\n\t scc.add_edge(u, v);\n\t}\n\tscc.build();\n\n\tG = scc.graph();\n\tvector<int64> indeg(scc.size(), 0);\n\tREP(i, scc.size()) {\n\t REP(j, G[i].size()) {\n\t indeg[G[i][j].v]++;\n\t }\n\t}\n\tD.resize(scc.size());\n\n\tREP(i, scc.size()) {\n\t if (indeg[i] == 0) {\n//\t cout << i << endl;\n//\t auto vv = scc.vertices(i);\n//\t REP(j, vv.size()) {\n//\t cout << vv[j] << \" \";\n//\t }\n//\t cout << endl;\n dfs(i);\n\t }\n\t}\n\tREP(i, N) {\n\t cout << res[i] << endl;\n\t}\n}", "accuracy": 0.1956521739130435, "time_ms": 240, "memory_kb": 77136, "score_of_the_acc": -0.4724, "final_rank": 19 }, { "submission_id": "aoj_3075_3879566", "code_snippet": "#include \"bits/stdc++.h\"\n#define YES \"YES\"\n#define NO \"NO\"\n#define YESNO OUT(three(solve(),YES,NO))\n#define ECHO OUT(solve())\n#define three(A,B,C) ((A)?(B):(C))\n#define FOR(i,a,b) for(LL i=(a);i< (LL)(b);i++)\n#define EFOR(i,a,b) for(LL i=(a);i<=(LL)(b);i++)\n#define RFOR(i,a,b) for(LL i=(b);i>=(LL)(a);i--)\n#define REP(i,b) FOR(i,zero,b)\n#define rep REP\n#define EREP(i,b) EFOR(i,zero,b)\n#define RREP(i,b) RFOR(i,b,zero)\n#define ALL(c) c.begin(),c.end()\n#define UNIQUE(c) sort(ALL(c));c.erase(unique(ALL(c)),c.end())\n#define MAX(c) (*max_element(ALL(c)))\n#define MIN(c) (*min_element(ALL(c)))\n#define MP make_pair\n#define FI first\n#define SE second\n#define SI(x) (LL(x.size()))\n#define PB push_back\n#define DEBUG(a) OUT(a)\n#define DEBUG2(a,b) OUT2(a,b)\n#define cat cout << __LINE__ << endl\n#define OUT(a) cout << (a) << endl\n#define OUT2(a,b) cout << (a) <<\" \"<<(b) << endl\n#define zero 0LL\n#define all ALL\n#define pb emplace_back\n#define eb pb\n#define int long long\nusing namespace std;\ntemplate<typename T> inline void maximize(T &a, T b) { a = max(a, b); }\ntemplate<typename T> inline void minimize(T &a, T b) { a = min(a, b); }\ntemplate<typename T> inline bool middle(T a, T b, T c) { return b <= a && a <= c; }\ntemplate<class T> inline bool MX(T &l, const T &r) { return l < r ? l = r, 1 : 0; }\ntemplate<class T> inline bool MN(T &l, const T &r) { return l > r ? l = r, 1 : 0; }\ntypedef int LL;\ntypedef double ld;\ntypedef int ut;\ntypedef vector<ut> VI;\ntypedef vector<VI> VII;\ntypedef pair<ut, ut> pr;\ntypedef pair<ut, pr> ppr;\ntypedef vector<pr> Vpr;\ntypedef vector<ppr> Vppr;\ntypedef tuple<int, int, int, int> tapu;\ntypedef vector<tapu> Vtapu;\ntypedef priority_queue<tapu, Vtapu, greater<tapu> > PQ;\ninline void outputVI(VI x) { REP(i, SI(x)) { cout << three(i, \" \", \"\") << x[i]; }OUT(\"\"); }\nconst int SIZE1 = 3e5 + 1000;\nconst int SIZE2 = 5010;\nconst int SIZE3 = 430;\nconst int SIZE = SIZE1;\nconst int MAPSIZE = 40;\nconst LL p = 7 + 1e9;\nconst LL INF = 1LL << 60;\nconst long double EPS = 1e-7;\ntypedef pair<ld, ut> pld;\ntemplate< typename T >\nstruct edge {\n int src, to;\n T cost;\n\n edge(int to, T cost) : src(-1), to(to), cost(cost) {}\n\n edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}\n\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n\n operator int() const { return to; }\n};\n\ntemplate< typename T >\nusing Edges = vector< edge< T > >;\ntemplate< typename T >\nusing WeightedGraph = vector< Edges< T > >;\nusing UnWeightedGraph = vector< vector< int > >;\ntemplate< typename T >\nusing Matrix = vector< vector< T > >;\ntemplate< typename G >\nstruct StronglyConnectedComponents {\n const G &g;\n UnWeightedGraph gg, rg;\n vector< int > comp, order, used;\n\n StronglyConnectedComponents(G &g) : g(g), gg(g.size()), rg(g.size()), comp(g.size(), -1), used(g.size()) {\n for(int i = 0; i < g.size(); i++) {\n for(auto e : g[i]) {\n gg[i].emplace_back((int) e);\n rg[(int) e].emplace_back(i);\n }\n }\n }\n\n int operator[](int k) {\n return comp[k];\n }\n\n void dfs(int idx) {\n if(used[idx]) return;\n used[idx] = true;\n for(int to : gg[idx]) dfs(to);\n order.push_back(idx);\n }\n\n void rdfs(int idx, int cnt) {\n if(comp[idx] != -1) return;\n comp[idx] = cnt;\n for(int to : rg[idx]) rdfs(to, cnt);\n }\n\n void build(UnWeightedGraph &t) {\n for(int i = 0; i < gg.size(); i++) dfs(i);\n reverse(begin(order), end(order));\n int ptr = 0;\n for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;\n\n t.resize(ptr);\n for(int i = 0; i < g.size(); i++) {\n for(auto &to : g[i]) {\n int x = comp[i], y = comp[to];\n if(x == y) continue;\n t[x].push_back(y);\n }\n }\n }\n};\nbool finished[SIZE];\nLL X[SIZE],Y[SIZE],Z[SIZE];\nLL maximum[SIZE][2][2][2];\nUnWeightedGraph buff;\nLL N,M;\nvoid solve(LL x){\n if(finished[x]) return ;\n for(auto next:buff[x]){\n solve(next);\n REP(i,2) REP(j,2) REP(k,2) MX(maximum[x][i][j][k],maximum[next][i][j][k]);\n }\n finished[x]=true;\n}\nsigned main(){\n REP(i,SIZE) REP(j,2) REP(k,2) REP(l,2) maximum[i][j][k][l]=-INF;\n cin >> N >> M;\n REP(i,N){\n cin >> X[i] >> Y[i] >> Z[i];\n }\n\n UnWeightedGraph g(N);\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a--;\n b--;\n g[a].emplace_back(b);\n }\n StronglyConnectedComponents< UnWeightedGraph > scc(g);\n scc.build(buff);\n REP(cc,N){\n REP(i,2) REP(j,2) REP(k,2){\n LL ans=0;\n ans+=i?X[cc]:-X[cc];\n ans+=j?Y[cc]:-Y[cc];\n ans+=k?Z[cc]:-Z[cc];\n MX(maximum[scc[cc]][i][j][k],ans);\n }\n }\n REP(i,N){\n solve(scc[i]);\n }\n REP(cc,N){\n LL ans2=0;\n REP(i,2) REP(j,2) REP(k,2){\n LL ans=0;\n ans+=i?X[cc]:-X[cc];\n ans+=j?Y[cc]:-Y[cc];\n ans+=k?Z[cc]:-Z[cc];\n MX(ans2,abs(ans-maximum[scc[cc]][i][j][k]));\n }\n cout <<ans2 << endl;\n }\n// cout <<ans2 << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 680, "memory_kb": 85528, "score_of_the_acc": -1.1274, "final_rank": 12 }, { "submission_id": "aoj_3075_3879530", "code_snippet": "//#define NDEBUG\n#include <cstddef>\n#include <cstdint>\n#include <iostream>\n#include <iterator>\n#include <vector>\n\nnamespace n91 {\n\n using i8 = std::int_fast8_t;\n using i32 = std::int_fast32_t;\n using i64 = std::int_fast64_t;\n using u8 = std::uint_fast8_t;\n using u32 = std::uint_fast32_t;\n using u64 = std::uint_fast64_t;\n using isize = std::ptrdiff_t;\n using usize = std::size_t;\n\n constexpr usize operator\"\" _z(unsigned long long x) noexcept {\n return static_cast<usize>(x);\n }\n\n template <class T> class integral_iterator {\n public:\n using difference_type = T;\n using value_type = T;\n using pointer = const value_type*;\n using reference = value_type;\n using iterator_category = std::random_access_iterator_tag;\n\n private:\n using self_type = integral_iterator<value_type>;\n value_type i;\n\n public:\n constexpr integral_iterator() noexcept : i() {}\n explicit constexpr integral_iterator(const value_type i) noexcept : i(i) {}\n constexpr self_type operator++(int) noexcept { return self_type(i++); }\n constexpr self_type operator--(int) noexcept { return self_type(i--); }\n constexpr self_type operator[](const difference_type rhs) const noexcept {\n return self_type(i + rhs);\n }\n constexpr self_type& operator++() noexcept {\n ++i;\n return *this;\n }\n constexpr self_type& operator--() noexcept {\n --i;\n return *this;\n }\n constexpr reference operator*() const noexcept { return i; }\n constexpr self_type operator+(const difference_type rhs) const noexcept {\n return self_type(i + rhs);\n }\n constexpr self_type operator-(const difference_type rhs) const noexcept {\n return self_type(i - rhs);\n }\n constexpr difference_type operator-(const self_type rhs) const noexcept {\n return i - rhs.i;\n }\n constexpr bool operator<(const self_type rhs) const noexcept {\n return i < rhs.i;\n }\n constexpr bool operator<=(const self_type rhs) const noexcept {\n return i <= rhs.i;\n }\n constexpr bool operator>(const self_type rhs) const noexcept {\n return i > rhs.i;\n }\n constexpr bool operator>=(const self_type rhs) const noexcept {\n return i >= rhs.i;\n }\n constexpr bool operator==(const self_type rhs) const noexcept {\n return i == rhs.i;\n }\n constexpr bool operator!=(const self_type rhs) const noexcept {\n return i != rhs.i;\n }\n constexpr self_type& operator+=(const difference_type rhs) noexcept {\n i += rhs;\n return *this;\n }\n constexpr self_type& operator-=(const difference_type rhs) noexcept {\n i -= rhs;\n return *this;\n }\n };\n template <class T>\n constexpr integral_iterator<T> make_int_itr(const T i) noexcept {\n return integral_iterator<T>(i);\n }\n class rep {\n const usize f, l;\n\n public:\n constexpr rep(const usize f, const usize l) noexcept : f(f), l(l) {}\n constexpr auto begin() const noexcept { return make_int_itr(f); }\n constexpr auto end() const noexcept { return make_int_itr(l); }\n };\n class revrep {\n const usize f, l;\n\n public:\n revrep(const usize f, const usize l) noexcept : f(l), l(f) {}\n auto begin() const noexcept {\n return std::make_reverse_iterator(make_int_itr(f));\n }\n auto end() const noexcept {\n return std::make_reverse_iterator(make_int_itr(l));\n }\n };\n template <class T> auto md_vec(const usize n, const T& value) {\n return std::vector<T>(n, value);\n }\n template <class... Args> auto md_vec(const usize n, Args... args) {\n return std::vector<decltype(md_vec(args...))>(n, md_vec(args...));\n }\n template <class T> constexpr T difference(const T& a, const T& b) {\n return a < b ? b - a : a - b;\n }\n template <class T> T scan() {\n T ret;\n std::cin >> ret;\n return ret;\n }\n\n} // namespace n91\n\n#include <cstdint>\n\nnamespace n91 {\n\n constexpr std::uint_fast64_t totient(std::uint_fast64_t x) noexcept {\n using u64 = std::uint_fast64_t;\n u64 ret = x;\n for (u64 i = static_cast<u64>(2); i * i <= x; ++i) {\n if (x % i == static_cast<u64>(0)) {\n ret -= ret / i;\n x /= i;\n while (x % i == static_cast<u64>(0)) {\n x /= i;\n }\n }\n }\n if (x != static_cast<u64>(1)) {\n ret -= ret / x;\n }\n return ret;\n }\n\n template <std::uint_fast64_t Modulus,\n std::uint_fast64_t InverseExp =\n totient(Modulus) - static_cast<std::uint_fast64_t>(1)>\n class modint {\n using u64 = std::uint_fast64_t;\n\n static_assert(Modulus < static_cast<u64>(1) << static_cast<u64>(32),\n \"Modulus must be less than 2**32\");\n\n u64 a;\n\n constexpr modint& negate() noexcept {\n if (a != static_cast<u64>(0)) {\n a = Modulus - a;\n }\n return *this;\n }\n\n public:\n constexpr modint(const u64 x = static_cast<u64>(0)) noexcept\n : a(x% Modulus) {}\n constexpr u64& value() noexcept { return a; }\n constexpr const u64& value() const noexcept { return a; }\n constexpr modint operator+() const noexcept { return modint(*this); }\n constexpr modint operator-() const noexcept { return modint(*this).negate(); }\n constexpr modint operator+(const modint rhs) const noexcept {\n return modint(*this) += rhs;\n }\n constexpr modint operator-(const modint rhs) const noexcept {\n return modint(*this) -= rhs;\n }\n constexpr modint operator*(const modint rhs) const noexcept {\n return modint(*this) *= rhs;\n }\n constexpr modint operator/(const modint rhs) const noexcept {\n return modint(*this) /= rhs;\n }\n constexpr modint& operator+=(const modint rhs) noexcept {\n a += rhs.a;\n if (a >= Modulus) {\n a -= Modulus;\n }\n return *this;\n }\n constexpr modint& operator-=(const modint rhs) noexcept {\n if (a < rhs.a) {\n a += Modulus;\n }\n a -= rhs.a;\n return *this;\n }\n constexpr modint& operator*=(const modint rhs) noexcept {\n a = a * rhs.a % Modulus;\n return *this;\n }\n constexpr modint& operator/=(modint rhs) noexcept {\n u64 exp = InverseExp;\n while (exp) {\n if (exp % static_cast<u64>(2) != static_cast<u64>(0)) {\n *this *= rhs;\n }\n rhs *= rhs;\n exp /= static_cast<u64>(2);\n }\n return *this;\n }\n constexpr bool operator==(const modint rhs) const noexcept {\n return a == rhs.a;\n }\n constexpr bool operator!=(const modint rhs) const noexcept {\n return a != rhs.a;\n }\n };\n\n template <class T, std::uint_fast64_t v> class modint_constant {\n public:\n static constexpr T value = static_cast<T>(v);\n\n using value_type = T;\n };\n\n} // namespace n91\n\n#include <functional>\n#include <utility>\n\nnamespace n91 {\n\n template <class T, class U, class Operate = std::multiplies<T>>\n constexpr T power(T base, U exp, const Operate & oper = Operate(),\n T iden = static_cast<T>(1)) {\n while (exp != static_cast<U>(0)) {\n if (exp % static_cast<U>(2) != static_cast<U>(0)) {\n iden = oper(iden, base);\n }\n exp /= static_cast<U>(2);\n base = oper(base, base);\n }\n return iden;\n }\n\n} // namespace n91\n\n#include <vector>\n\nnamespace n91 {\n\n template <class T> class fact_binom {\n public:\n using value_type = T;\n using container_type = std::vector<value_type>;\n using size_type = typename container_type::size_type;\n\n private:\n container_type factrial, inv_fact;\n\n public:\n fact_binom() : factrial(), inv_fact() {}\n explicit fact_binom(const size_type n) : factrial(n + 1), inv_fact(n + 1) {\n factrial[0] = static_cast<value_type>(1);\n for (size_type i = 0; i != n; ++i) {\n factrial[i + 1] = static_cast<value_type>(i + 1) * factrial[i];\n }\n inv_fact[n] = static_cast<value_type>(1) / factrial[n];\n for (size_type i = n; i != 0; --i) {\n inv_fact[i - 1] = inv_fact[i] * static_cast<value_type>(i);\n }\n }\n\n value_type operator()(const size_type n, const size_type r) const {\n return factrial[n] * inv_fact[r] * inv_fact[n - r];\n }\n };\n\n} // namespace n91\n\n\n#include <algorithm>\n#include <iostream>\n#include <map>\n#include <set>\n#include <utility>\n#include<array>\n\nnamespace std {\n\n template <typename T> struct edge {\n int src, to;\n T cost;\n\n edge(int to, T cost) : src(-1), to(to), cost(cost) {}\n\n edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}\n\n edge& operator=(const int& x) {\n to = x;\n return *this;\n }\n\n operator int() const { return to; }\n };\n\n template <typename T> using Edges = vector<edge<T>>;\n template <typename T> using WeightedGraph = vector<Edges<T>>;\n using UnWeightedGraph = vector<vector<int>>;\n template <typename T> using Matrix = vector<vector<T>>;\n\n template <typename G> struct StronglyConnectedComponents {\n const G& g;\n UnWeightedGraph gg, rg;\n vector<int> comp, order, used;\n\n StronglyConnectedComponents(G& g)\n : g(g), gg(g.size()), rg(g.size()), comp(g.size(), -1), used(g.size()) {\n for (int i = 0; i < g.size(); i++) {\n for (auto e : g[i]) {\n gg[i].emplace_back((int)e);\n rg[(int)e].emplace_back(i);\n }\n }\n }\n\n int operator[](int k) { return comp[k]; }\n\n void dfs(int idx) {\n if (used[idx])\n return;\n used[idx] = true;\n for (int to : gg[idx])\n dfs(to);\n order.push_back(idx);\n }\n\n void rdfs(int idx, int cnt) {\n if (comp[idx] != -1)\n return;\n comp[idx] = cnt;\n for (int to : rg[idx])\n rdfs(to, cnt);\n }\n\n void build(UnWeightedGraph& t) {\n for (int i = 0; i < gg.size(); i++)\n dfs(i);\n reverse(begin(order), end(order));\n int ptr = 0;\n for (int i : order)\n if (comp[i] == -1)\n rdfs(i, ptr), ptr++;\n\n t.resize(ptr);\n for (int i = 0; i < g.size(); i++) {\n for (auto& to : g[i]) {\n int x = comp[i], y = comp[to];\n if (x == y)\n continue;\n t[x].push_back(y);\n }\n }\n }\n };\n\n} // namespace std\n\n\nnamespace n91 {\n\n void main_() {\n const usize n = scan<usize>();\n const usize m = scan<usize>();\n struct planet {\n i64 x, y, z;\n i64 calc(usize i) const {\n return x * (i & 1 ? -1 : 1) + y * (i & 2 ? -1 : 1) + z * (i & 4 ? -1 : 1);\n }\n i64 dist(const planet& r) const {\n return std::abs(x - r.x) + std::abs(y - r.y) + std::abs(z - r.z);\n }\n };\n struct node {\n std::array<planet, 8> ps;\n void add(const node& r) {\n for (const auto i : rep(0_z, 8_z)) {\n if (ps[i].calc(i) < r.ps[i].calc(i)) {\n ps[i] = r.ps[i];\n }\n }\n }\n i64 dist(const planet& r) const {\n i64 ans = 0;\n for (const auto& e : ps) {\n ans = std::max(ans, r.dist(e));\n }\n return ans;\n }\n node() {}\n node(const planet& r) {\n for (auto& e : ps) {\n e = r;\n }\n }\n };\n std::vector<planet> p(n);\n for (auto& e : p) {\n std::cin >> e.x >> e.y >> e.z;\n }\n std::UnWeightedGraph g(n), buf;\n for (const auto i : rep(0_z, m)) {\n const usize u = scan<usize>() - 1_z;\n const usize v = scan<usize>() - 1_z;\n g[u].push_back(v);\n }\n std::StronglyConnectedComponents<std::UnWeightedGraph> scc(g);\n scc.build(buf);\n const usize k = buf.size();\n std::vector<std::vector<usize>> cs(k);\n for (const auto i : rep(0_z, n)) {\n cs[scc[i]].push_back(i);\n }\n std::vector<node> dp(k);\n std::vector<i64> ans(n);\n for (const auto ci : revrep(0_z, k)) {\n dp[ci] = node(p[cs[ci][0]]);\n for (const auto i : cs[ci]) {\n dp[ci].add(node(p[i]));\n }\n std::set<usize> set(buf[ci].begin(), buf[ci].end());\n for (const auto i : set) {\n dp[ci].add(dp[i]);\n }\n for (const auto i : cs[ci]) {\n ans[i] = dp[ci].dist(p[i]);\n }\n }\n for (const auto e : ans) {\n std::cout << e << std::endl;\n }\n }\n\n} // namespace n91\n\nint main() {\n n91::main_();\n return 0;\n}", "accuracy": 1, "time_ms": 680, "memory_kb": 105952, "score_of_the_acc": -1.3124, "final_rank": 14 }, { "submission_id": "aoj_3075_3879332", "code_snippet": "// う?笑\n#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T >\nstruct edge {\n int src, to;\n T cost;\n\n edge(int to, T cost) : src(-1), to(to), cost(cost) {}\n\n edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}\n\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n\n operator int() const { return to; }\n};\n\ntemplate< typename T >\nusing Edges = vector< edge< T > >;\ntemplate< typename T >\nusing WeightedGraph = vector< Edges< T > >;\nusing UnWeightedGraph = vector< vector< int > >;\ntemplate< typename T >\nusing Matrix = vector< vector< T > >;\n\ntemplate< typename G >\nstruct StronglyConnectedComponents {\n const G &g;\n UnWeightedGraph gg, rg;\n vector< int > comp, order, used;\n\n StronglyConnectedComponents(G &g) : g(g), gg(g.size()), rg(g.size()), comp(g.size(), -1), used(g.size()) {\n for(int i = 0; i < g.size(); i++) {\n for(auto e : g[i]) {\n gg[i].emplace_back((int) e);\n rg[(int) e].emplace_back(i);\n }\n }\n }\n\n int operator[](int k) {\n return comp[k];\n }\n\n void dfs(int idx) {\n if(used[idx]) return;\n used[idx] = true;\n for(int to : gg[idx]) dfs(to);\n order.push_back(idx);\n }\n\n void rdfs(int idx, int cnt) {\n if(comp[idx] != -1) return;\n comp[idx] = cnt;\n for(int to : rg[idx]) rdfs(to, cnt);\n }\n\n void build(UnWeightedGraph &t) {\n for(int i = 0; i < gg.size(); i++) dfs(i);\n reverse(begin(order), end(order));\n int ptr = 0;\n for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;\n\n t.resize(ptr);\n for(int i = 0; i < g.size(); i++) {\n for(auto &to : g[i]) {\n int x = comp[i], y = comp[to];\n if(x == y) continue;\n t[x].push_back(y);\n }\n }\n }\n};\n\nint main() {\n int N, M;\n cin >> N >> M;\n auto X = make_v< int >(N, 3);\n cin >> X;\n UnWeightedGraph g(N);\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n --a, --b;\n g[a].emplace_back(b);\n }\n StronglyConnectedComponents< UnWeightedGraph > scc(g);\n UnWeightedGraph t;\n scc.build(t);\n auto small = make_v< int >(t.size(), 1 << 3);\n fill_v(small, inf);\n auto large = make_v< int >(t.size(), 1 << 3);\n fill_v(large, -inf);\n\n\n for(int i = 0; i < N; i++) {\n for(int j = 0; j < 1 << 3; j++) {\n int add = 0;\n for(int k = 0; k < 3; k++) {\n if((j >> k) & 1) add += X[i][k];\n else add -= X[i][k];\n }\n chmin(small[scc[i]][j], add);\n chmax(large[scc[i]][j], add);\n }\n }\n auto latte = make_v< int >(t.size(), 1 << 3);\n fill_v(latte, inf);\n\n auto malta = make_v< int >(t.size(), 1 << 3);\n fill_v(malta, inf);\n\n auto rec = MFP([&](auto rec, int idx) -> void {\n if(latte[idx][0] != inf) return;\n latte[idx] = small[idx];\n malta[idx] = large[idx];\n for(auto to : t[idx]) {\n rec(to);\n for(int j = 0; j < (1 << 3); j++) chmin(latte[idx][j], latte[to][j]);\n for(int j = 0; j < (1 << 3); j++) chmax(malta[idx][j], malta[to][j]);\n }\n });\n\n for(int i = 0; i < N; i++) {\n int tap = 0;\n rec(scc[i]);\n\n for(int j = 0; j < (1 << 3); j++) {\n int add = 0;\n for(int k = 0; k < 3; k++) {\n if((j >> k) & 1) add -= X[i][k];\n else add += X[i][k];\n }\n chmax(tap, add + latte[scc[i]][j]);\n chmax(tap, malta[scc[i]][j] + add);\n }\n cout << tap << endl;\n }\n}", "accuracy": 1, "time_ms": 510, "memory_kb": 124764, "score_of_the_acc": -1.2591, "final_rank": 13 }, { "submission_id": "aoj_3075_3879325", "code_snippet": "#include <bits/stdc++.h>\n#define whlie while\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define rep(i,N) for(int i = 0; i < (N); i++)\n#define repr(i,N) for(int i = (N) - 1; i >= 0; i--)\n#define rep1(i,N) for(int i = 1; i <= (N) ; i++)\n#define repr1(i,N) for(int i = (N) ; i > 0 ; i--)\n#define each(x,v) for(auto& x : v)\n#define all(v) (v).begin(),(v).end()\n#define sz(v) ((int)(v).size())\n#define vrep(v,it) for(auto it = v.begin(); it != v.end(); it++)\n#define vrepr(v,it) for(auto it = v.rbegin(); it != v.rend(); it++)\n#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)\n#define inl(...) ll __VA_ARGS__; in(__VA_ARGS__)\n#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)\nusing namespace std; void solve();\nusing ll = long long; using vl = vector<ll>;\nusing vi = vector<int>; using vvi = vector< vector<int> >;\nconstexpr int inf = 1001001001;\nconstexpr ll infLL = (1LL << 61) - 1;\nstruct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya;\ntemplate<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\ntemplate<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\ntemplate<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << \" \" << p.second; return os; }\ntemplate<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; }\ntemplate<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); rep(i,s) os << (i ? \" \" : \"\") << v[i]; return os; }\ntemplate<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; }\nvoid in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);}\nvoid out(){cout << \"\\n\";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << \" \"; out(u...);}\ntemplate<typename T>void die(T x){out(x); exit(0);}\n#ifdef NyaanDebug\n #include \"NyaanDebug.h\"\n #define trc(...) do { cerr << #__VA_ARGS__ << \" = \"; dbg_out(__VA_ARGS__);} while(0)\n #define trca(v,...) do { cerr << #v << \" = \"; array_out(v , __VA_ARGS__ );} while(0)\n#else\n #define trc(...)\n #define trca(...)\n int main(){solve();}\n#endif\n\nconstexpr int MOD = /** 1000000007; //*/ 998244353;\n/////////////////\n\ntemplate< typename G >\nstruct StronglyConnectedComponents {\n using UnWeightedGraph = vvi;\n const G &g;\n UnWeightedGraph gg, rg;\n vector< int > comp, order, used;\n\n StronglyConnectedComponents(G &g) : g(g), gg(g.size()), rg(g.size()), comp(g.size(), -1), used(g.size()) {\n for(int i = 0; i < (int)g.size(); i++) {\n for(auto e : g[i]) {\n gg[i].emplace_back((int) e);\n rg[(int) e].emplace_back(i);\n }\n }\n }\n\n int operator[](int k) {\n return comp[k];\n }\n\n void dfs(int idx) {\n if(used[idx]) return;\n used[idx] = true;\n for(int to : gg[idx]) dfs(to);\n order.push_back(idx);\n }\n\n void rdfs(int idx, int cnt) {\n if(comp[idx] != -1) return;\n comp[idx] = cnt;\n for(int to : rg[idx]) rdfs(to, cnt);\n }\n\n void build(UnWeightedGraph &t) {\n for(int i = 0; i < (int)gg.size(); i++) dfs(i);\n reverse(begin(order), end(order));\n int ptr = 0;\n for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;\n\n t.resize(ptr);\n for(int i = 0; i < (int)g.size(); i++) {\n for(auto &to : g[i]) {\n int x = comp[i], y = comp[to];\n if(x == y) continue;\n t[x].push_back(y);\n }\n }\n }\n};\n\nusing P = pair<int,int>;\nusing vp= vector<P>;\n\nvp data(int x,int y,int z){\n vp ret = {\n P(x+y+z , x+y+z) ,\n P(x+y-z , x+y-z) ,\n P(x-y+z , x-y+z) ,\n P(x-y-z , x-y-z)\n };\n return ret;\n}\n\nvp dataini(){\n vp ret;\n rep(i,4) ret.eb(-inf , inf);\n return ret;\n}\n\nll evaldata(vp data , int x,int y,int z){\n ll ret = 0;\n amax(ret, abs(x+y+z - data[0].fi));\n amax(ret, abs(x+y+z - data[0].se));\n amax(ret, abs(x+y-z - data[1].fi));\n amax(ret, abs(x+y-z - data[1].se));\n amax(ret, abs(x-y+z - data[2].fi));\n amax(ret, abs(x-y+z - data[2].se));\n amax(ret, abs(x-y-z - data[3].fi));\n amax(ret, abs(x-y-z - data[3].se));\n return ret;\n}\n\nvoid merge(vp &cur , vp &add){\n rep(i,4){\n cur[i].fi = max(cur[i].fi , add[i].fi );\n cur[i].se = min(cur[i].se , add[i].se );\n }\n}\n\nvoid solve(){\n int N,M; in(N , M);\n vi x(N) , y(N) , z(N);\n rep(i,N) in(x[i] , y[i] , z[i]);\n vvi g(N);\n rep(i,M){\n ini(x,y); x--; y--;\n g[x].pb(y);\n }\n StronglyConnectedComponents<vvi> scc(g);\n vvi t;\n scc.build(t);\n int T = sz(t);\n vector<vp>memo(T);\n rep(i,T){ memo[i] = dataini();}\n rep(i,N){\n vp cur = data(x[i],y[i],z[i]);\n merge( memo[scc[i]] , cur );\n }\n \n\n vvi inv(T);\n rep(i,T) each(x , t[i]) inv[x].pb(i);\n repr(i , T){\n each(x , inv[i]) merge(memo[x] , memo[i]);\n }\n rep(i,T) trc(memo[i]);\n vl ans(T , 0);\n\n rep(i,N) out( evaldata(memo[scc[i]] , x[i],y[i],z[i]) );\n\n \n\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 80608, "score_of_the_acc": -0.596, "final_rank": 5 }, { "submission_id": "aoj_3075_3879289", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <cmath>\nusing namespace std;\ntypedef long long ll;\nll inf = 1e18;\n\n//1-indexed!\nclass strong_components{\nprivate:\n vector<vector<int>> v,rv,nv,cmp_node;\n vector<int> rs,visited,cmp,cmp_size;\n int num_cmp;\n void dfs(int n){\n visited[n] = 1;\n for(auto x:v[n]) if(!visited[x]) dfs(x);\n rs.push_back(n);\n }\n void rdfs(int n,int cnt){\n visited[n] = 1;\n cmp[n] = cnt;\n for(auto x:rv[n]) if(!visited[x]) rdfs(x,cnt);\n }\npublic:\n strong_components(int N,vector<vector<int>>& graph){\n v = graph;\n rv = cmp_node = vector<vector<int>>(N+1);\n visited = cmp = cmp_size = vector<int>(N+1,0);\n for(int i=1;i<=N;i++) for(auto x:v[i]) rv[x].push_back(i);\n for(int i=1;i<=N;i++) if(!visited[i]) dfs(i);\n for(int i=1;i<=N;i++) visited[i] = 0;\n int now = 1;\n for(int i=rs.size()-1;i>=0;i--) if(!visited[rs[i]]) rdfs(rs[i],now++);\n nv = vector<vector<int>>(now+1);\n for(int i=1;i<=N;i++){\n cmp_node[cmp[i]].push_back(i);\n for(auto x:v[i]){\n if(cmp[i]!=cmp[x]){\n nv[cmp[x]].push_back(cmp[i]);\n cmp_size[cmp[x]]++;\n }\n }\n }\n num_cmp = now-1;\n }\n int find(int n){return cmp[n];}\n vector<int> get_cmp_node(int n){return cmp_node[n];}\n vector<vector<int>> get_cmp_graph(){return nv;}\n int get_num_cmp() {return num_cmp;}\n bool is_same_group(int a,int b){return cmp[a]==cmp[b];}\n};\n\nint dx[8] = {1,-1,1,-1,1,1,-1-1},dy[8] = {1,1,-1,-1,1,-1,1,-1},dz[8] = {1,1,1,1,-1,-1,-1,-1};\n\nint N,M;\nvector<ll> X(200010),Y(200010),Z(200010);\nvector<ll> ans(200010);\nvector<vector<int>> graph(200010);\nvector<vector<int>> cmp_graph(200010);\nvector<vector<int>> cmp_node(200010);\nvector<vector<int>> inv_graph(200010);\n\nll ma[200010][8] = {};\nll mi[200010][8] = {};\nll maid[200010][8] = {};\nll miid[200010][8] = {};\n\n\n//全体管理\nint main(){\n cin >> N >> M;\n for(int i=1;i<=N;i++){\n cin >> X[i] >> Y[i] >> Z[i];\n }\n for(int i=1;i<=M;i++){\n int a,b;\n cin >> a >> b;\n graph[a].push_back(b);\n }\n strong_components scc(N,graph);\n cmp_graph = scc.get_cmp_graph();\n for(int i=1;i<=N;i++) cmp_node[i] = scc.get_cmp_node(i);\n int num_node = scc.get_num_cmp();\n for(int i=0;i<=N;i++) for(int j=0;j<8;j++){\n ma[i][j] = -inf;\n mi[i][j] = inf;\n maid[i][j] = -1;\n miid[i][j] = -1;\n }\n vector<int> cnt(N+1);\n for(int i=1;i<=num_node;i++) cmp_graph[0].push_back(i);\n for(int i=0;i<=num_node;i++) for(auto x:cmp_graph[i]) cnt[x]++;\n queue<int> Q;\n Q.push(0);\n /* cerr << \"graph_size: \" << num_node << endl;\n for(int i=1;i<=num_node;i++){\n cerr << \"cmp \" << i << \": \";\n for(auto x:cmp_node[i]) cerr << x << \" \";\n cerr << endl;\n }*/\n while(!Q.empty()){\n int now = Q.front(); Q.pop();\n// cerr << now << endl;\n //強連結成分内の点を追加\n for(auto x:cmp_node[now]){\n for(int j=0;j<8;j++){\n ll val = X[x]*dx[j]+Y[x]*dy[j]+Z[x]*dz[j];\n if(ma[now][j]<val){\n ma[now][j] = val;\n maid[now][j] = x;\n }\n if(mi[now][j]>val){\n mi[now][j] = val;\n miid[now][j] = x;\n }\n }\n }\n //強連結成分内の各点の答えを求める\n for(auto x:cmp_node[now]){\n //cerr << \"now: \" << now << \" x: \" << x << endl;\n for(int j=0;j<8;j++){\n if(maid[now][j]!=-1){\n int id = maid[now][j];\n ans[x] = max(ans[x],abs(X[x]-X[id])+abs(Y[x]-Y[id])+abs(Z[x]-Z[id]));\n }\n if(miid[now][j]!=-1){\n int id = miid[now][j];\n ans[x] = max(ans[x],abs(X[x]-X[id])+abs(Y[x]-Y[id])+abs(Z[x]-Z[id]));\n }\n }\n }\n //行き先に自分の情報を伝える\n for(auto x:cmp_graph[now]){\n for(int j=0;j<8;j++){\n if(ma[x][j]<ma[now][j]){\n ma[x][j] = ma[now][j];\n maid[x][j] = maid[now][j];\n }\n if(mi[x][j]>mi[now][j]){\n mi[x][j] = mi[now][j];\n miid[x][j] = miid[now][j];\n } \n }\n cnt[x]--;\n if(!cnt[x]) Q.push(x);\n }\n }\n for(int i=1;i<=N;i++) cout << ans[i] << endl;\n}\n\n/* \n192657310\n138809442\n0\n138809442\n0\n270544279\n96766390\n0\n96664294\n0\n\n\n*/", "accuracy": 1, "time_ms": 720, "memory_kb": 148292, "score_of_the_acc": -1.7486, "final_rank": 16 }, { "submission_id": "aoj_3075_3879219", "code_snippet": "#include <iostream>\n#include <utility>\n#include <stdio.h>\n#include <math.h>\n#include <algorithm>\n#include <vector>\n#include <map>\n#include <set>\n#include <stdlib.h>\n#define llint long long\n#define mod 998244353\n#define eps 1e-8\n#define inf 1e18\n\nusing namespace std;\ntypedef pair<llint, llint> P;\n\nllint n, m;\nvector<llint> G[200005], revG[200005];\nvector<llint> g[200005];\nint x[200005], y[200005], z[200005];\nvector<llint> vec[200005];\nP cand[200005][8];\nllint ans[200005];\n\nvector<int> topo;\nbool used[200005];\nint scc[200005];\n\nvoid tpsort(int v)\n{\n\tused[v] = true;\n\tfor(int i = 0; i < G[v].size(); i++){\n\t\tif(!used[G[v][i]]) tpsort(G[v][i]);\n\t}\n\ttopo.push_back(v);\n}\nvoid sccdfs(int v, int id)\n{\n\tused[v] = true;\n\tscc[v] = id;\n\tfor(int i = 0; i < revG[v].size(); i++){\n\t\tif(!used[revG[v][i]]) sccdfs(revG[v][i], id);\n\t}\n}\n\nllint dist(llint i, llint j)\n{\n\treturn abs(x[i]-x[j]) + abs(y[i]-y[j]) + abs(z[i]-z[j]);\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n >> m;\n\tfor(int i = 1; i <= n; i++){\n\t\tcin >> x[i] >> y[i] >> z[i];\n\t}\n\tllint u, v;\n\tfor(int i = 0; i < m; i++){\n\t\tcin >> u >> v;\n\t\tG[u].push_back(v);\n\t\trevG[v].push_back(u);\n\t}\n\t\n\tfor(int i = 1; i <= n; i++) if(!used[i]) tpsort(i);\n\treverse(topo.begin(), topo.end());\n\t\n\tint id = 0;\n\tfor(int i = 1; i <= n; i++) used[i] = false;\n\tfor(int i = 0; i < topo.size(); i++) if(!used[topo[i]]) sccdfs(topo[i], id++);\n\tfor(int i = 1; i <= n; i++) vec[scc[i]].push_back(i);\n\t\n\tset<llint> S;\n\tfor(int i = 0; i < id; i++){\n\t\tS.clear();\n\t\tfor(int j = 0; j < vec[i].size(); j++){\n\t\t\tfor(int k = 0; k < G[vec[i][j]].size(); k++){\n\t\t\t\tS.insert(scc[G[vec[i][j]][k]]);\n\t\t\t}\n\t\t}\n\t\tfor(auto it = S.begin(); it != S.end(); it++){\n\t\t\tif(*it == i) continue;\n\t\t\tg[i].push_back(*it);\n\t\t}\n\t}\n\t\n\t/*for(int i = 0; i < id; i++){\n\t\tfor(int j = 0; j < g[i].size(); j++){\n\t\t\tcout << g[i][j] << \" \";\n\t\t}\n\t\tcout<< endl;\n\t}*/\n\t\n\tfor(int k = id-1; k >= 0; k--){\n\t\tfor(int i = 0; i < 8; i++) cand[k][i] = make_pair(-inf, -inf);\n\t\tfor(int i = 0; i < 8; i++){\n\t\t\tfor(llint j = 0; j < vec[k].size(); j++){\n\t\t\t\tllint v = vec[k][j];\n\t\t\t\tllint f = 0;\n\t\t\t\tif(i&1) f += x[v]; else f -= x[v];\n\t\t\t\tif(i&2) f += y[v]; else f -= y[v];\n\t\t\t\tif(i&4) f += z[v]; else f -= z[v];\n\t\t\t\tcand[k][i] = max(cand[k][i], make_pair(f, v));\n\t\t\t}\n\t\t}\n\t}\n\t\n\tfor(int k = id-1; k >= 0; k--){\n\t\tfor(int j = 0; j < g[k].size(); j++){\n\t\t\tint nk = g[k][j];\n\t\t\tfor(int i = 0; i < 8; i++) cand[k][i] = max(cand[k][i], cand[nk][i]);\n\t\t}\n\t\tfor(int i = 0; i < 8; i++){\n\t\t\tfor(llint j = 0; j < vec[k].size(); j++){\n\t\t\t\tint v = vec[k][j];\n\t\t\t\t//cout << v << \" \" << cand[i].second << endl;\n\t\t\t\tans[v] = max(ans[v], dist(v, cand[k][i].second));\n\t\t\t}\n\t\t}\n\t}\n\t\n\tfor(int i = 1; i <= n; i++){\n\t\tcout << ans[i] << \"\\n\";\n\t}\n\tflush(cout);\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 81880, "score_of_the_acc": -0.6206, "final_rank": 6 }, { "submission_id": "aoj_3075_3879207", "code_snippet": "#include <cstdio>\n#include <cstdint>\n#include <vector>\n#include <algorithm>\n#include <utility>\n#include <numeric>\n#include <array>\n#include <set>\n#include <queue>\n\ntemplate <typename F>\nclass fix_point: F {\npublic:\n explicit constexpr fix_point(F&& f) noexcept: F(std::forward<F>(f)) {}\n\n template <typename... Args>\n constexpr decltype(auto) operator ()(Args&&... args) const {\n return F::operator ()(*this, std::forward<Args>(args)...);\n }\n};\n\ntemplate <typename F>\nstatic inline constexpr decltype(auto) make_fix_point(F&& f) noexcept {\n return fix_point<F>{std::forward<F>(f)};\n}\n\ntemplate <typename Weight>\nstruct edge {\n using value_type = Weight;\n size_t src, dst;\n value_type cost;\n\n edge(size_t src, size_t dst, value_type cost = 1):\n src(src), dst(dst), cost(cost)\n {}\n\n bool operator <(edge<value_type> const& rhs) const {\n if (cost != rhs.cost) return cost < rhs.cost;\n if (src != rhs.src) return src < rhs.src;\n return dst < rhs.dst;\n }\n};\n\ntemplate <typename Weight>\nstruct graph: public std::vector<std::vector<edge<Weight>>> {\n using value_type = Weight;\n graph(size_t n): std::vector<std::vector<edge<value_type>>>(n) {}\n\n void connect_to(size_t src, size_t dst, value_type cost = 1) {\n (*this)[src].emplace_back(src, dst, cost);\n }\n\n void connect_with(size_t src, size_t dst, value_type cost = 1) {\n connect_to(src, dst, cost);\n connect_to(dst, src, cost);\n }\n};\n\ntemplate <class Weight>\nstd::vector<size_t> strongly_connected_components(const graph<Weight>& g) {\n size_t n = g.size();\n graph<int> rev(n);\n for (const auto& v: g)\n for (const auto& e: v)\n rev.connect_to(e.dst, e.src);\n\n std::vector<bool> used(n);\n std::vector<size_t> vs;\n auto dfs = make_fix_point([&](auto f, size_t v) -> void {\n used[v] = true;\n for (size_t i = 0; i < g[v].size(); ++i)\n if (!used[g[v][i].dst]) f(g[v][i].dst);\n vs.push_back(v);\n });\n for (size_t i = 0; i < n; ++i)\n if (!used[i]) dfs(i);\n\n used.assign(n, false);\n std::vector<size_t> cmp(n);\n size_t num = 0;\n auto rdfs = make_fix_point([&](auto f, size_t v) -> void {\n used[v] = true;\n cmp[v] = num;\n for (size_t i = 0; i < rev[v].size(); ++i)\n if (!used[rev[v][i].dst]) f(rev[v][i].dst);\n });\n\n for (size_t i = vs.size(); i--;)\n if (!used[vs[i]]) {\n rdfs(vs[i]);\n ++num;\n }\n\n return cmp;\n}\n\nclass neko {\n std::array<intmax_t, 8> a = {};\n\npublic:\n neko() {\n for (intmax_t i = 0; i < 8; ++i) a[i] = -1e14;\n }\n neko(intmax_t x, intmax_t y, intmax_t z) {\n for (int i = 0; i < 8; ++i) {\n a[i] += ((i & 1)? +x: -x);\n a[i] += ((i & 2)? +y: -y);\n a[i] += ((i & 4)? +z: -z);\n }\n }\n neko(neko const& other) = default;\n\n neko max(neko const& other) const {\n neko res;\n for (size_t i = 0; i < 8; ++i)\n res.a[i] = std::max(a[i], other.a[i]);\n return res;\n }\n\n intmax_t tsurai(neko const& other) const {\n intmax_t res = 0;\n for (size_t i = 0; i < 8; ++i)\n res = std::max(res, a[i] - other.a[i]);\n return res;\n }\n\n void inspect() const {\n for (size_t i = 0; i < 8; ++i) fprintf(stderr, \"%jd%c\", a[i], i<7? ' ': '\\n');\n }\n};\n\nint main() {\n size_t n, m;\n scanf(\"%zu %zu\", &n, &m);\n\n std::vector<intmax_t> x(n), y(n), z(n);\n for (size_t i = 0; i < n; ++i)\n scanf(\"%jd %jd %jd\", &x[i], &y[i], &z[i]);\n\n graph<int> g(n);\n std::vector<std::pair<size_t, size_t>> es;\n for (size_t i = 0; i < m; ++i) {\n size_t u, v;\n scanf(\"%zu %zu\", &u, &v);\n --u, --v;\n g.connect_to(u, v);\n es.emplace_back(u, v);\n }\n\n auto scc = strongly_connected_components(g);\n size_t n1 = *std::max_element(scc.begin(), scc.end()) + 1;\n\n std::vector<neko> dp(n1);\n for (size_t i = 0; i < n; ++i) {\n dp[scc[i]] = dp[scc[i]].max(neko(x[i], y[i], z[i]));\n }\n // for (size_t i = 0; i < n1; ++i)\n // dp[i].inspect();\n\n graph<size_t> h(n1);\n std::vector<size_t> indeg(n1);\n {\n std::set<std::pair<size_t, size_t>> es0;\n for (size_t i = 0; i < m; ++i) {\n size_t u0 = scc[es[i].first];\n size_t v0 = scc[es[i].second];\n if (u0 == v0) continue;\n if (es0.count(std::make_pair(v0, u0))) continue;\n h.connect_to(v0, u0);\n es0.insert(std::make_pair(v0, u0));\n ++indeg[u0];\n }\n }\n\n std::queue<size_t> q;\n for (size_t i = 0; i < n1; ++i)\n if (indeg[i] == 0) q.push(i);\n\n while (!q.empty()) {\n size_t v = q.front();\n // fprintf(stderr, \"v: %zu\\n\", v);\n q.pop();\n for (auto const& e: h[v]) {\n dp[e.dst] = dp[e.dst].max(dp[e.src]);\n if (--indeg[e.dst] != 0) continue;\n q.push(e.dst);\n }\n }\n\n // for (size_t i = 0; i < n1; ++i)\n // dp[i].inspect();\n for (size_t i = 0; i < n; ++i)\n printf(\"%jd\\n\", dp[scc[i]].tsurai(neko(x[i], y[i], z[i])));\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 66616, "score_of_the_acc": -0.5087, "final_rank": 3 }, { "submission_id": "aoj_3075_3879130", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconst ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int> P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef pair<ll, ll> LP;\ntypedef vector<ll> vec;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-5;\nconst ld pi = acos(-1.0);\n\n\nint x[1 << 19], y[1 << 19], z[1 << 19];\n\nint ans[1 << 19][8];\n\nint calc(int id, int t) {\n\tint ret = 0;\n\tif (t % 2) {\n\t\tret += x[id];\n\t}\n\telse {\n\t\tret -= x[id];\n\t}\n\tt /= 2;\n\tif (t % 2) {\n\t\tret += y[id];\n\t}\n\telse {\n\t\tret -= y[id];\n\t}\n\tt /= 2;\n\tif (t % 2) {\n\t\tret += z[id];\n\t}\n\telse {\n\t\tret -= z[id];\n\t}\n\treturn ret;\n}\nint calcinv(int id, int t) {\n\treturn calc(id, (7 ^ t));\n}\n\nstruct graph {\nprivate:\n\tint n;\n\tvector<vector<int>> G, rG;\n\tvector<bool> used;\n\tvector<int> vs;\n\n\tint mk;\n\tvector<vector<int>> fG;\n\tvector<vector<int>> ori;\n\tvector<int> trans;\npublic:\n\tgraph(int sz) {\n\t\tn = sz;\n\t\tG.resize(n);\n\t\trG.resize(n);\n\t\tused.resize(n);\n\n\t\tfG.resize(n);\n\t\ttrans.resize(n, -1);\n\t\tori.resize(n);\n\t}\n\tvoid add_edge(int a, int b) {\n\t\tG[a].push_back(b);\n\t\trG[b].push_back(a);\n\t}\n\tvoid dfs(int v) {\n\t\tused[v] = true;\n\t\trep(i, G[v].size()) {\n\t\t\tif (!used[G[v][i]])dfs(G[v][i]);\n\t\t}\n\t\tvs.push_back(v);\n\t}\n\tvoid rdfs(int v, int k) {\n\t\tused[v] = true;\n\t\tqueue<int> q; q.push(v);\n\t\tvector<int> c;\n\t\twhile (!q.empty()) {\n\t\t\tint id = q.front(); q.pop();\n\t\t\tori[k].push_back(id);\n\t\t\trep(j, rG[id].size()) {\n\t\t\t\tint to = rG[id][j];\n\t\t\t\tif (used[to]) {\n\t\t\t\t\tif (trans[to] >= 0)c.push_back(trans[to]);\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t\tused[to] = true; q.push(to);\n\t\t\t}\n\t\t}\n\t\tsort(c.begin(), c.end());\n\t\tint len = unique(c.begin(), c.end()) - c.begin();\n\t\trep(i, len) {\n\t\t\tfG[c[i]].push_back(k);\n\t\t}\n\t\trep(i, ori[k].size()) {\n\t\t\ttrans[ori[k][i]] = k;\n\t\t}\n\t}\n\tvoid scc() {\n\t\tfill(used.begin(), used.end(), false);\n\t\trep(i, n) {\n\t\t\tif (!used[i])dfs(i);\n\t\t}\n\t\tfill(used.begin(), used.end(), false);\n\t\tint k = 0;\n\t\tper(i, (int)vs.size()) {\n\t\t\tif (!used[vs[i]]) {\n\t\t\t\trdfs(vs[i], k); k++;\n\t\t\t}\n\t\t}\n\t\tmk = k;\n\t}\n\tvoid query() {\n\t\tper(i, mk) {\n\t\t\trep(j, ori[i].size()) {\n\t\t\t\tint id = ori[i][j];\n\t\t\t\trep(k, 8) {\n\t\t\t\t\tans[i][k] = max(ans[i][k], calc(id, k));\n\t\t\t\t}\n\t\t\t}\n\t\t\trep(j, fG[i].size()) {\n\t\t\t\tint to = fG[i][j];\n\t\t\t\trep(k, 8) {\n\t\t\t\t\tans[i][k] = max(ans[i][k], ans[to][k]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tvoid solve() {\n\t\trep(i, n) {\n\t\t\tint id = trans[i];\n\t\t\tint ma = 0;\n\t\t\trep(j, 8) {\n\t\t\t\tma = max(ma, ans[id][j] + calcinv(i,j));\n\t\t\t}\n\t\t\tcout << ma << endl;\n\t\t}\n\t}\n};\n\nvoid solve() {\n\tint n, m; cin >> n >> m;\n\trep(i, n) {\n\t\tcin >> x[i] >> y[i] >> z[i];\n\t}\n\tgraph g(n);\n\trep(i, m) {\n\t\tint a, b; cin >> a >> b; a--; b--;\n\t\tg.add_edge(a, b);\n\t}\n\tg.scc();\n\trep(i, n)rep(j, 8)ans[i][j] = -mod;\n\tg.query(); g.solve();\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tsolve();\n\t//stop\n\treturn 0;\n}", "accuracy": 1, "time_ms": 420, "memory_kb": 58688, "score_of_the_acc": -0.5421, "final_rank": 4 } ]
aoj_3076_cpp
Problem M: Power Subsequences Problem 添字が $1$ から始まり、長さが有限の数列を引数とする関数 $f$ を以下のように定義する。 $\displaystyle f(\{a_1, a_2, \ldots, a_n\}) = \sum_{i=1}^n {a_i}^i$ 長さ $N$ の数列 $X = \{ x_1, x_2, \ldots, x_N \}$ が与えられるので、空の列を除く全ての部分列 $X'$ に対して $f(X')$ を求め、その総和を $998244353$ で割ったあまりを出力せよ。ただし、部分列の添字は、元の数列における相対的な序列を保ったまま $1$ から順に番号を振り直すものとする。また、ある2つの部分列が列として同じでも、取り出した位置が異なるならば、それらは別々に数えるものとする。 Input 入力は以下の形式で与えられる。 $N$ $x_1$ $\ldots$ $x_N$ 1行目に長さ $N$ が与えられる。 2行目に数列 $X$ の要素が空白区切りで与えられる。 Constraints 入力は以下の条件を満たす。 $1 \leq N \leq 10^6 $ $1 \leq x_i \leq 10^6 $ 入力は全て整数である Output 空の列を除く全ての部分列 $X'$ について $f(X')$ を求め、その総和を $998244353$ で割ったあまりを出力せよ。 Sample Input 1 3 1 2 3 Sample Output 1 64 $(1^1)+(2^1)+(1^1+2^2)+(3^1)+(1^1+3^2)+(2^1+3^2)+(1^1+2^2+3^3) = 64$ であるから、64を出力する。 Sample Input 2 5 100 200 300 400 500 Sample Output 2 935740429
[ { "submission_id": "aoj_3076_10179365", "code_snippet": "// AOJ #3076\n// Power Subsequences 2025.2.3\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nconst ll MOD = 998244353;\n \nint modexp(ll base, ll exp, ll mod) {\n ll res = 1;\n base %= mod;\n while(exp > 0) {\n if(exp & 1) res = (res * base) % mod;\n base = (base * base) % mod;\n exp >>= 1;\n }\n return (int)res;\n}\n \nint main() {\n int N = Cin();\n vector<ll> X(N);\n for (int i = 0; i < N; i++) X[i] = Cin();\n \n vector<ll> pow2(N+1, 0);\n pow2[0] = 1;\n for (int i = 1; i <= N; i++){\n pow2[i] = (pow2[i-1] << 1) % MOD;\n }\n \n ll ans = 0;\n for (int i = 0; i < N; i++){\n ll term = pow2[N - i - 1]; // 2^(N-(i+1))\n term = (term * X[i]) % MOD;\n ll base = 1 + X[i];\n int expVal = modexp(base, i, MOD);\n term = (term * expVal) % MOD;\n ans = (ans + term) % MOD;\n }\n Cout(ans % MOD);\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 18660, "score_of_the_acc": -0.9944, "final_rank": 17 }, { "submission_id": "aoj_3076_10179361", "code_snippet": "// AOJ #3076\n// Power Subsequences 2025.2.3\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nconst ll MOD = 998244353;\n \nll modexp(ll base, ll exp, ll mod) {\n ll result = 1;\n base %= mod;\n while(exp > 0) {\n if(exp & 1) result = (result * base) % mod;\n base = (base * base) % mod;\n exp >>= 1;\n }\n return result;\n}\n \nint main() {\n int N = Cin();\n vector<ll> X(N);\n for (int i = 0; i < N; i++) X[i] = Cin();\n \n vector<ll> pow2(N+1, 0);\n pow2[0] = 1;\n for (int i = 1; i <= N; i++){\n pow2[i] = (pow2[i-1] << 1) % MOD;\n }\n \n ll ans = 0;\n for (int i = 0; i < N; i++){\n ll term = pow2[N - i - 1]; // 2^(N-(i+1))\n term = (term * (X[i] % MOD)) % MOD;\n ll base = (1 + X[i]) % MOD;\n ll expVal = modexp(base, i, MOD);\n term = (term * expVal) % MOD;\n ans = (ans + term) % MOD;\n }\n Cout(ans % MOD);\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 18412, "score_of_the_acc": -0.9785, "final_rank": 16 }, { "submission_id": "aoj_3076_8001298", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\n#define rep(i,n) for(ll i=0;i<n;i++)\n#define all(A) A.begin(),A.end()\nll mod=998244353;\nll modpow(ll a,ll n){\n a%=mod;\n ll e=1;\n while(n>0){\n if(n%2==1)e=(e*a)%mod;\n a=(a*a)%mod;\n n/=2;\n }\n return e;\n}\nint main() {\n ll N;\n cin>>N;\n ll an=0;\n ll t=modpow(2,N-1);\n rep(i,N){\n ll X;\n cin>>X;\n an+=((X*t)%mod)*modpow(1+X,i);\n t*=(998244354/2);\n t%=mod;\n an%=mod;\n }\n cout<<an<<endl;\n}", "accuracy": 1, "time_ms": 400, "memory_kb": 3440, "score_of_the_acc": -0.345, "final_rank": 8 }, { "submission_id": "aoj_3076_8001296", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\n#define rep(i,n) for(ll i=0;i<n;i++)\n#define all(A) A.begin(),A.end()\nconst ll mod=998244353;\nll modpow(ll a,ll n){\n a%=mod;\n ll e=1;\n while(n>0){\n if(n%2==1)e=(e*a)%mod;\n a=(a*a)%mod;\n n/=2;\n }\n return e;\n}\nint main() {\n ll N;\n cin>>N;\n ll an=0;\n ll t=modpow(2,N-1);\n rep(i,N){\n ll X;\n cin>>X;\n an+=((X*t)%mod)*modpow(1+X,i);\n t*=(998244354/2);\n t%=mod;\n an%=mod;\n }\n cout<<an<<endl;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 3484, "score_of_the_acc": -0.1713, "final_rank": 1 }, { "submission_id": "aoj_3076_8001290", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\n#define rep(i,n) for(ll i=0;i<n;i++)\n#define all(A) A.begin(),A.end()\nconst ll mod=998244353;\nll modpow(ll a,ll n){\n a%=mod;\n ll e=1;\n while(n>0){\n if(n%2==1)e=(e*a)%mod;\n a=(a*a)%mod;\n n/=2;\n }\n return e;\n}\nint main() {\n ll N;\n cin>>N;\n ll an=0;\n\n rep(i,N){\n ll X;\n cin>>X;\n an+=((X*modpow(2,N-i-1))%mod)*modpow(1+X,i);\n an%=mod;\n }\n cout<<an<<endl;\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 3440, "score_of_the_acc": -0.2274, "final_rank": 2 }, { "submission_id": "aoj_3076_4825261", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nll mod = 998244353;\nlong long modpow(long long a, long long n) {\n long long res = 1;\n while (n > 0) {\n if (n & 1) res = res * a % mod;\n a = a * a % mod;\n n >>= 1;\n }\n return res;\n}\n\nlong long modinv(long long a) {\n long long b = mod, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; swap(a, b);\n u -= t * v; swap(u, v);\n }\n u %= mod; \n if (u < 0) u += mod;\n return u;\n}\n\nsigned main(){\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(20);\n \n ll n;\n cin>>n;\n ll a[n];\n for(int i=0;i<n;i++){\n cin>>a[i];\n }\n\n ll ans = 0;\n\n for(int i=0;i<n;i++){\n ll ret = modpow(2,n-i-1);\n ret *= (a[i] * modpow(a[i]+1,i))%mod;\n //cerr << ret << endl;\n ans += ret; \n ans %= mod;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 610, "memory_kb": 10912, "score_of_the_acc": -1.0285, "final_rank": 19 }, { "submission_id": "aoj_3076_4605184", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T, class U> using Pa = pair<T, U>;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\n\nll mod = 998244353;\nstruct mint {\n ll x;\n mint(ll x=0):x((x%mod+mod)%mod){}\n \n friend ostream &operator<<(ostream& os,const mint& a){\n return os << a.x;\n }\n\n friend istream &operator>>(istream& is,mint& a){\n ll t;\n is >> t;\n a = mint(t);\n return (is);\n }\n\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) {\n (x *= a.x) %= mod;\n return *this;\n }\n mint operator+(const mint a) const {\n mint res(*this);\n return res+=a;\n }\n mint operator-(const mint a) const {\n mint res(*this);\n return res-=a;\n }\n mint operator*(const mint a) const {\n mint res(*this);\n return res*=a;\n }\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n // for prime mod\n mint inv() const {\n return pow(mod-2);\n }\n mint& operator/=(const mint a) {\n return (*this) *= a.inv();\n }\n mint operator/(const mint a) const {\n mint res(*this);\n return res/=a;\n }\n};\n\nclass combination{\npublic:\n vector<mint> fact,inv,finv;\n combination(int N){\n fact = inv = finv = vector<mint>(N+1);\n fact[0] = fact[1] = 1;\n inv[0] = inv[1] = 1;\n finv[0] = finv[1] = 1;\n for(ll i=2;i<=N;i++){\n fact[i] = fact[i-1]*i;\n inv[i] = (mint) mod - inv[mod%i]*(mod/i);\n finv[i] = finv[i-1]*inv[i];\n }\n }\n mint f(int i){\n return fact[i];\n }\n mint comb(int n,int k){\n if(n<k) return 0;\n if(n<0 || k<0) return 0;\n return fact[n]*finv[k]*finv[n-k];\n }\n mint hcomb(int n,int k){\n if(n==0 && k==0) return 1;\n return comb(n+k-1,k);\n }\n};\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N;\n cin >> N;\n mint ans = 0;\n vec<mint> pow2(N+1,1);\n for(int i=1;i<=N;i++) pow2[i] = pow2[i-1]*2;\n for(int i=0;i<N;i++){\n int a;\n cin >> a;\n mint val = ((mint) 1+a).pow(i);\n val *= a;\n ans += val*pow2[N-i-1];\n }\n cout << ans << \"\\n\";\n}", "accuracy": 1, "time_ms": 480, "memory_kb": 10748, "score_of_the_acc": -0.8906, "final_rank": 15 }, { "submission_id": "aoj_3076_4216361", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std::literals::string_literals;\nusing i64 = std::int_fast64_t;\nusing std::cout;\nusing std::cerr;\nusing std::endl;\nusing std::cin;\n\ntemplate<typename T>\nstd::vector<T> make_v(size_t a){return std::vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\ntemplate <std::uint_fast64_t Modulus>\nclass modint {\n\tusing u32 = std::uint_fast32_t;\n\tusing u64 = std::uint_fast64_t;\n\tusing i64 = std::int_fast64_t;\n\t\n\tpublic:\n\tu64 a;\n\n\tconstexpr modint() noexcept : a(0) {}\n\tconstexpr modint(const u64 & x) noexcept : a(x % Modulus) {}\n\n\tconstexpr u64 &value() noexcept { return a; }\n\tconstexpr const u64 &value() const noexcept { return a; }\n\n\tconst modint inverse() const {\n\t\treturn modint(1) / *this;\n\t}\n\tconst modint pow(i64 k) const {\n\t\treturn modint(*this) ^ k;\n\t}\n\n\tstatic u64 mod() { return Modulus; }\n\n\tconstexpr modint & operator+=(const modint & rhs) noexcept {\n\t\ta += rhs.a;\n\t\tif (a >= Modulus) a -= Modulus;\n\t\treturn *this;\n\t}\n\tconstexpr modint & operator-=(const modint & rhs) noexcept {\n\t\tif (a < rhs.a) a += Modulus;\n\t\ta -= rhs.a;\n\t\treturn *this;\n\t}\n\tconstexpr modint & operator*=(const modint & rhs) noexcept {\n\t\ta = a * rhs.a % Modulus;\n\t\treturn *this;\n\t}\n\tconstexpr modint & operator/=(modint rhs) noexcept {\n\t\tu64 exp = Modulus - 2;\n\t\twhile (exp) {\n\t\t\tif (exp % 2) (*this) *= rhs;\n\t\t\t\n\t\t\trhs *= rhs;\n\t\t\texp /= 2;\n\t\t}\n\t\treturn *this;\n\t}\n\tconstexpr modint & operator^=(u64 k) noexcept {\n\t\tauto b = modint(1);\n\t\twhile(k) {\n\t\t\tif(k & 1) b = b * (*this);\n\t\t\t(*this) *= (*this);\n\t\t\tk >>= 1;\n\t\t}\n\t\treturn (*this) = b;\n\t}\n\tconstexpr modint & operator=(const modint & rhs) noexcept {\n\t\ta = rhs.a;\n\t\treturn (*this);\n\t}\n\tconstexpr modint operator+(const modint & rhs) const noexcept { return modint(*this) += rhs; }\n\tconstexpr modint operator-(const modint & rhs) const noexcept { return modint(*this) -= rhs; }\t\n\tconstexpr modint operator*(const modint & rhs) const noexcept { return modint(*this) *= rhs; }\n\tconstexpr modint operator/(const modint & rhs) const noexcept { return modint(*this) /= rhs; }\n\tconstexpr modint operator^(const u64 & k) const noexcept { return modint(*this) ^= k; }\n\tconstexpr modint operator-() const noexcept { return modint(Modulus - a); }\n\tconstexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }\n\tconstexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }\n\tconst bool operator==(const modint & rhs) const noexcept { return a == rhs.a; };\n\tconst bool operator!=(const modint & rhs) const noexcept { return a != rhs.a; };\n\tconst bool operator<=(const modint & rhs) const noexcept { return a <= rhs.a; };\n\tconst bool operator>=(const modint & rhs) const noexcept { return a >= rhs.a; };\n\tconst bool operator<(const modint & rhs) const noexcept { return a < rhs.a; };\n\tconst bool operator>(const modint & rhs) const noexcept { return a > rhs.a; };\n\texplicit operator bool() const { return a; }\n\texplicit operator u32() const { return a; }\n\n\tfriend std::ostream & operator<<(std::ostream & os, const modint & p) {\n\t\treturn os << p.a;\n\t}\n\tfriend std::istream & operator>>(std::istream & is, modint & p) {\n\t\tu64 t;\n\t\tis >> t;\n\t\tp = modint(t);\n\t\treturn is;\n\t}\n};\n\nusing mint = modint<998244353>;\n\nint main() {\n\tint n; scanf(\"%d\", &n); std::vector<int> a(n);\n\tfor(int i = 0; i < n; i++) scanf(\"%d\", &a[i]);\n\n\tauto calc = [&](mint a, int ind) {\n\t\treturn a * ((a + 1) ^ ind);\n\t};\n\n\tmint ans = 0;\n\tfor(int i = 0; i < n; i++) ans += calc(a[i], i) * (mint(2) ^ (n - i - 1));\n\tprintf(\"%lld\\n\", ans.value());\n\treturn 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 6676, "score_of_the_acc": -0.3362, "final_rank": 5 }, { "submission_id": "aoj_3076_4216333", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing uint = unsigned int;\nusing pcc = pair<char, char>;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pdd = pair<double, double>;\nusing tuplis = array<ll, 3>;\ntemplate<class T> using pq = priority_queue<T, vector<T>, greater<T>>;\nconst ll LINF=0x1fffffffffffffff;\nconst ll MINF=0x7fffffffffff;\nconst int INF=0x3fffffff;\nconst int MOD=1000000007;\nconst int MODD=998244353;\nconst ld DINF=numeric_limits<ld>::infinity();\nconst ld EPS=1e-9;\nconst ld PI=3.1415926535897932;\nconst ll four[] = {0, 1, 0, -1, 0};\nconst ll eight[] = {0, 1, 1, 0, -1, -1, 1, -1, 0};\n#define overload4(_1,_2,_3,_4,name,...) name\n#define overload3(_1,_2,_3,name,...) name\n#define rep1(n) for(ll i=0;i<n;++i)\n#define rep2(i,n) for(ll i=0;i<n;++i)\n#define rep3(i,a,b) for(ll i=a;i<b;++i)\n#define rep4(i,a,b,c) for(ll i=a;i<b;i+=c)\n#define rep(...) overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__)\n#define rrep1(n) for(ll i=(n)-1;i>=0;i--)\n#define rrep2(i,n) for(ll i=(n)-1;i>=0;i--)\n#define rrep3(i,a,b) for(ll i=(b)-1;i>=(a);i--)\n#define rrep4(i,a,b,c) for(ll i=a+(b-a-1)/c*c;i>=a;i-=c)\n#define rrep(...) overload4(__VA_ARGS__,rrep4,rrep3,rrep2,rrep1)(__VA_ARGS__)\n#define each(i,...) for(auto&& i:__VA_ARGS__)\n#define all1(i) begin(i),end(i)\n#define all2(i,a) begin(i),begin(i)+a\n#define all3(i,a,b) begin(i)+a,begin(i)+b\n#define all(...) overload3(__VA_ARGS__,all3,all2,all1)(__VA_ARGS__)\n#define rall1(i) (i).rbegin(),(i).rend()\n#define rall2(i,k) (i).rbegin(),(i).rbegin()+k\n#define rall3(i,a,b) (i).rbegin()+a,(i).rbegin()+b\n#define rall(...) overload3(__VA_ARGS__,rall3,rall2,rall1)(__VA_ARGS__)\n#define sum(...) accumulate(all(__VA_ARGS__),0LL)\n#define dsum(...) accumulate(all(__VA_ARGS__),0.0L)\n#define elif else if\n#define unless(a) if(!(a))\n#define mp make_pair\n#define mt make_tuple\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)\n#define Sort(a) sort(all(a))\n#define Rev(a) reverse(all(a))\n#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define vec(type,name,...) vector<type> name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type> name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ntemplate<class T> auto max(const T& a){ return *max_element(all(a)); }\ntemplate<class T> auto min(const T& a){ return *min_element(all(a)); }\nll gcd(ll a, ll b){ while(b){ ll c = b; b = a % b; a = c; } return a; }\nll lcm(ll a, ll b){ if(!a || !b) return 0; return a * b / gcd(a, b); }\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }\ntemplate<class T> bool chmin(T& a, const T& b){ if(a > b){ a = b; return 1; } return 0; }\ntemplate<class T> bool chmax(T& a, const T& b){ if(a < b){ a = b; return 1; } return 0; }\nvector<pll> factor(ull x){ vector<pll> ans; for(ll i = 2; i * i <= x; i++) if(x % i == 0){ ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; }\nvector<ll> divisor(ull x){ vector<ll> ans; for(ll i = 1; i * i <= x; i++) if(x % i == 0) ans.push_back(i); rrep(ans.size() - (ans.back() * ans.back() == x)) ans.push_back(x / ans[i]); return ans; }\ntemplate<class T> unordered_map<T, ll> press(vector<T>& a){ auto b = a; sort(all(b)); b.erase(unique(all(b)), b.end()); unordered_map<T,ll> ans; rep(b.size()) ans[b[i]] = i; each(i, a) i = ans[i]; return ans; }\ntemplate<class T> map<T, ll> press_map(vector<T>& a){ auto b = a; sort(all(b)); b.erase(unique(all(b)), b.end()); map<T,ll> ans; rep(b.size()) ans[b[i]] = i; each(i, a) i = ans[i]; return ans; }\nint scan(){ return getchar(); }\nvoid scan(int& a){ scanf(\"%d\", &a); }\nvoid scan(unsigned& a){ scanf(\"%u\", &a); }\nvoid scan(long& a){ scanf(\"%ld\", &a); }\nvoid scan(long long& a){ scanf(\"%lld\", &a); }\nvoid scan(unsigned long long& a){ scanf(\"%llu\", &a); }\nvoid scan(char& a){ do{ a = getchar(); }while(a == ' ' || a == '\\n'); }\nvoid scan(float& a){ scanf(\"%f\", &a); }\nvoid scan(double& a){ scanf(\"%lf\", &a); }\nvoid scan(long double& a){ scanf(\"%Lf\", &a); }\nvoid scan(vector<bool>& a){ for(unsigned i = 0; i < a.size(); i++){ int b; scan(b); a[i] = b; } }\nvoid scan(char a[]){ scanf(\"%s\", a); }\nvoid scan(string& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>&);\ntemplate<class T, size_t size> void scan(array<T, size>&);\ntemplate<class T, class L> void scan(pair<T, L>&);\ntemplate<class T, size_t size> void scan(T(&)[size]);\ntemplate<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(deque<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, class L> void scan(pair<T, L>& p){ scan(p.first); scan(p.second); }\ntemplate<class T, size_t size> void scan(T (&a)[size]){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(T& a){ cin >> a; }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ putchar(' '); }\nvoid print(bool a){ printf(\"%d\", a); }\nvoid print(int a){ printf(\"%d\", a); }\nvoid print(unsigned a){ printf(\"%u\", a); }\nvoid print(long a){ printf(\"%ld\", a); }\nvoid print(long long a){ printf(\"%lld\", a); }\nvoid print(unsigned long long a){ printf(\"%llu\", a); }\nvoid print(char a){ printf(\"%c\", a); }\nvoid print(char a[]){ printf(\"%s\", a); }\nvoid print(const char a[]){ printf(\"%s\", a); }\nvoid print(float a){ printf(\"%.15f\", a); }\nvoid print(double a){ printf(\"%.15f\", a); }\nvoid print(long double a){ printf(\"%.15Lf\", a); }\nvoid print(const string& a){ for(auto&& i : a) print(i); }\ntemplate<class T> void print(const vector<T>&);\ntemplate<class T, size_t size> void print(const array<T, size>&);\ntemplate<class T, class L> void print(const pair<T, L>& p);\ntemplate<class T, size_t size> void print(const T (&)[size]);\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const deque<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, size_t size> void print(const array<T, size>& a){ print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, class L> void print(const pair<T, L>& p){ print(p.first); putchar(' '); print(p.second); }\ntemplate<class T, size_t size> void print(const T (&a)[size]){ print(a[0]); for(auto i = a; ++i != end(a); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const T& a){ cout << a; }\nint out(){ putchar('\\n'); return 0; }\ntemplate<class T> int out(const T& t){ print(t); putchar('\\n'); return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }\n#ifdef DEBUG\nvoid err(){ putchar('\\n'); }\ntemplate<class T> void err(const T& t){ print(t); putchar('\\n'); }\ntemplate<class Head, class... Tail> void err(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); }\n#else\ntemplate<class... T> void err(const T&...){}\n#endif\nint first(bool i = true){ return out(i?\"first\":\"second\"); }\nint yes(bool i = true){ return out(i?\"yes\":\"no\"); }\nint Yes(bool i = true){ return out(i?\"Yes\":\"No\"); }\nint No(){ return out(\"No\"); }\nint YES(bool i = true){ return out(i?\"YES\":\"NO\"); }\nint NO(){ return out(\"NO\"); }\nint Yay(bool i = true){ return out(i?\"Yay!\":\":(\"); }\nint possible(bool i = true){ return out(i?\"possible\":\"impossible\"); }\nint Possible(bool i = true){ return out(i?\"Possible\":\"Impossible\"); }\nint POSSIBLE(bool i = true){ return out(i?\"POSSIBLE\":\"IMPOSSIBLE\"); }\nvoid Case(ll i){ printf(\"Case #%lld: \", i); }\n\n\n\nconstexpr uint mod = MODD;\nstruct Modint{\n uint num = 0;\n constexpr Modint(){}\n constexpr Modint(const Modint &x) : num(x.num){}\n inline constexpr operator ll() const { return num; }\n inline constexpr Modint& operator+=(Modint x){ num += x.num; if(num >= mod) num -= mod; return *this; }\n inline constexpr Modint& operator++(){ if(num == mod - 1) num = 0; else num++; return *this; }\n inline constexpr Modint operator++(int){ Modint ans(*this); operator++(); return ans; }\n inline constexpr Modint operator- () const { return Modint(0) -= *this; }\n inline constexpr Modint operator- (Modint x) const { return Modint(*this) -= x; }\n inline constexpr Modint& operator-=(Modint x){ if(num < x.num) num += mod; num -= x.num; return *this; }\n inline constexpr Modint& operator--(){ if(num == 0) num = mod - 1; else num--; return *this; }\n inline constexpr Modint operator--(int){ Modint ans(*this); operator--(); return ans; }\n inline constexpr Modint& operator*=(Modint x){ num = ull(num) * x.num % mod; return *this; }\n inline constexpr Modint& operator/=(Modint x){ return operator*=(x.inv()); }\n template<class T> constexpr Modint(T x){\n using U = typename conditional<sizeof(T) >= 4, T, int>::type;\n U y = x; y %= U(mod); if(y < 0) y += mod; num = uint(y);\n }\n template<class T> inline constexpr Modint operator+(T x) const { return Modint(*this) += x; }\n template<class T> inline constexpr Modint& operator+=(T x){ x %= mod; if(x < 0) x += mod; num += x; if(num >= mod) num -= mod; return *this; }\n template<class T> inline constexpr Modint operator- (T x) const { return Modint(*this) -= x; }\n template<class T> inline constexpr Modint& operator-=(T x){ return operator-=(Modint(x)); }\n template<class T> inline constexpr Modint operator* (T x) const { return Modint(*this) *= x; }\n template<class T> inline constexpr Modint& operator*=(T x){ return operator*=(Modint(x)); }\n template<class T> inline constexpr Modint operator/ (T x) const { return Modint(*this) /= x; }\n template<class T> inline constexpr Modint& operator/=(T x){ return operator/=(Modint(x)); }\n inline constexpr Modint inv() const { ll x = 0, y = 0; extgcd(num, mod, x, y); return x; }\n inline constexpr ll extgcd(ll a, ll b, ll &x, ll &y) const { ll g = a; x = 1; y = 0; if(b){ g = extgcd(b, a % b, y, x); y -= a / b * x; } return g; }\n inline constexpr Modint pow(ull x) const { Modint ans = 1, cnt = *this; while(x){ if(x & 1) ans *= cnt; cnt *= cnt; x /= 2; } return ans; }\n};\nstd::istream& operator>>(std::istream& is, Modint& x) { ll a; in(a); x = a; return is; }\ninline constexpr Modint operator\"\"_M(ull x) { return Modint(x); }\nstd::vector<Modint> fac(1, 1), inv(1, 1);\ninline void reserve(ll a){\n if(fac.size() >= a) return;\n if(a < fac.size() * 2) a = fac.size() * 2;\n if(a >= mod) a = mod;\n while(fac.size() < a) fac.push_back(fac.back() * Modint(fac.size()));\n inv.resize(fac.size());\n inv.back() = fac.back().inv();\n for(ll i = inv.size() - 1; !inv[i - 1]; i--) inv[i - 1] = inv[i] * i;\n}\ninline Modint fact(ll n){ if(n < 0) return 0; reserve(n + 1); return fac[n]; }\ninline Modint perm(ll n, ll r){\n if(r < 0 || n < r) return 0;\n if(n >> 24){ Modint ans = 1; for(ll i = 0; i < r; i++) ans *= n--; return ans; }\n reserve(n + 1); return fac[n] * inv[n - r];\n}\ninline Modint comb(ll n, ll r){ if(r < 0 || n < r) return 0; reserve(r + 1); return perm(n, r) * inv[r]; }\ninline Modint Mcomb(ll n, ll r){ return comb(n + r - 1, n - 1); } // r個をn部屋に分ける\ninline Modint catalan(ll n){ reserve(n * 2 + 1); return fac[n * 2] * inv[n] * inv[n + 1]; }\nsigned main(){\n LL(n);\n VEC(Modint,a,n);\n Modint ans=0;\n rep(n)ans+=a[i]*(a[i]+1).pow(i)*2_M .pow(n-1-i);\n out(ans);\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 6776, "score_of_the_acc": -0.3426, "final_rank": 7 }, { "submission_id": "aoj_3076_4215634", "code_snippet": "#pragma target(\"avx\")\n#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef long double ld;\ntypedef pair<ll, ll> P;\ntypedef vector<ll> V;\ntypedef unordered_map<ll, ll> U_MAP;\ntypedef priority_queue<ll> pq;\ntypedef priority_queue<ll, vector<ll>, greater<ll>> rpq;\nconst int INF = 1e9, MOD = 998244353, ohara = 1e6 + 10;\nconst ll LINF = 1e18;\n\n#define rep(i, n) for (ll(i) = 0; (i) < (int)(n); (i)++)\n#define rrep(i, a, b) for (ll i = (a); i < (b); i++)\n#define rrrep(i, a, b) for (ll i = (a); i >= (b); i--)\n#define all(v) (v).begin(), (v).end()\n#define Size(n) (n).size()\n#define Cout(x) cout << (x) << endl\n#define doublecout(a) cout << fixed << setprecision(15) << a << endl;\n#define fi first\n#define se second\n#define m_p make_pair\n#define p_b push_back\nstring to_string(string s) { return '\"' + s + '\"'; }\nstring to_string(const char* s) { return to_string((string)s); }\nstring to_string(bool b) { return (b ? \"true\" : \"false\"); }\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p) {\n return \"(\" + to_string(p.first) + \", \" + to_string(p.second) + \")\";\n}\ntemplate <typename A>\nstring to_string(A v) {\n bool first = true;\n string res = \"{\";\n for (const auto& x : v) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(x);\n }\n res += \"}\";\n return res;\n}\nvoid debug_out() { cerr << endl; }\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n cerr << \" \" << to_string(H);\n debug_out(T...);\n}\n#define debug(...) cerr << \"[\" << #__VA_ARGS__ << \"]:\", debug_out(__VA_ARGS__)\n\n//------ Believe yourself as a genius!!!!!! ------\n\nint dy[] = {1, 0, -1, 0};\nint dx[] = {0, 1, 0, -1};\n// int dy[]={-1,0,1,-1,1,-1,0,1};int dx[]={-1,-1,-1,0,0,1,1,1};\nstring alph(\"abcdefghijklmnopqrstuvwxyz\"), s;\nll n, cnt, ans, a[ohara], b, c, d, tmp, m, h, w, x, y, sum, k, q;\n\nll mypow(ll a, ll n, ll mod) {\n ll res = 1;\n while (n > 0) {\n if (n & 1) res = res * a % mod;\n a = a * a % mod;\n n >>= 1;\n }\n return res;\n}\n\nint main(void) {\n cin.tie(0);\n cout.tie(0);\n ios::sync_with_stdio(false);\n\n cin >> n;\n rep(i, n) cin >> a[i];\n rep(i, n) {\n ll add = a[i];\n (add *= mypow(1 + a[i], i, MOD)) %= MOD;\n (add *= mypow(2, n - i - 1, MOD)) %= MOD;\n (ans += add) %= MOD;\n }\n Cout(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 10912, "score_of_the_acc": -0.6168, "final_rank": 13 }, { "submission_id": "aoj_3076_3907789", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3076.cc: \n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 1000000;\nconst int MOD = 998244353;\n\n/* typedef */\n\ntypedef long long ll;\n\n/* global variables */\n\nint xs[MAX_N], e2s[MAX_N + 1];\n\n/* subroutines */\n\nint powmod(int a, int n) { // a^n % MOD\n int pm = 1;\n while (n > 0) {\n if (n & 1) pm = (ll)pm * a % MOD;\n a = (ll)a * a % MOD;\n n >>= 1;\n }\n return pm;\n}\n\n/* main */\n\nint main() {\n int n;\n scanf(\"%d\", &n);\n for (int i = 0; i < n; i++) scanf(\"%d\", xs + i);\n\n e2s[0] = 1;\n for (int i = 1; i <= n; i++) e2s[i] = e2s[i - 1] * 2 % MOD;\n\n int sum = 0;\n for (int i = 0; i < n; i++) {\n int d = (ll)xs[i] * powmod(1 + xs[i], i) % MOD * e2s[n - 1 - i] % MOD;\n sum = (sum + d) % MOD;\n }\n\n printf(\"%d\\n\", sum);\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 10916, "score_of_the_acc": -0.568, "final_rank": 12 }, { "submission_id": "aoj_3076_3894094", "code_snippet": "#include <bits/stdc++.h>\n#define MOD 998244353\nusing namespace std;\n\nlong long mod_pow(long long x, long long n) {\n long long res = 1;\n while(n > 0) {\n if(n & 1) (res *= x) %= MOD;\n (x *= x) %= MOD;\n n >>= 1;\n }\n return res;\n}\n\nlong long n;\nvector<int> x;\n\nlong long solve();\n\nint main() {\n cin >> n;\n x.resize(n);\n for(int i = 0; i < n; i++) cin >> x[i];\n\n cout << solve() << endl;\n return 0;\n}\n\nlong long solve() {\n long long ans = 0;\n for(int i = 0; i < n; i++) {\n ans += mod_pow(2, n - i - 1) * x[i] % MOD *\n mod_pow(x[i] + 1, i) % MOD;\n ans %= MOD;\n }\n return ans;\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 6664, "score_of_the_acc": -0.4923, "final_rank": 10 }, { "submission_id": "aoj_3076_3893195", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\ntemplate<typename T,T MOD = 1000000007>\nstruct Mint{\n static constexpr T mod = MOD;\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n Mint pow(long long k){\n Mint res(1),tmp(v);\n while(k){\n if(k&1) res*=tmp;\n tmp*=tmp;\n k>>=1;\n }\n return res;\n }\n\n static Mint add_identity(){return Mint(0);}\n static Mint mul_identity(){return Mint(1);}\n\n Mint inv(){return pow(MOD-2);}\n\n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n Mint& operator/=(Mint a){return (*this)*=a.inv();}\n\n Mint operator+(Mint a) const{return Mint(v)+=a;};\n Mint operator-(Mint a) const{return Mint(v)-=a;};\n Mint operator*(Mint a) const{return Mint(v)*=a;};\n Mint operator/(Mint a) const{return Mint(v)/=a;};\n\n Mint operator-() const{return v?Mint(MOD-v):Mint(v);}\n\n bool operator==(const Mint a)const{return v==a.v;}\n bool operator!=(const Mint a)const{return v!=a.v;}\n bool operator <(const Mint a)const{return v <a.v;}\n};\ntemplate<typename T,T MOD> constexpr T Mint<T, MOD>::mod;\ntemplate<typename T,T MOD>\nostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n//INSERT ABOVE HERE\nsigned main(){\n int n;\n cin>>n;\n vector<int> as(n);\n for(int i=0;i<n;i++) cin>>as[i];\n\n using M = Mint<int, 998244353>;\n M ans(0);\n for(int i=0;i<n;i++)\n ans+=M(as[i])*M(1+as[i]).pow(i)*M(2).pow(n-(i+1));\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 6608, "score_of_the_acc": -0.3416, "final_rank": 6 }, { "submission_id": "aoj_3076_3889330", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\n\nusing ll = long long;\nusing P = pair<int, int>;\nusing T = tuple<int, int, int>;\n\ntemplate <class T> inline T chmax(T &a, const T b) {return a = (a < b) ? b : a;}\ntemplate <class T> inline T chmin(T &a, const T b) {return a = (a > b) ? b : a;}\n\nconstexpr int MOD = 998244353;\nconstexpr int inf = 1e9;\nconstexpr long long INF = 1e18;\nconstexpr double pi = acos(-1);\nconstexpr double EPS = 1e-10;\n\nint dx[] = {1, 0, -1, 0};\nint dy[] = {0, 1, 0, -1};\n\nll modpow(ll a, ll b){\n if(b == 0) return 1;\n else if(b % 2 == 0){\n ll d = modpow(a, b/2) % MOD;\n return (d * d) % MOD;\n }\n else{\n return (a * modpow(a, b-1)) % MOD;\n }\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int n; cin>>n;\n vector<ll> x(n);\n for(int i=0; i<n; i++) cin>>x[i];\n\n ll ans = 0;\n for(int i=0; i<n; i++){\n ans += modpow((1 + x[i]), i) * x[i] % MOD * modpow(2, n-i-1);\n ans %= MOD;\n }\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 10740, "score_of_the_acc": -0.8018, "final_rank": 14 }, { "submission_id": "aoj_3076_3884420", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n//#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define MOD 998244353\n#define SIZE 1000005\n\nint N;\nll POW[SIZE];\nll x[SIZE];\n\nll mod_pow(ll x,ll count, ll mod){\n\n\tif(count == 0)return 1;\n\tll ret = mod_pow((x*x)%mod,count/2,mod);\n\tif(count%2 == 1){\n\n\t\tret = (ret*x)%mod;\n\t}\n\treturn ret;\n}\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i < SIZE; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t\tPOW[i] %= MOD;\n\t}\n\n\tscanf(\"%d\",&N);\n\n\tfor(int i = 1; i <= N; i++){\n\n\t\tscanf(\"%lld\",&x[i]);\n\t}\n\n\tll ans = 0;\n\n\tfor(int i = 1; i <= N; i++){\n\n\t\tll tmp = mod_pow(1+x[i],i-1,MOD);\n\n\t\ttmp *= x[i];\n\t\ttmp %= MOD;\n\n\t\ttmp *= POW[N-i];\n\t\ttmp %= MOD;\n\n\t\tans += tmp;\n\t\tans %= MOD;\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 18748, "score_of_the_acc": -1.3137, "final_rank": 20 }, { "submission_id": "aoj_3076_3883620", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int64_t MOD = 998244353;\nvoid add(int64_t& a, int64_t b){\n a = (a+b) % MOD;\n}\nvoid mul(int64_t& a, int64_t b){\n a = a*b % MOD;\n}\n\nint64_t power_mod(int64_t num, int64_t power){\n int64_t prod = 1;\n num %= MOD;\n while(power > 0){\n if(power&1) prod = prod * num % MOD;\n num = num * num % MOD;\n power >>= 1;\n }\n return prod;\n}\n\nint main() {\n int N;\n cin >> N;\n int64_t ans = 0;\n for(int i=0; i<N; i++){\n int x;\n cin >> x;\n add(ans, x * power_mod(x+1, i) % MOD * power_mod(2, N-i-1));\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 3104, "score_of_the_acc": -0.2745, "final_rank": 3 }, { "submission_id": "aoj_3076_3881064", "code_snippet": "#include<iostream>\nusing namespace std;\ntypedef long long ll;\n\nconst ll mod = 998244353;\nll modpow(ll a, ll b, ll p = mod){\n if(b == 0) return 1;\n\n if(b % 2 == 0){\n ll d = modpow(a, b/2, p);\n return (d*d) % p;\n }else{\n return (a%p * modpow(a, b-1, p)) % p;\n }\n}\n\n// 式を書いていたのにそれが二項係数であることに気付けなかった、反省\nint main(){\n // cin.tie(0);\n // ios::sync_with_stdio(false);\n int n;\n cin >> n;\n ll ans = 0, inv = modpow(2, mod-2);\n ll beki = modpow(2, n);\n for(int i = 0; i < n; i++){\n ll x; cin >> x;\n beki *= inv; beki %= mod;\n ans += beki * x % mod * modpow(x+1, i) % mod;\n ans %= mod;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 640, "memory_kb": 3120, "score_of_the_acc": -0.5598, "final_rank": 11 }, { "submission_id": "aoj_3076_3881061", "code_snippet": "#include<iostream>\nusing namespace std;\ntypedef long long ll;\n\nconst ll mod = 998244353;\nll modpow(ll a, ll b, ll p = mod){\n if(b == 0) return 1;\n\n if(b % 2 == 0){\n ll d = modpow(a, b/2, p);\n return (d*d) % p;\n }else{\n return (a%p * modpow(a, b-1, p)) % p;\n }\n}\n\n// 式を書いていたのにそれが二項係数であることに気付けなかった、反省\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n;\n cin >> n;\n ll ans = 0, inv = modpow(2, mod-2);\n ll beki = modpow(2, n);\n for(int i = 0; i < n; i++){\n ll x; cin >> x;\n beki *= inv; beki %= mod;\n ans += beki * x % mod * modpow(x+1, i) % mod;\n ans %= mod;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 500, "memory_kb": 3212, "score_of_the_acc": -0.4285, "final_rank": 9 }, { "submission_id": "aoj_3076_3881060", "code_snippet": "#include<iostream>\nusing namespace std;\ntypedef long long ll;\n\nconst ll mod = 998244353;\nll modpow(ll a, ll b, ll p = mod){\n if(b == 0) return 1;\n\n if(b % 2 == 0){\n ll d = modpow(a, b/2, p);\n return (d*d) % p;\n }else{\n return (a%p * modpow(a, b-1, p)) % p;\n }\n}\n\n// 式を書いていたのにそれが二項係数であることに気付けなかった、反省\nint main(){\n int n;\n cin >> n;\n ll ans = 0;\n for(int i = 0; i < n; i++){\n ll x; cin >> x;\n ans += modpow(2, n-1-i) * x % mod * modpow(x+1, i) % mod;\n ans %= mod;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1090, "memory_kb": 3116, "score_of_the_acc": -1.0008, "final_rank": 18 }, { "submission_id": "aoj_3076_3880908", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\nconstexpr ll MOD = 998244353;\n\nll power(ll x, ll n){\n x %= MOD;\n ll res = 1;\n while(n > 0){\n if(n&1){\n res *= x;\n res %= MOD;\n }\n x *= x;\n x %= MOD;\n n >>= 1;\n }\n return res;\n}\n\nint main(){\n ll ans = 0, n;\n cin >> n;\n for(int i=0;i<n;i++){\n ll a;\n cin >> a;\n ans += a*power(a+1,i)%MOD*power(2,n-i-1)%MOD;\n ans %= MOD;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 3116, "score_of_the_acc": -0.2753, "final_rank": 4 } ]
aoj_3078_cpp
Problem りりあちゃんは夢の国にて繁盛している、とある服屋さんのエンジニアです。 ある日、$n$ 人のお得意さまが着る服のサイズを纏めたリストがHDDの故障によって消失してしまいました。りりあちゃんはお偉いさんにデータの保全責任を問われ、早急にリストを復旧しなければなりません。 えらく怒られたりりあちゃんは職を失い路頭に迷う危機の中、残っているファイルを血眼になって調べたところ、なんとお得意さま一人一人の身長と体重が纏められたファイルを発見しました。 $k$ 番目のお得意さまの名前は $s_k$ で表され、$s_k$ さんの身長と体重は $a_k,b_k$ で表されます。 そして、りりあちゃんが勤める服屋さんでは身長の区分を表す長さ $h$ の数列 $p$ と体重の区分を表す長さ $w$ の数列 $q$ を服のサイズに対応させた表が用意されています。具体的には $p_1, \ldots, p_h$ に加え、$p_0=0,p_{h+1}=200$ としたときに、$p_{x-1} \le a_k$ かつ $a_k \lt p_x$ $q_1, \ldots, q_w$ に加え、$q_0=0,q_{w+1}=100$ としたときに、$q_{y-1} \le b_k$ かつ $b_k \lt q_y$ を満たすような $x,y$ に対し $c_{x,y}$ が $s_k$ さんの服のサイズです。服のサイズは'S','M','L','X'のみで表されます。 つまり、これらの情報を組み合わせることでお得意さまが着る服のサイズを纏めたリストを復旧できるということです。りりあちゃんはエンジニアの能力を活かし、身長と体重が纏められたファイルと身長と体重を服のサイズに対応させた表を用い、お得意さまが着る服のサイズを纏めたリストを出力するプログラムを作成することにしました。 Input 入力は以下の形式で与えられます。 $n\ h\ w$ $p_1 \cdots p_h$ $q_1 \cdots q_w$ $c_{1,1} \cdots c_{1,w+1}$ $\vdots$ $c_{h+1,1} \cdots c_{h+1,w+1}$ $s_1\ a_1\ b_1$ $\vdots$ $s_n\ a_n\ b_n$ Constraints 入力は以下の条件を満たします。 $1 \le n \le 5 \times 10^4$ $1 \le h,w \le 10^6$ $1 \le h \times w \le 10^6$ $n,h,w$ は整数 $100 \le p_i \lt 200$ $10 \le q_j \lt 100$ $p_i \lt p_{i+1}\ (1 \le i \lt h)$ $q_j \lt q_{j+1}\ (1 \le j \lt w)$ $c_{i,j} \in \{$'S','M','L','X'$\}$ $s_k$ は小文字のアルファベットからなる $1$ 文字以上 $20$ 文字以下の文字列 $100 \le a_k \lt 200$ $10 \le b_k \lt 100$ $p_i,q_j,a_k,b_k$ は、ちょうど小数第五位まで与えられた小数 Output 以下の形式で出力してください。 S:[サイズがSの服を着るお得意さまのリスト] M:[サイズがMの服を着るお得意さまのリスト] L:[サイズがLの服を着るお得意さまのリスト] X:[サイズがXの服を着るお得意さまのリスト] 角括弧で囲まれる各お得意さまのリストでは、各サイズの服を着るお得意さま全員の名前を、辞書順にソートされた状態で空白区切りで出力してください。また、各お得意さまのリストの先頭には空白を入れてください。もし、お得意さまのリストで出力する名前がなかった場合、その行ではサイズとコロン以外何も出力せず改行してください。 Sample Input 1 5 3 3 150.00000 160.00000 170.00000 55.00000 65.00000 75.00000 X S M L S M L L M L L X L L X X u 157.00000 58.50000 ku 172.00000 75.00000 ni 148.00000 85.00000 chi 164.00000 67.40000 a 155.00000 56.80000 Sample Output 1 S: M: a u L: chi ni X: ku 名前は辞書順にソートされて出力される必要があります。サイズが'S'の服を着るお得意さまはいないため、その行ではサイズとコロン以外何も出力せず改行されています。 Sample Input 2 5 2 3 100.00000 199.99999 10.00000 50.00000 99.99999 X M S L S X L M X S M L pancake 199.99999 99.99999 marshmallow 100.00000 10.00000 macaron 199.99999 50.00000 eclair 100.00000 99.99999 pudding 199.99999 10.00000 Sample Output 2 S: pudding M: eclair macaron L: pancake X: marshmallow Sample Input 3 2 1 1 150.00000 50.00000 X X X X beet 100.00000 10.00000 beet 199.99999 99.99999 Sample Output 3 S: M: L: X: beet beet
[ { "submission_id": "aoj_3078_10238568", "code_snippet": "// AOJ #3078 Classification of Clothing\n// 2025.2.22\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nchar temp[100];\nstring Cins() { // 文字列の入力 スペース以下の文字で入力終了\n char *s = temp;\n\tdo *s = gc();\n\twhile (*s++ > ' ');\n\t*(s-1) = 0;\n string input(temp); // 文字配列からstringを作成\n return input;\n}\n\nvoid Cout(int n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\ndouble Cinf() { // 実数の入力\n\tint minus = 0;\n\tdouble x, y;\n\tint n = 0, c = gc();\n\tif (c == '-') minus = 1, c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\n\tif (c == '.') {\n\t\tx = 0;\n\t\ty = 1, c = gc();\n\t\tdo y *= 0.1, x += y * (c & 0xf), c = gc(); while (c >= '0');\n\t\tx += n;\n\t} else x = n;\n\tif (minus) x = -x;\n\treturn x;\n}\n\nvoid Couts(const string &s) {\n for (char c : s) pc(c);\n}\n\nint main() {\n int n = Cin(), h = Cin(), w = Cin();\n\n vector<double> p(h+2);\n p[0] = 0.0;\n for (int i = 1; i <= h; i++) p[i] = Cinf();\n p[h+1] = 200.0;\n\n vector<double> q(w+2);\n q[0] = 0.0;\n for (int j = 1; j <= w; j++) q[j] = Cinf();\n q[w+1] = 100.0;\n\n vector<vector<char>> siz(h+2, vector<char>(w+2));\n for (int i = 1; i <= h+1; i++){\n for (int j = 1; j <= w+1; j++) siz[i][j] = gc(), gc();\n }\n\n vector<string> S, M, L, X;\n for (int i = 0; i < n; i++){\n string name = Cins();\n double a = Cinf(), b = Cinf();\n\n int x = upper_bound(p.begin(), p.end(), a) - p.begin();\n int y = upper_bound(q.begin(), q.end(), b) - q.begin();\n\n char s = siz[x][y];\n if (s == 'S') S.push_back(name);\n else if(s == 'M') M.push_back(name);\n else if(s == 'L') L.push_back(name);\n else if(s == 'X') X.push_back(name);\n }\n\n sort(S.begin(), S.end());\n sort(M.begin(), M.end());\n sort(L.begin(), L.end());\n sort(X.begin(), X.end());\n\n auto pr = [&](char size, const vector<string>& names){\n pc(size), pc(':');\n if(!names.empty()){\n pc(' ');\n for (int i = 0; i < (int)names.size(); i++){\n Couts(names[i]);\n if (i+1 < names.size()) pc(' ');\n }\n }\n pc('\\n');\n };\n\n pr('S', S);\n pr('M', M);\n pr('L', L);\n pr('X', X);\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 67536, "score_of_the_acc": -0.4802, "final_rank": 3 }, { "submission_id": "aoj_3078_10238559", "code_snippet": "// AOJ #3078 Classification of Clothing\n// 2025.2.22\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int n, h, w;\n cin >> n >> h >> w;\n\n vector<double> p(h+2);\n p[0] = 0.0;\n for (int i = 1; i <= h; i++) cin >> p[i];\n p[h+1] = 200.0;\n\n vector<double> q(w+2);\n q[0] = 0.0;\n for (int j = 1; j <= w; j++) cin >> q[j];\n q[w+1] = 100.0;\n\n vector<vector<char>> siz(h+2, vector<char>(w+2));\n for (int i = 1; i <= h+1; i++){\n for (int j = 1; j <= w+1; j++) cin >> siz[i][j];\n }\n\n vector<string> S, M, L, X;\n for (int i = 0; i < n; i++){\n string name;\n double a, b;\n cin >> name >> a >> b;\n\n int x = upper_bound(p.begin(), p.end(), a) - p.begin();\n int y = upper_bound(q.begin(), q.end(), b) - q.begin();\n\n char sizeLetter = siz[x][y];\n if (sizeLetter == 'S') S.push_back(name);\n else if(sizeLetter == 'M') M.push_back(name);\n else if(sizeLetter == 'L') L.push_back(name);\n else if(sizeLetter == 'X') X.push_back(name);\n }\n\n sort(S.begin(), S.end());\n sort(M.begin(), M.end());\n sort(L.begin(), L.end());\n sort(X.begin(), X.end());\n\n auto printList = [&](char size, const vector<string>& names){\n cout << size << \":\";\n if(!names.empty()){\n cout << \" \";\n for (size_t i = 0; i < names.size(); i++){\n cout << names[i] << (i+1 < names.size() ? \" \" : \"\");\n }\n }\n cout << endl;\n };\n\n printList('S', S);\n printList('M', M);\n printList('L', L);\n printList('X', X);\n return 0;\n}", "accuracy": 1, "time_ms": 290, "memory_kb": 67644, "score_of_the_acc": -0.6622, "final_rank": 12 }, { "submission_id": "aoj_3078_8435163", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3078.cc: Classification of Clothing\n */\n\n#include<cstdio>\n#include<string>\n#include<vector>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100;\nconst int MAX_H = 1000000;\nconst int MAX_W = 1000000;\nconst int MAX_HW = 1000000;\n\nconst char szs[] = \"SMLX\";\n\n/* typedef */\n\ntypedef vector<string> vstr;\ntypedef vector<int> vi;\ntypedef vector<vi> vvi;\n\n/* global variables */\n\ndouble ps[MAX_H], qs[MAX_W];\nvstr svs[4];\n\n/* subroutines */\n\nint sz2i(char c) {\n return (c == 'S') ? 0 : (c == 'M') ? 1 : (c == 'L') ? 2 : 3;\n}\n\n/* main */\n\nint main() {\n int n, h, w;\n scanf(\"%d%d%d\", &n, &h, &w);\n int hw = h * w;\n\n for (int i = 0; i < h; i++) scanf(\"%lf\", ps + i);\n for (int i = 0; i < w; i++) scanf(\"%lf\", qs + i);\n\n vvi cs(h + 1, vi(w + 1));\n for (int i = 0; i <= h; i++)\n for (int j = 0; j <= w; j++) {\n char s[4];\n scanf(\"%s\", s);\n cs[i][j] = sz2i(s[0]);\n }\n\n for (int i = 0; i < n; i++) {\n char si[32];\n double ai, bi;\n scanf(\"%s%lf%lf\", si, &ai, &bi);\n\n int y = upper_bound(ps, ps + h, ai) - ps;\n int x = upper_bound(qs, qs + w, bi) - qs;\n svs[cs[y][x]].push_back(string(si));\n }\n\n for (int i = 0; i < 4; i++) {\n sort(svs[i].begin(), svs[i].end());\n\n printf(\"%c:\", szs[i]);\n for (auto &s: svs[i]) printf(\" %s\", s.c_str());\n putchar('\\n');\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 68824, "score_of_the_acc": -0.6473, "final_rank": 10 }, { "submission_id": "aoj_3078_7081504", "code_snippet": "#include <iostream>\n#include <map>\n#include <vector>\n#include <string>\n#include <algorithm>\n\nusing namespace std;\n\nmap<double,int> mhs;\nmap<double,int> mws;\nmap<string,int> ks;\nmap<int,string> ksr;\nvector<vector<int> > vs;\nmap<string,vector<string> > hs;\n\n\nint main() {\n\tint n,h,w;\n\tcin>>n>>h>>w;\n\tfor(int i=1;i<=h;i++){\n\t\tdouble d;\n\t\tcin>>d;\n\t\tmhs[d]=i;\n\t}\n\tmhs[0]=0;\n\t\n\tfor(int i=1;i<=w;i++){\n\t\tdouble d;\n\t\tcin>>d;\n\t\tmws[d]=i;\n\t}\n\tmws[0]=0;\n\t\n\tstring strs[4]={\"S\",\"M\",\"L\",\"X\"};\n\tfor(int i=0;i<4;i++){\n\t\tks[ strs[i]]=i;\n\t\tksr[i]=strs[i];\n\t}\n\t\n\tfor(int i=0;i<=h;i++){\n\t\tvector<int> vs2;\n\t\tvs.push_back(vs2);\n\t\tfor(int j=0;j<=w;j++){\n\t\t\tstring str;\n\t\t\tcin>>str;\n\t\t\tvs[i].push_back(ks[str]);\n\t\t}\n\t}\n\tmap<double,int>::iterator it1,it2;\n\t//for(it1=mhs.begin();it1!=mhs.end();it1++){\n\t//\tcout<<\"(\"<<(*it1).first<<\",\"<<(*it1).second<<\")\";\n\t//}\n\t//cout<<endl;\n\tfor(int i=0;i<n;i++){\n\t\tstring str;\n\t\tdouble h1,w1;\n\t\tcin>>str>>h1>>w1;\n\t\t//cout<<str<<\" \"<<h1<<\" \"<<w1<<endl;\n\t\tit1=mhs.upper_bound(h1);\n\t\tif(it1!=mhs.begin())it1--;\n\t\tint p1=(*it1).second;\n\t\tit2=mws.upper_bound(w1);\n\t\tif(it2!=mws.begin())it2--;\n\t\tint p2=(*it2).second;\n\t\tint p3=vs[p1][p2];\n\t\ths[ksr[p3]].push_back(str);\n\t}\n\tfor(int i=0;i<4;i++){\n\t\tvector<string> vs3=hs[strs[i]];\n\t\tcout<<strs[i]<<\":\";\n\t\tif (vs3.size()>0){\n\t\t\tsort(vs3.begin(),vs3.end());\n\t\t\tfor(int j=0;j<vs3.size();j++){\n\t\t\t\tcout<<\" \"<<vs3[j];\n\t\t\t}\n\t\t}\n\t\tcout<<endl;\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1240, "memory_kb": 123632, "score_of_the_acc": -2, "final_rank": 20 }, { "submission_id": "aoj_3078_5497979", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n#include <map>\n\nnamespace {\n using namespace std;\n\n template<typename T>\n istream& operator>>(istream& is, vector<T>& vs) {\n for (auto&& v : vs) {\n is >> v;\n }\n return is;\n }\n\n template<typename T>\n ostream& operator<<(ostream& os, const vector<T>& vs) {\n if (vs.empty()) return os;\n os << vs[0];\n auto it = ++vs.begin();\n for (; it != vs.end(); ++it) {\n os << ' ' << *it;\n }\n return os;\n }\n \n template<typename T>\n ostream& operator<<(ostream& os, const vector<vector<T>>& vs) {\n if (vs.empty()) return os;\n os << vs[0];\n auto it = ++vs.begin();\n for (; it != vs.end(); ++it) {\n os << '\\n' << *it;\n }\n return os;\n }\n\n int N, H, W;\n vector<double> P, Q;\n vector<vector<string>> C;\n vector<string> S;\n vector<double> A, B;\n void input() {\n cin >> N >> H >> W;\n P = vector<double>(H, -1);\n Q = vector<double>(W, -1);\n C = vector<vector<string>>(H+1, vector<string>(W+1));\n cin >> P; P.insert(P.begin(), 0.0); P.insert(P.end(), 200.0);\n cin >> Q; Q.insert(Q.begin(), 0.0); Q.insert(Q.end(), 200.0);\n cin >> C;\n S = vector<string>(N);\n A = vector<double>(N, -1);\n B = vector<double>(N, -1);\n for (int i = 0; i < N; i++) {\n cin >> S[i] >> A[i] >> B[i];\n }\n }\n\n\n int lookup_index(const vector<double>& P, double a) {\n int lb = 0, ub = P.size();\n while (lb + 1 < ub) {\n auto mid = lb + (ub - lb) / 2;\n if (P[mid] <= a) {\n lb = mid;\n } else {\n ub = mid;\n }\n }\n return lb;\n }\n\n void solve() {\n map<string, vector<string>> M;\n for (int i = 0; i < N; i++) {\n int h = lookup_index(P, A[i]);\n int w = lookup_index(Q, B[i]);\n string size_key = C[h][w];\n M[size_key].push_back(S[i]);\n }\n auto ks = vector<string>({\"S\", \"M\", \"L\", \"X\"});\n for (auto&& k : ks) {\n cout << k << \":\";\n auto output = M[k];\n sort(output.begin(), output.end());\n if (output.empty()) {\n cout << endl;\n } else {\n cout << ' ';\n cout << output << endl;\n }\n }\n }\n}\n\nint main() {\n input(); \n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 640, "memory_kb": 121764, "score_of_the_acc": -1.4654, "final_rank": 19 }, { "submission_id": "aoj_3078_5092036", "code_snippet": "#include \"bits/stdc++.h\"\n\n#define REP(i,num) for(ll i=0;i<(num);++i)\n#define FOR(i,c,num) for(ll (i)=(c);(i)<(num);++(i))\n#define LOOP(i) while(i--)\n#define ALL(c) c.begin(),c.end()\n#define PRINTALL(c) for(auto pitr=c.begin();pitr!=c.end();++pitr){cout<<*pitr;if(next(pitr,1)!=c.end())cout<<' ';}cout<<endl;\n#define PAIRCOMP(c,comp) [](const pair<ll,ll>& lhs,const pair<ll,ll>& rhs){return lhs.c comp rhs.c;}\n\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vector<ll>>;\n\nconstexpr ll atcoder_mod = 1e9+7;\n\ntemplate<typename T=ll>\nT in(){ T x; cin >> x; return (x); }\ntemplate<typename T=ll,typename C=vector<T>>\nC vecin(int N){ C x(N);REP(i,N){ x[i]=in<T>(); }return x; }\n\nvoid vout(){ cout << endl; }\ntemplate<typename Head,typename... Tail>\nvoid vout(Head&& h,Tail&&... t){ cout << ' ' << h;vout(forward<Tail>(t)...); }\nvoid out(){ cout << endl; }\ntemplate<typename Head,typename... Tail>\nvoid out(Head&& h,Tail&&... t){ cout << h;vout(forward<Tail>(t)...); }\n\ntemplate<typename T>\nbool chmax(T& a,T b){ if(a<b){ a=b;return true; }return false; }\ntemplate<typename T>\nbool chmin(T& a,T b){ if(a>b){ a=b;return true; }return false; }\n\nvector<string> split_naive(const string &s,char delim) {\n\tvector<string> elems;\n\tstring item;\n\tfor(char ch:s){\n\t\tif(ch==delim){\n\t\t\tif(!item.empty()) elems.push_back(item);\n\t\t\titem.clear();\n\t\t}\n\t\telse{\n\t\t\titem += ch;\n\t\t}\n\t}\n\tif(!item.empty()) elems.push_back(item);\n\treturn elems;\n}\n\nint main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tcout<<fixed<<setprecision(10);\n\n\tauto N=in(),H=in(),W=in();\n\tvector<double> P(1,0),Q(1,0);\n\tREP(i,H) P.push_back(in<double>());\n\tREP(i,W) Q.push_back(in<double>());\n\tP.push_back(200);\n\tQ.push_back(100);\n\tvector<vector<char>> C(H+1,vector<char>(W+1));\n\tREP(i,H+1){\n\t\tREP(j,W+1) C[i][j]=in<char>();\n\t}\n\tvector<vector<string>> M(4);\n\tmap<char,int> T;\n\tT['S']=0;\n\tT['M']=1;\n\tT['L']=2;\n\tT['X']=3;\n\n\tREP(i,N){\n\t\tstring S=in<string>();\n\t\tdouble p=in<double>(),q=in<double>();\n\n\t\tauto pp = upper_bound(ALL(P),p)-P.begin();\n\t\tauto qp = upper_bound(ALL(Q),q)-Q.begin();\n\t\tM[T[C[pp-1][qp-1]]].emplace_back(S);\n\t}\n\tfor(auto& x:M){\n\t\tsort(ALL(x));\n\t}\n\tcout << \"S:\";\n\tfor(auto& x:M[0]) cout << ' ' << x;\n\tcout << endl;\n\tcout << \"M:\";\n\tfor(auto& x:M[1]) cout << ' ' << x;\n\tcout << endl;\n\tcout << \"L:\";\n\tfor(auto& x:M[2]) cout << ' ' << x;\n\tcout << endl;\n\tcout << \"X:\";\n\tfor(auto& x:M[3]) cout << ' ' << x;\n\tcout << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 68588, "score_of_the_acc": -0.6796, "final_rank": 13 }, { "submission_id": "aoj_3078_5005323", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 1000005\n\nenum Type{\n\tS,\n\tM,\n\tL,\n\tX,\n};\n\nint N,h,w;\nll P[SIZE],Q[SIZE];\nvector<string> V[4];\nvector<Type> C[SIZE];\n\nint main(){\n\n\tscanf(\"%d %d %d\",&N,&h,&w);\n\n\tchar buf[25];\n\n\tP[0] = 0;\n\tfor(int loop = 1; loop <= h; loop++){\n\n\t\tscanf(\"%s\",buf);\n\t\tll tmp = 0;\n\t\tfor(int i = 0; buf[i] != '\\0'; i++){\n\t\t\tif(buf[i] == '.')continue;\n\n\t\t\ttmp = 10*tmp+(buf[i]-'0');\n\t\t}\n\t\tP[loop] = tmp;\n\t}\n\tP[h+1] = 200*100000;\n\n\tQ[0] = 0;\n\tfor(int loop = 1; loop <= w; loop++){\n\n\t\tscanf(\"%s\",buf);\n\t\tll tmp = 0;\n\t\tfor(int i = 0; buf[i] != '\\0'; i++){\n\t\t\tif(buf[i] == '.')continue;\n\n\t\t\ttmp = 10*tmp+(buf[i]-'0');\n\t\t}\n\t\tQ[loop] = tmp;\n\t}\n\tQ[w+1] = 100*100000;\n\n\tfor(int i = 1; i <= h+1; i++){\n\t\tfor(int k = 0; k <= w; k++){\n\n\t\t\tscanf(\"%s\",buf);\n\n\t\t\tswitch(buf[0]){\n\t\t\tcase 'S':\n\n\t\t\t\tC[i].push_back(S);\n\t\t\t\tbreak;\n\n\t\t\tcase 'M':\n\n\t\t\t\tC[i].push_back(M);\n\t\t\t\tbreak;\n\n\t\t\tcase 'L':\n\n\t\t\t\tC[i].push_back(L);\n\t\t\t\tbreak;\n\n\t\t\tcase 'X':\n\n\t\t\t\tC[i].push_back(X);\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tstring tmp_str;\n\n\tint left,right,mid;\n\n\tfor(int loop = 0; loop < N; loop++){\n\n\t\tcin >> tmp_str;\n\t\tscanf(\"%s\",buf);\n\n\t\tll height = 0;\n\t\tfor(int i = 0; buf[i] != '\\0'; i++){\n\t\t\tif(buf[i] == '.')continue;\n\n\t\t\theight = 10*height+(buf[i]-'0');\n\t\t}\n\n\t\tscanf(\"%s\",buf);\n\n\t\tll weight = 0;\n\t\tfor(int i = 0; buf[i] != '\\0'; i++){\n\t\t\tif(buf[i] == '.')continue;\n\n\t\t\tweight = 10*weight+(buf[i]-'0');\n\t\t}\n\n\t\tleft = 0,right = h+1,mid = (left+right)/2;\n\t\tint x;\n\n\t\twhile(left <= right){\n\n\t\t\tif(P[mid] <= height){\n\n\t\t\t\tx = mid+1;\n\t\t\t\tleft = mid+1;\n\t\t\t}else{\n\n\t\t\t\tright = mid-1;\n\t\t\t}\n\t\t\tmid = (left+right)/2;\n\t\t}\n\n\t\tleft = 0,right = w+1,mid = (left+right)/2;\n\t\tint y;\n\n\t\twhile(left <= right){\n\n\t\t\tif(Q[mid] <= weight){\n\n\t\t\t\ty = mid+1;\n\t\t\t\tleft = mid+1;\n\t\t\t}else{\n\n\t\t\t\tright = mid-1;\n\t\t\t}\n\t\t\tmid = (left+right)/2;\n\t\t}\n\n\t\tType type = C[x][y-1];\n\t\tV[type].push_back(tmp_str);\n\t}\n\n\tfor(int i = 0; i < 4; i++){\n\t\tif(V[i].size() == 0)continue;\n\n\t\tsort(V[i].begin(),V[i].end());\n\t}\n\n\tchar table[4] = {'S','M','L','X'};\n\n\tfor(int i = 0; i < 4; i++){\n\n\t\tprintf(\"%c:\",table[i]);\n\t\tfor(int a = 0; a < V[i].size(); a++){\n\n\t\t\tprintf(\" %s\",V[i][a].c_str());\n\t\t}\n\t\tprintf(\"\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 68940, "score_of_the_acc": -0.657, "final_rank": 11 }, { "submission_id": "aoj_3078_4941763", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\nconst double pi = 3.141592653589793238462643383279;\nusing namespace std;\n//typedef\n//------------------------------------------\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\ntypedef long long LL;\ntypedef unsigned long long ULL;\ntypedef vector<LL> VLL;\ntypedef vector<VLL> VVLL;\n\n//container util\n//------------------------------------------\n#define ALL(a) (a).begin(), (a).end()\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define MP make_pair\n#define SZ(a) int((a).size())\n#define SQ(a) ((a) * (a))\n#define EACH(i, c) for (typeof((c).begin()) i = (c).begin(); i != (c).end(); ++i)\n#define EXIST(s, e) ((s).find(e) != (s).end())\n#define SORT(c) sort((c).begin(), (c).end())\n\n//repetition\n//------------------------------------------\n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define MOD 1000000007\n\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n#define sz(x) (int)(x).size()\n\ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef vector<int> vi;\n\n#define chmin(x, y) x = min(x, y)\n#define chmax(x, y) x = max(x, y)\nconst double EPS = 1e-7, PI = acos(-1);\n//ここから編集\n\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(6);\n\n int n, h, w; cin >> n >> h >> w;\n vector<double> p(h+2);\n vector<double> q(w+2);\n\n for(int i=1; i<=h; i++) cin >> p[i];\n p[h+1] = 200;\n for(int i=1; i<=w; i++) cin >> q[i];\n q[w+1] = 100;\n\n vector<vector<char>> c(h+1, vector<char>(w+1));\n REP(i,h+1){\n REP(j,w+1) cin >> c[i][j];\n }\n\n map<char, vector<string>> mp;\n REP(i,n){\n string s;\n double a, b; cin >> s >> a >> b;\n auto x = upper_bound(all(p), a) - p.begin();\n auto y = upper_bound(all(q), b) - q.begin();\n mp[c[x-1][y-1]].push_back(s);\n }\n \n sort(all(mp['S']));\n cout << \"S:\";\n for(auto e: mp['S']){\n cout << \" \" << e;\n }\n cout << endl;\n sort(all(mp['M']));\n cout << \"M:\";\n for(auto e: mp['M']){\n cout << \" \" << e;\n }\n cout << endl;\n sort(all(mp['L']));\n cout << \"L:\";\n for(auto e: mp['L']){\n cout << \" \" << e;\n }\n cout << endl;\n sort(all(mp['X']));\n cout << \"X:\";\n for(auto e: mp['X']){\n cout << \" \" << e;\n }\n cout << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 330, "memory_kb": 68448, "score_of_the_acc": -0.7042, "final_rank": 14 }, { "submission_id": "aoj_3078_4875775", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\n\nsigned main(){\n int n,h,w;cin>>n>>h>>w;\n vector<ld> p,q;\n p.push_back(0);\n q.push_back(0);\n for(int i=0;i<h;i++){\n ld a;cin>>a;p.push_back(a);\n }\n p.push_back(200);\n for(int i=0;i<w;i++){\n ld a;cin>>a;q.push_back(a);\n }\n q.push_back(100);\n vector<vector<char>> c(h+1);\n for(int i=0;i<=h;i++){\n for(int j=0;j<=w;j++){\n char a;cin>>a;c[i].push_back(a);\n }\n }\n map<char,multiset<string>> mp;\n for(int i=0;i<n;i++){\n string name;cin>>name;\n ld he,we;cin>>he>>we;\n int l=-1,r=h+1;\n while(r-l>1){\n int mid=(l+r)>>1;\n (p[mid]<=he?l:r)=mid;\n }\n int L=-1,R=w+1;\n while(R-L>1){\n int mid=(L+R)>>1;\n (q[mid]<=we?L:R)=mid;\n }\n mp[c[l][L]].insert(name);\n }\n cout<<\"S:\";\n for(string name:mp['S'])cout<<\" \"<<name;cout<<endl;\n cout<<\"M:\";\n for(string name:mp['M'])cout<<\" \"<<name;cout<<endl;\n cout<<\"L:\";\n for(string name:mp['L'])cout<<\" \"<<name;cout<<endl;\n cout<<\"X:\";\n for(string name:mp['X'])cout<<\" \"<<name;cout<<endl;\n}", "accuracy": 1, "time_ms": 760, "memory_kb": 78736, "score_of_the_acc": -1.1702, "final_rank": 18 }, { "submission_id": "aoj_3078_4866082", "code_snippet": "#include<iostream>\n#include<string>\n#include<iomanip>\n#include<cmath>\n#include<vector>\n#include<algorithm>\n\nusing namespace std;\n\n#define int long long\n#define endl \"\\n\"\n\n\nint change(char C){\n\tif(C == 'S') return 0;\n\tif(C == 'M') return 1;\n\tif(C == 'L') return 2;\n\tif(C == 'X') return 3;\n}\n\nint sdtoi(string s){\n\tint res = 0;\n\t\n\tfor(int i = 0; i < s.size(); i++){\n\t\tif(s[i] == '.') continue;\n\t\tres = res * 10 + s[i] - '0';\n\t}\n\t\n\treturn res;\n}\n\nsigned main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tcout<<fixed<<setprecision(10);\n\t\n\tconstexpr int p = 100000;\n\tconstexpr int maximumh = 200 * p;\n\tconstexpr int maximumw = 100 * p;\n\tconstexpr int num = 4;\n\t\n\tint n, h, w;\n\tvector<char> s = {'S', 'M', 'L', 'X'};\n\tvector<int> hg, wg;\n\tvector<vector<char>> c;\n\tvector<vector<string>> ans(num);\n\t\n\tcin>>n>>h>>w;\n\t\n\thg.resize(h+2);\n\twg.resize(w+2);\n\tc.resize(h+1, vector<char>(w+1));\n\t\n\thg[h+1] = maximumh;\n\twg[w+1] = maximumw;\n\t\n\tfor(int i = 1; i <= h; i++){\n\t\tstring shg;\n\t\t\n\t\tcin>>shg;\n\t\t\n\t\thg[i] = sdtoi(shg);\n\t}\n\t\n\tfor(int i = 1; i <= w; i++){\n\t\tstring swg;\n\t\t\n\t\tcin>>swg;\n\t\t\n\t\twg[i] = sdtoi(swg);\n\t}\n\t\n\tfor(int i = 0; i <= h; i++){\n\t\tfor(int j = 0; j <= w; j++){\n\t\t\tcin>>c[i][j];\n\t\t}\n\t}\n\t\n\tfor(int i = 0; i < n; i++){\n\t\tstring s, shp, swp;\n\t\tint hp, wp, x, y;\n\t\t\n\t\tcin>>s>>shp>>swp;\n\t\t\n\t\thp = sdtoi(shp);\n\t\twp = sdtoi(swp);\n\t\t\n\t\tx = upper_bound(hg.begin(), hg.end(), hp) - hg.begin();\n\t\ty = upper_bound(wg.begin(), wg.end(), wp) - wg.begin();\n\t\t\n\t\tans[change(c[x-1][y-1])].push_back(s);\n\t}\n\t\n\tfor(int i = 0; i < num; i++){\n\t\tsort(ans[i].begin(), ans[i].end());\n\t\t\n\t\tcout<<s[i]<<\":\";\n\t\t\n\t\tfor(int j = 0; j < ans[i].size(); j++){\n\t\t\tcout<<\" \"<<ans[i][j];\n\t\t}\n\t\t\n\t\tcout<<endl;\n\t}\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 68412, "score_of_the_acc": -0.6176, "final_rank": 8 }, { "submission_id": "aoj_3078_4860746", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\nvoid double_to_ll(ll &a){\n long double d;\n cin>>d;\n d *= 1e+5;\n a = (ll)(d + 0.5);\n}\n\nint main() {\n cin>>N>>H>>W;\n vec p(H), q(W);\n rep(i, H) double_to_ll(p[i]);\n rep(i, W) double_to_ll(q[i]);\n map<char, int> ctoi = {{'S', 0}, {'M', 1}, {'L', 2}, {'X', 3}};\n vector<char> size = {'S', 'M', 'L', 'X'};\n mat c(H + 1, vec(W + 1));\n rep(i, H + 1){\n rep(j, W + 1) {\n char ct; cin>>ct;\n c[i][j] = ctoi[ct];\n }\n }\n vector<vector<string> > ans(4);\n rep(_, N){\n string s; cin>>s;\n ll a, b;\n double_to_ll(a);\n double_to_ll(b);\n int i = upper_bound(ALL(p), a) - p.begin();\n int j = upper_bound(ALL(q), b) - q.begin();\n ans[c[i][j]].push_back(s);\n }\n\n rep(i, 4){\n cout<<size[i]<<':';\n sort(ALL(ans[i]));\n for(string &s : ans[i]) cout<<' '<<s;\n cout<<endl;\n }\n}", "accuracy": 1, "time_ms": 750, "memory_kb": 68964, "score_of_the_acc": -1.071, "final_rank": 17 }, { "submission_id": "aoj_3078_4855042", "code_snippet": "#pragma region Macros\n#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w) \\\n vector<vector<type>> name(h, vector<type>(w)); \\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\nstring YES[2] = {\"NO\", \"YES\"};\nstring Yes[2] = {\"No\", \"Yes\"};\nstring yes[2] = {\"no\", \"yes\"};\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define DBL(...) \\\n double __VA_ARGS__; \\\n IN(__VA_ARGS)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\n\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n\n#define i128 __int128_t\n#define ull unsigned long long int\n#define TEST \\\n INT(testcases); \\\n while(testcases--)\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n for(auto &e : v) cout << e << \" \";\n cout << endl;\n return os;\n}\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {\n cout << \"(\" << p.fi << \", \" << p.se << \")\";\n return os;\n}\ntemplate <class S, class T> string to_string(pair<S, T> p) { return \"(\" + to_string(p.first) + \",\" + to_string(p.second) + \")\"; }\ntemplate <class A> string to_string(A v) {\n if(v.empty()) return \"{}\";\n string ret = \"{\";\n for(auto &x : v) ret += to_string(x) + \",\";\n ret.back() = '}';\n return ret;\n}\n\nvoid dump() { cerr << endl; }\ntemplate <class Head, class... Tail> void dump(Head head, Tail... tail) {\n cerr << to_string(head) << \" \";\n dump(tail...);\n}\n#define endl '\\n'\n#ifdef _LOCAL\n#undef endl\n#define debug(x) \\\n cout << #x << \": \"; \\\n dump(x)\n#else\n#define debug(x)\n#endif\n// mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());\n\n// int rnd(int n) { return uniform_int_distribution<int>(0, n - 1)(rng); }\n// ll rndll(ll n) { return uniform_int_distribution<ll>(0, n - 1)(rng); }\n\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\n#pragma endregion\n\nint main() {\n INT(n, h, w);\n vi p(h), q(w);\n rep(i, h) {\n double x;\n cin >> x;\n p[i] = round(x * 100000);\n }\n rep(i, w) {\n double x;\n cin >> x;\n q[i] = round(x * 100000);\n }\n VV(char, c, h + 1, w + 1);\n map<char, vector<string>> ans;\n rep(i, n) {\n string s;\n cin >> s;\n double a, b;\n cin >> a >> b;\n int A = round(a * 100000), B = round(b * 100000);\n int ii = ub(p, A), j = ub(q, B);\n ans[c[ii][j]].eb(s);\n }\n for(auto e : {'S', 'M', 'L', 'X'}) {\n cout << e << \":\";\n if(ans[e].empty())\n cout << endl;\n else\n cout << \" \";\n sort(all(ans[e]));\n rep(i, si(ans[e])) cout << ans[e][i] << \" \\n\"[i == si(ans[e]) - 1];\n }\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 63748, "score_of_the_acc": -0.6347, "final_rank": 9 }, { "submission_id": "aoj_3078_4851516", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acos(-1.0);\n\nint szinp() {\n\tstring s; cin >> s;\n\trep(i, s.size())if (s[i] == '.')s.erase(s.begin() + i);\n\twhile (s.size() > 1 && s[0] == '0')s.erase(s.begin());\n\treturn stoi(s);\n}\nvoid solve() {\n\tint n, h, w; cin >> n >> h >> w;\n\tvector<int> p(h + 2);\n\tp[0] = 0, p[h + 1] = 20000000;\n\trep1(i, h)p[i] = szinp();\n\tvector<int> q(w + 2);\n\tq[0] = 0, q[w + 1] = 10000000;\n\trep1(i, w)q[i] = szinp();\n\tvector<vector<char>> c(h+1,vector<char>(w+1));\n\trep(i, h+1)rep(j, w+1) {\n\t\tcin >> c[i][j];\n\t}\n\tvector<string> v[4];\n\tstring sz = \"SMLX\";\n\trep(i, n) {\n\t\tstring x; cin >> x;\n\t\tint a = szinp();\n\t\tint b = szinp();\n\t\ta = upper_bound(all(p), a) - p.begin();\n\t\tb = upper_bound(all(q), b) - q.begin();\n\t\ta--; b--;\n\t\t//cout << \"??? \" << a << \" \" << b << \"\\n\";\n\t\tchar z = c[a][b];\n\t\tv[sz.find(z)].push_back(x);\n\t}\n\trep(i, 4) {\n\t\tsort(all(v[i]));\n\t\tcout << sz[i] << \":\";\n\t\trep(j, v[i].size())cout << \" \" << v[i][j];\n\t\tcout << \"\\n\";\n\t}\n}\n\n\n\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 64512, "score_of_the_acc": -0.5642, "final_rank": 6 }, { "submission_id": "aoj_3078_4847485", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\nint64_t MOD=1000000007;\nconst long long INF = 1LL<<60;\n\nint main() {\n int64_t N,H,W; cin>>N>>H>>W;\n vector<double> P(H),Q(W);\n rep(i,H) cin>>P[i];\n P.push_back(200);\n rep(i,W) cin>>Q[i];\n Q.push_back(100);\n vector<char> I={'S','M','L','X'};\n vector<vector<char>> C(H+1,vector<char>(W+1));\n rep(i,H+1){\n rep(j,W+1){\n cin>>C[i][j];\n }\n }\n vector<vector<string>> A(4);\n rep(o,N){\n string s; cin>>s;\n double a,b; cin>>a>>b;\n int i= upper_bound(P.begin(), P.end(),a)-P.begin();\n int j= upper_bound(Q.begin(), Q.end(),b)-Q.begin();\n auto k=C.at(i).at(j);\n if(k=='S') A[0].push_back(s);\n if(k=='M') A[1].push_back(s);\n if(k=='L') A[2].push_back(s);\n if(k=='X') A[3].push_back(s);\n }\n rep(i,4){\n int k=A.at(i).size();\n if(k==0){\n cout<<I[i]<<\":\"<<endl;\n }\n else{\n sort(A[i].begin(),A[i].end());\n cout<<I[i]<<\": \";\n rep(j,k-1){\n cout<<A[i][j]<<' ';\n }\n cout<<A[i][k-1]<<endl;\n }\n }\n}", "accuracy": 1, "time_ms": 730, "memory_kb": 68924, "score_of_the_acc": -1.0534, "final_rank": 16 }, { "submission_id": "aoj_3078_4846668", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long long INF = 1e18;\n//const ll mod = 1000000007;\n\nmap<char, vector<string>> mp;\nvector<ll> p, q;\nvector<string> c;\nll N, H, W;\n\nvoid f(char a) {\n cout << a << \":\";\n sort(mp[a].begin(), mp[a].end());\n for(auto tmp : mp[a]) {\n cout << \" \" << tmp;\n }\n cout << endl;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin >> N >> H >> W;\n p.resize(H+1);\n p[0] = -1;\n for(int i = 0; i < H; i++) {\n double tmp;\n cin >> tmp;\n ll a = round(100000 * tmp);\n p[i+1] = a;\n }\n q.resize(W+1);\n for(int i = 0; i < W; i++) {\n double tmp;\n cin >> tmp;\n ll a = round(100000 * tmp);\n q[i+1] = a;\n }\n c.resize(H + 1);\n for(int h = 0; h <= H; h++) {\n for(int w = 0; w <= W; w++) {\n char a;\n cin >> a;\n c[h].push_back(a);\n }\n }\n for(int _ = 0; _ < N; _++) {\n string s;\n cin >> s;\n double tmp;\n cin >> tmp;\n ll a = round(100000 * tmp);\n cin >> tmp;\n ll b = round(100000 * tmp);\n auto itr = upper_bound(p.begin(), p.end(), a);\n int idxa = itr - p.begin() - 1;\n itr = upper_bound(q.begin(), q.end(), b);\n int idxb = itr - q.begin() - 1;\n //cerr << a << \" \" << b << \" \" << idxa << \" \"<< idxb << endl;\n mp[c[idxa][idxb]].push_back(s);\n }\n f('S');\n f('M');\n f('L');\n f('X');\n return 0;\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 44216, "score_of_the_acc": -0.4279, "final_rank": 2 }, { "submission_id": "aoj_3078_4846384", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<tuple>\n#include<cassert>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned int ui;\nconst ll mod = 1000000007;\nconst ll INF = (ll)1000000007 * 1000000007;\ntypedef pair<int, int> P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef long double ld;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<ll, ll> LP;\nint dx[4]={1,-1,0,0};\nint dy[4]={0,0,1,-1};\ntemplate<class T>bool chmax(T &a, const T &b) {if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T &a, const T &b) {if(b<a){a=b;return 1;}return 0;}\n\nint n,h,w;\nvector<ld> ps,qs;\nvector<vector<char>> c;\nmap<char,multiset<string>> ma;\n\nint comp(ld x,vector<ld> &v){\n return upper_bound(v.begin(),v.end(),x)-v.begin()-1;\n}\n\nvoid solve(){\n cin >> n >> h >> w;\n ps.resize(h+2);qs.resize(w+2);\n rep(i,h) cin >> ps[i+1];\n rep(i,w) cin >> qs[i+1];\n ps[h+1]=200;qs[w+1]=100;\n c.resize(h+1,vector<char>(w+1));\n rep(i,h+1){\n rep(j,w+1){\n cin >> c[i][j];\n }\n }\n rep(i,n){\n string s;ld a,b;cin >> s >> a >> b;\n //cout << comp(a,ps) << \" \" << comp(b,qs) << endl;\n ma[c[comp(a,ps)][comp(b,qs)]].insert(s);\n }\n vector<char> S={'S','M','L','X'};\n for(char x:S){\n if(ma[x].empty()) cout << x << \":\" << endl;\n else{\n cout << x << \": \";\n auto it=ma[x].begin();auto en=ma[x].end();en--;\n while(it!=ma[x].end()){\n if(it!=en)cout << (*it) << \" \";\n else cout << (*it) << \"\";\n it++;\n }\n cout << \"\" << endl;\n }\n }\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(50);\n solve();\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 77724, "score_of_the_acc": -0.7729, "final_rank": 15 }, { "submission_id": "aoj_3078_4844287", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <iostream>\n#include <string>\n#include <cmath>\n#include <bitset>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <complex>\n#include <unordered_map>\n#include <unordered_set>\n#include <random>\n#include <cassert>\n#include <fstream>\n#include <utility>\n#include <functional>\n#include <time.h>\n#include <stack>\n#include <array>\n#include <list>\n#define popcount __builtin_popcount\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int, int> P;\n\nint main()\n{\n int n, h, w;\n cin>>n>>h>>w;\n int p[1000010], q[1000010];\n for(int i=0; i<h; i++){\n int p1, p2;\n scanf(\"%d.%d\", &p1, &p2);\n p[i]=p1*100000+p2;\n }\n for(int i=0; i<w; i++){\n int p1, p2;\n scanf(\"%d.%d\", &p1, &p2);\n q[i]=p1*100000+p2;\n }\n vector<vector<char>> c(h+1, vector<char>(w+1));\n for(int i=0; i<h+1; i++) for(int j=0; j<w+1; j++) cin>>c[i][j];\n vector<string> ans[4];\n for(int i=0; i<n; i++){\n string s;\n int a, b, p1, p2;\n cin>>s;\n scanf(\"%d.%d\", &p1, &p2);\n a=p1*100000+p2;\n scanf(\"%d.%d\", &p1, &p2);\n b=p1*100000+p2;\n int x=upper_bound(p, p+h, a)-p;\n int y=upper_bound(q, q+w, b)-q;\n if(c[x][y]=='S') ans[0].push_back(s);\n else if(c[x][y]=='M') ans[1].push_back(s);\n else if(c[x][y]=='L') ans[2].push_back(s);\n else ans[3].push_back(s);\n }\n for(int i=0; i<4; i++) sort(ans[i].begin(), ans[i].end());\n cout<<\"S:\";\n for(auto s:ans[0]) cout<<\" \"<<s;\n cout<<endl;\n cout<<\"M:\";\n for(auto s:ans[1]) cout<<\" \"<<s;\n cout<<endl;\n cout<<\"L:\";\n for(auto s:ans[2]) cout<<\" \"<<s;\n cout<<endl;\n cout<<\"X:\";\n for(auto s:ans[3]) cout<<\" \"<<s;\n cout<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 65116, "score_of_the_acc": -0.5871, "final_rank": 7 }, { "submission_id": "aoj_3078_4844073", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nint main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tint n,h,w; cin >> n >> h >> w;\n\tvector<ll> p(h+2),q(w+2);\n\tfor(int i=1;i<=h;i++){\n\t\tstring A; cin >> A;\n\t\tll a=0;\n\t\tfor(int j=0;j<A.size();j++){\n\t\t\tif('0'<=A[j]&&A[j]<='9'){\n\t\t\t\ta=10*a+A[j]-'0';\n\t\t\t}\n\t\t}\n\t\tp[i]=a;\n\t}\n\tp[0]=0; p[h+1]=200*100000;\n\tq[0]=0; q[w+1]=200*100000;\n\tfor(int i=1;i<=w;i++){\n\t\tstring A; cin >> A;\n\t\tll a=0;\n\t\tfor(int j=0;j<A.size();j++){\n\t\t\tif('0'<=A[j]&&A[j]<='9'){\n\t\t\t\ta=10*a+A[j]-'0';\n\t\t\t}\n\t\t}\n\t\tq[i]=a;\n\t}\n\tvector<char> c((h+1)*(w+1));\n\tfor(int i=0;i<(h+1)*(w+1);i++){\n\t\tcin >> c[i];\n\t}\n\tvector<string> S,M,L,X;\n\tfor(int i=0;i<n;i++){\n\t\tstring Name; cin >> Name;\n\t\tstring A,B; cin >> A >> B;\n\t\tll a=0,b=0;\n\t\tfor(int j=0;j<A.size();j++){\n\t\t\tif('0'<=A[j]&&A[j]<='9'){\n\t\t\t\ta=10*a+A[j]-'0';\n\t\t\t}\n\t\t}\n\t\tfor(int j=0;j<B.size();j++){\n\t\t\tif('0'<=B[j]&&B[j]<='9'){\n\t\t\t\tb=10*b+B[j]-'0';\n\t\t\t}\n\t\t}\n\t\tint id=lower_bound(p.begin(), p.end(),a+1)-p.begin()-1;\n\t\tint jd=lower_bound(q.begin(), q.end(),b+1)-q.begin()-1;\n\t\tchar C=c[id*(w+1)+jd];\n\t\tif(C=='S'){\n\t\t\tS.push_back(Name);\n\t\t}\n\t\tif(C=='M'){\n\t\t\tM.push_back(Name);\n\t\t}\n\t\tif(C=='L'){\n\t\t\tL.push_back(Name);\n\t\t}\n\t\tif(C=='X'){\n\t\t\tX.push_back(Name);\n\t\t}\n\t}\n\tsort(S.begin(), S.end());\n\tsort(M.begin(), M.end());\n\tsort(L.begin(), L.end());\n\tsort(X.begin(), X.end());\n\tcout << \"S:\";\n\tfor(int i=0;i<S.size();i++){\n\t\tcout << \" \" << S[i];\n\t}\n\tcout << endl;\n\tcout << \"M:\";\n\tfor(int i=0;i<M.size();i++){\n\t\tcout << \" \" << M[i];\n\t}\n\tcout << endl;\n\tcout << \"L:\";\n\tfor(int i=0;i<L.size();i++){\n\t\tcout << \" \" << L[i];\n\t}\n\tcout << endl;\n\tcout << \"X:\";\n\tfor(int i=0;i<X.size();i++){\n\t\tcout << \" \" << X[i];\n\t}\n\tcout << endl;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 15716, "score_of_the_acc": -0.0517, "final_rank": 1 }, { "submission_id": "aoj_3078_4843522", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n// #include \"atcoder/all\"\n// using namespace atcoder;\n#define int long long\n#define REP(i, n) for (int i = 0; i < (int)n; ++i)\n#define RREP(i, n) for (int i = (int)n - 1; i >= 0; --i)\n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define RFOR(i, s, n) for (int i = (int)n - 1; i >= s; --i)\n#define ALL(a) a.begin(), a.end()\n#define IN(a, x, b) (a <= x && x < b)\ntemplate<class T>istream&operator >>(istream&is,vector<T>&vec){for(T&x:vec)is>>x;return is;}\ntemplate<class T>inline void out(T t){cout << t << \"\\n\";}\ntemplate<class T,class... Ts>inline void out(T t,Ts... ts){cout << t << \" \";out(ts...);}\ntemplate<class T>inline bool CHMIN(T&a,T b){if(a > b){a = b;return true;}return false;}\ntemplate<class T>inline bool CHMAX(T&a,T b){if(a < b){a = b;return true;}return false;}\nconstexpr int INF = 1e18;\n\n#define endl '\\n'\n#define IOS() ios_base::sync_with_stdio(0);cin.tie(0)\n\nsigned main(){\n\tIOS();\n\tint N, H, W;\n\tcin >> N >> H >> W;\n\n\tvector<int>p(H + 2), q(W + 2);\n\tp.back() = 20000000;\n\tq.back() = 10000000;\n\tauto parse = [&]() -> int {\n\t\tstring s;\n\t\tcin >> s;\n\t\tstring t;\n\t\tint ret = 0;\n\t\tREP(i, s.size()) if(s[i] != '.') t += s[i];\n\t\treturn stoll(t);\n\t};\n\tFOR(i, 1, H + 1) p[i] = parse();\n\tFOR(i, 1, W + 1) q[i] = parse();\n\t//REP(i,p.size())cout << p[i] << \" \\n\"[i+1 == p.size()];\n\t//REP(i,q.size())cout << q[i] << \" \\n\"[i+1 == q.size()];\n\t//return 0;\n\tvector<vector<char>> c(H + 1, vector<char>(W + 1));\n\tREP(i, H + 1) REP(j, W + 1) cin >> c[i][j];\n\n\tmap<char, vector<string>>mp;\n\tREP(i, N) {\n\t\tstring s;\n\t\tcin >> s;\n\t\tint a = parse(), b = parse();\n\t\tint y = upper_bound(ALL(p), a) - p.begin();\n\t\tint x = upper_bound(ALL(q), b) - q.begin();\n\t\t//out(a, b, y, x);\n\t\tmp[c[y - 1][x - 1]].emplace_back(s);\n\t}\n\tstring t = \"SMLX\";\n\tfor(auto e: t) {\n\t\tcout << e << \":\";\n\t\tauto v = mp[e];\n\t\tsort(ALL(v));\n\t\tREP(i,v.size())cout << \" \" << v[i];\n\t\tcout << \"\\n\";\n\t}\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 68136, "score_of_the_acc": -0.5461, "final_rank": 5 }, { "submission_id": "aoj_3078_4843409", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n#include <string>\n#include <map>\n\ntemplate <class T>\nstd::vector<T> vec(int len, T elem) { return std::vector<T>(len, elem); }\n\nint getint() {\n int x, y;\n char tmp;\n std::cin >> x >> tmp >> y;\n return x * 100000 + y;\n}\n\nvoid solve() {\n int n, h, w;\n std::cin >> n >> h >> w;\n\n std::vector<int> ps(h), qs(w);\n for (auto& p : ps) p = getint();\n for (auto& q : qs) q = getint();\n\n const std::string size = \"SMLX\";\n auto css = vec(h + 1, vec(w + 1, 0));\n for (auto& cs : css) {\n for (auto& c : cs) {\n char d;\n std::cin >> d;\n while (size[c] != d) ++c;\n }\n }\n\n std::vector<std::vector<std::string>> ans(4);\n while (n--) {\n std::string s;\n std::cin >> s;\n int p = getint(),\n q = getint();\n\n int i = std::upper_bound(ps.begin(), ps.end(), p) - ps.begin();\n int j = std::upper_bound(qs.begin(), qs.end(), q) - qs.begin();\n ans[css[i][j]].push_back(s);\n }\n\n for (int i = 0; i < 4; ++i) {\n std::cout << size[i] << \":\";\n\n auto& v = ans[i];\n std::sort(v.begin(), v.end());\n for (const auto& s : v) std::cout << \" \" << s;\n std::cout << \"\\n\";\n }\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 63548, "score_of_the_acc": -0.5381, "final_rank": 4 } ]
aoj_3072_cpp
Problem I: Coin and Die Problem 表と裏のあるコインと $1$ から $N$ までの目があるサイコロがある。Gachoくんはこれらを用いて以下のゲームをして遊ぶことにした。 ゲームは最初に得点が $0$ の状態から始まり、以下の手順で進められる。 サイコロを $1$ 回振り、そのとき出た目の数を得点に加算する 現在の得点が $K$ 以上ならゲームクリアとなりゲームを終了する 現在の得点が $K$ 未満ならコインを投げ表が出れば1.に戻り、裏が出ればゲームオーバーとなりゲームを終了する コインは投げると $A\%$の確率で表になり、 $(100-A)\%$の確率で裏になる。また、サイコロは振ると、それぞれの目が等確率で出現する。 このとき、一度のゲームでGachoくんがゲームクリアすることができる確率を求めよ。 求める確率を互いに素な整数 $P, Q$ を用いて $\frac{P}{Q}$ と表したとき、 $R \times Q \equiv P\bmod 998244353$ となる $0$ 以上 $998244352$ 以下の整数 $R$ を出力せよ。この問題の制約下で、このような $R$ は必ず一意に存在する。 Input 入力は以下の形式で与えられる。 $N$ $K$ $A$ $N, K, A$ が空白区切りで一行に与えられる。 Constraints 入力は以下の条件を満たす。 $1 \leq N \leq 10^5 $ $1 \leq K \leq 10^5 $ $1 \leq A \leq 99 $ 入力はすべて整数 Output ゲームをクリアすることができる確率を互いに素な整数 $P, Q$を用いて $\frac{P}{Q}$ と表したとき、$R \times Q\equiv P\bmod 998244353$ となる $0$ 以上 $998244352$ 以下の整数 $R$ を出力せよ。 Sample Input 1 1 1 50 Sample Output 1 1 Sample Input 2 2 2 10 Sample Output 2 648858830 Sample Input 3 6 10 99 Sample Output 3 650893870
[ { "submission_id": "aoj_3072_3894086", "code_snippet": "#include <bits/stdc++.h>\n#define N (long long)(998244353)\n#define MAX 500000\nusing namespace std;\n\nlong long factorial[MAX] = {0}, finverse[MAX] = {0},\n inverse[MAX] = {0};\n\nvoid smodfact() {\n factorial[0] = factorial[1] = 1;\n finverse[0] = finverse[1] = 1;\n inverse[1] = 1;\n for(int i = 2; i < MAX; ++i) {\n factorial[i] = factorial[i - 1] * i % N;\n inverse[i] = N - (inverse[N % i] * (N / i)) % N;\n finverse[i] = finverse[i - 1] * inverse[i] % N;\n }\n}\n\nlong long calccomb(long long n, long long k) {\n if(n == k && n == 0) return 1;\n if(n < 0 || k < 0 || n < k) return 0;\n return factorial[n] * finverse[k] % N * finverse[n - k] %\n N;\n}\n\nlong long n, k, a;\nlong long dp[200005] = {0}, sum[200005] = {0};\n\nlong long solve();\n\nint main() {\n cin >> n >> k >> a;\n cout << solve() << endl;\n return 0;\n}\n\nlong long solve() {\n smodfact();\n for(int i = 0; i <= n; ++i)\n dp[k + i] = 100 * inverse[a] % N;\n a *= inverse[100];\n a %= N;\n sum[k] = n;\n for(int i = k - 1; i >= 0; --i) {\n dp[i] = sum[i + 1] * inverse[n] % N;\n sum[i] = sum[i + 1] + dp[i] * a % N;\n sum[i] %= N;\n sum[i] -= dp[i + n] * a % N;\n sum[i] += N;\n sum[i] %= N;\n }\n return dp[0];\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 17156, "score_of_the_acc": -0.6229, "final_rank": 13 }, { "submission_id": "aoj_3072_3893192", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nconstexpr int bmds(int x){\n const int v[] = {1012924417, 924844033, 998244353,\n 897581057, 645922817};\n return v[x];\n}\nconstexpr int brts(int x){\n const int v[] = {5, 5, 3, 3, 3};\n return v[x];\n}\n\n\ntemplate<int X>\nstruct NTT{\n static constexpr int md = bmds(X);\n static constexpr int rt = brts(X);\n\n inline int add(int a,int b){\n a+=b;\n if(a>=md) a-=md;\n return a;\n }\n\n inline int mul(int a,int b){\n return 1LL*a*b%md;\n }\n\n inline int pow(int a,int b){\n int res=1;\n while(b){\n if(b&1) res=mul(res,a);\n a=mul(a,a);\n b>>=1;\n }\n return res;\n }\n\n inline int inv(int x){\n return pow(x,md-2);\n }\n\n // assume md % 4 = 1\n // if md % 4 == 3, then x = a^{(md+1)/4}\n inline int sqrt(int a){\n if(a==0) return 0;\n if(pow(a,(md-1)/2)!=1) return -1;\n int q=md-1,m=0;\n while(~q&1) q>>=1,m++;\n mt19937 mt;\n int z=mt()%md;\n while(pow(z,(md-1)/2)!=md-1) z=mt()%md;\n int c=pow(z,q),t=pow(a,q),r=pow(a,(q+1)/2);\n while(m>1){\n if(pow(t,1<<(m-2))!=1)\n r=mul(r,c),t=mul(t,mul(c,c));\n c=mul(c,c);\n m--;\n }\n return r;\n }\n\n vector<vector<int> > rts,rrts;\n\n void ensure_base(int n){\n if((int)rts.size()>=n) return;\n rts.resize(n);rrts.resize(n);\n for(int i=1;i<n;i<<=1){\n if(!rts[i].empty()) continue;\n int w=pow(rt,(md-1)/(i<<1));\n int rw=inv(w);\n rts[i].resize(i);rrts[i].resize(i);\n rts[i][0]=1;rrts[i][0]=1;\n for(int k=1;k<i;k++){\n rts[i][k]=mul(rts[i][k-1],w);\n rrts[i][k]=mul(rrts[i][k-1],rw);\n }\n }\n }\n\n void ntt(vector<int> &a,bool f,int n=-1){\n if(n==-1) n=a.size();\n assert((n&(n-1))==0);\n\n for(int i=0,j=1;j+1<n;j++){\n for(int k=n>>1;k>(i^=k);k>>=1);\n if(i>j) swap(a[i],a[j]);\n }\n\n for(int i=1;i<n;i<<=1){\n for(int j=0;j<n;j+=i*2){\n for(int k=0;k<i;k++){\n int z=mul(a[i+j+k],f?rrts[i][k]:rts[i][k]);\n a[i+j+k]=add(a[j+k],md-z);\n a[j+k]=add(a[j+k],z);\n }\n }\n }\n\n if(f){\n int tmp=inv(n);\n for(int i=0;i<n;i++) a[i]=mul(a[i],tmp);\n }\n }\n\n vector<int> add(vector<int> as,vector<int> bs){\n int sz=max(as.size(),bs.size());\n vector<int> cs(sz,0);\n for(int i=0;i<(int)as.size();i++) cs[i]=add(cs[i],as[i]);\n for(int i=0;i<(int)bs.size();i++) cs[i]=add(cs[i],bs[i]);\n return cs;\n }\n\n vector<int> sub(vector<int> as,vector<int> bs){\n int sz=max(as.size(),bs.size());\n vector<int> cs(sz,0);\n for(int i=0;i<(int)as.size();i++) cs[i]=add(cs[i],as[i]);\n for(int i=0;i<(int)bs.size();i++) cs[i]=add(cs[i],md-bs[i]);\n return cs;\n }\n\n vector<int> multiply(vector<int> as,vector<int> bs){\n int need=as.size()+bs.size()-1;\n int sz=1;\n while(sz<need) sz<<=1;\n ensure_base(sz);\n\n vector<int> f(sz),g(sz);\n for(int i=0;i<(int)as.size();i++) f[i]=as[i];\n for(int i=0;i<(int)bs.size();i++) g[i]=bs[i];\n ntt(f,0);ntt(g,0);\n for(int i=0;i<sz;i++) f[i]=mul(f[i],g[i]);\n ntt(f,1);\n\n f.resize(need);\n return f;\n }\n\n vector<int> divide(vector<int> as,vector<int> bs){\n assert(bs!=vector<int>(bs.size(),0));\n if(as==vector<int>(as.size(),0)) return {0};\n assert(as.size()>=bs.size());\n\n if(bs[0]==0){\n reverse(as.begin(),as.end());\n reverse(bs.begin(),bs.end());\n while(bs.back()==0){\n assert(as.back()==0);\n as.pop_back();\n bs.pop_back();\n }\n reverse(as.begin(),as.end());\n reverse(bs.begin(),bs.end());\n }\n\n int need=as.size()-bs.size()+1;\n as.resize(need);\n\n int sz=1;\n vector<int> rs({inv(bs[0])});\n while(sz<need){\n sz<<=1;\n vector<int> ts(min(sz,(int)bs.size()));\n for(int i=0;i<(int)ts.size();i++) ts[i]=bs[i];\n rs=sub(add(rs,rs),multiply(multiply(rs,rs),ts));\n rs.resize(sz);\n }\n\n while(as.back()==0) as.pop_back();\n while(rs.back()==0) rs.pop_back();\n auto cs=multiply(as,rs);\n cs.resize(need,0);\n return cs;\n }\n\n vector<int> sqrt(vector<int> as){\n if(as==vector<int>(as.size(),0)) return {0};\n\n int dg=0;\n if(as[0]==0){\n reverse(as.begin(),as.end());\n while(as.back()==0){\n dg++;\n as.pop_back();\n assert(as.back()==0);\n as.pop_back();\n }\n reverse(as.begin(),as.end());\n }\n\n int sz=1,inv2=inv(2);\n vector<int> ss({sqrt(as[0])});\n while(sz<(int)as.size()){\n sz<<=1;\n vector<int> ts(min(sz+sz/2-1,(int)as.size()));\n for(int i=0;i<(int)ts.size();i++) ts[i]=as[i];\n ss=add(ss,divide(ts,ss));\n ss.resize(sz);\n for(int &x:ss) x=mul(x,inv2);\n }\n\n if(dg){\n reverse(ss.begin(),ss.end());\n for(int i=0;i<dg;i++) ss.emplace_back(0);\n reverse(ss.begin(),ss.end());\n }\n return ss;\n }\n};\n\n\ntemplate<typename T,T MOD = 1000000007>\nstruct Mint{\n static constexpr T mod = MOD;\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n Mint pow(long long k){\n Mint res(1),tmp(v);\n while(k){\n if(k&1) res*=tmp;\n tmp*=tmp;\n k>>=1;\n }\n return res;\n }\n\n static Mint add_identity(){return Mint(0);}\n static Mint mul_identity(){return Mint(1);}\n\n Mint inv(){return pow(MOD-2);}\n\n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n Mint& operator/=(Mint a){return (*this)*=a.inv();}\n\n Mint operator+(Mint a) const{return Mint(v)+=a;};\n Mint operator-(Mint a) const{return Mint(v)-=a;};\n Mint operator*(Mint a) const{return Mint(v)*=a;};\n Mint operator/(Mint a) const{return Mint(v)/=a;};\n\n Mint operator-() const{return v?Mint(MOD-v):Mint(v);}\n\n bool operator==(const Mint a)const{return v==a.v;}\n bool operator!=(const Mint a)const{return v!=a.v;}\n bool operator <(const Mint a)const{return v <a.v;}\n\n // find x s.t. a^x = b\n static T log(T a,T b){\n const T sq=40000;\n unordered_map<T, T> dp;\n dp.reserve(sq);\n Mint res(1);\n for(int r=0;r<sq;r++){\n if(!dp.count(res.v)) dp[res.v]=r;\n res*=a;\n }\n Mint p=Mint(a).inv().pow(sq);\n res=b;\n for(int q=0;q<=MOD/sq+1;q++){\n if(dp.count(res.v)){\n T idx=q*sq+dp[res.v];\n if(idx>0) return idx;\n }\n res*=p;\n }\n assert(0);\n return T(-1);\n }\n\n static Mint comb(long long n,int k){\n Mint num(1),dom(1);\n for(int i=0;i<k;i++){\n num*=Mint(n-i);\n dom*=Mint(i+1);\n }\n return num/dom;\n }\n};\ntemplate<typename T,T MOD> constexpr T Mint<T, MOD>::mod;\ntemplate<typename T,T MOD>\nostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}\n\n//INSERT ABOVE HERE\nsigned main(){\n NTT<2> ntt;\n using M = Mint<int, decltype(ntt)::md>;\n\n int n,k,p100;\n cin>>n>>k>>p100;\n\n M p=M(p100)/M(100);\n\n vector<int> as(n+k+1,0);\n as[0]=(M(n)/p).v;\n\n vector<int> bs(n+1,(-p).v);\n bs[0]=n;\n\n auto cs=ntt.divide(as,bs);\n\n M ans{1};\n for(int i=1;i<k;i++) ans-=M(cs[i])*(M(1)-p);\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 25384, "score_of_the_acc": -1.3684, "final_rank": 17 }, { "submission_id": "aoj_3072_3884085", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n//#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define MOD 998244353\n#define NUM 100005\n\nll uniformity[8*NUM],partial[8*NUM];\nll N = 1;\nll first_N,K,P;\n\nvoid init(ll first_N){\n\twhile(N < first_N)N *= 2;\n}\n\nvoid add(ll left,ll right,ll value,ll node_id,ll node_left,ll node_right){\n\n\tif(right <= node_left || left >= node_right)return;\n\telse if(left <= node_left && right >= node_right){\n\t\tuniformity[node_id] += value;\n\t\tuniformity[node_id] %= MOD;\n\t}else{\n\t\tpartial[node_id] += (min(right,node_right)-max(left,node_left))*value;\n\t\tpartial[node_id] %= MOD;\n\t\tadd(left,right,value,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tadd(left,right,value,2*node_id+2,(node_left+node_right)/2,node_right);\n\t}\n}\n\nll getSum(ll left,ll right,ll node_id,ll node_left,ll node_right){\n\tif(right <= node_left || left >= node_right)return 0;\n\telse if(left <= node_left && right >= node_right){\n\t\treturn ((node_right-node_left)*uniformity[node_id]+partial[node_id])%MOD;\n\n\t}else{\n\n\t\tll sum = (min(right,node_right)-max(left,node_left))*uniformity[node_id];\n\t\tsum %= MOD;\n\n\t\tsum += getSum(left,right,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tsum %= MOD;\n\n\t\tsum += getSum(left,right,2*node_id+2,(node_left+node_right)/2,node_right);\n\t\tsum %= MOD;\n\n\t\treturn sum;\n\t}\n}\n\nll extgcd(ll a,ll b,ll &x,ll &y){\n\tll d = a;\n\tif(b != 0){\n\t\td = extgcd(b,a%b,y,x);\n\t\ty -= (a/b)*x;\n\t}else{\n\t\tx = 1;\n\t\ty = 0;\n\t}\n\treturn d;\n}\n\nll mod_inverse(ll a,ll m){\n ll x,y;\n extgcd(a,m,x,y);\n return (m+x%m)%m;\n}\n\nint main(){\n\n\tscanf(\"%lld %lld %lld\",&first_N,&K,&P);\n\n\tinit(K+first_N);\n\n\tfor(ll i = 0; i <= 2*N-2; i++){\n\t\tuniformity[i] = 0;\n\t\tpartial[i] = 0;\n\t}\n\n\tll inverse_N = mod_inverse(first_N,MOD);\n\tll mult = mod_inverse(100*first_N,MOD)*P;\n\tmult %= MOD;\n\n\t//クリア状態\n\tfor(ll i = K; i <= K+first_N-1; i++){\n\n\t\tadd(i,i+1,1,0,0,N);\n\t}\n\n\t//i枚ある状態からクリアする確率を求める\n\tfor(ll i = K-1; i >= 0; i--){\n\n\t\tll tmp = 0;\n\n\t\t//1発でクリア状態に行ける場合\n\t\tif(i+first_N >= K){\n\n\t\t\ttmp += getSum(K,i+first_N+1,0,0,N);\n\t\t\ttmp *= inverse_N;\n\t\t\ttmp %= MOD;\n\t\t}\n\n\t\tll tmp2 = 0;\n\n\t\t//クリア状態ではない状態に行ける場合\n\t\tif(i+1 <= K-1){\n\n\t\t\ttmp2 += getSum(i+1,min(K-1,i+first_N)+1,0,0,N);\n\t\t\ttmp2 *= mult;\n\t\t\ttmp2 %= MOD;\n\t\t}\n\t\ttmp += tmp2;\n\t\ttmp %= MOD;\n\t\tadd(i,i+1,tmp,0,0,N);\n\t}\n\n\tprintf(\"%lld\\n\",getSum(0,1,0,0,N)); //★注意:開区間★\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 11424, "score_of_the_acc": -0.7286, "final_rank": 14 }, { "submission_id": "aoj_3072_3883606", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int64_t MOD = 998244353;\nvoid add(int64_t& a, int64_t b){\n a = (a+b) % MOD;\n}\nvoid mul(int64_t& a, int64_t b){\n a = a*b % MOD;\n}\n\ntemplate<typename T>\nstruct BIT {\n int n;\n vector<T> dat;\n\n BIT(int n=0){\n initialize(n);\n }\n\n void initialize(int nin){\n n = nin;\n dat.resize(n, 0);\n }\n\n T sum(int i){\n T s = 0;\n while(i >= 0){\n add(s, dat[i]);\n i = (i & (i+1)) - 1;\n }\n return s;\n }\n\n T sum_between(int i, int j){\n return (MOD + sum(j) - sum(i-1)) % MOD;\n }\n\n void plus(int i, T x){\n while(i < n){\n add(dat[i], x);\n i |= i+1;\n }\n }\n};\n\nint64_t extgcd(int64_t a, int64_t b, int64_t& x, int64_t& y){\n int64_t d = a;\n if(b != 0){\n d = extgcd(b, a%b, y, x);\n y -= (a/b) * x;\n }else{\n x = 1; y = 0;\n }\n return d;\n}\n\nint64_t inv_mod(int64_t a){\n int64_t x, y;\n extgcd(a, MOD, x, y);\n return (MOD + x%MOD) % MOD;\n}\n\nint main() {\n int N, K, A;\n cin >> N >> K >> A;\n BIT<int64_t> bit(N+K);\n int64_t c = A * inv_mod(100*N) % MOD;\n bit.plus(0, inv_mod(A) * 100 % MOD);\n for(int i=1; i<N+K; i++) bit.plus(i, bit.sum_between(max(0, i-N), min(K-1, i-1)) * c);\n int64_t ans = bit.sum_between(K, N+K-1);\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4356, "score_of_the_acc": -0.0363, "final_rank": 1 }, { "submission_id": "aoj_3072_3883341", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T>\ninline bool chmax(T &a, T b)\n{\n if (a < b)\n {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T>\ninline bool chmin(T &a, T b)\n{\n if (a > b)\n {\n a = b;\n return 1;\n }\n return 0;\n}\ntypedef long long int ll;\n\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\n#define endl \"\\n\"\nconst double EPS = 1e-7;\nconst int INF = 1 << 30;\nconst ll LLINF = 1LL << 60;\nconst double PI = acos(-1);\nconst int MOD = 998244353;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n\n//-------------------------------------\n\nll dp[210000];\n\nll pow_mod(ll n, ll k, ll mod)\n{\n if (k == 0)\n {\n return 1;\n }\n else if (k % 2 == 1)\n {\n return pow_mod(n, k - 1, mod) * n % mod;\n }\n else\n {\n ll t = pow_mod(n, k / 2, mod);\n return t * t % mod;\n }\n}\n\nll modinv(ll x)\n{\n return pow_mod(x, MOD - 2, MOD);\n}\n\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n, k, a;\n cin >> n >> k >> a;\n dp[0] = 1;\n for (ll i = 0; i < k; i++)\n {\n ll p = dp[i] * modinv(n) % MOD;\n if (i > 0)\n {\n (p *= a * modinv(100) % MOD) %= MOD;\n }\n (dp[i + 1] += p) %= MOD;\n (dp[i + n + 1] += MOD - p) %= MOD;\n if (i > 0)\n {\n (dp[i + 1] += dp[i]) %= MOD;\n }\n }\n ll ans = 0;\n for (ll i = k; i <= n + k; i++)\n {\n (ans += dp[i]) %= MOD;\n (dp[i + 1] += dp[i]) %= MOD;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 4772, "score_of_the_acc": -0.7396, "final_rank": 15 }, { "submission_id": "aoj_3072_3883236", "code_snippet": "/* monkukui 競技プログラミング用のテンプレート (ここから) */\n#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\nusing lint = long long int;\nusing ll = long long int;\nusing lnt = long long int;\nusing graph = vector<vector<long long int>>;\nusing wgraph = vector<vector<pair<long long int, long long int>>>;\nlong long int INF = 1001001001001001LL;\nlong long int MOD = 998244353LL;\ndouble PI = 3.1415926535897932;\nlong long int di[] = {-1, 0, 1, 0, -1, 1, 1, -1};\nlong long int dj[] = {0, 1, 0, -1, 1, 1, -1, -1};\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ninline void yes(){ cout << \"yes\" << endl; }\ninline void Yes(){ cout << \"Yes\" << endl; }\ninline void YES(){ cout << \"YES\" << endl; }\ninline void no(){ cout << \"no\" << endl; }\ninline void No(){ cout << \"No\" << endl; }\ninline void NO(){ cout << \"NO\" << endl; }\ninline void possible(){ cout << \"possible\" << endl; }\ninline void Possible(){ cout << \"Possible\" << endl; }\ninline void POSSIBLE(){ cout << \"POSSIBLE\" << endl; }\ninline void impossible(){ cout << \"impossible\" << endl; }\ninline void Impossible(){ cout << \"Impossible\" << endl; }\ninline void IMPOSSIBLE(){ cout << \"IMPOSSIBLE\" << endl; }\n\n#define rep(i,n) for(long long int i = 0; i < (n); i++)\n#define rrep(i,n) for(long long int i = 1; i <= (n); i++)\n#define drep(i,n) for(long long int i = (n)-1; i >= 0; i--)\n#define srep(i,s,t) for(long long int i = s; i < t; i++)\n#define all(a) a.begin(),a.end()\n#define rall(a) a.rbegin(),a.rend()\n#define pb push_back\n\n/* monkukui 競技プログラミング用のテンプレート (ここまで)*/\n\n// quoted from beet-aizu\ntemplate <typename T, typename E, typename F, typename G>\nstruct SegmentTree{\n // using F = function<T(T, T)>\n // using G = function<T(T, E)>\n int n;\n F f;\n G g;\n T ti;\n vector<T> dat;\n SegmentTree(){};\n SegmentTree(F f,G g,T ti):f(f),g(g),ti(ti){}\n void init(int n_){ \n n=1;\n while(n<n_) n<<=1;\n dat.assign(n<<1,ti);\n }\n void build(const vector<T> &v){\n int n_=v.size();\n init(n_);\n for(int i=0;i<n_;i++) dat[n+i]=v[i];\n for(int i=n-1;i;i--)\n dat[i]=f(dat[(i<<1)|0],dat[(i<<1)|1]);\n }\n void update(int k,const E &x){\n k += n;\n dat[k] = g(dat[k], x);\n while(k>>=1)\n dat[k]=f(dat[(k<<1)|0],dat[(k<<1)|1]); \n }\n T operator [](int k) const { return dat[k+n]; }\n T query(int a,int b) const {\n T vl=ti,vr=ti;\n for(int l=a+n,r=b+n;l<r;l>>=1,r>>=1) {\n if(l&1) vl=f(vl,dat[l++]);\n if(r&1) vr=f(dat[--r],vr);\n }\n return f(vl,vr);\n }\n\n};\n\n\n// 逆元を求める. a と m は互いに素であることが要請される.\nlint modinv(lint a, lint m) {\n lint b = m, u = 1, v = 0;\n while(b){\n lint t = a / b;\n a -= t * b; swap(a, b);\n u -= t * v; swap(u, v);\n }\n u %= m; \n if (u < 0) u += m;\n return u;\n}\n\nint main(){\n lint n, k, a; cin >> n >> k >> a;\n lint invn = modinv(n, MOD);\n lint inv100 = modinv(100, MOD);\n\n a = a * inv100;\n a %= MOD;\n\n using T = lint; // type T\n using E = lint; // type E\n auto f = [](T a, T b){ // return type T value\n return (a + b) % MOD;\n };\n auto g = [](T a, E b){ // return type T value\n return b % MOD;\n };\n T ti = 0; // identify element\n SegmentTree<T, E, decltype(f), decltype(g)> sg(f, g, ti); // don't change\n\n vector<lint> dat(n + k + 10, 0LL);\n dat[0] = 1LL;\n sg.build(dat); // 初期配列を代入\n\n for(lint i = 1; i <= k + n + 2; i++) {\n lint l = max(0LL, i - n);\n lint r = min(k, i);\n lint sum = sg.query(l, r);\n sum = sum * invn % MOD;\n if(i < k) sum = sum * a % MOD;\n sg.update(i, sum);\n }\n\n cout << sg.query(k, k + n + 2) << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 8348, "score_of_the_acc": -0.535, "final_rank": 11 }, { "submission_id": "aoj_3072_3880921", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\n\nconstexpr ll MOD = 998244353;\n\nll power(ll x, ll n){\n x %= MOD;\n ll res = 1;\n while(n > 0){\n if(n&1){\n res *= x;\n res %= MOD;\n }\n x *= x;\n x %= MOD;\n n >>= 1;\n }\n return res;\n}\n\nll mod_inv(ll x){\n return power(x, MOD-2);\n}\n\nint main(){\n ll n, k, a;\n cin >> n >> k >> a;\n vector<ll> dp(k+n+2,0); // dp[i] = 得点iになる確率\n dp[0] = 1;\n for(int i=0;i<k;i++){\n ll p = dp[i] * mod_inv(n) % MOD;\n if(i>0) p *= a*mod_inv(100) % MOD;\n p %= MOD;\n dp[i+1] += p;\n dp[i+n+1] += MOD-p;\n if(i>0) dp[i+1] += dp[i];\n dp[i+1] %= MOD;\n dp[i+n+1] %= MOD;\n }\n ll ans = 0;\n for(int i=k;i<=k+n;i++){\n ans += dp[i];\n ans %= MOD;\n dp[i+1] = ((dp[i+1]+dp[i])%MOD+MOD)%MOD;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4356, "score_of_the_acc": -0.0889, "final_rank": 3 }, { "submission_id": "aoj_3072_3880862", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 998244353 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\nll power(int k, int n, int M){\n if(n == 0) return 1;\n if(n == 1) return (ll)k;\n\n ll res = power(k, n/2, M);\n\n res = res * res % M;\n return n%2 == 1 ? res * k % M : res;\n}\n\n/* Starry Sky Tree */\n//0-index\n\nstruct StarrySkyTree{\n typedef ll Type;\n int segn2;\n vector<Type> data, s_data;\n function<Type(Type, Type)> merge;\n\n StarrySkyTree(function<Type(Type, Type)> merge, int n): merge(merge)\n {\n for(segn2=1; segn2<n; segn2*=2);\n data.assign(segn2*2, 0);\n s_data.assign(segn2*2, 0);\n }\n\n StarrySkyTree(int n): //Original Ver.\n StarrySkyTree([](Type a, Type b){ return (a + b) % mod; }, n) {}\n\n //get value of [a,b)\n Type query(int a, int b, int l = 0, int r = -1, int k = 0){\n if(r == -1) r = segn2;\n if(r <= a || b <= l) return 0; //大きさに注意\n if(a <= l && r <= b) return (data[k] + s_data[k] * (r - l) % mod) % mod;\n return\n (merge(query(a, b, l, (l+r)/2, k*2+1), query(a, b, (l+r)/2 , r, k*2+2)) +\n s_data[k] * max(0, min(b, r) - max(a, l)) % mod) % mod;\n }\n\n //add x to [a,b)\n Type add(int a, int b, Type x, int l = 0, int r = -1, int k = 0){\n if(r == -1) r = segn2;\n if(a <= l && r <= b) {\n s_data[k] += x;\n s_data[k] %= mod;\n } else if(a < r && l < b) {\n data[k] = merge(add(a, b, x, l, (l+r)/2, k*2+1), add(a, b, x, (l+r)/2, r, k*2+2));\n }\n\n return (data[k] + s_data[k] * (r - l)) % mod;\n }\n\n};\n\n\nint main(){\n int N, K, A;\n ll ans = 0;\n\n cin >> N >> K >> A;\n\n ll initEnvN = power(N, mod - 2, mod) % mod;\n ll invN = A * power(N * 100, mod - 2, mod) % mod;\n\n StarrySkyTree seg(K+1);\n\n int r = min(1+N, K);\n seg.add(1, r, initEnvN);\n ans += max(0, N+1 - r) * initEnvN;\n\n for(int i=1; i<K; i++) {\n ll p = seg.query(i, i+1);\n\n int r = min(i+N+1, K);\n seg.add(i+1, r, invN * p % mod);\n ans += max(0, i+N+1 - r) * invN % mod * p % mod;\n ans %= mod;\n }\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 7088, "score_of_the_acc": -0.4247, "final_rank": 9 }, { "submission_id": "aoj_3072_3880783", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC diagnostic ignored \"-Wsign-compare\"\n#pragma GCC diagnostic ignored \"-Wsign-conversion\"\n\n#define NDEBUG\nusing i32 = int32_t;\nusing i64 = int64_t;\nusing u32 = uint32_t;\nusing u64 = uint64_t;\nusing uint = unsigned int;\nusing usize = std::size_t;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\ntemplate<typename T> constexpr T popcount(const T u) { return u ? static_cast<T>(__builtin_popcountll(static_cast<u64>(u))) : static_cast<T>(0); }\ntemplate<typename T> constexpr T log2p1(const T u) { return u ? static_cast<T>(64 - __builtin_clzll(static_cast<u64>(u))) : static_cast<T>(0); }\ntemplate<typename T> constexpr T msbp1(const T u) { return log2p1(u); }\ntemplate<typename T> constexpr T lsbp1(const T u) { return __builtin_ffsll(u); }\ntemplate<typename T> constexpr T clog(const T u) { return u ? log2p1(u - 1) : static_cast<T>(u); }\ntemplate<typename T> constexpr bool ispow2(const T u) { return u and (static_cast<u64>(u) & static_cast<u64>(u - 1)) == 0; }\ntemplate<typename T> constexpr T ceil2(const T u) { return static_cast<T>(1) << clog(u); }\ntemplate<typename T> constexpr T floor2(const T u) { return u == 0 ? static_cast<T>(0) : static_cast<T>(1) << (log2p1(u) - 1); }\ntemplate<typename T> constexpr bool btest(const T mask, const usize ind) { return ((static_cast<u64>(mask) >> ind) & static_cast<u64>(1)); }\ntemplate<typename T> constexpr T bcut(const T mask, const usize ind) { return ind == 0 ? static_cast<T>(0) : static_cast<T>((static_cast<u64>(mask) << (64 - ind)) >> (64 - ind)); }\ntemplate<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }\ntemplate<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }\nconstexpr unsigned int mod = 1000000007;\ntemplate<typename T> constexpr T inf_v = std::numeric_limits<T>::max() / 4;\ntemplate<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};\ntemplate<typename T>\nT read()\n{\n T v;\n return std::cin >> v, v;\n}\ntemplate<typename T>\nstd::vector<T> read_vec(const std::size_t size)\n{\n std::vector<T> v(size);\n for (auto& e : v) { std::cin >> e; }\n return v;\n}\ntemplate<typename... Types>\nauto read_vals() { return std::tuple<std::decay_t<Types>...>{read<Types>()...}; }\n#define SHOW(...) static_cast<void>(0)\ntemplate<typename T>\nstd::vector<T> make_v(const std::size_t size, T v) { return std::vector<T>(size, v); }\ntemplate<class... Args>\nauto make_v(const std::size_t size, Args... args) { return std::vector<decltype(make_v(args...))>(size, make_v(args...)); }\n\n\ntemplate<typename Real>\nstruct complex\n{\n using value_type = Real;\n complex() : real{Real{0}}, imag{Real{0}} {}\n complex(const complex&) = default;\n complex(const Real& theta) : real(std::cos(theta)), imag(std::sin(theta)) {}\n complex(const Real& r, const Real& i) : real{r}, imag{i} {}\n ~complex() = default;\n friend complex operator+(const complex& c) { return c; }\n friend complex operator-(const complex& c) { return complex{-c.real, -c.imag}; }\n friend complex operator+(const complex& c1, const complex& c2) { return complex{c1.real + c2.real, c1.imag + c2.imag}; }\n friend complex operator-(const complex& c1, const complex& c2) { return complex{c1.real - c2.real, c1.imag - c2.imag}; }\n friend complex operator*(const complex& c1, const complex& c2) { return complex{c1.real * c2.real - c1.imag * c2.imag, c1.real * c2.imag + c1.imag * c2.real}; }\n friend complex operator*(const complex& c, const Real& r) { return complex{c.real * r, c.imag * r}; }\n friend complex operator/(complex& c1, complex& c2) { c1* c2.conj() / c2.norm(); }\n friend bool operator==(const complex& c1, const complex& c2) { return c1.real == c2.real and c1.imag == c2.imag; }\n friend bool operator!=(const complex& c1, const complex& c2) { return not(c1 == c2); }\n friend complex& operator+=(complex& c1, const complex& c2) { return c1.real += c2.real, c1.imag += c2.imag, c1; }\n friend complex& operator-=(complex& c1, const complex& c2) { return c1.real += c2.real, c1.imag += c2.imag, c1; }\n friend complex& operator*=(complex& c1, const complex& c2) { return c1 = c1 * c2; }\n friend complex& operator*=(complex& c, const Real& r) { return c = c * r; }\n friend complex& operator/=(complex& c1, const complex& c2) { return c1 = c1 / c2; }\n complex conj() const { return complex{real, -imag}; }\n Real norm() const { return real * real + imag * imag; }\n Real abs() const { return std::sqrt(norm()); }\n Real arg() const { return std::atan2(imag, real); }\n friend std::ostream& operator<<(std::ostream& os, const complex& c) { return os << c.real << \"+\" << c.imag << \"i\"; }\n Real real, imag;\n};\n\n\ntemplate<typename T> T gcd(const T& a, const T& b) { return (a > b ? gcd(b, a) : a == 0 ? b : gcd(b % a, a)); }\ntemplate<typename T> T lcm(const T& a, const T& b) { return a / gcd(a, b) * b; }\ntemplate<typename T>\nconstexpr std::pair<T, T> extgcd(const T a, const T b)\n{\n if (b == 0) { return std::pair<T, T>{1, 0}; }\n const auto g = gcd(a, b), da = std::abs(b) / g;\n const auto p = extgcd(b, a % b);\n const auto x = (da + p.second % da) % da, y = (g - a * x) / b;\n return {x, y};\n}\ntemplate<typename T>\nconstexpr T inverse(const T a, const T mod) { return extgcd(a, mod).first; }\ntemplate<uint mod_value, bool dynamic = false>\nclass modint_base\n{\npublic:\n template<typename UInt = uint>\n static std::enable_if_t<dynamic, const UInt> mod() { return mod_ref(); }\n template<typename UInt = uint>\n static constexpr std::enable_if_t<not dynamic, const UInt> mod() { return mod_value; }\n template<typename UInt = uint>\n static void set_mod(const std::enable_if_t<dynamic, const UInt> mod) { mod_ref() = mod, inv_ref() = {1, 1}; }\n modint_base() : v{0} {}\n modint_base(const ll val) : v{norm(static_cast<uint>(val % static_cast<ll>(mod()) + static_cast<ll>(mod())))} {}\n modint_base(const modint_base& n) : v{n()} {}\n explicit operator bool() const { return v != 0; }\n bool operator!() const { return not static_cast<bool>(*this); }\n modint_base& operator=(const modint_base& m) { return v = m(), (*this); }\n modint_base& operator=(const ll val) { return v = norm(uint(val % static_cast<ll>(mod()) + static_cast<ll>(mod()))), (*this); }\n friend modint_base operator+(const modint_base& m) { return m; }\n friend modint_base operator-(const modint_base& m) { return make(norm(mod() - m.v)); }\n friend modint_base operator+(const modint_base& m1, const modint_base& m2) { return make(norm(m1.v + m2.v)); }\n friend modint_base operator-(const modint_base& m1, const modint_base& m2) { return make(norm(m1.v + mod() - m2.v)); }\n friend modint_base operator*(const modint_base& m1, const modint_base& m2) { return make(static_cast<uint>(static_cast<ll>(m1.v) * static_cast<ll>(m2.v) % static_cast<ll>(mod()))); }\n friend modint_base operator/(const modint_base& m1, const modint_base& m2) { return m1 * inv(m2.v); }\n friend modint_base operator+(const modint_base& m, const ll val) { return modint_base{static_cast<ll>(m.v) + val}; }\n friend modint_base operator-(const modint_base& m, const ll val) { return modint_base{static_cast<ll>(m.v) - val}; }\n friend modint_base operator*(const modint_base& m, const ll val) { return modint_base{static_cast<ll>(m.v) * (val % static_cast<ll>(mod()))}; }\n friend modint_base operator/(const modint_base& m, const ll val) { return modint_base{static_cast<ll>(m.v) * inv(val)}; }\n friend modint_base operator+(const ll val, const modint_base& m) { return modint_base{static_cast<ll>(m.v) + val}; }\n friend modint_base operator-(const ll val, const modint_base& m) { return modint_base{-static_cast<ll>(m.v) + val}; }\n friend modint_base operator*(const ll val, const modint_base& m) { return modint_base{static_cast<ll>(m.v) * (val % static_cast<ll>(mod()))}; }\n friend modint_base operator/(const ll val, const modint_base& m) { return modint_base{val * inv(static_cast<ll>(m.v))}; }\n friend modint_base& operator+=(modint_base& m1, const modint_base& m2) { return m1 = m1 + m2; }\n friend modint_base& operator-=(modint_base& m1, const modint_base& m2) { return m1 = m1 - m2; }\n friend modint_base& operator*=(modint_base& m1, const modint_base& m2) { return m1 = m1 * m2; }\n friend modint_base& operator/=(modint_base& m1, const modint_base& m2) { return m1 = m1 / m2; }\n friend modint_base& operator+=(modint_base& m, const ll val) { return m = m + val; }\n friend modint_base& operator-=(modint_base& m, const ll val) { return m = m - val; }\n friend modint_base& operator*=(modint_base& m, const ll val) { return m = m * val; }\n friend modint_base& operator/=(modint_base& m, const ll val) { return m = m / val; }\n friend modint_base operator^(const modint_base& m, const ll n) { return power(m.v, n); }\n friend modint_base& operator^=(modint_base& m, const ll n) { return m = m ^ n; }\n friend bool operator==(const modint_base& m1, const modint_base& m2) { return m1.v == m2.v; }\n friend bool operator!=(const modint_base& m1, const modint_base& m2) { return not(m1 == m2); }\n friend bool operator==(const modint_base& m, const ll val) { return m.v == norm(static_cast<uint>(static_cast<ll>(mod()) + val % static_cast<ll>(mod()))); }\n friend bool operator!=(const modint_base& m, const ll val) { return not(m == val); }\n friend bool operator==(const ll val, const modint_base& m) { return m.v == norm(static_cast<uint>(static_cast<ll>(mod()) + val % static_cast<ll>(mod()))); }\n friend bool operator!=(const ll val, const modint_base& m) { return not(m == val); }\n friend std::istream& operator>>(std::istream& is, modint_base& m)\n {\n ll v;\n return is >> v, m = v, is;\n }\n friend std::ostream& operator<<(std::ostream& os, const modint_base& m) { return os << m(); }\n uint operator()() const { return v; }\n static modint_base small_inv(const usize n)\n {\n auto& in = inv_ref();\n if (n < in.size()) { return in[n]; }\n for (usize i = in.size(); i <= n; i++) { in.push_back(-in[modint_base::mod() % i] * (modint_base::mod() / i)); }\n return in.back();\n }\n\nprivate:\n template<typename UInt = uint>\n static std::enable_if_t<dynamic, UInt&> mod_ref()\n {\n static UInt mod = 0;\n return mod;\n }\n static uint norm(const uint x) { return x < mod() ? x : x - mod(); }\n static modint_base make(const uint x)\n {\n modint_base m;\n return m.v = x, m;\n }\n static modint_base power(modint_base x, ull n)\n {\n modint_base ans = 1;\n for (; n; n >>= 1, x *= x) {\n if (n & 1) { ans *= x; }\n }\n return ans;\n }\n static modint_base inv(const ll v) { return v < 1000000 ? small_inv(static_cast<usize>(v)) : modint_base{inverse(v, static_cast<ll>(mod()))}; }\n static std::vector<modint_base>& inv_ref()\n {\n static std::vector<modint_base> in{1, 1};\n return in;\n }\n uint v;\n};\ntemplate<uint mod>\nusing modint = modint_base<mod, false>;\ntemplate<uint id>\nusing dynamic_modint = modint_base<id, true>;\ntemplate<typename Real = double>\nclass fft\n{\nprivate:\n static constexpr usize depth = 30;\n static constexpr Real pi = pi_v<Real>;\n static void transform(std::vector<complex<Real>>& a, const usize lg, const bool rev)\n {\n static std::vector<complex<Real>> root[depth];\n const usize sz = a.size();\n assert((1UL << lg) == sz);\n if (root[lg].empty()) {\n root[lg].reserve(sz), root[lg].resize(sz);\n for (usize i = 0; i < sz; i++) { root[lg][i] = complex<Real>(pi * Real(2 * i) / Real(sz)); }\n }\n std::vector<complex<Real>> tmp(sz);\n for (usize w = (sz >> 1); w > 0; w >>= 1) {\n for (usize y = 0; y < (sz >> 1); y += w) {\n const complex<Real> r = rev ? root[lg][y].conj() : root[lg][y];\n for (usize x = 0; x < w; x++) {\n const auto u = a[y << 1 | x], v = a[y << 1 | x | w] * r;\n tmp[y | x] = u + v, tmp[y | x | (sz >> 1)] = u - v;\n }\n }\n std::swap(tmp, a);\n }\n }\n\npublic:\n using value_type = Real;\n fft() = delete;\n template<typename T = ll, usize division = 2, typename I = int>\n static std::vector<T> convolute(const std::vector<I>& a, const std::vector<I>& b)\n {\n constexpr usize bitnum = (depth + division - 1) / division;\n const usize need = a.size() + b.size() - 1, lg = clog(need), sz = 1UL << lg;\n std::vector<complex<value_type>> x[division], y[division], tmp(sz);\n for (usize i = 0; i < division; i++) {\n x[i].reserve(sz), x[i].resize(sz), y[i].reserve(sz), y[i].resize(sz);\n std::fill(tmp.begin() + std::min(a.size(), b.size()), tmp.end(), complex<value_type>{});\n for (usize j = 0; j < a.size(); j++) { tmp[j].real = value_type((a[j] >> (bitnum * i)) & ((1 << bitnum) - 1)); }\n for (usize j = 0; j < b.size(); j++) { tmp[j].imag = value_type((b[j] >> (bitnum * i)) & ((1 << bitnum) - 1)); }\n transform(tmp, lg, false);\n for (usize j = 0; j < sz; j++) { tmp[j] *= value_type(0.5); }\n for (usize j = 0; j < sz; j++) {\n const usize k = j == 0 ? 0UL : sz - j;\n x[i][j] = complex<value_type>{tmp[j].real + tmp[k].real, tmp[j].imag - tmp[k].imag}, y[i][j] = complex<value_type>{tmp[j].imag + tmp[k].imag, -tmp[j].real + tmp[k].real};\n }\n }\n std::vector<complex<value_type>> z[division];\n for (usize i = 0; i < division; i++) { z[i].reserve(sz), z[i].resize(sz); }\n for (usize a = 0; a < division; a++) {\n for (usize b = 0; b < division; b++) {\n for (usize i = 0; i < sz; i++) {\n if (a + b < division) {\n z[a + b][i] += x[a][i] * y[b][i];\n } else {\n z[a + b - division][i] += x[a][i] * y[b][i] * complex<value_type>(0, 1);\n }\n }\n }\n }\n for (usize i = 0; i < division; i++) { transform(z[i], lg, true); }\n std::vector<T> ans(need);\n T base = 1;\n for (usize k = 0; k < 2 * division - 1; k++, base *= (1LL << bitnum)) {\n for (usize i = 0; i < need; i++) {\n if (k < division) {\n ans[i] += base * T(std::round(z[k][i].real / value_type(sz)));\n } else {\n ans[i] += base * T(std::round(z[k - division][i].imag / value_type(sz)));\n }\n }\n }\n return ans;\n }\n template<uint mod, bool dynamic = false, usize division = 2>\n static std::vector<modint_base<mod, dynamic>> convolute(const std::vector<modint_base<mod, dynamic>>& a, const std::vector<modint_base<mod, dynamic>>& b)\n {\n using mint = modint_base<mod, dynamic>;\n constexpr usize bitnum = (depth + division - 1) / division;\n const usize need = a.size() + b.size() - 1, lg = clog(need), sz = 1UL << lg;\n std::vector<complex<value_type>> x[division], y[division], tmp(sz);\n for (usize i = 0; i < division; i++) {\n x[i].reserve(sz), x[i].resize(sz), y[i].reserve(sz), y[i].resize(sz);\n std::fill(tmp.begin() + std::min(a.size(), b.size()), tmp.end(), complex<value_type>{});\n for (usize j = 0; j < a.size(); j++) { tmp[j].real = value_type((a[j]() >> (bitnum * i)) & ((1 << bitnum) - 1)); }\n for (usize j = 0; j < b.size(); j++) { tmp[j].imag = value_type((b[j]() >> (bitnum * i)) & ((1 << bitnum) - 1)); }\n transform(tmp, lg, false);\n for (usize j = 0; j < sz; j++) { tmp[j] *= value_type(0.5); }\n for (usize j = 0; j < sz; j++) {\n const usize k = j == 0 ? 0UL : sz - j;\n x[i][j] = complex<value_type>{tmp[j].real + tmp[k].real, tmp[j].imag - tmp[k].imag}, y[i][j] = complex<value_type>{tmp[j].imag + tmp[k].imag, -tmp[j].real + tmp[k].real};\n }\n }\n std::vector<complex<value_type>> z[division];\n for (usize i = 0; i < division; i++) { z[i].reserve(sz), z[i].resize(sz); }\n for (usize a = 0; a < division; a++) {\n for (usize b = 0; b < division; b++) {\n for (usize i = 0; i < sz; i++) {\n if (a + b < division) {\n z[a + b][i] += x[a][i] * y[b][i];\n } else {\n z[a + b - division][i] += x[a][i] * y[b][i] * complex<value_type>(0, 1);\n }\n }\n }\n }\n for (usize i = 0; i < division; i++) { transform(z[i], lg, true); }\n std::vector<mint> ans(need);\n mint base = 1;\n for (usize k = 0; k < 2 * division - 1; k++, base *= (1LL << bitnum)) {\n for (usize i = 0; i < need; i++) {\n if (k < division) {\n ans[i] += int((base * ll(std::round(z[k][i].real / value_type(sz))))());\n } else {\n ans[i] += int((base * ll(std::round(z[k - division][i].imag / value_type(sz))))());\n }\n }\n }\n return ans;\n }\n};\n\ntemplate<uint mod = 924844033, uint root = 5>\nclass ntt\n{\nprivate:\n using value_type = modint<mod>;\n static constexpr usize depth = 30;\n static void transform(std::vector<value_type>& a, const usize lg, const bool rev)\n {\n const usize N = a.size();\n assert(1UL << lg == N);\n static std::vector<value_type> R[depth];\n if (R[lg].empty()) {\n R[lg].reserve(N), R[lg].resize(N, value_type(1));\n const value_type r = value_type(root) ^ ((mod - 1) / N);\n for (usize i = 1; i < N; i++) { R[lg][i] = R[lg][i - 1] * r; }\n }\n std::vector<value_type> tmp(N);\n for (usize w = (N >> 1); w > 0; w >>= 1) {\n for (usize y = 0; y < (N >> 1); y += w) {\n const value_type r = rev ? R[lg][y == 0 ? 0 : N - y] : R[lg][y];\n for (usize x = 0; x < w; x++) {\n const auto u = a[y << 1 | x], v = a[y << 1 | x | w]() * r;\n tmp[y | x] = u + v, tmp[y | x | (N >> 1)] = u - v;\n }\n }\n std::swap(tmp, a);\n }\n if (rev) {\n for (usize i = 0; i < N; i++) { a[i] /= value_type(N); }\n }\n }\n\npublic:\n ntt() = delete;\n static std::vector<value_type> convolute(const std::vector<value_type>& a, const std::vector<value_type>& b)\n {\n const usize need = a.size() + b.size() - 1, lg = clog(need), sz = 1UL << lg;\n std::vector<value_type> A(sz, 0), B(sz, 0);\n for (usize i = 0; i < a.size(); i++) { A[i] = a[i](); }\n for (usize i = 0; i < b.size(); i++) { B[i] = b[i](); }\n transform(A, lg, false), transform(B, lg, false);\n for (usize i = 0; i < sz; i++) { A[i] *= B[i]; }\n transform(A, lg, true);\n std::vector<value_type> ans(need);\n for (usize i = 0; i < need; i++) { ans[i] = int(A[i]()); }\n return ans;\n }\n};\ntemplate<uint mod, uint root, bool dynamic, uint fft_division>\nclass poly_base\n{\npublic:\n using value_type = modint_base<mod, dynamic>;\n poly_base() : v(0) {}\n poly_base(const value_type& r) : v{r} { shrink(); }\n poly_base(const std::vector<value_type>& v) : v{v} { shrink(); }\n poly_base(const std::initializer_list<value_type>&& list) : v{list} { shrink(); }\n std::vector<value_type> operator()() const { return v; }\n value_type& operator[](const usize i) { return v[i]; }\n const value_type& operator[](const usize i) const { return v[i]; }\n value_type at(const usize i) const { return i < size() ? v[i] : value_type(0); }\n friend poly_base operator+(const poly_base& p) { return p; }\n friend poly_base operator-(const poly_base& p)\n {\n std::vector<value_type> ans = p.v;\n for (auto& e : ans) { e = -e; }\n return poly_base(ans);\n }\n friend poly_base operator+(const poly_base& p, const poly_base& q)\n {\n const usize sz = std::max(p.size(), q.size());\n std::vector<value_type> ans(sz);\n for (usize i = 0; i < sz; i++) { ans[i] = p.at(i) + q.at(i); }\n return poly_base(ans);\n }\n friend poly_base operator-(const poly_base& p, const poly_base& q)\n {\n const usize sz = std::max(p.size(), q.size());\n std::vector<value_type> ans(sz);\n for (usize i = 0; i < sz; i++) { ans[i] = p.at(i) - q.at(i); }\n return poly_base(ans);\n }\n friend poly_base operator*(const poly_base& p, const poly_base& q) { return p.size() <= 300 or q.size() <= 300 ? naive_multiply(p, q) : fft_multiply(p, q); }\n friend poly_base operator*(const poly_base& p, const value_type& r)\n {\n std::vector<value_type> ans = p.v;\n for (auto& e : ans) { e *= r; }\n return poly_base(ans);\n }\n friend poly_base operator/(const poly_base& p, const value_type& r)\n {\n std::vector<value_type> ans = p.v;\n for (auto& e : ans) { e /= r; }\n return poly_base(ans);\n }\n friend poly_base operator>>(const poly_base& p, const usize s) { return p.divide_by_power(s); }\n friend poly_base operator<<(const poly_base& p, const usize s) { return p.multiply_power(s); }\n friend poly_base operator/(const poly_base& p, const poly_base& q) { return p.div(q); }\n friend poly_base operator%(const poly_base& p, const poly_base& q) { return p.rem(q); }\n friend poly_base& operator+=(poly_base& p, const poly_base& q) { return p = p + q; }\n friend poly_base& operator-=(poly_base& p, const poly_base& q) { return p = p - q; }\n friend poly_base& operator*=(poly_base& p, const poly_base& q) { return p = p * q; }\n friend poly_base& operator*=(poly_base& p, const value_type& r) { return p = p * r; }\n friend poly_base& operator/=(poly_base& p, const value_type& r) { return p = p / r; }\n friend poly_base& operator>>=(poly_base& p, const usize s) { return p = (p >> s); }\n friend poly_base& operator<<=(poly_base& p, const usize s) { return p = (p << s); }\n friend poly_base& operator/=(poly_base& p, const poly_base& q) { return p = p / q; }\n friend poly_base& operator%=(poly_base& p, const poly_base& q) { return p = p % q; }\n poly_base multiply_power(const usize s) const\n {\n const usize sz = size();\n if (sz == 0) { return poly_base(); }\n std::vector<value_type> ans(sz + s, 0);\n for (usize i = 0; i < sz; i++) { ans[i + s] = v[i]; }\n return poly_base(ans);\n }\n poly_base divide_by_power(const usize s) const\n {\n const usize N = size();\n if (N <= s) { return poly_base(); }\n std::vector<value_type> ans(N - s);\n for (usize i = 0; i < N - s; i++) { ans[i] = v[i + s]; }\n return poly_base(ans);\n }\n poly_base rem_by_power(const usize k) const { return size() <= k ? *this : poly_base(std::vector<value_type>(v.begin(), v.begin() + k)); }\n poly_base inverse(const usize k) const // p(x)q(x)=1 (mod x^{2^k})\n {\n poly_base q{value_type(1) / v[0]};\n const auto T = poly_base{2};\n for (usize i = 1, j = 0; j < k; j++, i *= 2) { q = (q * (T - rem_by_power(2 * i) * q)).rem_by_power(2 * i); }\n return q;\n }\n template<typename Int>\n static poly_base rem_of_power(const Int k, const poly_base& p) // x^k (mod p(x))\n {\n const usize B = p.size() * 2 - 1;\n const auto q = p.pseudo_inv(B);\n poly_base ans{1};\n const usize D = log2p1<usize>(k);\n for (usize i = 0; i < D; i++) {\n if (k & (static_cast<Int>(1) << (D - i - 1))) { ans = (ans.multiply_power(1)).rem(p, q, B); }\n if (D - i - 1) { ans = (ans * ans).rem(p, q, B); }\n }\n return ans;\n }\n usize size() const { return v.size(); }\n friend std::ostream& operator<<(std::ostream& os, const poly_base& p)\n {\n if (p.size() == 0) { return os << \"0\"; }\n for (usize i = 0; i < p.size(); i++) { os << (i != 0 ? \"+\" : \"\") << p[i] << (i != 0 ? i == 1 ? \"X\" : \"X^\" + std::to_string(i) : \"\"); }\n return os;\n }\n\nprivate:\n static std::vector<value_type> naive_convolute(const std::vector<value_type>& a, const std::vector<value_type>& b)\n {\n std::vector<value_type> ans(a.size() + b.size() - 1, 0);\n for (usize i = 0; i < a.size(); i++) {\n for (usize j = 0; j < b.size(); j++) { ans[i + j] += a[i] * b[j]; }\n }\n return ans;\n }\n static poly_base naive_multiply(const poly_base& p, const poly_base& q) { return p.size() == 0 or q.size() == 0 ? poly_base{} : poly_base{naive_convolute(p(), q())}; }\n template<typename Poly = poly_base>\n static std::enable_if_t<root == 0, Poly> fft_multiply(const poly_base& p, const poly_base& q) { return p.size() == 0 or q.size() == 0 ? poly_base() : poly_base{fft<double>::convolute<mod, dynamic, fft_division>(p(), q())}; }\n template<typename Poly = poly_base>\n static std::enable_if_t<root != 0, Poly> fft_multiply(const poly_base& p, const poly_base& q) { return p.size() == 0 or q.size() == 0 ? poly_base() : poly_base{ntt<mod, root>::convolute(p(), q())}; }\n poly_base rev(const usize l) const\n {\n std::vector<value_type> ans = v;\n ans.resize(l), std::reverse(ans.begin(), ans.end());\n return poly_base(ans);\n }\n poly_base div(const poly_base& q) const\n {\n assert(q.size() > 0);\n if (size() < q.size()) { return poly_base(); }\n const usize N = size();\n const auto iq = q.pseudoInv(N);\n return (*this * iq).divide_by_power(N - 1);\n }\n poly_base rem(const poly_base& q) const { return *this - div(q) * q; }\n poly_base rem(const poly_base& q, const poly_base& iq, const usize B) { return *this - q * ((*this * iq).divide_by_power(B - 1)); }\n void shrink()\n {\n for (; not v.empty() and v.back() == 0; v.pop_back()) {}\n }\n poly_base pseudo_inv(const usize B) const\n {\n const usize N = size();\n return rev(N).inverse(B + 2 > N ? clog(B - N + 2) : 0).rev(B + 1 - N);\n }\n std::vector<value_type> v;\n};\ntemplate<uint mod, uint fft_division = 2>\nusing poly = poly_base<mod, 0, false, fft_division>;\ntemplate<uint mod, uint fft_division = 2>\nusing dynamic_poly = poly_base<mod, 0, true, fft_division>;\ntemplate<uint mod = 924844033, uint root = 5>\nusing ntt_poly = poly_base<mod, root, false, 0>;\nint main()\n{\n constexpr uint mod = 998244353;\n constexpr uint root = 5;\n using mint = modint<mod>;\n const auto n = read<usize>(), k = read<usize>();\n const auto ninv = mint(1) / n;\n const auto a = read<mint>() / 100;\n std::vector<mint> c(n + 1, 1);\n for (usize i = 1; i <= n; i++) { c[i] = -a * ninv; }\n ntt_poly<mod, root> p(c);\n const auto q = p.inverse(clog(k));\n mint ans = 0;\n for (usize i = (k >= n ? k - n : 0UL); i < k; i++) { ans += q.at(i) * (n + i - k + 1) * ninv; }\n std::cout << ans << std::endl;\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 12960, "score_of_the_acc": -1.0096, "final_rank": 16 }, { "submission_id": "aoj_3072_3880771", "code_snippet": "#include <iostream>\n#include <vector>\n\nusing std::vector;\n\ntemplate <int MOD>\nclass ModInt {\n using lint = long long;\n\npublic:\n int val;\n\n // constructor\n ModInt(lint v = 0) : val(v % MOD) {\n if (val < 0) val += MOD;\n };\n\n // assignment\n ModInt& operator=(const ModInt& x) {\n if (this != &x) { this->val = x.val; }\n return *this;\n }\n\n // unary operator\n ModInt operator+() const { return ModInt(val); }\n ModInt operator-() const { return ModInt(MOD - val); }\n ModInt operator~() const { return *this ^ (MOD - 2); }\n\n // increment / decrement\n ModInt& operator++() { return *this += 1; }\n ModInt& operator--() { return *this -= 1; }\n ModInt operator++(int) {\n ModInt before = *this;\n ++(*this);\n return before;\n }\n ModInt operator--(int) {\n ModInt before = *this;\n --(*this);\n return before;\n }\n\n // arithmetic\n ModInt operator+(const ModInt& x) const { return ModInt(*this) += x; }\n ModInt operator-(const ModInt& x) const { return ModInt(*this) -= x; }\n ModInt operator*(const ModInt& x) const { return ModInt(*this) *= x; }\n ModInt operator%(const ModInt& x) const { return ModInt(*this) %= x; }\n ModInt operator/(const ModInt& x) const { return ModInt(*this) /= x; }\n ModInt operator^(const ModInt& x) const { return ModInt(*this) ^= x; }\n\n // compound assignment\n ModInt& operator+=(const ModInt& x) {\n if ((val += x.val) >= MOD) val -= MOD;\n return *this;\n }\n ModInt& operator-=(const ModInt& x) {\n if ((val -= x.val) < 0) val += MOD;\n return *this;\n }\n ModInt& operator*=(const ModInt& x) {\n val = lint(val) * x.val % MOD;\n return *this;\n }\n ModInt& operator%=(const ModInt& x) {\n val %= x.val;\n return *this;\n }\n ModInt& operator/=(const ModInt& x) { return *this *= ~x; }\n ModInt& operator^=(const ModInt& x) {\n int n = x.val;\n ModInt b = *this;\n if (n < 0) n = -n, b = ~b;\n\n *this = 1;\n while (n > 0) {\n if (n & 1) *this *= b;\n n >>= 1;\n b *= b;\n }\n return *this;\n }\n\n // compare\n bool operator==(const ModInt& b) const { return val == b.val; }\n bool operator!=(const ModInt& b) const { return val != b.val; }\n bool operator<(const ModInt& b) const { return val < b.val; }\n bool operator<=(const ModInt& b) const { return val <= b.val; }\n bool operator>(const ModInt& b) const { return val > b.val; }\n bool operator>=(const ModInt& b) const { return val >= b.val; }\n\n // I/O\n friend std::ostream& operator<<(std::ostream& os, const ModInt& x) noexcept { return os << x.val; }\n friend std::istream& operator>>(std::istream& is, ModInt& x) noexcept { return is >> x.val; }\n};\n\nusing mint = ModInt<998244353>;\n\nint main() {\n int n, k, a;\n std::cin >> n >> k >> a;\n mint succ = mint(a) / 100;\n\n vector<mint> dp(n + k), dpsum(n + k);\n dp[0] = dpsum[0] = 1;\n for (int i = 1; i < n + k; ++i) {\n mint prev = dpsum[std::min(i, k) - 1] -\n (i - n - 1 >= 0 ? dpsum[i - n - 1] : 0);\n dp[i] = prev / n * succ;\n dpsum[i] = dpsum[i - 1] + dp[i];\n }\n\n mint ans = dpsum[n + k - 1] - dpsum[k - 1];\n std::cout << ans / succ << std::endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4356, "score_of_the_acc": -0.0889, "final_rank": 3 }, { "submission_id": "aoj_3072_3880710", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define INF_LL (int64)1e18\n#define INF (int32)1e9\n#define REP(i, n) for(int64 i = 0;i < (n);i++)\n#define FOR(i, a, b) for(int64 i = (a);i < (b);i++)\n#define all(x) x.begin(),x.end()\n#define fs first\n#define sc second\n\nusing int32 = int_fast32_t;\nusing uint32 = uint_fast32_t;\nusing int64 = int_fast64_t;\nusing uint64 = uint_fast64_t;\nusing PII = pair<int32, int32>;\nusing PLL = pair<int64, int64>;\n\nconst double eps = 1e-10;\n\ntemplate<typename A, typename B>inline void chmin(A &a, B b){if(a > b) a = b;}\ntemplate<typename A, typename B>inline void chmax(A &a, B b){if(a < b) a = b;}\n\ntemplate<typename T>\nvector<T> make_v(size_t a){return vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value!=0>::type\nfill_v(U &u,const V... v){u=U(v...);}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value==0>::type\nfill_v(U &u,const V... v){\n for(auto &e:u) fill_v<T>(e,v...);\n}\n\ntemplate<::std::uint_fast64_t mod>\nclass ModInt{\nprivate:\n using value_type = ::std::uint_fast64_t;\n value_type n;\npublic:\n ModInt() : n(0) {}\n ModInt(value_type n_) : n(n_ % mod) {}\n ModInt(const ModInt& m) : n(m.n) {}\n\n template<typename T>\n explicit operator T() const { return static_cast<T>(n); }\n value_type get() const { return n; }\n\n friend ::std::ostream& operator<<(::std::ostream &os, const ModInt<mod> &a) {\n return os << a.n;\n }\n\n friend ::std::istream& operator>>(::std::istream &is, ModInt<mod> &a) {\n value_type x;\n is >> x;\n a = ModInt<mod>(x);\n return is;\n }\n\n bool operator==(const ModInt& m) const { return n == m.n; }\n bool operator!=(const ModInt& m) const { return n != m.n; }\n ModInt& operator*=(const ModInt& m){ n = n * m.n % mod; return *this; }\n\n ModInt pow(value_type b) const{\n ModInt ans = 1, m = ModInt(*this);\n while(b){\n if(b & 1) ans *= m;\n m *= m;\n b >>= 1;\n }\n return ans;\n }\n\n ModInt inv() const { return (*this).pow(mod-2); }\n ModInt& operator+=(const ModInt& m){ n += m.n; n = (n < mod ? n : n - mod); return *this; }\n ModInt& operator-=(const ModInt& m){ n += mod - m.n; n = (n < mod ? n : n - mod); return *this; }\n ModInt& operator/=(const ModInt& m){ *this *= m.inv(); return *this; }\n ModInt operator+(const ModInt& m) const { return ModInt(*this) += m; }\n ModInt operator-(const ModInt& m) const { return ModInt(*this) -= m; }\n ModInt operator*(const ModInt& m) const { return ModInt(*this) *= m; }\n ModInt operator/(const ModInt& m) const { return ModInt(*this) /= m; }\n ModInt& operator++(){ n += 1; return *this; }\n ModInt& operator--(){ n -= 1; return *this; }\n ModInt operator++(int){\n ModInt old(n);\n n += 1;\n return old;\n }\n ModInt operator--(int){\n ModInt old(n);\n n -= 1;\n return old;\n }\n ModInt operator-() const { return ModInt(mod-n); }\n};\n\n\ntemplate<class ValueMonoid, class OperatorMonoid, class Modifier,\n template<class...> class Container=::std::vector>\nclass LazySegTree{\npublic:\n using value_structure = ValueMonoid;\n using value_type = typename value_structure::value_type;\n using operator_structure = OperatorMonoid;\n using operator_type = typename operator_structure::value_type;\n using modifier = Modifier;\n using const_reference = const value_type &;\n using container_value_type = Container<value_type>;\n using container_operator_type = Container<operator_type>;\n using size_type = typename container_value_type::size_type;\n\nprivate:\n container_value_type tree;\n container_operator_type lazy;\n size_type size_, height;\n\n static size_type getsize(const size_type x){\n size_type ret = 1;\n while(ret < x)\n ret <<= 1;\n return ret;\n }\n\n static size_type getheight(const size_type x){\n size_type ret = 0;\n while((static_cast<size_type>(1) << ret) < x){\n ret++;\n }\n return ret;\n }\n\n inline static value_type calc(const value_type a, const value_type b){\n return value_structure::operation(a, b);\n }\n\n inline static void apply(operator_type &data, const operator_type a){\n data = operator_structure::operation(data, a);\n }\n\n inline static value_type reflect(const value_type v, const operator_type o){\n return modifier::operation(v, o);\n }\n\n void push(const size_type index){\n tree[index] = reflect(tree[index], lazy[index]);\n apply(lazy[index << 1], lazy[index]);\n apply(lazy[index << 1 | 1], lazy[index]);\n lazy[index] = operator_structure::identity();\n }\n\n void calc_node(const size_type index){\n if(tree.size() <= (index << 1 | 1)) return;\n assert(0 < index);\n tree[index] = calc(reflect(tree[index << 1], lazy[index << 1]),\n reflect(tree[index << 1 | 1], lazy[index << 1 | 1]));\n }\n\n void build(size_type index){\n while(index >>= 1){\n calc_node(index);\n }\n }\n\n void propagate(const size_type index){\n for(size_type shift = height; shift ; --shift){\n push(index >> shift);\n }\n }\n\n void rebuild(){\n for(size_type i = size_-1;i > 0;--i){\n calc_node(i);\n }\n }\npublic:\n LazySegTree() : size_(0), height(0), tree(), lazy(){}\n LazySegTree(const size_type size)\n : size_(size), height(getheight(size)),\n tree(size << 1, value_structure::initializer()),\n lazy(size << 1, operator_structure::identity()){\n rebuild();\n }\n template<class InputIterator>\n LazySegTree(InputIterator first, InputIterator last)\n : size_(::std::distance(first, last)){\n height = getheight(size_);\n tree = container_value_type(size_, value_structure::identity());\n lazy = container_operator_type(size_ << 1, operator_structure::identity());\n tree.insert(tree.end(), first, last);\n rebuild();\n }\n\n size_type size() const { return size_; }\n const_reference operator[](const size_type k){\n assert(k < size_);\n propagate(k+size_);\n tree[k+size_] = reflect(tree[k+size_], lazy[k+size_]);\n lazy[k+size_] = operator_structure::identity();\n return tree[k+size_];\n }\n\n value_type query(size_type l, size_type r){\n assert(l <= r);\n assert(0 <= l && l < size_);\n assert(0 <= r && r <= size_);\n value_type retl = value_structure::identity(),\n retr = value_structure::identity();\n l += size_;\n r += size_;\n propagate(l);\n build(l);\n propagate(r-1);\n build(r-1);\n for(; l < r ; l >>= 1, r >>= 1){\n if(l&1){\n retl = calc(retl, reflect(tree[l], lazy[l]));\n l++;\n }\n if(r&1){\n r--;\n retr = calc(reflect(tree[r], lazy[r]), retr);\n }\n }\n return calc(retl, retr);\n }\n\n void update(size_type l, size_type r, const operator_type& data){\n assert(l <= r);\n assert(0 <= l && l < size_);\n assert(0 <= r && r <= size_);\n l += size_;\n r += size_;\n propagate(l);\n propagate(r - 1);\n for(size_type l_ = l, r_ = r; l_ < r_ ; l_ >>= 1, r_ >>= 1){\n if(l_ & 1) apply(lazy[l_++], data);\n if(r_ & 1) apply(lazy[--r_], data);\n }\n build(l);\n build(r - 1);\n }\n\n template<class F>\n void update(size_type index, const F& f){\n assert(0 <= index && index < size());\n index += size_;\n propagate(index);\n tree[index] = f(::std::move(tree[index]));\n lazy[index] = operator_structure::identity();\n build(index);\n }\n\n void dump() {\n REP(i, tree.size()) {\n cout << \"(\" << tree[i] << \" \" << lazy[i] << \") \";\n }\n cout << endl;\n }\n\n /*\n template<class F>\n size_type search(const F& f) const { // [0, result) is True and [0, result-1) is not.\n if(f(value_structure::identity()))\n return 0;\n if(!f(tree[1]))\n return size_+1;\n value_type acc = value_structure::identity();\n size_type i = 1;\n while(i <\n }\n */\n};\n\nconstexpr int64 mod = 998244353;\nusing Mint = ModInt<mod>;\n\nclass v_monoid {\npublic:\n using value_type = Mint;\n static value_type identity() { return 0; }\n static value_type initializer() { return 0; }\n static value_type operation(const value_type& a, const value_type& b){\n return a+b;\n }\n};\n\nclass o_monoid {\npublic:\n using value_type = Mint;\n static value_type identity() { return 0; }\n static value_type operation(const value_type& a, const value_type& b){\n return a+b;\n }\n};\n\nclass modifier {\npublic:\n static Mint operation(const Mint& a, const Mint& b){\n return a+b;\n }\n};\n\nint main(void){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tint64 N, K;\n\tMint A;\n\tcin >> N >> K >> A;\n\tA /= 100;\n\tLazySegTree<v_monoid, o_monoid, modifier> lsg(N+K);\n\tlsg.update(0, [](const Mint& a) { return 1; });\n\tFOR(i, 0, K) {\n\t Mint val = lsg.query(i, i+1)*(i == 0 ? 1 : A);\n\t lsg.update(i+1, i+N+1, val/N);\n\t}\n\tMint sum = 0;\n\tFOR(i, K, N+K) {\n\t sum += lsg.query(i, i+1);\n\t}\n\tcout << lsg.query(K, N+K) << endl;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 9096, "score_of_the_acc": -0.6219, "final_rank": 12 }, { "submission_id": "aoj_3072_3880585", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n// #define int ll\nusing PII = pair<ll, ll>;\n\n#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define ALL(x) x.begin(), x.end()\n\ntemplate<typename T> T &chmin(T &a, const T &b) { return a = min(a, b); }\ntemplate<typename T> T &chmax(T &a, const T &b) { return a = max(a, b); }\ntemplate<typename T> bool IN(T a, T b, T x) { return a<=x&&x<b; }\ntemplate<typename T> T ceil(T a, T b) { return a/b + !!(a%b); }\n\ntemplate<typename T> vector<T> make_v(size_t a) { return vector<T>(a); }\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts) {\n return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\ntemplate<typename T,typename V> typename enable_if<is_class<T>::value==0>::type\nfill_v(T &t, const V &v) { t=v; }\ntemplate<typename T,typename V> typename enable_if<is_class<T>::value!=0>::type\nfill_v(T &t, const V &v ) { for(auto &e:t) fill_v(e,v); }\n\ntemplate<class S,class T>\nostream &operator <<(ostream& out,const pair<S,T>& a) {\n out<<'('<<a.first<<','<<a.second<<')'; return out;\n}\ntemplate<class T>\nostream &operator <<(ostream& out,const vector<T>& a){\n out<<'[';\n for(const T &i: a) out<<i<<',';\n out<<']';\n return out;\n}\ntemplate<class T>\nostream &operator <<(ostream& out, const set<T>& a) {\n out<<'{';\n for(const T &i: a) out<<i<<',';\n out<<'}';\n return out;\n}\ntemplate<class T, class S>\nostream &operator <<(ostream& out, const map<T,S>& a) {\n out<<'{';\n for(auto &i: a) out<<i<<',';\n out<<'}';\n return out;\n}\n\nint dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0}; // DRUL\nconst int INF = 1<<30;\nconst ll LLINF = 1LL<<60;\nconst ll MOD = 1000000007;\n\ntemplate<ll MOD>\nstruct modint {\n ll x;\n modint(): x(0) {}\n modint(ll y) : x(y>=0 ? y%MOD : y%MOD+MOD) {}\n static constexpr ll mod() { return MOD; }\n // e乗\n modint pow(ll e) {\n ll a = 1, p = x;\n while(e > 0) {\n if(e%2 == 0) {p = (p*p) % MOD; e /= 2;}\n else {a = (a*p) % MOD; e--;}\n }\n return modint(a);\n }\n modint inv() const {\n ll a=x, b=MOD, u=1, y=1, v=0, z=0;\n while(a) {\n ll q = b/a;\n swap(z -= q*u, u);\n swap(y -= q*v, v);\n swap(b -= q*a, a);\n }\n return z;\n }\n // Comparators\n bool operator <(modint b) { return x < b.x; }\n bool operator >(modint b) { return x > b.x; }\n bool operator<=(modint b) { return x <= b.x; }\n bool operator>=(modint b) { return x >= b.x; }\n bool operator!=(modint b) { return x != b.x; }\n bool operator==(modint b) { return x == b.x; }\n // Basic Operations\n modint operator+(modint r) const { return modint(*this) += r; }\n modint operator-(modint r) const { return modint(*this) -= r; }\n modint operator*(modint r) const { return modint(*this) *= r; }\n modint operator/(modint r) const { return modint(*this) /= r; }\n modint &operator+=(modint r) {\n if((x += r.x) >= MOD) x -= MOD;\n return *this;\n }\n modint &operator-=(modint r) {\n if((x -= r.x) < 0) x += MOD;\n return *this;\n }\n modint &operator*=(modint r) {\n #if !defined(_WIN32) || defined(_WIN64)\n x = x * r.x % MOD; return *this;\n #endif\n unsigned long long y = x * r.x;\n unsigned xh = (unsigned) (y >> 32), xl = (unsigned) y, d, m;\n asm(\n \"divl %4; nt\"\n : \"=a\" (d), \"=d\" (m)\n : \"d\" (xh), \"a\" (xl), \"r\" (MOD)\n );\n x = m;\n return *this;\n }\n modint &operator/=(modint r) { return *this *= r.inv(); }\n // increment, decrement\n modint operator++() { x++; return *this; }\n modint operator++(signed) { modint t = *this; x++; return t; }\n modint operator--() { x--; return *this; }\n modint operator--(signed) { modint t = *this; x--; return t; }\n\n template<class T>\n friend modint operator*(T l, modint r) { return modint(l) *= r; }\n template<class T>\n friend modint operator+(T l, modint r) { return modint(l) += r; }\n template<class T>\n friend modint operator-(T l, modint r) { return modint(l) -= r; }\n template<class T>\n friend modint operator/(T l, modint r) { return modint(l) /= r; }\n template<class T>\n friend bool operator==(T l, modint r) { return modint(l) == r; }\n template<class T>\n friend bool operator!=(T l, modint r) { return modint(l) != r; }\n // Input/Output\n friend ostream &operator<<(ostream& os, modint a) { return os << a.x; }\n friend istream &operator>>(istream& is, modint &a) { return is >> a.x; }\n friend string to_frac(modint v) {\n static map<ll, PII> mp;\n if(mp.empty()) {\n mp[0] = mp[MOD] = {0, 1};\n FOR(i, 2, 1001) FOR(j, 1, i) if(__gcd(i, j) == 1) {\n mp[(modint(i) / j).x] = {i, j};\n }\n }\n auto itr = mp.lower_bound(v.x);\n if(itr != mp.begin() && v.x - prev(itr)->first < itr->first - v.x) --itr;\n string ret = to_string(itr->second.first + itr->second.second * ((int)v.x - itr->first));\n if(itr->second.second > 1) {\n ret += '/';\n ret += to_string(itr->second.second);\n }\n return ret;\n }\n};\nusing mint = modint<998244353>;\n\nsigned main(void)\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll n, k, a0;\n cin >> n >> k >> a0;\n mint a = mint(a0) / 100;\n\n vector<mint> pro(n+k), rui(n+k);\n pro[1] = mint(1) / n;\n rui[1] = pro[1];\n FOR(i, 2, n+k) {\n mint temp = rui[min(k-1,i-1)]-rui[max(0LL,i-1-n)];\n temp *= a / n;\n if(i <= n) temp += mint(1) / n;\n\n pro[i] = temp;\n rui[i] = rui[i-1] + pro[i];\n }\n cout << rui[n+k-1] - rui[k-1] << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 5936, "score_of_the_acc": -0.3192, "final_rank": 7 }, { "submission_id": "aoj_3072_3880162", "code_snippet": "/*** author: yuji9511 ***/\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> lpair;\nconst ll MOD = 998244353;\nconst ll INF = 1e18;\n#define rep(i,m,n) for(ll i = (m); i < (n); i++)\n#define rrep(i,m,n) for(ll i = (m); i >= (n); i--)\n#define print(x) cout << (x) << endl;\n#define print2(x,y) cout << (x) << \" \" << (y) << endl;\n#define printa(x,n) for(ll i = 0; i < n; i++){ cout << (x[i]) << \" \\n\"[i==n-1];};\nstruct Combination{\nprivate:\n ll N;\n vector<ll> fac, facinv;\n\npublic:\n Combination(ll n){\n N = n;\n fac.push_back(1); fac.push_back(1);\n rep(i,2,N+1) fac.push_back(fac[i-1] * i % MOD);\n rep(i,0,N+1) facinv.push_back(power(fac[i], MOD-2));\n }\n ll power(ll x, ll n){\n if(n == 0) return 1LL;\n ll res = power(x * x % MOD, n/2);\n if(n % 2 == 1) res = res * x % MOD;\n return res;\n }\n ll nck(ll n, ll k){\n if(k == 0 || n == k) return 1LL;\n return fac[n] * facinv[k] % MOD * facinv[n-k] % MOD;\n }\n ll npk(ll n, ll k){\n if(k == 0 || n == k) return 1LL;\n return fac[n] * facinv[n-k] % MOD;\n }\n ll get(ll x){return fac[x];};\n ll getinv(ll x){return facinv[x];};\n};\n\nint main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tll N,K,A;\n\tcin >> N >> K >> A;\n\tCombination cb(10);\n\tll sum[200010] = {};\n\tll val[200010] = {};\n\tll inv = cb.power(N, MOD-2);\n\tval[1] = inv;\n\tsum[1] = val[1];\n\trep(i,2,N+K){\n\t\tll tt = (sum[min(K-1, i-1)] - sum[max(0LL, i-N-1)] + MOD) % MOD;\n\t\ttt *= A * cb.power(100LL, MOD-2) % MOD * inv % MOD;\n\t\ttt %= MOD;\n\t\tif(i <= N){\n\t\t\t(tt += inv) %= MOD;\n\t\t}\n\t\tval[i] = tt;\n\t\tsum[i] = (sum[i-1] + val[i]) % MOD;\n\t\tsum[i] %= MOD;\n\t}\n\tll ans = 0;\n\trep(i,K,N+K){\n\t\t(ans += val[i]) %= MOD;\n\t}\n\tprint(ans);\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6340, "score_of_the_acc": -0.2325, "final_rank": 5 }, { "submission_id": "aoj_3072_3880160", "code_snippet": "/*** author: yuji9511 ***/\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> lpair;\nconst ll MOD = 998244353;\nconst ll INF = 1e18;\n#define rep(i,m,n) for(ll i = (m); i < (n); i++)\n#define rrep(i,m,n) for(ll i = (m); i >= (n); i--)\n#define print(x) cout << (x) << endl;\n#define print2(x,y) cout << (x) << \" \" << (y) << endl;\n#define printa(x,n) for(ll i = 0; i < n; i++){ cout << (x[i]) << \" \\n\"[i==n-1];};\nstruct Combination{\nprivate:\n ll N;\n vector<ll> fac, facinv;\n\npublic:\n Combination(ll n){\n N = n;\n fac.push_back(1); fac.push_back(1);\n rep(i,2,N+1) fac.push_back(fac[i-1] * i % MOD);\n rep(i,0,N+1) facinv.push_back(power(fac[i], MOD-2));\n }\n ll power(ll x, ll n){\n if(n == 0) return 1LL;\n ll res = power(x * x % MOD, n/2);\n if(n % 2 == 1) res = res * x % MOD;\n return res;\n }\n ll nck(ll n, ll k){\n if(k == 0 || n == k) return 1LL;\n return fac[n] * facinv[k] % MOD * facinv[n-k] % MOD;\n }\n ll npk(ll n, ll k){\n if(k == 0 || n == k) return 1LL;\n return fac[n] * facinv[n-k] % MOD;\n }\n ll get(ll x){return fac[x];};\n ll getinv(ll x){return facinv[x];};\n};\n\nint main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tll N,K,A;\n\tcin >> N >> K >> A;\n\tCombination cb(100010);\n\tll sum[100010] = {};\n\tll val[100010] = {};\n\tll inv = cb.power(N, MOD-2);\n\tval[1] = inv;\n\tsum[1] = val[1];\n\trep(i,2,N+K){\n\t\tll tt = (sum[min(K-1, i-1)] - sum[max(0LL, i-N-1)] + MOD) % MOD;\n\t\ttt *= A * cb.power(100LL, MOD-2) % MOD * inv % MOD;\n\t\ttt %= MOD;\n\t\tif(i <= N){\n\t\t\t(tt += inv) %= MOD;\n\t\t}\n\t\tval[i] = tt;\n\t\tsum[i] = (sum[i-1] + val[i]) % MOD;\n\t\tsum[i] %= MOD;\n\t}\n\tll ans = 0;\n\trep(i,K,N+K){\n\t\t(ans += val[i]) %= MOD;\n\t}\n\tprint(ans);\n}", "accuracy": 0.5217391304347826, "time_ms": 30, "memory_kb": 6052, "score_of_the_acc": -0.2193, "final_rank": 19 }, { "submission_id": "aoj_3072_3879308", "code_snippet": "#include <iostream>\n#include <fstream>\n#include <cstdio>\n#include <cmath>\n#include <vector>\n#include <string>\n#include <set>\n#include <map>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <bitset>\n#include <algorithm>\n#include <complex>\n#include <array>\nusing namespace std;\n\n#define REP(i,n) for(int i=0; i<n; ++i)\n#define FOR(i,a,b) for(int i=a; i<=b; ++i)\n#define FORR(i,a,b) for (int i=a; i>=b; --i)\n#define ALL(c) (c).begin(), (c).end()\n\ntypedef long long ll;\ntypedef vector<int> VI;\ntypedef vector<ll> VL;\ntypedef vector<VI> VVI;\ntypedef vector<VL> VVL;\ntypedef pair<int,int> P;\ntypedef pair<ll,ll> PL;\ntypedef vector<double> VD;\ntypedef vector<VD> VVD;\n\ntemplate<typename T> void chmin(T &a, T b) { if (a > b) a = b; }\ntemplate<typename T> void chmax(T &a, T b) { if (a < b) a = b; }\n\nint in() { int x; scanf(\"%d\", &x); return x; }\nll lin() { ll x; scanf(\"%lld\", &x); return x; }\n\nconst ll mod = 998244353;\n\nll powll(ll x, ll y){\n x %= mod;\n ll res = 1LL;\n while(y){\n if (y & 1LL)\n res *= x;\n res %= mod;\n x = (x*x) % mod;\n y >>= 1LL;\n }\n return res;\n}\n\nll divll(ll x, ll y){\n x %= mod;\n return (x * powll(y,mod-2)) % mod;\n}\n\nint main() {\n ll n, k, a;\n cin >> n >> k >> a;\n a = divll(a, 100);\n VL dp(k + 1);\n dp[0] = dp[1] = 1;\n ll s = 1, j = 1;\n FOR(i,2,k){\n if (j < i - n){\n s = (s - dp[j] + mod) % mod;\n j++;\n }\n ll t = s;\n dp[i] = divll(s * a, n);\n if (i <= n) dp[i] = (dp[i] + divll(n - i + 1, n)) % mod;\n s = (s + dp[i]) % mod;\n }\n cout << dp[k] << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3564, "score_of_the_acc": -0.0526, "final_rank": 2 }, { "submission_id": "aoj_3072_3879260", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 998244353 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\nvector<ll> factmemo, factmemoInv;\nll factmemoMod = -1;\n\nll factorial(int n, int M){\n if(factmemoMod == M) return factmemo[n];\n if(n <= 1) return 1;\n\n ll res = 1;\n for(int i=1; i<=n; i++) res = res * i % M;\n return res;\n}\n\nll power(int k, int n, int M){\n if(n == 0) return 1;\n if(n == 1) return (ll)k;\n\n ll res = power(k, n/2, M);\n\n res = res * res % M;\n return n%2 == 1 ? res * k % M : res;\n}\n\nvoid initFactorial(int n, int M){\n factmemo.assign(n+1, 0);\n factmemoInv.assign(n+1, 0);\n factmemoMod = M;\n factmemo[0] = 1;\n for(int i=1;i<=n;i++) factmemo[i] = factmemo[i-1] * i % M;\n factmemoInv[n] = power(factmemo[n], M-2, M);\n for(int i=n;i>0;i--) factmemoInv[i-1] = factmemoInv[i] * i % M;\n}\n\n//nCm nPm nHm (mod M)\n\n/*Combination*/\nll C(int n, int m, int M){\n if(n < m) return 0;\n if(m == 0 || n == m) return 1;\n\n if(factmemoMod == M)\n return factmemo[n] * factmemoInv[m] % M * factmemoInv[n-m] % M;\n\n ll numer = factorial(n, M);\n ll denom = factorial(m, M) * factorial(n-m, M) % M;\n\n denom = power((int)denom, M-2, M);\n\n return numer * denom % M;\n}\n\n/*Permutation*/\nll P(int n, int m, int M){\n if(n < m) return 0;\n if(m == 0) return 1;\n\n if(factmemoMod == M)\n return factmemo[n] * factmemoInv[n-m] % M;\n\n ll numer = factorial(n, M);\n ll denom = factorial(n-m, M);\n\n denom = power((int)denom, M-2, M);\n\n return numer * denom % M;\n}\n\n/*Combination with Repetitions*/\nll H(int n, int m, int M){\n if(n == 0 && m == 0) return 1;\n return C(n+m-1, m, M);\n}\n\n\n/* Starry Sky Tree */\n//0-index\n\nstruct StarrySkyTree{\n typedef ll Type;\n int segn2;\n vector<Type> data, s_data;\n function<Type(Type, Type)> merge;\n\n StarrySkyTree(function<Type(Type, Type)> merge, int n): merge(merge)\n {\n for(segn2=1; segn2<n; segn2*=2);\n data.assign(segn2*2, 0);\n s_data.assign(segn2*2, 0);\n }\n\n StarrySkyTree(int n): //Original Ver.\n StarrySkyTree([](Type a, Type b){ return (a + b) % mod; }, n) {}\n\n //get value of [a,b)\n Type query(int a, int b, int l = 0, int r = -1, int k = 0){\n if(r == -1) r = segn2;\n if(r <= a || b <= l) return 0; //大きさに注意\n if(a <= l && r <= b) return (data[k] + s_data[k] * (r - l) % mod) % mod;\n return\n (merge(query(a, b, l, (l+r)/2, k*2+1), query(a, b, (l+r)/2 , r, k*2+2)) +\n s_data[k] * max(0, min(b, r) - max(a, l)) % mod) % mod;\n }\n\n //add x to [a,b)\n Type add(int a, int b, Type x, int l = 0, int r = -1, int k = 0){\n if(r == -1) r = segn2;\n if(a <= l && r <= b) {\n s_data[k] += x;\n s_data[k] %= mod;\n } else if(a < r && l < b) {\n data[k] = merge(add(a, b, x, l, (l+r)/2, k*2+1), add(a, b, x, (l+r)/2, r, k*2+2));\n }\n\n return (data[k] + s_data[k] * (r - l)) % mod;\n }\n\n};\n\n\nint main(){\n int N, K, A;\n ll ans = 0;\n\n cin >> N >> K >> A;\n\n //initFactorial(N+1, mod);\n\n ll initEnvN = power(N, mod - 2, mod) % mod;\n ll invN = A * power(N * 100, mod - 2, mod) % mod;\n\n StarrySkyTree seg(K+1);\n\n int r = min(1+N, K);\n seg.add(1, r, initEnvN);\n ans += max(0, N+1 - r) * initEnvN;\n\n\n for(int i=1; i<K; i++) {\n ll p = seg.query(i, i+1);\n\n int r = min(i+N+1, K);\n seg.add(i+1, r, invN * p % mod);\n ans += max(0, i+N+1 - r) * invN % mod * p % mod;\n ans %= mod;\n\n debug(i+1);\n debug(r);\n debug(i+N+1);\n }\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 7084, "score_of_the_acc": -0.4245, "final_rank": 8 }, { "submission_id": "aoj_3072_3879190", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define F first\n#define S second\n#define R cin>>\n#define Z class\n#define ll long long\n#define ln cout<<'\\n'\n#define in(a) insert(a)\n#define pb(a) push_back(a)\n#define pd(a) printf(\"%.10f\\n\",a)\n#define mem(a) memset(a,0,sizeof(a))\n#define all(c) (c).begin(),(c).end()\n#define iter(c) __typeof((c).begin())\n#define rrep(i,n) for(ll i=(ll)(n)-1;i>=0;i--)\n#define REP(i,m,n) for(ll i=(ll)(m);i<(ll)(n);i++)\n#define rep(i,n) REP(i,0,n)\n#define tr(it,c) for(iter(c) it=(c).begin();it!=(c).end();it++)\ntemplate<Z A>void pr(A a){cout<<a;ln;}\ntemplate<Z A,Z B>void pr(A a,B b){cout<<a<<' ';pr(b);}\ntemplate<Z A,Z B,Z C>void pr(A a,B b,C c){cout<<a<<' ';pr(b,c);}\ntemplate<Z A,Z B,Z C,Z D>void pr(A a,B b,C c,D d){cout<<a<<' ';pr(b,c,d);}\ntemplate<Z A>void PR(A a,ll n){rep(i,n){if(i)cout<<' ';cout<<a[i];}ln;}\nll check(ll n,ll m,ll x,ll y){return x>=0&&x<n&&y>=0&&y<m;}\nconst ll MAX=998244353,MAXL=1LL<<61,dx[4]={-1,0,1,0},dy[4]={0,1,0,-1};\ntypedef pair<ll,ll> P;\n\nvoid extended_euclid(ll x,ll y,ll *c,ll *a,ll *b){\n ll a0,a1,a2,b0,b1,b2,r0,r1,r2,q;r0=x;r1=y;a0=1;a1=0;b0=0;b1=1;\n while(r1>0){q=r0/r1;r2=r0%r1;a2=a0-q*a1;b2=b0-q*b1;r0=r1;r1=r2;a0=a1;a1=a2;b0=b1;b1=b2;}\n *c=r0;*a=a0;*b=b0;\n}\n\nll get_inv(ll n, ll p){\n ll a,b,c;\n extended_euclid(n,p,&c,&a,&b);\n if(a<p) a+=p;\n return a%p;\n}\n\nint N=1<<18;\nclass StarrySkyTree{\npublic:\n ll Mi[555555],A[555555];\n void init(){memset(Mi,0,sizeof(Mi)),memset(A,0,sizeof(A));}\n void add(int a,int b,ll x,int k=0,int l=0,int r=N) {\n if(r<=a||b<=l) return;\n if(a<=l&&r<=b){\n A[k]+=x;\n A[k]%=MAX;\n while(k){\n k=(k-1)/2;\n Mi[k]=min(Mi[k*2+1]+A[k*2+1],Mi[k*2+2]+A[k*2+2])%MAX;\n }\n return;\n }\n add(a,b,x,k*2+1,l,(l+r)/2);\n add(a,b,x,k*2+2,(l+r)/2,r);\n }\n ll getMin(int a,int b,int k=0,int l=0,int r=N) {\n if(r<=a||b<=l)return MAX;if(a<=l&&r<=b)return (Mi[k]+A[k])%MAX;\n ll left=getMin(a,b,k*2+1,l,(l+r)/2),right=getMin(a,b,k*2+2,(l+r)/2,r);\n return (min(left,right)+A[k])%MAX;\n }\n};\n\nStarrySkyTree t,r;\n\nvoid Main() {\n t.init();\n r.init();\n ll n,m,a;\n cin >> n >> m >> a;\n t.add(0,1,1);\n r.add(0,1,1);\n rep(i,m) {\n ll x=t.getMin(i,i+1);\n t.add(i+1,min(m,i+n+1),x*a%MAX*get_inv(100,MAX)%MAX*get_inv(n,MAX)%MAX);\n t.add(min(m,i+n+1),i+n+1,x*get_inv(n,MAX)%MAX);\n }\n ll ans=0;\n REP(i,m,m+n+1) {\n ans+=t.getMin(i,i+1);\n ans%=MAX;\n }\n pr(ans);\n}\n\nint main(){ios::sync_with_stdio(0);cin.tie(0);Main();return 0;}", "accuracy": 1, "time_ms": 200, "memory_kb": 20600, "score_of_the_acc": -1.7808, "final_rank": 18 }, { "submission_id": "aoj_3072_3879184", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define F first\n#define S second\n#define R cin>>\n#define Z class\n#define ll long long\n#define ln cout<<'\\n'\n#define in(a) insert(a)\n#define pb(a) push_back(a)\n#define pd(a) printf(\"%.10f\\n\",a)\n#define mem(a) memset(a,0,sizeof(a))\n#define all(c) (c).begin(),(c).end()\n#define iter(c) __typeof((c).begin())\n#define rrep(i,n) for(ll i=(ll)(n)-1;i>=0;i--)\n#define REP(i,m,n) for(ll i=(ll)(m);i<(ll)(n);i++)\n#define rep(i,n) REP(i,0,n)\n#define tr(it,c) for(iter(c) it=(c).begin();it!=(c).end();it++)\ntemplate<Z A>void pr(A a){cout<<a;ln;}\ntemplate<Z A,Z B>void pr(A a,B b){cout<<a<<' ';pr(b);}\ntemplate<Z A,Z B,Z C>void pr(A a,B b,C c){cout<<a<<' ';pr(b,c);}\ntemplate<Z A,Z B,Z C,Z D>void pr(A a,B b,C c,D d){cout<<a<<' ';pr(b,c,d);}\ntemplate<Z A>void PR(A a,ll n){rep(i,n){if(i)cout<<' ';cout<<a[i];}ln;}\nll check(ll n,ll m,ll x,ll y){return x>=0&&x<n&&y>=0&&y<m;}\nconst ll MAX=998244353,MAXL=1LL<<61,dx[4]={-1,0,1,0},dy[4]={0,1,0,-1};\ntypedef pair<ll,ll> P;\n\nvoid extended_euclid(ll x,ll y,ll *c,ll *a,ll *b){\n ll a0,a1,a2,b0,b1,b2,r0,r1,r2,q;r0=x;r1=y;a0=1;a1=0;b0=0;b1=1;\n while(r1>0){q=r0/r1;r2=r0%r1;a2=a0-q*a1;b2=b0-q*b1;r0=r1;r1=r2;a0=a1;a1=a2;b0=b1;b1=b2;}\n *c=r0;*a=a0;*b=b0;\n}\n\nll get_inv(ll n, ll p){\n ll a,b,c;\n extended_euclid(n,p,&c,&a,&b);\n if(a<p) a+=p;\n return a%p;\n}\n\nint N=1<<18;\nclass StarrySkyTree{\npublic:\n ll Mi[555555],A[555555];\n void init(){memset(Mi,0,sizeof(Mi)),memset(A,0,sizeof(A));}\n void add(int a,int b,ll x,int k=0,int l=0,int r=N) {\n if(r<=a||b<=l) return;\n if(a<=l&&r<=b){\n A[k]+=x;\n while(k){\n k=(k-1)/2;\n Mi[k]=min(Mi[k*2+1]+A[k*2+1],Mi[k*2+2]+A[k*2+2])%MAX;\n }\n return;\n }\n add(a,b,x,k*2+1,l,(l+r)/2);\n add(a,b,x,k*2+2,(l+r)/2,r);\n }\n ll getMin(int a,int b,int k=0,int l=0,int r=N) {\n if(r<=a||b<=l)return LLONG_MAX;if(a<=l&&r<=b)return (Mi[k]+A[k])%MAX;\n ll left=getMin(a,b,k*2+1,l,(l+r)/2),right=getMin(a,b,k*2+2,(l+r)/2,r);\n return (min(left,right)+A[k])%MAX;\n }\n};\n\nStarrySkyTree t,r;\n\nvoid Main() {\n t.init();\n r.init();\n ll n,m,a;\n cin >> n >> m >> a;\n t.add(0,1,1);\n r.add(0,1,1);\n rep(i,m) {\n ll x=t.getMin(i,i+1);\n t.add(i+1,min(m,i+n+1),x*a%MAX*get_inv(100,MAX)%MAX*get_inv(n,MAX));\n t.add(min(m,i+n+1),i+n+1,x*get_inv(n,MAX));\n }\n ll ans=0;\n REP(i,m,m+n+1) {\n ans+=t.getMin(i,i+1);\n ans%=MAX;\n }\n pr(ans);\n}\n\nint main(){ios::sync_with_stdio(0);cin.tie(0);Main();return 0;}", "accuracy": 0.5, "time_ms": 30, "memory_kb": 20560, "score_of_the_acc": -0.8842, "final_rank": 20 }, { "submission_id": "aoj_3072_3879176", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define INF_LL (int64)1e18\n#define INF (int32)1e9\n#define REP(i, n) for(int64 i = 0;i < (n);i++)\n#define FOR(i, a, b) for(int64 i = (a);i < (b);i++)\n#define all(x) x.begin(),x.end()\n#define fs first\n#define sc second\n\nusing int32 = int_fast32_t;\nusing uint32 = uint_fast32_t;\nusing int64 = int_fast64_t;\nusing uint64 = uint_fast64_t;\nusing PII = pair<int32, int32>;\nusing PLL = pair<int64, int64>;\n\nconst double eps = 1e-10;\n\ntemplate<typename A, typename B>inline void chmin(A &a, B b){if(a > b) a = b;}\ntemplate<typename A, typename B>inline void chmax(A &a, B b){if(a < b) a = b;}\n\ntemplate<typename T>\nvector<T> make_v(size_t a){return vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value!=0>::type\nfill_v(U &u,const V... v){u=U(v...);}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value==0>::type\nfill_v(U &u,const V... v){\n for(auto &e:u) fill_v<T>(e,v...);\n}\n\ntemplate<::std::uint_fast64_t mod>\nclass ModInt{\nprivate:\n using value_type = ::std::uint_fast64_t;\n value_type n;\npublic:\n ModInt() : n(0) {}\n ModInt(value_type n_) : n(n_ % mod) {}\n ModInt(const ModInt& m) : n(m.n) {}\n\n template<typename T>\n explicit operator T() const { return static_cast<T>(n); }\n value_type get() const { return n; }\n\n friend ::std::ostream& operator<<(::std::ostream &os, const ModInt<mod> &a) {\n return os << a.n;\n }\n\n friend ::std::istream& operator>>(::std::istream &is, ModInt<mod> &a) {\n value_type x;\n is >> x;\n a = ModInt<mod>(x);\n return is;\n }\n\n bool operator==(const ModInt& m) const { return n == m.n; }\n bool operator!=(const ModInt& m) const { return n != m.n; }\n ModInt& operator*=(const ModInt& m){ n = n * m.n % mod; return *this; }\n\n ModInt pow(value_type b) const{\n ModInt ans = 1, m = ModInt(*this);\n while(b){\n if(b & 1) ans *= m;\n m *= m;\n b >>= 1;\n }\n return ans;\n }\n\n ModInt inv() const { return (*this).pow(mod-2); }\n ModInt& operator+=(const ModInt& m){ n += m.n; n = (n < mod ? n : n - mod); return *this; }\n ModInt& operator-=(const ModInt& m){ n += mod - m.n; n = (n < mod ? n : n - mod); return *this; }\n ModInt& operator/=(const ModInt& m){ *this *= m.inv(); return *this; }\n ModInt operator+(const ModInt& m) const { return ModInt(*this) += m; }\n ModInt operator-(const ModInt& m) const { return ModInt(*this) -= m; }\n ModInt operator*(const ModInt& m) const { return ModInt(*this) *= m; }\n ModInt operator/(const ModInt& m) const { return ModInt(*this) /= m; }\n ModInt& operator++(){ n += 1; return *this; }\n ModInt& operator--(){ n -= 1; return *this; }\n ModInt operator++(int){\n ModInt old(n);\n n += 1;\n return old;\n }\n ModInt operator--(int){\n ModInt old(n);\n n -= 1;\n return old;\n }\n ModInt operator-() const { return ModInt(mod-n); }\n};\n\n\ntemplate<class ValueMonoid, class OperatorMonoid, class Modifier,\n template<class...> class Container=::std::vector>\nclass LazySegTree{\npublic:\n using value_structure = ValueMonoid;\n using value_type = typename value_structure::value_type;\n using operator_structure = OperatorMonoid;\n using operator_type = typename operator_structure::value_type;\n using modifier = Modifier;\n using const_reference = const value_type &;\n using container_value_type = Container<value_type>;\n using container_operator_type = Container<operator_type>;\n using size_type = typename container_value_type::size_type;\n\nprivate:\n container_value_type tree;\n container_operator_type lazy;\n size_type size_, height;\n\n static size_type getsize(const size_type x){\n size_type ret = 1;\n while(ret < x)\n ret <<= 1;\n return ret;\n }\n\n static size_type getheight(const size_type x){\n size_type ret = 0;\n while((static_cast<size_type>(1) << ret) < x){\n ret++;\n }\n return ret;\n }\n\n inline static value_type calc(const value_type a, const value_type b){\n return value_structure::operation(a, b);\n }\n\n inline static void apply(operator_type &data, const operator_type a){\n data = operator_structure::operation(data, a);\n }\n\n inline static value_type reflect(const value_type v, const operator_type o){\n return modifier::operation(v, o);\n }\n\n void push(const size_type index){\n tree[index] = reflect(tree[index], lazy[index]);\n apply(lazy[index << 1], lazy[index]);\n apply(lazy[index << 1 | 1], lazy[index]);\n lazy[index] = operator_structure::identity();\n }\n\n void calc_node(const size_type index){\n if(tree.size() <= (index << 1 | 1)) return;\n assert(0 < index);\n tree[index] = calc(reflect(tree[index << 1], lazy[index << 1]),\n reflect(tree[index << 1 | 1], lazy[index << 1 | 1]));\n }\n\n void build(size_type index){\n while(index >>= 1){\n calc_node(index);\n }\n }\n\n void propagate(const size_type index){\n for(size_type shift = height; shift ; --shift){\n push(index >> shift);\n }\n }\n\n void rebuild(){\n for(size_type i = size_-1;i > 0;--i){\n calc_node(i);\n }\n }\npublic:\n LazySegTree() : size_(0), height(0), tree(), lazy(){}\n LazySegTree(const size_type size)\n : size_(size), height(getheight(size)),\n tree(size << 1, value_structure::initializer()),\n lazy(size << 1, operator_structure::identity()){\n rebuild();\n }\n template<class InputIterator>\n LazySegTree(InputIterator first, InputIterator last)\n : size_(::std::distance(first, last)){\n height = getheight(size_);\n tree = container_value_type(size_, value_structure::identity());\n lazy = container_operator_type(size_ << 1, operator_structure::identity());\n tree.insert(tree.end(), first, last);\n rebuild();\n }\n\n size_type size() const { return size_; }\n const_reference operator[](const size_type k){\n assert(k < size_);\n propagate(k+size_);\n tree[k+size_] = reflect(tree[k+size_], lazy[k+size_]);\n lazy[k+size_] = operator_structure::identity();\n return tree[k+size_];\n }\n\n value_type query(size_type l, size_type r){\n assert(l <= r);\n assert(0 <= l && l < size_);\n assert(0 <= r && r <= size_);\n value_type retl = value_structure::identity(),\n retr = value_structure::identity();\n l += size_;\n r += size_;\n propagate(l);\n propagate(r-1);\n for(; l < r ; l >>= 1, r >>= 1){\n if(l&1){\n retl = calc(retl, reflect(tree[l], lazy[l]));\n l++;\n }\n if(r&1){\n r--;\n retr = calc(reflect(tree[r], lazy[r]), retr);\n }\n }\n return calc(retl, retr);\n }\n\n void update(size_type l, size_type r, const operator_type& data){\n assert(l <= r);\n assert(0 <= l && l < size_);\n assert(0 <= r && r <= size_);\n l += size_;\n r += size_;\n propagate(l);\n propagate(r - 1);\n for(size_type l_ = l, r_ = r; l_ < r_ ; l_ >>= 1, r_ >>= 1){\n if(l_ & 1) apply(lazy[l_++], data);\n if(r_ & 1) apply(lazy[--r_], data);\n }\n build(l);\n build(r - 1);\n }\n\n template<class F>\n void update(size_type index, const F& f){\n assert(0 <= index && index < size());\n index += size_;\n propagate(index);\n tree[index] = f(::std::move(tree[index]));\n lazy[index] = operator_structure::identity();\n build(index);\n }\n\n /*\n template<class F>\n size_type search(const F& f) const { // [0, result) is True and [0, result-1) is not.\n if(f(value_structure::identity()))\n return 0;\n if(!f(tree[1]))\n return size_+1;\n value_type acc = value_structure::identity();\n size_type i = 1;\n while(i <\n }\n */\n};\n\nconstexpr int64 mod = 998244353;\nusing Mint = ModInt<mod>;\n\nclass v_monoid {\npublic:\n using value_type = Mint;\n static value_type identity() { return 0; }\n static value_type initializer() { return 0; }\n static value_type operation(const value_type& a, const value_type& b){\n return a+b;\n }\n};\n\nclass o_monoid {\npublic:\n using value_type = Mint;\n static value_type identity() { return 0; }\n static value_type operation(const value_type& a, const value_type& b){\n return a+b;\n }\n};\n\nclass modifier {\npublic:\n static Mint operation(const Mint& a, const Mint& b){\n return a+b;\n }\n};\n\nint main(void){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tint64 N, K;\n\tMint A;\n\tcin >> N >> K >> A;\n\tA /= 100;\n\tLazySegTree<v_monoid, o_monoid, modifier> lsg(N+K+1);\n\tlsg.update(0, [](const Mint& a) { return 1; });\n\tFOR(i, 0, K) {\n\t Mint val = lsg.query(i, i+1)*(i == 0 ? 1 : A);\n\t lsg.update(i+1, i+N+1, val/N);\n\t}\n\tMint sum = 0;\n\tFOR(i, K, N+K) {\n\t sum += lsg.query(i, i+1);\n\t}\n\tcout << sum << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 9088, "score_of_the_acc": -0.5163, "final_rank": 10 }, { "submission_id": "aoj_3072_3879138", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <cctype>\n#include <chrono>\n#define _USE_MATH_DEFINES\n#include <cmath>\n#include <cstdio>\n#include <cstring>\n#include <ctime>\n#include <deque>\n#include <functional>\n#include <iostream>\n#include <iterator>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <sstream>\n#include <string>\n#include <tuple>\n#include <utility>\n#include <vector>\nusing namespace std;\n\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\n\nconst int INF = 0x3f3f3f3f;\nconst long long LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n/*-------------------------------------------------*/\nint mod = MOD;\nstruct ModInt {\n unsigned val;\n ModInt(): val(0) {}\n ModInt(long long x) : val(x >= 0 ? x % mod : x % mod + mod) {}\n ModInt pow(long long exponent) {\n ModInt tmp = *this, res = 1;\n while (exponent > 0) {\n if (exponent & 1) res *= tmp;\n tmp *= tmp;\n exponent >>= 1;\n }\n return res;\n }\n ModInt &operator+=(const ModInt &rhs) { if((val += rhs.val) >= mod) val -= mod; return *this; }\n ModInt &operator-=(const ModInt &rhs) { if((val += mod - rhs.val) >= mod) val -= mod; return *this; }\n ModInt &operator*=(const ModInt &rhs) { val = (unsigned long long)val * rhs.val % mod; return *this; }\n ModInt &operator/=(const ModInt &rhs) { return *this *= rhs.inv(); }\n bool operator==(const ModInt &rhs) const { return val == rhs.val; }\n bool operator!=(const ModInt &rhs) const { return val != rhs.val; }\n bool operator<(const ModInt &rhs) const { return val < rhs.val; }\n bool operator<=(const ModInt &rhs) const { return val <= rhs.val; }\n bool operator>(const ModInt &rhs) const { return val > rhs.val; }\n bool operator>=(const ModInt &rhs) const { return val >= rhs.val; }\n ModInt operator-() const { return ModInt(-val); }\n ModInt operator+(const ModInt &rhs) const { return ModInt(*this) += rhs; }\n ModInt operator-(const ModInt &rhs) const { return ModInt(*this) -= rhs; }\n ModInt operator*(const ModInt &rhs) const { return ModInt(*this) *= rhs; }\n ModInt operator/(const ModInt &rhs) const { return ModInt(*this) /= rhs; }\n friend ostream &operator<<(ostream &os, const ModInt &rhs) { return os << rhs.val; }\n friend istream &operator>>(istream &is, ModInt &rhs) { long long x; is >> x; rhs = ModInt(x); return is; }\nprivate:\n ModInt inv() const {\n // if (__gcd((int)val, mod) != 1) assert(false);\n unsigned a = val, b = mod; int x = 1, y = 0;\n while (b) {\n unsigned tmp = a / b;\n swap(a -= tmp * b, b);\n swap(x -= tmp * y, y);\n }\n return ModInt(x);\n }\n};\nModInt abs(const ModInt &x) { return x.val; }\nstruct Combinatorics {\n Combinatorics(int MAX = 5000000) {\n MAX <<= 1;\n fact.resize(MAX + 1);\n fact_inv.resize(MAX + 1);\n fact[0] = 1;\n FOR(i, 1, MAX + 1) fact[i] = fact[i - 1] * i;\n fact_inv[MAX] = ModInt(1) / fact[MAX];\n for (int i = MAX; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i;\n }\n ModInt nCk(int n, int k) {\n if (n < 0 || n < k || k < 0) return ModInt(0);\n return fact[n] * fact_inv[k] * fact_inv[n - k];\n }\n ModInt nPk(int n, int k) {\n if (n < 0 || n < k || k < 0) return ModInt(0);\n return fact[n] * fact_inv[n - k];\n }\n ModInt nHk(int n, int k) {\n if (n < 0 || k < 0) return ModInt(0);\n return (k == 0 ? ModInt(1) : nCk(n + k - 1, k));\n }\nprivate:\n vector<ModInt> fact, fact_inv;\n};\n\ntemplate <typename Monoid>\nstruct StarrySky {\n StarrySky(int sz, const Monoid &UNITY, const Monoid &DEFAULT = 0) : UNITY(UNITY), DEFAULT(DEFAULT) {\n init(sz);\n dat.assign((n << 1) - 1, DEFAULT);\n }\n\n StarrySky(const vector<Monoid> &a, const Monoid &UNITY, const Monoid &DEFAULT = 0) : UNITY(UNITY), DEFAULT(DEFAULT) {\n int a_sz = a.size();\n init(a_sz);\n dat.resize((n << 1) - 1);\n REP(i, a_sz) dat[n - 1 + i] = a[i];\n for (int i = n - 2; i >= 0; --i) dat[i] = min(dat[(i << 1) + 1], dat[(i << 1) + 2]);\n }\n\n void add(int a, int b, const Monoid &value) { add(a, b, value, 0, 0, n); }\n\n Monoid query(int a, int b) { return query(a, b, 0, 0, n); }\n\n Monoid value(int idx) {\n idx += n - 1;\n Monoid res = added[idx];\n while (idx > 0) {\n idx = (idx - 1) >> 1;\n res += added[idx];\n }\n return res;\n }\n\nprivate:\n int n = 1;\n const Monoid UNITY, DEFAULT;\n vector<Monoid> dat, added;\n\n void init(int sz) {\n while (n < sz) n <<= 1;\n added.assign((n << 1) - 1, DEFAULT);\n }\n\n void add(int a, int b, const Monoid &value, int node, int left, int right) {\n if (right <= a || b <= left) return;\n if (a <= left && right <= b) {\n added[node] += value;\n } else {\n add(a, b, value, (node << 1) + 1, left, (left + right) >> 1);\n add(a, b, value, (node << 1) + 2, (left + right) >> 1, right);\n dat[node] = min(dat[(node << 1) + 1] + added[(node << 1) + 1], dat[(node << 1) + 2] + added[(node << 1) + 2]);\n }\n }\n\n Monoid query(int a, int b, int node, int left, int right) {\n if (right <= a || b <= left) return UNITY;\n if (a <= left && right <= b) return dat[node] + added[node];\n return min(query(a, b, (node << 1) + 1, left, (left + right) >> 1), query(a, b, (node << 1) + 2, (left + right) >> 1, right)) + added[node];\n }\n};\n\n// yet-to-be-fixed\n// template <typename Abelian>\n// struct RAQ {\n// RAQ(int n_, const Abelian &UNITY = 0) : n(n_), UNITY(UNITY) {\n// ++n;\n// dat.assign(n, UNITY);\n// }\n\n// void add(int left, int right, const Abelian &value) {\n// while (left < n) {\n// dat[left] += value;\n// left += left & -left;\n// }\n// ++right;\n// while (right < n) {\n// dat[right] += -value;\n// right += right & -right;\n// }\n// }\n\n// Abelian query(int idx) {\n// Abelian res = UNITY;\n// while (idx > 0) {\n// res += dat[idx];\n// idx -= idx & -idx;\n// }\n// return res;\n// }\n\n// private:\n// int n;\n// const Abelian UNITY;\n// vector<Abelian> dat;\n// };\n\nint main() {\n cin.tie(nullptr); ios::sync_with_stdio(false);\n // freopen(\"input.txt\", \"r\", stdin);\n\n int n, k, a; cin >> n >> k >> a;\n if (k == 1) {\n cout << 1 << '\\n';\n return 0;\n }\n StarrySky<ModInt> ss(k, ModInt(0));\n ModInt ans = 0;\n ss.add(0, 1, 1);\n REP(i, k) {\n int len = i + n;\n ss.add(i + 1, min(i + n + 1, k), ss.value(i) / n * a / 100);\n if (len >= k) ans += ss.value(i) / n * (len - k + 1);\n }\n cout << ans << '\\n';\n\n // RAQ<ModInt> raq(k);\n // ModInt ans = 0;\n // raq.add(1, 1, 1);\n // REP(i, k) {\n // int len = i + n;\n // raq.add(i + 2, min(i + n + 1, k), raq.query(i + 1) / n * a / 100);\n // if (len >= k) ans += raq.query(i + 1) / n * (len - k + 1);\n // }\n // cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 4964, "score_of_the_acc": -0.2747, "final_rank": 6 } ]
aoj_3081_cpp
Problem 長さ $N$ の数列 $S$ があります。ここで数列 $S$ の各要素を整数 $i$ を用いて $S_i \ (0 \le i \lt N)$ と表します。 以下の条件を全て満たす整数の組 $(a, b, c)$ の個数を数えてください。 $0 \le a \le b \lt N$ $0 \le c \le b - a$ 長さ $N$ の数列 $T$ の各要素 $T_i \ (0 \le i \lt N)$ を以下のように定めたとき、数列 $S$ が数列 $T$ と等しい。 \begin{equation*} T_i = \left \{ \begin{array}{ll} S_{a + ((i - a + c) \bmod (b - a + 1))}& {\rm if} \ \ \ a \le i \le b\\ S_i& {\rm otherwise} \\ \end{array} \right. \end{equation*} ただし、非負整数 $x$ と 正の整数 $y$ に対し $x \bmod y$ とは $x$ を $y$ で割ったあまりを表します。 Input 入力は以下の形式で与えられる。 $N$ $S_0$ $S_1$ $...$ $S_{N-1}$ Constraints 入力は以下の条件を満たす。 $1 \le N \le 2 \times 10^5$ $0 \le $ $S_i$ $\le 10^9$ 入力はすべて整数である Ouput 答えを一行に出力せよ。 Sample Input 1 3 1 2 2 Sample Output 1 7 条件を満たす組は $(0,0,0),(0,1,0),(0,2,0),(1,1,0),(1,2,0),(1,2,1),(2,2,0)$ の $7$ 個です。 Sample Input 2 10 1 2 1 2 3 1 2 1 2 3 Sample Output 2 58 Sample Input 3 17 7 0 7 3 3 1 1 3 0 4 1 6 3 9 3 0 2 Sample Output 3 155
[ { "submission_id": "aoj_3081_4878808", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3081\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\n// longest common prefix of s and s[i:n]\ntemplate<typename T>\nvector<int> zalgorithm(vector<T> vs){\n int n=vs.size();\n vector<int> as(n+1,0);\n as[0]=n;\n int i=1,j=0;\n while(i<n){\n while(i+j<n&&vs[j]==vs[i+j]) j++;\n as[i]=j;\n if(j==0){\n i++;\n continue;\n }\n int k=1;\n while(i+k<n&&k+as[k]<j) as[i+k]=as[k],k++;\n i+=k;\n j-=k;\n }\n return as;\n}\nvector<int> zalgorithm(string s){\n return zalgorithm(vector<char>(s.begin(),s.end()));\n}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"zalgorithm.cpp\"\n#undef call_from_test\n\n#endif\n//BEGIN CUT HERE\nnamespace Run{\n using T = tuple<int, int, int>;\n using P = pair<int, int>;\n vector<vector<P>> run;\n\n template<typename C>\n vector<T> sub(const vector<C> &xs,const vector<C> &ys){\n auto ps=xs;\n auto qs=ys;\n reverse(ps.begin(),ps.end());\n qs.insert(qs.end(),xs.begin(),xs.end());\n qs.insert(qs.end(),ys.begin(),ys.end());\n auto zp=zalgorithm(ps);\n auto zq=zalgorithm(qs);\n vector<T> res;\n for(int i=0;i<(int)xs.size();i++){\n int a=xs.size()-i;\n int b=i-zp[a];\n int c=max(0,(int)ys.size()-zq[ys.size()+i]);\n if((int)(xs.size()+ys.size())-b-c>=2*a)\n res.emplace_back(a,b,c);\n }\n return res;\n }\n\n template<typename C>\n void dfs(int l,int r,const vector<C> &cs){\n if(l+1>=r) return;\n int m=(l+r)>>1;\n vector<C> xs(cs.begin()+l,cs.begin()+m);\n vector<C> ys(cs.begin()+m,cs.begin()+r);\n {\n auto zs=sub(xs,ys);\n for(auto w:zs){\n int a,b,c;\n tie(a,b,c)=w;\n run[a].emplace_back(l+b,r-c);\n }\n }\n reverse(xs.begin(),xs.end());\n reverse(ys.begin(),ys.end());\n {\n auto zs=sub(ys,xs);\n for(auto w:zs){\n int a,b,c;\n tie(a,b,c)=w;\n run[a].emplace_back(l+c,r-b);\n }\n }\n dfs(l,m,cs);\n dfs(m,r,cs);\n }\n\n // return all t (not only minimal)\n template<typename C>\n vector<vector<P>> enumerate(const vector<C> &cs){\n int n=cs.size();\n run.clear();\n run.resize(n+1);\n dfs(0,n,cs);\n\n auto cmp=[&](P a,P b){return P(a.first,-a.second)<P(b.first,-b.second);};\n for(int i=1;i<=n;i++){\n auto &rs=run[i];\n sort(rs.begin(),rs.end(),cmp);\n int mx=-1;\n vector<P> tmp;\n for(auto p:rs){\n if(mx<p.second){\n tmp.emplace_back(p);\n mx=p.second;\n }\n }\n rs=tmp;\n }\n return run;\n }\n\n vector<vector<P>> enumerate(string ss){\n return enumerate(vector<char>(ss.begin(),ss.end()));\n }\n};\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n;\n cin>>n;\n vector<int> as(n);\n for(int i=0;i<n;i++) cin>>as[i];\n\n auto run=Run::enumerate(as);\n using ll = long long;\n vector<ll> dp(n+1,0),sm(n+1,0);\n for(ll i=1;i<=n;i++){\n dp[i]=dp[i-1]+(i-1)*1;\n sm[i]=sm[i-1]+(i-1)*i;\n }\n\n auto calc=[&](ll t,ll len)->ll{\n return (len+1)*dp[len/t]-t*sm[len/t];\n };\n\n ll ans=(ll)n*(n+1)/2;\n set<Run::P> used;\n for(int t=1;t<=n;t++){\n for(auto p:run[t]){\n if(used.count(p)) continue;\n used.emplace(p);\n ans+=calc(t,p.second-p.first);\n }\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 49956, "score_of_the_acc": -0.6305, "final_rank": 7 }, { "submission_id": "aoj_3081_4878805", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\n// longest common prefix of s and s[i:n]\ntemplate<typename T>\nvector<int> zalgorithm(vector<T> vs){\n int n=vs.size();\n vector<int> as(n+1,0);\n as[0]=n;\n int i=1,j=0;\n while(i<n){\n while(i+j<n&&vs[j]==vs[i+j]) j++;\n as[i]=j;\n if(j==0){\n i++;\n continue;\n }\n int k=1;\n while(i+k<n&&k+as[k]<j) as[i+k]=as[k],k++;\n i+=k;\n j-=k;\n }\n return as;\n}\nvector<int> zalgorithm(string s){\n return zalgorithm(vector<char>(s.begin(),s.end()));\n}\n\n\nnamespace Run{\n using T = tuple<int, int, int>;\n using P = pair<int, int>;\n vector<vector<P>> run;\n\n template<typename C>\n vector<T> sub(const vector<C> &xs,const vector<C> &ys){\n auto ps=xs;\n auto qs=ys;\n reverse(ps.begin(),ps.end());\n qs.insert(qs.end(),xs.begin(),xs.end());\n qs.insert(qs.end(),ys.begin(),ys.end());\n auto zp=zalgorithm(ps);\n auto zq=zalgorithm(qs);\n vector<T> res;\n for(int i=0;i<(int)xs.size();i++){\n int a=xs.size()-i;\n int b=i-zp[a];\n int c=max(0,(int)ys.size()-zq[ys.size()+i]);\n if((int)(xs.size()+ys.size())-b-c>=2*a)\n res.emplace_back(a,b,c);\n }\n return res;\n }\n\n template<typename C>\n void dfs(int l,int r,const vector<C> &cs){\n if(l+1>=r) return;\n int m=(l+r)>>1;\n vector<C> xs(cs.begin()+l,cs.begin()+m);\n vector<C> ys(cs.begin()+m,cs.begin()+r);\n {\n auto zs=sub(xs,ys);\n for(auto w:zs){\n int a,b,c;\n tie(a,b,c)=w;\n run[a].emplace_back(l+b,r-c);\n }\n }\n reverse(xs.begin(),xs.end());\n reverse(ys.begin(),ys.end());\n {\n auto zs=sub(ys,xs);\n for(auto w:zs){\n int a,b,c;\n tie(a,b,c)=w;\n run[a].emplace_back(l+c,r-b);\n }\n }\n dfs(l,m,cs);\n dfs(m,r,cs);\n }\n\n // return all t (not only minimal)\n template<typename C>\n vector<vector<P>> enumerate(const vector<C> &cs){\n int n=cs.size();\n run.clear();\n run.resize(n+1);\n dfs(0,n,cs);\n\n auto cmp=[&](P a,P b){return P(a.first,-a.second)<P(b.first,-b.second);};\n for(int i=1;i<=n;i++){\n auto &rs=run[i];\n sort(rs.begin(),rs.end(),cmp);\n int mx=-1;\n vector<P> tmp;\n for(auto p:rs){\n if(mx<p.second){\n tmp.emplace_back(p);\n mx=p.second;\n }\n }\n rs=tmp;\n }\n return run;\n }\n\n vector<vector<P>> enumerate(string ss){\n return enumerate(vector<char>(ss.begin(),ss.end()));\n }\n};\n\n//INSERT ABOVE HERE\nsigned main(){\n int n;\n cin>>n;\n vector<int> as(n);\n for(int i=0;i<n;i++) cin>>as[i];\n\n auto run=Run::enumerate(as);\n using ll = long long;\n vector<ll> dp(n+1,0),sm(n+1,0);\n for(ll i=1;i<=n;i++){\n dp[i]=dp[i-1]+(i-1)*1;\n sm[i]=sm[i-1]+(i-1)*i;\n }\n\n auto calc=\n [&](ll t,ll len)->ll{\n return (len+1)*dp[len/t]-t*sm[len/t];\n };\n\n ll ans=(ll)n*(n+1)/2;\n set<Run::P> used;\n for(int t=1;t<=n;t++){\n for(auto p:run[t]){\n if(used.count(p)) continue;\n used.emplace(p);\n ans+=calc(t,p.second-p.first);\n }\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 49668, "score_of_the_acc": -0.6016, "final_rank": 5 }, { "submission_id": "aoj_3081_4866080", "code_snippet": "#include<bits/stdc++.h>\n#define popcount __builtin_popcount\n\nusing namespace std;\n\n#define int long long\n#define endl \"\\n\"\n\n// typedef long long int ll;\ntypedef pair<int, int> P;\n\nvector< int > z_algorithm(const vector<int> &s) {\n vector< int > prefix(s.size());\n for(int i = 1, j = 0; i < s.size(); i++) {\n if(i + prefix[i - j] < j + prefix[j]) {\n prefix[i] = prefix[i - j];\n } else {\n int k = max(0ll, j + prefix[j] - i);\n while(i + k < s.size() && s[k] == s[i + k]) ++k;\n prefix[i] = k;\n j = i;\n }\n }\n prefix[0] = (int) s.size();\n return prefix;\n}\nvector<int> s;\nvector<pair<int, P>> ans;\nvoid solve(int l, int r){\n\tif(r-l<1) return;\n\tint m=(l+r)/2;\n\tint n=r-l+1;\n\tvector<int> s1, s2;\n\t// for(int i=m; i>=l; i--) s1+=s[i];\n\tfor(int i=m; i>=l; i--) s1.push_back(s[i]);\n\t// s1+='#';\n\ts1.push_back(-1);\n\t// for(int i=r; i>=l; i--) s1+=s[i];\n\tfor(int i=r; i>=l; i--) s1.push_back(s[i]);\n\t// for(int i=m+1; i<=r; i++) s2+=s[i];\n\tfor(int i=m+1; i<=r; i++) s2.push_back(s[i]);\n\t// s2+='#';\n\ts2.push_back(-1);\n\t// for(int i=l; i<=r; i++) s2+=s[i];\n\tfor(int i=l; i<=r; i++) s2.push_back(s[i]);\n\tvector<int> z1=z_algorithm(s1), z2=z_algorithm(s2);\n\tvector<int> used(n);\n\tfor(int i=m; i>=l; i--){\n\t\tif(used[i-l]) continue;\n\t\tint t=m-i+1;\n\t\tint x=z1[t], y=z2[r-m+i-l+1];\n\t\tif(x+y>=t && y>0 && !(m-t-x>=0 && s[m-t-x]==s[m-x]) && !(m+y+1<s.size() && s[m+y+1]==s[m+y+1-t])) ans.push_back({t, {m-t-x+1, m+y+1}});\n\t\tfor(int j=m-t+1; m-j+1<=x+t; j-=t) used[j-l]=1;\n\t\tfor(int j=m+t; j<=m+y; j+=t) used[j-l]=1;\n\t}\n\tfor(int i=m+1; i<=r; i++){\n\t\tif(used[i-l]) continue;\n\t\tint t=i-m;\n\t\tint x=z1[m-l+2+r-i], y=z2[t];\n\t\tif(x+y>=t && x>0 && !(m-x>=0 && s[m-x]==s[m-x+t]) && !(m+t+y+1<s.size() && s[m+t+y+1]==s[m+y+1])) ans.push_back({t, {m+1-x, m+t+y+1}});\n\t\tfor(int j=i; j<=m+t+y; j+=t) used[j-l]=1;\n\t}\n\tsolve(l, m);\n\tsolve(m+1, r);\n}\n\nint solve4(vector<int> &A) {\n\tint res = (int)A.size()*(A.size()+1)/2;\n\t\n\ts = A;\n\tans.clear();\n\t\n\t\n\tsolve(0, (int)s.size()-1);\n\t\n\tfor(int i = 0; i < ans.size(); i++){\n\t\tint x = ans[i].second.second - ans[i].second.first;\n\t\tint num = x / ans[i].first;\n\t\t\n\t\tnum--;\n\n\t\t\n\t\tres += ((num * (num + 1)/ 2 + num * (num + 1) * (2 * num + 1) / 6) / 2 ) * (x%ans[i].first + 1);\n\t\tnum--;\n\t\tres += ((num * (num + 1)/ 2 + num * (num + 1) * (2 * num + 1) / 6) / 2 ) * (ans[i].first - (x%ans[i].first + 1));\n\t}\n\t\n\treturn res;\t\n}\n\nsigned main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\t\n\tint N;\n\tvector<int> A, A2, A3, A4;\n\t\n\tcin>>N;\n\t\n\tA.resize(N);\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tcin>>A[i];\n\t}\n\t\n\tcout<<solve4(A)<<endl;\n\t\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 34160, "score_of_the_acc": -0.3025, "final_rank": 3 }, { "submission_id": "aoj_3081_4856193", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <iomanip>\n#define vll vector<ll>\n#define vvvl vector<vvl>\n#define vvl vector<vector<ll>>\n#define VV(a, b, c, d) vector<vector<d>>(a, vector<d>(b, c))\n#define VVV(a, b, c, d) vector<vvl>(a, vvl(b, vll (c, d)));\n#define re(c, b) for(ll c=0;c<b;c++)\n#define all(obj) (obj).begin(), (obj).end()\ntypedef long long int ll;\ntypedef long double ld;\nusing namespace std;\n\n\ntypedef array<int, 3> ary;\n// Reference:\n// D. Gusfield,\n// Algorithms on Strings, Trees, and Sequences: Computer Science and\n// Computational Biology\ntemplate <class T> vector<int> z_algorithm(const vector<T>& s) {\n int n = int(s.size());\n if (n == 0) return {};\n vector<int> z(n);\n z[0] = 0;\n for (int i = 1, j = 0; i < n; i++) {\n int& k = z[i];\n k = (j + z[j] <= i) ? 0 : min(j + z[j] - i, z[i - j]);\n while (i + k < n && s[k] == s[i + k]) k++;\n if (j + z[j] < i + z[i]) j = i;\n }\n z[0] = n;\n return z;\n}\n\nvector<int> z_algorithm(const string& s) {\n int n = int(s.size());\n vector<int> s2(n);\n for (int i = 0; i < n; i++) {\n s2[i] = s[i];\n }\n return z_algorithm(s2);\n}\n\ntemplate<typename T, T INF>\nvoid Main_Lorentz(const vector<T>& s, const vector<T>& rev, vector<ary>& ret, int l=0, int r=-1){\n int n = (int)s.size();\n if(r==-1) r = (int)s.size();\n if(r-l<2) return;\n int mid = (l + r)/2;\n\n vector<T> L(mid-l), R(r-mid), R2(r-mid+1+r-l), L2(mid-l+1+r-l);\n for(int i=0;i<mid-l;i++) L[i] = L2[i] = rev[n-mid+i];\n for(int i=0;i<r-mid;i++) R[i] = R2[i] = s[mid+i];\n L2[mid-l] = R2[r-mid] = INF;//insert #\n for(int i=0;i<r-l;i++){\n R2[r-mid+1+i] = s[l+i];\n L2[mid-l+1+i] = rev[n-r+i];\n }\n\n vector<int> z1 = z_algorithm<T>(L);\n vector<int> z2 = z_algorithm<T>(R2);\n int len = r - l;\n for(int i=0;i<mid-l;i++){\n int x = i;\n int y = z1[i];\n if(i==0) x = mid - l, y = 0;\n int z = z2[len+1-x];\n int lidx = mid - x - y, ridx = mid + z;\n if(x>0&&z>0&&(y+z)>=x) ret.push_back({x, lidx, ridx});//周期, [l, r)\n }\n z1 = z_algorithm<T>(R);\n z2 = z_algorithm<T>(L2);\n\n for(int i=0;i<r-mid;i++){\n int x = i;\n int y = z1[i];\n if(i==0) x = r-mid, y = 0;\n int z = z2[len+1-x];\n int ridx = n - (n - mid - x - y), lidx = n - (n - mid + z);\n if(x>0&&z>0&&(y+z)>=x) ret.push_back({x, lidx, ridx});//周期, [l, r)\n }\n Main_Lorentz<T, INF>(s, rev, ret, l, mid);\n Main_Lorentz<T, INF>(s, rev, ret, mid, r);\n}\n\ntemplate<typename T, T INF>\nvector<ary> Main_Lorentz(const vector<T>& s){\n int n = (int)s.size();\n //(t, l, r)は周期tを持つ\n //同じ(l, r)での周期を最小にする\n //同じ(l, 周期)でのrを最大化する\n //同じ(r, 周期)でのlを最小化する\n vector<ary> tmp, ret;\n vector<T> t = s;\n reverse(all(t));\n Main_Lorentz<T, INF>(s, t, tmp);\n sort(all(tmp), [&](const ary& x, const ary& y){\n if(x[0]!=y[0]) return x[0] < y[0];\n if(x[1]!=y[1]) return x[1] < y[1];\n return x[2] > y[2];\n });\n int l = 1000000000, r = -1000000000;\n set<array<int, 2>> st;\n for(int i=0;i<(int)tmp.size();i++){\n ary v = tmp[i];\n if(i&&v[0]!=tmp[i-1][0]) l = 1000000000, r = -1000000000;\n if(v[1]>=l&&v[2]<=r) continue;\n if(n<v[2]) continue;\n l = min(l, v[1]);\n r = max(r, v[2]);\n if(st.find({v[1], v[2]})!=st.end()) continue;\n ret.push_back(v);\n st.insert({v[1], v[2]});\n }\n return ret;\n}\n\nvoid Main_Lorentz(const string& s, const string& rev, vector<ary>& ret, int l=0, int r=-1){\n int n = (int)s.size();\n if(r==-1) r = (int)s.size();\n if(r-l<2) return;\n int mid = (l + r)/2;\n\n string L = rev.substr(n-mid, mid - l);\n string R = s.substr(mid, r - mid);\n vector<int> z1 = z_algorithm(L);\n vector<int> z2 = z_algorithm(R + \"#\" + s.substr(l, r - l));\n int len = r - l;\n for(int i=0;i<mid-l;i++){\n int x = i;\n int y = z1[i];\n if(i==0) x = mid - l, y = 0;\n int z = z2[len+1-x];\n int lidx = mid - x - y, ridx = mid + z;\n if(x>0&&z>0&&(y+z)>=x) ret.push_back({x, lidx, ridx});//周期, [l, r)\n }\n z1 = z_algorithm(R);\n z2 = z_algorithm(L + \"#\" + rev.substr(n-r, r - l));\n for(int i=0;i<r-mid;i++){\n int x = i;\n int y = z1[i];\n if(i==0) x = r-mid, y = 0;\n int z = z2[len+1-x];\n int ridx = n - (n - mid - x - y), lidx = n - (n - mid + z);\n if(x>0&&z>0&&(y+z)>=x) ret.push_back({x, lidx, ridx});//周期, [l, r)\n }\n Main_Lorentz(s, rev, ret, l, mid);\n Main_Lorentz(s, rev, ret, mid, r);\n}\n\nvector<ary> Main_Lorentz(const string& s){\n int n = (int)s.size();\n //(t, l, r)は周期tを持つ\n //同じ(l, r)での周期を最小にする\n //同じ(l, 周期)でのrを最大化する\n //同じ(r, 周期)でのlを最小化する\n vector<ary> tmp, ret;\n string t = s;\n reverse(all(t));\n Main_Lorentz(s, t, tmp);\n sort(all(tmp), [&](const ary& x, const ary& y){\n if(x[0]!=y[0]) return x[0] < y[0];\n if(x[1]!=y[1]) return x[1] < y[1];\n return x[2] > y[2];\n });\n int l = 1000000000, r = -1000000000;\n set<array<int, 2>> st;\n for(int i=0;i<(int)tmp.size();i++){\n ary v = tmp[i];\n if(i&&v[0]!=tmp[i-1][0]) l = 1000000000, r = -1000000000;\n if(v[1]>=l&&v[2]<=r) continue;\n if(n<v[2]) continue;\n l = min(l, v[1]);\n r = max(r, v[2]);\n if(st.find({v[1], v[2]})!=st.end()) continue;\n ret.push_back(v);\n st.insert({v[1], v[2]});\n }\n return ret;\n}\n\nint main(){\n ll n;scanf(\"%lld\", &n);\n vector<int> v(n);\n for(int i=0;i<n;i++) scanf(\"%d\", &v[i]);\n auto dat = Main_Lorentz<int, 2000000000>(v);\n ll ans = (n * (n+1))/2;//幅0\n\n for(auto e:dat){\n ll l = e[2] - e[1];\n ll p = e[0];\n ll m = l/p;\n\n ans += m*(m+1)/2*(p+l+1) - m*(m+1)*(2*m+1)/6*p - m*(l+1);\n }\n\n printf(\"%lld\\n\", ans);\n}", "accuracy": 1, "time_ms": 410, "memory_kb": 65088, "score_of_the_acc": -1.2157, "final_rank": 12 }, { "submission_id": "aoj_3081_4856189", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <iomanip>\n#define vll vector<ll>\n#define vvvl vector<vvl>\n#define vvl vector<vector<ll>>\n#define VV(a, b, c, d) vector<vector<d>>(a, vector<d>(b, c))\n#define VVV(a, b, c, d) vector<vvl>(a, vvl(b, vll (c, d)));\n#define re(c, b) for(ll c=0;c<b;c++)\n#define all(obj) (obj).begin(), (obj).end()\ntypedef long long int ll;\ntypedef long double ld;\nusing namespace std;\n\n\ntypedef array<int, 3> ary;\n// Reference:\n// D. Gusfield,\n// Algorithms on Strings, Trees, and Sequences: Computer Science and\n// Computational Biology\ntemplate <class T> vector<int> z_algorithm(const vector<T>& s) {\n int n = int(s.size());\n if (n == 0) return {};\n vector<int> z(n);\n z[0] = 0;\n for (int i = 1, j = 0; i < n; i++) {\n int& k = z[i];\n k = (j + z[j] <= i) ? 0 : min(j + z[j] - i, z[i - j]);\n while (i + k < n && s[k] == s[i + k]) k++;\n if (j + z[j] < i + z[i]) j = i;\n }\n z[0] = n;\n return z;\n}\n\nvector<int> z_algorithm(const string& s) {\n int n = int(s.size());\n vector<int> s2(n);\n for (int i = 0; i < n; i++) {\n s2[i] = s[i];\n }\n return z_algorithm(s2);\n}\n\ntemplate<typename T, T INF>\nvoid Main_Lorentz(const vector<T>& s, const vector<T>& rev, vector<ary>& ret, int l=0, int r=-1){\n int n = (int)s.size();\n if(r==-1) r = (int)s.size();\n if(r-l<2) return;\n int mid = (l + r)/2;\n\n vector<T> L(mid-l), R(r-mid), R2(r-mid+1+r-l), L2(mid-l+1+r-l);\n for(int i=0;i<mid-l;i++) L[i] = L2[i] = rev[n-mid+i];\n for(int i=0;i<r-mid;i++) R[i] = R2[i] = s[mid+i];\n L2[mid-l] = R2[r-mid] = INF;//insert #\n for(int i=0;i<r-l;i++){\n R2[r-mid+1+i] = s[l+i];\n L2[mid-l+1+i] = rev[n-r+i];\n }\n\n vector<int> z1 = z_algorithm<T>(L);\n vector<int> z2 = z_algorithm<T>(R2);\n int len = r - l;\n for(int i=0;i<mid-l;i++){\n int x = i;\n int y = z1[i];\n if(i==0) x = mid - l, y = 0;\n int z = z2[len+1-x];\n int lidx = mid - x - y, ridx = mid + z;\n if(x>0&&z>0&&(y+z)>=x) ret.push_back({x, lidx, ridx});//周期, [l, r)\n }\n z1 = z_algorithm<T>(R);\n z2 = z_algorithm<T>(L2);\n\n for(int i=0;i<r-mid;i++){\n int x = i;\n int y = z1[i];\n if(i==0) x = r-mid, y = 0;\n int z = z2[len+1-x];\n int ridx = n - (n - mid - x - y), lidx = n - (n - mid + z);\n if(x>0&&z>0&&(y+z)>=x) ret.push_back({x, lidx, ridx});//周期, [l, r)\n }\n Main_Lorentz<T, INF>(s, rev, ret, l, mid);\n Main_Lorentz<T, INF>(s, rev, ret, mid, r);\n}\n\ntemplate<typename T, T INF>\nvector<ary> Main_Lorentz(const vector<T>& s){\n int n = (int)s.size();\n //(t, l, r)は周期tを持つ\n //同じ(l, r)での周期を最小にする\n //同じ(l, 周期)でのrを最大化する\n //同じ(r, 周期)でのlを最小化する\n vector<ary> tmp, ret;\n vector<T> t = s;\n reverse(all(t));\n Main_Lorentz<T, INF>(s, t, tmp);\n sort(all(tmp), [&](const ary& x, const ary& y){\n if(x[0]!=y[0]) return x[0] < y[0];\n if(x[1]!=y[1]) return x[1] < y[1];\n return x[2] > y[2];\n });\n int l = 1000000000, r = -1000000000;\n set<array<int, 2>> st;\n for(int i=0;i<(int)tmp.size();i++){\n ary v = tmp[i];\n if(i&&v[0]!=tmp[i-1][0]) l = 1000000000, r = -1000000000;\n if(v[1]>=l&&v[2]<=r) continue;\n if(n<v[2]) continue;\n l = min(l, v[1]);\n r = max(r, v[2]);\n if(st.find({v[1], v[2]})!=st.end()) continue;\n ret.push_back(v);\n st.insert({v[1], v[2]});\n }\n return ret;\n}\n\nvoid Main_Lorentz(const string& s, const string& rev, vector<ary>& ret, int l=0, int r=-1){\n int n = (int)s.size();\n if(r==-1) r = (int)s.size();\n if(r-l<2) return;\n int mid = (l + r)/2;\n\n string L = rev.substr(n-mid, mid - l);\n string R = s.substr(mid, r - mid);\n vector<int> z1 = z_algorithm(L);\n vector<int> z2 = z_algorithm(R + \"#\" + s.substr(l, r - l));\n int len = r - l;\n for(int i=0;i<mid-l;i++){\n int x = i;\n int y = z1[i];\n if(i==0) x = mid - l, y = 0;\n int z = z2[len+1-x];\n int lidx = mid - x - y, ridx = mid + z;\n if(x>0&&z>0&&(y+z)>=x) ret.push_back({x, lidx, ridx});//周期, [l, r)\n }\n z1 = z_algorithm(R);\n z2 = z_algorithm(L + \"#\" + rev.substr(n-r, r - l));\n for(int i=0;i<r-mid;i++){\n int x = i;\n int y = z1[i];\n if(i==0) x = r-mid, y = 0;\n int z = z2[len+1-x];\n int ridx = n - (n - mid - x - y), lidx = n - (n - mid + z);\n if(x>0&&z>0&&(y+z)>=x) ret.push_back({x, lidx, ridx});//周期, [l, r)\n }\n Main_Lorentz(s, rev, ret, l, mid);\n Main_Lorentz(s, rev, ret, mid, r);\n}\n\nvector<ary> Main_Lorentz(const string& s){\n int n = (int)s.size();\n //(t, l, r)は周期tを持つ\n //同じ(l, r)での周期を最小にする\n //同じ(l, 周期)でのrを最大化する\n //同じ(r, 周期)でのlを最小化する\n vector<ary> tmp, ret;\n string t = s;\n reverse(all(t));\n Main_Lorentz(s, t, tmp);\n sort(all(tmp), [&](const ary& x, const ary& y){\n if(x[0]!=y[0]) return x[0] < y[0];\n if(x[1]!=y[1]) return x[1] < y[1];\n return x[2] > y[2];\n });\n int l = 1000000000, r = -1000000000;\n set<array<int, 2>> st;\n for(int i=0;i<(int)tmp.size();i++){\n ary v = tmp[i];\n if(i&&v[0]!=tmp[i-1][0]) l = 1000000000, r = -1000000000;\n if(v[1]>=l&&v[2]<=r) continue;\n if(n<v[2]) continue;\n l = min(l, v[1]);\n r = max(r, v[2]);\n if(st.find({v[1], v[2]})!=st.end()) continue;\n ret.push_back(v);\n st.insert({v[1], v[2]});\n }\n return ret;\n}\n\nint main(){\n ll n;scanf(\"%lld\", &n);\n vector<int> v(n);\n for(int i=0;i<n;i++) scanf(\"%d\", &v[i]);\n auto dat = Main_Lorentz<int, 2000000000>(v);\n ll ans = (n * (n+1))/2;//幅0\n\n for(auto e:dat){\n //printf(\"%d %d %d\\n\", e[0], e[1], e[2]);\n ll w = (e[2] - e[1])/e[0];\n ll pl = (e[2] - e[1]) % e[0];//シフト可能\n ll mi = e[0] - pl;\n vector<ll> S(w+1, 0);\n //1の時は幅2以上の区間\n //2の時は幅3以上の区間...\n for(ll d=w;d>=1;d--){\n S[d] = w - d + 1;\n if(d!=w) S[d] += S[d+1];\n }\n for(ll d=1;d<w;d++) ans += (pl+1) * S[d+1];\n for(ll d=1;d<w;d++) ans += (mi - 1) * (S[d+1] - S[w]);\n }\n\n printf(\"%lld\\n\", ans);\n}", "accuracy": 0.375, "time_ms": 380, "memory_kb": 65208, "score_of_the_acc": -1.1378, "final_rank": 15 }, { "submission_id": "aoj_3081_4855052", "code_snippet": "#include <algorithm>\n#include <array>\n#include <cstdio>\n#include <cstring>\n#include <iostream>\n#include <numeric>\n#include <string>\n#include <utility>\n#include <vector>\nusing namespace std;\n\ntypedef unsigned size_type;\n\n#define USE_RMQ\n\ntemplate <class DatTp, class Comp = std::less<DatTp>> struct static_rmq {\n typedef unsigned long long ull;\n typedef unsigned size_type;\n\n std::vector<DatTp> data;\n Comp cmp;\n std::vector<std::vector<size_type>> sp_rmq;\n std::vector<ull> bl_tort;\n\n explicit static_rmq(const Comp &comp = Comp()) : cmp(comp) {}\n\n void init() {\n data.clear();\n sp_rmq.clear();\n bl_tort.clear();\n }\n\n template <class Iter> static_rmq(Iter beg, Iter en, const Comp &comp = Comp()) : cmp(comp) { init(beg, en); }\n\n template <class Iter> void init(Iter beg, Iter en) {\n sp_rmq.clear();\n bl_tort.clear();\n data.assign(beg, en);\n size_type sz = size();\n if(!sz) { return; }\n\n size_type sp_len = sz / 64;\n sp_rmq.reserve(64 - __builtin_clzll(sp_len | 1));\n\n std::vector<size_type> vec(sp_len);\n for(size_type i = 0; i < sp_len; ++i) {\n size_type t = i * 64;\n for(size_type j = t + 1; j < (i + 1) * 64; ++j) { t = minidx(t, j); }\n vec[i] = t;\n }\n sp_rmq.push_back(vec);\n\n for(size_type i = 1; (1u << i) <= sp_len; ++i) {\n vec.clear();\n size_type r = (1u << (i - 1));\n std::vector<size_type> &prv = sp_rmq.back();\n for(size_type j = 0; j + r * 2 <= sp_len; ++j) { vec.push_back(minidx(prv[j], prv[j + r])); }\n sp_rmq.push_back(vec);\n }\n\n bl_tort.assign(sz, 0ull);\n std::vector<size_type> st;\n st.reserve(64);\n for(size_type low = 0; low < sz; low += 64) {\n size_type high = std::min<size_type>(low + 64, sz);\n ull val = 0;\n st.clear();\n for(size_type j = high; j-- != low;) {\n while(!st.empty()) {\n size_type tp = st.back();\n if(cmp(data[tp], data[j])) { break; }\n val ^= 1ull << (tp % 64);\n st.pop_back();\n }\n st.push_back(j);\n val |= 1ull << (j % 64);\n bl_tort[j] = val;\n }\n }\n }\n\n size_type size() const { return data.size(); }\n\n size_type minidx(size_type i, size_type j) const {\n if(i > j) { std::swap(i, j); }\n // if(j >= size()){ return i; }\n return !cmp(data[j], data[i]) ? i : j;\n }\n\n const DatTp &operator[](size_type i) const { return data[i]; }\n\n // [lt, rt]\n size_type operator()(size_type lt, size_type rt) const {\n if(lt > rt) { return lt; }\n size_type bl_lt = lt / 64, bl_rt = rt / 64;\n size_type ret;\n ull rtmask = ((2ull << (rt % 64)) - 1);\n if(bl_lt == bl_rt) {\n ull bit = bl_tort[lt] & rtmask;\n size_type k = 63 - __builtin_clzll(bit);\n ret = bl_lt * 64 + k;\n } else {\n ret = bl_lt * 64 + 63 - __builtin_clzll(bl_tort[lt]);\n if(bl_lt + 1 != bl_rt) {\n size_type numblk = bl_rt - bl_lt - 1;\n size_type k = 63 - __builtin_clzll(numblk);\n size_type cand1 = sp_rmq[k][bl_lt + 1];\n ret = minidx(ret, cand1);\n if((1u << k) != numblk) {\n size_type cand2 = sp_rmq[k][bl_rt - (1u << k)];\n ret = minidx(ret, cand2);\n }\n }\n size_type cand3 = bl_rt * 64 + 63 - __builtin_clzll(bl_tort[bl_rt * 64] & rtmask);\n ret = minidx(ret, cand3);\n }\n return ret;\n }\n};\n\nstruct suffix_array {\n typedef unsigned size_type;\n\n size_type size() const { return sa.size(); }\n\n size_type rank(size_type a) const { return rnk[a]; }\n\n size_type operator[](size_type x) const { return sa[x]; }\n\n#ifdef USE_RMQ\n size_type lcp_order_adj(size_type a) const { return rmq[a]; }\n\n // lcp(S[a..], S[b..])\n size_type lcp(size_type a, size_type b) const {\n if(a >= size() || b >= size()) { return 0; }\n return lcp_ord(rnk[a], rnk[b]);\n }\n\n // [a,b] or [b,a]\n size_type lcp_ord(size_type a, size_type b) const {\n if(a == b) { return size() - sa[a]; }\n if(a > b) { std::swap(a, b); }\n size_type k = rmq(a + 1, b);\n return rmq[k];\n }\n\n int compsub(size_type pos1, size_type len1, size_type pos2, size_type len2) const {\n len1 = std::min(len1, size() - pos1);\n len2 = std::min(len2, size() - pos2);\n size_type com = lcp(pos1, pos2);\n com = std::min(com, std::min(len1, len2));\n if(com == len1) {\n if(com == len2) { return 0; }\n return -1;\n }\n if(com == len2) { return 1; }\n return rank(pos1) < rank(pos2) ? -2 : 2;\n }\n#endif\n\n std::vector<size_type> sa;\n std::vector<size_type> rnk;\n std::vector<size_type> acc;\n#ifdef USE_RMQ\n static_rmq<size_type> rmq;\n#endif\n\n suffix_array() {}\n\n template <class Cont> explicit suffix_array(Cont &c) : suffix_array(c.begin(), c.end()) {}\n\n template <class RAI> suffix_array(RAI first, RAI last) { init(first, last); }\n\n void init() {\n sa.clear();\n rnk.clear();\n acc.clear();\n#ifdef USE_RMQ\n rmq.init();\n#endif\n }\n\n template <class Cont> void init(Cont &c) { init(c.begin(), c.end()); }\n\n template <class RAI> void init(RAI first, RAI last) {\n typedef typename std::iterator_traits<RAI>::value_type value_type;\n\n init();\n if(first == last) { return; }\n\n size_type len = std::distance(first, last);\n std::pair<RAI, RAI> minmax = std::minmax_element(first, last);\n if(*minmax.first < 0 || *minmax.second + size_type() > std::max<size_type>(len * 3, 250)) {\n std::vector<value_type> vec(first, last);\n std::sort(vec.begin(), vec.end());\n vec.erase(unique(vec.begin(), vec.end()), vec.end());\n std::vector<size_type> idx;\n idx.reserve(len);\n for(RAI it = first; it != last; ++it) { idx.push_back(std::lower_bound(vec.begin(), vec.end(), *it) - vec.begin()); }\n std::vector<value_type>().swap(vec);\n construct_sa_lcp(idx.begin(), idx.end());\n } else {\n construct_sa_lcp(first, last);\n }\n }\n\n template <class RAI> void construct_sa_lcp(RAI first, RAI last) {\n size_type kind = *std::max_element(first, last) + 1;\n size_type len = std::distance(first, last);\n acc.reserve(std::max(kind, len) + 1);\n sa = calcsa(first, last, kind);\n std::vector<size_type>().swap(acc);\n\n rnk.resize(len);\n for(size_type i = 0; i < len; ++i) { rnk[sa[i]] = i; }\n\n std::vector<size_type> lcpar(len);\n size_type h = 0;\n for(size_type i = 0; i < len; ++i) {\n if(rnk[i] == 0) {\n h = 0;\n } else {\n size_type j = sa[rnk[i] - 1];\n if(h > 0) { --h; }\n for(; j + h < len && i + h < len; ++h) {\n if(first[j + h] != first[i + h]) { break; }\n }\n }\n lcpar[rnk[i]] = h;\n }\n#ifdef USE_RMQ\n rmq.init(lcpar.begin(), lcpar.end());\n#endif\n }\n\n void calcacc(const std::vector<size_type> &cnt) {\n acc.resize(cnt.size() + 1);\n acc[0] = 0;\n std::partial_sum(cnt.begin(), cnt.end(), acc.begin() + 1);\n }\n\n template <class RAI> std::vector<size_type> calcsa(RAI first, RAI last, size_type kind) {\n size_type len = std::distance(first, last);\n\n std::vector<size_type> cnt(kind);\n for(RAI it = first; it != last; ++it) { ++cnt[*it]; }\n\n std::vector<int> stype(len);\n for(size_type i = len - 1; i--;) {\n if(first[i] == first[i + 1]) {\n stype[i] = stype[i + 1];\n } else {\n stype[i] = (first[i] < first[i + 1]);\n }\n }\n std::vector<size_type> lms;\n size_type numlms = 0;\n std::vector<size_type> ridx(len, size_type(-1));\n\n std::vector<size_type> bucket(len, size_type(-1));\n calcacc(cnt);\n for(size_type i = 1; i < len; ++i) {\n if(stype[i] && !stype[i - 1]) {\n stype[i] = 2;\n bucket[--acc[first[i] + 1]] = i;\n ridx[i] = numlms++;\n lms.push_back(i);\n }\n }\n\n induced_sort(first, last, kind, stype, cnt, bucket);\n\n size_type lmskind = size_type(-1);\n std::vector<size_type> lmsstr(numlms);\n size_type prv = size_type(-1);\n for(size_type i = 0; i < len; ++i) {\n size_type r = ridx[bucket[i]];\n if(r != size_type(-1)) {\n if(prv == size_type(-1) || prv + 1 == numlms || r + 1 == numlms || lms[prv + 1] - lms[prv] != lms[r + 1] - lms[r] ||\n !std::equal(first + lms[prv], first + (lms[prv + 1] + 1), first + lms[r])) {\n ++lmskind;\n }\n lmsstr[r] = lmskind;\n prv = r;\n }\n }\n ++lmskind;\n\n std::vector<size_type> lmssa;\n if(lmskind != numlms) {\n lmssa = calcsa(lmsstr.begin(), lmsstr.end(), lmskind);\n } else {\n lmssa.resize(numlms);\n for(size_type i = 0; i < numlms; ++i) { lmssa[lmsstr[i]] = i; }\n }\n\n calcacc(cnt);\n bucket.assign(len, size_type(-1));\n for(size_type i = numlms; i--;) {\n size_type pos = lms[lmssa[i]];\n bucket[--acc[first[pos] + 1]] = pos;\n }\n induced_sort(first, last, kind, stype, cnt, bucket);\n\n return bucket;\n }\n\n template <class RAI>\n void induced_sort(RAI first, RAI last, size_type kind, const std::vector<int> &stype, std::vector<size_type> &cnt, std::vector<size_type> &bucket) {\n size_type len = std::distance(first, last);\n calcacc(cnt);\n bucket[acc[+first[len - 1]]++] = len - 1;\n for(size_type i = 0; i < len; ++i) {\n size_type bc = bucket[i];\n if(bc != size_type(-1) && bc != 0 && !stype[bc - 1]) { bucket[acc[+first[bc - 1]]++] = bc - 1; }\n }\n calcacc(cnt);\n for(size_type i = len; i--;) {\n size_type bc = bucket[i];\n if(bc != size_type(-1) && bc != 0 && stype[bc - 1]) { bucket[--acc[first[bc - 1] + 1]] = bc - 1; }\n }\n }\n};\n\nvoid compute_runs_from_lepos(const suffix_array &sa, const suffix_array &sarev, bool invlex, std::vector<std::array<size_type, 3>> &res) {\n size_type len = sa.size();\n std::vector<size_type> lepos(len);\n std::vector<size_type> stk;\n stk.reserve(len + 1);\n stk.push_back(len);\n for(size_type i = len; i--;) {\n while(stk.size() > 1) {\n size_type pos2 = stk.back();\n if(!invlex) {\n if(sa.rank(i) > sa.rank(pos2)) { break; }\n } else {\n size_type len2 = stk.end()[-2] - pos2;\n int cmp = sa.compsub(i, pos2 - i, pos2, len2);\n if(cmp != -1 && cmp != 2) { break; }\n }\n stk.pop_back();\n }\n lepos[i] = stk.back();\n stk.push_back(i);\n }\n\n for(size_type i = 0; i < len; ++i) {\n size_type per = lepos[i] - i;\n size_type extr = sa.lcp(i, lepos[i]);\n // choose rightmost Lyndon root (distinct)\n if(extr >= per) { continue; }\n if(invlex && lepos[i] + extr == len) { continue; }\n size_type extl = sarev.lcp(len - i, len - lepos[i]);\n if(extl + extr >= per) { res.push_back({{i - extl, lepos[i] + extr, per}}); }\n }\n}\n\ntemplate <class RII> std::vector<std::array<size_type, 3>> compute_runs(RII beg, RII en) {\n suffix_array sa(beg, en);\n std::reverse_iterator<RII> rbeg(en), ren(beg);\n suffix_array sarev(rbeg, ren);\n\n size_type len = sa.size();\n std::vector<std::array<size_type, 3>> runs1;\n runs1.reserve(len);\n compute_runs_from_lepos(sa, sarev, false, runs1);\n compute_runs_from_lepos(sa, sarev, true, runs1);\n\n return runs1;\n}\nint buf[200010];\n\nint main() {\n int len;\n cin >> len;\n for(int i = 0; i < len; ++i) cin >> buf[i];\n\n auto runs1 = compute_runs(buf, buf + len);\n size_type sz = runs1.size();\n std::vector<std::array<size_type, 3>> runs2(sz);\n std::vector<size_type> cnt;\n for(int i = 1; i <= 2; ++i) {\n cnt.assign(len + 2, 0);\n for(const auto &ar : runs1) { ++cnt[ar[i] + 1]; }\n std::partial_sum(cnt.begin(), cnt.end(), cnt.begin());\n for(const auto &ar : runs1) { runs2[cnt[ar[i]]++] = ar; }\n runs1.swap(runs2);\n }\n long long n = len;\n long long ans = (long long)n * (n + 1) / 2;\n using ll = long long;\n for(const auto &a : runs1) {\n ll l = a[1] - a[0];\n for(ll s = a[2] * 2; s <= l; s += a[2]) { ans += (l + 1 - s) * (s / a[2] - 1); }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 17332, "score_of_the_acc": -0.0441, "final_rank": 2 }, { "submission_id": "aoj_3081_4852673", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cmath>\n#include <ctime>\n#include <cstdlib>\n#include <cassert>\n#include <vector>\n#include <list>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <set>\n#include <bitset>\n#include <string>\n#include <algorithm>\n#include <utility>\n#define llint long long\n#define inf 1e18\n#define rep(x, s, t) for(llint (x) = (s); (x) < (t); (x)++)\n#define Rep(x, s, t) for(llint (x) = (s); (x) <= (t); (x)++)\n#define chmin(x, y) (x) = min((x), (y))\n#define chmax(x, y) (x) = max((x), (y))\n#define mod 1000000007\n\nusing namespace std;\ntypedef pair<llint, llint> P;\ntypedef pair<P, llint> Run;\n\nvoid z_algorithm(vector<llint> &s, vector<llint> &z)\n{\n\tz.resize(s.size());\n\tz[0] = s.size();\n\t\n\tint x = 0, y = 0;\n\tfor(int i = 1; i < s.size(); i++){\n\t\tif(i > y){\n\t\t\tz[i] = 0;\n\t\t\tfor(int j = 0; j < s.size(); j++){\n\t\t\t\tif(i+j >= s.size() || s[i+j] != s[j]) break;\n\t\t\t\tz[i]++;\n\t\t\t}\n\t\t\tx = i, y = i + z[i] - 1;\n\t\t}\n\t\telse if(i + z[i-x] <= y) z[i] = z[i-x];\n\t\telse{\n\t\t\tz[i] = y-i+1;\n\t\t\tfor(int j = y-i+1; j < s.size(); j++){\n\t\t\t\tif(i+j >= s.size() || s[i+j] != s[j]) break;\n\t\t\t\tz[i]++;\n\t\t\t}\n\t\t\tx = i, y = i + z[i] - 1;\n\t\t}\n\t}\n}\n\nllint n;\nvector<llint> s;\n\nvector<Run> runvec;\nvoid runget(vector<llint> &s, llint m, vector<Run> &dest)\n{\n\tvector<llint> vec, vec2;\n\tvector<llint> z, z2;\n\t\n\tfor(int i = m; i >= 0; i--) vec.push_back(s[i]);\n\tz_algorithm(vec, z);\n\t\n\tfor(int i = m+1; i < s.size(); i++) vec2.push_back(s[i]);\n\tvec2.push_back(-1); //\n\tfor(int i = 0; i < s.size(); i++) vec2.push_back(s[i]);\n\tz_algorithm(vec2, z2);\n\t\n\tdest.clear();\n\tllint len = s.size();\n\tfor(int i = m; i >= 0; i--){\n\t\tllint l = 0;\n\t\tif(0 < i) l = z[m-i+1];\n\t\tllint r = z2[(len-1-m)+1+i];\n\t\tif(l+r >= m-i+1) dest.push_back(Run(P(i-l, m+r), m-i+1));\n\t}\n}\n\nvoid runcalc(vector<llint> &s, llint l, llint r)\n{\n\tif(r-l+1 <= 1) return;\n\t\n\tllint m = (l+r)/2;\n\t\n\tvector<llint> t;\n\tfor(int i = l; i <= r; i++) t.push_back(s[i]);\n\t\n\tvector<Run> vec;\n\trunget(t, m-l, vec);\n\tfor(int i = 0; i < vec.size(); i++){\n\t\tvec[i].first.first += l;\n\t\tvec[i].first.second += l;\n\t\trunvec.push_back(vec[i]);\n\t}\n\t\n\treverse(t.begin(), t.end());\n\trunget(t, r-(m+1), vec);\n\tfor(int i = 0; i < vec.size(); i++){\n\t\tvec[i].first.first = r-vec[i].first.first;\n\t\tvec[i].first.second = r-vec[i].first.second;\n\t\tswap(vec[i].first.first, vec[i].first.second);\n\t\trunvec.push_back(vec[i]);\n\t}\n\t\n\truncalc(s, l, m);\n\truncalc(s, m+1, r);\n}\n\nvoid RunEnumerate(vector<llint> s, vector<Run> &dest)\n{\n\trunvec.clear();\n\truncalc(s, 0, (int)s.size()-1);\n\tsort(runvec.begin(), runvec.end());\n\t\n\tfor(int i = 0; i < runvec.size(); i++){\n\t\tllint l = runvec[i].first.first, r = runvec[i].first.second, p = runvec[i].second;\n\t\tif(l-1 >= 0 && s[l-1+p] == s[l-1]) continue;\n\t\tif(r+1 < s.size() && s[r+1-p] == s[r+1]) continue;\n\t\tdest.push_back(Run(P(l, r), p));\n\t}\n\trunvec = dest;\n\t\n\tdest.clear();\n\tP p = P(-1, -1);\n\tfor(int i = 0; i < runvec.size(); i++){\n\t\tif(runvec[i].first != p) dest.push_back(runvec[i]);\n\t\tp = runvec[i].first;\n\t}\n}\n\nllint get(llint x)\n{\n\treturn (x*(x+1)/2 + x*(x+1)*(2*x+1)/6) / 2;\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n;\n\tllint a;\n\tfor(int i = 0; i < n; i++){\n\t\tcin >> a;\n\t\ts.push_back(a);\n\t}\n\t\n\tvector<Run> vec;\n\tRunEnumerate(s, vec);\n\t\n\tllint ans = n*(n+1)/2;\n\tfor(int i = 0; i < vec.size(); i++){\n\t\tllint l = vec[i].first.second-vec[i].first.first+1, p = vec[i].second, m = l / p;\n\t\tans += m*(m+1)/2*(p+l+1) - m*(m+1)*(2*m+1)/6*p - m*(l+1);\n\t}\n\tcout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 500, "memory_kb": 122344, "score_of_the_acc": -1.9737, "final_rank": 13 }, { "submission_id": "aoj_3081_4851613", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 19;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\nvoid Z_algorithm(const vector<int>& s, vector<int>& a) {\n\tint sz = s.size();\n\ta.resize(sz);\n\ta[0] = sz;\n\tint i = 1, j = 0;\n\twhile (i < sz) {\n\t\twhile (i + j < sz && s[j] == s[i + j])++j;\n\t\ta[i] = j;\n\t\tif (j == 0) { ++i; continue; }\n\t\tint k = 1;\n\t\twhile (i + k < sz && k + a[k] < j)a[i + k] = a[k], ++k;\n\t\ti += k; j -= k;\n\t}\n}\nvector<int> subvec(const vector<int>& s, int le, int len) {\n\tvector<int> res;\n\trep(j, len) {\n\t\tres.push_back(s[le + j]);\n\t}\n\treturn res;\n}\nvector<int> operator+(const vector<int>& a, const vector<int>& b) {\n\tvector<int> res;\n\tfor (int id : a)res.push_back(id);\n\tfor (int id : b)res.push_back(id);\n\treturn res;\n}\nvector<pair<int, P>> run_enumerate(vector<int>& s) {\n\tint n = s.size();\n\ts.push_back(-1);\n\tvector<P> v;\n\tvector<pair<P, int>> anss;\n\n\tfunction<void(int, int)> dfs = [&](int l, int r) {\n\t\tif (l + 1 == r)return;\n\t\tint m = (l + r) / 2;\n\t\tdfs(l, m); dfs(m, r);\n\t\tvector<int> le = subvec(s,l, m - l);\n\t\treverse(all(le));\n\t\tvector<int> vl;\n\t\tZ_algorithm(le, vl); vl.push_back(0);\n\t\tvector<int> ri = subvec(s,m, r - m) + subvec(s,l, r - l);\n\t\tvector<int> vr;\n\t\tZ_algorithm(ri, vr);\n\n\t\tfor (int c = 1; c <= m - l; c++) {\n\t\t\tint num = vl[c];\n\t\t\tnum += min(vr[r - l - c], r - m);\n\t\t\tif (num >= c) {\n\t\t\t\tint le = m - c - vl[c];\n\t\t\t\tint ri = m + min(vr[r - l - c], r - m);\n\t\t\t\tbool valid = true;\n\t\t\t\tif (le > 0 && s[le - 1] == s[le - 1 + c])valid = false;\n\t\t\t\tif (s[ri] == s[ri - c])valid = false;\n\t\t\t\tif (valid) {\n\t\t\t\t\tanss.push_back({ { le,ri },c });\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tri = subvec(s,m, r - m);\n\t\tZ_algorithm(ri, vr); vr.push_back(0);\n\t\tle = subvec(s,l, m - l); reverse(all(le));\n\t\t{\n\t\t\tvector<int> cop = subvec(s,l, r - l); reverse(all(cop)); le =le+ cop;\n\t\t}\n\t\tZ_algorithm(le, vl);\n\t\tfor (int c = 1; c <= r - m; c++) {\n\t\t\tint le = m - min(vl[r - l - c], m - l);\n\t\t\tint ri = m + c + vr[c];\n\t\t\tif (ri - le >= 2 * c) {\n\t\t\t\tbool valid = true;\n\t\t\t\tif (le > 0 && s[le - 1] == s[le - 1 + c])valid = false;\n\t\t\t\tif (s[ri] == s[ri - c])valid = false;\n\t\t\t\tif (valid) {\n\t\t\t\t\tanss.push_back({ { le,ri },c });\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t};\n\tdfs(0, n);\n\tsort(all(anss));\n\tvector<pair<int, P>> ans;\n\trep(i, anss.size()) {\n\t\tif (i > 0 && anss[i].first == anss[i - 1].first)continue;\n\t\tans.push_back({ anss[i].second,anss[i].first });\n\t}\n\tsort(all(ans));\n\treturn ans;\n}\n\nll memo[1 << 18];\nvoid init() {\n\tfor (ll i = 1; i < (1 << 18); i++) {\n\t\tmemo[i] = i * i * (i - 1) / 2 - (i - 1) * i * (2 * i - 1) / 6;\n\t}\n}\nvoid solve(){\n\tinit();\n\tint n; cin >> n;\n\tvector<int> a(n);\n\trep(i, n)cin >> a[i];\n\tvector<pair<int, P>> v = run_enumerate(a);\n\tll ans = (ll)n * (n + 1) / 2;\n\tfor (pair<int, P> p : v) {\n\t\tint x = p.first;\n\t\tint len = p.second.second - p.second.first;\n\t\tll d = len / x;\n\t\tll r = len % x;\n\n\t\tans += (r + 1) * memo[d];\n\t\tr = x - 1 - r;\n\t\tans += r * memo[d - 1];\n\t}\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 25460, "score_of_the_acc": -0.8023, "final_rank": 10 }, { "submission_id": "aoj_3081_4849401", "code_snippet": "//#pragma GCC optimize(\"Ofast\")\n//#pragma GCC optimize(\"unroll-loops\")\n//#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native\")\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing db = double;\nusing ld = long double;\ntemplate<typename T> using V = vector<T>;\ntemplate<typename T> using VV = vector<vector<T>>;\n#define fs first\n#define sc second\n#define pb push_back\n#define mp make_pair\n#define mt make_tuple\n#define eb emplace_back\n#define lb lower_bound\n#define ub upper_bound\n#define all(v) (v).begin(),(v).end()\n#define siz(v) (ll)(v).size()\n#define rep(i,a,n) for(ll i=a;i<(ll)(n);++i)\n#define repr(i,a,n) for(ll i=n-1;(ll)a<=i;--i)\n#define ENDL '\\n'\ntypedef pair<int,int> Pi;\ntypedef pair<ll,ll> PL;\nconstexpr ll mod = 1000000007; // 998244353;\nconstexpr ll INF = 1000000099;\nconstexpr ll LINF = (ll)(1e18 +99);\nconst ld PI = acos((ld)-1);\nconst vector<ll> dx={-1,1,0,0},dy={0,0,-1,1};\ntemplate<typename T,typename U> inline bool chmin(T& t, const U& u){if(t>u){t=u;return 1;}return 0;}\ntemplate<typename T,typename U> inline bool chmax(T& t, const U& u){if(t<u){t=u;return 1;}return 0;}\ntemplate<typename T> inline T gcd(T a,T b){return b?gcd(b,a%b):a;}\n\ntemplate<typename T,typename Y> inline T mpow(T a, Y n) {\n T res = 1;\n for(;n;n>>=1) {\n if (n & 1) res = res * a;\n a = a * a;\n }\n return res;\n}\n\ntemplate <typename T> V<T> prefix_sum(const V<T>& v) {\n int n = v.size();\n V<T> ret(n + 1);\n rep(i, 0, n) ret[i + 1] = ret[i] + v[i];\n return ret;\n}\n\ntemplate<typename T>\nistream& operator >> (istream& is, vector<T>& vec){\n for(auto&& x: vec) is >> x;\n return is;\n}\n\ntemplate<typename T,typename Y>\nostream& operator<<(ostream& os,const pair<T,Y>& p){\n return os<<\"{\"<<p.fs<<\",\"<<p.sc<<\"}\";\n}\n\ntemplate<typename T> ostream& operator<<(ostream& os,const V<T>& v){\n os<<\"{\";\n for(auto e:v)os<<e<<\",\";\n return os<<\"}\";\n}\n\ntemplate<typename ...Args>\nvoid debug(Args&... args){\n for(auto const& x:{args...}){\n cerr<<x<<' ';\n }\n cerr<<ENDL;\n}\n\n\ntemplate <typename T> vector<int> Zalgo(const T& s) {\n int n = (int)s.size();\n vector<int> res(n, 0);\n res[0] = 0;\n int j = 1;\n for(int i = 1; i < n; ++i) {\n if(j + res[j] <= i) {\n res[i] = 0;\n } else {\n res[i] = min(res[j] - i + j, res[i - j]);\n }\n while(i + res[i] < n && s[i + res[i]] == s[res[i]]) { ++res[i]; }\n if(j + res[j] < i + res[i]) j = i;\n }\n res[0] = n;\n return res;\n}\n\nstruct RunEnum {\n int n;\n V<int> s;\n VV<Pi> runs;\n\n V<int> getrev(V<int> v) {\n reverse(all(v));\n return v;\n }\n\n V<int> getsub(int l, int r) { return {s.begin() + l, s.begin() + r}; }\n //[l,r)\n\n V<int> concat(V<int> l, const V<int>& r) {\n l.insert(l.end(), r.begin(), r.end());\n return l;\n }\n\n void run(int l, int r, int cen) {\n if(l + 1 >= r) return;\n int mid = (l + r + cen) / 2;\n run(l, mid, cen);\n run(mid, r, cen);\n\n V<int> z1 = Zalgo(getrev(getsub(l, mid)));\n V<int> z2 = Zalgo(concat(getsub(mid, r), getsub(l, r)));\n z1.eb(0);\n z2.eb(0);\n\n rep(i, l, mid) {\n int k1 = min((int)i - l, z1[mid - i]);\n int k2 = min(r - mid, z2[(r - mid) + (i - l)]);\n int pe = mid - i;\n int le = i - k1, ri = mid + k2;\n if(ri - le >= 2 * pe) runs[mid - i].eb(le, ri);\n }\n }\n\n template <class S> RunEnum(S _s) {\n s = {_s.begin(), _s.end()};\n n = s.size();\n runs.resize(n / 2 + 1);\n\n reverse(all(s));\n run(0, n, 0);\n for(auto&& run : runs) {\n for(auto&& i : run) { tie(i.fs, i.sc) = mp(n - i.sc, n - i.fs); }\n }\n reverse(all(s));\n run(0, n, 1);\n\n \n V<Pi> res(0);\n set<Pi> se;\n for(auto&& run:runs){\n sort(all(run),[&](Pi l,Pi r){\n if(l.fs==r.fs)return l.sc>r.sc;\n return l<r;\n });\n\n int mx=-1;\n for(auto&& r:run){\n if(r.sc<=mx)continue;\n chmax(mx,r.sc);\n\n if(se.count(r))continue;\n se.insert(r); \n\n res.eb(r);\n }\n run=res;\n res.clear();\n }\n \n }\n // enumetate runs\n};\n\n\nsigned main(){\n cin.tie(0);cerr.tie(0);ios::sync_with_stdio(false);\n cout<<fixed<<setprecision(20);\n ll n;cin>>n;\n V<ll> v(n);\n rep(i,0,n)cin>>v[i];\n\n RunEnum r(v);\n\n ll ans=n*(n+1)/2;//c==0\n rep(i, 1, siz(r.runs)) {\n for(auto&& run : r.runs[i]) {\n ll x=ll(run.sc-run.fs)/i;\n ans+=((run.sc-run.fs)%i +1)*x*(x*x-1)/6;\n ans+=(i-(run.sc-run.fs)%i -1)*(x-1)*((x-1)*(x-1)-1)/6;\n }\n }\n cout<<ans<<ENDL;\n}\n//! ( . _ . ) ! \n//CHECK overflow,vector_size,what to output?", "accuracy": 1, "time_ms": 350, "memory_kb": 45860, "score_of_the_acc": -0.8827, "final_rank": 11 }, { "submission_id": "aoj_3081_4849382", "code_snippet": "//#pragma GCC optimize(\"Ofast\")\n//#pragma GCC optimize(\"unroll-loops\")\n//#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native\")\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing db = double;\nusing ld = long double;\ntemplate<typename T> using V = vector<T>;\ntemplate<typename T> using VV = vector<vector<T>>;\n#define fs first\n#define sc second\n#define pb push_back\n#define mp make_pair\n#define mt make_tuple\n#define eb emplace_back\n#define lb lower_bound\n#define ub upper_bound\n#define all(v) (v).begin(),(v).end()\n#define siz(v) (ll)(v).size()\n#define rep(i,a,n) for(ll i=a;i<(ll)(n);++i)\n#define repr(i,a,n) for(ll i=n-1;(ll)a<=i;--i)\n#define ENDL '\\n'\ntypedef pair<int,int> Pi;\ntypedef pair<ll,ll> PL;\nconstexpr ll mod = 1000000007; // 998244353;\nconstexpr ll INF = 1000000099;\nconstexpr ll LINF = (ll)(1e18 +99);\nconst ld PI = acos((ld)-1);\nconst vector<ll> dx={-1,1,0,0},dy={0,0,-1,1};\ntemplate<typename T,typename U> inline bool chmin(T& t, const U& u){if(t>u){t=u;return 1;}return 0;}\ntemplate<typename T,typename U> inline bool chmax(T& t, const U& u){if(t<u){t=u;return 1;}return 0;}\ntemplate<typename T> inline T gcd(T a,T b){return b?gcd(b,a%b):a;}\n\ntemplate<typename T,typename Y> inline T mpow(T a, Y n) {\n T res = 1;\n for(;n;n>>=1) {\n if (n & 1) res = res * a;\n a = a * a;\n }\n return res;\n}\n\ntemplate <typename T> V<T> prefix_sum(const V<T>& v) {\n int n = v.size();\n V<T> ret(n + 1);\n rep(i, 0, n) ret[i + 1] = ret[i] + v[i];\n return ret;\n}\n\ntemplate<typename T>\nistream& operator >> (istream& is, vector<T>& vec){\n for(auto&& x: vec) is >> x;\n return is;\n}\n\ntemplate<typename T,typename Y>\nostream& operator<<(ostream& os,const pair<T,Y>& p){\n return os<<\"{\"<<p.fs<<\",\"<<p.sc<<\"}\";\n}\n\ntemplate<typename T> ostream& operator<<(ostream& os,const V<T>& v){\n os<<\"{\";\n for(auto e:v)os<<e<<\",\";\n return os<<\"}\";\n}\n\ntemplate<typename ...Args>\nvoid debug(Args&... args){\n for(auto const& x:{args...}){\n cerr<<x<<' ';\n }\n cerr<<ENDL;\n}\n\n\ntemplate <typename T> vector<int> Zalgo(const T& s) {\n int n = (int)s.size();\n vector<int> res(n, 0);\n res[0] = 0;\n int j = 1;\n for(int i = 1; i < n; ++i) {\n if(j + res[j] <= i) {\n res[i] = 0;\n } else {\n res[i] = min(res[j] - i + j, res[i - j]);\n }\n while(i + res[i] < n && s[i + res[i]] == s[res[i]]) { ++res[i]; }\n if(j + res[j] < i + res[i]) j = i;\n }\n res[0] = n;\n return res;\n}\n\nstruct RunEnum {\n int n;\n V<int> s;\n VV<Pi> runs;\n\n V<int> getrev(V<int> v) {\n reverse(all(v));\n return v;\n }\n\n V<int> getsub(int l, int r) { return {s.begin() + l, s.begin() + r}; }\n //[l,r)\n\n V<int> concat(V<int> l, const V<int>& r) {\n l.insert(l.end(), r.begin(), r.end());\n return l;\n }\n\n void run(int l, int r, int cen) {\n if(l + 1 >= r) return;\n int mid = (l + r + cen) / 2;\n run(l, mid, cen);\n run(mid, r, cen);\n\n V<int> z1 = Zalgo(getrev(getsub(l, mid)));\n V<int> z2 = Zalgo(concat(getsub(mid, r), getsub(l, r)));\n z1.eb(0);\n z2.eb(0);\n\n rep(i, l, mid) {\n int k1 = min((int)i - l, z1[mid - i]);\n int k2 = min(r - mid, z2[(r - mid) + (i - l)]);\n int pe = mid - i;\n int le = i - k1, ri = mid + k2;\n if(ri - le >= 2 * pe) runs[mid - i].eb(le, ri);\n }\n }\n\n template <class S> RunEnum(S _s) {\n s = {_s.begin(), _s.end()};\n n = s.size();\n runs.resize(n / 2 + 1);\n\n reverse(all(s));\n run(0, n, 0);\n for(auto&& run : runs) {\n for(auto&& i : run) { tie(i.fs, i.sc) = mp(n - i.sc, n - i.fs); }\n }\n reverse(all(s));\n run(0, n, 1);\n\n \n V<Pi> res(0);\n set<Pi> se;\n for(auto&& run:runs){\n sort(all(run),[&](Pi l,Pi r){\n if(l.fs==r.fs)return l.sc>r.sc;\n return l<r;\n });\n\n int mx=-1;\n for(auto&& r:run){\n if(r.sc<=mx)continue;\n chmax(mx,r.sc);\n\n if(se.count(r))continue;\n se.insert(r); \n\n res.eb(r);\n }\n run=res;\n res.clear();\n }\n \n }\n // enumetate runs\n};\n\n\nsigned main(){\n cin.tie(0);cerr.tie(0);ios::sync_with_stdio(false);\n cout<<fixed<<setprecision(20);\n ll n;cin>>n;\n V<ll> v(n);\n rep(i,0,n)cin>>v[i];\n\n RunEnum r(v);\n\n ll ans=n*(n+1)/2;//c==0\n rep(i, 1, siz(r.runs)) {\n for(auto&& run : r.runs[i]) {\n ll x=ll(run.sc-run.fs)/i;\n ans+=((run.sc-run.fs)%i +1)*x*(x*x-1)/6;\n }\n }\n cout<<ans<<ENDL;\n}\n//! ( . _ . ) ! \n//CHECK overflow,vector_size,what to output?", "accuracy": 0.375, "time_ms": 350, "memory_kb": 45680, "score_of_the_acc": -0.8811, "final_rank": 14 }, { "submission_id": "aoj_3081_4848634", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<tuple>\n#include<cassert>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned int ui;\nconst ll mod = 1000000007;\nconst ll INF = (ll)1000000007 * 1000000007;\ntypedef pair<int, int> P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef long double ld;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<ll, ll> LP;\nint dx[4]={1,-1,0,0};\nint dy[4]={0,0,1,-1};\ntemplate<class T>bool chmax(T &a, const T &b) {if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T &a, const T &b) {if(b<a){a=b;return 1;}return 0;}\n\ntemplate<typename T>\nvector<int> zalgorithm(vector<T> vs){\n int n=vs.size();\n vector<int> as(n+1,0);\n as[0]=n;\n int i=1,j=0;\n while(i<n){\n while(i+j<n&&vs[j]==vs[i+j]) j++;\n as[i]=j;\n if(j==0){\n i++;\n continue;\n }\n int k=1;\n while(i+k<n&&k+as[k]<j) as[i+k]=as[k],k++;\n i+=k;\n j-=k;\n }\n return as;\n}\nvector<int> zalgorithm(string s){\n return zalgorithm(vector<char>(s.begin(),s.end()));\n}\n\nnamespace Run{\n using T = tuple<int, int, int>;\n using P = pair<int, int>;\n vector<vector<P>> run;\n\n template<typename C>\n vector<T> sub(const vector<C> &xs,const vector<C> &ys){\n auto ps=xs;\n auto qs=ys;\n reverse(ps.begin(),ps.end());\n qs.insert(qs.end(),xs.begin(),xs.end());\n qs.insert(qs.end(),ys.begin(),ys.end());\n auto zp=zalgorithm(ps);\n auto zq=zalgorithm(qs);\n vector<T> res;\n for(int i=0;i<(int)xs.size();i++){\n int a=xs.size()-i;\n int b=i-zp[a];\n int c=max(0,(int)ys.size()-zq[ys.size()+i]);\n if((int)(xs.size()+ys.size())-b-c>=2*a)\n res.emplace_back(a,b,c);\n }\n return res;\n }\n\n template<typename C>\n void dfs(int l,int r,const vector<C> &cs){\n if(l+1>=r) return;\n int m=(l+r)>>1;\n vector<C> xs(cs.begin()+l,cs.begin()+m);\n vector<C> ys(cs.begin()+m,cs.begin()+r);\n {\n auto zs=sub(xs,ys);\n for(auto w:zs){\n int a,b,c;\n tie(a,b,c)=w;\n run[a].emplace_back(l+b,r-c);\n }\n }\n reverse(xs.begin(),xs.end());\n reverse(ys.begin(),ys.end());\n {\n auto zs=sub(ys,xs);\n for(auto w:zs){\n int a,b,c;\n tie(a,b,c)=w;\n run[a].emplace_back(l+c,r-b);\n }\n }\n dfs(l,m,cs);\n dfs(m,r,cs);\n }\n\n // return all t (not only minimal)\n template<typename C>\n vector<vector<P>> enumerate(const vector<C> &cs){\n int n=cs.size();\n run.clear();\n run.resize(n+1);\n dfs(0,n,cs);\n\n auto cmp=[&](P a,P b){return P(a.first,-a.second)<P(b.first,-b.second);};\n for(int i=1;i<=n;i++){\n auto &rs=run[i];\n sort(rs.begin(),rs.end(),cmp);\n int mx=-1;\n vector<P> tmp;\n for(auto p:rs){\n if(mx<p.second){\n tmp.emplace_back(p);\n mx=p.second;\n }\n }\n rs=tmp;\n }\n return run;\n }\n\n vector<vector<P>> enumerate(string ss){\n return enumerate(vector<char>(ss.begin(),ss.end()));\n }\n};\n\nint n;\nvector<int> S;\nmap<P,int> ma;\n\nll f(ll T,ll l){\n if(T<=0) return 0;\n ll d=l/T,r=l%T;\n ll res=0;\n res+=T*(d-1)*d*(2*d-1)/12;\n res-=T*d*(d-1)/4;\n res+=(r+1)*d*(d-1)/2;\n return res;\n}\n\nvoid solve(){\n cin >> n;S.resize(n);\n rep(i,n) cin >> S[i];\n vector<vector<P>> v=Run::enumerate(S);\n rep(i,v.size()){\n for(P p:v[i]){\n if(ma[p]==0)ma[p]=i;\n }\n }\n ll ans=(ll)n*(ll)(n+1)/2;\n for(auto x:ma){\n //cout << \"[\"<< x.first.first << \",\" << x.first.second << \") period:\" << x.second << endl;\n ans+=f(x.second,x.first.second-x.first.first);\n }\n cout << ans << endl;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(50);\n solve();\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 46868, "score_of_the_acc": -0.6551, "final_rank": 8 }, { "submission_id": "aoj_3081_4847430", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <class T>\nvector<int> z_algorithm(const T& s) {\n vector<int> res;\n int i = 1, j = 0, ssize = s.size();\n res.resize(s.size());\n res[0] = ssize;\n while (i < ssize) {\n while (i + j < ssize && s[j] == s[i + j]) ++j;\n res[i] = j;\n if (j == 0) {\n ++i;\n continue;\n }\n int k = 1;\n while (i + k < ssize && k + res[k] < j) res[i + k] = res[k], ++k;\n i += k, j -= k;\n }\n return res;\n}\n\ntemplate <class T>\nvoid run_enumerate(int l, int r, const T& s,\n vector<vector<pair<int, int>>>& res) {\n if (r - l <= 1) return;\n int m = (l + r) >> 1;\n run_enumerate(l, m, s, res);\n run_enumerate(m, r, s, res);\n\n auto func = [&](bool rev = 0) {\n T t, tl, tr;\n copy(s.begin() + l, s.begin() + r, back_inserter(t));\n if (rev) {\n reverse(t.begin(), t.end());\n m = l + r - m;\n }\n int len = r - l, mlen = m - l;\n copy(t.begin(), t.begin() + mlen, back_inserter(tl));\n reverse(tl.begin(), tl.end());\n copy(t.begin() + mlen, t.end(), back_inserter(tr));\n copy(t.begin(), t.end(), back_inserter(tr));\n auto zl = z_algorithm(tl), zr = z_algorithm(tr);\n zl.push_back(0);\n for (int k = 1; k <= mlen; ++k) {\n int li = m - k - zl[k], ri = m + min(r - m, zr[len - k]);\n if (rev) {\n swap(li, ri);\n li = l + r - li;\n ri = l + r - ri;\n }\n if (ri - li < 2 * k) continue;\n if (li > 0 && s[li - 1] == s[li - 1 + k]) continue;\n if (ri < s.size() && s[ri] == s[ri - k]) continue;\n res[li].emplace_back(ri, k);\n }\n };\n func();\n func(1);\n}\n\ntemplate <class T>\nvector<vector<pair<int, int>>> run_enumerate(const T& s) {\n int len = s.size();\n vector<vector<pair<int, int>>> run(len), res(len);\n run_enumerate(0, len, s, run);\n for (int i = 0; i < len; ++i) {\n int rlen = run[i].size();\n sort(run[i].begin(), run[i].end());\n for (int j = 0; j < rlen; ++j)\n if (j == 0 || run[i][j].first != run[i][j - 1].first)\n res[i].push_back(run[i][j]);\n }\n return res;\n}\n\nlong long n;\nvector<int> s;\n\nlong long solve();\n\nint main() {\n cin >> n;\n s.resize(n);\n for (auto& p : s) cin >> p;\n cout << solve() << endl;\n return 0;\n}\n\nlong long solve() {\n long long res = n * (n + 1) / 2;\n auto run = run_enumerate(s);\n for (int i = 0; i < n; ++i)\n for (auto [r, t] : run[i]) {\n long long len = r - i, d = len / t;\n res += (d - 1) * d * (3 * (len + 1) - 2 * (d + 1) * t) / 6;\n }\n return res;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 24496, "score_of_the_acc": -0.3725, "final_rank": 4 }, { "submission_id": "aoj_3081_4843027", "code_snippet": "#include <cmath>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n\n#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n\n#include <cassert>\n#include <functional>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(...) ;\n#else\n#define debug(...) cerr << __LINE__ << \" : \" << #__VA_ARGS__ << \" = \" << _tostr(__VA_ARGS__) << endl;\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v);\n\ntemplate<typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n\nvoid _tostr_rec(ostringstream &oss) {\n oss << \"\\b\\b \\b\";\n}\n\ntemplate<typename Head, typename... Tail>\nvoid _tostr_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << head << \", \";\n _tostr_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate<typename... T>\nstring _tostr(T &&... args) {\n ostringstream oss;\n int size = sizeof...(args);\n if (size > 1) oss << \"{\";\n _tostr_rec(oss, forward<T>(args)...);\n if (size > 1) oss << \"}\";\n return oss.str();\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\n/* オイラーのΦ関数 */\n// nと互いに素なn以下の数の個数\n\n// power(a, phi(n)-1) * a = 1\n// (gcd(a, n) = 1)\n\nll eulerPhi(ll n) {\n if (n <= 0) return 0;\n ll res = n;\n for (int i = 2; i * i <= n; i++) {\n if (n % i == 0) {\n res -= res / i;\n while (n % i == 0) n /= i;\n }\n }\n if (n > 1) res -= res / n;\n return res;\n}\n\nvector<ll> eulerPhiTable(int n) {\n vector<ll> phi(n + 1);\n iota(phi.begin(), phi.end(), 0);\n\n for (int i = 2; i <= n; i++)\n if (phi[i] == i)\n for (int j = 1; j * i <= n; j++)\n phi[i * j] -= phi[i * j] / i;\n\n return phi;\n}\n\n/* Rolling Hash */\n// n = 9999991, 10000019, 924844033, 1012924417\n\nstruct RollingHash {\n int N, base;\n vector<ll> hash, pow;\n\n template<typename Type>\n RollingHash(int base, int n, Type *arr): N(n), base(base), hash(n + 1), pow(n + 1) {\n hash[0] = 0;\n pow[0] = 1;\n for (int i = 0; i < N; i++) {\n hash[i + 1] = (hash[i] + arr[i]) * base % mod;\n pow[i + 1] = pow[i] * base % mod;\n }\n }\n\n // get [l,r)\n ll getHash(int l, int r) {\n return (mod + hash[r] - hash[l] * pow[r - l] % mod) % mod;\n }\n};\n\nstruct RollingHash2 {\n int N;\n RollingHash a, b;\n\n RollingHash2(int N, int *arr): N(N), a(9999991, N, arr), b(924844033, N, arr) {}\n\n ll getHash(int l, int r) {\n if (l < 0 || N < r) return -1;\n return a.getHash(l, r) * mod + b.getHash(l, r);\n }\n};\n\nint N, S[SIZE];\nll sum2[SIZE];\n\nint main() {\n scanf(\"%d\", &N);\n\n for (int i = 0; i < N; i++) {\n scanf(\"%d\", S + i);\n }\n\n auto sum = eulerPhiTable(N + 1);\n sum[1] = 0;\n\n for (int i = 1; i <= N; i++) {\n sum[i] += sum[i - 1];\n sum2[i] = sum2[i - 1] + sum[i];\n }\n\n ll ans = 0;\n RollingHash2 rh(N, S);\n\n auto func = [&](int L, int R, int w) {\n int l = 0, r = w - 1;\n\n // L\n while (l < r) {\n int mid = (r + l + 1) / 2;\n\n if (L - mid >= 0 && rh.getHash(L - mid, L) == rh.getHash(L + w - mid, L + w)) {\n l = mid;\n } else {\n r = mid - 1;\n }\n }\n L -= l;\n\n l = 0;\n r = w - 1;\n // R\n while (l < r) {\n int mid = (r + l + 1) / 2;\n\n if (R + mid <= N && rh.getHash(R - w, R - w + mid) == rh.getHash(R, R + mid)) {\n l = mid;\n } else {\n r = mid - 1;\n }\n }\n R += l;\n\n assert(0 <= L && R <= N && L < R);\n\n return R - L;\n };\n\n for (int i = 1; i <= N; i++) {\n int l = 0;\n ll lh = rh.getHash(0, i);\n\n for (int j = 0; (j + 1) * i <= N; j++) {\n ll t = rh.getHash(j * i, (j + 1) * i);\n\n if (t != lh) {\n int L = l * i, R = j * i;\n\n ll w = func(L, R, i);\n ll q = w - (i - 1);\n ll plus = sum2[q / i] * i + (q % i) * sum[(q + i - 1) / i];\n ans += plus;\n l = j;\n lh = t;\n }\n }\n\n int L = l * i, R = N / i * i;\n ll w = func(L, R, i);\n ll q = w - (i - 1);\n ll plus = sum2[q / i] * i + (q % i) * sum[(q + i - 1) / i];\n ans += plus;\n\n debug(ans);\n }\n\n ans += (ll)N * (N + 1) / 2;\n\n printf(\"%lld\\n\", ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 430, "memory_kb": 13420, "score_of_the_acc": -0.798, "final_rank": 9 }, { "submission_id": "aoj_3081_4842988", "code_snippet": "#include <cmath>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n\n#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n\n#include <cassert>\n#include <functional>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(...) ;\n#else\n#define debug(...) cerr << __LINE__ << \" : \" << #__VA_ARGS__ << \" = \" << _tostr(__VA_ARGS__) << endl;\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v);\n\ntemplate<typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n\nvoid _tostr_rec(ostringstream &oss) {\n oss << \"\\b\\b \\b\";\n}\n\ntemplate<typename Head, typename... Tail>\nvoid _tostr_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << head << \", \";\n _tostr_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate<typename... T>\nstring _tostr(T &&... args) {\n ostringstream oss;\n int size = sizeof...(args);\n if (size > 1) oss << \"{\";\n _tostr_rec(oss, forward<T>(args)...);\n if (size > 1) oss << \"}\";\n return oss.str();\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\n/* オイラーのΦ関数 */\n// nと互いに素なn以下の数の個数\n\n// power(a, phi(n)-1) * a = 1\n// (gcd(a, n) = 1)\n\nll eulerPhi(ll n) {\n if (n <= 0) return 0;\n ll res = n;\n for (int i = 2; i * i <= n; i++) {\n if (n % i == 0) {\n res -= res / i;\n while (n % i == 0) n /= i;\n }\n }\n if (n > 1) res -= res / n;\n return res;\n}\n\nvector<int> eulerPhiTable(int n) {\n vector<int> phi(n + 1);\n iota(phi.begin(), phi.end(), 0);\n\n for (int i = 2; i <= n; i++)\n if (phi[i] == i)\n for (int j = 1; j * i <= n; j++)\n phi[i * j] -= phi[i * j] / i;\n\n return phi;\n}\n\n/* Rolling Hash */\n// n = 9999991, 10000019, 924844033, 1012924417\n\nstruct RollingHash {\n int N, base;\n vector<ll> hash, pow;\n\n template<typename Type>\n RollingHash(int base, int n, Type *arr): N(n), base(base), hash(n + 1), pow(n + 1) {\n hash[0] = 0;\n pow[0] = 1;\n for (int i = 0; i < N; i++) {\n hash[i + 1] = (hash[i] + arr[i]) * base % mod;\n pow[i + 1] = pow[i] * base % mod;\n }\n }\n\n // get [l,r)\n ll getHash(int l, int r) {\n return (mod + hash[r] - hash[l] * pow[r - l] % mod) % mod;\n }\n};\n\nstruct RollingHash2 {\n int N;\n RollingHash a, b;\n\n RollingHash2(int N, int *arr): N(N), a(9999991, N, arr), b(924844033, N, arr) {}\n\n ll getHash(int l, int r) {\n if (l < 0 || N < r) return -1;\n return a.getHash(l, r) * mod + b.getHash(l, r);\n }\n};\n\nint N, S[SIZE];\nll sum2[SIZE];\n\nint main() {\n scanf(\"%d\", &N);\n\n for (int i = 0; i < N; i++) {\n scanf(\"%d\", S + i);\n }\n\n auto sum = eulerPhiTable(N + 1);\n sum[1] = 0;\n\n for (int i = 1; i <= N; i++) {\n debug(i, sum[i]);\n sum[i] += sum[i - 1];\n sum2[i] = sum2[i - 1] + sum[i];\n }\n\n ll ans = 0;\n RollingHash2 rh(N, S);\n\n auto func = [&](int L, int R, int w) {\n int l = 0, r = w - 1;\n\n // L\n while (l < r) {\n int mid = (r + l + 1) / 2;\n\n if (L - mid >= 0 && rh.getHash(L - mid, L) == rh.getHash(L + w - mid, L + w)) {\n l = mid;\n } else {\n r = mid - 1;\n }\n }\n L -= l;\n\n l = 0;\n r = w - 1;\n // R\n while (l < r) {\n int mid = (r + l + 1) / 2;\n\n if (R + mid <= N && rh.getHash(R - w, R - w + mid) == rh.getHash(R, R + mid)) {\n l = mid;\n } else {\n r = mid - 1;\n }\n }\n R += l;\n\n assert(0 <= L && R <= N && L < R);\n\n return R - L;\n };\n\n for (int i = 1; i <= N; i++) {\n int l = 0;\n ll lh = rh.getHash(0, i);\n\n for (int j = 0; (j + 1) * i <= N; j++) {\n ll t = rh.getHash(j * i, (j + 1) * i);\n\n if (t != lh) {\n int L = l * i, R = j * i;\n\n ll w = func(L, R, i);\n ll q = w - (i - 1);\n ll plus = sum2[q / i] * i + (q % i) * sum[(q + i - 1) / i];\n ans += plus;\n l = j;\n lh = t;\n }\n }\n\n int L = l * i, R = N / i * i;\n ll w = func(L, R, i);\n ll q = w - (i - 1);\n ll plus = sum2[q / i] * i + (q % i) * sum[(q + i - 1) / i];\n ans += plus;\n\n debug(ans);\n }\n\n ans += (ll)N * (N + 1) / 2;\n\n printf(\"%lld\\n\", ans);\n\n return 0;\n}", "accuracy": 0.359375, "time_ms": 370, "memory_kb": 12488, "score_of_the_acc": -0.6316, "final_rank": 16 }, { "submission_id": "aoj_3081_4842959", "code_snippet": "#include <cmath>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n\n#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n\n#include <cassert>\n#include <functional>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(...) ;\n#else\n#define debug(...) cerr << __LINE__ << \" : \" << #__VA_ARGS__ << \" = \" << _tostr(__VA_ARGS__) << endl;\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v);\n\ntemplate<typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n\nvoid _tostr_rec(ostringstream &oss) {\n oss << \"\\b\\b \\b\";\n}\n\ntemplate<typename Head, typename... Tail>\nvoid _tostr_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << head << \", \";\n _tostr_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate<typename... T>\nstring _tostr(T &&... args) {\n ostringstream oss;\n int size = sizeof...(args);\n if (size > 1) oss << \"{\";\n _tostr_rec(oss, forward<T>(args)...);\n if (size > 1) oss << \"}\";\n return oss.str();\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\n/* Rolling Hash */\n// n = 9999991, 10000019, 924844033, 1012924417\n\nstruct RollingHash {\n int N, base;\n vector<ll> hash, pow;\n\n template<typename Type>\n RollingHash(int base, int n, Type *arr): N(n), base(base), hash(n + 1), pow(n + 1) {\n hash[0] = 0;\n pow[0] = 1;\n for (int i = 0; i < N; i++) {\n hash[i + 1] = (hash[i] + arr[i]) * base % mod;\n pow[i + 1] = pow[i] * base % mod;\n }\n }\n\n // get [l,r)\n ll getHash(int l, int r) {\n return (mod + hash[r] - hash[l] * pow[r - l] % mod) % mod;\n }\n};\n\nstruct RollingHash2 {\n int N;\n RollingHash a, b;\n\n RollingHash2(int N, int *arr): N(N), a(9999991, N, arr), b(924844033, N, arr) {}\n\n ll getHash(int l, int r) {\n if (l < 0 || N < r) return -1;\n return a.getHash(l, r) * mod + b.getHash(l, r);\n }\n};\n\nint N, S[SIZE];\nll sum[SIZE], sum2[SIZE];\n\nint main() {\n scanf(\"%d\", &N);\n // N = 200000;\n\n for (int i = 0; i < N; i++) {\n scanf(\"%d\", S + i);\n // S[i] = rand() % 1000000000;\n // S[i] = 1;\n }\n\n for (int i = 1; i <= N; i++) {\n ll v = i - 1;\n\n for (int j = 2; j * j <= i; j++) {\n if (i % j == 0)\n v -= 1 + (j * j != i);\n }\n\n debug(i, v);\n\n sum[i] = sum[i - 1] + v;\n sum2[i] = sum2[i - 1] + sum[i];\n }\n\n ll ans = 0;\n RollingHash2 rh(N, S);\n\n auto func = [&](int L, int R, int w) {\n int l = 0, r = w - 1;\n\n // L\n while (l < r) {\n int mid = (r + l + 1) / 2;\n\n if (L - mid >= 0 && rh.getHash(L - mid, L) == rh.getHash(L + w - mid, L + w)) {\n l = mid;\n } else {\n r = mid - 1;\n }\n }\n L -= l;\n\n l = 0;\n r = w - 1;\n // R\n while (l < r) {\n int mid = (r + l + 1) / 2;\n\n if (R + mid <= N && rh.getHash(R - w, R - w + mid) == rh.getHash(R, R + mid)) {\n l = mid;\n } else {\n r = mid - 1;\n }\n }\n R += l;\n\n assert(0 <= L && R <= N && L < R);\n\n return R - L;\n };\n\n for (int i = 1; i <= N; i++) {\n int l = 0;\n ll lh = rh.getHash(0, i);\n\n for (int j = 0; (j + 1) * i <= N; j++) {\n ll t = rh.getHash(j * i, (j + 1) * i);\n\n if (t != lh) {\n int L = l * i, R = j * i;\n\n ll w = func(L, R, i);\n ll q = w - (i - 1);\n ll plus = sum2[q / i] * i + (q % i) * sum[(q + i - 1) / i];\n ans += plus;\n l = j;\n lh = t;\n }\n }\n\n int L = l * i, R = N / i * i;\n ll w = func(L, R, i);\n ll q = w - (i - 1);\n ll plus = sum2[q / i] * i + (q % i) * sum[(q + i - 1) / i];\n ans += plus;\n\n debug(ans);\n }\n\n ans += (ll)N * (N + 1) / 2;\n\n printf(\"%lld\\n\", ans);\n\n return 0;\n}", "accuracy": 0.359375, "time_ms": 470, "memory_kb": 13164, "score_of_the_acc": -0.9009, "final_rank": 17 }, { "submission_id": "aoj_3081_4842956", "code_snippet": "#include <cmath>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n\n#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n\n#include <cassert>\n#include <functional>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(...) ;\n#else\n#define debug(...) cerr << __LINE__ << \" : \" << #__VA_ARGS__ << \" = \" << _tostr(__VA_ARGS__) << endl;\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v);\n\ntemplate<typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n\nvoid _tostr_rec(ostringstream &oss) {\n oss << \"\\b\\b \\b\";\n}\n\ntemplate<typename Head, typename... Tail>\nvoid _tostr_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << head << \", \";\n _tostr_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate<typename... T>\nstring _tostr(T &&... args) {\n ostringstream oss;\n int size = sizeof...(args);\n if (size > 1) oss << \"{\";\n _tostr_rec(oss, forward<T>(args)...);\n if (size > 1) oss << \"}\";\n return oss.str();\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\n/* Rolling Hash */\n// n = 9999991, 10000019, 924844033, 1012924417\n\nstruct RollingHash {\n int N, base;\n vector<ll> hash, pow;\n\n template<typename Type>\n RollingHash(int base, int n, Type *arr): N(n), base(base), hash(n + 1), pow(n + 1) {\n hash[0] = 0;\n pow[0] = 1;\n for (int i = 0; i < N; i++) {\n hash[i + 1] = (hash[i] + arr[i]) * base % mod;\n pow[i + 1] = pow[i] * base % mod;\n }\n }\n\n // get [l,r)\n ll getHash(int l, int r) {\n return (mod + hash[r] - hash[l] * pow[r - l] % mod) % mod;\n }\n};\n\nstruct RollingHash2 {\n int N;\n RollingHash a, b;\n\n RollingHash2(int N, int *arr): N(N), a(9999991, N, arr), b(924844033, N, arr) {}\n\n ll getHash(int l, int r) {\n if (l < 0 || N < r) return -1;\n return a.getHash(l, r) * mod + b.getHash(l, r);\n }\n};\n\nint N, S[SIZE];\nll sum[SIZE], sum2[SIZE];\n\nint main() {\n scanf(\"%d\", &N);\n // N = 200000;\n\n for (int i = 0; i < N; i++) {\n scanf(\"%d\", S + i);\n // S[i] = rand() % 1000000000;\n // S[i] = 1;\n }\n\n for (int i = 1; i <= N; i++) {\n ll v = i - 1;\n\n for (int j = 2; j * j <= i; j++) {\n if (i % j == 0)\n v -= 1 + (j * j != i);\n }\n\n debug(i, v);\n\n sum[i] = sum[i - 1] + v;\n sum2[i] = sum2[i - 1] + sum[i];\n }\n\n ll ans = 0;\n RollingHash2 rh(N, S);\n\n auto func = [&](int L, int R, int w) {\n int l = 0, r = w - 1;\n\n // L\n while (l < r) {\n int mid = (r + l + 1) / 2;\n\n if (L - mid >= 0 && rh.getHash(L - mid, L) == rh.getHash(L + w - mid, L + w)) {\n l = mid;\n } else {\n r = mid - 1;\n }\n }\n L -= l;\n\n l = 0;\n r = w - 1;\n // R\n while (l < r) {\n int mid = (r + l + 1) / 2;\n\n if (R + mid <= N && rh.getHash(R - w, R - w + mid) == rh.getHash(R, R + mid)) {\n l = mid;\n } else {\n r = mid - 1;\n }\n }\n R += l;\n\n return R - L;\n };\n\n for (int i = 1; i <= N; i++) {\n int l = 0;\n ll lh = rh.getHash(0, i);\n\n for (int j = 0; (j + 1) * i <= N; j++) {\n ll t = rh.getHash(j * i, (j + 1) * i);\n\n if (t != lh) {\n int L = l * i, R = j * i;\n\n ll w = func(L, R, i);\n ll q = w - (i - 1);\n ll plus = sum2[q / i] * i + (q % i) * sum[(q + i - 1) / i];\n ans += plus;\n l = j;\n lh = t;\n }\n }\n\n int L = l * i, R = N / i * i;\n ll w = func(L, R, i);\n ll q = w - (i - 1);\n ll plus = sum2[q / i] * i + (q % i) * sum[(q + i - 1) / i];\n ans += plus;\n\n debug(ans);\n }\n\n ans += (ll)N * (N + 1) / 2;\n\n printf(\"%lld\\n\", ans);\n\n return 0;\n}", "accuracy": 0.359375, "time_ms": 500, "memory_kb": 13248, "score_of_the_acc": -0.9806, "final_rank": 19 }, { "submission_id": "aoj_3081_4842944", "code_snippet": "#include <cmath>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n\n#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n\n#include <cassert>\n#include <functional>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(...) ;\n#else\n#define debug(...) cerr << __LINE__ << \" : \" << #__VA_ARGS__ << \" = \" << _tostr(__VA_ARGS__) << endl;\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v);\n\ntemplate<typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n\nvoid _tostr_rec(ostringstream &oss) {\n oss << \"\\b\\b \\b\";\n}\n\ntemplate<typename Head, typename... Tail>\nvoid _tostr_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << head << \", \";\n _tostr_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate<typename... T>\nstring _tostr(T &&... args) {\n ostringstream oss;\n int size = sizeof...(args);\n if (size > 1) oss << \"{\";\n _tostr_rec(oss, forward<T>(args)...);\n if (size > 1) oss << \"}\";\n return oss.str();\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\n/* Rolling Hash */\n// n = 9999991, 10000019, 924844033, 1012924417\n\nstruct RollingHash {\n int N, base;\n vector<ll> hash, pow;\n\n template<typename Type>\n RollingHash(int base, int n, Type *arr): N(n), base(base), hash(n + 1), pow(n + 1) {\n hash[0] = 0;\n pow[0] = 1;\n for (int i = 0; i < N; i++) {\n hash[i + 1] = (hash[i] + arr[i]) * base % mod;\n pow[i + 1] = pow[i] * base % mod;\n }\n }\n\n // get [l,r)\n ll getHash(int l, int r) {\n return (mod + hash[r] - hash[l] * pow[r - l] % mod) % mod;\n }\n};\n\nstruct RollingHash2 {\n int N;\n RollingHash a, b;\n\n RollingHash2(int N, int *arr): N(N), a(9999991, N, arr), b(10000019, N, arr) {}\n\n ll getHash(int l, int r) {\n if (l < 0 || N < r) return -1;\n return a.getHash(l, r) * mod + b.getHash(l, r);\n }\n};\n\nint N, S[SIZE];\nll sum[SIZE], sum2[SIZE];\n\nint main() {\n scanf(\"%d\", &N);\n // N = 200000;\n\n for (int i = 0; i < N; i++) {\n scanf(\"%d\", S + i);\n // S[i] = rand() % 1000000000;\n // S[i] = 1;\n }\n\n for (int i = 1; i <= N; i++) {\n ll v = i - 1;\n\n for (int j = 2; j * j <= i; j++) {\n if (i % j == 0)\n v -= 1 + (j * j != i);\n }\n\n debug(i, v);\n\n sum[i] = sum[i - 1] + v;\n sum2[i] = sum2[i - 1] + sum[i];\n }\n\n ll ans = 0;\n RollingHash2 rh(N, S);\n\n auto func = [&](int L, int R, int w) {\n int l = 0, r = w - 1;\n\n // L\n while (l < r) {\n int mid = (r + l + 1) / 2;\n\n if (L - mid >= 0 && rh.getHash(L - mid, L) == rh.getHash(L + w - mid, L + w)) {\n l = mid;\n } else {\n r = mid - 1;\n }\n }\n L -= l;\n\n l = 0;\n r = w - 1;\n // R\n while (l < r) {\n int mid = (r + l + 1) / 2;\n\n if (R + mid <= N && rh.getHash(R - w, R - w + mid) == rh.getHash(R, R + mid)) {\n l = mid;\n } else {\n r = mid - 1;\n }\n }\n R += l;\n\n return R - L;\n };\n\n for (int i = 1; i <= N; i++) {\n int l = 0;\n ll lh = rh.getHash(0, i);\n\n for (int j = 0; (j + 1) * i <= N; j++) {\n ll t = rh.getHash(j * i, (j + 1) * i);\n\n if (t != lh) {\n int L = l * i, R = j * i;\n\n ll w = func(L, R, i);\n ll q = w - (i - 1);\n ll plus = sum2[q / i] * i + (q % i) * sum[(q + i - 1) / i];\n ans += plus;\n l = j;\n lh = t;\n }\n }\n\n int L = l * i, R = N / i * i;\n ll w = func(L, R, i);\n ll q = w - (i - 1);\n ll plus = sum2[q / i] * i + (q % i) * sum[(q + i - 1) / i];\n ans += plus;\n\n debug(ans);\n }\n\n ans += (ll)N * (N + 1) / 2;\n\n printf(\"%lld\\n\", ans);\n\n return 0;\n}", "accuracy": 0.359375, "time_ms": 510, "memory_kb": 13312, "score_of_the_acc": -1.0075, "final_rank": 20 }, { "submission_id": "aoj_3081_4842930", "code_snippet": "#include <cmath>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n\n#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n\n#include <cassert>\n#include <functional>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(...) ;\n#else\n#define debug(...) cerr << __LINE__ << \" : \" << #__VA_ARGS__ << \" = \" << _tostr(__VA_ARGS__) << endl;\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v);\n\ntemplate<typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate<typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n\nvoid _tostr_rec(ostringstream &oss) {\n oss << \"\\b\\b \\b\";\n}\n\ntemplate<typename Head, typename... Tail>\nvoid _tostr_rec(ostringstream &oss, Head &&head, Tail &&... tail) {\n oss << head << \", \";\n _tostr_rec(oss, forward<Tail>(tail)...);\n}\n\ntemplate<typename... T>\nstring _tostr(T &&... args) {\n ostringstream oss;\n int size = sizeof...(args);\n if (size > 1) oss << \"{\";\n _tostr_rec(oss, forward<T>(args)...);\n if (size > 1) oss << \"}\";\n return oss.str();\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\n/* Rolling Hash */\n// n = 9999991, 10000019, 924844033, 1012924417\n\nstruct RollingHash {\n int N, base;\n vector<ll> hash, pow;\n\n template<typename Type>\n RollingHash(int base, int n, Type *arr): N(n), base(base), hash(n + 1), pow(n + 1) {\n hash[0] = 0;\n pow[0] = 1;\n for (int i = 0; i < N; i++) {\n hash[i + 1] = (hash[i] + arr[i]) * base % mod;\n pow[i + 1] = pow[i] * base % mod;\n }\n }\n\n // get [l,r)\n ll getHash(int l, int r) {\n return (mod + hash[r] - hash[l] * pow[r - l] % mod) % mod;\n }\n};\n\nstruct RollingHash2 {\n int N;\n RollingHash a, b;\n\n RollingHash2(int N, int *arr): N(N), a(9999991, N, arr), b(10000019, N, arr) {}\n\n ll getHash(int l, int r) {\n if (l < 0 || N < r) return -1;\n return a.getHash(l, r) * mod + b.getHash(l, r);\n }\n};\n\nint N, S[SIZE];\nll sum[SIZE], sum2[SIZE];\n\nint main() {\n scanf(\"%d\", &N);\n // N = 200000;\n\n for (int i = 0; i < N; i++) {\n scanf(\"%d\", S + i);\n // S[i] = rand() % 1000000000;\n // S[i] = 1;\n }\n\n for (int i = 1; i <= N; i++) {\n ll v = i - 1;\n\n for (int j = 2; j * j <= i; j++) {\n if (i % j == 0)\n v -= 1 + (j * j != i);\n }\n\n sum[i] = sum[i - 1] + v;\n sum2[i] = sum2[i - 1] + sum[i];\n }\n\n ll ans = 0;\n RollingHash2 rh(N, S);\n\n auto func = [&](int L, int R, int w) {\n int l = 0, r = w - 1;\n\n // L\n while (l < r) {\n int mid = (r + l + 1) / 2;\n\n if (L - mid >= 0 && rh.getHash(L - mid, L) == rh.getHash(L + w - mid, L + w)) {\n l = mid;\n } else {\n r = mid - 1;\n }\n }\n L -= l;\n\n l = 0;\n r = w - 1;\n // R\n while (l < r) {\n int mid = (r + l + 1) / 2;\n\n if (R + mid < N && rh.getHash(R - w, R - w + mid) == rh.getHash(R, R + mid)) {\n l = mid;\n } else {\n r = mid - 1;\n }\n }\n R += l;\n\n return R - L;\n };\n\n for (int i = 1; i <= N; i++) {\n int l = 0;\n ll lh = rh.getHash(0, i);\n\n for (int j = 0; (j + 1) * i <= N; j++) {\n ll t = rh.getHash(j * i, (j + 1) * i);\n\n if (t != lh) {\n int L = l * i, R = j * i;\n\n ll w = func(L, R, i);\n ll q = w - (i - 1);\n ll plus = sum2[q / i] * i + (q % i) * sum[(q + i - 1) / i];\n ans += plus;\n l = j;\n lh = t;\n }\n }\n\n int L = l * i, R = N / i * i;\n ll w = func(L, R, i);\n ll q = w - (i - 1);\n ll plus = sum2[q / i] * i + (q % i) * sum[(q + i - 1) / i];\n ans += plus;\n\n debug(ans);\n }\n\n ans += (ll)N * (N + 1) / 2;\n\n printf(\"%lld\\n\", ans);\n\n return 0;\n}", "accuracy": 0.359375, "time_ms": 500, "memory_kb": 13164, "score_of_the_acc": -0.9798, "final_rank": 18 }, { "submission_id": "aoj_3081_4842270", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing i64 = long long;\n\nconst i64 MOD = 1e9 + 7;\nconst i64 INF = i64(1e18) + 7;\n\n\ntemplate <typename T>\nbool chmin(T& x, T y){\n if(x > y){\n x = y;\n return true;\n }\n return false;\n}\n\ntemplate <typename T>\nbool chmax(T& x, T y){\n if(x < y){\n x = y;\n return true;\n }\n return false;\n}\n\ntemplate <class T> using V = vector<T>;\ntemplate <class T> using VV = V<V<T>>;\n\ntemplate <class S> V<int> z_algo(const S& s) {\n int n = int(s.size());\n V<int> r(n + 1);\n r[0] = 0;\n for (int i = 1, j = 0; i <= n; i++) {\n int& k = r[i];\n k = (j + r[j] <= i) ? 0 : min(j + r[j] - i, r[i - j]);\n while (i + k < n && s[k] == s[i + k]) k++;\n if (j + r[j] < i + r[i]) j = i;\n }\n r[0] = n;\n return r;\n}\n\nstruct RunExec {\n VV<pair<int, int>> runs;\n\n int n;\n V<int> a;\n\n V<int> rev(V<int> l) {\n reverse(l.begin(), l.end());\n return l;\n }\n\n V<int> sub_a(int l, int r) {\n return {a.begin() + l, a.begin() + r};\n }\n V<int> concat(V<int> l, const V<int>& r) {\n l.insert(l.end(), r.begin(), r.end());\n return l;\n }\n\n void run(int l, int r, int f) {\n if (l + 1 == r) return;\n int md = (l + r + f) / 2;\n run(l, md, f);\n run(md, r, f);\n auto z1 = z_algo(rev(sub_a(l, md)));\n auto z2 = z_algo(concat(sub_a(md, r), sub_a(l, r)));\n for (int i = md - 1; i >= l; i--) {\n int l1 = min(i - l, z1[md - i]);\n int l2 = min(r - md, z2[(r - l) - (md - i)]);\n int le = i - l1, ri = md + l2, peri = md - i;\n if (ri - le >= 2 * peri) runs[md - i].push_back({i - l1, md + l2});\n }\n }\n\n RunExec(V<int> _a) : a(_a) {\n n = int(a.size());\n runs.resize(n / 2 + 1);\n reverse(a.begin(), a.end());\n run(0, n, 0);\n for (auto& run: runs) {\n for (auto& p: run) {\n tie(p.first, p.second) =\n make_pair(n - p.second, n - p.first);\n }\n }\n reverse(a.begin(), a.end());\n run(0, n, 1);\n\n set<pair<int, int>> vis;\n for (int ph = 1; ph <= n / 2; ph++) {\n auto& run = runs[ph];\n sort(run.begin(), run.end(), [&](pair<int, int> lhs, pair<int, int> rhs) {\n if (lhs.first != rhs.first) return lhs.first < rhs.first;\n return lhs.second > rhs.second;\n });\n V<pair<int, int>> res;\n for (auto p: run) {\n if (!res.empty() && p.second <= res.back().second) continue;\n res.push_back(p);\n }\n run = res;\n res.clear();\n for (auto p: run) {\n if (vis.count(p)) continue;\n vis.insert(p);\n res.push_back(p);\n }\n run = res;\n }\n }\n};\n\ni64 f(i64 k, i64 t){\n i64 res = 0;\n for(int i = 2; i * t <= k; ++i){\n res += (i - 1) * (k - i * t + 1);\n }\n return res;\n}\n\nsigned main(){\n i64 n;\n cin >> n;\n vector<int> s(n);\n for(int i = 0; i < n; ++i)\n cin >> s[i];\n RunExec runexec(s);\n i64 ans = n * (n + 1) / 2;\n for(int i = 0; i < runexec.runs.size(); ++i){\n auto v = runexec.runs[i];\n sort(v.begin(), v.end());\n for(auto p : v){\n ans += f(p.second - p.first, i);\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 42912, "score_of_the_acc": -0.619, "final_rank": 6 }, { "submission_id": "aoj_3081_4842251", "code_snippet": "#include <algorithm>\n#include <array>\n#include <cstdio>\n#include <cstring>\n#include <iostream>\n#include <numeric>\n#include <string>\n#include <utility>\n#include <vector>\nusing namespace std;\n\ntypedef unsigned size_type;\n\n#define USE_RMQ\n\ntemplate <class DatTp, class Comp = std::less<DatTp>> struct static_rmq {\n typedef unsigned long long ull;\n typedef unsigned size_type;\n\n std::vector<DatTp> data;\n Comp cmp;\n std::vector<std::vector<size_type>> sp_rmq;\n std::vector<ull> bl_tort;\n\n explicit static_rmq(const Comp &comp = Comp()) : cmp(comp) {}\n\n void init() {\n data.clear();\n sp_rmq.clear();\n bl_tort.clear();\n }\n\n template <class Iter> static_rmq(Iter beg, Iter en, const Comp &comp = Comp()) : cmp(comp) { init(beg, en); }\n\n template <class Iter> void init(Iter beg, Iter en) {\n sp_rmq.clear();\n bl_tort.clear();\n data.assign(beg, en);\n size_type sz = size();\n if(!sz) { return; }\n\n size_type sp_len = sz / 64;\n sp_rmq.reserve(64 - __builtin_clzll(sp_len | 1));\n\n std::vector<size_type> vec(sp_len);\n for(size_type i = 0; i < sp_len; ++i) {\n size_type t = i * 64;\n for(size_type j = t + 1; j < (i + 1) * 64; ++j) { t = minidx(t, j); }\n vec[i] = t;\n }\n sp_rmq.push_back(vec);\n\n for(size_type i = 1; (1u << i) <= sp_len; ++i) {\n vec.clear();\n size_type r = (1u << (i - 1));\n std::vector<size_type> &prv = sp_rmq.back();\n for(size_type j = 0; j + r * 2 <= sp_len; ++j) { vec.push_back(minidx(prv[j], prv[j + r])); }\n sp_rmq.push_back(vec);\n }\n\n bl_tort.assign(sz, 0ull);\n std::vector<size_type> st;\n st.reserve(64);\n for(size_type low = 0; low < sz; low += 64) {\n size_type high = std::min<size_type>(low + 64, sz);\n ull val = 0;\n st.clear();\n for(size_type j = high; j-- != low;) {\n while(!st.empty()) {\n size_type tp = st.back();\n if(cmp(data[tp], data[j])) { break; }\n val ^= 1ull << (tp % 64);\n st.pop_back();\n }\n st.push_back(j);\n val |= 1ull << (j % 64);\n bl_tort[j] = val;\n }\n }\n }\n\n size_type size() const { return data.size(); }\n\n size_type minidx(size_type i, size_type j) const {\n if(i > j) { std::swap(i, j); }\n // if(j >= size()){ return i; }\n return !cmp(data[j], data[i]) ? i : j;\n }\n\n const DatTp &operator[](size_type i) const { return data[i]; }\n\n // [lt, rt]\n size_type operator()(size_type lt, size_type rt) const {\n if(lt > rt) { return lt; }\n size_type bl_lt = lt / 64, bl_rt = rt / 64;\n size_type ret;\n ull rtmask = ((2ull << (rt % 64)) - 1);\n if(bl_lt == bl_rt) {\n ull bit = bl_tort[lt] & rtmask;\n size_type k = 63 - __builtin_clzll(bit);\n ret = bl_lt * 64 + k;\n } else {\n ret = bl_lt * 64 + 63 - __builtin_clzll(bl_tort[lt]);\n if(bl_lt + 1 != bl_rt) {\n size_type numblk = bl_rt - bl_lt - 1;\n size_type k = 63 - __builtin_clzll(numblk);\n size_type cand1 = sp_rmq[k][bl_lt + 1];\n ret = minidx(ret, cand1);\n if((1u << k) != numblk) {\n size_type cand2 = sp_rmq[k][bl_rt - (1u << k)];\n ret = minidx(ret, cand2);\n }\n }\n size_type cand3 = bl_rt * 64 + 63 - __builtin_clzll(bl_tort[bl_rt * 64] & rtmask);\n ret = minidx(ret, cand3);\n }\n return ret;\n }\n};\n\nstruct suffix_array {\n typedef unsigned size_type;\n\n size_type size() const { return sa.size(); }\n\n size_type rank(size_type a) const { return rnk[a]; }\n\n size_type operator[](size_type x) const { return sa[x]; }\n\n#ifdef USE_RMQ\n size_type lcp_order_adj(size_type a) const { return rmq[a]; }\n\n // lcp(S[a..], S[b..])\n size_type lcp(size_type a, size_type b) const {\n if(a >= size() || b >= size()) { return 0; }\n return lcp_ord(rnk[a], rnk[b]);\n }\n\n // [a,b] or [b,a]\n size_type lcp_ord(size_type a, size_type b) const {\n if(a == b) { return size() - sa[a]; }\n if(a > b) { std::swap(a, b); }\n size_type k = rmq(a + 1, b);\n return rmq[k];\n }\n\n int compsub(size_type pos1, size_type len1, size_type pos2, size_type len2) const {\n len1 = std::min(len1, size() - pos1);\n len2 = std::min(len2, size() - pos2);\n size_type com = lcp(pos1, pos2);\n com = std::min(com, std::min(len1, len2));\n if(com == len1) {\n if(com == len2) { return 0; }\n return -1;\n }\n if(com == len2) { return 1; }\n return rank(pos1) < rank(pos2) ? -2 : 2;\n }\n#endif\n\n std::vector<size_type> sa;\n std::vector<size_type> rnk;\n std::vector<size_type> acc;\n#ifdef USE_RMQ\n static_rmq<size_type> rmq;\n#endif\n\n suffix_array() {}\n\n template <class Cont> explicit suffix_array(Cont &c) : suffix_array(c.begin(), c.end()) {}\n\n template <class RAI> suffix_array(RAI first, RAI last) { init(first, last); }\n\n void init() {\n sa.clear();\n rnk.clear();\n acc.clear();\n#ifdef USE_RMQ\n rmq.init();\n#endif\n }\n\n template <class Cont> void init(Cont &c) { init(c.begin(), c.end()); }\n\n template <class RAI> void init(RAI first, RAI last) {\n typedef typename std::iterator_traits<RAI>::value_type value_type;\n\n init();\n if(first == last) { return; }\n\n size_type len = std::distance(first, last);\n std::pair<RAI, RAI> minmax = std::minmax_element(first, last);\n if(*minmax.first < 0 || *minmax.second + size_type() > std::max<size_type>(len * 3, 250)) {\n std::vector<value_type> vec(first, last);\n std::sort(vec.begin(), vec.end());\n vec.erase(unique(vec.begin(), vec.end()), vec.end());\n std::vector<size_type> idx;\n idx.reserve(len);\n for(RAI it = first; it != last; ++it) { idx.push_back(std::lower_bound(vec.begin(), vec.end(), *it) - vec.begin()); }\n std::vector<value_type>().swap(vec);\n construct_sa_lcp(idx.begin(), idx.end());\n } else {\n construct_sa_lcp(first, last);\n }\n }\n\n template <class RAI> void construct_sa_lcp(RAI first, RAI last) {\n size_type kind = *std::max_element(first, last) + 1;\n size_type len = std::distance(first, last);\n acc.reserve(std::max(kind, len) + 1);\n sa = calcsa(first, last, kind);\n std::vector<size_type>().swap(acc);\n\n rnk.resize(len);\n for(size_type i = 0; i < len; ++i) { rnk[sa[i]] = i; }\n\n std::vector<size_type> lcpar(len);\n size_type h = 0;\n for(size_type i = 0; i < len; ++i) {\n if(rnk[i] == 0) {\n h = 0;\n } else {\n size_type j = sa[rnk[i] - 1];\n if(h > 0) { --h; }\n for(; j + h < len && i + h < len; ++h) {\n if(first[j + h] != first[i + h]) { break; }\n }\n }\n lcpar[rnk[i]] = h;\n }\n#ifdef USE_RMQ\n rmq.init(lcpar.begin(), lcpar.end());\n#endif\n }\n\n void calcacc(const std::vector<size_type> &cnt) {\n acc.resize(cnt.size() + 1);\n acc[0] = 0;\n std::partial_sum(cnt.begin(), cnt.end(), acc.begin() + 1);\n }\n\n template <class RAI> std::vector<size_type> calcsa(RAI first, RAI last, size_type kind) {\n size_type len = std::distance(first, last);\n\n std::vector<size_type> cnt(kind);\n for(RAI it = first; it != last; ++it) { ++cnt[*it]; }\n\n std::vector<int> stype(len);\n for(size_type i = len - 1; i--;) {\n if(first[i] == first[i + 1]) {\n stype[i] = stype[i + 1];\n } else {\n stype[i] = (first[i] < first[i + 1]);\n }\n }\n std::vector<size_type> lms;\n size_type numlms = 0;\n std::vector<size_type> ridx(len, size_type(-1));\n\n std::vector<size_type> bucket(len, size_type(-1));\n calcacc(cnt);\n for(size_type i = 1; i < len; ++i) {\n if(stype[i] && !stype[i - 1]) {\n stype[i] = 2;\n bucket[--acc[first[i] + 1]] = i;\n ridx[i] = numlms++;\n lms.push_back(i);\n }\n }\n\n induced_sort(first, last, kind, stype, cnt, bucket);\n\n size_type lmskind = size_type(-1);\n std::vector<size_type> lmsstr(numlms);\n size_type prv = size_type(-1);\n for(size_type i = 0; i < len; ++i) {\n size_type r = ridx[bucket[i]];\n if(r != size_type(-1)) {\n if(prv == size_type(-1) || prv + 1 == numlms || r + 1 == numlms || lms[prv + 1] - lms[prv] != lms[r + 1] - lms[r] ||\n !std::equal(first + lms[prv], first + (lms[prv + 1] + 1), first + lms[r])) {\n ++lmskind;\n }\n lmsstr[r] = lmskind;\n prv = r;\n }\n }\n ++lmskind;\n\n std::vector<size_type> lmssa;\n if(lmskind != numlms) {\n lmssa = calcsa(lmsstr.begin(), lmsstr.end(), lmskind);\n } else {\n lmssa.resize(numlms);\n for(size_type i = 0; i < numlms; ++i) { lmssa[lmsstr[i]] = i; }\n }\n\n calcacc(cnt);\n bucket.assign(len, size_type(-1));\n for(size_type i = numlms; i--;) {\n size_type pos = lms[lmssa[i]];\n bucket[--acc[first[pos] + 1]] = pos;\n }\n induced_sort(first, last, kind, stype, cnt, bucket);\n\n return bucket;\n }\n\n template <class RAI>\n void induced_sort(RAI first, RAI last, size_type kind, const std::vector<int> &stype, std::vector<size_type> &cnt, std::vector<size_type> &bucket) {\n size_type len = std::distance(first, last);\n calcacc(cnt);\n bucket[acc[+first[len - 1]]++] = len - 1;\n for(size_type i = 0; i < len; ++i) {\n size_type bc = bucket[i];\n if(bc != size_type(-1) && bc != 0 && !stype[bc - 1]) { bucket[acc[+first[bc - 1]]++] = bc - 1; }\n }\n calcacc(cnt);\n for(size_type i = len; i--;) {\n size_type bc = bucket[i];\n if(bc != size_type(-1) && bc != 0 && stype[bc - 1]) { bucket[--acc[first[bc - 1] + 1]] = bc - 1; }\n }\n }\n};\n\nvoid compute_runs_from_lepos(const suffix_array &sa, const suffix_array &sarev, bool invlex, std::vector<std::array<size_type, 3>> &res) {\n size_type len = sa.size();\n std::vector<size_type> lepos(len);\n std::vector<size_type> stk;\n stk.reserve(len + 1);\n stk.push_back(len);\n for(size_type i = len; i--;) {\n while(stk.size() > 1) {\n size_type pos2 = stk.back();\n if(!invlex) {\n if(sa.rank(i) > sa.rank(pos2)) { break; }\n } else {\n size_type len2 = stk.end()[-2] - pos2;\n int cmp = sa.compsub(i, pos2 - i, pos2, len2);\n if(cmp != -1 && cmp != 2) { break; }\n }\n stk.pop_back();\n }\n lepos[i] = stk.back();\n stk.push_back(i);\n }\n\n for(size_type i = 0; i < len; ++i) {\n size_type per = lepos[i] - i;\n size_type extr = sa.lcp(i, lepos[i]);\n // choose rightmost Lyndon root (distinct)\n if(extr >= per) { continue; }\n if(invlex && lepos[i] + extr == len) { continue; }\n size_type extl = sarev.lcp(len - i, len - lepos[i]);\n if(extl + extr >= per) { res.push_back({{i - extl, lepos[i] + extr, per}}); }\n }\n}\n\ntemplate <class RII> std::vector<std::array<size_type, 3>> compute_runs(RII beg, RII en) {\n suffix_array sa(beg, en);\n std::reverse_iterator<RII> rbeg(en), ren(beg);\n suffix_array sarev(rbeg, ren);\n\n size_type len = sa.size();\n std::vector<std::array<size_type, 3>> runs1;\n runs1.reserve(len);\n compute_runs_from_lepos(sa, sarev, false, runs1);\n compute_runs_from_lepos(sa, sarev, true, runs1);\n\n return runs1;\n}\nint buf[200010];\n\nint main() {\n int len;\n cin >> len;\n for(int i = 0; i < len; ++i) cin >> buf[i];\n\n auto runs1 = compute_runs(buf, buf + len);\n size_type sz = runs1.size();\n std::vector<std::array<size_type, 3>> runs2(sz);\n std::vector<size_type> cnt;\n for(int i = 1; i <= 2; ++i) {\n cnt.assign(len + 2, 0);\n for(const auto &ar : runs1) { ++cnt[ar[i] + 1]; }\n std::partial_sum(cnt.begin(), cnt.end(), cnt.begin());\n for(const auto &ar : runs1) { runs2[cnt[ar[i]]++] = ar; }\n runs1.swap(runs2);\n }\n long long n = len;\n long long ans = (long long)n * (n + 1) / 2;\n using ll = long long;\n for(const auto &a : runs1) {\n ll l = a[1] - a[0];\n for(ll s = a[2] * 2; s <= l; s += a[2]) { ans += (l + 1 - s) * (s / a[2] - 1); }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 17296, "score_of_the_acc": -0.0438, "final_rank": 1 } ]
aoj_3080_cpp
Problem 無限に広がる二次元格子があります。 Aくんは、変わったマラソンをする予定です。 二次元格子には $N$ 個のコーナーがあり、$1$ から $N$ の番号がついています。 コーナー $i$ の初期位置は 座標 $(X_i, Y_i)$ です。 Aくんはあらかじめ、以下の操作を $K$ 回まで行うことが出来ます。 コーナーを一つ選択する。選んだコーナーの現在の座標を $(p, q)$ とする。 選んだコーナーを座標 $(p, q)$ から座標 $(p+1, q),(p, q+1), (p-1, q), (p, q-1)$ のいずれかへ移動する。 操作を行う回数が、操作に消費するコストです。 操作によって $2$ つ以上のコーナーの座標が同じになっても構いません。 操作の後、Aくんはマラソンを行います。 Aくんははじめコーナー $1$ にいます。コーナー $1, 2, \dots, N$ をこの順に通っていきます。 Aくんは、座標 $(x, y)$ にいるとき、コスト $1$ を消費して、座標 $(x+1, y), (x, y+1), (x-1, y), (x, y-1)$ のいずれかへ動くことができます。 コーナー $N$ がゴールであり、ゴールにたどり着くとマラソンは終わります。 ゴールにたどり着くまでに消費するコストの総和が、マラソンに消費するコストです。 マラソンと操作に消費するコストの合計の最小値を求めてください。 Input 入力は以下の形式で与えられる。 $N$ $K$ $X_1$ $Y_1$ $X_2$ $Y_2$ $\vdots$ $X_N$ $Y_N$ Constraints $1 \leq N \leq 10^5$ $1 \leq K \leq 10^{12}$ $-10^6 \leq X_i \leq 10^6$ $-10^6 \leq Y_i \leq 10^6$ 入力は全て整数である。 Output マラソンと操作に消費するコストの合計の最小値を一行に出力する。 Sample Input 1 5 15 0 0 7 0 3 -4 5 2 9 -4 Sample Output 1 23 Sample Input 2 14 12 2 3 3 2 5 3 7 0 11 5 13 0 17 5 19 0 23 5 29 0 31 3 37 2 41 3 43 0 Sample Output 2 72
[ { "submission_id": "aoj_3080_5499018", "code_snippet": "#include <iostream>\n#include <set>\n#include <climits>\n#include <vector>\n#include <algorithm>\n#include <cassert>\n#include <memory>\n\nusing namespace std;\nusing ll = long long;\n\nnamespace {\n /* input operator for vectors */\n template<typename T>\n istream& operator>>(istream& is, vector<T>& vs) {\n for (auto&& v : vs) is >> v;\n return is;\n }\n\n /* output operator for vectors */\n template<typename T>\n ostream& operator<<(ostream& os, const vector<T>& vs) {\n if (vs.empty()) return os;\n os << vs[0];\n auto it = ++vs.begin();\n for (; it != vs.end(); ++it) {\n os << ' ' << *it;\n }\n return os;\n }\n \n /* output operator for vector of vectors */\n template<typename T>\n ostream& operator<<(ostream& os, const vector<vector<T>>& vs) {\n if (vs.empty()) return os;\n os << vs[0];\n auto it = ++vs.begin();\n for (; it != vs.end(); ++it) {\n os << '\\n' << *it;\n }\n return os;\n }\n}\n\nnamespace {\n ll N, K;\n vector<int> X, Y;\n void input() {\n cin >> N >> K;\n X = vector<int>(N);\n Y = vector<int>(N);\n for (int i = 0; i < N; i++) {\n cin >> X[i] >> Y[i];\n }\n }\n\n void solve() {\n ll initial_cost = 0;\n for (int i = 0; i < N - 1; i++) {\n initial_cost += abs(X[i+1] - X[i]) + abs(Y[i+1] - Y[i]);\n }\n ll able_to_shortcut = 0;\n auto find_shortcut = [&](vector<int>& X) {\n for (int i = 0; i < N - 2; i++) {\n if (X[i] <= X[i+1] && X[i+1] <= X[i+2]) continue;\n if (X[i] >= X[i+1] && X[i+1] >= X[i+2]) continue;\n ll shortcut = 0;\n if (X[i] > X[i+1] && X[i+1] < X[i+2]) {\n shortcut = min(X[i] - X[i+1], X[i+2] - X[i+1]);\n X[i+1] += shortcut;\n } else if (X[i] < X[i+1] && X[i+1] > X[i+2]) {\n shortcut = min(X[i+1] - X[i], X[i+1] - X[i+2]);\n X[i+1] -= shortcut;\n }\n able_to_shortcut += shortcut;\n }\n };\n find_shortcut(X);\n find_shortcut(Y);\n cout << initial_cost - min(K, able_to_shortcut) << endl;\n }\n}\n\nint main() {\n input();\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3904, "score_of_the_acc": -0.5167, "final_rank": 8 }, { "submission_id": "aoj_3080_5007426", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n\nll N,K;\nll X[SIZE],Y[SIZE];\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&K);\n\n\tll sum_dist = 0;\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tscanf(\"%lld %lld\",&X[i],&Y[i]);\n\t\tif(i == 0)continue;\n\n\t\tsum_dist += abs(X[i]-X[i-1])+abs(Y[i]-Y[i-1]);\n\t}\n\n\tll minus_X = 0,minus_Y = 0;\n\n\tfor(ll i = 1; i < N-1; i++){\n\n\t\tif(X[i-1] <= X[i+1]){\n\n\t\t\tif(X[i] > X[i+1]){\n\t\t\t\tminus_X += X[i]-X[i+1];\n\t\t\t\tX[i] = X[i+1];\n\t\t\t}else if(X[i] < X[i-1]){\n\n\t\t\t\tminus_X += X[i-1]-X[i];\n\t\t\t\tX[i] = X[i-1];\n\t\t\t}\n\n\t\t}else if(X[i-1] >= X[i+1]){\n\n\t\t\tif(X[i] < X[i+1]){\n\t\t\t\tminus_X += X[i+1]-X[i];\n\t\t\t\tX[i] = X[i+1];\n\t\t\t}else if(X[i] > X[i-1]){\n\t\t\t\tminus_X += X[i]-X[i-1];\n\t\t\t\tX[i] = X[i-1];\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(ll i = 1; i < N-1; i++){\n\n\t\tif(Y[i-1] <= Y[i+1]){\n\n\t\t\tif(Y[i] > Y[i+1]){\n\t\t\t\tminus_Y += Y[i]-Y[i+1];\n\t\t\t\tY[i] = Y[i+1];\n\t\t\t}else if(Y[i] < Y[i-1]){\n\n\t\t\t\tminus_Y += Y[i-1]-Y[i];\n\t\t\t\tY[i] = Y[i-1];\n\t\t\t}\n\n\t\t}else if(Y[i-1] >= Y[i+1]){\n\n\t\t\tif(Y[i] < Y[i+1]){\n\t\t\t\tminus_Y += Y[i+1]-Y[i];\n\t\t\t\tY[i] = Y[i+1];\n\t\t\t}else if(Y[i] > Y[i-1]){\n\t\t\t\tminus_Y += Y[i]-Y[i-1];\n\t\t\t\tY[i] = Y[i-1];\n\t\t\t}\n\t\t}\n\t}\n\n\tsum_dist -= min(K,minus_X+minus_Y);\n\n\tprintf(\"%lld\\n\",sum_dist);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4768, "score_of_the_acc": -0.1144, "final_rank": 5 }, { "submission_id": "aoj_3080_4877431", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n\nsigned main(){\n int n,k;cin>>n>>k;\n vector<int> x(n),y(n);\n for(int i=0;i<n;i++)cin>>x[i]>>y[i];\n int ans=0;\n for(int i=2;i<n;i++){\n if(x[i-2]<x[i-1]&&x[i]<x[i-1]){\n int tmp=min({x[i-1]-x[i-2],x[i-1]-x[i],k});\n x[i-1]-=tmp;\n k-=tmp;\n ans+=tmp;\n }\n if(x[i-2]>x[i-1]&&x[i]>x[i-1]){\n int tmp=min({x[i-2]-x[i-1],x[i]-x[i-1],k});\n x[i-1]+=tmp;\n k-=tmp;\n ans+=tmp;\n }\n if(y[i-2]<y[i-1]&&y[i]<y[i-1]){\n int tmp=min({y[i-1]-y[i-2],y[i-1]-y[i],k});\n y[i-1]-=tmp;\n k-=tmp;\n ans+=tmp;\n }\n if(y[i-2]>y[i-1]&&y[i]>y[i-1]){\n int tmp=min({y[i-2]-y[i-1],y[i]-y[i-1],k});\n y[i-1]+=tmp;\n k-=tmp;\n ans+=tmp;\n }\n }\n for(int i=1;i<n;i++)ans+=abs(x[i]-x[i-1])+abs(y[i]-y[i-1]);\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 4324, "score_of_the_acc": -0.8142, "final_rank": 11 }, { "submission_id": "aoj_3080_4868853", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint64_t MOD=998244353;\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\nconst long long INF = 1LL<<60;\n\n\nint main() {\n int64_t N,K,c=0,ans=0; cin>>N>>K;\n vector<int64_t> X(N),Y(N);\n rep(i,N){\n cin>>X[i]>>Y[i];\n if(i>0) ans+=abs(X[i]-X[i-1])+abs(Y[i]-Y[i-1]);\n }\n for(int i=1;i<N-1;i++){\n if((X[i]-X[i-1])>0&&(X[i+1]-X[i])<0){\n c+=X[i]-max(X[i-1],X[i+1]);\n X[i]=max(X[i-1],X[i+1]);\n }\n else if((X[i]-X[i-1])<0&&(X[i+1]-X[i])>0){\n c-=X[i]-min(X[i-1],X[i+1]);\n X[i]=min(X[i-1],X[i+1]);\n }\n if((Y[i]-Y[i-1])>0&&(Y[i+1]-Y[i])<0){\n c+=Y[i]-max(Y[i-1],Y[i+1]);\n Y[i]=max(Y[i-1],Y[i+1]);\n }\n else if((Y[i]-Y[i-1])<0&&(Y[i+1]-Y[i])>0){\n c-=Y[i]-min(Y[i-1],Y[i+1]);\n Y[i]=min(Y[i-1],Y[i+1]);\n }\n }\n cout<<ans-min(K,c)<<endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 4432, "score_of_the_acc": -1.0764, "final_rank": 18 }, { "submission_id": "aoj_3080_4868838", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int N;\n int64_t K,A,Z;\n cin>>N>>K;\n Z=K;\n vector<int64_t> p(N);\n vector<int64_t> q(N);\n for(int i=0;i<N;i++){\n cin>>p[i]>>q[i];\n }\n for(int i=2;i<N;i++){\n if(p[i-2]<p[i-1]&&p[i]<p[i-1]){\n A=p[i-1]-max(p[i-2],p[i]);\n A=min(A,K);\n K-=A;\n p[i-1]-=A;\n }\n if(p[i-2]>p[i-1]&&p[i]>p[i-1]){\n A=min(p[i-2],p[i])-p[i-1];\n A=min(A,K);\n K-=A;\n p[i-1]+=A;\n }\n if(q[i-2]<q[i-1]&&q[i]<q[i-1]){\n A=q[i-1]-max(q[i-2],q[i]);\n A=min(A,K);\n K-=A;\n q[i-1]-=A;\n }\n if(q[i-2]>q[i-1]&&q[i]>q[i-1]){\n A=min(q[i-2],q[i])-q[i-1];\n A=min(A,K);\n K-=A;\n q[i-1]+=A;\n }\n }\n Z-=K;\n for(int i=1;i<N;i++){\n Z+=abs(p[i-1]-p[i])+abs(q[i-1]-q[i]);\n }\n cout<<Z<<endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 4688, "score_of_the_acc": -0.8554, "final_rank": 14 }, { "submission_id": "aoj_3080_4861117", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\nll mylamp(ll a, ll low, ll high){\n if(low > high) swap(low, high);\n return min(max(a, low), high);\n}\n\nint main() {\n cin>>N>>K;\n ll len(0), d(0);\n vec x(N), y(N);\n rep(i, N) cin>>x[i]>>y[i];\n reps(i, 1, N) len += abs(x[i-1] - x[i]) + abs(y[i-1] - y[i]);\n reps(i, 1, N - 1){\n ll nx = mylamp(x[i], x[i-1], x[i+1]), ny = mylamp(y[i], y[i-1], y[i+1]);\n d += abs(nx - x[i]) + abs(ny - y[i]);\n x[i] = nx; y[i] = ny;\n }\n cout<<len - min(d, K)<<endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 4432, "score_of_the_acc": -0.8264, "final_rank": 12 }, { "submission_id": "aoj_3080_4851745", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n#define rep(i, n) for (int i = 0; i < (int) (n); i++)\n#define reps(i, n) for (int i = 1; i <= (int) (n); i++)\n#define all(x) (x).begin(), (x).end()\n#define uniq(x) (x).erase(unique(all(x)), (x).end())\n#define bit(n) (1LL << (n))\n#define dump(x) cerr << #x \" = \" << (x) << endl\nusing vint = vector<int>;\nusing vvint = vector<vint>;\nusing pint = pair<int, int>;\nusing vpint = vector<pint>;\ntemplate<typename T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;\nconstexpr double PI = 3.1415926535897932384626433832795028;\nconstexpr int DY[9] = {0, 1, 0, -1, 1, 1, -1, -1, 0};\nconstexpr int DX[9] = {1, 0, -1, 0, 1, -1, -1, 1, 0};\nint sign(int x) { return (x > 0) - (x < 0); }\nint gcd(int a, int b) {\n while (b) { swap(a %= b, b); }\n return a;\n}\nint lcm(int a, int b) { return a / gcd(a, b) * b; }\nint cdiv(int a, int b) { return (a - 1 + b) / b; }\ntemplate<typename T> void fin(T mes) {\n cout << mes << endl;\n exit(0);\n}\ntemplate<typename T> T sq(T x) { return x * x; }\ntemplate<typename T, typename U> bool chmax(T &a, const U &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<typename T, typename U> bool chmin(T &a, const U &b) {\n if (b < a) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &rhs) {\n os << \"(\" << rhs.first << \", \" << rhs.second << \")\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const vector<T> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const deque<T> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const set<T> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const multiset<T> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\nstruct setup {\n static constexpr int PREC = 20;\n setup() {\n cout << fixed << setprecision(PREC);\n cerr << fixed << setprecision(PREC);\n };\n} setup;\n\nsigned main() {\n int N, K;\n cin >> N >> K;\n vint X(N), Y(N);\n rep(i, N) { cin >> X[i] >> Y[i]; }\n int ans = 0;\n rep(i, N - 1) { ans += abs(X[i + 1] - X[i]) + abs(Y[i + 1] - Y[i]); }\n int m = 0;\n reps(i, N - 2) {\n if (X[i] < X[i - 1] && X[i] < X[i + 1] || X[i] > X[i - 1] && X[i] > X[i + 1]) {\n if (abs(X[i - 1] - X[i]) < abs(X[i + 1] - X[i])) {\n m += abs(X[i - 1] - X[i]);\n X[i] = X[i - 1];\n } else {\n m += abs(X[i + 1] - X[i]);\n X[i] = X[i + 1];\n }\n }\n if (Y[i] < Y[i - 1] && Y[i] < Y[i + 1] || Y[i] > Y[i - 1] && Y[i] > Y[i + 1]) {\n if (abs(Y[i - 1] - Y[i]) < abs(Y[i + 1] - Y[i])) {\n m += abs(Y[i - 1] - Y[i]);\n Y[i] = Y[i - 1];\n } else {\n m += abs(Y[i + 1] - Y[i]);\n Y[i] = Y[i + 1];\n }\n }\n }\n ans -= min(K, m);\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 4688, "score_of_the_acc": -0.8554, "final_rank": 14 }, { "submission_id": "aoj_3080_4851600", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 19;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\n\n\nvoid solve() {\n\tint n;ll k; cin >> n >> k;\n\tvector<ll> x(n), y(n);\n\trep(i, n)cin >> x[i] >> y[i];\n\tll ans = 0;\n\trep(i, n - 1) {\n\t\tans += abs(x[i + 1] - x[i]);\n\t\tans += abs(y[i + 1] - y[i]);\n\t}\n\trep1(i, n - 2) {\n\t\tif (x[i] > x[i - 1] && x[i] > x[i + 1]) {\n\t\t\tll d = min(k, x[i] - max(x[i - 1], x[i + 1]));\n\t\t\tans -= d;\n\t\t\tx[i] -= d;\n\t\t\tk -= d;\n\t\t}\n\t\tif (x[i] < x[i - 1] && x[i] < x[i + 1]) {\n\t\t\tll d = min(k, min(x[i - 1], x[i + 1]) - x[i]);\n\t\t\tans -= d;\n\t\t\tx[i] += d;\n\t\t\tk -= d;\n\t\t}\n\t\tif (y[i] > y[i - 1] && y[i] > y[i + 1]) {\n\t\t\tll d = min(k, y[i] - max(y[i - 1], y[i + 1]));\n\t\t\tans -= d; y[i] -= d; k -= d;\n\t\t}\n\t\tif (y[i] < y[i - 1] && y[i] < y[i + 1]) {\n\t\t\tll d = min(k, min(y[i - 1], y[i + 1]) - y[i]);\n\t\t\tans -= d; y[i] += d; k -= d;\n\t\t}\n\t}\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\tinit_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 12600, "score_of_the_acc": -1, "final_rank": 17 }, { "submission_id": "aoj_3080_4846450", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<tuple>\n#include<cassert>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned int ui;\nconst ll mod = 1000000007;\nconst ll INF = (ll)1000000007 * 1000000007;\ntypedef pair<int, int> P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef long double ld;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<ll, ll> LP;\nint dx[4]={1,-1,0,0};\nint dy[4]={0,0,1,-1};\ntemplate<class T>bool chmax(T &a, const T &b) {if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T &a, const T &b) {if(b<a){a=b;return 1;}return 0;}\n\nint n;ll k;\nll x[100010],y[100010];\n\nvoid solve(){\n cin >> n >> k;\n rep(i,n) cin >> x[i] >> y[i];\n ll ans=0;\n rep(i,n-1){\n ans+=abs(x[i+1]-x[i]);\n ans+=abs(y[i+1]-y[i]);\n }\n ll g=0;\n Rep(i,1,n-1){\n if(x[i]<=min(x[i-1],x[i+1])){\n ll v=min(x[i-1],x[i+1]);\n if(k>=abs(v-x[i])){\n k-=abs(v-x[i]);\n g+=abs(v-x[i]);\n x[i]=v;\n }\n else{\n g+=k;\n k=0;\n }\n }\n if(x[i]>=max(x[i-1],x[i+1])){\n ll v=max(x[i-1],x[i+1]);\n if(k>=abs(v-x[i])){\n k-=abs(v-x[i]);\n g+=abs(v-x[i]);\n x[i]=v;\n }\n else{\n g+=k;\n k=0;\n }\n }\n if(y[i]<=min(y[i-1],y[i+1])){\n ll v=min(y[i-1],y[i+1]);\n if(k>=abs(v-y[i])){\n k-=abs(v-y[i]);\n g+=abs(v-y[i]);\n y[i]=v;\n }\n else{\n g+=k;\n k=0;\n }\n }\n if(y[i]>=max(y[i-1],y[i+1])){\n ll v=max(y[i-1],y[i+1]);\n if(k>=abs(v-y[i])){\n k-=abs(v-y[i]);\n g+=abs(v-y[i]);\n y[i]=v;\n }\n else{\n g+=k;\n k=0;\n }\n }\n }\n cout << ans-g << endl;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(50);\n solve();\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4924, "score_of_the_acc": -0.1321, "final_rank": 6 }, { "submission_id": "aoj_3080_4844428", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <iostream>\n#include <string>\n#include <cmath>\n#include <bitset>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <complex>\n#include <unordered_map>\n#include <unordered_set>\n#include <random>\n#include <cassert>\n#include <fstream>\n#include <utility>\n#include <functional>\n#include <time.h>\n#include <stack>\n#include <array>\n#include <list>\n#define popcount __builtin_popcount\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int, int> P;\n\nint main()\n{\n int n; ll k;\n cin>>n>>k;\n ll x[2][100010];\n for(int i=0; i<n; i++) cin>>x[0][i]>>x[1][i];\n ll ans=0, s=0;\n for(int t=0; t<2; t++){\n for(int i=0; i<n-1; i++){\n ans+=abs(x[t][i]-x[t][i+1]);\n }\n bool b[100010]={};\n for(int i=1; i<n-1; i++){\n if(x[t][i-1]<x[t][i] && x[t][i]>x[t][i+1]) b[i]=1;\n if(x[t][i-1]>x[t][i] && x[t][i]<x[t][i+1]) b[i]=1;\n }\n for(int i=1; i<n; i++){\n if(b[i-1] && !b[i]){\n vector<ll> v;\n for(int j=i-1; j>=0; j--){\n v.push_back(abs(x[t][j]-x[t][j+1]));\n if(!b[j]) break;\n }\n ll pr=min(v[0], v[1]);\n s+=pr;\n for(int j=1; j<(int)v.size()-1; j++){\n ll a=min(v[j]-pr, v[j+1]);\n s+=a;\n pr=a;\n }\n }\n }\n }\n ans-=min(k, s);\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 5068, "score_of_the_acc": -0.8983, "final_rank": 16 }, { "submission_id": "aoj_3080_4844082", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nint main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tint n; cin >> n;\n\tll k; cin >> k;\n\tvector<ll> x(n),y(n);\n\tll res=0;\n\tfor(int i=0;i<n;i++){\n\t\tcin >> x[i] >> y[i];\n\t\tif(i)res+=abs(x[i]-x[i-1])+abs(y[i]-y[i-1]);\n\t}\n\tll c=0;\n\tfor(int i=1;i+1<n;i++){\n\t\tif(x[i]==max({x[i],x[i-1],x[i+1]})){\n\t\t\tc+=x[i]-max(x[i-1],x[i+1]);\n\t\t\tx[i]=max(x[i+1],x[i-1]);\n\t\t}\n\t\tif(x[i]==min({x[i],x[i+1],x[i-1]})){\n\t\t\tc+=min({x[i+1],x[i-1]})-x[i];\n\t\t\tx[i]=min(x[i+1],x[i-1]);\n\t\t}\n\t\tif(y[i]==max({y[i],y[i-1],y[i+1]})){\n\t\t\tc+=y[i]-max(y[i-1],y[i+1]);\n\t\t\ty[i]=max(y[i+1],y[i-1]);\n\t\t}\n\t\tif(y[i]==min({y[i],y[i+1],y[i-1]})){\n\t\t\tc+=min({y[i+1],y[i-1]})-y[i];\n\t\t\ty[i]=min(y[i-1],y[i+1]);\n\t\t}\n\t}\n\tcout << res-min(k,c) << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4356, "score_of_the_acc": -0.0678, "final_rank": 2 }, { "submission_id": "aoj_3080_4843816", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n//#include \"atcoder/all\"\n//using namespace atcoder;\n#define int long long\n#define REP(i, n) for (int i = 0; i < (int)n; ++i)\n#define RREP(i, n) for (int i = (int)n - 1; i >= 0; --i)\n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define RFOR(i, s, n) for (int i = (int)n - 1; i >= s; --i)\n#define ALL(a) a.begin(), a.end()\n#define IN(a, x, b) (a <= x && x < b)\ntemplate<class T>istream&operator >>(istream&is,vector<T>&vec){for(T&x:vec)is>>x;return is;}\ntemplate<class T>inline void out(T t){cout << t << \"\\n\";}\ntemplate<class T,class... Ts>inline void out(T t,Ts... ts){cout << t << \" \";out(ts...);}\ntemplate<class T>inline bool CHMIN(T&a,T b){if(a > b){a = b;return true;}return false;}\ntemplate<class T>inline bool CHMAX(T&a,T b){if(a < b){a = b;return true;}return false;}\nconstexpr int INF = 1e18;\n\nsigned main(){\n\tint N, K;\n\tcin >> N >> K;\n\tvector<int>x(N), y(N);\n\tREP(i, N) {\n\t\tcin >> x[i] >> y[i];\n\t}\n\tauto check = [&](int a, int b, int c) {\n\t\tif(a < b && c < b) {\n\t\t\treturn -(b - max(a, c));\n\t\t}\n\t\tif(a > b && c > b) {\n\t\t\treturn min(a, c) - b;\n\t\t}\n\t\treturn 0ll;\n\t};\n\tint sum = 0, del = 0;\n\tREP(i, N - 1) {\n\t\tsum += abs(x[i] - x[i + 1]) + abs(y[i] - y[i + 1]);\n\t}\n\tREP(i, N - 2) {\n\t\tint t = check(x[i], x[i + 1], x[i + 2]);\n\t\tdel += abs(t);\n\t\tx[i + 1] += t;\n\t\tt = check(y[i], y[i + 1], y[i + 2]);\n\t\tdel += abs(t);\n\t\ty[i + 1] += t;\n\t}\n\tout(sum - min(K, del));\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4656, "score_of_the_acc": -0.6018, "final_rank": 9 }, { "submission_id": "aoj_3080_4843571", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n\nusing lint = long long;\n\nvoid solve() {\n int n;\n lint k;\n std::cin >> n >> k;\n auto nk = k;\n\n std::vector<lint> xs(n), ys(n);\n for (int i = 0; i < n; ++i) std::cin >> xs[i] >> ys[i];\n\n for (int q = 0; q < 2; ++q) {\n for (int i = 1; i + 1 < n; ++i) {\n if (xs[i - 1] < xs[i] && xs[i] > xs[i + 1]) {\n lint d = std::min({xs[i] - xs[i - 1], xs[i] - xs[i + 1], k});\n xs[i] -= d;\n k -= d;\n\n } else if (xs[i - 1] > xs[i] && xs[i] < xs[i + 1]) {\n lint d = std::min({xs[i - 1] - xs[i], xs[i + 1] - xs[i], k});\n xs[i] += d;\n k -= d;\n }\n }\n\n std::swap(xs, ys);\n }\n\n lint ans = nk - k;\n for (int i = 0; i + 1 < n; ++i) {\n ans += std::abs(xs[i + 1] - xs[i]) + std::abs(ys[i + 1] - ys[i]);\n }\n std::cout << ans << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4652, "score_of_the_acc": -0.1013, "final_rank": 4 }, { "submission_id": "aoj_3080_4843118", "code_snippet": "#include<bits/stdc++.h> \nusing namespace std;\ntypedef long long ll;\ntemplate<typename T1,typename T2> bool chmin(T1 &a,T2 b){if(a<=b)return 0; a=b; return 1;}\ntemplate<typename T1,typename T2> bool chmax(T1 &a,T2 b){if(a>=b)return 0; a=b; return 1;}\nint dx[4]={0,1,-1,0};\nint dy[4]={1,0,0,-1};\n\nll f(ll x1,ll x2){\n return llabs(x1-x2);\n}\n\nsigned main(){\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(20);\n\n ll n,k;\n cin>>n>>k;\n ll sk = k;\n ll x[n],y[n];\n for(int i=0;i<n;i++){\n cin>>x[i]>>y[i];\n }\n \n for(int i=1;i<n-1;i++){\n ll nx = x[i], ny = y[i];\n ll xcost = llabs(x[i]-x[i-1]) + llabs(x[i+1]-x[i]);\n ll ycost = llabs(y[i]-y[i-1]) + llabs(y[i+1]-y[i]);\n // f + min(k,llabs(t-f))*(t-f)/llabs(t-f);\n // x[i] -> x[i+1]\n ll px;\n if(llabs(x[i+1]-x[i])){\n px = x[i] + min(k,f(x[i+1],x[i]))*(x[i+1]-x[i])/llabs(x[i+1]-x[i]);\n if(chmin(xcost,f(px,x[i-1])+f(px,x[i+1]))){\n nx = px;\n }\n }\n if(llabs(x[i]-x[i-1])){\n px = x[i] + min(k,f(x[i],x[i-1]))*(x[i-1]-x[i])/llabs(x[i]-x[i-1]);\n if(chmin(xcost, f(px,x[i-1])+f(px,x[i+1])) || ((xcost == f(px,x[i-1])+f(px,x[i+1])) && llabs(x[i] - nx) > llabs(x[i] - px))){\n nx = px;\n }\n }\n k -= llabs(x[i] - nx);\n \n ll py=0;\n if(f(y[i+1],y[i])){\n py = y[i] + min(k,f(y[i+1],y[i]))*(y[i+1]-y[i])/f(y[i+1],y[i]);\n if(chmin(ycost,f(py,y[i-1])+f(py,y[i+1]))){\n ny = py;\n }\n }\n if(f(y[i],y[i-1])){\n py = y[i] + min(k,f(y[i],y[i-1]))*(y[i-1]-y[i])/f(y[i],y[i-1]);\n if(chmin(ycost, f(py,y[i-1])+f(py,y[i+1]))|| ((ycost == f(py,y[i-1])+f(py,y[i+1])) && llabs(y[i] - ny) > llabs(y[i] - py))){\n ny = py;\n }\n }\n k -= llabs(y[i] - ny);\n x[i] = nx, y[i] = ny;\n }\n ll l = 0, r = n-1;\n // while(k || l<r){\n // // start -> x[l+1]\n // ll d = (f(x[l+1],x[l]) + f(y[l+1],y[l])) * (l+1);\n // if(k < d){\n // x[l] += (x[l+1]-x[l])/f(x[l+1],x[l]) * min(k/(l+1),f(x[l+1],x[l]));\n // k -= min(k/(l+1)*(l+1),f(x[l+1],x[l])*(l+1));\n // y[l] += (y[l+1]-y[l])/f(y[l+1],y[l]) * min(k/(l+1),f(y[l+1],y[l]));\n // k -= min(k/(l+1)*(l+1),f(y[l+1],y[l])*(l+1));\n // break;\n // }\n // k -= d;\n // l++;\n\n // if(l==r)break;\n // // goal -> x[r-1]\n\n // d = (f(x[r-1],x[r]) + f(y[r-1],y[r])) * (n-r);\n // if(k < d){\n // x[r] += (x[l-1]-x[r])/f(x[r-1],x[r]) * min(k/(n-r),f(x[r-1],x[r]));\n // k -= min(k/(n-r)*(n-r),f(x[l+1],x[l])*(n-r));\n // y[r] += (y[r-1]-y[r])/f(y[r-1],y[r]) * min(k/(n-r),f(y[r-1],y[r]));\n // k -= min(k/(n-r)*(n-r),f(y[r-1],y[r])*(n-r));\n // break;\n // }\n // k -= d;\n // r++;\n // }\n\n ll ans = sk-k;\n for(int i=1;i<n;i++)ans += f(x[i-1],x[i]) + f(y[i-1],y[i]);\n cout << ans << endl;\n \n // cerr << \"db\" << endl;\n // cout << k << endl;\n // for(int i=0;i<n;i++)cerr << x[i] << \" \" << y[i] << endl;\n \n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4996, "score_of_the_acc": -0.1402, "final_rank": 7 }, { "submission_id": "aoj_3080_4842965", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(ll i=0;i<(n);++i)\n#define all(a) (a).begin(),(a).end()\nusing namespace std;\nusing Graph = vector<vector<int>>;\ntypedef pair<int,int> P;\ntypedef long long ll;\n\n\nint main(){\n ll n, k; cin >> n >> k;\n ll ans = k;\n vector<ll> x(n), y(n);\n rep(i,n) cin >> x[i] >> y[i];\n\n if(n == 1){\n cout << 0 << endl;\n return 0;\n }\n if(n == 2){\n cout << abs( x[1] - x[0] ) + abs( y[1] - y[0] ) << endl;\n return 0;\n }\n\n for(int i = 1; i <= n-2 ; i++){\n ll fx = x[i+1] - x[i];\n ll lx = x[i] - x[i-1];\n\n if(fx * lx < 0){\n if(k > 0){\n if(abs(fx) < abs(lx)){\n x[i] = x[i+1];\n k-= abs(fx);\n }\n else{\n x[i] = x[i-1];\n k-= abs(lx);\n }\n }\n }\n }\n\n for(int i = 1; i <= n-2 ; i++){\n ll fy = y[i+1] - y[i];\n ll ly = y[i] - y[i-1];\n\n if(fy * ly < 0){\n if(k > 0){\n if(abs(fy) < abs(ly)){\n y[i] = y[i+1];\n k-=abs(fy);\n }\n else{\n y[i] = y[i-1];\n k-=abs(ly);\n }\n }\n }\n }\n\n ans -= k;\n if(k < 0){\n ans -= k;\n }\n\n rep(i,n-1){\n ans += abs( x[i+1] - x[i] ) + abs( y[i+1] - y[i] );\n }\n\n cout << ans << endl;\n \n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4676, "score_of_the_acc": -0.604, "final_rank": 10 }, { "submission_id": "aoj_3080_4842715", "code_snippet": "#include <bits/stdc++.h>\n#define endl \"\\n\"\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef pair<ll, ll> PP;\n#define rep(i, n) for(ll i = 0; i < ll(n); i++)\n#define rrep(i, n) for(ll i = n - 1; i > -1; i--)\n#define all(v) v.begin(), v.end()\n#define pb push_back\n#define fi first\n#define se second\ntemplate <class X> void print(X x) { cout << x << endl; }\n#define in(A, n) \\\n rep(i, n) { \\\n cin >> f; \\\n A.push_back(f); \\\n }\n\nvoid print(vl x) {\n for(ll i : x) {\n cout << i << \" \";\n }\n cout << endl;\n}\nconst ll INF = (1LL << 61) - 1;\nconst ll MOD = 1000000007 /*998244353*/;\nconst ll MAX_N = 500010;\nll a, b, c, d, e, f, h, x, y, z, p, q, n, t, r, k, w, l, ans, i, j, u, v, m;\nll codeforces = 1;\nstring S, T;\nvl A, B,C,D,E,F,G,H;\nvoid input() {\n cin>>n>>q;\nrep(i,n){\n cin>>x>>y;\n A.pb(x);\n B.pb(y);\n}\nC.pb(0);\nD.pb(0);\nrep(i,n-1){\n C.pb(A[i]-A[i+1]);\n D.pb(B[i]-B[i+1]);\n}\nC.pb(0);\nD.pb(0);\n}\nvoid solve() {\n\ta=0;\n\tb=0;\n for(ll i=1;i<n;i++){\n if(C[i]*C[i-1]<0||C[i]*C[i+1]<0)E.pb(abs(C[i]));\n else{\n \tE.pb(0);\n \ta+=abs(C[i]);\n \tp+=abs(C[i]);\n }\n if(C[i]*C[i+1]>=0)E.pb(0);\n if(D[i]*D[i-1]<0||D[i]*D[i+1]<0)F.pb(abs(D[i]));\n else{\n \tF.pb(0);\n \tp+=abs(D[i]);\n \tb+=abs(D[i]);\n }\n if(D[i]*D[i+1]>=0)F.pb(0);\n }\n \n\n p+=accumulate(all(E),0)+accumulate(all(F),0);\n rep(i,E.size()-1){\n k=min(E[i],E[i+1]);\n E[i]-=k;\n E[i+1]-=k;\n a+=k;\n }\n a+=accumulate(all(E),0);\n\n rep(i,F.size()-1){\n k=min(F[i],F[i+1]);\n F[i]-=k;\n F[i+1]-=k;\n b+=k;\n }\n\n b+=accumulate(all(F),0);\n print(max(a+b,p-q));\n}\nint main() {\n // cout<<fixed<<setprecision(15);\n cin.tie(0);\n ios::sync_with_stdio(false);\n input();\n while(codeforces--) {\n solve();\n }\n}", "accuracy": 0.7368421052631579, "time_ms": 10, "memory_kb": 7760, "score_of_the_acc": -0.4527, "final_rank": 19 }, { "submission_id": "aoj_3080_4842712", "code_snippet": "#include <bits/stdc++.h>\n#define endl \"\\n\"\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef pair<ll, ll> PP;\n#define rep(i, n) for(ll i = 0; i < ll(n); i++)\n#define rrep(i, n) for(ll i = n - 1; i > -1; i--)\n#define all(v) v.begin(), v.end()\n#define pb push_back\n#define fi first\n#define se second\ntemplate <class X> void print(X x) { cout << x << endl; }\n#define in(A, n) \\\n rep(i, n) { \\\n cin >> f; \\\n A.push_back(f); \\\n }\n\nvoid print(vl x) {\n for(ll i : x) {\n cout << i << \" \";\n }\n cout << endl;\n}\nconst ll INF = (1LL << 61) - 1;\nconst ll MOD = 1000000007 /*998244353*/;\nconst ll MAX_N = 500010;\nll a, b, c, d, e, f, h, x, y, z, p, q, n, t, r, k, w, l, ans, i, j, u, v, m;\nll codeforces = 1;\nstring S, T;\nvl A, B,C,D,E,F,G,H;\nvoid input() {\n cin>>n>>q;\nrep(i,n){\n cin>>x>>y;\n A.pb(x);\n B.pb(y);\n}\nC.pb(0);\nD.pb(0);\nrep(i,n-1){\n C.pb(A[i]-A[i+1]);\n D.pb(B[i]-B[i+1]);\n}\nC.pb(0);\nD.pb(0);\n}\nvoid solve() {\n\ta=0;\n\tb=0;\n for(ll i=1;i<n;i++){\n if(C[i]*C[i-1]<0||C[i]*C[i+1]<0)E.pb(abs(C[i]));\n else{\n \tE.pb(0);\n \ta+=abs(C[i]);\n \tp+=abs(C[i]);\n }\n if(C[i]*C[i+1]>0)E.pb(0);\n if(D[i]*D[i-1]<0||D[i]*D[i+1]<0)F.pb(abs(D[i]));\n else{\n \tF.pb(0);\n \tp+=abs(D[i]);\n \tb+=abs(D[i]);\n }\n if(D[i]*D[i+1]>0)F.pb(0);\n }\n \n\n p+=accumulate(all(E),0)+accumulate(all(F),0);\n rep(i,E.size()-1){\n k=min(E[i],E[i+1]);\n E[i]-=k;\n E[i+1]-=k;\n a+=k;\n }\n a+=accumulate(all(E),0);\n\n rep(i,F.size()-1){\n k=min(F[i],F[i+1]);\n F[i]-=k;\n F[i+1]-=k;\n b+=k;\n }\n\n b+=accumulate(all(F),0);\n print(max(a+b,p-q));\n}\nint main() {\n // cout<<fixed<<setprecision(15);\n cin.tie(0);\n ios::sync_with_stdio(false);\n input();\n while(codeforces--) {\n solve();\n }\n}", "accuracy": 0.7368421052631579, "time_ms": 10, "memory_kb": 7824, "score_of_the_acc": -0.46, "final_rank": 20 }, { "submission_id": "aoj_3080_4842451", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << '\\n';\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const T &a) {\n for (auto e : a) cout << e << ' ';\n cout << '\\n';\n}\n\n//------------------------- Libraries -------------------------//\n\n//--------------------------- Solve ---------------------------//\n\nstruct point {\n long long x, y;\n};\n\nlong long n, k; \nvector<point> ps;\n\npair<long long, long long> calc(long long p1, long long p2, long long p3) {\n if (p1 > p2) swap(p1, p2);\n if (p3 < p1) {\n long long res = p1 - p3;\n p3 = p1;\n return make_pair(res, p1);\n }\n else if (p2 < p3) {\n long long res = p3 - p2;\n p3 = p2;\n return make_pair(res, p2);\n }\n else return make_pair(0, p3);\n}\n\nvoid solve() {\n cin >> n >> k;\n ps.resize(n);\n for (int i = 0; i < n; i++) cin >> ps[i].x >> ps[i].y;\n\n long long cost = 0;\n for (int i = 1; i < n; i++) {\n cost += abs(ps[i].x - ps[i-1].x) + abs(ps[i].y - ps[i-1].y);\n }\n\n long long ans = 0;\n for (int i = 0; i < n-2; i++) {\n if (k == 0) break;\n if (k <= calc(ps[i].x, ps[i+2].x, ps[i+1].x).first) {\n cost -= k;\n k = 0;\n ps[i+1].x = calc(ps[i].x, ps[i+2].x, ps[i+1].x).second;\n }\n else {\n cost -= calc(ps[i].x, ps[i+2].x, ps[i+1].x).first;\n k -= calc(ps[i].x, ps[i+2].x, ps[i+1].x).first;\n ps[i+1].x = calc(ps[i].x, ps[i+2].x, ps[i+1].x).second;\n }\n\n if (k == 0) break;\n if (k <= calc(ps[i].y, ps[i+2].y, ps[i+1].y).first) {\n cost -= k;\n k = 0;\n ps[i+1].y = calc(ps[i].y, ps[i+2].y, ps[i+1].y).second;\n }\n else {\n cost -= calc(ps[i].y, ps[i+2].y, ps[i+1].y).first;\n k -= calc(ps[i].y, ps[i+2].y, ps[i+1].y).first;\n ps[i+1].y = calc(ps[i].y, ps[i+2].y, ps[i+1].y).second;\n }\n }\n\n cout << cost << '\\n';\n}\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4548, "score_of_the_acc": -0.0896, "final_rank": 3 }, { "submission_id": "aoj_3080_4842329", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <string.h>\n#include <vector>\n#include <queue>\n#include <cmath>\n#include <bitset>\n#include <complex>\n#include <functional>\n#include <numeric>\n#include <iomanip>\n\n#define SPBR(w, n) std::cout<<(w + 1 == n ? '\\n' : ' ');\n#define ALL(i) (i).begin(), (i).end()\n#define FOR(i, a, n) for(int i=(a);i<(n);++i)\n#define RFOR(i, a, n) for(int i=(n)-1;i>=(a);--i)\n#define REP(i, n) for(int i=0;i<int(n);++i)\n#define RREP(i, n) for(int i=int(n)-1;i>=0;--i)\n#define IN(a, x, b) (a<=x && x<b)\n#define OUT(a, x, b) (x<a || b<=x)\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\nusing ll = long long;\n\nusing namespace std;\n\nint main() {\n ll N, K;\n cin >> N >> K;\n\n ll M = K;\n\n vector<ll> x(N), y(N);\n REP(i, N) cin >> x[i] >> y[i];\n\n REP(_, 2){\n FOR(i, 1, N-1){\n ll MAX = max(x[i-1], x[i+1]);\n ll MIN = min(x[i-1], x[i+1]);\n\n ll tmp = 0;\n if(MAX < x[i]){\n tmp = min(x[i]-MAX, K);\n x[i] -= min(x[i]-MAX, K);\n }else if(x[i] < MIN){\n tmp = min(MIN-x[i], K);\n x[i] += min(MIN-x[i], K);\n }\n K -= tmp;\n\n if(K == 0) break;\n }\n swap(x, y);\n }\n\n ll ans = M-K;\n REP(i, N-1){\n ans += abs(x[i]-x[i+1]);\n ans += abs(y[i]-y[i+1]);\n }\n\n cout << ans << \"\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 4520, "score_of_the_acc": -0.8364, "final_rank": 13 }, { "submission_id": "aoj_3080_4842199", "code_snippet": "#include <iostream>\n#include <string>\n#include <algorithm>\n#include <vector>\n#include <queue>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <unordered_set>\n#include <cmath>\n#include <numeric>\n#include <iomanip>\n#include <stack>\n#include <complex>\n#include <functional>\n#include <tuple>\n\nusing namespace std;\n\n#define Rep(i,a,b) for(ll i = a; i < b; ++i)\n#define rep(i,b) Rep(i,0,b)\n#define allof(a) (a).begin(), (a).end()\n\nusing ll = long long;\n\nconstexpr int inf = 1e9 + 7;\nconstexpr ll infll = 1ll << 60ll;\nconstexpr ll mod = 1e9 + 7;\n\n// 0~3までは右左下上 4~7までは斜め\nconstexpr int dx[] = { 1, 0, -1, 0, 1, 1, -1, -1 };\nconstexpr int dy[] = { 0, -1, 0, 1, 1, -1, -1, 1 };\n\ntemplate<typename T> void chmax(T & a, T b) { a = std::max(a, b); }\ntemplate<typename T> void chmin(T & a, T b) { a = std::min(a, b); }\n\nlong long solve(int n, vector<int>& v) {\n if (n == 1) return 0LL;\n\n long long res = 0LL;\n\n //int sign = (v[1] - v[0] >= 0);\n //bool prevEql = (v[1] == v[0]);\n\n //for (int i = 2; i < n; ++i) {\n // if (v[i] == v[i - 1]) {\n // prevEql = true;\n // continue;\n // }\n\n // int newSign = (v[i] - v[i - 1] >= 0);\n\n // if (!!prevEql && sign != newSign) {\n // // 合わせる\n // int newV = v[i - 2];\n // if (newSign == 0) chmin(newV, v[i]);\n // else chmax(newV, v[i]);\n\n // res += abs(newV - v[i - 1]);\n // v[i - 1] = newV;\n // }\n\n // sign = newSign;\n // prevEql = false;\n //}\n\n for (int i = 1; i < n - 1; ++i) {\n if (v[i] == v[i - 1]) continue;\n if (v[i] == v[i + 1]) continue;\n\n int lsign = (v[i] - v[i - 1] >= 0);\n int rsign = (v[i + 1] - v[i] >= 0);\n\n if (lsign + rsign == 1) {\n int newV = v[i - 1];\n if (lsign == 1) chmax(newV, v[i + 1]);\n else chmin(newV, v[i + 1]);\n\n res += abs(newV - v[i]);\n v[i] = newV;\n }\n }\n\n //cout << \"res : \" << res << endl;\n return res;\n}\n\nint main() {\n\n ios::sync_with_stdio(false);\n cin.tie(0);\n long long n, k;\n cin >> n >> k;\n vector<int> x(n);\n vector<int> y(n);\n for (int i = 0; i < n; i++) cin >> x[i] >> y[i];\n long long left = k;\n int now = 1;\n long long kans = 0;\n for (int i = 1; i < n; i++) {\n kans += abs(x[i - 1] - x[i]) + abs(y[i - 1] - y[i]);\n }\n\n long long dec = 0LL;\n dec += solve(n, x);\n dec += solve(n, y);\n\n //cout << \"x : \";\n //for (int i = 0; i < n; ++i) {\n // cout << x[i] << \" \";\n //}\n //cout << endl;\n //cout << \"y : \";\n //for (int i = 0; i < n; ++i) {\n // cout << y[i] << \" \";\n //}\n //cout << endl;\n \n long long ans = kans - min(k, dec);\n \n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3756, "score_of_the_acc": 0, "final_rank": 1 } ]
aoj_3082_cpp
Problem 順序木とは、各ノードに一つの整数の書かれた根付き木であって、以下の条件をみたすもののことです。 任意のノードに書かれた整数は $0$ より大きい 二つのノードが兄弟なら、書かれた整数は異なる あるノードに書かれた整数 $k$ が $1$ より大きいなら、そのノードの兄弟であって $k-1$ が書かれたものが存在する また、二つの順序木 $O,P$ が同型であるとは、以下の条件を満たすことをいいます。 $O$ と $P$ の根の次数が等しい $O$ の根の子 $o$ と $P$ の根の子 $p$ に書かれた整数が等しいなら、$o$ を根とした部分木と $p$ を根とした部分木が順序木として同型である 順序木のノード $v$ の点数を以下のように定義します。 $v$ が根なら、$v$ の子供の数 そうでないなら、$v$ の親の点数 + $v$ の子供の数 - $v$ に書かれた整数 以下の条件をみたす順序木の個数を $998244353$ で割ったあまりを求めてください。 全ての整数 $i$ に対して、$0 \leq i \leq N-1$ なら点数が $i$ のノードの個数が $A_i$ である 全ての整数 $i$ に対して、$N \leq i$ なら点数が $i$ のノードの個数が $0$ である Input 入力は以下の形式で与えられる。 $N$ $A_0$ $A_1$ $\ldots$ $A_{N-1}$ Constraints 入力は以下の条件を満たす。 $1 \leq N \leq 10^6$ $1 \leq A_i \leq 10^6$ 入力は全て整数である Output 答えを一行に出力せよ。 Sample Input 1 3 2 2 2 Sample Output 1 0 Sample Input 2 8 1 1 1 1 1 1 1 1 Sample Output 2 1 Sample Input 3 10 1 5 3 7 9 1000000 1000000 98735 2 6 Sample Output 3 951998726
[ { "submission_id": "aoj_3082_10401189", "code_snippet": "// AOJ #3082 Points on Tree\n// 2025.4.20\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst ll MOD = 998244353;\n\n#define gc() getchar_unlocked()\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nll mod_pow(ll a, ll e = MOD - 2) {\n ll r = 1;\n a %= MOD;\n while (e > 0) {\n if (e & 1) r = r * a % MOD;\n a = a * a % MOD;\n e >>= 1;\n }\n return r;\n}\n\nint main(){\n int N = Cin();\n vector<ll> A(N);\n for(int i = 0; i < N; i++) A[i] = Cin();\n\n if (A[0] != 1) { cout << 0 << endl; return 0; }\n\n ll max_n = 0;\n for(int i = 1; i < N; i++){\n ll n = A[i-1] - 1 + A[i];\n if (n > max_n) max_n = n;\n }\n\n vector<ll> fact(max_n+1), ifact(max_n+1);\n fact[0] = 1;\n for(ll i = 1; i <= max_n; i++) fact[i] = fact[i-1] * i % MOD;\n ifact[max_n] = mod_pow(fact[max_n]);\n for(ll i = max_n; i > 0; i--) ifact[i-1] = ifact[i] * i % MOD;\n\n auto comb = [&](ll n, ll k){\n if (k < 0 || k > n) return 0LL;\n return fact[n] * ifact[k] % MOD * ifact[n-k] % MOD;\n };\n\n ll ans = 1;\n for(int i = 1; i < N; i++){\n ll n = A[i-1] - 1 + A[i];\n ll k = A[i-1] - 1;\n ans = ans * comb(n, k) % MOD;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 42064, "score_of_the_acc": -0.4029, "final_rank": 2 }, { "submission_id": "aoj_3082_4866085", "code_snippet": "#include<iostream>\n#include<vector>\nusing namespace std;\n\nconstexpr long long MOD = 998244353 ;\n\nclass binomial_coefficients {\n\tlong long MAX_VAL;\n\tvector<long long> fac, mmi;\n\npublic:\n\n\tbinomial_coefficients(){\n\t}\n\t\n\tbinomial_coefficients(long long num){\n\t\tinit(num);\n\t}\n\t\n\t~binomial_coefficients(){\n\t\t\n\t}\n\t\n\tvoid init(long long num){\n\t\tMAX_VAL = num+1; \n\t\tfac.resize(MAX_VAL);\n\t\tmmi.resize(MAX_VAL);\n\t\t\n\t\tfactorial_mod();\n\t\tmodular_multiplicatibe_inverse();\n\t}\n\t\n\tvoid factorial_mod(){\n\t\t fac[0] = 1;\n\t\tfor(long long i = 1; i < MAX_VAL; fac[i] %= MOD, i++)\n\t\t\tfac[i] = fac[i - 1] * (i % MOD);\n\t}\n\t\n\tlong long power(long long x, long long n){\n\t\tlong long ans = 1;\n\t\tfor(;n;n >>= 1, x *= x, ans %= MOD, x %= MOD)\n\t\t\tif(n&1)ans*=x;\n\t\treturn ans % MOD;\n\t}\n\t\n\tvoid exgcd(long long a, long long b, long long &x, long long &y){\n\t\tif(b == 0){\n\t\t\tx = 1;\n\t\t\ty = 0;\n\t\t\treturn ;\n\t\t}\n\t\texgcd(b, a % b, y, x);\n\t\ty -= a / b * x;\n\t}\n\t\n\tvoid modular_multiplicatibe_inverse(){\n\t\tlong long x, y; \n\t\texgcd(fac[MAX_VAL - 1], MOD, x, y);\n\t\tmmi[MAX_VAL-1] = (x%MOD + MOD) % MOD;\n\t\t// mmi[MAX_VAL-1] = power(fac[MAX_VAL-1], MOD-2);\n\t\tfor(long long i = MAX_VAL - 2; i >= 0; mmi[i]%=MOD, i--)\n\t\t\tmmi[i] = mmi[i + 1] * ((i + 1) % MOD);\n\t}\n\t\n\tlong long combination(long long n, long long r){\n\t\treturn n < r ? 0 :fac[n] * (mmi[r] * mmi[n-r] % MOD) % MOD;\n\t}\n};\n\nint main(){\n\tconstexpr int MAX = 2e6+10;\n\tbinomial_coefficients BC;\n\tlong long N, ans = 1;\n\tvector<int> A;\n\t\n\tcin>>N;\n\t\n\tBC.init(MAX);\n\tA.resize(N);\n\t\n\t\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tcin>>A[i];\n\t}\n\t\n\tif(A[0] != 1) ans = 0;\n\t\n\tfor(int i = 1; i < N; i++){\n\t\tans *= BC.combination(A[i] + A[i-1] - 1, A[i]);\n\t\tans %= MOD;\n\t}\n\t\n\tcout<<ans<<endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 37888, "score_of_the_acc": -0.7593, "final_rank": 7 }, { "submission_id": "aoj_3082_4851627", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 21;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\n\nvoid solve() {\n\tint n; cin >> n;\n\tvector<int> a(n);\n\trep(i, n)cin >> a[i];\n\tmodint ans = 1;\n\tif (a[0] != 1)ans = 0;\n\trep(i, n - 1) {\n\t\tans *= comb(a[i] - 1 + a[i + 1], a[i] - 1);\n\t}\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\tinit_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 39540, "score_of_the_acc": -0.5038, "final_rank": 3 }, { "submission_id": "aoj_3082_4846664", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long long INF = 1e18;\nconst ll mod = 998244353;\nvector<ll> inv, FactorialInv, Factorial;\nll beki(ll a, ll b){\n ll ret = 1 % mod;\n a %= mod;\n while(b) {\n if(b & 1LL) ret = ret * a % mod;\n a = a * a % mod;\n b >>= 1;\n }\n return ret;\n}\nvoid init_combination(ll MAX){\n Factorial.resize(MAX + 1);\n FactorialInv.resize(MAX + 1);\n inv.resize(MAX + 1);\n Factorial[0] = 1;\n inv[0] = 1;\n for(int i = 1; i <= MAX; i++){\n Factorial[i] = Factorial[i - 1] * i % mod;\n }\n FactorialInv[MAX] = beki(Factorial[MAX], mod - 2);\n for(ll i = MAX - 1; i >= 0; i--) {\n FactorialInv[i] = FactorialInv[i+1] * (i+1) % mod;\n }\n for(int i = 1; i <= MAX; i++) {\n inv[i] = FactorialInv[i] * Factorial[i-1] % mod;\n }\n}\nll combination(ll a, ll b){\n if((a == b) || (b == 0)){\n return 1;\n }\n if(a < b) return 0;\n if(b < 0) return 0;\n ll ans = Factorial[a] * FactorialInv[b] % mod;\n ans = ans * FactorialInv[a - b] % mod;\n return ans;\n}\n\nll N;\nll A[1050000];\n\nint main() {\n init_combination(3000000);\n cin >> N;\n for(int i = 0; i < N; i++) cin >> A[i];\n if(A[0] != 1) {\n cout << 0 << endl;\n return 0;\n }\n ll ans = 1;\n for(int i = 1; i < N; i++) {\n ll tmp = combination(A[i-1] - 1 + A[i], A[i-1] - 1);\n ans = ans * tmp % mod;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 81500, "score_of_the_acc": -1.1236, "final_rank": 12 }, { "submission_id": "aoj_3082_4842755", "code_snippet": "//Let's join Kaede Takagaki Fan Club !!\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#include <ext/pb_ds/assoc_container.hpp>\n#include <ext/pb_ds/tree_policy.hpp>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> P;\ntypedef pair<int,P> P1;\ntypedef pair<P,P> P2;\n#define pu push\n#define pb push_back\n#define mp make_pair\n#define eps 1e-7\n#define INF 1000000000\n#define fi first\n#define sc second\n#define rep(i,x) for(int i=0;i<x;i++)\n#define repn(i,x) for(int i=1;i<=x;i++)\n#define SORT(x) sort(x.begin(),x.end())\n#define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end())\n#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin())\n#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin())\n#define all(x) x.begin(),x.end()\ntemplate<class T>\nvoid dmp(T a){\n\trep(i,a.size()) cout << a[i] << \" \";\n\tcout << endl;\n}\ntemplate<class T>\nbool chmax(T&a, T b){\n\tif(a < b){\n\t\ta = b;\n\t\treturn 1;\n\t}\n\treturn 0;\n}\ntemplate<class T>\nbool chmin(T&a, T b){\n\tif(a > b){\n\t\ta = b;\n\t\treturn 1;\n\t}\n\treturn 0;\n}\ntemplate<class T>\nvoid g(T &a){\n\tcin >> a;\n}\ntemplate<class T>\nvoid o(const T &a,bool space=false){\n\tcout << a << (space?' ':'\\n');\n}\n//ios::sync_with_stdio(false);\nconst ll mod = 998244353;\ntemplate<class T>\nvoid add(T&a,T b){\n\ta+=b;\n\tif(a >= mod) a-=mod;\n}\n\n\nll rui[200005];\nll modpow(ll x,ll n){\n\tll res=1;\n\twhile(n>0){\n\t\tif(n&1) res=res*x%mod;\n\t\tx=x*x%mod;\n\t\tn>>=1;\n\t}\n\treturn res;\n}\nll F[2000005],R[2000005];\nvoid make(){\n\tF[0] = 1;\n\tfor(int i=1;i<2000005;i++) F[i] = F[i-1]*i%mod;\n\tfor(int i=0;i<2000005;i++) R[i] = modpow(F[i],mod-2);\n}\nll C(int a,int b){\n\treturn F[a]*R[b]%mod*R[a-b]%mod;\n}\nint n, a[1000005];\n\nint main(){\n\tcin >> n;\n\trepn(i, n) cin >> a[i];\n\tif(a[1] != 1){\n\t\tcout << 0 << endl;\n\t\treturn 0;\n\t}\n\tll ans = 1;\n\tmake();\n\tfor(int i=2;i<=n;i++){\n\t\tans = ans * C(a[i]+a[i-1]-1, a[i]) % mod;\n\t}\n\tcout << ans << endl;\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 38576, "score_of_the_acc": -1.0029, "final_rank": 10 }, { "submission_id": "aoj_3082_4842482", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <complex>\n#include <cstring>\n#include <deque>\n#include <functional>\n#include <iostream>\n#include <iomanip>\n#include <list>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n#include <cstdint>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef pair<int,int> pii;\n#define MP make_pair\n#define PB push_back\n#define inf 1000000007\n#define rep(i,n) for(int i = 0; i < (int)(n); ++i)\n#define all(x) (x).begin(),(x).end()\n\ntemplate<typename A, size_t N, typename T>\nvoid Fill(A (&array)[N], const T &val){\n std::fill( (T*)array, (T*)(array+N), val );\n}\n \ntemplate<class T> inline bool chmax(T &a, T b){\n if(a<b){\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T> inline bool chmin(T &a, T b){\n if(a>b){\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <unsigned int mod>\nclass ModInt {\nprivate:\n unsigned int v;\n static unsigned int norm(const unsigned int& x){ return x < mod ? x : x - mod; }\n static ModInt make(const unsigned int& x){ ModInt m; return m.v = x, m; }\n static ModInt inv(const ModInt& x){ return make(inverse(x.v, mod)); }\n static unsigned int inverse(int a, int m){\n int u[] = {a, 1, 0}, v[] = {m, 0, 1}, t;\n while(*v){\n t = *u / *v;\n swap(u[0] -= t * v[0], v[0]), swap(u[1] -= t * v[1], v[1]), swap(u[2] -= t * v[2], v[2]);\n }\n return (u[1] % m + m) % m;\n }\n\npublic:\n ModInt() : v{0}{}\n ModInt(const long long val) : v{norm(val % mod + mod)} {}\n ModInt(const ModInt<mod>& n) : v{n()} {}\n explicit operator bool() const noexcept { return v != 0; }\n bool operator!() const noexcept { return !static_cast<bool>(*this); }\n ModInt& operator=(const ModInt& n){ return v = n(), (*this); }\n ModInt& operator=(const long long val){ return v = norm(val % mod + mod), (*this); }\n ModInt operator+() const { return *this; }\n ModInt operator-() const { return v == 0 ? make(0) : make(mod - v); }\n ModInt operator+(const ModInt& val) const { return make(norm(v + val())); }\n ModInt operator-(const ModInt& val) const { return make(norm(v + mod - val())); }\n ModInt operator*(const ModInt& val) const { return make((long long)v * val() % mod); }\n ModInt operator/(const ModInt& val) const { return *this * inv(val); }\n ModInt& operator+=(const ModInt& val){ return *this = *this + val; }\n ModInt& operator-=(const ModInt& val){ return *this = *this - val; }\n ModInt& operator*=(const ModInt& val){ return *this = *this * val; }\n ModInt& operator/=(const ModInt& val){ return *this = *this / val; }\n ModInt operator+(const long long val) const { return ModInt{v + val}; }\n ModInt operator-(const long long val) const { return ModInt{v - val}; }\n ModInt operator*(const long long val) const { return ModInt{(long long)v * (val % mod)}; }\n ModInt operator/(const long long val) const { return ModInt{(long long)v * inv(val)}; }\n ModInt& operator+=(const long long val){ return *this = *this + val; }\n ModInt& operator-=(const long long val){ return *this = *this - val; }\n ModInt& operator*=(const long long val){ return *this = *this * val; }\n ModInt& operator/=(const long long val){ return *this = *this / val; }\n bool operator==(const ModInt& val) const { return v == val.v; }\n bool operator!=(const ModInt& val) const { return !(*this == val); }\n bool operator==(const long long val) const { return v == norm(val % mod + mod); }\n bool operator!=(const long long val) const { return !(*this == val); }\n unsigned int operator()() const { return v; }\n friend ModInt operator+(const long long val, const ModInt& n) { return n + val; }\n friend ModInt operator-(const long long val, const ModInt& n) { return ModInt{val - n()}; }\n friend ModInt operator*(const long long val, const ModInt& n) { return n * val; }\n friend ModInt operator/(const long long val, const ModInt& n) { return ModInt{val} / n; }\n friend bool operator==(const long long val, const ModInt& n) { return n == val; }\n friend bool operator!=(const long long val, const ModInt& n) { return !(val == n); }\n friend istream& operator>>(istream& is, ModInt& n){\n unsigned int v;\n return is >> v, n = v, is;\n }\n friend ostream& operator<<(ostream& os, const ModInt& n){ return (os << n()); }\n friend ModInt mod_pow(ModInt x, long long n){\n ModInt ans = 1;\n while(n){\n if(n & 1) ans *= x;\n x *= x, n >>= 1;\n }\n return ans;\n }\n};\n\n#define MOD 998244353\nusing mod = ModInt<MOD>;\n\n#define MAX_N 2000010\nmod inv[MAX_N],fac[MAX_N],finv[MAX_N];\n\nvoid make()\n{\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for(int i=2;i<MAX_N;i++){\n inv[i] = MOD - inv[MOD % i] * (MOD / i);\n fac[i] = fac[i-1] * i;\n finv[i] = finv[i-1] * inv[i];\n }\n}\n\nmod comb(int a, int b)\n{\n if(a<b) return 0;\n return fac[a] * finv[b] * finv[a-b];\n}\n\nint main(){\n make();\n int n;\n cin >> n;\n vector<int> a(n);\n rep(i,n) cin >> a[i];\n mod res = 1;\n if(a[0]!=1){\n cout << 0 << endl;\n return 0;\n }\n for(int i=1;i<n;i++){\n res *= comb(a[i]+a[i-1]-1,a[i-1]-1);\n }\n cout << res << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 30332, "score_of_the_acc": -0.5532, "final_rank": 4 }, { "submission_id": "aoj_3082_4841401", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n#define INFS (1LL<<28)\n#define DEKAI 1000000007\n//#define MOD 1000000007\n#define lp(i,n) for(int i=0;i<n;i++)\n#define lps(i,n) for(int i=1;i<=n;i++)\n#define all(c) begin(c), end(c)\n\n//#define int long long\n\nnamespace {\n#define __DECLARE__(C)\t\t\t\t\t\t\\\n template <typename T>\t\t\t\t\t\t\\\n std::ostream &operator<<(std::ostream &, const C<T> &);\n\n#define __DECLAREM__(C)\t\t\t\t\t\t\\\n template <typename T, typename U>\t\t\t\t\\\n std::ostream &operator<<(std::ostream &, const C<T, U> &);\n\n __DECLARE__(std::vector)\n __DECLARE__(std::deque)\n __DECLARE__(std::set)\n __DECLARE__(std::stack)\n __DECLARE__(std::queue)\n __DECLARE__(std::priority_queue)\n __DECLARE__(std::unordered_set)\n __DECLAREM__(std::map)\n __DECLAREM__(std::unordered_map)\n\n template <typename T, typename U>\n std::ostream &operator<<(std::ostream &, const std::pair<T, U> &);\n template <typename... T>\n std::ostream &operator<<(std::ostream &, const std::tuple<T...> &);\n template <typename T, std::size_t N>\n std::ostream &operator<<(std::ostream &, const std::array<T, N> &);\n\n template <typename Tuple, std::size_t N>\n struct __TuplePrinter__ {\n static void print(std::ostream &os, const Tuple &t) {\n __TuplePrinter__<Tuple, N - 1>::print(os, t);\n os << \", \" << std::get<N - 1>(t);\n }\n };\n\n template <typename Tuple>\n struct __TuplePrinter__<Tuple, 1> {\n static void print(std::ostream &os, const Tuple &t) { os << std::get<0>(t); }\n };\n\n template <typename... T>\n std::ostream &operator<<(std::ostream &os, const std::tuple<T...> &t) {\n os << '(';\n __TuplePrinter__<decltype(t), sizeof...(T)>::print(os, t);\n os << ')';\n return os;\n }\n\n template <typename T, typename U>\n std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &v) {\n return os << '(' << v.first << \", \" << v.second << ')';\n }\n\n#define __INNER__\t\t\t\t\\\n os << '[';\t\t\t\t\t\\\n for (auto it = begin(c); it != end(c);) {\t\\\n os << *it;\t\t\t\t\t\\\n os << (++it != end(c) ? \", \" : \"\");\t\t\\\n }\t\t\t\t\t\t\\\n return os << ']';\n\n template <typename T, std::size_t N>\n std::ostream &operator<<(std::ostream &os, const std::array<T, N> &c) {\n __INNER__\n }\n\n#define __DEFINE__(C) \\\n template <typename T>\t\t\t\t\t\t\\\n std::ostream &operator<<(std::ostream &os, const C<T> &c) {\t\\\n __INNER__\t\t\t\t\t\t\t\\\n }\n\n#define __DEFINEM__(C)\t\t\t\t\t\t\t\\\n template <typename T, typename U>\t\t\t\t\t\\\n std::ostream &operator<<(std::ostream &os, const C<T, U> &c) {\t\\\n __INNER__\t\t\t\t\t\t\t\t\\\n }\n\n#define __DEFINEW__(C, M1, M2) \\\n template <typename T>\t\t\t\t\t\t\\\n std::ostream &operator<<(std::ostream &os, const C<T> &c) {\t\\\n std::deque<T> v;\t\t\t\t\t\t\\\n for (auto d = c; !d.empty(); d.pop()) v.M1(d.M2());\t\t\\\n return os << v;\t\t\t\t\t\t\\\n }\n\n __DEFINE__(std::vector)\n __DEFINE__(std::deque)\n __DEFINE__(std::set)\n __DEFINEW__(std::stack, push_front, top)\n __DEFINEW__(std::queue, push_back, front)\n __DEFINEW__(std::priority_queue, push_front, top)\n __DEFINE__(std::unordered_set)\n __DEFINEM__(std::map)\n __DEFINEM__(std::unordered_map)\n}\n\n#define pii pair<int,int>\n#define ll long long\ninline ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }\ninline ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }\n\n// modint\ntemplate <signed M, unsigned T>\nstruct mod_int {\n constexpr static signed MODULO = M;\n constexpr static unsigned TABLE_SIZE = T;\n\n signed x;\n\n mod_int() : x(0) {}\n\n mod_int(long long y) : x(static_cast<signed>(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO)) {}\n\n mod_int(int y) : x(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO) {}\n\n mod_int &operator+=(const mod_int &rhs) {\n if ((x += rhs.x) >= MODULO) x -= MODULO;\n return *this;\n }\n\n mod_int &operator-=(const mod_int &rhs) {\n if ((x += MODULO - rhs.x) >= MODULO) x -= MODULO;\n return *this;\n }\n\n mod_int &operator*=(const mod_int &rhs) {\n x = static_cast<signed>(1LL * x * rhs.x % MODULO);\n return *this;\n }\n\n mod_int &operator/=(const mod_int &rhs) {\n x = static_cast<signed>((1LL * x * rhs.inv().x) % MODULO);\n return *this;\n }\n\n mod_int operator-() const { return mod_int(-x); }\n\n mod_int operator+(const mod_int &rhs) const { return mod_int(*this) += rhs; }\n\n mod_int operator-(const mod_int &rhs) const { return mod_int(*this) -= rhs; }\n\n mod_int operator*(const mod_int &rhs) const { return mod_int(*this) *= rhs; }\n\n mod_int operator/(const mod_int &rhs) const { return mod_int(*this) /= rhs; }\n\n bool operator<(const mod_int &rhs) const { return x < rhs.x; }\n\n mod_int inv() const {\n assert(x != 0);\n if (x <= static_cast<signed>(TABLE_SIZE)) {\n if (_inv[1].x == 0) prepare();\n return _inv[x];\n } else {\n signed a = x, b = MODULO, u = 1, v = 0, t;\n while (b) {\n\tt = a / b;\n\ta -= t * b;\n\tstd::swap(a, b);\n\tu -= t * v;\n\tstd::swap(u, v);\n }\n return mod_int(u);\n }\n }\n\n mod_int pow(long long t) const {\n assert(!(x == 0 && t == 0));\n mod_int e = *this, res = mod_int(1);\n for (; t; e *= e, t >>= 1)\n if (t & 1) res *= e;\n return res;\n }\n\n mod_int fact() {\n if (_fact[0].x == 0) prepare();\n return _fact[x];\n }\n\n mod_int inv_fact() {\n if (_fact[0].x == 0) prepare();\n return _inv_fact[x];\n }\n\n mod_int choose(mod_int y) {\n assert(y.x <= x);\n return this->fact() * y.inv_fact() * mod_int(x - y.x).inv_fact();\n }\n\n static mod_int _inv[TABLE_SIZE + 1];\n\n static mod_int _fact[TABLE_SIZE + 1];\n\n static mod_int _inv_fact[TABLE_SIZE + 1];\n\n static void prepare() {\n _inv[1] = 1;\n for (int i = 2; i <= (int)TABLE_SIZE; ++i) {\n _inv[i] = 1LL * _inv[MODULO % i].x * (MODULO - MODULO / i) % MODULO;\n }\n _fact[0] = 1;\n for (unsigned i = 1; i <= TABLE_SIZE; ++i) {\n _fact[i] = _fact[i - 1] * int(i);\n }\n _inv_fact[TABLE_SIZE] = _fact[TABLE_SIZE].inv();\n for (int i = (int)TABLE_SIZE - 1; i >= 0; --i) {\n _inv_fact[i] = _inv_fact[i + 1] * (i + 1);\n }\n }\n};\n\ntemplate <int M, unsigned F>\nstd::ostream &operator<<(std::ostream &os, const mod_int<M, F> &rhs) {\n return os << rhs.x;\n}\n\ntemplate <int M, unsigned F>\nstd::istream &operator>>(std::istream &is, mod_int<M, F> &rhs) {\n long long s;\n is >> s;\n rhs = mod_int<M, F>(s);\n return is;\n}\n\ntemplate <int M, unsigned F>\nmod_int<M, F> mod_int<M, F>::_inv[TABLE_SIZE + 1];\n\ntemplate <int M, unsigned F>\nmod_int<M, F> mod_int<M, F>::_fact[TABLE_SIZE + 1];\n\ntemplate <int M, unsigned F>\nmod_int<M, F> mod_int<M, F>::_inv_fact[TABLE_SIZE + 1];\n\ntemplate <int M, unsigned F>\nbool operator==(const mod_int<M, F> &lhs, const mod_int<M, F> &rhs) {\n return lhs.x == rhs.x;\n}\n\ntemplate <int M, unsigned F>\nbool operator!=(const mod_int<M, F> &lhs, const mod_int<M, F> &rhs) {\n return !(lhs == rhs);\n}\n\nconst int MF = 1000010;\nconst int MOD = 998244353;\n\nusing mint = mod_int<MOD, MF>;\n\nmint binom(int n, int r) { return (r < 0 || r > n || n < 0) ? 0 : mint(n).choose(r); }\n\nmint fact(int n) { return mint(n).fact(); }\n\nmint inv_fact(int n) { return mint(n).inv_fact(); }\n\nconst ll mod = 998244353;\n#define int long long\n#define double long double\n\ntemplate <typename Int, Int MOD, int N>\nstruct comb_util {\n std::array<Int, N + 1> fc, ifc;\n\n comb_util() {\n fc[0] = 1;\n for (int i = 1; i <= N; i++) fc[i] = fc[i - 1] * i % MOD;\n ifc[N] = inv(fc[N]);\n for (int i = N - 1; i >= 0; i--) ifc[i] = ifc[i + 1] * (i + 1) % MOD;\n }\n\n Int fact(Int n) { return fc[n]; }\n\n Int inv_fact(Int n) { return ifc[n]; }\n\n Int inv(Int n) { return pow(n, MOD - 2); }\n\n Int pow(Int n, Int a) {\n Int res = 1, exp = n;\n for (; a; a /= 2) {\n if (a & 1) res = res * exp % MOD;\n exp = exp * exp % MOD;\n }\n return res;\n }\n\n Int perm(Int n, Int r) {\n if (r < 0 || n < r)\n return 0;\n else\n return fc[n] * ifc[n - r] % MOD;\n }\n\n Int binom(Int n, Int r) {\n if (n < 0 || r < 0 || n < r) return 0;\n return fc[n] * ifc[r] % MOD * ifc[n - r] % MOD;\n }\n\n Int homo(Int n, Int r) {\n if (n < 0 || r < 0) return 0;\n return r == 0 ? 1 : binom(n + r - 1, r);\n }\n};\n\nusing comb = comb_util<long long, mod, 3000000>;\n\nsigned main(){\n int n;\n cin>>n;\n vector<int> v(n);\n comb cm;\n lp(i,n){\n cin>>v[i];\n }\n mint ans = 1;\n if(v[0]!=1){\n ans = 0;\n }\n for(int i=1;i<n;i++){\n ans*=cm.homo(v[i-1],v[i]);\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 69584, "score_of_the_acc": -1.0538, "final_rank": 11 }, { "submission_id": "aoj_3082_4841089", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\n//typedef complex<D> P;\n#define F first\n#define S second\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){int i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\n\n\ntemplate<long long int mod=1000000007>\nstruct Mod_Int{\n typedef long long int ll;\n typedef pair<ll,ll> pll;\n typedef Mod_Int<mod> M;\n ll a;\n \n ll mod_pow(ll a,ll x){\n a%=mod;\n ll ans=1;\n for(int i=0;i<63;i++){\n if(x>>i&1){ans*=a; ans%=mod;}\n a*=a;\n a%=mod;\n }\n return ans;\n }\n \n pll Ex_gcd(ll a,ll b){\n if(b==0){return {1,0};}\n pll ret=Ex_gcd(b,a%b);\n ret.F-=a/b*ret.S;\n return {ret.S,ret.F};\n }\n \n ll prime_R(ll a){\n return mod_pow(a,mod-2);\n }\n \n ll R(ll a){\n ll ret=Ex_gcd(a,mod).F;\n ret%=mod;\n if(ret<0){ret+=mod;}\n return ret;\n }\n \n Mod_Int(ll A=1):a(A){\n a%=mod;\n if(a<0){a+=mod;}\n }\n \n Mod_Int(const M &b):a(b.a){}\n \n M & operator += (const M &b){\n a+=b.a;\n if(a>=mod){a-=mod;}\n return *this;\n }\n \n M operator + (const M &b) const {\n M c=*this;\n return c+=b;\n }\n \n M & operator -= (const M &b){\n a-=b.a;\n if(a<0){a+=mod;}\n return *this;\n }\n \n M operator - (const M &b) const {\n M c=*this;\n return c-=b;\n }\n \n M & operator *= (const M &b){\n (a*=b.a)%=mod;\n return *this;\n }\n \n M operator * (const M &b) const {\n M c=*this;\n return c*=b;\n }\n \n M & operator /= (const M &b){\n (a*=R(b.a))%=mod;\n return *this;\n }\n \n M operator / (const M &b) const {\n M c=*this;\n return c/=b;\n }\n \n M & mod_pow_equal(ll x){\n ll ans=1;\n while(x>0){\n if(x&1){ans*=a; ans%=mod;}\n a*=a;\n a%=mod;\n x>>=1;\n }\n a=ans;\n return *this;\n }\n \n M mod_pow(ll x){\n M c(a);\n return c.mod_pow_equal(x);\n }\n \n bool operator == (const M &b) const {return a==b.a;}\n \n bool operator != (const M &b) const {return a!=b.a;}\n \n bool operator <= (const M &b) const {return a<=b.a;}\n \n bool operator < (const M &b) const {return a<b.a;}\n \n bool operator > (const M &b) const {return a>b.a;}\n \n bool operator >= (const M &b) const {return a>=b.a;}\n \n M & operator = (const M &b){\n a=b.a;\n return *this;\n }\n \n M & operator = (const ll &b){\n (a=b)%=mod;\n if(a<0){a+=mod;}\n return *this;\n }\n};\n\ntemplate<long long MOD>istream & operator >> (istream &i,Mod_Int<MOD> &A){ll a; cin>>a; A=Mod_Int<MOD>(a); return i;}\ntemplate<long long MOD>ostream & operator << (ostream &i,const Mod_Int<MOD> &A){i<<A.a; return i;}\n\nclass comb{\nprivate:\n ll mod;\n ll mx;\n vector<ll> F;\n vector<ll> FR;\n \npublic:\n comb(ll mod=1000000007,ll mx=100000):mod(mod),mx(mx),F(mx+1,1),FR(mx+1,1){\n mk_F();\n }\n \n ll mod_pow(ll a,ll x){\n a%=mod;\n ll ans=1;\n while(x>0){\n if(x&1){ans*=a; ans%=mod;}\n a*=a;\n a%=mod;\n x>>=1;\n }\n return ans;\n }\n \n pll Ex_gcd(ll a,ll b){\n if(b==0){return {1,0};}\n pll ret=Ex_gcd(b,a%b);\n ret.F-=a/b*ret.S;\n return {ret.S,ret.F};\n }\n \n ll prime_R(ll a){\n return mod_pow(a,mod-2);\n }\n \n ll R(ll a){\n ll ret=Ex_gcd(a,mod).F;\n ret%=mod;\n if(ret<0){ret+=mod;}\n return ret;\n }\n \n void mk_F(){\n for(ll i=1;i<=mx;i++){F[i]=F[i-1]*i%mod; FR[i]=R(F[i]);}\n }\n \n ll c(ll n,ll k){\n if(n<k || k<0 || n<0){return 0;}\n if(n==k || k==0){return 1;}\n return F[n]*FR[n-k]%mod*FR[k]%mod;\n }\n \n //mod must be prime\n ll Lucas_C(ll n,ll m){\n ll ret=1;\n while(n>0 || m>0){\n ret*=c(n%mod,m%mod);\n ret%=mod;\n n/=mod; m/=mod;\n }\n return ret;\n }\n \n ll Stirling(ll n,ll k){\n ll ret=0;\n for(ll i=1;i<=k;i++){\n if((k-i)%2){ret-=c(k,i)*mod_pow(i,n)%mod;}\n else{ret+=c(k,i)*mod_pow(i,n)%mod;}\n ret%=mod;\n }\n ret*=R(F[k]);\n ret%=mod;\n if(ret<0){ret+=mod;}\n return ret;\n }\n \n ll Bell(ll n,ll k){\n ll ret=0;\n for(ll i=1;i<=k;i++){ret+=Stirling(n,i); ret%=mod;}\n return ret;\n }\n};\n\n\ncomb C(MOD,2e6);\n\nusing Int=Mod_Int<MOD>;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll N;\n cin>>N;\n vector<ll> A(N);\n cin>>A;\n Int ans=(A[0]==1?1:0);\n for(int i=0;i+1<N;i++){ans*=C.c(A[i+1]+A[i]-1,A[i]-1);}\n cout<<ans<<endl;\n \n\n return 0;\n}", "accuracy": 1, "time_ms": 530, "memory_kb": 42072, "score_of_the_acc": -1.2939, "final_rank": 14 }, { "submission_id": "aoj_3082_4840964", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n#define REP(i, n) for ( int i = 0; i < (n); i++ )\n\nstruct Combination {\n int mod; // e.g. 1000000007\n vector<int> fact; // factorial\n vector<int> invf; // inverse factorial\n vector<vector<int> > part; // partition number\n\n /*\n constructor : O(sz+log(mod)) \n make factorial table (fact) and inverse factorial table (invf)\n */\n Combination(int sz, int mod) : fact(sz+1), invf(sz+1), mod(mod) {\n fact[0] = 1;\n for ( int i = 1; i < (int)fact.size(); i++ ) {\n fact[i] = fact[i-1]*i%mod;\n }\n invf[sz] = inv(fact[sz]);\n for ( int i = sz-1; i >= 0; i-- ) {\n invf[i] = invf[i+1]*(i+1)%mod;\n }\n }\n\n int pow(int x, int n) const {\n int ret = 1;\n while ( n > 0 ) {\n if ( n & 1 ) (ret *= x) %= mod;\n (x *= x) %= mod;\n n >>= 1;\n }\n return ret;\n }\n\n int inv(int x) const {\n return pow(x, mod - 2);\n }\n\n /*\n permutation\n */\n int P(int n, int r) const {\n if ( r < 0 || n < r ) return (0);\n return fact[n]*invf[n-r]%mod; \n }\n\n /*\n combination\n */\n int C(int n, int r) const {\n if ( r < 0 || n < r ) return (0); \n return fact[n]*invf[r]%mod*invf[n-r]%mod; \n } \n\n /*\n combination with repetition\n */\n int H(int n, int r) const {\n if ( n < 0 || r < 0 ) return 0;\n if ( n == 0 && r == 0 ) return 1;\n return C(n+r-1, n); \n }\n\n /*\n stirling number\n */\n int S(int n, int r) const {\n int ret = 0;\n for ( int i = 1; i <= r; i++ ) {\n int add = C(r, i)*pow(i, n)%mod; \n if ( (r-i)&1 ) ret += mod-add;\n else ret += add;\n ret %= mod; \n }\n (ret *= invf[r]) %= mod;\n return ret;\n }\n\n /*\n bell number\n */\n int B(int n, int r) const {\n int ret = 0;\n for ( int i = 1; i <= r; i++ ) {\n (ret += S(n, i)) %= mod; \n }\n return ret;\n }\n\n /*\n calc partition number\n return and make partition number table (part)\n */\n vector<vector<int> > built_part(int n, int r) {\n part = vector<vector<int> >(n+1, vector<int>(r+1, 0));\n part[0][0] = 1;\n for ( int i = 0; i <= n; i++ ) {\n for ( int j = 1; j <= r; j++ ) {\n\tif ( i-j >= 0 ) {\n\t (part[i][j] = part[i][j-1]+part[i-j][j]) %= mod;\t \n\t} else {\n\t part[i][j] = part[i][j-1];\n\t}\n }\n }\n return part; \n }\n\n /*\n TODO \n make built_part() that make only part[i][i]\n https://twitter.com/kirika_comp/status/953482654787149824\n http://d.hatena.ne.jp/DEGwer/20170829\n http://mathworld.wolfram.com/BellNumber.html\n } \n */\n};\n\nconst int MOD = 998244353;\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n int N;\n cin >> N;\n\n vector<int> A(N);\n REP(i, N) cin >> A[i];\n\n if ( A[0] != 1 ) {\n cout << 0 << endl;\n return 0;\n }\n\n Combination comb(2e6, MOD); \n int ans = 1;\n for ( int i = 1; i < N; i++ ) {\n ans *= comb.C(A[i-1]+A[i]-1, A[i]);\n ans %= MOD; \n }\n\n cout << ans << endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 41892, "score_of_the_acc": -0.6193, "final_rank": 5 }, { "submission_id": "aoj_3082_4840729", "code_snippet": "#include<iostream>\n#include<vector>\nusing namespace std;\n\nconstexpr long long MOD = 998244353 ;\n\nclass binomial_coefficients {\n\tlong long MAX_VAL;\n\tvector<long long> fac, mmi;\n\npublic:\n\n\tbinomial_coefficients(){\n\t}\n\t\n\tbinomial_coefficients(long long num){\n\t\tinit(num);\n\t}\n\t\n\t~binomial_coefficients(){\n\t\t\n\t}\n\t\n\tvoid init(long long num){\n\t\tMAX_VAL = num+1; \n\t\tfac.resize(MAX_VAL);\n\t\tmmi.resize(MAX_VAL);\n\t\t\n\t\tfactorial_mod();\n\t\tmodular_multiplicatibe_inverse();\n\t}\n\t\n\tvoid factorial_mod(){\n\t\t fac[0] = 1;\n\t\tfor(long long i = 1; i < MAX_VAL; fac[i] %= MOD, i++)\n\t\t\tfac[i] = fac[i - 1] * (i % MOD);\n\t}\n\t\n\tlong long power(long long x, long long n){\n\t\tlong long ans = 1;\n\t\tfor(;n;n >>= 1, x *= x, ans %= MOD, x %= MOD)\n\t\t\tif(n&1)ans*=x;\n\t\treturn ans % MOD;\n\t}\n\t\n\tvoid exgcd(long long a, long long b, long long &x, long long &y){\n\t\tif(b == 0){\n\t\t\tx = 1;\n\t\t\ty = 0;\n\t\t\treturn ;\n\t\t}\n\t\texgcd(b, a % b, y, x);\n\t\ty -= a / b * x;\n\t}\n\t\n\tvoid modular_multiplicatibe_inverse(){\n\t\tlong long x, y; \n\t\texgcd(fac[MAX_VAL - 1], MOD, x, y);\n\t\tmmi[MAX_VAL-1] = (x%MOD + MOD) % MOD;\n\t\t// mmi[MAX_VAL-1] = power(fac[MAX_VAL-1], MOD-2);\n\t\tfor(long long i = MAX_VAL - 2; i >= 0; mmi[i]%=MOD, i--)\n\t\t\tmmi[i] = mmi[i + 1] * ((i + 1) % MOD);\n\t}\n\t\n\tlong long combination(long long n, long long r){\n\t\treturn n < r ? 0 :fac[n] * (mmi[r] * mmi[n-r] % MOD) % MOD;\n\t}\n};\n\nint main(){\n\tconstexpr int MAX = 2e6+10;\n\tbinomial_coefficients BC;\n\tlong long N, ans = 1;\n\tvector<int> A;\n\t\n\tcin>>N;\n\t\n\tBC.init(MAX);\n\tA.resize(N);\n\t\n\t\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tcin>>A[i];\n\t}\n\t\n\tif(A[0] != 1) ans = 0;\n\t\n\tfor(int i = 1; i < N; i++){\n\t\tans *= BC.combination(A[i] + A[i-1] - 1, A[i]);\n\t\tans %= MOD;\n\t}\n\t\n\tcout<<ans<<endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 37956, "score_of_the_acc": -0.7964, "final_rank": 8 }, { "submission_id": "aoj_3082_4840569", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\ntemplate<typename T,T MOD = 1000000007>\nstruct Mint{\n static constexpr T mod = MOD;\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n Mint pow(long long k){\n Mint res(1),tmp(v);\n while(k){\n if(k&1) res*=tmp;\n tmp*=tmp;\n k>>=1;\n }\n return res;\n }\n\n static Mint add_identity(){return Mint(0);}\n static Mint mul_identity(){return Mint(1);}\n\n Mint inv(){return pow(MOD-2);}\n\n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n Mint& operator/=(Mint a){return (*this)*=a.inv();}\n\n Mint operator+(Mint a) const{return Mint(v)+=a;}\n Mint operator-(Mint a) const{return Mint(v)-=a;}\n Mint operator*(Mint a) const{return Mint(v)*=a;}\n Mint operator/(Mint a) const{return Mint(v)/=a;}\n\n Mint operator-() const{return v?Mint(MOD-v):Mint(v);}\n\n bool operator==(const Mint a)const{return v==a.v;}\n bool operator!=(const Mint a)const{return v!=a.v;}\n bool operator <(const Mint a)const{return v <a.v;}\n\n static Mint comb(long long n,int k){\n Mint num(1),dom(1);\n for(int i=0;i<k;i++){\n num*=Mint(n-i);\n dom*=Mint(i+1);\n }\n return num/dom;\n }\n};\ntemplate<typename T,T MOD> constexpr T Mint<T, MOD>::mod;\ntemplate<typename T,T MOD>\nostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}\n\n\ntemplate<typename M>\nclass Enumeration{\nprivate:\n static vector<M> fact,finv,invs;\npublic:\n static void init(int n){\n n=min<decltype(M::mod)>(n,M::mod-1);\n\n int m=fact.size();\n if(n<m) return;\n\n fact.resize(n+1,1);\n finv.resize(n+1,1);\n invs.resize(n+1,1);\n\n if(m==0) m=1;\n for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i);\n finv[n]=M(1)/fact[n];\n for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i);\n for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1];\n }\n\n static M Fact(int n){\n init(n);\n return fact[n];\n }\n static M Finv(int n){\n init(n);\n return finv[n];\n }\n static M Invs(int n){\n init(n);\n return invs[n];\n }\n\n static M C(int n,int k){\n if(n<k||k<0) return M(0);\n init(n);\n return fact[n]*finv[n-k]*finv[k];\n }\n\n static M P(int n,int k){\n if(n<k||k<0) return M(0);\n init(n);\n return fact[n]*finv[n-k];\n }\n\n // put n identical balls into k distinct boxes\n static M H(int n,int k){\n if(n<0||k<0) return M(0);\n if(!n&&!k) return M(1);\n init(n+k-1);\n return C(n+k-1,k);\n }\n};\ntemplate<typename M>\nvector<M> Enumeration<M>::fact=vector<M>();\ntemplate<typename M>\nvector<M> Enumeration<M>::finv=vector<M>();\ntemplate<typename M>\nvector<M> Enumeration<M>::invs=vector<M>();\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\n\n//INSERT ABOVE HERE\nsigned main(){\n using M = Mint<int, 998244353>;\n using E = Enumeration<M>;\n E::init(2e6);\n\n int n;\n cin>>n;\n vector<int> as(n);\n for(int i=0;i<n;i++) cin>>as[i];\n if(as[0]!=1) drop(0);\n\n M ans{1};\n for(int i=0;i+1<n;i++)\n ans*=E::H(as[i],as[i+1]);\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 30436, "score_of_the_acc": -0.3906, "final_rank": 1 }, { "submission_id": "aoj_3082_4840465", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\n//typedef complex<D> P;\n#define F first\n#define S second\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){int i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\n\n\ntemplate<long long int mod=1000000007>\nstruct Mod_Int{\n typedef long long int ll;\n typedef pair<ll,ll> pll;\n typedef Mod_Int<mod> M;\n ll a;\n \n ll mod_pow(ll a,ll x){\n a%=mod;\n ll ans=1;\n for(int i=0;i<63;i++){\n if(x>>i&1){ans*=a; ans%=mod;}\n a*=a;\n a%=mod;\n }\n return ans;\n }\n \n pll Ex_gcd(ll a,ll b){\n if(b==0){return {1,0};}\n pll ret=Ex_gcd(b,a%b);\n ret.F-=a/b*ret.S;\n return {ret.S,ret.F};\n }\n \n ll prime_R(ll a){\n return mod_pow(a,mod-2);\n }\n \n ll R(ll a){\n ll ret=Ex_gcd(a,mod).F;\n ret%=mod;\n if(ret<0){ret+=mod;}\n return ret;\n }\n \n Mod_Int(ll A=1):a(A){\n a%=mod;\n if(a<0){a+=mod;}\n }\n \n Mod_Int(const M &b):a(b.a){}\n \n M & operator += (const M &b){\n a+=b.a;\n if(a>=mod){a-=mod;}\n return *this;\n }\n \n M operator + (const M &b) const {\n M c=*this;\n return c+=b;\n }\n \n M & operator -= (const M &b){\n a-=b.a;\n if(a<0){a+=mod;}\n return *this;\n }\n \n M operator - (const M &b) const {\n M c=*this;\n return c-=b;\n }\n \n M & operator *= (const M &b){\n (a*=b.a)%=mod;\n return *this;\n }\n \n M operator * (const M &b) const {\n M c=*this;\n return c*=b;\n }\n \n M & operator /= (const M &b){\n (a*=R(b.a))%=mod;\n return *this;\n }\n \n M operator / (const M &b) const {\n M c=*this;\n return c/=b;\n }\n \n M & mod_pow_equal(ll x){\n ll ans=1;\n while(x>0){\n if(x&1){ans*=a; ans%=mod;}\n a*=a;\n a%=mod;\n x>>=1;\n }\n a=ans;\n return *this;\n }\n \n M mod_pow(ll x){\n M c(a);\n return c.mod_pow_equal(x);\n }\n \n bool operator == (const M &b) const {return a==b.a;}\n \n bool operator != (const M &b) const {return a!=b.a;}\n \n bool operator <= (const M &b) const {return a<=b.a;}\n \n bool operator < (const M &b) const {return a<b.a;}\n \n bool operator > (const M &b) const {return a>b.a;}\n \n bool operator >= (const M &b) const {return a>=b.a;}\n \n M & operator = (const M &b){\n a=b.a;\n return *this;\n }\n \n M & operator = (const ll &b){\n (a=b)%=mod;\n if(a<0){a+=mod;}\n return *this;\n }\n};\n\ntemplate<long long MOD>istream & operator >> (istream &i,Mod_Int<MOD> &A){ll a; cin>>a; A=Mod_Int<MOD>(a); return i;}\ntemplate<long long MOD>ostream & operator << (ostream &i,const Mod_Int<MOD> &A){i<<A.a; return i;}\n\nclass comb{\nprivate:\n ll mod;\n ll mx;\n vector<ll> F;\n vector<ll> FR;\n \npublic:\n comb(ll mod=1000000007,ll mx=100000):mod(mod),mx(mx),F(mx+1,1),FR(mx+1,1){\n mk_F();\n }\n \n ll mod_pow(ll a,ll x){\n a%=mod;\n ll ans=1;\n while(x>0){\n if(x&1){ans*=a; ans%=mod;}\n a*=a;\n a%=mod;\n x>>=1;\n }\n return ans;\n }\n \n pll Ex_gcd(ll a,ll b){\n if(b==0){return {1,0};}\n pll ret=Ex_gcd(b,a%b);\n ret.F-=a/b*ret.S;\n return {ret.S,ret.F};\n }\n \n ll prime_R(ll a){\n return mod_pow(a,mod-2);\n }\n \n ll R(ll a){\n ll ret=Ex_gcd(a,mod).F;\n ret%=mod;\n if(ret<0){ret+=mod;}\n return ret;\n }\n \n void mk_F(){\n for(ll i=1;i<=mx;i++){F[i]=F[i-1]*i%mod; FR[i]=R(F[i]);}\n }\n \n ll c(ll n,ll k){\n if(n<k || k<0 || n<0){return 0;}\n if(n==k || k==0){return 1;}\n return F[n]*FR[n-k]%mod*FR[k]%mod;\n }\n \n //mod must be prime\n ll Lucas_C(ll n,ll m){\n ll ret=1;\n while(n>0 || m>0){\n ret*=c(n%mod,m%mod);\n ret%=mod;\n n/=mod; m/=mod;\n }\n return ret;\n }\n \n ll Stirling(ll n,ll k){\n ll ret=0;\n for(ll i=1;i<=k;i++){\n if((k-i)%2){ret-=c(k,i)*mod_pow(i,n)%mod;}\n else{ret+=c(k,i)*mod_pow(i,n)%mod;}\n ret%=mod;\n }\n ret*=R(F[k]);\n ret%=mod;\n if(ret<0){ret+=mod;}\n return ret;\n }\n \n ll Bell(ll n,ll k){\n ll ret=0;\n for(ll i=1;i<=k;i++){ret+=Stirling(n,i); ret%=mod;}\n return ret;\n }\n};\n\n\ncomb C(MOD,2e6);\n\nusing Int=Mod_Int<MOD>;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll N;\n cin>>N;\n vector<ll> A(N);\n cin>>A;\n Int ans=(A[0]==1?1:0);\n for(int i=0;i+1<N;i++){ans*=C.c(A[i+1]+A[i]-1,A[i]-1);}\n cout<<ans<<endl;\n \n\n return 0;\n}", "accuracy": 1, "time_ms": 520, "memory_kb": 42000, "score_of_the_acc": -1.275, "final_rank": 13 }, { "submission_id": "aoj_3082_4829156", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\n//typedef complex<D> P;\n#define F first\n#define S second\nconst ll MOD=1000000007;\n//const ll MOD=998244353;\n\ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){int i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\n\nll mod_pow(ll a,ll x,ll mod){\n ll ret=1;\n while(x>0){\n if(x&1){(ret*=a)%=mod;}\n (a*=a)%=mod;\n x>>=1;\n }\n return ret;\n}\n\n//sum_{i=0}^{x} a^i \\bmod mod\nll cul(ll a,ll x,ll mod){\n a%=mod;\n ll k=1,ret=0,s=1,l=a;\n for(ll i=1;x>0;i<<=1){\n if(x&i){(ret+=s*k%mod)%=mod; (k*=l)%=mod; x^=i;}\n (s+=l*s%mod)%=mod;\n (l*=l)%=mod;\n }\n return ret;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll H,W,N,Q;\n cin>>H>>W>>N>>Q;\n ll a=1,vx=0,vy=0;\n for(int i=0;i<N;i++){\n ll x,y,m;\n cin>>x>>y>>m;\n a+=m;\n (vx-=x*m%H)%=H;\n (vy-=y*m%W)%=W;\n }\n if(vx<0){vx+=H;}\n if(vy<0){vy+=W;}\n for(int i=0;i<Q;i++){\n ll x,y,k,X,Y;\n cin>>x>>y>>k;\n X=mod_pow(a,k,H)*x%H;\n Y=mod_pow(a,k,W)*y%W;\n X+=cul(a,k,H)*vx%H;\n Y+=cul(a,k,W)*vy%W;\n X%=H;\n Y%=W;\n cout<<X<<\" \"<<Y<<endl;\n }\n \n\n\n return 0;\n}", "accuracy": 1, "time_ms": 590, "memory_kb": 3464, "score_of_the_acc": -1, "final_rank": 9 }, { "submission_id": "aoj_3082_4828977", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n//INSERT ABOVE HERE\n\nconst int LOG = 62;\nconst int MAX = 1e5 + 100;\n\nint ny[LOG][MAX];\nint nx[LOG][MAX];\n\nsigned main(){\n int h,w,n,q;\n cin>>h>>w>>n>>q;\n\n vector<int> as(n),bs(n),ms(n);\n for(int i=0;i<n;i++) cin>>as[i]>>bs[i]>>ms[i];\n\n vector<int> cs(q),ds(q);\n vector<long long> ks(q);\n for(int i=0;i<q;i++) cin>>cs[i]>>ds[i]>>ks[i];\n\n int sy=0,ty=0,sx=0,tx=0;\n for(int i=0;i<n;i++){\n sy+=ms[i];\n sx+=ms[i];\n ty+=(long long)as[i]*ms[i]%h;\n tx+=(long long)bs[i]*ms[i]%w;\n sy%=h;ty%=h;\n sx%=w;tx%=w;\n }\n\n for(int i=0;i<h;i++)\n ny[0][i]=(i+(long long)i*sy+(h-ty))%h;\n for(int j=0;j<w;j++)\n nx[0][j]=(j+(long long)j*sx+(w-tx))%w;\n\n for(int t=0;t+1<LOG;t++){\n for(int i=0;i<h;i++) ny[t+1][i]=ny[t][ny[t][i]];\n for(int j=0;j<w;j++) nx[t+1][j]=nx[t][nx[t][j]];\n }\n\n for(int i=0;i<q;i++){\n int y=cs[i],x=ds[i];\n for(int t=0;t<LOG;t++){\n if((ks[i]>>t)&1){\n y=ny[t][y];\n x=nx[t][x];\n }\n }\n cout<<y<<\" \"<<x<<\"\\n\";\n }\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 52580, "score_of_the_acc": -0.7309, "final_rank": 6 }, { "submission_id": "aoj_3082_4828970", "code_snippet": "#include<iostream>\n#include<string>\n#include<iomanip>\n#include<cmath>\n#include<vector>\n#include<algorithm>\n\nusing namespace std;\n\n#define int long long\n#define endl \"\\n\"\n\nconstexpr long long INF = (long long)1e18;\nconstexpr long long MOD = 1000000007; \n\n#define a first.first\n#define b first.second\n#define m second\n\nsigned main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tcout<<fixed<<setprecision(10);\n\t\n\tint H, W, N, Q;\n\tint summ = 0;\n\tvector<pair<pair<int,int>,int>> in;\n\tvector<int> tableh, tablew;\n\tvector<vector<int>> tableh2, tablew2;\n\t\n\tcin>>H>>W>>N>>Q;\n\t\n\tin.resize(N);\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tcin>>in[i].a>>in[i].b>>in[i].m;\n\t\t\n\t\tsumm += in[i].m;\n\t}\n\t\n\ttableh.resize(H);\n\ttablew.resize(W);\n\t\n\ttableh2.resize(65, vector<int>(H));\n\ttablew2.resize(65, vector<int>(W));\n\t\n\tfor(int i = 0; i < N; i++){\n\t\ttableh[0] += (H - (in[i].a * in[i].m) % H) % H;\n\t\ttableh[0] %= H;\n\t\t\n\t\ttablew[0] += (W - (in[i].b * in[i].m) % W) % W;\n\t\ttablew[0] %= W;\n\t}\n\t\n\tfor(int i = 1; i < H; i++){\n\t\ttableh[i] = tableh[i-1] + summ % H;\n\t\ttableh[i] %= H;\n\t}\n\t\n\tfor(int i = 1; i < W; i++){\n\t\ttablew[i] = tablew[i-1] + summ % W;\n\t\ttablew[i] %= W;\n\t}\n\t\n\tfor(int i = 0; i < H; i++){\n\t\ttableh[i] += i;\n\t\ttableh[i] %= H;\n\t\t\n\t\ttableh2[0][i] = tableh[i];\n\t}\n\t\n\tfor(int i = 0; i < W; i++){\n\t\ttablew[i] += i;\n\t\ttablew[i] %= W;\n\t\t\n\t\ttablew2[0][i] = tablew[i];\n\t}\n\t\n\tfor(int i = 1; i < tableh2.size(); i++){\n\t\tfor(int j = 0; j < H; j++){\n\t\t\ttableh2[i][j] = tableh2[i-1][tableh2[i-1][j]];\n\t\t}\n\t}\n\t\n\tfor(int i = 1; i < tablew2.size(); i++){\n\t\tfor(int j = 0; j < W; j++){\n\t\t\ttablew2[i][j] = tablew2[i-1][tablew2[i-1][j]];\n\t\t}\n\t}\n\t\n\tfor(int i = 0; i < Q; i++){\n\t\tint c, d, k;\n\t\tint y = 0, x = 0;\n\t\t\n\t\tcin>>c>>d>>k;\n\t\t\n\t\ty = c, x = d;\n\t\t\n\t\tfor(int j = 62; j >= 0; j--){\n\t\t\tif(k&(1ll<<j)) {\n\t\t\t\ty = tableh2[j][y];\n\t\t\t}\n\t\t}\n\t\t\n\t\tfor(int j = 62; j >= 0; j--){\n\t\t\tif(k&(1ll<<j)) {\n\t\t\t\tx = tablew2[j][x];\n\t\t\t}\n\t\t}\n\t\t\n\t\tcout<<y<<\" \"<<x<<endl;\n\t}\n\t\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 99268, "score_of_the_acc": -1.5091, "final_rank": 15 } ]
aoj_3085_cpp
Problem ある日、moritaoyさんは爆裂魔法を覚えました。 新しい魔法を覚えたmoritaoyさんは(傍迷惑なことに)試し撃ちをすることにしました。 試射場は $N$ 次元実ベクトル全体からなる空間であり、$N$ 次元超直方体 $E$ が浮かんでいます。 超直方体 $E$ は $N$ 個の互いに直交するベクトル $\vec{V_1},\vec{V_2},\ldots ,\vec{V_N}$ によって以下のように表される領域です。 $$E= \left \{ \sum_{i=1}^{N} x_i \vec{V_i} \mid x_i \in \mathbb{R},0 \leq x_i \leq 1 \right \} $$ moritaoyさんは $\vec{P}$ を中心として爆裂魔法を打つつもりです。 $\vec{a}$ と $\vec{b}$ の距離 ${\rm d}(\vec{a},\vec{b})$ を以下のように定義します。 $${\rm d} (\vec{a},\vec{b})= \sqrt{\sum_{i=1}^{N} {(a_i-b_i)}^2}$$ moritaoyさんは、爆裂魔法が超直方体Eに届くかどうか気になりました。 $\vec{P}$ から超直方体 $E$ までの距離 $\displaystyle \min_{\vec{e} \in E} {\rm d} (\vec{P},\vec{e})$ を求めてください。 Input 入力は以下の形式で与えられる。 $N$ $(V_1)_1$ $(V_1)_2$ $\cdots$ $(V_1)_N$ $(V_2)_1$ $(V_2)_2$ $\cdots$ $(V_2)_N$ $\vdots$ $(V_N)_1$ $(V_N)_2$ $\cdots$ $(V_N)_N$ $P_1$ $P_2$ $\cdots$ $P_N$ Constraints 入力は以下の条件を満たす。 $1 \le N \le 100$ $| (V_i)_j | \le 10^6$ $| P_i | \le 10^6$ $\vec{V_i}$ は零ベクトルでない $\vec{V_i} \cdot \vec{V_j} =0 \ (i \neq j)$ 入力は全て整数である Output 答えを一行に出力する。 想定解との絶対誤差、または相対誤差が $10^{-4}$ 以下のとき正解と判定される。 Sample Input 1 2 1 0 0 1 2 2 Sample Output 1 1.41421 Sample Input 2 2 2 2 -2 2 1 0 Sample Output 2 0.707106781186 Sample Input 3 4 354025 223975 106481 405167 -169225 -383225 314143 277151 383225 -169225 277151 -314143 223975 -354025 -405167 106481 802128 -252014 197656 762352 Sample Output 3 348481.74254367457169381382 Sample Input 4 2 2 0 0 2 1 1 Sample Output 4 0
[ { "submission_id": "aoj_3085_4878818", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100],now[100];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++)res+=(now[i]-p[i])*(now[i]-p[i]);\n return res;\n}\nvoid change(int idx,ld diff){\n x[idx]+=diff;\n for(int i=0;i<n;i++)now[i]+=v[idx][i]*diff;\n}\nconst ld LIMIT=0.99*CLOCKS_PER_SEC;\n\nint main(){\n clock_t start=clock();\n cin>>n;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)now[i]+=(ld)v[j][i]*x[j];\n int idx=0;\n while(true){\n clock_t nowt=clock();\n const double time=static_cast<double>(nowt-start);\n if(time>LIMIT)break;\n idx+=(n-1)*(time/LIMIT)+1;if(idx>=n)idx-=n;\n ld L=0,R=1;\n change(idx,-x[idx]);\n for(int i=0;i<40;i++){\n ld diff=(R-L)/3;\n change(idx,diff);\n ld tmp1=D();\n change(idx,diff);\n ld tmp2=D();\n if(tmp1<tmp2)R-=diff;\n else L+=diff;\n change(idx,L-x[idx]);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(D())<<endl;\n}", "accuracy": 0.6590909090909091, "time_ms": 990, "memory_kb": 3312, "score_of_the_acc": -1.0005, "final_rank": 17 }, { "submission_id": "aoj_3085_4878814", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100],now[100];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++)res+=(now[i]-p[i])*(now[i]-p[i]);\n return res;\n}\nvoid change(int idx,ld diff){\n x[idx]+=diff;\n for(int i=0;i<n;i++)now[i]+=v[idx][i]*diff;\n}\nconst ld LIMIT=0.98*CLOCKS_PER_SEC;\n\nsigned main(){\n clock_t start = clock();\n cin>>n;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)now[i]+=(ld)v[j][i]*x[j];\n int idx=0;\n while(true){\n clock_t nowt = clock();\n const double time = static_cast<double>(nowt - start);\n if(time>LIMIT)break;\n idx+=(n-1)*(time/LIMIT)+1;if(idx>=n)idx-=n;\n ld L=0,R=1;\n change(idx,-x[idx]);\n for(int i=0;i<40;i++){\n ld diff=(R-L)/3;\n change(idx,diff);\n ld tmp1=D();\n change(idx,diff);\n ld tmp2=D();\n if(tmp1<tmp2)R-=diff;\n else L+=diff;\n change(idx,L-x[idx]);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(D())<<endl;\n}", "accuracy": 0.6590909090909091, "time_ms": 980, "memory_kb": 3296, "score_of_the_acc": -0.9897, "final_rank": 16 }, { "submission_id": "aoj_3085_4878790", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100],now[100],tw[30];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++)res+=(now[i]-p[i])*(now[i]-p[i]);\n return res;\n}\nvoid change(int idx,ld diff){\n x[idx]+=diff;\n for(int i=0;i<n;i++)now[i]+=v[idx][i]*diff;\n}\nconst ld LIMIT=0.98*CLOCKS_PER_SEC;\n\nsigned main(){\n clock_t start = clock();\n cin>>n;\n for(int i=1;i<30;i++)tw[i]=pow(0.5,i);\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)now[i]+=(ld)v[j][i]*x[j];\n ld ans=D();\n int idx=0;\n while(true){\n clock_t nowt = clock();\n const double time = static_cast<double>(nowt - start);\n if(time>LIMIT)break;\n idx+=n*(time/LIMIT);if(idx>=n)idx-=n;\n ld rem=1-x[idx];\n for(int j=1;j<30;j++){\n change(idx,rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,-rem*tw[j]);\n }\n if(rem!=1-x[idx])continue;\n rem=x[idx];\n for(int j=1;j<30;j++){\n change(idx,-rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,rem*tw[j]);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(ans)<<endl;\n}", "accuracy": 0.6818181818181818, "time_ms": 980, "memory_kb": 3436, "score_of_the_acc": -0.9939, "final_rank": 7 }, { "submission_id": "aoj_3085_4878789", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100],now[100],tw[30];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++)res+=(now[i]-p[i])*(now[i]-p[i]);\n return res;\n}\nvoid change(int idx,ld diff){\n x[idx]+=diff;\n for(int i=0;i<n;i++)now[i]+=v[idx][i]*diff;\n}\nconst ld LIMIT=0.98*CLOCKS_PER_SEC;\n\nsigned main(){\n clock_t start = clock();\n cin>>n;\n for(int i=0;i<30;i++)tw[i]=pow(0.5,i);\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)now[i]+=(ld)v[j][i]*x[j];\n ld ans=D();\n int idx=0;\n while(true){\n clock_t nowt = clock();\n const double time = static_cast<double>(nowt - start);\n if(time>LIMIT)break;\n idx+=n*(time/LIMIT);if(idx>=n)idx-=n;\n ld rem=1-x[idx];\n for(int j=1;j<30;j++){\n change(idx,rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,-rem*tw[j]);\n }\n rem=x[idx];\n for(int j=2;j<30;j++){\n change(idx,-rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,rem*tw[j]);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(ans)<<endl;\n}", "accuracy": 0.6818181818181818, "time_ms": 980, "memory_kb": 3468, "score_of_the_acc": -0.9948, "final_rank": 10 }, { "submission_id": "aoj_3085_4878788", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100],now[100],tw[30];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++)res+=(now[i]-p[i])*(now[i]-p[i]);\n return res;\n}\nvoid change(int idx,ld diff){\n x[idx]+=diff;\n for(int i=0;i<n;i++)now[i]+=v[idx][i]*diff;\n}\nconst ld LIMIT=0.98*CLOCKS_PER_SEC;\n\nsigned main(){\n clock_t start = clock();\n cin>>n;\n for(int i=0;i<30;i++)tw[i]=pow(0.5,i);\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)now[i]+=(ld)v[j][i]*x[j];\n ld ans=D();\n int idx=0;\n while(true){\n clock_t nowt = clock();\n const double time = static_cast<double>(nowt - start);\n if(time>LIMIT)break;\n idx+=n*(time/LIMIT);if(idx>=n)idx-=n;\n ld rem=1-x[idx];\n for(int j=2;j<30;j++){\n change(idx,rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,-rem*tw[j]);\n }\n rem=x[idx];\n for(int j=2;j<30;j++){\n change(idx,-rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,rem*tw[j]);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(ans)<<endl;\n}", "accuracy": 0.6818181818181818, "time_ms": 980, "memory_kb": 3492, "score_of_the_acc": -0.9955, "final_rank": 11 }, { "submission_id": "aoj_3085_4878785", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100],now[100],tw[10];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++)res+=(now[i]-p[i])*(now[i]-p[i]);\n return res;\n}\nvoid change(int idx,ld diff){\n x[idx]+=diff;\n for(int i=0;i<n;i++)now[i]+=v[idx][i]*diff;\n}\nconst ld LIMIT=0.98*CLOCKS_PER_SEC;\n\nsigned main(){\n clock_t start = clock();\n cin>>n;\n for(int i=0;i<10;i++)tw[i]=pow(0.5,i);\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)now[i]+=(ld)v[j][i]*x[j];\n ld ans=D();\n int idx=0;\n while(true){\n clock_t nowt = clock();\n const double time = static_cast<double>(nowt - start);\n if(time>LIMIT)break;\n idx+=n*(time/LIMIT);if(idx>=n)idx-=n;\n ld rem=1-x[idx];\n for(int j=2;j<10;j++){\n change(idx,rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,-rem*tw[j]);\n }\n rem=x[idx];\n for(int j=2;j<10;j++){\n change(idx,-rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,rem*tw[j]);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(ans)<<endl;\n}", "accuracy": 0.6818181818181818, "time_ms": 980, "memory_kb": 3436, "score_of_the_acc": -0.9939, "final_rank": 7 }, { "submission_id": "aoj_3085_4878779", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100],now[100],tw[10];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++)res+=(now[i]-p[i])*(now[i]-p[i]);\n return res;\n}\nvoid change(int idx,ld diff){\n x[idx]+=diff;\n for(int i=0;i<n;i++)now[i]+=v[idx][i]*diff;\n}\nconst ld LIMIT=0.99*CLOCKS_PER_SEC;\n\nsigned main(){\n clock_t start = clock();\n cin>>n;\n for(int i=0;i<10;i++)tw[i]=pow(0.5,i);\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)now[i]+=(ld)v[j][i]*x[j];\n ld ans=D();\n while(true){\n clock_t nowt = clock();\n const double time = static_cast<double>(nowt - start);\n if(time>LIMIT)break;\n int idx=rand()%n;\n ld rem=1-x[idx];\n for(int j=2;j<10;j++){\n change(idx,rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,-rem*tw[j]);\n }\n rem=x[idx];\n for(int j=2;j<10;j++){\n change(idx,-rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,rem*tw[j]);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(ans)<<endl;\n}", "accuracy": 0.6818181818181818, "time_ms": 990, "memory_kb": 3488, "score_of_the_acc": -1.0057, "final_rank": 14 }, { "submission_id": "aoj_3085_4878778", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100],now[100],tw[10];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++)res+=(now[i]-p[i])*(now[i]-p[i]);\n return res;\n}\nvoid change(int idx,ld diff){\n x[idx]+=diff;\n for(int i=0;i<n;i++)now[i]+=v[idx][i]*diff;\n}\n\nsigned main(){\n clock_t start = clock();\n cin>>n;\n for(int i=0;i<10;i++)tw[i]=pow(0.5,i);\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)now[i]+=(ld)v[j][i]*x[j];\n ld ans=D();\n while(true){\n clock_t nowt = clock();\n const double time = static_cast<double>(nowt - start) / CLOCKS_PER_SEC;\n if(time>0.97)break;\n int idx=rand()%n;\n ld rem=1-x[idx];\n for(int j=2;j<10;j++){\n change(idx,rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,-rem*tw[j]);\n }\n rem=x[idx];\n for(int j=2;j<10;j++){\n change(idx,-rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,rem*tw[j]);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(ans)<<endl;\n}", "accuracy": 0.6818181818181818, "time_ms": 970, "memory_kb": 3492, "score_of_the_acc": -0.9852, "final_rank": 6 }, { "submission_id": "aoj_3085_4878767", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100],now[100],tw[10];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++)res+=(now[i]-p[i])*(now[i]-p[i]);\n return res;\n}\nvoid change(int idx,ld diff){\n x[idx]+=diff;\n for(int i=0;i<n;i++)now[i]+=v[idx][i]*diff;\n}\n\nsigned main(){\n cin>>n;\n for(int i=0;i<10;i++)tw[i]=pow(0.5,i);\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)now[i]+=(ld)v[j][i]*x[j];\n ld ans=D();\n for(int _=0;_<1000000;_++){\n int idx=rand()%n;\n ld rem=1-x[idx];\n for(int j=2;j<5;j++){\n change(idx,rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,-rem*tw[j]);\n }\n rem=x[idx];\n for(int j=2;j<5;j++){\n change(idx,-rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,rem*tw[j]);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(ans)<<endl;\n}", "accuracy": 0.045454545454545456, "time_ms": 130, "memory_kb": 3460, "score_of_the_acc": -0.1183, "final_rank": 20 }, { "submission_id": "aoj_3085_4878766", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100],now[100],tw[10];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++)res+=(now[i]-p[i])*(now[i]-p[i]);\n return res;\n}\nvoid change(int idx,ld diff){\n x[idx]+=diff;\n for(int i=0;i<n;i++)now[i]+=v[idx][i]*diff;\n}\n\nsigned main(){\n cin>>n;\n for(int i=0;i<10;i++)tw[i]=pow(0.5,i);\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)now[i]+=(ld)v[j][i]*x[j];\n ld ans=D();\n for(int _=0,idx=0;_<1000000;_++,idx++){\n if(idx==n)idx=0;\n ld rem=1-x[idx];\n for(int j=2;j<5;j++){\n change(idx,rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,-rem*tw[j]);\n }\n rem=x[idx];\n for(int j=2;j<10;j++){\n change(idx,-rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,rem*tw[j]);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(ans)<<endl;\n}", "accuracy": 0.11363636363636363, "time_ms": 460, "memory_kb": 3380, "score_of_the_acc": -0.4561, "final_rank": 19 }, { "submission_id": "aoj_3085_4878765", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100],now[100],tw[10];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++)res+=(now[i]-p[i])*(now[i]-p[i]);\n return res;\n}\nvoid change(int idx,ld diff){\n x[idx]+=diff;\n for(int i=0;i<n;i++)now[i]+=v[idx][i]*diff;\n}\n\nsigned main(){\n cin>>n;\n for(int i=0;i<10;i++)tw[i]=pow(0.5,i);\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)now[i]+=(ld)v[j][i]*x[j];\n ld ans=D();\n for(int _=0,idx=0;_<100000;_++,idx++){\n if(idx==n)idx=0;\n ld rem=1-x[idx];\n for(int j=2;j<5;j++){\n change(idx,rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,-rem*tw[j]);\n }\n rem=x[idx];\n for(int j=2;j<10;j++){\n change(idx,-rem*tw[j]);\n ld tmp=D();\n if(ans>tmp)ans=tmp;\n else change(idx,rem*tw[j]);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(ans)<<endl;\n}", "accuracy": 0.11363636363636363, "time_ms": 40, "memory_kb": 3460, "score_of_the_acc": -0.0255, "final_rank": 18 }, { "submission_id": "aoj_3085_4878758", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100],now[100];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++)res+=(now[i]-p[i])*(now[i]-p[i]);\n return res;\n}\nvoid change(int idx,ld diff){\n x[idx]+=diff;\n for(int i=0;i<n;i++)now[i]+=v[idx][i]*diff;\n}\n\nsigned main(){\n cin>>n;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)now[i]+=(ld)v[j][i]*x[j];\n ld ans=D();\n for(int _=0;_<100000;_++){\n int idx=rand()%n;\n ld rem=1-x[idx];\n for(int j=2;j<10;j++){\n change(idx,rem*pow(0.5,j));\n if(ans>D())ans=D();\n else change(idx,-rem*pow(0.5,j));\n }\n rem=x[idx];\n for(int j=2;j<10;j++){\n change(idx,-rem*pow(0.5,j));\n if(ans>D())ans=D();\n else change(idx,rem*pow(0.5,j));\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(ans)<<endl;\n}", "accuracy": 0.6818181818181818, "time_ms": 980, "memory_kb": 3460, "score_of_the_acc": -0.9946, "final_rank": 9 }, { "submission_id": "aoj_3085_4878752", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++){\n ld tmp=0;\n for(int j=0;j<n;j++)tmp+=(ld)v[j][i]*x[j];\n res+=((ld)p[i]-tmp)*((ld)p[i]-tmp);\n }\n return res;\n}\n\nsigned main(){\n cin>>n;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n ld ans=D();\n for(int _=0;_<1000;_++){\n int idx=rand()%n;\n ld rem=1-x[idx];\n for(int j=1;j<10;j++){\n x[idx]+=rem*pow(0.5,j);\n if(ans>D())ans=D();\n else x[idx]-=rem*pow(0.5,j);\n }\n rem=x[idx];\n for(int j=1;j<10;j++){\n x[idx]-=rem*pow(0.5,j);\n if(ans>D())ans=D();\n else x[idx]+=rem*pow(0.5,j);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(ans)<<endl;\n}", "accuracy": 0.6818181818181818, "time_ms": 140, "memory_kb": 3476, "score_of_the_acc": -0.1291, "final_rank": 5 }, { "submission_id": "aoj_3085_4878747", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nint n,v[100][100],p[100];\nld x[100];\nld D(){\n ld res=0;\n for(int i=0;i<n;i++){\n ld tmp=0;\n for(int j=0;j<n;j++)tmp+=(ld)v[j][i]*x[j];\n res+=((ld)p[i]-tmp)*((ld)p[i]-tmp);\n }\n return res;\n}\n\nsigned main(){\n cin>>n;\n for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>v[i][j];\n for(int i=0;i<n;i++)cin>>p[i];\n for(int i=0;i<n;i++)x[i]=0.5;\n ld ans=D();\n for(int i=0;i<n;i++){\n for(int j=2;j<30;j++){\n x[i]+=pow(0.5,j);\n if(ans>D())ans=D();\n else x[i]-=pow(0.5,j);\n x[i]-=pow(0.5,j);\n if(ans>D())ans=D();\n else x[i]+=pow(0.5,j);\n }\n }\n cout<<fixed<<setprecision(12)<<sqrt(ans)<<endl;\n}", "accuracy": 0.6590909090909091, "time_ms": 40, "memory_kb": 3468, "score_of_the_acc": -0.0257, "final_rank": 15 }, { "submission_id": "aoj_3085_4856525", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 21;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\n//-t rotate\nvoid rotate(ld& x, ld& y, ld t) {\n\tt *= -1;\n\tld nx = x * cosl(t) - y * sinl(t);\n\tld ny = x * sinl(t) + y * cosl(t);\n\tswap(x, nx); swap(y, ny);\n}\n\nvoid solve() {\n\tint n; cin >> n;\n\tvector<vector<ld>> v(n, vector<ld>(n));\n\trep(i, n)rep(j, n) {\n\t\tcin >> v[i][j];\n\t}\n\tvector<ld> p(n);\n\trep(i, n)cin >> p[i];\n\trep(j, n) {\n\t\tfor (int i = j; i < n;i++) {\n\t\t\tif (abs(v[i][j]) < eps)continue;\n\t\t\tswap(v[i], v[j]);\n\t\t\tbreak;\n\t\t}\n\t\tfor (int k = j + 1; k < n; k++) {\n\t\t\tld t = atan2l(v[j][k], v[j][j]);\n\t\t\tfor (int i = j; i < n; i++) {\n\t\t\t\trotate(v[i][j], v[i][k], t);\n\t\t\t}\n\t\t\trotate(p[j], p[k], t);\n\t\t}\n\t}\n\t/*rep(j, n-1) {\n\t\tfor (int i = j; i < n; i++) {\n\t\t\tif (abs(v[i][j]) < eps && abs(v[i][j]) < eps)continue;\n\t\t\tswap(v[i], v[j]); break;\n\t\t}\n\t\tld t = atan2l(v[j][j + 1], v[j][j]);\n\t\tfor (int i = j; i < n; i++) {\n\t\t\trotate(v[i][j], v[i][j + 1], t);\n\t\t}\n\t\trotate(p[j], p[j + 1], t);\n\t}*/\n\t/*rep(i, n){\n\t\trep(j, n) {\n\t\t\tcout << v[i][j] << \" \";\n\t\t}cout << \"\\n\";\n\t}*/\n\tif (v[n - 1][n - 1] < 0) {\n\t\tv[n - 1][n - 1] *= -1;\n\t\tp[n - 1] *= -1;\n\t}\n\t/*rep(i, n) {\n\t\tcout << v[i][i] << \" \" << p[i] << \"\\n\";\n\t}*/\n\tld ans = 0;\n\trep(i, n) {\n\t\tif (p[i] < 0) {\n\t\t\tans += p[i] * p[i];\n\t\t}\n\t\telse if (p[i] > v[i][i]) {\n\t\t\tld dif = p[i] - v[i][i];\n\t\t\tans += dif * dif;\n\t\t}\n\t}\n\tans = sqrtl(ans);\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tcout << fixed << setprecision(8);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 36860, "score_of_the_acc": -1, "final_rank": 1 }, { "submission_id": "aoj_3085_4842786", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n\nlong double eps = 1e-6;\n\nlong double dist(vector<long double> a,vector<long double> b){\n long double sum=0.0;\n for(int i = 0; i < a.size(); ++i){\n sum+=powl((a[i]-b[i]),2);\n }\n return sum;\n}\n\nint main(){\n int n;\n cin>>n;\n vector<vector<long double>> ev(n,vector<long double>(n));\n for(int i = 0; i < n; ++i){\n for(int j = 0; j < n; ++j){\n cin>>ev[i][j];\n }\n }\n vector<long double> p(n);\n for(int i = 0; i < n; ++i){\n cin>>p[i];\n }\n vector<long double> ans(n,0.0);\n vector<long double> t(n,0.0);\n vector<bool> used(n,false);\n for(int N = 0; N < n; ++N){\n long double tmindist=1e18;\n int tmind=-1;\n long double rat;\n for(int i = 0; i < n; ++i){\n if(used[i])continue;\n long double l=0.0,r=1.0;\n long double ml=0.33,mr=0.67;\n vector<long double>tt(n);\n for(int j = 0; j < 100; ++j){\n for(int k = 0; k < n; ++k){\n tt[k]=ev[i][k]*ml+t[k];\n }\n long double td=dist(p,tt);\n\n for(int k = 0; k < n; ++k){\n tt[k]=ev[i][k]*mr+t[k];\n }\n if(td<dist(p,tt)){\n r=mr;\n ml=(2*l+r)/3;\n mr=(l+2*r)/3;\n }\n else{\n l=ml;\n ml=(2*l+r)/3;\n mr=(l+2*r)/3;\n }\n }\n \n if(dist(p,tt)<tmindist){\n tmindist=dist(p,tt);\n tmind=i;\n rat=l;\n }\n\n //cerr<<i<<\" \"<<rat[i]<<endl;\n }\n for(int j = 0; j < n; ++j){\n t[j]+=ev[tmind][j]*rat;\n }\n used[tmind]=true;\n }\n \n \n cout<<fixed<<setprecision(15);\n cout<<sqrtl(dist(p,t))<<endl;\n return 0;\n}", "accuracy": 0.7045454545454546, "time_ms": 340, "memory_kb": 3644, "score_of_the_acc": -0.3403, "final_rank": 4 }, { "submission_id": "aoj_3085_4842731", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n\nlong double eps = 1e-6;\n\nlong double dist(vector<long double> a,vector<long double> b){\n long double sum=0.0;\n for(int i = 0; i < a.size(); ++i){\n sum+=powl((a[i]-b[i]),2);\n }\n return sum;\n}\n\nint main(){\n int n;\n cin>>n;\n vector<vector<long double>> ev(n,vector<long double>(n));\n for(int i = 0; i < n; ++i){\n for(int j = 0; j < n; ++j){\n cin>>ev[i][j];\n }\n }\n vector<long double> p(n);\n for(int i = 0; i < n; ++i){\n cin>>p[i];\n }\n\n vector<long double> t(n,0.0);\n for(int i = 0; i < n; ++i){\n long double l=0.0,r=1.0;\n long double ml=0.33,mr=0.67;\n vector<long double>tt(n);\n for(int j = 0; j < 500; ++j){\n for(int k = 0; k < n; ++k){\n tt[k]=ev[i][k]*ml+t[k];\n }\n long double td=dist(p,tt);\n\n for(int k = 0; k < n; ++k){\n tt[k]=ev[i][k]*mr+t[k];\n }\n if(td<dist(p,tt)){\n r=mr;\n ml=(2*l+r)/3;\n mr=(l+2*r)/3;\n }\n else{\n l=ml;\n ml=(2*l+r)/3;\n mr=(l+2*r)/3;\n }\n }\n for(int j = 0; j < n; ++j){\n t[j]+=ev[i][j]*l;\n }\n \n //cerr<<i<<\" \"<<rat[i]<<endl;\n }\n \n cout<<fixed<<setprecision(15);\n cout<<sqrtl(dist(p,t))<<endl;\n return 0;\n}", "accuracy": 0.7045454545454546, "time_ms": 30, "memory_kb": 3648, "score_of_the_acc": -0.0208, "final_rank": 2 }, { "submission_id": "aoj_3085_4842720", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize (\"unroll-loops\")\n#pragma GCC target (\"avx2\")\n#define io_init cin.tie(0);ios::sync_with_stdio(0);cout<<fixed << setprecision(20)\n#include <bits/stdc++.h>\nconstexpr int INF = 2147483647;\nconstexpr long long int INF_LL = 9223372036854775807;\nconstexpr int MOD = 1000000007;\nconstexpr double PI = 3.14159265358979323846;\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\ninline double score(vector<vector<double>>& V, vector<double>& x, vector<double>& p) {\n\tint N = V.size();\n\tdouble sc = 0;\n\tvector<double> tmp(V.size(), 0);\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < N; j++) tmp[j] += x[i] * V[i][j];\n\t}\n\tfor (int i = 0; i < N; i++) {\n\t\tsc += (tmp[i] - p[i]) * (tmp[i] - p[i]);\n\t}\n\treturn sc;\n}\n\ninline double score_(vector<vector<double>>& v, vector<double>& x, vector<double>& P, vector<double> &ep, int n, double dif) {\n\tint N = v.size(); double sc = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tep[i] += dif * v[n][i];\n\t}\n\tfor (int i = 0; i < N; i++) {\n\t\tsc += (ep[i] - P[i]) * (ep[i] - P[i]);\n\t}\n\treturn sc;\n}\n\ninline long long getTime() {\n\treturn std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count();\n}\n\nmt19937 mt;\nint main() {\n\tio_init;\n\tll inittime = getTime();\n\tint N;\n\tcin >> N;\n\tvector<vector<double>> V(N, vector<double>(N));\n\tfor (int i = 0; i < N; i++)for (int j = 0; j < N; j++)cin >> V[i][j];\n\tvector<double> P(N);\n\tfor (int i = 0; i < N; i++)cin >> P[i];\n\n\tif (N == 1) {\n\t\tif (0 <= P[0] && P[0] <= V[0][0])cout << 0 << endl;\n\t\telse {\n\t\t\tcout << min(sqrt(abs(P[0])), sqrt(abs(P[0] - V[0][0]))) << endl;\n\t\t}\n\t\treturn 0;\n\t}\n\tdouble stmp = 1e30;\n\tvector<double> x; //状態量\n\tfor (int i = 0; i < 100; i++) {\n\t\tvector<double> candidate(N);\n\t\tfor (int i = 0; i < N; i++)candidate[i] = (double)(mt() % 2);\n\t\tdouble tmp = score(V, candidate, P);\n\t\tif (tmp < stmp) {\n\t\t\tstmp = tmp;\n\t\t\tx = candidate;\n\t\t}\n\t}\n\n\tvector<double> ep(N, 0); //最近点の座標\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < N; j++) ep[j] += x[i] * V[i][j];\n\t}\n\tuniform_real_distribution u(-0.1, 0.1);\n\tdouble ans = score(V, x, P);\n\tll time = getTime() - inittime;\n\tfor(int n = 0; ; n++) {\n\t\tif (n % 1000 == 0)time = getTime() - inittime;\n\t\tll remainTime = 1000 - time;\n\t\tif (time > 980)break;\n\t\tint i = mt() % N;\n\t\tdouble p = u(mt) * ((double)remainTime / (double)1000);\n\t\t\n\t\tif (x[i] + p > 1)p = 1 - x[i];\n\t\tif (x[i] + p < 0)p = -x[i];\n\n\t\tif (mt() % 1000 == 0)p = (mt() % 2) - x[i];\n\n\t\tx[i] += p;\n\t\tdouble tmp = score_(V, x, P, ep, i, p);\n\t\tif (tmp < ans) {\n\t\t\tans = tmp;\n\t\t\tcontinue;\n\t\t}\n\t\telse {\n\t\t\tscore_(V, x, P, ep, i, -p);\n\t\t\tx[i] -= p;\n\t\t}\n\t}\n\tcout << sqrt(ans) << endl;\n}", "accuracy": 0.6818181818181818, "time_ms": 980, "memory_kb": 3652, "score_of_the_acc": -1.0003, "final_rank": 12 }, { "submission_id": "aoj_3085_4842690", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n\nlong double eps = 1e-6;\n\nlong double dist(vector<long double> a,vector<long double> b){\n long double sum=0.0;\n for(int i = 0; i < a.size(); ++i){\n sum+=powl((a[i]-b[i]),2);\n }\n return sum;\n}\n\nint main(){\n int n;\n cin>>n;\n vector<vector<long double>> ev(n,vector<long double>(n));\n for(int i = 0; i < n; ++i){\n for(int j = 0; j < n; ++j){\n cin>>ev[i][j];\n }\n }\n vector<long double> p(n);\n for(int i = 0; i < n; ++i){\n cin>>p[i];\n }\n\n vector<long double> rat(n);\n for(int i = 0; i < n; ++i){\n long double l=0.0,r=1.0;\n long double ml=0.33,mr=0.67;\n vector<long double>t(n);\n for(int j = 0; j < 5000; ++j){\n for(int k = 0; k < n; ++k){\n t[k]=ev[i][k]*ml;\n }\n long double td=dist(p,t);\n\n for(int k = 0; k < n; ++k){\n t[k]=ev[i][k]*mr;\n }\n if(td<dist(p,t)){\n r=mr;\n ml=l+(r-l)/3;\n mr=r-(r-l)/3;\n }\n else{\n l=ml;\n ml=l+(r-l)/3;\n mr=r-(r-l)/3;\n }\n }\n rat[i]=ml;\n //cerr<<i<<\" \"<<rat[i]<<endl;\n }\n vector<long double> t(n,0.0);\n for(int i = 0; i < n; ++i){\n for(int j = 0; j < n; ++j){\n t[j]+=ev[i][j]*rat[i];\n }\n//cerr<<t[i]<<\" \";\n }\n//cerr<<endl;\n cout<<fixed<<setprecision(15);\n cout<<sqrtl(dist(p,t))<<endl;\n return 0;\n}", "accuracy": 0.7045454545454546, "time_ms": 310, "memory_kb": 3636, "score_of_the_acc": -0.3091, "final_rank": 3 }, { "submission_id": "aoj_3085_4842686", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC optimize (\"unroll-loops\")\n#pragma GCC target (\"avx2\")\n#define io_init cin.tie(0);ios::sync_with_stdio(0);cout<<fixed << setprecision(20)\n#include <bits/stdc++.h>\nconstexpr int INF = 2147483647;\nconstexpr long long int INF_LL = 9223372036854775807;\nconstexpr int MOD = 1000000007;\nconstexpr double PI = 3.14159265358979323846;\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\ninline double score(vector<vector<double>>& V, vector<double>& x, vector<double>& p) {\n\tint N = V.size();\n\tdouble sc = 0;\n\tvector<double> tmp(V.size(), 0);\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < N; j++) tmp[j] += x[i] * V[i][j];\n\t}\n\tfor (int i = 0; i < N; i++) {\n\t\tsc += (tmp[i] - p[i]) * (tmp[i] - p[i]);\n\t}\n\treturn sqrt(sc);\n}\n\ninline double score_(vector<vector<double>>& v, vector<double>& x, vector<double>& P, vector<double> &ep, int n, double dif) {\n\tint N = v.size(); double sc = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tep[i] += dif * v[n][i];\n\t}\n\tfor (int i = 0; i < N; i++) {\n\t\tsc += (ep[i] - P[i]) * (ep[i] - P[i]);\n\t}\n\treturn sqrt(sc);\n}\n\ninline long long getTime() {\n\treturn std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count();\n}\n\nmt19937 mt;\nint main() {\n\tio_init;\n\tll inittime = getTime();\n\tint N;\n\tcin >> N;\n\tvector<vector<double>> V(N, vector<double>(N));\n\tfor (int i = 0; i < N; i++)for (int j = 0; j < N; j++)cin >> V[i][j];\n\tvector<double> P(N);\n\tfor (int i = 0; i < N; i++)cin >> P[i];\n\n\tif (N == 1) {\n\t\tif (0 <= P[0] && P[0] <= V[0][0])cout << 0 << endl;\n\t\telse {\n\t\t\tcout << min(sqrt(abs(P[0])), sqrt(abs(P[0] - V[0][0]))) << endl;\n\t\t}\n\t\treturn 0;\n\t}\n\tdouble stmp = 1e30;\n\tvector<double> x; //状態量\n\tuniform_real_distribution gen1(0.0, 1.0);\n\tfor (int i = 0; i < 100; i++) {\n\t\tvector<double> candidate(N);\n\t\tfor (int i = 0; i < N; i++)candidate[i] = gen1(mt);\n\t\tdouble tmp = score(V, candidate, P);\n\t\tif (tmp < stmp) {\n\t\t\tstmp = tmp;\n\t\t\tx = candidate;\n\t\t}\n\t}\n\n\tvector<double> ep(N, 0); //最近点の座標\n\tfor (int i = 0; i < N; i++) {\n\t\tfor (int j = 0; j < N; j++) ep[j] += x[i] * V[i][j];\n\t}\n\tuniform_real_distribution u(-0.1, 0.1);\n\tdouble ans = score(V, x, P);\n\tll time = getTime() - inittime;\n\tfor(int n = 0; ; n++) {\n\t\tif (n % 1000 == 0)time = getTime() - inittime;\n\t\tll remainTime = 1000 - time;\n\t\tif (time > 980)break;\n\t\tint i = mt() % N;\n\t\tdouble p = u(mt) * ((double)remainTime / (double)1000);\n\n\t\tif (x[i] + p > 1)p = 1 - x[i];\n\t\tif (x[i] + p < 0)p = -x[i];\n\n\t\tx[i] += p;\n\t\tdouble tmp = score_(V, x, P, ep, i, p);\n\t\tif (tmp < ans) {\n\t\t\tans = tmp;\n\t\t\tcontinue;\n\t\t}\n\t\telse {\n\t\t\tscore_(V, x, P, ep, i, -p);\n\t\t\tx[i] -= p;\n\t\t}\n\t}\n\tcout << ans << endl;\n}", "accuracy": 0.6818181818181818, "time_ms": 980, "memory_kb": 3660, "score_of_the_acc": -1.0005, "final_rank": 13 } ]
aoj_3083_cpp
Problem 今、あるシュミレーションゲームRUPC(Rich Ultra Power Challenge)をしています。 このゲームは $H$ 行 $W$ 列の盤面からなり、盤面上には $N$ 個の斥力石と $Q$ 体の敵が存在しています。 以降、上から $y$ 行目、左から $x$ 列目のマスを $(y, x)$ と表します。 ただし、番号は $0$ から始まります。例えば、左上のマスは $(0, 0)$、右下のマスは $(H-1, W-1)$ です。 $i$ 番目の斥力石は $(a_i, b_i)$ に位置し、斥力 $m_i$ を持っています。 $j$ 番目の敵は初め $(c_j, d_j)$ に位置しています。 RUPCはターン制のゲームです。 それぞれの敵は $1$ ターンごとに次のルールで移動します。 敵の現在地を $(y, x)$ とする 敵は現在地から $\left ( \left [ y+\sum_{i=1}^N ((y - a_i) \times m_i) \right ] \bmod H, \left [ x+\sum_{i=1}^N ((x - b_i) \times m_i) \right ] \bmod W \right)$ へ移動する $j$ 番目の敵の $k_j$ ターン後の位置を求めてください。 Input 入力は以下の形式で与えられる。 $H$ $W$ $N$ $Q$ $a_1$ $b_1$ $m_1$ $\vdots$ $a_N$ $b_N$ $m_N$ $c_1$ $d_1$ $k_1$ $\vdots$ $c_Q$ $d_Q$ $k_Q$ Constraints 入力は以下の条件を満たす。 $1 \le H, W, N, Q \le 10^5$ $0 \le a_i \lt H$ $0 \le b_i \lt W$ $1 \le m_i \le 10^4$ $0 \le c_j \lt H$ $0 \le d_j \lt W$ $1 \le k_j \le 10^{18}$ 入力は全て整数である Output (13:40修正) $Q$ 行出力せよ。 $j$ 行目には $j$ 番目の敵の $k_j$ ターン後の位置を行、列の順番で出力せよ。 Sample Input1 10 10 1 5 0 0 1 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 Sample Output1 2 4 4 8 8 6 6 2 2 4 Sample Input2 5 5 4 5 1 0 1 3 0 1 1 4 1 3 4 1 2 2 1 1 2 2 3 2 2 1 1 2 0 0 2 Sample Output2 2 2 2 2 2 2 2 2 2 2
[ { "submission_id": "aoj_3083_8504710", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3083.cc: Antigravity\n */\n\n#include<cstdio>\n#include<vector>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\nconst int BN = 60;\n\n/* typedef */\n\ntypedef long long ll;\n\ntemplate <typename T>\nstruct SegTreeSumDelay {\n int e2;\n vector<T> nodes, das, dbs;\n T defv;\n SegTreeSumDelay() {}\n\n void init(int n, T _defv) {\n defv = _defv;\n for (e2 = 1; e2 < n; e2 <<= 1);\n nodes.assign(e2 * 2, defv);\n das.assign(e2 * 2, 0);\n dbs.assign(e2 * 2, 0);\n }\n\n T &geti(int i) { return nodes[e2 - 1 + i]; }\n void seti(int i, T v) { geti(i) = v; }\n\n void setall() {\n for (int j = e2 - 2; j >= 0; j--)\n nodes[j] = nodes[j * 2 + 1] + nodes[j * 2 + 2];\n }\n\n void __update(int k, int l) {\n if (das[k] != 0 || dbs[k] != 0) {\n int k0 = k * 2 + 1, k1 = k0 + 1, hl = l >> 1;\n ll a0 = das[k], a1 = das[k] + dbs[k] * hl;\n nodes[k0] += a0;\n nodes[k1] += a1;\n das[k0] += a0, dbs[k0] += dbs[k];\n das[k1] += a1, dbs[k1] += dbs[k];\n das[k] = dbs[k] = 0;\n }\n }\n\n void updateall(int k, int i0, int i1) {\n if (i0 + 1 < i1) {\n __update(k, i1 - i0);\n int im = (i0 + i1) / 2;\n updateall(k * 2 + 1, i0, im);\n updateall(k * 2 + 2, im, i1);\n }\n }\n void updateall() { updateall(0, 0, e2); }\n\n void add_range(int r0, int r1, T a, T b, int k, int i0, int i1) {\n if (r1 <= i0 || i1 <= r0) return;\n if (r0 <= i0 && i1 <= r1) {\n nodes[k] += a;\n das[k] += a, dbs[k] += b;\n return;\n }\n\n __update(k, i1 - i0);\n\n int im = (i0 + i1) / 2;\n int k0 = k * 2 + 1, k1 = k0 + 1;\n T a0 = a, a1 = a + b * (im - i0);\n add_range(r0, r1, a0, b, k0, i0, im);\n add_range(r0, r1, a1, b, k1, im, i1);\n }\n void add_range(int r0, int r1, T a, T b) {\n add_range(r0, r1, a, b, 0, 0, e2);\n }\n};\n\n/* global variables */\n\nint as[MAX_N], bs[MAX_N], ms[MAX_N];\nSegTreeSumDelay<ll> st;\nint pas[MAX_N][BN], pbs[MAX_N][BN];\n\n/* subroutines */\n\nvoid calc(int k, int n, int xs[], int ms[], int ps[][BN]) {\n st.init(k, 0);\n for (int i = 0; i < n; i++) {\n ll x0 = -(ll)xs[i] * ms[i];\n st.add_range(0, k, x0, ms[i]);\n }\n st.updateall();\n //for (int i = 0; i < k; i++) printf(\"%d \", ps[i]); putchar('\\n');\n\n for (int u = 0; u < k; u++)\n ps[u][0] = ((u + st.geti(u)) % k + k) % k;\n\n for (int i = 0; i < BN - 1; i++)\n for (int u = 0; u < k; u++)\n ps[u][i + 1] = ps[ps[u][i]][i];\n}\n\n/* main */\n\nint main() {\n int h, w, n, qn;\n scanf(\"%d%d%d%d\", &h, &w, &n, &qn);\n\n for (int i = 0; i < n; i++) scanf(\"%d%d%d\", as + i, bs + i, ms + i);\n\n calc(h, n, as, ms, pas);\n calc(w, n, bs, ms, pbs);\n\n while (qn--) {\n int c, d;\n ll k;\n scanf(\"%d%d%lld\", &c, &d, &k);\n\n for (int i = 0; i < BN; i++)\n if ((k >> i) & 1)\n\tc = pas[c][i], d = pbs[d][i];\n\n printf(\"%d %d\\n\", c, d);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 56000, "score_of_the_acc": -0.548, "final_rank": 1 }, { "submission_id": "aoj_3083_5512082", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 100005\n#define MAX 60\n\nenum Type{\n\tX,\n\tY,\n};\n\nstruct Info{\n\n\tll a,b,m;\n};\n\nll H,W,N,num_Q;\nll POW[MAX+1];\nll MOVE[2][SIZE][MAX+1];\nInfo info[SIZE];\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i <= MAX; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tscanf(\"%lld %lld %lld %lld\",&H,&W,&N,&num_Q);\n\n\tll minus[2] = {0,0};\n\n\tll sum_M = 0;\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tscanf(\"%lld %lld %lld\",&info[i].a,&info[i].b,&info[i].m);\n\n\t\tminus[X] += info[i].m*info[i].b;\n\t\tminus[Y] += info[i].m*info[i].a;\n\n\t\tsum_M += info[i].m;\n\t}\n\n\tminus[X] %= W;\n\tminus[Y] %= H;\n\n\tfor(int loop = 0; loop < 2; loop++){\n\n\t\tll mod;\n\t\tif(loop == 0){\n\n\t\t\tmod = W;\n\t\t}else{\n\n\t\t\tmod = H;\n\t\t}\n\n\t\tMOVE[loop][0][0] = (-minus[loop]+mod)%mod;\n\t\tfor(ll i = 1; i <= mod-1; i++){ //1ターン後の座標\n\n\t\t\tMOVE[loop][i][0] = (i+i*sum_M-minus[loop]+mod)%mod;\n\t\t}\n\n\t\tfor(ll p = 1; p <= MAX; p++){\n\t\t\tfor(ll i = 0; i <= mod-1; i++){\n\n\t\t\t\tMOVE[loop][i][p] = MOVE[loop][MOVE[loop][i][p-1]][p-1];\n\t\t\t}\n\t\t}\n\t}\n\n\tll row,col,turn;\n\tfor(ll loop = 0; loop < num_Q; loop++){\n\n\t\tscanf(\"%lld %lld %lld\",&row,&col,&turn);\n\n\t\tll ans_row = row,ans_col = col;\n\t\tfor(ll a = MAX; a >= 0; a--){\n\t\t\tif(turn < POW[a])continue;\n\n\t\t\tans_row = MOVE[Y][ans_row][a];\n\t\t\tans_col = MOVE[X][ans_col][a];\n\n\t\t\tturn -= POW[a];\n\t\t}\n\n\t\tprintf(\"%lld %lld\\n\",ans_row,ans_col);\n\t}\n\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 91600, "score_of_the_acc": -0.9892, "final_rank": 5 }, { "submission_id": "aoj_3083_4877454", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nint d[61][223456][2];//d[i][j][k]:jが2^iターン後にいる場所 k:0でx\n\nsigned main(){\n int h,w,n,q;cin>>h>>w>>n>>q;\n int asum=0,bsum=0,mhsum=0,mwsum=0;\n while(n--){\n int a,b,m;cin>>a>>b>>m;\n (asum+=a*m)%=h;\n (bsum+=b*m)%=w;\n (mhsum+=m)%=h;\n (mwsum+=m)%=w;\n }\n for(int i=0;i<w;i++)d[0][i][0]=(i+i*mwsum-bsum+w)%w;\n for(int i=0;i<h;i++)d[0][i][1]=(i+i*mhsum-asum+h)%h;\n for(int j=1;j<61;j++){\n for(int i=0;i<w;i++)\n d[j][i][0]=d[j-1][d[j-1][i][0]][0];\n for(int i=0;i<h;i++)\n d[j][i][1]=d[j-1][d[j-1][i][1]][1];\n }\n vector<pair<int,int>> ans;\n while(q--){\n int y,x,k;cin>>y>>x>>k;\n for(int i=60;i>=0;i--)\n if((k>>i)&1){\n x=d[i][x][0];\n y=d[i][y][1];\n }\n ans.emplace_back(y,x);\n }\n for(auto p:ans)cout<<p.first<<\" \"<<p.second<<endl;\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 98372, "score_of_the_acc": -1.0894, "final_rank": 10 }, { "submission_id": "aoj_3083_4877452", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nint d[61][223456][2];//d[i][j][k]:jが2^iターン後にいる場所 k:0でx\n\nsigned main(){\n int h,w,n,q;cin>>h>>w>>n>>q;\n int asum=0,bsum=0,mhsum=0,mwsum=0;\n while(n--){\n int a,b,m;cin>>a>>b>>m;\n (asum+=a*m)%=h;\n (bsum+=b*m)%=w;\n (mhsum+=m)%=h;\n (mwsum+=m)%=w;\n }\n for(int i=0;i<w;i++)d[0][i][0]=(i+i*mwsum-bsum+w)%w;\n for(int i=0;i<h;i++)d[0][i][1]=(i+i*mhsum-asum+h)%h;\n for(int j=1;j<61;j++){\n for(int i=0;i<w;i++)\n d[j][i][0]=d[j-1][d[j-1][i][0]][0];\n for(int i=0;i<h;i++)\n d[j][i][1]=d[j-1][d[j-1][i][0]][1];\n }\n vector<pair<int,int>> ans;\n while(q--){\n int y,x,k;cin>>y>>x>>k;\n for(int i=60;i>=0;i--){\n if((k>>i)&1){\n x=d[i][x][0];\n y=d[i][y][1];\n }\n }\n ans.emplace_back(y,x);\n }\n for(auto p:ans)cout<<p.first<<\" \"<<p.second<<endl;\n}", "accuracy": 0.047619047619047616, "time_ms": 340, "memory_kb": 65144, "score_of_the_acc": -0.7246, "final_rank": 19 }, { "submission_id": "aoj_3083_4877451", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nint d[61][223456][2];//d[i][j][k]:jが2^iターン後にいる場所 k:0でx\n\nsigned main(){\n int h,w,n,q;cin>>h>>w>>n>>q;\n int asum=0,bsum=0,mhsum=0,mwsum=0;\n while(n--){\n int a,b,m;cin>>a>>b>>m;\n (asum+=a*m)%=h;\n (bsum+=b*m)%=w;\n (mhsum+=m)%=h;\n (mwsum+=m)%=w;\n }\n for(int i=0;i<w;i++)d[0][i][0]=(i+i*mwsum-bsum+w)%w;\n for(int i=0;i<h;i++)d[0][i][1]=(i+i*mhsum-asum+h)%h;\n for(int j=1;j<60;j++){\n for(int i=0;i<w;i++)\n d[j][i][0]=d[j-1][d[j-1][i][0]][0];\n for(int i=0;i<h;i++)\n d[j][i][1]=d[j-1][d[j-1][i][0]][1];\n }\n vector<pair<int,int>> ans;\n while(q--){\n int y,x,k;cin>>y>>x>>k;\n for(int i=60;i>=0;i--){\n if((k>>i)&1){\n x=d[i][x][0];\n y=d[i][y][1];\n }\n }\n ans.emplace_back(y,x);\n }\n for(auto p:ans)cout<<p.first<<\" \"<<p.second<<endl;\n}", "accuracy": 0.047619047619047616, "time_ms": 330, "memory_kb": 64204, "score_of_the_acc": -0.7106, "final_rank": 18 }, { "submission_id": "aoj_3083_4877449", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nint d[60][223456][2];//d[i][j][k]:jが2^iターン後にいる場所 k:0でx\n\nsigned main(){\n int h,w,n,q;cin>>h>>w>>n>>q;\n int asum=0,bsum=0,mhsum=0,mwsum=0;\n while(n--){\n int a,b,m;cin>>a>>b>>m;\n (asum+=a*m)%=h;\n (bsum+=b*m)%=w;\n (mhsum+=m)%=h;\n (mwsum+=m)%=w;\n }\n for(int i=0;i<w;i++)d[0][i][0]=(i+i*mwsum-bsum+w)%w;\n for(int i=0;i<h;i++)d[0][i][1]=(i+i*mhsum-asum+h)%h;\n for(int j=1;j<60;j++){\n for(int i=0;i<w;i++)\n d[j][i][0]=d[j-1][d[j-1][i][0]][0];\n for(int i=0;i<h;i++)\n d[j][i][1]=d[j-1][d[j-1][i][0]][1];\n }\n while(q--){\n int y,x,k;cin>>y>>x>>k;\n for(int i=60;i>=0;i--){\n if((k>>i)&1){\n x=d[i][x][0];\n y=d[i][y][1];\n }\n }\n cout<<y<<\" \"<<x<<endl;\n }\n}", "accuracy": 0.047619047619047616, "time_ms": 340, "memory_kb": 62440, "score_of_the_acc": -0.6967, "final_rank": 16 }, { "submission_id": "aoj_3083_4877446", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nint d[60][223456][2];//d[i][j][k]:jが2^iターン後にいる場所 k:0でx\n\nsigned main(){\n int h,w,n,q;cin>>h>>w>>n>>q;\n int asum=0,bsum=0,msum=0;\n while(n--){\n int a,b,m;cin>>a>>b>>m;\n (asum+=a*m)%=h;\n (bsum+=b*m)%=w;\n msum+=m;\n }\n for(int i=0;i<w;i++)d[0][i][0]=(i+i*msum-bsum+w)%w;\n for(int i=0;i<h;i++)d[0][i][1]=(i+i*msum-asum+h)%h;\n for(int j=1;j<60;j++){\n for(int i=0;i<w;i++)\n d[j][i][0]=d[j-1][d[j-1][i][0]][0];\n for(int i=0;i<h;i++)\n d[j][i][1]=d[j-1][d[j-1][i][0]][1];\n }\n while(q--){\n int y,x,k;cin>>y>>x>>k;\n for(int i=60;i>=0;i--){\n if((k>>i)&1){\n x=d[i][x][0];\n y=d[i][y][1];\n }\n }\n cout<<y<<\" \"<<x<<endl;\n }\n}", "accuracy": 0.047619047619047616, "time_ms": 340, "memory_kb": 62444, "score_of_the_acc": -0.6968, "final_rank": 17 }, { "submission_id": "aoj_3083_4877442", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nint d[60][223456][2];//d[i][j][k]:jが2^iターン後にいる場所 k:0でx\n\nsigned main(){\n int h,w,n,q;cin>>h>>w>>n>>q;\n int asum=0,bsum=0,msum=0;\n while(n--){\n int a,b,m;cin>>a>>b>>m;\n (asum+=a*m)%=w;\n (bsum+=b*m)%=h;\n msum+=m;\n }\n for(int i=0;i<w;i++)d[0][i][0]=(i+i*msum-asum+w)%w;\n for(int i=0;i<h;i++)d[0][i][1]=(i+i*msum-bsum+h)%h;\n for(int j=1;j<60;j++){\n for(int i=0;i<w;i++)\n d[j][i][0]=d[j-1][d[j-1][i][0]][0];\n for(int i=0;i<h;i++)\n d[j][i][1]=d[j-1][d[j-1][i][0]][1];\n }\n while(q--){\n int y,x,k;cin>>y>>x>>k;\n for(int i=60;i>=0;i--){\n if((k>>i)&1){\n x=d[i][x][0];\n y=d[i][y][1];\n }\n }\n cout<<y<<\" \"<<x<<endl;\n }\n}", "accuracy": 0.047619047619047616, "time_ms": 340, "memory_kb": 62340, "score_of_the_acc": -0.6957, "final_rank": 15 }, { "submission_id": "aoj_3083_4867453", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T> inline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T> inline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) {\n os << ',';\n }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\nstruct Setup {\n Setup() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n }\n} __Setup;\n\nusing ll = long long;\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\nconst int INF = 1 << 30;\nconst ll LLINF = 1LL << 60;\nconstexpr int MOD = 1000000007;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n\n//-------------------------------------\n\nint main() {\n ll H, W, N, Q;\n cin >> H >> W >> N >> Q;\n ll sum_am = 0;\n ll sum_bm = 0;\n ll sum_m = 0;\n for(ll i = 0; i < N; i++) {\n ll a, b, m;\n cin >> a >> b >> m;\n (sum_am += a * m % H) %= H;\n (sum_bm += b * m % W) %= W;\n sum_m += m;\n }\n vector duby(60, vector<ll>(H));\n vector dubx(60, vector<ll>(W));\n for(ll i = 0; i < H; i++) {\n duby[0][i] = ((sum_m + 1) % H * i % H - sum_am % H + H) % H;\n }\n for(ll i = 0; i < W; i++) {\n dubx[0][i] = ((sum_m + 1) % W * i % W - sum_bm % W + W) % W;\n }\n for(ll k = 1; k < 60; k++) {\n for(ll i = 0; i < H; i++) {\n duby[k][i] = duby[k - 1][duby[k - 1][i]];\n }\n for(ll i = 0; i < W; i++) {\n dubx[k][i] = dubx[k - 1][dubx[k - 1][i]];\n }\n }\n while(Q--) {\n ll c, d, k;\n cin >> c >> d >> k;\n for(ll i = 0; i < 60; i++) {\n if((1LL << i) & k) {\n c = duby[i][c];\n d = dubx[i][d];\n }\n }\n cout << c << \" \" << d << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 89896, "score_of_the_acc": -0.9326, "final_rank": 3 }, { "submission_id": "aoj_3083_4867413", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T> inline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T> inline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) {\n os << ',';\n }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\nstruct Setup {\n Setup() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n }\n} __Setup;\n\nusing ll = long long;\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\nconst int INF = 1 << 30;\nconst ll LLINF = 1LL << 60;\nconstexpr int MOD = 1000000007;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n\n//-------------------------------------\n\nint main() {\n ll H, W, N, Q;\n cin >> H >> W >> N >> Q;\n ll sum_am = 0;\n ll sum_bm = 0;\n ll sum_m = 0;\n for(ll i = 0; i < N; i++) {\n ll a, b, m;\n cin >> a >> b >> m;\n (sum_am += a * m % H) %= H;\n (sum_bm += b * m % W) %= W;\n sum_m += m;\n }\n vector duby(60, vector<ll>(H));\n vector dubx(60, vector<ll>(W));\n for(ll i = 0; i < H; i++) {\n duby[0][i] = ((sum_m + 1) % H * i % H - sum_am % H + H) % H;\n }\n for(ll i = 0; i < W; i++) {\n dubx[0][i] = ((sum_m + 1) % H * i % W - sum_bm % W + W) % W;\n }\n for(ll k = 1; k < 60; k++) {\n for(ll i = 0; i < H; i++) {\n duby[k][i] = duby[k - 1][duby[k - 1][i]];\n }\n for(ll i = 0; i < W; i++) {\n dubx[k][i] = dubx[k - 1][dubx[k - 1][i]];\n }\n }\n while(Q--) {\n ll c, d, k;\n cin >> c >> d >> k;\n for(ll i = 0; i < 60; i++) {\n if((1LL << i) & k) {\n c = duby[i][c];\n d = dubx[i][d];\n }\n }\n cout << c << \" \" << d << \"\\n\";\n }\n}", "accuracy": 0.047619047619047616, "time_ms": 200, "memory_kb": 60300, "score_of_the_acc": -0.614, "final_rank": 13 }, { "submission_id": "aoj_3083_4867401", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T> inline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T> inline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\n#define DEBUG\n#ifdef DEBUG\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << '(' << p.first << ',' << p.second << ')';\n return os;\n}\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n os << '{';\n for(int i = 0; i < (int)v.size(); i++) {\n if(i) {\n os << ',';\n }\n os << v[i];\n }\n os << '}';\n return os;\n}\nvoid debugg() { cerr << endl; }\ntemplate <class T, class... Args>\nvoid debugg(const T &x, const Args &... args) {\n cerr << \" \" << x;\n debugg(args...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debugg(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\nstruct Setup {\n Setup() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n }\n} __Setup;\n\nusing ll = long long;\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\nconst int INF = 1 << 30;\nconst ll LLINF = 1LL << 60;\nconstexpr int MOD = 1000000007;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n\n//-------------------------------------\n\nint main() {\n ll H, W, N, Q;\n cin >> H >> W >> N >> Q;\n ll sum_am = 0;\n ll sum_bm = 0;\n ll sum_m = 0;\n for(int i = 0; i < N; i++) {\n ll a, b, m;\n cin >> a >> b >> m;\n sum_am += a * m % H;\n sum_bm += b * m % W;\n sum_m += m;\n }\n vector duby(60, vector<ll>(H));\n vector dubx(60, vector<ll>(W));\n for(int i = 0; i < H; i++) {\n duby[0][i] = ((sum_m + 1) % H * i % H - sum_am % H + H) % H;\n }\n for(int i = 0; i < W; i++) {\n dubx[0][i] = ((sum_m + 1) % H * i % W - sum_bm % W + W) % W;\n }\n for(int k = 1; k < 60; k++) {\n for(int i = 0; i < H; i++) {\n duby[k][i] = duby[k - 1][duby[k - 1][i]];\n }\n for(int i = 0; i < W; i++) {\n dubx[k][i] = dubx[k - 1][dubx[k - 1][i]];\n }\n }\n while(Q--) {\n ll c, d, k;\n cin >> c >> d >> k;\n for(int i = 0; i < 60; i++) {\n if(k >> i & 1) {\n c = duby[i][c];\n d = dubx[i][d];\n }\n }\n cout << c << \" \" << d << \"\\n\";\n }\n}", "accuracy": 0.047619047619047616, "time_ms": 200, "memory_kb": 60280, "score_of_the_acc": -0.6138, "final_rank": 12 }, { "submission_id": "aoj_3083_4866086", "code_snippet": "#include<iostream>\n#include<string>\n#include<iomanip>\n#include<cmath>\n#include<vector>\n#include<algorithm>\n\nusing namespace std;\n\n#define int long long\n#define endl \"\\n\"\n\nconstexpr long long INF = (long long)1e18;\nconstexpr long long MOD = 1000000007; \n\n#define a first.first\n#define b first.second\n#define m second\n\nsigned main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tcout<<fixed<<setprecision(10);\n\t\n\tint H, W, N, Q;\n\tint summ = 0;\n\tvector<pair<pair<int,int>,int>> in;\n\tvector<int> tableh, tablew;\n\tvector<vector<int>> tableh2, tablew2;\n\t\n\tcin>>H>>W>>N>>Q;\n\t\n\tin.resize(N);\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tcin>>in[i].a>>in[i].b>>in[i].m;\n\t\t\n\t\tsumm += in[i].m;\n\t}\n\t\n\ttableh.resize(H);\n\ttablew.resize(W);\n\t\n\ttableh2.resize(65, vector<int>(H));\n\ttablew2.resize(65, vector<int>(W));\n\t\n\tfor(int i = 0; i < N; i++){\n\t\ttableh[0] += (H - (in[i].a * in[i].m) % H) % H;\n\t\ttableh[0] %= H;\n\t\t\n\t\ttablew[0] += (W - (in[i].b * in[i].m) % W) % W;\n\t\ttablew[0] %= W;\n\t}\n\t\n\tfor(int i = 1; i < H; i++){\n\t\ttableh[i] = tableh[i-1] + summ % H;\n\t\ttableh[i] %= H;\n\t}\n\t\n\tfor(int i = 1; i < W; i++){\n\t\ttablew[i] = tablew[i-1] + summ % W;\n\t\ttablew[i] %= W;\n\t}\n\t\n\tfor(int i = 0; i < H; i++){\n\t\ttableh[i] += i;\n\t\ttableh[i] %= H;\n\t\t\n\t\ttableh2[0][i] = tableh[i];\n\t}\n\t\n\tfor(int i = 0; i < W; i++){\n\t\ttablew[i] += i;\n\t\ttablew[i] %= W;\n\t\t\n\t\ttablew2[0][i] = tablew[i];\n\t}\n\t\n\tfor(int i = 1; i < tableh2.size(); i++){\n\t\tfor(int j = 0; j < H; j++){\n\t\t\ttableh2[i][j] = tableh2[i-1][tableh2[i-1][j]];\n\t\t}\n\t}\n\t\n\tfor(int i = 1; i < tablew2.size(); i++){\n\t\tfor(int j = 0; j < W; j++){\n\t\t\ttablew2[i][j] = tablew2[i-1][tablew2[i-1][j]];\n\t\t}\n\t}\n\t\n\tfor(int i = 0; i < Q; i++){\n\t\tint c, d, k;\n\t\tint y = 0, x = 0;\n\t\t\n\t\tcin>>c>>d>>k;\n\t\t\n\t\ty = c, x = d;\n\t\t\n\t\tfor(int j = 62; j >= 0; j--){\n\t\t\tif(k&(1ll<<j)) {\n\t\t\t\ty = tableh2[j][y];\n\t\t\t}\n\t\t}\n\t\t\n\t\tfor(int j = 62; j >= 0; j--){\n\t\t\tif(k&(1ll<<j)) {\n\t\t\t\tx = tablew2[j][x];\n\t\t\t}\n\t\t}\n\t\t\n\t\tcout<<y<<\" \"<<x<<endl;\n\t}\n\t\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 370, "memory_kb": 99204, "score_of_the_acc": -1.0893, "final_rank": 9 }, { "submission_id": "aoj_3083_4861507", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\nclass mint{\n public:\n ll x;\n long long mod;\n mint(){x = 0;}\n mint(ll _x, ll _mod = -1) : x(_x){\n if(_mod != -1) set_mod(_mod);\n }\n void set_mod(ll _mod){\n mod = _mod;\n x = (x < 0 ? ((x += (LLONG_MAX / mod) * mod) < 0 ? x + (LLONG_MAX / mod) * mod : x) : x);\n if(x >= mod) x %= mod;\n }\n mint operator-(){\n return {x == 0 ? 0 : mod - x, mod};\n }\n\n //\"a.mod % mod == 0\"\n mint& operator+=(mint a){\n a.set_mod(mod);\n if((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint operator+(const mint& a) const{\n mint res(*this);\n return res += a;\n }\n mint& operator-=(mint a){\n a.set_mod(mod);\n if((x -= a.x) < 0) x += mod;\n return *this;\n }\n mint operator-(const mint& a) const{\n mint res(*this);\n return res -= a;\n }\n mint& operator*=(mint a){\n a.set_mod(mod);\n (x *= a.x)%=mod;\n return *this;\n }\n mint operator*(const mint& a) const{\n mint res(*this);\n return res *= a;\n }\n mint pow(unsigned long long pw) const{\n mint res(1, mod), comp(*this);\n while(pw){\n if(pw&1) res *= comp;\n comp *= comp;\n pw >>= 1;\n }\n return res;\n }\n //以下、modが素数のときのみ\n mint inv() const{\n mint res(*this);\n return res.pow(mod - 2);\n }\n mint& operator/=(mint a){\n a.set_mod(mod);\n (x *= a.inv().x)%=mod;\n return *this;\n }\n mint operator/(const mint &a) const{\n mint res(*this);\n return res /= a;\n }\n};\nostream& operator<<(ostream& os, const mint& a){\n os << a.x;\n return os;\n}\ntypedef vector<mint> vm;\n\n\nint main() {\n cin>>H>>W>>N>>Q;\n mint msum(0, H * W), ysum(0, H), xsum(0, W);\n rep(i, N){\n int a, b, m;\n cin>>a>>b>>m;\n msum += m;\n ysum -= a * m;\n xsum -= b * m;\n }\n mat dbl_x(60, vec(W)), dbl_y(60, vec(H));\n rep(x, W) {\n dbl_x[0][x] = xsum.x;\n xsum += msum + 1;\n }\n rep(y, H){\n dbl_y[0][y] = ysum.x;\n ysum += msum.x + 1;\n }\n reps(k, 1, 60) {\n rep(x, W) dbl_x[k][x] = dbl_x[k-1][dbl_x[k-1][x]];\n rep(y, H) dbl_y[k][y] = dbl_y[k-1][dbl_y[k-1][y]];\n }\n rep(_, Q){\n int c, d;\n ll k;\n cin>>c>>d>>k;\n Rrep(i, 60){\n if((k>>i)&1){\n c = dbl_y[i][c];\n d = dbl_x[i][d];\n }\n }\n cout<<c<<' '<<d<<endl;\n }\n}", "accuracy": 1, "time_ms": 410, "memory_kb": 89892, "score_of_the_acc": -1.0105, "final_rank": 8 }, { "submission_id": "aoj_3083_4861496", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\nclass mint{\n public:\n ll x;\n long long mod;\n mint(){x = 0;}\n mint(ll _x, ll _mod = -1) : x(_x){\n if(_mod != -1) set_mod(_mod);\n }\n void set_mod(ll _mod){\n mod = _mod;\n x = (x < 0 ? ((x += (LLONG_MAX / mod) * mod) < 0 ? x + (LLONG_MAX / mod) * mod : x) : x);\n if(x >= mod) x %= mod;\n }\n mint operator-(){\n return {x == 0 ? 0 : mod - x, mod};\n }\n mint& operator+=(const mint& a){\n if((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint operator+(const mint& a) const{\n mint res(*this);\n return res += a;\n }\n mint& operator-=(const mint& a){\n if((x -= a.x) < 0) x += mod;\n return *this;\n }\n mint operator-(const mint& a) const{\n mint res(*this);\n return res -= a;\n }\n mint& operator*=(const mint& a){\n (x *= a.x)%=mod;\n return *this;\n }\n mint operator*(const mint& a) const{\n mint res(*this);\n return res *= a;\n }\n mint pow(unsigned long long pw) const{\n mint res(1, mod), comp(*this);\n while(pw){\n if(pw&1) res *= comp;\n comp *= comp;\n pw >>= 1;\n }\n return res;\n }\n //以下、modが素数のときのみ\n mint inv() const{\n mint res(*this);\n return res.pow(mod - 2);\n }\n mint& operator/=(const mint &a){\n (x *= a.inv().x)%=mod;\n return *this;\n }\n mint operator/(const mint &a) const{\n mint res(*this);\n return res /= a;\n }\n};\nostream& operator<<(ostream& os, const mint& a){\n os << a.x;\n return os;\n}\ntypedef vector<mint> vm;\n\n\nint main() {\n cin>>H>>W>>N>>Q;\n mint msum(0, H * W), ysum(0, H), xsum(0, W);\n rep(i, N){\n int a, b, m;\n cin>>a>>b>>m;\n msum += m;\n ysum -= (a * m)%H;\n xsum -= (b * m)%W;\n }\n mat dbl_x(60, vec(W)), dbl_y(60, vec(H));\n rep(x, W) {\n dbl_x[0][x] = xsum.x;\n xsum += (msum.x + 1)%W;\n }\n rep(y, H){\n dbl_y[0][y] = ysum.x;\n ysum += (msum.x + 1)%H;\n }\n reps(k, 1, 60) {\n rep(x, W) dbl_x[k][x] = dbl_x[k-1][dbl_x[k-1][x]];\n rep(y, H) dbl_y[k][y] = dbl_y[k-1][dbl_y[k-1][y]];\n }\n rep(_, Q){\n int c, d;\n ll k;\n cin>>c>>d>>k;\n Rrep(i, 60){\n if((k>>i)&1){\n c = dbl_y[i][c];\n d = dbl_x[i][d];\n }\n }\n cout<<c<<' '<<d<<endl;\n }\n}", "accuracy": 1, "time_ms": 400, "memory_kb": 89976, "score_of_the_acc": -1.007, "final_rank": 7 }, { "submission_id": "aoj_3083_4859140", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <iomanip>\n#define vll vector<ll>\n#define vvvl vector<vvl>\n#define vvl vector<vector<ll>>\n#define VV(a, b, c, d) vector<vector<d>>(a, vector<d>(b, c))\n#define VVV(a, b, c, d) vector<vvl>(a, vvl(b, vll (c, d)));\n#define re(c, b) for(ll c=0;c<b;c++)\n#define all(obj) (obj).begin(), (obj).end()\ntypedef long long int ll;\ntypedef long double ld;\nusing namespace std;\n\nint main(){\n ll h, w, n, q;scanf(\"%lld %lld %lld %lld\\n\", &h, &w, &n, &q);\n ll A = 0, B = 0, C = 0, D = 0;\n for(int i=0;i<n;i++){\n ll a, b, m;scanf(\"%lld %lld %lld\", &a, &b, &m);\n A = (A + m)%h;\n B = (B + (a * m))%h;\n C = (C + m)%w;\n D = (D + (b * m))%w;\n }\n\n //A:=∑mi\n //B:=∑aimi\n //C:=∑mj\n //D:=∑bjmj\n\n //y' = (1 + A)y - B mod h\n //x' = (1 + C)x - D mod w\n auto f = [&](ll y){return ((1+A)*y-B+h)%h;};\n auto g = [&](ll x){return ((1+C)*x-D+w)%w;};\n\n vvl Y = VV(h, 64, -1, ll);\n vvl X = VV(w, 64, -1, ll);\n\n for(int i=0;i<64;i++){\n if(i==0){\n for(ll j=0;j<h;j++) Y[j][0] = f(j);\n for(ll j=0;j<w;j++) X[j][0] = g(j);\n }else{\n for(int j=0;j<h;j++) Y[j][i] = Y[Y[j][i-1]][i-1];\n for(int j=0;j<w;j++) X[j][i] = X[X[j][i-1]][i-1];\n }\n }\n\n for(int i=0;i<q;i++){\n ll x, y, k;scanf(\"%lld %lld %lld\", &y, &x, &k);\n int cnt = 0;\n while(k){\n if(k%2) y = Y[y][cnt], x = X[x][cnt];\n k/=2;\n cnt++;\n }\n printf(\"%lld %lld\\n\", y, x);\n }\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 101872, "score_of_the_acc": -1.1212, "final_rank": 11 }, { "submission_id": "aoj_3083_4859137", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <iomanip>\n#define vll vector<ll>\n#define vvvl vector<vvl>\n#define vvl vector<vector<ll>>\n#define VV(a, b, c, d) vector<vector<d>>(a, vector<d>(b, c))\n#define VVV(a, b, c, d) vector<vvl>(a, vvl(b, vll (c, d)));\n#define re(c, b) for(ll c=0;c<b;c++)\n#define all(obj) (obj).begin(), (obj).end()\ntypedef long long int ll;\ntypedef long double ld;\nusing namespace std;\n\nint main(){\n ll h, w, n, q;scanf(\"%lld %lld %lld %lld\\n\", &h, &w, &n, &q);\n ll A = 0, B = 0, C = 0, D = 0;\n for(int i=0;i<n;i++){\n ll a, b, m;scanf(\"%lld %lld %lld\", &a, &b, &m);\n A = (A + m)%h;\n B = (B + (a * m))%h;\n C = (C + m)%w;\n D = (D + (b * m))%w;\n }\n\n //A:=∑mi\n //B:=∑aimi\n //C:=∑mj\n //D:=∑bjmj\n\n //y' = (1 + A)y - B mod h\n //x' = (1 + C)x - D mod w\n auto f = [&](ll y){return ((1+A)*y-B+h)%h;};\n auto g = [&](ll x){return ((1+C)*x-D+w)%w;};\n\n vvl Y = VV(h, 64, -1, ll);\n vvl X = VV(w, 64, -1, ll);\n\n for(int i=0;i<64;i++){\n if(i==0){\n for(ll j=0;j<h;j++) Y[j][0] = f(j);\n for(ll j=0;j<w;j++) X[j][0] = g(j);\n }else{\n for(int j=0;j<h;j++) Y[j][i] = Y[Y[j][i-1]][i-1];\n for(int j=0;j<w;j++) X[j][i] = X[X[j][i-1]][i-1];\n }\n }\n\n for(int i=0;i<q;i++){\n if(i>5) break;\n ll x, y, k;scanf(\"%lld %lld %lld\", &x, &y, &k);\n int cnt = 0;\n while(k){\n if(k%2) y = Y[y][cnt], x = X[x][cnt];\n k/=2;\n cnt++;\n }\n printf(\"%lld %lld\\n\", x, y);\n }\n}", "accuracy": 0.047619047619047616, "time_ms": 100, "memory_kb": 68312, "score_of_the_acc": -0.6534, "final_rank": 14 }, { "submission_id": "aoj_3083_4852943", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << '\\n';\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const T &a) {\n for (auto e : a) cout << e << ' ';\n cout << '\\n';\n}\n\n//------------------------- Libraries -------------------------//\n\n//--------------------------- Solve ---------------------------//\n\nvoid solve() {\n int H, W, N, Q; cin >> H >> W >> N >> Q;\n long long sum_am = 0, sum_bm = 0, sum_m = 0;\n for (int i = 0; i < N; i++) {\n int a, b, m; cin >> a >> b >> m;\n sum_am += a*m;\n sum_bm += b*m;\n sum_m += m;\n }\n\n vector<vector<long long> > doubling_h(61, vector<long long>(H));\n vector<vector<long long> > doubling_w(61, vector<long long>(W));\n for (int y = 0; y < H; y++) {\n doubling_h[0][y] = (y + y*sum_m - sum_am%H + H) % H;\n }\n for (int i = 1; i <= 60; i++) {\n for (int y = 0; y < H; y++) {\n doubling_h[i][y] = doubling_h[i-1][doubling_h[i-1][y]];\n }\n }\n\n for (int x = 0; x < W; x++) {\n doubling_w[0][x] = (x + x*sum_m - sum_bm%W + W) % W;\n }\n for (int i = 1; i <= 60; i++) {\n for (int x = 0; x < W; x++) {\n doubling_w[i][x] = doubling_w[i-1][doubling_w[i-1][x]];\n }\n }\n\n for (int q = 0; q < Q; q++) {\n long long c, d, k; cin >> c >> d >> k;\n int y = c, x = d;\n for (int i = 0; i < 61; i++) {\n if (k & (1LL<<i)) y = doubling_h[i][y];\n if (k & (1LL<<i)) x = doubling_w[i][x];\n }\n cout << y << ' ' << x << '\\n';\n }\n}\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 91192, "score_of_the_acc": -0.9417, "final_rank": 4 }, { "submission_id": "aoj_3083_4851636", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 19;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\nint xnex[1 << 17][60];\nint ynex[1 << 17][60];\nvoid solve(){\n\tint h, w, n, q; cin >> h >> w >> n >> q;\n\tvector<ll> a(n), b(n), m(n);\n\trep(i, n) {\n\t\tcin >> a[i] >> b[i] >> m[i];\n\t}\n\tll sa = 0;\n\trep(i, n)sa += a[i] * m[i];\n\tll sb = 0;\n\trep(i, n)sb += b[i] * m[i];\n\tll sm = 0;\n\trep(i, n)sm += m[i];\n\trep(i, h) {\n\t\tll to = i + sm * i - sa;\n\t\tto %= h; if (to < 0)to += h;\n\t\txnex[i][0] = to;\n\t}\n\trep(j, w) {\n\t\tll to = j + sm * j - sb;\n\t\tto %= w; if (to < 0)to += w;\n\t\tynex[j][0] = to;\n\t}\n\trep(j, 59) {\n\t\trep(i, h) {\n\t\t\txnex[i][j + 1] = xnex[xnex[i][j]][j];\n\t\t}\n\t\trep(i, w) {\n\t\t\tynex[i][j + 1] = ynex[ynex[i][j]][j];\n\t\t}\n\t}\n\trep(i, q) {\n\t\tint c, d; ll k; cin >> c >> d >> k;\n\t\trep(j, 60) {\n\t\t\tif (k & (1ll << j)) {\n\t\t\t\tc = xnex[c][j];\n\t\t\t\td = ynex[d][j];\n\t\t\t}\n\t\t}\n\t\tcout << c << \" \" << d << \"\\n\";\n\t}\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 54720, "score_of_the_acc": -0.591, "final_rank": 2 }, { "submission_id": "aoj_3083_4846610", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<tuple>\n#include<cassert>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned int ui;\nconst ll INF = (ll)1000000007 * 1000000007;\ntypedef pair<int, int> P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef long double ld;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<ll, ll> LP;\nint dx[4]={1,-1,0,0};\nint dy[4]={0,0,1,-1};\ntemplate<class T>bool chmax(T &a, const T &b) {if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T &a, const T &b) {if(b<a){a=b;return 1;}return 0;}\n\nint h,w,n,q;\nint c[100010],d[100010];ll t[100010];\nint ans[100010][2];\n\nvector<vector<ll>> mul(vector<vector<ll>> &A,vector<vector<ll>> &B,ll mo){\n int n=A.size();\n vector<vector<ll>> C(n,vector<ll>(n,0));\n rep(i,n){\n rep(j,n){\n rep(k,n){\n C[i][j]+=A[i][k]*B[k][j];\n C[i][j]%=mo;\n }\n }\n }\n rep(i,n){\n rep(j,n){\n C[i][j]+=mo;C[i][j]%=mo;\n }\n }\n return C;\n}\n\nvector<vector<ll>> pow(vector<vector<ll>> A,long long n,ll m) {\n vector<vector<ll>> R(A.size(),vector<ll>(A.size(),0));\n for (int i = 0; i < A.size(); ++i) R[i][i] = 1;\n while (n > 0) {\n if (n & 1) R = mul(R,A,m);\n A=mul(A,A,m);\n n>>=1;\n }\n return R;\n}\n\nvoid solve(){\n cin >> h >> w >> n >> q;\n ll A1=1,B1=0,A2=1,B2=0;\n rep(i,n){\n ll p,q,m;cin >> p >> q >> m;\n A1+=m;A2+=m;B1-=p*m;B2-=q*m;\n }\n rep(i,q){\n cin >> c[i] >> d[i] >> t[i];\n }\n vector<vector<ll>> A(2,vector<ll>(2));A[0][0]=A1%h;A[0][1]=B1%h;A[1][1]=1;\n rep(i,q){\n vector<vector<ll>> R=pow(A,t[i],h);\n ans[i][0]=(R[0][0]*c[i]+R[0][1])%h;\n }\n vector<vector<ll>> B(2,vector<ll>(2));B[0][0]=A2%w;B[0][1]=B2%w;B[1][1]=1;\n rep(i,q){\n vector<vector<ll>> R=pow(B,t[i],w);\n ans[i][1]=(R[0][0]*d[i]+R[0][1])%w;\n }\n rep(i,q) cout << ans[i][0] << \" \" << ans[i][1] << endl;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(50);\n solve();\n}", "accuracy": 1, "time_ms": 2410, "memory_kb": 5704, "score_of_the_acc": -1.0069, "final_rank": 6 }, { "submission_id": "aoj_3083_4846605", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<tuple>\n#include<cassert>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned int ui;\nconst ll INF = (ll)1000000007 * 1000000007;\ntypedef pair<int, int> P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef long double ld;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<ll, ll> LP;\nint dx[4]={1,-1,0,0};\nint dy[4]={0,0,1,-1};\ntemplate<class T>bool chmax(T &a, const T &b) {if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T &a, const T &b) {if(b<a){a=b;return 1;}return 0;}\n\nint h,w,n,q;\nint c[100010],d[100010];ll t[100010];\nint ans[100010][2];\n\nvector<vector<ll>> mul(vector<vector<ll>> &A,vector<vector<ll>> &B,ll mo){\n int n=A.size();\n vector<vector<ll>> C(n,vector<ll>(n,0));\n rep(i,n){\n rep(j,n){\n rep(k,n){\n C[i][j]+=A[i][k]*B[k][j];\n C[i][j]%=mo;\n }\n }\n }\n rep(i,n){\n rep(j,n){\n C[i][j]+=mo;C[i][j]%=mo;\n }\n }\n return C;\n}\n\nvector<vector<ll>> pow(vector<vector<ll>> A,long long n,ll m) {\n vector<vector<ll>> R(A.size(),vector<ll>(A.size(),0));\n for (int i = 0; i < A.size(); ++i) R[i][i] = 1;\n while (n > 0) {\n if (n & 1) R = mul(R,A,m);\n A=mul(A,A,m);\n n>>=1;\n }\n return R;\n}\n\nvoid solve(){\n cin >> h >> w >> n >> q;\n ll A1=1,B1=0,A2=1,B2=0;\n rep(i,n){\n ll p,q,m;cin >> p >> q >> m;\n A1+=m;A2+=m;B1-=p*m;B2-=q*m;\n }\n rep(i,q){\n cin >> c[i] >> d[i] >> t[i];\n }\n vector<vector<ll>> A(2,vector<ll>(2));A[0][0]=A1;A[0][1]=B1;A[1][1]=1;\n rep(i,q){\n vector<vector<ll>> R=pow(A,t[i],h);\n ans[i][0]=(R[0][0]*c[i]+R[0][1])%h;\n }\n vector<vector<ll>> B(2,vector<ll>(2));B[0][0]=A2;B[0][1]=B2;B[1][1]=1;\n rep(i,q){\n vector<vector<ll>> R=pow(B,t[i],w);\n ans[i][1]=(R[0][0]*d[i]+R[0][1])%w;\n }\n rep(i,q) cout << ans[i][0] << \" \" << ans[i][1] << endl;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(50);\n solve();\n}", "accuracy": 0.047619047619047616, "time_ms": 1920, "memory_kb": 5032, "score_of_the_acc": -0.7879, "final_rank": 20 } ]
aoj_3084_cpp
Problem 頂点 $0$ を根とする $N$ 頂点の根付き木と、長さ $N$ の数列 $A$ が与えられます。 与えられる根付き木の $i$ 番目の辺は頂点 $u_i$ と $v_i$ を結んでいます。 $C(i)$ を、頂点 $i$ の子であるような頂点の番号の集合とします。 長さ $N$ の数列 $B_i$ を以下のように定義します。 $i=0$ なら $(B_i)_j=A_j$ $i>0$ なら $\displaystyle (B_i)_j=(B_{i-1})_j + \sum_{k \in C(j)} (B_i)_k$ 数列 $B_M$ を求めてください。 ただし、$B_M$ の各項は非常に大きくなることがあるので、$998244353$ で割ったあまりを出力してください。 Input 入力は以下の形式で与えられる。 $N$ $M$ $A_0$ $A_1$ $\ldots$ $A_{N-1}$ $u_0$ $v_0$ $\vdots$ $u_{N-2}$ $v_{N-2}$ Constraints 入力は以下の条件を満たす。 $2 \leq N \leq 2\times 10^5$ $1 \leq M \lt 998244353$ $0 \leq A_i \lt 998244353$ $0 \leq u_i,v_i \leq N-1$ 与えられるグラフは木である 入力は全て整数である Output $(B_M)_0,(B_M)_1,\ldots ,(B_M)_{N-1}$ を $998244353$ で割ったあまりをこの順に空白で区切って一行に出力する。 Sample Input 1 2 100000000 1 1 0 1 Sample Output 1 100000001 1 Sample Input 2 5 1 1 10 100 1000 10000 0 1 1 2 1 3 0 4 Sample Output 2 11111 1110 100 1000 10000 Sample Input 3 5 998244352 1 10 100 1000 10000 0 1 1 2 1 3 0 4 Sample Output 3 998234344 998243263 100 1000 10000
[ { "submission_id": "aoj_3084_4908885", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3084\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n\n//BEGIN CUT HERE\ntemplate<typename T,T MOD = 1000000007>\nstruct Mint{\n static constexpr T mod = MOD;\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n Mint pow(long long k){\n Mint res(1),tmp(v);\n while(k){\n if(k&1) res*=tmp;\n tmp*=tmp;\n k>>=1;\n }\n return res;\n }\n\n static Mint add_identity(){return Mint(0);}\n static Mint mul_identity(){return Mint(1);}\n\n Mint inv(){return pow(MOD-2);}\n\n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n Mint& operator/=(Mint a){return (*this)*=a.inv();}\n\n Mint operator+(Mint a) const{return Mint(v)+=a;}\n Mint operator-(Mint a) const{return Mint(v)-=a;}\n Mint operator*(Mint a) const{return Mint(v)*=a;}\n Mint operator/(Mint a) const{return Mint(v)/=a;}\n\n Mint operator-() const{return v?Mint(MOD-v):Mint(v);}\n\n bool operator==(const Mint a)const{return v==a.v;}\n bool operator!=(const Mint a)const{return v!=a.v;}\n bool operator <(const Mint a)const{return v <a.v;}\n\n static Mint comb(long long n,int k){\n Mint num(1),dom(1);\n for(int i=0;i<k;i++){\n num*=Mint(n-i);\n dom*=Mint(i+1);\n }\n return num/dom;\n }\n};\ntemplate<typename T,T MOD> constexpr T Mint<T, MOD>::mod;\ntemplate<typename T,T MOD>\nostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}\n//END CUT HERE\n#ifndef call_from_test\n\n//INSERT ABOVE HERE\nsigned ABC127_E(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int h,w,k;\n cin>>h>>w>>k;\n using M = Mint<int>;\n\n M ans{0};\n for(int d=1;d<h;d++)\n ans+=M(d)*M(h-d)*M(w)*M(w);\n\n for(int d=1;d<w;d++)\n ans+=M(d)*M(w-d)*M(h)*M(h);\n\n ans*=M::comb(h*w-2,k-2);\n cout<<ans<<endl;\n return 0;\n}\n/*\n verified on 2019/06/12\n https://atcoder.jp/contests/abc127/tasks/abc127_e\n*/\n\nsigned main(){\n //ABC127_E();\n return 0;\n}\n#endif\n\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"../mod/mint.cpp\"\n#undef call_from_test\n\n#endif\n//BEGIN CUT HERE\nconstexpr int bmds(int x){\n const int v[] = {1012924417, 924844033, 998244353,\n 897581057, 645922817};\n return v[x];\n}\nconstexpr int brts(int x){\n const int v[] = {5, 5, 3, 3, 3};\n return v[x];\n}\n\ntemplate<int X>\nstruct NTT{\n static constexpr int md = bmds(X);\n static constexpr int rt = brts(X);\n using M = Mint<int, md>;\n vector< vector<M> > rts,rrts;\n\n void ensure_base(int n){\n if((int)rts.size()>=n) return;\n rts.resize(n);rrts.resize(n);\n for(int i=1;i<n;i<<=1){\n if(!rts[i].empty()) continue;\n M w=M(rt).pow((md-1)/(i<<1));\n M rw=w.inv();\n rts[i].resize(i);rrts[i].resize(i);\n rts[i][0]=M(1);rrts[i][0]=M(1);\n for(int k=1;k<i;k++){\n rts[i][k]=rts[i][k-1]*w;\n rrts[i][k]=rrts[i][k-1]*rw;\n }\n }\n }\n\n void ntt(vector<M> &as,bool f){\n int n=as.size();\n assert((n&(n-1))==0);\n ensure_base(n);\n\n for(int i=0,j=1;j+1<n;j++){\n for(int k=n>>1;k>(i^=k);k>>=1);\n if(i>j) swap(as[i],as[j]);\n }\n\n for(int i=1;i<n;i<<=1){\n for(int j=0;j<n;j+=i*2){\n for(int k=0;k<i;k++){\n M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]);\n as[i+j+k]=as[j+k]-z;\n as[j+k]+=z;\n }\n }\n }\n\n if(f){\n M tmp=M(n).inv();\n for(int i=0;i<n;i++) as[i]*=tmp;\n }\n }\n\n vector<M> multiply(vector<M> as,vector<M> bs){\n int need=as.size()+bs.size()-1;\n int sz=1;\n while(sz<need) sz<<=1;\n as.resize(sz,M(0));\n bs.resize(sz,M(0));\n\n ntt(as,0);ntt(bs,0);\n for(int i=0;i<sz;i++) as[i]*=bs[i];\n ntt(as,1);\n\n as.resize(need);\n return as;\n }\n\n vector<int> multiply(vector<int> as,vector<int> bs){\n vector<M> am(as.size()),bm(bs.size());\n for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]);\n for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]);\n vector<M> cm=multiply(am,bm);\n vector<int> cs(cm.size());\n for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v;\n return cs;\n }\n};\ntemplate<int X> constexpr int NTT<X>::md;\ntemplate<int X> constexpr int NTT<X>::rt;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n\n//BEGIN CUT HERE\ntemplate<typename M_>\nclass Enumeration{\n using M = M_;\nprotected:\n static vector<M> fact,finv,invs;\npublic:\n static void init(int n){\n n=min<decltype(M::mod)>(n,M::mod-1);\n\n int m=fact.size();\n if(n<m) return;\n\n fact.resize(n+1,1);\n finv.resize(n+1,1);\n invs.resize(n+1,1);\n\n if(m==0) m=1;\n for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i);\n finv[n]=M(1)/fact[n];\n for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i);\n for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1];\n }\n\n static M Fact(int n){\n init(n);\n return fact[n];\n }\n static M Finv(int n){\n init(n);\n return finv[n];\n }\n static M Invs(int n){\n init(n);\n return invs[n];\n }\n\n static M C(int n,int k){\n if(n<k||k<0) return M(0);\n init(n);\n return fact[n]*finv[n-k]*finv[k];\n }\n\n static M P(int n,int k){\n if(n<k||k<0) return M(0);\n init(n);\n return fact[n]*finv[n-k];\n }\n\n // put n identical balls into k distinct boxes\n static M H(int n,int k){\n if(n<0||k<0) return M(0);\n if(!n&&!k) return M(1);\n init(n+k);\n return C(n+k-1,n);\n }\n};\ntemplate<typename M>\nvector<M> Enumeration<M>::fact=vector<M>();\ntemplate<typename M>\nvector<M> Enumeration<M>::finv=vector<M>();\ntemplate<typename M>\nvector<M> Enumeration<M>::invs=vector<M>();\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"../combinatorics/enumeration.cpp\"\n#undef call_from_test\n\n#endif\n// http://beet-aizu.hatenablog.com/entry/2019/09/27/224701\n//BEGIN CUT HERE\ntemplate<typename M_>\nstruct FormalPowerSeries : Enumeration<M_> {\n using M = M_;\n using super = Enumeration<M>;\n using super::fact;\n using super::finv;\n using super::invs;\n\n using Poly = vector<M>;\n using Conv = function<Poly(Poly, Poly)>;\n Conv conv;\n FormalPowerSeries(Conv conv):conv(conv){}\n\n Poly pre(const Poly &as,int deg){\n return Poly(as.begin(),as.begin()+min((int)as.size(),deg));\n }\n\n Poly add(Poly as,Poly bs){\n int sz=max(as.size(),bs.size());\n Poly cs(sz,M(0));\n for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];\n for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i];\n return cs;\n }\n\n Poly sub(Poly as,Poly bs){\n int sz=max(as.size(),bs.size());\n Poly cs(sz,M(0));\n for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];\n for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i];\n return cs;\n }\n\n Poly mul(Poly as,Poly bs){\n return conv(as,bs);\n }\n\n Poly mul(Poly as,M k){\n for(auto &a:as) a*=k;\n return as;\n }\n\n // F(0) must not be 0\n Poly inv(Poly as,int deg);\n\n // not zero\n Poly div(Poly as,Poly bs);\n\n // not zero\n Poly mod(Poly as,Poly bs);\n\n // F(0) must be 1\n Poly sqrt(Poly as,int deg);\n\n Poly diff(Poly as);\n Poly integral(Poly as);\n\n // F(0) must be 1\n Poly log(Poly as,int deg);\n\n // F(0) must be 0\n Poly exp(Poly as,int deg);\n\n // not zero\n Poly pow(Poly as,long long k,int deg);\n\n // x <- x + c\n Poly shift(Poly as,M c);\n};\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"../combinatorics/enumeration.cpp\"\n#include \"./base.cpp\"\n#undef call_from_test\n\n#endif\n//BEGIN CUT HERE\ntemplate<typename M>\nvector<M> FormalPowerSeries<M>::inv(Poly as,int deg){\n assert(as[0]!=M(0));\n Poly rs({M(1)/as[0]});\n for(int i=1;i<deg;i<<=1)\n rs=pre(sub(add(rs,rs),mul(mul(rs,rs),pre(as,i<<1))),i<<1);\n return rs;\n}\n\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"../combinatorics/enumeration.cpp\"\n#include \"./base.cpp\"\n#undef call_from_test\n\n#endif\n//BEGIN CUT HERE\ntemplate<typename M>\nvector<M> FormalPowerSeries<M>::integral(Poly as){\n super::init(as.size()+1);\n int n=as.size();\n Poly rs(n+1);\n rs[0]=M(0);\n for(int i=0;i<n;i++) rs[i+1]=as[i]*invs[i+1];\n return rs;\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"../combinatorics/enumeration.cpp\"\n#include \"./base.cpp\"\n#undef call_from_test\n\n#endif\n//BEGIN CUT HERE\ntemplate<typename M>\nvector<M> FormalPowerSeries<M>::diff(Poly as){\n int n=as.size();\n Poly rs(n-1);\n for(int i=1;i<n;i++) rs[i-1]=as[i]*M(i);\n return rs;\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"../combinatorics/enumeration.cpp\"\n#include \"./base.cpp\"\n#include \"./inv.cpp\"\n#undef call_from_test\n\n#endif\n//BEGIN CUT HERE\ntemplate<typename M>\nvector<M> FormalPowerSeries<M>::log(Poly as,int deg){\n return pre(integral(mul(diff(as),inv(as,deg))),deg);\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"../combinatorics/enumeration.cpp\"\n#include \"./base.cpp\"\n#include \"./inv.cpp\"\n#include \"./log.cpp\"\n#undef call_from_test\n\n#endif\n//BEGIN CUT HERE\ntemplate<typename M>\nvector<M> FormalPowerSeries<M>::exp(Poly as,int deg){\n Poly fs({M(1)});\n as[0]+=M(1);\n for(int i=1;i<deg;i<<=1)\n fs=pre(mul(fs,sub(pre(as,i<<1),log(fs,i<<1))),i<<1);\n return fs;\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"../combinatorics/enumeration.cpp\"\n#include \"./base.cpp\"\n#include \"./inv.cpp\"\n#include \"./log.cpp\"\n#include \"./exp.cpp\"\n#undef call_from_test\n\n#endif\n//BEGIN CUT HERE\ntemplate<typename M>\nvector<M> FormalPowerSeries<M>::pow(Poly as,long long k,int deg){\n if(as==Poly(as.size(),M(0))) return Poly(deg,M(0));\n\n int cnt=0;\n while(as[cnt]==M(0)) cnt++;\n if(cnt*k>=deg) return Poly(deg,M(0));\n as.erase(as.begin(),as.begin()+cnt);\n deg-=cnt*k;\n\n M c=as[0];\n Poly zs(cnt*k,M(0));\n Poly rs=mul(exp(mul(log(mul(as,c.inv()),deg),M(k)),deg),c.pow(k));\n zs.insert(zs.end(),rs.begin(),rs.end());\n return pre(zs,deg+cnt*k);\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nstruct Centroid{\n vector<int> sz,dead;\n vector< vector<int> > G;\n Centroid(){}\n Centroid(int n):sz(n,1),dead(n,0),G(n){}\n\n void add_edge(int u,int v){\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n int dfs(int v,int p){\n sz[v]=1;\n for(int u:G[v])\n if(u!=p and !dead[u]) sz[v]+=dfs(u,v);\n return sz[v];\n }\n\n void find(int v,int p,int tmp,vector<int> &cs) {\n int ok=1;\n for (int u:G[v]){\n if(u==p or dead[u]) continue;\n find(u,v,tmp,cs);\n ok&=(sz[u]<=tmp/2);\n }\n ok&=(tmp-sz[v]<=tmp/2);\n if(ok) cs.emplace_back(v);\n }\n\n vector<int> build(int r) {\n int tmp=dfs(r,-1);\n vector<int> cs;\n find(r,-1,tmp,cs);\n return cs;\n }\n\n const vector<int>& operator[](int k)const{return G[k];}\n void disable(int v){dead[v]=1;}\n void enable(int v){dead[v]=0;}\n int alive(int v){return !dead[v];}\n};\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename F>\nstruct FixPoint : F{\n FixPoint(F&& f):F(forward<F>(f)){}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const{\n return F::operator()(*this,forward<Args>(args)...);\n }\n};\ntemplate<typename F>\ninline decltype(auto) MFP(F&& f){\n return FixPoint<F>{forward<F>(f)};\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n NTT<2> ntt;\n using M = decltype(ntt)::M;\n auto conv=[&](auto as,auto bs){return ntt.multiply(as,bs);};\n FormalPowerSeries<M> FPS(conv);\n using Poly = decltype(FPS)::Poly;\n\n int n,m;\n cin>>n>>m;\n\n Poly as(n);\n for(int i=0;i<n;i++) cin>>as[i].v;\n\n Centroid G(n+1);\n G.add_edge(n,0);\n for(int i=1;i<n;i++){\n int u,v;\n cin>>u>>v;\n G.add_edge(u,v);\n }\n\n vector<int> par(n+1,-1);\n {\n queue<int> que;\n que.emplace(n);\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G.G[v]){\n if(u==par[v]) continue;\n par[u]=v;\n que.emplace(u);\n }\n }\n }\n\n vector<int> dead(n+1,0);\n auto disable=[&](int k){\n dead[k]=1;\n G.disable(k);\n };\n disable(n);\n\n const int deg = 1<<18;\n Poly ps(n,M(1));\n ps=FPS.pow(ps,m,deg);\n\n queue<int> que;\n que.emplace(G.build(0)[0]);\n\n Poly ans(n);\n while(!que.empty()){\n int r=que.front();que.pop();\n\n Poly qs;\n MFP([&](auto dfs,int v,int p,int h)->void{\n while(!(h<(int)qs.size())) qs.emplace_back(0);\n qs[h]+=as[v];\n for(int u:G.G[v]){\n if(u==p) continue;\n if(dead[u]) continue;\n dfs(u,v,h+1);\n }\n })(r,par[r],0);\n reverse(qs.begin(),qs.end());\n\n vector<int> bs;\n int p=r;\n while(~p&&!dead[p]){\n bs.emplace_back(p);\n p=par[p];\n }\n\n int len=qs.size()-1;\n qs.resize(len+bs.size(),M(0));\n auto rs=FPS.mul(FPS.pre(ps,qs.size()),qs);\n\n for(int i=0;i<(int)bs.size();i++) ans[bs[i]]+=rs[len+i];\n\n disable(r);\n for(int u:G.G[r])\n if(!dead[u]) que.emplace(G.build(u)[0]);\n }\n\n for(int i=0;i<n;i++){\n if(i) cout<<\" \";\n cout<<ans[i];\n }\n cout<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1180, "memory_kb": 71744, "score_of_the_acc": -1.8797, "final_rank": 13 }, { "submission_id": "aoj_3084_4879055", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, m, n) for(int(i) = (int)(m); i < (int)(n); ++i)\n#define rep2(i, m, n) for(int(i) = (int)(n)-1; i >= (int)(m); --i)\n#define REP(i, n) rep(i, 0, n)\n#define REP2(i, n) rep2(i, 0, n)\n#define all(hoge) (hoge).begin(), (hoge).end()\n#define en '\\n'\nusing ll = long long;\nusing ull = unsigned long long;\ntemplate <class T>\nusing vec = vector<T>;\ntemplate <class T>\nusing vvec = vector<vec<T>>;\ntypedef pair<ll, ll> P;\nusing tp = tuple<ll, ll, ll>;\nconstexpr long long INF = 1LL << 60;\nconstexpr int INF_INT = 1 << 25;\n//constexpr long long MOD = (ll)1e9 + 7;\nconstexpr long long MOD = 998244353LL;\nusing ld = long double;\nstatic const ld pi = 3.141592653589793L;\ntypedef vector<ll> Array;\ntypedef vector<Array> Matrix;\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\n//グラフ関連\nstruct Edge {\n ll to, cap, rev;\n Edge(ll _to, ll _cap, ll _rev) {\n to = _to;\n cap = _cap;\n rev = _rev;\n }\n};\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\n\nvoid add_edge(Graph &G, ll from, ll to, ll cap, bool revFlag, ll revCap) {\n G[from].push_back(Edge(to, cap, (ll)G[to].size()));\n if(revFlag)\n G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1));\n}\n\ntemplate <int mod>\nstruct NumberTheoreticTransform {\n\n vector<int> rev, rts;\n int base, max_base, root;\n\n NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} {\n assert(mod >= 3 && mod % 2 == 1);\n auto tmp = mod - 1;\n max_base = 0;\n while(tmp % 2 == 0)\n tmp >>= 1, max_base++;\n root = 2;\n while(mod_pow(root, (mod - 1) >> 1) == 1)\n ++root;\n assert(mod_pow(root, mod - 1) == 1);\n root = mod_pow(root, (mod - 1) >> max_base);\n }\n\n inline int mod_pow(int x, int n) {\n int ret = 1;\n while(n > 0) {\n if(n & 1)\n ret = mul(ret, x);\n x = mul(x, x);\n n >>= 1;\n }\n return ret;\n }\n\n inline int inverse(int x) {\n return mod_pow(x, mod - 2);\n }\n\n inline unsigned add(unsigned x, unsigned y) {\n x += y;\n if(x >= mod)\n x -= mod;\n return x;\n }\n\n inline unsigned mul(unsigned a, unsigned b) {\n return 1ull * a * b % (unsigned long long)mod;\n }\n\n void ensure_base(int nbase) {\n if(nbase <= base)\n return;\n rev.resize(1 << nbase);\n rts.resize(1 << nbase);\n for(int i = 0; i < (1 << nbase); i++) {\n rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));\n }\n //cout << max_base << endl;\n assert(nbase <= max_base);\n while(base < nbase) {\n int z = mod_pow(root, 1 << (max_base - 1 - base));\n for(int i = 1 << (base - 1); i < (1 << base); i++) {\n rts[i << 1] = rts[i];\n rts[(i << 1) + 1] = mul(rts[i], z);\n }\n ++base;\n }\n }\n\n void ntt(vector<int> &a) {\n const int n = (int)a.size();\n assert((n & (n - 1)) == 0);\n int zeros = __builtin_ctz(n);\n ensure_base(zeros);\n int shift = base - zeros;\n for(int i = 0; i < n; i++) {\n if(i < (rev[i] >> shift)) {\n swap(a[i], a[rev[i] >> shift]);\n }\n }\n for(int k = 1; k < n; k <<= 1) {\n for(int i = 0; i < n; i += 2 * k) {\n for(int j = 0; j < k; j++) {\n int z = mul(a[i + j + k], rts[j + k]);\n a[i + j + k] = add(a[i + j], mod - z);\n a[i + j] = add(a[i + j], z);\n }\n }\n }\n }\n\n vector<int> multiply(vector<int> a, vector<int> b) {\n int need = a.size() + b.size() - 1;\n int nbase = 1;\n while((1 << nbase) < need)\n nbase++;\n ensure_base(nbase);\n int sz = 1 << nbase;\n a.resize(sz, 0);\n b.resize(sz, 0);\n ntt(a);\n ntt(b);\n int inv_sz = inverse(sz);\n for(int i = 0; i < sz; i++) {\n a[i] = mul(a[i], mul(b[i], inv_sz));\n }\n reverse(a.begin() + 1, a.end());\n ntt(a);\n a.resize(need);\n return a;\n }\n};\n\ntemplate <int mod>\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod)\n x -= mod;\n return *this;\n }\n\n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod)\n x -= mod;\n return *this;\n }\n\n ModInt &operator*=(const ModInt &p) {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n\n bool operator==(const ModInt &p) const { return x == p.x; }\n\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1)\n ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\n\nusing mint = ModInt<MOD>;\n\n// 二項係数ライブラリ\ntemplate <class T>\nstruct Combination {\n vector<T> fact_, inv_, finv_;\n constexpr Combination() {}\n constexpr Combination(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {\n init(n + 1);\n }\n constexpr void init(int n) noexcept {\n fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);\n int MOD = fact_[0].get_mod();\n for(int i = 2; i < n; i++) {\n fact_[i] = fact_[i - 1] * i;\n inv_[i] = -inv_[MOD % i] * (MOD / i);\n finv_[i] = finv_[i - 1] * inv_[i];\n }\n }\n constexpr T nPr(int n, int k) const noexcept {\n if(n < k || n < 0 || k < 0)\n return 0;\n return fact_[n] * finv_[n - k];\n }\n constexpr T nCr(int n, int k) const noexcept {\n if(n < k || n < 0 || k < 0)\n return 0;\n return fact_[n] * finv_[k] * finv_[n - k];\n }\n constexpr T nHr(int n, int k) const noexcept {\n if(n < k || n < 0 || k < 0)\n return 0;\n return nCr(n + k - 1, k);\n }\n constexpr T fact(int n) const noexcept {\n if(n < 0)\n return 0;\n return fact_[n]; //n!\n }\n constexpr T inv(int n) const noexcept {\n if(n < 0)\n return 0;\n return inv_[n]; //1/n\n }\n constexpr T finv(int n) const noexcept {\n if(n < 0)\n return 0;\n return finv_[n]; //1/n!\n }\n};\n\nvoid solve() {\n ll n, m;\n cin >> n >> m;\n vec<int> a(n);\n REP(i, n) {\n cin >> a[i];\n }\n\n Graph g(n);\n REP(i, n - 1) {\n int u, v;\n cin >> u >> v;\n add_edge(g, u, v, 1, true, 1);\n }\n\n vec<int> cc(n + 1);\n\n mint con = 1;\n REP(i, n + 1) {\n cc[i] = con.x;\n con *= m + i;\n con /= (i + 1);\n }\n\n vec<int> ans(n, 0);\n NumberTheoreticTransform<MOD> ntt;\n\n auto dfs = [&](auto &&self, int v, int p) -> vvec<int> {\n if((v != 0 and g[v].size() <= 2) or g[v].size() <= 1) {\n //分岐がないとき\n vvec<int> ret(2);\n\n for(auto e : g[v]) {\n if(e.to == p)\n continue;\n ret = self(self, e.to, v);\n }\n\n ret[0].push_back(v);\n ret[1].push_back(a[v]);\n return ret;\n }\n\n vvec<int> ret(2);\n ret[0].push_back(v);\n\n for(auto e : g[v]) {\n if(e.to == p)\n continue;\n auto ret2 = self(self, e.to, v);\n vec<int> tmp = ntt.multiply(cc, ret2[1]); //ここまでを計算\n ll k = ret2[1].size() - ret2[0].size();\n REP2(i, ret2[0].size()) {\n ans[ret2[0][i]] = tmp[i + k];\n }\n\n if(ret[1].size() < ret2[1].size())\n swap(ret[1], ret2[1]);\n REP(i, ret2[1].size()) {\n ret[1][ret[1].size() - 1 - i] += ret2[1][ret2[1].size() - 1 - i]; //重みを加算\n }\n }\n ret[1].push_back(a[v]);\n\n return ret;\n };\n auto ret2 = dfs(dfs, 0, -1);\n vec<int> tmp = ntt.multiply(cc, ret2[1]); //ここまでを計算\n ll k = ret2[1].size() - ret2[0].size();\n REP2(i, ret2[0].size()) {\n ans[ret2[0][i]] = tmp[i + k];\n }\n\n REP(i, n) {\n cout << ans[i];\n if(i == n - 1)\n cout << en;\n else\n cout << \" \";\n }\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout.tie(0);\n /*\n ll t;\n cin >> t;\n while(t--)*/\n solve();\n\n return 0;\n}", "accuracy": 0.10714285714285714, "time_ms": 20, "memory_kb": 3472, "score_of_the_acc": -0.0075, "final_rank": 19 }, { "submission_id": "aoj_3084_4878809", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3084\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n\n//BEGIN CUT HERE\ntemplate<typename T,T MOD = 1000000007>\nstruct Mint{\n static constexpr T mod = MOD;\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n Mint pow(long long k){\n Mint res(1),tmp(v);\n while(k){\n if(k&1) res*=tmp;\n tmp*=tmp;\n k>>=1;\n }\n return res;\n }\n\n static Mint add_identity(){return Mint(0);}\n static Mint mul_identity(){return Mint(1);}\n\n Mint inv(){return pow(MOD-2);}\n\n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n Mint& operator/=(Mint a){return (*this)*=a.inv();}\n\n Mint operator+(Mint a) const{return Mint(v)+=a;}\n Mint operator-(Mint a) const{return Mint(v)-=a;}\n Mint operator*(Mint a) const{return Mint(v)*=a;}\n Mint operator/(Mint a) const{return Mint(v)/=a;}\n\n Mint operator-() const{return v?Mint(MOD-v):Mint(v);}\n\n bool operator==(const Mint a)const{return v==a.v;}\n bool operator!=(const Mint a)const{return v!=a.v;}\n bool operator <(const Mint a)const{return v <a.v;}\n\n static Mint comb(long long n,int k){\n Mint num(1),dom(1);\n for(int i=0;i<k;i++){\n num*=Mint(n-i);\n dom*=Mint(i+1);\n }\n return num/dom;\n }\n};\ntemplate<typename T,T MOD> constexpr T Mint<T, MOD>::mod;\ntemplate<typename T,T MOD>\nostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}\n//END CUT HERE\n#ifndef call_from_test\n\n//INSERT ABOVE HERE\nsigned ABC127_E(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int h,w,k;\n cin>>h>>w>>k;\n using M = Mint<int>;\n\n M ans{0};\n for(int d=1;d<h;d++)\n ans+=M(d)*M(h-d)*M(w)*M(w);\n\n for(int d=1;d<w;d++)\n ans+=M(d)*M(w-d)*M(h)*M(h);\n\n ans*=M::comb(h*w-2,k-2);\n cout<<ans<<endl;\n return 0;\n}\n/*\n verified on 2019/06/12\n https://atcoder.jp/contests/abc127/tasks/abc127_e\n*/\n\nsigned main(){\n //ABC127_E();\n return 0;\n}\n#endif\n\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"../mod/mint.cpp\"\n#undef call_from_test\n\n#endif\n//BEGIN CUT HERE\nconstexpr int bmds(int x){\n const int v[] = {1012924417, 924844033, 998244353,\n 897581057, 645922817};\n return v[x];\n}\nconstexpr int brts(int x){\n const int v[] = {5, 5, 3, 3, 3};\n return v[x];\n}\n\ntemplate<int X>\nstruct NTT{\n static constexpr int md = bmds(X);\n static constexpr int rt = brts(X);\n using M = Mint<int, md>;\n vector< vector<M> > rts,rrts;\n\n void ensure_base(int n){\n if((int)rts.size()>=n) return;\n rts.resize(n);rrts.resize(n);\n for(int i=1;i<n;i<<=1){\n if(!rts[i].empty()) continue;\n M w=M(rt).pow((md-1)/(i<<1));\n M rw=w.inv();\n rts[i].resize(i);rrts[i].resize(i);\n rts[i][0]=M(1);rrts[i][0]=M(1);\n for(int k=1;k<i;k++){\n rts[i][k]=rts[i][k-1]*w;\n rrts[i][k]=rrts[i][k-1]*rw;\n }\n }\n }\n\n void ntt(vector<M> &as,bool f){\n int n=as.size();\n assert((n&(n-1))==0);\n ensure_base(n);\n\n for(int i=0,j=1;j+1<n;j++){\n for(int k=n>>1;k>(i^=k);k>>=1);\n if(i>j) swap(as[i],as[j]);\n }\n\n for(int i=1;i<n;i<<=1){\n for(int j=0;j<n;j+=i*2){\n for(int k=0;k<i;k++){\n M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]);\n as[i+j+k]=as[j+k]-z;\n as[j+k]+=z;\n }\n }\n }\n\n if(f){\n M tmp=M(n).inv();\n for(int i=0;i<n;i++) as[i]*=tmp;\n }\n }\n\n vector<M> multiply(vector<M> as,vector<M> bs){\n int need=as.size()+bs.size()-1;\n int sz=1;\n while(sz<need) sz<<=1;\n as.resize(sz,M(0));\n bs.resize(sz,M(0));\n\n ntt(as,0);ntt(bs,0);\n for(int i=0;i<sz;i++) as[i]*=bs[i];\n ntt(as,1);\n\n as.resize(need);\n return as;\n }\n\n vector<int> multiply(vector<int> as,vector<int> bs){\n vector<M> am(as.size()),bm(bs.size());\n for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]);\n for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]);\n vector<M> cm=multiply(am,bm);\n vector<int> cs(cm.size());\n for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v;\n return cs;\n }\n};\ntemplate<int X> constexpr int NTT<X>::md;\ntemplate<int X> constexpr int NTT<X>::rt;\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n\n//BEGIN CUT HERE\ntemplate<typename M_>\nclass Enumeration{\n using M = M_;\nprotected:\n static vector<M> fact,finv,invs;\npublic:\n static void init(int n){\n n=min<decltype(M::mod)>(n,M::mod-1);\n\n int m=fact.size();\n if(n<m) return;\n\n fact.resize(n+1,1);\n finv.resize(n+1,1);\n invs.resize(n+1,1);\n\n if(m==0) m=1;\n for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i);\n finv[n]=M(1)/fact[n];\n for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i);\n for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1];\n }\n\n static M Fact(int n){\n init(n);\n return fact[n];\n }\n static M Finv(int n){\n init(n);\n return finv[n];\n }\n static M Invs(int n){\n init(n);\n return invs[n];\n }\n\n static M C(int n,int k){\n if(n<k||k<0) return M(0);\n init(n);\n return fact[n]*finv[n-k]*finv[k];\n }\n\n static M P(int n,int k){\n if(n<k||k<0) return M(0);\n init(n);\n return fact[n]*finv[n-k];\n }\n\n // put n identical balls into k distinct boxes\n static M H(int n,int k){\n if(n<0||k<0) return M(0);\n if(!n&&!k) return M(1);\n init(n+k);\n return C(n+k-1,n);\n }\n};\ntemplate<typename M>\nvector<M> Enumeration<M>::fact=vector<M>();\ntemplate<typename M>\nvector<M> Enumeration<M>::finv=vector<M>();\ntemplate<typename M>\nvector<M> Enumeration<M>::invs=vector<M>();\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#include \"../combinatorics/enumeration.cpp\"\n#undef call_from_test\n\n#endif\n\n/*\n * @see http://beet-aizu.hatenablog.com/entry/2019/09/27/224701\n */\n//BEGIN CUT HERE\ntemplate<typename M_>\nstruct FormalPowerSeries : Enumeration<M_> {\n using M = M_;\n using super = Enumeration<M>;\n using super::fact;\n using super::finv;\n using super::invs;\n\n using Poly = vector<M>;\n using Conv = function<Poly(Poly, Poly)>;\n Conv conv;\n FormalPowerSeries(Conv conv):conv(conv){}\n\n Poly pre(const Poly &as,int deg){\n return Poly(as.begin(),as.begin()+min((int)as.size(),deg));\n }\n\n Poly add(Poly as,Poly bs){\n int sz=max(as.size(),bs.size());\n Poly cs(sz,M(0));\n for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];\n for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i];\n return cs;\n }\n\n Poly sub(Poly as,Poly bs){\n int sz=max(as.size(),bs.size());\n Poly cs(sz,M(0));\n for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];\n for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i];\n return cs;\n }\n\n Poly mul(Poly as,Poly bs){\n return conv(as,bs);\n }\n\n Poly mul(Poly as,M k){\n for(auto &a:as) a*=k;\n return as;\n }\n\n // F(0) must not be 0\n Poly inv(Poly as,int deg){\n assert(as[0]!=M(0));\n Poly rs({M(1)/as[0]});\n for(int i=1;i<deg;i<<=1)\n rs=pre(sub(add(rs,rs),mul(mul(rs,rs),pre(as,i<<1))),i<<1);\n return rs;\n }\n\n // not zero\n Poly div(Poly as,Poly bs){\n while(as.back()==M(0)) as.pop_back();\n while(bs.back()==M(0)) bs.pop_back();\n if(bs.size()>as.size()) return Poly();\n reverse(as.begin(),as.end());\n reverse(bs.begin(),bs.end());\n int need=as.size()-bs.size()+1;\n Poly ds=pre(mul(as,inv(bs,need)),need);\n reverse(ds.begin(),ds.end());\n return ds;\n }\n\n Poly mod(Poly as,Poly bs){\n if(as==Poly(as.size(),0)) return Poly({0});\n as=sub(as,mul(div(as,bs),bs));\n if(as==Poly(as.size(),0)) return Poly({0});\n while(as.back()==M(0)) as.pop_back();\n return as;\n }\n\n // F(0) must be 1\n Poly sqrt(Poly as,int deg){\n assert(as[0]==M(1));\n M inv2=M(1)/M(2);\n Poly ss({M(1)});\n for(int i=1;i<deg;i<<=1){\n ss=pre(add(ss,mul(pre(as,i<<1),inv(ss,i<<1))),i<<1);\n for(M &x:ss) x*=inv2;\n }\n return ss;\n }\n\n Poly diff(Poly as){\n int n=as.size();\n Poly rs(n-1);\n for(int i=1;i<n;i++) rs[i-1]=as[i]*M(i);\n return rs;\n }\n\n Poly integral(Poly as){\n super::init(as.size()+1);\n int n=as.size();\n Poly rs(n+1);\n rs[0]=M(0);\n for(int i=0;i<n;i++) rs[i+1]=as[i]*invs[i+1];\n return rs;\n }\n\n // F(0) must be 1\n Poly log(Poly as,int deg){\n return pre(integral(mul(diff(as),inv(as,deg))),deg);\n }\n\n // F(0) must be 0\n Poly exp(Poly as,int deg){\n Poly fs({M(1)});\n as[0]+=M(1);\n for(int i=1;i<deg;i<<=1)\n fs=pre(mul(fs,sub(pre(as,i<<1),log(fs,i<<1))),i<<1);\n return fs;\n }\n\n // not zero\n Poly pow(Poly as,long long k,int deg){\n if(as==Poly(as.size(),M(0))) return Poly(deg,M(0));\n\n int cnt=0;\n while(as[cnt]==M(0)) cnt++;\n if(cnt*k>=deg) return Poly(deg,M(0));\n as.erase(as.begin(),as.begin()+cnt);\n deg-=cnt*k;\n\n M c=as[0];\n Poly zs(cnt*k,M(0));\n Poly rs=mul(exp(mul(log(mul(as,c.inv()),deg),M(k)),deg),c.pow(k));\n zs.insert(zs.end(),rs.begin(),rs.end());\n return pre(zs,deg+cnt*k);\n }\n\n // x -> x + c\n Poly shift(Poly as,M c){\n super::init(as.size()+1);\n int n=as.size();\n for(int i=0;i<n;i++) as[i]*=fact[i];\n reverse(as.begin(),as.end());\n Poly bs(n,M(1));\n for(int i=1;i<n;i++)\n bs[i]=bs[i-1]*c*invs[i];\n as=pre(mul(as,bs),n);\n reverse(as.begin(),as.end());\n for(int i=0;i<n;i++) as[i]*=finv[i];\n return as;\n }\n};\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nstruct Centroid{\n vector<int> sz,dead;\n vector< vector<int> > G;\n Centroid(){}\n Centroid(int n):sz(n,1),dead(n,0),G(n){}\n\n void add_edge(int u,int v){\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n int dfs(int v,int p){\n sz[v]=1;\n for(int u:G[v])\n if(u!=p&&!dead[u]) sz[v]+=dfs(u,v);\n return sz[v];\n }\n\n void find(int v,int p,int tmp,vector<int> &cs) {\n int ok=1;\n for (int u:G[v]){\n if(u==p||dead[u]) continue;\n find(u,v,tmp,cs);\n ok&=(sz[u]<=tmp/2);\n }\n ok&=(tmp-sz[v]<=tmp/2);\n if(ok) cs.emplace_back(v);\n }\n\n vector<int> build(int r) {\n int tmp=dfs(r,-1);\n vector<int> cs;\n find(r,-1,tmp,cs);\n return cs;\n }\n\n const vector<int>& operator[](int k)const{return G[k];}\n void disable(int v){dead[v]=1;}\n void enable(int v){dead[v]=0;}\n int alive(int v){return !dead[v];}\n};\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename F>\nstruct FixPoint : F{\n FixPoint(F&& f):F(forward<F>(f)){}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const{\n return F::operator()(*this,forward<Args>(args)...);\n }\n};\ntemplate<typename F>\ninline decltype(auto) MFP(F&& f){\n return FixPoint<F>{forward<F>(f)};\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n NTT<2> ntt;\n using M = decltype(ntt)::M;\n auto conv=[&](auto as,auto bs){return ntt.multiply(as,bs);};\n FormalPowerSeries<M> FPS(conv);\n using Poly = decltype(FPS)::Poly;\n\n int n,m;\n cin>>n>>m;\n\n Poly as(n);\n for(int i=0;i<n;i++) cin>>as[i].v;\n\n Centroid G(n+1);\n G.add_edge(n,0);\n for(int i=1;i<n;i++){\n int u,v;\n cin>>u>>v;\n G.add_edge(u,v);\n }\n\n vector<int> par(n+1,-1);\n {\n queue<int> que;\n que.emplace(n);\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G.G[v]){\n if(u==par[v]) continue;\n par[u]=v;\n que.emplace(u);\n }\n }\n }\n\n vector<int> dead(n+1,0);\n auto disable=[&](int k){\n dead[k]=1;\n G.disable(k);\n };\n disable(n);\n\n const int deg = 1<<18;\n Poly ps(n,M(1));\n ps=FPS.exp(FPS.mul(FPS.log(ps,deg),M(m)),deg);\n\n queue<int> que;\n que.emplace(G.build(0)[0]);\n\n Poly ans(n);\n while(!que.empty()){\n int r=que.front();que.pop();\n\n Poly qs;\n MFP([&](auto dfs,int v,int p,int h)->void{\n while(!(h<(int)qs.size())) qs.emplace_back(0);\n qs[h]+=as[v];\n for(int u:G.G[v]){\n if(u==p) continue;\n if(dead[u]) continue;\n dfs(u,v,h+1);\n }\n })(r,par[r],0);\n reverse(qs.begin(),qs.end());\n\n vector<int> bs;\n int p=r;\n while(~p&&!dead[p]){\n bs.emplace_back(p);\n p=par[p];\n }\n\n int len=qs.size()-1;\n qs.resize(len+bs.size(),M(0));\n auto rs=FPS.mul(FPS.pre(ps,qs.size()),qs);\n\n for(int i=0;i<(int)bs.size();i++) ans[bs[i]]+=rs[len+i];\n\n disable(r);\n for(int u:G.G[r])\n if(!dead[u]) que.emplace(G.build(u)[0]);\n }\n\n for(int i=0;i<n;i++){\n if(i) cout<<\" \";\n cout<<ans[i];\n }\n cout<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1160, "memory_kb": 71584, "score_of_the_acc": -1.8623, "final_rank": 12 }, { "submission_id": "aoj_3084_4855045", "code_snippet": "#pragma region Macros\n#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w) \\\n vector<vector<type>> name(h, vector<type>(w)); \\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\nstring YES[2] = {\"NO\", \"YES\"};\nstring Yes[2] = {\"No\", \"Yes\"};\nstring yes[2] = {\"no\", \"yes\"};\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define DBL(...) \\\n double __VA_ARGS__; \\\n IN(__VA_ARGS)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\n\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n\n#define i128 __int128_t\n#define ull unsigned long long int\n#define TEST \\\n INT(testcases); \\\n while(testcases--)\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n for(auto &e : v) cout << e << \" \";\n cout << endl;\n return os;\n}\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {\n cout << \"(\" << p.fi << \", \" << p.se << \")\";\n return os;\n}\ntemplate <class S, class T> string to_string(pair<S, T> p) { return \"(\" + to_string(p.first) + \",\" + to_string(p.second) + \")\"; }\ntemplate <class A> string to_string(A v) {\n if(v.empty()) return \"{}\";\n string ret = \"{\";\n for(auto &x : v) ret += to_string(x) + \",\";\n ret.back() = '}';\n return ret;\n}\n\nvoid dump() { cerr << endl; }\ntemplate <class Head, class... Tail> void dump(Head head, Tail... tail) {\n cerr << to_string(head) << \" \";\n dump(tail...);\n}\n#define endl '\\n'\n#ifdef _LOCAL\n#undef endl\n#define debug(x) \\\n cout << #x << \": \"; \\\n dump(x)\n#else\n#define debug(x)\n#endif\n// mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());\n\n// int rnd(int n) { return uniform_int_distribution<int>(0, n - 1)(rng); }\n// ll rndll(ll n) { return uniform_int_distribution<ll>(0, n - 1)(rng); }\n\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\n#pragma endregion\n\nnamespace modular {\nconstexpr ll MOD = 998244353;\nconst int MAXN = 1100000;\ntemplate <ll Modulus> class modint {\n using u64 = ll;\n\n public:\n u64 a;\n\n constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {}\n constexpr u64 &value() noexcept { return a; }\n constexpr const u64 &value() const noexcept { return a; }\n constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; }\n constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; }\n constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; }\n template <typename T> constexpr modint operator^(T rhs) const noexcept { return modint(*this) ^= rhs; }\n constexpr modint operator-() const noexcept { return modint() - *this; }\n constexpr modint &operator+=(const modint rhs) noexcept {\n a += rhs.a;\n if(a >= Modulus) { a -= Modulus; }\n return *this;\n }\n constexpr modint &operator-=(const modint rhs) noexcept {\n if(a < rhs.a) { a += Modulus; }\n a -= rhs.a;\n return *this;\n }\n constexpr modint &operator*=(const modint rhs) noexcept {\n a = a * rhs.a % Modulus;\n return *this;\n }\n constexpr bool operator==(const modint rhs) const noexcept { return a == rhs.a; }\n template <typename T> constexpr modint &operator^=(T n) noexcept {\n modint<Modulus> res = 1;\n modint<Modulus> x = a;\n while(n) {\n if(n & 1) res *= x;\n x *= x;\n n >>= 1;\n }\n a = res.a;\n return *this;\n }\n};\n#define mint modint<MOD>\n#define vmint vector<mint>\nvmint Inv{0, 1}, Prd{1, 1}, Invprd{1, 1};\nmint inv(int n) {\n if(n > MAXN) return mint(n) ^ (MOD - 2);\n if(Inv.size() > n)\n return Inv[n];\n else {\n for(int i = Inv.size(); i <= n; ++i) Inv.emplace_back(Inv[MOD % i] * (-MOD / i));\n return Inv[n];\n }\n}\nmint inv(mint x) { return inv(x.a); }\nmint prd(int n) {\n if(Prd.size() > n)\n return Prd[n];\n else\n for(int i = Prd.size(); i <= n; ++i) Prd.emplace_back(Prd[i - 1] * i);\n return Prd[n];\n}\nmint invprd(int n) {\n if(Invprd.size() > n)\n return Invprd[n];\n else\n for(int i = Invprd.size(); i <= n; ++i) Invprd.emplace_back(Invprd[i - 1] * inv(i));\n return Invprd[n];\n}\nmint modpow(ll a, ll n) {\n mint x = a;\n return x ^= n;\n}\nmint operator/(mint l, mint r) { return l * inv(r); }\nmint &operator/=(mint &l, mint r) { return l = l / r; }\nmint C(int a, int b) {\n if(a < 0 || b < 0) return 0;\n if(a < b) return 0;\n return prd(a) * invprd(b) * invprd(a - b);\n}\nmint P(int a, int b) {\n if(a < 0 || b < 0) return 0;\n if(a < b) return 0;\n return prd(a) * invprd(a - b);\n}\nostream &operator<<(ostream &os, mint a) {\n os << a.a;\n return os;\n}\nostream &operator<<(ostream &os, vmint a) {\n for(auto &e : a) os << e << \" \";\n return os;\n}\nmint operator*(ll x, mint y) { return y * x; }\nistream &operator>>(istream &is, mint &a) {\n ll x;\n is >> x;\n a = x;\n return is;\n}\nmint proot = 3;\n\nvoid FMT(vmint &f, const bool is_inv = false) {\n const int n = f.size();\n const mint root = is_inv ? inv(proot) : proot;\n vmint g(n);\n for(int b = n >> 1; b > 0; b >>= 1) {\n mint a = root ^ ((MOD - 1) / (n / b)), p = 1;\n for(int i = 0; i < n; i += b << 1) {\n rep(j, b) {\n f[i + j + b] *= p;\n g[(i >> 1) + j] = f[i + j] + f[i + b + j];\n g[(n >> 1) + (i >> 1) + j] = f[i + j] - f[i + b + j];\n }\n p *= a;\n }\n swap(f, g);\n }\n if(is_inv) rep(i, n) f[i] *= inv(n);\n}\n\nvmint mul(vmint x, const vmint &y) {\n int n = x.size() + y.size() - 1;\n int s = 1;\n while(s < n) s <<= 1;\n x.resize(s);\n FMT(x);\n vmint z(s);\n rep(i, y.size()) z[i] = y[i];\n FMT(z);\n rep(i, s) x[i] *= z[i];\n FMT(x, true);\n x.resize(n);\n return x;\n}\n\nusing Poly = vmint;\nPoly operator-(Poly f) {\n for(auto &&e : f) e = -e;\n return f;\n}\nPoly &operator+=(Poly &l, const Poly &r) {\n l.resize(max(l.size(), r.size()));\n rep(i, r.size()) l[i] += r[i];\n return l;\n}\nPoly operator+(Poly l, const Poly &r) { return l += r; }\nPoly &operator-=(Poly &l, const Poly &r) {\n l.resize(max(l.size(), r.size()));\n rep(i, r.size()) l[i] -= r[i];\n return l;\n}\nPoly operator-(Poly l, const Poly &r) { return l -= r; }\nPoly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; }\nPoly operator<<(Poly f, size_t n) { return f <<= n; }\nPoly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; }\nPoly operator>>(Poly f, size_t n) { return f >>= n; }\nPoly operator*(const Poly &l, const Poly &r) { return mul(l, r); }\nPoly &operator*=(Poly &l, const Poly &r) { return l = l * r; }\nPoly inv(const Poly &f) {\n Poly g{1 / f[0]};\n while(g.size() < f.size()) {\n Poly x(f.begin(), f.begin() + min(f.size(), g.size() << 1)), y = g;\n x.resize(g.size() << 1), FMT(x);\n y.resize(g.size() << 1), FMT(y);\n rep(i, x.size()) x[i] *= y[i];\n FMT(x, true);\n x >>= g.size();\n x.resize(g.size() << 1), FMT(x);\n rep(i, x.size()) x[i] *= -y[i];\n FMT(x, true);\n g.insert(g.end(), x.begin(), x.begin() + g.size());\n }\n return Poly{begin(g), begin(g) + f.size()};\n}\nPoly integ(const Poly &f) {\n Poly res(f.size() + 1);\n for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i;\n return res;\n}\nPoly deriv(const Poly &f) {\n if(f.size() == 0) return Poly();\n Poly res(f.size() - 1);\n rep(i, res.size()) res[i] = f[i + 1] * (i + 1);\n return res;\n}\nPoly log(const Poly &f) {\n Poly g = integ(inv(f) * deriv(f));\n return Poly{g.begin(), g.begin() + f.size()};\n}\nPoly exp(const Poly &f) {\n Poly g{1};\n while(g.size() < f.size()) {\n Poly x(f.begin(), f.begin() + min(f.size(), g.size() * 2));\n x[0] += 1;\n g.resize(2 * g.size());\n x -= log(g);\n x *= {g.begin(), g.begin() + g.size() / 2};\n rep2(i, g.size() / 2, min<int>(x.size(), g.size()) - 1) g[i] = x[i];\n }\n return {g.begin(), g.begin() + f.size()};\n}\n\n} // namespace modular\nusing namespace modular;\n\nint main() {\n INT(n, m);\n VEC(int, a, n);\n Graph g(n);\n rep(i, n - 1) {\n INT(u, v);\n g[u].eb(v), g[v].eb(u);\n }\n vi sub(n);\n vmint ans(n);\n vmint binom(n + 1);\n binom[0] = 1;\n rep2(i, 1, n) { binom[i] = binom[i - 1] * ((m - 1) + i) * inv(i); }\n vv(int, v, n);\n vv(mint, dp, n);\n auto dfs = [&](auto &&f, int x, int p) -> void {\n for(auto e : g[x]) {\n if(e != p) {\n f(f, e, x);\n if(si(v[e]) > si(v[x])) swap(v[e], v[x]), swap(dp[e], dp[x]);\n int a = si(v[x]), b = si(v[e]);\n if(!b) continue;\n vmint G(b + 1);\n rep(i, b + 1) G[i] = binom[i];\n auto F = dp[e] * G;\n rep(i, b) ans[v[e][i]] += F[i];\n int d = a - b;\n rep(i, b) ans[v[x][i + d]] -= F[i];\n rep(i, b) dp[x][i + d] += dp[e][i];\n // cout << ans << endl;\n }\n }\n v[x].eb(x), dp[x].eb(a[x]);\n };\n dfs(dfs, 0, -1);\n int k = si(v[0]);\n vmint G(k);\n rep(i, k) G[i] = binom[i];\n auto F = dp[0] * G;\n rep(i, k) ans[v[0][i]] += F[i];\n rep(i, n) {\n if(i) cout << \" \";\n cout << ans[i];\n }\n cout << endl;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 50172, "score_of_the_acc": -0.8043, "final_rank": 5 }, { "submission_id": "aoj_3084_4852439", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cmath>\n#include <ctime>\n#include <cstdlib>\n#include <cassert>\n#include <vector>\n#include <list>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <set>\n#include <bitset>\n#include <string>\n#include <algorithm>\n#include <utility>\n#define llint long long\n#define inf 1e18\n#define rep(x, s, t) for(llint (x) = (s); (x) < (t); (x)++)\n#define Rep(x, s, t) for(llint (x) = (s); (x) <= (t); (x)++)\n#define chmin(x, y) (x) = min((x), (y))\n#define chmax(x, y) (x) = max((x), (y))\nconst llint mod = 998244353;\n\nusing namespace std;\ntypedef pair<llint, llint> P;\n\nllint modpow(llint a, llint n, llint mod)\n{\n\tif(n == 0) return 1;\n\tif(n % 2){\n\t\treturn ((a%mod) * (modpow(a, n-1, mod)%mod)) % mod;\n\t}\n\telse{\n\t\treturn modpow((a*a)%mod, n/2, mod) % mod;\n\t}\n}\n\nint rev(int x, int n)\n{\n\tint ret = 0;\n\tfor(int i = 0; i < n; i++){\n\t\tret <<= 1;\n\t\tret |= (x>>i) & 1;\n\t}\n\treturn ret;\n}\n\n//f[]とF[]は異なる実体を持たなければならない。rootには1の原始2^n乗根を渡す\nvoid DFT(llint f[], llint F[], int n, llint mod, llint root)\n{\n\tint N = 1<<n;\n\tfor(int i = 0; i < N; i++) F[rev(i, n)] = f[i];\n\t\n\tllint a, b, x, z;\n\tfor(int i = 1; i <= n; i++){\n\t\tint l = 1<<i;\n\t\tz = modpow(root, 1<<(n-i), mod);\n\t\tfor(int j = 0; j < N/l; j++){\n\t\t\tx = 1;\n\t\t\tfor(int k = 0; k < l/2; k++){\n\t\t\t\ta = F[j*l+k], b = F[j*l+k+l/2];\n\t\t\t\tF[j*l+k] = a + x * b % mod;\n\t\t\t\tF[j*l+k+l/2] = a - x * b % mod + mod;\n\t\t\t\tif(F[j*l+k] >= mod) F[j*l+k] -= mod;\n\t\t\t\tif(F[j*l+k+l/2] >= mod) F[j*l+k+l/2] -= mod;\n\t\t\t\tx *= z, x %= mod;\n\t\t\t}\n\t\t}\n\t}\n}\n\n//f[]とF[]は異なる実体を持たなければならない。rootには1の原始2^n乗根を渡す\nvoid IDFT(llint F[], llint f[], int n, llint mod, llint root)\n{\n\tint N = 1<<n;\n\tfor(int i = 0; i < N; i++) f[rev(i, n)] = F[i];\n\troot = modpow(root, mod-2, mod);\n\t\n\tllint a, b, x, z;\n\tfor(int i = 1; i <= n; i++){\n\t\tint l = 1<<i;\n\t\tz = modpow(root, 1<<(n-i), mod);\n\t\tfor(int j = 0; j < N/l; j++){\n\t\t\tx = 1;\n\t\t\tfor(int k = 0; k < l/2; k++){\n\t\t\t\ta = f[j*l+k], b = f[j*l+k+l/2];\n\t\t\t\tf[j*l+k] = a + x * b % mod;\n\t\t\t\tf[j*l+k+l/2] = a - x * b % mod + mod;\n\t\t\t\tif(f[j*l+k] >= mod) f[j*l+k] -= mod;\n\t\t\t\tif(f[j*l+k+l/2] >= mod) f[j*l+k+l/2] -= mod;\n\t\t\t\tx *= z, x %= mod;\n\t\t\t}\n\t\t}\n\t}\n\tllint Ninv = modpow(N, mod-2, mod);\n\tfor(int i = 0; i < N; i++) f[i] *= Ninv, f[i] %= mod;\n}\n\nllint n, m;\nllint a[200005];\nset<llint> G[200005];\nllint parent[200005], depth[200005];\npriority_queue<P, vector<P>, greater<P> > Q;\nllint comb[200005];\nllint ans[200005], sub[200005];\n\nllint root;\nvector<llint> vec, vec2;\n\nvoid dfs(int v, int p, int d)\n{\n\tparent[v] = p, depth[v] = d;\n\tfor(auto it = G[v].begin(); it != G[v].end(); it++){\n\t\tif(*it == p) continue;\n\t\tdfs(*it, v, d+1);\n\t}\n}\n\nllint f[1<<19], f2[1<<19], F[1<<19], F2[1<<19];\nvoid calc()\n{\n\tllint l = vec.size(), n = 1;\n\tfor(llint t=l; t; t/=2) n++;\n\t\n\tllint N = 1<<n;\n\tfor(int i = 0; i < N; i++) f[i] = f2[i] = F[i] = F2[i] = 0;\n\tfor(int i = 0; i < l; i++) f[i] = a[vec[i]], f2[i] = comb[i];\n\t\n\tllint r = modpow(root, 1<<(23-n), mod);\n\tDFT(f, F, n, mod, r);\n\tDFT(f2, F2, n, mod, r);\n\tfor(int i = 0; i < N; i++) F[i] *= F2[i], F[i] %= mod;\n\tIDFT(F, f, n, mod, r);\n\t\n\tfor(int i = 0; i < vec.size(); i++) (ans[vec[i]] += f[i]) %= mod;\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n >> m;\n\tfor(int i = 0; i < n; i++) cin >> a[i];\n\tllint u, v;\n\tfor(int i = 1; i <= n-1; i++){\n\t\tcin >> u >> v;\n\t\tG[u].insert(v);\n\t\tG[v].insert(u);\n\t}\n\tdfs(0, -1, 0);\n\t\n\t\n\tfor(int i = 0; i < n; i++){\n\t\tG[i].erase(parent[i]);\n\t\tif(G[i].size() == 0) Q.push(P(depth[i], i));\n\t}\n\t\n\tcomb[0] = 1;\n\tfor(int i = 1; i <= n; i++){\n\t\tcomb[i] = comb[i-1] * (m+i-1) % mod;\n\t\tcomb[i] *= modpow(i, mod-2, mod), comb[i] %= mod;\n\t}\n\troot = modpow(3, 119, mod);\n\t\n\twhile(Q.size()){\n\t\tllint v = Q.top().second;\n\t\tQ.pop();\n\t\t\n\t\tllint p;\n\t\tvec.clear(), vec2.clear();\n\t\twhile(1){\n\t\t\tvec.push_back(v);\n\t\t\tp = parent[v];\n\t\t\tif(p == -1 || G[p].size() >= 2){\n\t\t\t\tG[p].erase(v);\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\tv = p;\n\t\t}\n\t\tif(p != -1){\n\t\t\tfor(int i = 0; i < vec.size(); i++){\n\t\t\t\tp = *G[p].begin();\n\t\t\t\tvec2.push_back(p);\n\t\t\t}\n\t\t}\n\t\treverse(vec2.begin(), vec2.end());\n\t\t\n\t\tcalc();\n\t\t\n\t\tfor(int i = 0; i < vec2.size(); i++){\n\t\t\t(a[vec2[i]] += a[vec[i]]) %= mod;\n\t\t\t(sub[vec2[i]] += ans[vec[i]]) %= mod;\n\t\t}\n\t}\n\t\n\tfor(int i = 0; i < n; i++) ans[i] += mod - sub[i], ans[i] %= mod;\n\tfor(int i = 0; i < n; i++){\n\t\tcout << ans[i];\n\t\tif(i < n-1) cout << \" \";\n\t}\n\tcout << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1090, "memory_kb": 45728, "score_of_the_acc": -1.431, "final_rank": 9 }, { "submission_id": "aoj_3084_4851844", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 21;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\nll mod_inverse(ll a) {\n\treturn mod_pow(a, mod - 2);\n}\nll root[24], invroot[24];\nvoid init() {\n\trep(i, 24) {\n\t\tint n = (1 << i);\n\t\troot[i] = mod_pow(3, (mod - 1) / n);\n\t\tinvroot[i] = mod_inverse(root[i]);\n\t}\n}\ntypedef vector <ll> poly;\npoly dft(poly f, bool inverse = false) {\n\tint n = f.size(); int i, j, k;\n\t//bit左右反転\n\tfor (i = 0, j = 1; j < n - 1; j++) {\n\t\tfor (k = n >> 1; k > (i ^= k); k >>= 1);\n\t\tif (i > j)swap(f[i], f[j]);\n\t}\n\tfor (int j = 1; (1 << j) <= n; j++) {\n\t\tint m = 1 << j;\n\t\tll zeta = root[j];\n\t\tif (inverse)zeta = invroot[j];\n\t\tfor (i = 0; i < n; i += m) {\n\t\t\tll powzeta = 1;\n\t\t\tfor (k = i; k < i + m / 2; k++) {\n\t\t\t\tll t1 = f[k], t2 = powzeta * f[k + m / 2] % mod;\n\t\t\t\tf[k] = t1 + t2; while (f[k] >= mod)f[k] -= mod;\n\t\t\t\tf[k + m / 2] = t1 - t2 + mod; while (f[k + m / 2] >= mod)f[k + m / 2] -= mod;\n\t\t\t\t(powzeta *= zeta) %= mod;\n\t\t\t}\n\t\t}\n\t}\n\tif (inverse) {\n\t\tll rv = mod_inverse(n);\n\t\tfor (i = 0; i < n; i++) {\n\t\t\t(f[i] *= rv) %= mod;\n\t\t}\n\t}\n\treturn f;\n}\npoly multiply(poly g, poly h) {\n\tint n = 1;\n\tint pi = 0, qi = 0;\n\trep(i, g.size())if (g[i])pi = i;\n\trep(i, h.size())if (h[i])qi = i;\n\tint sz = pi + qi + 2;\n\twhile (n < sz)n *= 2;\n\tg.resize(n); h.resize(n);\n\t/*while (g.size() < n) {\n\tg.push_back(0);\n\t}\n\twhile (h.size() < n) {\n\th.push_back(0);\n\t}*/\n\tpoly gg = dft(g);\n\tpoly hh = dft(h);\n\tpoly ff; ff.resize(n);\n\trep(i, n) {\n\t\tff[i] = gg[i] * hh[i] % mod;\n\t}\n\treturn dft(ff, true);\n}\nvoid solve() {\n\tint n; cin >> n; int m; cin >> m; m--;\n\tvector<ll> a(n);\n\trep(i, n)cin >> a[i];\n\tvector<modint> c(n + 1);\n\tc[0] = 1;\n\trep1(i, n) {\n\t\tc[i] = c[i - 1] * (modint)(m + i) / (modint)i;\n\t}\n\tvector<vector<int>> G(n);\n\trep(i, n - 1) {\n\t\tint a, b; cin >> a >> b;\n\t\tG[a].push_back(b);\n\t\tG[b].push_back(a);\n\t}\n\tvector<int> nex(n);\n\tvector<int> depth(n);\n\tvector<int> par(n);\n\tfunction<int(int, int)>init_dfs = [&](int id, int fr)->int {\n\t\tpar[id] = fr;\n\t\tnex[id] = id;\n\t\tint res = depth[id];\n\t\tfor (int to : G[id])if (to != fr) {\n\t\t\tdepth[to] = depth[id] + 1;\n\t\t\tint x = init_dfs(to, id);\n\t\t\tif (res < x) {\n\t\t\t\tres = x;\n\t\t\t\tnex[id] = to;\n\t\t\t}\n\t\t}\n\t\treturn res;\n\t}; init_dfs(0, -1);\n\tvector<modint> ans(n);\n\tfunction<vector<modint>(int)> dfs = [&](int root)->vector<modint> {\n\t\tint cur = root;\n\t\tvector<int> ids;\n\t\tids.push_back(cur);\n\t\twhile (nex[cur] != cur) {\n\t\t\tcur = nex[cur]; ids.push_back(cur);\n\t\t}\n\n\t\tcur = root;\n\t\tint tmp = 0;\n\t\twhile (nex[cur] != cur) {\n\t\t\ttmp++;\n\t\t\tfor (int to : G[cur])if (to != nex[cur] && to != par[cur]) {\n\t\t\t\tvector<modint> np = dfs(to);\n\t\t\t\trep(j, np.size()) {\n\t\t\t\t\tans[ids[j + tmp]] -= np[j];\n\t\t\t\t}\n\t\t\t}\n\t\t\tcur = nex[cur];\n\t\t}\n\t\tint dep = depth[cur] - depth[root];\n\t\tpoly p(dep + 1);\n\t\tfunction<void(int, int)> subdfs = [&](int id, int fr) {\n\t\t\tint d = depth[id] - depth[root];\n\t\t\tp[d] += a[id];\n\t\t\tfor (int to : G[id])if (to != fr) {\n\t\t\t\tsubdfs(to, id);\n\t\t\t}\n\t\t}; subdfs(root, par[root]);\n\t\tpoly coef;\n\t\tfor (int i = dep; i >= 0; i--)coef.push_back(c[i]);\n\t\tpoly r = multiply(p, coef);\n\t\tvector<modint> res(dep + 1);\n\t\trep(i, dep + 1) {\n\t\t\tres[i] = r[i + dep];\n\t\t\tans[ids[i]] += res[i];\n\t\t}\n\t\treturn res;\n\t};\n\tdfs(0);\n\trep(i, n) {\n\t\tif (i > 0)cout << \" \";\n\t\tcout << ans[i];\n\t}\n\tcout << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\tinit_f();\n\tinit();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.9642857142857143, "time_ms": 330, "memory_kb": 71032, "score_of_the_acc": -1.2302, "final_rank": 18 }, { "submission_id": "aoj_3084_4851836", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 21;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\nll mod_inverse(ll a) {\n\treturn mod_pow(a, mod - 2);\n}\nll root[24], invroot[24];\nvoid init() {\n\trep(i, 24) {\n\t\tint n = (1 << i);\n\t\troot[i] = mod_pow(3, (mod - 1) / n);\n\t\tinvroot[i] = mod_inverse(root[i]);\n\t}\n}\ntypedef vector <ll> poly;\npoly dft(poly f, bool inverse = false) {\n\tint n = f.size(); int i, j, k;\n\t//bit左右反転\n\tfor (i = 0, j = 1; j < n - 1; j++) {\n\t\tfor (k = n >> 1; k > (i ^= k); k >>= 1);\n\t\tif (i > j)swap(f[i], f[j]);\n\t}\n\tfor (int j = 1; (1 << j) <= n; j++) {\n\t\tint m = 1 << j;\n\t\tll zeta = root[j];\n\t\tif (inverse)zeta = invroot[j];\n\t\tfor (i = 0; i < n; i += m) {\n\t\t\tll powzeta = 1;\n\t\t\tfor (k = i; k < i + m / 2; k++) {\n\t\t\t\tll t1 = f[k], t2 = powzeta * f[k + m / 2] % mod;\n\t\t\t\tf[k] = t1 + t2; while (f[k] >= mod)f[k] -= mod;\n\t\t\t\tf[k + m / 2] = t1 - t2 + mod; while (f[k + m / 2] >= mod)f[k + m / 2] -= mod;\n\t\t\t\t(powzeta *= zeta) %= mod;\n\t\t\t}\n\t\t}\n\t}\n\tif (inverse) {\n\t\tll rv = mod_inverse(n);\n\t\tfor (i = 0; i < n; i++) {\n\t\t\t(f[i] *= rv) %= mod;\n\t\t}\n\t}\n\treturn f;\n}\npoly multiply(poly g, poly h) {\n\tint n = 1;\n\tint pi = 0, qi = 0;\n\trep(i, g.size())if (g[i])pi = i;\n\trep(i, h.size())if (h[i])qi = i;\n\tint sz = pi + qi + 2;\n\twhile (n < sz)n *= 2;\n\tg.resize(n); h.resize(n);\n\t/*while (g.size() < n) {\n\tg.push_back(0);\n\t}\n\twhile (h.size() < n) {\n\th.push_back(0);\n\t}*/\n\tpoly gg = dft(g);\n\tpoly hh = dft(h);\n\tpoly ff; ff.resize(n);\n\trep(i, n) {\n\t\tff[i] = gg[i] * hh[i] % mod;\n\t}\n\treturn dft(ff, true);\n}\nvoid solve() {\n\tint n; cin >> n; int m; cin >> m; m--;\n\tvector<ll> a(n);\n\trep(i, n)cin >> a[i];\n\tvector<modint> c(n + 1);\n\tc[0] = 1;\n\trep1(i, n) {\n\t\tc[i] = c[i - 1] * (modint)(m + i) / (modint)i;\n\t}\n\tvector<vector<int>> G(n);\n\trep(i, n - 1) {\n\t\tint a, b; cin >> a >> b;\n\t\tG[a].push_back(b);\n\t\tG[b].push_back(a);\n\t}\n\tvector<int> nex(n);\n\tvector<int> depth(n);\n\tvector<int> par(n);\n\tfunction<int(int, int)>init_dfs = [&](int id, int fr)->int {\n\t\tpar[id] = fr;\n\t\tnex[id] = id;\n\t\tint res = depth[id];\n\t\tfor (int to : G[id])if (to != fr) {\n\t\t\tdepth[to] = depth[id] + 1;\n\t\t\tint x = init_dfs(to, id);\n\t\t\tif (res < x) {\n\t\t\t\tres = x;\n\t\t\t\tnex[id] = to;\n\t\t\t}\n\t\t}\n\t\treturn res;\n\t}; init_dfs(0, -1);\n\tvector<modint> ans(n);\n\tfunction<vector<modint>(int)> dfs = [&](int root)->vector<modint> {\n\t\tint cur = root;\n\t\tvector<int> ids;\n\t\tids.push_back(cur);\n\t\twhile (nex[cur] != cur) {\n\t\t\tcur = nex[cur]; ids.push_back(cur);\n\t\t}\n\n\t\tcur = root;\n\t\tint tmp = 0;\n\t\twhile (nex[cur] != cur) {\n\t\t\ttmp++;\n\t\t\tfor (int to : G[cur])if (to != nex[cur] && to != par[cur]) {\n\t\t\t\tvector<modint> nex = dfs(to);\n\t\t\t\trep(j, nex.size()) {\n\t\t\t\t\tans[ids[j + tmp]] -= nex[j];\n\t\t\t\t}\n\t\t\t}\n\t\t\tcur = nex[cur];\n\t\t}\n\t\tint dep = depth[cur] - depth[root];\n\t\tpoly p(dep + 1);\n\t\tfunction<void(int, int)> subdfs = [&](int id, int fr) {\n\t\t\tint d = depth[id] - depth[root];\n\t\t\tp[d] += a[id];\n\t\t\tfor (int to : G[id])if (to != fr) {\n\t\t\t\tsubdfs(to, id);\n\t\t\t}\n\t\t}; subdfs(root, par[root]);\n\t\tpoly coef;\n\t\tfor (int i = dep; i >= 0; i--)coef.push_back(c[i]);\n\t\tpoly r = multiply(p, coef);\n\t\tvector<modint> res(dep + 1);\n\t\trep(i, dep + 1) {\n\t\t\tres[i] = r[i + dep];\n\t\t\tans[ids[i]] += res[i];\n\t\t}\n\t\treturn res;\n\t};\n\tdfs(0);\n\trep(i, n) {\n\t\tif (i > 0)cout << \" \";\n\t\tcout << ans[i];\n\t}\n\tcout << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\tinit_f();\n\tinit();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.9642857142857143, "time_ms": 330, "memory_kb": 71008, "score_of_the_acc": -1.2298, "final_rank": 17 }, { "submission_id": "aoj_3084_4851828", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 21;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\nint get_premitive_root() {\n\tint primitive_root = 0;\n\tif (!primitive_root) {\n\t\tprimitive_root = [&]() {\n\t\t\tset<int> fac;\n\t\t\tint v = mod - 1;\n\t\t\tfor (ll i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i;\n\t\t\tif (v > 1) fac.insert(v);\n\t\t\tfor (int g = 1; g < mod; g++) {\n\t\t\t\tbool ok = true;\n\t\t\t\tfor (auto i : fac) if (mod_pow(g, (mod - 1) / i) == 1) { ok = false; break; }\n\t\t\t\tif (ok) return g;\n\t\t\t}\n\t\t\treturn -1;\n\t\t}();\n\t}\n\treturn primitive_root;\n}\nconst int proot = get_premitive_root();\n\ntypedef vector <modint> poly;\nvoid dft(poly& f, bool inverse = false) {\n\tint n = f.size(); if (n == 1)return;\n\n\tstatic poly w{ 1 }, iw{ 1 };\n\tfor (int m = w.size(); m < n / 2; m *= 2) {\n\t\tmodint dw = mod_pow(proot, (mod - 1) / (4 * m)), dwinv = (modint)1 / dw;\n\t\tw.resize(m * 2); iw.resize(m * 2);\n\t\tfor (int i = 0; i < m; i++)w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv;\n\t}\n\tif (!inverse) {\n\t\tfor (int m = n; m >>= 1;) {\n\t\t\tfor (int s = 0, k = 0; s < n; s += 2 * m, k++) {\n\t\t\t\tfor (int i = s; i < s + m; i++) {\n\t\t\t\t\tmodint x = f[i], y = f[i + m] * w[k];\n\t\t\t\t\tf[i] = x + y, f[i + m] = x - y;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\telse {\n\t\tfor (int m = 1; m < n; m *= 2) {\n\t\t\tfor (int s = 0, k = 0; s < n; s += 2 * m, k++) {\n\t\t\t\tfor (int i = s; i < s + m; i++) {\n\t\t\t\t\tmodint x = f[i], y = f[i + m];\n\t\t\t\t\tf[i] = x + y, f[i + m] = (x - y) * iw[k];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tmodint n_inv = (modint)1 / (modint)n;\n\t\tfor (modint& v : f)v *= n_inv;\n\t}\n}\npoly multiply(poly g, poly h) {\n\tint n = 1;\n\tint pi = 0, qi = 0;\n\trep(i, g.size())if (g[i])pi = i;\n\trep(i, h.size())if (h[i])qi = i;\n\tint sz = pi + qi + 2;\n\twhile (n < sz)n *= 2;\n\tg.resize(n); h.resize(n);\n\tdft(g); dft(h);\n\trep(i, n) {\n\t\tg[i] *= h[i];\n\t}\n\tdft(g, true);\n\treturn g;\n}\nvoid solve() {\n\tint n; cin >> n; int m; cin >> m; m--;\n\tvector<ll> a(n);\n\trep(i, n)cin >> a[i];\n\tvector<modint> c(n + 1);\n\tc[0] = 1;\n\trep1(i, n) {\n\t\tc[i] = c[i - 1] * (modint)(m + i) / (modint)i;\n\t}\n\tvector<vector<int>> G(n);\n\trep(i, n - 1) {\n\t\tint a, b; cin >> a >> b;\n\t\tG[a].push_back(b);\n\t\tG[b].push_back(a);\n\t}\n\tvector<int> nex(n);\n\tvector<int> depth(n);\n\tvector<int> par(n);\n\tfunction<int(int, int)>init_dfs = [&](int id, int fr)->int {\n\t\tpar[id] = fr;\n\t\tnex[id] = id;\n\t\tint res = depth[id];\n\t\tfor (int to : G[id])if (to != fr) {\n\t\t\tdepth[to] = depth[id] + 1;\n\t\t\tint x = init_dfs(to, id);\n\t\t\tif (res < x) {\n\t\t\t\tres = x;\n\t\t\t\tnex[id] = to;\n\t\t\t}\n\t\t}\n\t\treturn res;\n\t}; init_dfs(0, -1);\n\tvector<modint> ans(n);\n\tfunction<vector<modint>(int)> dfs = [&](int root)->vector<modint> {\n\t\tint cur = root;\n\t\tvector<int> ids;\n\t\tids.push_back(cur);\n\t\twhile (nex[cur] != cur) {\n\t\t\tcur = nex[cur]; ids.push_back(cur);\n\t\t}\n\n\t\tcur = root;\n\t\tint tmp = 0;\n\t\twhile (nex[cur] != cur) {\n\t\t\ttmp++;\n\t\t\tfor (int to : G[cur])if (to != nex[cur] && to != par[cur]) {\n\t\t\t\tvector<modint> nex = dfs(to);\n\t\t\t\trep(j, nex.size()) {\n\t\t\t\t\tans[ids[j + tmp]] -= nex[j];\n\t\t\t\t}\n\t\t\t}\n\t\t\tcur = nex[cur];\n\t\t}\n\t\tint dep = depth[cur] - depth[root];\n\t\tpoly p(dep + 1);\n\t\tfunction<void(int, int)> subdfs = [&](int id, int fr) {\n\t\t\tint d = depth[id] - depth[root];\n\t\t\tp[d] += a[id];\n\t\t\tfor (int to : G[id])if (to != fr) {\n\t\t\t\tsubdfs(to, id);\n\t\t\t}\n\t\t}; subdfs(root, par[root]);\n\t\tpoly coef;\n\t\tfor (int i = dep; i >= 0; i--)coef.push_back(c[i]);\n\t\tpoly r = multiply(p, coef);\n\t\tvector<modint> res(dep + 1);\n\t\trep(i, dep + 1) {\n\t\t\tres[i] = r[i + dep];\n\t\t\tans[ids[i]] += res[i];\n\t\t}\n\t\treturn res;\n\t};\n\tdfs(0);\n\trep(i, n) {\n\t\tif (i > 0)cout << \" \";\n\t\tcout << ans[i];\n\t}\n\tcout << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\tinit_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.9642857142857143, "time_ms": 260, "memory_kb": 65116, "score_of_the_acc": -1.0909, "final_rank": 16 }, { "submission_id": "aoj_3084_4844455", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\ntypedef long long ll;\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\ntemplate <unsigned long long mod > class modint{\npublic:\n ll x;\n constexpr modint(){x = 0;}\n constexpr modint(ll _x) : x((_x < 0 ? ((_x += (LLONG_MAX / mod) * mod) < 0 ? _x + (LLONG_MAX / mod) * mod : _x) : _x)%mod){}\n constexpr modint operator-(){\n return x == 0 ? 0 : mod - x;\n }\n constexpr modint& operator+=(const modint& a){\n if((x += a.x) >= mod) x -= mod;\n return *this;\n }\n constexpr modint operator+(const modint& a) const{\n return modint(*this) += a;\n }\n constexpr modint& operator-=(const modint& a){\n if((x -= a.x) < 0) x += mod;\n return *this;\n }\n constexpr modint operator-(const modint& a) const{\n return modint(*this) -= a;\n }\n constexpr modint& operator*=(const modint& a){\n (x *= a.x)%=mod;\n return *this;\n }\n constexpr modint operator*(const modint& a) const{\n return modint(*this) *= a;\n }\n constexpr modint pow(unsigned long long pw) const{\n modint res(1), comp(*this);\n while(pw){\n if(pw&1) res *= comp;\n comp *= comp;\n pw >>= 1;\n }\n return res;\n }\n //以下、modが素数のときのみ\n constexpr modint inv() const{\n return modint(*this).pow(mod - 2);\n }\n constexpr modint& operator/=(const modint &a){\n (x *= a.inv().x)%=mod;\n return *this;\n }\n constexpr modint operator/(const modint &a) const{\n return modint(*this) /= a;\n }\n};\n#define mod1 998244353\nusing mint = modint<mod1>;\n\nostream& operator<<(ostream& os, const mint& a){\n os << a.x;\n return os;\n}\nusing vm = vector<mint>;\nclass NTT{\n const int root;\n\n void make_root_pow(int n, vm &root_pow){\n root_pow.resize(n + 1);\n mint new_root = mint(root).pow((mod1 - 1) / n);\n root_pow[0].x = 1;\n rep(i,n){\n root_pow[i + 1] = root_pow[i] * new_root;\n }\n }\n static void make_bit_reverse(int n, vector<int> &v){\n v.resize(n);\n iota(ALL(v), 0);\n for(int i = 1; (1<<i) <= n; ++i){\n int l = 1<<(i - 1), r = 1<<i;\n int plus = n >> i;\n for(int j = l; j < r; ++j){\n int temp = v[j - l] + plus;\n if(j < temp) swap(v[j], v[temp]);\n }\n }\n }\n static void dft(int n, vm &f, bool inv, vm &root_pow, vector<int> &id){\n vm g(n);\n rep(i,n) g[i] = f[id[i]];\n swap(f, g);\n for(int l = n / 2, len = 1; l >= 1; l /= 2, len *= 2){\n for(int i = 0; i < n; i += len * 2){\n rep(j, len){\n mint z_f = (inv ? root_pow[n - l * j] : root_pow[l * j]) * f[i + len + j];\n g[i + j] = f[i + j] + z_f;\n g[i + len + j] = f[i + j] - z_f;\n }\n }\n swap(f, g);\n }\n if(inv) {\n mint n_inv = mint(n).inv();\n rep(i, n) f[i] *= n_inv;\n }\n }\npublic:\n NTT(int _x = 3) : root(_x){}\n vm convolution(vm &a, vm &b){\n int sz = a.size() + b.size() - 1, n = 1;\n while(sz > n) n *= 2;\n vm g(n), h(n), root_pow, gh(n);\n vector<int> id;\n copy(ALL(a), g.begin());\n copy(ALL(b), h.begin());\n make_root_pow(n, root_pow);\n make_bit_reverse(n, id);\n dft(n, g, false, root_pow, id);\n dft(n, h, false, root_pow, id);\n rep(i, n) gh[i] = g[i] * h[i];\n dft(n, gh, true, root_pow, id);\n gh.resize(sz);\n return gh;\n }\n};\nconst int max_N = 200010;\nvm comb(max_N), a(max_N), b(max_N, 0);\nvec parent(max_N);\nvector<set<int> > G(max_N);\nvoid make_comb(ll m){\n comb[0] = 1;\n mint up(m), down(1);\n reps(i, 1, max_N){\n comb[i] = comb[i - 1] * up / down;\n up += 1;\n down += 1;\n }\n}\nvoid dfs(int v, int p, int k, priority_queue<P, vector<P>, greater<> > &pque){\n parent[v] = p;\n if(v != 0 && G[v].size() == 1){\n pque.emplace(k, v);\n }else{\n for(int to : G[v]){\n if(to != p) dfs(to, v, k + 1, pque);\n }\n }\n}\n\nvoid dfs_update(int v, int k, vec &nodes, vm &res){\n if(k < nodes.size()){\n a[v] += a[nodes[k]];\n b[v] -= res[k];\n }\n if(k != 0) {\n for (int to : G[v]) {\n if (to != parent[v]) {\n dfs_update(to, k - 1, nodes, res);\n return;\n }\n }\n }\n}\n\nint main() {\n cin>>N>>M;\n make_comb(M);\n rep(i, N) cin>>a[i].x;\n rep(i, N - 1){\n int u, v;\n cin>>u>>v;\n G[u].insert(v);\n G[v].insert(u);\n }\n priority_queue<P, vector<P>, greater<> > pque;\n dfs(0, 0, 0, pque);\n NTT ntt;\n while(!pque.empty()){\n P p = pque.top(); pque.pop();\n vec nodes(0);\n int now = p.se;\n //cout<<now<<endl;\n for( ; now != 0 && G[now].size() <= 2; now = parent[now]){\n nodes.push_back(now);\n }\n G[now].erase(*nodes.rbegin());\n bool last = G[now].empty();\n if(last) nodes.push_back(0);\n int sz = nodes.size();\n vm a_temp(0), comb_temp(sz);\n for(int v : nodes) a_temp.emplace_back(a[v]);\n copy(comb.begin(), comb.begin() + sz, comb_temp.begin());\n //rep(i, sz) cout<<a_temp[i]<<' '<<comb_temp[i]<<endl;\n vm res = ntt.convolution(a_temp, comb_temp);\n res.resize(sz);\n rep(i, sz) b[nodes[i]] += res[i];\n if(!last) dfs_update(now, sz, nodes, res);\n }\n rep(i, N) {\n cout<<b[i];\n if(i != N - 1) cout<<' ';\n }\n cout<<endl;\n}", "accuracy": 1, "time_ms": 450, "memory_kb": 50884, "score_of_the_acc": -1.0253, "final_rank": 6 }, { "submission_id": "aoj_3084_4842924", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\ntemplate<typename T,T MOD = 1000000007>\nstruct Mint{\n static constexpr T mod = MOD;\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n Mint pow(long long k){\n Mint res(1),tmp(v);\n while(k){\n if(k&1) res*=tmp;\n tmp*=tmp;\n k>>=1;\n }\n return res;\n }\n\n static Mint add_identity(){return Mint(0);}\n static Mint mul_identity(){return Mint(1);}\n\n Mint inv(){return pow(MOD-2);}\n\n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n Mint& operator/=(Mint a){return (*this)*=a.inv();}\n\n Mint operator+(Mint a) const{return Mint(v)+=a;}\n Mint operator-(Mint a) const{return Mint(v)-=a;}\n Mint operator*(Mint a) const{return Mint(v)*=a;}\n Mint operator/(Mint a) const{return Mint(v)/=a;}\n\n Mint operator-() const{return v?Mint(MOD-v):Mint(v);}\n\n bool operator==(const Mint a)const{return v==a.v;}\n bool operator!=(const Mint a)const{return v!=a.v;}\n bool operator <(const Mint a)const{return v <a.v;}\n\n static Mint comb(long long n,int k){\n Mint num(1),dom(1);\n for(int i=0;i<k;i++){\n num*=Mint(n-i);\n dom*=Mint(i+1);\n }\n return num/dom;\n }\n};\ntemplate<typename T,T MOD> constexpr T Mint<T, MOD>::mod;\ntemplate<typename T,T MOD>\nostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}\n\n\nconstexpr int bmds(int x){\n const int v[] = {1012924417, 924844033, 998244353,\n 897581057, 645922817};\n return v[x];\n}\nconstexpr int brts(int x){\n const int v[] = {5, 5, 3, 3, 3};\n return v[x];\n}\n\ntemplate<int X>\nstruct NTT{\n static constexpr int md = bmds(X);\n static constexpr int rt = brts(X);\n using M = Mint<int, md>;\n vector< vector<M> > rts,rrts;\n\n void ensure_base(int n){\n if((int)rts.size()>=n) return;\n rts.resize(n);rrts.resize(n);\n for(int i=1;i<n;i<<=1){\n if(!rts[i].empty()) continue;\n M w=M(rt).pow((md-1)/(i<<1));\n M rw=w.inv();\n rts[i].resize(i);rrts[i].resize(i);\n rts[i][0]=M(1);rrts[i][0]=M(1);\n for(int k=1;k<i;k++){\n rts[i][k]=rts[i][k-1]*w;\n rrts[i][k]=rrts[i][k-1]*rw;\n }\n }\n }\n\n void ntt(vector<M> &as,bool f){\n int n=as.size();\n assert((n&(n-1))==0);\n ensure_base(n);\n\n for(int i=0,j=1;j+1<n;j++){\n for(int k=n>>1;k>(i^=k);k>>=1);\n if(i>j) swap(as[i],as[j]);\n }\n\n for(int i=1;i<n;i<<=1){\n for(int j=0;j<n;j+=i*2){\n for(int k=0;k<i;k++){\n M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]);\n as[i+j+k]=as[j+k]-z;\n as[j+k]+=z;\n }\n }\n }\n\n if(f){\n M tmp=M(n).inv();\n for(int i=0;i<n;i++) as[i]*=tmp;\n }\n }\n\n vector<M> multiply(vector<M> as,vector<M> bs){\n int need=as.size()+bs.size()-1;\n int sz=1;\n while(sz<need) sz<<=1;\n as.resize(sz,M(0));\n bs.resize(sz,M(0));\n\n ntt(as,0);ntt(bs,0);\n for(int i=0;i<sz;i++) as[i]*=bs[i];\n ntt(as,1);\n\n as.resize(need);\n return as;\n }\n\n vector<int> multiply(vector<int> as,vector<int> bs){\n vector<M> am(as.size()),bm(bs.size());\n for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]);\n for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]);\n vector<M> cm=multiply(am,bm);\n vector<int> cs(cm.size());\n for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v;\n return cs;\n }\n};\ntemplate<int X> constexpr int NTT<X>::md;\ntemplate<int X> constexpr int NTT<X>::rt;\n\n\ntemplate<typename T>\nstruct FormalPowerSeries{\n using Poly = vector<T>;\n using Conv = function<Poly(Poly, Poly)>;\n Conv conv;\n FormalPowerSeries(Conv conv):conv(conv){}\n\n Poly pre(const Poly &as,int deg){\n return Poly(as.begin(),as.begin()+min((int)as.size(),deg));\n }\n\n Poly add(Poly as,Poly bs){\n int sz=max(as.size(),bs.size());\n Poly cs(sz,T(0));\n for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];\n for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i];\n return cs;\n }\n\n Poly sub(Poly as,Poly bs){\n int sz=max(as.size(),bs.size());\n Poly cs(sz,T(0));\n for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];\n for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i];\n return cs;\n }\n\n Poly mul(Poly as,Poly bs){\n return conv(as,bs);\n }\n\n Poly mul(Poly as,T k){\n for(auto &a:as) a*=k;\n return as;\n }\n\n // F(0) must not be 0\n Poly inv(Poly as,int deg){\n assert(as[0]!=T(0));\n Poly rs({T(1)/as[0]});\n for(int i=1;i<deg;i<<=1)\n rs=pre(sub(add(rs,rs),mul(mul(rs,rs),pre(as,i<<1))),i<<1);\n return rs;\n }\n\n // not zero\n Poly div(Poly as,Poly bs){\n while(as.back()==T(0)) as.pop_back();\n while(bs.back()==T(0)) bs.pop_back();\n if(bs.size()>as.size()) return Poly();\n reverse(as.begin(),as.end());\n reverse(bs.begin(),bs.end());\n int need=as.size()-bs.size()+1;\n Poly ds=pre(mul(as,inv(bs,need)),need);\n reverse(ds.begin(),ds.end());\n return ds;\n }\n\n Poly mod(Poly as,Poly bs){\n if(as==Poly(as.size(),0)) return Poly({0});\n as=sub(as,mul(div(as,bs),bs));\n if(as==Poly(as.size(),0)) return Poly({0});\n while(as.back()==T(0)) as.pop_back();\n return as;\n }\n\n // F(0) must be 1\n Poly sqrt(Poly as,int deg){\n assert(as[0]==T(1));\n T inv2=T(1)/T(2);\n Poly ss({T(1)});\n for(int i=1;i<deg;i<<=1){\n ss=pre(add(ss,mul(pre(as,i<<1),inv(ss,i<<1))),i<<1);\n for(T &x:ss) x*=inv2;\n }\n return ss;\n }\n\n Poly diff(Poly as){\n int n=as.size();\n Poly rs(n-1);\n for(int i=1;i<n;i++) rs[i-1]=as[i]*T(i);\n return rs;\n }\n\n Poly integral(Poly as){\n int n=as.size();\n Poly rs(n+1);\n rs[0]=T(0);\n for(int i=0;i<n;i++) rs[i+1]=as[i]/T(i+1);\n return rs;\n }\n\n // F(0) must be 1\n Poly log(Poly as,int deg){\n return pre(integral(mul(diff(as),inv(as,deg))),deg);\n }\n\n // F(0) must be 0\n Poly exp(Poly as,int deg){\n Poly f({T(1)});\n as[0]+=T(1);\n for(int i=1;i<deg;i<<=1)\n f=pre(mul(f,sub(pre(as,i<<1),log(f,i<<1))),i<<1);\n return f;\n }\n\n Poly partition(int n){\n Poly rs(n+1);\n rs[0]=T(1);\n for(int k=1;k<=n;k++){\n if(1LL*k*(3*k+1)/2<=n) rs[k*(3*k+1)/2]+=T(k%2?-1LL:1LL);\n if(1LL*k*(3*k-1)/2<=n) rs[k*(3*k-1)/2]+=T(k%2?-1LL:1LL);\n }\n return inv(rs,n+1);\n }\n\n Poly bernoulli(int n){\n Poly rs(n+1,1);\n for(int i=1;i<=n;i++) rs[i]=rs[i-1]/T(i+1);\n rs=inv(rs,n+1);\n T tmp(1);\n for(int i=1;i<=n;i++){\n tmp*=T(i);\n rs[i]*=tmp;\n }\n return rs;\n }\n};\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\nstruct Centroid{\n vector<int> sz,dead;\n vector< vector<int> > G;\n Centroid(){}\n Centroid(int n):sz(n,1),dead(n,0),G(n){}\n\n void add_edge(int u,int v){\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n int dfs(int v,int p){\n sz[v]=1;\n for(int u:G[v])\n if(u!=p&&!dead[u]) sz[v]+=dfs(u,v);\n return sz[v];\n }\n\n void find(int v,int p,int tmp,vector<int> &cs) {\n int ok=1;\n for (int u:G[v]){\n if(u==p||dead[u]) continue;\n find(u,v,tmp,cs);\n ok&=(sz[u]<=tmp/2);\n }\n ok&=(tmp-sz[v]<=tmp/2);\n if(ok) cs.push_back(v);\n }\n\n vector<int> build(int r) {\n int tmp=dfs(r,-1);\n vector<int> cs;\n find(r,-1,tmp,cs);\n return cs;\n }\n\n void disable(int v){\n dead[v]=1;\n }\n\n void enable(int v){\n dead[v]=0;\n }\n\n int alive(int v){\n return !dead[v];\n }\n};\n\n\ntemplate<typename F>\nstruct FixPoint : F{\n FixPoint(F&& f):F(forward<F>(f)){}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const{\n return F::operator()(*this,forward<Args>(args)...);\n }\n};\ntemplate<typename F>\ninline decltype(auto) MFP(F&& f){\n return FixPoint<F>{forward<F>(f)};\n}\n\n//INSERT ABOVE HERE\nsigned main(){\n NTT<2> ntt;\n using M = decltype(ntt)::M;\n auto conv=[&](auto as,auto bs){return ntt.multiply(as,bs);};\n FormalPowerSeries<M> FPS(conv);\n using Poly = decltype(FPS)::Poly;\n\n int n,m;\n cin>>n>>m;\n\n Poly as(n);\n for(int i=0;i<n;i++) cin>>as[i].v;\n\n Centroid G(n+1);\n G.add_edge(n,0);\n for(int i=1;i<n;i++){\n int u,v;\n cin>>u>>v;\n G.add_edge(u,v);\n }\n\n vector<int> par(n+1,-1);\n {\n queue<int> que;\n que.emplace(n);\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G.G[v]){\n if(u==par[v]) continue;\n par[u]=v;\n que.emplace(u);\n }\n }\n }\n\n vector<int> dead(n+1,0);\n auto disable=\n [&](int k){\n dead[k]=1;\n G.disable(k);\n };\n disable(n);\n\n const int deg = 1<<18;\n Poly ps(n,M(1));\n ps=FPS.exp(FPS.mul(FPS.log(ps,deg),M(m)),deg);\n\n queue<int> que;\n que.emplace(G.build(0)[0]);\n\n Poly ans(n);\n while(!que.empty()){\n int r=que.front();que.pop();\n\n Poly qs;\n MFP([&](auto dfs,int v,int p,int h)->void{\n while(!(h<(int)qs.size())) qs.emplace_back(0);\n qs[h]+=as[v];\n for(int u:G.G[v]){\n if(u==p) continue;\n if(dead[u]) continue;\n dfs(u,v,h+1);\n }\n })(r,par[r],0);\n reverse(qs.begin(),qs.end());\n\n vector<int> bs;\n int p=r;\n while(~p&&!dead[p]){\n bs.emplace_back(p);\n p=par[p];\n }\n\n int len=qs.size()-1;\n qs.resize(len+bs.size(),M(0));\n auto rs=FPS.mul(FPS.pre(ps,qs.size()),qs);\n\n for(int i=0;i<(int)bs.size();i++) ans[bs[i]]+=rs[len+i];\n\n disable(r);\n for(int u:G.G[r])\n if(!dead[u]) que.emplace(G.build(u)[0]);\n }\n\n for(int i=0;i<n;i++){\n if(i) cout<<\" \";\n cout<<ans[i];\n }\n cout<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1290, "memory_kb": 66896, "score_of_the_acc": -1.8914, "final_rank": 14 }, { "submission_id": "aoj_3084_4842629", "code_snippet": "#include <bits/extc++.h>\n\ntemplate <uint32_t Modulus>\nstruct modular {\n static_assert(int(Modulus) > 0, \"Modulus must be in the range [1, 2^31)\");\n static constexpr int modulus() { return Modulus; }\n\n modular() : v(0) {}\n modular(int64_t x) : v(x % Modulus) {\n if (int(v) < 0) v += Modulus;\n }\n\n explicit operator int() const { return v; }\n modular& operator++() { return ++v == Modulus ? v = 0 : 0, *this; }\n modular& operator--() { return --(v ? v : v = Modulus), *this; }\n modular operator+() const { return *this; }\n modular operator-() const {\n modular res;\n res.v = v ? Modulus - v : 0;\n return res;\n }\n modular& operator*=(modular b) {\n v = uint64_t(v) * b.v % Modulus;\n return *this;\n }\n modular& operator/=(modular b) {\n auto [x, gcd] = extgcd(b.v, Modulus);\n assert(gcd == 1);\n return *this *= x;\n }\n modular& operator+=(modular b) {\n v += b.v - Modulus;\n if (int(v) < 0) v += Modulus;\n return *this;\n }\n modular& operator-=(modular b) {\n v -= b.v;\n if (int(v) < 0) v += Modulus;\n return *this;\n }\n\n friend modular operator++(modular& a, int) {\n return std::exchange(a, ++modular(a));\n }\n friend modular operator--(modular& a, int) {\n return std::exchange(a, --modular(a));\n }\n friend modular operator*(modular a, modular b) { return a *= b; }\n friend modular operator/(modular a, modular b) { return a /= b; }\n friend modular operator+(modular a, modular b) { return a += b; }\n friend modular operator-(modular a, modular b) { return a -= b; }\n friend std::istream& operator>>(std::istream& is, modular& b) {\n int64_t x;\n return is >> x, b = x, is;\n }\n friend std::ostream& operator<<(std::ostream& os, modular b) {\n return os << b.v;\n }\n friend bool operator==(modular a, modular b) { return a.v == b.v; }\n friend bool operator!=(modular a, modular b) { return a.v != b.v; }\n\n private:\n static std::pair<int, int> extgcd(int a, int b) {\n std::array x{1, 0};\n while (b) {\n int q = a / b;\n std::swap(x[0] -= q * x[1], x[1]);\n std::swap(a -= q * b, b);\n }\n return {x[0], a};\n }\n\n uint32_t v;\n};\n\ntemplate <class T, class U, class BinaryOperation = std::multiplies<>>\nconstexpr T power(T a, U n, T init = 1,\n BinaryOperation binary_op = BinaryOperation{}) {\n static_assert(std::is_integral_v<U> and not std::is_same_v<U, bool>);\n assert(n >= 0);\n while (n) {\n if (n & 1) init = binary_op(init, a);\n if (n >>= 1) a = binary_op(a, a);\n }\n return init;\n}\n\ntemplate <class T>\nvoid ntt(std::vector<T>& a, bool inverse) {\n int n = size(a);\n assert((n & (n - 1)) == 0);\n if (n < 2) return;\n assert((T::modulus() - 1) % n == 0);\n static std::vector<T> w{1}, iw{1};\n for (int m = size(w); m < n / 2; m *= 2) {\n static T root = 2;\n while (power(root, (T::modulus() - 1) / 2) == 1) ++root;\n T dw = power(root, (T::modulus() - 1) / (4 * m)), idw = 1 / dw;\n w.resize(2 * m), iw.resize(2 * m);\n for (int i = 0; i < m; ++i) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * idw;\n }\n if (not inverse) {\n for (int m = n; m >>= 1;) {\n for (int s = 0, k = 0; s < n; s += 2 * m, ++k) {\n for (int i = s, j = s + m; i < s + m; ++i, ++j) {\n T x = a[i], y = a[j] * w[k];\n a[i] = x + y, a[j] = x - y;\n }\n }\n }\n } else {\n for (int m = 1; m < n; m *= 2) {\n for (int s = 0, k = 0; s < n; s += 2 * m, ++k) {\n for (int i = s, j = s + m; i < s + m; ++i, ++j) {\n T x = a[i], y = a[j];\n a[i] = x + y, a[j] = (x - y) * iw[k];\n }\n }\n }\n auto inv = 1 / T(n);\n for (auto&& e : a) e *= inv;\n }\n}\ntemplate <class T>\nstd::vector<T> operator*(std::vector<T> a, std::vector<T> b) {\n if (empty(a) or empty(b)) return {};\n int n = size(a), m = size(b), sz = 1 << std::__lg(2 * (n + m - 1) - 1);\n if (std::min(n, m) < 30) {\n std::vector<T> res(n + m - 1);\n for (int i = 0; i < n; ++i)\n for (int j = 0; j < m; ++j) res[i + j] += a[i] * b[j];\n return res;\n }\n bool eq = a == b;\n a.resize(sz), ntt(a, false);\n if (eq)\n b = a;\n else\n b.resize(sz), ntt(b, false);\n for (int i = 0; i < sz; ++i) a[i] *= b[i];\n ntt(a, true), a.resize(n + m - 1);\n return a;\n}\n\nstruct graph {\n struct edge {\n static inline bool cost; // dummy\n int src, dst;\n\n int operator-(int v) const {\n assert(v == src or v == dst);\n return src ^ dst ^ v;\n }\n };\n\n int n, m;\n std::vector<edge> edges;\n std::vector<std::vector<std::pair<int, int>>> adj;\n std::function<bool(int)> ignore;\n\n graph(int _n = 0) : n(_n), m(0), adj(n), ignore([](int) { return false; }) {}\n\n int add(const edge& e, bool directed) {\n assert(0 <= e.src), assert(e.src < n);\n assert(0 <= e.dst), assert(e.dst < n);\n edges.push_back(e);\n adj[e.src].emplace_back(m, e.dst);\n if (not directed) adj[e.dst].emplace_back(m, e.src);\n return m++;\n }\n};\n\nstruct dfs_forest : graph {\n using cost_t = decltype(edge::cost);\n\n std::vector<int> root, pv, pe, sz, depth, min_depth, last, order, in, out;\n std::vector<cost_t> dist;\n int trials;\n\n dfs_forest(int _n = 0) : graph(_n), dist(n), trials(0) {\n for (auto p : {&root, &pv, &pe, &sz, &depth, &min_depth, &last, &in, &out})\n p->assign(n, -1);\n }\n\n int add(const edge& e) { return graph::add(e, false); }\n void build(int r, bool clear_order = true) {\n assert(0 <= r), assert(r < n);\n root[r] = r, pv[r] = pe[r] = -1, depth[r] = 0, dist[r] = cost_t{};\n if (clear_order) order.clear();\n dfs(r);\n ++trials;\n }\n void build() {\n fill(begin(root), end(root), -1);\n for (int v = 0; v < n; ++v)\n if (root[v] == -1) build(v, v == 0);\n }\n int deeper(int id) const {\n assert(0 <= id), assert(id < m), assert(not ignore(id));\n int u = edges[id].src, v = edges[id].dst;\n return depth[u] < depth[v] ? v : u;\n }\n bool is_tree_edge(int id) const {\n assert(0 <= id), assert(id < m), assert(not ignore(id));\n return id == pe[deeper(id)];\n }\n bool is_ancestor(int u, int v) const {\n assert(0 <= u), assert(u < n);\n assert(0 <= v), assert(v < n);\n return in[u] <= in[v] and out[v] <= out[u];\n }\n\n private:\n void dfs(int v) {\n sz[v] = 1, min_depth[v] = depth[v], last[v] = trials;\n in[v] = size(order), order.push_back(v);\n for (auto [id, u] : adj[v]) {\n if (ignore(id) or id == pe[v]) continue;\n if (last[u] == trials) {\n min_depth[v] = std::min(min_depth[v], depth[u]);\n continue;\n }\n root[u] = root[v], pv[u] = v, pe[u] = id, depth[u] = depth[v] + 1;\n dist[u] = dist[v] + edges[id].cost;\n dfs(u);\n sz[v] += sz[u], min_depth[v] = std::min(min_depth[v], min_depth[u]);\n }\n out[v] = size(order);\n }\n};\n\ntemplate <class F>\nstruct y_combinator : private F {\n y_combinator(F f) : F(f) {}\n template <class... Args>\n decltype(auto) operator()(Args&&... args) const {\n return F::operator()(*this, std::forward<Args>(args)...);\n }\n};\n\nint main() {\n using namespace std;\n cin.tie(nullptr)->sync_with_stdio(false);\n int n, m;\n cin >> n >> m;\n --m;\n vector<int> a(n);\n for (auto&& e : a) cin >> e;\n dfs_forest g(n);\n for (int _ = n - 1; _--;) {\n int u, v;\n cin >> u >> v;\n g.add({u, v});\n }\n g.build();\n vector<int> h(n);\n for_each(rbegin(g.order), rend(g.order), [&](int v) {\n h[v] = 1;\n for (auto [id, u] : g.adj[v]) {\n if (id == g.pe[v]) continue;\n h[v] = max(h[v], h[u] + 1);\n }\n sort(begin(g.adj[v]), end(g.adj[v]), [&](auto x, auto y) {\n int xu = x.second, yu = y.second;\n return h[xu] * (xu != g.pv[v]) > h[yu] * (yu != g.pv[v]);\n });\n });\n\n using mint = modular<998244353>;\n vector<mint> coeff(n);\n for (int i = 0; i < n; ++i) coeff[i] = i ? coeff[i - 1] * (m + i) / i : 1;\n\n vector<mint> buf;\n vector<mint> ans(n);\n vector<int> l(n, -1), r(n, -1);\n y_combinator([&](auto&& self, int v) -> void {\n if (l[v] == -1) {\n int sz = size(buf);\n buf.resize(sz + h[v]);\n for (int i = g.in[v]; i < g.out[v]; ++i) {\n int u = g.order[i];\n buf[sz + (g.depth[u] - g.depth[v])] += a[u];\n }\n auto t = vector(rbegin(buf), rend(buf) - sz) *\n vector(begin(coeff), begin(coeff) + h[v]);\n t.resize(h[v]);\n move(begin(t), end(t), rbegin(buf));\n l[v] = sz, r[v] = size(buf);\n assert(r[v] - l[v] == h[v]);\n }\n ans[v] = buf[l[v]];\n for (int i = 1; i < int(size(g.adj[v])); ++i) {\n auto [id, u] = g.adj[v][i];\n if (id == g.pe[v]) continue;\n assert(l[u] == -1);\n self(u);\n for (int j = l[u]; j < r[u]; ++j) buf[l[v] + 1 + (j - l[u])] -= buf[j];\n }\n if (int u = g.adj[v][0].second; u != g.pv[v]) {\n l[u] = l[v] + 1, r[u] = l[u] + h[u];\n self(u);\n }\n for (int i = 1; i < int(size(g.adj[v])); ++i) {\n auto [id, u] = g.adj[v][i];\n if (id == g.pe[v]) continue;\n for (int j = l[u]; j < r[u]; ++j) buf[l[v] + 1 + (j - l[u])] += buf[j];\n }\n })(0);\n\n for (int v = 0; v < n; ++v) cout << ans[v] << \" \\n\"[v == n - 1];\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 39760, "score_of_the_acc": -0.6293, "final_rank": 3 }, { "submission_id": "aoj_3084_4842580", "code_snippet": "#include<iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\n#include<iomanip>\n#include<math.h>\n#include<complex>\n#include<queue>\n#include<deque>\n#include<stack>\n#include<map>\n#include<set>\n#include<bitset>\n#include<functional>\n#include<assert.h>\n#include<numeric>\nusing namespace std;\n#define REP(i,m,n) for(int i=(int)(m) ; i < (int) (n) ; ++i )\n#define rep(i,n) REP(i,0,n)\nusing ll = long long;\nconstexpr int inf=1e9+7;\nconstexpr ll longinf=1LL<<60 ;\nconstexpr ll mod=998244353 ;\n\ntemplate< int mod >\nstruct NumberTheoreticTransform {\n\n vector< int > rev, rts;\n int base, max_base, root;\n\n NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} {\n assert(mod >= 3 && mod % 2 == 1);\n auto tmp = mod - 1;\n max_base = 0;\n while(tmp % 2 == 0) tmp >>= 1, max_base++;\n root = 2;\n while(mod_pow(root, (mod - 1) >> 1) == 1) ++root;\n assert(mod_pow(root, mod - 1) == 1);\n root = mod_pow(root, (mod - 1) >> max_base);\n }\n\n inline int mod_pow(int x, int n) {\n int ret = 1;\n while(n > 0) {\n if(n & 1) ret = mul(ret, x);\n x = mul(x, x);\n n >>= 1;\n }\n return ret;\n }\n\n inline int inverse(int x) {\n return mod_pow(x, mod - 2);\n }\n\n inline unsigned add(unsigned x, unsigned y) {\n x += y;\n if(x >= mod) x -= mod;\n return x;\n }\n\n inline unsigned mul(unsigned a, unsigned b) {\n return 1ull * a * b % (unsigned long long) mod;\n }\n\n void ensure_base(int nbase) {\n if(nbase <= base) return;\n rev.resize(1 << nbase);\n rts.resize(1 << nbase);\n for(int i = 0; i < (1 << nbase); i++) {\n rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));\n }\n assert(nbase <= max_base);\n while(base < nbase) {\n int z = mod_pow(root, 1 << (max_base - 1 - base));\n for(int i = 1 << (base - 1); i < (1 << base); i++) {\n rts[i << 1] = rts[i];\n rts[(i << 1) + 1] = mul(rts[i], z);\n }\n ++base;\n }\n }\n\n\n void ntt(vector< int > &a) {\n const int n = (int) a.size();\n assert((n & (n - 1)) == 0);\n int zeros = __builtin_ctz(n);\n ensure_base(zeros);\n int shift = base - zeros;\n for(int i = 0; i < n; i++) {\n if(i < (rev[i] >> shift)) {\n swap(a[i], a[rev[i] >> shift]);\n }\n }\n for(int k = 1; k < n; k <<= 1) {\n for(int i = 0; i < n; i += 2 * k) {\n for(int j = 0; j < k; j++) {\n int z = mul(a[i + j + k], rts[j + k]);\n a[i + j + k] = add(a[i + j], mod - z);\n a[i + j] = add(a[i + j], z);\n }\n }\n }\n }\n\n\n vector< int > multiply(vector< int > a, vector< int > b) {\n int need = a.size() + b.size() - 1;\n int nbase = 1;\n while((1 << nbase) < need) nbase++;\n ensure_base(nbase);\n int sz = 1 << nbase;\n a.resize(sz, 0);\n b.resize(sz, 0);\n ntt(a);\n ntt(b);\n int inv_sz = inverse(sz);\n for(int i = 0; i < sz; i++) {\n a[i] = mul(a[i], mul(b[i], inv_sz));\n }\n reverse(a.begin() + 1, a.end());\n ntt(a);\n a.resize(need);\n return a;\n }\n};\n\nNumberTheoreticTransform<998244353> ntt;\n\n\nint w[202020],chl[202020], depth[202020];\nvector<int> v[202020];\nvoid dfs1(int x, int p) {\n for(auto to : v[x]) {\n if(to == p)continue;\n depth[to] = depth[x] + 1;\n dfs1(to,x);\n }\n}\n\nint dfs2(int x, int p) {\n chl[x] = -1;\n int ma = depth[x];\n for(auto to : v[x]) {\n if(to == p)continue;\n int ret = dfs2(to,x);\n if(ret>ma){\n ma = ret;\n chl[x] = to;\n }\n }\n return ma;\n}\n\nvoid dfs3(int x,int p, int d, vector<int>& a){\n a[d] += w[x];\n if(a[d]>=mod)a[d]-=mod;\n for(auto to:v[x]){\n if(to==p)continue;\n dfs3(to,x,d+1,a);\n }\n}\nint used[202020];\nll ans[202020];\nvector<int> b;\n\nvoid solve(int x, int p) {\n if(!used[x]){\n depth[x] = 0;\n dfs1(x, p);\n int sz = dfs2(x, p) + 1;\n vector<int> a(sz);\n dfs3(x, p, 0, a);\n vector<int> c(sz);\n rep(i,sz)c[i] = b[sz-i-1];\n auto ret = ntt.multiply(a, c);\n int cur = x, idx = sz - 1;\n while(cur != -1){\n ans[cur] += ret[idx];\n ++idx;\n used[cur] = 1;\n cur = chl[cur];\n }\n if(p != -1) {\n int cur = chl[p], idx = sz-1;\n while(cur != -1){\n if(idx == 2 * sz - 1)break;\n ans[cur] += mod - ret[idx];\n ++idx;\n cur = chl[cur];\n }\n }\n }\n for(auto to : v[x]){\n if(to == p)continue;\n solve(to, x);\n }\n}\n\nvector<ll> inv,fact,invfact;\nvoid mod_build(int n=101010){\n fact.resize(n+1);\n inv.resize(n+1);\n invfact.resize(n+1);\n fact[0]=inv[0]=invfact[0]=1;\n inv[1]=1;\n rep(i,n){\n fact[i+1]=fact[i]*(i+1)%mod;\n if(i>0)inv[i+1]=mod-inv[mod%(i+1)]*(mod/(i+1))%mod;\n invfact[i+1]=invfact[i]*inv[i+1]%mod;\n }\n}\nll perm(int n,int k){\n if(n<0||k<0||k>n)return 0;\n return fact[n]*invfact[n-k]%mod;\n}\nll comb(int n,int k){\n if(n<0||k<0||k>n)return 0;\n return (fact[n]*invfact[n-k]%mod)*invfact[k]%mod;\n}\nll powmod(ll n,ll k){\n k%=mod-1;\n if(k<0)k+=mod-1;\n ll ret=1;\n while(k){\n if(k&1)ret=ret*n%mod;\n n=n*n%mod;\n k>>=1;\n }\n return ret;\n}\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n, m;\n cin>>n >> m;\n rep(i,n)cin>>w[i];\n rep(i,n-1){\n int x,y;\n cin>>x>>y;\n v[x].push_back(y);\n v[y].push_back(x);\n }\n mod_build(1234567);\n b.resize(n+1);\n ll cur = 1;\n rep(i,n+1){\n b[i] = cur;\n cur *= m + i;\n cur %= mod;\n cur *= inv[i+1];\n cur %= mod;\n }\n solve(0,-1);\n rep(i,n)cout<<ans[i]%mod << \" \\n\"[i+1==n];\n return 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 65940, "score_of_the_acc": -1.0278, "final_rank": 7 }, { "submission_id": "aoj_3084_4842547", "code_snippet": "#include<iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\n#include<iomanip>\n#include<math.h>\n#include<complex>\n#include<queue>\n#include<deque>\n#include<stack>\n#include<map>\n#include<set>\n#include<bitset>\n#include<functional>\n#include<assert.h>\n#include<numeric>\nusing namespace std;\n#define REP(i,m,n) for(int i=(int)(m) ; i < (int) (n) ; ++i )\n#define rep(i,n) REP(i,0,n)\nusing ll = long long;\nconstexpr int inf=1e9+7;\nconstexpr ll longinf=1LL<<60 ;\nconstexpr ll mod=998244353 ;\n\ntemplate< int mod >\nstruct NumberTheoreticTransform {\n\n vector< int > rev, rts;\n int base, max_base, root;\n\n NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} {\n assert(mod >= 3 && mod % 2 == 1);\n auto tmp = mod - 1;\n max_base = 0;\n while(tmp % 2 == 0) tmp >>= 1, max_base++;\n root = 2;\n while(mod_pow(root, (mod - 1) >> 1) == 1) ++root;\n assert(mod_pow(root, mod - 1) == 1);\n root = mod_pow(root, (mod - 1) >> max_base);\n }\n\n inline int mod_pow(int x, int n) {\n int ret = 1;\n while(n > 0) {\n if(n & 1) ret = mul(ret, x);\n x = mul(x, x);\n n >>= 1;\n }\n return ret;\n }\n\n inline int inverse(int x) {\n return mod_pow(x, mod - 2);\n }\n\n inline unsigned add(unsigned x, unsigned y) {\n x += y;\n if(x >= mod) x -= mod;\n return x;\n }\n\n inline unsigned mul(unsigned a, unsigned b) {\n return 1ull * a * b % (unsigned long long) mod;\n }\n\n void ensure_base(int nbase) {\n if(nbase <= base) return;\n rev.resize(1 << nbase);\n rts.resize(1 << nbase);\n for(int i = 0; i < (1 << nbase); i++) {\n rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));\n }\n assert(nbase <= max_base);\n while(base < nbase) {\n int z = mod_pow(root, 1 << (max_base - 1 - base));\n for(int i = 1 << (base - 1); i < (1 << base); i++) {\n rts[i << 1] = rts[i];\n rts[(i << 1) + 1] = mul(rts[i], z);\n }\n ++base;\n }\n }\n\n\n void ntt(vector< int > &a) {\n const int n = (int) a.size();\n assert((n & (n - 1)) == 0);\n int zeros = __builtin_ctz(n);\n ensure_base(zeros);\n int shift = base - zeros;\n for(int i = 0; i < n; i++) {\n if(i < (rev[i] >> shift)) {\n swap(a[i], a[rev[i] >> shift]);\n }\n }\n for(int k = 1; k < n; k <<= 1) {\n for(int i = 0; i < n; i += 2 * k) {\n for(int j = 0; j < k; j++) {\n int z = mul(a[i + j + k], rts[j + k]);\n a[i + j + k] = add(a[i + j], mod - z);\n a[i + j] = add(a[i + j], z);\n }\n }\n }\n }\n\n\n vector< int > multiply(vector< int > a, vector< int > b) {\n int need = a.size() + b.size() - 1;\n int nbase = 1;\n while((1 << nbase) < need) nbase++;\n ensure_base(nbase);\n int sz = 1 << nbase;\n a.resize(sz, 0);\n b.resize(sz, 0);\n ntt(a);\n ntt(b);\n int inv_sz = inverse(sz);\n for(int i = 0; i < sz; i++) {\n a[i] = mul(a[i], mul(b[i], inv_sz));\n }\n reverse(a.begin() + 1, a.end());\n ntt(a);\n a.resize(need);\n return a;\n }\n};\n\nNumberTheoreticTransform<998244353> ntt;\n\n\nint w[202020],chl[202020], depth[202020];\nvector<int> v[202020];\nvoid dfs1(int x, int p) {\n for(auto to : v[x]) {\n if(to == p)continue;\n depth[to] = depth[x] + 1;\n dfs1(to,x);\n }\n}\n\nint dfs2(int x, int p) {\n chl[x] = -1;\n int ma = depth[x];\n for(auto to : v[x]) {\n if(to == p)continue;\n int ret = dfs2(to,x);\n if(ret>ma){\n ma = ret;\n chl[x] = to;\n }\n }\n return ma;\n}\n\nvoid dfs3(int x,int p, int d, vector<int>& a){\n a[d] += w[x];\n if(a[d]>=mod)a[d]-=mod;\n for(auto to:v[x]){\n if(to==p)continue;\n dfs3(to,x,d+1,a);\n }\n}\nint used[202020];\nll ans[202020];\nvector<int> b;\n\nvoid solve(int x, int p) {\n if(!used[x]){\n depth[x] = 0;\n dfs1(x, p);\n int sz = dfs2(x, p) + 1;\n vector<int> a(sz);\n dfs3(x, p, 0, a);\n vector<int> c(sz);\n rep(i,sz)c[i] = b[sz-i-1];\n auto ret = ntt.multiply(a, c);\n int cur = x, idx = sz - 1;\n while(cur != -1){\n ans[cur] += ret[idx];\n ++idx;\n used[cur] = 1;\n cur = chl[cur];\n }\n if(p != -1) {\n int cur = chl[p], idx = sz-1;\n while(cur != -1){\n ans[cur] += mod - ret[idx];\n ++idx;\n used[cur] = 1;\n cur = chl[cur];\n }\n }\n }\n for(auto to : v[x]){\n if(to == p)continue;\n solve(to, x);\n }\n}\n\nvector<ll> inv,fact,invfact;\nvoid mod_build(int n=101010){\n fact.resize(n+1);\n inv.resize(n+1);\n invfact.resize(n+1);\n fact[0]=inv[0]=invfact[0]=1;\n inv[1]=1;\n rep(i,n){\n fact[i+1]=fact[i]*(i+1)%mod;\n if(i>0)inv[i+1]=mod-inv[mod%(i+1)]*(mod/(i+1))%mod;\n invfact[i+1]=invfact[i]*inv[i+1]%mod;\n }\n}\nll perm(int n,int k){\n if(n<0||k<0||k>n)return 0;\n return fact[n]*invfact[n-k]%mod;\n}\nll comb(int n,int k){\n if(n<0||k<0||k>n)return 0;\n return (fact[n]*invfact[n-k]%mod)*invfact[k]%mod;\n}\nll powmod(ll n,ll k){\n k%=mod-1;\n if(k<0)k+=mod-1;\n ll ret=1;\n while(k){\n if(k&1)ret=ret*n%mod;\n n=n*n%mod;\n k>>=1;\n }\n return ret;\n}\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n, m;\n cin>>n >> m;\n rep(i,n)cin>>w[i];\n rep(i,n-1){\n int x,y;\n cin>>x>>y;\n v[x].push_back(y);\n v[y].push_back(x);\n }\n mod_build(1234567);\n b.resize(n+1);\n ll cur = 1;\n rep(i,n+1){\n b[i] = cur;\n cur *= m + i;\n cur %= mod;\n cur *= inv[i+1];\n cur %= mod;\n }\n solve(0,-1);\n rep(i,n)cout<<ans[i]%mod << \" \\n\"[i+1==n];\n return 0;\n}", "accuracy": 0.10714285714285714, "time_ms": 10, "memory_kb": 38124, "score_of_the_acc": -0.5076, "final_rank": 20 }, { "submission_id": "aoj_3084_4842500", "code_snippet": "//Let's join Kaede Takagaki Fan Club !!\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#include <ext/pb_ds/assoc_container.hpp>\n#include <ext/pb_ds/tree_policy.hpp>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> P;\ntypedef pair<int,P> P1;\ntypedef pair<P,P> P2;\n#define pu push\n#define pb push_back\n#define mp make_pair\n#define eps 1e-7\n#define INF 1000000000\n#define fi first\n#define sc second\n#define rep(i,x) for(int i=0;i<x;i++)\n#define repn(i,x) for(int i=1;i<=x;i++)\n#define SORT(x) sort(x.begin(),x.end())\n#define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end())\n#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin())\n#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin())\n#define all(x) x.begin(),x.end()\ntemplate<class T>\nvoid dmp(T a){\n\trep(i,a.size()) cout << a[i] << \" \";\n\tcout << endl;\n}\ntemplate<class T>\nbool chmax(T&a, T b){\n\tif(a < b){\n\t\ta = b;\n\t\treturn 1;\n\t}\n\treturn 0;\n}\ntemplate<class T>\nbool chmin(T&a, T b){\n\tif(a > b){\n\t\ta = b;\n\t\treturn 1;\n\t}\n\treturn 0;\n}\ntemplate<class T>\nvoid g(T &a){\n\tcin >> a;\n}\ntemplate<class T>\nvoid o(const T &a,bool space=false){\n\tcout << a << (space?' ':'\\n');\n}\n//ios::sync_with_stdio(false);\nconst ll mod = 998244353;\ntemplate<class T>\nvoid add(T&a,T b){\n\ta+=b;\n\tif(a >= mod) a-=mod;\n}\n\n\nll rui[200005];\nll modpow(ll x,ll n){\n\tll res=1;\n\twhile(n>0){\n\t\tif(n&1) res=res*x%mod;\n\t\tx=x*x%mod;\n\t\tn>>=1;\n\t}\n\treturn res;\n}\nll F[200005],R[200005];\nvoid make(){\n\tF[0] = 1;\n\tfor(int i=1;i<200005;i++) F[i] = F[i-1]*i%mod;\n\tfor(int i=0;i<200005;i++) R[i] = modpow(F[i],mod-2);\n}\nll C(int a,int b){\n\treturn F[a]*R[b]%mod*R[a-b]%mod;\n}\nint up[200005], n, sub[200005], dep[200005], maxdep[200005];\nvector<int>edge[200005];\nll m, a[200005];\nvoid dfs(int v, int u){\n\tup[v] = u;\n\tsub[v] = 1;\n\tif(u == -1) dep[v] = 0; else dep[v] = dep[u]+1;\n\tmaxdep[v] = dep[v];\n\tfor(const auto at:edge[v]){\n\t\tif(at == u) continue;\n\t\tdfs(at, v);\n\t\tsub[v] += sub[at];\n\t\tchmax(maxdep[v], maxdep[at]);\n\t}\n}\nint cmp[200005], num[200005], len[200005];\nvoid dfs2(int v, int u, int d){\n\tP p = mp(-1, -1);\n\tfor(const auto at:edge[v]){\n\t\tif(at == u) continue;\n\t\tchmax(p, mp(sub[at], at));\n\t}\n\tfor(const auto at:edge[v]){\n\t\tif(at == u) continue;\n\t\tif(at == p.sc){\n\t\t\tcmp[at] = cmp[v], num[at] = num[v]+1;\n\t\t}\n\t\telse{\n\t\t\tcmp[at] = at, num[at] = 0;\n\t\t}\n\t\tdfs2(at, v, d+1);\n\t}\n}\ntemplate<const int md>\nstruct ntt{\n\tinline void add(int &a, int b) { a += b; if(a >= md) a -= md; }\n\tinline void sub(int &a, int b) { a -= b; if(a < 0) a += md; }\n\tinline int mul(int a, int b) { return (int)((ll)a*b%md); }\n\tinline int power(int a, long long b) {\n\t\tint res = 1;\n\t\twhile (b > 0) {\n\t\t\tif (b & 1) res = mul(res, a);\n\t \ta = mul(a, a);\n\t\t\tb >>= 1;\n\t\t}\n\t\treturn res;\n\t}\n\tinline int inv(int a) {\n\t\ta %= md;\n\t\tif (a < 0) a += md;\n\t\tint b = md, u = 0, v = 1;\n\t\twhile (a) {\n\t\t\tint t = b / a;\n\t\t\tb -= t * a; swap(a, b);\n\t\t\tu -= t * v; swap(u, v);\n\t\t}\n\t\tassert(b == 1);\n\t\tif (u < 0) u += md;\n\t\treturn u;\n\t}\n\t\n \tint max_base, root;\n\tvector<int> dw, idw;\n\tntt() {\n\t\tint tmp = md - 1;\n\t\tmax_base = 0;\n\t\twhile (tmp % 2 == 0) {\n\t\t\ttmp /= 2;\n\t\t\tmax_base++;\n\t\t}\n\t\troot = 2;\n\t\twhile (power(root, (md-1)>>1) == 1) root++;\n\t\tdw.resize(max_base); idw.resize(max_base);\n\t\trep(i, max_base){\n\t\t\tsub(dw[i], power(root, (md-1) >> (i+2)));\n\t\t\tidw[i] = inv(dw[i]);\n\t\t}\n\t}\n\tvoid fft(vector<int> &a, bool inv) {\n\t\tconst int n = a.size();\n\t\tassert((n & (n - 1)) == 0);\n\t\tassert(__builtin_ctz(n) <= max_base);\n\t\tif(!inv){\n\t\t\tfor(int m=n;m>>=1;){\n\t\t\t\tint w = 1;\n\t\t\t\tfor(int s=0,k=0; s<n; s += 2*m){\n\t\t\t\t\tfor(int i=s, j=s+m ; i < s+m; ++i, ++j) {\n\t\t\t\t\t\tint x = a[i], y = mul(a[j], w);\n\t\t\t\t\t\ta[j] = (x>=y?x-y:x+md-y);\n\t\t\t\t\t\ta[i] = (x+y>=md?x+y-md:x+y);\n\t\t\t\t\t}\n\t\t\t\t\tw = mul(w, dw[__builtin_ctz(++k)]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse{\n\t\t\tfor(int m=1;m<n;m*=2){\n\t\t\t\tint w = 1;\n\t\t\t\tfor(int s=0,k=0; s<n; s += 2*m){\n\t\t\t\t\tfor(int i=s, j=s+m ; i < s+m; ++i, ++j) {\n\t\t\t\t\t\tint x = a[i], y = a[j];\n\t\t\t\t\t\ta[j] = (x>=y?x-y:x+md-y);\n\t\t\t\t\t\ta[j] = mul(a[j], w);\n\t\t\t\t\t\ta[i] = (x+y>=md?x+y-md:x+y);\n\t\t\t\t\t}\n\t\t\t\t\tw = mul(w, idw[__builtin_ctz(++k)]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tvector<int> multiply(vector<int> a, vector<int> b, int eq = 0) {\n\t\tint need = a.size() + b.size() - 1;\n\t\tint nbase = 0;\n\t\twhile ((1 << nbase) < need) nbase++;\n\t\tint sz = 1 << nbase;\n\t\ta.resize(sz);\n\t\tb.resize(sz);\n\t\tfft(a, 0);\n\t\tif (eq) b = a; else fft(b, 0);\n\t\tint inv_sz = inv(sz);\n\t\tfor (int i = 0; i < sz; i++) {\n\t\t\ta[i] = mul(mul(a[i], b[i]), inv_sz);\n\t\t}\n\t\tfft(a, 1);\n\t\ta.resize(need);\n\t\treturn a;\n\t}\n\tvector<int> square(vector<int> a) {\n\t\treturn multiply(a, a, 1);\n\t}\n};\nll ans[200005];\nvector<int>sum[200005], id[200005];\nvector<ll>pool[200005];\nvoid dfs3(int v, int u, int root){\n\tpool[root][dep[v]-dep[root]] += ans[v];\n\tfor(const auto at:edge[v]){\n\t\tif(at == u) continue;\n\t\tdfs3(at, v, root);\n\t}\n}\nvoid dfs4(int v, int u, int root){\n\tsum[root][dep[v]-dep[root]] += a[v];\n\tif(sum[root][dep[v]-dep[root]] >= mod) sum[root][dep[v]-dep[root]] -= mod;\n\tfor(const auto at:edge[v]){\n\t\tif(at == u) continue;\n\t\tdfs4(at, v, root);\n\t}\n}\nvoid solve(int v, int u){\n\tfor(const auto at:edge[v]){\n\t\tif(at == u) continue;\n\t\tsolve(at, v);\n\t\tif(cmp[v] != cmp[at]){\n\t\t\tdfs3(at, v, cmp[v]);\n\t\t}\n\t}\n\tif(num[v] == 0){\n\t\tassert(cmp[v] == v);\n\t\tdfs4(v, u, cmp[v]);\n\t\tntt<998244353>kaede;\n\t\tvector<int>coef; ll pre = 1;\n\t\tfor(int i=0;i<sum[cmp[v]].size();i++){\n\t\t\tcoef.pb((int)(pre));\n\t\t\tpre = pre * rui[i+1] % mod;\n\t\t}\n\t\treverse(all(sum[cmp[v]]));\n\t\tauto c = kaede.multiply(sum[cmp[v]], coef);\n\t\tfor(int i=0;i<id[v].size();i++){\n\t\t\tint V = id[v][i];\n\t\t\tint pt = dep[V]-dep[v];\n\t\t\tans[V] = c[maxdep[v]-dep[V]] - (pool[v][pt]%mod);\n\t\t}\n\t}\n}\nvoid solve(){\n\tcin>>n>>m;\n\trep(i, n) cin >> a[i];\n\trep(i, n-1){\n\t\tint u, v; cin >>u >> v;\n\t\tedge[u].pb(v);\n\t\tedge[v].pb(u);\n\t}\n\tmake();\n\trui[0] = 1;\n\tdfs(0, -1);\n\tfor(int i=1;i<=n;i++) rui[i] = (m-1+i) % mod * modpow(i, mod-2) % mod;\n\tcmp[0] = 0, num[0] = 0;\n\tdfs2(0, -1, 0);\n\trep(i, n) chmax(len[cmp[i]], num[i]+1);\n\trep(i, n){\n\t\tif(len[i] == 0) continue;\n\t\tassert(num[i] == 0);\n\t\t//cout<<i<<\" \"<<maxdep[i]<<\" \"<<dep[i]<<endl;\n\t\tsum[i].resize(maxdep[i]-dep[i]+1, 0);\n\t\tid[i].resize(len[i], 0);\n\t\tpool[i].resize(maxdep[i]-dep[i]+1, 0LL);\n\t}\n\trep(i, n) id[cmp[i]][num[i]] = i;\n\tsolve(0, -1);\n\trep(i, n) cout << (ans[i]%mod+mod)%mod << (i==n-1?'\\n':' ');\n\treturn;\n}\nint main(){\n\tios::sync_with_stdio(0);\n\tsolve();\n}", "accuracy": 1, "time_ms": 820, "memory_kb": 68056, "score_of_the_acc": -1.555, "final_rank": 10 }, { "submission_id": "aoj_3084_4842028", "code_snippet": "#pragma region Macros\n#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w) \\\n vector<vector<type>> name(h, vector<type>(w)); \\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\nstring YES[2] = {\"NO\", \"YES\"};\nstring Yes[2] = {\"No\", \"Yes\"};\nstring yes[2] = {\"no\", \"yes\"};\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define DBL(...) \\\n double __VA_ARGS__; \\\n IN(__VA_ARGS)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\n\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n\n#define i128 __int128_t\n#define ull unsigned long long int\n#define TEST \\\n INT(testcases); \\\n while(testcases--)\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n for(auto &e : v) cout << e << \" \";\n cout << endl;\n return os;\n}\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {\n cout << \"(\" << p.fi << \", \" << p.se << \")\";\n return os;\n}\ntemplate <class S, class T> string to_string(pair<S, T> p) { return \"(\" + to_string(p.first) + \",\" + to_string(p.second) + \")\"; }\ntemplate <class A> string to_string(A v) {\n if(v.empty()) return \"{}\";\n string ret = \"{\";\n for(auto &x : v) ret += to_string(x) + \",\";\n ret.back() = '}';\n return ret;\n}\n\nvoid dump() { cerr << endl; }\ntemplate <class Head, class... Tail> void dump(Head head, Tail... tail) {\n cerr << to_string(head) << \" \";\n dump(tail...);\n}\n#define endl '\\n'\n#ifdef _LOCAL\n#undef endl\n#define debug(x) \\\n cout << #x << \": \"; \\\n dump(x)\n#else\n#define debug(x)\n#endif\n// mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());\n\n// int rnd(int n) { return uniform_int_distribution<int>(0, n - 1)(rng); }\n// ll rndll(ll n) { return uniform_int_distribution<ll>(0, n - 1)(rng); }\n\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\n#pragma endregion\n\nnamespace modular {\nconstexpr ll MOD = 998244353;\nconst int MAXN = 1100000;\ntemplate <ll Modulus> class modint {\n using u64 = ll;\n\n public:\n u64 a;\n\n constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {}\n constexpr u64 &value() noexcept { return a; }\n constexpr const u64 &value() const noexcept { return a; }\n constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; }\n constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; }\n constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; }\n template <typename T> constexpr modint operator^(T rhs) const noexcept { return modint(*this) ^= rhs; }\n constexpr modint operator-() const noexcept { return modint() - *this; }\n constexpr modint &operator+=(const modint rhs) noexcept {\n a += rhs.a;\n if(a >= Modulus) { a -= Modulus; }\n return *this;\n }\n constexpr modint &operator-=(const modint rhs) noexcept {\n if(a < rhs.a) { a += Modulus; }\n a -= rhs.a;\n return *this;\n }\n constexpr modint &operator*=(const modint rhs) noexcept {\n a = a * rhs.a % Modulus;\n return *this;\n }\n constexpr bool operator==(const modint rhs) const noexcept { return a == rhs.a; }\n template <typename T> constexpr modint &operator^=(T n) noexcept {\n modint<Modulus> res = 1;\n modint<Modulus> x = a;\n while(n) {\n if(n & 1) res *= x;\n x *= x;\n n >>= 1;\n }\n a = res.a;\n return *this;\n }\n};\n#define mint modint<MOD>\n#define vmint vector<mint>\nvmint Inv{0, 1}, Prd{1, 1}, Invprd{1, 1};\nmint inv(int n) {\n if(n > MAXN) return mint(n) ^ (MOD - 2);\n if(Inv.size() > n)\n return Inv[n];\n else {\n for(int i = Inv.size(); i <= n; ++i) Inv.emplace_back(Inv[MOD % i] * (-MOD / i));\n return Inv[n];\n }\n}\nmint inv(mint x) { return inv(x.a); }\nmint prd(int n) {\n if(Prd.size() > n)\n return Prd[n];\n else\n for(int i = Prd.size(); i <= n; ++i) Prd.emplace_back(Prd[i - 1] * i);\n return Prd[n];\n}\nmint invprd(int n) {\n if(Invprd.size() > n)\n return Invprd[n];\n else\n for(int i = Invprd.size(); i <= n; ++i) Invprd.emplace_back(Invprd[i - 1] * inv(i));\n return Invprd[n];\n}\nmint modpow(ll a, ll n) {\n mint x = a;\n return x ^= n;\n}\nmint operator/(mint l, mint r) { return l * inv(r); }\nmint &operator/=(mint &l, mint r) { return l = l / r; }\nmint C(int a, int b) {\n if(a < 0 || b < 0) return 0;\n if(a < b) return 0;\n return prd(a) * invprd(b) * invprd(a - b);\n}\nmint P(int a, int b) {\n if(a < 0 || b < 0) return 0;\n if(a < b) return 0;\n return prd(a) * invprd(a - b);\n}\nostream &operator<<(ostream &os, mint a) {\n os << a.a;\n return os;\n}\nostream &operator<<(ostream &os, vmint a) {\n for(auto &e : a) os << e << \" \";\n return os;\n}\nmint operator*(ll x, mint y) { return y * x; }\nistream &operator>>(istream &is, mint &a) {\n ll x;\n is >> x;\n a = x;\n return is;\n}\nmint proot = 3;\n\nvoid FMT(vmint &f, const bool is_inv = false) {\n const int n = f.size();\n const mint root = is_inv ? inv(proot) : proot;\n vmint g(n);\n for(int b = n >> 1; b > 0; b >>= 1) {\n mint a = root ^ ((MOD - 1) / (n / b)), p = 1;\n for(int i = 0; i < n; i += b << 1) {\n rep(j, b) {\n f[i + j + b] *= p;\n g[(i >> 1) + j] = f[i + j] + f[i + b + j];\n g[(n >> 1) + (i >> 1) + j] = f[i + j] - f[i + b + j];\n }\n p *= a;\n }\n swap(f, g);\n }\n if(is_inv) rep(i, n) f[i] *= inv(n);\n}\n\nvmint mul(vmint x, const vmint &y) {\n int n = x.size() + y.size() - 1;\n int s = 1;\n while(s < n) s <<= 1;\n x.resize(s);\n FMT(x);\n vmint z(s);\n rep(i, y.size()) z[i] = y[i];\n FMT(z);\n rep(i, s) x[i] *= z[i];\n FMT(x, true);\n x.resize(n);\n return x;\n}\n\nusing Poly = vmint;\nPoly operator-(Poly f) {\n for(auto &&e : f) e = -e;\n return f;\n}\nPoly &operator+=(Poly &l, const Poly &r) {\n l.resize(max(l.size(), r.size()));\n rep(i, r.size()) l[i] += r[i];\n return l;\n}\nPoly operator+(Poly l, const Poly &r) { return l += r; }\nPoly &operator-=(Poly &l, const Poly &r) {\n l.resize(max(l.size(), r.size()));\n rep(i, r.size()) l[i] -= r[i];\n return l;\n}\nPoly operator-(Poly l, const Poly &r) { return l -= r; }\nPoly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; }\nPoly operator<<(Poly f, size_t n) { return f <<= n; }\nPoly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; }\nPoly operator>>(Poly f, size_t n) { return f >>= n; }\nPoly operator*(const Poly &l, const Poly &r) { return mul(l, r); }\nPoly &operator*=(Poly &l, const Poly &r) { return l = l * r; }\nPoly inv(const Poly &f) {\n Poly g{1 / f[0]};\n while(g.size() < f.size()) {\n Poly x(f.begin(), f.begin() + min(f.size(), g.size() << 1)), y = g;\n x.resize(g.size() << 1), FMT(x);\n y.resize(g.size() << 1), FMT(y);\n rep(i, x.size()) x[i] *= y[i];\n FMT(x, true);\n x >>= g.size();\n x.resize(g.size() << 1), FMT(x);\n rep(i, x.size()) x[i] *= -y[i];\n FMT(x, true);\n g.insert(g.end(), x.begin(), x.begin() + g.size());\n }\n return Poly{begin(g), begin(g) + f.size()};\n}\nPoly integ(const Poly &f) {\n Poly res(f.size() + 1);\n for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i;\n return res;\n}\nPoly deriv(const Poly &f) {\n if(f.size() == 0) return Poly();\n Poly res(f.size() - 1);\n rep(i, res.size()) res[i] = f[i + 1] * (i + 1);\n return res;\n}\nPoly log(const Poly &f) {\n Poly g = integ(inv(f) * deriv(f));\n return Poly{g.begin(), g.begin() + f.size()};\n}\nPoly exp(const Poly &f) {\n Poly g{1};\n while(g.size() < f.size()) {\n Poly x(f.begin(), f.begin() + min(f.size(), g.size() * 2));\n x[0] += 1;\n g.resize(2 * g.size());\n x -= log(g);\n x *= {g.begin(), g.begin() + g.size() / 2};\n rep2(i, g.size() / 2, min<int>(x.size(), g.size()) - 1) g[i] = x[i];\n }\n return {g.begin(), g.begin() + f.size()};\n}\n\n} // namespace modular\nusing namespace modular;\n\nint main() {\n INT(n, m);\n VEC(int, a, n);\n Graph g(n);\n rep(i, n - 1) {\n INT(u, v);\n g[u].eb(v), g[v].eb(u);\n }\n vi sub(n);\n vmint ans(n);\n vmint binom(n + 1);\n binom[0] = 1;\n rep2(i, 1, n) { binom[i] = binom[i - 1] * ((m - 1) + i) * inv(i); }\n vv(int, v, n);\n vv(mint, dp, n);\n auto dfs = [&](auto &&f, int x, int p) -> void {\n for(auto e : g[x]) {\n if(e != p) {\n f(f, e, x);\n if(si(v[e]) > si(v[x])) swap(v[e], v[x]), swap(dp[e], dp[x]);\n int a = si(v[x]), b = si(v[e]);\n if(!b) continue;\n vmint G(b + 1);\n rep(i, b + 1) G[i] = binom[i];\n auto F = dp[e] * G;\n rep(i, b) ans[v[e][i]] += F[i];\n int d = a - b;\n rep(i, b) ans[v[x][i + d]] -= F[i];\n rep(i, b) dp[x][i + d] += dp[e][i];\n // cout << ans << endl;\n }\n }\n v[x].eb(x), dp[x].eb(a[x]);\n };\n dfs(dfs, 0, -1);\n int k = si(v[0]);\n vmint G(k);\n rep(i, k) G[i] = binom[i];\n auto F = dp[0] * G;\n rep(i, k) ans[v[0][i]] += F[i];\n rep(i, n) {\n if(i) cout << \" \";\n cout << ans[i];\n }\n cout << endl;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 49916, "score_of_the_acc": -0.8006, "final_rank": 4 }, { "submission_id": "aoj_3084_4841071", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\n//typedef complex<D> P;\n#define F first\n#define S second\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){int i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\n\n\ntemplate<long long int mod=1000000007>\nstruct Mod_Int{\n typedef long long int ll;\n typedef pair<ll,ll> pll;\n typedef Mod_Int<mod> M;\n ll a;\n \n ll mod_pow(ll a,ll x){\n a%=mod;\n ll ans=1;\n for(int i=0;i<63;i++){\n if(x>>i&1){ans*=a; ans%=mod;}\n a*=a;\n a%=mod;\n }\n return ans;\n }\n \n pll Ex_gcd(ll a,ll b){\n if(b==0){return {1,0};}\n pll ret=Ex_gcd(b,a%b);\n ret.F-=a/b*ret.S;\n return {ret.S,ret.F};\n }\n \n ll prime_R(ll a){\n return mod_pow(a,mod-2);\n }\n \n ll R(ll a){\n ll ret=Ex_gcd(a,mod).F;\n ret%=mod;\n if(ret<0){ret+=mod;}\n return ret;\n }\n \n Mod_Int(ll A=1):a(A){\n a%=mod;\n if(a<0){a+=mod;}\n }\n \n Mod_Int(const M &b):a(b.a){}\n \n M & operator += (const M &b){\n a+=b.a;\n if(a>=mod){a-=mod;}\n return *this;\n }\n \n M operator + (const M &b) const {\n M c=*this;\n return c+=b;\n }\n \n M & operator -= (const M &b){\n a-=b.a;\n if(a<0){a+=mod;}\n return *this;\n }\n \n M operator - (const M &b) const {\n M c=*this;\n return c-=b;\n }\n \n M & operator *= (const M &b){\n (a*=b.a)%=mod;\n return *this;\n }\n \n M operator * (const M &b) const {\n M c=*this;\n return c*=b;\n }\n \n M & operator /= (const M &b){\n (a*=R(b.a))%=mod;\n return *this;\n }\n \n M operator / (const M &b) const {\n M c=*this;\n return c/=b;\n }\n \n M & mod_pow_equal(ll x){\n ll ans=1;\n while(x>0){\n if(x&1){ans*=a; ans%=mod;}\n a*=a;\n a%=mod;\n x>>=1;\n }\n a=ans;\n return *this;\n }\n \n M mod_pow(ll x) const {\n M c(a);\n return c.mod_pow_equal(x);\n }\n \n bool operator == (const M &b) const {return a==b.a;}\n \n bool operator != (const M &b) const {return a!=b.a;}\n \n bool operator <= (const M &b) const {return a<=b.a;}\n \n bool operator < (const M &b) const {return a<b.a;}\n \n bool operator > (const M &b) const {return a>b.a;}\n \n bool operator >= (const M &b) const {return a>=b.a;}\n \n M & operator = (const M &b){\n a=b.a;\n return *this;\n }\n \n M & operator = (const ll &b){\n (a=b)%=mod;\n if(a<0){a+=mod;}\n return *this;\n }\n};\n\ntemplate<long long MOD>istream & operator >> (istream &i,Mod_Int<MOD> &A){ll a; cin>>a; A=Mod_Int<MOD>(a); return i;}\ntemplate<long long MOD>ostream & operator << (ostream &i,const Mod_Int<MOD> &A){i<<A.a; return i;}\n\nnamespace Convolution{\n template<typename T>\n vector<T> fourier(const vector<T> &A,int n,T r){\n vector<T> ret=A;\n vector<T> E(1<<n,1);\n for(int i=1;i<1<<n;i++){E[i]=E[i-1]*r;}\n for(int i=0,j=1;j<1<<n;j++){\n for(int k=1<<(n-1);k>(i^=k);k>>=1);\n if(i>j){swap(ret[i],ret[j]);}\n }\n for(int i=0;i<n;i++){\n for(int j=0;j<1<<n;j+=2<<i){\n for(int k=0;k<1<<i;k++){\n T P=ret[j|k],Q=ret[j|1<<i|k]*E[(1<<n-i-1)*k];\n ret[j|k]=P+Q;\n ret[j|1<<i|k]=P-Q;\n }\n }\n }\n return ret;\n }\n};\n\nusing namespace Convolution;\n\nusing Int=Mod_Int<MOD>;\n\nconst Int r=3;\nconst Int inv=Int(1)/3;\nconst int MAX=21;\nvector<vector<Int>> K;\n\nvoid make_k(ll M){\n K.resize(MAX+1);\n for(int i=1;i<=MAX;i++){\n K[i].resize(1<<i,0);\n K[i][0]=1;\n for(int j=1;j<1<<(i-1);j++){\n K[i][j]=K[i][j-1]*(M+j-1)/j;\n }\n K[i]=fourier(K[i],i,r.mod_pow(998244352>>i));\n }\n}\n\nvoid cul(vector<Int> &a){\n int sz=a.size();\n int n=0;\n while(sz>(1<<n)){n++;}\n n++;\n a.resize(1<<n,0);\n a=fourier(a,n,r.mod_pow(998244352>>n));\n for(int i=0;i<1<<n;i++){a[i]*=K[n][i];}\n a=fourier(a,n,inv.mod_pow(998244352>>n));\n for(auto &I:a){I/=1<<n;}\n a.resize(sz);\n}\n\nll N,M;\nvector<Int> ans;\nvector<Int> A;\nvector<vector<int>> dp;\nvector<vector<int>> edge;\n\n\nvoid dfs(int u,int p){\n int mx=0,idx=-1;\n for(auto &v:edge[u]){\n if(v!=p){\n dfs(v,u);\n if(mx<(int)dp[v].size()){\n mx=dp[v].size();\n idx=v;\n }\n }\n }\n if(idx!=-1){swap(dp[u],dp[idx]);}\n int tp=dp[u].size();\n for(auto &v:edge[u]){\n if(v!=p && v!=idx){\n int sz=dp[v].size();\n int dif=tp-sz;\n vector<Int> k(sz);\n for(int i=0;i<sz;i++){k[i]=A[dp[v][i]];}\n cul(k);\n for(int i=0;i<sz;i++){\n ans[dp[v][i]]+=k[i];\n ans[dp[u][dif+i]]-=k[i];\n A[dp[u][dif+i]]+=A[dp[v][i]];\n }\n dp[v].clear();\n }\n }\n dp[u].push_back(u);\n}\n\nvoid solve(){\n dfs(0,-1);\n int sz=dp[0].size();\n vector<Int> k(sz);\n for(int i=0;i<sz;i++){k[i]=A[dp[0][i]];}\n cul(k);\n for(int i=0;i<sz;i++){ans[dp[0][i]]+=k[i];}\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin>>N>>M;\n make_k(M);\n ans.resize(N,0);\n A.resize(N);\n dp.resize(N);\n edge.resize(N);\n cin>>A;\n for(int i=1;i<N;i++){\n int u,v;\n cin>>u>>v;\n edge[u].push_back(v);\n edge[v].push_back(u);\n }\n solve();\n cout<<ans<<endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 610, "memory_kb": 68900, "score_of_the_acc": -1.4095, "final_rank": 8 }, { "submission_id": "aoj_3084_4840570", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\ntemplate<typename T,T MOD = 1000000007>\nstruct Mint{\n static constexpr T mod = MOD;\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n Mint pow(long long k){\n Mint res(1),tmp(v);\n while(k){\n if(k&1) res*=tmp;\n tmp*=tmp;\n k>>=1;\n }\n return res;\n }\n\n static Mint add_identity(){return Mint(0);}\n static Mint mul_identity(){return Mint(1);}\n\n Mint inv(){return pow(MOD-2);}\n\n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n Mint& operator/=(Mint a){return (*this)*=a.inv();}\n\n Mint operator+(Mint a) const{return Mint(v)+=a;}\n Mint operator-(Mint a) const{return Mint(v)-=a;}\n Mint operator*(Mint a) const{return Mint(v)*=a;}\n Mint operator/(Mint a) const{return Mint(v)/=a;}\n\n Mint operator-() const{return v?Mint(MOD-v):Mint(v);}\n\n bool operator==(const Mint a)const{return v==a.v;}\n bool operator!=(const Mint a)const{return v!=a.v;}\n bool operator <(const Mint a)const{return v <a.v;}\n\n static Mint comb(long long n,int k){\n Mint num(1),dom(1);\n for(int i=0;i<k;i++){\n num*=Mint(n-i);\n dom*=Mint(i+1);\n }\n return num/dom;\n }\n};\ntemplate<typename T,T MOD> constexpr T Mint<T, MOD>::mod;\ntemplate<typename T,T MOD>\nostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}\n\n\nconstexpr int bmds(int x){\n const int v[] = {1012924417, 924844033, 998244353,\n 897581057, 645922817};\n return v[x];\n}\nconstexpr int brts(int x){\n const int v[] = {5, 5, 3, 3, 3};\n return v[x];\n}\n\ntemplate<int X>\nstruct NTT{\n static constexpr int md = bmds(X);\n static constexpr int rt = brts(X);\n using M = Mint<int, md>;\n vector< vector<M> > rts,rrts;\n\n void ensure_base(int n){\n if((int)rts.size()>=n) return;\n rts.resize(n);rrts.resize(n);\n for(int i=1;i<n;i<<=1){\n if(!rts[i].empty()) continue;\n M w=M(rt).pow((md-1)/(i<<1));\n M rw=w.inv();\n rts[i].resize(i);rrts[i].resize(i);\n rts[i][0]=M(1);rrts[i][0]=M(1);\n for(int k=1;k<i;k++){\n rts[i][k]=rts[i][k-1]*w;\n rrts[i][k]=rrts[i][k-1]*rw;\n }\n }\n }\n\n void ntt(vector<M> &as,bool f){\n int n=as.size();\n assert((n&(n-1))==0);\n ensure_base(n);\n\n for(int i=0,j=1;j+1<n;j++){\n for(int k=n>>1;k>(i^=k);k>>=1);\n if(i>j) swap(as[i],as[j]);\n }\n\n for(int i=1;i<n;i<<=1){\n for(int j=0;j<n;j+=i*2){\n for(int k=0;k<i;k++){\n M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]);\n as[i+j+k]=as[j+k]-z;\n as[j+k]+=z;\n }\n }\n }\n\n if(f){\n M tmp=M(n).inv();\n for(int i=0;i<n;i++) as[i]*=tmp;\n }\n }\n\n vector<M> multiply(vector<M> as,vector<M> bs){\n int need=as.size()+bs.size()-1;\n int sz=1;\n while(sz<need) sz<<=1;\n as.resize(sz,M(0));\n bs.resize(sz,M(0));\n\n ntt(as,0);ntt(bs,0);\n for(int i=0;i<sz;i++) as[i]*=bs[i];\n ntt(as,1);\n\n as.resize(need);\n return as;\n }\n\n vector<int> multiply(vector<int> as,vector<int> bs){\n vector<M> am(as.size()),bm(bs.size());\n for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]);\n for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]);\n vector<M> cm=multiply(am,bm);\n vector<int> cs(cm.size());\n for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v;\n return cs;\n }\n};\ntemplate<int X> constexpr int NTT<X>::md;\ntemplate<int X> constexpr int NTT<X>::rt;\n\n\ntemplate<typename T>\nstruct FormalPowerSeries{\n using Poly = vector<T>;\n using Conv = function<Poly(Poly, Poly)>;\n Conv conv;\n FormalPowerSeries(Conv conv):conv(conv){}\n\n Poly pre(const Poly &as,int deg){\n return Poly(as.begin(),as.begin()+min((int)as.size(),deg));\n }\n\n Poly add(Poly as,Poly bs){\n int sz=max(as.size(),bs.size());\n Poly cs(sz,T(0));\n for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];\n for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i];\n return cs;\n }\n\n Poly sub(Poly as,Poly bs){\n int sz=max(as.size(),bs.size());\n Poly cs(sz,T(0));\n for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];\n for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i];\n return cs;\n }\n\n Poly mul(Poly as,Poly bs){\n return conv(as,bs);\n }\n\n Poly mul(Poly as,T k){\n for(auto &a:as) a*=k;\n return as;\n }\n\n // F(0) must not be 0\n Poly inv(Poly as,int deg){\n assert(as[0]!=T(0));\n Poly rs({T(1)/as[0]});\n for(int i=1;i<deg;i<<=1)\n rs=pre(sub(add(rs,rs),mul(mul(rs,rs),pre(as,i<<1))),i<<1);\n return rs;\n }\n\n // not zero\n Poly div(Poly as,Poly bs){\n while(as.back()==T(0)) as.pop_back();\n while(bs.back()==T(0)) bs.pop_back();\n if(bs.size()>as.size()) return Poly();\n reverse(as.begin(),as.end());\n reverse(bs.begin(),bs.end());\n int need=as.size()-bs.size()+1;\n Poly ds=pre(mul(as,inv(bs,need)),need);\n reverse(ds.begin(),ds.end());\n return ds;\n }\n\n Poly mod(Poly as,Poly bs){\n if(as==Poly(as.size(),0)) return Poly({0});\n as=sub(as,mul(div(as,bs),bs));\n if(as==Poly(as.size(),0)) return Poly({0});\n while(as.back()==T(0)) as.pop_back();\n return as;\n }\n\n // F(0) must be 1\n Poly sqrt(Poly as,int deg){\n assert(as[0]==T(1));\n T inv2=T(1)/T(2);\n Poly ss({T(1)});\n for(int i=1;i<deg;i<<=1){\n ss=pre(add(ss,mul(pre(as,i<<1),inv(ss,i<<1))),i<<1);\n for(T &x:ss) x*=inv2;\n }\n return ss;\n }\n\n Poly diff(Poly as){\n int n=as.size();\n Poly rs(n-1);\n for(int i=1;i<n;i++) rs[i-1]=as[i]*T(i);\n return rs;\n }\n\n Poly integral(Poly as){\n int n=as.size();\n Poly rs(n+1);\n rs[0]=T(0);\n for(int i=0;i<n;i++) rs[i+1]=as[i]/T(i+1);\n return rs;\n }\n\n // F(0) must be 1\n Poly log(Poly as,int deg){\n return pre(integral(mul(diff(as),inv(as,deg))),deg);\n }\n\n // F(0) must be 0\n Poly exp(Poly as,int deg){\n Poly f({T(1)});\n as[0]+=T(1);\n for(int i=1;i<deg;i<<=1)\n f=pre(mul(f,sub(pre(as,i<<1),log(f,i<<1))),i<<1);\n return f;\n }\n\n Poly partition(int n){\n Poly rs(n+1);\n rs[0]=T(1);\n for(int k=1;k<=n;k++){\n if(1LL*k*(3*k+1)/2<=n) rs[k*(3*k+1)/2]+=T(k%2?-1LL:1LL);\n if(1LL*k*(3*k-1)/2<=n) rs[k*(3*k-1)/2]+=T(k%2?-1LL:1LL);\n }\n return inv(rs,n+1);\n }\n\n Poly bernoulli(int n){\n Poly rs(n+1,1);\n for(int i=1;i<=n;i++) rs[i]=rs[i-1]/T(i+1);\n rs=inv(rs,n+1);\n T tmp(1);\n for(int i=1;i<=n;i++){\n tmp*=T(i);\n rs[i]*=tmp;\n }\n return rs;\n }\n};\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\nstruct Centroid{\n vector<int> sz,dead;\n vector< vector<int> > G;\n Centroid(){}\n Centroid(int n):sz(n,1),dead(n,0),G(n){}\n\n void add_edge(int u,int v){\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n int dfs(int v,int p){\n sz[v]=1;\n for(int u:G[v])\n if(u!=p&&!dead[u]) sz[v]+=dfs(u,v);\n return sz[v];\n }\n\n void find(int v,int p,int tmp,vector<int> &cs) {\n int ok=1;\n for (int u:G[v]){\n if(u==p||dead[u]) continue;\n find(u,v,tmp,cs);\n ok&=(sz[u]<=tmp/2);\n }\n ok&=(tmp-sz[v]<=tmp/2);\n if(ok) cs.push_back(v);\n }\n\n vector<int> build(int r) {\n int tmp=dfs(r,-1);\n vector<int> cs;\n find(r,-1,tmp,cs);\n return cs;\n }\n\n void disable(int v){\n dead[v]=1;\n }\n\n void enable(int v){\n dead[v]=0;\n }\n\n int alive(int v){\n return !dead[v];\n }\n};\n\n\ntemplate<typename F>\nstruct FixPoint : F{\n FixPoint(F&& f):F(forward<F>(f)){}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const{\n return F::operator()(*this,forward<Args>(args)...);\n }\n};\ntemplate<typename F>\ninline decltype(auto) MFP(F&& f){\n return FixPoint<F>{forward<F>(f)};\n}\n\n//INSERT ABOVE HERE\nsigned main(){\n NTT<2> ntt;\n using M = decltype(ntt)::M;\n auto conv=[&](auto as,auto bs){return ntt.multiply(as,bs);};\n FormalPowerSeries<M> FPS(conv);\n using Poly = decltype(FPS)::Poly;\n\n int n,m;\n cin>>n>>m;\n\n Poly as(n);\n for(int i=0;i<n;i++) cin>>as[i].v;\n\n Centroid G(n+1);\n G.add_edge(n,0);\n for(int i=1;i<n;i++){\n int u,v;\n cin>>u>>v;\n G.add_edge(u,v);\n }\n\n vector<int> par(n+1,-1);\n {\n queue<int> que;\n que.emplace(n);\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int u:G.G[v]){\n if(u==par[v]) continue;\n par[u]=v;\n que.emplace(u);\n }\n }\n }\n\n vector<int> dead(n+1,0);\n auto disable=\n [&](int k){\n dead[k]=1;\n G.disable(k);\n };\n disable(n);\n\n const int deg = 1<<18;\n Poly ps(n,M(1));\n ps=FPS.exp(FPS.mul(FPS.log(ps,deg),M(m)),deg);\n\n queue<int> que;\n que.emplace(G.build(0)[0]);\n\n Poly ans(n);\n while(!que.empty()){\n int r=que.front();que.pop();\n\n Poly qs;\n MFP([&](auto dfs,int v,int p,int h)->void{\n while(!(h<(int)qs.size())) qs.emplace_back(0);\n qs[h]+=as[v];\n for(int u:G.G[v]){\n if(u==p) continue;\n if(dead[u]) continue;\n dfs(u,v,h+1);\n }\n })(r,par[r],0);\n reverse(qs.begin(),qs.end());\n\n vector<int> bs;\n int p=r;\n while(~p&&!dead[p]){\n bs.emplace_back(p);\n p=par[p];\n }\n\n int len=qs.size()-1;\n qs.resize(len+bs.size(),M(0));\n auto rs=FPS.mul(FPS.pre(ps,qs.size()),qs);\n\n for(int i=0;i<(int)bs.size();i++) ans[bs[i]]+=rs[len+i];\n\n disable(r);\n for(int u:G.G[r])\n if(!dead[u]) que.emplace(G.build(u)[0]);\n }\n\n for(int i=0;i<n;i++){\n if(i) cout<<\" \";\n cout<<ans[i];\n }\n cout<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1340, "memory_kb": 67068, "score_of_the_acc": -1.9315, "final_rank": 15 }, { "submission_id": "aoj_3084_4840469", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\n//typedef complex<D> P;\n#define F first\n#define S second\n//const ll MOD=1000000007;\nconst ll MOD=998244353;\n\ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){int i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\n\n\ntemplate<long long int mod=1000000007>\nstruct Mod_Int{\n typedef long long int ll;\n typedef pair<ll,ll> pll;\n typedef Mod_Int<mod> M;\n ll a;\n \n ll mod_pow(ll a,ll x){\n a%=mod;\n ll ans=1;\n for(int i=0;i<63;i++){\n if(x>>i&1){ans*=a; ans%=mod;}\n a*=a;\n a%=mod;\n }\n return ans;\n }\n \n pll Ex_gcd(ll a,ll b){\n if(b==0){return {1,0};}\n pll ret=Ex_gcd(b,a%b);\n ret.F-=a/b*ret.S;\n return {ret.S,ret.F};\n }\n \n ll prime_R(ll a){\n return mod_pow(a,mod-2);\n }\n \n ll R(ll a){\n ll ret=Ex_gcd(a,mod).F;\n ret%=mod;\n if(ret<0){ret+=mod;}\n return ret;\n }\n \n Mod_Int(ll A=1):a(A){\n a%=mod;\n if(a<0){a+=mod;}\n }\n \n Mod_Int(const M &b):a(b.a){}\n \n M & operator += (const M &b){\n a+=b.a;\n if(a>=mod){a-=mod;}\n return *this;\n }\n \n M operator + (const M &b) const {\n M c=*this;\n return c+=b;\n }\n \n M & operator -= (const M &b){\n a-=b.a;\n if(a<0){a+=mod;}\n return *this;\n }\n \n M operator - (const M &b) const {\n M c=*this;\n return c-=b;\n }\n \n M & operator *= (const M &b){\n (a*=b.a)%=mod;\n return *this;\n }\n \n M operator * (const M &b) const {\n M c=*this;\n return c*=b;\n }\n \n M & operator /= (const M &b){\n (a*=R(b.a))%=mod;\n return *this;\n }\n \n M operator / (const M &b) const {\n M c=*this;\n return c/=b;\n }\n \n M & mod_pow_equal(ll x){\n ll ans=1;\n while(x>0){\n if(x&1){ans*=a; ans%=mod;}\n a*=a;\n a%=mod;\n x>>=1;\n }\n a=ans;\n return *this;\n }\n \n M mod_pow(ll x) const {\n M c(a);\n return c.mod_pow_equal(x);\n }\n \n bool operator == (const M &b) const {return a==b.a;}\n \n bool operator != (const M &b) const {return a!=b.a;}\n \n bool operator <= (const M &b) const {return a<=b.a;}\n \n bool operator < (const M &b) const {return a<b.a;}\n \n bool operator > (const M &b) const {return a>b.a;}\n \n bool operator >= (const M &b) const {return a>=b.a;}\n \n M & operator = (const M &b){\n a=b.a;\n return *this;\n }\n \n M & operator = (const ll &b){\n (a=b)%=mod;\n if(a<0){a+=mod;}\n return *this;\n }\n};\n\ntemplate<long long MOD>istream & operator >> (istream &i,Mod_Int<MOD> &A){ll a; cin>>a; A=Mod_Int<MOD>(a); return i;}\ntemplate<long long MOD>ostream & operator << (ostream &i,const Mod_Int<MOD> &A){i<<A.a; return i;}\n\nnamespace Convolution{\n template<typename T>\n vector<T> fourier(const vector<T> &A,int n,T r){\n vector<T> ret=A;\n vector<T> E(1<<n,1);\n for(int i=1;i<1<<n;i++){E[i]=E[i-1]*r;}\n for(int i=0,j=1;j<1<<n;j++){\n for(int k=1<<(n-1);k>(i^=k);k>>=1);\n if(i>j){swap(ret[i],ret[j]);}\n }\n for(int i=0;i<n;i++){\n for(int j=0;j<1<<n;j+=2<<i){\n for(int k=0;k<1<<i;k++){\n T P=ret[j|k],Q=ret[j|1<<i|k]*E[(1<<n-i-1)*k];\n ret[j|k]=P+Q;\n ret[j|1<<i|k]=P-Q;\n }\n }\n }\n return ret;\n }\n};\n\nusing namespace Convolution;\n\nusing Int=Mod_Int<MOD>;\n\nconst Int r=3;\nconst Int inv=Int(1)/3;\nconst int MAX=21;\nvector<vector<Int>> K;\n\nvoid make_k(ll M){\n K.resize(MAX+1);\n for(int i=1;i<=MAX;i++){\n K[i].resize(1<<i,0);\n K[i][0]=1;\n for(int j=1;j<1<<(i-1);j++){\n K[i][j]=K[i][j-1]*(M+j-1)/j;\n }\n K[i]=fourier(K[i],i,r.mod_pow(998244352>>i));\n }\n}\n\nvoid cul(vector<Int> &a){\n int sz=a.size();\n int n=0;\n while(sz>(1<<n)){n++;}\n n++;\n a.resize(1<<n,0);\n a=fourier(a,n,r.mod_pow(998244352>>n));\n for(int i=0;i<1<<n;i++){a[i]*=K[n][i];}\n a=fourier(a,n,inv.mod_pow(998244352>>n));\n for(auto &I:a){I/=1<<n;}\n a.resize(sz);\n}\n\nll N,M;\nvector<Int> ans;\nvector<Int> A;\nvector<vector<int>> dp;\nvector<vector<int>> edge;\n\n\nvoid dfs(int u,int p){\n int mx=0,idx=-1;\n for(auto &v:edge[u]){\n if(v!=p){\n dfs(v,u);\n if(mx<(int)dp[v].size()){\n mx=dp[v].size();\n idx=v;\n }\n }\n }\n if(idx!=-1){swap(dp[u],dp[idx]);}\n int tp=dp[u].size();\n for(auto &v:edge[u]){\n if(v!=p && v!=idx){\n int sz=dp[v].size();\n int dif=tp-sz;\n vector<Int> k(sz);\n for(int i=0;i<sz;i++){k[i]=A[dp[v][i]];}\n cul(k);\n for(int i=0;i<sz;i++){\n ans[dp[v][i]]+=k[i];\n ans[dp[u][dif+i]]-=k[i];\n A[dp[u][dif+i]]+=A[dp[v][i]];\n }\n dp[v].clear();\n }\n }\n dp[u].push_back(u);\n}\n\nvoid solve(){\n dfs(0,-1);\n int sz=dp[0].size();\n vector<Int> k(sz);\n for(int i=0;i<sz;i++){k[i]=A[dp[0][i]];}\n cul(k);\n for(int i=0;i<sz;i++){ans[dp[0][i]]+=k[i];}\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin>>N>>M;\n make_k(M);\n ans.resize(N,0);\n A.resize(N);\n dp.resize(N);\n edge.resize(N);\n cin>>A;\n for(int i=1;i<N;i++){\n int u,v;\n cin>>u>>v;\n edge[u].push_back(v);\n edge[v].push_back(u);\n }\n solve();\n cout<<ans<<endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 920, "memory_kb": 68776, "score_of_the_acc": -1.6407, "final_rank": 11 }, { "submission_id": "aoj_3084_4829172", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\n//typedef complex<D> P;\n#define F first\n#define S second\nconst ll MOD=1000000007;\n//const ll MOD=998244353;\n\ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){int i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\n\n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n ll N,K;\n cin>>N>>K;\n vector<ll> X(N),Y(N);\n for(int i=0;i<N;i++){cin>>X[i]>>Y[i];}\n auto cul1=\n [](const vector<ll> &X){\n ll lf=X[0],rg=X[0],ret=0;\n for(auto &I:X){\n if(lf<=I && I<=rg){lf=I; rg=I;}\n else if(rg<I){ret+=I-rg; lf=rg; rg=I;}\n else{ret+=lf-I; rg=lf; lf=I;}\n }\n return ret;\n };\n auto cul2=\n [](const vector<ll> &X){\n ll ret=0,ls=X[0];\n for(auto &I:X){ret+=abs(I-ls); ls=I;}\n return ret;\n };\n cout<<max(cul1(X)+cul1(Y),cul2(X)+cul2(Y)-K)<<endl;\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4584, "score_of_the_acc": -0.0163, "final_rank": 1 }, { "submission_id": "aoj_3084_4829024", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n//INSERT ABOVE HERE\nsigned main(){\n Int n,k;\n cin>>n>>k;\n vector<Int> xs(n),ys(n);\n for(Int i=0;i<n;i++) cin>>xs[i]>>ys[i];\n\n Int ans=0,dif=0;\n auto calc=\n [&](vector<Int> zs){\n for(Int i=0;i+1<n;i++) ans+=abs(zs[i+1]-zs[i]);\n for(Int i=1;i+1<n;i++){\n if(zs[i-1]<zs[i]&&zs[i]>zs[i+1]){\n Int d=zs[i]-max(zs[i-1],zs[i+1]);\n dif+=d;\n zs[i]-=d;\n }\n if(zs[i-1]>zs[i]&&zs[i]<zs[i+1]){\n Int d=min(zs[i-1],zs[i+1])-zs[i];\n dif+=d;\n zs[i]+=d;\n }\n }\n };\n calc(xs);calc(ys);\n\n chmin(dif,k);\n ans-=dif;\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 5388, "score_of_the_acc": -0.0506, "final_rank": 2 } ]
aoj_3086_cpp
Problem 長さ $N$ の数列 $A = \{ a_0, a_1, \ldots, a_{N-1} \}$ が与えられる。 この数列をいくつかの「長さ $L$ 以上の連続する部分列」に分割することを考える。 より形式的には、以下の $3$ つの条件を全て満たすような整数列 $D = \{ d_0, d_1, \ldots, d_M \} $ を考える。 $d_0 = 0$ $d_M = N$ $L \leq d_{i+1}-d_i \ (0 \leq i \lt M)$ $f(D) = \displaystyle \sum_{i = 0}^{M - 1} \max_{d_i \leq j \lt d_{i+1}} a_j $ とする。 $f(D)$ の最大値を求めよ。 Input 入力は以下の形式で与えられる。 $N$ $L$ $a_0$ $a_1$ $\ldots$ $a_{N-1}$ Constraints 入力は以下の条件を満たす。 $1 \leq L \leq N \leq 2 \times 10^5$ $-10^9 \leq a_i \leq 10^9$ 入力は全て整数である Output $f(D)$ の最大値を一行に出力する。 Sample Input 1 3 1 1 2 3 Sample Output 1 6 $D = \{0,1,2,3\}$ とすると、$f(D) = 1+2+3 = 6$ となり、これが最大です。 Sample Input 2 3 2 1 2 3 Sample Output 2 3 $D$ として考えられるものは $\{0, 3\}$ のみです。 Sample Input 3 6 2 1 1 5 5 1 1 Sample Output 3 10 Sample Input 4 5 1 -1 -10 -1 -10 -1 Sample Output 4 -1
[ { "submission_id": "aoj_3086_10212209", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#if __has_include(<atcoder/all>)\n#include <atcoder/all>\n#endif\nusing ll=long long;\nusing ull=unsigned long long;\nusing P=pair<ll,ll>;\ntemplate<typename T>using minque=priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T>bool chmax(T &a,const T &b){return (a<b?(a=b,true):false);}\ntemplate<typename T>bool chmin(T &a,const T &b){return (a>b?(a=b,true):false);}\ntemplate<typename T1,typename T2>istream &operator>>(istream &is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}\ntemplate<typename T>istream &operator>>(istream &is,vector<T> &a){for(auto &i:a)is>>i;return is;}\ntemplate<typename T1,typename T2>void operator++(pair<T1,T2>&a,int n){a.first++,a.second++;}\ntemplate<typename T1,typename T2>void operator--(pair<T1,T2>&a,int n){a.first--,a.second--;}\ntemplate<typename T>void operator++(vector<T>&a,int n){for(auto &i:a)i++;}\ntemplate<typename T>void operator--(vector<T>&a,int n){for(auto &i:a)i--;}\n#define overload3(_1,_2,_3,name,...) name\n#define rep1(i,n) for(int i=0;i<(int)(n);i++)\n#define rep2(i,l,r) for(int i=(int)(l);i<(int)(r);i++)\n#define rep(...) overload3(__VA_ARGS__,rep2,rep1)(__VA_ARGS__)\n#define reps(i,l,r) rep2(i,l,r)\n#define all(x) x.begin(),x.end()\n#define pcnt(x) __builtin_popcountll(x)\n#define fin(x) return cout<<(x)<<'\\n',static_cast<void>(0)\n#define yn(x) cout<<((x)?\"Yes\\n\":\"No\\n\")\nll myceil(ll a,ll b){return (a+b-1)/b;}\ntemplate<typename T,size_t n,size_t id=0>\nauto vec(const int (&d)[n],const T &init=T()){\n if constexpr (id<n)return vector(d[id],vec<T,n,id+1>(d,init));\n else return init;\n}\n#ifdef LOCAL\n#include<debug.h>\n#else\n#define debug(...) static_cast<void>(0)\n#define debugg(...) static_cast<void>(0)\ntemplate<typename T1,typename T2>ostream &operator<<(ostream &os,const pair<T1,T2>&p){os<<p.first<<' '<<p.second;return os;}\n#endif\nstruct Timer{\n clock_t start;\n Timer(){\n start=clock();\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout<<fixed<<setprecision(16);\n }\n inline double now(){return (double)(clock()-start)/1000;}\n #ifdef LOCAL\n ~Timer(){\n cerr<<\"time:\";\n cerr<<now();\n cerr<<\"ms\\n\";\n }\n #endif\n}timer;\nvoid SOLVE();\nint main(){\n int testcase=1;\n //cin>>testcase;\n for(int i=0;i<testcase;i++){\n SOLVE();\n }\n}\ntemplate<typename T>\nstruct fast_stack{\nprivate:\n T *st;\n int p;\npublic:\n fast_stack(int n):p(0){\n st=new T[n];\n }\n fast_stack(){}\n inline void push(const T&x){st[p++]=x;}\n template<typename...Args>\n inline T& emplace(Args&&...args){\n st[p++]=T(std::forward<Args>(args)...);\n return st[p-1];\n }\n inline T& pop(){return st[--p];}\n inline T top()const{return st[p-1];}\n inline T& top(){return st[p-1];}\n inline int size()const{return p;}\n inline bool empty()const{return !p;}\n inline void clear(){p=0;}\n inline void kill(){delete[] st;}\n};\n#include<type_traits>\ntemplate<typename T>\nconstexpr std::enable_if_t<std::numeric_limits<T>::digits<=32,int>msb(T n){return n==0?-1:31-__builtin_clz(n);}\ntemplate<typename T>\nconstexpr std::enable_if_t<(std::numeric_limits<T>::digits>32),int>msb(T n){return n==0?-1:63-__builtin_clzll(n);}\n\ntemplate<typename T>\nconstexpr std::enable_if_t<std::numeric_limits<T>::digits<=32,int>lsb(T n){return n==0?-1:__builtin_ctz(n);}\ntemplate<typename T>\nconstexpr std::enable_if_t<(std::numeric_limits<T>::digits>32),int>lsb(T n){return n==0?-1:__builtin_ctzll(n);}\n\ntemplate<typename T>\nconstexpr std::enable_if_t<std::is_integral_v<T>,T>floor_pow2(T n){return n==0?0:T(1)<<msb(n);}\n\ntemplate<typename T>\nconstexpr std::enable_if_t<std::is_integral_v<T>,T>ceil_pow2(T n){return n<=1?1:T(1)<<(msb(n-1)+1);}\ntemplate<typename Func>\nstd::vector<decltype(std::declval<Func>()(0,0))>monge_shortest_path(int n,const Func&f){\n using T=decltype(f(0,0));\n static constexpr T inf=std::numeric_limits<T>::max();\n std::vector<T>dp(n,inf);\n std::vector<int>amin(n);\n dp[0]=0;\n dp[n-1]=f(0,n-1);\n fast_stack<std::pair<int,int>>st(msb(n)*3+1);\n st.emplace(0,n-1);\n while(!st.empty()){\n auto [l,r]=st.pop();\n if(l<0){\n l=~l,r=~r;\n int mid=(l+r)/2;\n for(int i=l+1;i<=mid;i++){\n T now=dp[i]+f(i,r);\n if(dp[r]>now){\n dp[r]=now;\n amin[r]=i;\n }\n }\n }\n else if(l+1<r){\n int mid=(l+r)/2;\n st.emplace(mid,r);\n st.emplace(~l,~r);\n st.emplace(l,mid);\n for(int i=amin[l];i<=amin[r];i++){\n T now=dp[i]+f(i,mid);\n if(dp[mid]>now){\n dp[mid]=now;\n amin[mid]=i;\n }\n }\n }\n }\n st.kill();\n return dp;\n}\ntemplate<typename M,int L=5>\nstruct SparseTable{\n using S=typename M::S;\nprivate:\n std::vector<S>dat,prefix,suffix;\n std::vector<std::vector<S>>sp;\npublic:\n SparseTable(){}\n SparseTable(std::vector<S>a):dat(a){\n int n=a.size();\n n=(n+(1<<L)-1)&~((1<<L)-1);\n a.resize(n,M::e());\n prefix=suffix=a;\n std::vector<S>d2(n>>L,M::e());\n for(int i=0;i<d2.size();i++){\n for(int j=0;j<(1<<L);j++)d2[i]=M::op(d2[i],a[(i<<L)+j]);\n }\n for(int i=0;i<(n>>L);i++){\n for(int j=1;j<(1<<L);j++)prefix[(i<<L)+j]=M::op(prefix[(i<<L)+j-1],prefix[(i<<L)+j]);\n }\n for(int i=(n>>L)-1;i>=0;i--){\n for(int j=(1<<L)-1;j>=1;j--)suffix[(i<<L)+j-1]=M::op(suffix[(i<<L)+j-1],suffix[(i<<L)+j]);\n }\n int d=(d2.size()==1?1:32-__builtin_clz(d2.size()-1));\n sp.resize(d,d2);\n for(int i=1;i<d;i++){\n int w=1<<i;\n for(int j=w;j<=d2.size();j+=w*2){\n for(int k=j-2;k>=j-w;k--)sp[i][k]=M::op(d2[k],sp[i][k+1]);\n int r=std::min<int>(d2.size(),j+w);\n for(int k=j+1;k<r;k++)sp[i][k]=M::op(sp[i][k-1],d2[k]);\n }\n }\n }\n S prod(int l,int r)const{\n if(l==r)return M::e();\n r--;\n int lid=l>>L,rid=r>>L;\n if(lid==rid){\n S ret=M::e();\n for(int i=l;i<=r;i++)ret=M::op(ret,dat[i]);\n return ret;\n }\n else{\n lid++;\n rid--;\n S mid=M::e();\n if(lid==rid)mid=sp[0][lid];\n else if(lid<rid){\n int s=msb(lid^rid);\n mid=M::op(sp[s][lid],sp[s][rid]);\n }\n return M::op(suffix[l],M::op(mid,prefix[r]));\n }\n }\n};\ntemplate<typename T>\nstruct MonoidMax{\n using S=T;\n using F=std::nullptr_t;\n static inline S op(const S&x,const S&y){return x<y?y:x;}\n static inline S e(){return std::numeric_limits<S>::min();}\n static inline S mapping(F,const S&x,long long){return x;}\n static inline F composition(F,F){return nullptr;}\n static inline F id(){return nullptr;}\n static inline void revS(S&x){}\n static inline S pow(const S&x,long long p){return x;}\n};\nvoid SOLVE(){\n int n,l;\n cin>>n>>l;\n vector<ll>a(n);\n cin>>a;\n SparseTable<MonoidMax<ll>>sp(a);\n cout<<-monge_shortest_path(n+1,[&](int i,int j)->ll {\n if(j-i<l)return 1e18;\n return -sp.prod(i,j);\n })[n]<<endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 10852, "score_of_the_acc": -0.2844, "final_rank": 5 }, { "submission_id": "aoj_3086_10198609", "code_snippet": "// AOJ #3086\n// Partition 2025.2.6\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst ll MINF = -1e18;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nstruct SegTree {\n int n;\n vector<ll> tree;\n SegTree(int n) : n(n) {\n tree.assign(4*n, MINF);\n }\n void update(int idx, int l, int r, int pos, ll val) {\n if(l == r){\n tree[idx] = val;\n return;\n }\n int mid = (l + r) / 2;\n if(pos <= mid)\n update(idx*2, l, mid, pos, val);\n else\n update(idx*2+1, mid+1, r, pos, val);\n tree[idx] = max(tree[idx*2], tree[idx*2+1]);\n }\n ll query(int idx, int l, int r, int ql, int qr) {\n if(ql > r || qr < l)\n return MINF;\n if(ql <= l && r <= qr)\n return tree[idx];\n int mid = (l + r) / 2;\n return max(query(idx*2, l, mid, ql, qr), query(idx*2+1, mid+1, r, ql, qr));\n }\n void updatePos(int pos, ll val) {\n update(1, 0, n-1, pos, val);\n }\n ll queryRange(int l, int r) {\n if(l > r) return MINF;\n return query(1, 0, n-1, l, r);\n }\n};\n \nint main(){\n int N = Cin(), L = Cin();\n vector<ll> A(N);\n for (int i = 0; i < N; i++) A[i] = Cin();\n \n vector<ll> dp(N+1, MINF);\n dp[0] = 0;\n \n int sizeTree = N+1;\n SegTree seg_dp(sizeTree), seg_dpa(sizeTree);\n seg_dp.updatePos(0, dp[0]);\n if(N > 0) seg_dpa.updatePos(0, dp[0] + A[0]);\n for (int j = 1; j < sizeTree; j++){\n seg_dp.updatePos(j, MINF);\n seg_dpa.updatePos(j, MINF);\n }\n \n vector<int> B;\n for (int i = 1; i <= N; i++){\n int newIdx = i - 1;\n while(!B.empty() && A[newIdx] >= A[B.back()])\n B.pop_back();\n B.push_back(newIdx);\n \n int X = i - L;\n if(X < 0) continue;\n \n ll best = MINF;\n if((int)B.size() == i){\n best = seg_dpa.queryRange(0, X);\n } else {\n int prev = 0;\n int segStart = 0, segEnd = min(X, B[0]);\n if(segStart <= segEnd){\n ll candidate = seg_dp.queryRange(segStart, segEnd) + A[B[0]];\n best = max(best, candidate);\n }\n for (int r = 0; r < (int)B.size()-1; r++){\n segStart = B[r] + 1;\n segEnd = min(X, B[r+1]);\n if(segStart <= segEnd){\n ll candidate = seg_dp.queryRange(segStart, segEnd) + A[B[r+1]];\n best = max(best, candidate);\n }\n }\n if(!B.empty() && X > B.back()){\n segStart = B.back() + 1;\n segEnd = X;\n ll candidate = seg_dpa.queryRange(segStart, segEnd);\n best = max(best, candidate);\n }\n }\n dp[i] = best;\n seg_dp.updatePos(i, dp[i]);\n if(i < N) seg_dpa.updatePos(i, dp[i] + A[i]);\n }\n Cout(dp[N]);\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 15132, "score_of_the_acc": -0.5948, "final_rank": 15 }, { "submission_id": "aoj_3086_9561048", "code_snippet": "#include \"bits/stdc++.h\"\n \nusing namespace std;\n \ntemplate <typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &pa) { is >> pa.first >> pa.second; return is; }\ntemplate <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }\ntemplate <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << \"(\" << pa.first << \",\" << pa.second << \")\"; return os; }\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << \"[\"; for (auto v : vec) os << v << \",\"; os << \"]\"; return os; }\ntemplate <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << \"deq[\"; for (auto v : vec) os << v << \",\"; os << \"]\"; return os; }\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << \"{\"; for (auto v : vec) os << v << \",\"; os << \"}\"; return os; }\ntemplate <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << \"{\"; for (auto v : vec) os << v << \",\"; os << \"}\"; return os; }\ntemplate <typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec) { os << \"{\"; for (auto v : vec) os << v << \",\"; os << \"}\"; return os; }\ntemplate <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << \"{\"; for (auto v : vec) os << v << \",\"; os << \"}\"; return os; }\ntemplate <typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp) { os << \"{\"; for (auto v : mp) os << v.first << \"=>\" << v.second << \",\"; os << \"}\"; return os; }\ntemplate <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << \"{\"; for (auto v : mp) os << v.first << \"=>\" << v.second << \",\"; os << \"}\"; return os; }\ntemplate <typename T> void resize_array(vector<T> &vec, int len) { vec.resize(len); }\ntemplate <typename T, typename... Args> void resize_array(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) resize_array(v, args...); }\ntemplate <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }\ntemplate <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }\nlong long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }\nmt19937 mrand(random_device{}());\nint rnd(int x) { return mrand() % x; }\n\n// 函数名后面加 ll 就可以计算 long long类型对应的结果\n// __builtin_ffs(x)\n// 返回x中最后一个为1的位是从后向前的第几位\n// __builtin_popcount(x)\n// x中1的个数\n// __builtin_ctz(x)\n// x末尾0的个数。x=0时结果未定义。\n// __builtin_clz(x)\n// x前导0的个数。x=0时结果未定义。\n// __builtin_parity(x)\n// x中1的奇偶性。\n#define highest_bit1_index(x) (31 - __builtin_clz(x))\n#define highest_bit1_index_ll(x) (63 - __builtin_clzll(x))\n#define rep(i, a, n) for (int i = a; i < (n); i++)\n#define per(i, a, n) for (int i = (n)-1; i >= a; i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(), (x).end()\n#define fi first\n#define se second\n#define sz(x) ((int)(x).size())\ntypedef vector<int> vi;\ntypedef long long ll;\ntypedef unsigned int uint;\ntypedef unsigned long long ull;\ntypedef pair<int, int> pii;\ntypedef double db;\n#if DEBUG\n#define dbg(x) cerr << #x << \" = \" << (x) << \" (L\" << __LINE__ << \") \" << __FILE__ << endl;\n#else\n#define dbg(x)\n#endif\n\n// For example: SegmentTree<int> st(n, [](int a, int b) { return max(a, b); });\ntemplate <typename T>\nclass SegmentTree {\n public:\n SegmentTree(int node_num, function<T(T, T)> f, T default_v = T())\n : f_(f), default_value_(default_v) {\n offset_ = 1;\n while (offset_ < node_num) offset_ *= 2;\n nodes_.resize(offset_ * 2, default_v);\n }\n \n // 将第k个值更新为a\n void Update(int k, T a) {\n // 叶子节点\n k += offset_ - 1;\n nodes_[k] = a;\n // 向上更新\n while (k > 0) {\n k = (k - 1) / 2;\n nodes_[k] = f_(nodes_[k * 2 + 1], nodes_[k * 2 + 2]);\n }\n }\n \n T Query(int a, int b) { return Query(a, b, 0, 0, offset_); }\n \n private:\n // 求[a,b)区间的目标值\n // 后面的参数是为了计算方便传入的\n // k是节点的编号,l,r表示这个节点代表区间[l,r)\n // 外部调用时,使用query(a,b,0,0,n);\n T Query(int a, int b, int k, int l, int r) {\n // 如果[a,b)和[l,r)不相交,返回0\n if (r <= a || b <= l) return default_value_;\n // 如果[a,b)完全包含[l,r),返回当前节点值\n if (a <= l && r <= b)\n return nodes_[k];\n else {\n T v1 = Query(a, b, k * 2 + 1, l, (l + r) / 2);\n T v2 = Query(a, b, k * 2 + 2, (l + r) / 2, r);\n return f_(v1, v2);\n }\n }\n int offset_;\n vector<T> nodes_;\n function<T(T, T)> f_;\n T default_value_;\n};\n\ntemplate <class T> \nclass larsch {\n struct reduce_row;\n struct reduce_col;\n\n struct reduce_row {\n int n;\n std::function<T(int, int)> f;\n int cur_row;\n int state;\n std::unique_ptr<reduce_col> rec;\n\n reduce_row(int n_) : n(n_), f(), cur_row(0), state(0), rec() {\n const int m = n / 2;\n if (m != 0) {\n rec = std::make_unique<reduce_col>(m);\n }\n }\n\n void set_f(std::function<T(int, int)> f_) {\n f = f_;\n if (rec) {\n rec->set_f([&](int i, int j) -> T { return f(2 * i + 1, j); });\n }\n }\n\n int get_argmin() {\n const int cur_row_ = cur_row;\n cur_row += 1;\n if (cur_row_ % 2 == 0) {\n const int prev_argmin = state;\n const int next_argmin = [&]() {\n if (cur_row_ + 1 == n) {\n return n - 1;\n } else {\n return rec->get_argmin();\n }\n }();\n state = next_argmin;\n int ret = prev_argmin;\n for (int j = prev_argmin + 1; j <= next_argmin; j += 1) {\n if (f(cur_row_, ret) > f(cur_row_, j)) {\n ret = j;\n }\n }\n return ret;\n } else {\n if (f(cur_row_, state) <= f(cur_row_, cur_row_)) {\n return state;\n } else {\n return cur_row_;\n }\n }\n }\n };\n\n struct reduce_col {\n int n;\n std::function<T(int, int)> f;\n int cur_row;\n std::vector<int> cols;\n reduce_row rec;\n\n reduce_col(int n_) : n(n_), f(), cur_row(0), cols(), rec(n) {}\n\n void set_f(std::function<T(int, int)> f_) {\n f = f_;\n rec.set_f([&](int i, int j) -> T { return f(i, cols[j]); });\n }\n\n int get_argmin() {\n const int cur_row_ = cur_row;\n cur_row += 1;\n const auto cs = [&]() -> std::vector<int> {\n if (cur_row_ == 0) {\n return {{0}};\n } else {\n return {{2 * cur_row_ - 1, 2 * cur_row_}};\n }\n }();\n for (const int j : cs) {\n while ([&]() {\n const int size = cols.size();\n return size != cur_row_ && f(size - 1, cols.back()) > f(size - 1, j);\n }()) {\n cols.pop_back();\n }\n if (cols.size() != n) {\n cols.push_back(j);\n }\n }\n return cols[rec.get_argmin()];\n }\n };\n\n std::unique_ptr<reduce_row> base;\n\npublic:\n larsch(int n, std::function<T(int, int)> f)\n : base(std::make_unique<reduce_row>(n)) {\n base->set_f(f);\n }\n\n int get_argmin() { return base->get_argmin(); }\n};\n\nclass Solution {\npublic:\n void Solve() {\n cout << fixed << setprecision(15);\n int N, L;\n while(cin >> N >> L) {\n constexpr ll INF = std::numeric_limits<ll>::max() / 2;\n\n vector<ll> a(N+1, 0);\n rep(i,1,N+1) cin>>a[i];\n SegmentTree<ll> st(N+1, [](ll a,ll b) {return max(a,b);}, -INF);\n rep(i,0,N+1) st.Update(i, a[i]);\n\n auto calc = [&]() {\n std::vector<ll> dist(N + 1, INF);\n dist[0] = 0;\n const auto f = [&](const int to_, const int from) -> ll {\n const int to = to_ + 1;\n if (to - from < L) { // to <= from\n return INF;\n } else {\n return dist[from] - st.Query(from + 1, to + 1);\n }\n };\n larsch<ll> larsch_(\n N, [&](int i, int j) { return f(i, j); });\n for (int i = 0; i < N; i++) {\n int argmin = larsch_.get_argmin();\n // dbg(argmin);\n dist[i + 1] = f(i, argmin);\n // if (i+1==N+1) dbg(dist[N+1]);\n }\n // dbg(dist);\n return dist[N];\n };\n\n cout << -calc() << '\\n';\n }\n cout.flush();\n }\nprivate:\n};\n\n// # define FILE_IO 1\nvoid set_io(const string &name = \"\") {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n#if FILE_IO\n if (!name.empty()) {\n freopen((name + \".in\").c_str(), \"r\", stdin);\n freopen((name + \".out\").c_str(), \"w\", stdout);\n }\n#endif\n}\n\nint main() {\n set_io(\"tmp\");\n Solution().Solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 10616, "score_of_the_acc": -0.4358, "final_rank": 12 }, { "submission_id": "aoj_3086_8563631", "code_snippet": "#line 1 \"larsch.test.cpp\"\n#define PROBLEM \"https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3086\"\n\n#line 2 \"/Users/korogi/Desktop/cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"/Users/korogi/Desktop/cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"/Users/korogi/Desktop/cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) {\n os << '-';\n y *= -1;\n }\n std::vector<int> ny;\n while(y > 0) {\n ny.push_back(y % 10);\n y /= 10;\n }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"/Users/korogi/Desktop/cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"/Users/korogi/Desktop/cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"/Users/korogi/Desktop/cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"/Users/korogi/Desktop/cp-library/src/cp-template.hpp\"\n\n#line 1 \"/Users/korogi/Desktop/cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F& f) {\n while(abs(ok - ng) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F& f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"/Users/korogi/Desktop/cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 2 \"/Users/korogi/Desktop/cp-library/src/algorithm/larsch.hpp\"\n\ntemplate < class T > class larsch {\n struct reduce_row;\n struct reduce_col;\n\n struct reduce_row {\n int n, cur_row, state;\n std::function<T(int,int)> f;\n std::unique_ptr<reduce_col> rec;\n\n reduce_row(int n_, std::function<T(int,int)> f_) : n(n_), cur_row(0), state(0), f(f_) {\n const int m = n / 2;\n if(m != 0) rec = std::make_unique<reduce_col>(m, [&](int i, int j) -> T { return f(2 * i + 1, j); });\n }\n\n int get_argmin() {\n const int cur_row_ = cur_row;\n cur_row += 1;\n if(cur_row_ % 2 == 0) {\n const int prev_argmin = state;\n const int next_argmin = state = (cur_row_ + 1 == n ? n - 1 : rec->get_argmin());\n int ret = prev_argmin;\n for(int j = prev_argmin + 1; j <= next_argmin; j += 1)\n if(f(cur_row_, ret) > f(cur_row_, j)) ret = j;\n return ret;\n } else {\n return f(cur_row_, state) <= f(cur_row_, cur_row_) ? state : cur_row_;\n }\n }\n };\n\n struct reduce_col {\n int n, cur_row;\n std::vector<int> cols;\n std::function<T(int,int)> f;\n reduce_row rec;\n\n reduce_col(int n_, std::function<T(int,int)> f_) : n(n_), cur_row(0), f(f_), rec(n, [&](int i, int j) -> T { return f(i, cols[j]); }) {}\n\n int get_argmin() {\n const int cur_row_ = cur_row;\n cur_row += 1;\n const auto cs = [&]() -> std::vector<int> {\n if(cur_row_ == 0) return {0};\n return {2 * cur_row_ - 1, 2 * cur_row_};\n }();\n for(const int j : cs) {\n while(cols.size() != cur_row_ and f(cols.size() - 1, cols.back()) > f(cols.size() - 1, j)) cols.pop_back();\n if(cols.size() != n) cols.push_back(j);\n }\n return cols[rec.get_argmin()];\n }\n };\n\n std::unique_ptr<reduce_row> base;\n\n public:\n larsch(int n, std::function<T(int,int)> f) : base(std::make_unique<reduce_row>(n, f)) {}\n int get_argmin() { return base->get_argmin(); }\n};\n#line 2 \"/Users/korogi/Desktop/cp-library/src/data_structure/linear_rmq.hpp\"\n\ntemplate < class Compare >\nclass linear_rmq {\n int size;\n Compare cmp;\n static constexpr std::size_t BLOCK_SIZE = 16;\n using block_type = std::uint_least16_t;\n using size_type = std::size_t;\n std::vector<block_type> small;\n std::vector<std::vector<size_type>> large;\n\n size_type argmin_(const size_type i, const size_type j) const { return cmp(i, j) ? i : j; }\n size_type msb(size_type c) const { return 31 - __builtin_clz(c); }\n size_type ctz(const block_type c) const { return __builtin_ctz(c); }\n\n public:\n linear_rmq(const size_type size, const Compare& cmp) : size(size), cmp(cmp), small(size), large(1) {\n std::vector<size_type> st;\n for(size_type i : rep(size)) {\n while(not st.empty() and not cmp(st.back(), i)) st.pop_back();\n small[i] = (st.empty() ? 0 : small[st.back()]) | static_cast<block_type>(1) << (i % BLOCK_SIZE);\n st.emplace_back(i);\n if((i + 1) % BLOCK_SIZE == 0) {\n large[0].emplace_back(st[0]);\n st.clear();\n }\n }\n\n for(size_type i = 1; (i << 1) <= size / BLOCK_SIZE; i <<= 1) {\n const size_type csz = size / BLOCK_SIZE + 1 - (i << 1);\n std::vector<size_type> v(csz);\n for(size_type k : rep(csz)) v[k] = argmin_(large.back()[k], large.back()[k + i]);\n large.emplace_back(::std::move(v));\n }\n }\n\n // [first, last]\n size_type argmin(const size_type first, const size_type last) const {\n assert(first <= last and last < size);\n\n const size_type left = first / BLOCK_SIZE + 1;\n const size_type right = last / BLOCK_SIZE;\n if(left <= right) {\n size_type c1 = (left - 1) * BLOCK_SIZE + ctz(small[left * BLOCK_SIZE - 1] & ~static_cast<block_type>(0) << first % BLOCK_SIZE);\n size_type c2 = right * BLOCK_SIZE + ctz(small[last]);\n size_type i = argmin_(c1, c2);\n if(left < right) {\n const size_type p = msb(right - left);\n size_type c3 = large[p][left];\n size_type c4 = large[p][right - (static_cast<size_type>(1) << p)];\n i = argmin_(i, argmin_(c3, c4));\n }\n return i;\n } else {\n return right * BLOCK_SIZE + ctz(small[last] & ~static_cast<block_type>(0) << first % BLOCK_SIZE);\n }\n }\n};\n#line 6 \"larsch.test.cpp\"\n\nint main() {\n int N = in(), L = in();\n vector<int> a = in(N);\n linear_rmq rmq(N, [&](int i, int j) { return a[i] >= a[j]; });\n\n vector<ll> dp(N + 1, 0);\n auto f = [&](int l, int r) {\n if(r - l < L) return -ll(4e18);\n return dp[l] + a[rmq.argmin(l, r - 1)];\n };\n auto g = [&](int i, int j) { return -f(j, i + 1); };\n larsch<ll> larsch_(N, g);\n for(int i : rep(N)) dp[i + 1] = -g(i, larsch_.get_argmin());\n print(dp[N]);\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 7132, "score_of_the_acc": -0.0673, "final_rank": 1 }, { "submission_id": "aoj_3086_8551499", "code_snippet": "#line 2 \"cp-library/src/cp-template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing i32 = int;\nusing u32 = unsigned int;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\ntemplate < class T > bool chmin(T& a, T b) { if(a > b) { a = b; return true; } return false; }\ntemplate < class T > bool chmax(T& a, T b) { if(a < b) { a = b; return true; } return false; }\ntemplate < class T, class U > T ceil (T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); }\ntemplate < class T, class U > T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint popcnt(i32 x) { return __builtin_popcount(x); }\nint popcnt(u32 x) { return __builtin_popcount(x); }\nint popcnt(i64 x) { return __builtin_popcountll(x); }\nint popcnt(u64 x) { return __builtin_popcountll(x); }\n\n#line 2 \"cp-library/src/utility/rep_itr.hpp\"\ntemplate < class T > struct itr_rep {\n T i, d;\n constexpr itr_rep(const T i) noexcept : i(i), d(1) {}\n constexpr itr_rep(const T i, const T d) noexcept : i(i), d(d) {}\n void operator++() noexcept { i += d; }\n constexpr int operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr_rep x) const noexcept { return d > 0 ? i < x.i : i > x.i; }\n};\n\ntemplate < class T > struct rep {\n const itr_rep< T > s, t;\n constexpr rep(const T t) noexcept : s(0), t(t) {}\n constexpr rep(const T s, const T t) noexcept : s(s), t(t) {}\n constexpr rep(const T s, const T t, const T d) noexcept : s(s, d), t(t, d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n\ntemplate < class T > struct revrep {\n const itr_rep < T > s, t;\n constexpr revrep(const T t) noexcept : s(t - 1, -1), t(-1, -1) {}\n constexpr revrep(const T s, const T t) noexcept : s(t - 1, -1), t(s - 1, -1) {}\n constexpr revrep(const T s, const T t, const T d) noexcept : s(t - 1, -d), t(s - 1, -d) {}\n constexpr auto begin() const noexcept { return s; }\n constexpr auto end () const noexcept { return t; }\n};\n#line 3 \"cp-library/src/utility/io.hpp\"\n\n/* 128bit integer */\nistream& operator>>(istream& is, i128& x) {\n std::string s; is >> s;\n int pm = (s[0] == '-');\n x = 0;\n for(int i : rep(pm, int(s.size()))) x = x * 10 + (s[i] - '0');\n if(pm) x *= -1;\n return is;\n}\nostream& operator<<(ostream& os, const i128& x) {\n if(x == 0) return os << '0';\n i128 y = x;\n if(y < 0) {\n os << '-';\n y *= -1;\n }\n std::vector<int> ny;\n while(y > 0) {\n ny.push_back(y % 10);\n y /= 10;\n }\n for(int i : revrep(ny.size())) os << ny[i];\n return os;\n}\n\nnamespace scanner {\n struct sca {\n template < class T > operator T() {\n T s; std::cin >> s; return s;\n }\n };\n struct vec {\n int n;\n vec(int n) : n(n) {}\n template < class T > operator std::vector< T >() {\n std::vector< T > v(n);\n for(T& x : v) std::cin >> x;\n return v;\n }\n };\n struct mat {\n int h, w;\n mat(int h, int w) : h(h), w(w) {}\n template < class T > operator std::vector< std::vector< T > >() {\n std::vector m(h, std::vector< T >(w));\n for(std::vector< T >& v : m) for(T& x : v) std::cin >> x;\n return m;\n }\n };\n struct speedup {\n speedup() {\n std::cin.tie(0);\n std::ios::sync_with_stdio(0);\n }\n } speedup_instance;\n}\nscanner::sca in() { return scanner::sca(); }\nscanner::vec in(int n) { return scanner::vec(n); }\nscanner::mat in(int h, int w) { return scanner::mat(h, w); }\n\nnamespace printer {\n void precision(int d) { std::cout << std::fixed << std::setprecision(d); }\n void flush() { std::cout.flush(); }\n}\n\ntemplate < class T >\nostream& operator<<(ostream& os, const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) { os << a[i]; if(i != n - 1) os << ' '; }\n return os;\n}\n\nint print() { std::cout << '\\n'; return 0; }\ntemplate < class head, class... tail > int print(head&& h, tail&&... t) {\n std::cout << h; if(sizeof...(tail)) std::cout << ' ';\n return print(std::forward<tail>(t)...);\n}\ntemplate < class T > int print_n(const std::vector< T > a) {\n int n = a.size();\n for(int i : rep(n)) std::cout << a[i] << \"\\n\";\n return 0;\n}\n\n\n#line 2 \"cp-library/src/utility/key_val.hpp\"\n\ntemplate < class K, class V >\nstruct key_val {\n K key; V val;\n key_val() {}\n key_val(K key, V val) : key(key), val(val) {}\n template < std::size_t Index >\n std::tuple_element_t< Index, key_val >& get() {\n if constexpr (Index == 0) return key;\n if constexpr (Index == 1) return val;\n }\n};\n\nnamespace std {\n\ntemplate < class K, class V > struct tuple_size < key_val< K, V > > : integral_constant< size_t, 2 > {};\ntemplate < class K, class V > struct tuple_element < 0, key_val< K, V > > { using type = K; };\ntemplate < class K, class V > struct tuple_element < 1, key_val< K, V > > { using type = V; };\n\n}\n#line 2 \"cp-library/src/utility/vec_op.hpp\"\ntemplate < class T > key_val< int, T > max_of(const vector< T >& a) {\n int i = std::max_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class T > key_val< int, T > min_of(const vector< T >& a) {\n int i = std::min_element(a.begin(), a.end()) - a.begin();\n return {i, a[i]};\n}\ntemplate < class S, class T > S sum_of(const vector< T >& a) {\n S sum = 0;\n for(const T x : a) sum += x;\n return sum;\n}\ntemplate < class S, class T > vector< S > freq_of(const vector< T >& a, T L, T R) {\n vector< S > res(R - L, S(0));\n for(const T x : a) res[x - L] += 1;\n return res;\n}\ntemplate < class S, class T > struct prefix_sum {\n vector< S > s;\n prefix_sum(const vector< T >& a) : s(a) {\n s.insert(s.begin(), S(0));\n for(int i : rep(a.size())) s[i + 1] += s[i];\n }\n // [L, R)\n S sum(int L, int R) { return s[R] - s[L]; }\n};\n#line 3 \"cp-library/src/utility/heap.hpp\"\n\ntemplate < class T > using heap_min = std::priority_queue< T, std::vector< T >, std::greater< T > >;\ntemplate < class T > using heap_max = std::priority_queue< T, std::vector< T >, std::less< T > >;\n\n#line 27 \"cp-library/src/cp-template.hpp\"\n\n#line 1 \"cp-library/src/algorithm/bin_search.hpp\"\ntemplate < class T, class F >\nT bin_search(T ok, T ng, F& f) {\n while(abs(ok - ng) > 1) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n\ntemplate < class T, class F >\nT bin_search_real(T ok, T ng, F& f, int step = 80) {\n while(step--) {\n T mid = (ok + ng) / 2;\n (f(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n#line 2 \"cp-library/src/algorithm/argsort.hpp\"\n\ntemplate < class T > std::vector< int > argsort(const std::vector< T > &a) {\n std::vector< int > ids((int)a.size());\n std::iota(ids.begin(), ids.end(), 0);\n std::sort(ids.begin(), ids.end(), [&](int i, int j) {\n return a[i] < a[j] || (a[i] == a[j] && i < j);\n });\n return ids;\n}\n#line 1 \"cp-library/src/data_structure/segtree.hpp\"\ntemplate < class monoid > struct segtree {\n using S = typename monoid::set;\n\n segtree() : segtree(0) {}\n segtree(int n) : segtree(vector< S >(n, monoid::id())) {}\n segtree(int n, S s) : segtree(vector< S >(n, s)) {}\n segtree(const vector< S >& v) : _n(int(v.size())) {\n log = ceil_pow2(_n);\n size = 1 << log;\n d = vector< S >(2 * size, monoid::id());\n for(int i = 0; i < _n; i++) d[size + i] = v[i];\n for(int i = size - 1; i >= 1; i--) update(i);\n }\n // a[i] <- x\n void set(int i, S x) {\n assert(0 <= i && i < _n);\n i += size;\n d[i] = x;\n for(int p = 1; p <= log; p++) update(i >> p);\n }\n // a[i]\n S get(int i) {\n assert(0 <= i && i < _n);\n return d[i + size];\n }\n // [l, r)\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n S sml = monoid::id(), smr = monoid::id();\n l += size, r += size;\n while(l < r) {\n if(l & 1) sml = monoid::op(sml, d[l++]);\n if(r & 1) smr = monoid::op(d[--r], smr);\n l >>= 1, r >>= 1;\n }\n return monoid::op(sml, smr);\n }\n S all_prod() { return d[1]; }\n template < class func > int max_right(int l, func f) {\n assert(0 <= l && l <= _n);\n assert(f(monoid::id()));\n if(l == _n) return _n;\n l += size;\n S sm = monoid::id();\n do {\n while(l % 2 == 0) l >>= 1;\n if(!f(monoid::op(sm, d[l]))) {\n while(l < size) {\n l = 2 * l;\n if(f(monoid::op(sm, d[l]))) {\n sm = monoid::op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = monoid::op(sm, d[l]);\n l++;\n } while((l & -l) != l);\n return _n;\n }\n template < class func > int min_left(int r, func f) {\n assert(0 <= r && r <= _n);\n assert(f(monoid::id()));\n if(r == 0) return 0;\n r += size;\n S sm = monoid::id();\n do {\n r--;\n while(r > 1 && (r % 2)) r >>= 1;\n if(!f(monoid::op(d[r], sm))) {\n while(r < size) {\n r = 2 * r + 1;\n if(f(monoid::op(d[r], sm))) {\n sm = monoid::op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = monoid::op(d[r], sm);\n } while((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n vector< S > d;\n int ceil_pow2(int n) { int x = 0; while((1U << x) < uint(n)) x++; return x; }\n void update(int k) { d[k] = monoid::op(d[2 * k], d[2 * k + 1]); }\n};\n#line 3 \"cp-library/src/algebra/minmax.hpp\"\n\ntemplate < class T > class min_monoid {\n public:\n using set = T;\n static constexpr T op(const T &l, const T &r) { return std::min(l, r); }\n static constexpr T id() { return std::numeric_limits< T >::max(); }\n static constexpr bool comm = true;\n};\n\ntemplate < class T > class max_monoid {\n public:\n using set = T;\n static constexpr T op(const T &l, const T &r) { return std::max(l, r); }\n static constexpr T id() { return std::numeric_limits< T >::min(); }\n static constexpr bool comm = true;\n};\n#line 4 \"LARSCH.cpp\"\n\ntemplate < class T > class larsch {\n struct reduce_row;\n struct reduce_col;\n\n struct reduce_row {\n int n, cur_row, state;\n std::function<T(int,int)> f;\n std::unique_ptr<reduce_col> rec;\n\n reduce_row(int n_, std::function<T(int,int)> f_) : n(n_), cur_row(0), state(0), f(f_) {\n const int m = n / 2;\n if(m != 0) rec = std::make_unique<reduce_col>(m, [&](int i, int j) -> T { return f(2 * i + 1, j); });\n }\n\n int get_argmin() {\n const int cur_row_ = cur_row;\n cur_row += 1;\n if(cur_row_ % 2 == 0) {\n const int prev_argmin = state;\n const int next_argmin = state = (cur_row_ + 1 == n ? n - 1 : rec->get_argmin());\n int ret = prev_argmin;\n for(int j = prev_argmin + 1; j <= next_argmin; j += 1)\n if(f(cur_row_, ret) > f(cur_row_, j)) ret = j;\n return ret;\n } else {\n return f(cur_row_, state) <= f(cur_row_, cur_row_) ? state : cur_row_;\n }\n }\n };\n\n struct reduce_col {\n int n, cur_row;\n std::vector<int> cols;\n std::function<T(int,int)> f;\n reduce_row rec;\n\n reduce_col(int n_, std::function<T(int,int)> f_) : n(n_), cur_row(0), f(f_), rec(n, [&](int i, int j) -> T { return f(i, cols[j]); }) {}\n\n int get_argmin() {\n const int cur_row_ = cur_row;\n cur_row += 1;\n const std::vector<int> cs = [&]() -> std::vector<int> {\n if(cur_row_ == 0) return {0};\n return {2 * cur_row_ - 1, 2 * cur_row_};\n }();\n for(const int j : cs) {\n while(cols.size() != cur_row_ and f(cols.size() - 1, cols.back()) > f(cols.size() - 1, j)) cols.pop_back();\n if(cols.size() != n) cols.push_back(j);\n }\n return cols[rec.get_argmin()];\n }\n };\n\n std::unique_ptr<reduce_row> base;\n\n public:\n larsch(int n, std::function<T(int,int)> f) : base(std::make_unique<reduce_row>(n, f)) {}\n int get_argmin() { return base->get_argmin(); }\n};\n\nint main() {\n int N = in(), L = in();\n vector<int> a = in(N);\n segtree< max_monoid<int> > seg(a);\n\n std::vector<ll> dp(N + 1, 0);\n auto f = [&](int l, int r) {\n if(r - l < L) return -ll(4e18);\n return dp[l] + seg.prod(l, r);\n };\n auto g = [&](int i, int j) { return -f(j, i + 1); };\n larsch<ll> larsch_(N, g);\n for(int i : rep(N)) dp[i + 1] = -g(i, larsch_.get_argmin());\n print(dp[N]);\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 7836, "score_of_the_acc": -0.1427, "final_rank": 3 }, { "submission_id": "aoj_3086_8469983", "code_snippet": "#line 1 \"test/aoj/aoj_3086.test.cpp\"\n#define PROBLEM \"https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3086\"\n\n#line 2 \"algorithm/monge_shortest_path.hpp\"\n\n#include <limits>\n#include <vector>\n\nnamespace ebi {\n\ntemplate <class T, class F> std::vector<T> monge_shortest_path(int n, F f) {\n const T max = std::numeric_limits<T>::max();\n std::vector<int> argmin(n, 0);\n std::vector<T> dp(n, max);\n dp[0] = 0;\n auto get = [&](int i, int j) -> T {\n T val = f(j, i);\n if(val == max || dp[j] == max) return max;\n return dp[j] + val;\n };\n auto check = [&](int i, int j) -> void {\n T val = get(i, j);\n if (val < dp[i]) {\n dp[i] = val;\n argmin[i] = j;\n }\n };\n dp[n - 1] = get(n - 1, 0);\n auto dfs = [&](auto &&self, int l, int r) -> void {\n if (r - l == 1) return;\n int m = (l + r) >> 1;\n for (int i = argmin[l]; i <= argmin[r]; i++) {\n check(m, i);\n }\n self(self, l, m);\n for (int i = l + 1; i <= m; i++) {\n check(r, i);\n }\n self(self, m, r);\n };\n dfs(dfs, 0, n - 1);\n return dp;\n}\n\n} // namespace ebi\n#line 2 \"data_structure/segtree.hpp\"\n\n#include <cassert>\n#line 5 \"data_structure/segtree.hpp\"\n\nnamespace ebi {\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n private:\n int n;\n int sz;\n std::vector<S> data;\n\n void update(int i) {\n data[i] = op(data[2 * i], data[2 * i + 1]);\n }\n\n public:\n segtree(int n_) : segtree(std::vector<S>(n_, e())) {}\n segtree(const std::vector<S> &v) : n((int)v.size()), sz(1) {\n while (sz < n) sz *= 2;\n data = std::vector<S>(2 * sz, e());\n for (int i = 0; i < n; i++) {\n data[sz + i] = v[i];\n }\n for (int i = sz - 1; i >= 1; i--) update(i);\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < n);\n p += sz;\n data[p] = x;\n while (p > 1) {\n p >>= 1;\n update(p);\n }\n }\n\n S get(int p) const {\n assert(0 <= p && p < n);\n return data[p + sz];\n }\n\n S prod(int l, int r) const {\n assert(0 <= l && l <= r && r <= n);\n S sml = e(), smr = e();\n l += sz;\n r += sz;\n while (l < r) {\n if (l & 1) sml = op(sml, data[l++]);\n if (r & 1) smr = op(data[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() const {\n return data[1];\n }\n\n template <class F> int max_right(int l, F f) const {\n assert(0 <= l && l < n);\n assert(f(e()));\n if (l == n) return n;\n l += sz;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, data[l]))) {\n while (l < sz) {\n l = 2 * l;\n if (f(op(sm, data[l]))) {\n sm = op(sm, data[l]);\n l++;\n }\n }\n return l - sz;\n }\n sm = op(sm, data[l]);\n l++;\n } while ((l & -l) != l);\n return n;\n }\n\n template <class F> int min_left(int r, F f) const {\n assert(0 <= r && r <= n);\n assert(f(e()));\n if (r == 0) return 0;\n r += sz;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(data[r], sm))) {\n while (r < sz) {\n r = 2 * r + 1;\n if (f(op(data[r], sm))) {\n sm = op(data[r], sm);\n r--;\n }\n }\n return r + 1 - sz;\n }\n sm = op(data[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n S operator[](int p) const {\n return data[sz + p];\n }\n};\n\n} // namespace ebi\n\n#include <bits/stdc++.h>\n\n#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)\n#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)\n#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)\n#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n\n#line 2 \"template/debug_template.hpp\"\n\n#line 4 \"template/debug_template.hpp\"\n\nnamespace ebi {\n\n#ifdef LOCAL\n#define debug(...) \\\n std::cerr << \"LINE: \" << __LINE__ << \" [\" << #__VA_ARGS__ << \"]:\", \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...)\n#endif\n\nvoid debug_out() {\n std::cerr << std::endl;\n}\n\ntemplate <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {\n std::cerr << \" \" << h;\n if (sizeof...(t) > 0) std::cerr << \" :\";\n debug_out(t...);\n}\n\n} // namespace ebi\n#line 2 \"template/int_alias.hpp\"\n\n#line 4 \"template/int_alias.hpp\"\n\nnamespace ebi {\n\nusing std::size_t;\nusing i8 = std::int8_t;\nusing u8 = std::uint8_t;\nusing i16 = std::int16_t;\nusing u16 = std::uint16_t;\nusing i32 = std::int32_t;\nusing u32 = std::uint32_t;\nusing i64 = std::int64_t;\nusing u64 = std::uint64_t;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\n\n} // namespace ebi\n#line 2 \"template/io.hpp\"\n\n#line 7 \"template/io.hpp\"\n\nnamespace ebi {\n\ntemplate <typename T1, typename T2>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {\n return os << pa.first << \" \" << pa.second;\n}\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {\n return os >> pa.first >> pa.second;\n}\n\ntemplate <typename T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {\n for (std::size_t i = 0; i < vec.size(); i++)\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \" \");\n return os;\n}\n\ntemplate <typename T>\nstd::istream &operator>>(std::istream &os, std::vector<T> &vec) {\n for (T &e : vec) std::cin >> e;\n return os;\n}\n\ntemplate <typename T>\nstd::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {\n if (opt) {\n os << opt.value();\n } else {\n os << \"invalid value\";\n }\n return os;\n}\n\nvoid fast_io() {\n std::cout << std::fixed << std::setprecision(15);\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n}\n\n} // namespace ebi\n#line 2 \"template/utility.hpp\"\n\n#line 5 \"template/utility.hpp\"\n\n#line 7 \"template/utility.hpp\"\n\nnamespace ebi {\n\ntemplate <class T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T> T safe_ceil(T a, T b) {\n if (a % b == 0)\n return a / b;\n else if (a >= 0)\n return (a / b) + 1;\n else\n return -((-a) / b);\n}\n\ntemplate <class T> T safe_floor(T a, T b) {\n if (a % b == 0)\n return a / b;\n else if (a >= 0)\n return a / b;\n else\n return -((-a) / b) - 1;\n}\n\nconstexpr i64 LNF = std::numeric_limits<i64>::max() / 4;\n\nconstexpr int INF = std::numeric_limits<int>::max() / 2;\n\nconst std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};\nconst std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};\n\n} // namespace ebi\n#line 6 \"test/aoj/aoj_3086.test.cpp\"\n\nnamespace ebi {\n\ni64 op(i64 a, i64 b) {\n return a < b ? a : b;\n}\n\ni64 e() {\n return LNF;\n}\n\nvoid main_() {\n int n, l;\n std::cin >> n >> l;\n std::vector<i64> a(n);\n std::cin >> a;\n rep(i, 0, n) a[i] = -a[i];\n segtree<i64, op, e> seg(a);\n auto f = [&](int i, int j) -> i64 {\n if (j - i < l) return std::numeric_limits<i64>::max();\n return seg.prod(i, j);\n };\n auto dp = monge_shortest_path<i64>(n + 1, f);\n std::cout << -dp[n] << '\\n';\n}\n\n} // namespace ebi\n\nint main() {\n ebi::fast_io();\n int t = 1;\n // std::cin >> t;\n while (t--) {\n ebi::main_();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 10060, "score_of_the_acc": -0.2831, "final_rank": 4 }, { "submission_id": "aoj_3086_8469922", "code_snippet": "#include <bits/stdc++.h>\n\n#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)\n#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)\n#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)\n#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n\n#line 2 \"template/debug_template.hpp\"\n\n#line 4 \"template/debug_template.hpp\"\n\nnamespace ebi {\n\n#ifdef LOCAL\n#define debug(...) \\\n std::cerr << \"LINE: \" << __LINE__ << \" [\" << #__VA_ARGS__ << \"]:\", \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...)\n#endif\n\nvoid debug_out() {\n std::cerr << std::endl;\n}\n\ntemplate <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {\n std::cerr << \" \" << h;\n if (sizeof...(t) > 0) std::cerr << \" :\";\n debug_out(t...);\n}\n\n} // namespace ebi\n#line 2 \"template/int_alias.hpp\"\n\n#line 4 \"template/int_alias.hpp\"\n\nnamespace ebi {\n\nusing std::size_t;\nusing i8 = std::int8_t;\nusing u8 = std::uint8_t;\nusing i16 = std::int16_t;\nusing u16 = std::uint16_t;\nusing i32 = std::int32_t;\nusing u32 = std::uint32_t;\nusing i64 = std::int64_t;\nusing u64 = std::uint64_t;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\n\n} // namespace ebi\n#line 2 \"template/io.hpp\"\n\n#line 7 \"template/io.hpp\"\n\nnamespace ebi {\n\ntemplate <typename T1, typename T2>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {\n return os << pa.first << \" \" << pa.second;\n}\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {\n return os >> pa.first >> pa.second;\n}\n\ntemplate <typename T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {\n for (std::size_t i = 0; i < vec.size(); i++)\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \" \");\n return os;\n}\n\ntemplate <typename T>\nstd::istream &operator>>(std::istream &os, std::vector<T> &vec) {\n for (T &e : vec) std::cin >> e;\n return os;\n}\n\ntemplate <typename T>\nstd::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {\n if (opt) {\n os << opt.value();\n } else {\n os << \"invalid value\";\n }\n return os;\n}\n\nvoid fast_io() {\n std::cout << std::fixed << std::setprecision(15);\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n}\n\n} // namespace ebi\n#line 2 \"template/utility.hpp\"\n\n#line 5 \"template/utility.hpp\"\n\n#line 7 \"template/utility.hpp\"\n\nnamespace ebi {\n\ntemplate <class T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T> T safe_ceil(T a, T b) {\n if (a % b == 0)\n return a / b;\n else if (a >= 0)\n return (a / b) + 1;\n else\n return -((-a) / b);\n}\n\ntemplate <class T> T safe_floor(T a, T b) {\n if (a % b == 0)\n return a / b;\n else if (a >= 0)\n return a / b;\n else\n return -((-a) / b) - 1;\n}\n\nconstexpr i64 LNF = std::numeric_limits<i64>::max() / 4;\n\nconstexpr int INF = std::numeric_limits<int>::max() / 2;\n\nconst std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};\nconst std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};\n\n} // namespace ebi\n#line 2 \"data_structure/segtree.hpp\"\n\n#line 5 \"data_structure/segtree.hpp\"\n\nnamespace ebi {\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n private:\n int n;\n int sz;\n std::vector<S> data;\n\n void update(int i) {\n data[i] = op(data[2 * i], data[2 * i + 1]);\n }\n\n public:\n segtree(int n_) : segtree(std::vector<S>(n_, e())) {}\n segtree(const std::vector<S> &v) : n((int)v.size()), sz(1) {\n while (sz < n) sz *= 2;\n data = std::vector<S>(2 * sz, e());\n for (int i = 0; i < n; i++) {\n data[sz + i] = v[i];\n }\n for (int i = sz - 1; i >= 1; i--) update(i);\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < n);\n p += sz;\n data[p] = x;\n while (p > 1) {\n p >>= 1;\n update(p);\n }\n }\n\n S get(int p) const {\n assert(0 <= p && p < n);\n return data[p + sz];\n }\n\n S prod(int l, int r) const {\n assert(0 <= l && l <= r && r <= n);\n S sml = e(), smr = e();\n l += sz;\n r += sz;\n while (l < r) {\n if (l & 1) sml = op(sml, data[l++]);\n if (r & 1) smr = op(data[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() const {\n return data[1];\n }\n\n template <class F> int max_right(int l, F f) const {\n assert(0 <= l && l < n);\n assert(f(e()));\n if (l == n) return n;\n l += sz;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, data[l]))) {\n while (l < sz) {\n l = 2 * l;\n if (f(op(sm, data[l]))) {\n sm = op(sm, data[l]);\n l++;\n }\n }\n return l - sz;\n }\n sm = op(sm, data[l]);\n l++;\n } while ((l & -l) != l);\n return n;\n }\n\n template <class F> int min_left(int r, F f) const {\n assert(0 <= r && r <= n);\n assert(f(e()));\n if (r == 0) return 0;\n r += sz;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(data[r], sm))) {\n while (r < sz) {\n r = 2 * r + 1;\n if (f(op(data[r], sm))) {\n sm = op(data[r], sm);\n r--;\n }\n }\n return r + 1 - sz;\n }\n sm = op(data[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n S operator[](int p) const {\n return data[sz + p];\n }\n};\n\n} // namespace ebi\n#line 3 \"a.cpp\"\n\nnamespace ebi {\n\ntemplate<class T, class F>\nstd::vector<T> monge_shortest_path(int n, F f) {\n const T max = std::numeric_limits<T>::max();\n std::vector<int> argmin(n, 0);\n std::vector<T> dp(n, max);\n dp[0] = 0;\n auto get = [&](int i, int j) -> T {\n return dp[j] + f(j, i);\n };\n auto check = [&](int i, int j) -> void {\n T val = get(i, j);\n if(val <= dp[i]) {\n dp[i] = val;\n argmin[i] = j;\n }\n };\n dp[n-1] = get(n-1, 0);\n auto dfs = [&](auto &&self, int l, int r) -> void {\n if(r - l == 1) return;\n int m = (l + r) >> 1;\n for(int i = argmin[l]; i <= argmin[r]; i++) {\n check(m, i);\n }\n self(self, l, m);\n for(int i = l + 1; i <= m; i++) {\n check(r, i);\n }\n self(self, m, r);\n };\n dfs(dfs, 0, n-1);\n return dp;\n}\n\ni64 op(i64 a, i64 b) {\n return a < b ? a : b;\n}\n\ni64 e() {\n return LNF;\n}\n\nvoid main_() {\n int n,l;\n std::cin >> n >> l;\n std::vector<i64> a(n);\n std::cin >> a;\n rep(i,0,n) a[i] = -a[i];\n segtree<i64, op, e> seg(a);\n auto f = [&](int i, int j) -> i64 {\n if(j - i < l) return LNF;\n return seg.prod(i, j);\n };\n auto dp = monge_shortest_path<i64>(n+1, f);\n std::cout << -dp[n] << '\\n';\n}\n\n} // namespace ebi\n\nint main() {\n ebi::fast_io();\n int t = 1;\n // std::cin >> t;\n while (t--) {\n ebi::main_();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 10144, "score_of_the_acc": -0.2882, "final_rank": 7 }, { "submission_id": "aoj_3086_8469919", "code_snippet": "#include <bits/stdc++.h>\n\n#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)\n#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)\n#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)\n#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n\n#line 2 \"template/debug_template.hpp\"\n\n#line 4 \"template/debug_template.hpp\"\n\nnamespace ebi {\n\n#ifdef LOCAL\n#define debug(...) \\\n std::cerr << \"LINE: \" << __LINE__ << \" [\" << #__VA_ARGS__ << \"]:\", \\\n debug_out(__VA_ARGS__)\n#else\n#define debug(...)\n#endif\n\nvoid debug_out() {\n std::cerr << std::endl;\n}\n\ntemplate <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {\n std::cerr << \" \" << h;\n if (sizeof...(t) > 0) std::cerr << \" :\";\n debug_out(t...);\n}\n\n} // namespace ebi\n#line 2 \"template/int_alias.hpp\"\n\n#line 4 \"template/int_alias.hpp\"\n\nnamespace ebi {\n\nusing std::size_t;\nusing i8 = std::int8_t;\nusing u8 = std::uint8_t;\nusing i16 = std::int16_t;\nusing u16 = std::uint16_t;\nusing i32 = std::int32_t;\nusing u32 = std::uint32_t;\nusing i64 = std::int64_t;\nusing u64 = std::uint64_t;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\n\n} // namespace ebi\n#line 2 \"template/io.hpp\"\n\n#line 7 \"template/io.hpp\"\n\nnamespace ebi {\n\ntemplate <typename T1, typename T2>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {\n return os << pa.first << \" \" << pa.second;\n}\n\ntemplate <typename T1, typename T2>\nstd::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {\n return os >> pa.first >> pa.second;\n}\n\ntemplate <typename T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {\n for (std::size_t i = 0; i < vec.size(); i++)\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \" \");\n return os;\n}\n\ntemplate <typename T>\nstd::istream &operator>>(std::istream &os, std::vector<T> &vec) {\n for (T &e : vec) std::cin >> e;\n return os;\n}\n\ntemplate <typename T>\nstd::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {\n if (opt) {\n os << opt.value();\n } else {\n os << \"invalid value\";\n }\n return os;\n}\n\nvoid fast_io() {\n std::cout << std::fixed << std::setprecision(15);\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n}\n\n} // namespace ebi\n#line 2 \"template/utility.hpp\"\n\n#line 5 \"template/utility.hpp\"\n\n#line 7 \"template/utility.hpp\"\n\nnamespace ebi {\n\ntemplate <class T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T> T safe_ceil(T a, T b) {\n if (a % b == 0)\n return a / b;\n else if (a >= 0)\n return (a / b) + 1;\n else\n return -((-a) / b);\n}\n\ntemplate <class T> T safe_floor(T a, T b) {\n if (a % b == 0)\n return a / b;\n else if (a >= 0)\n return a / b;\n else\n return -((-a) / b) - 1;\n}\n\nconstexpr i64 LNF = std::numeric_limits<i64>::max() / 4;\n\nconstexpr int INF = std::numeric_limits<int>::max() / 2;\n\nconst std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};\nconst std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};\n\n} // namespace ebi\n#line 2 \"data_structure/segtree.hpp\"\n\n#line 5 \"data_structure/segtree.hpp\"\n\nnamespace ebi {\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n private:\n int n;\n int sz;\n std::vector<S> data;\n\n void update(int i) {\n data[i] = op(data[2 * i], data[2 * i + 1]);\n }\n\n public:\n segtree(int n_) : segtree(std::vector<S>(n_, e())) {}\n segtree(const std::vector<S> &v) : n((int)v.size()), sz(1) {\n while (sz < n) sz *= 2;\n data = std::vector<S>(2 * sz, e());\n for (int i = 0; i < n; i++) {\n data[sz + i] = v[i];\n }\n for (int i = sz - 1; i >= 1; i--) update(i);\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < n);\n p += sz;\n data[p] = x;\n while (p > 1) {\n p >>= 1;\n update(p);\n }\n }\n\n S get(int p) const {\n assert(0 <= p && p < n);\n return data[p + sz];\n }\n\n S prod(int l, int r) const {\n assert(0 <= l && l <= r && r <= n);\n S sml = e(), smr = e();\n l += sz;\n r += sz;\n while (l < r) {\n if (l & 1) sml = op(sml, data[l++]);\n if (r & 1) smr = op(data[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() const {\n return data[1];\n }\n\n template <class F> int max_right(int l, F f) const {\n assert(0 <= l && l < n);\n assert(f(e()));\n if (l == n) return n;\n l += sz;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, data[l]))) {\n while (l < sz) {\n l = 2 * l;\n if (f(op(sm, data[l]))) {\n sm = op(sm, data[l]);\n l++;\n }\n }\n return l - sz;\n }\n sm = op(sm, data[l]);\n l++;\n } while ((l & -l) != l);\n return n;\n }\n\n template <class F> int min_left(int r, F f) const {\n assert(0 <= r && r <= n);\n assert(f(e()));\n if (r == 0) return 0;\n r += sz;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(data[r], sm))) {\n while (r < sz) {\n r = 2 * r + 1;\n if (f(op(data[r], sm))) {\n sm = op(data[r], sm);\n r--;\n }\n }\n return r + 1 - sz;\n }\n sm = op(data[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n S operator[](int p) const {\n return data[sz + p];\n }\n};\n\n} // namespace ebi\n#line 3 \"a.cpp\"\n\nnamespace ebi {\n\ntemplate<class T, class F>\nstd::vector<T> monge_shortest_path(int n, F f) {\n const T max = LNF;\n std::vector<int> argmin(n, 0);\n std::vector<T> dp(n, max);\n dp[0] = 0;\n auto get = [&](int i, int j) -> T {\n return dp[j] + f(j, i);\n };\n auto check = [&](int i, int j) -> void {\n T val = get(i, j);\n if(val <= dp[i]) {\n dp[i] = val;\n argmin[i] = j;\n }\n };\n dp[n-1] = get(n-1, 0);\n auto dfs = [&](auto &&self, int l, int r) -> void {\n if(r - l == 1) return;\n int m = (l + r) >> 1;\n for(int i = argmin[l]; i <= argmin[r]; i++) {\n check(m, i);\n }\n self(self, l, m);\n for(int i = l + 1; i <= m; i++) {\n check(r, i);\n }\n self(self, m, r);\n };\n dfs(dfs, 0, n-1);\n return dp;\n}\n\ni64 op(i64 a, i64 b) {\n return a < b ? a : b;\n}\n\ni64 e() {\n return LNF;\n}\n\nvoid main_() {\n int n,l;\n std::cin >> n >> l;\n std::vector<i64> a(n);\n std::cin >> a;\n rep(i,0,n) a[i] = -a[i];\n segtree<i64, op, e> seg(a);\n auto f = [&](int i, int j) -> i64 {\n if(j - i < l) return LNF;\n return seg.prod(i, j);\n };\n auto dp = monge_shortest_path<i64>(n+1, f);\n std::cout << -dp[n] << '\\n';\n}\n\n} // namespace ebi\n\nint main() {\n ebi::fast_io();\n int t = 1;\n // std::cin >> t;\n while (t--) {\n ebi::main_();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 10132, "score_of_the_acc": -0.2875, "final_rank": 6 }, { "submission_id": "aoj_3086_8231459", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define sz(x) int(x.size())\n#define all(x) x.begin(), x.end()\n\ntemplate <class T> using vc = vector<T>;\ntemplate <class T> using vvc = vc<vc<T>>;\n\nusing ll = int64_t;\nusing vi = vc<int>;\nusing pii = pair<int, int>;\n\ntemplate <class F>\nstruct ycr {\n\tF f;\n\t\n\ttemplate <class T>\n\texplicit ycr(T&& f_) : f(forward<T>(f_)) {}\n\n\ttemplate <class... Args>\n\tdecltype(auto) operator()(Args&&... args) {\n\t\treturn f(ref(*this), forward<Args>(args)...);\n\t}\n};\ntemplate <class F>\ndecltype(auto) yc(F&& f) {\n\treturn ycr<decay_t<F>>(forward<F>(f));\n}\n\ntemplate <class T, class F>\nvc<T> monge_shortest_path(int n, F f) {\n\tconst T inf = numeric_limits<T>::max() / 4;\n\tvc<T> dp(n+1, inf);\n\tvi x(n+1, 0);\n\tauto update = [&](int s, int t) {\n\t\tif (s >= t) return;\n\t\tT v = dp[s] + f(s, t);\n\t\tif (v < dp[t]) {\n\t\t\tdp[t] = v;\n\t\t\tx[t] = s;\n\t\t}\n\t};\n\tdp[0] = 0;\n\tupdate(0, n);\n\tyc([&](auto self, int l, int r) -> void {\n\t\tif (l+1 >= r) return;\n\t\tint m = (l+r)/2;\n\t\tfor (int i = x[l]; i <= x[r]; i++) update(i, m);\n\t\tself(l, m);\n\t\tfor (int i = l+1; i <= m; i++) update(i, r);\n\t\tself(m, r);\n\t})(0, n);\n\treturn dp;\n}\n\nint main() {\n\tios_base::sync_with_stdio(false), cin.tie(nullptr);\n\tcout << fixed << setprecision(20);\n\n\tint N, L; cin >> N >> L;\n\tconst int S = 1 << (N <= 1 ? 0 : 32 - __builtin_clz(N-1));\n\tconst int INF = 1.01e9;\n\tvector<int> seg(2*S, -INF);\n\tfor (int i = 0; i < N; i++) {\n\t\tint a; cin >> a;\n\t\tseg[S+i] = a;\n\t}\n\tfor (int i = S-1; i >= 1; i--) seg[i] = max(seg[2*i], seg[2*i+1]);\n\n\tconst ll INFLL = numeric_limits<ll>::max() / 4;\n\tcout << -monge_shortest_path<ll>(N, [&](int l, int r) -> ll {\n\t\tassert(0 <= l && l < r && r <= N);\n\t\tif (r-l < L) return +INFLL;\n\t\tint v = -INF;\n\t\tfor (int a = S+l, b = S+r; a < b; a /= 2, b /= 2) {\n\t\t\tif (a & 1) v = max(v, seg[a++]);\n\t\t\tif (b & 1) v = max(v, seg[--b]);\n\t\t}\n\t\tassert(v > -INF);\n\t\treturn -v;\n\t})[N] << '\\n';\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 7012, "score_of_the_acc": -0.1263, "final_rank": 2 }, { "submission_id": "aoj_3086_7830900", "code_snippet": "/**\n * date : 2023-05-23 20:20:43\n */\n\n#define NDEBUG\nusing namespace std;\n\n// intrinstic\n#include <immintrin.h>\n\n#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <cctype>\n#include <cfenv>\n#include <cfloat>\n#include <chrono>\n#include <cinttypes>\n#include <climits>\n#include <cmath>\n#include <complex>\n#include <cstdarg>\n#include <cstddef>\n#include <cstdint>\n#include <cstdio>\n#include <cstdlib>\n#include <cstring>\n#include <deque>\n#include <fstream>\n#include <functional>\n#include <initializer_list>\n#include <iomanip>\n#include <ios>\n#include <iostream>\n#include <istream>\n#include <iterator>\n#include <limits>\n#include <list>\n#include <map>\n#include <memory>\n#include <new>\n#include <numeric>\n#include <ostream>\n#include <queue>\n#include <random>\n#include <set>\n#include <sstream>\n#include <stack>\n#include <streambuf>\n#include <string>\n#include <tuple>\n#include <type_traits>\n#include <typeinfo>\n#include <unordered_map>\n#include <unordered_set>\n#include <utility>\n#include <vector>\n\n// utility\nnamespace Nyaan {\nusing ll = long long;\nusing i64 = long long;\nusing u64 = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\n\ntemplate <typename T>\nusing V = vector<T>;\ntemplate <typename T>\nusing VV = vector<vector<T>>;\nusing vi = vector<int>;\nusing vl = vector<long long>;\nusing vd = V<double>;\nusing vs = V<string>;\nusing vvi = vector<vector<int>>;\nusing vvl = vector<vector<long long>>;\n\ntemplate <typename T, typename U>\nstruct P : pair<T, U> {\n template <typename... Args>\n P(Args... args) : pair<T, U>(args...) {}\n\n using pair<T, U>::first;\n using pair<T, U>::second;\n\n P &operator+=(const P &r) {\n first += r.first;\n second += r.second;\n return *this;\n }\n P &operator-=(const P &r) {\n first -= r.first;\n second -= r.second;\n return *this;\n }\n P &operator*=(const P &r) {\n first *= r.first;\n second *= r.second;\n return *this;\n }\n template <typename S>\n P &operator*=(const S &r) {\n first *= r, second *= r;\n return *this;\n }\n P operator+(const P &r) const { return P(*this) += r; }\n P operator-(const P &r) const { return P(*this) -= r; }\n P operator*(const P &r) const { return P(*this) *= r; }\n template <typename S>\n P operator*(const S &r) const {\n return P(*this) *= r;\n }\n P operator-() const { return P{-first, -second}; }\n};\n\nusing pl = P<ll, ll>;\nusing pi = P<int, int>;\nusing vp = V<pl>;\n\nconstexpr int inf = 1001001001;\nconstexpr long long infLL = 4004004004004004004LL;\n\ntemplate <typename T>\nint sz(const T &t) {\n return t.size();\n}\n\ntemplate <typename T, typename U>\ninline bool amin(T &x, U y) {\n return (y < x) ? (x = y, true) : false;\n}\ntemplate <typename T, typename U>\ninline bool amax(T &x, U y) {\n return (x < y) ? (x = y, true) : false;\n}\n\ntemplate <typename T>\ninline T Max(const vector<T> &v) {\n return *max_element(begin(v), end(v));\n}\ntemplate <typename T>\ninline T Min(const vector<T> &v) {\n return *min_element(begin(v), end(v));\n}\ntemplate <typename T>\ninline long long Sum(const vector<T> &v) {\n return accumulate(begin(v), end(v), 0LL);\n}\n\ntemplate <typename T>\nint lb(const vector<T> &v, const T &a) {\n return lower_bound(begin(v), end(v), a) - begin(v);\n}\ntemplate <typename T>\nint ub(const vector<T> &v, const T &a) {\n return upper_bound(begin(v), end(v), a) - begin(v);\n}\n\nconstexpr long long TEN(int n) {\n long long ret = 1, x = 10;\n for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);\n return ret;\n}\n\ntemplate <typename T, typename U>\npair<T, U> mkp(const T &t, const U &u) {\n return make_pair(t, u);\n}\n\ntemplate <typename T>\nvector<T> mkrui(const vector<T> &v, bool rev = false) {\n vector<T> ret(v.size() + 1);\n if (rev) {\n for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];\n } else {\n for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];\n }\n return ret;\n};\n\ntemplate <typename T>\nvector<T> mkuni(const vector<T> &v) {\n vector<T> ret(v);\n sort(ret.begin(), ret.end());\n ret.erase(unique(ret.begin(), ret.end()), ret.end());\n return ret;\n}\n\ntemplate <typename F>\nvector<int> mkord(int N,F f) {\n vector<int> ord(N);\n iota(begin(ord), end(ord), 0);\n sort(begin(ord), end(ord), f);\n return ord;\n}\n\ntemplate <typename T>\nvector<int> mkinv(vector<T> &v) {\n int max_val = *max_element(begin(v), end(v));\n vector<int> inv(max_val + 1, -1);\n for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;\n return inv;\n}\n\nvector<int> mkiota(int n) {\n vector<int> ret(n);\n iota(begin(ret), end(ret), 0);\n return ret;\n}\n\ntemplate <typename T>\nT mkrev(const T &v) {\n T w{v};\n reverse(begin(w), end(w));\n return w;\n}\n\ntemplate <typename T>\nbool nxp(vector<T> &v) {\n return next_permutation(begin(v), end(v));\n}\n\ntemplate <typename T>\nusing minpq = priority_queue<T, vector<T>, greater<T>>;\n\n} // namespace Nyaan\n\n// bit operation\nnamespace Nyaan {\n__attribute__((target(\"popcnt\"))) inline int popcnt(const u64 &a) {\n return _mm_popcnt_u64(a);\n}\ninline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }\ninline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }\ninline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }\ntemplate <typename T>\ninline int gbit(const T &a, int i) {\n return (a >> i) & 1;\n}\ntemplate <typename T>\ninline void sbit(T &a, int i, bool b) {\n if (gbit(a, i) != b) a ^= T(1) << i;\n}\nconstexpr long long PW(int n) { return 1LL << n; }\nconstexpr long long MSK(int n) { return (1LL << n) - 1; }\n} // namespace Nyaan\n\n// inout\nnamespace Nyaan {\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v) {\n for (auto &x : v) is >> x;\n return is;\n}\n\nistream &operator>>(istream &is, __int128_t &x) {\n string S;\n is >> S;\n x = 0;\n int flag = 0;\n for (auto &c : S) {\n if (c == '-') {\n flag = true;\n continue;\n }\n x *= 10;\n x += c - '0';\n }\n if (flag) x = -x;\n return is;\n}\n\nistream &operator>>(istream &is, __uint128_t &x) {\n string S;\n is >> S;\n x = 0;\n for (auto &c : S) {\n x *= 10;\n x += c - '0';\n }\n return is;\n}\n\nostream &operator<<(ostream &os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n string S;\n while (x) S.push_back('0' + x % 10), x /= 10;\n reverse(begin(S), end(S));\n return os << S;\n}\nostream &operator<<(ostream &os, __uint128_t x) {\n if (x == 0) return os << 0;\n string S;\n while (x) S.push_back('0' + x % 10), x /= 10;\n reverse(begin(S), end(S));\n return os << S;\n}\n\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &...u) {\n cin >> t;\n in(u...);\n}\n\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U, char sep = ' '>\nvoid out(const T &t, const U &...u) {\n cout << t;\n if (sizeof...(u)) cout << sep;\n out(u...);\n}\n\nstruct IoSetupNya {\n IoSetupNya() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetupnya;\n\n} // namespace Nyaan\n\n// debug\n\n#ifdef NyaanDebug\n#define trc(...) (void(0))\n#else\n#define trc(...) (void(0))\n#endif\n\n#ifdef NyaanLocal\n#define trc2(...) (void(0))\n#else\n#define trc2(...) (void(0))\n#endif\n\n// macro\n#define each(x, v) for (auto&& x : v)\n#define each2(x, y, v) for (auto&& [x, y] : v)\n#define all(v) (v).begin(), (v).end()\n#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)\n#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)\n#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)\n#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)\n#define reg(i, a, b) for (long long i = (a); i < (b); i++)\n#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)\n#define fi first\n#define se second\n#define ini(...) \\\n int __VA_ARGS__; \\\n in(__VA_ARGS__)\n#define inl(...) \\\n long long __VA_ARGS__; \\\n in(__VA_ARGS__)\n#define ins(...) \\\n string __VA_ARGS__; \\\n in(__VA_ARGS__)\n#define in2(s, t) \\\n for (int i = 0; i < (int)s.size(); i++) { \\\n in(s[i], t[i]); \\\n }\n#define in3(s, t, u) \\\n for (int i = 0; i < (int)s.size(); i++) { \\\n in(s[i], t[i], u[i]); \\\n }\n#define in4(s, t, u, v) \\\n for (int i = 0; i < (int)s.size(); i++) { \\\n in(s[i], t[i], u[i], v[i]); \\\n }\n#define die(...) \\\n do { \\\n Nyaan::out(__VA_ARGS__); \\\n return; \\\n } while (0)\n\nnamespace Nyaan {\nvoid solve();\n}\nint main() { Nyaan::solve(); }\n\n//\n\nusing namespace std;\n\n// https://noshi91.hatenablog.com/entry/2023/02/18/005856\n// 辺コストが monge である DAG の 0 - i 最短路\ntemplate <typename T>\nvector<T> monge_shortest_path(int N, const function<T(int, int)>& f) {\n T INF = (T{1} << (sizeof(T) * 8 - 2)) - 1;\n vector<T> dp(N + 1, INF);\n vector<int> x(N + 1, 0);\n auto check = [&](int from, int to) {\n if (from >= to) return;\n T cost = f(from, to);\n if (dp[from] + cost < dp[to]) dp[to] = dp[from] + cost, x[to] = from;\n };\n auto dfs = [&](auto rc, int l, int r) -> void {\n if (l + 1 >= r) return;\n int m = (l + r) / 2;\n for (int i = x[l]; i <= x[r]; i++) check(i, m);\n rc(rc, l, m);\n for (int i = l + 1; i <= m; i++) check(i, r);\n rc(rc, m, r);\n };\n dp[0] = 0, check(0, N), dfs(dfs, 0, N);\n return dp;\n}\n\n/**\n * @brief monge グラフ上の最短路\n */\n\n//\n\ntemplate <typename T, typename F>\nstruct SegmentTree {\n int N;\n int size;\n vector<T> seg;\n const F f;\n const T I;\n\n SegmentTree(F _f, const T &I_) : N(0), size(0), f(_f), I(I_) {}\n\n SegmentTree(int _N, F _f, const T &I_) : f(_f), I(I_) { init(_N); }\n\n SegmentTree(const vector<T> &v, F _f, T I_) : f(_f), I(I_) {\n init(v.size());\n for (int i = 0; i < (int)v.size(); i++) {\n seg[i + size] = v[i];\n }\n build();\n }\n\n void init(int _N) {\n N = _N;\n size = 1;\n while (size < N) size <<= 1;\n seg.assign(2 * size, I);\n }\n\n void set(int k, T x) { seg[k + size] = x; }\n\n void build() {\n for (int k = size - 1; k > 0; k--) {\n seg[k] = f(seg[2 * k], seg[2 * k + 1]);\n }\n }\n\n void update(int k, T x) {\n k += size;\n seg[k] = x;\n while (k >>= 1) {\n seg[k] = f(seg[2 * k], seg[2 * k + 1]);\n }\n }\n\n void add(int k, T x) {\n k += size;\n seg[k] += x;\n while (k >>= 1) {\n seg[k] = f(seg[2 * k], seg[2 * k + 1]);\n }\n }\n\n // query to [a, b)\n T query(int a, int b) {\n T L = I, R = I;\n for (a += size, b += size; a < b; a >>= 1, b >>= 1) {\n if (a & 1) L = f(L, seg[a++]);\n if (b & 1) R = f(seg[--b], R);\n }\n return f(L, R);\n }\n\n T &operator[](const int &k) { return seg[k + size]; }\n\n // check(a[l] * ... * a[r-1]) が true となる最大の r\n // (右端まですべて true なら N を返す)\n template <class C>\n int max_right(int l, C check) {\n assert(0 <= l && l <= N);\n assert(check(I) == true);\n if (l == N) return N;\n l += size;\n T sm = I;\n do {\n while (l % 2 == 0) l >>= 1;\n if (!check(f(sm, seg[l]))) {\n while (l < size) {\n l = (2 * l);\n if (check(f(sm, seg[l]))) {\n sm = f(sm, seg[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = f(sm, seg[l]);\n l++;\n } while ((l & -l) != l);\n return N;\n }\n\n // check(a[l] * ... * a[r-1]) が true となる最小の l\n // (左端まで true なら 0 を返す)\n template <typename C>\n int min_left(int r, C check) {\n assert(0 <= r && r <= N);\n assert(check(I) == true);\n if (r == 0) return 0;\n r += size;\n T sm = I;\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!check(f(seg[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (check(f(seg[r], sm))) {\n sm = f(seg[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = f(seg[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n};\nusing namespace Nyaan;\n\nvoid q() {\n inl(N, L);\n vl d(N);\n in(d);\n each(x, d) x = -x;\n SegmentTree seg(\n d, [](ll a, ll b) { return min(a, b); }, infLL);\n auto ans = monge_shortest_path<ll>(N, [&](int l, int r) -> ll {\n if (r - l < L) return infLL;\n return seg.query(l, r);\n });\n out(-ans[N]);\n}\n\nvoid Nyaan::solve() {\n int t = 1;\n // in(t);\n while (t--) q();\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 10092, "score_of_the_acc": -0.2917, "final_rank": 8 }, { "submission_id": "aoj_3086_5989354", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate<typename T1, typename T2>\nostream &operator<<(ostream &os, const pair<T1, T2> &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate<typename T1, typename T2>\nistream &operator>>(istream &is, pair<T1, T2> &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate<typename T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n for (int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate<typename T>\nistream &operator>>(istream &is, vector<T> &v) {\n for (T &in : v) is >> in;\n return is;\n}\n\ntemplate<typename T1, typename T2>\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate<typename T1, typename T2>\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate<typename T = int64>\nvector<T> make_v(size_t a) {\n return vector<T>(a);\n}\n\ntemplate<typename T, typename... Ts>\nauto make_v(size_t a, Ts... ts) {\n return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));\n}\n\ntemplate<typename T, typename V>\ntypename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate<typename T, typename V>\ntypename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {\n for (auto &e : t) fill_v(e, v);\n}\n\ntemplate<typename F>\nstruct FixPoint : F {\n explicit FixPoint(F &&f) : F(forward<F>(f)) {}\n\n template<typename... Args>\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward<Args>(args)...);\n }\n};\n\ntemplate<typename F>\ninline decltype(auto) MFP(F &&f) {\n return FixPoint<F>{forward<F>(f)};\n}\n\n#line 1 \"dp/monotone-minima.cpp\"\n\n/**\n * @brief Monotone Minima\n * @docs docs/monotone-minima.md\n */\ntemplate<typename T, typename Compare = less<T> >\nvector<pair<int, T> > monotone_minima(int H, int W, const function<T(int, int)> &f, const Compare &comp = Compare()) {\n vector<pair<int, T> > dp(H);\n function<void(int, int, int, int)> dfs = [&](int top, int bottom, int left, int right) {\n if (top > bottom) return;\n int line = (top + bottom) / 2;\n T ma;\n int mi = -1;\n for (int i = left; i <= right; i++) {\n T cst = f(line, i);\n if (mi == -1 || comp(cst, ma)) {\n ma = cst;\n mi = i;\n }\n }\n dp[line] = make_pair(mi, ma);\n dfs(top, line - 1, left, mi);\n dfs(line + 1, bottom, mi, right);\n };\n dfs(0, H - 1, 0, W - 1);\n return dp;\n}\n\n#line 2 \"dp/online-offline-dp.cpp\"\n\n/**\n * @brief Online Offline DP(オンライン・オフライン変換)\n * @docs docs/online-offline-dp.md\n */\ntemplate<typename T, typename Compare = less<T> >\nvector<T> online_offline_dp(int W, const function<T(int, int)> &f, const Compare &comp = Compare()) {\n vector<T> dp(W + 1);\n vector<int> isset(W + 1);\n int y_base = -1, x_base = -1;\n function<T(int, int)> get_cost = [&](int y, int x) { // return dp[0, x+x_base)+f[x+x_base, y+y_base)\n return dp[x + x_base] + f(x + x_base, y + y_base);\n };\n function<void(int, int, int)> induce = [&](int l, int m, int r) { // dp[l, m) -> dp[m, r)\n x_base = l, y_base = m;\n auto ret = monotone_minima(r - m, m - l, get_cost, comp);\n for (int i = 0; i < ret.size(); i++) {\n if (!isset[m + i] || comp(ret[i].second, dp[m + i])) {\n isset[m + i] = true;\n dp[m + i] = ret[i].second;\n }\n }\n };\n function<void(int, int)> dfs = [&](int l, int r) {\n if (l + 1 == r) {\n x_base = l, y_base = l;\n T cst = l ? get_cost(0, -1) : 0;\n if (!isset[l] || comp(cst, dp[l])) {\n isset[l] = true;\n dp[l] = cst;\n }\n } else {\n int mid = (l + r) / 2;\n dfs(l, mid);\n induce(l, mid, r);\n dfs(mid, r);\n }\n };\n dfs(0, W + 1);\n return dp;\n};\n\n/**\n * @brief Sparse-Table(スパーステーブル)\n * @docs docs/sparse-table.md\n */\ntemplate<typename T, typename F>\nstruct SparseTable {\n F f;\n vector<vector<T> > st;\n vector<int> lookup;\n\n SparseTable() = default;\n\n explicit SparseTable(const vector<T> &v, const F &f) : f(f) {\n const int n = (int) v.size();\n const int b = 32 - __builtin_clz(n);\n st.assign(b, vector<T>(n));\n for (int i = 0; i < v.size(); i++) {\n st[0][i] = v[i];\n }\n for (int i = 1; i < b; i++) {\n for (int j = 0; j + (1 << i) <= n; j++) {\n st[i][j] = f(st[i - 1][j], st[i - 1][j + (1 << (i - 1))]);\n }\n }\n lookup.resize(v.size() + 1);\n for (int i = 2; i < lookup.size(); i++) {\n lookup[i] = lookup[i >> 1] + 1;\n }\n }\n\n inline T fold(int l, int r) const {\n int b = lookup[r - l];\n return f(st[b][l], st[b][r - (1 << b)]);\n }\n};\n\ntemplate<typename T, typename F>\nSparseTable<T, F> get_sparse_table(const vector<T> &v, const F &f) {\n return SparseTable<T, F>(v, f);\n}\n\n\nint main() {\n int n, l;\n cin >> n >> l;\n vector<int> A(n);\n for (auto &a : A) cin >> a;\n auto rmq = get_sparse_table(A, [&](int a, int b) { return max(a, b); });\n function<int64_t(int, int)> dist = [&](int i, int j) -> int64_t {\n assert(0 <= i && i < j && j <= n);\n if (j - i < l) return -infll+1LL*inf*(j-i);\n else return rmq.fold(i, j);\n };\n cout << online_offline_dp(n, dist, greater<>()).back() << endl;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 18944, "score_of_the_acc": -0.8175, "final_rank": 16 }, { "submission_id": "aoj_3086_5922724", "code_snippet": "#line 1 \"larsch.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/challenges/search/titles/3086\"\n#include <iostream>\n#line 2 \"/Users/kodamankod/Desktop/CppProcon/Library/proconlib/algorithm/larsch.cpp\"\n#include <cassert>\n#include <functional>\n#include <memory>\n#include <vector>\n#line 2 \"/Users/kodamankod/Desktop/CppProcon/Library/proconlib/utility/int_alias.cpp\"\n#include <cstddef>\n#include <cstdint>\n\nusing i32 = std::int32_t;\nusing u32 = std::uint32_t;\nusing i64 = std::int64_t;\nusing u64 = std::uint64_t;\nusing isize = std::ptrdiff_t;\nusing usize = std::size_t;\n#line 7 \"/Users/kodamankod/Desktop/CppProcon/Library/proconlib/algorithm/larsch.cpp\"\n\nclass LARSCH {\n using Select = std::function<bool(usize, usize, usize)>;\n struct ReduceRow;\n struct ReduceCol;\n\n struct ReduceRow {\n usize n, m, x, k;\n Select f;\n std::unique_ptr<ReduceCol> rec;\n\n explicit ReduceRow(const usize n_, const Select& f_) : n(n_), m(0), x(0), k(0), f(f_), rec() {\n const usize h = n / 2;\n if (h != 0)\n rec = std::make_unique<ReduceCol>(h, [&](usize i, usize j, usize k) { return f(2 * i + 1, j, k); });\n }\n\n void add_column() {\n if ((x & 1) and f(x, k, m)) k = m;\n if (rec) rec->add_column();\n m += 1;\n }\n\n usize get_argmin() {\n if (x & 1) {\n x += 1;\n return k;\n } else {\n usize ret = k;\n if (x + 1 == n)\n k = m - 1;\n else\n k = rec->get_argmin();\n for (usize j = ret + 1; j <= k; j += 1)\n if (f(x, ret, j)) ret = j;\n x += 1;\n return ret;\n }\n }\n };\n\n struct ReduceCol {\n usize n, m, x, y;\n std::vector<usize> c;\n Select f;\n ReduceRow rec;\n\n explicit ReduceCol(const usize n_, const Select& f_)\n : n(n_), m(0), x(0), y(0), c(), f(f_), rec(n_, [&](usize i, usize j, usize k) { return f(i, c[j], c[k]); }) {}\n\n void add_column() {\n if (x == n) return;\n while (true) {\n const usize i = c.size();\n if (i <= x or !f(i - 1, c[i - 1], m)) break;\n c.pop_back();\n }\n if (c.size() != n) c.push_back(m);\n m += 1;\n }\n\n usize get_argmin() {\n x += 1;\n while (y < std::min(x, c.size())) {\n rec.add_column();\n y += 1;\n }\n return c[rec.get_argmin()];\n }\n };\n\n usize row, col;\n ReduceRow machine;\n\n public:\n explicit LARSCH(const usize n, const Select& f) : row(n), col(0), machine(n, f) {}\n\n void add_column() {\n assert(row != 0);\n col += 1;\n machine.add_column();\n }\n\n usize get_argmin() {\n assert(row != 0 and col != 0);\n row -= 1;\n return machine.get_argmin();\n }\n};\n\ntemplate <class T, class Comp = std::less<T>> class CompLARSCH {\n std::function<T(usize, usize)> func;\n Comp comp;\n LARSCH machine;\n\n public:\n explicit CompLARSCH(const usize n, const std::function<T(usize, usize)>& f, const Comp& c = Comp())\n : func(f), comp(c), machine(n, [&](usize i, usize j, usize k) { return comp(func(i, k), func(i, j)); }) {}\n\n void add_column() { machine.add_column(); }\n\n usize get_argmin() { return machine.get_argmin(); }\n};\n#line 3 \"/Users/kodamankod/Desktop/CppProcon/Library/proconlib/traits/max_monoid.cpp\"\n#include <limits>\n\ntemplate <class T> struct MaxMonoid {\n using Type = T;\n static constexpr T identity() { return std::numeric_limits<T>::min(); }\n static constexpr T operation(const T& l, const T& r) { return std::max(l, r); }\n};\n#line 3 \"/Users/kodamankod/Desktop/CppProcon/Library/proconlib/bit/ceil_log2.cpp\"\n\n__attribute__((target(\"avx2\"))) constexpr u64 ceil_log2(const u64 x) {\n u64 e = 0;\n while (((u64)1 << e) < x) ++e;\n return e;\n}\n#line 2 \"/Users/kodamankod/Desktop/CppProcon/Library/proconlib/utility/rep.cpp\"\n#include <algorithm>\n#line 4 \"/Users/kodamankod/Desktop/CppProcon/Library/proconlib/utility/rep.cpp\"\n\nclass rep {\n struct Iter {\n usize itr;\n constexpr Iter(const usize pos) noexcept : itr(pos) {}\n constexpr void operator++() noexcept { ++itr; }\n constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }\n constexpr usize operator*() const noexcept { return itr; }\n };\n const Iter first, last;\n\n public:\n explicit constexpr rep(const usize first, const usize last) noexcept : first(first), last(std::max(first, last)) {}\n constexpr Iter begin() const noexcept { return first; }\n constexpr Iter end() const noexcept { return last; }\n};\n#line 4 \"/Users/kodamankod/Desktop/CppProcon/Library/proconlib/utility/revrep.cpp\"\n\nclass revrep {\n struct Iter {\n usize itr;\n constexpr Iter(const usize pos) noexcept : itr(pos) {}\n constexpr void operator++() noexcept { --itr; }\n constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }\n constexpr usize operator*() const noexcept { return itr; }\n };\n const Iter first, last;\n\n public:\n explicit constexpr revrep(const usize first, const usize last) noexcept\n : first(last - 1), last(std::min(first, last) - 1) {}\n constexpr Iter begin() const noexcept { return first; }\n constexpr Iter end() const noexcept { return last; }\n};\n#line 8 \"/Users/kodamankod/Desktop/CppProcon/Library/proconlib/container/segment_tree.cpp\"\n\ntemplate <class M> class SegmentTree {\n using T = typename M::Type;\n usize internal_size, seg_size;\n std::vector<T> data;\n\n void fetch(const usize k) { data[k] = M::operation(data[2 * k], data[2 * k + 1]); }\n\n public:\n explicit SegmentTree(const usize size = 0, const T& value = M::identity())\n : SegmentTree(std::vector<T>(size, value)) {}\n explicit SegmentTree(const std::vector<T>& vec) : internal_size(vec.size()) {\n seg_size = 1 << ceil_log2(internal_size);\n data = std::vector<T>(2 * seg_size, M::identity());\n for (const usize i : rep(0, internal_size)) data[seg_size + i] = vec[i];\n for (const usize i : revrep(1, seg_size)) fetch(i);\n }\n\n usize size() const { return internal_size; }\n\n void assign(usize i, const T& value) {\n assert(i < internal_size);\n i += seg_size;\n data[i] = value;\n while (i > 1) {\n i >>= 1;\n fetch(i);\n }\n }\n\n T fold() const { return data[1]; }\n T fold(usize l, usize r) const {\n assert(l <= r and r <= internal_size);\n l += seg_size;\n r += seg_size;\n T ret_l = M::identity(), ret_r = M::identity();\n while (l < r) {\n if (l & 1) ret_l = M::operation(ret_l, data[l++]);\n if (r & 1) ret_r = M::operation(data[--r], ret_r);\n l >>= 1;\n r >>= 1;\n }\n return M::operation(ret_l, ret_r);\n }\n\n template <class F> usize max_right(usize l, const F& f) const {\n assert(l <= internal_size);\n assert(f(M::identity()));\n if (l == internal_size) return internal_size;\n l += seg_size;\n T sum = M::identity();\n do {\n while (!(l & 1)) l >>= 1;\n if (!f(M::operation(sum, data[l]))) {\n while (l < seg_size) {\n l = 2 * l;\n if (f(M::operation(sum, data[l]))) sum = M::operation(sum, data[l++]);\n }\n return l - seg_size;\n }\n sum = M::operation(sum, data[l++]);\n } while ((l & -l) != l);\n return internal_size;\n }\n\n template <class F> usize min_left(usize r, const F& f) const {\n assert(r <= internal_size);\n assert(f(M::identity()));\n if (r == 0) return 0;\n r += seg_size;\n T sum = M::identity();\n do {\n r -= 1;\n while (r > 1 and (r & 1)) r >>= 1;\n if (!f(M::operation(data[r], sum))) {\n while (r < seg_size) {\n r = 2 * r + 1;\n if (f(M::operation(data[r], sum))) sum = M::operation(data[r--], sum);\n }\n return r + 1 - seg_size;\n }\n sum = M::operation(data[r], sum);\n } while ((r & -r) != r);\n return 0;\n }\n};\n#line 3 \"/Users/kodamankod/Desktop/CppProcon/Library/proconlib/utility/infty.cpp\"\n\ntemplate <class T, T Div = 2> constexpr T INFTY = std::numeric_limits<T>::max() / Div;\n#line 10 \"larsch.test.cpp\"\n\nint main() {\n usize N, L;\n std::cin >> N >> L;\n std::vector<i64> A(N);\n for (auto& x : A) {\n std::cin >> x;\n }\n SegmentTree<MaxMonoid<i64>> seg(A);\n std::vector<i64> dp(N + 1);\n const auto transit = [&](usize i, const usize j) {\n i += 1;\n if (j + L > i) return -INFTY<i64>;\n return dp[j] + seg.fold(j, i);\n };\n CompLARSCH<i64, std::greater<i64>> larsch(N, transit);\n for (const auto i : rep(0, N)) {\n larsch.add_column();\n dp[i + 1] = transit(i, larsch.get_argmin());\n }\n std::cout << dp[N] << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 11372, "score_of_the_acc": -0.3687, "final_rank": 11 }, { "submission_id": "aoj_3086_5712468", "code_snippet": "#include <utility>\n#include <vector>\n\ntemplate <class C, class T = decltype(std::declval<C>().get())>\nT incremental_monge_shortest_path(const int n, C init) {\n class env {\n public:\n C mid;\n C last;\n int prev;\n };\n std::vector<env> nodes;\n {\n int n_ = n;\n int d = 0;\n while (n_ != 0) {\n n_ /= 2;\n d += 1;\n }\n nodes.assign(d, {init, init, 0});\n }\n std::vector<T> dp(n + 1, static_cast<T>(0));\n\n const auto f = [&](const auto &f, const int d, const int r) -> int {\n auto &[mid, last, prev] = nodes[d];\n const int w = 1 << d;\n if ((r >> d) % 2 == 1) {\n for (int i = std::max(0, r - 2 * w); i != r; i += 1) {\n mid.push_back(i);\n }\n const int next = r + w <= n ? f(f, d + 1, r + w) : r - w;\n int argmin = prev;\n dp[r] = dp[argmin] + mid.get();\n for (int i = prev; i != next;) {\n mid.pop_front(i);\n i += 1;\n const T t = dp[i] + mid.get();\n if (dp[r] > t) {\n dp[r] = t;\n argmin = i;\n }\n }\n prev = next;\n return argmin;\n } else {\n for (int i = std::max(0, r - 2 * w); i != r; i += 1) {\n last.push_back(i);\n }\n for (int i = std::max(0, r - 3 * w); i != r - 2 * w; i += 1) {\n last.pop_front(i);\n }\n int argmin = prev;\n for (int i = r - 2 * w; i != r - w;) {\n last.pop_front(i);\n i += 1;\n const T t = dp[i] + last.get();\n if (dp[r] > t) {\n dp[r] = t;\n argmin = i;\n }\n }\n return argmin;\n }\n };\n\n for (int i = 1; i != n + 1; i += 1) {\n f(f, 0, i);\n }\n\n return dp[n];\n}\n\n#include <algorithm>\n#include <iostream>\n#include <vector>\n\n#include <cassert>\n\nint main() {\n using i64 = long long;\n static constexpr i64 INF = 1e11;\n\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n\n int N, L;\n std::cin >> N >> L;\n std::vector<i64> a(N);\n for (i64 &e : a) {\n std::cin >> e;\n e = -e;\n }\n\n struct queue {\n const std::vector<i64> *a;\n const int *L;\n std::vector<i64> front;\n i64 rear;\n int l, r;\n\n void pop_front(int) {\n if (front.empty()) {\n rear = INF;\n front.clear();\n i64 t = INF;\n for (int i = r; i != l;) {\n i -= 1;\n t = std::min(t, (*a)[i]);\n front.push_back(t);\n }\n }\n front.pop_back();\n l += 1;\n }\n\n void push_back(int) {\n rear = std::min(rear, (*a)[r]);\n r += 1;\n }\n\n i64 get() {\n if (r - l < *L) {\n return INF;\n } else {\n return std::min(front.empty() ? INF : front.back(), rear);\n }\n }\n };\n\n const i64 ans =\n incremental_monge_shortest_path(N, queue({&a, &L, {}, INF, 0, 0}));\n\n std::cout << -ans << \"\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 22664, "score_of_the_acc": -1.0016, "final_rank": 18 }, { "submission_id": "aoj_3086_5712467", "code_snippet": "#include <utility>\n#include <vector>\n\ntemplate <class C, class T = decltype(std::declval<C>().get())>\nT incremental_monge_shortest_path(const int n, C init) {\n class env {\n public:\n C mid;\n C last;\n int prev;\n };\n std::vector<env> nodes;\n {\n int n_ = n;\n int d = 0;\n while (n_ != 0) {\n n_ /= 2;\n d += 1;\n }\n nodes.assign(d, {init, init, 0});\n }\n std::vector<T> dp(n + 1, static_cast<T>(0));\n\n const auto f = [&](const auto &f, const int d, const int r) -> int {\n auto &[mid, last, prev] = nodes[d];\n const int w = 1 << d;\n if ((r >> d) % 2 == 1) {\n for (int i = std::max(0, r - 2 * w); i != r; i += 1) {\n mid.push_back(i);\n }\n const int next = r + w <= n ? f(f, d + 1, r + w) : r - w;\n int argmin = prev;\n dp[r] = dp[argmin] + mid.get();\n for (int i = prev; i != next;) {\n mid.pop_front(i);\n i += 1;\n const T t = dp[i] + mid.get();\n if (dp[r] > t) {\n dp[r] = t;\n argmin = i;\n }\n }\n prev = next;\n return argmin;\n } else {\n for (int i = std::max(0, r - 2 * w); i != r; i += 1) {\n last.push_back(i);\n }\n for (int i = std::max(0, r - 3 * w); i != r - 2 * w; i += 1) {\n last.pop_front(i);\n }\n int argmin = prev;\n for (int i = r - 2 * w; i != r - w;) {\n last.pop_front(i);\n i += 1;\n const T t = dp[i] + last.get();\n if (dp[r] > t) {\n dp[r] = t;\n argmin = i;\n }\n }\n return argmin;\n }\n };\n\n for (int i = 1; i != n + 1; i += 1) {\n f(f, 0, i);\n }\n\n return dp[n];\n}\n\n#include <algorithm>\n#include <iostream>\n#include <vector>\n\n#include <cassert>\n\nint main() {\n using i64 = long long;\n static constexpr i64 INF = 1e11;\n\n int N, L;\n std::cin >> N >> L;\n std::vector<i64> a(N);\n for (i64 &e : a) {\n std::cin >> e;\n e = -e;\n }\n\n struct queue {\n const std::vector<i64> *a;\n const int *L;\n std::vector<i64> front;\n i64 rear;\n int l, r;\n\n void pop_front(int) {\n if (front.empty()) {\n rear = INF;\n front.clear();\n i64 t = INF;\n for (int i = r; i != l;) {\n i -= 1;\n t = std::min(t, (*a)[i]);\n front.push_back(t);\n }\n }\n front.pop_back();\n l += 1;\n }\n\n void push_back(int) {\n rear = std::min(rear, (*a)[r]);\n r += 1;\n }\n\n i64 get() {\n if (r - l < *L) {\n return INF;\n } else {\n return std::min(front.empty() ? INF : front.back(), rear);\n }\n }\n };\n\n const i64 ans =\n incremental_monge_shortest_path(N, queue({&a, &L, {}, INF, 0, 0}));\n\n std::cout << -ans << \"\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 22748, "score_of_the_acc": -1.0199, "final_rank": 20 }, { "submission_id": "aoj_3086_5712466", "code_snippet": "#include <utility>\n#include <vector>\n\ntemplate <class C, class T = decltype(std::declval<C>().get())>\nT incremental_monge_shortest_path(const int n, C init) {\n class env {\n public:\n C mid;\n C last;\n int prev;\n };\n std::vector<env> nodes;\n {\n int n_ = n;\n int d = 0;\n while (n_ != 0) {\n n_ /= 2;\n d += 1;\n }\n nodes.assign(d, {init, init, 0});\n }\n std::vector<T> dp(n + 1, static_cast<T>(0));\n\n const auto f = [&](const auto &f, const int d, const int r) -> int {\n auto &[mid, last, prev] = nodes[d];\n const int w = 1 << d;\n if ((r >> d) % 2 == 1) {\n for (int i = std::max(0, r - 2 * w); i != r; i += 1) {\n mid.push_back(i);\n }\n const int next = r + w <= n ? f(f, d + 1, r + w) : r - w;\n int argmin = prev;\n dp[r] = dp[argmin] + mid.get();\n for (int i = prev; i != next;) {\n mid.pop_front(i);\n i += 1;\n const T t = dp[i] + mid.get();\n if (dp[r] > t) {\n dp[r] = t;\n argmin = i;\n }\n }\n prev = next;\n return argmin;\n } else {\n for (int i = std::max(0, r - 2 * w); i != r; i += 1) {\n last.push_back(i);\n }\n for (int i = std::max(0, r - 3 * w); i != r - 2 * w; i += 1) {\n last.pop_front(i);\n }\n int argmin = prev;\n for (int i = r - 2 * w; i != r - w;) {\n last.pop_front(i);\n i += 1;\n const T t = dp[i] + last.get();\n if (dp[r] > t) {\n dp[r] = t;\n argmin = i;\n }\n }\n return argmin;\n }\n };\n\n for (int i = 1; i != n + 1; i += 1) {\n f(f, 0, i);\n }\n\n return dp[n];\n}\n\n#include <algorithm>\n#include <iostream>\n#include <vector>\n\n#include <cassert>\n\nint main() {\n using i64 = long long;\n static constexpr i64 INF = 1e11;\n\n int N, L;\n std::cin >> N >> L;\n std::vector<i64> a(N);\n for (i64 &e : a) {\n std::cin >> e;\n e = -e;\n }\n\n struct queue {\n const std::vector<i64> *a;\n const int *L;\n std::vector<i64> front;\n i64 rear;\n int l, r;\n\n void pop_front(int l_) {\n assert(l == l_);\n if (front.empty()) {\n rear = INF;\n front.clear();\n i64 t = INF;\n for (int i = r; i != l;) {\n i -= 1;\n t = std::min(t, (*a)[i]);\n front.push_back(t);\n }\n }\n front.pop_back();\n l += 1;\n }\n\n void push_back(int r_) {\n assert(r == r_);\n rear = std::min(rear, (*a)[r]);\n r += 1;\n }\n\n i64 get() {\n i64 v;\n if (r - l < *L) {\n v = INF;\n } else {\n v = std::min(front.empty() ? INF : front.back(), rear);\n }\n // std::cout << l << \" \" << r << \" \" << v << \"\\n\";\n return v;\n }\n };\n\n const i64 ans =\n incremental_monge_shortest_path(N, queue({&a, &L, {}, INF, 0, 0}));\n\n std::cout << -ans << \"\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 22588, "score_of_the_acc": -1.0102, "final_rank": 19 }, { "submission_id": "aoj_3086_5515312", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 200005\n\nstruct Info{\n\tInfo(int arg_start_index,ll arg_value){\n\t\tstart_index = arg_start_index;\n\t\tvalue = arg_value;\n\t}\n\tint start_index;\n\tll value;\n};\n\nint N,L;\nll max_data[6*SIZE],add_data[6*SIZE];\nll A[SIZE];\n\nvoid init(ll first_N){\n\tN = 1;\n\twhile(N < first_N)N *= 2;\n}\n\nvoid add(int left,int right,ll value,int node_id,int node_left,int node_right){\n\n\tif(right < node_left || left > node_right){\n\t\t//範囲外ならreturn\n\t\treturn;\n\t}\n\telse if(left <= node_left && right >= node_right){ //このノードのカバーしている区間が、更新区間の部分区間である場合\n\n\t\tadd_data[node_id] += value; //一様に加える値を加算\n\n\t\twhile(node_id != 0){\n\n\t\t\tnode_id = (node_id-1)/2; //下から上に向かって、最小値および最大値更新\n\t\t\tmax_data[node_id] = max(max_data[2*node_id+1]+add_data[2*node_id+1],max_data[2*node_id+2]+add_data[2*node_id+2]);\n\t\t}\n\t}else{\n\n\t\tadd(left,right,value,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tadd(left,right,value,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t}\n}\n\n\nll getMax(int left,int right,int node_id,int node_left,int node_right){\n\tif(right < node_left || left > node_right)return -HUGE_NUM;\n\telse if(left <= node_left && right >= node_right){\n\t\treturn max_data[node_id]+add_data[node_id];\n\n\t}else{\n\n\t\tll left_max = getMax(left,right,2*node_id+1,node_left,(node_left+node_right)/2);\n\t\tll right_max = getMax(left,right,2*node_id+2,(node_left+node_right)/2+1,node_right);\n\t\treturn max(left_max,right_max)+add_data[node_id];\n\t}\n}\n\nint main(){\n\n\tint first_N;\n\tscanf(\"%d %d\",&first_N,&L);\n\n\tfor(ll i = 0; i < first_N; i++){\n\n\t\tscanf(\"%lld\",&A[i]);\n\t}\n\n\tinit(first_N);\n\n\tfor(int i = 0; i <= 2*N-2; i++){\n\t\tmax_data[i] = 0;\n\t\tadd_data[i] = 0;\n\t}\n\n\n\tstack<Info> S; //Info(基準点,それ以右の最大値)\n\n\t//dp[i] := iまでの最大値+(i+1より右の最大値)\n\n\tll maxi = -HUGE_NUM;\n\n\tfor(int i = 0; i < first_N; i++){\n\n\t\tll a = A[i];\n\t\tmaxi = max(maxi,a);\n\n\t\t//以右最大値の更新\n\t\tint right = i-1;\n\n\t\t//printf(\"i:%d a:%lld maxi:%lld\\n\",i,a,maxi);\n\n\t\tint last = -1;\n\n\t\twhile(!S.empty() && S.top().value <= a){\n\n\t\t\tll diff = a-S.top().value;\n\t\t\t//printf(\"%lldを%d-%dに加算\\n\",diff,S.top().start_index,right);\n\t\t\tadd(S.top().start_index,right,diff,0,0,N-1);\n\n\t\t\tlast = S.top().start_index;\n\t\t\tright = S.top().start_index-1;\n\n\t\t\tS.pop();\n\t\t}\n\n\t\tif(last != -1){\n\n\t\t\tS.push(Info(last,a));\n\t\t}\n\n\t\tS.push(Info(i,0));\n\n\t\tif(i < L){ //左に区間なし\n\n\t\t\tif(i < L-1){\n\n\t\t\t\tadd(i,i,-HUGE_NUM,0,0,N-1); //全ての区間長がL以上でなければならない\n\n\t\t\t}else{\n\n\t\t\t\tadd(i,i,maxi,0,0,N-1);\n\t\t\t}\n\n\t\t}else{\n\n\t\t\tll tmp = getMax(0,i-L,0,0,N-1);\n\t\t\t//printf(\"tmp:%lld\\n\",tmp);\n\t\t\tadd(i,i,max(tmp,maxi),0,0,N-1);\n\t\t}\n\t}\n\n\tprintf(\"%lld\\n\",getMax(first_N-1,first_N-1,0,0,N-1));\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 14656, "score_of_the_acc": -0.553, "final_rank": 14 }, { "submission_id": "aoj_3086_5342738", "code_snippet": "// #line 1 \"test/larsch.test.cpp\"\n#define PROBLEM \"http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3086\"\n\n// #line 2 \"other/int_alias.cpp\"\n\n#include <cstddef>\n#include <cstdint>\n\nusing i32 = std::int32_t;\nusing i64 = std::int64_t;\nusing u32 = std::uint32_t;\nusing u64 = std::uint64_t;\nusing isize = std::ptrdiff_t;\nusing usize = std::size_t;\n#include <functional>\n#include <memory>\n#include <vector>\n\ntemplate <class T> class larsch {\n struct reduce_row;\n struct reduce_col;\n\n struct reduce_row {\n int n;\n std::function<T(int, int)> f;\n int cur_row;\n int state;\n std::unique_ptr<reduce_col> rec;\n\n reduce_row(int n_) : n(n_), f(), cur_row(0), state(0), rec() {\n const int m = n / 2;\n if (m != 0) {\n rec = std::make_unique<reduce_col>(m);\n }\n }\n\n void set_f(std::function<T(int, int)> f_) {\n f = f_;\n if (rec) {\n rec->set_f([&](int i, int j) -> T { return f(2 * i + 1, j); });\n }\n }\n\n int get_argmin() {\n const int cur_row_ = cur_row;\n cur_row += 1;\n if (cur_row_ % 2 == 0) {\n const int prev_argmin = state;\n const int next_argmin = [&]() {\n if (cur_row_ + 1 == n) {\n return n - 1;\n } else {\n return rec->get_argmin();\n }\n }();\n state = next_argmin;\n int ret = prev_argmin;\n for (int j = prev_argmin + 1; j <= next_argmin; j += 1) {\n if (f(cur_row_, ret) > f(cur_row_, j)) {\n ret = j;\n }\n }\n return ret;\n } else {\n if (f(cur_row_, state) <= f(cur_row_, cur_row_)) {\n return state;\n } else {\n return cur_row_;\n }\n }\n }\n };\n\n struct reduce_col {\n int n;\n std::function<T(int, int)> f;\n int cur_row;\n std::vector<int> cols;\n reduce_row rec;\n\n reduce_col(int n_) : n(n_), f(), cur_row(0), cols(), rec(n) {}\n\n void set_f(std::function<T(int, int)> f_) {\n f = f_;\n rec.set_f([&](int i, int j) -> T { return f(i, cols[j]); });\n }\n\n int get_argmin() {\n const int cur_row_ = cur_row;\n cur_row += 1;\n const auto cs = [&]() -> std::vector<int> {\n if (cur_row_ == 0) {\n return {{0}};\n } else {\n return {{2 * cur_row_ - 1, 2 * cur_row_}};\n }\n }();\n for (const int j : cs) {\n while ([&]() {\n const int size = cols.size();\n return size != cur_row_ && f(size - 1, cols.back()) > f(size - 1, j);\n }()) {\n cols.pop_back();\n }\n if (cols.size() != n) {\n cols.push_back(j);\n }\n }\n return cols[rec.get_argmin()];\n }\n };\n\n std::unique_ptr<reduce_row> base;\n\npublic:\n larsch(int n, std::function<T(int, int)> f)\n : base(std::make_unique<reduce_row>(n)) {\n base->set_f(f);\n }\n\n int get_argmin() { return base->get_argmin(); }\n};\n\n/**\n * @brief LARSCH Algorithm\n * @docs docs/larsch.md\n */\n// #line 2 \"data_structure/segment_tree.cpp\"\n\n#include <cassert>\n// #line 6 \"data_structure/segment_tree.cpp\"\n\ntemplate <class M> class segment_tree {\n using T = typename M::value_type;\n\npublic:\n using value_type = T;\n\nprivate:\n std::vector<T> tree;\n\n template <class F>\n usize search_subtree(usize index, const F f, T fold_l) const {\n while (index < size()) {\n const T temp = M::operation(fold_l, tree[index * 2]);\n if (!f(temp)) {\n index = index * 2;\n } else {\n fold_l = temp;\n index = index * 2 + 1;\n }\n }\n return index - size();\n }\n\npublic:\n segment_tree() = default;\n\n explicit segment_tree(const usize n) : tree(n * 2, M::identity) {}\n\n usize size() const noexcept { return tree.size() / 2; }\n\n T fold(usize first, usize last) const {\n assert(first <= last);\n assert(last <= size());\n first += size();\n last += size();\n T fold_l = M::identity;\n T fold_r = M::identity;\n while (first != last) {\n if (first % 2 != 0) {\n fold_l = M::operation(fold_l, tree[first]);\n first += 1;\n }\n first /= 2;\n if (last % 2 != 0) {\n last -= 1;\n fold_r = M::operation(tree[last], fold_r);\n }\n last /= 2;\n }\n return M::operation(fold_l, fold_r);\n }\n\n template <class F> usize search(usize first, usize last, const F f) const {\n assert(first <= last);\n assert(last <= size());\n first += size();\n last += size();\n const usize last_cp = last;\n usize shift = 0;\n T fold_l = M::identity;\n while (first != last) {\n if (first % 2 != 0) {\n const T temp = M::operation(fold_l, tree[first]);\n if (!f(temp))\n return search_subtree(first, f, fold_l);\n fold_l = temp;\n first += 1;\n }\n first /= 2;\n last /= 2;\n shift += 1;\n }\n while (shift != 0) {\n shift -= 1;\n last = last_cp >> shift;\n if (last % 2 != 0) {\n last -= 1;\n const T temp = M::operation(fold_l, tree[last]);\n if (!f(temp))\n return search_subtree(last, f, fold_l);\n fold_l = temp;\n }\n }\n return last_cp - size();\n }\n\n void update(usize index, const T x) {\n assert(index < size());\n index += size();\n tree[index] = x;\n while (index != 1) {\n index /= 2;\n tree[index] = M::operation(tree[index * 2], tree[index * 2 + 1]);\n }\n }\n};\n\n/**\n * @brief Segment Tree\n * @docs docs/segment_tree.md\n * @see https://scrapbox.io/data-structures/Segment_Tree\n */\n// #line 1 \"other/less_equal_ordered_set.cpp\"\ntemplate <class T> class less_equal_ordered_set {\npublic:\n using value_type = T;\n static constexpr bool compare(const T &x, const T &y) noexcept {\n return x <= y;\n }\n};\n// #line 1 \"other/min_semigroup.cpp\"\ntemplate <class W> class min_semigroup {\n using T = typename W::value_type;\n\npublic:\n using value_type = T;\n static constexpr T operation(const T &l, const T &r) noexcept {\n return W::compare(l, r) ? l : r;\n }\n};\n// #line 1 \"other/opposite_ordered_set.cpp\"\ntemplate <class W> class opposite_ordered_set {\n using T = typename W::value_type;\n\npublic:\n using value_type = T;\n static constexpr bool compare(const T &l, const T &r) noexcept {\n return W::compare(r, l);\n }\n};\n// #line 1 \"other/semigroup_to_monoid.cpp\"\n#include <optional>\n#include <utility>\n\ntemplate <class S> class semigroup_to_monoid {\n using T = std::optional<typename S::value_type>;\n\npublic:\n using value_type = T;\n static constexpr T operation(const T &l, const T &r) noexcept {\n if (!l)\n return r;\n if (!r)\n return l;\n return T(std::in_place, S::operation(*l, *r));\n }\n static constexpr T identity{std::nullopt};\n};\n// #line 10 \"test/larsch.test.cpp\"\n\n#include <iostream>\n#include <limits>\n\nint main() {\n // #line 1 \"other/fast_ios.cpp\"\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n // #line 16 \"test/larsch.test.cpp\"\n\n static constexpr i64 inf = std::numeric_limits<i64>::max() / 2;\n\n usize n, l;\n std::cin >> n >> l;\n\n segment_tree<semigroup_to_monoid<\n min_semigroup<opposite_ordered_set<less_equal_ordered_set<i64>>>>>\n seg(n);\n for (usize i = 0; i != n; ++i) {\n i64 a;\n std::cin >> a;\n seg.update(i, a);\n }\n\n std::vector<i64> dp(n + 1);\n dp[0] = 0;\n\n const auto f = [&](const usize to_, const usize from) -> i64 {\n const usize to = to_ + 1;\n if (to - from < l) {\n return -inf;\n } else {\n return dp[from] + *seg.fold(from, to);\n }\n };\n\n larsch<i64> larsch_(n, [&](int i, int j) { return -f(i, j); });\n for (usize i = 0; i != n; i += 1) {\n dp[i + 1] = f(i, larsch_.get_argmin());\n }\n\n std::cout << dp[n] << \"\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 10112, "score_of_the_acc": -0.2929, "final_rank": 9 }, { "submission_id": "aoj_3086_5342724", "code_snippet": "#line 1 \"test/larsch.test.cpp\"\n#define PROBLEM \"http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3086\"\n\n#line 2 \"other/int_alias.cpp\"\n\n#include <cstddef>\n#include <cstdint>\n\nusing i32 = std::int32_t;\nusing i64 = std::int64_t;\nusing u32 = std::uint32_t;\nusing u64 = std::uint64_t;\nusing isize = std::ptrdiff_t;\nusing usize = std::size_t;\n#line 2 \"algorithm/larsch.cpp\"\n\n#include <vector>\n\ntemplate <class Select, class Update>\nvoid larsch(const std::size_t n, Select select, Update update) {\n using usize = std::size_t;\n\n class header {\n public:\n usize r;\n usize c;\n };\n\n class node {\n public:\n std::vector<usize> cols;\n usize prev;\n\n std::vector<header> tent;\n usize pcnt;\n usize curc;\n\n node(const usize n) : cols(), prev(0), tent(), pcnt(0), curc(0) {\n cols.reserve(n);\n tent.reserve(n / 2);\n }\n };\n\n std::vector<node> data;\n\n {\n usize m = n;\n while (m != 0) {\n data.emplace_back(m);\n m /= 2;\n }\n }\n\n const auto act = [&](const auto &act, const usize layer,\n const usize row) -> usize {\n node &t = data[layer];\n\n if ((row >> layer) % 2 == 0) {\n usize res = t.prev;\n usize idx = t.curc;\n while (idx != t.cols.size()) {\n if (select(row, t.cols[res], t.cols[idx])) {\n res = idx;\n }\n idx += 1;\n }\n t.prev = res;\n return t.cols[res];\n }\n\n const usize a = [&]() {\n const usize step = static_cast<usize>(1) << layer;\n if (row + step > n) {\n return t.cols.back();\n }\n while (t.curc != t.cols.size()) {\n const usize c = t.cols[t.curc];\n while (t.tent.size() != t.pcnt &&\n select(t.tent.back().r, t.tent.back().c, c)) {\n t.tent.pop_back();\n }\n if (t.tent.size() == t.pcnt) {\n t.tent.push_back({row + step, c});\n } else if (t.tent.back().r + step * 2 <= n) {\n t.tent.push_back({t.tent.back().r + step * 2, c});\n }\n t.curc += 1;\n }\n if (t.pcnt != t.tent.size()) {\n data[layer + 1].cols.push_back(t.tent[t.pcnt].c);\n t.pcnt += 1;\n }\n return act(act, layer + 1, row + step);\n }();\n\n usize res = t.prev;\n usize idx = t.prev;\n while (t.cols[idx] != a) {\n idx += 1;\n if (select(row, t.cols[res], t.cols[idx])) {\n res = idx;\n }\n }\n t.prev = idx;\n return t.cols[res];\n };\n\n for (usize i = 0; i != n;) {\n data[0].cols.push_back(i);\n i += 1;\n update(i, act(act, 0, i));\n }\n}\n\n/**\n * @brief LARSCH Algorithm\n * @docs docs/larsch.md\n */\n#line 2 \"data_structure/segment_tree.cpp\"\n\n#include <cassert>\n#line 6 \"data_structure/segment_tree.cpp\"\n\ntemplate <class M> class segment_tree {\n using T = typename M::value_type;\n\npublic:\n using value_type = T;\n\nprivate:\n std::vector<T> tree;\n\n template <class F>\n usize search_subtree(usize index, const F f, T fold_l) const {\n while (index < size()) {\n const T temp = M::operation(fold_l, tree[index * 2]);\n if (!f(temp)) {\n index = index * 2;\n } else {\n fold_l = temp;\n index = index * 2 + 1;\n }\n }\n return index - size();\n }\n\npublic:\n segment_tree() = default;\n\n explicit segment_tree(const usize n) : tree(n * 2, M::identity) {}\n\n usize size() const noexcept { return tree.size() / 2; }\n\n T fold(usize first, usize last) const {\n assert(first <= last);\n assert(last <= size());\n first += size();\n last += size();\n T fold_l = M::identity;\n T fold_r = M::identity;\n while (first != last) {\n if (first % 2 != 0) {\n fold_l = M::operation(fold_l, tree[first]);\n first += 1;\n }\n first /= 2;\n if (last % 2 != 0) {\n last -= 1;\n fold_r = M::operation(tree[last], fold_r);\n }\n last /= 2;\n }\n return M::operation(fold_l, fold_r);\n }\n \n template <class F> usize search(usize first, usize last, const F f) const {\n assert(first <= last);\n assert(last <= size());\n first += size();\n last += size();\n const usize last_cp = last;\n usize shift = 0;\n T fold_l = M::identity;\n while (first != last) {\n if (first % 2 != 0) {\n const T temp = M::operation(fold_l, tree[first]);\n if (!f(temp))\n return search_subtree(first, f, fold_l);\n fold_l = temp;\n first += 1;\n }\n first /= 2;\n last /= 2;\n shift += 1;\n }\n while (shift != 0) {\n shift -= 1;\n last = last_cp >> shift;\n if (last % 2 != 0) {\n last -= 1;\n const T temp = M::operation(fold_l, tree[last]);\n if (!f(temp))\n return search_subtree(last, f, fold_l);\n fold_l = temp;\n }\n }\n return last_cp - size();\n }\n\n void update(usize index, const T x) {\n assert(index < size());\n index += size();\n tree[index] = x;\n while (index != 1) {\n index /= 2;\n tree[index] = M::operation(tree[index * 2], tree[index * 2 + 1]);\n }\n }\n};\n\n/**\n * @brief Segment Tree\n * @docs docs/segment_tree.md\n * @see https://scrapbox.io/data-structures/Segment_Tree\n */\n#line 1 \"other/less_equal_ordered_set.cpp\"\ntemplate <class T> class less_equal_ordered_set {\npublic:\n using value_type = T;\n static constexpr bool compare(const T &x, const T &y) noexcept {\n return x <= y;\n }\n};\n#line 1 \"other/min_semigroup.cpp\"\ntemplate <class W> class min_semigroup {\n using T = typename W::value_type;\n\npublic:\n using value_type = T;\n static constexpr T operation(const T &l, const T &r) noexcept {\n return W::compare(l, r) ? l : r;\n }\n};\n#line 1 \"other/opposite_ordered_set.cpp\"\ntemplate <class W> class opposite_ordered_set {\n using T = typename W::value_type;\n\npublic:\n using value_type = T;\n static constexpr bool compare(const T &l, const T &r) noexcept {\n return W::compare(r, l);\n }\n};\n#line 1 \"other/semigroup_to_monoid.cpp\"\n#include <optional>\n#include <utility>\n\ntemplate <class S> class semigroup_to_monoid {\n using T = std::optional<typename S::value_type>;\n\npublic:\n using value_type = T;\n static constexpr T operation(const T &l, const T &r) noexcept {\n if (!l)\n return r;\n if (!r)\n return l;\n return T(std::in_place, S::operation(*l, *r));\n }\n static constexpr T identity{std::nullopt};\n};\n#line 10 \"test/larsch.test.cpp\"\n\n#include <iostream>\n#include <limits>\n\nint main() {\n#line 1 \"other/fast_ios.cpp\"\nstd::ios::sync_with_stdio(false);\nstd::cin.tie(nullptr);\n#line 16 \"test/larsch.test.cpp\"\n\n static constexpr i64 inf = std::numeric_limits<i64>::max() / 2;\n\n usize n, l;\n std::cin >> n >> l;\n\n segment_tree<semigroup_to_monoid<\n min_semigroup<opposite_ordered_set<less_equal_ordered_set<i64>>>>>\n seg(n);\n for (usize i = 0; i != n; ++i) {\n i64 a;\n std::cin >> a;\n seg.update(i, a);\n }\n\n std::vector<i64> dp(n + 1);\n dp[0] = 0;\n\n const auto get = [&](const usize to, const usize from) -> i64 {\n if (to - from < l) {\n return -inf;\n } else {\n return dp[from] + *seg.fold(from, to);\n }\n };\n\n const auto select = [&](const usize to, const usize from0,\n const usize from1) -> bool {\n if (to - from1 < l) {\n return false;\n }\n return get(to, from0) < get(to, from1);\n };\n\n const auto update = [&](const usize i, const usize from) {\n dp[i] = get(i, from);\n };\n\n larsch(n, select, update);\n\n std::cout << dp[n] << \"\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 13964, "score_of_the_acc": -0.5246, "final_rank": 13 }, { "submission_id": "aoj_3086_5152436", "code_snippet": "#include <cmath>\n#include <vector>\n#include <iostream>\n#include <iomanip>\n#include <fstream>\n#include <algorithm>\n#include <set>\n#include <queue>\n#include <string>\n#include <map>\n#include <stack>\n#include <climits>\n#include <array>\n#include <unordered_set>\n#include <unordered_map>\n#include <memory>\n#include <functional>\n#include <cfloat>\n#include <numeric>\n#include <random>\n#include <sstream>\n#include <bitset>\n#include <complex>\n#include <chrono>\n#include <cassert>\nint limit;\nstd::vector<int> value;\nclass MaxSegTree {\n\tstd::vector<std::vector<int>> vec;\npublic:\n\tMaxSegTree(const std::vector<int>& value) : vec{ value } {\n\t\twhile (vec.back().size() > 1) {\n\t\t\tvec.emplace_back(vec.back().size() >> 1);\n\t\t}\n\t\tfor (auto i = 1; i < vec.size(); ++i) {\n\t\t\tfor (auto j = 0; j < vec[i].size(); ++j) {\n\t\t\t\tvec[i][j] = std::max(vec[i - 1][j << 1], vec[i - 1][(j << 1) + 1]);\n\t\t\t}\n\t\t}\n\t}\n\tint get(const int from, const int until) const {\n\t\tint l = from, r = until - 1;\n\t\tint result{ INT_MIN };\n\t\tfor (const auto& v : vec) {\n\t\t\tif ((l & 1) == 1) {\n\t\t\t\tresult = std::max(result, v[l]);\n\t\t\t\t++l;\n\t\t\t}\n\t\t\tif ((r & 1) == 0) {\n\t\t\t\tresult = std::max(result, v[r]);\n\t\t\t\t--r;\n\t\t\t}\n\t\t\tl >>= 1;\n\t\t\tr >>= 1;\n\t\t\tif (l > r) return result;\n\t\t}\n\t\treturn result;\n\t}\n};\nvoid set_vec(const int dfirst_from, const int dfirst_until, const int dlast_from, const int dlast_until, std::vector<long long int>& dest, const MaxSegTree &seg) {\n\tif (dfirst_from >= dfirst_until) return;\n\tconst int current = (dfirst_from + dfirst_until) >> 1;\n\tconst auto from = std::max(dlast_from + 1, current + limit);\n\tint max_pos{ from - 1 };\n\tint max_value = seg.get(current, from);\n\tlong long int result{ max_value + dest[from] };\n\tfor (auto i = from; i < dlast_until; ++i) {\n\t\tmax_value = std::max(max_value, value[i]);\n\t\tif (result < max_value + dest[i + 1]) {\n\t\t\tresult = max_value + dest[i + 1];\n\t\t\tmax_pos = i;\n\t\t}\n\t}\n\tdest[current] = std::max(dest[current], result);\n\tset_vec(dfirst_from, current, dlast_from, max_pos + 1, dest, seg);\n\tset_vec(current + 1, dfirst_until, max_pos, dlast_until, dest, seg);\n}\n\nlong long int large() {\n\tstd::vector<long long int> vec(value.size() + 1, LLONG_MIN);\n\tvec.back() = 0;\n\tMaxSegTree seg(value);\n\tfor (auto count = 0; count <= value.size(); count += limit) {\n\t\tset_vec(0, value.size() - limit + 1, limit - 1, value.size(), vec, seg);\n\t}\n\treturn vec.front();\n}\nlong long int small() {\n\tstd::vector<long long int> memo(value.size() + 1, LLONG_MIN);\n\tmemo.back() = 0;\n\tstd::vector<int> positive(value.size() + 1, value.size());\n\tMaxSegTree seg(value);\n\tfor (int i = value.size() - 1; i >= 0; --i) {\n\t\tif (value[i] > 0) {\n\t\t\tpositive[i] = i + 1;\n\t\t}\n\t\telse {\n\t\t\tpositive[i] = positive[i + 1];\n\t\t}\n\t}\n\tfor (int from = value.size() - limit; from >= 0; --from) {\n\t\tconst auto start = std::max(from + limit, positive[from]);\n\t\tint max_value = seg.get(from, start);\n\t\tlong long int result{ max_value + memo[start] };\n\t\tfor (auto until = start + 1; until <= std::min<int>(value.size(), start + limit); ++until) {\n\t\t\tmax_value = std::max(max_value, value[until - 1]);\n\t\t\tresult = std::max(result, max_value + memo[until]);\n\t\t}\n\t\tmemo[from] = result;\n\t}\n\treturn memo.front();\n}\n\n\nint main() {\n\tint n; std::cin >> n >> limit;\n\tconst int sqrt = std::sqrt(n);\n\tvalue = std::vector<int>(n);\n\tfor (auto& v : value) std::cin >> v;\n\tconst auto max = *std::max_element(value.begin(), value.end());\n\tif (max <= 0) {\n\t\tstd::cout << max << '\\n';\n\t}else if (limit > sqrt) {\n\t\tstd::cout << large() << '\\n';\n\t}\n\telse {\n\t\tstd::cout << small() << '\\n';\n\t}\n}", "accuracy": 1, "time_ms": 1530, "memory_kb": 6124, "score_of_the_acc": -1, "final_rank": 17 }, { "submission_id": "aoj_3086_4885823", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\ntemplate<class T> bool chmin(T& a,T b){if(a>b) {a = b; return true;} return false;}\ntemplate<class T> bool chmax(T& a,T b){if(a<b) {a = b; return true;} return false;}\n#define all(x) (x).begin(),(x).end()\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\n\ntemplate<typename Monoid,typename F>\nclass SegmentTree{\nprivate:\n int sz;\n vector<Monoid> seg;\n const F op;\n const Monoid e;\npublic:\n SegmentTree(int n,const F op,const Monoid &e):op(op),e(e){\n sz = 1;\n while(sz<=n) sz <<= 1;\n seg.assign(2*sz,e);\n }\n void set(int k, const Monoid &x){\n seg[k+sz] = x;\n }\n void build(){\n for(int i=sz-1;i>0;i--){\n seg[i] = op(seg[2*i],seg[2*i+1]);\n }\n }\n void update(int k,const Monoid &x){\n k += sz;\n seg[k] = x;\n while(k>>=1){\n seg[k] = op(seg[2*k],seg[2*k+1]);\n }\n }\n Monoid query(int l,int r){\n Monoid L = e,R = e;\n for(l+=sz,r+=sz;l<r;l>>=1,r>>=1){\n if(l&1) L = op(L,seg[l++]);\n if(r&1) R = op(seg[--r],R);\n }\n return op(L,R);\n }\n Monoid operator[](const int &k)const{\n return seg[k+sz];\n }\n};\n\nconstexpr ll inf = 1e18;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,L;\n cin >> N >> L;\n vec<int> A(N);\n for(auto& x:A) cin >> x;\n SegmentTree dp(N+1,[](ll a,ll b){return max(a,b);},-inf);\n SegmentTree seg(N+1,[](ll a,ll b){return max(a,b);},-inf);\n dp.set(0,0);\n dp.build();\n for(int i=0;i<N;i++) seg.set(i,A[i]);\n seg.build();\n for(int i=0;i<N;i++){\n ll val = max((i>=L? dp[i]:-inf),seg.query(i-L+1,i+1)+dp.query(0,i-L+2));\n dp.update(i+1,val);\n }\n// for(int i=0;i<=N;i++) cerr << dp[i] << (i!=N? \" \":\"\\n\");\n cout << dp.query(L,N+1) << \"\\n\";\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 11912, "score_of_the_acc": -0.3482, "final_rank": 10 } ]
aoj_3088_cpp
Problem $N$ 枚のカードからなる山札がある。 カードは上下に並べられており、上から $i$ 番目のカードには整数 $p_i$ が書かれている。 カードが上下に $1$ 枚以上重ねられた様子を 場 と呼ぶ。 ただし、山札は場には含まないものとする。 場の一番上のカードに書かれた数を、場に書かれた数と呼ぶ。 以下の操作を終了するまで繰り返し行う。 山札が空なら、場をそれらに書かれた数の昇順に上から重ね、それを新しい山札とする 山札が上から $1$ から $N$ の順に並んでいれば終了する 山札の一番上のカードを取る(取ったカードをAとする) Aより大きい数の書かれた場が存在しない場合、Aからなる新しい場を作り、1. に戻る Aより大きい数の書かれた場のうち、書かれている数が最小の場の上にAを置き、1. に戻る 終了までに3. が行われる回数を求めよ。 Input 入力は以下の形式で与えられる。 $N$ $p_1$ $p_2$ $\ldots$ $p_N$ Constraints 入力は以下の条件を満たす。 $2 \leq N \leq 10^4$ $1 \leq p_i \leq N$ $p_i \neq p_j \ (i\neq j)$ 入力は全て整数である Output 3. が行われる回数を一行に出力する。 Sample Input 1 5 2 4 1 3 5 Sample Output 1 5 Sample Input 2 5 5 2 3 4 1 Sample Output 2 15
[ { "submission_id": "aoj_3088_10725518", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing pii = pair<int, int>;\n\nsigned main() {\n\n#ifdef DEBUG\n freopen(\"input.txt\", \"r\", stdin);\n#endif\n\n ios_base::sync_with_stdio(0);\n cin.tie(0);\n cout.tie(0);\n\n int n;\n cin >> n;\n vector<int> p(n), q(n);\n for (auto& x : p) cin >> x, --x;\n \n vector<vector<int>> st(n);\n\n int res = 0;\n while (1) {\n int sz = 0;\n for (auto x : p) {\n if (sz == 0 || st[sz - 1].back() < x) {\n st[sz].push_back(x);\n ++sz;\n ++res;\n } else {\n int bl = -1, br = sz - 1, bm;\n while (br - bl > 1) {\n bm = bl + (br - bl) / 2;\n if (st[bm].back() > x) {\n br = bm;\n } else {\n bl = bm;\n }\n }\n st[br].push_back(x);\n ++res;\n }\n }\n if (sz == n) {\n res -= n;\n break;\n }\n int ptr = 0;\n for (int i = 0; i < sz; ++i) {\n for (int j = (int) st[i].size() - 1; j >= 0; --j) {\n p[ptr++] = st[i][j];\n }\n st[i].clear();\n }\n }\n\n cout << res << \"\\n\";\n\n return 0;\n}", "accuracy": 1, "time_ms": 450, "memory_kb": 3968, "score_of_the_acc": -0.4436, "final_rank": 9 }, { "submission_id": "aoj_3088_4868461", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 19;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\nint n;\nvoid to_simple(vector<int> &v){\n\twhile (v.size() && n - v.size() == v[0])v.erase(v.begin());\n\t\n}\n\nvector<int> nex;\nvector<bool> used;\n\nint vals[1 << 14];\nvoid trans(vector<int>& v) {\n\tfill(all(used), true);\n\tfill(all(nex), -1);\n\tfor (int id : v)used[id] = false;\n\tint sz = 0;\n\trep(i, v.size()) {\n\t\tif (sz == 0) {\n\t\t\tvals[sz] = v[i];\n\t\t\tsz++;\n\t\t}\n\t\telse {\n\t\t\tif (vals[sz - 1] < v[i]) {\n\t\t\t\tvals[sz] = v[i]; sz++;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tint id = lower_bound(vals, vals + sz, v[i]) - vals;\n\t\t\t\tnex[v[i]] = vals[id];\n\t\t\t\tvals[id] = v[i];\n\t\t\t}\n\t\t}\n\t}\n\tvector<int> res;\n\trep(i, n) {\n\t\tif (used[i])continue;\n\t\tint cur = i;\n\t\twhile (cur >= 0) {\n\t\t\tres.push_back(cur);\n\t\t\tused[cur] = true;\n\t\t\tcur = nex[cur];\n\t\t}\n\t}\n\tswap(v, res);\n}\n\nvoid solve() {\n\tcin >> n;\n\tnex.resize(n);\n\tused.resize(n);\n\tvector<int> p(n);\n\trep(i, n) {\n\t\tcin >> p[i]; p[i]--;\n\t}\n\tto_simple(p);\n\tll ans = 0;\n\t//rep(i, p.size())cout << p[i] << \" \"; cout << \"\\n\";\n\twhile (p.size()) {\n\t\ttrans(p);\n\t\tans += n;\n\t\t//rep(i, p.size())cout << p[i] << \" \"; cout << \"\\n\";\n\t\tto_simple(p);\n\t}\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 11896, "score_of_the_acc": -0.3046, "final_rank": 8 }, { "submission_id": "aoj_3088_4866087", "code_snippet": "#include<stdio.h>\n\n\n#define INF (1<<30)\n#define MAX 10001\n\nshort a[MAX][MAX];\nint b[MAX];\nint c[MAX];\nint p[MAX];\n\nsigned main(){\n\t\n\tint N, i, minimum = 0, size, j, l, f, k;\n\t\n\tscanf(\"%d\", &N);\n\t\n\tfor(i = 0; i < N; i++){\n\t\tscanf(\"%d\", &p[i]);\n\t}\n\t\n\t\n\tfor(i = 0; ; i++){\n\t\t\n\t\tsize = 0;\n\t\t\n\t\tfor(j = minimum; j < N; j++){\n\t\t\t\n\t\t\tint l = -1, in = size, m;\n\t\t\t\n\t\t\twhile(l + 1 < in){\n\t\t\t\tm = (l + in)>>1;\n\t\t\t\t\n\t\t\t\tif(b[m] < p[j]) {\n\t\t\t\t\tl = m;\n\t\t\t\t} else {\n\t\t\t\t\tin = m;\n\t\t\t\t}\n\t\t\t}\n\t\t\t\n\t\t\tif(in == size) {\n\t\t\t\ta[in][0] = p[j];\n\t\t\t\t\n\t\t\t\tb[in] = p[j];\n\t\t\t\t\n\t\t\t\tc[in] = 1;\n\t\t\t\t\n\t\t\t\tsize++;\n\t\t\t} else {\n\t\t\t\ta[in][c[in]] = p[j];\n\t\t\t\n\t\t\t\tb[in] = p[j];\n\t\t\t\n\t\t\t\tc[in]++;\n\t\t\t}\n\t\t}\n\t\t\n\t\tif(size == N - minimum) break;\n\t\t\n\t\tfor(j = 0, l = minimum, f = 1; j < size; j++){\n\t\t\tfor(k = c[j]-1; k >= 0; k--){\n\t\t\t\tp[l++] = a[j][k];\n\t\t\t\tif(f && p[l-1] == l) minimum++;\n\t\t\t\telse f = 0;\n\t\t\t}\n\t\t}\n\t}\n\t\n\tprintf(\"%d\\n\", i * N);\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 480, "memory_kb": 196096, "score_of_the_acc": -0.9335, "final_rank": 15 }, { "submission_id": "aoj_3088_4862813", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\nint solve(vec &p){\n vec ba(0), follows(N, -1);\n int res(-1);\n bool ok = false;\n while(!ok && res < N * 2){\n ++res;\n ok = true;\n //rep(i, N) cout<<p[i]<<\" \\n\"[i == N - 1];\n reps(i, res, N){\n if(p[i] != i) ok = false;\n if(ba.empty() || *ba.rbegin() < p[i]){\n ba.push_back(p[i]);\n }else{\n Rrep(j, (int)ba.size()){\n if(j - 1 == -1 || ba[j - 1] < p[i]){\n follows[p[i]] = ba[j];\n ba[j] = p[i];\n break;\n }\n }\n }\n }\n if(!ok){\n int id(res);\n for(int v : ba){\n while(v != -1){\n p[id++] = v;\n auto &f = follows[v];\n v = f;\n f = -1;\n }\n }\n ba.clear();\n }\n }\n return res;\n}\n\nint main() {\n cin>>N;\n vec p(N);\n rep(i, N) {cin>>p[i]; --p[i];}\n cout<<solve(p) * N<<endl;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 3424, "score_of_the_acc": -0.1265, "final_rank": 3 }, { "submission_id": "aoj_3088_4862811", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\nint solve(vec &p){\n mat ba_s(N, vec(0));\n vec follows(N, -1);\n int res(-1);\n bool ok = false;\n while(!ok && res < N * 2){\n ++res;\n ok = true;\n vec &ba = ba_s[res];\n reps(i, res, N){\n if(p[i] != i) ok = false;\n if(ba.empty() || *ba.rbegin() < p[i]){\n ba.push_back(p[i]);\n }else{\n Rrep(j, (int)ba.size()){\n if(j - 1 == -1 || ba[j - 1] < p[i]){\n follows[p[i]] = ba[j];\n ba[j] = p[i];\n break;\n }\n }\n }\n }\n if(!ok){\n int id(res);\n for(int v : ba){\n while(v != -1){\n p[id++] = v;\n auto &f = follows[v];\n v = f;\n f = -1;\n }\n }\n }\n }\n return res;\n}\n\nint main() {\n cin>>N;\n vec p(N);\n rep(i, N) {cin>>p[i]; --p[i];}\n cout<<solve(p) * N<<endl;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 422528, "score_of_the_acc": -1.2842, "final_rank": 19 }, { "submission_id": "aoj_3088_4862801", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\nint solve(vec &p){\n vec ba(0), follows(N, -1);\n int res(-1);\n bool ok = false;\n while(!ok && res < N * 2){\n ++res;\n ok = true;\n //rep(i, N) cout<<p[i]<<\" \\n\"[i == N - 1];\n rep(i, N){\n if(p[i] != i) ok = false;\n if(ba.empty() || *ba.rbegin() < p[i]){\n ba.push_back(p[i]);\n }else{\n Rrep(j, (int)ba.size()){\n if(j - 1 == -1 || ba[j - 1] < p[i]){\n follows[p[i]] = ba[j];\n ba[j] = p[i];\n break;\n }\n }\n }\n }\n if(!ok){\n int id(0);\n for(int v : ba){\n while(v != -1){\n p[id++] = v;\n auto &f = follows[v];\n v = f;\n f = -1;\n }\n }\n ba.clear();\n }\n }\n return res;\n}\n\nint main() {\n cin>>N;\n vec p(N);\n rep(i, N) {cin>>p[i]; --p[i];}\n cout<<solve(p) * N<<endl;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 3444, "score_of_the_acc": -0.2213, "final_rank": 5 }, { "submission_id": "aoj_3088_4846665", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long long INF = 1e18;\n//const ll mod = 1000000007;\nusing ull = unsigned long long;\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); }\ntemplate <class T> using V = vector<T>;\ntemplate <class T> using VV = V<V<T>>;\nint popcnt(uint x) { return __builtin_popcount(x); }\nint popcnt(ull x) { return __builtin_popcountll(x); }\nint bsr(uint x) { return 31 - __builtin_clz(x); }\nint bsr(ull x) { return 63 - __builtin_clzll(x); }\nint bsf(uint x) { return __builtin_ctz(x); }\nint bsf(ull x) { return __builtin_ctzll(x); }\n\nstruct FastSet {\n static constexpr uint B = 64;\n int n, lg;\n VV<ull> seg;\n FastSet(int _n) : n(_n) {\n do {\n seg.push_back(V<ull>((_n + B - 1) / B));\n _n = (_n + B - 1) / B;\n } while (_n > 1);\n lg = int(seg.size());\n }\n bool operator[](int i) const {\n return (seg[0][i / B] >> (i % B) & 1) != 0;\n }\n void set(int i) {\n for (int h = 0; h < lg; h++) {\n seg[h][i / B] |= 1ULL << (i % B);\n i /= B;\n }\n }\n void reset(int i) {\n for (int h = 0; h < lg; h++) {\n seg[h][i / B] &= ~(1ULL << (i % B));\n if (seg[h][i / B]) break;\n i /= B;\n }\n }\n // x以上最小の要素\n int next(int i) {\n for (int h = 0; h < lg; h++) {\n if (i / B == seg[h].size()) break;\n ull d = seg[h][i / B] >> (i % B);\n if (!d) {\n i = i / B + 1;\n continue;\n }\n // find\n i += bsf(d);\n for (int g = h - 1; g >= 0; g--) {\n i *= B;\n i += bsf(seg[g][i / B]);\n }\n return i;\n }\n return n;\n }\n // x未満最大の要素\n int prev(int i) {\n i--;\n for (int h = 0; h < lg; h++) {\n if (i == -1) break;\n ull d = seg[h][i / B] << (63 - i % 64);\n if (!d) {\n i = i / B - 1;\n continue;\n }\n // find\n i += bsr(d) - (B - 1);\n for (int g = h - 1; g >= 0; g--) {\n i *= B;\n i += bsr(seg[g][i / B]);\n }\n return i;\n }\n return -1;\n }\n};\n\nint N;\nint a[10500];\nint nxt[10500];\nint prv[10500];\n\nbool IsSorted() {\n for(int i = 1; i < N; i++) {\n if(a[i-1] > a[i]) return false;\n }\n return true;\n}\n\nvoid f() {\n for(int i = 0; i < N; i++) {\n //cerr << a[i] << \" \";\n prv[i] = -1;\n nxt[i] = -1;\n }\n //cerr << endl;\n FastSet st(N);\n for(int i = 0; i < N; i++) {\n int p = st.next(a[i]);\n if(p != N) {\n nxt[a[i]] = p;\n prv[p] = a[i];\n st.reset(p);\n }\n st.set(a[i]);\n }\n int idx = 0;\n /*\n for(int i = 0; i < N; i++) {\n cerr << i << \" \" << prv[i] << \" \" << nxt[i] << endl;\n }\n */\n for(int i = 0; i < N; i++) {\n if(prv[i] != -1) continue;\n int now = i;\n while(now != -1) {\n //cerr << idx << \" \" << now << endl;\n a[idx] = now;\n idx++;\n now = nxt[now];\n }\n }\n}\n\nint main() {\n cin >> N;\n for(int i = 0; i < N; i++) {\n cin >> a[i];\n a[i]--;\n }\n for(int t = 0; ; t++) {\n if(IsSorted()) {\n cout << t * N << endl;\n return 0;\n }\n f();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 800, "memory_kb": 3552, "score_of_the_acc": -0.811, "final_rank": 12 }, { "submission_id": "aoj_3088_4843519", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n\nusing lint = long long;\n\nvoid solve() {\n int n;\n std::cin >> n;\n\n std::vector<int> ps(n);\n for (auto& p : ps) {\n std::cin >> p;\n --p;\n }\n\n lint ans = 0;\n std::vector<int> stk, to(n, -1);\n\n while (true) {\n bool judge = true;\n for (int i = 0; i + 1 < n; ++i) {\n if (ps[i] > ps[i + 1]) judge = false;\n }\n if (judge) break;\n\n ans += n;\n\n stk.clear();\n std::fill(to.begin(), to.end(), -1);\n\n for (auto p : ps) {\n auto it = std::lower_bound(stk.begin(), stk.end(), p);\n if (it == stk.end()) {\n stk.push_back(p);\n } else {\n to[p] = *it;\n *it = p;\n }\n }\n\n int i = 0;\n for (auto x : stk) {\n while (x != -1) {\n ps[i++] = x;\n x = to[x];\n }\n }\n }\n\n std::cout << ans << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 940, "memory_kb": 3560, "score_of_the_acc": -0.9584, "final_rank": 16 }, { "submission_id": "aoj_3088_4842902", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <complex>\n#include <cstring>\n#include <deque>\n#include <functional>\n#include <iostream>\n#include <iomanip>\n#include <list>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n#include <cstdint>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef pair<int,int> pii;\n#define MP make_pair\n#define PB push_back\n#define inf 1000000007\n#define rep(i,n) for(int i = 0; i < (int)(n); ++i)\n#define all(x) (x).begin(),(x).end()\n\ntemplate<typename A, size_t N, typename T>\nvoid Fill(A (&array)[N], const T &val){\n std::fill( (T*)array, (T*)(array+N), val );\n}\n \ntemplate<class T> inline bool chmax(T &a, T b){\n if(a<b){\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T> inline bool chmin(T &a, T b){\n if(a>b){\n a = b;\n return true;\n }\n return false;\n}\n\nclass vanEmdeBoasTree\n{\nprivate:\n static const uint32_t LENGTH = 1073741824;\n uint32_t _size;\n #define msb(u) (63 - __builtin_clzll(u))\n #define lsb(u) (__builtin_ctzll(u))\n struct first_layer;\n struct middle_layer;\n struct last_layer;\n struct first_layer {\n uint64_t *data;\n middle_layer *summary;\n int32_t _max, _min;\n first_layer() : _max(-1), _min(1073741824){\n data = new uint64_t[16777216](), summary = new middle_layer();\n }\n first_layer(const first_layer& another) : _max(another._max), _min(another._min){\n data = new uint64_t[16777216];\n for(uint32_t i = 0; i < 16777216; ++i) data[i] = another.data[i];\n summary = new middle_layer(*another.summary);\n }\n first_layer(first_layer&& another)\n : _max(move(another._max)), _min(move(another._min)){\n data = another.data, summary = another.summary;\n data = nullptr, summary = nullptr;\n }\n first_layer& operator=(const first_layer& another){\n this->~first_layer();\n _max = another._max, _min = another._min;\n data = new uint64_t[16777216];\n for(uint32_t i = 0; i < 16777216; ++i) data[i] = another.data[i];\n summary = new middle_layer(*another.summary);\n return *this;\n }\n first_layer& operator=(first_layer&& another){\n this->~first_layer();\n _max = move(another._max), _min = move(another._min);\n data = another.data, summary = another.summary;\n data = nullptr, summary = nullptr;\n return *this;\n }\n // ~first_layer(){\n // delete summary;\n // delete[] data;\n // }\n inline bool empty() const noexcept { return (_max == -1); }\n inline bool isOne() const noexcept { return (_max == _min); }\n inline int32_t max() const noexcept { return _max; }\n inline int32_t min() const noexcept { return _min; }\n bool find(const int32_t value) const noexcept {\n return (value == _min) || ((data[value >> 6] >> (value & 63)) & 1ULL);\n }\n bool insert(int32_t value) noexcept {\n if(value == _min) return false;\n else if(_max == -1) return _max = _min = value, true;\n else if(value < _min) swap(value, _min);\n else if(value > _max) _max = value;\n const int32_t id = (value >> 6);\n if((data[id] >> (value & 63)) & 1ULL) return false;\n else{\n if(data[id] == 0) summary->insert(id);\n data[id] ^= (1ULL << (value & 63));\n return true;\n }\n }\n void erase(int32_t value) noexcept {\n if(_max == _min){\n _max = -1, _min = 1073741824;\n return;\n }else if(value == _min){\n const int32_t id = summary->min();\n _min = value = (id << 6) + lsb(data[id]);\n }\n const int32_t id = (value >> 6);\n data[id] ^= (1ULL << (value & 63));\n if(data[id] == 0) summary->erase(id);\n if(value == _max){\n if(summary->empty()) _max = _min;\n else{\n const int32_t id = summary->max();\n _max = (id << 6) + msb(data[id]);\n }\n }\n }\n int32_t predecessor(const int32_t value) const noexcept {\n if(_min >= value) return -1;\n else if(value > _max) return _max;\n const int32_t id = (value >> 6), sm = (id << 6);\n if(data[id] && value > sm + lsb(data[id]))\n return sm + msb(data[id] & ((1ULL << (value & 63)) - 1ULL));\n else{\n const int32_t id2 = summary->predecessor(id);\n return (id2 >= 0) ? ((id2 << 6) + msb(data[id2])) : _min;\n }\n }\n int32_t successor(const int32_t value) const noexcept {\n if(value < _min) return _min;\n else if(value >= _max) return 1073741824;\n const int32_t id = (value >> 6), sm = (id << 6);\n if(data[id] && value < sm + msb(data[id]))\n return sm + lsb(data[id] & ~((1ULL << ((value & 63) + 1)) - 1ULL));\n else{\n const int32_t id2 = summary->successor(id);\n return (id2 << 6) + lsb(data[id2]);\n }\n }\n };\n struct middle_layer{\n last_layer *sublayers, *summary;\n int32_t _max, _min;\n middle_layer() : _max(-1), _min(16777216){\n sublayers = new last_layer[4096](), summary = new last_layer();\n }\n middle_layer(const middle_layer& another) : _max(another._max), _min(another._min){\n sublayers = new last_layer[4096];\n for(uint32_t i = 0; i < 4096; ++i)\n sublayers[i] = last_layer(another.sublayers[i]);\n summary = new last_layer(*another.summary);\n }\n middle_layer(middle_layer&& another)\n : _max(move(another._max)), _min(move(another._min)){\n sublayers = another.sublayers, summary = another.summary;\n another.sublayers = another.summary = nullptr;\n }\n middle_layer& operator=(const middle_layer& another){\n this->~middle_layer();\n _max = another._max, _min = another._min;\n sublayers = new last_layer[4096];\n for(uint32_t i = 0; i < 4096; ++i)\n sublayers[i] = last_layer(another.sublayers[i]);\n summary = new last_layer(*another.summary);\n return *this;\n }\n middle_layer& operator=(middle_layer&& another){\n this->~middle_layer();\n _max = move(another._max), _min = move(another._min);\n sublayers = another.sublayers, summary = another.summary;\n another.sublayers = another.summary = nullptr;\n return *this;\n }\n // ~middle_layer(){\n // delete summary;\n // delete[] sublayers;\n // }\n inline bool empty() const noexcept { return (_max == -1); }\n inline bool isOne() const noexcept { return (_max == _min); }\n inline int32_t max() const noexcept { return _max; }\n inline int32_t min() const noexcept { return _min; }\n bool insert(int32_t value) noexcept {\n if(value == _min) return false;\n else if(_max == -1) return _max = _min = value, true;\n else if(value < _min) swap(value, _min);\n else if(value > _max) _max = value;\n const int32_t id = (value >> 12);\n if(sublayers[id].insert(value & 4095)){\n if(sublayers[id].isOne()) summary->insert(id);\n return true;\n }else return false;\n }\n void erase(int32_t value) noexcept {\n if(_max == _min){\n _max = -1, _min = 16777216;\n return;\n }else if(value == _min){\n const int32_t id = summary->min();\n _min = value = (id << 12) + sublayers[id].min();\n }\n const int32_t id = (value >> 12);\n sublayers[id].erase(value & 4095);\n if(sublayers[id].empty()) summary->erase(id);\n if(value == _max){\n if(summary->empty()) _max = _min;\n else{\n const int32_t id = summary->max();\n _max = (id << 12) + sublayers[id].max();\n }\n }\n }\n int32_t predecessor(const int32_t value) const noexcept {\n if(_min >= value) return -1;\n else if(value > _max) return _max;\n const int32_t id = (value >> 12), sm = (id << 12);\n if(value > sm + sublayers[id].min()){\n return sm + sublayers[id].predecessor(value & 4095);\n }else{\n const int32_t id2 = summary->predecessor(id);\n return (id2 >= 0) ? ((id2 << 12) + sublayers[id2].max()) : _min;\n }\n }\n int32_t successor(const int32_t value) const noexcept {\n if(value < _min) return _min;\n else if(value >= _max) return 16777216;\n const int32_t id = (value >> 12), sm = (id << 12);\n if(value < sm + sublayers[id].max()){\n return sm + sublayers[id].successor(value & 4095);\n }else{\n const int32_t id2 = summary->successor(id);\n return (id2 << 12) + sublayers[id2].min();\n }\n }\n };\n struct last_layer{\n uint64_t data[64], summary;\n int32_t _max, _min;\n last_layer() noexcept : summary(0ULL), _max(-1), _min(4096){\n memset(data, 0, sizeof(data));\n }\n inline bool empty() const noexcept { return (_max == -1); }\n inline bool isOne() const noexcept { return (_max == _min); }\n inline int32_t max() const noexcept { return _max; }\n inline int32_t min() const noexcept { return _min; }\n bool insert(int32_t value) noexcept {\n if(value == _min) return false;\n else if(_max == -1) return _max = _min = value, true;\n else if(value < _min) swap(value, _min);\n else if(value > _max) _max = value;\n const int32_t id = (value >> 6);\n if((data[id] >> (value & 63)) & 1ULL) return false;\n else{\n data[id] ^= (1ULL << (value & 63)), summary |= (1ULL << id);\n return true;\n }\n }\n void erase(int32_t value) noexcept {\n if(_max == _min){\n _max = -1, _min = 4096;\n return;\n }else if(value == _min){\n const int32_t id = lsb(summary);\n _min = value = (id << 6) + lsb(data[id]);\n }\n const int32_t id = (value >> 6);\n data[id] ^= (1ULL << (value & 63));\n if(data[id] == 0) summary ^= (1ULL << id);\n if(value == _max){\n if(summary == 0) _max = _min;\n else{\n const int32_t id = msb(summary);\n _max = (id << 6) + msb(data[id]);\n }\n }\n }\n int32_t predecessor(const int32_t value) const noexcept {\n if(_min >= value) return -1;\n else if(value > _max) return _max;\n const int32_t id = (value >> 6), sm = (id << 6);\n if(data[id] && value > sm + lsb(data[id]))\n return sm + msb(data[id] & ((1ULL << (value & 63)) - 1ULL));\n else{\n const uint64_t tmp = (summary & ((1ULL << id) - 1ULL));\n if(tmp == 0ULL) return _min;\n else{\n const int32_t id2 = msb(tmp);\n return (id2 << 6) + msb(data[id2]);\n }\n }\n }\n int32_t successor(const int32_t value) const noexcept {\n if(value < _min) return _min;\n else if(value >= _max) return 4096;\n const int32_t id = (value >> 6), sm = (id << 6);\n if(data[id] && value < sm + msb(data[id]))\n return sm + lsb(data[id] & ~((1ULL << ((value & 63) + 1)) - 1ULL));\n else{\n const int32_t id2 = lsb(summary & ~((1ULL << (id + 1)) - 1ULL));\n return (id2 << 6) + lsb(data[id2]);\n }\n }\n };\n first_layer base_layer;\npublic:\n vanEmdeBoasTree() : _size(0), base_layer(){}\n vanEmdeBoasTree(const vanEmdeBoasTree&) = default;\n vanEmdeBoasTree(vanEmdeBoasTree&&) = default;\n vanEmdeBoasTree& operator=(const vanEmdeBoasTree&) = default;\n vanEmdeBoasTree& operator=(vanEmdeBoasTree&&) = default;\n friend ostream& operator<< (ostream& os, vanEmdeBoasTree& veb) noexcept {\n for(uint32_t st = veb.successor(-1); st != veb.LENGTH; st = veb.successor(st))\n os << st << \" \";\n return os;\n }\n bool empty() const noexcept { return (_size == 0); }\n uint32_t size() const noexcept { return _size; }\n uint32_t max_size() const noexcept { return LENGTH; }\n bool find(const uint32_t value) const noexcept {\n if(value >= LENGTH) return false;\n return base_layer.find(value);\n }\n uint32_t count(const uint32_t value) const noexcept {\n return find(value);\n }\n int32_t max() const noexcept { return base_layer.max(); }\n int32_t min() const noexcept { return base_layer.min(); }\n void insert(const uint32_t value){\n assert(value < LENGTH);\n _size += base_layer.insert(value);\n }\n void erase(const uint32_t value){\n assert(value < LENGTH);\n base_layer.erase(value), --_size;\n }\n int32_t predecessor(const int32_t value) const noexcept {\n return base_layer.predecessor(value);\n }\n int32_t successor(const int32_t value) const noexcept {\n return base_layer.successor(value);\n }\n};\n\nbitset<10001> flag;\nbitset<10001> bs;\n \nint p[10001];\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n;\n cin >> n;\n vector<int> a(n);\n rep(i,n) {\n cin >> a[i];\n a[i]--;\n }\n int nn = n;\n int c = 0;\n while(1){\n bool fflag = 1;\n for(int i = n-2;i >= 0;i--){\n if(a[i] > a[i+1]){\n fflag = 0;\n break;\n }\n }\n if(fflag)break;\n vanEmdeBoasTree vB;\n rep(i,n)p[i] = i;\n int mx = n-1;\n int mi = 0;\n vB.insert(10000);\n rep(i,n){\n int k = vB.successor(a[i]);\n if(k!=10000){\n p[a[i]] = k;\n vB.erase(k);\n vB.insert(a[i]);\n }else{\n vB.insert(a[i]);\n }\n }\n vector<int> b;\n int s = 0;\n int cc = 1000000;\n rep(i,n){\n int id = i;\n while(!flag[id]){\n if(b.empty()&& mi + s== id){\n s++;\n }else{\n b.push_back(id);\n chmin(cc,id);\n }\n flag.set(id);\n id = p[id];\n }\n }\n int m = b.size();\n for(int i=m-1;i>=0;i--){\n if(b[i]==mx){\n mx--;\n b.pop_back();\n }else{\n break;\n }\n }\n rep(i,b.size()){\n b[i] -= cc; \n flag.reset(i);\n }\n n = b.size();\n swap(a,b);\n bs.reset();\n c++;\n }\n cout << c * nn << endl;\n return 0;\n}", "accuracy": 0.06666666666666667, "time_ms": 30, "memory_kb": 402932, "score_of_the_acc": -0.9533, "final_rank": 20 }, { "submission_id": "aoj_3088_4842751", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 19;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\nint n;\nvoid to_simple(vector<int> &v){\n\twhile (v.size() && n - v.size() == v[0])v.erase(v.begin());\n\t\n}\n\nvector<int> nex;\nvector<bool> used;\n\nint vals[1 << 14];\nvoid trans(vector<int>& v) {\n\tfill(all(used), true);\n\tfill(all(nex), -1);\n\tfor (int id : v)used[id] = false;\n\tint sz = 0;\n\trep(i, v.size()) {\n\t\tif (sz == 0) {\n\t\t\tvals[sz] = v[i];\n\t\t\tsz++;\n\t\t}\n\t\telse {\n\t\t\tif (vals[sz - 1] < v[i]) {\n\t\t\t\tvals[sz] = v[i]; sz++;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tint id = lower_bound(vals, vals + sz, v[i]) - vals;\n\t\t\t\tnex[v[i]] = vals[id];\n\t\t\t\tvals[id] = v[i];\n\t\t\t}\n\t\t}\n\t}\n\tvector<int> res;\n\trep(i, n) {\n\t\tif (used[i])continue;\n\t\tint cur = i;\n\t\twhile (cur >= 0) {\n\t\t\tres.push_back(cur);\n\t\t\tused[cur] = true;\n\t\t\tcur = nex[cur];\n\t\t}\n\t}\n\tswap(v, res);\n}\n\nvoid solve() {\n\tcin >> n;\n\tnex.resize(n);\n\tused.resize(n);\n\tvector<int> p(n);\n\trep(i, n) {\n\t\tcin >> p[i]; p[i]--;\n\t}\n\tto_simple(p);\n\tll ans = 0;\n\t//rep(i, p.size())cout << p[i] << \" \"; cout << \"\\n\";\n\twhile (p.size()) {\n\t\ttrans(p);\n\t\tans += n;\n\t\t//rep(i, p.size())cout << p[i] << \" \"; cout << \"\\n\";\n\t\tto_simple(p);\n\t}\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 11892, "score_of_the_acc": -0.3046, "final_rank": 7 }, { "submission_id": "aoj_3088_4842542", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n\nusing lint = long long;\n\nvoid solve() {\n int n;\n std::cin >> n;\n\n std::vector<int> ps(n);\n for (auto& p : ps) {\n std::cin >> p;\n --p;\n }\n\n lint ans = 0;\n std::vector<int> stk, to(n, -1);\n\n while (true) {\n bool judge = true;\n for (int i = 0; i + 1 < n; ++i) {\n if (ps[i] > ps[i + 1]) judge = false;\n }\n if (judge) break;\n\n ans += n;\n\n stk.clear();\n std::fill(to.begin(), to.end(), -1);\n\n for (auto p : ps) {\n auto it = std::lower_bound(stk.begin(), stk.end(), p);\n if (it == stk.end()) {\n stk.push_back(p);\n } else {\n to[p] = *it;\n *it = p;\n }\n }\n\n int i = 0;\n for (auto x : stk) {\n while (x != -1) {\n ps[i++] = x;\n x = to[x];\n }\n }\n }\n\n std::cout << ans << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 940, "memory_kb": 3628, "score_of_the_acc": -0.9586, "final_rank": 17 }, { "submission_id": "aoj_3088_4842536", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n//INSERT ABOVE HERE\n\nconst int MAX = 10010;\nint ps[MAX],xs[MAX],dp[MAX];\n\nsigned main(){\n int n;\n cin>>n;\n for(int i=0;i<n;i++) cin>>ps[i];\n\n int cnt=0,len=0;\n while(!is_sorted(ps,ps+n)){\n cnt++;\n fill(dp,dp+n+1,n+1);\n\n int x=1;\n for(int i=len;i<n;i++){\n int p=ps[i];\n int k=lower_bound(dp,dp+x,p)-dp;\n if(k==x) x++;\n xs[p]=dp[k];\n dp[k]=p;\n }\n\n for(int i=0,j=len;i<n;i++){\n if(dp[i]==n+1) break;\n int cur=dp[i];\n while(cur!=n+1){\n ps[j++]=cur;\n cur=xs[cur];\n }\n }\n\n while(len<n && ps[len]==len+1) len++;\n }\n\n cout<<cnt*n<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 830, "memory_kb": 3348, "score_of_the_acc": -0.8421, "final_rank": 13 }, { "submission_id": "aoj_3088_4842534", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n//INSERT ABOVE HERE\n\nconst int MAX = 10010;\nint ps[MAX],xs[MAX],dp[MAX];\n\nsigned main(){\n int n;\n cin>>n;\n for(int i=0;i<n;i++) cin>>ps[i];\n\n int cnt=0,len=0;\n while(!is_sorted(ps,ps+n)){\n cnt++;\n fill(dp,dp+n+1,n+1);\n\n int x=1;\n for(int i=len;i<n;i++){\n int p=ps[i];\n int k=lower_bound(dp,dp+x,p)-dp;\n if(k==x) x++;\n xs[p]=dp[k];\n dp[k]=p;\n }\n\n for(int i=0,j=len;i<n;i++){\n if(dp[i]==n+1) break;\n int cur=dp[i];\n while(cur!=n+1){\n ps[j++]=cur;\n cur=xs[cur];\n }\n }\n\n while(len<n && ps[len]==len+1) len++;\n }\n\n cout<<cnt*n<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 590, "memory_kb": 3552, "score_of_the_acc": -0.59, "final_rank": 10 }, { "submission_id": "aoj_3088_4842530", "code_snippet": "#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx2\")\n\n#include <iostream>\n#include <algorithm>\n#include <vector>\n\nusing lint = long long;\n\nvoid solve() {\n int n;\n std::cin >> n;\n\n std::vector<int> ps(n);\n for (auto& p : ps) {\n std::cin >> p;\n --p;\n }\n\n lint ans = 0;\n std::vector<int> stk, to(n, -1);\n\n while (true) {\n bool judge = true;\n for (int i = 0; i + 1 < n; ++i) {\n if (ps[i] > ps[i + 1]) judge = false;\n }\n if (judge) break;\n\n ans += n;\n\n stk.clear();\n std::fill(to.begin(), to.end(), -1);\n\n for (auto p : ps) {\n auto it = std::lower_bound(stk.begin(), stk.end(), p);\n if (it == stk.end()) {\n stk.push_back(p);\n } else {\n to[p] = *it;\n *it = p;\n }\n }\n\n int i = 0;\n for (auto x : stk) {\n while (x != -1) {\n ps[i++] = x;\n x = to[x];\n }\n }\n }\n\n std::cout << ans << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 980, "memory_kb": 3628, "score_of_the_acc": -1.0007, "final_rank": 18 }, { "submission_id": "aoj_3088_4842493", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define short int\n\n#define rep(i, n) for(long long i = 0; i < n; ++i)\n#define rep2(i, a, b) for(long long i = a; i <= b; ++i)\n#define ll long long\n#define eb emplace_back\n#define all(c) (c).begin(), (c).end()\n#define vi vector<int>\n#define N 200010\n#define MOD 998244353\n#define IMP 5000000000000000000\n\nint main() {\n\tint n;\n\tshort p[N];\n\tvector<short>a[N];\n\tshort b[N];\n\tint l, r, m, cur, sz, x;\n\tbool v;\n\tcin >> n;\n\trep(i, n)cin >> p[i];\n\trep(i, n) {\n\t\tb[0] = p[i];\n\t\tcur = 0;\n\t\trep(j, n - i - 1) {\n //cout<<i<<\" \"<<j<<\" \"<<cur<<\" \"<<b[cur]<<endl;\n\t\t\tif (b[cur] < p[i + j + 1]) {\n\t\t\t\tb[cur + 1] = p[i + j + 1];\n\t\t\t\tcur++;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tl = -1;\n\t\t\t\tr = cur;\n\t\t\t\twhile ((l + 1) < r) {\n\t\t\t\t\tm = (l + r) / 2;\n\t\t\t\t\tif (b[m] < p[i + j + 1]) {\n\t\t\t\t\t\tl = m;\n\t\t\t\t\t}\n\t\t\t\t\telse r = m;\n\t\t\t\t}\n\t\t\t\ta[r].eb(b[r]);\n\t\t\t\tb[r] = p[i + j + 1];\n\t\t\t}\n\t\t}\n\t\tif (cur == n - i - 1) {\n\t\t\tcout << i*n << endl;\n\t\t\treturn 0;\n\t\t}\n\t\tif (i == n - 2) {\n\t\t\tcout << (n - 1)*n << endl;\n\t\t\treturn 0;\n\t\t}\n\t\tx = i;\n\t\trep(j, cur+1) {\n\t\t\tp[x] = b[j];\n\t\t\tx++;\n\t\t\tsz = a[j].size();\n\t\t\trep(ii, sz) {\n\t\t\t\tp[x] = a[j][sz-ii-1];\n\t\t\t\tx++;\n\t\t\t}\n\t\t\ta[j].clear();\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 8500, "score_of_the_acc": -0.1281, "final_rank": 4 }, { "submission_id": "aoj_3088_4842492", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, n) for(long long i = 0; i < n; ++i)\n#define rep2(i, a, b) for(long long i = a; i <= b; ++i)\n#define ll long long\n#define eb emplace_back\n#define all(c) (c).begin(), (c).end()\n#define vi vector<int>\n#define N 200010\n#define MOD 998244353\n#define IMP 5000000000000000000\n\nint main() {\n\tint n;\n\tshort p[N];\n\tvector<short>a[N];\n\tshort b[N];\n\tint l, r, m, cur, sz, x;\n\tbool v;\n\tcin >> n;\n\trep(i, n)cin >> p[i];\n\trep(i, n) {\n\t\tb[0] = p[i];\n\t\tcur = 0;\n\t\trep(j, n - i - 1) {\n //cout<<i<<\" \"<<j<<\" \"<<cur<<\" \"<<b[cur]<<endl;\n\t\t\tif (b[cur] < p[i + j + 1]) {\n\t\t\t\tb[cur + 1] = p[i + j + 1];\n\t\t\t\tcur++;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tl = -1;\n\t\t\t\tr = cur;\n\t\t\t\twhile ((l + 1) < r) {\n\t\t\t\t\tm = (l + r) / 2;\n\t\t\t\t\tif (b[m] < p[i + j + 1]) {\n\t\t\t\t\t\tl = m;\n\t\t\t\t\t}\n\t\t\t\t\telse r = m;\n\t\t\t\t}\n\t\t\t\ta[r].eb(b[r]);\n\t\t\t\tb[r] = p[i + j + 1];\n\t\t\t}\n\t\t}\n\t\tif (cur == n - i - 1) {\n\t\t\tcout << i*n << endl;\n\t\t\treturn 0;\n\t\t}\n\t\tif (i == n - 2) {\n\t\t\tcout << (n - 1)*n << endl;\n\t\t\treturn 0;\n\t\t}\n\t\tx = i;\n\t\trep(j, cur+1) {\n\t\t\tp[x] = b[j];\n\t\t\tx++;\n\t\t\tsz = a[j].size();\n\t\t\trep(ii, sz) {\n\t\t\t\tp[x] = a[j][sz-ii-1];\n\t\t\t\tx++;\n\t\t\t}\n\t\t\ta[j].clear();\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 8488, "score_of_the_acc": -0.107, "final_rank": 2 }, { "submission_id": "aoj_3088_4842467", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, n) for(long long i = 0; i < n; ++i)\n#define rep2(i, a, b) for(long long i = a; i <= b; ++i)\n#define ll long long\n#define eb emplace_back\n#define all(c) (c).begin(), (c).end()\n#define vi vector<int>\n#define N 200010\n#define MOD 998244353\n#define IMP 5000000000000000000\n\nint main() {\n\tint n;\n\tshort p[N];\n\tvector<short>a[N];\n\tshort b[N];\n\tint l, r, m, cur, sz, x;\n\tbool v;\n\tcin >> n;\n\trep(i, n)cin >> p[i];\n\trep(i, n) {\n\t\tb[0] = p[i];\n\t\tcur = 0;\n\t\trep(j, n - i - 1) {\n //cout<<i<<\" \"<<j<<\" \"<<cur<<\" \"<<b[cur]<<endl;\n\t\t\tif (b[cur] < p[i + j + 1]) {\n\t\t\t\tb[cur + 1] = p[i + j + 1];\n\t\t\t\tcur++;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tl = -1;\n\t\t\t\tr = cur;\n\t\t\t\twhile ((l + 1) < r) {\n\t\t\t\t\tm = (l + r) / 2;\n\t\t\t\t\tif (b[m] < p[i + j + 1]) {\n\t\t\t\t\t\tl = m;\n\t\t\t\t\t}\n\t\t\t\t\telse r = m;\n\t\t\t\t}\n\t\t\t\ta[r].eb(b[r]);\n\t\t\t\tb[r] = p[i + j + 1];\n\t\t\t}\n\t\t}\n\t\tif (cur == n - i - 1) {\n\t\t\tcout << i*n << endl;\n\t\t\treturn 0;\n\t\t}\n\t\tif (i == n - 2) {\n\t\t\tcout << (n - 1)*n << endl;\n\t\t\treturn 0;\n\t\t}\n\t\tx = i;\n\t\trep(j, cur+1) {\n\t\t\tp[x] = b[j];\n\t\t\tx++;\n\t\t\tsz = a[j].size();\n\t\t\trep(ii, sz) {\n\t\t\t\tp[x] = a[j][sz-ii-1];\n\t\t\t\tx++;\n\t\t\t}\n\t\t\ta[j].clear();\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 8480, "score_of_the_acc": -0.107, "final_rank": 1 }, { "submission_id": "aoj_3088_4842321", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#pragma GCC target(\"avx2,bmi,bmi2,lzcnt\")\n\n#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long long INF = 1e18;\n// const ll mod = 1000000007;\nusing uint = unsigned;\nusing ull = unsigned long long;\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); }\ntemplate <class T>\nusing V = vector<T>;\ntemplate <class T>\nusing VV = V<V<T>>;\nint popcnt(uint x) { return __builtin_popcount(x); }\nint popcnt(ull x) { return __builtin_popcountll(x); }\nint bsr(uint x) { return 31 - __builtin_clz(x); }\nint bsr(ull x) { return 63 - __builtin_clzll(x); }\nint bsf(uint x) { return __builtin_ctz(x); }\nint bsf(ull x) { return __builtin_ctzll(x); }\n\nstruct FastSet {\n static constexpr uint B = 64;\n int n, lg;\n VV<ull> seg;\n FastSet(int _n) : n(_n) {\n do {\n seg.push_back(V<ull>((_n + B - 1) / B));\n _n = (_n + B - 1) / B;\n } while (_n > 1);\n lg = int(seg.size());\n }\n bool operator[](int i) const { return (seg[0][i / B] >> (i % B) & 1) != 0; }\n void set(int i) {\n for (int h = 0; h < lg; h++) {\n seg[h][i / B] |= 1ULL << (i % B);\n i /= B;\n }\n }\n void reset(int i) {\n for (int h = 0; h < lg; h++) {\n seg[h][i / B] &= ~(1ULL << (i % B));\n if (seg[h][i / B]) break;\n i /= B;\n }\n }\n // x以上最小の要素\n int next(int i) {\n for (int h = 0; h < lg; h++) {\n if (i / B == seg[h].size()) break;\n ull d = seg[h][i / B] >> (i % B);\n if (!d) {\n i = i / B + 1;\n continue;\n }\n // find\n i += bsf(d);\n for (int g = h - 1; g >= 0; g--) {\n i *= B;\n i += bsf(seg[g][i / B]);\n }\n return i;\n }\n return n;\n }\n // x未満最大の要素\n int prev(int i) {\n i--;\n for (int h = 0; h < lg; h++) {\n if (i == -1) break;\n ull d = seg[h][i / B] << (63 - i % 64);\n if (!d) {\n i = i / B - 1;\n continue;\n }\n // find\n i += bsr(d) - (B - 1);\n for (int g = h - 1; g >= 0; g--) {\n i *= B;\n i += bsr(seg[g][i / B]);\n }\n return i;\n }\n return -1;\n }\n};\n\nint N;\nint a[10500];\nint nxt[10500];\nint prv[10500];\n\nbool IsSorted() {\n for (int i = 1; i < N; i++) {\n if (a[i - 1] > a[i]) return false;\n }\n return true;\n}\n\nvoid f() {\n for (int i = 0; i < N; i++) {\n // cerr << a[i] << \" \";\n prv[i] = -1;\n nxt[i] = -1;\n }\n // cerr << endl;\n FastSet st(N);\n for (int i = 0; i < N; i++) {\n int p = st.next(a[i]);\n if (p != N) {\n nxt[a[i]] = p;\n prv[p] = a[i];\n st.reset(p);\n }\n st.set(a[i]);\n }\n int idx = 0;\n /*\n for(int i = 0; i < N; i++) {\n cerr << i << \" \" << prv[i] << \" \" << nxt[i] << endl;\n }\n */\n for (int i = 0; i < N; i++) {\n if (prv[i] != -1) continue;\n int now = i;\n while (now != -1) {\n // cerr << idx << \" \" << now << endl;\n a[idx] = now;\n idx++;\n now = nxt[now];\n }\n }\n}\n\nstruct stopwatch {\n std::string name = \"Time\";\n clock_t t = clock();\n void restart() { t = clock(); }\n int elapsed() const { return (clock() - t) * 1000 / CLOCKS_PER_SEC; }\n // ~stopwatch() { std::cerr << name << \": \" << elapsed() << \" ms\\n\"; }\n} sw;\n\nint main() {\n cin >> N;\n for (int i = 0; i < N; i++) {\n cin >> a[i];\n a[i]--;\n }\n for (int t = 0;; t++) {\n if (IsSorted()) {\n cout << t * N << endl;\n return 0;\n }\n f();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 850, "memory_kb": 3356, "score_of_the_acc": -0.8632, "final_rank": 14 }, { "submission_id": "aoj_3088_4842311", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#pragma GCC target(\"avx2,bmi,bmi2,lzcnt\")\n\n#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long long INF = 1e18;\n// const ll mod = 1000000007;\nusing uint = unsigned;\nusing ull = unsigned long long;\nconstexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); }\ntemplate <class T>\nusing V = vector<T>;\ntemplate <class T>\nusing VV = V<V<T>>;\nint popcnt(uint x) { return __builtin_popcount(x); }\nint popcnt(ull x) { return __builtin_popcountll(x); }\nint bsr(uint x) { return 31 - __builtin_clz(x); }\nint bsr(ull x) { return 63 - __builtin_clzll(x); }\nint bsf(uint x) { return __builtin_ctz(x); }\nint bsf(ull x) { return __builtin_ctzll(x); }\n\nstruct FastSet {\n static constexpr uint B = 64;\n int n, lg;\n VV<ull> seg;\n FastSet(int _n) : n(_n) {\n do {\n seg.push_back(V<ull>((_n + B - 1) / B));\n _n = (_n + B - 1) / B;\n } while (_n > 1);\n lg = int(seg.size());\n }\n bool operator[](int i) const { return (seg[0][i / B] >> (i % B) & 1) != 0; }\n void set(int i) {\n for (int h = 0; h < lg; h++) {\n seg[h][i / B] |= 1ULL << (i % B);\n i /= B;\n }\n }\n void reset(int i) {\n for (int h = 0; h < lg; h++) {\n seg[h][i / B] &= ~(1ULL << (i % B));\n if (seg[h][i / B]) break;\n i /= B;\n }\n }\n // x以上最小の要素\n int next(int i) {\n for (int h = 0; h < lg; h++) {\n if (i / B == seg[h].size()) break;\n ull d = seg[h][i / B] >> (i % B);\n if (!d) {\n i = i / B + 1;\n continue;\n }\n // find\n i += bsf(d);\n for (int g = h - 1; g >= 0; g--) {\n i *= B;\n i += bsf(seg[g][i / B]);\n }\n return i;\n }\n return n;\n }\n // x未満最大の要素\n int prev(int i) {\n i--;\n for (int h = 0; h < lg; h++) {\n if (i == -1) break;\n ull d = seg[h][i / B] << (63 - i % 64);\n if (!d) {\n i = i / B - 1;\n continue;\n }\n // find\n i += bsr(d) - (B - 1);\n for (int g = h - 1; g >= 0; g--) {\n i *= B;\n i += bsr(seg[g][i / B]);\n }\n return i;\n }\n return -1;\n }\n};\n\nint N;\nint a[10500];\nint nxt[10500];\nint prv[10500];\n\nbool IsSorted() {\n for (int i = 1; i < N; i++) {\n if (a[i - 1] > a[i]) return false;\n }\n return true;\n}\n\nvoid f() {\n for (int i = 0; i < N; i++) {\n // cerr << a[i] << \" \";\n prv[i] = -1;\n nxt[i] = -1;\n }\n // cerr << endl;\n FastSet st(N);\n for (int i = 0; i < N; i++) {\n int p = st.next(a[i]);\n if (p != N) {\n nxt[a[i]] = p;\n prv[p] = a[i];\n st.reset(p);\n }\n st.set(a[i]);\n }\n int idx = 0;\n /*\n for(int i = 0; i < N; i++) {\n cerr << i << \" \" << prv[i] << \" \" << nxt[i] << endl;\n }\n */\n for (int i = 0; i < N; i++) {\n if (prv[i] != -1) continue;\n int now = i;\n while (now != -1) {\n // cerr << idx << \" \" << now << endl;\n a[idx] = now;\n idx++;\n now = nxt[now];\n }\n }\n}\n\nstruct stopwatch {\n std::string name = \"Time\";\n clock_t t = clock();\n void restart() { t = clock(); }\n int elapsed() const { return (clock() - t) * 1000 / CLOCKS_PER_SEC; }\n // ~stopwatch() { std::cerr << name << \": \" << elapsed() << \" ms\\n\"; }\n} sw;\n\nint main() {\n cin >> N;\n for (int i = 0; i < N; i++) {\n cin >> a[i];\n a[i]--;\n }\n for (int t = 0;; t++) {\n if (IsSorted()) {\n cout << t * N << endl;\n return 0;\n }\n f();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 630, "memory_kb": 3544, "score_of_the_acc": -0.632, "final_rank": 11 }, { "submission_id": "aoj_3088_4841408", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing Pi = pair<int, int>;\nusing Pl = pair<ll, ll>;\nusing vint = vector<int>;\nusing vvint = vector<vint>;\nusing vvvint = vector<vvint>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing uint = unsigned int;\nusing ull = unsigned long long;\n\ntemplate<typename T> using uset = unordered_set<T>;\ntemplate<typename T1, typename T2> using umap = unordered_map<T1, T2>;\n\nconstexpr int INF = (1 << 30) - 1;\nconstexpr ll LLINF = 1LL << 60;\nconstexpr int dy[] = {1, 0, -1, 0, 1, -1, -1, 1};\nconstexpr int dx[] = {0, 1, 0, -1, 1, 1, -1, -1};\nconstexpr char el = '\\n';\nconstexpr int mod = 1000000007;\n\ntemplate<typename T> T gcd(T a, T b) { return (b ? gcd(b, a % b) : a); }\ntemplate<typename T> T lcm(T a, T b) { return (a / gcd(a, b) * b); }\ntemplate<typename T1, typename T2>\ninline bool chmin(T1 &a, T2 b) { return (a > b && (a = b, true)); }\ntemplate<typename T1, typename T2>\ninline bool chmax(T1 &a, T2 b) { return (a < b && (a = b, true)); }\n\ntemplate<typename T>\nostream& operator <<(ostream &os, vector<T> &v) {\n\tfor (auto &u : v) os << u << el;\n\treturn (os);\n}\n\ntemplate<typename T>\nistream& operator >>(istream &is, vector<T> &v) {\n\tfor (auto &u : v) is >> u;\n\treturn (is);\n}\n\ntemplate<typename T1, typename T2>\nistream& operator >>(istream &is, pair<T1, T2> &p) {\n\treturn (is >> p.first >> p.second);\n}\n\n\nvoid Main() {\n\tint N; cin >> N;\n\tll ans = 0; \n\tvint A(N); cin >> A;\n\n\twhile (A.size() > 0) {\n\t\tint n = A.size();\n\t\tint k = 0;\n\t\tvint li(n+1, N+1);\n\t\tvint field(n+1);\n\t\tfor (auto &v : A) {\n\t\t\twhile (k > 0 && li[k-1] > v) k--;\n\t\t\twhile (li[k] < v) k++;\n\t\t\tfield[v] = li[k];\n\t\t\tli[k] = v;\n\t\t}\n\t\tA = vint();\n\t\tint prev = 0;\n\t\tbool f = true;\n\n\t\tk = -1;\n\t\tfor (int i = 0; i < n; i++) {\n\t\t\tif (li[i] != N+1) {\n\t\t\t\tint cur = li[i];\n\t\t\t\twhile (cur <= N) {\n\t\t\t\t\tf &= (cur == prev + 1);\n\t\t\t\t\tif (!f && k == -1) k = prev;\n\t\t\t\t\tif (!f) A.push_back(cur-k);\n\t\t\t\t\tprev = cur;\n\t\t\t\t\tcur = field[cur];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tans++;\n\t}\n\tcout << ans * N << endl;\n}\n\nint main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(0);\n\tcout << fixed << setprecision(20);\n\tMain();\n\treturn (0);\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 3364, "score_of_the_acc": -0.2527, "final_rank": 6 } ]
aoj_3106_cpp
G: AOR-String 問題 $N$ 個の文字列 $S_i$ が与えられる. $S_i$ を任意の順に繋げて得られる文字列に含まれる "AOR" の数の最大値を求めよ. 制約 $1 \leq N \leq 10^5$ $1 \leq |S_i| \leq 20$ $S_i$ は大文字アルファベットのみからなる 入力形式 入力は以下の形式で与えられる. $N$ $S_1$ … $S_N$ 出力 $S_i$ を任意の順に繋げて得られる文字列に含まれる "AOR" の数の最大値を出力せよ. また, 末尾に改行も出力せよ. サンプル サンプル入力 1 2 AORA OR サンプル出力 1 2 サンプル入力 2 5 AB CA ORA XX AOR サンプル出力 2 2
[ { "submission_id": "aoj_3106_5201125", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define N 200100\n#define MOD 1000000007 //998244353\n#define ll long long\n#define rep(i, n) for(int i = 0; i < n; ++i)\n#define rep2(i, a, b) for(int i = a; i <= b; ++i)\n#define rep3(i, a, b) for(int i = a; i >= b; --i)\n#define eb emplace_back\n#define pb push_back\n#define all(c) (c).begin(), (c).end()\n#define vi vector<int>\n#define pii pair<int,int>\n#define pll pair<ll,ll>\nstruct Setup_io {\n\tSetup_io() {\n\t\tios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n\t\tcout << fixed << setprecision(15);\n\t}\n} setup_io;\n\n\n\nint main() {\n\tint t;\n\tint n, m;\n\tint ans, s;\n\tchar c[25];\n\tint a[2];//S,SA\n\tint b[2];//AD,D\n\tint d[2];\n\tint cnt;\n\tint e;\n\tint x;\n\tbool v;\n\tbool vv;\n\tbool vvv;\n\tt = 1;\n\trep(tt, t) {\n\t\trep(i, 2)a[i] = 0;\n\t\trep(i, 2)b[i] = 0;\n\t\trep(i, 2)d[i] = 0;\n\t\tcnt = 0;\n\t\te = 0;\n\t\tans = 0;\n\t\ts = 0;\n\t\tv = false;\n\t\tvv = false;\n\t\tvvv = false;\n\t\tcin >> n;\n\t\trep(i, n) {\n\t\t\trep(j, 25)c[j] = 0;\n\t\t\tcin >> c;\n\t\t\tm = strlen(c);\n\t\t\trep(i, m){\n\t\t\t if(c[i] == 'A') c[i] = 'S';\n\t\t\t else if(c[i] == 'O') c[i] = 'A';\n\t\t\t else if(c[i] == 'R') c[i] = 'D';\n\t\t\t else c[i] = 'Z';\n\t\t\t}\n\t\t\tif (m == 1) {\n\t\t\t\tif (c[0] == 'S')a[0]++;\n\t\t\t\tif (c[0] == 'A')cnt++;\n\t\t\t\tif (c[0] == 'D')b[1]++;\n\t\t\t\tif ((c[0] == 'D') || (c[0] == 'S'))v = true;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (c[m - 1] == 'S')a[0]++;\n\t\t\t\tif ((c[m - 2] == 'S') && (c[m - 1] == 'A'))a[1]++;\n\t\t\t\tif ((c[0] == 'A') && (c[1] == 'D'))b[0]++;\n\t\t\t\tif (c[0] == 'D')b[1]++;\n\t\t\t\tif ((c[m - 1] == 'S') && (c[0] == 'A') && (c[1] == 'D'))d[0]++;\n\t\t\t\tif ((c[m - 2] == 'S') && (c[m - 1] == 'A') && (c[0] == 'D'))d[1]++;\n\t\t\t\tif ((c[0] == 'D') && (!((c[m - 1] == 'S') || ((c[m - 2] == 'S') && (c[m - 1] == 'A')))))v = true;\n\t\t\t\tif (((c[0] == 'A') && (c[1] == 'D')) && (!((c[m - 1] == 'S') || ((c[m - 2] == 'S') && (c[m - 1] == 'A')))))v = true;\n\t\t\t\tif ((c[m - 1] == 'S') && (!((c[0] == 'D') || ((c[0] == 'A') && (c[1] == 'D')))))v = true;\n\t\t\t\tif (((c[m - 2] == 'S') && (c[m - 1] == 'A')) && (!((c[0] == 'D') || ((c[0] == 'A') && (c[1] == 'D')))))v = true;\n\t\t\t}\n\t\t\trep(j, m - 2) {\n\t\t\t\tif ((c[j] == 'S') && (c[j + 1] == 'A') && (c[j + 2] == 'D'))ans++;\n\t\t\t}\n\t\t}\n\t\tx = min(a[0], b[0]);\n\t\tif ((x > 0) && (a[0] == d[0]) && (b[0] == d[0]))x--;\n\t\ts += x;\n\t\ta[0] -= x;\n\t\tb[0] -= x;\n\n\t\tx = min(a[1], b[1]);\n\t\tif ((x > 0) && (((a[1] == d[1]) && (b[1] == d[1]))||((!v)&&(a[0]==0)&&(b[0]==0))))x--;\n\t\ts += x;\n\t\tb[1] -= x;\n\n\t\tx = min(cnt, min(a[0], b[1]));\n\t\tif ((x > 0) && (x == a[0]) && (x == b[1]) && (!v))x--;\n\t\ts += x;\n\t\tans += s;\n\t\tcout << ans << endl;\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3464, "score_of_the_acc": -0.0035, "final_rank": 1 }, { "submission_id": "aoj_3106_4076867", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\ntemplate<typename T,bool directed>\nstruct Dinic{\n struct edge {\n int to;\n T cap;\n int rev;\n edge(){}\n edge(int to,T cap,int rev):to(to),cap(cap),rev(rev){}\n };\n\n vector<vector<edge> > G;\n vector<int> level,iter;\n\n Dinic(){}\n Dinic(int n):G(n),level(n),iter(n){}\n\n int add_edge(int from,int to,T cap){\n G[from].emplace_back(to,cap,G[to].size());\n G[to].emplace_back(from,directed?0:cap,G[from].size()-1);\n return G[to].back().rev;\n }\n\n void bfs(int s){\n fill(level.begin(),level.end(),-1);\n queue<int> que;\n level[s]=0;\n que.emplace(s);\n while(!que.empty()){\n int v=que.front();que.pop();\n for(int i=0;i<(int)G[v].size();i++){\n edge &e=G[v][i];\n if(e.cap>0&&level[e.to]<0){\n level[e.to]=level[v]+1;\n que.emplace(e.to);\n }\n }\n }\n }\n\n T dfs(int v,int t,T f){\n if(v==t) return f;\n for(int &i=iter[v];i<(int)G[v].size();i++){\n edge &e=G[v][i];\n if(e.cap>0&&level[v]<level[e.to]){\n T d=dfs(e.to,t,min(f,e.cap));\n if(d==0) continue;\n e.cap-=d;\n G[e.to][e.rev].cap+=d;\n return d;\n }\n }\n return 0;\n }\n\n T flow(int s,int t,T lim){\n T fl=0;\n while(1){\n bfs(s);\n if(level[t]<0||lim==0) break;\n fill(iter.begin(),iter.end(),0);\n\n while(1){\n T f=dfs(s,t,lim);\n if(f==0) break;\n fl+=f;\n lim-=f;\n }\n }\n return fl;\n }\n\n T flow(int s,int t){\n return flow(s,t,numeric_limits<T>::max()/2);\n }\n\n T cut(int s,int t,int x,int a){\n static_assert(directed, \"must be directed\");\n auto &e=G[x][a];\n int y=e.to;\n T ce=e.cap,cr=G[y][e.rev].cap;\n if(cr==0) return 0;\n e.cap=G[y][e.rev].cap=0;\n T cap=cr-flow(x,y,cr);\n if(x!=s&&cap!=0) flow(x,s,cap);\n if(t!=y&&cap!=0) flow(t,y,cap);\n e.cap=ce+cr;\n return cap;\n }\n};\n\n//INSERT ABOVE HERE\nsigned main(){\n int n;\n cin>>n;\n\n vector<string> vs(n);\n for(int i=0;i<n;i++) cin>>vs[i];\n\n int cnt=0,ooo=0;\n for(string s:vs){\n int m=s.size();\n for(int i=0;i+2<m;i++)\n if(s[i]=='A'&&s[i+1]=='O'&&s[i+2]=='R') cnt++;\n if(s==\"O\") ooo++;\n }\n\n // 0: x?x\n // 1: x?A\n // 2: x?AO\n\n // 3: R?x\n // 4: R?A\n // 5: R?AO\n\n // 6: OR?x\n // 7: OR?A\n // 8: OR?AO\n vector<int> num(9,0);\n for(string s:vs){\n int m=s.size();\n int p=0,q=0;\n if(s[0]=='R'){\n p=1;\n }\n if(s[0]=='O'){\n if(1<m&&s[1]=='R') p=2;\n }\n\n if(s[m-1]=='A'){\n q=1;\n }\n if(s[m-1]=='O'){\n if(m-2>=0&&s[m-2]=='A') q=2;\n }\n num[p*3+q]++;\n }\n\n int sum=0;\n for(int i=1;i<9;i++) sum+=num[i];\n if(sum==0){\n cout<<cnt<<endl;\n return 0;\n }\n\n Dinic<int, true> G(22);\n int S=18,T=19,U=20,V=21;\n\n for(int i=0;i<9;i++){\n G.add_edge(S,i,num[i]);\n G.add_edge(9+i,T,num[i]);\n }\n\n for(int i=0;i<9;i++){\n for(int j=0;j<9;j++){\n int p=i%3,q=j/3;\n if((p==1&&q==2)||(p==2&&q==1))\n G.add_edge(i,9+j,num[i]-(i==j));\n\n if(p==1&&q==1){\n G.add_edge(i,U,num[i]-(i==j));\n G.add_edge(V,9+j,num[i]-(i==j));\n }\n }\n }\n G.add_edge(U,V,ooo);\n\n int res=G.flow(S,T);\n if(sum==res) res--;\n cout<<cnt+res<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 8628, "score_of_the_acc": -0.1761, "final_rank": 2 }, { "submission_id": "aoj_3106_4035859", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing cap_type = int;\n\nstruct edge {\n int to, rev;\n cap_type cap;\n edge(int t, cap_type c, int r) : to(t), rev(r), cap(c) {}\n};\nusing graph = vector<vector<edge>>;\n\nvoid add_edge(graph& g, int from, int to, cap_type cap) {\n g[from].emplace_back(to, cap, g[to].size());\n g[to].emplace_back(from, 0, g[from].size() - 1);\n}\n\ncap_type augment(graph& g, vector<int> const& level, vector<int>& iter, int v, int t, cap_type f) {\n if(v == t) return f;\n for(int& i = iter[v]; i < (int)g[v].size(); ++i) {\n auto& e = g[v][i];\n if(e.cap > 0 && level[v] < level[e.to]) {\n const auto d = augment(g, level, iter, e.to, t, min(f, e.cap));\n if(d > 0) {\n e.cap -= d;\n g[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n}\n\ncap_type max_flow(graph& g, int s, int t) {\n const auto inf = numeric_limits<cap_type>::max() / 2;\n cap_type flow = 0;\n while(true) {\n vector<int> level(g.size(), -1);\n level[s] = 0;\n queue<int> que;\n que.push(s);\n while(!que.empty()) {\n const int v = que.front();\n que.pop();\n for(auto const& e : g[v]) {\n if(e.cap > 0 && level[e.to] < 0) {\n level[e.to] = level[v] + 1;\n que.push(e.to);\n }\n }\n }\n\n if(level[t] < 0) return flow;\n vector<int> iter(g.size());\n cap_type f{0};\n while((f = augment(g, level, iter, s, t, inf)) > 0) {\n flow += f;\n }\n }\n}\n\nconstexpr int inf = 1e9;\n\nint main() {\n int n; cin >> n;\n vector<string> ss(n);\n int ans = 0;\n for(int i = 0; i < n; ++i) {\n cin >> ss[i];\n }\n\n map<string, int> idx, cnt;\n idx[\"-A\"] = 0, idx[\"-AO\"] = 1;\n idx[\"R-\"] = 2, idx[\"R-A\"] = 3, idx[\"R-AO\"] = 4;\n idx[\"OR-\"] = 5, idx[\"OR-A\"] = 6, idx[\"OR-AO\"] = 7;\n idx[\"O\"] = 8;\n const int sz = idx.size();\n for(auto const& s : ss) {\n for(int j = 0; j + 3 <= (int)s.size(); ++j) {\n ans += s[j] == 'A' && s[j + 1] == 'O' && s[j + 2] == 'R';\n }\n if(s.size() >= 4 && s[0] == 'O' && s[1] == 'R' && s[s.size() - 2] == 'A' && s.back() == 'O') {\n cnt[\"OR-AO\"] += 1;\n } else if(s.size() >= 3 && s[0] == 'O' && s[1] == 'R' && s.back() == 'A') {\n cnt[\"OR-A\"] += 1;\n } else if(s.size() >= 3 && s[0] == 'R' && s[s.size() - 2] == 'A' && s.back() == 'O') {\n cnt[\"R-AO\"] += 1;\n } else if(s.size() >= 2 && s[s.size() - 2] == 'A' && s.back() == 'O') {\n cnt[\"-AO\"] += 1;\n } else if(s.size() >= 2 && s[0] == 'O' && s[1] == 'R') {\n cnt[\"OR-\"] += 1;\n } else if(s.size() >= 2 && s[0] == 'R' && s.back() == 'A') {\n cnt[\"R-A\"] += 1;\n } else if(s == \"O\") {\n cnt[\"O\"] += 1;\n } else if(s.back() == 'A') {\n cnt[\"-A\"] += 1;\n } else if(s[0] == 'R') {\n cnt[\"R-\"] += 1;\n }\n }\n\n graph g(2 * sz + 2);\n const int src = 2 * sz, sink = src + 1;\n\n int cnt_sum = 0;\n for(auto const& p : idx) {\n if(p.first == \"O\") continue;\n add_edge(g, src, p.second, cnt[p.first]);\n add_edge(g, p.second + sz, sink, cnt[p.first]);\n cnt_sum += cnt[p.first];\n }\n add_edge(g, idx[\"-A\"], idx[\"OR-\"] + sz, cnt[\"-A\"]);\n add_edge(g, idx[\"-A\"], idx[\"OR-A\"] + sz, cnt[\"-A\"]);\n add_edge(g, idx[\"-A\"], idx[\"OR-AO\"] + sz, cnt[\"-A\"]);\n add_edge(g, idx[\"-AO\"], idx[\"R-\"] + sz, cnt[\"-AO\"]);\n add_edge(g, idx[\"-AO\"], idx[\"R-A\"] + sz, cnt[\"-AO\"]);\n add_edge(g, idx[\"-AO\"], idx[\"R-AO\"] + sz, cnt[\"-AO\"]);\n add_edge(g, idx[\"R-A\"], idx[\"OR-\"] + sz, cnt[\"R-A\"]);\n add_edge(g, idx[\"R-A\"], idx[\"OR-A\"] + sz, cnt[\"R-A\"]);\n add_edge(g, idx[\"R-A\"], idx[\"OR-AO\"] + sz, cnt[\"R-A\"]);\n add_edge(g, idx[\"R-AO\"], idx[\"R-\"] + sz, cnt[\"R-AO\"]);\n add_edge(g, idx[\"R-AO\"], idx[\"R-A\"] + sz, cnt[\"R-AO\"]);\n add_edge(g, idx[\"R-AO\"], idx[\"R-AO\"] + sz, cnt[\"R-AO\"] - 1);\n add_edge(g, idx[\"OR-A\"], idx[\"OR-\"] + sz, cnt[\"OR-A\"]);\n add_edge(g, idx[\"OR-A\"], idx[\"OR-A\"] + sz, cnt[\"OR-A\"] - 1);\n add_edge(g, idx[\"OR-A\"], idx[\"OR-AO\"] + sz, cnt[\"OR-A\"]);\n add_edge(g, idx[\"OR-AO\"], idx[\"R-\"] + sz, cnt[\"OR-AO\"]);\n add_edge(g, idx[\"OR-AO\"], idx[\"R-A\"] + sz, cnt[\"OR-AO\"]);\n add_edge(g, idx[\"OR-AO\"], idx[\"R-AO\"] + sz, cnt[\"OR-AO\"]);\n add_edge(g, idx[\"-A\"], idx[\"O\"], cnt[\"-A\"]);\n add_edge(g, idx[\"R-A\"], idx[\"O\"], cnt[\"R-A\"]);\n add_edge(g, idx[\"OR-A\"], idx[\"O\"], cnt[\"OR-A\"]);\n add_edge(g, idx[\"O\"] + sz, idx[\"R-\"] + sz, cnt[\"O\"]);\n add_edge(g, idx[\"O\"] + sz, idx[\"R-A\"] + sz, cnt[\"O\"]);\n add_edge(g, idx[\"O\"] + sz, idx[\"R-AO\"] + sz, cnt[\"O\"]);\n add_edge(g, idx[\"O\"], idx[\"O\"] + sz, cnt[\"O\"]);\n\n const int flow = max_flow(g, src, sink);\n if(flow != 0 && flow == cnt_sum) { // cycle\n ans += flow - 1;\n } else {\n ans += flow;\n }\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 9672, "score_of_the_acc": -0.4908, "final_rank": 6 }, { "submission_id": "aoj_3106_3935061", "code_snippet": "#include <iostream>\n#include <string>\n\nusing namespace std;\n\nint n;\nstring s[100005];\n\nint main(void)\n{\n\tcin >> n;\n\tfor(int i = 1; i <= n; i++) cin >> s[i];\n\t\n\tint ans = 0;\n\tfor(int i = 1; i <= n; i++){\n\t\tfor(int j = 0; j+2 < s[i].size(); j++){\n\t\t\tif(s[i].substr(j, 3) == \"AOR\") ans++;\n\t\t}\n\t}\n\t\n\tint Ocnt = 0, _A = 0, _AO = 0, R_ = 0, OR_ = 0, R_A = 0, OR_A = 0, R_AO = 0, OR_AO = 0;\n\tfor(int i = 1; i <= n; i++){\n\t\tint l = s[i].size();\n\t\tif(s[i] == \"O\") Ocnt++;\n\t\tif(s[i].substr(l-1, 1) == \"A\")_A++;\n\t\tif(l >= 2 && s[i].substr(l-2, 2) == \"AO\") _AO++;\n\t\tif(s[i].substr(0, 1) == \"R\") R_++;\n\t\tif(l >= 2 && s[i].substr(0, 2) == \"OR\") OR_++;\n\t\tif(l >= 2 && s[i].substr(0, 1) == \"R\" && s[i].substr(l-1, 1) == \"A\") R_A++;\n\t\tif(l >= 3 && s[i].substr(0, 2) == \"OR\" && s[i].substr(l-1, 1) == \"A\") OR_A++;\n\t\tif(l >= 3 && s[i].substr(0, 1) == \"R\" && s[i].substr(l-2, 2) == \"AO\") R_AO++;\n\t\tif(l >= 4 && s[i].substr(0, 2) == \"OR\" && s[i].substr(l-2, 2) == \"AO\") OR_AO++;\n\t}\n\tint gomi = _A+_AO+R_+OR_ - (R_A+OR_A+R_AO+OR_AO) + Ocnt;\n\tgomi = n - gomi;\n\t\n\tint mx = 0;\n\tfor(int i = 0; i <= min(Ocnt, _A); i++){\n\t\tint tmp1 = min(_A-i, OR_);\n\t\tif(tmp1 && OR_A == _A && OR_A == OR_ && i == 0) tmp1--;\n\t\t\n\t\tint tmp2 = min(_AO+i, R_);\n\t\tif(tmp2 && R_AO == _AO && R_AO == R_ && i == 0) tmp2--;\n\t\t\n\t\tmx = max(mx, tmp1+tmp2);\n\t\t//cout << tmp1 << \" \" << tmp2 << endl;\n\t}\n\tif(mx && mx == n-(Ocnt+gomi)) mx--;\n\tans += mx;\n\t\n\tcout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 9920, "score_of_the_acc": -1.0943, "final_rank": 7 }, { "submission_id": "aoj_3106_3935047", "code_snippet": "#include <iostream>\n#include <string>\n \nusing namespace std;\n \nint n;\nstring s[100005];\n \nint main(void)\n{\n cin >> n;\n for(int i = 1; i <= n; i++) cin >> s[i];\n \n int ans = 0;\n for(int i = 1; i <= n; i++){\n for(int j = 0; j+2 < s[i].size(); j++){\n if(s[i].substr(j, 3) == \"AOR\") ans++;\n }\n }\n \n int Ocnt = 0, _A = 0, _AO = 0, R_ = 0, OR_ = 0, R_A = 0, OR_A = 0, R_AO = 0, OR_AO = 0;\n for(int i = 1; i <= n; i++){\n int l = s[i].size();\n if(s[i] == \"O\") Ocnt++;\n if(s[i].substr(l-1, 1) == \"A\")_A++;\n if(l >= 2 && s[i].substr(l-2, 2) == \"AO\") _AO++;\n if(s[i].substr(0, 1) == \"R\") R_++;\n if(l >= 2 && s[i].substr(0, 2) == \"OR\") OR_++;\n if(l >= 2 && s[i].substr(0, 1) == \"R\" && s[i].substr(l-1, 1) == \"A\") R_A++;\n if(l >= 3 && s[i].substr(0, 2) == \"OR\" && s[i].substr(l-1, 1) == \"A\") OR_A++;\n if(l >= 3 && s[i].substr(0, 1) == \"R\" && s[i].substr(l-2, 2) == \"AO\") R_AO++;\n if(l >= 4 && s[i].substr(0, 2) == \"OR\" && s[i].substr(l-2, 2) == \"AO\") OR_AO++;\n }\n int gomi = _A+_AO+R_+OR_ - (R_A+OR_A+R_AO+OR_AO) + Ocnt;\n gomi = n - gomi;\n \n int mx = 0;\n for(int i = 0; i <= min(Ocnt, _A); i++){\n int tmp1 = min(_A-i, OR_);\n if(tmp1 && OR_A == _A && OR_A == OR_ && i == 0) tmp1--;\n \n int tmp2 = min(_AO+i, R_);\n if(tmp2 && R_AO == _AO && R_AO == R_ && i == 0) tmp2--;\n \n mx = max(mx, tmp1+tmp2);\n //cout << tmp1 << \" \" << tmp2 << endl;\n }\n if(mx && mx == n-(Ocnt+gomi)) mx--;\n ans += mx;\n \n cout << ans << endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 9936, "score_of_the_acc": -1.0945, "final_rank": 8 }, { "submission_id": "aoj_3106_3877118", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nint main(){\n int n;\n cin>>n;\n vector<int> v(10);\n int ans = 0;\n while(n--){\n string s;\n\t cin>>s;\n\t for(int j=2;j<s.size();j++){\n\t\t if(s[j-2]=='A'&&s[j-1]=='O'&&s[j]=='R')ans++;\n\t }\n\t if(s.size()==1&&s[0]=='O')v[9]++;\n\t else if(s[0]=='R'){\n\t\t if(s.back()=='A')v[1]++;\n\t\t else if(s.size()>=2&&s[s.size()-2]=='A'&&s.back()=='O')v[2]++;\n\t\t else v[3]++;\n \t}\n\t else if(s.size()>=2&&s[0]=='O'&&s[1]=='R'){\n\t\t if(s.back()=='A')v[4]++;\n \t\telse if(s.size()>=2&&s[s.size()-2]=='A'&&s.back()=='O')v[5]++;\n\t \telse v[6]++;\n\t }\n \telse {\n \t\tif(s.back()=='A')v[7]++;\n \t\telse if(s.size()>=2&&s[s.size()-2]=='A'&&s.back()=='O')v[8]++;\n \t}\n }\n while(v[2]>=1&&v[1]+v[2]+v[3]+v[5]+v[8]>=2)--v[2],++ans;\n while(v[4]>=1&&v[4]+v[5]+v[6]+v[1]+v[7]>=2)--v[4],++ans;\n\n while(v[1]&&v[5]){\n --v[1],--v[5],++ans;\n if(v[5]+v[6]+v[1]+v[7]>=1)++ans;\n else if(v[1]+v[3]+v[5]+v[8]>=1)++ans;\n else ++v[4];\n }\n while(v[1]){\n if(v[1]&&v[6])--v[1],--v[6],++v[3],++ans;\n else if(v[1]&&v[8])--v[1],--v[8],++v[7],++ans;\n else break;\n }\n while(v[5]){\n if(v[5]&&v[3])--v[5],--v[3],++v[6],++ans;\n else if(v[5]&&v[7])--v[5],--v[7],++v[8],++ans;\n else break;\n }\n \n while(v[2]){\n if(v[2]&&v[3])--v[2],++ans;\n else if(v[2]&&v[8])--v[2],++ans;\n else break;\n }\n while(v[4]){\n if(v[4]&&v[6])--v[4],++ans;\n else if(v[4]&&v[7])--v[4],++ans;\n else break;\n }\n \n while(v[3]&&v[8])--v[3],--v[8],++ans;\n while(v[6]&&v[7])--v[6],--v[7],++ans;\n \n while(v[9]){\n if(v[2]&&v[4])--v[2],--v[4],--v[9],++ans;\n else if(v[2]&&v[4])--v[2],--v[4],--v[9],++ans;\n else if(v[2]&&v[7])--v[2],--v[7],--v[9],++ans;\n else if(v[3]&&v[4])--v[3],--v[4],--v[9],++ans;\n else if(v[3]&&v[7])--v[3],--v[7],--v[9],++ans;\n else break;\n }\n while(v[9]){\n if(v[1]&&v[7])--v[1],--v[7],--v[9],++ans;\n else if(v[1]&&v[4])--v[1],--v[4],--v[9],++ans;\n else break;\n }\n while(v[9]){\n if(v[1]&&v[2])--v[1],--v[2],--v[9],++ans;\n else if(v[1]&&v[3])--v[1],--v[3],--v[9],++ans;\n else break;\n }\n while(v[9]){\n if(v[1]>=2)v[1]-=2,--v[9],++ans;\n else break;\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3212, "score_of_the_acc": -0.4, "final_rank": 3 }, { "submission_id": "aoj_3106_3877047", "code_snippet": "#include<iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\n#include<iomanip>\n#include<math.h>\n#include<complex>\n#include<queue>\n#include<deque>\n#include<stack>\n#include<map>\n#include<set>\n#include<bitset>\n#include<functional>\n#include<assert.h>\n#include<numeric>\nusing namespace std;\n#define REP(i,m,n) for(int i=(int)(m) ; i < (int) (n) ; ++i )\n#define rep(i,n) REP(i,0,n)\nusing ll = long long;\nconst int inf=1e9+7;\nconst ll longinf=1LL<<60 ;\nconst ll mod=1e9+7 ;\n\nint main(){\n int n;\n cin>>n;\n vector<int> v(10);\n int ans = 0;\n rep(_,n){\n string s;\n\tcin>>s;\n\tfor(int j=2;j<s.size();j++){\n\t\tif(s[j-2]=='A'&&s[j-1]=='O'&&s[j]=='R')ans++;\n\t}\n\tif(s.size()==1&&s[0]=='O'){\n\t\tv[9]++;\n\t}\n\telse if(s[0]=='R'){\n\t\tif(s.back()=='A'){\n\t\t\tv[1]++;\n\t\t}\n\t\telse if(s.size()>=2&&s[s.size()-2]=='A'&&s.back()=='O')v[2]++;\n\t\telse v[3]++;\n\t}\n\telse if(s.size()>=2&&s[0]=='O'&&s[1]=='R'){\n\t\tif(s.back()=='A')v[4]++;\n\t\telse if(s.size()>=2&&s[s.size()-2]=='A'&&s.back()=='O')v[5]++;\n\t\telse v[6]++;\n\t}\n\telse {\n\t\tif(s.back()=='A')v[7]++;\n\t\telse if(s.size()>=2&&s[s.size()-2]=='A'&&s.back()=='O')v[8]++;\n\t}\n }\n while(v[2]>=1&&v[1]+v[2]+v[3]+v[5]+v[8]>=2){\n ans++;\n v[2]--;\n }\n while(v[4]>=1&&v[4]+v[5]+v[6]+v[1]+v[7]>=2){\n ans++;\n v[4]--;\n }\n while(v[1]&&v[5]){\n --v[1];\n --v[5];\n if(v[5]+v[6]+v[1]+v[7]>=1)++ans;\n else if(v[1]+v[3]+v[5]+v[8]>=1)++ans;\n else ++v[4];\n ++ans;\n }\n while(v[1]){\n if(v[1]&&v[6]){\n ++ans;\n --v[1];\n --v[6];\n ++v[3];\n }\n else if(v[1]&&v[8]){\n ++ans;\n --v[1];\n --v[8];\n ++v[7];\n }\n else break;\n }\n while(v[5]){\n if(v[5]&&v[3]){\n ++ans;\n --v[5];\n --v[3];\n ++v[6];\n }\n else if(v[5]&&v[7]){\n ++ans;\n --v[5];\n --v[7];\n ++v[8];\n }\n else break;\n }\n while(v[2]){\n if(v[2]&&v[3]){\n ++ans;\n --v[2];\n }\n else if(v[2]&&v[8]){\n ++ans;\n --v[2];\n }\n else break;\n }\n while(v[4]){\n if(v[4]&&v[6]){\n ++ans;\n --v[4];\n }\n else if(v[4]&&v[7]){\n ++ans;\n --v[4];\n }\n else break;\n }\n while(v[3]&&v[8]){\n --v[3];\n --v[8];\n ++ans;\n }\n while(v[6]&&v[7]){\n --v[6];\n --v[7];\n ++ans;\n }\n while(v[9]){\n if(v[2]&&v[4])--v[2],--v[4],--v[9],++ans;\n else if(v[2]&&v[4])--v[2],--v[4],--v[9],++ans;\n else if(v[2]&&v[7])--v[2],--v[7],--v[9],++ans;\n else if(v[3]&&v[4])--v[3],--v[4],--v[9],++ans;\n else if(v[3]&&v[7])--v[3],--v[7],--v[9],++ans;\n else break;\n }\n while(v[9]){\n if(v[1]&&v[7])--v[1],--v[7],--v[9],++ans;\n else if(v[1]&&v[4])--v[1],--v[4],--v[9],++ans;\n else break;\n }\n while(v[9]){\n if(v[1]&&v[2])--v[1],--v[2],--v[9],++ans;\n else if(v[1]&&v[3])--v[1],--v[3],--v[9],++ans;\n else break;\n }\n while(v[9]){\n if(v[1]>=2)v[1]-=2,--v[9],++ans;\n else break;\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3212, "score_of_the_acc": -0.4, "final_rank": 3 }, { "submission_id": "aoj_3106_3877000", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <cstdlib>\n#include <cmath>\n#include <ctime>\n#include <cassert>\n#include <string>\n#include <algorithm>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <iostream>\n#include <map>\n#include <set>\n#include <cassert>\nusing namespace std;\n\n\n\ntypedef long long ll;\ntypedef pair<int,int> P;\ntypedef pair<int,P> P1;\ntypedef pair<P,P> P2;\n#define pu push\n#define pb push_back\n#define mp make_pair\n\n#define INF 1000000000\n#define mod 1000000007\n#define fi first\n#define sc second\n#define rep(i,x) for(int i=0;i<x;i++)\n#define repn(i,x) for(int i=1;i<=x;i++)\n#define SORT(x) sort(x.begin(),x.end())\n#define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end())\n#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin())\n#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin())\nint n;\nchar s[21];\nint cnt[10],res,add;\n\ntypedef long long LL;\ninline LL getint(){\n LL _x=0,_tmp=1; char _tc=getchar(); \n while( (_tc<'0'||_tc>'9')&&_tc!='-' ) _tc=getchar();\n if( _tc == '-' ) _tc=getchar() , _tmp = -1;\n while(_tc>='0'&&_tc<='9') _x*=10,_x+=(_tc-'0'),_tc=getchar();\n return _x*_tmp;\n}\nconst int MAXN = 22222;\nconst int MAXM = 403;\nstruct Simplex{\n const double eps = 1E-10;\n double a[MAXN][MAXM], b[MAXN], c[MAXM], d[MAXN][MAXM];\n double x[MAXM];\n int ix[MAXN + MAXM]; // !!! array all indexed from 0\n // max{cx} subject to {Ax<=b,x>=0}\n // n: constraints, m: vars !!!\n // x[] is the optimal solution vector\n // usage : \n // value = simplex(a, b, c, N, M);\n pair<double,bool> simplex(int n, int m){\n ++m;\n int r = n, s = m - 1;\n memset(d, 0, sizeof(d));\n for (int i = 0; i < n + m; ++i) ix[i] = i;\n for (int i = 0; i < n; ++i) {\n for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];\n d[i][m - 1] = 1;\n d[i][m] = b[i];\n if (d[r][m] > d[i][m]) r = i;\n }\n for (int j = 0; j < m - 1; ++j) d[n][j] = c[j];\n d[n + 1][m - 1] = -1;\n for (double dd;; ) {\n if (r < n) {\n int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;\n d[r][s] = 1.0 / d[r][s];\n for (int j = 0; j <= m; ++j)\n if (j != s) d[r][j] *= -d[r][s];\n for (int i = 0; i <= n + 1; ++i) if (i != r) {\n for (int j = 0; j <= m; ++j) if (j != s)\n d[i][j] += d[r][j] * d[i][s];\n d[i][s] *= d[r][s];\n }\n }\n r = -1; s = -1;\n for (int j = 0; j < m; ++j)\n if (s < 0 || ix[s] > ix[j]) {\n if (d[n + 1][j] > eps ||\n (d[n + 1][j] > -eps && d[n][j] > eps))\n s = j;\n }\n if (s < 0) break;\n for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {\n if (r < 0 ||\n (dd = d[r][m] / d[r][s] - d[i][m] / d[i][s]) < -eps ||\n (dd < eps && ix[r + m] > ix[i + m]))\n r = i;\n }\n if (r < 0) return { 0 , false }; // not bounded\n }\n if (d[n + 1][m] < -eps) return { 0 , false }; // not executable\n double ans = 0;\n for(int i=0; i<m; i++) x[i] = 0;\n for (int i = m; i < n + m; ++i) { // the missing enumerated x[i] = 0\n if (ix[i] < m - 1){\n ans += d[i - m][m] * c[ix[i]];\n x[ix[i]] = d[i-m][m];\n }\n }\n return { ans , true }; \n }\n} solver;\n\nint main(){\n\tscanf(\"%d\",&n);\n\trep(i,n){\n\t\tscanf(\"%s\",&s);\n\t\tint n = strlen(s);\n\t\tif(n==1 && s[0] == 'O') cnt[8]++;\n\t\tint x=-1,y=-1;\n\t\tif(s[0] == 'R') x=2;\n\t\tif(n >= 2 && s[0] == 'O' && s[1] == 'R') x = 1;\n\t\t\n\t\tif(s[n-1] == 'A') y=1;\n\t\tif(n >= 2 && s[n-2] == 'A' && s[n-1] == 'O') y=2;\n\t\t\n\t\tif(x==1&&y==1) cnt[0]++;\n\t\tif(x==1&&y==2) cnt[1]++;\n\t\tif(x==2&&y==1) cnt[2]++;\n\t\tif(x==2&&y==2) cnt[3]++;\n\t\tif(x==-1&&y==1) cnt[4]++;\n\t\tif(x==-1&&y==2) cnt[5]++;\n\t\tif(x==1&&y==-1) cnt[6]++;\n\t\tif(x==2&&y==-1) cnt[7]++;\n\t\tfor(int j=0;j<n-2;j++){\n\t\t\tif(s[j]=='A' && s[j+1]=='O' && s[j+2] == 'R') res++;\n\t\t}\n\t}\n\tint var = 64;\n \tint con = 2*(8+8+70+56+28+8+1);\n\t//出次数 = cnt\n\t//出次数 = 入次数\n\t//連結\n\tfor( int j = 0 ; j < con ; j ++ )\n for( int i = 0 ; i < var ; i ++ )\n solver.a[ j ][ i ] = 0;\n\t for( int i = 0 ; i < con ; i ++ )\n\t solver.b[ i ] = 0;\n\t for( int i = 0 ; i < var ; i ++ )\n\t {\n\t \tint aa = i/8, ab = i%8;\n\t \tsolver.c[ i ] = 0;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==0||ab==1||ab==6)) solver.c[ i ] = 1;\n\t \tif( (aa==1||aa==3||aa==5) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 1;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 1;\n\t }\n\t int nxt = 0;\n\t // max{cx} subject to {Ax<=b,x>=0}\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = 1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = -1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = -cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for(int i=1;i<(1<<8);i++){\n\t\tif(__builtin_popcount(i) > 4) continue;\n\t\tint x[10]={};\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) x[j] = 1;\n\t\t}\n\t\tint as=0,bs=0;\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) as+=cnt[j]; else bs+=cnt[j];\n\t\t}\n\t\tif(as==0||bs==0) continue;\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(x[aa] != x[ab]){\n\t\t \t\tsolver.a[ nxt ][ j ] -= 1;\n\t\t \t}\n\t\t }\n\t\t solver.b[ nxt++ ] = -1;\n\t\t}\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)){\n\t\t\t\t solver.a[ nxt ][ j ] = 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\t solver.b[ nxt++ ] = cnt[8];\n\t pair<double,bool> ans = solver.simplex(con, var);\n\t if(ans.sc) add = max(add,(int)floor(ans.fi+0.1));\n\t \n\t \n\t var = 64;\n \tcon = 2*(8+8+70+56+28+8+1);\n\t//出次数 = cnt\n\t//出次数 = 入次数\n\t//連結\n\tfor( int j = 0 ; j < con ; j ++ )\n for( int i = 0 ; i < var ; i ++ )\n solver.a[ j ][ i ] = 0;\n\t for( int i = 0 ; i < con ; i ++ )\n\t solver.b[ i ] = 0;\n\t for( int i = 0 ; i < var ; i ++ )\n\t {\n\t \tint aa = i/8, ab = i%8;\n\t \tsolver.c[ i ] = 0;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==0||ab==1||ab==6)) solver.c[ i ] = 1;\n\t \tif( (aa==1||aa==3||aa==5) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 1;\n\t \t//if( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 0;\n\t }\n\tnxt = 0;\n\t // max{cx} subject to {Ax<=b,x>=0}\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = 1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = -1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = -cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for(int i=1;i<(1<<8);i++){\n\t\tif(__builtin_popcount(i) > 4) continue;\n\t\tint x[10]={};\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) x[j] = 1;\n\t\t}\n\t\tint as=0,bs=0;\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) as+=cnt[j]; else bs+=cnt[j];\n\t\t}\n\t\tif(as==0||bs==0) continue;\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(x[aa] != x[ab]){\n\t\t \t\tsolver.a[ nxt ][ j ] -= 1;\n\t\t \t}\n\t\t }\n\t\t solver.b[ nxt++ ] = -1;\n\t\t}\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)){\n\t\t\t\t solver.a[ nxt ][ j ] = -1;\n\t\t\t\t}\n\t\t\t}\n\t\t\t solver.b[ nxt++ ] = -cnt[8];\n\t ans = solver.simplex(con, var);\n\t if(ans.sc)add = max(add,(int)floor(ans.fi+0.1)+cnt[8]);\n\t /* int S = 0;\n\t rep(i,8) S += cnt[i];\n\t if(S == add){\n\t \tadd--;\n\t }\n\t add = max(add,0);*/\n\t cout << res+add << endl;\n\t }", "accuracy": 0.027522935779816515, "time_ms": 20, "memory_kb": 74268, "score_of_the_acc": -1.0987, "final_rank": 11 }, { "submission_id": "aoj_3106_3876961", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <cstdlib>\n#include <cmath>\n#include <ctime>\n#include <cassert>\n#include <string>\n#include <algorithm>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <iostream>\n#include <map>\n#include <set>\n#include <cassert>\nusing namespace std;\n\n\n\ntypedef long long ll;\ntypedef pair<int,int> P;\ntypedef pair<int,P> P1;\ntypedef pair<P,P> P2;\n#define pu push\n#define pb push_back\n#define mp make_pair\n\n#define INF 1000000000\n#define mod 1000000007\n#define fi first\n#define sc second\n#define rep(i,x) for(int i=0;i<x;i++)\n#define repn(i,x) for(int i=1;i<=x;i++)\n#define SORT(x) sort(x.begin(),x.end())\n#define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end())\n#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin())\n#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin())\nint n;\nchar s[21];\nint cnt[10],res,add;\n\ntypedef long long LL;\ninline LL getint(){\n LL _x=0,_tmp=1; char _tc=getchar(); \n while( (_tc<'0'||_tc>'9')&&_tc!='-' ) _tc=getchar();\n if( _tc == '-' ) _tc=getchar() , _tmp = -1;\n while(_tc>='0'&&_tc<='9') _x*=10,_x+=(_tc-'0'),_tc=getchar();\n return _x*_tmp;\n}\nconst int MAXN = 22222;\nconst int MAXM = 403;\nstruct Simplex{\n const double eps = 1E-10;\n double a[MAXN][MAXM], b[MAXN], c[MAXM], d[MAXN][MAXM];\n double x[MAXM];\n int ix[MAXN + MAXM]; // !!! array all indexed from 0\n // max{cx} subject to {Ax<=b,x>=0}\n // n: constraints, m: vars !!!\n // x[] is the optimal solution vector\n // usage : \n // value = simplex(a, b, c, N, M);\n pair<double,bool> simplex(int n, int m){\n ++m;\n int r = n, s = m - 1;\n memset(d, 0, sizeof(d));\n for (int i = 0; i < n + m; ++i) ix[i] = i;\n for (int i = 0; i < n; ++i) {\n for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];\n d[i][m - 1] = 1;\n d[i][m] = b[i];\n if (d[r][m] > d[i][m]) r = i;\n }\n for (int j = 0; j < m - 1; ++j) d[n][j] = c[j];\n d[n + 1][m - 1] = -1;\n for (double dd;; ) {\n if (r < n) {\n int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;\n d[r][s] = 1.0 / d[r][s];\n for (int j = 0; j <= m; ++j)\n if (j != s) d[r][j] *= -d[r][s];\n for (int i = 0; i <= n + 1; ++i) if (i != r) {\n for (int j = 0; j <= m; ++j) if (j != s)\n d[i][j] += d[r][j] * d[i][s];\n d[i][s] *= d[r][s];\n }\n }\n r = -1; s = -1;\n for (int j = 0; j < m; ++j)\n if (s < 0 || ix[s] > ix[j]) {\n if (d[n + 1][j] > eps ||\n (d[n + 1][j] > -eps && d[n][j] > eps))\n s = j;\n }\n if (s < 0) break;\n for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {\n if (r < 0 ||\n (dd = d[r][m] / d[r][s] - d[i][m] / d[i][s]) < -eps ||\n (dd < eps && ix[r + m] > ix[i + m]))\n r = i;\n }\n if (r < 0) return { 0 , false }; // not bounded\n }\n if (d[n + 1][m] < -eps) return { 0 , false }; // not executable\n double ans = 0;\n for(int i=0; i<m; i++) x[i] = 0;\n for (int i = m; i < n + m; ++i) { // the missing enumerated x[i] = 0\n if (ix[i] < m - 1){\n ans += d[i - m][m] * c[ix[i]];\n x[ix[i]] = d[i-m][m];\n }\n }\n return { ans , true }; \n }\n} solver;\n\nint main(){\n\tscanf(\"%d\",&n);\n\trep(i,n){\n\t\tscanf(\"%s\",&s); int n = strlen(s);\n\t\tif(n==1 && s[0] == 'O') cnt[8]++;\n\t\tint x=-1,y=-1;\n\t\tif(s[0] == 'R') x=2;\n\t\tif(n >= 2 && s[0] == 'O' && s[1] == 'R') x = 1;\n\t\t\n\t\tif(s[n-1] == 'A') y=1;\n\t\tif(n >= 2 && s[n-2] == 'A' && s[n-1] == 'O') y=2;\n\t\t\n\t\tif(x==1&&y==1) cnt[0]++;\n\t\tif(x==1&&y==2) cnt[1]++;\n\t\tif(x==2&&y==1) cnt[2]++;\n\t\tif(x==2&&y==2) cnt[3]++;\n\t\tif(x==-1&&y==1) cnt[4]++;\n\t\tif(x==-1&&y==2) cnt[5]++;\n\t\tif(x==1&&y==-1) cnt[6]++;\n\t\tif(x==2&&y==-1) cnt[7]++;\n\t\tfor(int j=0;j<n-2;j++){\n\t\t\tif(s[j]=='A' && s[j+1]=='O' && s[j+2] == 'R') res++;\n\t\t}\n\t}\n\tint var = 64;\n \tint con = 2*(8+8+70+56+28+8+1);\n\t//出次数 = cnt\n\t//出次数 = 入次数\n\t//連結\n\tfor( int j = 0 ; j < con ; j ++ )\n for( int i = 0 ; i < var ; i ++ )\n solver.a[ j ][ i ] = 0;\n\t for( int i = 0 ; i < con ; i ++ )\n\t solver.b[ i ] = 0;\n\t for( int i = 0 ; i < var ; i ++ )\n\t {\n\t \tint aa = i/8, ab = i%8;\n\t \tsolver.c[ i ] = 0;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==0||ab==1||ab==6)) solver.c[ i ] = 1;\n\t \tif( (aa==1||aa==3||aa==5) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 1;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 1;\n\t }\n\t int nxt = 0;\n\t // max{cx} subject to {Ax<=b,x>=0}\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = 1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = -1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = -cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for(int i=1;i<(1<<8);i++){\n\t\tif(__builtin_popcount(i) > 4) continue;\n\t\tint x[10]={};\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) x[j] = 1;\n\t\t}\n\t\tint as=0,bs=0;\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) as+=cnt[j]; else bs+=cnt[j];\n\t\t}\n\t\tif(as==0||bs==0) continue;\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(x[aa] != x[ab]){\n\t\t \t\tsolver.a[ nxt ][ j ] -= 1;\n\t\t \t}\n\t\t }\n\t\t solver.b[ nxt++ ] = -1;\n\t\t}\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)){\n\t\t\t\t solver.a[ nxt ][ j ] = 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\t solver.b[ nxt++ ] = cnt[8];\n\t pair<double,bool> ans = solver.simplex(con, var);\n\t if(ans.sc) add = max(add,(int)floor(ans.fi+0.1));\n\t var = 64;\n \tcon = 2*(8+8+70+56+28+8+1);\n\t//出次数 = cnt\n\t//出次数 = 入次数\n\t//連結\n\tfor( int j = 0 ; j < con ; j ++ )\n for( int i = 0 ; i < var ; i ++ )\n solver.a[ j ][ i ] = 0;\n\t for( int i = 0 ; i < con ; i ++ )\n\t solver.b[ i ] = 0;\n\t for( int i = 0 ; i < var ; i ++ )\n\t {\n\t \tint aa = i/8, ab = i%8;\n\t \tsolver.c[ i ] = 0;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==0||ab==1||ab==6)) solver.c[ i ] = 1;\n\t \tif( (aa==1||aa==3||aa==5) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 1;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 0;\n\t }\n\tnxt = 0;\n\t // max{cx} subject to {Ax<=b,x>=0}\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = 1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = -1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = -cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for(int i=1;i<(1<<8);i++){\n\t\tif(__builtin_popcount(i) > 4) continue;\n\t\tint x[10]={};\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) x[j] = 1;\n\t\t}\n\t\tint as=0,bs=0;\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) as+=cnt[j]; else bs+=cnt[j];\n\t\t}\n\t\tif(as==0||bs==0) continue;\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(x[aa] != x[ab]){\n\t\t \t\tsolver.a[ nxt ][ j ] -= 1;\n\t\t \t}\n\t\t }\n\t\t solver.b[ nxt++ ] = -1;\n\t\t}\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)){\n\t\t\t\t solver.a[ nxt ][ j ] = -1;\n\t\t\t\t}\n\t\t\t}\n\t\t\t solver.b[ nxt++ ] = -cnt[8];\n\t ans = solver.simplex(con, var);\n\t if(ans.sc)add = max(add,(int)floor(ans.fi+0.1)+cnt[8]);\n\t \n\t int S = 0;\n\t rep(i,8) S += cnt[i];\n\t if(S == add){\n\t \tadd--;\n\t }\n\t add = max(add,0);\n\t cout << res+add << endl;\n\t }", "accuracy": 0.05504587155963303, "time_ms": 20, "memory_kb": 74360, "score_of_the_acc": -1.1, "final_rank": 10 }, { "submission_id": "aoj_3106_3876910", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <cstdlib>\n#include <cmath>\n#include <ctime>\n#include <cassert>\n#include <string>\n#include <algorithm>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <iostream>\n#include <map>\n#include <set>\n#include <cassert>\nusing namespace std;\n\n\n\ntypedef long long ll;\ntypedef pair<int,int> P;\ntypedef pair<int,P> P1;\ntypedef pair<P,P> P2;\n#define pu push\n#define pb push_back\n#define mp make_pair\n\n#define INF 1000000000\n#define mod 1000000007\n#define fi first\n#define sc second\n#define rep(i,x) for(int i=0;i<x;i++)\n#define repn(i,x) for(int i=1;i<=x;i++)\n#define SORT(x) sort(x.begin(),x.end())\n#define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end())\n#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin())\n#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin())\nint n;\nchar s[21];\nint cnt[10],res,add;\n\ntypedef long long LL;\ninline LL getint(){\n LL _x=0,_tmp=1; char _tc=getchar(); \n while( (_tc<'0'||_tc>'9')&&_tc!='-' ) _tc=getchar();\n if( _tc == '-' ) _tc=getchar() , _tmp = -1;\n while(_tc>='0'&&_tc<='9') _x*=10,_x+=(_tc-'0'),_tc=getchar();\n return _x*_tmp;\n}\nconst int MAXN = 22222;\nconst int MAXM = 403;\nstruct Simplex{\n const double eps = 1E-10;\n double a[MAXN][MAXM], b[MAXN], c[MAXM], d[MAXN][MAXM];\n double x[MAXM];\n int ix[MAXN + MAXM]; // !!! array all indexed from 0\n // max{cx} subject to {Ax<=b,x>=0}\n // n: constraints, m: vars !!!\n // x[] is the optimal solution vector\n // usage : \n // value = simplex(a, b, c, N, M);\n pair<double,bool> simplex(int n, int m){\n ++m;\n int r = n, s = m - 1;\n memset(d, 0, sizeof(d));\n for (int i = 0; i < n + m; ++i) ix[i] = i;\n for (int i = 0; i < n; ++i) {\n for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];\n d[i][m - 1] = 1;\n d[i][m] = b[i];\n if (d[r][m] > d[i][m]) r = i;\n }\n for (int j = 0; j < m - 1; ++j) d[n][j] = c[j];\n d[n + 1][m - 1] = -1;\n for (double dd;; ) {\n if (r < n) {\n int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;\n d[r][s] = 1.0 / d[r][s];\n for (int j = 0; j <= m; ++j)\n if (j != s) d[r][j] *= -d[r][s];\n for (int i = 0; i <= n + 1; ++i) if (i != r) {\n for (int j = 0; j <= m; ++j) if (j != s)\n d[i][j] += d[r][j] * d[i][s];\n d[i][s] *= d[r][s];\n }\n }\n r = -1; s = -1;\n for (int j = 0; j < m; ++j)\n if (s < 0 || ix[s] > ix[j]) {\n if (d[n + 1][j] > eps ||\n (d[n + 1][j] > -eps && d[n][j] > eps))\n s = j;\n }\n if (s < 0) break;\n for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {\n if (r < 0 ||\n (dd = d[r][m] / d[r][s] - d[i][m] / d[i][s]) < -eps ||\n (dd < eps && ix[r + m] > ix[i + m]))\n r = i;\n }\n if (r < 0) return { 0 , false }; // not bounded\n }\n if (d[n + 1][m] < -eps) return { 0 , false }; // not executable\n double ans = 0;\n for(int i=0; i<m; i++) x[i] = 0;\n for (int i = m; i < n + m; ++i) { // the missing enumerated x[i] = 0\n if (ix[i] < m - 1){\n ans += d[i - m][m] * c[ix[i]];\n x[ix[i]] = d[i-m][m];\n }\n }\n return { ans , true }; \n }\n} solver;\n\nint main(){\n\tscanf(\"%d\",&n);\n\trep(i,n){\n\t\tscanf(\"%s\",&s); int n = strlen(s);\n\t\tif(n==1 && s[0] == 'O') cnt[8]++;\n\t\tint x=-1,y=-1;\n\t\tif(s[0] == 'R') x=2;\n\t\tif(n >= 2 && s[0] == 'O' && s[1] == 'R') x = 1;\n\t\t\n\t\tif(s[n-1] == 'A') y=1;\n\t\tif(n >= 2 && s[n-2] == 'A' && s[n-1] == 'O') y=2;\n\t\t\n\t\tif(x==1&&y==1) cnt[0]++;\n\t\tif(x==1&&y==2) cnt[1]++;\n\t\tif(x==2&&y==1) cnt[2]++;\n\t\tif(x==2&&y==2) cnt[3]++;\n\t\tif(x==-1&&y==1) cnt[4]++;\n\t\tif(x==-1&&y==2) cnt[5]++;\n\t\tif(x==1&&y==-1) cnt[6]++;\n\t\tif(x==2&&y==-1) cnt[7]++;\n\t\tfor(int j=0;j<n-2;j++){\n\t\t\tif(s[j]=='A' && s[j+1]=='O' && s[j+2] == 'R') res++;\n\t\t}\n\t}\n\tint var = 64;\n \tint con = 2*(8+8+70+56+28+8+1);\n\t//出次数 = cnt\n\t//出次数 = 入次数\n\t//連結\n\tfor( int j = 0 ; j < con ; j ++ )\n for( int i = 0 ; i < var ; i ++ )\n solver.a[ j ][ i ] = 0;\n\t for( int i = 0 ; i < con ; i ++ )\n\t solver.b[ i ] = 0;\n\t for( int i = 0 ; i < var ; i ++ )\n\t {\n\t \tint aa = i/8, ab = i%8;\n\t \tsolver.c[ i ] = 0;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==0||ab==1||ab==6)) solver.c[ i ] = 1;\n\t \tif( (aa==1||aa==3||aa==5) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 1;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 1;\n\t }\n\t int nxt = 0;\n\t // max{cx} subject to {Ax<=b,x>=0}\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = 1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = -1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = -cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for(int i=1;i<(1<<8);i++){\n\t\tif(__builtin_popcount(i) > 4) continue;\n\t\tint x[10]={};\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) x[j] = 1;\n\t\t}\n\t\tint as=0,bs=0;\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) as+=cnt[j]; else bs+=cnt[j];\n\t\t}\n\t\tif(as==0||bs==0) continue;\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(x[aa] != x[ab]){\n\t\t \t\tsolver.a[ nxt ][ j ] -= 1;\n\t\t \t}\n\t\t }\n\t\t solver.b[ nxt++ ] = -1;\n\t\t}\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)){\n\t\t\t\t solver.a[ nxt ][ j ] = 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\t solver.b[ nxt++ ] = cnt[8];\n\t pair<double,bool> ans = solver.simplex(con, var);\n\t if(ans.sc) add = max(add,(int)floor(ans.fi+0.5));\n\t \n\t \n\t var = 64;\n \tcon = 2*(8+8+70+56+28+8+1);\n\t//出次数 = cnt\n\t//出次数 = 入次数\n\t//連結\n\tfor( int j = 0 ; j < con ; j ++ )\n for( int i = 0 ; i < var ; i ++ )\n solver.a[ j ][ i ] = 0;\n\t for( int i = 0 ; i < con ; i ++ )\n\t solver.b[ i ] = 0;\n\t for( int i = 0 ; i < var ; i ++ )\n\t {\n\t \tint aa = i/8, ab = i%8;\n\t \tsolver.c[ i ] = 0;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==0||ab==1||ab==6)) solver.c[ i ] = 1;\n\t \tif( (aa==1||aa==3||aa==5) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 1;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 0;\n\t }\n\tnxt = 0;\n\t // max{cx} subject to {Ax<=b,x>=0}\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = 1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = -1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = -cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for(int i=1;i<(1<<8);i++){\n\t\tif(__builtin_popcount(i) > 4) continue;\n\t\tint x[10]={};\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) x[j] = 1;\n\t\t}\n\t\tint as=0,bs=0;\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) as+=cnt[j]; else bs+=cnt[j];\n\t\t}\n\t\tif(as==0||bs==0) continue;\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(x[aa] != x[ab]){\n\t\t \t\tsolver.a[ nxt ][ j ] -= 1;\n\t\t \t}\n\t\t }\n\t\t solver.b[ nxt++ ] = -1;\n\t\t}\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)){\n\t\t\t\t solver.a[ nxt ][ j ] = -1;\n\t\t\t\t}\n\t\t\t}\n\t\t\t solver.b[ nxt++ ] = -cnt[8];\n\t ans = solver.simplex(con, var);\n\t if(ans.sc)add = max(add,(int)floor(ans.fi+0.5)+cnt[8]);\n\t \n\t int S = 0;\n\t rep(i,8) S += cnt[i];\n\t if(S == add){\n\t \tadd--;\n\t }\n\t add = max(add,0);\n\t cout << res+add << endl;\n\t }", "accuracy": 0.05504587155963303, "time_ms": 20, "memory_kb": 74272, "score_of_the_acc": -1.0988, "final_rank": 9 }, { "submission_id": "aoj_3106_3876892", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <cstdlib>\n#include <cmath>\n#include <ctime>\n#include <cassert>\n#include <string>\n#include <algorithm>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <iostream>\n#include <map>\n#include <set>\n#include <cassert>\nusing namespace std;\n\n\n\ntypedef long long ll;\ntypedef pair<int,int> P;\ntypedef pair<int,P> P1;\ntypedef pair<P,P> P2;\n#define pu push\n#define pb push_back\n#define mp make_pair\n\n#define INF 1000000000\n#define mod 1000000007\n#define fi first\n#define sc second\n#define rep(i,x) for(int i=0;i<x;i++)\n#define repn(i,x) for(int i=1;i<=x;i++)\n#define SORT(x) sort(x.begin(),x.end())\n#define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end())\n#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin())\n#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin())\nint n;\nchar s[21];\nint cnt[10],res,add;\n\ntypedef long long LL;\ninline LL getint(){\n LL _x=0,_tmp=1; char _tc=getchar(); \n while( (_tc<'0'||_tc>'9')&&_tc!='-' ) _tc=getchar();\n if( _tc == '-' ) _tc=getchar() , _tmp = -1;\n while(_tc>='0'&&_tc<='9') _x*=10,_x+=(_tc-'0'),_tc=getchar();\n return _x*_tmp;\n}\nconst int MAXN = 22222;\nconst int MAXM = 403;\nstruct Simplex{\n const double eps = 1E-10;\n double a[MAXN][MAXM], b[MAXN], c[MAXM], d[MAXN][MAXM];\n double x[MAXM];\n int ix[MAXN + MAXM]; // !!! array all indexed from 0\n // max{cx} subject to {Ax<=b,x>=0}\n // n: constraints, m: vars !!!\n // x[] is the optimal solution vector\n // usage : \n // value = simplex(a, b, c, N, M);\n pair<double,bool> simplex(int n, int m){\n ++m;\n int r = n, s = m - 1;\n memset(d, 0, sizeof(d));\n for (int i = 0; i < n + m; ++i) ix[i] = i;\n for (int i = 0; i < n; ++i) {\n for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];\n d[i][m - 1] = 1;\n d[i][m] = b[i];\n if (d[r][m] > d[i][m]) r = i;\n }\n for (int j = 0; j < m - 1; ++j) d[n][j] = c[j];\n d[n + 1][m - 1] = -1;\n for (double dd;; ) {\n if (r < n) {\n int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;\n d[r][s] = 1.0 / d[r][s];\n for (int j = 0; j <= m; ++j)\n if (j != s) d[r][j] *= -d[r][s];\n for (int i = 0; i <= n + 1; ++i) if (i != r) {\n for (int j = 0; j <= m; ++j) if (j != s)\n d[i][j] += d[r][j] * d[i][s];\n d[i][s] *= d[r][s];\n }\n }\n r = -1; s = -1;\n for (int j = 0; j < m; ++j)\n if (s < 0 || ix[s] > ix[j]) {\n if (d[n + 1][j] > eps ||\n (d[n + 1][j] > -eps && d[n][j] > eps))\n s = j;\n }\n if (s < 0) break;\n for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {\n if (r < 0 ||\n (dd = d[r][m] / d[r][s] - d[i][m] / d[i][s]) < -eps ||\n (dd < eps && ix[r + m] > ix[i + m]))\n r = i;\n }\n if (r < 0) return { 0 , false }; // not bounded\n }\n if (d[n + 1][m] < -eps) return { 0 , false }; // not executable\n double ans = 0;\n for(int i=0; i<m; i++) x[i] = 0;\n for (int i = m; i < n + m; ++i) { // the missing enumerated x[i] = 0\n if (ix[i] < m - 1){\n ans += d[i - m][m] * c[ix[i]];\n x[ix[i]] = d[i-m][m];\n }\n }\n return { ans , true }; \n }\n} solver;\n\nint main(){\n\tscanf(\"%d\",&n);\n\trep(i,n){\n\t\tscanf(\"%s\",&s); int n = strlen(s);\n\t\tif(s == \"O\") cnt[8]++;\n\t\tint x=-1,y=-1;\n\t\tif(s[0] == 'R') x=2;\n\t\tif(n >= 2 && s[0] == 'O' && s[1] == 'R') x = 1;\n\t\t\n\t\tif(s[n-1] == 'A') y=1;\n\t\tif(n >= 2 && s[n-2] == 'A' && s[n-1] == 'O') y=2;\n\t\t\n\t\tif(x==1&&y==1) cnt[0]++;\n\t\tif(x==1&&y==2) cnt[1]++;\n\t\tif(x==2&&y==1) cnt[2]++;\n\t\tif(x==2&&y==2) cnt[3]++;\n\t\tif(x==-1&&y==1) cnt[4]++;\n\t\tif(x==-1&&y==2) cnt[5]++;\n\t\tif(x==1&&y==-1) cnt[6]++;\n\t\tif(x==2&&y==-1) cnt[7]++;\n\t\tfor(int j=0;j<n-2;j++){\n\t\t\tif(s[j]=='A' && s[j+1]=='O' && s[j+2] == 'R') res++;\n\t\t}\n\t}\n\tint var = 64;\n \tint con = 2*(8+8+70+56+28+8+1);\n\t//出次数 = cnt\n\t//出次数 = 入次数\n\t//連結\n\tfor( int j = 0 ; j < con ; j ++ )\n for( int i = 0 ; i < var ; i ++ )\n solver.a[ j ][ i ] = 0;\n\t for( int i = 0 ; i < con ; i ++ )\n\t solver.b[ i ] = 0;\n\t for( int i = 0 ; i < var ; i ++ )\n\t {\n\t \tint aa = i/8, ab = i%8;\n\t \tsolver.c[ i ] = 0;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==0||ab==1||ab==6)) solver.c[ i ] = 1;\n\t \tif( (aa==1||aa==3||aa==5) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 1;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 1;\n\t }\n\t int nxt = 0;\n\t // max{cx} subject to {Ax<=b,x>=0}\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = 1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = -1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = -cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for(int i=1;i<(1<<8);i++){\n\t\tif(__builtin_popcount(i) > 4) continue;\n\t\tint x[10]={};\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) x[j] = 1;\n\t\t}\n\t\tint as=0,bs=0;\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) as+=cnt[j]; else bs+=cnt[j];\n\t\t}\n\t\tif(as==0||bs==0) continue;\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(x[aa] != x[ab]){\n\t\t \t\tsolver.a[ nxt ][ j ] -= 1;\n\t\t \t}\n\t\t }\n\t\t solver.b[ nxt++ ] = -1;\n\t\t}\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)){\n\t\t\t\t solver.a[ nxt ][ j ] = 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\t solver.b[ nxt++ ] = cnt[8];\n\t pair<double,bool> ans = solver.simplex(con, var);\n\t if(ans.sc) add = max(add,(int)floor(ans.fi+0.5));\n\t \n\t \n\t var = 64;\n \tcon = 2*(8+8+70+56+28+8+1);\n\t//出次数 = cnt\n\t//出次数 = 入次数\n\t//連結\n\tfor( int j = 0 ; j < con ; j ++ )\n for( int i = 0 ; i < var ; i ++ )\n solver.a[ j ][ i ] = 0;\n\t for( int i = 0 ; i < con ; i ++ )\n\t solver.b[ i ] = 0;\n\t for( int i = 0 ; i < var ; i ++ )\n\t {\n\t \tint aa = i/8, ab = i%8;\n\t \tsolver.c[ i ] = 0;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==0||ab==1||ab==6)) solver.c[ i ] = 1;\n\t \tif( (aa==1||aa==3||aa==5) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 1;\n\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)) solver.c[ i ] = 0;\n\t }\n\tnxt = 0;\n\t // max{cx} subject to {Ax<=b,x>=0}\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = 1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] = -1;\n\t\t\t\t }\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = -cnt[i];\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for( int i = 0 ; i < 8 ; i ++ ){\n\t\t for( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(aa == i){\n\t\t\t\t solver.a[ nxt ][ j ] -= 1;\n\t\t\t\t}\n\t\t\t\tif(ab == i){\n\t\t\t\t solver.a[ nxt ][ j ] += 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\tsolver.b[ nxt++ ] = 0;\n\t }\n\t for(int i=1;i<(1<<8);i++){\n\t\tif(__builtin_popcount(i) > 4) continue;\n\t\tint x[10]={};\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) x[j] = 1;\n\t\t}\n\t\tint as=0,bs=0;\n\t\tfor(int j=0;j<8;j++){\n\t\t\tif(((i>>j)&1)) as+=cnt[j]; else bs+=cnt[j];\n\t\t}\n\t\tif(as==0||bs==0) continue;\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif(x[aa] != x[ab]){\n\t\t \t\tsolver.a[ nxt ][ j ] -= 1;\n\t\t \t}\n\t\t }\n\t\t solver.b[ nxt++ ] = -1;\n\t\t}\n\t\tfor( int j = 0 ; j < var ; j ++ )\n\t\t {\n\t\t \tint aa = j/8, ab = j%8;\n\t\t \tif( (aa==0||aa==2||aa==4) && (ab==2||ab==3||ab==7)){\n\t\t\t\t solver.a[ nxt ][ j ] = -1;\n\t\t\t\t}\n\t\t\t}\n\t\t\t solver.b[ nxt++ ] = -cnt[8];\n\t ans = solver.simplex(con, var);\n\t if(ans.sc)add = max(add,(int)floor(ans.fi+0.5)+cnt[8]);\n\t \n\t int S = 0;\n\t rep(i,8) S += cnt[i];\n\t if(S == add){\n\t \tadd--;\n\t }\n\t add = max(add,0);\n\t cout << res+add << endl;\n\t }", "accuracy": 0.01834862385321101, "time_ms": 20, "memory_kb": 74272, "score_of_the_acc": -1.0988, "final_rank": 12 }, { "submission_id": "aoj_3106_3876884", "code_snippet": "#include<iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\n#include<iomanip>\n#include<math.h>\n#include<complex>\n#include<queue>\n#include<deque>\n#include<stack>\n#include<map>\n#include<set>\n#include<bitset>\n#include<functional>\n#include<assert.h>\n#include<numeric>\nusing namespace std;\n#define REP(i,m,n) for(int i=(int)(m) ; i < (int) (n) ; ++i )\n#define rep(i,n) REP(i,0,n)\nusing ll = long long;\nconst int inf=1e9+7;\nconst ll longinf=1LL<<60 ;\nconst ll mod=1e9+7 ;\n\nint main(){\n int n;\n cin>>n;\n vector<int> v(10);\n int ans = 0;\n rep(_,n){\n string s;\n\tcin>>s;\n\tfor(int j=2;j<s.size();j++){\n\t\tif(s[j-2]=='A'&&s[j-1]=='O'&&s[j]=='R')ans++;\n\t}\n\tif(s.size()==1&&s[0]=='O'){\n\t\tv[9]++;\n\t}\n\telse if(s[0]=='R'){\n\t\tif(s.back()=='A'){\n\t\t\tv[1]++;\n\t\t}\n\t\telse if(s.size()>=2&&s[s.size()-2]=='A'&&s.back()=='O')v[2]++;\n\t\telse v[3]++;\n\t}\n\telse if(s.size()>=2&&s[0]=='O'&&s[1]=='R'){\n\t\tif(s.back()=='A')v[4]++;\n\t\telse if(s.size()>=2&&s[s.size()-2]=='A'&&s.back()=='O')v[5]++;\n\t\telse v[6]++;\n\t}\n\telse {\n\t\tif(s.back()=='A')v[7]++;\n\t\telse if(s.size()>=2&&s[s.size()-2]=='A'&&s.back()=='O')v[8]++;\n\t}\n }\n while(v[2]>=1&&v[1]+v[2]+v[3]+v[5]+v[8]>=2){\n ans++;\n v[2]--;\n }\n while(v[4]>=1&&v[4]+v[5]+v[6]+v[1]+v[7]>=2){\n ans++;\n v[4]--;\n }\n while(v[1]&&v[5]){\n --v[1];\n --v[5];\n if(v[5]+v[6]+v[1]+v[7]>=1)++ans;\n else if(v[1]+v[3]+v[5]+v[8]>=1)++ans;\n else ++v[2];\n ++ans;\n }\n while(v[1]){\n if(v[1]&&v[6]){\n ++ans;\n --v[1];\n --v[6];\n ++v[3];\n }\n else if(v[1]&&v[8]){\n ++ans;\n --v[1];\n --v[8];\n ++v[7];\n }\n else break;\n }\n while(v[5]){\n if(v[5]&&v[3]){\n ++ans;\n --v[5];\n --v[3];\n ++v[6];\n }\n else if(v[5]&&v[7]){\n ++ans;\n --v[5];\n --v[7];\n ++v[8];\n }\n else break;\n }\n while(v[2]){\n if(v[2]&&v[3]){\n ++ans;\n --v[2];\n }\n else if(v[2]&&v[8]){\n ++ans;\n --v[2];\n }\n else break;\n }\n while(v[4]){\n if(v[4]&&v[6]){\n ++ans;\n --v[4];\n }\n else if(v[4]&&v[7]){\n ++ans;\n --v[4];\n }\n else break;\n }\n while(v[3]&&v[8]){\n --v[3];\n --v[8];\n ++ans;\n }\n while(v[6]&&v[7]){\n --v[6];\n --v[7];\n ++ans;\n }\n while(v[9]){\n if(v[2]&&v[4])--v[2],--v[4],--v[9],++ans;\n else if(v[2]&&v[4])--v[2],--v[4],--v[9],++ans;\n else if(v[2]&&v[7])--v[2],--v[7],--v[9],++ans;\n else if(v[3]&&v[4])--v[3],--v[4],--v[9],++ans;\n else if(v[3]&&v[7])--v[3],--v[7],--v[9],++ans;\n else break;\n }\n while(v[9]){\n if(v[1]&&v[7])--v[1],--v[7],--v[9],++ans;\n else if(v[1]&&v[4])--v[1],--v[4],--v[9],++ans;\n else break;\n }\n while(v[9]){\n if(v[1]&&v[2])--v[1],--v[2],--v[9],++ans;\n else if(v[1]&&v[3])--v[1],--v[3],--v[9],++ans;\n else break;\n }\n while(v[9]){\n if(v[1]>=2)v[1]-=2,--v[9],++ans;\n else break;\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3212, "score_of_the_acc": -0.4, "final_rank": 3 } ]
aoj_3103_cpp
D: Walking 問題 $1$ から $N$ の番号がつけられている $N$ 個の島がある. それぞれの島は $N-1$ 個の橋によって、どの $2$ つの島も何本かの橋を渡って互いに移動することができる. それぞれの橋には耐久度があり、入力が与えられた時点での $i$ 番目の橋の耐久度は $w_i$ である. それぞれの島にはお宝が $1$ つずつ置いており、島に滞在しているときにお宝を拾うことができる. 現在島 $S$ にいるyebiくんは、島 $E$ にある博物館に全てのお宝を運びたい. yebiくんは✝魔力✝を持っているので、島 $v$ に訪問するたびに、 $v$ から出る全ての橋の耐久度が $T$ 減少する. 橋の耐久度が $0$ 以下になったとき、橋は崩壊し、それ以降には渡ることができなくなる. yebiくんは博物館に全てのお宝を届けることができるか? ただし、yebiくんは力持ちなので同時にいくつでもお宝を持ち運ぶことができる. 制約 入力値は全て整数である $2 \leq N \leq 10^5$ $1 \leq S, E \leq N$ $0 \leq T \leq 10^9$ $1 \leq w_i \leq 10^9$ $1 \leq a_i, b_i \leq N$ 入力形式 入力は以下の形式で与えられる $N\ T\ S\ E$ $a_1\ b_1\ w_1$ : : $a_{N-1}\ b_{N-1}\ w_{N-1}$ 出力 博物館に全てのお宝を届けることができるなら "Yes"、そうでなければ "No" を出力せよ. また、末尾に改行を出力せよ. サンプル サンプル入力 1 4 10 1 4 1 2 52 1 3 68 3 4 45 サンプル出力 1 Yes サンプル入力 2 4 10 1 4 1 2 15 1 3 60 3 4 10 サンプル出力 2 No サンプル入力 3 3 0 1 3 1 2 5 2 3 5 サンプル出力 3 Yes yebiくんの魔力は貧弱すぎて、橋の耐久度を減らすことはできない.
[ { "submission_id": "aoj_3103_9664875", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int N = 1e5 + 5;\nint n, t, s, e;\nvector<pair<int, int>> adj[N];\nbool visited[N];\n\nbool dfs(int v, int p) {\n visited[v] = true;\n for (auto& edge : adj[v]) {\n int u = edge.first;\n int w = edge.second;\n if (u == p) continue;\n if (w <= t) return false;\n if (!visited[u]) {\n if (!dfs(u, v)) return false;\n }\n }\n return true;\n}\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(0);\n cin >> n >> t >> s >> e;\n s--; e--;\n for (int i = 0; i < n - 1; i++) {\n int a, b, w;\n cin >> a >> b >> w;\n a--; b--;\n adj[a].push_back({b, w});\n adj[b].push_back({a, w});\n }\n if (dfs(s, -1)) cout << \"Yes\\n\";\n else cout << \"No\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 9536, "score_of_the_acc": -0.0009, "final_rank": 1 }, { "submission_id": "aoj_3103_9664870", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define N 100010\n#define pii pair <int, int>\nint n, t, s, e;\nvector <int> adj[N];\nmap <pii, int> M;\nmap <pii, int> mp;\nint p[N];\nbool vis[N];\nvoid dfs(int u){\n\tvis[u] = 1;\n\tfor (int i = 0; i < adj[u].size(); i++) {\n\t\tint v = adj[u][i];\n\t\tif (vis[v]) continue;\n\t\tp[v] = u;\n\t\tdfs(v);\n\t}\n}\n\nint main(){\n\tcin >> n >> t >> s >> e;\n\tfor (int i = 1; i < n; i++){\n\t\tint u, v, w;\n\t\tcin >> u >> v >> w;\n\t\tadj[u].push_back(v);\n\t\tadj[v].push_back(u);\n\t\tM[make_pair(u, v)] = w;\n\t\tM[make_pair(v, u)] = w; \n\t}\t\n\tdfs(s);\n\tint u = e;\n\twhile (u != s) {\n\t\tmp[{p[u], u}] = 1;\n\t\tmp[{u, p[u]}] = 1;\n\t\tu = p[u];\n\t}\n\tbool flag = 0;\n\tfor (map <pii, int>::iterator mi = M.begin(); mi != M.end(); mi++) {\n\t\tpii p = mi->first;\n\t\tint w = mi->second;\n\t\t\tif (w <= t) flag = 1;\n\t}\n\tif (flag) puts(\"No\");\n\telse puts(\"Yes\");\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 27760, "score_of_the_acc": -1.2857, "final_rank": 15 }, { "submission_id": "aoj_3103_9664702", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define N 100010\n#define pii pair <int, int>\nint n, t, s, e;\nvector <int> adj[N];\nmap <pii, int> M;\nmap <pii, int> mp;\nint p[N];\nbool vis[N];\nlong long sum;\nvoid dfs(int u){\n\tvis[u] = 1;\n\tfor (int i = 0; i < adj[u].size(); i++) {\n\t\tint v = adj[u][i];\n\t\tif (vis[v]) continue;\n\t\tp[v] = u;\n\t\tdfs(v);\n\t}\n}\n\nint main(){\n\tcin >> n >> t >> s >> e;\n\tfor (int i = 1; i < n; i++){\n\t\tint u, v, w;\n\t\tcin >> u >> v >> w;\n\t\tadj[u].push_back(v);\n\t\tadj[v].push_back(u);\n\t\tM[make_pair(u, v)] = w;\n\t\tM[make_pair(v, u)] = w; \n\t}\t\n\tdfs(s);\n\tint u = e;\n\twhile (u != s) {\n\t\tmp[{u, p[u]}] = 1;\n\t\tu = p[u];\n\t}\n\tbool flag = 0;\n\tfor (map <pii, int>::iterator mi = M.begin(); mi != M.end(); mi++) {\n\t\tpii p = mi->first;\n\t\tint w = mi->second;\n\t\tif (!mp.count(p)) {\n\t\t\tif (w <= t) flag = 1;\n\t\t}\n\t}\n\tif (flag) puts(\"No\");\n\telse puts(\"Yes\");\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 25560, "score_of_the_acc": -1.1413, "final_rank": 13 }, { "submission_id": "aoj_3103_9664483", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct Edge {\n int to;\n int weight;\n Edge(int to, int weight) : to(to), weight(weight) {}\n};\n\nint N, T, S, E;\nvector<Edge> adj[100001];\nbool visited[100001];\n\nbool bfs() {\n queue<int> q;\n q.push(S);\n visited[S] = true;\n while (!q.empty()) {\n int u = q.front();\n q.pop();\n for (const Edge& e : adj[u]) {\n if (visited[e.to]) continue;\n if (e.weight <= T) return false;\n visited[e.to] = true;\n q.push(e.to);\n }\n }\n return true;\n}\n\nint main() {\n cin >> N >> T >> S >> E;\n S--;\n E--;\n for (int i = 0; i < N - 1; i++) {\n int a, b, w;\n cin >> a >> b >> w;\n a--;\n b--;\n adj[a].push_back(Edge(b, w));\n adj[b].push_back(Edge(a, w));\n }\n if (bfs()) {\n cout << \"Yes\" << endl;\n } else {\n cout << \"No\" << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 9520, "score_of_the_acc": -0.0952, "final_rank": 2 }, { "submission_id": "aoj_3103_7966097", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int n, s, e;\n long long t;\n cin >> n >> t >> s >> e;\n s--; e--;\n vector graph(n, vector<pair<int, int>>());\n for (int i = 0; i < n - 1; i++) {\n int a, b, c;\n cin >> a >> b >> c;\n a--; b--;\n graph[a].emplace_back(b, c);\n graph[b].emplace_back(a, c);\n }\n if (t == 0) {\n cout << \"Yes\" << '\\n';\n return 0;\n }\n vector<int> child(n);\n for (int i = 0; i < n; i++) {\n child[i] = graph[i].size() - (i == s ? 0 : 1);\n } \n vector<bool> is_e_ancester(n, false);\n auto get_e_ancester = [&](auto self, int u, int p) -> bool {\n if (u == e) return is_e_ancester[u] = true;\n for (const auto& [v, w]: graph[u]) {\n if (v == p) continue;\n if (self(self, v, u)) return is_e_ancester[u] = true;\n }\n return false;\n };\n get_e_ancester(get_e_ancester, s, -1);\n\n auto dfs = [&](auto self, int u, int p) -> bool {\n bool is_root = (u == s);\n bool is_ok = true;\n pair<int, int> nxt;\n vector<int> children;\n for (const auto& [v, w]: graph[u]) {\n if (v == p) continue;\n if (is_e_ancester[v]) {\n nxt = {v, w};\n continue;\n }\n children.emplace_back((w - t * child[v] - 1) / t);\n is_ok &= self(self, v, u);\n }\n sort(children.begin(), children.end());\n for (int i = 0; i < (int)children.size(); i++) {\n is_ok &= (children[i] > i + !is_root);\n }\n if (is_ok) {\n if (!is_e_ancester[u]) return true;\n else if (u == e) return true;\n else if ((nxt.second + t - 1) / t > children.size() + !is_root) return self(self, nxt.first, u);\n }\n return false;\n };\n\n if (dfs(dfs, s, -1)) {\n cout << \"Yes\" << '\\n';\n } else {\n cout << \"No\" << '\\n';\n }\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 18444, "score_of_the_acc": -0.5845, "final_rank": 7 }, { "submission_id": "aoj_3103_7965507", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,n) for(int i = 0; i<(n); i++)\n\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod = 998244353;\nconst int inf = (1<<30);\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,1,0};\n\nconst int mn = 100005*2;\n#define int long long\n\nvector<vector<P>> g(mn);//first 行き先 second cost;\nvector<int> r(mn,0);\nvector<int> ved(mn,0);\nint s;\nbool dfs1(int i){\n //cout<<i<<endl;\n ved[i] = true;\n if(i == s){\n r[s] = true;\n return true;\n }\n bool res = 0;\n for( P next : g[i]){\n if(ved[next.first] == true) continue;\n if(dfs1(next.first)) return r[i] = true;\n }\n return false;\n}\nll t;\nvector<int> vi(mn,0);\nbool dfs2(int i){\n vector<ll> cost;\n int p = (s != i);\n vi[i] = true;\n //cout<<\"!!\"<<i<<endl;\n\n for(auto x : g[i]){\n if(vi[x.first]) continue;\n if(!dfs2(x.first)) return false;\n // cout<<\"$$\"<<endl;\n if(r[x.first] == 1){\n // cout<<x.first<<endl;\n //if(!dfs2(x.first))return false;\n if( x.second - t*((int)(g[x.first].size())-1) <= 0) return false;\n }\n cost.push_back(x.second - t * (int)(g[x.first].size()) );\n //cout<<x.first<<\" \"<<(x.second - t * int(g[x.first].size()) )<<endl;;\n }\n sort(cost.begin(),cost.end());\n //cout<<\"?? \"<<i<<endl;\n for(int x : cost){\n if(x - p*t <= 0) return false;\n p++;\n }\n //cout<<\"** \"<<i<<endl;\n return true;\n}\n\n\nsigned main(){\n int n,e;\n cin>>n>>t>>s>>e;\n s--;e--;\n rep(i,n-1){\n int a,b,c;\n cin>>a>>b>>c;\n a--;b--;\n g[a].push_back({b,c});\n g[b].push_back({a,c});\n }\n \n\n dfs1(e);\n //rep(i,n){\n // cout<<r[i]<<\" \";\n //}\n\n\n cout<<(dfs2(e) ? \"Yes\" : \"No\")<<endl;\n\n \n\n\n\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 24080, "score_of_the_acc": -0.8935, "final_rank": 9 }, { "submission_id": "aoj_3103_7965342", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nbool func(){\n int n;\n cin >> n;\n int t;\n cin >> t;\n int s;\n int e;\n cin >> s >> e;\n --s;\n --e;\n if(t == 0)return true;\n using P = pair<int,int>;\n vector<vector<P>> edges(n);\n for(int i=0;i<n-1;++i){\n int a;\n int b;\n int c;\n cin >> a >> b >> c;\n --a;\n --b;\n c = (c + t - 1) / t;\n edges[a].emplace_back(b,c);\n edges[b].emplace_back(a,c);\n }\n vector<vector<P>> childs(n);\n vector<int> parents(n,-1);\n {\n stack<int> st;\n vector<int> used(n,false);\n st.push(e);\n used[e] = true;\n while(st.size()){\n int p = st.top();\n st.pop();\n for(auto e:edges[p]){\n if(used[e.first])continue;\n used[e.first] = true;\n childs[p].emplace_back(e);\n parents[e.first] = p;\n st.push(e.first);\n }\n }\n }\n\n vector<int> dp(n,-1);\n function<bool(int)> has_goal = [&](int p) -> bool {\n if(p == e)return true;\n auto &it = dp[p];\n if(it >= 0)return it;\n it = false;\n for(auto e:edges[p]){\n if(has_goal(e.first)){\n it = true;\n break;\n }\n }\n return it;\n };\n\n function<int(int)> rec = [&](int p) -> int {\n int has_return = -1;\n vector<int> line;\n for(auto e:childs[p]){\n if(has_goal(e.first)){\n has_return = e.second - 1;\n if(rec(e.first) < 0)return -1;\n }else{\n int res = rec(e.first);\n if(res < 0){\n return -1;\n }\n line.push_back(e.second-1-res);\n }\n }\n sort(line.begin(),line.end());\n for(int i=0;i<line.size();++i){\n if(i + 2 > line[i]){\n return -1;\n }\n }\n if(has_return >= 0){\n if(has_return <= line.size()){\n return -1;\n }\n }\n return childs[p].size();\n };\n return rec(e) >= 0;\n}\n\nint main(){\n cout << (func() ? \"Yes\" : \"No\") << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 24360, "score_of_the_acc": -0.9326, "final_rank": 11 }, { "submission_id": "aoj_3103_4055354", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <utility>\n#include <queue>\nusing namespace std;\n\n#define MAX 100005\n#define rep(i,n) for(int i = 0; i < (n); i++)\n\ntypedef pair<int,int> pii;\nmap<pii,int> ma;\n\nbool path[MAX];\nvector<vector<int> > G;\nint n, t, s, g;\n\nint get(int a,int b){\n if(a == -1 || b == -1)return -1;\n if(a > b)swap(a,b);\n return ma[pii(a,b)];\n}\n\nvoid dec(int a, int b, int cnt){\n if(a == -1 || b == -1)return;\n if(a > b)swap(a,b);\n ma[pii(a,b)] -= cnt*t;\n return;\n}\n\nvoid dfs_path(int now, int par){\n if(now == g)path[now] = true;\n for(auto ne: G[now]){\n if(ne == par)continue;\n dfs_path(ne,now);\n dec(now,ne,1);\n if(path[ne]){\n path[now] = true;\n }\n }\n}\n\nint dfs(int now, int par){\n int ret = 0;\n priority_queue<pii> q;\n for(auto ne: G[now]){\n if(path[ne] || ne == par)continue;//s-gパス上にある頂点には行かない\n int tmp = dfs(ne,now);\n dec(now,ne,tmp);\n ret++;\n q.push(pii(get(now,ne),ne));\n }\n while(q.size()){\n int v = q.top().second;\n dec(now,v,q.size());\n q.pop();\n }\n return ret;\n}\n\nint main(){\n cin >> n >> t >> s >> g;\n s--,g--;\n G = vector<vector<int> > (n);\n rep(i,n-1){\n int a,b,c;\n cin >> a >> b >> c;\n a--,b--;\n G[a].push_back(b);\n G[b].push_back(a);\n if(a > b) swap(a,b);\n ma[pii(a,b)] = c;\n }\n rep(i,G[s].size())dec(s,G[s][i],-1);\n dfs_path(s,-1);\n rep(i,n)if(path[i])dfs(i,-1);\n for(auto x: ma){\n //cout << x.first.first << \" \" << x.first.second << \" \" << x.second << endl;\n if(x.second <= 0){\n cout << \"No\" << endl;\n return 0;\n }\n }\n cout << \"Yes\" << endl;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 19312, "score_of_the_acc": -0.894, "final_rank": 10 }, { "submission_id": "aoj_3103_3925740", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3103.cc: Walking\n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\n\n/* typedef */\n\ntypedef long long ll;\ntypedef queue<int> qi;\n\nstruct Edge {\n int w, i, j;\n Edge() {}\n Edge(int _w, int _i, int _j): w(_w), i(_i), j(_j) {}\n\n int &src() { return i; }\n int &dst() { return j; }\n Edge reverse() { return Edge(w, j, i); }\n\n bool operator<(const Edge &e) const { return w < e.w; }\n\n bool magic_ok(int t, int vts[]) {\n ll mg = (ll)t * (vts[i] + vts[j]);\n //printf(\"(%d(%d)+%d(%d))*%d=%lld <=> %d\\n\",\n //vts[i], i, vts[j], j, t, mg, w);\n return (mg < w);\n }\n};\n\ntypedef vector<Edge> ve;\n\n/* global variables */\n\nve nbrs[MAX_N];\nint ps[MAX_N], cis[MAX_N], vts[MAX_N];\nEdge pes[MAX_N], ses[MAX_N];\nbool sps[MAX_N];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, t, st, gl;\n scanf(\"%d%d%d%d\", &n, &t, &st, &gl);\n st--, gl--;\n\n for (int i = 1; i < n; i++) {\n int a, b, w;\n scanf(\"%d%d%d\", &a, &b, &w);\n a--, b--;\n nbrs[a].push_back(Edge(w, a, b));\n nbrs[b].push_back(Edge(w, b, a));\n }\n\n for (int i = 0; i < n; i++)\n sort(nbrs[i].begin(), nbrs[i].end());\n\n ps[st] = -1;\n qi q;\n q.push(st);\n\n while (! q.empty()) {\n int u = q.front(); q.pop();\n int &up = ps[u];\n ve &nbru = nbrs[u];\n for (ve::iterator vit = nbru.begin(); vit != nbru.end(); vit++) {\n Edge &e = *vit;\n int &v = e.dst();\n if (v != up) {\n\tps[v] = u;\n\tpes[v] = e.reverse();\n\tq.push(v);\n }\n }\n }\n\n for (int u = gl; u >= 0; u = ps[u]) sps[u] = true;\n \n for (int u = st; u >= 0;) {\n int &up = ps[u], &ciu = cis[u];\n ve &nbru = nbrs[u];\n\n while (ciu < nbru.size()) {\n int &v = nbru[ciu].dst();\n if (up == v) ciu++;\n else if (sps[v]) {\n\tses[u] = nbru[ciu];\n\t//printf(\"ses[%d]=Edge(%d,%d,%d)\\n\", u, ses[u].w, ses[u].i, ses[u].j);\n\tciu++;\n }\n else break;\n }\n\n if (ciu >= nbru.size()) {\n if (ses[u].w > 0) {\n\tif (! ses[u].magic_ok(t, vts)) {\n\t puts(\"No\");\n\t return 0;\n\t}\n\tses[u].w = 0;\n\tu = ses[u].dst();\n\tvts[u]++;\n }\n else if (u == gl) {\n\tu = -1;\n }\n else {\n\tif (up >= 0) {\n\t if (! pes[u].magic_ok(t, vts)) {\n\t puts(\"No\");\n\t return 0;\n\t }\n\t vts[up]++;\n\t}\n\tu = up;\n }\n }\n else {\n if (! nbru[ciu].magic_ok(t, vts)) {\n\tputs(\"No\");\n\treturn 0;\n }\n u = nbru[ciu++].dst();\n vts[u]++;\n }\n }\n\n puts(\"Yes\");\n return 0;\n}", "accuracy": 0.9714285714285714, "time_ms": 50, "memory_kb": 11476, "score_of_the_acc": -0.1787, "final_rank": 17 }, { "submission_id": "aoj_3103_3913462", "code_snippet": "//\n// Created by yamunaku on 2019/10/06.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\ntypedef long long ll;\ntypedef long double ld;\ntypedef vector<int> vi;\ntypedef vector<vector<int>> mti;\ntypedef vector<ll> vl;\ntypedef vector<vector<ll>> mtl;\n\nll t;\nint start, goal;\n\nstruct edge{\n int to;\n int id;\n};\n\nvector<vector<edge>> e;\nvl w;\n\nbool dfs(int x, int p){\n int sz = e[x].size();\n rep(i, sz){\n if(e[x][i].to != p){\n if(dfs(e[x][i].to, x)){\n auto tmp = e[x][i];\n repl(j, i, sz - 1){\n e[x][j] = e[x][j + 1];\n }\n e[x][sz - 1] = tmp;\n return true;\n }\n }\n }\n return x == goal;\n}\n\nint dfs2(int x, int p){\n int sz = e[x].size();\n rep(i, sz){\n w[e[x][i].id] -= t;\n }\n bool ok = false;\n rep(i, sz){\n if(e[x][i].id != p){\n if(w[e[x][i].id] > 0){\n int ret = dfs2(e[x][i].to, e[x][i].id);\n if(ret == 1) return 1;\n if(ret == 2) ok = true;\n }else{\n return 1;\n }\n rep(j, sz){\n w[e[x][j].id] -= t;\n }\n }\n }\n if(x == goal) ok = true;\n if(ok){\n return 2;\n }else{\n if(w[p] > 0) return 0;\n else return 1;\n }\n}\n\n\nint main(){\n int n;\n cin >> n >> t;\n cin >> start >> goal;\n start--, goal--;\n int u, v, ww;\n e = vector<vector<edge>>(n);\n w = vl(n);\n rep(i, n - 1){\n cin >> u >> v >> ww;\n u--, v--;\n e[u].push_back({v, i});\n e[v].push_back({u, i});\n w[i] = ww;\n }\n rep(i, n){\n sort(all(e[i]), [&](const edge &l, const edge &r){\n return w[l.id] < w[r.id];\n });\n }\n dfs(start, -1);\n int sz = e[start].size();\n rep(i, sz){\n w[e[start][i].id] += t;\n }\n if(dfs2(start, -1) == 2) CYES;\n else\n CNO;\n return 0;\n}", "accuracy": 0.9714285714285714, "time_ms": 80, "memory_kb": 13264, "score_of_the_acc": -0.3481, "final_rank": 18 }, { "submission_id": "aoj_3103_3887568", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1001001001;\nconst ll LONGINF = 1001001001001001LL;\nconst ll MOD = 1000000007LL;\n \nint main() {\n ll N, T, S, E; cin >> N >> T >> S >> E; S--; E--;\n vector< vector<int> > G(N);\n map< pair<int, int>, ll > pr;\n for(int i=0; i+1<N; i++) {\n int u, v, w; cin >> u >> v >> w;\n u--; v--;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n if(u > v) swap(u, v);\n pr[make_pair(u, v)] = w;\n }\n\n vector<ll> lim(N), anc(N), cnt(N);\n function<void(int, int)> dfs = [&](int cur, int par) {\n if(cur == E) anc[cur] = true;\n for(auto to : G[cur]) {\n if(to == par) continue;\n dfs(to, cur);\n anc[cur] |= anc[to];\n }\n };\n\n function<bool(int, int)> solve = [&](int cur, int par) {\n vector<int> ch;\n for(auto to : G[cur]) if(to != par) ch.emplace_back(to);\n sort(ch.begin(), ch.end(), [&](int x, int y) {\n if(anc[x]) return false;\n if(anc[y]) return true;\n\n pair<int, int> px = minmax({cur, x});\n pair<int, int> py = minmax({cur, y});\n ll tx = pr[px] - 1LL * T * (G[x].size() - 1);\n ll ty = pr[py] - 1LL * T * (G[y].size() - 1);\n return tx < ty;\n });\n\n bool res = true;\n for(auto to : ch) {\n pair<int, int> p = minmax({cur, to});\n ll hp1 = pr[p] - 1LL * T * (cnt[cur] + cnt[to]);\n // fprintf(stderr, \"cur = %d, to = %d, hp1 = %lld\\n\", cur + 1, to + 1, hp1);\n if(hp1 <= 0) return false;\n cnt[to]++;\n res &= solve(to, cur);\n\n if(anc[to]) continue;\n ll hp2 = pr[p] - 1LL * T * (cnt[cur] + cnt[to]);\n // fprintf(stderr, \"cur = %d, to = %d, hp2 = %lld\\n\", cur + 1, to + 1, hp2);\n if(hp2 <= 0) return false;\n cnt[cur]++;\n }\n return res;\n };\n\n dfs(S, -1);\n bool ans = solve(S, -1);\n cout << (ans ? \"Yes\" : \"No\") << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 440, "memory_kb": 22076, "score_of_the_acc": -1.6884, "final_rank": 16 }, { "submission_id": "aoj_3103_3887564", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1001001001;\nconst ll LONGINF = 1001001001001001LL;\nconst ll MOD = 1000000007LL;\n \nint main() {\n ll N, T, S, E; cin >> N >> T >> S >> E; S--; E--;\n vector< vector<int> > G(N);\n map< pair<int, int>, ll > pr;\n for(int i=0; i+1<N; i++) {\n int u, v, w; cin >> u >> v >> w;\n u--; v--;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n if(u > v) swap(u, v);\n pr[make_pair(u, v)] = w;\n }\n\n vector<ll> lim(N), anc(N), cnt(N);\n function<void(int, int)> dfs = [&](int cur, int par) {\n if(cur == E) anc[cur] = true;\n for(auto to : G[cur]) {\n if(to == par) continue;\n dfs(to, cur);\n anc[cur] |= anc[to];\n }\n };\n\n function<bool(int, int)> solve = [&](int cur, int par) {\n vector<int> ch;\n for(auto to : G[cur]) if(to != par) ch.emplace_back(to);\n sort(ch.begin(), ch.end(), [&](int x, int y) {\n if(anc[x]) return false;\n if(anc[y]) return true;\n\n pair<int, int> px = minmax({cur, x});\n pair<int, int> py = minmax({cur, y});\n ll tx = pr[px] - 1LL * T * (G[x].size() - 1);\n ll ty = pr[py] - 1LL * T * (G[y].size() - 1) - T;\n return tx < ty;\n });\n\n bool res = true;\n for(auto to : ch) {\n pair<int, int> p = minmax({cur, to});\n ll hp1 = pr[p] - 1LL * T * (cnt[cur] + cnt[to]);\n // fprintf(stderr, \"cur = %d, to = %d, hp1 = %lld\\n\", cur + 1, to + 1, hp1);\n if(hp1 <= 0) return false;\n cnt[to]++;\n res &= solve(to, cur);\n\n if(anc[to]) continue;\n ll hp2 = pr[p] - 1LL * T * (cnt[cur] + cnt[to]);\n // fprintf(stderr, \"cur = %d, to = %d, hp2 = %lld\\n\", cur + 1, to + 1, hp2);\n if(hp2 <= 0) return false;\n cnt[cur]++;\n }\n return res;\n };\n\n dfs(S, -1);\n bool ans = solve(S, -1);\n cout << (ans ? \"Yes\" : \"No\") << endl;\n return 0;\n}", "accuracy": 0.9714285714285714, "time_ms": 370, "memory_kb": 22028, "score_of_the_acc": -1.5191, "final_rank": 20 }, { "submission_id": "aoj_3103_3887407", "code_snippet": "#include <bits/stdc++.h>\n#define r(i,n) for(int i=0;i<n;i++)\nusing namespace std;\n\ntypedef pair<int,int>P;\n#define F first\n#define S second\n\nint n,T,s,t;\nvector<P>v[100009];\nint E_aru[100009];\n\n\nvoid END(){\n cout<<\"No\"<<endl;\n exit(0);\n}\n\nvoid YEAY(){\n cout<<\"Yes\"<<endl;\n exit(0);\n}\n\n\n\nint dfs0(int x,int par);\nint dfs(int x,int par){\n\n int ofset = -T;\n int p_cost=-1;\n if(x==s)ofset=0;\n\n vector<P>vec;\n r(i,v[x].size()){\n if(E_aru[x] == v[x][i].F)continue;\n if(v[x][i].F == par){\n p_cost = i;\n v[x][p_cost].S -= T;\n continue;\n }\n vec.push_back( P(v[x][i].S,i) );\n }\n\n sort(vec.begin(),vec.end());\n\n r(i,vec.size()){\n\n if(v[x][vec[i].S].S + ofset <=0 )END();\n dfs( v[x][vec[i].S].F , x );\n\n if(p_cost != -1)v[x][p_cost].S -= T;\n ofset -= T;\n }\n\n if(E_aru[x] != -1){\n r(i,v[x].size()){\n if(E_aru[x] != v[x][i].F)continue;\n if(v[x][i].S + ofset <=0 )END();\n dfs( E_aru[x] , x );\n }\n }\n\n if(x==t)YEAY();\n\n if(p_cost != -1 && v[x][p_cost].S <= 0)END();\n}\n\n\nsigned main(){\n memset(E_aru,-1,sizeof(E_aru));\n cin>>n;\n cin>>T>>s>>t; s--; t--;\n\n r(i,n-1){\n int a,b,c;\n cin>>a>>b>>c; a--; b--;\n v[a].push_back(P(b,c));\n v[b].push_back(P(a,c));\n }\n\n dfs0(s,-1);\n dfs(s,-1);\n\n cout<<\"DAME\"<<endl;\n exit(1);\n}\n\n\n\n\n\nint dfs0(int x,int par){\n if(x==t)return 1;\n int res=0;\n r(i,v[x].size()){\n if(v[x][i].F==par)continue;\n int X=dfs0(v[x][i].F,x);\n if(X==1)E_aru[x] = v[x][i].F , res=1;\n }\n return res;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 12364, "score_of_the_acc": -0.275, "final_rank": 3 }, { "submission_id": "aoj_3103_3886568", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 100005\n\n\n\nint N,start,goal;\nint PARENT[SIZE];\nll T,num_visited[SIZE];\n\nstruct Edge{\n\tEdge(int arg_to,ll arg_weight){\n\t\tto = arg_to;\n\t\tweight = arg_weight;\n\t\tvalue = -1;\n\t}\n\tbool operator<(const struct Edge &arg) const{\n\n\t\treturn value < arg.value;\n\t}\n\n\tint to;\n\tll weight,value;\n};\n\nvector<Edge> G[SIZE];\n\n\nvoid dfs(int node_id,int parent){\n\n\tPARENT[node_id] = parent;\n\n\tbool FLG = false;\n\tint edge_index;\n\n\tvector<Edge> V;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i].to;\n\t\tif(child == parent || child == goal)continue;\n\n\t\tnum_visited[child]++;\n\t\tdfs(child,node_id);\n\t\tG[node_id][i].value = G[node_id][i].weight-num_visited[child]*T;\n\t}\n\tsort(G[node_id].begin(),G[node_id].end());\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i].to;\n\t\tif(child == parent)continue;\n\n\t\tif(child == goal){\n\n\t\t\tFLG = true;\n\t\t\tedge_index = i;\n\t\t\tcontinue;\n\t\t}\n\n\t\tG[node_id][i].weight -= (num_visited[node_id]+num_visited[child])*T;\n\t\tnum_visited[node_id]++;\n\t}\n\n\tif(FLG){ //ゴールは最後に訪れる\n\n\t\tnum_visited[goal]++;\n\t\tdfs(goal,node_id);\n\t\tG[node_id][edge_index].weight -= T*(num_visited[node_id]+num_visited[goal]);\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %lld %d %d\",&N,&T,&start,&goal);\n\tstart--;\n\tgoal--;\n\n\tint from,to;\n\tll weight;\n\n\tfor(int loop = 0; loop < N-1; loop++){\n\n\t\tscanf(\"%d %d %lld\",&from,&to,&weight);\n\n\t\tfrom--;\n\t\tto--;\n\n\t\tG[from].push_back(Edge(to,weight));\n\t\tG[to].push_back(Edge(from,weight));\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tnum_visited[i] = 0;\n\t}\n\n\tdfs(start,-1);\n\n\t//戻りのコストの過剰計上分を直す(戻りはgoalで止まるので、片道分のコストがあれば良い)\n\tint tmp_node = goal;\n\n\twhile(true){\n\n\t\tint parent = PARENT[tmp_node];\n\n\t\tif(parent == -1)break;\n\n\t\tfor(int i = 0; i < G[parent].size();i++){\n\n\t\t\tif(G[parent][i].to == tmp_node){\n\n\t\t\t\tG[parent][i].weight += num_visited[tmp_node]*T;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\n\t\tif(parent == start)break;\n\t\ttmp_node = parent;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int k = 0; k < G[i].size(); k++){\n\t\t\tif(G[i][k].weight <= 0){\n\n\t\t\t\tprintf(\"No\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\t}\n\n\tprintf(\"Yes\\n\");\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 18036, "score_of_the_acc": -0.5145, "final_rank": 6 }, { "submission_id": "aoj_3103_3886018", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <string>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <stdio.h>\nusing namespace std;\n#define int long long\nint MOD = 1000000007;\nvector<vector<int> > g;\nvector<vector<int> > c;\nint N, T, S, E;\nvector<int>A;\nbool found = false;\nvoid dfs1(int a, int p = -1) {\n\tif (a == S) {\n\t\tfound = true;\n\t\treturn;\n\t}\n\tfor (int i = 0; i < g[a].size(); i++) {\n\t\tif (p != g[a][i]) {\n\t\t\tA[a] = g[a][i];\n\t\t\tdfs1(g[a][i], a);\n\t\t\tif (found) {\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n}\n\nbool start = false;\nbool ok = true;\nvoid dfs2(int a, int p, int C) {\n\t//cerr << a + 1 << \" \" << C << endl;\n\tint times = 0;\n\tif (!start && a == S) {\n\t\tstart = true;\n\t}\n\telse if(start){\n\t\t\n\t\ttimes++;\n\t}\n\tvector<pair<int, int> > vp;\n\tfor (int i = 0; i < g[a].size(); i++) {\n\t\tif (p != g[a][i]) {\n\t\t\tvp.emplace_back(c[a][i] - T * (g[g[a][i]].size()), i);\n\t\t}\n\t}\n\tif (!start) {\n\t\tfor (int i = 0; i < vp.size(); i++) {\n\t\t\tif (g[a][vp[i].second] == A[a]) {\n\t\t\t\tswap(vp[i], vp.back());\n\t\t\t\tvp.pop_back();\n\t\t\t}\n\t\t}\n\n\n\t\tfor (int i = 0; i < g[a].size(); i++) {\n\t\t\tif(g[a][i] == A[a]){\n\t\t\t\tdfs2(A[a], a, c[a][i]);\n\t\t\t}\n\t\t}\n\t\ttimes++;\n\t}\n\t\n\tsort(vp.begin(), vp.end());\n\tfor (int ii = 0; ii < vp.size(); ii++) {\n\t\tint i = vp[ii].second;\n\t\tdfs2(g[a][i], a, c[a][i] - T * times);\n\t\ttimes++;\n\t}\n\tif (C - T * times <= 0) {\n\t\t//cerr << a + 1 << \" \" << times << endl;\n\t\tok = false;\n\t}\n}\n\n\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tcin >> N >> T >> S >> E;\n\tS--; E--;\n\tg.resize(N);\n\tc.resize(N);\n\tA.resize(N, -1);\n\tint res = 0;\n\tint a, b, cost;\n\tfor (int i = 0; i < N - 1; i++) {\n\t\tcin >> a >> b >> cost; a--; b--;\n\t\tg[a].push_back(b);\n\t\tc[a].push_back(cost);\n\t\tg[b].push_back(a);\n\t\tc[b].push_back(cost);\n\t}\n\tdfs1(E);\n\n\tint INF = (int)1 << 60;\n\tdfs2(E, -1, INF);\n\tif (ok) {\n\t\tcout << \"Yes\" << endl;\n\t}\n\telse {\n\t\tcout << \"No\" << endl;\n\t}\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 26548, "score_of_the_acc": -1.0526, "final_rank": 12 }, { "submission_id": "aoj_3103_3878949", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define ll long long\n\n//#define TEST\n\nstruct edge {\n\tint from = 0, to = 0; ll weight = 0;\n\tint cnt = 0;\n\tll evl = 0; // 評価値\n\tedge() {}\n\tedge(int f, int t, ll w) {\n\t\tfrom = f;\n\t\tto = t;\n\t\tweight = w;\n\t}\n};\n\nint n, s, e;\nll t;\nvector<vector<edge*>> g; // 隣接リスト\nedge es[100000];\nvector<int> parent;\n\nvoid dfs(int s) { // parentを構築する\n\tfor (auto eg : g[s]) {\n\t\tif (eg->from == s && parent[eg->to] == -1) {\n\t\t\tparent[eg->to] = s;\n\t\t\tdfs(eg->to);\n\t\t}\n\t\telse if (eg->to == s && parent[eg->from] == -1) {\n\t\t\tparent[eg->from] = s;\n\t\t\tdfs(eg->from);\n\t\t}\n\t}\n}\n\nvoid visit(int i) {\n\tfor (auto eg : g[i]) {\n\t\teg->weight -= t;\n\t}\n}\n\nint got = 1;\nvector<int> visited;\nvoid solve(int s) {\n\tfor (auto eg : g[s]) {\n\t\tint to;\n\t\tif (eg->from == s)\n\t\t\tto = eg->to;\n\t\telse\n\t\t\tto = eg->from;\n\t\tif (visited[to])\n\t\t\tcontinue;\n\t\tif (eg->weight <= 0) {\n\t\t\tcout << \"No\" << endl;\n\t\t\texit(0);\n\t\t}\n\t\tvisit(to);\n\t\tvisited[to] = 1;\n\t\t++got;\n\t\tsolve(to);\n\t\tif (eg->weight <= 0) {\n\t\t\tcout << \"No\" << endl;\n\t\t\texit(0);\n\t\t}\n\t\tvisit(s);\n\t}\n\tif (got == n && s == e) {\n\t\tcout << \"Yes\" << endl;\n\t\texit(0);\n\t}\n}\n\nsigned main() {\n\tcin >> n >> t >> s >> e;\n\t--s; --e;\n\n\tg.resize(n);\n\tparent.resize(n, -1);\n\n\tfor (int i = 0; i < n - 1; ++i) {\n\t\tint a, b; ll w;\n\t\tcin >> a >> b >> w;\n\t\t--a; --b;\n\t\tedge eg(a, b, w);\n\t\tes[i] = eg;\n\t\tg[a].push_back(es + i);\n\t\tg[b].push_back(es + i);\n\t}\n\n#ifdef TEST\n\tcout << \"------------es------------\" << endl;\n\tfor (int i = 0; i < n - 1; ++i) {\n\t\tauto eg = es[i];\n\t\tcout << (eg.from) << \" \" << (eg.to) << \" \" << (eg.weight) << endl;\n\t}\n#endif\n\n\tparent[s] = s;\n\tdfs(s);\n\n#ifdef TEST\n\tcout << \"----------parent----------\" << endl;\n\tfor (auto pi : parent)\n\t\tcout << pi << \" \";\n\tcout << endl;\n#endif\n\n\tvector<int> cnt(n, 1); // 頂点iを何回訪れるか\n\tcnt[s] -= 2;\n\tfor (auto pi : parent)\n\t\tcnt[pi]++;\n\tint now = e; int prt = parent[e];\n\twhile (now != prt) {\n\t\tcnt[prt]--;\n\t\tnow = prt;\n\t\tprt = parent[now];\n\t}\n\n#ifdef TEST\n\tcout << \"------------cnt-----------\" << endl;\n\tfor (auto ci : cnt)\n\t\tcout << ci << \" \";\n\tcout << endl;\n#endif\n\n\tfor (int i = 0; i < n - 1; ++i) {\n\t\tes[i].cnt = cnt[es[i].from] + cnt[es[i].to];\n\t\tes[i].evl = es[i].weight - t * es[i].cnt;\n\t}\n\n\tnow = e; prt = parent[e];\n\twhile (now != prt) {\n\t\tfor (auto eg : g[now]) {\n\t\t\tif ((*eg).from == now && (*eg).to == prt) {\n\t\t\t\t(*eg).evl = INT_MAX;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\telse if ((*eg).from == prt && (*eg).to == now) {\n\t\t\t\t(*eg).evl = INT_MAX;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tnow = prt;\n\t\tprt = parent[now];\n\t}\n\n#ifdef TEST\n\tcout << \"-----------edge-----------\" << endl;\n\tfor (int i = 0; i < n - 1; ++i) {\n\t\tauto eg = es[i];\n\t\tcout << (eg.from) << \" \" << (eg.to) << \" \" << (eg.evl) << endl;\n\t}\n#endif\n\n\tfor (int i = 0; i < n; ++i) {\n\t\tsort(\n\t\t\tg[i].begin(),\n\t\t\tg[i].end(),\n\t\t\t[](const edge* e1, const edge* e2) {return (e1->evl < e2->evl); }\n\t\t);\n\t}\n\n#ifdef TEST\n\tcout << \"----------edge(sorted)-----\" << endl;\n\tfor (int i = 0; i < n; ++i) {\n\t\tcout << \"i=\" << i << endl;\n\t\tfor (auto eg : g[i])\n\t\t\tcout << (eg->from) << \" \" << (eg->to) << \" \" << (eg->evl) << endl;\n\t}\n#endif\n\n\tvisited.resize(n, 0);\n\tvisited[s] = 1;\n\n\tsolve(s);\n\n\treturn 0;\n\t}", "accuracy": 1, "time_ms": 90, "memory_kb": 14420, "score_of_the_acc": -0.4353, "final_rank": 4 }, { "submission_id": "aoj_3103_3878250", "code_snippet": "#include <bits/stdc++.h>\n#define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,NAME,...) NAME\n#define pr(...) cerr<< GET_MACRO(__VA_ARGS__,pr8,pr7,pr6,pr5,pr4,pr3,pr2,pr1)(__VA_ARGS__) <<endl\n#define pr1(a) (#a)<<\"=\"<<(a)<<\" \"\n#define pr2(a,b) pr1(a)<<pr1(b)\n#define pr3(a,b,c) pr1(a)<<pr2(b,c)\n#define pr4(a,b,c,d) pr1(a)<<pr3(b,c,d)\n#define pr5(a,b,c,d,e) pr1(a)<<pr4(b,c,d,e)\n#define pr6(a,b,c,d,e,f) pr1(a)<<pr5(b,c,d,e,f)\n#define pr7(a,b,c,d,e,f,g) pr1(a)<<pr6(b,c,d,e,f,g)\n#define pr8(a,b,c,d,e,f,g,h) pr1(a)<<pr7(b,c,d,e,f,g,h)\n#define prArr(a) {cerr<<(#a)<<\"={\";int i=0;for(auto t:(a))cerr<<(i++?\", \":\"\")<<t;cerr<<\"}\"<<endl;}\nusing namespace std;\nusing Int = long long;\nusing _int = int;\nusing ll = long long;\nusing Double = long double;\nconst Int INF = (1LL<<60)+1e9; // ~ 1.15 * 1e18\nconst Int mod = (1e9)+7;\nconst Double EPS = 1e-8;\nconst Double PI = 6.0 * asin((Double)0.5);\nusing P = pair<Int,Int>;\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\ntemplate<class T1, class T2> ostream& operator<<(ostream& o,pair<T1,T2> p){return o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";}\ntemplate<class T1, class T2, class T3> ostream& operator<<(ostream& o,tuple<T1,T2,T3> t){\n return o<<\"(\"<<get<0>(t)<<\",\"<<get<1>(t)<<\",\"<<get<2>(t)<<\")\";}\ntemplate<class T1, class T2> istream& operator>>(istream& i,pair<T1,T2> &p){return i>>p.first>>p.second;}\ntemplate<class T> ostream& operator<<(ostream& o,vector<T> a){Int i=0;for(T t:a)o<<(i++?\" \":\"\")<<t;return o;}\ntemplate<class T> istream& operator>>(istream& i,vector<T> &a){for(T &t:a)i>>t;return i;}\n//INSERT ABOVE HERE\nclass TreeParent{\npublic:\n Int V; //ノード数\n Int root; //根\n vector<vector<Int> > G; //Graph\n vector<Int> parent; //親\n Int ok;\n TreeParent():V(-1){};\n TreeParent(Int V,Int root = 0):V(V),root(root),G(V),parent(V),ok(0){}\n TreeParent(vector<vector<Int> > G,Int root = 0):V(G.size()),root(root),G(G),parent(V),ok(0){}\n void resize(Int n){*this = TreeParent(n);}\n void add_edge(Int a,Int b){\n ok = false;\n assert(a < V && b < V);\n assert(a >= 0 && b >= 0);\n G[a].push_back(b);\n G[b].push_back(a);\n }\n void build(Int root = -1){\n ok = 1;\n if(root != -1) this->root = root;\n function<void(Int,Int)> dfs = [&](Int pos,Int pre){\n parent[pos] = pre;\n for(Int to:G[pos]) if(to != pre) dfs(to, pos);\n };\n dfs(this->root, -1);\n }\n Int get(Int u){assert(ok); assert(0 <= u && u < V); return parent[u];}\n\n};\n\nInt N, T;\nvector<vector<P> > G;\nTreeParent parS, parE;\nvector<Int> edge;\n\nInt valid = 1;\nvoid dfs(Int pos, Int pre, Int start, TreeParent &par){\n\n for(P p:G[pos]){\n Int to, i; tie(to, i) = p;\n if(to == pre || par.get(pos) == to) continue;\n dfs(to, pos, 0, par);\n }\n\n sort(G[pos].begin(), G[pos].end(), [&](auto a, auto b)\n {return edge[a.second] < edge[b.second];});\n\n Int sum = start==1? 0:T;\n for(P p:G[pos]){\n Int to, i; tie(to, i) = p;\n if(to == pre || par.get(pos) == to) continue;\n valid &= edge[i] - sum > 0; //帰ってこれるか判定\n sum += T;\n }\n\n for(auto p:G[pos]){\n Int to, i; tie(to, i) = p;\n edge[i] -= sum;\n }\n}\n\nvoid dfs2(Int pos, Int pre, Int flag, TreeParent &par){ //SからEにいく\n Int sum = T;\n if(par.get(pos) != -1){ //pos != E\n for(P p:G[pos]){\n Int to, i; tie(to, i) = p;\n if(to == pre || par.get(pos) == to) continue; //最初に分かれ道にいく\n dfs2(to, pos, 0, par);\n }\n\n sort(G[pos].begin(), G[pos].end(), [&](auto a, auto b){return edge[a.second] < edge[b.second];});\n for(P p:G[pos]){\n Int to, i; tie(to, i) = p;\n if(to == pre || par.get(pos) == to) continue; //最初に分かれ道にいく\n valid &= edge[i] - sum > 0; //帰ってこれるか判定\n sum += T;\n }\n\n for(P p:G[pos]){\n Int to, i; tie(to, i) = p;\n if(to == pre || par.get(pos) != to) continue; //Eの方向にいく\n dfs2(to, pos,1, par);\n valid &= edge[i] - sum > 0;\n sum += T;\n }\n }\n\n if(flag == 0){\n for(auto p:G[pos]){\n Int to, i; tie(to, i) = p;\n edge[i] -= sum;\n }\n }\n}\n\nsigned main(){\n srand((unsigned)time(NULL));\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n Int S, E;\n cin>>N>>T>>S>>E; S--, E--;\n\n G.resize(N);\n parS = TreeParent(N, S);\n parE = TreeParent(N, E);\n edge.resize(N-1);\n for(Int i=0;i<N-1;i++){\n Int a, b, w;\n cin>>a>>b>>w; a--, b--;\n G[a].push_back(P(b, i));\n G[b].push_back(P(a, i));\n parS.add_edge(a, b);\n parE.add_edge(a, b);\n edge[i] = w;\n }\n\n parS.build(); parE.build();\n\n if(S == E){\n dfs(S, -1, 1, parE);\n cout<<(valid? \"Yes\":\"No\")<<endl;\n return 0;\n }\n\n dfs(S, -1, 1, parE);\n\n for(auto p:G[S]){\n Int to, i; tie(to, i) = p;\n if(to == parE.get(S)) valid &= edge[i] > 0;\n }\n dfs2(parE.get(S), S, 1, parE);\n dfs(E, -1, 1, parS);\n\n cout<<(valid? \"Yes\":\"No\")<<endl;\n\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 27740, "score_of_the_acc": -1.2132, "final_rank": 14 }, { "submission_id": "aoj_3103_3878221", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\n#include <unistd.h>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\nvector<pair<int, int> > G[SIZE];\n\nint ok[SIZE];\n\nint N, T, S, E;\nll w[SIZE];\nint counter[SIZE];\n\nbool dfs1(int now, int back = -1) {\n bool res = now == E;\n\n for(auto p : G[now]) {\n int to = p.first;\n int idx = p.second;\n if(to == back) continue;\n\n counter[now]++;\n res |= dfs1(to, now);\n counter[now]++;\n }\n\n return ok[now] = res;\n}\n\npriority_queue<pair<ll,pair<int,int> > > pq_[SIZE];\nbool visited[SIZE];\n\npair<bool,bool> dfs2(int now, int back = -1) {\n auto &pq = pq_[now];\n bool res = true;\n\n visited[now] = true;\n\n for(auto p : G[now]) {\n int to = p.first;\n int idx = p.second;\n\n w[idx] -= T;\n\n if(to == back) continue;\n\n ll cost = w[idx];\n cost -= (ll)(counter[to] - 1) * T;\n cost += LLINF * ok[to];\n\n pq.push({-cost, {idx, to}});\n\n }\n\n while(pq.size()) {\n auto p = pq.top();\n pq.pop();\n\n int to = p.second.second;\n int idx = p.second.first;\n\n if (w[idx] <= 0) return {false, true};\n auto tmp = dfs2(to, now);\n if (tmp.second) return tmp;\n if (w[idx] <= 0) return {false, true};\n debug(idx);\n debug(w[idx]);\n\n res &= tmp.first;\n\n for(auto q : G[now]) {\n int idx = q.second;\n w[idx] -= T;\n }\n }\n\n return {res, now == E};\n}\n\n\nint main(){\n scanf(\"%d%d%d%d\", &N, &T, &S, &E);\n S--; E--;\n\n for(int i=0; i<N-1; i++) {\n int a, b;\n scanf(\"%d%d%lld\", &a, &b, w+i);\n a--; b--;\n\n if (a == S || b == S) {\n w[i] += T;\n }\n\n G[a].push_back({b, i});\n G[b].push_back({a, i});\n }\n\n dfs1(S);\n\n auto res = dfs2(S);\n\n if(res.first) {\n puts(\"Yes\");\n\n for(int i=0; i<N; i++) assert(visited[i]);\n\n } else {\n puts(\"No\");\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 22276, "score_of_the_acc": -0.747, "final_rank": 8 }, { "submission_id": "aoj_3103_3877646", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint N, S, E;\nint64_t T;\nvector<pair<int, int64_t>> edges[100000];\n\nint nxt[100000];\n\nbool dfs1(int i, int par){\n nxt[i] = -1;\n bool res = (i==E);\n for(auto& p : edges[i]){\n int j = p.first;\n if(j != par){\n if(dfs1(j, i)){\n res = true;\n nxt[i] = j;\n }\n }\n }\n return res;\n}\n\nint num[100000];\n\nvoid fail(){\n cout << \"No\" << endl;\n exit(0);\n}\n\nvoid dfs2(int i, int par){\n vector<pair<int, int64_t>> child;\n for(auto& p : edges[i]) if(p.first != par) if(p.first != nxt[i]) child.push_back(p);\n sort(child.begin(), child.end(), [&](auto e1, auto e2){\n return e1.second - T*edges[e1.first].size() < e2.second - T*edges[e2.first].size();\n });\n for(auto& p : edges[i]) if(p.first != par) if(p.first == nxt[i]) child.push_back(p);\n for(auto& p : child){\n int j = p.first;\n int64_t c = p.second;\n if(T*(num[i]+num[j]) >= c) fail();\n num[j]++;\n dfs2(j, i);\n if(nxt[i] != j){\n if(T*(num[i]+num[j]) >= c) fail();\n num[i]++;\n }\n }\n}\n\nint main(){\n cin >> N >> T >> S >> E;\n S--; E--;\n for(int i=0; i<N-1; i++){\n int a, b, c;\n cin >> a >> b >> c;\n edges[a-1].emplace_back(b-1, c);\n edges[b-1].emplace_back(a-1, c);\n }\n\n dfs1(S, -1);\n dfs2(S, -1);\n cout << \"Yes\" << endl;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 15136, "score_of_the_acc": -0.4746, "final_rank": 5 }, { "submission_id": "aoj_3103_3877506", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define ll long long\n\n//#define TEST\n\nstruct edge {\n\tll from, to, weight;\n\tll cnt = 0;\n\tedge(ll f, ll t, ll w) {\n\t\tfrom = f;\n\t\tto = t;\n\t\tweight = w;\n\t}\n};\n\nll n, t, s, e;\nvector<vector<ll>> g; // 隣接リスト\nvector<ll> tree; // tree[i] := iの親\nvector<edge> es;\n\nvoid dfs(ll s) {\n\tfor (auto to : g[s]) {\n\t\tif (tree[to] == -1) {\n\t\t\ttree[to] = s;\n\t\t\tdfs(to);\n\t\t}\n\t}\n}\n\nsigned main() {\n\tcin >> n >> t >> s >> e;\n\t--s; --e;\n\n\tvector<vector<ll>> g_(n);\n\tg = g_;\n\tvector<ll> tree_(n, -1);\n\ttree = tree_;\n\n\tfor (ll i = 0; i < n - 1; ++i) {\n\t\tll a, b, w;\n\t\tcin >> a >> b >> w;\n\t\t--a; --b;\n\t\tg[a].push_back(b);\n\t\tg[b].push_back(a);\n\t\tedge eab(a, b, w);\n\t\tes.push_back(eab);\n\t}\n\n\ttree[s] = s;\n\tdfs(s);\n\n#ifdef TEST\n\tfor (auto p : tree)\n\t\tcout << p << \" \";\n\tcout << endl;\n#endif\n\n\tvector<ll> cnt(n, 1); // 頂点iを何回訪れるか\n\tcnt[s] -= 2;\n\tfor (auto p : tree)\n\t\tcnt[p]++;\n\n\tll now = e; ll parent = tree[e];\n\twhile (now != parent) {\n\t\tcnt[parent]--;\n\t\tnow = parent;\n\t\tparent = tree[now];\n\t}\n\n#ifdef TEST\n\tfor (auto ci : cnt)\n\t\tcout << ci << \" \";\n\tcout << endl;\n#endif\n\n\tfor (auto& ei : es) {\n\t\tei.cnt = cnt[ei.from] + cnt[ei.to] - 1;\n\t}\n\n\tfor (auto ei : es) {\n\t\tif (ei.weight <= ei.cnt * t) {\n\t\t\tcout << \"No\" << endl;\n\t\t\treturn 0;\n\t\t}\n\t}\n\n\tcout << \"Yes\" << endl;\n\n\treturn 0;\n}", "accuracy": 0.9714285714285714, "time_ms": 80, "memory_kb": 17712, "score_of_the_acc": -0.592, "final_rank": 19 } ]
aoj_3087_cpp
Problem 「大変!僕が大切にしていたサイコロが虫に食い荒らされてしまっている!」 「大変!サイコロの中に大切な指輪を落としてしまった!」 頑張って取り出そうとサイコロを回してみたけれど、かえって奥にいってしまったみたい . . . そういえば昔Annazonで買った小型のロボットが押入れにあったような気がするな --------- 一時間後 --------- 「あった!」 そこには、よく分からない粘菌が付着してネバネバしている正六面体のロボットCUBEくんの姿があった。 「なんかネバネバするけど . . . まぁいいか! 」 僕はCUBEくんをサイコロの虫に食われた場所に設置した。 虫に食われた立方体のサイコロが $N \times N \times N$ マスの3次元グリッドで与えられる。 ここで、便宜上3次元空間を考え、マスの辺に平行な向きにそれぞれ x 軸と y 軸をとり、サイコロ上面が向く方向を z 軸正方向とする。 サイコロの外側は1箇所を除いて全て壁である。その一箇所にCUBEくんを設置した。CUBEくんの初期位置はサイコロの上面にある。 CUBEくんは始め上向き(z軸正方向)に目がついている。 CUBEくんは毎ターン、以下の中から一つ選び行動する。 前進する 目のついている向きに壁がない場合選択できる。 目のついている向きに1マス移動することができる。 上の条件を満たすのであれば、上方向、下方向であっても移動できることに注意せよ。 目の位置を移動 目の位置を側面(対面と現在の面を除いた4面のいずれか)に移動する。 サイコロの回転 CUBEくんがネバネバして壁にくっついている状態であれば選択できる。 サイコロを側面4方向に転がすように90°回転させることができる。 洗浄 CUBEくんは粘菌を洗浄して一時的にネバネバを弱めることができる。 洗浄したターン、次のターン、その次のターン、これら計3ターンが経過するとネバネバは元どおりになる。 ネバネバが弱まっている間はCUBEくんの下に壁が無い限り落下し続ける。 ネバネバが弱まっている状態で洗浄することはできない。 洗浄回数に制限はない。 何もしない 指輪について 指輪は不思議な力でサイコロ内のいずれかの壁と隣接し、くっついている。 CUBEくんが指輪と同じ場所を通ると、指輪は回収される。落下中に指輪を回収することも可能。 指輪のあるマスは何もないマスと同様に通過できる。 CUBEくんの初期位置に指輪があることはない。 指輪はちょうど1つ存在する。 指輪は必ず回収できる。 落下について 1ターン内に一気に落下する。 CUBEくんがネバネバしている状態で落下するときは、CUBEくんと壁が面で接するまで落下し続ける。 落下によってサイコロの外に飛び出しそうな時は、CUBEくんを設置した位置で止まる。 ターンは以下のように進みます CUBEくんの行動 CUBEくんの落下処理 ターンを進める ゴール判定 CUBEくんが指輪を取って設置した位置に戻ってくるまでの最短のターン数を答えよ。 Input 入力は以下の形式で与えられる。 $N$ $A_{1,1,N}$ $\cdots$ $A_{N,1,N}$ $\vdots$ $A_{1,N,N}$ $\cdots$ $A_{N,N,N}$ $A_{1,1,N-1}$ $\cdots$ $A_{N,1,N-1}$ $\vdots$ $A_{1,N,N-1}$ $\cdots$ $A_{N,N,N-1}$ $\vdots$ $A_{1,1,1}$ $\cdots$ $A_{N,1,1}$ $\vdots$ $A_{1,N,1}$ $\cdots$ $A_{N,N,1}$ '.' 何もない空間 '#' 壁 'S' ロボットのスタート位置 'R' 指輪 なお、各面の間には空行が入る Constraints 入力は以下の条件を満たす。 $3 \leq N \leq 30$ $N$は整数 $A_{x,y,z}$は '.' , '#' , 'S' , 'R' のいずれか '#'は連結 指輪は壁と隣接した場所にある 'S'と'R'は、それぞれただ一つだけ出現する $A_{x,y,z}$ = 'S'ならば $1 < x < N$, $1 < y < N$, $z=N$ $z=N$をサイコロの上面, $z=1$をサイコロの底面とする Output CUBEくんが指輪を回収して初期位置に戻ってくるまでの最短のターン数を答えよ。 Sample Input 1 3 ### #S# ### ### #R# ### ### ### ### Sample Output 1 4 例えば、以下の順番で操作を行うと、計4ターンで指輪を回収しスタート地点に戻ることができます。 洗浄 何もしない 何もしない 前進する Sample Input 2 5 ##### ##### ##S## ##### ##### ##### ##### ##.## ##### ##### ##### ##### ##.## ##### ##### ##### #...# #.R.# #...# ##### ##### ##### ##### ##### ##### Sample Output 2 6 Sample Input 3 5 ##### ##### ##S## ##### ##### ##### ##### ##.R# ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### Sample Output 3 7
[ { "submission_id": "aoj_3087_4846666", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nint INF = 1e9;\n//const ll mod = 1000000007;\nint N;\nstring S[35][35];\nint dp[35][35][35][2][3][6][6];\n//x座標 y座標 z座標 指輪の有無 残ネバネバ サイコロの向き 目の向き\nint dx[6] = {1, 0, 0, -1, 0, 0};\nint dy[6] = {0, 1, 0, 0, -1, 0};\nint dz[6] = {0, 0, 1, 0, 0, -1};\nint sx, sy, sz;\nstruct state;\nqueue<state> que;\nstruct state {\n int x, y, z, ring, turn, dice, eye, cost;\n state() {}\n void check() {\n if(chmin(dp[x][y][z][ring][turn][dice][eye], cost)) {\n que.push(*this);\n //cerr << \"-> \";\n //print();\n }\n }\n void getring() {\n if(S[x][y][z] == 'R') ring = 1;\n }\n void go() {\n cost++;\n int newx = x + dx[eye];\n int newy = y + dy[eye];\n int newz = z + dz[eye];\n bool canmove = true;\n if(newx < 0 or newx >= N) canmove = false;\n if(newy < 0 or newy >= N) canmove = false;\n if(newz < 0 or newz >= N) canmove = false;\n if(canmove and S[newx][newy][newz] == '#') canmove = false;\n if(canmove) {\n x = newx;\n y = newy;\n z = newz;\n }\n drop();\n }\n void rotateeye(int idx) {\n cost++;\n eye = (eye + idx) % 6;\n drop();\n }\n void rotatedice(int idx) {\n cost++;\n if(turn == 0) dice = (dice + idx) % 6;\n drop();\n }\n void wash() {\n cost++;\n if(turn == 0) turn = 3;\n drop();\n }\n void nothing() {\n cost++;\n drop();\n }\n void drop() {\n while(true) {\n getring();\n int newx = x + dx[dice];\n int newy = y + dy[dice];\n int newz = z + dz[dice];\n bool canmove = true;\n if(turn == 0) {\n for(int k = 0; k < 6; k++) {\n int nowx = x + dx[k];\n int nowy = y + dy[k];\n int nowz = z + dz[k];\n if(nowx >= 0 and nowx < N and nowy >= 0 and nowy < N and nowz >= 0 and nowz < N and S[nowx][nowy][nowz] == '#') {\n canmove = false;\n }\n }\n }\n if(newx < 0 or newx >= N) canmove = false;\n if(newy < 0 or newy >= N) canmove = false;\n if(newy < 0 or newy >= N) canmove = false;\n if(canmove and S[newx][newy][newz] == '#') canmove = false;\n if(!canmove) break;\n x = newx;\n y = newy;\n z = newz;\n getring();\n }\n if(turn >= 1) turn--;\n }\n bool gameclear() {\n if(x != sx) return false;\n if(y != sy) return false;\n if(z != sz) return false;\n if(ring != 1) return false;\n return true;\n }\n\n void print() {\n cerr << \"state: \" << x << \" \" << y << \" \" << z << \" \"<< ring << \" \" << turn << \" \" << eye << \" \" << dice << \" \" << cost << endl;\n }\n};\n\nint main() {\n //作問者とお話がしたいな\n cin >> N;\n for(int i = 0; i < N; i++) {\n for(int j = 0; j < N; j++) {\n cin >> S[i][j];\n for(int k = 0; k < N; k++) {\n if(S[i][j][k] == 'S') {\n sx = i;\n sy = j;\n sz = k;\n }\n }\n }\n }\n for(int i = 0; i < N; i++) {\n for(int j = 0; j < N; j++) {\n for(int k = 0; k < N; k++) {\n for(int l = 0; l < 2; l++) {\n for(int m = 0; m < 3; m++) {\n for(int n = 0; n < 6; n++) {\n for(int o = 0; o < 6; o++) {\n dp[i][j][k][l][m][n][o] = INF;\n }\n }\n }\n }\n }\n }\n }\n state initialstate;\n initialstate.x = sx;\n initialstate.y = sy;\n initialstate.z = sz;\n initialstate.ring = 0;\n initialstate.turn = 0;\n initialstate.dice = 0;\n initialstate.eye = 3;\n initialstate.cost = 0;\n initialstate.check();\n while(!que.empty()) {\n auto from = que.front();\n que.pop();\n //from.print();\n if(from.gameclear()) {\n cout << from.cost << endl;\n return 0;\n }\n auto to = from;\n to.go();\n to.check();\n for(int i = 0; i < 6; i++) {\n if(i % 3 == 0) continue;\n to = from;\n to.rotateeye(i);\n to.check();\n }\n for(int i = 0; i < 6; i++) {\n if(i % 3 == 0) continue;\n to = from;\n to.rotatedice(i);\n to.check();\n }\n to = from;\n to.wash();\n to.check();\n to = from;\n to.nothing();\n to.check();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 37584, "score_of_the_acc": -0.2439, "final_rank": 6 }, { "submission_id": "aoj_3087_4843411", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef int_fast32_t int32;\ntypedef int_fast64_t int64;\n\nconst int32 inf = 1e9+7;\nconst int32 MOD = 1000000007;\nconst int64 llinf = 1e18;\n\n#define YES(n) cout << ((n) ? \"YES\\n\" : \"NO\\n\" )\n#define Yes(n) cout << ((n) ? \"Yes\\n\" : \"No\\n\" )\n#define POSSIBLE(n) cout << ((n) ? \"POSSIBLE\\n\" : \"IMPOSSIBLE\\n\" )\n#define ANS(n) cout << (n) << \"\\n\"\n#define REP(i,n) for(int64 i=0;i<(n);++i)\n#define FOR(i,a,b) for(int64 i=(a);i<(b);i++)\n#define FORR(i,a,b) for(int64 i=(a);i>=(b);i--)\n#define all(obj) (obj).begin(),(obj).end()\n#define rall(obj) (obj).rbegin(),(obj).rend()\n#define fi first\n#define se second\n#define pb(a) push_back(a)\ntypedef pair<int32,int32> pii;\ntypedef pair<int64,int64> pll;\n\ntemplate<class T> inline bool chmax(T& a, T b) {\n if (a < b) { a = b; return true; } return false;\n}\ntemplate<class T> inline bool chmin(T& a, T b) {\n if (a > b) { a = b; return true; } return false;\n}\n\nconst int32 dx[6] = {0,0,1,0,0,-1};\nconst int32 dy[6] = {0,1,0,0,-1,0};\nconst int32 dz[6] = {1,0,0,-1,0,0};\n\n\nint32 n;\nchar a[33][33][33];\nint32 sx,sy,sz;\n// dp[x][y][z][目の向き][サイコロの向き][残り弱ネバネバターン][指輪回収済みか]\nint32 dp[33][33][33][6][6][3][2];\n\n\nstruct cond{\n int32 x,y,z,eye,dice,rem,ring;\n cond(){}\n cond(int32 x,int32 y,int32 z,int32 eye,int32 dice,int32 rem,int32 ring):x(x),y(y),z(z),eye(eye),dice(dice),rem(rem),ring(ring){}\n\n cond front(){\n cond ret = *this;\n ret.x += dx[eye];\n ret.y += dy[eye];\n ret.z += dz[eye];\n if(ret.ok() && a[ret.x][ret.y][ret.z] == 'R')ret.ring = 1;\n return ret;\n }\n\n vector<cond> chEye(){\n vector<cond> ret;\n FOR(i,1,6){\n cond c = *this;\n if(i == 3)continue;\n c.eye = (c.eye + i) % 6;\n ret.pb(c);\n }\n return ret;\n }\n\n vector<cond> roollDice(){\n vector<cond> ret;\n FOR(i,1,6){\n cond c = *this;\n if(i == 3)continue;\n c.dice = (c.dice + i) % 6;\n ret.pb(c);\n }\n return ret;\n }\n\n cond wash(){\n cond ret = *this;\n ret.rem = 3;\n return ret;\n }\n\n cond wait(){\n return *this;\n }\n\n void fall(){\n if(rem == 0){\n while(!onthewall()){\n x += dx[dice];\n y += dy[dice];\n z += dz[dice];\n if(a[x][y][z] == 'R')ring = 1;\n }\n return;\n }\n\n while(true){\n cond ncond = *this;\n ncond.x += dx[dice];\n ncond.y += dy[dice];\n ncond.z += dz[dice];\n if(ncond.ok()){\n if(a[ncond.x][ncond.y][ncond.z] == 'R')ncond.ring = 1;\n *this = ncond;\n }else{\n return;\n }\n }\n }\n\n bool ok(){\n if(x < 0 || n <= x)return false;\n if(y < 0 || n <= y)return false;\n if(z < 0 || n <= z)return false;\n return a[x][y][z] != '#';\n }\n\n bool onthewall(){\n REP(i,6){\n if(x+dx[i] < 0 || n <= x+dx[i])continue;\n if(y+dy[i] < 0 || n <= y+dy[i])continue;\n if(z+dz[i] < 0 || n <= z+dz[i])continue;\n if(a[x+dx[i]][y+dy[i]][z+dz[i]] == '#')return true;\n }\n return false;\n }\n\n bool goal(){\n return x == sx && y == sy && z == sz && ring == 1;\n }\n};\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin >> n;\n FORR(z,n-1,0)REP(y,n)REP(x,n)cin >> a[x][y][z];\n REP(i,n)REP(j,n)REP(k,n){\n if(a[i][j][k] == 'S'){\n tie(sx,sy,sz) = tie(i,j,k);\n break;\n }\n }\n\n REP(x,n)REP(y,n)REP(z,n)REP(eye,6)REP(dice,6)REP(rem,3)REP(ring,2)\n dp[x][y][z][eye][dice][rem][ring] = inf;\n\n queue<pair<cond,int32>> que;\n\n auto push = [&](cond c, int32 d){\n if(!c.ok())return;\n c.fall();\n if(c.rem > 0)\n --c.rem;\n if(chmin(dp[c.x][c.y][c.z][c.eye][c.dice][c.rem][c.ring], d)){\n que.emplace(c,d);\n }\n };\n\n {\n cond scond(sx,sy,sz,0,3,0,0);\n push(scond, 0);\n }\n while(!que.empty()){\n cond ccond;\n int32 d;\n tie(ccond,d) = que.front();que.pop();\n\n if(ccond.goal()){\n ANS(d);\n return 0;\n }\n\n push(ccond.front(),d+1);\n for(auto c : ccond.chEye()){\n push(c,d+1);\n }\n if(ccond.onthewall() && ccond.rem == 0){\n for(auto c : ccond.roollDice()){\n push(c,d+1);\n }\n }\n if(ccond.rem == 0){\n push(ccond.wash(),d+1);\n }\n push(ccond.wait(),d+1);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 61812, "score_of_the_acc": -0.3985, "final_rank": 8 }, { "submission_id": "aoj_3087_4843402", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef int_fast32_t int32;\ntypedef int_fast64_t int64;\n\nconst int32 inf = 1e9+7;\nconst int32 MOD = 1000000007;\nconst int64 llinf = 1e18;\n\n#define YES(n) cout << ((n) ? \"YES\\n\" : \"NO\\n\" )\n#define Yes(n) cout << ((n) ? \"Yes\\n\" : \"No\\n\" )\n#define POSSIBLE(n) cout << ((n) ? \"POSSIBLE\\n\" : \"IMPOSSIBLE\\n\" )\n#define ANS(n) cout << (n) << \"\\n\"\n#define REP(i,n) for(int64 i=0;i<(n);++i)\n#define FOR(i,a,b) for(int64 i=(a);i<(b);i++)\n#define FORR(i,a,b) for(int64 i=(a);i>=(b);i--)\n#define all(obj) (obj).begin(),(obj).end()\n#define rall(obj) (obj).rbegin(),(obj).rend()\n#define fi first\n#define se second\n#define pb(a) push_back(a)\ntypedef pair<int32,int32> pii;\ntypedef pair<int64,int64> pll;\n\ntemplate<class T> inline bool chmax(T& a, T b) {\n if (a < b) { a = b; return true; } return false;\n}\ntemplate<class T> inline bool chmin(T& a, T b) {\n if (a > b) { a = b; return true; } return false;\n}\n\nconst int32 dx[6] = {0,0,1,0,0,-1};\nconst int32 dy[6] = {0,1,0,0,-1,0};\nconst int32 dz[6] = {1,0,0,-1,0,0};\n\n\nint32 n;\nchar a[33][33][33];\nint32 sx,sy,sz;\n// dp[x][y][z][目の向き][サイコロの向き][残り弱ネバネバターン][指輪回収済みか]\nint32 dp[33][33][33][6][6][3][2];\n\n\nstruct cond{\n int32 x,y,z,eye,dice,rem,ring;\n cond(){}\n cond(int32 x,int32 y,int32 z,int32 eye,int32 dice,int32 rem,int32 ring):x(x),y(y),z(z),eye(eye),dice(dice),rem(rem),ring(ring){}\n\n cond front(){\n cond ret = *this;\n ret.x += dx[eye];\n ret.y += dy[eye];\n ret.z += dz[eye];\n if(ret.ok() && a[ret.x][ret.y][ret.z] == 'R')ret.ring = 1;\n return ret;\n }\n\n vector<cond> chEye(){\n vector<cond> ret;\n FOR(i,1,6){\n cond c = *this;\n if(i == 3)continue;\n c.eye = (c.eye + i) % 6;\n ret.pb(c);\n }\n return ret;\n }\n\n vector<cond> roollDice(){\n vector<cond> ret;\n FOR(i,1,6){\n cond c = *this;\n if(i == 3)continue;\n c.dice = (c.dice + i) % 6;\n ret.pb(c);\n }\n return ret;\n }\n\n cond wash(){\n cond ret = *this;\n ret.rem = 3;\n return ret;\n }\n\n cond wait(){\n return *this;\n }\n\n void fall(){\n if(rem == 0){\n while(!onthewall()){\n x += dx[dice];\n y += dy[dice];\n z += dz[dice];\n if(a[x][y][z] == 'R')ring = 1;\n }\n return;\n }\n\n while(true){\n cond ncond = *this;\n ncond.x += dx[dice];\n ncond.y += dy[dice];\n ncond.z += dz[dice];\n if(ncond.ok()){\n if(a[ncond.x][ncond.y][ncond.z] == 'R')ncond.ring = 1;\n *this = ncond;\n }else{\n return;\n }\n }\n }\n\n bool ok(){\n if(x < 0 || n <= x)return false;\n if(y < 0 || n <= y)return false;\n if(z < 0 || n <= z)return false;\n return a[x][y][z] != '#';\n }\n\n bool onthewall(){\n REP(i,6){\n if(x+dx[i] < 0 || n <= x+dx[i])continue;\n if(y+dy[i] < 0 || n <= y+dy[i])continue;\n if(z+dz[i] < 0 || n <= z+dz[i])continue;\n if(a[x+dx[i]][y+dy[i]][z+dz[i]] == '#')return true;\n }\n return false;\n }\n\n bool goal(){\n return x == sx && y == sy && z == sz && ring == 1;\n }\n};\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin >> n;\n FORR(z,n-1,0)REP(y,n)REP(x,n)cin >> a[x][y][z];\n REP(i,n)REP(j,n)REP(k,n){\n if(a[i][j][k] == 'S'){\n tie(sx,sy,sz) = tie(i,j,k);\n break;\n }\n }\n\n REP(x,n)REP(y,n)REP(z,n)REP(eye,6)REP(dice,6)REP(rem,3)REP(ring,2)\n dp[x][y][z][eye][dice][rem][ring] = inf;\n\n queue<pair<cond,int32>> que;\n\n auto push = [&](cond c, int32 d){\n if(!c.ok())return;\n if(c.rem > 0){\n c.fall();\n --c.rem;\n }\n if(chmin(dp[c.x][c.y][c.z][c.eye][c.dice][c.rem][c.ring], d)){\n que.emplace(c,d);\n }\n };\n\n cond scond(sx,sy,sz,0,3,0,0);\n push(scond, 0);\n while(!que.empty()){\n cond ccond;\n int32 d;\n tie(ccond,d) = que.front();que.pop();\n\n if(ccond.goal()){\n ANS(d);\n return 0;\n }\n\n push(ccond.front(),d+1);\n for(auto c : ccond.chEye()){\n push(c,d+1);\n }\n if(ccond.onthewall() && ccond.rem == 0){\n for(auto c : ccond.roollDice()){\n push(c,d+1);\n }\n }\n if(ccond.rem == 0){\n push(ccond.wash(),d+1);\n }\n push(ccond.wait(),d+1);\n }\n return 0;\n}", "accuracy": 0.5522388059701493, "time_ms": 220, "memory_kb": 62056, "score_of_the_acc": -0.3598, "final_rank": 12 }, { "submission_id": "aoj_3087_4843391", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef int_fast32_t int32;\ntypedef int_fast64_t int64;\n\nconst int32 inf = 1e9+7;\nconst int32 MOD = 1000000007;\nconst int64 llinf = 1e18;\n\n#define YES(n) cout << ((n) ? \"YES\\n\" : \"NO\\n\" )\n#define Yes(n) cout << ((n) ? \"Yes\\n\" : \"No\\n\" )\n#define POSSIBLE(n) cout << ((n) ? \"POSSIBLE\\n\" : \"IMPOSSIBLE\\n\" )\n#define ANS(n) cout << (n) << \"\\n\"\n#define REP(i,n) for(int64 i=0;i<(n);++i)\n#define FOR(i,a,b) for(int64 i=(a);i<(b);i++)\n#define FORR(i,a,b) for(int64 i=(a);i>=(b);i--)\n#define all(obj) (obj).begin(),(obj).end()\n#define rall(obj) (obj).rbegin(),(obj).rend()\n#define fi first\n#define se second\n#define pb(a) push_back(a)\ntypedef pair<int32,int32> pii;\ntypedef pair<int64,int64> pll;\n\ntemplate<class T> inline bool chmax(T& a, T b) {\n if (a < b) { a = b; return true; } return false;\n}\ntemplate<class T> inline bool chmin(T& a, T b) {\n if (a > b) { a = b; return true; } return false;\n}\n\nconst int32 dx[6] = {0,0,1,0,0,-1};\nconst int32 dy[6] = {0,1,0,0,-1,0};\nconst int32 dz[6] = {1,0,0,-1,0,0};\n\n\nint32 n;\nchar a[33][33][33];\nint32 sx,sy,sz;\n// dp[x][y][z][目の向き][サイコロの向き][残り弱ネバネバターン][指輪回収済みか]\nint32 dp[33][33][33][6][6][3][2];\n\n\nstruct cond{\n int32 x,y,z,eye,dice,rem,ring;\n cond(){}\n cond(int32 x,int32 y,int32 z,int32 eye,int32 dice,int32 rem,int32 ring):x(x),y(y),z(z),eye(eye),dice(dice),rem(rem),ring(ring){}\n\n cond front(){\n cond ret = *this;\n ret.x += dx[eye];\n ret.y += dy[eye];\n ret.z += dz[eye];\n if(a[ret.x][ret.y][ret.z] == 'R')ret.ring = 1;\n return ret;\n }\n\n vector<cond> chEye(){\n vector<cond> ret;\n FOR(i,1,6){\n cond c = *this;\n if(i == 3)continue;\n c.eye = (c.eye + i) % 6;\n ret.pb(c);\n }\n return ret;\n }\n\n vector<cond> roollDice(){\n vector<cond> ret;\n FOR(i,1,6){\n cond c = *this;\n if(i == 3)continue;\n c.dice = (c.dice + i) % 6;\n ret.pb(c);\n }\n return ret;\n }\n\n cond wash(){\n cond ret = *this;\n ret.rem = 3;\n return ret;\n }\n\n cond wait(){\n return *this;\n }\n\n void fall(){\n if(rem == 0){\n while(!onthewall()){\n x += dx[dice];\n y += dy[dice];\n z += dz[dice];\n if(a[x][y][z] == 'R')ring = 1;\n }\n return;\n }\n\n while(true){\n cond ncond = *this;\n ncond.x += dx[dice];\n ncond.y += dy[dice];\n ncond.z += dz[dice];\n if(ncond.ok()){\n if(a[ncond.x][ncond.y][ncond.z] == 'R')ncond.ring = 1;\n *this = ncond;\n }else{\n return;\n }\n }\n }\n\n bool ok(){\n if(x < 0 || n <= x)return false;\n if(y < 0 || n <= y)return false;\n if(z < 0 || n <= z)return false;\n return a[x][y][z] != '#';\n }\n\n bool onthewall(){\n REP(i,6){\n if(x+dx[i] < 0 || n <= x+dx[i])continue;\n if(y+dy[i] < 0 || n <= y+dy[i])continue;\n if(z+dz[i] < 0 || n <= z+dz[i])continue;\n if(a[x+dx[i]][y+dy[i]][z+dz[i] == '#'])return true;\n }\n return false;\n }\n\n bool goal(){\n return x == sx && y == sy && z == sz && ring == 1;\n }\n};\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin >> n;\n FORR(z,n-1,0)REP(y,n)REP(x,n)cin >> a[x][y][z];\n REP(i,n)REP(j,n)REP(k,n){\n if(a[i][j][k] == 'S'){\n tie(sx,sy,sz) = tie(i,j,k);\n break;\n }\n }\n\n REP(x,n)REP(y,n)REP(z,n)REP(eye,6)REP(dice,6)REP(rem,3)REP(ring,2)\n dp[x][y][z][eye][dice][rem][ring] = inf;\n\n queue<pair<cond,int32>> que;\n\n auto push = [&](cond c, int32 d){\n if(!c.ok())return;\n if(c.rem > 0){\n c.fall();\n --c.rem;\n }\n if(chmin(dp[c.x][c.y][c.z][c.eye][c.dice][c.rem][c.ring], d)){\n que.emplace(c,d);\n }\n };\n\n cond scond(sx,sy,sz,0,3,0,0);\n push(scond, 0);\n while(!que.empty()){\n cond ccond;\n int32 d;\n tie(ccond,d) = que.front();que.pop();\n\n if(ccond.goal()){\n ANS(d);\n return 0;\n }\n\n push(ccond.front(),d+1);\n for(auto c : ccond.chEye()){\n push(c,d+1);\n }\n if(ccond.onthewall() && ccond.rem == 0){\n for(auto c : ccond.roollDice()){\n push(c,d+1);\n }\n }\n if(ccond.rem == 0){\n push(ccond.wash(),d+1);\n }\n push(ccond.wait(),d+1);\n }\n return 0;\n}", "accuracy": 0.5522388059701493, "time_ms": 230, "memory_kb": 62072, "score_of_the_acc": -0.3699, "final_rank": 14 }, { "submission_id": "aoj_3087_4843380", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef int_fast32_t int32;\ntypedef int_fast64_t int64;\n\nconst int32 inf = 1e9+7;\nconst int32 MOD = 1000000007;\nconst int64 llinf = 1e18;\n\n#define YES(n) cout << ((n) ? \"YES\\n\" : \"NO\\n\" )\n#define Yes(n) cout << ((n) ? \"Yes\\n\" : \"No\\n\" )\n#define POSSIBLE(n) cout << ((n) ? \"POSSIBLE\\n\" : \"IMPOSSIBLE\\n\" )\n#define ANS(n) cout << (n) << \"\\n\"\n#define REP(i,n) for(int64 i=0;i<(n);++i)\n#define FOR(i,a,b) for(int64 i=(a);i<(b);i++)\n#define FORR(i,a,b) for(int64 i=(a);i>=(b);i--)\n#define all(obj) (obj).begin(),(obj).end()\n#define rall(obj) (obj).rbegin(),(obj).rend()\n#define fi first\n#define se second\n#define pb(a) push_back(a)\ntypedef pair<int32,int32> pii;\ntypedef pair<int64,int64> pll;\n\ntemplate<class T> inline bool chmax(T& a, T b) {\n if (a < b) { a = b; return true; } return false;\n}\ntemplate<class T> inline bool chmin(T& a, T b) {\n if (a > b) { a = b; return true; } return false;\n}\n\nconst int32 dx[6] = {0,0,1,0,0,-1};\nconst int32 dy[6] = {0,1,0,0,-1,0};\nconst int32 dz[6] = {1,0,0,-1,0,0};\n\n\nint32 n;\nchar a[33][33][33];\nint32 sx,sy,sz;\n// dp[x][y][z][目の向き][サイコロの向き][残り弱ネバネバターン][指輪回収済みか]\nint32 dp[33][33][33][6][6][3][2];\n\n\nstruct cond{\n int32 x,y,z,eye,dice,rem,ring;\n cond(){}\n cond(int32 x,int32 y,int32 z,int32 eye,int32 dice,int32 rem,int32 ring):x(x),y(y),z(z),eye(eye),dice(dice),rem(rem),ring(ring){}\n\n cond front(){\n cond ret = *this;\n ret.x += dx[eye];\n ret.y += dy[eye];\n ret.z += dz[eye];\n if(a[ret.x][ret.y][ret.z] == 'R')ret.ring = 1;\n return ret;\n }\n\n vector<cond> chEye(){\n vector<cond> ret;\n FOR(i,1,6){\n cond c = *this;\n if(i == 3)continue;\n c.eye = (c.eye + i) % 6;\n ret.pb(c);\n }\n return ret;\n }\n\n vector<cond> roollDice(){\n vector<cond> ret;\n FOR(i,1,6){\n cond c = *this;\n if(i == 3)continue;\n c.dice = (c.dice + i) % 6;\n ret.pb(c);\n }\n return ret;\n }\n\n cond wash(){\n cond ret = *this;\n ret.rem = 3;\n return ret;\n }\n\n cond wait(){\n return *this;\n }\n\n void fall(){\n if(rem == 0){\n while(!onthewall()){\n x += dx[dice];\n y += dy[dice];\n z += dz[dice];\n }\n return;\n }\n\n while(true){\n cond ncond = *this;\n ncond.x += dx[dice];\n ncond.y += dy[dice];\n ncond.z += dz[dice];\n if(ncond.ok()){\n if(a[ncond.x][ncond.y][ncond.z] == 'R')ncond.ring = 1;\n *this = ncond;\n }else{\n return;\n }\n }\n }\n\n bool ok(){\n if(x < 0 || n <= x)return false;\n if(y < 0 || n <= y)return false;\n if(z < 0 || n <= z)return false;\n return a[x][y][z] != '#';\n }\n\n bool onthewall(){\n REP(i,6){\n if(x+dx[i] < 0 || n <= x+dx[i])continue;\n if(y+dy[i] < 0 || n <= y+dy[i])continue;\n if(z+dz[i] < 0 || n <= z+dz[i])continue;\n if(a[x+dx[i]][y+dy[i]][z+dz[i] == '#'])return true;\n }\n return false;\n }\n\n bool goal(){\n return x == sx && y == sy && z == sz && ring == 1;\n }\n};\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin >> n;\n FORR(z,n-1,0)REP(y,n)REP(x,n)cin >> a[x][y][z];\n REP(i,n)REP(j,n)REP(k,n){\n if(a[i][j][k] == 'S'){\n tie(sx,sy,sz) = tie(i,j,k);\n break;\n }\n }\n\n REP(x,n)REP(y,n)REP(z,n)REP(eye,6)REP(dice,6)REP(rem,3)REP(ring,2)\n dp[x][y][z][eye][dice][rem][ring] = inf;\n\n queue<pair<cond,int32>> que;\n\n auto push = [&](cond c, int32 d){\n if(!c.ok())return;\n if(c.rem > 0){\n c.fall();\n --c.rem;\n }\n if(chmin(dp[c.x][c.y][c.z][c.eye][c.dice][c.rem][c.ring], d)){\n que.emplace(c,d);\n }\n };\n\n cond scond(sx,sy,sz,0,3,0,0);\n push(scond, 0);\n while(!que.empty()){\n cond ccond;\n int32 d;\n tie(ccond,d) = que.front();que.pop();\n\n if(ccond.goal()){\n ANS(d);\n return 0;\n }\n\n push(ccond.front(),d+1);\n for(auto c : ccond.chEye()){\n push(c,d+1);\n }\n if(ccond.onthewall() && ccond.rem == 0){\n for(auto c : ccond.roollDice()){\n push(c,d+1);\n }\n }\n if(ccond.rem == 0){\n push(ccond.wash(),d+1);\n }\n push(ccond.wait(),d+1);\n }\n return 0;\n}", "accuracy": 0.5522388059701493, "time_ms": 220, "memory_kb": 62072, "score_of_the_acc": -0.3599, "final_rank": 13 }, { "submission_id": "aoj_3087_4842818", "code_snippet": "#include <bits/stdc++.h>\n#define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i))\n#define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i))\n#define rep(i, n) For((i), 0, (n))\n#define rrep(i, n) rFor((i), (n), 0)\n#define fi first\n#define se second\nusing namespace std;\ntypedef long long lint;\ntypedef unsigned long long ulint;\ntypedef pair<int, int> pii;\ntypedef pair<lint, lint> pll;\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nT div_floor(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a >= 0 ? a / b : (a + 1) / b - 1;\n}\ntemplate <class T>\nT div_ceil(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a > 0 ? (a - 1) / b + 1 : a / b;\n}\n\nconstexpr lint mod = 1000000007;\nconstexpr lint INF = mod * mod;\nconstexpr int MAX = 100010;\n\nint dx[6] = {1, 0, 0, 0, 0, -1};\nint dy[6] = {0, 1, 0, 0, -1, 0};\nint dz[6] = {0, 0, 1, -1, 0, 0};\n\nstruct state {\n int x, y, z, eye, down, neba, ring;\n};\n\nint n, sy, sz;\nstring c[35][35];\nint dist[35][35][35][6][6][3][2];\nint ex[35][35][35][6], ey[35][35][35][6], ez[35][35][35][6];\nint er[35][35][35][6];\n\nbool in(int x, int y, int z) {\n return 0 <= x && x < n && 0 <= y && y < n && 0 <= z && z < n;\n}\n\nvoid calc_end() {\n rep(x, n) rep(y, n) rep(z, n) rep(d, 6) {\n if (c[x][y][z] != '#') {\n int nx = x, ny = y, nz = z;\n er[x][y][z][d] |= (c[x][y][z] == 'R');\n while (in(nx + dx[d], ny + dy[d], nz + dz[d]) &&\n c[nx + dx[d]][ny + dy[d]][nz + dz[d]] != '#') {\n nx += dx[d];\n ny += dy[d];\n nz += dz[d];\n er[x][y][z][d] |= (c[nx][ny][nz] == 'R');\n }\n ex[x][y][z][d] = nx;\n ey[x][y][z][d] = ny;\n ez[x][y][z][d] = nz;\n }\n }\n}\n\nint main() {\n scanf(\"%d\", &n);\n rep(i, n) rep(j, n) {\n cin >> c[i][j];\n rep(k, n) if (c[i][j][k] == 'S') sy = j, sz = k;\n }\n calc_end();\n\n rep(i, n) rep(j, n) rep(k, n) rep(e, 6) rep(d, 6) rep(neba, 3)\n rep(ring, 2) {\n dist[i][j][k][e][d][neba][ring] = mod;\n }\n dist[0][sy][sz][5][0][0][0];\n queue<state> que;\n que.push({0, sy, sz, 5, 0, 0, 0});\n dist[0][sy][sz][5][0][0][0] = 0;\n while (!que.empty()) {\n auto s = que.front();\n que.pop();\n /*printf(\"x:%d y:%d z:%d eye:%d dn:%d neb:%d r:%d\\n\", s.x, s.y, s.z,\n s.eye, s.down, s.neba, s.ring);*/\n int d = dist[s.x][s.y][s.z][s.eye][s.down][s.neba][s.ring];\n // printf(\"%d\\n\", d);\n { // move\n int nx = s.x + dx[s.eye], ny = s.y + dy[s.eye],\n nz = s.z + dz[s.eye];\n int nn = max(0, s.neba - 1), nr = (s.ring | (c[nx][ny][nz] == 'R'));\n if (in(nx, ny, nz) && c[nx][ny][nz] != '#') {\n int nr = s.ring;\n if (s.neba) {\n nx = ex[nx][ny][nz][s.down];\n ny = ey[nx][ny][nz][s.down];\n nz = ez[nx][ny][nz][s.down];\n nr |= er[nx][ny][nz][s.down];\n }\n if (chmin(dist[nx][ny][nz][s.eye][s.down][nn][nr], d + 1)) {\n que.push({nx, ny, nz, s.eye, s.down, nn, nr});\n }\n }\n }\n { // eye\n int nn = max(0, s.neba - 1);\n rep(ne, 6) if (ne + s.eye != 5) {\n int nx = s.x, ny = s.y, nz = s.z;\n int nr = s.ring;\n if (s.neba) {\n nx = ex[nx][ny][nz][s.down];\n ny = ey[nx][ny][nz][s.down];\n nz = ez[nx][ny][nz][s.down];\n nr |= er[nx][ny][nz][s.down];\n }\n if (chmin(dist[nx][ny][nz][ne][s.down][nn][nr], d + 1)) {\n que.push({nx, ny, nz, ne, s.down, nn, nr});\n }\n }\n }\n if (s.neba == 0) { // dice\n int nn = max(0, s.neba - 1);\n rep(ndn, 6) if (s.down + ndn != 5) {\n int ne;\n if (s.eye == s.down)\n ne = ndn;\n else if (s.eye == 5 - s.down)\n ne = 5 - ndn;\n else{\n if (ndn == s.eye) ne = 5 - s.down;\n else if (ndn == 5-s.eye)\n ne = s.down;\n else ne = s.eye;\n }\n if (chmin(dist[s.x][s.y][s.z][ne][ndn][nn][s.ring], d + 1)) {\n que.push({s.x, s.y, s.z, ne, ndn, nn, s.ring});\n }\n }\n }\n if (s.neba == 0) { // neba\n int nn = 2;\n int nx = ex[s.x][s.y][s.z][s.down], ny = ey[s.x][s.y][s.z][s.down],\n nz = ez[s.x][s.y][s.z][s.down];\n int nr = (s.ring | er[s.x][s.y][s.z][s.down]);\n if (chmin(dist[nx][ny][nz][s.eye][s.down][nn][nr], d + 1)) {\n que.push({nx, ny, nz, s.eye, s.down, nn, nr});\n }\n }\n { // nop\n int nn = max(0, s.neba - 1);\n int nx = s.x, ny = s.y, nz = s.z;\n int nr = s.ring;\n if (s.neba) {\n nx = ex[s.x][s.y][s.z][s.down], ny = ey[s.x][s.y][s.z][s.down],\n nz = ez[s.x][s.y][s.z][s.down];\n nr = (s.ring | er[s.x][s.y][s.z][s.down]);\n }\n if (chmin(dist[nx][ny][nz][s.eye][s.down][nn][nr], d + 1)) {\n que.push({nx, ny, nz, s.eye, s.down, nn, nr});\n }\n }\n }\n\n int ans = mod;\n rep(e, 6) rep(d, 6) rep(neba, 3) {\n chmin(ans, dist[0][sy][sz][e][d][neba][1]);\n }\n printf(\"%d\\n\", ans);\n /*printf(\"%d %d %d %d\\n\", ex[0][sy][sz][0], ey[0][sy][sz][0],\n ez[0][sy][sz][0], er[0][sy][sz][0]);*/\n}", "accuracy": 0.07462686567164178, "time_ms": 50, "memory_kb": 39072, "score_of_the_acc": -0.0715, "final_rank": 15 }, { "submission_id": "aoj_3087_4842587", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing uint = unsigned;\nusing pcc = pair<char, char>;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pdd = pair<ld, ld>;\nusing tuplis = array<ll, 3>;\ntemplate<class T> using pq = priority_queue<T, vector<T>, greater<T>>;\nconst ll LINF=0x1fffffffffffffff;\nconst ll MINF=0x7fffffffffff;\nconst int INF=0x3fffffff;\nconst int MOD=1000000007;\nconst int MODD=998244353;\nconst ld DINF=numeric_limits<ld>::infinity();\nconst ld EPS=1e-9;\nconst ld PI=3.1415926535897932;\nconst ll dx[] = {0, 1, 0, -1, 1, -1, 1, -1};\nconst ll dy[] = {1, 0, -1, 0, 1, 1, -1, -1};\n#define overload4(_1,_2,_3,_4,name,...) name\n#define overload3(_1,_2,_3,name,...) name\n#define rep1(n) for(ll i=0;i<n;++i)\n#define rep2(i,n) for(ll i=0;i<n;++i)\n#define rep3(i,a,b) for(ll i=a;i<b;++i)\n#define rep4(i,a,b,c) for(ll i=a;i<b;i+=c)\n#define rep(...) overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__)\n#define rrep1(n) for(ll i=n;i--;)\n#define rrep2(i,n) for(ll i=n;i--;)\n#define rrep3(i,a,b) for(ll i=b;i-->(a);)\n#define rrep4(i,a,b,c) for(ll i=(a)+((b)-(a)-1)/(c)*(c);i>=(a);i-=c)\n#define rrep(...) overload4(__VA_ARGS__,rrep4,rrep3,rrep2,rrep1)(__VA_ARGS__)\n#define each1(i,a) for(auto&&i:a)\n#define each2(x,y,a) for(auto&&[x,y]:a)\n#define each3(x,y,z,a) for(auto&&[x,y,z]:a)\n#define each(...) overload4(__VA_ARGS__,each3,each2,each1)(__VA_ARGS__)\n#define all1(i) begin(i),end(i)\n#define all2(i,a) begin(i),begin(i)+a\n#define all3(i,a,b) begin(i)+a,begin(i)+b\n#define all(...) overload3(__VA_ARGS__,all3,all2,all1)(__VA_ARGS__)\n#define rall1(i) (i).rbegin(),(i).rend()\n#define rall2(i,k) (i).rbegin(),(i).rbegin()+k\n#define rall3(i,a,b) (i).rbegin()+a,(i).rbegin()+b\n#define rall(...) overload3(__VA_ARGS__,rall3,rall2,rall1)(__VA_ARGS__)\n#define sum(...) accumulate(all(__VA_ARGS__),0LL)\n#define dsum(...) accumulate(all(__VA_ARGS__),0.0L)\n#define Msum(...) accumulate(all(__VA_ARGS__),0_M)\n#define elif else if\n#define unless(a) if(!(a))\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)\n#define Sort(a) sort(all(a))\n#define Rev(a) reverse(all(a))\n#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define vec(type,name,...) vector<type>name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type>name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ntemplate<class T> auto min(const T& a){ return *min_element(all(a)); }\ntemplate<class T> auto max(const T& a){ return *max_element(all(a)); }\ninline ll popcnt(ull a){ return __builtin_popcountll(a); }\nll gcd(ll a, ll b){ while(b){ ll c = b; b = a % b; a = c; } return a; }\nll lcm(ll a, ll b){ if(!a || !b) return 0; return a * b / gcd(a, b); }\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }\ntemplate<class T> bool chmin(T& a, const T& b){ if(a > b){ a = b; return 1; } return 0; }\ntemplate<class T> bool chmax(T& a, const T& b){ if(a < b){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmin(T& a, const U& b){ if(a > T(b)){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmax(T& a, const U& b){ if(a < T(b)){ a = b; return 1; } return 0; }\nvector<ll> iota(ll n){ vector<ll> a(n); iota(a.begin(), a.end(), 0); return a; }\nvector<pll> factor(ull x){ vector<pll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; }\nmap<ll,ll> factor_map(ull x){ map<ll,ll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans[i] = 1; while((x /= i) % i == 0) ans[i]++; } if(x != 1) ans[x] = 1; return ans; }\nvector<ll> divisor(ull x){ vector<ll> ans; for(ull i = 1; i * i <= x; i++) if(x % i == 0) ans.push_back(i); rrep(ans.size() - (ans.back() * ans.back() == x)) ans.push_back(x / ans[i]); return ans; }\ntemplate<class T> unordered_map<T, ll> press(vector<T> a){ Uniq(a); unordered_map<T, ll> ans; rep(a.size()) ans[a[i]] = i; return ans; }\ntemplate<class T> map<T, ll> press_map(vector<T> a){ Uniq(a); map<T, ll> ans; rep(a.size()) ans[a[i]] = i; return ans; }\nint scan(){ return getchar(); }\nvoid scan(int& a){ scanf(\"%d\", &a); }\nvoid scan(unsigned& a){ scanf(\"%u\", &a); }\nvoid scan(long& a){ scanf(\"%ld\", &a); }\nvoid scan(long long& a){ scanf(\"%lld\", &a); }\nvoid scan(unsigned long long& a){ scanf(\"%llu\", &a); }\nvoid scan(char& a){ do{ a = getchar(); }while(a == ' ' || a == '\\n'); }\nvoid scan(float& a){ scanf(\"%f\", &a); }\nvoid scan(double& a){ scanf(\"%lf\", &a); }\nvoid scan(long double& a){ scanf(\"%Lf\", &a); }\nvoid scan(vector<bool>& a){ for(unsigned i = 0; i < a.size(); i++){ int b; scan(b); a[i] = b; } }\nvoid scan(char a[]){ scanf(\"%s\", a); }\nvoid scan(string& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>&);\ntemplate<class T, size_t size> void scan(array<T, size>&);\ntemplate<class T, class L> void scan(pair<T, L>&);\ntemplate<class T, size_t size> void scan(T(&)[size]);\ntemplate<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(deque<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, class L> void scan(pair<T, L>& p){ scan(p.first); scan(p.second); }\ntemplate<class T, size_t size> void scan(T (&a)[size]){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(T& a){ cin >> a; }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ putchar(' '); }\nvoid print(bool a){ printf(\"%d\", a); }\nvoid print(int a){ printf(\"%d\", a); }\nvoid print(unsigned a){ printf(\"%u\", a); }\nvoid print(long a){ printf(\"%ld\", a); }\nvoid print(long long a){ printf(\"%lld\", a); }\nvoid print(unsigned long long a){ printf(\"%llu\", a); }\nvoid print(char a){ printf(\"%c\", a); }\nvoid print(char a[]){ printf(\"%s\", a); }\nvoid print(const char a[]){ printf(\"%s\", a); }\nvoid print(float a){ printf(\"%.15f\", a); }\nvoid print(double a){ printf(\"%.15f\", a); }\nvoid print(long double a){ printf(\"%.15Lf\", a); }\nvoid print(const string& a){ for(auto&& i : a) print(i); }\ntemplate<class T> void print(const complex<T>& a){ if(a.real() >= 0) print('+'); print(a.real()); if(a.imag() >= 0) print('+'); print(a.imag()); print('i'); }\ntemplate<class T> void print(const vector<T>&);\ntemplate<class T, size_t size> void print(const array<T, size>&);\ntemplate<class T, class L> void print(const pair<T, L>& p);\ntemplate<class T, size_t size> void print(const T (&)[size]);\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const deque<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, size_t size> void print(const array<T, size>& a){ print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, class L> void print(const pair<T, L>& p){ print(p.first); putchar(' '); print(p.second); }\ntemplate<class T, size_t size> void print(const T (&a)[size]){ print(a[0]); for(auto i = a; ++i != end(a); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const T& a){ cout << a; }\nint out(){ putchar('\\n'); return 0; }\ntemplate<class T> int out(const T& t){ print(t); putchar('\\n'); return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }\n#ifdef DEBUG\ninline ll __lg(ull __n){ return sizeof(ull) * __CHAR_BIT__ - 1 - __builtin_clzll(__n); }\n#define debug(...) { print(#__VA_ARGS__); print(\":\"); out(__VA_ARGS__); }\n#else\n#define debug(...) void(0)\n#endif\nint first(bool i = true){ return out(i?\"first\":\"second\"); }\nint First(bool i = true){ return out(i?\"First\":\"Second\"); }\nint yes(bool i = true){ return out(i?\"yes\":\"no\"); }\nint Yes(bool i = true){ return out(i?\"Yes\":\"No\"); }\nint No(){ return out(\"No\"); }\nint YES(bool i = true){ return out(i?\"YES\":\"NO\"); }\nint NO(){ return out(\"NO\"); }\nint Yay(bool i = true){ return out(i?\"Yay!\":\":(\"); }\nint possible(bool i = true){ return out(i?\"possible\":\"impossible\"); }\nint Possible(bool i = true){ return out(i?\"Possible\":\"Impossible\"); }\nint POSSIBLE(bool i = true){ return out(i?\"POSSIBLE\":\"IMPOSSIBLE\"); }\nvoid Case(ll i){ printf(\"Case #%lld: \", i); }\n\n\n\n\n\nsigned main(){\n using tuplis=array<int,3>;\n const int dx[6]={1,0,0,0,0,-1};\n const int dy[6]={0,1,0,0,-1,0};\n const int dz[6]={0,0,1,-1,0,0};\n LL(n);\n char s[30][30][30];\n rep(x,n)rep(y,n)rep(z,n)in(s[x][y][z]);\n static int cost[30][30][30][6][6][3][2]; // x, y, z, eye, gravity, sticky, ring\n memset(cost,0x77,sizeof cost);\n bool onwall[30][30][30];\n memset(onwall,0x00,sizeof onwall);\n int sx=0,sy=0,sz=0,rx=0,ry=0,rz=0;\n rep(x,n)rep(y,n)rep(z,n){\n if(s[x][y][z]=='#')rep(6){\n int x2=x+dx[i],y2=y+dy[i],z2=z+dz[i];\n if(x2<0||n<=x2||y2<0||n<=y2||z2<0||n<=z2)continue;\n onwall[x2][y2][z2]=1;\n }\n elif(s[x][y][z]=='S'){\n sx=x; sy=y; sz=z;\n }\n elif(s[x][y][z]=='R'){\n rx=x; ry=y; rz=z;\n }\n }\n array<int,4> fall[30][30][30][6];\n array<int,4> fall_sticky[30][30][30][6];\n each(i,fall)each(j,i)each(k,j)each(l,k)l.fill(-1);\n each(i,fall_sticky)each(j,i)each(k,j)each(l,k)l.fill(-1);\n auto dfs1 = [&](int x, int y, int z, int g, auto dfs) -> array<int,4> {\n if(x<0||n<=x||y<0||n<=y||z<0||n<=z||s[x][y][z]=='#')return {-1,-1,-1,0};\n if(fall[x][y][z][g][0]!=-1)return fall[x][y][z][g];\n fall[x][y][z][g]=dfs(x+dx[g],y+dy[g],z+dz[g],g,dfs);\n if(fall[x][y][z][g][0]==-1)fall[x][y][z][g]={x,y,z,0};\n if(x==rx&&y==ry&&z==rz)fall[x][y][z][g][3]=1;\n return fall[x][y][z][g];\n };\n rep(x,n)rep(y,n)rep(z,n)rep(g,6)dfs1(x,y,z,g,dfs1);\n auto dfs2 = [&](int x, int y, int z, int g, auto dfs) -> array<int,4> {\n if(x<0||n<=x||y<0||n<=y||z<0||n<=z||s[x][y][z]=='#')return {-1,-1,-1,0};\n if(fall_sticky[x][y][z][g][0]!=-1)return fall_sticky[x][y][z][g];\n if(onwall[x][y][z])return fall_sticky[x][y][z][g]={x,y,z,x==rx&&y==ry&&z==rz};\n fall_sticky[x][y][z][g]=dfs(x+dx[g],y+dy[g],z+dz[g],g,dfs);\n if(fall_sticky[x][y][z][g][0]==-1)fall_sticky[x][y][z][g]={x,y,z,0};\n if(x==rx&&y==ry&&z==rz)fall_sticky[x][y][z][g][3]=1;\n return fall_sticky[x][y][z][g];\n };\n rep(x,n)rep(y,n)rep(z,n)rep(g,6)dfs2(x,y,z,g,dfs2);\n queue<tuple<int,int,int,int,int,int,int>>q;\n cost[sx][sy][sz][5][0][0][0]=0;\n q.emplace(sx,sy,sz,5,0,0,0);\n while(q.size()){\n const auto[x,y,z,eye,g,stick,ring]=q.front();\n const int cost2=cost[x][y][z][eye][g][stick][ring]+1;\n q.pop();\n if(stick){ // 何もしない\n const int x2=x,y2=y,z2=z,eye2=eye,g2=g,stick2=stick-1,ring2=ring;\n if(chmin(cost[x2][y2][z2][eye2][g2][stick2][ring2],cost2))q.emplace(x2,y2,z2,eye2,g2,stick2,ring2);\n }\n if(stick==0){ // 洗浄\n const auto[x2,y2,z2,r]=fall[x][y][z][g];\n const int eye2=eye,g2=g,stick2=2,ring2=ring||r;\n if(chmin(cost[x2][y2][z2][eye2][g2][stick2][ring2],cost2))q.emplace(x2,y2,z2,eye2,g2,stick2,ring2);\n }\n if(stick==0){ // 回転\n rep(g2,6)if(g2!=g&&g2+g!=5){\n const int x2=x,y2=y,z2=z,eye2=eye,stick2=stick,ring2=ring;\n if(chmin(cost[x2][y2][z2][eye2][g2][stick2][ring2],cost2))q.emplace(x2,y2,z2,eye2,g2,stick2,ring2);\n }\n }\n rep(eye2,6)if(eye2!=eye&&eye+eye2!=5){ // 目の位置\n const int x2=x,y2=y,z2=z,g2=g,stick2=max(0,stick-1),ring2=ring;\n if(chmin(cost[x2][y2][z2][eye2][g2][stick2][ring2],cost2))q.emplace(x2,y2,z2,eye2,g2,stick2,ring2);\n }\n // 前進\n const int x2=x+dx[eye],y2=y+dy[eye],z2=z+dz[eye],eye2=eye,g2=g,stick2=max(0,stick-1);\n unless(x2<0||n<=x2||y2<0||n<=y2||z2<0||n<=z2||s[x2][y2][z2]=='#'){\n const auto[x3,y3,z3,r]=stick?fall[x2][y2][z2][g2]:fall_sticky[x2][y2][z2][g2];\n const int ring2=ring||r;\n if(chmin(cost[x3][y3][z3][eye2][g2][stick2][ring2],cost2))q.emplace(x3,y3,z3,eye2,g2,stick2,ring2);\n }\n }\n int ans=INF;\n rep(eye,6)rep(g,6)rep(stick,3)chmin(ans,cost[sx][sy][sz][eye][g][stick][1]);\n out(ans);\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 32824, "score_of_the_acc": -0.0594, "final_rank": 1 }, { "submission_id": "aoj_3087_4842435", "code_snippet": "//\n// Created by yamunaku on 2020/05/16.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing mti = vector<vector<int>>;\nusing vl = vector<ll>;\nusing mtl = vector<vector<ll>>;\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\ntemplate<typename T>\nusing heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;\n\nstruct status {\n int x;\n int y;\n int z;\n int dir;\n int g_dir;\n int get;\n int neb;\n};\n\nint fallx[30][30][30][6][2];\nint fally[30][30][30][6][2];\nint fallz[30][30][30][6][2];\nint dist[30][30][30][6][6][2][3];\n\nint main() {\n int n;\n cin >> n;\n vector<vi> next_dir = {\n {1, 2, 3, 4},\n {0, 2, 4, 5},\n {0, 1, 3, 5},\n {0, 2, 4, 5},\n {0, 1, 3, 5},\n {1, 2, 3, 4}\n };\n vi vx = {0, 1, 0, -1, 0, 0};\n vi vy = {0, 0, 1, 0, -1, 0};\n vi vz = {1, 0, 0, 0, 0, -1};\n vector<vector<string>> field(n, vector<string>(n)); // z, y, x wo wasurenai\n int sx, sy, rx, ry, rz;\n rep(z, n) {\n rep(y, n) {\n cin >> field[z][y];\n rep(x, n) {\n if (field[z][y][x] == 'S') sx = x, sy = y;\n if (field[z][y][x] == 'R') rx = x, ry = y, rz = z;\n }\n }\n }\n\n vector<mti> tuku(n, mti(n, vi(n, false)));\n rep(x, n) rep(y,n) rep(z,n){\n if(field[z][y][x] != '#') continue;\n rep(t, 6){\n int nx = x + vx[t];\n int ny = y + vy[t];\n int nz = z + vz[t];\n if(nx < 0 || n <= nx || ny < 0 || n <= ny || nz < 0 || n <= nz) continue;\n tuku[nz][ny][nx] = true;\n }\n }\n rep(x,n) rep(y, n) rep(z,n){\n rep(t, 6){\n int nx = x, ny = y, nz = z;\n while(1){\n if(nx < 0 || n <= nx || ny < 0 || n <=ny || nz < 0 || n <= nz){\n nx -= vx[t];\n ny -= vy[t];\n nz -= vz[t];\n break;\n }\n if(field[nz][ny][nx] == '#'){\n nx -= vx[t];\n ny -= vy[t];\n nz -= vz[t];\n break;\n }\n if(tuku[nz][ny][nx]) break;\n nx += vx[t];\n ny += vy[t];\n nz += vz[t];\n }\n fallx[x][y][z][t][0] = nx;\n fally[x][y][z][t][0] = ny;\n fallz[x][y][z][t][0] = nz;\n }\n }\n\n rep(x,n) rep(y, n) rep(z,n){\n rep(t, 6){\n int nx = x, ny = y, nz = z;\n while(1){\n if(nx < 0 || n <= nx || ny < 0 || n <= ny || nz < 0 || n <= nz){\n nx -= vx[t];\n ny -= vy[t];\n nz -= vz[t];\n break;\n }\n if(field[nz][ny][nx] == '#'){\n nx -= vx[t];\n ny -= vy[t];\n nz -= vz[t];\n break;\n }\n nx += vx[t];\n ny += vy[t];\n nz += vz[t];\n }\n fallx[x][y][z][t][1] = nx;\n fally[x][y][z][t][1] = ny;\n fallz[x][y][z][t][1] = nz;\n }\n }\n\n rep(x, n) rep(y, n) rep(z, n) {\n rep(d, 6) rep(gd, 6) rep(gt, 2) rep(nb, 3) dist[x][y][z][d][gd][gt][nb] = IINF;\n }\n\n queue<status> q;\n q.push({sx, sy, 0, 5, 0, 0, 0});\n dist[sx][sy][0][5][0][0][0] = 0;\n\n function<void(int, int, int, int, int, int, int, int)> mv = [&](int x, int y, int z, int d, int gd, int gt, int nb,\n int cost) {\n if (dist[x][y][z][d][gd][gt][nb] != IINF) return;\n// cout << \"->\" SP x SP y SP z SP d SP gd SP gt SP nb << endl;\n dist[x][y][z][d][gd][gt][nb] = cost + 1;\n q.push({x, y, z, d, gd, gt, nb});\n if (gt == 1 && x == sx && y == sy && z == 0) {\n cout << cost + 1 << endl;\n exit(0);\n }\n };\n\n function<bool(int, int, int, int, int, int)> get_ring = [&](int xl, int yl, int zl, int xr, int yr, int zr){\n if(xl > xr) swap(xl, xr);\n if(yl > yr) swap(yl, yr);\n if(zl > zr) swap(zl, zr);\n if(xl == rx){\n if(yl == ry){\n return zl <= rz && rz <= zr;\n }else if(zl == rz){\n return yl <= ry && ry <= yr;\n }\n }else{\n if(yl == ry && zl == rz){\n return xl <= rx && rx <= xr;\n }\n }\n return false;\n };\n\n while (!q.empty()) {\n auto sta = q.front();\n q.pop();\n int cost = dist[sta.x][sta.y][sta.z][sta.dir][sta.g_dir][sta.get][sta.neb];\n// cout << sta.x SP sta.y SP sta.z SP sta.dir SP sta.g_dir SP sta.get SP sta.neb << \" : \" << cost << endl;\n int nb = max(0, sta.neb - 1);\n\n // zensin\n// cout << \"zensin\" << endl;\n {\n int nx = sta.x + vx[sta.dir];\n int ny = sta.y + vy[sta.dir];\n int nz = sta.z + vz[sta.dir];\n// cout << nx SP ny SP nz << endl;\n if (0 <= nx && nx < n && 0 <= ny && ny < n && 0 <= nz && nz < n) {\n if (field[nz][ny][nx] != '#') {\n int tx, ty, tz;\n if(sta.neb == 0){\n tx = fallx[nx][ny][nz][sta.g_dir][0];\n ty = fally[nx][ny][nz][sta.g_dir][0];\n tz = fallz[nx][ny][nz][sta.g_dir][0];\n }else{\n tx = fallx[nx][ny][nz][sta.g_dir][1];\n ty = fally[nx][ny][nz][sta.g_dir][1];\n tz = fallz[nx][ny][nz][sta.g_dir][1];\n }\n int gt = sta.get || get_ring(nx, ny, nz, tx, ty, tz);\n mv(tx, ty, tz, sta.dir, sta.g_dir, gt, nb, cost);\n }\n }\n }\n// cout << \"me\" << endl;\n\n // me idou\n for (auto nd : next_dir[sta.dir]) {\n mv(sta.x, sta.y, sta.z, nd, sta.g_dir, sta.get, nb, cost);\n }\n// cout << \"kaiten\" << endl;\n\n // kaiten\n if(sta.neb == 0){\n for (auto gd : next_dir[sta.g_dir]) {\n int nx, ny, nz;\n nx = fallx[sta.x][sta.y][sta.z][gd][0];\n ny = fally[sta.x][sta.y][sta.z][gd][0];\n nz = fallz[sta.x][sta.y][sta.z][gd][0];\n int gt = sta.get || get_ring(sta.x, sta.y, sta.z, nx, ny, nz);\n mv(nx, ny, nz, sta.dir, gd, gt, nb, cost);\n }\n }\n// cout << \"senjo\" << endl;\n\n // senjo\n if (sta.neb == 0) {\n int nx, ny, nz;\n nx = fallx[sta.x][sta.y][sta.z][sta.g_dir][1];\n ny = fally[sta.x][sta.y][sta.z][sta.g_dir][1];\n nz = fallz[sta.x][sta.y][sta.z][sta.g_dir][1];\n int gt = sta.get || get_ring(sta.x, sta.y, sta.z, nx, ny, nz);\n mv(nx, ny, nz, sta.dir, sta.g_dir, gt, 2, cost);\n }\n// cout << \"mu\" << endl;\n // mu\n if (sta.neb > 0) {\n mv(sta.x, sta.y, sta.z, sta.dir, sta.g_dir, sta.get, nb, cost);\n }\n\n }\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 31656, "score_of_the_acc": -0.0734, "final_rank": 2 }, { "submission_id": "aoj_3087_4842103", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nint INF = 1e9;\n//const ll mod = 1000000007;\nint N;\nstring S[35][35];\nint dp[35][35][35][2][3][6][6];\n//x座標 y座標 z座標 指輪の有無 残ネバネバ サイコロの向き 目の向き\nint dx[6] = {1, 0, 0, -1, 0, 0};\nint dy[6] = {0, 1, 0, 0, -1, 0};\nint dz[6] = {0, 0, 1, 0, 0, -1};\nint sx, sy, sz;\nstruct state;\nqueue<state> que;\nstruct state {\n int x, y, z, ring, turn, dice, eye, cost;\n state() {}\n void check() {\n if(chmin(dp[x][y][z][ring][turn][dice][eye], cost)) {\n que.push(*this);\n //cerr << \"-> \";\n //print();\n }\n }\n void getring() {\n if(S[x][y][z] == 'R') ring = 1;\n }\n void go() {\n cost++;\n int newx = x + dx[eye];\n int newy = y + dy[eye];\n int newz = z + dz[eye];\n bool canmove = true;\n if(newx < 0 or newx >= N) canmove = false;\n if(newy < 0 or newy >= N) canmove = false;\n if(newz < 0 or newz >= N) canmove = false;\n if(canmove and S[newx][newy][newz] == '#') canmove = false;\n if(canmove) {\n x = newx;\n y = newy;\n z = newz;\n }\n getring();\n if(turn >= 1) drop();\n }\n void rotateeye(int idx) {\n cost++;\n eye = (eye + idx) % 6;\n getring();\n if(turn >= 1) drop();\n }\n void rotatedice(int idx) {\n cost++;\n if(turn == 0) dice = (dice + idx) % 6;\n getring();\n if(turn >= 1) drop();\n }\n void wash() {\n cost++;\n if(turn == 0) turn = 3;\n getring();\n if(turn >= 1) drop();\n }\n void nothing() {\n cost++;\n getring();\n if(turn >= 1) drop();\n }\n void drop() {\n turn--;\n while(true) {\n getring();\n int newx = x + dx[dice];\n int newy = y + dy[dice];\n int newz = z + dz[dice];\n if(newx < 0 or newx >= N) return;\n if(newy < 0 or newy >= N) return;\n if(newy < 0 or newy >= N) return;\n if(S[newx][newy][newz] == '#') return;\n x = newx;\n y = newy;\n z = newz;\n getring();\n }\n }\n bool gameclear() {\n if(x != sx) return false;\n if(y != sy) return false;\n if(z != sz) return false;\n if(ring != 1) return false;\n return true;\n }\n\n void print() {\n cerr << \"state: \" << x << \" \" << y << \" \" << z << \" \"<< ring << \" \" << turn << \" \" << eye << \" \" << dice << \" \" << cost << endl;\n }\n};\n\nint main() {\n //作問者とお話がしたいな\n cin >> N;\n for(int i = 0; i < N; i++) {\n for(int j = 0; j < N; j++) {\n cin >> S[i][j];\n for(int k = 0; k < N; k++) {\n if(S[i][j][k] == 'S') {\n sx = i;\n sy = j;\n sz = k;\n }\n }\n }\n }\n for(int i = 0; i < N; i++) {\n for(int j = 0; j < N; j++) {\n for(int k = 0; k < N; k++) {\n for(int l = 0; l < 2; l++) {\n for(int m = 0; m < 3; m++) {\n for(int n = 0; n < 6; n++) {\n for(int o = 0; o < 6; o++) {\n dp[i][j][k][l][m][n][o] = INF;\n }\n }\n }\n }\n }\n }\n }\n state initialstate;\n initialstate.x = sx;\n initialstate.y = sy;\n initialstate.z = sz;\n initialstate.ring = 0;\n initialstate.turn = 0;\n initialstate.dice = 0;\n initialstate.eye = 3;\n initialstate.cost = 0;\n initialstate.check();\n while(!que.empty()) {\n auto from = que.front();\n que.pop();\n //from.print();\n if(from.gameclear()) {\n cout << from.cost << endl;\n return 0;\n }\n auto to = from;\n to.go();\n to.check();\n for(int i = 0; i < 6; i++) {\n if(i % 3 == 0) continue;\n to = from;\n to.rotateeye(i);\n to.check();\n }\n for(int i = 0; i < 6; i++) {\n if(i % 3 == 0) continue;\n to = from;\n to.rotatedice(i);\n to.check();\n }\n to = from;\n to.wash();\n to.check();\n to = from;\n to.nothing();\n to.check();\n }\n return 0;\n}", "accuracy": 0.5522388059701493, "time_ms": 90, "memory_kb": 37788, "score_of_the_acc": -0.1049, "final_rank": 11 }, { "submission_id": "aoj_3087_4841088", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\n//typedef complex<D> P;\n#define F first\n#define S second\nconst ll MOD=1000000007;\n//const ll MOD=998244353;\n\ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){int i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\n\nconst int MAX=32;\nconst int DIR=6;\nconst int STA=4;\nconst int INF=1e9;\n\nint dx[6]={-1,1,0,0,0,0};\nint dy[6]={0,0,-1,1,0,0};\nint dz[6]={0,0,0,0,-1,1};\n\nint nxdir[6][4]={\n {2,3,4,5},\n {2,3,4,5},\n {0,1,4,5},\n {0,1,4,5},\n {0,1,2,3},\n {0,1,2,3}\n};\n\nint N;\nchar M[MAX][MAX][MAX];\nint dp[2][STA][DIR][DIR][MAX][MAX][MAX];//cb,si\nint sx,sy,sz;\n\nvoid init(){\n for(int i=0;i<MAX;i++){\n for(int j=0;j<MAX;j++){\n for(int k=0;k<MAX;k++){\n M[i][j][k]='#';\n }\n }\n }\n for(int dn=0;dn<2;dn++){\n for(int st=0;st<STA;st++){\n for(int cb=0;cb<DIR;cb++){\n for(int si=0;si<DIR;si++){\n for(int i=0;i<MAX;i++){\n for(int j=0;j<MAX;j++){\n for(int k=0;k<MAX;k++){\n dp[dn][st][cb][si][i][j][k]=INF;\n }\n }\n }\n }\n }\n }\n }\n cin>>N;\n for(int i=1;i<=N;i++){\n for(int j=1;j<=N;j++){\n for(int k=1;k<=N;k++){\n cin>>M[i][j][k];\n if(M[i][j][k]=='S'){sx=i; sy=j; sz=k;}\n }\n }\n }\n}\n\nusing TP=tuple<int,int,int,int,int,int,int>;\n\nbool fall(int st,int si,int x,int y,int z){\n if(st!=0){return M[x+dx[si]][y+dy[si]][z+dz[si]]!='#';}\n for(int nb=0;nb<DIR;nb++){\n if(M[x+dx[nb]][y+dy[nb]][z+dz[nb]]=='#'){return false;}\n }\n return true;\n}\n\nvoid solve(){\n deque<TP> Q;\n dp[0][0][0][1][sx][sy][sz]=0;\n Q.push_back(TP(0,0,0,1,sx,sy,sz));\n while(!Q.empty()){\n TP tp=Q.front(); Q.pop_front();\n int dn=get<0>(tp);\n int st=get<1>(tp);\n int cb=get<2>(tp);\n int si=get<3>(tp);\n int x=get<4>(tp);\n int y=get<5>(tp);\n int z=get<6>(tp);\n int cost=dp[dn][st][cb][si][x][y][z];\n auto update=\n [&](int dn,int st,int cb,int si,int x,int y,int z,int dif){\n if(dp[dn][st][cb][si][x][y][z]>cost+dif){\n dp[dn][st][cb][si][x][y][z]=cost+dif;\n if(dif==0){Q.push_front(TP(dn,st,cb,si,x,y,z));}\n else{Q.push_back(TP(dn,st,cb,si,x,y,z));}\n }\n };\n if(dn==0 && M[x][y][z]=='R'){\n update(1,st,cb,si,x,y,z,0);\n continue;\n }\n if(fall(st,si,x,y,z)){\n update(dn,st,cb,si,x+dx[si],y+dy[si],z+dz[si],0);\n continue;\n }\n st=max(st-1,0);\n update(dn,st,cb,si,x,y,z,1);\n if(M[x+dx[cb]][y+dy[cb]][z+dz[cb]]!='#'){\n update(dn,st,cb,si,x+dx[cb],y+dy[cb],z+dz[cb],1);\n }\n for(auto nxcb:nxdir[cb]){\n update(dn,st,nxcb,si,x,y,z,1);\n }\n if(st==0){\n for(auto nxsi:nxdir[si]){\n update(dn,0,cb,nxsi,x,y,z,1);\n }\n update(dn,3,cb,si,x,y,z,1);\n }\n }\n int ans=INF;\n for(int st=0;st<STA;st++){\n for(int cb=0;cb<DIR;cb++){\n for(int si=0;si<DIR;si++){\n if(!fall(st,si,sx,sy,sz)){\n ans=min(ans,dp[1][st][cb][si][sx][sy][sz]);\n }\n }\n }\n }\n cout<<ans<<endl;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n init();\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 42340, "score_of_the_acc": -0.1883, "final_rank": 5 }, { "submission_id": "aoj_3087_4840620", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i, n) for(int i=0;i<(n);++i)\n#define per(i, n) for(int i=(n)-1;i>=0;--i)\n#define repa(i, n) for(int i=1;i<(n);++i)\n#define foreach(i, n) for(auto &i:(n))\n#define pii pair<int, int>\n#define pll pair<long long, long long>\n#define all(x) (x).begin(), (x).end()\n#define bit(x) (1ll << (x))\nusing ll = long long;\n//const ll MOD = (ll)1e9+7;\nconst ll MOD = 998244353;\nconst int INF = (ll)1e9+7;\nconst ll INFLL = (ll)1e18;\nusing namespace std;\ntemplate<class t>\nusing vvector = vector<vector<t>>;\ntemplate<class t>\nusing v3ector = vvector<vector<t>>;\ntemplate<class t>\nusing v4ector = v3ector<vector<t>>;\ntemplate<class t>\nusing v5ector = v4ector<vector<t>>;\ntemplate<class t>\nusing v6ector = v5ector<vector<t>>;\ntemplate<class t>\nusing v7ector = v6ector<vector<t>>;\ntemplate<class t>\nusing priority_queuer = priority_queue<t, vector<t>, greater<t>>;\ntemplate<class t, class u> bool chmax(t &a, u b){if(a<b){a=b;return true;}return false;}\ntemplate<class t, class u> bool chmin(t &a, u b){if(a>b){a=b;return true;}return false;}\n#ifdef DEBUG\n#define OUTPUT(x) (output(x), output(\"\\n\"))\n#else\n#define OUTPUT(x) (void)0\n#endif\n\nll modpow(ll x, ll b){\n ll res = 1;\n while(b){\n if(b&1)res = res * x % MOD;\n x = x * x % MOD;\n b>>=1;\n }\n return res;\n}\n\nll modinv(ll x){\n return modpow(x, MOD-2);\n}\n\nbool was_output = false;\ntemplate<class t>\nvoid output(t a){\n if(was_output)cout << \" \";\n cout << a;\n was_output = true;\n}\nvoid outendl(){\n was_output = false;\n cout << endl;\n}\nll in(){\n ll res;\n scanf(\"%lld\", &res);\n return res;\n}\n\nint in_c(){\n char res;\n cin >> res;\n if(res=='.')return 0;\n if(res=='#')return 1;\n if(res=='S')return 2;\n if(res=='R')return 3;\n exit(1);\n}\n\nint mx[]={0,0,1,0,-1,0};\nint my[]={0,1,0,-1,0,0};\nint mz[]={-1,0,0,0,0,1};\n\nint n;\nv3ector<int> ground;\n\nvector<int> get_nearby(int dir){\n if(dir==0)return {1,2,3,4};\n if(dir==1)return {0,2,4,5};\n if(dir==2)return {0,1,3,5};\n if(dir==3)return {0,2,4,5};\n if(dir==4)return {0,1,3,5};\n if(dir==5)return {1,2,3,4};\n cout << \"get_nearby(\" << dir << \") invalid argument!\" << endl;\n exit(1);\n}\n\nbool is_in_wall(int x,int y,int z){\n return ground[x][y][z] == 1;\n}\n\nbool is_in(int x,int y,int z){\n int lp = min({x,y,z});\n int rp = max({x,y,z});\n return 0 <= lp && rp < n;\n}\n\nbool is_touching_wall(int x,int y,int z){\n rep(i,6){\n int tx = x + mx[i];\n int ty = y + my[i];\n int tz = z + mz[i];\n if(!is_in(tx,ty,tz))continue;\n if(!is_in_wall(tx,ty,tz))continue;\n return true;\n }\n return false;\n}\n\nvoid setup(){\n n = in();\n ground.resize(n,vvector<int>(n,vector<int>(n)));\n rep(z,n){\n rep(x,n){\n rep(y,n){\n ground[x][y][z] = in_c();\n }\n }\n }\n}\n\nbool get_ring(int px,int py,int pz){\n return ground[px][py][pz] == 3;\n}\n\nbool is_start(int px,int py,int pz){\n return ground[px][py][pz] == 2;\n}\n\ntuple<int,int,int,int> fall_in_gravity(int px,int py,int pz,int gravity,bool wash){\n using T = tuple<int,int,int,int>;\n static v5ector<T> memo(n,v4ector<T>(n,v3ector<T>(n,vvector<T>(6,vector<T>(3,forward_as_tuple(-1,-1,-1,-1))))));\n tuple<int,int,int,int> &it = memo[px][py][pz][gravity][wash];\n if(get<0>(it)>=0)return it;\n int flag = get_ring(px,py,pz);\n if(wash){\n while(true){\n int nx = px + mx[gravity];\n int ny = py + my[gravity];\n int nz = pz + mz[gravity];\n if(!is_in(nx,ny,nz))break;\n if(is_in_wall(nx,ny,nz))break;\n px = nx;\n py = ny;\n pz = nz;\n flag = flag || get_ring(px,py,pz);\n }\n }else{\n while(true){\n if(is_touching_wall(px,py,pz))break;\n int nx = px + mx[gravity];\n int ny = py + my[gravity];\n int nz = pz + mz[gravity];\n if(!is_in(nx,ny,nz))break;\n px = nx;\n py = ny;\n pz = nz;\n flag = flag || get_ring(px,py,pz);\n }\n }\n return it = forward_as_tuple(px,py,pz,flag);\n}\n\n\nint main(){\n setup();\n v7ector<int> fast(n,v6ector<int>(n,v5ector<int>(n,v4ector<int>(6,v3ector<int>(6,vvector<int>(3,vector<int>(2,INF)))))));\n queue<vector<int>> que;\n int sx;\n int sy;\n int sz;\n rep(i,n){\n rep(j,n){\n rep(k,n){\n if(is_start(i,j,k)){\n que.emplace(vector<int>{i,j,k,0,5,0,0,0});\n fast[i][j][k][0][5][0][0] = 0;\n sx = i;\n sy = j;\n sz = k;\n }\n }\n }\n }\n\n while(que.size()){\n vector<int> d = que.front();\n que.pop();\n int px = d[0];\n int py = d[1];\n int pz = d[2];\n int forward = d[3];\n int gravity = d[4];\n int wash = d[5];\n int got_ring = d[6];\n int next_time = d[7] + 1;\n //粘着力なし\n if(wash){\n //前進\n [&](){\n int nx = px + mx[forward];\n int ny = py + my[forward];\n int nz = pz + mz[forward];\n if(!is_in(nx,ny,nz))return;\n if(is_in_wall(nx,ny,nz))return;\n int fx;\n int fy;\n int fz;\n int flag;\n tie(fx,fy,fz,flag) = fall_in_gravity(nx,ny,nz,gravity,wash);\n if(chmin(fast[fx][fy][fz][forward][gravity][wash-1][got_ring||flag],next_time)){\n que.emplace(vector<int>{fx,fy,fz,forward,gravity,wash-1,got_ring||flag,next_time});\n }\n }();\n //回転\n foreach(dir,get_nearby(forward)){\n if(chmin(fast[px][py][pz][dir][gravity][wash-1][got_ring],next_time)){\n que.emplace(vector<int>{px,py,pz,dir,gravity,wash-1,got_ring,next_time});\n }\n }\n //静止\n if(chmin(fast[px][py][pz][forward][gravity][wash-1][got_ring],next_time)){\n que.emplace(vector<int>{px,py,pz,forward,gravity,wash-1,got_ring,next_time});\n }\n }else{\n //前進\n [&](){\n int nx = px + mx[forward];\n int ny = py + my[forward];\n int nz = pz + mz[forward];\n if(!is_in(nx,ny,nz))return;\n if(is_in_wall(nx,ny,nz))return;\n int fx;\n int fy;\n int fz;\n int flag;\n tie(fx,fy,fz,flag) = fall_in_gravity(nx,ny,nz,gravity,wash);\n if(chmin(fast[fx][fy][fz][forward][gravity][wash][got_ring||flag],next_time)){\n que.emplace(vector<int>{fx,fy,fz,forward,gravity,wash,got_ring||flag,next_time});\n }\n }();\n //洗浄\n {\n int fx;\n int fy;\n int fz;\n int flag;\n tie(fx,fy,fz,flag) = fall_in_gravity(px,py,pz,gravity,2);\n if(chmin(fast[fx][fy][fz][forward][gravity][2][got_ring||flag],next_time)){\n que.emplace(vector<int>{fx,fy,fz,forward,gravity,2,got_ring||flag,next_time});\n }\n }\n //回転\n foreach(dir,get_nearby(forward)){\n if(chmin(fast[px][py][pz][dir][gravity][wash][got_ring],next_time)){\n que.emplace(vector<int>{px,py,pz,dir,gravity,wash,got_ring,next_time});\n }\n }\n //サイコロ回転\n foreach(dir,get_nearby(gravity)){\n if(chmin(fast[px][py][pz][forward][dir][wash][got_ring],next_time)){\n que.emplace(vector<int>{px,py,pz,forward,dir,wash,got_ring,next_time});\n }\n }\n }\n }\n\n int ans = INF;\n foreach(i,fast[sx][sy][sz]){\n foreach(j,i){\n foreach(k,j){\n chmin(ans,k[1]);\n }\n }\n }\n\n\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1050, "memory_kb": 219536, "score_of_the_acc": -2, "final_rank": 10 }, { "submission_id": "aoj_3087_4840583", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define REP(i, n) for ( int i = 0; i < (n); i++ )\n\nconst int dz[6] = {-1, 1, 0, 0, 0, 0};\nconst int dy[6] = {0, 0, -1, 1, 0, 0};\nconst int dx[6] = {0, 0, 0, 0, -1, 1};\n\nconst int rot[6][4] = {\n {2, 3, 4, 5},\n {2, 3, 4, 5},\n {0, 1, 4, 5},\n {0, 1, 4, 5},\n {2, 3, 0, 1},\n {2, 3, 0, 1},\n};\n\nstruct state {\n int z, y, x, dice_d, cube_d, clean_turn, ring, cost;\n state(int z, int y, int x, int dice_d, int cube_d, int clean_turn, int ring, int cost):\n z(z), y(y), x(x), dice_d(dice_d), cube_d(cube_d), clean_turn(clean_turn), ring(ring), cost(cost) {}\n\n bool operator<(const state &s) const {\n return cost < s.cost;\n };\n\n bool operator>(const state &s) const {\n return cost > s.cost;\n };\n};\n\nint get_opposite(int d) {\n if ( d == 0 ) return 1;\n if ( d == 1 ) return 0;\n if ( d == 2 ) return 3;\n if ( d == 3 ) return 2;\n if ( d == 4 ) return 5;\n if ( d == 5 ) return 4;\n}\n\nint N;\nchar A[30][30][30]; // A[z][y][x]\nint sx, sy, sz;\n\n// リングを拾ったらtrue\nbool down_neba(int &z, int &y, int &x, int d) {\n bool flag = false;\n if ( A[z][y][x] == 'R' ) flag = true;\n while ( 1 ) {\n bool flag2 = false;\n // 壁に隣接しているかどうか\n REP(i, 6) {\n int nz = z+dz[i], ny = y+dy[i], nx = x+dx[i];\n if ( nz < 0 || ny < 0 || nx < 0 || A[nz][ny][nx] == '#' ) {\n flag2 = true;\n break;\n }\n }\n if ( flag2 ) break;\n int nz = z+dz[d], ny = y+dy[d], nx = x+dx[d];\n if ( nz < 0 || ny < 0 || nx < 0 || A[nz][ny][nx] == '#' ) break;\n if ( A[nz][ny][nx] == 'R' ) flag = true;\n z = nz; y = ny; x = nx;\n }\n\n return flag;\n}\n\nbool down_clean(int &z, int &y, int &x, int d) {\n bool flag = false;\n if ( A[z][y][x] == 'R' ) flag = true;\n while ( 1 ) {\n int nz = z+dz[d], ny = y+dy[d], nx = x+dx[d];\n if ( nz < 0 || ny < 0 || nx < 0 || A[nz][ny][nx] == '#' ) break;\n if ( A[nz][ny][nx] == 'R' ) flag = true;\n z = nz; y = ny; x = nx;\n }\n\n return flag;\n}\n\nint solve() {\n bool used[30][30][30][6][6][3][2];\n fill_n(******used, 30*30*30*6*6*3*2, false);\n queue<state> Q;\n Q.push(state(sz, sy, sx, 1, 0, 0, 0, 0));\n while ( !Q.empty() ) {\n int z, y, x, dice_d, cube_d, clean_turn, ring, cost;\n {\n state s = Q.front(); Q.pop();\n z = s.z; y = s.y; x = s.x;\n dice_d = s.dice_d; cube_d = s.cube_d;\n clean_turn = s.clean_turn;\n ring = s.ring;\n cost = s.cost;\n }\n\n // ゴール条件\n if ( ring == 1 && z == sz && y == sy && x == sx ) {\n return cost;\n }\n\n if ( used[z][y][x][dice_d][cube_d][clean_turn][ring] ) continue;\n used[z][y][x][dice_d][cube_d][clean_turn][ring] = true;\n\n // 前進\n {\n int nz = z, ny = y, nx = x, nring = ring;\n nz += dz[cube_d]; ny += dy[cube_d]; nx += dx[cube_d];\n if ( !(nz < 0 || ny < 0 || nx < 0 || A[nz][ny][nx] == '#') ) {\n if ( clean_turn == 0 ) {\n nring |= down_neba(nz, ny, nx, dice_d);\n } else {\n nring |= down_clean(nz, ny, nx, dice_d);\n }\n Q.push(state(nz, ny, nx, dice_d, cube_d, max(0, clean_turn-1), nring, cost+1));\n }\n }\n\n // 目の位置を移動\n {\n REP(i, 4) {\n Q.push(state(z, y, x, dice_d, rot[cube_d][i], max(0, clean_turn-1), ring, cost+1));\n }\n }\n\n // サイコロの回転\n if ( clean_turn == 0 ){\n REP(i, 4) {\n Q.push(state(z, y, x, rot[dice_d][i], cube_d, max(0, clean_turn-1), ring, cost+1));\n }\n }\n\n // 洗浄\n if ( clean_turn == 0 ){\n int nz = z, ny = y, nx = x, nring = ring;\n nring |= down_clean(nz, ny, nx, dice_d);\n Q.push(state(nz, ny, nx, dice_d, cube_d, 2, nring, cost+1));\n }\n\n // 何もしない\n Q.push(state(z, y, x, dice_d, cube_d, max(0, clean_turn-1), ring, cost+1));\n }\n}\n\nsigned main() {\n cin.tie( 0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n cin >> N;\n REP(z, N) REP(y, N) REP(x, N) {\n cin >> A[z][y][x];\n if ( A[z][y][x] == 'S' ) {\n sx = x; sy = y; sz = z;\n }\n }\n\n cout << solve() << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 25168, "score_of_the_acc": -0.16, "final_rank": 3 }, { "submission_id": "aoj_3087_4840568", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n//INSERT ABOVE HERE\nconst int MAX_N = 33;\nint dp[2][4][6][6][MAX_N][MAX_N][MAX_N];\n\n/*\n 0\n 4 3\n 2 1\n 5\nz: 5 -> 0, y: 3 -> 2, x: 4 -> 1\n*/\n\nint mz[6]={+1, 0, 0, 0, 0,-1};\nint my[6]={ 0, 1, 0, 0,-1, 0};\nint mx[6]={ 0, 0, 1,-1, 0, 0};\n\nstruct State{\n int with_ring;\n int wash_time;\n int gravity;\n int direction;\n int z,y,x;\n State(){}\n State(int with_ring,\n int wash_time,\n int gravity,\n int direction,\n int z,int y,int x):\n with_ring(with_ring),\n wash_time(wash_time),\n gravity(gravity),\n direction(direction),\n z(z),y(y),x(x){}\n\n void print(){\n cout<<z<<\" \"<<y<<\" \"<<x<<endl;\n }\n};\n\nint n;\nchar A[MAX_N][MAX_N][MAX_N];\n\nbool is_valid(State cur){\n if(cur.z<0||cur.z>=n) return 0;\n if(cur.y<0||cur.y>=n) return 0;\n if(cur.x<0||cur.x>=n) return 0;\n if(A[cur.z][cur.y][cur.x]=='#') return 0;\n return 1;\n}\n\nbool is_wall(int z,int y,int x){\n if(z<0||z>=n) return 0;\n if(y<0||y>=n) return 0;\n if(x<0||x>=n) return 0;\n return (A[z][y][x]=='#');\n}\n\nbool touch_wall(State cur){\n for(int k=0;k<6;k++)\n if(is_wall(cur.z+mz[k],cur.y+my[k],cur.x+mx[k])) return 1;\n return 0;\n}\n\nbool is_ring(int z,int y,int x){\n if(z<0||z>=n) return 0;\n if(y<0||y>=n) return 0;\n if(x<0||x>=n) return 0;\n return (A[z][y][x]=='R');\n}\n\nState forward(State cur,int dir){\n cur.z+=mz[dir];\n cur.y+=my[dir];\n cur.x+=mx[dir];\n if(is_ring(cur.z,cur.y,cur.x)) cur.with_ring=1;\n return cur;\n}\n\nState drop(State cur){\n if(cur.wash_time){\n while(is_valid(forward(cur,cur.gravity)))\n cur=forward(cur,cur.gravity);\n cur.wash_time--;\n }else{\n while(!touch_wall(cur))\n cur=forward(cur,cur.gravity);\n }\n return cur;\n}\n\nqueue<State> que;\nvoid push(State cur,int value){\n int &res=dp[cur.with_ring][cur.wash_time][cur.gravity][cur.direction][cur.z][cur.y][cur.x];\n if(~res) return;\n res=value;\n que.emplace(cur);\n}\n\nsigned main(){\n cin>>n;\n for(int z=n-1;z>=0;z--)\n for(int y=0;y<n;y++)\n for(int x=0;x<n;x++)\n cin>>A[z][y][x];\n\n State initial_state;\n initial_state.with_ring=0;\n initial_state.wash_time=0;\n initial_state.gravity=5;\n initial_state.direction=0;\n\n for(int y=0;y<n;y++){\n for(int x=0;x<n;x++){\n if(A[n-1][y][x]=='S'){\n initial_state.z=n-1;\n initial_state.y=y;\n initial_state.x=x;\n A[n-1][y][x]='.';\n }\n }\n }\n\n memset(dp,-1,sizeof(dp));\n push(initial_state,0);\n\n while(!que.empty()){\n State cur=que.front();que.pop();\n int value=dp[cur.with_ring][cur.wash_time][cur.gravity][cur.direction][cur.z][cur.y][cur.x];\n\n // cur.print();\n\n // Goal\n if(cur.with_ring && cur.z==n-1){\n cout<<value<<endl;\n break;\n }\n\n // 1. Forward\n if(is_valid(forward(cur,cur.direction))){\n State nxt=forward(cur,cur.direction);\n push(drop(nxt),value+1);\n }\n\n // 2. Rotate direction\n for(int k=0;k<6;k++){\n if(k==cur.direction) continue;\n if(k+cur.direction==5) continue;\n State nxt=cur;\n nxt.direction=k;\n push(drop(nxt),value+1);\n }\n\n // 3. Rotate gravity\n for(int k=0;k<6;k++){\n if(cur.wash_time) continue;\n if(k==cur.gravity) continue;\n if(k+cur.gravity==5) continue;\n State nxt=cur;\n nxt.gravity=k;\n push(drop(nxt),value+1);\n }\n\n // 4. Wash Mr. Cube\n if(!cur.wash_time){\n State nxt=cur;\n nxt.wash_time=3;\n push(drop(nxt),value+1);\n }\n\n // 5. Do nothing\n push(drop(cur),value+1);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 520, "memory_kb": 45332, "score_of_the_acc": -0.5737, "final_rank": 9 }, { "submission_id": "aoj_3087_4840463", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\n//typedef complex<D> P;\n#define F first\n#define S second\nconst ll MOD=1000000007;\n//const ll MOD=998244353;\n\ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){int i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\n\nconst int MAX=32;\nconst int DIR=6;\nconst int STA=4;\nconst int INF=1e9;\n\nint dx[6]={-1,1,0,0,0,0};\nint dy[6]={0,0,-1,1,0,0};\nint dz[6]={0,0,0,0,-1,1};\n\nint nxdir[6][4]={\n {2,3,4,5},\n {2,3,4,5},\n {0,1,4,5},\n {0,1,4,5},\n {0,1,2,3},\n {0,1,2,3}\n};\n\nint N;\nchar M[MAX][MAX][MAX];\nint dp[2][STA][DIR][DIR][MAX][MAX][MAX];//cb,si\nint sx,sy,sz;\n\nvoid init(){\n for(int i=0;i<MAX;i++){\n for(int j=0;j<MAX;j++){\n for(int k=0;k<MAX;k++){\n M[i][j][k]='#';\n }\n }\n }\n for(int dn=0;dn<2;dn++){\n for(int st=0;st<STA;st++){\n for(int cb=0;cb<DIR;cb++){\n for(int si=0;si<DIR;si++){\n for(int i=0;i<MAX;i++){\n for(int j=0;j<MAX;j++){\n for(int k=0;k<MAX;k++){\n dp[dn][st][cb][si][i][j][k]=INF;\n }\n }\n }\n }\n }\n }\n }\n cin>>N;\n for(int i=1;i<=N;i++){\n for(int j=1;j<=N;j++){\n for(int k=1;k<=N;k++){\n cin>>M[i][j][k];\n if(M[i][j][k]=='S'){sx=i; sy=j; sz=k;}\n }\n }\n }\n}\n\nusing TP=tuple<int,int,int,int,int,int,int>;\n\nbool fall(int st,int si,int x,int y,int z){\n if(st!=0){return M[x+dx[si]][y+dy[si]][z+dz[si]]!='#';}\n for(int nb=0;nb<DIR;nb++){\n if(M[x+dx[nb]][y+dy[nb]][z+dz[nb]]=='#'){return false;}\n }\n return true;\n}\n\nvoid solve(){\n deque<TP> Q;\n dp[0][0][0][1][sx][sy][sz]=0;\n Q.push_back(TP(0,0,0,1,sx,sy,sz));\n while(!Q.empty()){\n TP tp=Q.front(); Q.pop_front();\n int dn=get<0>(tp);\n int st=get<1>(tp);\n int cb=get<2>(tp);\n int si=get<3>(tp);\n int x=get<4>(tp);\n int y=get<5>(tp);\n int z=get<6>(tp);\n int cost=dp[dn][st][cb][si][x][y][z];\n auto update=\n [&](int dn,int st,int cb,int si,int x,int y,int z,int dif){\n if(dp[dn][st][cb][si][x][y][z]>cost+dif){\n dp[dn][st][cb][si][x][y][z]=cost+dif;\n if(dif==0){Q.push_front(TP(dn,st,cb,si,x,y,z));}\n else{Q.push_back(TP(dn,st,cb,si,x,y,z));}\n }\n };\n if(dn==0 && M[x][y][z]=='R'){\n update(1,st,cb,si,x,y,z,0);\n continue;\n }\n if(fall(st,si,x,y,z)){\n update(dn,st,cb,si,x+dx[si],y+dy[si],z+dz[si],0);\n continue;\n }\n st=max(st-1,0);\n update(dn,st,cb,si,x,y,z,1);\n if(M[x+dx[cb]][y+dy[cb]][z+dz[cb]]!='#'){\n update(dn,st,cb,si,x+dx[cb],y+dy[cb],z+dz[cb],1);\n }\n for(auto nxcb:nxdir[cb]){\n update(dn,st,nxcb,si,x,y,z,1);\n }\n if(st==0){\n for(auto nxsi:nxdir[si]){\n update(dn,0,cb,nxsi,x,y,z,1);\n }\n update(dn,3,cb,si,x,y,z,1);\n }\n }\n int ans=INF;\n for(int st=0;st<STA;st++){\n for(int cb=0;cb<DIR;cb++){\n for(int si=0;si<DIR;si++){\n if(!fall(st,si,sx,sy,sz)){\n ans=min(ans,dp[1][st][cb][si][sx][sy][sz]);\n }\n }\n }\n }\n cout<<ans<<endl;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n init();\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 42324, "score_of_the_acc": -0.1783, "final_rank": 4 }, { "submission_id": "aoj_3087_4218200", "code_snippet": "#include <bits/stdc++.h>\n#define r(i,n) for(int i=0;i<n;i++)\nusing namespace std;\n\nint DZ[]={-1,0,0,0,0,1};\nint DY[]={0,-1,0,0,1,0};\nint DX[]={0,0,-1,1,0,0};\n\nstruct Dice{\n int s[6];\n Dice(){\n \tr(i,6) s[i]=i;\n }\n void roll(int c){\n //the view from above\n // N\n //W E\n // S\n //s[0]:top\n //s[1]:south\n //s[2]:east\n //s[3]:west\n //s[4]:north\n //s[5]:bottom\n int b;\n if(c==0){\n b=s[0];\n s[0]=s[3];\n s[3]=s[5];\n s[5]=s[2];\n s[2]=b;\n }\n if(c==1){\n b=s[0];\n s[0]=s[2];\n s[2]=s[5];\n s[5]=s[3];\n s[3]=b;\n }\n if(c==2){\n b=s[0];\n s[0]=s[1];\n s[1]=s[5];\n s[5]=s[4];\n s[4]=b;\n }\n if(c==3){\n b=s[0];\n s[0]=s[4];\n s[4]=s[5];\n s[5]=s[1];\n s[1]=b;\n }\n }\n int top() { return s[0]; }\n int front() { return s[1]; }\n int bottom() { return s[5]; }\n};\n\nstruct state{\n\tint z,y,x;\n\tint dir;\n\tDice D;\n\tint nev;\n\tint ring;\n\tstate(int nz,int ny,int nx,int ndir,int nnev,int rin){\n\t\tz=nz; y=ny; x=nx; dir=ndir;\n\t\tnev=nnev; ring=rin;\n\t}\n};\n\nint dx[]={0,0,0,0,-1,1};\nint dy[]={0,0,-1,1,0,0};\nint dz[]={-1,1,0,0,0,0};\n\nstring A[30][30];\nint d[30][30][30][6][6][4][2];\nint n;\nint sy,sx,sz;\nint gx,gy,gz;\n\nbool NG(int z,int y,int x){\n\tif( z<0 || y<0 || x<0 || z>=n || y>=n || x>=n ) return 1;\n\treturn 0;\n}\n\nbool WALL(int z,int y,int x){\n\treturn A[z][y][x] == '#';\n}\n\nint rot(int dir,int A){\n\tif(dir%2==0) A++;\n\tA++;\n\treturn (dir+A)%6;\n}\n\nbool get_ring(state S){\n\treturn S.z==gz && S.y==gy && S.x==gx;\n}\n\nbool already(state S){\n\t//cerr<<S.z<<' '<<S.y<<' '<<S.x<<' '<<S.dir<<' '<<S.D.top()<<' '<<S.D.front()<<endl;\n\treturn d[S.z][S.y][S.x][S.dir][S.D.top()][S.nev][S.ring]!=-1;\n}\nvoid SET(state P,state S){\n\t//if(P.nev && d[P.z][P.y][P.x][P.dir][P.D.top()][P.D.front()][P.nev][P.ring] <=2 )\n\t//\tcerr<<P.ring<<' '<<P.nev<<' '<<P.z<<' '<<P.y<<' '<<P.x<<' '<<P.dir<<' '<<P.D.top()<<' '<<P.D.front()<<' '<<d[P.z][P.y][P.x][P.dir][P.D.top()][P.D.front()][P.nev][P.ring]<<endl;\n\td[S.z][S.y][S.x][S.dir][S.D.top()][S.nev][S.ring] = d[P.z][P.y][P.x][P.dir][P.D.top()][P.nev][P.ring] +1;\n}\n\nstate FORWARD(state B){\n\tB.x += dx[B.dir];\n\tB.y += dy[B.dir];\n\tB.z += dz[B.dir];\n\treturn B;\n}\n\nvoid GO_DOWN(state &B){\n\tif( get_ring( B ) ) B.ring=1;\n\tB.x += DX[B.D.bottom()];\n\tB.y += DY[B.D.bottom()];\n\tB.z += DZ[B.D.bottom()];\n\tif( get_ring( B ) ) B.ring=1;\n\t//return B;\n}\n\nbool FALLEN(state S){\n\tif( S.nev != 0 ){\n\t\tint dir = S.D.bottom();\n\t\t//cerr<<dir<<endl;\n\t\tS.z += DZ[dir];\n\t\tS.y += DY[dir];\n\t\tS.x += DX[dir];\n\t\tif( NG( S.z , S.y , S.x ) ) return 0;\n\t\tif( WALL( S.z , S.y , S.x ) ) return 0;\n\t}\n\telse{\n\t\tr(i,6){\n\t\t\tint z = S.z + dz[i];\n\t\t\tint y = S.y + dy[i];\n\t\t\tint x = S.x + dx[i];\n\t\t\tif( NG( z , y , x ) ) continue;\n\t\t\tif( WALL( z , y , x ) ) return 0;\n\t\t}\n\t}\n\n\treturn 1;\n}\n\nbool END(state &S){\n\treturn S.z==sz && S.y==sy && S.x==sx && S.ring==1;\n}\n\nvoid solve(){\n\tqueue<state>q;\n\tstate S(sz,sy,sx,0,0,0);\n\tq.push(S);\n\tSET(S,S);\n\twhile(!q.empty()){\n\t\tS = q.front(); q.pop();\n\n\t\tif( END(S) ) break;\n\n\t\t// 前進\n\t\t//cout<<S.z<<' '<<S.y<<' '<<S.x<<endl;\n\t\t{\n\t\t\tstate B = FORWARD( S );\n\t\t\tif( !NG( B.z , B.y , B.x ) ){\n\t\t\t\tif( get_ring( B ) ) B.ring=1;\n\t\t\t\tif( !WALL( B.z , B.y , B.x ) ){\n\t\t\t\t\twhile( FALLEN( B ) ) GO_DOWN( B );\n\t\t\t\t\tB.nev = max( B.nev-1 , 0 );\n\t\t\t\t\tif( !already( B ) ){\n\t\t\t\t\t\tSET( S , B );\n\t\t\t\t\t\tq.push(B);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\t//目の位置\n\t\t{\n\t\t\tr(i,4){\n\t\t\t\tstate B = S;\n\t\t\t\tB.dir = rot( B.dir , i );\n\t\t\t\tB.nev = max( B.nev-1 , 0 );\n\t\t\t\tif( !already( B ) ){\n\t\t\t\t\tSET( S , B );\n\t\t\t\t\tq.push(B);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\t//回転\n\t\tif(S.nev==0){\n\t\t\tr(i,4){\n\t\t\t\tstate B = S;\n\t\t\t\tB.D.roll( i );\n\t\t\t\twhile( FALLEN( B ) ) GO_DOWN( B );\n\t\t\t\tB.nev = max( B.nev-1 , 0 );\n\t\t\t\tif( !already( B ) ){\n\t\t\t\t\tSET( S , B );\n\t\t\t\t\tq.push(B);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\t//洗浄\n\t\t{\n\t\t\tstate B = S;\n\t\t\tif( B.nev == 0 ){\n\t\t\t\tB.nev=3;\n\t\t\t\twhile( FALLEN( B ) ) GO_DOWN( B );\n\t\t\t\tB.nev = max( B.nev-1 , 0 );\n\t\t\t\tif( !already( B ) ){\n\t\t\t\t\tSET( S , B );\n\t\t\t\t\tq.push(B);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\t//何もしない\n\t\t{\n\t\t\tstate B = S;\n\t\t\twhile( FALLEN( B ) ) GO_DOWN( B );\n\t\t\tB.nev = max( B.nev-1 , 0 );\n\t\t\tif( !already( B ) ){\n\t\t\t\tSET( S , B );\n\t\t\t\tq.push(B);\n\t\t\t}\n\t\t}\n\n\t\t//cout<<endl;\n\n\t}\n\n\tint answer = 114514;\n\n\tr(i,6){\n\t\tr(j,6){\n\t\t\t//r(k,6){\n\t\t\t\tr(l,4){\n\t\t\t\t\tif( d[sz][sy][sx][i][j][l][1] == -1 )continue;\n\t\t\t\t\tanswer = min( answer , d[sz][sy][sx][i][j][l][1] );\n\t\t\t\t}\n\t\t\t//}\n\t\t}\n\t}\n\n\tcout<<( answer==114514?-1:answer )<<endl;\n\n}\n\nvoid init() {\n\tmemset(d,-1,sizeof(d));\n cin>>n;\n string tmp;\n r(i,n){\n \tr(j,n){\n \t\tcin>>A[i][j];\n \t}\n }\n r(i,n){\n \tr(j,n){\n \t r(k,n){\n\t \tif(A[i][j][k]=='S'){\n\t\t\tsz=i;\n\t\t\tsy=j;\n\t\t\tsx=k;\n\t \t}\n\t \tif(A[i][j][k]=='R'){\n\t\t\tgz=i;\n\t\t\tgy=j;\n\t\t\tgx=k;\n\t \t}\n\t }\n \t}\n }\n}\n\nint main() {\n init();\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 36236, "score_of_the_acc": -0.2669, "final_rank": 7 } ]
aoj_3089_cpp
Problem $N$ 頂点の根付き木が与えられます。 各頂点には $0$ から $N-1$ の重複のない番号がついていて、頂点 $0$ が根です。 $j$ 番目の辺は頂点 $u_j$ と $v_j$ を結んでいます。 頂点 $i$ には $C_i$ 個のコマが置いてあります。 Aizu君とBeet君はゲームをします。 ゲームでは、Aizu君から始めて交互に以下の操作を行います。 子の存在する頂点 $w$ に置かれたコマを一個選ぶ。 $w$ の子孫であって、$w$ との距離が $1$ 以上 $K$ 以下であるような頂点のうち一つを選び、そこに選んだコマを移動する。 先に操作ができなくなった方が負けです。 両者が最適に行動したとき、どちらが勝つか求めてください。 Input 入力は以下の形式で与えられる。 $N$ $K$ $C_0$ $C_1$ $\ldots$ $C_{N-1}$ $u_0$ $v_0$ $\vdots$ $u_{N-2}$ $v_{N-2}$ Constraints 入力は以下の条件を満たす。 $2 \leq N \leq 10^5$ $1 \leq K \leq 100$ $0 \leq C_i \leq 10^{5}$ $0 \leq u_j,v_j \leq N-1$ $( \sum_{i=0}^{N-1} C_i ) \geq 1$ 与えられるグラフは木である 入力は全て整数である Output Aizu君が勝つなら"Aizu"を、Beet君が勝つなら"Beet"を一行に出力する。 Sample Input 1 2 100 0 1 1 0 Sample Output 1 Beet Sample Input 2 7 3 1 1 1 1 1 1 1 0 1 1 2 2 3 1 4 1 5 4 6 Sample Output 2 Aizu
[ { "submission_id": "aoj_3089_10284941", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\n#define rep(i, m, n) for (ll i = (ll)m; i < (ll)n; i++)\n#define drep(i, m, n) for (ll i = m - 1; i >= n; i--)\n#define Endl endl\n#define all(a) a.begin(), a.end()\n#define pr(i, j) make_pair(i, j)\n#define isin(x, l, r) (l <= x && x < r)\n#define chmin(a, b) a = min(a, b)\n#define chmax(a, b) a = max(a, b)\n#define srt(ar) sort(ar.begin(), ar.end())\n#define rev(ar) reverse(ar.begin(), ar.end())\n#define jge(f, s, t) cout << (f ? s : t) << endl\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n#define printar(ar) \\\n do \\\n { \\\n for (auto dbg : ar) \\\n { \\\n cout << dbg << \" \"; \\\n } \\\n cout << endl; \\\n } while (0)\nconst ll inf = 1e18;\nconst ld pi = 3.14159265358979;\nconst ld eps = 1e-9;\ntemplate <class T, ll n, ll idx = 0>\nauto make_vec(const ll (&d)[n], const T &init) noexcept\n{\n if constexpr (idx < n)\n return std::vector(d[idx], make_vec<T, n, idx + 1>(d, init));\n else\n return init;\n}\n\ntemplate <class T, ll n>\nauto make_vec(const ll (&d)[n]) noexcept\n{\n return make_vec(d, T{});\n}\n//////////////// 以下を貼る ////////////////\ntemplate <class T>\nsize_t HashCombine(const size_t seed, const T &v)\n{\n return seed ^ (std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2));\n}\n/* pair用 */\ntemplate <class T, class S>\nstruct std::hash<std::pair<T, S>>\n{\n size_t operator()(const std::pair<T, S> &keyval) const noexcept\n {\n return HashCombine(std::hash<T>()(keyval.first), keyval.second);\n }\n};\n////////////////////////////////////////////\nll mex(vector<bool> a)\n{\n ll ret = 0;\n rep(i, 0, a.size())\n {\n if (!a[i])\n {\n break;\n }\n ret++;\n }\n return ret;\n}\nint main()\n{\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll n, K;\n cin >> n >> K;\n vector<ll> c(n);\n rep(i, 0, n)\n {\n cin >> c[i];\n }\n vector<vector<ll>> g(n);\n vector<pair<ll, ll>> d(n);\n vector<vector<bool>> G(n, vector<bool>(200, false));\n rep(i, 0, n - 1)\n {\n ll u, v;\n cin >> u >> v;\n g[u].push_back(v);\n g[v].push_back(u);\n }\n rep(i, 0, n)\n {\n d[i].second = i;\n }\n vector<ll> from(n, -1);\n queue<ll> q, q2;\n vector<bool> v(n);\n vector<ll> grundy(n);\n q.push(0);\n v[0] = true;\n while (!q.empty())\n {\n ll now = q.front();\n q.pop();\n rep(i, 0, g[now].size())\n {\n ll nxt = g[now][i];\n if (!v[nxt])\n {\n v[nxt] = true;\n q.push(nxt);\n from[nxt] = now;\n d[nxt].first = d[now].first + 1;\n }\n }\n }\n srt(d);\n rev(d);\n rep(i, 0, n)\n {\n ll now = d[i].second;\n ll t = mex(G[now]);\n grundy[now] = t;\n rep(j, 0, K)\n {\n if (now == 0)\n {\n break;\n }\n now = from[now];\n G[now][t] = true;\n }\n }\n ll x = 0;\n rep(i, 0, n)\n {\n if (c[i] % 2 == 1)\n {\n x ^= grundy[i];\n }\n }\n if (x == 0)\n {\n cout << \"Beet\" << endl;\n }\n else\n {\n cout << \"Aizu\" << endl;\n }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 22528, "score_of_the_acc": -0.0589, "final_rank": 2 }, { "submission_id": "aoj_3089_10238818", "code_snippet": "// AOJ #3089 Game on Tree\n// 2025.2.22\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nint N, K;\nvector<int> coins;\nvector<vector<int>> tree;\n\nconst int MAX_M = 82;\n\nint mex(const bitset<MAX_M> &bs) {\n for (int i = 0; i < MAX_M; i++){\n if (!bs.test(i)) return i;\n }\n return MAX_M;\n}\n\nvector<bitset<MAX_M>> dfs(int u, int parent, vector<int>& grundy) {\n vector<bitset<MAX_M>> dp(K);\n bool isLeaf = true;\n\n for (int v : tree[u]) {\n if (v == parent) continue;\n isLeaf = false;\n vector<bitset<MAX_M>> child_dp = dfs(v, u, grundy);\n bitset<MAX_M> tmp;\n tmp.reset();\n tmp.set(grundy[v]);\n dp[0] |= tmp;\n for (int d = 1; d < K; d++) dp[d] |= child_dp[d-1];\n }\n\n bitset<MAX_M> S;\n S.reset();\n for (int d = 0; d < K; d++) S |= dp[d];\n\n if (isLeaf) grundy[u] = 0;\n else grundy[u] = mex(S);\n return dp;\n}\n\nint main() {\n N = Cin(), K = Cin();\n coins.resize(N);\n for (int i = 0; i < N; i++) coins[i] = Cin();\n\n vector<vector<int>> graph(N);\n for (int i = 0; i < N-1; i++){\n int u = Cin(), v = Cin();\n graph[u].push_back(v);\n graph[v].push_back(u);\n }\n tree.assign(N, vector<int>());\n vector<int> parent(N, -1);\n deque<int> dq;\n dq.push_back(0);\n parent[0] = -1;\n while(!dq.empty()){\n int u = dq.front();\n dq.pop_front();\n for (int w : graph[u]){\n if(w == parent[u]) continue;\n parent[w] = u;\n tree[u].push_back(w);\n dq.push_back(w);\n }\n }\n\n vector<int> grundy(N, 0);\n dfs(0, -1, grundy);\n\n int nim = 0;\n for (int i = 0; i < N; i++){\n if (coins[i] % 2 == 1) nim ^= grundy[i];\n }\n printf(nim? \"Aizu\\n\": \"Beet\\n\");\n return 0;\n}", "accuracy": 0.1111111111111111, "time_ms": 20, "memory_kb": 12168, "score_of_the_acc": -0.0052, "final_rank": 18 }, { "submission_id": "aoj_3089_10238813", "code_snippet": "// AOJ #3089 Game on Tree\n// 2025.2.22\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nint N, K;\nvector<int> coins;\nvector<vector<int>> tree;\n\nconst int MAX_M = 100;\n\nint mex(const bitset<MAX_M> &bs) {\n for (int i = 0; i < MAX_M; i++){\n if (!bs.test(i)) return i;\n }\n return MAX_M;\n}\n\nvector<bitset<MAX_M>> dfs(int u, int parent, vector<int>& grundy) {\n vector<bitset<MAX_M>> dp(K);\n bool isLeaf = true;\n\n for (int v : tree[u]) {\n if (v == parent) continue;\n isLeaf = false;\n vector<bitset<MAX_M>> child_dp = dfs(v, u, grundy);\n bitset<MAX_M> tmp;\n tmp.reset();\n tmp.set(grundy[v]);\n dp[0] |= tmp;\n for (int d = 1; d < K; d++) dp[d] |= child_dp[d-1];\n }\n\n bitset<MAX_M> S;\n S.reset();\n for (int d = 0; d < K; d++) S |= dp[d];\n\n if (isLeaf) grundy[u] = 0;\n else grundy[u] = mex(S);\n return dp;\n}\n\nint main() {\n N = Cin(), K = Cin();\n coins.resize(N);\n for (int i = 0; i < N; i++) coins[i] = Cin();\n\n vector<vector<int>> graph(N);\n for (int i = 0; i < N-1; i++){\n int u = Cin(), v = Cin();\n graph[u].push_back(v);\n graph[v].push_back(u);\n }\n tree.assign(N, vector<int>());\n vector<int> parent(N, -1);\n deque<int> dq;\n dq.push_back(0);\n parent[0] = -1;\n while(!dq.empty()){\n int u = dq.front();\n dq.pop_front();\n for (int w : graph[u]){\n if(w == parent[u]) continue;\n parent[w] = u;\n tree[u].push_back(w);\n dq.push_back(w);\n }\n }\n\n vector<int> grundy(N, 0);\n dfs(0, -1, grundy);\n\n int nim = 0;\n for (int i = 0; i < N; i++){\n if (coins[i] % 2 == 1) nim ^= grundy[i];\n }\n printf(nim? \"Aizu\\n\": \"Beet\\n\");\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 33820, "score_of_the_acc": -0.1154, "final_rank": 3 }, { "submission_id": "aoj_3089_10238694", "code_snippet": "// AOJ #3089 Game on Tree\n// 2025.2.22\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nint N, K;\nvector<int> coins;\nvector<vector<int>> tree;\n\nconst int MAX_M = 128;\n\nint mex(const bitset<MAX_M> &bs) {\n for (int i = 0; i < MAX_M; i++){\n if (!bs.test(i)) return i;\n }\n return MAX_M;\n}\n\nvector<bitset<MAX_M>> dfs(int u, int parent, vector<int>& grundy) {\n vector<bitset<MAX_M>> dp(K);\n bool isLeaf = true;\n\n for (int v : tree[u]) {\n if (v == parent) continue;\n isLeaf = false;\n vector<bitset<MAX_M>> child_dp = dfs(v, u, grundy);\n bitset<MAX_M> tmp;\n tmp.reset();\n tmp.set(grundy[v]);\n dp[0] |= tmp;\n for (int d = 1; d < K; d++) dp[d] |= child_dp[d-1];\n }\n\n bitset<MAX_M> S;\n S.reset();\n for (int d = 0; d < K; d++) S |= dp[d];\n\n if (isLeaf) grundy[u] = 0;\n else grundy[u] = mex(S);\n return dp;\n}\n\nint main() {\n N = Cin(), K = Cin();\n coins.resize(N);\n for (int i = 0; i < N; i++) coins[i] = Cin();\n\n vector<vector<int>> graph(N);\n for (int i = 0; i < N-1; i++){\n int u = Cin(), v = Cin();\n graph[u].push_back(v);\n graph[v].push_back(u);\n }\n tree.assign(N, vector<int>());\n vector<int> parent(N, -1);\n deque<int> dq;\n dq.push_back(0);\n parent[0] = -1;\n while(!dq.empty()){\n int u = dq.front();\n dq.pop_front();\n for (int w : graph[u]){\n if(w == parent[u]) continue;\n parent[w] = u;\n tree[u].push_back(w);\n dq.push_back(w);\n }\n }\n\n vector<int> grundy(N, 0);\n dfs(0, -1, grundy);\n\n int nim = 0;\n for (int i = 0; i < N; i++){\n if (coins[i] % 2 == 1) nim ^= grundy[i];\n }\n printf(nim? \"Aizu\\n\": \"Beet\\n\");\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 33744, "score_of_the_acc": -0.139, "final_rank": 5 }, { "submission_id": "aoj_3089_10238685", "code_snippet": "// AOJ #3089 Game on Tree\n// 2025.2.22\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nint N, K;\nvector<int> coins;\nvector<vector<int>> tree;\n\nconst int MAX_M = 128;\n\nint mex(const bitset<MAX_M> &bs) {\n for (int i = 0; i < MAX_M; i++){\n if (!bs.test(i)) return i;\n }\n return MAX_M;\n}\n\nvector<bitset<MAX_M>> dfs(int u, int parent, vector<int>& grundy) {\n vector<bitset<MAX_M>> dp(K);\n bool isLeaf = true;\n\n for (int v : tree[u]) {\n if (v == parent) continue;\n isLeaf = false;\n vector<bitset<MAX_M>> child_dp = dfs(v, u, grundy);\n bitset<MAX_M> tmp;\n tmp.reset();\n tmp.set(grundy[v]);\n dp[0] |= tmp;\n for (int d = 1; d < K; d++) dp[d] |= child_dp[d-1];\n }\n\n bitset<MAX_M> S;\n S.reset();\n for (int d = 0; d < K; d++) S |= dp[d];\n\n if (isLeaf) grundy[u] = 0;\n else grundy[u] = mex(S);\n return dp;\n}\n\nint main() {\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n cin >> N >> K;\n coins.resize(N);\n for (int i = 0; i < N; i++) cin >> coins[i];\n\n vector<vector<int>> graph(N);\n for (int i = 0; i < N-1; i++){\n int u, v;\n cin >> u >> v;\n graph[u].push_back(v);\n graph[v].push_back(u);\n }\n tree.assign(N, vector<int>());\n vector<int> parent(N, -1);\n deque<int> dq;\n dq.push_back(0);\n parent[0] = -1;\n while(!dq.empty()){\n int u = dq.front();\n dq.pop_front();\n for (int w : graph[u]){\n if(w == parent[u]) continue;\n parent[w] = u;\n tree[u].push_back(w);\n dq.push_back(w);\n }\n }\n\n vector<int> grundy(N, 0);\n dfs(0, -1, grundy);\n\n int nim = 0;\n for (int i = 0; i < N; i++){\n if (coins[i] % 2 == 1) nim ^= grundy[i];\n }\n cout << (nim != 0 ? \"Aizu\" : \"Beet\") << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 33860, "score_of_the_acc": -0.1393, "final_rank": 6 }, { "submission_id": "aoj_3089_10198892", "code_snippet": "// AOJ #3089\n// Game on Tree 2025.2.6\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ull = unsigned long long;\n \n// ----- Bitset128: 128ビット分のビット集合(最大グランディ値はK+1 <= 102となるので十分) -----\nstruct Bitset128 {\n ull a, b; // 下位64ビット: a, 上位: b(0〜127のビットを使う)\n};\n \n// 空のビット集合\ninline Bitset128 bs_empty() {\n return {0ULL, 0ULL};\n}\n \n// ひとつのビットだけ立てたビット集合(位置 pos に立てる)\ninline Bitset128 bs_single(int pos) {\n Bitset128 ret;\n ret.a = 0; ret.b = 0;\n if(pos < 64) {\n ret.a = 1ULL << pos;\n } else {\n ret.b = 1ULL << (pos - 64);\n }\n return ret;\n}\n \n// OR(和集合)\ninline Bitset128 bs_or(const Bitset128 &x, const Bitset128 &y) {\n Bitset128 ret;\n ret.a = x.a | y.a;\n ret.b = x.b | y.b;\n return ret;\n}\n \n// 指定ビットが立っているか\ninline bool bs_test(const Bitset128 &x, int pos) {\n if(pos < 64) return ((x.a >> pos) & 1ULL) != 0;\n else return ((x.b >> (pos-64)) & 1ULL) != 0;\n}\n \n// mex: [0, maxVal) の中で x に含まれない最小の数を返す\nint bs_mex(const Bitset128 &x, int maxVal) {\n for (int i = 0; i < maxVal; i++){\n if(!bs_test(x, i)) return i;\n }\n return maxVal; // 通常はここに来ない\n}\n \n// ----- セグメントツリー(各ノードは Bitset128 を保持,OR をとる)\nstruct SegTree {\n int n;\n vector<Bitset128> tree;\n SegTree() : n(0) {}\n SegTree(int sz) {\n n = sz;\n tree.assign(2 * n, bs_empty());\n }\n // pos (0-indexed) の位置に val を OR で更新\n void update(int pos, const Bitset128 &val) {\n pos += n;\n tree[pos] = bs_or(tree[pos], val);\n for(pos /= 2; pos >= 1; pos /= 2) {\n tree[pos] = bs_or(tree[2*pos], tree[2*pos+1]);\n }\n }\n // 区間 [l, r) の OR を返す\n Bitset128 query(int l, int r) {\n Bitset128 res = bs_empty();\n for(l += n, r += n; l < r; l /= 2, r /= 2) {\n if(l & 1) {\n res = bs_or(res, tree[l]);\n l++;\n }\n if(r & 1) {\n r--;\n res = bs_or(res, tree[r]);\n }\n }\n return res;\n }\n};\n \n// ----- 木の DFS・Euler Tour 関連 -----\nint N, K;\nvector<vector<int>> children;\nvector<int> C;\nvector<int> inTime, outTime, depth;\nvector<int> euler;\nint timer = 0;\n \nvoid dfs(int v, int d) {\n depth[v] = d;\n inTime[v] = timer++;\n euler.push_back(v);\n for (int nxt : children[v]) {\n dfs(nxt, d+1);\n }\n outTime[v] = timer;\n}\n \nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n \n cin >> N >> K;\n C.resize(N);\n for (int i = 0; i < N; i++) cin >> C[i];\n\n // 入力は辺が N-1 本与えられる.\n // 頂点番号は 0~N-1 で,0 が根.\n vector<vector<int>> adj(N);\n for (int i = 0; i < N-1; i++){\n int u, v;\n cin >> u >> v;\n // 無向グラフとして読み込み\n adj[u].push_back(v);\n adj[v].push_back(u);\n }\n // 0 を根として木を構築.\n children.assign(N, vector<int>());\n inTime.resize(N); outTime.resize(N); depth.resize(N);\n vector<int> parent(N, -1);\n {\n queue<int> q;\n q.push(0);\n parent[0] = -1;\n depth[0] = 0;\n while(!q.empty()){\n int cur = q.front(); q.pop();\n for (int nxt : adj[cur]) {\n if(nxt == parent[cur]) continue;\n parent[nxt] = cur;\n depth[nxt] = depth[cur] + 1;\n children[cur].push_back(nxt);\n q.push(nxt);\n }\n }\n }\n // Euler Tour を DFS で求める\n timer = 0;\n euler.clear();\n dfs(0, 0);\n \n // 部分木の区間 [in[v], out[v]) が得られる.\n // また,各頂点の深さも depth[v] に格納されている.\n int maxDepth = 0;\n for (int i = 0; i < N; i++){\n maxDepth = max(maxDepth, depth[i]);\n }\n \n // 各深さ d について,Euler 順序でのインデックスのリストを作る\n vector<vector<int>> depthList(maxDepth+1);\n for (int i = 0; i < N; i++){\n depthList[ depth[i] ].push_back(inTime[i]);\n }\n for (int d = 0; d <= maxDepth; d++){\n sort(depthList[d].begin(), depthList[d].end());\n }\n \n vector<SegTree> segTrees(maxDepth+1);\n for (int d = 0; d <= maxDepth; d++){\n int sz = depthList[d].size();\n if(sz > 0) segTrees[d] = SegTree(sz);\n }\n \n vector<int> grundy(N, 0);\n vector<int> order = euler;\n reverse(order.begin(), order.end());\n \n for (int v : order) {\n int d = depth[v];\n Bitset128 unionBS = bs_empty();\n int L = inTime[v] + 1;\n int R = outTime[v];\n int lowDepth = d + 1;\n int highDepth = min(maxDepth, d + K);\n for (int nd = lowDepth; nd <= highDepth; nd++){\n if(depthList[nd].empty()) continue;\n int lpos = int(lower_bound(depthList[nd].begin(), depthList[nd].end(), L) - depthList[nd].begin());\n int rpos = int(lower_bound(depthList[nd].begin(), depthList[nd].end(), R) - depthList[nd].begin());\n if(lpos < rpos) {\n Bitset128 segRes = segTrees[nd].query(lpos, rpos);\n unionBS = bs_or(unionBS, segRes);\n }\n }\n int gVal = bs_mex(unionBS, K+2);\n grundy[v] = gVal;\n int pos = int(lower_bound(depthList[d].begin(), depthList[d].end(), inTime[v]) - depthList[d].begin());\n segTrees[d].update(pos, bs_single(gVal));\n }\n \n int nimXor = 0;\n for (int i = 0; i < N; i++){\n if(C[i] % 2 == 1) {\n nimXor ^= grundy[i];\n }\n }\n cout << (nimXor != 0 ? \"Aizu\" : \"Beet\") << endl;\n return 0;\n}", "accuracy": 0.5185185185185185, "time_ms": 60, "memory_kb": 18800, "score_of_the_acc": -0.1196, "final_rank": 17 }, { "submission_id": "aoj_3089_6444822", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <cstring>\n#include <set>\n#include <vector>\n#include <stack>\n#include <map>\n#include <queue>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\nconst int maxn=100005,K=105;\nint n,k;\nint dp[maxn][K*2];\nint c[maxn];\nint tai[maxn];\nint fa[maxn];\nvector<int> e[maxn];\nvoid dfs(int x,int p)\n{\n fa[x]=p;\n for(int i=0;i<(int)e[x].size();i++){\n int to=e[x][i];\n if(to==p) continue;\n dfs(to,x);\n }\n int t=0;\n while(t<2*K){\n if(dp[x][t]){\n t++;\n }\n else{\n break;\n }\n }\n tai[x]=t;\n int now=p;\n for(int i=0;i<k;i++){\n if(now!=-1) dp[now][t]=1;\n else break;\n now=fa[now];\n }\n}\nint main()\n{\n ios::sync_with_stdio(false),cin.tie(0);\n cin>>n>>k;\n for(int i=0;i<n;i++) cin>>c[i];\n int a,b;\n for(int i=0;i<n-1;i++){\n cin>>a>>b;\n e[a].push_back(b);\n e[b].push_back(a);\n }\n dfs(0,-1);\n int ans=0;\n for(int i=0;i<n;i++){\n if(c[i]&1) ans^=tai[i];\n }\n if(ans==0) cout<<\"Beet\"<<endl;\n else cout<<\"Aizu\"<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 76624, "score_of_the_acc": -0.2629, "final_rank": 9 }, { "submission_id": "aoj_3089_6444797", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <cstring>\n#include <set>\n#include <vector>\n#include <stack>\n#include <map>\n#include <queue>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int> pii;\nconst int maxn=100005,K=105;\nint n,k;\nint dp[maxn][K];\nint c[maxn];\nint tai[maxn];\nint fa[maxn];\nvector<int> e[maxn];\nvoid dfs(int x,int p)\n{\n fa[x]=p;\n for(int i=0;i<(int)e[x].size();i++){\n int to=e[x][i];\n if(to==p) continue;\n dfs(to,x);\n }\n int t=0;\n while(t<k){\n if(dp[x][t]){\n t++;\n }\n else{\n break;\n }\n }\n tai[x]=t;\n int now=p;\n for(int i=0;i<k;i++){\n if(now!=-1) dp[now][t]=1;\n else break;\n now=fa[now];\n }\n}\nint main()\n{\n ios::sync_with_stdio(false),cin.tie(0);\n cin>>n>>k;\n for(int i=0;i<n;i++) cin>>c[i];\n int a,b;\n for(int i=0;i<n-1;i++){\n cin>>a>>b;\n e[a].push_back(b);\n e[b].push_back(a);\n }\n dfs(0,-1);\n int ans=0;\n for(int i=0;i<n;i++){\n if(c[i]&1) ans^=tai[i];\n }\n if(ans==0) cout<<\"Beet\"<<endl;\n else cout<<\"Aizu\"<<endl;\n return 0;\n}", "accuracy": 0.09259259259259259, "time_ms": 40, "memory_kb": 44236, "score_of_the_acc": -0.1455, "final_rank": 19 }, { "submission_id": "aoj_3089_5526263", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n\n#define SIZE 100005\n\n\nint N,K;\nint PARENT[SIZE];\nll C[SIZE],GRUNDY[SIZE];\nvector<int> G[SIZE];\nmap<ll,bool> MAP[SIZE];\n\n\n\nvoid dfs(int node_id,int pre){\n\n\tPARENT[node_id] = pre;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs(child,node_id);\n\t}\n\n\tll value;\n\n\tfor(value = 0; ; value++){\n\n\t\tauto at = MAP[node_id].find(value);\n\n\t\tif(at == MAP[node_id].end()){\n\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tGRUNDY[node_id] = value;\n\n\tint now = node_id;\n\n\tfor(int i = 0; i < K; i++){\n\n\t\tint tmp_p = PARENT[now];\n\t\tif(tmp_p == -1)break;\n\n\t\tMAP[tmp_p][value] = true;\n\t\tnow = PARENT[now];\n\t}\n}\n\n\nint main(){\n\n\tscanf(\"%d %d\",&N,&K);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lld\",&C[i]);\n\t}\n\n\tint a,b;\n\tfor(int loop = 0; loop < N-1; loop++){\n\n\t\tscanf(\"%d %d\",&a,&b);\n\n\t\tG[a].push_back(b);\n\t\tG[b].push_back(a);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPARENT[i] = -1;\n\t}\n\n\tdfs(0,-1);\n\n\tll XOR = 0;\n\n\tfor(int i = 0; i < N; i++){\n\t\tif(C[i]%2 == 0)continue;\n\n\t\tXOR ^= GRUNDY[i];\n\t}\n\n\tif(XOR == 0){\n\n\t\tprintf(\"Beet\\n\");\n\t}else{\n\n\t\tprintf(\"Aizu\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 440, "memory_kb": 159600, "score_of_the_acc": -1.4312, "final_rank": 15 }, { "submission_id": "aoj_3089_5526254", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n\n#define SIZE 100005\n\n\nint N,K;\nint PARENT[SIZE];\nll C[SIZE],GRUNDY[SIZE];\nvector<int> G[SIZE];\nmap<ll,bool> MAP[SIZE];\n\n\n\nvoid dfs(int node_id,int pre){\n\n\tPARENT[node_id] = pre;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs(child,node_id);\n\t}\n\n\tll value;\n\n\tfor(value = 0; ; value++){\n\n\t\tauto at = MAP[node_id].find(value);\n\n\t\tif(at == MAP[node_id].end()){\n\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tGRUNDY[node_id] = value;\n\n\tint now = node_id;\n\n\tfor(int i = 0; i < K; i++){\n\n\t\tint tmp_p = PARENT[now];\n\t\tif(tmp_p == -1)break;\n\n\t\tMAP[tmp_p][tmp_p] = true;\n\t\tnow = PARENT[node_id];\n\t}\n}\n\n\nint main(){\n\n\tscanf(\"%d %d\",&N,&K);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lld\",&C[i]);\n\t}\n\n\tint a,b;\n\tfor(int loop = 0; loop < N-1; loop++){\n\n\t\tscanf(\"%d %d\",&a,&b);\n\n\t\tG[a].push_back(b);\n\t\tG[b].push_back(a);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tPARENT[i] = -1;\n\t}\n\n\tdfs(0,-1);\n\n\tll XOR = 0;\n\n\tfor(int i = 0; i < N; i++){\n\t\tif(C[i]%2 == 0)continue;\n\n\t\tXOR ^= GRUNDY[i];\n\t}\n\n\tif(XOR == 0){\n\n\t\tprintf(\"Beet\\n\");\n\t}else{\n\n\t\tprintf(\"Aizu\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 0.018518518518518517, "time_ms": 40, "memory_kb": 16556, "score_of_the_acc": -0.0655, "final_rank": 20 }, { "submission_id": "aoj_3089_5515164", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 100005\n\n\nint N,K;\nint C[SIZE],parent[SIZE],GRUNDY[SIZE];\nset<int> SET[SIZE];\nvector<int> G[SIZE];\n\nvoid dfs(int node_id,int pre){\n\n\tparent[node_id] = pre;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs(child,node_id);\n\t}\n\n\tint num;\n\n\tfor(num = 0; ; num++){\n\n\t\tif(SET[node_id].count(num) == 0){\n\n\t\t\tGRUNDY[node_id] = num;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tint now = node_id;\n\n\tfor(int i = 0; i < K; i++){\n\t\tint tmp = parent[now];\n\t\tif(tmp == -1)break;\n\n\t\tSET[tmp].insert(num);\n\t\tnow = tmp;\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d\",&N,&K);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%d\",&C[i]);\n\t}\n\n\tint a,b;\n\n\tfor(int i = 0; i < N-1; i++){\n\n\t\tscanf(\"%d %d\",&a,&b);\n\t\tG[a].push_back(b);\n\t\tG[b].push_back(a);\n\t}\n\n\tdfs(0,-1);\n\n\tint XOR = 0;\n\n\tfor(int i = 0; i < N; i++){\n\t\tif(C[i]%2 == 0)continue;\n\n\t\tXOR ^= GRUNDY[i];\n\t}\n\n\tif(XOR == 0){\n\n\t\tprintf(\"Beet\\n\");\n\n\t}else{\n\n\t\tprintf(\"Aizu\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 122560, "score_of_the_acc": -1.1813, "final_rank": 14 }, { "submission_id": "aoj_3089_4877455", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct tree{\n vector<vector<int>> G,son,ancestor;\n vector<int> depth,parent;\n queue<int> que;\n int n,root=-1;\n bool made_lca=false;\n\n tree(int n_):G(n_),son(n_),parent(n_,-1),depth(n_,-1),ancestor(n_),n(n_){\n for(int i=0;i<n_;i++)ancestor[i].resize(30);\n }\n\n void add_edge(int u,int v){\n G[u].push_back(v);\n G[v].push_back(u);\n }\n\n inline void reset_root(){\n root=-1;\n fill(depth.begin(),depth.end(),-1);\n fill(parent.begin(),parent.end(),-1);\n for(auto &p:ancestor)for(int &q:p)q=-1;\n for(auto &p:son)p.resize(0);\n made_lca=false;\n }\n\n void have_root(int r){\n reset_root();\n root=r;\n que.push(r);\n while(que.size()){\n int p=que.front();que.pop();\n for(int q:G[p]){\n if(parent[p]==q)continue;\n son[p].push_back(q);\n parent[q]=p;\n que.push(q);\n }\n }\n }\n\n void set_depth(){\n assert(~root);\n depth[root]=0;\n que.push(root);\n while(que.size()){\n int p=que.front();que.pop();\n for(int q:son[p]){\n depth[q]=depth[p]+1;\n que.push(q);\n }\n }\n }\n\n inline void make_lca(){\n assert(~root);\n if(depth[root]<0)set_depth();\n for(int i=0;i<G.size();i++)ancestor[i][0]=parent[i];\n for(int j=1;j<30;j++)\n for(int i=0;i<G.size();i++)\n if(~ancestor[i][j-1])\n ancestor[i][j]=ancestor[ancestor[i][j-1]][j-1];\n made_lca=1;\n }\n\n int lca(int u,int v){\n if(!made_lca)make_lca();\n if(depth[u]>depth[v])swap(u,v);\n int diff=depth[v]-depth[u],cnt=0;\n while(diff){\n if(diff&1)v=ancestor[v][cnt];\n cnt++;\n diff>>=1;\n }\n if(u==v)return u;\n for(int k=28;k>=0;k--)\n if(ancestor[u][k]!=ancestor[v][k])\n u=ancestor[u][k],v=ancestor[v][k];\n return ancestor[u][0];\n }\n\n};\n\nsigned main(){\n int n,k;cin>>n>>k;\n tree t(n);\n vector<int> v(n);\n for(int i=0;i<n;i++)cin>>v[i];\n for(int i=1;i<n;i++){\n int U,V;cin>>U>>V;\n t.add_edge(U,V);\n }\n t.have_root(0);\n queue<int> que;\n vector<int> in(n);\n for(int i=0;i<n;i++){\n in[i]=t.son[i].size();\n if(!in[i])que.push(i);\n }\n vector<bool> used(n+3,0);\n vector<int> grun(n,-1);\n int ans=0;\n t.set_depth();\n while(que.size()){\n int p=que.front();que.pop();\n stack<int> sta;\n for(int q:t.son[p])sta.push(q);\n int cnt=0;\n while(sta.size()){\n int q=sta.top();sta.pop();cnt++;\n used[grun[q]]=1;\n if(t.depth[q]-t.depth[p]<k)\n for(int x:t.son[q])sta.push(x);\n }\n for(int i=0;i<=cnt+1;i++){\n if(!used[i]&&grun[p]<0)grun[p]=i;\n used[i]=0;\n }\n if(v[p]&1)ans^=grun[p];\n if(p){\n int P=t.parent[p];\n if(--in[P]==0)que.push(P);\n }\n }\n if(ans)cout<<\"Aizu\"<<endl;\n else cout<<\"Beet\"<<endl;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 28716, "score_of_the_acc": -0.2911, "final_rank": 10 }, { "submission_id": "aoj_3089_4868466", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m = mod) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 19;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\n\nstruct Data {\n\tmultiset<int> st;\n\tmultiset<P> d;\n};\nvoid merge(Data& a, Data& b) {\n\tif (a.d.size() < b.d.size()) {\n\t\tswap(a, b);\n\t}\n\tfor (P p : b.d) {\n\t\ta.d.insert(p);\n\t}\n\tfor (int x : b.st) {\n\t\ta.st.insert(x);\n\t}\n}\nint query(multiset<int>& s) {\n\trep(i, 100000000) {\n\t\tif (s.find(i) == s.end())return i;\n\t}\n\treturn 0;\n}\n\nvoid solve() {\n\tint n, k; cin >> n >> k;\n\tvector<int> c(n);\n\trep(i, n)cin >> c[i];\n\tvector<vector<int>> G(n);\n\trep(i, n - 1) {\n\t\tint a, b; cin >> a >> b;\n\t\tG[a].push_back(b);\n\t\tG[b].push_back(a);\n\t}\n\tvector<int> g(n);\n\tfunction<Data(int, int, int)> dfs = [&](int id, int fr, int d)->Data {\n\t\tData res;\n\t\tfor (int to : G[id])if (to != fr) {\n\t\t\tData nex = dfs(to, id, d + 1);\n\t\t\tmerge(res, nex);\n\t\t}\n\t\twhile (res.st.size()){\n\t\t\tP p = *res.d.rbegin();\n\t\t\tif (p.first > d + k) {\n\t\t\t\tres.d.erase(--res.d.end());\n\t\t\t\tres.st.erase(res.st.find(p.second));\n\t\t\t}\n\t\t\telse break;\n\t\t}\n\t\tint val = query(res.st);\n\t\tg[id] = val;\n\t\tres.st.insert(val);\n\t\tres.d.insert({ d,val });\n\t\treturn res;\n\t};\n\tdfs(0, -1, 0);\n\tint x = 0;\n\trep(i, n) {\n\t\tif (c[i] % 2)x ^= g[i];\n\t}\n\tif (x)cout << \"Aizu\\n\";\n\telse cout << \"Beet\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 27824, "score_of_the_acc": -0.2171, "final_rank": 8 }, { "submission_id": "aoj_3089_4866088", "code_snippet": "#include<iostream>\n#include<string>\n#include<iomanip>\n#include<cmath>\n#include<vector>\n#include<algorithm>\n#include<set>\n\nusing namespace std;\n\n#define int long long\n#define endl \"\\n\"\n\nconstexpr long long INF = (long long)1e18;\nconstexpr long long MOD = 1000000007;\n\n\t\nvoid dfs(int N, int K, vector<vector<int>> &tree, vector<int> &parent, int now, int par){\n\t\n\tparent[now] = par;\n\t\n\tfor(int i = 0; i < tree[now].size(); i++){\n\t\tif(tree[now][i] == par) continue;\n\t\tdfs(N, K, tree, parent, tree[now][i], now);\n\t\t\n\t}\n}\n\nvoid solve(int N, int K, vector<vector<int>> &tree, vector<int> &mex, vector<set<int>> &move, vector<int> &parent, int now, int par){\n\t\n\tfor(int i = 0; i < tree[now].size(); i++){\n\t\tif(tree[now][i] == par) continue;\n\t\tsolve(N, K, tree, mex, move, parent, tree[now][i], now);\n\t\t\n\t}\n\t\n\tfor(int i = 0; ; i++){\n\t\tif(move[now].count(i) == 0) {\n\t\t\tmex[now] = i;\n\t\t\tbreak;\n\t\t}\n\t}\n\t\n\tfor(int i = 0, n = now; i < K; i++){\n\t\tif(parent[n] == -1) break;\n\t\tmove[parent[n]].insert(mex[now]);\n\t\tn = parent[n];\n\t}\n}\n\nsigned main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tcout<<fixed<<setprecision(10);\n\t\n\tint N, K, ans = 0;\n\tvector<int> C, parent, mex;\n\tvector<vector<int>> tree;\n\tvector<set<int>> move;\n\t\n\tcin>>N>>K;\n\t\n\tC.resize(N);\n\tmex.resize(N);\n\tmove.resize(N);\n\ttree.resize(N);\n\tparent.resize(N);\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tcin>>C[i];\n\t}\n\t\n\tfor(int i = 0; i < N - 1; i++){\n\t\tint u, v;\n\t\t\n\t\tcin>>u>>v;\n\t\t\n\t\ttree[u].push_back(v);\n\t\ttree[v].push_back(u);\n\t}\n\t\n\tdfs(N, K, tree, parent, 0, -1);\n\t\n\tsolve(N, K, tree, mex, move, parent, 0, -1);\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tif(C[i]%2) ans ^= mex[i];\n\t}\n\t\n\tcout<<(ans ? \"Aizu\" : \"Beet\")<<endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 122092, "score_of_the_acc": -1.1085, "final_rank": 12 }, { "submission_id": "aoj_3089_4851213", "code_snippet": "#pragma GCC optimize (\"O3\")\n#pragma GCC target (\"sse4\")\n\n#include <bits/stdc++.h>\n#define FOR(i, a, b) for(int i=(a);i<(b);++i)\n#define REP(i, n) FOR(i, 0, n)\n#define RREP(i, n) FOR(i, 1, n+1)\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\n#define LEN(x) (int)(x).size()\n#define DUMP(x) cerr<<__LINE__<<' '<<#x<<\"=\"<<(x)<<endl;\n#define popcnt(x) __builtin_popcount(x)\n#define popcntll(x) __builtin_popcountll(x)\n\nusing namespace std;\nusing lint = long long;\nusing pii = pair<int, int>;\nusing pll = pair<lint, lint>;\ntemplate <typename T> using vc = vector<T>;\ntemplate <typename T> using vvc = vector<vector<T>>;\ntemplate <typename T> inline bool chmax(T &a, T b){if(a<b){a = b; return true;} return false;}\ntemplate <typename T> inline bool chmin(T &a, T b){if(a>b){a = b; return true;} return false;}\n\nconst double PI = acos(-1);\nconstexpr lint ten(int n) {return n==0 ? 1 : ten(n-1)*10;}\n\nclass Task{\npublic:\n int N, K;\n vc<int> C, g, cnt, tmp;\n vvc<int> G;\n\n void dfs1(int s, int par){\n // sの各子孫のGrundy数を求める\n for(auto& to : G[s]){\n if(to==par) continue;\n dfs1(to, s);\n }\n // sのGrundy数を求める\n dfs2(s, par, K);\n int M = LEN(tmp);\n\n for(auto& t : tmp){\n if(t<=M) cnt[t]++; \n }\n\n REP(i, M+1){\n if(cnt[i]==0){\n g[s] = i;\n break;\n }\n }\n\n fill(cnt.begin(), cnt.begin()+M+1, 0);\n tmp.clear();\n }\n\n void dfs2(int s, int par, int k){\n if(k){\n for(auto& to : G[s]){\n if(to==par) continue;\n dfs2(to, s, k-1);\n tmp.emplace_back(g[to]);\n }\n }\n }\n\n void run(){\n ios_base::sync_with_stdio(false);\n cin.tie(nullptr);\n cout.tie(nullptr);\n // input\n cin>>N>>K;\n C.resize(N);\n G.resize(N);\n REP(i, N) cin>>C[i];\n REP(i, N-1){\n int u, v;\n cin>>u>>v;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n // solve\n solve();\n }\n\n void solve(){\n g.resize(N);\n cnt.resize(N+1, 0);\n dfs1(0, -1);\n\n int G = 0;\n REP(i, N){\n if(C[i]%2) G ^= g[i];\n }\n\n if(G) cout<<\"Aizu\\n\";\n else cout<<\"Beet\\n\";\n }\n};\n\nint main(){\n Task solver;\n solver.run();\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 10368, "score_of_the_acc": -0.119, "final_rank": 4 }, { "submission_id": "aoj_3089_4847355", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<tuple>\n#include<cassert>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned int ui;\nconst ll mod = 1000000007;\nconst ll INF = (ll)1000000007 * 1000000007;\ntypedef pair<int, int> P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef long double ld;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<ll, ll> LP;\nint dx[4]={1,-1,0,0};\nint dy[4]={0,0,1,-1};\ntemplate<class T>bool chmax(T &a, const T &b) {if(a<b){a=b;return 1;}return 0;}\ntemplate<class T>bool chmin(T &a, const T &b) {if(b<a){a=b;return 1;}return 0;}\n\nint n,k;\nint c[100010],d[100010];\nint dp[100010];\nvector<int> G[100010];\nmap<int,int> ma[100010];\n\nvoid dfs(int s,int par){\n if(par!=-1) d[s]=d[par]+1;\n for(int t:G[s]){\n if(t==par) continue;\n dfs(t,s);\n if(ma[t].size()>ma[s].size()) swap(ma[t],ma[s]);\n for(P p:ma[t]){\n if(ma[s][p.first]==0) ma[s][p.first]=p.second;\n else chmin(ma[s][p.first],p.second);\n }\n }\n rep(i,n){\n int h=ma[s][i];\n if(h!=0 && h-d[s]<=k) continue;\n dp[s]=i;\n ma[s][i]=d[s];\n return;\n }\n}\n\nvoid solve(){\n cin >> n >> k;\n rep(i,n) cin >> c[i];\n d[0]=1;\n rep(i,n-1){\n int u,v;cin >> u >> v;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n dfs(0,-1);\n int ans=0;\n rep(i,n){\n if(c[i]%2)ans^=dp[i];\n }\n // rep(i,n){\n // cout << i << \" \" << d[i] << \" \" << dp[i] << endl;\n // }\n if(!ans) cout << \"Beet\" << endl;\n else cout << \"Aizu\" << endl;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout << fixed << setprecision(50);\n solve();\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 19580, "score_of_the_acc": -0.0504, "final_rank": 1 }, { "submission_id": "aoj_3089_4844371", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int len = 317;\n\nusing B = bitset<len + 1>;\n\nint n, k;\nvector<vector<int>> g;\nvector<int> c;\nvector<vector<B>> memo;\n\nbool solve();\nvoid dfs(int now, int par, int &res);\n\nint main() {\n cin >> n >> k;\n c.resize(n);\n for (auto &p : c) {\n cin >> p;\n p &= 1;\n }\n g.resize(n);\n for (int i = 1; i < n; ++i) {\n int a, b;\n cin >> a >> b;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n if (solve())\n cout << \"Aizu\" << endl;\n else\n cout << \"Beet\" << endl;\n return 0;\n}\n\nbool solve() {\n memo.resize(n, vector<B>(k + 1, 0));\n int res = 0;\n dfs(0, -1, res);\n return res;\n}\nvoid dfs(int now, int par, int &res) {\n for (auto to : g[now])\n if (to != par) {\n dfs(to, now, res);\n for (int i = 1; i <= k; ++i) memo[now][i] |= memo[to][i - 1];\n }\n B nb;\n for (auto b : memo[now]) nb |= b;\n for (int i = 0; i <= len; ++i)\n if (!nb[i]) {\n memo[now][0][i] = 1;\n if (c[now] & 1) res ^= i;\n break;\n }\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 356484, "score_of_the_acc": -1.5714, "final_rank": 16 }, { "submission_id": "aoj_3089_4844239", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx\")\n\n#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <iomanip>\n#define vll vector<ll>\n#define vvvl vector<vvl>\n#define vvl vector<vector<ll>>\n#define VV(a, b, c, d) vector<vector<d>>(a, vector<d>(b, c))\n#define VVV(a, b, c, d) vector<vvl>(a, vvl(b, vll (c, d)));\n#define re(c, b) for(ll c=0;c<b;c++)\n#define all(obj) (obj).begin(), (obj).end()\ntypedef long long int ll;\ntypedef long double ld;\nusing namespace std;\n\n#define MAX_N 100001\nvector<vector<int>> G(MAX_N);\nvector<int> c(MAX_N), gr(MAX_N), d(MAX_N);\nvector<vector<int>> b(MAX_N, vector<int>(331, 0));\nint k;\ntypedef array<int, 2> ar;//\npriority_queue<ar> q;\n\nvoid dfs_d(int now, int from, int x){\n d[now] = x;\n for(auto to:G[now]){\n if(to==from) continue;\n dfs_d(to, now, x+1);\n }\n}\n\nvoid dfs(int now, int from){\n for(auto to:G[now]){\n if(to==from) continue;\n dfs(to, now);\n for(int i=0;i<331;i++) b[now][i] += b[to][i];\n }\n while(!q.empty()&&q.top()[0]-d[now]>k){\n b[now][gr[q.top()[1]]]--;\n q.pop();\n }\n int ret = 0;\n for(;ret<331;ret++) if(!b[now][ret]) break;\n gr[now] = ret;\n q.push(ar{d[now], now});\n b[now][gr[now]]++;//最後に追加\n}\n\nint main(){\n int n;scanf(\"%d %d\", &n, &k);\n for(int i=0;i<n;i++) scanf(\"%d\", &c[i]);\n for(int i=0;i<n-1;i++){\n int x, y;scanf(\"%d %d\", &x, &y);\n G[x].push_back(y);\n G[y].push_back(x);\n }\n dfs_d(0, -1, 0);\n dfs(0, -1);\n int x = 0;\n for(int i=0;i<n;i++){\n if(c[i]%2==0) continue;\n else{\n x ^= gr[i];\n }\n }\n std::cout << (x?\"Aizu\":\"Beet\") << '\\n';\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 145136, "score_of_the_acc": -0.556, "final_rank": 11 }, { "submission_id": "aoj_3089_4844115", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\nconst int N=100100;\n\nvector<int> g[N];\nset<int> st[N];\nint grundy[N];\nint pre[N];\nint k;\n\nvoid dfs(int s,int p){\n\tif(p!=-1)pre[s]=p;\n\tfor(int t:g[s]){\n\t\tif(t==p)continue;\n\t\tdfs(t,s);\n\t}\n\tint gru=0;\n\twhile(1){\n\t\tif(st[s].find(gru)!=st[s].end()){\n\t\t\tgru++;\n\t\t}\n\t\telse{\n\t\t\tgrundy[s]=gru;\n\t\t\tbreak;\n\t\t}\n\t}\n\tint P=p;\n\tfor(int i=0;i<k;i++){\n\t\tif(P==-1)break;\n\t\tst[P].insert(gru);\n\t\tP=pre[P];\n\t}\n}\n\nint main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tint n; cin >> n >> k;\n\tvector<int> c(n);\n\tfor(int i=0;i<n;i++){\n\t\tcin >> c[i];\n\t}\n\tfor(int i=1;i<n;i++){\n\t\tint x,y; cin >> x >> y;\n\t\tg[x].push_back(y);\n\t\tg[y].push_back(x);\n\t}\n\tdfs(0,-1);\n\tint a=0;\n\tfor(int i=0;i<n;i++){\n\t\tif(c[i]%2){\n\t\t\ta^=grundy[i];\n\t\t}\n\t}\n\tif(a==0){\n\t\tprintf(\"Beet\\n\");\n\t}\n\telse{\n\t\tprintf(\"Aizu\\n\");\n\t}\n}", "accuracy": 1, "time_ms": 370, "memory_kb": 122376, "score_of_the_acc": -1.1569, "final_rank": 13 }, { "submission_id": "aoj_3089_4843933", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n//#include \"atcoder/all\"\n//using namespace atcoder;\n#define int long long\n#define REP(i, n) for (int i = 0; i < (int)n; ++i)\n#define RREP(i, n) for (int i = (int)n - 1; i >= 0; --i)\n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define RFOR(i, s, n) for (int i = (int)n - 1; i >= s; --i)\n#define ALL(a) a.begin(), a.end()\n#define IN(a, x, b) (a <= x && x < b)\ntemplate<class T>istream&operator >>(istream&is,vector<T>&vec){for(T&x:vec)is>>x;return is;}\ntemplate<class T>inline void out(T t){cout << t << \"\\n\";}\ntemplate<class T,class... Ts>inline void out(T t,Ts... ts){cout << t << \" \";out(ts...);}\ntemplate<class T>inline bool CHMIN(T&a,T b){if(a > b){a = b;return true;}return false;}\ntemplate<class T>inline bool CHMAX(T&a,T b){if(a < b){a = b;return true;}return false;}\nconstexpr int INF = 1e18;\n\nsigned main(){\n\tint N, K;\n\tcin >> N >> K;\n\tvector<int>c(N);\n\tREP(i, N) cin >> c[i];\n\tvector<vector<int>>g(N);\n\tREP(i, N - 1) {\n\t\tint a, b;\n\t\tcin >> a >> b;\n\t\tg[a].emplace_back(b);\n\t\tg[b].emplace_back(a);\n\t}\n\tvector<int>grundy(N);\n\tvector<vector<int>>depth(N);\n\tauto dfs = [&](auto&&f, int now, int par, int dep) -> vector<int> {\n\t\tvector<int>ret(111);\n\t\tfor(auto e: g[now]) {\n\t\t\tif(e == par) continue;\n\t\t\tauto tmp = f(f, e, now, dep + 1);\n\t\t\twhile(dep + K + 1 < N && depth[dep + K + 1].size()) {\n\t\t\t\tint t = depth[dep + K + 1].back();\n\t\t\t\tdepth[dep + K + 1].pop_back();\n\t\t\t\ttmp[grundy[t]] -= 1;\n\t\t\t}\n\t\t\tREP(i, 111) {\n\t\t\t\tret[i] += tmp[i];\n\t\t\t}\n\t\t}\n\t\tdepth[dep].emplace_back(now);\n\t\tREP(i, 111) {\n\t\t\tif(ret[i] == 0) {\n\t\t\t\tgrundy[now] = i;\n\t\t\t\tret[i] |= 1;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\tif(i == 110) exit(EXIT_FAILURE);\n\t\t}\n\t\treturn ret;\n\t};\n\tdfs(dfs, 0, -1, 0);\n\tint x = 0;\n\tREP(i, N) {\n\t\tif(c[i] % 2) x ^= grundy[i];\n\t}\n\tif(x) out(\"Aizu\");\n\telse out(\"Beet\");\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 27356, "score_of_the_acc": -0.1681, "final_rank": 7 } ]
aoj_3105_cpp
F: 友達探し 問題 $1$ から $N$ までの番号が付けられた $N$ 人の人に対して,ある部屋の入退室記録が $M$ 個与えられる. $i$ 番目の入退室記録は $A_i\ B_i\ C_i$ の $3$ つの整数からなり,これは以下を示している. $C_i = 1$ のとき,時刻 $A_i$ に $B_i$ さんが部屋に入室したことを表す. $C_i = 0$ のとき,時刻 $A_i$ に $B_i$ さんが部屋から退室したことを表す. $i$ 番目($1 \leq i \leq N$)の人について,時刻 $T$ までに部屋で一緒に過ごした時間が最も長い人を答えよ. 制約 入力値は全て整数である. $2 \leq N,\ M \leq 10^5$ $1 \leq T \leq 10^9$ $1 \leq A_i \leq T$ $A_i \leq A_{i+1}$ $1 \leq B_i \leq N$ $(A_i = A_j$ かつ $B_i = B_j$) ならば $i=j$ $0 \leq C_i \leq 1$ 時刻 $0$ には部屋に誰もいない 入退室が矛盾する入力は与えられない 部屋に $100$ 人より多くの人がいることはない 入力形式 入力は以下の形式で与えられる. $N\ M\ T$ $A_1\ B_1\ C_1$ … $A_M\ B_M\ C_M$ 出力 $i$ 行目には $i$ 番目の人について,時刻 $T$ までに部屋で一緒に過ごした時間が最も長い人を出力する. ただし,自分以外で一緒に過ごした時間が最も長い人が複数人いる場合は,最も小さい番号の人を出力せよ. また,各行の末尾に改行を出力せよ. サンプル サンプル入力 1 3 6 10 1 1 1 2 2 1 4 3 1 5 1 0 6 2 0 6 3 0 サンプル出力 1 2 1 2 サンプル入力 2 3 2 5 1 1 1 2 2 1 サンプル出力 2 2 1 1 $3$ 番目の人は,$1$ 番目の人とも $2$ 番目の人とも一緒にいた時間が $0$ なので,最も小さい $1$ を出力する.
[ { "submission_id": "aoj_3105_10865779", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct PairTime {\n int i;\n int j;\n long long duration;\n};\n\n// Comparator to sort PairTime by i then by j\nbool cmp_pair(const PairTime &a, const PairTime &b) {\n if(a.i != b.i) return a.i < b.i;\n return a.j < b.j;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(0);\n \n int N, M;\n long long T;\n while(cin >> N >> M >> T){\n // Структура для событий\n struct Event {\n long long time;\n int person;\n int type; // 1 = вход, 0 = выход\n };\n vector<Event> events(M);\n for(int i=0;i<M;i++){\n cin >> events[i].time >> events[i].person >> events[i].type;\n }\n \n // Текущее время и набор людей в комнате\n long long current_time = 0;\n vector<int> current_set; // Люди в комнате\n current_set.reserve(100); // По условию, не более 100 человек\n \n // Список пар и времени их совместного пребывания\n vector<PairTime> pair_times;\n pair_times.reserve((long long)M * 100); // Оценка размера\n \n for(int i=0;i<M;i++){\n long long event_time = events[i].time;\n int person = events[i].person;\n int type = events[i].type;\n \n long long duration = event_time - current_time;\n if(duration > 0 && current_set.size() >=2){\n // Перебираем все пары в текущем наборе\n for(int p=0; p < current_set.size(); p++){\n for(int q=p+1; q < current_set.size(); q++){\n int a = current_set[p];\n int b = current_set[q];\n if(a > b) swap(a, b);\n pair_times.push_back(PairTime{a, b, duration});\n }\n }\n }\n \n // Обновляем набор людей в комнате\n if(type ==1){\n current_set.push_back(person);\n }\n else{\n // Удаляем человека из набора\n int pos = -1;\n for(int p=0; p < current_set.size(); p++) if(current_set[p] == person){ pos = p; break;}\n if(pos != -1){\n current_set.erase(current_set.begin() + pos);\n }\n }\n \n current_time = event_time;\n }\n \n // Обработка оставшегося времени до T\n if(current_time < T && current_set.size() >=2){\n long long duration = T - current_time;\n for(int p=0; p < current_set.size(); p++){\n for(int q=p+1; q < current_set.size(); q++){\n int a = current_set[p];\n int b = current_set[q];\n if(a > b) swap(a, b);\n pair_times.push_back(PairTime{a, b, duration});\n }\n }\n }\n \n // Сортируем пары по (i, j)\n sort(pair_times.begin(), pair_times.end(), cmp_pair);\n \n // Массивы для хранения максимального времени и соответствующего друга\n vector<long long> max_time(N+1, 0);\n vector<int> max_friend_result(N+1, 0);\n \n // Аггрегируем время для каждой пары и обновляем максимальные значения\n int prev_i = -1, prev_j = -1;\n long long current_sum = 0;\n for(auto &p : pair_times){\n if(p.i != prev_i || p.j != prev_j){\n if(prev_i != -1){\n // Обновляем для предыдущей пары\n if(current_sum > max_time[prev_i] || (current_sum == max_time[prev_i] && prev_j < max_friend_result[prev_i])){\n max_time[prev_i] = current_sum;\n max_friend_result[prev_i] = prev_j;\n }\n if(current_sum > max_time[prev_j] || (current_sum == max_time[prev_j] && prev_i < max_friend_result[prev_j])){\n max_time[prev_j] = current_sum;\n max_friend_result[prev_j] = prev_i;\n }\n }\n // Сбрасываем для новой пары\n prev_i = p.i;\n prev_j = p.j;\n current_sum = p.duration;\n }\n else{\n current_sum += p.duration;\n }\n }\n // Обрабатываем последнюю пару\n if(prev_i != -1){\n if(current_sum > max_time[prev_i] || (current_sum == max_time[prev_i] && prev_j < max_friend_result[prev_i])){\n max_time[prev_i] = current_sum;\n max_friend_result[prev_i] = prev_j;\n }\n if(current_sum > max_time[prev_j] || (current_sum == max_time[prev_j] && prev_i < max_friend_result[prev_j])){\n max_time[prev_j] = current_sum;\n max_friend_result[prev_j] = prev_i;\n }\n }\n \n // Для каждого человека, если он не был в комнате с кем-либо, назначаем минимальный номер другого человека\n for(int person=1; person<=N; person++){\n if(max_time[person]==0){\n // Находим минимальный номер другого человека\n // Так как номера начинаются с 1, минимальный возможный другой номер - 1\n // Если person !=1, назначаем 1, иначе 2\n if(person !=1){\n max_friend_result[person]=1;\n }\n else{\n max_friend_result[person]=2;\n }\n }\n }\n \n // Выводим результат для каждого человека\n for(int person=1; person<=N; person++){\n cout << max_friend_result[person] << \"\\n\";\n }\n }\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 52684, "score_of_the_acc": -0.5619, "final_rank": 1 }, { "submission_id": "aoj_3105_9172470", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) { return (ull)rng() % B; }\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int n, m, t;\n cin >> n >> m >> t;\n vector<vector<pair<int,int>>> lg(n);\n vector<int> in(n);\n vector<int> st;\n\n auto push = [&](int tm, int x) -> void {\n in[x] = tm;\n st.push_back(x);\n };\n auto pop = [&](int tm, int x) -> void {\n for (int i = 0; i < st.size(); ++i) {\n if (st[i] == x) {\n swap(st[i], st.back());\n st.pop_back();\n i -= 1;\n } else {\n int y = st[i];\n lg[x].push_back({y, tm - max(in[x], in[y])});\n lg[y].push_back({x, tm - max(in[x], in[y])});\n }\n }\n };\n for (int i = 0; i < m; ++i) {\n int a, b, c;\n cin >> a >> b >> c;\n if (c == 1) push(a, b - 1);\n else pop(a, b - 1);\n }\n vector<int> v;\n for (int i : st) {\n v.push_back(i);\n }\n for (int i : v) {\n pop(t, i);\n }\n\n vector<int> res(n);\n vector<int> mx(n);\n res[0] = 1;\n for (int i = 0; i < n; ++i) {\n sort(lg[i].begin(), lg[i].end());\n for (int j = 0; j < lg[i].size();) {\n int y = lg[i][j].first;\n int sum = 0;\n while (j < lg[i].size() and lg[i][j].first == y) {\n sum += lg[i][j].second;\n j += 1;\n }\n if (mx[i] < sum) {\n mx[i] = sum;\n res[i] = y;\n }\n }\n }\n\n for (int i = 0; i < n; ++i) {\n cout << res[i] + 1 << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 91748, "score_of_the_acc": -0.6798, "final_rank": 2 }, { "submission_id": "aoj_3105_4825252", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nunordered_map<int,int> mp[100010];\nsigned main(){\n // ios::sync_with_stdio(false);\n\t// cin.tie(0);\n // cout << fixed << setprecision(20);\n\n int n,m,t;\n //cin>>n>>m>>t;\n scanf(\"%d %d %d\",&n,&m,&t);\n vector<pair<int,pair<int,int>>> v;\n for(int i=0;i<m;i++){\n int a,b,c;\n //cin>>a>>b>>c;\n scanf(\"%d %d %d\",&a,&b,&c);\n b--;\n v.push_back(make_pair(a,make_pair(b,c)));\n }\n //sort(v.begin(),v.end());\n pair<int,int> ans[n]={};\n ans[0].second = 1;\n int enter[n]={};\n set<int> st;\n\n for(int i=0;i<m;i++){\n int p = v[i].second.first;\n //cerr << v[i].first << \" \" << v[i].second.first << \" \" << v[i].second.second<<endl;\n if(v[i].second.second == 1){\n st.insert(p);\n enter[p] = v[i].first;\n }\n else{\n st.erase(p);\n for(auto j:st){\n int mini=p,ma=j;\n if(mini>ma) swap(mini,ma);\n pair<int,int> pa = make_pair(mini,ma);\n \n int k = mp[mini][ma] += v[i].first - max(enter[p],enter[j]);\n if(ans[p].first == k){\n ans[p].second = min(ans[p].second,j);\n }\n else if(ans[p].first < k){\n ans[p] = make_pair(k,j);\n }\n if(ans[j].first == k){\n ans[j].second = min(ans[j].second,p);\n }\n else if(ans[j].first < k){\n ans[j] = make_pair(k,p);\n }\n }\n }\n }\n for(auto p:st){\n for(auto j:st){\n if(p>=j) continue;\n int mini = p,ma=j;\n pair<int,int> pa = make_pair(mini,ma);\n int k = mp[mini][ma] += t - max(enter[p],enter[j]);\n if(ans[p].first == k){\n ans[p].second = min(ans[p].second,j);\n }\n else if(ans[p].first < k){\n ans[p] = make_pair(k,j);\n }\n if(ans[j].first == k){\n ans[j].second = min(ans[j].second,p);\n }\n else if(ans[j].first < k){\n ans[j] = make_pair(k,p);\n }\n }\n }\n for(auto i:ans){\n //cout << i.first << \" \";\n printf(\"%d\\n\",i.second+1);\n }\n}", "accuracy": 1, "time_ms": 610, "memory_kb": 169044, "score_of_the_acc": -1.4118, "final_rank": 9 }, { "submission_id": "aoj_3105_4819342", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << endl;\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const vector<T> &v) {\n for (auto e : v) cout << e << ' ';\n cout << endl;\n}\n\n//------------------------- Libraries -------------------------//\n\n//--------------------------- Solve ---------------------------//\n\nvoid solve() {\n int N, M, T; cin >> N >> M >> T;\n vector<int> in_time(N);\n set<int> in_people;\n vector<pair<int, int> > ans(N);\n\n vector<pair<pair<int, int>, int> > p(M);\n for (int i = 0; i < M; i++) {\n int a, b, c; cin >> a >> b >> c;\n b--;\n p[i] = make_pair(make_pair(a, b), c);\n }\n\n sort(p.begin(), p.end());\n\n for (int i = 0; i < M; i++) {\n int t = p[i].first.first, person = p[i].first.second, c = p[i].second;\n \n if (c == 1) {\n in_people.insert(person);\n in_time[person] = t;\n }\n else if (c == 0) {\n int time0 = t - in_time[person];\n in_people.erase(person);\n for (int e : in_people) {\n int time = min(time0, t - in_time[e]);\n if (time > ans[e].second) {\n ans[e].first = person;\n ans[e].second = time;\n }\n if (time > ans[person].second) {\n ans[person].first = e;\n ans[person].second = time;\n }\n if (time == ans[e].second) {\n ans[e].first = min(person, ans[e].first);\n }\n if (time == ans[person].second) {\n ans[person].first = min(e, ans[person].first);\n }\n }\n }\n }\n\n if (!in_people.empty()) {\n for (int e : in_people) {\n for (int e2 : in_people) {\n if (e == e2) continue;\n int time = min(T - in_time[e], T - in_time[e2]);\n if (time == ans[e].second) {\n ans[e].first = min(e2, ans[e].first);\n }\n if (time > ans[e].second) {\n ans[e].first = e2;\n ans[e].second = time;\n }\n }\n }\n }\n\n for (int i = 0; i < N; i++) {\n if (i == 0 && ans[i].first == 0) cout << 2 << '\\n';\n else cout << ans[i].first + 1 << '\\n';\n }\n}\n\nint main() {\n //cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 0.2682926829268293, "time_ms": 20, "memory_kb": 3516, "score_of_the_acc": -0.0011, "final_rank": 19 }, { "submission_id": "aoj_3105_4819291", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << endl;\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const vector<T> &v) {\n for (auto e : v) cout << e << ' ';\n cout << endl;\n}\n\n//------------------------- Libraries -------------------------//\n\n//--------------------------- Solve ---------------------------//\n\nvoid solve() {\n int N, M, T; cin >> N >> M >> T;\n vector<int> in_time(N);\n set<int> in_people;\n vector<pair<int, int> > ans(N);\n\n vector<pair<pair<int, int>, int> > p(M);\n for (int i = 0; i < M; i++) {\n int a, b, c; cin >> a >> b >> c;\n b--;\n p[i] = make_pair(make_pair(a, b), c);\n }\n\n sort(p.begin(), p.end());\n\n for (int i = 0; i < M; i++) {\n int t = p[i].first.first, person = p[i].first.second, c = p[i].second;\n \n if (c == 1) {\n in_people.insert(person);\n in_time[person] = t;\n }\n else if (c == 0) {\n int time0 = t - in_time[person];\n in_people.erase(person);\n for (int e : in_people) {\n int time = min(time0, t - in_time[e]);\n if (time > ans[e].second) {\n ans[e].first = person;\n ans[e].second = time;\n }\n if (time > ans[person].second) {\n ans[person].first = e;\n ans[person].second = time;\n }\n }\n }\n }\n\n if (!in_people.empty()) {\n for (int e : in_people) {\n for (int e2 : in_people) {\n if (e == e2) continue;\n int time = min(T - in_time[e], T - in_time[e2]);\n if (time == ans[e].second) {\n ans[e].first = min(e2, ans[e].first);\n }\n if (time > ans[e].second) {\n ans[e].first = e2;\n ans[e].second = time;\n }\n }\n }\n }\n\n for (int i = 0; i < N; i++) {\n if (i == 0 && ans[i].first == 0) cout << 2 << '\\n';\n else cout << ans[i].first + 1 << '\\n';\n }\n}\n\nint main() {\n //cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 0.2682926829268293, "time_ms": 20, "memory_kb": 3568, "score_of_the_acc": -0.0013, "final_rank": 20 }, { "submission_id": "aoj_3105_4122732", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n#include <set>\nnamespace std {\n\ttemplate<>\n\tstruct hash<typename std::pair<int, int>> {\n\t\tsize_t operator()(const std::pair<int, int>& pair) const {\n\t\t\treturn (pair.first << 16) | (pair.second);\n\t\t}\n\t};\n}\nstd::pair<int, int> pair(int a, int b) {\n\tif (a > b) std::swap(a, b);\n\treturn std::make_pair(a, b);\n}\nstruct Query {\n\tint a, b, c;\n\tbool operator<(const Query& query) const {\n\t\treturn a == query.a ? (c == 0 && query.c == 1) : a < query.a;\n\t}\n};\nint main() {\n\tstd::cin.tie(0); std::cin.sync_with_stdio(false);\n\tint n, m, t; std::cin >> n >> m >> t;\n\tstd::vector<int> in_time(n);\n\tstd::unordered_set<int> room; room.reserve(100);\n\tstd::unordered_map<std::pair<int, int>, int> history; history.reserve(m * 100);\n\tstd::vector<Query> query(m); \n\tfor (auto& q : query) {\n\t\tstd::cin >> q.a >> q.b >> q.c; --q.b;\n\t}\n\tstd::sort(query.begin(), query.end());\n\tfor (const auto q:query) {\n\t\tif (q.c == 0) {\n\t\t\troom.erase(q.b);\n\t\t\tfor (const auto other : room) {\n\t\t\t\thistory[pair(other, q.b)] += q.a - std::max(in_time[other], in_time[q.b]);\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\troom.insert(q.b);\n\t\t\tin_time[q.b] = q.a;\n\t\t}\n\t}\n\tfor (const auto self : room) {\n\t\tfor (const auto other : room) if (self < other) {\n\t\t\thistory[pair(self, other)] += t - std::max(in_time[self], in_time[other]);\n\t\t}\n\t}\n\tstd::vector<std::pair<int, int>> friends(n, std::make_pair(0, -1)); friends[0].first = 1;\n\tfor (const auto p : history) {\n\t\tif (p.second == 0) continue;\n\t\tif (friends[p.first.first].second < p.second) {\n\t\t\tfriends[p.first.first] = std::make_pair(p.first.second, p.second);\n\t\t}\n\t\telse if (friends[p.first.first].second == p.second && friends[p.first.first].first > p.first.second) {\n\t\t\tfriends[p.first.first] = std::make_pair(p.first.second, p.second);\n\t\t}\n\t\tif (friends[p.first.second].second < p.second) {\n\t\t\tfriends[p.first.second] = std::make_pair(p.first.first, p.second);\n\t\t}\n\t\telse if (friends[p.first.second].second == p.second && friends[p.first.second].first > p.first.first) {\n\t\t\tfriends[p.first.second] = std::make_pair(p.first.first, p.second);\n\t\t}\n\t}\n\tfor (const auto f : friends) {\n\t\tstd::cout << f.first + 1 << '\\n';\n\t}\n}", "accuracy": 1, "time_ms": 480, "memory_kb": 201284, "score_of_the_acc": -1.4083, "final_rank": 8 }, { "submission_id": "aoj_3105_3925955", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3105.cc: Find a Friend\n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\n\n/* typedef */\n\ntypedef pair<int,int> pii;\ntypedef set<pii> spii;\n\n/* global variables */\n\nint ets[MAX_N], maxts[MAX_N], maxis[MAX_N];\nspii rset;\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, m, t;\n scanf(\"%d%d%d\", &n, &m, &t);\n\n maxis[0] = 1;\n\n while (m--) {\n int a, b, c;\n scanf(\"%d%d%d\", &a, &b, &c);\n b--;\n\n if (c == 1) { // enter\n ets[b] = a;\n rset.insert(pii(a, b));\n }\n else { // leave\n int tb = a - ets[b];\n rset.erase(pii(ets[b], b));\n ets[b] = 0;\n\n for (spii::iterator sit = rset.begin(); sit != rset.end(); sit++) {\n\tint d = sit->second;\n\tint tbd = min(a - ets[d], tb);\n\n\tif (maxts[b] < tbd || (maxts[b] == tbd && maxis[b] > d))\n\t maxts[b] = tbd, maxis[b] = d;\n\tif (maxts[d] < tbd || (maxts[d] == tbd && maxis[d] > b))\n\t maxts[d] = tbd, maxis[d] = b;\n }\n }\n }\n\n int pi = -1;\n for (spii::iterator sit = rset.begin(); sit != rset.end(); sit++) {\n int a = sit->first, b = sit->second;\n if (pi >= 0) {\n int tb = t - a;\n if (maxts[b] < tb || (maxts[b] == tb && maxis[b] > pi))\n\tmaxts[b] = tb, maxis[b] = pi;\n if (maxts[pi] < tb || (maxts[pi] == tb && maxis[pi] > b))\n\tmaxts[pi] = tb, maxis[pi] = b;\n if (pi > b) pi = b;\n }\n else\n pi = b;\n }\n\n for (int i = 0; i < n; i++) printf(\"%d\\n\", maxis[i] + 1);\n return 0;\n}", "accuracy": 0.2682926829268293, "time_ms": 20, "memory_kb": 3268, "score_of_the_acc": 0, "final_rank": 18 }, { "submission_id": "aoj_3105_3913572", "code_snippet": "//\n// Created by yamunaku on 2019/10/06.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\ntypedef long long ll;\ntypedef long double ld;\ntypedef vector<int> vi;\ntypedef vector<vector<int>> mti;\ntypedef vector<ll> vl;\ntypedef vector<vector<ll>> mtl;\n\n\nint main(){\n CFS;\n int n, m, t;\n cin >> n >> m >> t;\n map<int,int> mp[100000];\n map<int, int> st;\n int a, b, c, tt;\n rep(i, m){\n cin >> a >> b >> c;\n b--;\n if(c == 1){\n st[b] = a;\n }else{\n tt = st[b];\n st.erase(st.find(b));\n for(auto &x: st){\n mp[min(b, x.first)][max(b, x.first)] += a - max(tt, x.second);\n }\n }\n }\n while(!st.empty()){\n b = st.begin()->first;\n tt = st.begin()->second;\n st.erase(st.begin());\n for(auto &x: st){\n mp[min(b, x.first)][max(b, x.first)] += t - max(tt, x.second);\n }\n }\n vector<pair<int, int>> ans(n, {0, 0});\n ans[0] = {0, 1};\n rep(i,n){\n for(auto &q: mp[i]){\n ans[i] = min(ans[i], {-q.second, q.first});\n ans[q.first] = min(ans[q.first], {-q.second, i});\n }\n }\n rep(i, n){\n cout << ans[i].second + 1 << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 900, "memory_kb": 180596, "score_of_the_acc": -1.7931, "final_rank": 15 }, { "submission_id": "aoj_3105_3908447", "code_snippet": "#include <iostream>\n#include <utility>\n#include <vector>\n#include <set>\n\nusing namespace std;\ntypedef pair<int, int> P;\n\nint n, m, t;\nvector<P> vec[100005];\nset<int> S;\nint sum[100005];\nbool used[100005];\nvector<int> uvec;\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n >> m >> t;\n\tint a, b, c;\n\tfor(int i = 1; i <= m; i++){\n\t\tcin >> a >> b >> c;\n\t\tif(c == 1){\n\t\t\tfor(auto it = S.begin(); it != S.end(); it++){\n\t\t\t\tvec[*it].push_back(make_pair(b, -a));\n\t\t\t\tvec[b].push_back(make_pair(*it, -a));\n\t\t\t}\n\t\t\tS.insert(b);\n\t\t}\n\t\telse{\n\t\t\tS.erase(b);\n\t\t\tfor(auto it = S.begin(); it != S.end(); it++){\n\t\t\t\tvec[*it].push_back(make_pair(b, a));\n\t\t\t\tvec[b].push_back(make_pair(*it, a));\n\t\t\t}\n\t\t}\n\t}\n\tfor(auto it = S.begin(); it != S.end(); it++){\n\t\tfor(auto it2 = S.begin(); it2 != S.end(); it2++){\n\t\t\tif(*it == *it2) continue;\n\t\t\tvec[*it].push_back(make_pair(*it2, t));\n\t\t}\n\t}\n\t\n\tfor(int i = 1; i <= n; i++){\n\t\tfor(int j = 0; j < vec[i].size(); j++){\n\t\t\tint id = vec[i][j].first;\n\t\t\tif(!used[id]){\n\t\t\t\tused[id] = true;\n\t\t\t\tuvec.push_back(id);\n\t\t\t}\n\t\t\tsum[id] += vec[i][j].second;\n\t\t}\n\t\tP ans = make_pair(0, -1);\n\t\tif(i == 1) ans.second = -2;\n\t\tfor(int j = 0; j < uvec.size(); j++){\n\t\t\tint id = uvec[j];\n\t\t\tans = max(ans, make_pair(sum[id], -id));\n\t\t\tused[id] = false;\n\t\t\tsum[id] = 0;\n\t\t}\n\t\tuvec.clear();\n\t\tcout << -ans.second << \"\\n\";\n\t}\n\tflush(cout);\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 172972, "score_of_the_acc": -1.0771, "final_rank": 4 }, { "submission_id": "aoj_3105_3887270", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n\nstruct Info{\n Info(int arg_index,int arg_value){\n index = arg_index;\n value = arg_value;\n }\n\n int index,value;\n};\n\nint N,M;\nint T,table[SIZE];\nvector<Info> info[SIZE];\n\nint main(){\n\n scanf(\"%d %d %d\",&N,&M,&T);\n\n set<int> SET;\n\n int TIME;\n int index,command;\n\n for(int i = 0; i < M; i++){\n\n scanf(\"%lld %d %d\",&TIME,&index,&command);\n index--;\n\n if(command == 0){ //退室命令\n\n SET.erase(index);\n\n for(auto another: SET){\n\n info[index].push_back(Info(another,TIME));\n info[another].push_back(Info(index,TIME));\n }\n\n }else{ //入室命令\n\n for(auto another: SET){\n\n info[index].push_back(Info(another,-TIME));\n info[another].push_back(Info(index,-TIME));\n }\n\n SET.insert(index);\n }\n }\n\n for(auto a: SET){\n for(auto b: SET){\n if(a >= b)continue;\n\n info[a].push_back(Info(b,T));\n info[b].push_back(Info(a,T));\n }\n }\n\n for(int i = 0; i < N; i++){\n\n table[i] = 0;\n }\n\n for(int i = 0; i < N; i++){\n\n vector<int> V;\n\n for(int k = 0; k < info[i].size(); k++){\n\n V.push_back(info[i][k].index);\n\n table[info[i][k].index] += info[i][k].value;\n }\n sort(V.begin(),V.end());\n V.erase(unique(V.begin(),V.end()),V.end());\n\n int maximum = 0;\n int ans = 0;\n if(i == 0){\n ans = 1;\n }\n\n for(int k = 0; k < V.size(); k++){\n\n if(maximum < table[V[k]]){\n maximum = table[V[k]];\n ans = V[k];\n }\n table[V[k]] = 0;\n }\n\n printf(\"%d\\n\",ans+1);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 650, "memory_kb": 172832, "score_of_the_acc": -1.4742, "final_rank": 11 }, { "submission_id": "aoj_3105_3886267", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <string>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <stdio.h>\n#include <assert.h>\nusing namespace std;\nint MOD = 1000000007;\n\nstruct FastSet {\n\tvector<int> list;\n\tvector<int> pos;\n\tvoid init(int N) {\n\t\tpos.resize(N, -1);\n\t\tlist.reserve(N);\n\t}\n\tvoid insert_all() {\n\t\tlist.clear();\n\t\tlist.resize(pos.size());\n\t\tfor (int i = 0; i < list.size(); i++) {\n\t\t\tpos[i] = list[i] = i;\n\t\t}\n\t}\n\tvoid insert(int a) {\n\t\tif (pos[a] == -1) {\n\t\t\tpos[a] = list.size();\n\t\t\tlist.push_back(a);\n\t\t}\n\t}\n\tvoid erase(int a) {\n\t\tif (pos[a] >= 0) {\n\t\t\tswap(list[pos[a]], list.back());\n\t\t\tpos[list[pos[a]]] = pos[a];\n\t\t\tpos[a] = -1;\n\t\t\tlist.pop_back();\n\t\t}\n\t}\n\tvoid flip(int a) {\n\t\tif (pos[a] == -1) {\n\t\t\tpos[a] = list.size();\n\t\t\tlist.push_back(a);\n\t\t}\n\t\telse {\n\t\t\tswap(list[pos[a]], list.back());\n\t\t\tpos[list[pos[a]]] = pos[a];\n\t\t\tpos[a] = -1;\n\t\t\tlist.pop_back();\n\t\t}\n\t}\n\tinline int size() {\n\t\treturn list.size();\n\t}\n\tinline void erase_all() {\n\t\tfor (int i : list) {\n\t\t\tpos[i] = -1;\n\t\t}\n\t\tlist.clear();\n\t}\n};\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tint N, M, T;\n\tcin >> N >> M >> T;\n\tint A, B, C;\n\tvector < pair<int, pair<int, int> > > vp(M);\n\tvector<vector<int> > V(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tcin >> A >> B >> C;\n\t\tvp[i].first = A;\n\t\tvp[i].second.first = C;\n\t\tvp[i].second.second = B - 1;\n\t\tV[B - 1].push_back(A);\n\t}\n\n\tfor (int i = 0; i < N; i++) {\n\t\tif ((int)V[i].size() % 2 == 1) {\n\t\t\tV[i].push_back(T);\n\t\t}\n\t}\n\n\n\tsort(vp.begin(), vp.end());\n\tvector<int> cur(N, 0);\n\n\n\tFastSet fs;\n\tfs.init(N);\n\tvector<map<int, int> > vm(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tA = vp[i].first;\n\t\tB = vp[i].second.second;\n\t\tC = vp[i].second.first;\n\t\t//assert(A == V[B][cur[B]]);\n\t\tcur[B]++;\n\t\tif (C == 0) {\n\t\t\tfs.erase(B);\n\t\t}\n\t\telse {\n\t\t\t//assert(cur[B] % 2 == 1);\n\n\t\t\tint t = V[B][cur[B]];\n\t\t\tif (t > A) {\n\t\t\t\tfor (const int &j : fs.list) {\n\t\t\t\t\t//assert(cur[i] % 2 == 1);\n\t\t\t\t\t//assert(val > 0);\n\t\t\t\t\t//cerr << \" \" << B << \" \" << i << \" \" << val << endl;\n\t\t\t\t\tvm[B][j] += min(t, V[j][cur[j]]) - A;\n\t\t\t\t\t//vm[j][B] += val;\n\t\t\t\t}\n\t\t\t\tfs.insert(B);\n\t\t\t\t//assert(fs.size() <= 100);\n\t\t\t}\n\t\t}\n\t}\n\tvector<int> res(N, 0);\n\tres[0] = 1;\n\tvector<int> mx(N, 0);\n\tfor (int i = 0; i < N; i++) {\n\n\t\tvector<pair<int, int> > vp;\n\t\tfor (auto &m : vm[i]) {\n\t\t\tvp.push_back(m);\n\t\t}\n\t\tfor (auto &m : vp) {\n\t\t\tint t = m.second;\n\t\t\tauto a = vm[m.first].find(i);\n\t\t\tif (a != vm[m.first].end()) {\n\t\t\t\tt += (*a).second;\n\t\t\t}\n\t\t\tif (mx[i] <= t) {\n\t\t\t\tif (mx[i] < t) {\n\t\t\t\t\tmx[i] = t;\n\t\t\t\t\tres[i] = m.first;\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tres[i] = min(res[i], m.first);\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (mx[m.first] <= t) {\n\t\t\t\tif (mx[m.first] < t) {\n\t\t\t\t\tmx[m.first] = t;\n\t\t\t\t\tres[m.first] = i;\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tres[m.first] = min(res[m.first], i);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tfor(int i=0;i<N;i++){\n\t\tcout << res[i] + 1 << '\\n';\n\t}\n\tcout << flush;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 620, "memory_kb": 128904, "score_of_the_acc": -1.2437, "final_rank": 7 }, { "submission_id": "aoj_3105_3878222", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\nint A[SIZE], B[SIZE], C[SIZE];\nmap<int, int> mm[SIZE];\n\nll ans[SIZE], in[SIZE];\n\nint main(){\n int N, M, T;\n set<int> ss;\n\n cin >> N >> M >> T;\n\n for(int i=0; i<M; i++) {\n cin >> A[i] >> B[i] >> C[i];\n B[i]--;\n }\n\n for(int i=0; i<M; i++) {\n if (C[i] == 0) {\n auto it = ss.find(B[i]);\n ss.erase(it);\n\n for(int p : ss) {\n int a = p, b = B[i];\n int add = A[i] - max(in[a], in[b]);\n if (a > b) swap(a, b);\n mm[a][b] += add;\n }\n\n in[B[i]] = 0;\n\n } else {\n\n ss.insert(B[i]);\n in[B[i]] = A[i];\n }\n }\n\n for(int p : ss) {\n for(int q : ss) {\n if (p < q) {\n int add = T - max(in[p], in[q]);\n mm[p][q] += add;\n }\n }\n }\n\n const ll e8 = 100000000LL;\n\n for(int i=0; i<N; i++) {\n ans[i] = 0 * e8 + N - (i == 0);\n }\n\n for(int i=0; i<N; i++) {\n for(auto p : mm[i]) {\n int a = i;\n int b = p.first;\n int v = p.second;\n\n ans[a] = max(ans[a], v * e8 + N - b);\n ans[b] = max(ans[b], v * e8 + N - a);\n }\n }\n\n for(int i=0; i<N; i++) {\n int p = N - ans[i] % e8 + 1;\n\n printf(\"%d\\n\", p);\n }\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 840, "memory_kb": 187580, "score_of_the_acc": -1.7561, "final_rank": 14 }, { "submission_id": "aoj_3105_3878013", "code_snippet": "#include <bits/stdc++.h>\n#define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,NAME,...) NAME\n#define pr(...) cerr<< GET_MACRO(__VA_ARGS__,pr8,pr7,pr6,pr5,pr4,pr3,pr2,pr1)(__VA_ARGS__) <<endl\n#define pr1(a) (#a)<<\"=\"<<(a)<<\" \"\n#define pr2(a,b) pr1(a)<<pr1(b)\n#define pr3(a,b,c) pr1(a)<<pr2(b,c)\n#define pr4(a,b,c,d) pr1(a)<<pr3(b,c,d)\n#define pr5(a,b,c,d,e) pr1(a)<<pr4(b,c,d,e)\n#define pr6(a,b,c,d,e,f) pr1(a)<<pr5(b,c,d,e,f)\n#define pr7(a,b,c,d,e,f,g) pr1(a)<<pr6(b,c,d,e,f,g)\n#define pr8(a,b,c,d,e,f,g,h) pr1(a)<<pr7(b,c,d,e,f,g,h)\n#define prArr(a) {cerr<<(#a)<<\"={\";int i=0;for(auto t:(a))cerr<<(i++?\", \":\"\")<<t;cerr<<\"}\"<<endl;}\nusing namespace std;\nusing Int = long long;\nusing _int = int;\nusing ll = long long;\nusing Double = long double;\nconst Int INF = (1LL<<60)+1e9; // ~ 1.15 * 1e18\nconst Int mod = (1e9)+7;\nconst Double EPS = 1e-8;\nconst Double PI = 6.0 * asin((Double)0.5);\nusing P = pair<Int,Int>;\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\ntemplate<class T1, class T2> ostream& operator<<(ostream& o,pair<T1,T2> p){return o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";}\ntemplate<class T1, class T2, class T3> ostream& operator<<(ostream& o,tuple<T1,T2,T3> t){\n return o<<\"(\"<<get<0>(t)<<\",\"<<get<1>(t)<<\",\"<<get<2>(t)<<\")\";}\ntemplate<class T1, class T2> istream& operator>>(istream& i,pair<T1,T2> &p){return i>>p.first>>p.second;}\ntemplate<class T> ostream& operator<<(ostream& o,vector<T> a){Int i=0;for(T t:a)o<<(i++?\" \":\"\")<<t;return o;}\ntemplate<class T> istream& operator>>(istream& i,vector<T> &a){for(T &t:a)i>>t;return i;}\n//INSERT ABOVE HERE\n\n\nsigned main(){\n srand((unsigned)time(NULL));\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n Int N, M, T;\n cin>>N>>M>>T;\n\n vector<unordered_map<_int,_int> > cnt(N);\n vector<P> rnk(N, P(0, 0));\n rnk[0] = P(0, -1);\n map<Int, Int> room;\n\n auto calc =[&](Int a, Int b, Int c){\n if(c == 0){\n Int start1 = room[b];\n Int end1 = a;\n\n room.erase(b);\n for(auto p:room){\n Int t, start2; tie(t, start2) = p;\n Int score = end1 - max(start1, start2);\n if(b < t){\n cnt[b][t] += score;\n _int val = cnt[b][t];\n Max(rnk[b], P(val, -t));\n Max(rnk[t], P(val, -b));\n }\n else{\n cnt[t][b] += score;\n _int val = cnt[t][b];\n Max(rnk[b], P(val, -t));\n Max(rnk[t], P(val, -b));\n\n }\n }\n }\n if(c == 1) {\n room[b] = a;\n }\n };\n\n\n for(Int i=0;i<M;i++){\n Int a, b, c;\n cin>>a>>b>>c; b--;\n if(a > T) continue;\n calc(a, b, c);\n }\n\n for(Int i=0;i<N;i++){\n if(!room.count(i)) continue;\n calc(T, i, 0);\n }\n\n for(auto ans:rnk){\n cout<<-ans.second+1<<endl;\n }\n\n\n\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 690, "memory_kb": 167668, "score_of_the_acc": -1.4966, "final_rank": 12 }, { "submission_id": "aoj_3105_3877136", "code_snippet": "#include <iostream>\n#include <string>\n#include <stdlib.h>\n#include <vector>\n#include <unordered_map>\n#include <set>\n#include <algorithm>\n#include <utility>\n#define llint long long\n\nusing namespace std;\ntypedef pair<llint, llint> P;\n\nllint n, m, t;\nset<llint> S;\nunordered_map<llint, llint> mp;\nP ans[100005];\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n >> m >> t;\n\tllint a, b, c;\n\tfor(int i = 1; i <= m; i++){\n\t\tcin >> a >> b >> c;\n\t\tif(c == 1){\n\t\t\tfor(auto it = S.begin(); it != S.end(); it++){\n\t\t\t\tint u = *it, v = b;\n\t\t\t\tif(u > v) swap(u, v);\n\t\t\t\tmp[u*100000+v] -= a;\n\t\t\t}\n\t\t\tS.insert(b);\n\t\t}\n\t\telse{\n\t\t\tS.erase(b);\n\t\t\tfor(auto it = S.begin(); it != S.end(); it++){\n\t\t\t\tllint u = *it, v = b;\n\t\t\t\tif(u > v) swap(u, v);\n\t\t\t\tmp[u*100000+v] += a;\n\t\t\t}\n\t\t}\n\t}\n\tvector<llint> vec;\n\tfor(auto it = S.begin(); it != S.end(); it++) vec.push_back(*it);\n\tfor(int i = 0; i < vec.size(); i++){\n\t\tfor(int j = 0; j < vec.size(); j++){\n\t\t\tif(i >= j) continue;\n\t\t\tmp[vec[i]*100000+vec[j]] += t;\n\t\t}\n\t}\n\t\n\tfor(int i = 1; i <= n; i++){\n\t\tans[i] = make_pair(0, 1);\n\t\tif(i == 1) ans[i] = make_pair(0, 2);\n\t}\n\tfor(auto it = mp.begin(); it != mp.end(); it++){\n\t\tllint u = it->first / 100000, v = it->first % 100000;\n\t\tans[u] = min(ans[u], make_pair(-it->second, v));\n\t\tans[v] = min(ans[v], make_pair(-it->second, u));\n\t}\n\tfor(int i = 1; i <= n; i++){\n\t\tcout << ans[i].second << \"\\n\";\n\t}\n\tflush(cout);\n\t\n\treturn 0;\n}", "accuracy": 0.2926829268292683, "time_ms": 780, "memory_kb": 80716, "score_of_the_acc": -1.21, "final_rank": 17 }, { "submission_id": "aoj_3105_3877088", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\ntypedef complex<D> P;\n#define F first\n#define S second\nconst ll MOD=1000000007;\n//const ll MOD=998244353;\n\n#define endl \"\\n\"\n\ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){ll i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\n\nconst ll MX=100100;\n\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,M,T;\n cin>>N>>M>>T;\n vector<pair<int,pair<int,int>>> A(M);\n cin>>A;\n for(auto &I:A){swap(I.S.F,I.S.S);}\n sort(A.begin(),A.end());\n set<int> S;\n vector<vector<pll>> ev(N);\n pair<int,int> ans[MX];\n for(int i=0;i<N;i++){ans[i]={0,0};}\n ans[0]={0,-1};\n for(int i=0;i<M;i++){\n int a=A[i].F,b=A[i].S.S,c=A[i].S.F;\n b--;\n if(c==1){\n for(auto &I:S){\n ev[I].push_back({b,-a});\n ev[b].push_back({I,-a});\n }\n S.insert(b);\n }\n else{\n S.erase(b);\n for(auto &I:S){\n ev[I].push_back({b,a});\n ev[b].push_back({I,a});\n }\n }\n }\n vector<int> rem;\n for(auto &I:S){rem.push_back(I);}\n for(auto &b:rem){\n int a=T;\n S.erase(b);\n for(auto &I:S){\n ev[I].push_back({b,a});\n ev[b].push_back({I,a});\n }\n }\n vector<ll> bk(N,0);\n for(int i=0;i<N;i++){\n for(auto &I:ev[i]){\n bk[I.F]+=I.S;\n ans[i]=max(ans[i],{bk[I.F],-1*I.F});\n }\n for(auto &I:ev[i]){\n bk[I.F]-=I.S;\n }\n cout<<ans[i].S*-1+1<<endl;\n }\n \n \n \n return 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 226868, "score_of_the_acc": -1.2159, "final_rank": 6 }, { "submission_id": "aoj_3105_3877011", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nunordered_map<int,int> mp[100010];\nsigned main(){\n // ios::sync_with_stdio(false);\n\t// cin.tie(0);\n // cout << fixed << setprecision(20);\n\n int n,m,t;\n //cin>>n>>m>>t;\n scanf(\"%d %d %d\",&n,&m,&t);\n vector<pair<int,pair<int,int>>> v;\n for(int i=0;i<m;i++){\n int a,b,c;\n //cin>>a>>b>>c;\n scanf(\"%d %d %d\",&a,&b,&c);\n b--;\n v.push_back(make_pair(a,make_pair(b,c)));\n }\n //sort(v.begin(),v.end());\n pair<int,int> ans[n]={};\n ans[0].second = 1;\n int enter[n]={};\n set<int> st;\n\n for(int i=0;i<m;i++){\n int p = v[i].second.first;\n //cerr << v[i].first << \" \" << v[i].second.first << \" \" << v[i].second.second<<endl;\n if(v[i].second.second == 1){\n st.insert(p);\n enter[p] = v[i].first;\n }\n else{\n st.erase(p);\n for(auto j:st){\n int mini=p,ma=j;\n if(mini>ma) swap(mini,ma);\n pair<int,int> pa = make_pair(mini,ma);\n \n int k = mp[mini][ma] += v[i].first - max(enter[p],enter[j]);\n if(ans[p].first == k){\n ans[p].second = min(ans[p].second,j);\n }\n else if(ans[p].first < k){\n ans[p] = make_pair(k,j);\n }\n if(ans[j].first == k){\n ans[j].second = min(ans[j].second,p);\n }\n else if(ans[j].first < k){\n ans[j] = make_pair(k,p);\n }\n }\n }\n }\n for(auto p:st){\n for(auto j:st){\n if(p>=j) continue;\n int mini = p,ma=j;\n pair<int,int> pa = make_pair(mini,ma);\n int k = mp[mini][ma] += t - max(enter[p],enter[j]);\n if(ans[p].first == k){\n ans[p].second = min(ans[p].second,j);\n }\n else if(ans[p].first < k){\n ans[p] = make_pair(k,j);\n }\n if(ans[j].first == k){\n ans[j].second = min(ans[j].second,p);\n }\n else if(ans[j].first < k){\n ans[j] = make_pair(k,p);\n }\n }\n }\n for(auto i:ans){\n //cout << i.first << \" \";\n printf(\"%d\\n\",i.second+1);\n }\n}", "accuracy": 1, "time_ms": 610, "memory_kb": 169052, "score_of_the_acc": -1.4119, "final_rank": 10 }, { "submission_id": "aoj_3105_3876954", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=1e9+7;\n\nint N,M,T;\nvector<int> A,B,C;\n\npair<int,int> ans[100010];\nint in[100010];\n\nvoid update(int a,int b,int t){\n if(ans[a].first<t) ans[a]=mkp(t,b);\n else if(ans[a].first==t&&ans[a].second>b) ans[a]=mkp(t,b);\n}\n\nint main(){\n cin>>N>>M>>T;\n A.resize(M);\n B.resize(M);\n C.resize(M);\n rep(i,M) cin>>A[i]>>B[i]>>C[i];\n\n vector<int> last(N+1,0);\n for(int i=0;i<M;i++){\n if(C[i]==0) last[B[i]]=0;\n else last[B[i]]=1;\n }\n for(int i=1;i<=N;i++){\n if(last[i]>0){\n A.push_back(T);\n B.push_back(i);\n C.push_back(0);\n }\n if(i!=1) ans[i]=mkp(0,1);\n else ans[i]=mkp(0,2);\n }\n\n queue<int> Q;\n vector<vector<pair<int,int>>> v(N+1);\n for(int i=0;i<C.size();i++){\n if(C[i]==1){\n Q.push(B[i]);\n in[B[i]]=A[i];\n continue;\n }\n\n queue<int> nq;\n while(!Q.empty()){\n int t=Q.front();\n Q.pop();\n if(t!=B[i]){\n nq.push(t);\n int a=t,b=B[i];\n if(a>b) swap(a,b);\n int cost=A[i]-max(in[a],in[b]);\n v[a].push_back(mkp(b,cost));\n v[b].push_back(mkp(a,cost));\n //update(a,b,mp[mkp(a,b)]);\n }\n }\n\n while(!nq.empty()){\n Q.push(nq.front());\n nq.pop();\n }\n }\n\n vector<int> num(N+1,0);\n for(int i=1;i<=N;i++){\n for(int j=0;j<v[i].size();j++){\n num[v[i][j].first]+=v[i][j].second;\n }\n for(int j=0;j<v[i].size();j++){\n update(i,v[i][j].first,num[v[i][j].first]);\n num[v[i][j].first]=0;\n }\n }\n\n for(int i=1;i<=N;i++) cout<<ans[i].second<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 93044, "score_of_the_acc": -0.7197, "final_rank": 3 }, { "submission_id": "aoj_3105_3876857", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\nint A[SIZE], B[SIZE], C[SIZE];\nunordered_map<ll, int> mm;\n\nll ans[SIZE], in[SIZE];\n\nint main(){\n int N, M, T;\n set<int> ss;\n\n cin >> N >> M >> T;\n\n for(int i=0; i<M; i++) {\n cin >> A[i] >> B[i] >> C[i];\n B[i]--;\n\n assert(i == 0 || A[i-1] <= A[i]);\n }\n\n for(int i=0; i<M; i++) {\n if (C[i] == 0) {\n auto it = ss.find(B[i]);\n ss.erase(it);\n\n for(int p : ss) {\n int a = p, b = B[i];\n int add = A[i] - max(in[a], in[b]);\n if (a > b) swap(a, b);\n mm[a * N + b] += add;\n }\n\n assert(in[B[i]]);\n in[B[i]] = 0;\n\n } else {\n assert(in[B[i]] == 0);\n\n ss.insert(B[i]);\n in[B[i]] = A[i];\n }\n }\n\n for(int p : ss) {\n for(int q : ss) {\n if (p < q) {\n int add = T - max(in[p], in[q]);\n mm[p * N + q] += add;\n }\n }\n }\n\n const ll e8 = 100000000LL;\n\n for(int i=0; i<N; i++) {\n ans[i] = 0 * e8 + N - (i == 0);\n }\n\n for(auto p : mm) {\n int a = p.first / N;\n int b = p.first % N;\n int v = p.second;\n\n debug(p);\n\n ans[a] = max(ans[a], v * e8 + N - b);\n ans[b] = max(ans[b], v * e8 + N - a);\n }\n\n\n for(int i=0; i<N; i++) {\n int p = N - ans[i] % e8 + 1;\n\n printf(\"%d\\n\", p);\n }\n\n\n return 0;\n}", "accuracy": 0.2926829268292683, "time_ms": 740, "memory_kb": 81384, "score_of_the_acc": -1.1675, "final_rank": 16 }, { "submission_id": "aoj_3105_3876600", "code_snippet": "#include<iostream>\n#include<algorithm>\n#include<vector>\n#include<map>\n#include<cstdio>\nusing namespace std;\nint N,M,T;\nvector<pair<pair<int,int>,int> >ti;\nint main()\n{\n\tscanf(\"%d%d%d\",&N,&M,&T);\n\tmap<int,int>A;\n\tfor(int i=0;i<M;i++)\n\t{\n\t\tint a,b,c;\n\t\tscanf(\"%d%d%d\",&a,&b,&c);\n\t\tif(c==1)\n\t\t{\n\t\t\tA[b]=a;\n\t\t}\n\t\telse\n\t\t{\n\t\t\tint t=A[b];\n\t\t\tA.erase(A.find(b));\n\t\t\tfor(map<int,int>::iterator it=A.begin();it!=A.end();it++)\n\t\t\t{\n\t\t\t\tint id=it->first,x=a-max(t,it->second);\n\t\t\t\tti.push_back(make_pair(make_pair(b,id),x));\n\t\t\t\tti.push_back(make_pair(make_pair(id,b),x));\n\t\t\t}\n\t\t}\n\t}\n\tfor(map<int,int>::iterator it=A.begin();it!=A.end();)\n\t{\n\t\tint id=it->first,x=it->second;\n\t\tit++;\n\t\tfor(map<int,int>::iterator itt=it;itt!=A.end();itt++)\n\t\t{\n\t\t\tint jd=itt->first,ttt=T-max(x,itt->second);\n\t\t\tti.push_back(make_pair(make_pair(id,jd),ttt));\n\t\t\tti.push_back(make_pair(make_pair(jd,id),ttt));\n\t\t}\n\t}\n\tint id=0;\n\tsort(ti.begin(),ti.end());\n\tfor(int i=1;i<=N;i++)\n\t{\n\t\tint ans=i==1?2:1;\n\t\tint anstime=0;\n\t\tif(id==ti.size()||ti[id].first.first!=i)\n\t\t{\n\t\t\tprintf(\"%d\\n\",ans);\n\t\t\tcontinue;\n\t\t}\n\t\tint now=ti[id].second;\n\t\tid++;\n\t\twhile(id<ti.size()&&ti[id].first.first==i)\n\t\t{\n\t\t\tif(ti[id-1].first.second==ti[id].first.second)\n\t\t\t{\n\t\t\t\tnow+=ti[id].second;\n\t\t\t}\n\t\t\telse\n\t\t\t{\n\t\t\t\tif(anstime<now)\n\t\t\t\t{\n\t\t\t\t\tanstime=now;\n\t\t\t\t\tans=ti[id-1].first.second;\n\t\t\t\t}\n\t\t\t\tnow=ti[id].second;\n\t\t\t}\n\t\t\tid++;\n\t\t}\n\t\tif(anstime<now)\n\t\t{\n\t\t\tanstime=now;\n\t\t\tans=ti[id-1].first.second;\n\t\t}\n\t\tprintf(\"%d\\n\",ans);\n\t}\n}", "accuracy": 1, "time_ms": 700, "memory_kb": 101316, "score_of_the_acc": -1.2112, "final_rank": 5 }, { "submission_id": "aoj_3105_3876535", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconst ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int> P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef pair<ll, ll> LP;\ntypedef vector<ll> vec;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-5;\nconst ld pi = acos(-1.0);\n\nunordered_map<int, int> mp[100000];\nvoid solve() {\n\tint n, m; cin >> n >> m;\n\tint t; cin >> t;\n\tset<int> st;\n\tvector<int> a(m), b(m), c(m);\n\trep(i, m) {\n\t\tcin >> a[i] >> b[i] >> c[i]; b[i]--;\n\t}\n\trep(i, m) {\n\t\tint le = i;\n\t\twhile (i + 1 < m&&a[i] == a[i + 1]) {\n\t\t\ti++;\n\t\t}\n\t\tint len = t - a[i];\n\t\tRep1(j, le, i) {\n\t\t\tif (c[j] == 0) {\n\t\t\t\tst.erase(b[j]);\n\t\t\t\tfor (auto itr = st.begin(); itr != st.end(); itr++) {\n\t\t\t\t\tif (*itr < b[j]) {\n\t\t\t\t\t\tmp[*itr][b[j]] -= len;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tmp[b[j]][*itr] -= len;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tfor (auto itr = st.begin(); itr != st.end();itr++) {\n\t\t\t\t\tif (*itr < b[j]) {\n\t\t\t\t\t\tmp[*itr][b[j]] += len;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tmp[b[j]][*itr] += len;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tst.insert(b[j]);\n\t\t\t}\n\t\t}\n\t}\n\tvector<int> ma(n, 0);\n\tvector<int> ans(n, mod);\n\trep(i, n) {\n\t\tfor (auto itr = mp[i].begin(); itr != mp[i].end(); itr++) {\n\t\t\tint id = (*itr).first;\n\t\t\tint val = (*itr).second;\n\t\t\tif (ma[i] < val) {\n\t\t\t\tma[i] = val; ans[i] = id;\n\t\t\t}\n\t\t\telse if (ma[i] == val)ans[i] = min(ans[i], id);\n\t\t\tif (ma[id] < val) {\n\t\t\t\tma[id] = val; ans[id] = i;\n\t\t\t}\n\t\t\telse if (ma[id] == val)ans[id] = min(ans[id], i);\n\t\t}\n\t}\n\trep(i, n) {\n\t\tif (ma[i] == 0)ans[i] = 0;\n\t\tif (i == 0 && ans[i] == 0)ans[i] = 1;\n\t\tcout << ans[i] + 1 << endl;\n\t}\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tsolve();\n\t//stop\n\treturn 0;\n}", "accuracy": 1, "time_ms": 890, "memory_kb": 168316, "score_of_the_acc": -1.7268, "final_rank": 13 } ]
aoj_3102_cpp
C: 同値命題 問題 $N$ 個の命題があり, それぞれ $1, 2, \cdots,N$ という名前がついている. また, 命題に関する情報が $M$ 個与えられる. $i$ 番目の情報は「$a_i$ $b_i$」という形式で与えられ, これは $a_i$ ならば $b_i$ であることを表す.(「ならば」は論理包含であり、推移律が成り立つ) 各命題 $i$ に対して $i$ と同値な命題を全て昇順に出力せよ. ただし命題 $i$ と命題 $i$ は常に同値である. 命題 $X$ と命題 $Y$ が同値とは,「$X$ ならば $Y$」かつ「$Y$ ならば $X$」のことである. 制約 入力値は全て整数である. $ 2 \leq N \leq 300$ $ 1 \leq M \leq N(N - 1)$ $ a_i \neq b_i $ $1 \leq a_i, b_i \leq N $ 入力形式 入力は以下の形式で与えられる. $N\ M$ $a_1\ b_1$ $a_2\ b_2$ $\vdots$ $a_M\ b_M$ 出力 $i$ 行目には命題 $i$ と同値である命題を昇順に空白区切りですべて出力せよ. また, 各行の末尾に改行を出力せよ. サンプル サンプル入力 1 5 2 1 2 2 1 サンプル出力 1 1 2 1 2 3 4 5 サンプル入力 2 3 3 1 2 2 3 3 1 サンプル出力 2 1 2 3 1 2 3 1 2 3 サンプル入力 3 6 7 1 2 1 3 2 6 3 4 4 5 5 3 6 2 サンプル出力 3 1 2 6 3 4 5 3 4 5 3 4 5 2 6
[ { "submission_id": "aoj_3102_7965344", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int N, M; cin >> N >> M;\n vector<vector<int>> G(N); \n for (int _ = 0 ; _ < M ; _++) {\n int a, b; cin >> a >> b;\n a--; b--;\n G[a].push_back(b);\n }\n\n vector<vector<bool>> T(N, vector(N, false));\n for (int s = 0 ; s < N ; s++) {\n auto dfs = [&](auto dfs, int v) -> void {\n T[s][v] = true;\n for (auto x : G[v]) if (not T[s][x]) {\n dfs(dfs, x);\n }\n };\n dfs(dfs, s);\n }\n\n for (int i = 0 ; i < N ; i++) {\n vector<int> ans;\n for (int j = 0 ; j < N ; j++) {\n if (T[i][j] and T[j][i]) {\n ans.push_back(j + 1);\n }\n }\n sort(ans.begin(), ans.end());\n for (int j = 0 ; j < (int)ans.size() ; j++) {\n cout << ans[j] << (j + 1 == (int)ans.size() ? '\\n' : ' ');\n }\n }\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 4192, "score_of_the_acc": -1.1067, "final_rank": 19 }, { "submission_id": "aoj_3102_7965218", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,n) for(int i = 0; i<(n); i++)\n\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod = 998244353;\nconst int inf = (1<<30);\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,1,0};\n\n// internal csr\nnamespace atcoder {\n namespace internal {\n template <class E> struct csr {\n std::vector<int> start;\n std::vector<E> elist;\n\n explicit csr(int n, const std::vector<std::pair<int, E>>& edges) : start(n + 1), elist(edges.size()) {\n for(auto e : edges) {\n start[e.first + 1]++;\n }\n for(int i=1;i<=n;i++) {\n start[i] += start[i-1];\n }\n auto counter = start;\n for(auto e : edges) {\n elist[counter[e.first]++] = e.second;\n }\n }\n };\n }\n}\n\n// internal scc\nnamespace atcoder {\n namespace internal {\n struct scc_graph {\n public:\n explicit scc_graph(int n) : _n(n) {}\n\n int num_vertices() {\n return _n;\n }\n\n void add_edge(int from, int to) {\n edges.push_back({from, {to}});\n }\n\n std::pair<int, std::vector<int>> scc_ids() {\n auto g = csr<edge>(_n, edges);\n int now_ord = 0, group_num = 0;\n std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);\n visited.reserve(_n);\n\n auto dfs = [&](auto self, int v) -> void {\n low[v] = ord[v] = now_ord++;\n visited.push_back(v);\n for(int i=g.start[v]; i < g.start[v+1];i++) {\n auto to = g.elist[i].to;\n if(ord[to] == -1) {\n self(self, to);\n low[v] = std::min(low[v], low[to]);\n } else {\n low[v] = std::min(low[v], ord[to]);\n }\n }\n\n if(low[v] == ord[v]) {\n while(true) {\n int u = visited.back();\n visited.pop_back();\n ord[u] = _n;\n ids[u] = group_num;\n if (u==v) break;\n }\n group_num++;\n }\n };\n\n for(int i=0;i<_n;i++) {\n if (ord[i] == -1) {\n dfs(dfs, i);\n }\n }\n\n for(auto &x:ids) {\n x = group_num - 1- x;\n }\n return {group_num, ids};\n }\n\n std::vector<std::vector<int>> scc() {\n auto ids = scc_ids();\n int group_num = ids.first;\n std::vector<int> counts(group_num);\n for(auto x : ids.second) counts[x]++;\n std::vector<std::vector<int>> groups(ids.first);\n for(int i=0;i<group_num;i++) {\n groups[i].reserve(counts[i]);\n }\n for(int i=0;i<_n;i++) {\n groups[ids.second[i]].push_back(i);\n }\n return groups;\n }\n\n private:\n int _n;\n struct edge {\n int to;\n };\n std::vector<std::pair<int, edge>> edges;\n };\n }\n}\n\n// scc\nnamespace atcoder {\n struct scc_graph {\n public:\n scc_graph() : internal(0) {}\n explicit scc_graph(int n) : internal(n) {}\n\n void add_edge(int from, int to) {\n int n = internal.num_vertices();\n assert(0 <= from && from < n);\n assert(0 <= to && to < n);\n internal.add_edge(from, to);\n }\n\n std::vector<std::vector<int>> scc() {\n return internal.scc();\n }\n private:\n internal::scc_graph internal;\n };\n}\n\nusing namespace atcoder;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m;\n cin>>n>>m;\n\n scc_graph sg(n);\n\n for(int i=0;i<m;i++) {\n int a,b;\n cin>>a>>b;\n\n a--,b--;\n\n sg.add_edge(a, b);\n }\n\n auto scc = sg.scc();\n\n rep(i, n) {\n rep(j, scc.size()) {\n bool found = false;\n rep(k, scc[j].size()) {\n if (scc[j][k] == i) {\n found = true;\n break;\n }\n }\n\n if (found) {\n rep(k, scc[j].size()) {\n if (k) {\n cout << \" \";\n }\n cout << scc[j][k] + 1; // to 1-indexed\n }\n cout << \"\\n\";\n break;\n }\n }\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4004, "score_of_the_acc": -0.0884, "final_rank": 1 }, { "submission_id": "aoj_3102_7965212", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing usize = unsigned long long;\nusing i64 = long long;\n\ntemplate <class T>\nvoid chmin(T& a, T& b) {\n if (a > b) a = b;\n}\n\n\n//rep.cpp\nnamespace luz {\n\n struct rep {\n struct itr {\n usize i;\n constexpr itr(const usize i) noexcept: i(i) {}\n void operator++() noexcept {\n ++i;\n }\n constexpr usize operator*() const noexcept {\n return i;\n }\n constexpr bool operator!=(\n const itr x) const noexcept {\n return i != x.i;\n }\n };\n const itr f, l;\n constexpr rep(const usize f, const usize l) noexcept\n : f(std::min(f, l)),\n l(l) {}\n constexpr auto begin() const noexcept {\n return f;\n }\n constexpr auto end() const noexcept {\n return l;\n }\n };\n\n}\n\n\n// edge.cpp\nnamespace luz {\n\n template < typename T >\n class Edge {\n public:\n using cost_type = T;\n\n usize from, to;\n T cost;\n usize id;\n Edge() = default;\n Edge(usize from_, usize to_, T cost_, usize id_)\n :from(from_),\n to(to_),\n cost(cost_),\n id(id_) {}\n };\n\n template <typename T>\n using Edges = std::vector<Edge<T>>;\n\n}\n\n\n// graph.cpp\nnamespace luz {\n\n template < typename Edge >\n class DynamicGraph {\n using Edges = std::vector<Edge>;\n\n protected:\n std::vector<Edges>g;\n usize edge_count;\n\n public:\n using cost_type = typename Edge::cost_type;\n\n DynamicGraph() = default;\n explicit DynamicGraph(usize n)\n :g(n),\n edge_count(0) {}\n\n usize size() const {\n return g.size();\n }\n\n void add_directed_edge(usize from, usize to,\n cost_type cost = 1) {\n assert(from < size());\n assert(to < size());\n g[from].emplace_back(from, to, cost,\n edge_count++);\n }\n void add_undirected_edge(usize u, usize v,\n cost_type cost = 1) {\n assert(u < size());\n assert(v < size());\n assert(u != v);\n g[u].emplace_back(u, v, cost, edge_count);\n g[v].emplace_back(v, u, cost, edge_count++);\n }\n\n Edges operator[](const usize &v) {\n return g[v];\n }\n\n const Edges operator[](const usize &v) const {\n return g[v];\n }\n };\n\n}\n\n\n// scc.cpp\nnamespace luz::decomposition {\n\n template < class G >\n class StronglyConnectedComponents {\n using graph = G;\n using cost_type = typename graph::cost_type;\n\n graph g;\n usize g_size;\n std::vector<usize> low, ord, visited, group_id;\n usize ord_cnt, group_cnt;\n\n void dfs(usize v) {\n low[v] = ord[v] = ord_cnt++;\n visited.emplace_back(v);\n for (auto &e: g[v]) {\n if (ord[e.to] == g_size) {\n dfs(e.to);\n chmin(low[v], low[e.to]);\n } else {\n chmin(low[v], ord[e.to]);\n }\n }\n if (low[v] == ord[v]) {\n while (true) {\n usize u = visited.back();\n visited.pop_back();\n ord[u] = g_size + 1;\n group_id[u] = group_cnt;\n if (u == v) break;\n }\n group_cnt++;\n }\n }\n\n public:\n explicit StronglyConnectedComponents(\n const graph& g_)\n :g(g_),\n g_size(g.size()),\n low(g_size),\n ord(g_size, g_size),\n group_id(g_size),\n ord_cnt(0),\n group_cnt(0) {\n visited.reserve(g_size);\n for (usize v: rep(0, g_size)) {\n if (ord[v] == g_size) {\n dfs(v);\n }\n }\n for (auto& id: group_id) {\n id = group_cnt - id - 1;\n }\n }\n\n std::vector<std::vector<usize>> groups()\n const {\n std::vector<usize> counts(group_cnt);\n for (usize i: rep(0, g_size)) {\n counts[group_id[i]]++;\n }\n std::vector<std::vector<usize>> groups (group_cnt);\n for (usize i: rep(0, group_cnt)) {\n groups[i].reserve(counts[i]);\n }\n for(usize i: rep(0, g_size)) {\n groups[group_id[i]].emplace_back(i);\n }\n return groups;\n }\n\n std::vector<usize> group_ids() const {\n return group_id;\n }\n };\n\n}\n\nint main() {\n int n, m;\n cin >> n >> m;\n using G = luz::DynamicGraph<luz::Edge<int>>;\n G g(n + 1);\n\n for (int i = 0; i < m; i++) {\n i64 a, b;\n cin >> a >> b;\n g.add_directed_edge(a, b);\n }\n\n luz::decomposition::StronglyConnectedComponents<G> scc(g);\n auto groups = scc.groups();\n auto ids = scc.group_ids();\n\n for (int i = 1; i <= n; i++) {\n sort(groups[ids[i]].begin(), groups[ids[i]].end());\n for (int k = 0; k < groups[ids[i]].size(); k++) {\n if (k > 0) cout << ' ';\n cout << groups[ids[i]][k];\n }\n cout << endl;\n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 13364, "score_of_the_acc": -1.2, "final_rank": 20 }, { "submission_id": "aoj_3102_5944002", "code_snippet": "#ifdef LOCAL\n #define _GLIBCXX_DEBUG\n #define __clock__\n#else\n #pragma GCC optimize(\"Ofast\")\n#endif\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing VI = vector<ll>;\nusing VV = vector<VI>;\nusing VS = vector<string>;\nusing PII = pair<ll, ll>;\n\n// #define INT128 // 必要なら有効化してください\n#ifdef INT128\n using LL = __int128;\n#endif\n\n// tourist set\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p);\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p);\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p);\n\nstring to_string(const string& s) {\n return '\"' + s + '\"';\n}\n\nstring to_string(const char* s) {\n return to_string((string) s);\n}\n\nstring to_string(bool b) {\n return (b ? \"true\" : \"false\");\n}\n\nstring to_string(char c){\n string s = {c};\n return s;\n}\n\n// LL\n#ifdef INT128\n// input\nistream& operator>>(istream& is, LL& v)\n{\n string s;\n is >> s;\n v = 0;\n for (int i = 0; i < (int)s.size(); i++) {\n if (isdigit(s[i])) { v = v * 10 + s[i] - '0'; }\n }\n if (s[0] == '-') { v *= -1; }\n return is;\n}\nstd::ostream &operator<<(std::ostream &dest, LL value) {\n std::ostream::sentry s(dest);\n if (s) {\n LL tmp = value < 0 ? -value : value;\n char buffer[128];\n char *d = std::end(buffer);\n do {\n --d;\n *d = \"0123456789\"[tmp % 10];\n tmp /= 10;\n } while (tmp != 0);\n if (value < 0) {\n --d;\n *d = '-';\n }\n int len = std::end(buffer) - d;\n if (dest.rdbuf()->sputn(d, len) != len) {\n dest.setstate(std::ios_base::badbit);\n }\n }\n return dest;\n}\nstring to_string(LL v){\n stringstream ss;\n ss << v;\n return ss.str();\n}\n#endif // LL\n\nstring to_string(vector<bool> v) {\n bool first = true;\n string res = \"{\";\n for (int i = 0; i < static_cast<int>(v.size()); i++) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(v[i]);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <size_t N>\nstring to_string(bitset<N> v) {\n string res = \"\";\n for (size_t i = 0; i < N; i++) {\n res += static_cast<char>('0' + v[i]);\n }\n return res;\n}\n\ntemplate <typename A>\nstring to_string(A v) {\n bool first = true;\n string res = \"{\";\n for (const auto &x : v) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(x);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p) {\n return \"(\" + to_string(p.first) + \", \" + to_string(p.second) + \")\";\n}\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \")\";\n}\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \", \" + to_string(get<3>(p)) + \")\";\n}\n\nvoid debug_out() { cerr << '\\n'; }\n\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n cerr << \" \" << to_string(H);\n debug_out(T...);\n}\n\n#ifdef LOCAL\n#define debug(...) cerr << \"[\" << #__VA_ARGS__ << \"]:\", debug_out(__VA_ARGS__)\n#else\n#define debug(...) 42\n#endif\n// tourist set end\n\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\n\n#define FOR(i,a,b) for(ll i=(a);i<(b);++i)\n#define rep(i,b) FOR(i, 0, b)\n#define ALL(v) (v).begin(), (v).end()\n#define p(s) cout<<(s)<<'\\n'\n#define p2(s, t) cout << (s) << \" \" << (t) << '\\n'\n#define SZ(x) ((int)(x).size())\n#define SORT(A) sort(ALL(A))\n#define RSORT(A) sort(ALL(A), greater<ll>())\n#define MP make_pair\n#define p_yes() p(\"Yes\")\n#define p_no() p(\"No\")\n#define p_possible() p(\"Possible\")\n#define p_impossible() p(\"Impossible\")\nvoid yes(){p_yes(); exit(0);}\nvoid no(){p_no(); exit(0);}\nvoid possible(){p_possible(); exit(0);}\nvoid impossible(){p_impossible(); exit(0);}\n\nll SUM(VI& V){\n return accumulate(ALL(V), 0LL);\n}\n\nll MIN(VI& V){return *min_element(ALL(V));}\nll MAX(VI& V){return *max_element(ALL(V));}\n\nvoid print_vector(VI& V, ll offset=0){\n ll n = V.size();\n rep(i, n){\n if(i) cout << ' ';\n cout << V[i]+offset;\n }\n cout << endl;\n}\n\nll gcd(ll a,ll b){\n if(b == 0) return a;\n return gcd(b,a%b);\n}\n\nll lcm(ll a,ll b){\n ll g = gcd(a,b);\n return a / g * b;\n}\n\n// long double\nusing ld = long double;\n// #define EPS (1e-14)\nconstexpr ld EPS = 1e-14;\n// #define equals(a,b) (fabs((a)-(b)) < EPS)\nconstexpr bool equals(ld a, ld b){return fabs((a)-(b)) < EPS;}\n\n// 小さい順に取り出すpriority queue\nusing inverse_priority_queue = priority_queue<ll, vector<ll>, greater<ll> >;\n\nint popcount(ll t){\n return __builtin_popcountll(t);\n}\n\nconst ll mod = 1e9 + 7;\n// const ll mod = 998244353;\nconst ll inf = 4e18; // LLONG_MAX = 9223372036854775807 (atcoder, codeforces)\nconst double PI = acos(-1);\n\n// [a/b] (繰り上げ)\nll ceil_div(ll a, ll b){\n return (a+b-1)/b;\n}\n\nll ll_pow(ll a, ll n){\n ll ans = 1;\n FOR(i, 0, n){\n ans *= a;\n }\n return ans;\n}\n// modなし\n\n// snuke's mint\n// auto mod int\n// https://youtu.be/L8grWxBlIZ4?t=9858\n// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize\n// https://youtu.be/8uowVvQ_-Mo?t=1329 : division\n// const int mod = 1000000007;\nstruct mint {\n ll x; // using ll = long long;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) {\n (x *= a.x) %= mod;\n return *this;\n }\n mint operator+(const mint a) const {\n mint res(*this);\n return res+=a;\n }\n mint operator-(const mint a) const {\n mint res(*this);\n return res-=a;\n }\n mint operator*(const mint a) const {\n mint res(*this);\n return res*=a;\n }\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n\n // for prime mod\n mint inv() const {\n return pow(mod-2);\n }\n mint& operator/=(const mint a) {\n return (*this) *= a.inv();\n }\n mint operator/(const mint a) const {\n mint res(*this);\n return res/=a;\n }\n};\n\n// ※双方向\n// N : 頂点数\n// M : 辺数\n// return vector<vector<ll>>\nVV load_graph(ll N, ll M){\n VV G(N);\n rep(i,M){\n ll a,b;cin>>a>>b;\n a--;b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n return G;\n}\nVV load_tree(ll N){\n return load_graph(N, N-1);\n}\n\nVI loadV(ll N){\n VI A(N);\n rep(i,N)cin>>A[i];\n return A;\n}\n\n//#include <atcoder/dsu>\n//using namespace atcoder; // 忘れがち\n\n// 必要メモリ O(N^2)\n// 計算量 O(N^3)\nstruct WarshallFloyd{\n VV d;\n ll N;\n bool pre_calculated = false;\n WarshallFloyd(ll n){\n if(n>=2000){\n cerr << \"[warning]maybe data size is too big\";\n }\n N = n;\n d.resize(N, VI(N, inf));\n rep(i, N) d[i][i] = 0;\n }\n // 単方向\n void register_edge(ll a, ll b, ll c){\n d[a][b] = c;\n }\n // 双方向\n void register_edge2(ll a, ll b, ll c){\n register_edge(a,b,c);\n register_edge(b,a,c);\n }\n void calc(){\n rep(i, N){ // 経由点\n rep(j, N){ // 始点\n rep(k, N){ // 終点\n d[j][k] = min(d[j][k], d[j][i] + d[i][k]);\n }\n }\n }\n pre_calculated = true;\n }\n ll distance(ll a, ll b){\n // 計算忘れ対応\n if(!pre_calculated){\n debug(\"auto calc\");\n calc();\n }\n return d[a][b];\n }\n};\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n // input\n ll N,M;\n cin>>N>>M;\n\n WarshallFloyd wa(N);\n\n rep(i,M){\n ll a,b;cin>>a>>b;\n a--;b--;\n wa.register_edge(a,b,1);\n }\n wa.calc();\n\n rep(i,N){\n VI Ans;\n rep(j,N){\n if(wa.distance(i,j)!=inf && wa.distance(j,i)!=inf)Ans.push_back(j);\n }\n print_vector(Ans,1);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3836, "score_of_the_acc": -0.4721, "final_rank": 9 }, { "submission_id": "aoj_3102_4957163", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for (int i = 0; i < n; i++)\n#define REP(i,x,n) for (int i = x; i < n; i++)\n#define all(a) a.begin(), a.end()\n#define reall(a) a.rbegin(), a.rend()\n#define DOUBLE fixed << setprecision(15)\n#define pb emplace_back\ntypedef long long ll;\ntypedef vector<ll> vll;\ntypedef vector<vll> vvll;\ntypedef pair<ll, ll> P;\ntypedef vector<P> vP;\n\nvoid debugs() { cout << endl; }\ntemplate<class T, class ...Args>\nvoid debugs(const T& x, const Args &... args){\n cout << x << \" \";\n debugs(args...);\n}\ntemplate<class A, class B>\nostream& operator<<(ostream& ost, const pair<A, B>& p){\n ost << \"{ \" << p.first << \", \" << p.second << \" }\";\n return ost;\n}\ntemplate<class T>\nostream& operator<<(ostream& ost, const vector<T>& p){\n ost << \"{ \";\n for(int i=0;i<p.size();i++){\n if(i)\n ost << \", \";\n ost << p[i];\n }\n ost << \" }\";\n return ost;\n}\ntemplate<class A, class B>\nostream& operator<<(ostream& ost, const map<A, B>& p){\n ost << \"{ \";\n for(auto &&ma: p){\n ost << ma.first << \", \" << ma.second << \" }\";\n }\n ost << \" }\";\n return ost;\n}\nvvll g;\n\n\nint main() {\n ll n, m;\n while (cin >> n >> m){\n g.clear();\n g.resize(n, vll(n, 1e9));\n rep(i, n) g[i][i] = 0;\n rep(i, m) {\n ll a,b;\n cin >> a >> b;\n a--, b--;\n g[a][b] = 1;\n }\n rep(k, n) rep(i, n) rep(j, n) g[i][j] = min(g[i][j], g[i][k] + g[k][j]);\n rep(i, n) {\n bool f = false;\n rep(j, n) {\n if(g[j][i]!=1e9&&g[i][j]!=1e9){\n if(f)\n cout << ' ';\n else f = true;\n cout << j+1;\n }\n }\n cout << endl;\n }\n }\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 4096, "score_of_the_acc": -0.6974, "final_rank": 16 }, { "submission_id": "aoj_3102_4808426", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main() {\n\n int n, m;\n cin>>n>>m;\n\n vector<bool> L(n, false);\n vector<vector<bool>> G(n, L);\n for (int i = 0; i < n; i++) {\n G[i][i] = true;\n }\n\n for (int i = 0; i < m; i++) {\n int a, b;\n cin>>a>>b;\n a--;\n b--;\n G[a][b] = true;\n }\n\n for (int k = 0; k < n; k++) {\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n G[i][j] = G[i][j] || (G[i][k] && G[k][j]);\n }\n }\n }\n\n bool first;\n for (int i = 0; i < n; i++) {\n first = true;\n for (int j = 0; j < n; j++) {\n if ((G[i][j] && G[j][i]) == true && first) {\n cout<<j+1;\n first = false;\n }\n else if ((G[i][j] && G[j][i]) == true) cout<<\" \"<<j+1;\n }\n cout<<endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3188, "score_of_the_acc": -1.009, "final_rank": 18 }, { "submission_id": "aoj_3102_4599364", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define FOR(i,x,n) for(int i=x; i<(n); i++)\n#define ALL(n) begin(n),end(n)\n#define MOD (1000000007)\n#define INF (1e9)\n#define INFL (1e18)\n \ntypedef long long ll;\ntypedef unsigned int ui;\ntypedef unsigned long long ull;\ntemplate<class T>using arr=vector<vector<T>>;\ntemplate<class T>void pr(T x){cout << x << endl;}\ntemplate<class T>void prvec(vector<T>& a){rep(i, a.size()-1){cout << a[i] << \" \";} cout << a[a.size()-1] << endl;}\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\ntemplate<class T>void prarr(vector<vector<T>>& a){\nrep(i, a.size()){\nrep(j, a[i].size()){\ncout << a[i][j]; printf(\" \");}\nprintf(\"\\n\");} printf(\"\\n\");}\n\nint n, m;\nset<int> s[305];\narr<bool> G;\n\nvoid makeG(int a, int b){\n if(G[a][b]) return;\n\n G[a][b] = true;\n rep(i, n){\n if(!G[i][a]) continue;\n rep(j, n){\n if(!G[b][j]) continue;\n G[i][j] = true;\n }\n }\n}\n\nint main()\n{\n cin >> n >> m;\n G.resize(n, vector<bool>(n, false));\n // memset(G, 0, sizeof(G));\n rep(i, n) {\n G[i][i] = true;\n // s[i].insert(i);\n }\n rep(i, m){\n int a, b; cin >> a >> b;\n makeG(--a,--b);\n }\n\n // prarr(G);\n vector<int> ans[n];\n rep(i, n){\n rep(j, n){\n if(G[i][j] && G[j][i]) ans[i].push_back(j+1); \n }\n }\n\n rep(i, n){\n prvec(ans[i]);\n }\n return 0;}", "accuracy": 1, "time_ms": 40, "memory_kb": 3680, "score_of_the_acc": -0.6569, "final_rank": 14 }, { "submission_id": "aoj_3102_4320089", "code_snippet": "/*\n   ∫ ∫ ∫\n   ノヽ\n  (_  )\n (_    )\n(______ )\n ヽ(´・ω・)ノ \n   |  /\n   UU\n*/\n#pragma region macro\n#include <bits/stdc++.h>\ntypedef long long int64;\nusing namespace std;\nusing P = pair<int64, int64>;\ntypedef vector<int> vi;\nconst int MOD = (int)1e9 + 7;\nconst int64 INF = 1LL << 62;\nconst int inf = 1<<30;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\n#define REP(i, n) for (int i = 0; i < (n); i++)\n#define FOR(i,s,n) for (int i = s; i < (n); i++)\n#define ALL(obj) (obj).begin(), (obj).end() //コンテナじゃないと使えない!!\n#define debug(x) cerr << #x << \": \" << x << \"\\n\";\n#define mp make_pair\n#define bn '\\n'\ntemplate <typename T>\nostream& operator<<(ostream& os, const vector<T> &V){\n int N = V.size();\n REP(i,N){\n os << V[i];\n if (i!=N-1) os << \" \";\n }\n os << \"\\n\";\n return os;\n}\ntemplate <typename T,typename S>\nostream& operator<<(ostream& os, pair<T,S> const&P){\n os << \"(\";\n os << P.first;\n os << \" , \";\n os << P.second;\n os << \")\";\n return os;\n}\ntemplate <typename T>\nostream& operator<<(ostream& os, set<T> &S){\n auto it=S.begin();\n while(it!=S.end()){\n os << *it;\n os << \" \";\n it++;\n }\n os << \"\\n\";\n return os;\n}\ntemplate <typename T>\nostream& operator<<(ostream& os, deque<T> &q){\n for(auto it=q.begin();it<q.end();it++){\n os<<*it;\n os<<\" \";\n }\n os<<endl;\n return os;\n}\nvector<pair<int,int>> dxdy = {mp(0,1),mp(1,0),mp(-1,0),mp(0,-1)};\n#pragma endregion\n//fixed<<setprecision(10)<<ans<<endl;\n\nstruct StronglyConnectedComponents{\n vector<int> topological_idx; //属する強連結成分のトポロジカル順序\n vector<bool> visited;\n vector<vector<int>> edge, edge_rev;\n vector<int> post_order;\n int N;\n int scc_size = 0; //強連結成分の数\n\n\n //O(N+M)\n StronglyConnectedComponents(vector<vector<int>>& edge):edge(edge){\n N = edge.size();\n edge_rev.resize(N);\n for(int v=0;v<N;v++){\n for(auto to:edge[v]){\n edge_rev[to].emplace_back(v);\n }\n }\n visited.assign(N,false);\n topological_idx.resize(N);\n for(int i=0;i<N;i++){\n if(not visited[i]) dfs(i);\n }\n visited.assign(N,false);\n reverse(post_order.begin(), post_order.end());\n for(auto v:post_order){\n if(not visited[v]) dfs_rev(v,scc_size++);\n }\n }\n\n void dfs(int v){\n visited[v] = true;\n for(auto to:edge[v]){\n if(not visited[to]) dfs(to);\n }\n post_order.emplace_back(v);\n }\n\n void dfs_rev(int v, int idx){\n visited[v] = true;\n topological_idx[v] = idx;\n for(auto to:edge_rev[v]){\n if(not visited[to]) dfs_rev(to, idx);\n }\n }\n\n //vが属している強連結成分のトポロジカル順序\n int get_topological_idx(int v){\n return topological_idx[v];\n }\n\n //強連結成分の数\n int get_scc_size(){\n return scc_size;\n }\n\n vector<vector<int>> build_graph(){\n vector<vector<int>> new_edge(N);\n for(int i=0;i<N;i++){\n int topo = topological_idx[i];\n for(auto to:edge[i]){\n new_edge[topo].emplace_back(topological_idx[to]);\n }\n }\n for(int i=0;i<scc_size;i++){\n sort(new_edge[i].begin(), new_edge[i].end());\n new_edge[i].erase(unique(new_edge[i].begin(), new_edge[i].end()), new_edge[i].end());\n }\n return new_edge;\n }\n\n};\n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N , M;\n cin >> N >> M;\n\n vector<vector<int>> edge(N);\n REP(i,M){\n int a,b;\n cin >> a >> b;\n edge[--a].emplace_back(--b);\n }\n\n StronglyConnectedComponents SCC(edge);\n vector<vector<int>> components(SCC.get_scc_size());\n REP(i,N){\n components[SCC.get_topological_idx(i)].emplace_back(i);;\n }\n vector<vector<int>> ans(N);\n REP(i,N){\n for(auto a:components[SCC.get_topological_idx(i)]){\n ans[i].emplace_back(a+1);\n }\n cout << ans[i];\n }\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5260, "score_of_the_acc": -0.2108, "final_rank": 4 }, { "submission_id": "aoj_3102_4055347", "code_snippet": "#include<iostream>\n#include<vector>\nusing namespace std;\nvector<vector<int> > g,rg;\nvector<int> vs,used,cmp;\n\nvoid dfs(int v){\n used[v] = 1;\n for(int i = 0; i < g[v].size(); i++){\n if(!used[g[v][i]])dfs(g[v][i]);\n }\n vs.push_back(v);\n}\n\nvoid rdfs(int v, int k){\n used[v] = 1;\n cmp[v] = k;\n for(int i = 0; i < rg[v].size(); i++){\n if(!used[rg[v][i]])rdfs(rg[v][i],k);\n }\n}\n\nint main(){\n int n,m;\n cin >> n >> m;\n g = rg = vector<vector<int> >(n);\n used = cmp = vector<int>(n,0);\n for(int i = 0; i < m; i++){\n int a,b;\n cin >> a >> b;\n a--,b--;\n g[a].push_back(b);\n rg[b].push_back(a);\n }\n for(int v = 0; v < n; v++){\n if(!used[v])dfs(v);\n }\n used = vector<int>(n,0);\n int k = 0;\n for(int i = vs.size()-1; i >= 0; i--){\n if(!used[vs[i]])rdfs(vs[i],k++);\n }\n for(int i = 0; i < n; i++){\n int num = cmp[i];\n vector<int> ans;\n for(int j = 0; j < n; j++){\n if(cmp[j] == num)ans.push_back(j);\n }\n for(int j = 0; j < ans.size(); j++){\n if(j)cout << \" \";\n cout << ans[j]+1;\n }\n cout << endl;\n }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4160, "score_of_the_acc": -0.5036, "final_rank": 10 }, { "submission_id": "aoj_3102_4008255", "code_snippet": "#include <bits/stdc++.h>\n#define PREP(i, s, x) for(ll (i) = (s); (i) < (x); (i) ++)\n#define REP(i, x) PREP(i, 0, x)\n#define MREP(i, s, x) for(ll (i) = (s); (i) >= (x); (i) --)\n#define MOD7 (1000000007LL)\n#define MOD9 998244353LL\n#define INF (1LL<<60)\ntypedef long long ll;\nusing namespace std;\nusing P = pair<ll, ll>;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\nusing graph = vector<vector<ll>>;\n\ngraph g, rev_g;\nvector<bool> seen;\nvector<ll> numbering;\nvector<ll> scc; // 頂点番号がgroupのグループに属するか返す\nvector<vector<ll>> group; // グループごとに属する頂点番号を格納\n\nvoid dfs(ll v){\n seen[v] = true;\n for(auto next_v : g[v]){\n if(seen[next_v]) continue;\n dfs(next_v);\n }\n numbering.push_back(v);\n return;\n}\n\nvoid rev_dfs(ll v, ll num){\n seen[v] = true;\n group[num].push_back(v);\n scc[v] = num;\n for(auto next_v : rev_g[v]){\n if(seen[next_v]) continue;\n rev_dfs(next_v, num);\n }\n}\n\nint main(){\n ll n, m;\n cin >> n >> m;\n g.resize(n);\n rev_g.resize(n);\n REP(i, m){\n ll a, b;\n cin >> a >> b;\n a --, b --;\n g[a].push_back(b);\n rev_g[b].push_back(a);\n }\n\n seen.resize(n);\n REP(i, n){\n // 未探索\n seen[i] = false;\n }\n\n REP(v, n){\n if(seen[v] == false) dfs(v);\n }\n\n reverse(numbering.begin(), numbering.end());\n\n REP(i, n){\n seen[i] = false;\n }\n\n scc.resize(n);\n\n ll num = 0;\n for(auto v : numbering){\n if(seen[v] == false){\n group.push_back(vector<ll>());\n rev_dfs(v, num);\n num ++;\n }\n }\n\n REP(i, num){\n sort(group[i].begin(), group[i].end());\n }\n\n REP(v, n){\n ll i = scc[v];\n for(auto ite = group[i].begin(); ite < group[i].end(); ite ++){\n cout << (*ite) + 1;\n if(ite != group[i].end() - 1) cout << \" \";\n }\n cout << endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5672, "score_of_the_acc": -0.4509, "final_rank": 8 }, { "submission_id": "aoj_3102_3976416", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <set>\n#include <queue>\nusing namespace std;\ntypedef long long int ll;\n\nstruct SCC{\n\tvector<vector<int> > gg,rg;\n\tvector<int> comp,order;\n\tvector<bool> used;\n\tvector<vector<int> > ng,vs;\n\tint n,nn;\n\tSCC(){}\n\tSCC(int v):gg(v),rg(v),comp(v,-1),used(v,0),n(v){}\n\tvoid add_edge(int x,int y){\n\t\tgg[x].push_back(y);\n\t\trg[y].push_back(x);\n\t}\n\tint operator[](int k){\n\t\treturn comp[k];\n\t}\n\tvoid dfs(int v){\n\t\tused[v]=1;\n\t\tfor(int i:gg[v]){\n\t\t\tif(!used[i])dfs(i);\n\t\t}\n\t\torder.push_back(v);\n\t}\n\tvoid rdfs(int v,int k){\n\t\tused[v]=1;\n\t\tcomp[v]=k;\n\t\tfor(int i:rg[v]){\n\t\t\tif(!used[i])rdfs(i,k);\n\t\t}\n\t}\n\tint build(){\n\t\tfor(int i=0;i<n;i++){\n\t\t\tif(!used[i])dfs(i);\n\t\t}\n\t\tfor(int i=0;i<n;i++){\n\t\t\tused[i]=0;\n\t\t}\n\t\tint k=0;\n\t\tfor(int i=order.size()-1;i>=0;i--){\n\t\t\tif(!used[order[i]])rdfs(order[i],k++);\n\t\t}\n\t\tnn=k;\n\t\t// それぞれの強連結成分に含まれる頂点の番号\n\t\tvs.resize(k,vector<int>());\n\t\tfor(int i=0;i<n;i++){\n\t\t\tvs[comp[i]].push_back(i);\n\t\t}\n\t\t// 強連結成分をまとめた後のグラフ\n\t\tng.resize(k,vector<int>());\n\t\tfor(int i=0;i<n;i++){\n\t\t\tfor(int j:gg[i]){\n\t\t\t\tif(comp[i]!=comp[j]){\n\t\t\t\t\tng[comp[i]].push_back(comp[j]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor(int i=0;i<nn;i++){\n\t\t\tsort(ng[i].begin(),ng[i].end());\n\t\t\tng[i].erase(unique(ng[i].begin(),ng[i].end()),ng[i].end());\n\t\t}\n\t\treturn k;\n\t}\n\tint size(){\n\t\treturn nn;\n\t}\n\tvector<vector<int> > graph(){\n\t\treturn ng;\n\t}\n\tvector<int> vertices(int v){\n\t\treturn vs[v];\n\t}\n};\n\nint main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tint n,m; cin >> n >> m;\n\tSCC scc(n);\n\tfor(int i=0;i<m;i++){\n\t\tint x,y; cin >> x >> y;\n\t\tx--; y--;\n\t\tscc.add_edge(x,y);\n\t}\n\tscc.build();\n\tfor(int i=0;i<n;i++){\n\t\tvector<int> v;\n\t\tfor(int j=0;j<n;j++){\n\t\t\tif(scc[i]==scc[j])v.push_back(j);\n\t\t}\n\t\tcout << v[0]+1;\n\t\tfor(int k=1;k<v.size();k++){\n\t\t\tcout << \" \" << v[k]+1;\n\t\t}\n\t\tcout << endl;\n\t}\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4212, "score_of_the_acc": -0.1087, "final_rank": 2 }, { "submission_id": "aoj_3102_3940018", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct SCC{\n vector<vector<int> > G,R,T,C;\n vector<int> vs,used,blg;\n SCC(){}\n SCC(int n):G(n),R(n),used(n),blg(n){}\n\n void add_edge(int u,int v){\n G[u].emplace_back(v);\n R[v].emplace_back(u);\n }\n\n void dfs(int v){\n used[v]=1;\n for(int u:G[v])\n if(!used[u]) dfs(u);\n vs.emplace_back(v);\n }\n\n void rdfs(int v,int k){\n used[v]=1;\n blg[v]=k;\n C[k].emplace_back(v);\n for(int u:R[v])\n if(!used[u]) rdfs(u,k);\n }\n\n int build(){\n int n=G.size();\n for(int v=0;v<n;v++)\n if(!used[v]) dfs(v);\n\n fill(used.begin(),used.end(),0);\n int k=0;\n for(int i=n-1;i>=0;i--){\n if(!used[vs[i]]){\n T.emplace_back();\n C.emplace_back();\n rdfs(vs[i],k++);\n }\n }\n for(int v=0;v<n;v++)\n for(int u:G[v])\n if(blg[v]!=blg[u])\n T[blg[v]].push_back(blg[u]);\n\n for(int i=0;i<k;i++){\n sort(T[i].begin(),T[i].end());\n T[i].erase(unique(T[i].begin(),T[i].end()),T[i].end());\n }\n return k;\n }\n int operator[](int k) const{return blg[k];};\n};\n\nstruct TwoSat{\n int n;\n SCC scc;\n TwoSat(int n):n(n),scc(n*2){}\n int negate(int v){return (n+v)%(n*2);}\n void add_if(int u,int v){\n // u -> v <=> !v -> !u\n scc.add_edge(u,v);\n scc.add_edge(negate(v),negate(u));\n }\n void add_or(int u,int v){\n // u or v <=> !u -> v\n add_if(negate(u),v);\n }\n void add_nand(int u,int v){\n // u nand v <=> u -> !v\n add_if(u,negate(v));\n }\n void set_true(int v){\n // v <=> !v -> v\n scc.add_edge(negate(v),v);\n }\n void set_false(int v){\n // !v <=> v -> !v\n scc.add_edge(v,negate(v));\n }\n vector<int> build(){\n scc.build();\n vector<int> res(n);\n for(int i=0;i<n;i++){\n if(scc[i]==scc[n+i]) return {};\n res[i]=scc[i]>scc[n+i];\n }\n return res;\n }\n};\n\n//INSERT ABOVE HERE\nsigned main(){\n int n,m;\n cin>>n>>m;\n\n TwoSat G(n);\n for(int i=0;i<m;i++){\n int a,b;\n cin>>a>>b;\n a--;b--;\n G.add_if(a,b);\n }\n G.build();\n\n for(int i=0;i<n;i++){\n int flg=0;\n for(int j=0;j<n;j++){\n if(G.scc.blg[i]!=G.scc.blg[j]) continue;\n if(flg) cout<<\" \";\n flg=1;\n cout<<j+1;\n }\n cout<<endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 5588, "score_of_the_acc": -0.6427, "final_rank": 12 }, { "submission_id": "aoj_3102_3922636", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3102.cc: iff\n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 300;\n\n/* typedef */\n\n/* global variables */\n\nbool ms[MAX_N][MAX_N];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, m;\n scanf(\"%d%d\", &n, &m);\n\n for (int i = 0; i < n; i++) ms[i][i] = true;\n\n for (int i = 0; i < m; i++) {\n int a, b;\n scanf(\"%d%d\", &a, &b);\n a--, b--;\n ms[a][b] = true;\n }\n\n for (int k = 0; k < n; k++)\n for (int i = 0; i < n; i++)\n for (int j = 0; j < n; j++)\n\tms[i][j] = ms[i][j] || (ms[i][k] && ms[k][j]);\n\n for (int i = 0; i < n; i++) {\n for (int j = 0, cont = 0; j < n; j++)\n if (ms[i][j] && ms[j][i]) {\n\tif (cont) putchar(' ');\n\tprintf(\"%d\", j + 1);\n\tcont = 1;\n }\n putchar('\\n');\n } \n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3320, "score_of_the_acc": -0.2218, "final_rank": 6 }, { "submission_id": "aoj_3102_3913331", "code_snippet": "//\n// Created by yamunaku on 2019/10/06.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\ntypedef long long ll;\ntypedef long double ld;\ntypedef vector<int> vi;\ntypedef vector<vector<int>> mti;\ntypedef vector<ll> vl;\ntypedef vector<vector<ll>> mtl;\n\nmti e,ne;\nvi vis,c;\n\nvoid dfs(int x, int &t){\n vis[x]=true;\n for(auto nx:e[x]){\n if(vis[nx]==false){\n dfs(nx, t);\n }\n }\n c[t++]=x;\n}\n\nint dfs2(int x, vi &v){\n vis[x]=true;\n v.push_back(x);\n for(auto nx:ne[x]){\n if(vis[nx]==false){\n dfs2(nx, v);\n }\n }\n}\n\nint main(){\n int n,m;\n cin >> n >> m;\n e=mti(n);\n ne=mti(n);\n vis=vi(n,false);\n c=vi(n);\n int u,v;\n rep(i,m){\n cin >> u >> v;\n u--,v--;\n e[u].push_back(v);\n ne[v].push_back(u);\n }\n int t=0;\n rep(i,n){\n if(!vis[i]){\n dfs(i, t);\n }\n }\n vis=vi(n,false);\n mti st;\n per(i,n){\n if(!vis[c[i]]){\n st.push_back(vi());\n dfs2(c[i], st[st.size()-1]);\n }\n }\n mti ans(n);\n rep(i,st.size()){\n rep(j,st[i].size()){\n rep(k,st[i].size()){\n ans[st[i][j]].push_back(st[i][k]);\n }\n }\n }\n rep(i,n){\n sort(all(ans[i]));\n cout << ans[i][0]+1;\n repl(j,1,ans[i].size()){\n cout << \" \" << ans[i][j]+1;\n }\n cout << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4748, "score_of_the_acc": -0.5609, "final_rank": 11 }, { "submission_id": "aoj_3102_3898360", "code_snippet": "#include<stdio.h>\nint main() {\n\tint n, m, i, j, k, data[301][301] = {}, a, b,flag;\n\tscanf(\"%d%d\", &n, &m);\n\tfor (i = 1; i <= m; ++i) {\n\t\tscanf(\"%d%d\", &a, &b);\n\t\tdata[a][b] = 1;\n\t}\n\tfor (i = 1; i <= n; ++i) {\n\t\tfor (j = 1; j <= n; ++j) {\n\t\t\tfor (k = 1; k <= n; ++k) {\n\t\t\t\tif (data[j][i] && data[i][k]) data[j][k] = 1;\n\t\t\t}\n\t\t}\n\t}\n\tfor (i = 1; i <= n; ++i) {\n\t\tflag = 0;\n\t\tfor (j = 1; j <= n; ++j) {\n\t\t\tif (i == j) {\n\t\t\t\tif (flag) printf(\" \");\n\t\t\t\tprintf(\"%d\",i); flag = 1;\n\t\t\t}\n\t\t\tif (i != j && data[i][j] && data[j][i]) {\n\t\t\t\tif (flag) printf(\" \");\n\t\t\t\tprintf(\"%d\", j); flag = 1;\n\t\t\t}\n\t\t}\n\t\tprintf(\"\\n\");\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3096, "score_of_the_acc": -0.2, "final_rank": 3 }, { "submission_id": "aoj_3102_3889866", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n\nusing namespace std;\n\nint main() {\n\tint n, m; cin >> n >> m;\n\tvector<vector<int> > G(n, vector<int>(n, 1));\n\tfor (int i = 0; i < n; ++i) G[i][i] = 0;\n\twhile (m--) {\n\t\tint a, b; cin >> a >> b;\n\t\tG[a - 1][b - 1] = 0;\n\t}\n\tfor (int k = 0; k < n; ++k)\n\t\tfor (int i = 0; i < n; ++i)\n\t\t\tfor (int j = 0; j < n; ++j)\n\t\t\t\tG[i][j] = min(G[i][j], G[i][k] + G[k][j]);\n\tfor (int i = 0; i < n; ++i) {\n\t\tbool flag = false;\n\t\tfor (int j = 0; j < n; ++j) {\n\t\t\tif (G[i][j] + G[j][i] == 0) {\n\t\t\t\tif (flag) cout << \" \";\n\t\t\t\tcout << j + 1, flag = true;\n\t\t\t}\n\t\t}\n\t\tcout << endl;\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3264, "score_of_the_acc": -0.8164, "final_rank": 17 }, { "submission_id": "aoj_3102_3889738", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> P;\n#define rep(i, n) for(ll (i) = 0; (i) < (n); (i)++)\n#define rep1(i, n) for(ll (i) = 1; (i) <= (n); (i)++)\n#define rrep(i, n) for(ll (i) = (n) - 1; (i) >= 0; (i)--)\n#define rrep1(i, n) for(ll (i) = (n); (i) >= 1; (i)--)\nconst ll INF = 1145141919;\nconst ll MOD = 1000000007;\ntemplate<class T> void chmax(T &a, const T &b){if(a < b){a = b;}}\ntemplate<class T> void chmin(T &a, const T &b){if(a > b){a = b;}}\n\nclass WF{\n\tpublic:\n\tll N;\n\tll makeFlg;\n\tvector<vector<ll> >cost;\n\tWF(ll _N, ll INF = 1145141919){\n\t\tN = _N + 1;\n\t\tcost = vector<vector<ll> >(N, vector<ll>(N, INF));\n\t\tmakeFlg = 0;\n\t}\n\tvoid add(ll a, ll b, ll c){\n\t\tcost[a][b] = min(cost[a][b], c);\n\t\tmakeFlg = 0;\n\t}\n\tvoid make(){\n\t\tif(makeFlg)return;\n\t\tmakeFlg = 1;\n\t\tfor(ll i = 0; i < N; i++){\n\t\t\tfor(ll j = 0; j < N; j++){\n\t\t\t\tfor(ll k = 0; k < N; k++){\n\t\t\t\t\tcost[j][k] = min(cost[j][k], cost[j][i] + cost[i][k]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tll get(ll a, ll b){\n\t\tif(makeFlg == 0)make();\n\t\treturn cost[a][b];\n\t}\n};\n\nint main(){\n\n ll N, M;\n cin >> N >> M;\n WF wf(N);\n rep(i, M){\n ll a, b;\n cin >> a >> b;\n wf.add(a, b, 0);\n }\n rep1(i, N){\n vector<ll>ans;\n rep1(j, N){\n if(i == j)ans.push_back(j);\n else if(wf.get(i, j) == 0 && wf.get(j, i) == 0)ans.push_back(j);\n }\n rep(j, ans.size()){\n cout << ans[j];\n if(j + 1 == ans.size())cout << endl;\n else cout << \" \";\n }\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3652, "score_of_the_acc": -0.6541, "final_rank": 13 }, { "submission_id": "aoj_3102_3886003", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1001001001;\nconst ll LONGINF = 1001001001001001LL;\nconst ll MOD = 1000000007LL;\n\n// 移動元と行先と辺のコストを記録する構造体\ntemplate <typename T = int>\nstruct Edge {\n int from, to;\n T cost;\n Edge(int s, T d = 1) : to(s), cost(d) {}\n Edge(int f, int s, T d) : from(f), to(s), cost(d) {}\n\n bool operator<(const Edge &e) const {\n return cost < e.cost;\n }\n bool operator>(const Edge &e) const {\n return cost > e.cost;\n }\n};\n\ntemplate <typename T = int>\nusing Graph = vector< vector< Edge<T> > >;\n\n// 強連結成分分解\n// Verified: AOJ GRL_3_C (Strongly Connected Components)\n// Verified: ARC030 C (有向グラフ) ← 強連結を潰したグラフの構築の検証\n\n// これは 2 回の DFS によって実現できる。\n// はじめに普通の DFS をするが、その時に帰りがけ順に頂点番号の配列を作る。\n// 次に、元のグラフの逆辺のみで構成されたグラフに対して、\n// 帰りがけ順が遅かったものから順に DFS を行う。\n// 帰りかけが遅かった頂点ほど、 DAG の先頭の強連結成分に属しているため、\n// 辺を逆向きにすると、先頭の強連結成分から外に出られなくなることを利用している。\n\ntemplate <typename T = int>\nstruct GraphSCC {\npublic:\n const int n;\n vector<bool> isthrough;\n vector<int> vs, cmp;\n vector< vector<int> > G, rG, H; // グラフ、逆辺グラフ、縮約後のグラフ\n\n GraphSCC(vector< vector< Edge<T> > > &g) :\n n(g.size()), isthrough(n, false), cmp(n, 0), G(n), rG(n) {\n for(int i=0; i<n; i++) {\n for(size_t j=0; j<g[i].size(); j++) {\n G[i].push_back(g[i][j].to);\n rG[ g[i][j].to ].push_back(i);\n }\n }\n }\n\n void SCC_dfsone(int cur) {\n isthrough[cur] = true;\n for(size_t i=0; i<G[cur].size(); i++) {\n if(!isthrough[G[cur][i]]) {\n SCC_dfsone(G[cur][i]);\n }\n }\n vs.push_back(cur);\n }\n\n void SCC_dfstwo(vector<int> &vec, int cur, int k) {\n cmp[cur] = k;\n isthrough[cur] = true;\n vec.push_back(cur);\n for(size_t i=0; i<rG[cur].size(); i++) {\n if(!isthrough[rG[cur][i]]) {\n SCC_dfstwo(vec, rG[cur][i], k);\n }\n }\n }\n\n // 縮約後のグループ、グループ数\n pair<vector<int>, int> scc() {\n // 1回めのDFS\n for(int i=0; i<n; i++)\n if(!isthrough[i]) SCC_dfsone(i);\n\n fill(isthrough.begin(), isthrough.end(), false);\n reverse(vs.begin(), vs.end());\n int k = 0; vector< vector<int> > S;\n\n // 2回めのDFS\n for(size_t i=0; i<vs.size(); i++) {\n if(!isthrough[vs[i]]) {\n S.push_back(vector<int>());\n SCC_dfstwo(S.back(), vs[i], k++);\n }\n }\n\n H.resize(k);\n fill(isthrough.begin(), isthrough.end(), false);\n for(size_t i=0; i<k; i++) {\n for(size_t j=0; j<S[i].size(); j++) {\n int v = S[i][j];\n for(size_t x=0; x<G[v].size(); x++) {\n int u = G[v][x];\n if(isthrough[cmp[u]] || cmp[v] == cmp[u]) continue;\n isthrough[cmp[u]] = true;\n H[cmp[v]].push_back(cmp[u]);\n }\n }\n for(size_t j=0; j<H[i].size(); j++) isthrough[ H[i][j] ] = false;\n }\n return make_pair(cmp, k);\n }\n};\n\n\nint main() {\n int N, M; cin >> N >> M;\n\n Graph<int> G(N);\n for(int i=0; i<M; i++) {\n int a, b; cin >> a >> b;\n a--; b--;\n G[a].emplace_back(b);\n }\n\n GraphSCC<> gs(G);\n auto res = gs.scc();\n\n int K = res.second;\n vector< vector<int> > ans(K);\n for(int i=0; i<N; i++) {\n int group = res.first[i];\n ans[group].emplace_back(i+1);\n }\n\n for(int i=0; i<N; i++) {\n int group = res.first[i];\n for(size_t j=0; j<ans[group].size(); j++) {\n cout << ans[group][j] << \" \\n\"[j + 1 == ans[group].size()];\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 5932, "score_of_the_acc": -0.6762, "final_rank": 15 }, { "submission_id": "aoj_3102_3885931", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <string>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <stdio.h>\nusing namespace std;\n#define int long long\nint MOD = 1000000007;\nclass SCC {\npublic:\n\tint V, cnt;\n\tvector<vector<int> > G, rG, graph;\n\tvector<int> vs, cmp;\n\tvector<bool> used;\n\tSCC(int node_size) : V(node_size), G(V), rG(V), cmp(V), used(V, false) {}\n\tvoid add_edge(int from, int to) {\n\t\tG[from].push_back(to);\n\t\trG[to].push_back(from);\n\t}\n\tvoid dfs(int u) {\n\t\tused[u] = true;\n\t\tfor (int v : G[u]) {\n\t\t\tif (!used[v]) {\n\t\t\t\tdfs(v);\n\t\t\t}\n\t\t}\n\t\tvs.push_back(u);\n\t}\n\tvoid dfs(int u, const int k) {\n\t\tused[u] = true;\n\t\tcmp[u] = k;\n\t\tfor (int v : rG[u]) {\n\t\t\tif (!used[v]) {\n\t\t\t\tdfs(v, k);\n\t\t\t}\n\t\t}\n\t}\n\tint solve() { //強連結成分の数を返す\n\t\tfor (int i = 0; i < V; i++) {\n\t\t\tif (!used[i]) {\n\t\t\t\tdfs(i);\n\t\t\t}\n\t\t}\n\t\tfill(used.begin(), used.end(), false);\n\t\tcnt = 0;\n\t\tfor (int i = V - 1; i >= 0; i--) {\n\t\t\tif (!used[vs[i]]) {\n\t\t\t\tdfs(vs[i], cnt++);\n\t\t\t}\n\t\t}\n\t\treturn cnt;\n\t}\n\tvoid make_graph() {\n\t\tgraph.resize(cnt);\n\t\tfor (int i = 0; i < V; i++) {\n\t\t\tfor (int v : G[i]) {\n\t\t\t\tif (cmp[i] != cmp[v]) {\n\t\t\t\t\tgraph[cmp[i]].push_back(cmp[v]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n};\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tint N, M;\n\tcin >> N >> M;\n\tSCC scc(N);\n\tint a, b;\n\tfor (int i = 0; i < M; i++) {\n\t\tcin >> a >> b; a--; b--;\n\t\tscc.add_edge(a, b);\n\t}\n\tscc.solve();\n\tfor (int i = 0; i < N; i++) {\n\t\tbool f = true;\n\t\tfor (int j = 0; j < N; j++) {\n\t\t\tif (scc.cmp[i] == scc.cmp[j]) {\n\t\t\t\tif (f)f = false;\n\t\t\t\telse cout << \" \";\n\t\t\t\tcout << j + 1;\n\t\t\t}\n\t\t}\n\t\tcout << endl;\n\t}\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5428, "score_of_the_acc": -0.2271, "final_rank": 7 }, { "submission_id": "aoj_3102_3883774", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 305\n\nint N,M;\nbool can_go[SIZE][SIZE];\n\nint main(){\n\n\tscanf(\"%d %d\",&N,&M);\n\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int k = 0; k < N; k++){\n\n\t\t\tcan_go[i][k] = (i == k);\n\t\t}\n\t}\n\n\tint from,to;\n\n\tfor(int loop = 0; loop < M; loop++){\n\n\t\tscanf(\"%d %d\",&from,&to);\n\t\tfrom--;\n\t\tto--;\n\n\t\tcan_go[from][to] = true;\n\t}\n\n\tfor(int mid = 0; mid < N; mid++){\n\t\tfor(int start = 0; start < N; start++){\n\t\t\tif(!can_go[start][mid])continue;\n\t\t\tfor(int goal = 0; goal < N; goal++){\n\t\t\t\tif(!can_go[mid][goal])continue;\n\n\t\t\t\tcan_go[start][goal] = true;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\tbool is_First = true;\n\t\tfor(int k = 0; k < N; k++){\n\t\t\tif(can_go[i][k] && can_go[k][i]){\n\t\t\t\tif(is_First){\n\n\t\t\t\t\tprintf(\"%d\",k+1);\n\t\t\t\t\tis_First = false;\n\t\t\t\t}else{\n\n\t\t\t\t\tprintf(\" %d\",k+1);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tprintf(\"\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3312, "score_of_the_acc": -0.221, "final_rank": 5 } ]
aoj_3104_cpp
E: モンスターバスター 問題 AORイカちゃんはモンスターバスターである. ある日, 道を歩いていると寝ているモンスターに出会った. 闘争心が強いAORイカちゃんは,モンスターに寝起きの一撃をお見舞いすることに決めた. しかし, 現在のAORイカちゃんの攻撃力は $0$ であり, このままではまともな攻撃ができない. モンスターバスターの精進をしているAORイカちゃんは, 実は師匠から特殊な笛を託されていた. この笛で特定の曲を吹くと一定時間攻撃力が上がるのである. 修行を積んだAORイカちゃんは $N$ 個の曲を吹くことができる. $i$ 番目の曲は演奏に $R_i$ 秒かかり, 演奏終了後に攻撃力が $A_i$ だけ上昇する. 演奏終了から $T_i$ 秒後にこの演奏の効果は切れ, 演奏前の攻撃力に戻ってしまう. また, AORイカちゃんは重ね演奏をすることができる. 演奏の効果時間中に同じ曲を演奏し終えると攻撃力が $A_i$ ではなく $W_i$ 上昇する. 重ね演奏は何回でもできるが効果時間は延長しない. そのため現在効果中の $i$ 番目の曲の最初にかけた効果が切れると重ね演奏の効果もすべて切れる. AORイカちゃんの攻撃力の最大値を出力せよ. なお, いくら演奏してもモンスターは起きないし, AORイカちゃんは $0.5$ 秒で攻撃できる. 制約 入力値は全て整数である. $1 \leq N \leq 2000$ $-2000 \leq A_i, W_i \leq 2000$ $1 \leq R_i , T_i \leq 2000$ 入力形式 入力は以下の形式で与えられる. $N$ $R_1\ A_1\ W_1\ T_1$ $\vdots$ $R_N\ A_N\ W_N\ T_N$ 出力 AORイカちゃんの攻撃力の最大値を出力せよ. また, 末尾に改行も出力せよ. サンプル サンプル入力 1 2 5 10 5 5 4 4 2 2 サンプル出力 1 14 サンプル入力 2 2 5 10 5 11 8 8 2 1 サンプル出力 2 20
[ { "submission_id": "aoj_3104_10858191", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n\nusing namespace std;\nstruct song {\n int r, a, w, t;\n};\n\nbool cmp(song s1, song s2) {\n return min(s2.t, s1.t - s2.r) > min(s1.t, s2.t - s1.r);\n}\n\nint main() {\n int n;\n cin >> n;\n vector<song> p;\n for (int i = 0; i < n; ++i) {\n int r, a, t, w;\n cin >> r >> a >> w >> t;\n p.push_back({r, a, w, t});\n }\n sort(p.begin(), p.end(), cmp);\n vector<vector<int>> dp(n, vector<int>(2001, -100000000));\n vector<vector<int>> pref(n + 1, vector<int>(2001, -100000000));\n vector<vector<int>> possible(n + 1, vector<int>(2001, 0));\n int ans = 0;\n for (int i = 0; i <= 2000; ++i) {\n possible[0][i] = 1;\n }\n for (int i = 0; i < n; ++i) {\n for (int j = 0; j <= 2000; ++j) {\n pref[i + 1][j] = max(pref[i + 1][j], pref[i][j]);\n possible[i + 1][j] = possible[i][j];\n }\n dp[i][p[i].t] = p[i].a;\n possible[i + 1][p[i].t] = 1;\n pref[i + 1][p[i].t] = max(pref[i + 1][p[i].t], dp[i][p[i].t]);\n for (int j = p[i].t; j > 0; --j) {\n if (j != p[i].t) {\n dp[i][j] = dp[i][j + 1];\n }\n if (j + p[i].r > 2000) {\n continue;\n }\n if (dp[i][j + p[i].r] != -100000000) {\n dp[i][j] = max(dp[i][j], dp[i][j + p[i].r] + p[i].w);\n }\n if (possible[i][j + p[i].r]) {\n dp[i][j] = max(dp[i][j], pref[i][j + p[i].r] + p[i].a);\n }\n if (dp[i][j] != -100000000) {\n pref[i + 1][j] = max(pref[i + 1][j], dp[i][j]);\n ans = max(ans, dp[i][j]);\n possible[i + 1][j] = 1;\n }\n }\n for (int j = 2000; j > 0; --j) {\n pref[i + 1][j - 1] = max(pref[i + 1][j - 1], pref[i + 1][j]);\n possible[i + 1][j - 1] = max(possible[i + 1][j], possible[i + 1][j - 1]);\n }\n }\n cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 50340, "score_of_the_acc": -0.4534, "final_rank": 13 }, { "submission_id": "aoj_3104_9703430", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n\nusing namespace std;\nstruct song {\n int r, a, w, t;\n};\n\nbool cmp(song s1, song s2) {\n return min(s2.t, s1.t - s2.r) > min(s1.t, s2.t - s1.r);\n}\n\nint main() {\n int n;\n cin >> n;\n vector<song> p;\n for (int i = 0; i < n; ++i) {\n int r, a, t, w;\n cin >> r >> a >> w >> t;\n p.push_back({r, a, w, t});\n }\n sort(p.begin(), p.end(), cmp);\n vector<vector<int>> dp(n, vector<int>(2001, -100000000));\n vector<vector<int>> pref(n + 1, vector<int>(2001, -100000000));\n int ans = 0;\n for (int i = 0; i < n; ++i) {\n for (int j = 0; j <= 2000; ++j) {\n pref[i + 1][j] = max(pref[i + 1][j], pref[i][j]);\n }\n dp[i][p[i].t] = p[i].a;\n pref[i + 1][p[i].t] = max(pref[i + 1][p[i].t], dp[i][p[i].t]);\n for (int j = p[i].t; j > 0; --j) {\n if (j != p[i].t) {\n dp[i][j] = dp[i][j + 1];\n pref[i+1][j]=max(pref[i+1][j], dp[i][j]);\n }\n if (j + p[i].r > 2000) {\n continue;\n }\n if (dp[i][j + p[i].r] != -100000000) {\n dp[i][j] = max(dp[i][j], dp[i][j + p[i].r] + p[i].w);\n }\n dp[i][j] = max(dp[i][j], pref[i][j + p[i].r] + p[i].a);\n if (dp[i][j] != -100000000) {\n pref[i + 1][j] = max(pref[i + 1][j], dp[i][j]);\n ans = max(ans, dp[i][j]);\n }\n }\n }\n cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 34484, "score_of_the_acc": -0.2498, "final_rank": 7 }, { "submission_id": "aoj_3104_9702443", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n\nusing namespace std;\nstruct song {\n int r, a, w, t;\n};\n\nbool cmp(song s1, song s2) {\n return min(s2.t, s1.t - s2.r) > min(s1.t, s2.t - s1.r);\n}\n\nint main() {\n int n;\n cin >> n;\n vector<song> p;\n for (int i = 0; i < n; ++i) {\n int r, a, t, w;\n cin >> r >> a >> w >> t;\n p.push_back({r, a, w, t});\n }\n sort(p.begin(), p.end(), cmp);\n vector<vector<int>> dp(n, vector<int>(2001, -100000000));\n vector<vector<int>> pref(n + 1, vector<int>(2001, -100000000));\n vector<vector<int>> possible(n + 1, vector<int>(2001, 0));\n int ans = 0;\n for (int i = 0; i <= 2000; ++i) {\n possible[0][i] = 1;\n }\n for (int i = 0; i < n; ++i) {\n for (int j = 0; j <= 2000; ++j) {\n pref[i + 1][j] = max(pref[i + 1][j], pref[i][j]);\n possible[i + 1][j] = possible[i][j];\n }\n dp[i][p[i].t] = p[i].a;\n possible[i + 1][p[i].t] = 1;\n pref[i + 1][p[i].t] = dp[i][p[i].t];\n for (int j = p[i].t; j > 0; --j) {\n if (j != p[i].t) {\n dp[i][j] = dp[i][j + 1];\n }\n if (j + p[i].r > 2000) {\n continue;\n }\n if (dp[i][j + p[i].r] != -100000000) {\n dp[i][j] = max(dp[i][j], dp[i][j + p[i].r] + p[i].w);\n }\n if (possible[i][j + p[i].r]) {\n dp[i][j] = max(dp[i][j], pref[i][j + p[i].r] + p[i].a);\n }\n if (dp[i][j] != -100000000) {\n pref[i + 1][j] = max(pref[i + 1][j], dp[i][j]);\n ans = max(ans, dp[i][j]);\n possible[i + 1][j] = 1;\n }\n }\n for (int j = 2000; j > 0; --j) {\n pref[i + 1][j - 1] = max(pref[i + 1][j - 1], pref[i + 1][j]);\n }\n }\n cout << ans << '\\n';\n}", "accuracy": 0.265625, "time_ms": 20, "memory_kb": 47532, "score_of_the_acc": -0.4309, "final_rank": 19 }, { "submission_id": "aoj_3104_4076871", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n//INSERT ABOVE HERE\nsigned main(){\n Int n;\n cin>>n;\n vector<Int> rs(n),as(n),ws(n),ts(n);\n for(Int i=0;i<n;i++) cin>>rs[i]>>as[i]>>ws[i]>>ts[i];\n\n Int ans=0;\n for(Int uku=0;uku<8;uku++){\n using T = tuple<Int, Int, Int, Int>;\n using P = pair<Int, T>;\n vector<P> vp;\n for(Int i=0;i<n;i++){\n Int val=0;\n if(uku%4==0) val=rs[i]+ts[i];\n if(uku%4==1) val=rs[i]-ts[i];\n if(uku%4==2) val=rs[i];\n if(uku%4==3) val=ts[i];\n if(uku>=4) val*=-1;\n vp.emplace_back(val,T(rs[i],as[i],ws[i],ts[i]));\n }\n\n sort(vp.begin(),vp.end());\n for(Int i=0;i<n;i++)\n tie(rs[i],as[i],ws[i],ts[i])=vp[i].second;\n\n const Int MAX = 2020;\n const Int INF = 1e9;\n vector<Int> dp(MAX,-INF);\n for(Int i=0;i<n;i++){\n vector<Int> nx0(MAX,-INF),nx1(MAX,-INF);\n chmax(nx1[ts[i]],as[i]);\n for(Int j=MAX-1;j>=0;j--){\n chmax(nx0[j],dp[j]);\n if(j<rs[i]) continue;\n chmax(nx1[min(j-rs[i],ts[i])],dp[j]+as[i]);\n chmax(nx1[j-rs[i]],nx1[j]+ws[i]);\n }\n for(Int j=0;j<MAX;j++) chmax(dp[j],nx0[j]);\n for(Int j=0;j<MAX;j++) chmax(dp[j],nx1[j]);\n }\n for(Int j=1;j<MAX;j++) chmax(ans,dp[j]);\n }\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 3248, "score_of_the_acc": -0.7697, "final_rank": 15 }, { "submission_id": "aoj_3104_4055357", "code_snippet": "#include<iostream>\n#include<vector>\n#include<algorithm>\n#include<utility>\nusing namespace std;\n#define rep(i,n) for(int i = 0; i < (n); i++)\ntypedef pair<int,int> pii;\n#define INF 1e9\nstruct data{\n int r,a,w,t;\n bool operator<(const data &another) const\n {\n return r+t < another.r + another.t;\n };\n};\n\nint main(){\n int n;\n cin >> n;\n vector<data> v(n);\n rep(i,n){\n cin >> v[i].r >> v[i].a >> v[i].w >> v[i].t;\n }\n sort(v.begin(),v.end());\n reverse(v.begin(),v.end());\n int dp[2][2005][2];\n rep(i,2)rep(j,2005)rep(k,2)dp[i][j][k] = -INF;\n rep(i,n){\n int now = i%2;\n int ne = 1 - now;\n dp[now][v[i].t][1] = max(dp[now][v[i].t][1], v[i].a);\n for(int j = 2000; j >= 0; j--)rep(k,2)if(dp[now][j][k] != -INF){\n int nxt = min(j-v[i].r, v[i].t);\n if(nxt > 0){\n if(k){\n dp[now][nxt][1] = max(dp[now][nxt][1], dp[now][j][1] + v[i].w);\n }else{\n dp[now][nxt][1] = max(dp[now][nxt][1], dp[now][j][0] + v[i].a);\n }\n }\n dp[ne][j][0] = max(dp[ne][j][0], dp[now][j][k]);\n dp[now][j][k] = -INF;\n }\n }\n int ans = 0;\n rep(i,2)rep(j,2005)rep(k,2)ans = max(ans, dp[i][j][k]);\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3228, "score_of_the_acc": -0.0003, "final_rank": 2 }, { "submission_id": "aoj_3104_3913488", "code_snippet": "#include<iostream>\n#include<cstdio>\n#include<cstring>\n#include<string>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<map>\n#include<queue>\n#include<deque>\n#include<iomanip>\n#include<tuple>\nusing namespace std;\ntypedef long long int LL;\ntypedef pair<int,int> P;\ntypedef pair<LL,int> LP;\nconst int INF=1<<30;\nconst LL MAX=1e9+7;\n\nvoid array_show(int *array,int array_n,char middle=' '){\n for(int i=0;i<array_n;i++)printf(\"%d%c\",array[i],(i!=array_n-1?middle:'\\n'));\n}\nvoid array_show(LL *array,int array_n,char middle=' '){\n for(int i=0;i<array_n;i++)printf(\"%lld%c\",array[i],(i!=array_n-1?middle:'\\n'));\n}\n\nint dp[2005];\nint ne[2005];\nint t[2005][4];\nvector<P> v1;\n\nint main(){\n int n,m;\n int i,j,k;\n int a,b,c;\n int p,q;\n cin>>n;\n for(i=0;i<2005;i++){\n dp[i]=-INF;\n }\n for(i=0;i<n;i++){\n for(j=0;j<4;j++){\n cin>>t[i][j];//r/a/w/t\n }\n v1.push_back(make_pair(t[i][0]+t[i][3],i));\n }\n sort(v1.rbegin(),v1.rend());\n for(i=0;i<n;i++){\n p=v1[i].second;\n\n for(j=0;j<2005;j++){\n ne[j]=-INF;\n }\n for(j=t[p][0];j<2005;j++){\n if(dp[j]==-INF)continue;\n k=min(j-t[p][0],t[p][3]);\n ne[k]=max(ne[k],dp[j]+t[p][1]);\n }\n ne[t[p][3]]=max(ne[t[p][3]],t[p][1]);\n for(j=2004;j>=0;j--){\n dp[j]=max(dp[j],ne[j]);\n if(j<t[p][0] || ne[j]==-INF)continue;\n k=j-t[p][0];\n ne[k]=max(ne[k],ne[j]+t[p][2]);\n }\n }\n int s=0;\n for(i=1;i<2005;i++){\n s=max(s,dp[i]);\n }\n cout<<s<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3188, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3104_3890898", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> P;\n#define rep(i, n) for(ll (i) = 0; (i) < (n); (i)++)\n#define rep1(i, n) for(ll (i) = 1; (i) <= (n); (i)++)\n#define rrep(i, n) for(ll (i) = (n) - 1; (i) >= 0; (i)--)\n#define rrep1(i, n) for(ll (i) = (n); (i) >= 1; (i)--)\nconst ll INF = 1145141919;\nconst ll MOD = 1000000007;\ntemplate<class T> void chmax(T &a, const T &b){if(a < b){a = b;}}\ntemplate<class T> void chmin(T &a, const T &b){if(a > b){a = b;}}\n\nclass node{\n public:\n ll R, A, W, T;\n bool operator < (const node &n)const{\n return (-(R + T) < -(n.R + n.T));\n }\n};\n\nll dp[5000][2];\n\nvoid update(){\n rrep1(i, 4500){\n chmax(dp[i][0], dp[i][1]);\n chmax(dp[i][0], dp[i + 1][0]);\n dp[i][1] = -INF;\n }\n}\n\nint main(){\n\n ll N;\n cin >> N;\n vector<node>v(N);\n rep(i, N){\n cin >> v[i].R >> v[i].A >> v[i].W >> v[i].T;\n }\n sort(v.begin(), v.end());\n update();\n rep(i, N){\n ll R = v[i].R, A = v[i].A, W = v[i].W, T = v[i].T;\n for(ll from = R + T; from > 1; from--){\n ll to = from - R;\n if(to < 1)break;\n chmax(dp[to][1], dp[from][0] + A);\n chmax(dp[to][1], dp[from][1] + W);\n }\n update();\n }\n cout << dp[1][0] << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3252, "score_of_the_acc": -0.0005, "final_rank": 3 }, { "submission_id": "aoj_3104_3887718", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1001001001;\nconst ll LONGINF = 1001001001001001LL;\nconst ll MOD = 1000000007LL;\n\nint dp[2010][4010];\nint main() {\n int N; cin >> N;\n vector< tuple<int, int, int, int> > mus(N);\n for(int i=0; i<N; i++) {\n int R, A, W, T; cin >> R >> A >> W >> T;\n mus[i] = make_tuple(R, A, W, T);\n }\n\n sort(mus.begin(), mus.end(), [&](auto a, auto b) {\n int AR, AA, AW, AT; tie(AR, AA, AW, AT) = a;\n int BR, BA, BW, BT; tie(BR, BA, BW, BT) = b;\n return AR + AT > BR + BT;\n });\n\n fill(dp[0], dp[N+1], -INF);\n dp[0][4001] = 0;\n for(int i=0; i<N; i++) {\n int R, A, W, T; tie(R, A, W, T) = mus[i];\n int tmp[4010]; fill(tmp, tmp + 4010, -INF);\n for(int j=0; j<=4005; j++) {\n if(dp[i][j] == -INF) continue;\n // 使わない\n dp[i+1][j] = max(dp[i+1][j], dp[i][j]);\n\n // 使う\n if(R >= j) continue;\n int t = min(T, j - R);\n tmp[t] = max(tmp[t], dp[i][j] + A);\n }\n for(int j=4005; j>=0; j--) {\n dp[i+1][j] = max(dp[i+1][j], tmp[j]);\n if(tmp[j] == -INF or j - R <= 0) continue;\n tmp[j - R] = max(tmp[j - R], tmp[j] + W);\n }\n }\n\n cout << *max_element(dp[N], dp[N] + 4005) << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 34460, "score_of_the_acc": -0.3266, "final_rank": 10 }, { "submission_id": "aoj_3104_3887195", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 2005\n\nenum Type{\n\tNOT,\n\tUSED,\n};\n\nstruct Info{\n\n\tbool operator<(const struct Info &arg) const{\n\n\t\treturn R+T > arg.R+arg.T;\n\t}\n\n\tint R,A,W,T;\n};\n\nint N;\nint dp[SIZE][SIZE][2];\nInfo info[SIZE];\n\nint main(){\n\n\tscanf(\"%d\",&N);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%d %d %d %d\",&info[i].R,&info[i].A,&info[i].W,&info[i].T);\n\t}\n\n\tsort(info,info+N);\n\n\tfor(int i = 0; i <= N; i++){\n\t\tfor(int k = 0; k <= 2000; k++){\n\t\t\tdp[i][k][NOT] = -BIG_NUM;\n\t\t\tdp[i][k][USED] = -BIG_NUM;\n\t\t}\n\t}\n\n\tdp[0][2000][0] = 0;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tdp[i][info[i].T][USED] = max(dp[i][info[i].T][USED],info[i].A);\n\n\t\tfor(int rest = 2000; rest > 0; rest--){\n\n\t\t\tdp[i+1][rest][NOT] = max(dp[i][rest][NOT],dp[i][rest][USED]);\n\n\t\t\tint next = min(rest-info[i].R,info[i].T);\n\n\t\t\tif(next >= 0){\n\n\t\t\t\tdp[i][next][USED] = max(dp[i][next][USED],max(dp[i][rest][NOT]+info[i].A,dp[i][rest][USED]+info[i].W));\n\t\t\t}\n\t\t}\n\t}\n\n\tint ans = 0;\n\tfor(int i = 1; i <= 2000; i++){\n\n\t\tans = max(ans,dp[N][i][NOT]);\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 34600, "score_of_the_acc": -0.2508, "final_rank": 9 }, { "submission_id": "aoj_3104_3886119", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <string>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <stdio.h>\nusing namespace std;\n#define int long long\nint MOD = 1000000007;\nstruct K {\n\tint R, A, W, T;\n\tbool operator<(const K &right)const {\n\t\treturn R + T < right.R + right.T;\n\t}\n};\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tint N;\n\tcin >> N;\n\tvector<K> A(N);\n\tint res = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> A[i].R >> A[i].A >> A[i].W >> A[i].T;\n\t}\n\n\n\tsort(A.rbegin(), A.rend());\n\tvector<int> dp(4001, 0);\n\tint INF = (int)1 << 60;\n\tfor (int i = 0; i < N; i++) {\n\t\tvector<int> ndp(4001, -INF);\n\t\tfor (int j = 0; j <= 4000; j++) {\n\t\t\tif (j + A[i].R + A[i].T > 4000 && j + A[i].R <= 4000) {\n\t\t\t\tndp[j + A[i].R] = max(ndp[j + A[i].R], dp[j] + A[i].A);\n\t\t\t}\n\t\t}\n\n\t\tfor (int j = 0; j <= 4000; j++) {\n\t\t\tif(j > 0)dp[j] = max(dp[j], dp[j - 1]);\n\t\t\tif(j - A[i].R >= 0)ndp[j] = max(ndp[j], ndp[j - A[i].R] + A[i].W);\n\t\t\tdp[j] = max(dp[j], ndp[j]);\n\t\t}\n\n\t}\n\tcout << dp.back() << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3348, "score_of_the_acc": -0.0782, "final_rank": 5 }, { "submission_id": "aoj_3104_3878534", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\ntypedef pair<int, int> P;\n\nconstexpr int INF = INT_MAX;\n\nvoid chmax(ll &a, ll b){\n a = max(a, b);\n}\n\nll dp[2005][4005][2];\n\nint main(){\n int n;\n cin >> n;\n vector<P> ls;\n vector<int> id(n), r(n), a(n), w(n), t(n);\n for(int i=0;i<n;i++){\n cin >> r[i] >> a[i] >> w[i] >> t[i];\n ls.push_back(P(r[i]+t[i], i));\n }\n sort(ls.rbegin(), ls.rend());\n for(int i=0;i<n;i++) id[i] = ls[i].second;\n for(int i=0;i<=n;i++){\n for(int j=0;j<=4000;j++){\n dp[i][j][0] = -INF;\n dp[i][j][1] = -INF;\n }\n }\n dp[0][4000][0] = 0;\n for(int i=0;i<n;i++){\n for(int j=4000;j>0;j--){\n for(int k=0;k<2;k++){\n if(dp[i][j][k] == -INF) continue;\n if(j <= r[id[i]]) continue;\n if(k==0){\n chmax(dp[i][min(j-r[id[i]],t[id[i]])][1], dp[i][j][k] + a[id[i]]);\n }\n else{\n chmax(dp[i][j-r[id[i]]][1], dp[i][j][k] + w[id[i]]);\n }\n }\n }\n for(int j=0;j<=4000;j++){\n dp[i+1][j][0] = max(dp[i][j][0], dp[i][j][1]);\n }\n }\n ll ans = 0;\n for(int i=0;i<=4000;i++){\n ans = max({ans, dp[n][i][0], dp[n][i][1]});\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 128412, "score_of_the_acc": -1.4613, "final_rank": 18 }, { "submission_id": "aoj_3104_3878531", "code_snippet": "#include <bits/stdc++.h>\n#define inf (long long)(1e9)\nusing namespace std;\n\nstruct data {\n long long r, a, w, t;\n};\n\nbool asc(const data &l, const data &r) {\n return l.t + l.r > r.t + r.r;\n}\n\nlong long n;\nvector<data> v;\nlong long dp[2005][4005][2] = {0};\n\nlong long solve();\n\nint main() {\n cin >> n;\n v.resize(n);\n for(int i = 0; i < n; ++i)\n cin >> v[i].r >> v[i].a >> v[i].w >> v[i].t;\n cout << solve() << endl;\n return 0;\n}\n\nlong long solve() {\n sort(v.begin(), v.end(), asc);\n long long ans = 0;\n for(int i = 0; i < n; ++i)\n for(int j = 0; j <= 4000; ++j) dp[i][j][1] = -inf;\n for(int i = 0; i < n; ++i) {\n for(int j = 4000; j >= 0; --j) {\n dp[i + 1][j][0] = max(dp[i][j][0], dp[i][j][1]);\n if(min(v[i].t, j - v[i].r) >= 0) {\n dp[i][min(v[i].t, j - v[i].r)][1] =\n max(dp[i][min(v[i].t, j - v[i].r)][1],\n dp[i][j][0] + v[i].a);\n if(dp[i][j][1] != -inf)\n dp[i][min(v[i].t, j - v[i].r)][1] =\n max(dp[i][min(v[i].t, j - v[i].r)][1],\n dp[i][j][1] + v[i].w);\n }\n if(j != 0) ans = max({ans, dp[i][j][0], dp[i][j][1]});\n }\n }\n return ans;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 128448, "score_of_the_acc": -1.3077, "final_rank": 16 }, { "submission_id": "aoj_3104_3878332", "code_snippet": "#include <bits/stdc++.h>\n#define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,NAME,...) NAME\n#define pr(...) cerr<< GET_MACRO(__VA_ARGS__,pr8,pr7,pr6,pr5,pr4,pr3,pr2,pr1)(__VA_ARGS__) <<endl\n#define pr1(a) (#a)<<\"=\"<<(a)<<\" \"\n#define pr2(a,b) pr1(a)<<pr1(b)\n#define pr3(a,b,c) pr1(a)<<pr2(b,c)\n#define pr4(a,b,c,d) pr1(a)<<pr3(b,c,d)\n#define pr5(a,b,c,d,e) pr1(a)<<pr4(b,c,d,e)\n#define pr6(a,b,c,d,e,f) pr1(a)<<pr5(b,c,d,e,f)\n#define pr7(a,b,c,d,e,f,g) pr1(a)<<pr6(b,c,d,e,f,g)\n#define pr8(a,b,c,d,e,f,g,h) pr1(a)<<pr7(b,c,d,e,f,g,h)\n#define prArr(a) {cerr<<(#a)<<\"={\";int i=0;for(auto t:(a))cerr<<(i++?\", \":\"\")<<t;cerr<<\"}\"<<endl;}\nusing namespace std;\nusing Int = long long;\nusing _int = int;\nusing ll = long long;\nusing Double = long double;\nconst Int INF = (1LL<<60)+1e9; // ~ 1.15 * 1e18\nconst Int mod = (1e9)+7;\nconst Double EPS = 1e-8;\nconst Double PI = 6.0 * asin((Double)0.5);\nusing P = pair<Int,Int>;\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\ntemplate<class T1, class T2> ostream& operator<<(ostream& o,pair<T1,T2> p){return o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";}\ntemplate<class T1, class T2, class T3> ostream& operator<<(ostream& o,tuple<T1,T2,T3> t){\n return o<<\"(\"<<get<0>(t)<<\",\"<<get<1>(t)<<\",\"<<get<2>(t)<<\")\";}\ntemplate<class T1, class T2> istream& operator>>(istream& i,pair<T1,T2> &p){return i>>p.first>>p.second;}\ntemplate<class T> ostream& operator<<(ostream& o,vector<T> a){Int i=0;for(T t:a)o<<(i++?\" \":\"\")<<t;return o;}\ntemplate<class T> istream& operator>>(istream& i,vector<T> &a){for(T &t:a)i>>t;return i;}\n//INSERT ABOVE HERE\n\nInt N;\nvector<Int> ord;\nvector<Int> R, A, W, T;\n\n_int used[2010][5010][2], mem[2010][5010][2];\nInt dfs(Int i, Int t, Int flag){\n if(t <= 0) return -(Int)INF;\n if(i == N) return 0;\n if(used[i][t][flag]++) return mem[i][t][flag];\n\n Int I = ord[i];\n Int a = -INF, b = -INF;\n {//次の曲にいく\n a = dfs(i+1, t, 0);\n }\n\n {//演奏する\n b = dfs(i, min(T[I], t - R[I]), 1) + (flag == 0? A[I]:W[I]);\n }\n Int res = max(a, b);\n return mem[i][t][flag] = res;\n}\n\nsigned main(){\n srand((unsigned)time(NULL));\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n cin>>N;\n R.resize(N), A.resize(N), W.resize(N), T.resize(N);\n for(Int i=0;i<N;i++) cin>>R[i]>>A[i]>>W[i]>>T[i];\n\n ord.resize(N); iota(ord.begin(), ord.end(),0);\n sort(ord.begin(), ord.end(), [&](Int i, Int j){\n return P(R[i] + T[i], -R[i]) > P(R[j] + T[j], -R[j]);\n });\n\n\n Int ans = dfs(0, 5000, 0);\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 80920, "score_of_the_acc": -1.3129, "final_rank": 17 }, { "submission_id": "aoj_3104_3878033", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define N 2000\n\nint r[N], a[N], w[N], t[N];\nint dp[N+1][N+1][2];\n\nint main(){\n int n;\n cin >> n;\n\n for(int i = 0; i < n; i++){\n cin >> r[i] >> a[i] >> w[i] >> t[i];\n }\n\n vector<int> order(n);\n iota(order.begin(), order.end(), 0);\n\n sort(order.begin(),order.end(),[&](int i,int j){\n return r[i]+t[i] > r[j]+t[j];\n });\n\n for(int i = 0; i <= 2000; i++) {\n for(int j = 0; j <= 2000; j++) {\n dp[i][j][0] = dp[i][j][1] = -1e9;\n }\n }\n\n dp[0][2000][0] = 0;\n\n for(int i = 0; i < n; i++){\n int k = order[i];\n\n int to2 = t[k];\n dp[i][to2][1] = max(dp[i][to2][1], a[k]);\n\n for(int j = 2000; j >= 0; j--){\n int to = min(j - r[k], t[k]);\n if (to >= 0) {\n dp[i][to][1] = max(dp[i][to][1], dp[i][j][0] + a[k]);\n dp[i][to][1] = max(dp[i][to][1], dp[i][j][1] + w[k]);\n }\n }\n\n for(int j=0; j <= 2000; j++) {\n dp[i+1][j][0] = max(dp[i][j][0], dp[i][j][1]);\n }\n }\n\n int ans = 0;\n\n for(int i=1; i<=2000; i++) {\n ans = max(ans, dp[n][i][0]);\n }\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 34484, "score_of_the_acc": -0.2498, "final_rank": 7 }, { "submission_id": "aoj_3104_3877719", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nvoid chmax(int& a, int b){\n a = max(a, b);\n}\n\nint main(){\n int N;\n cin >> N;\n vector<vector<int>> A;\n for(int i=0; i<N; i++){\n vector<int> v(4);\n for(int j=0; j<4; j++) cin >> v[j];\n A.push_back(v);\n }\n sort(A.begin(), A.end(), [](auto a, auto b){ return a[0]+a[3] > b[0]+b[3]; }); \n static int dp[2001][4001][2];\n for(int i=0; i<=N; i++) for(int j=0; j<=4000; j++) for(int k=0; k<2; k++) dp[i][j][k] = -1e9;\n dp[0][4000][0] = 0;\n for(int i=0; i<N; i++){\n int r = A[i][0], a = A[i][1], w = A[i][2], t = A[i][3];\n for(int j=4000; j>0; j--) for(int k=0; k<2; k++){\n chmax(dp[i+1][j][0], dp[i][j][k]);\n int j2 = min(j-r, t);\n int v2 = dp[i][j][k] + (k ? w : a);\n if(j2 > 0) chmax(dp[i][j2][1], v2);\n }\n }\n int ans = 0;\n for(int j=1; j<=2000; j++) for(int k=0; k<2; k++) chmax(ans, dp[N][j][k]);\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 65824, "score_of_the_acc": -0.7308, "final_rank": 14 }, { "submission_id": "aoj_3104_3877503", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=1e9+7;\n\nint N;\nvector<int> R,A,W,T;\n\nint dp[2020][2020];\nconst int INF=1e9;\n\nvoid chmax(int &a,int b){\n if(a<b) a=b;\n}\n\nint main(){\n cin>>N;\n R.resize(N);\n A.resize(N);\n W.resize(N);\n T.resize(N);\n rep(i,N) cin>>R[i]>>A[i]>>W[i]>>T[i];\n\n rep(i,N) T[i]--;\n for(int i=0;i<=N;i++) for(int j=0;j<=2000;j++) dp[i][j]=-INF;\n\n vector<pair<int,int>> v;\n for(int i=0;i<N;i++) v.push_back(mkp(T[i]+R[i],i));\n sort(v.begin(),v.end());\n reverse(v.begin(),v.end());\n\n for(int i=0;i<N;i++){\n int tar=v[i].second;\n int ndp[2020];\n for(int j=0;j<=2000;j++) ndp[j]=-INF;\n ndp[T[tar]]=A[tar];\n for(int j=0;j<=2000;j++){\n if(dp[i][j]==-INF) continue;\n dp[i+1][j]=dp[i][j];\n if(j-R[tar]>=0) chmax(ndp[min(j-R[tar],T[tar])],dp[i][j]+A[tar]);\n }\n\n for(int j=2000;j>=0;j--){\n if(ndp[j]==-INF) continue;\n if(j-R[tar]>=0) chmax(ndp[j-R[tar]],ndp[j]+W[tar]);\n }\n for(int j=0;j<=2000;j++) chmax(dp[i+1][j],ndp[j]);\n }\n\n int ans=0;\n for(int i=0;i<=2000;i++) chmax(ans,dp[N][i]);\n cout<<ans<<endl;\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 18984, "score_of_the_acc": -0.1261, "final_rank": 6 }, { "submission_id": "aoj_3104_3877496", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=1e9+7;\n\nint N;\nvector<int> R,A,W,T;\n\nint dp[2020][4020];\nconst int INF=1e9;\n\nvoid chmax(int &a,int b){\n if(a<b) a=b;\n}\n\nint main(){\n cin>>N;\n R.resize(N);\n A.resize(N);\n W.resize(N);\n T.resize(N);\n rep(i,N) cin>>R[i]>>A[i]>>W[i]>>T[i];\n\n rep(i,N) T[i]--;\n for(int i=0;i<=N;i++) for(int j=0;j<=4000;j++) dp[i][j]=-INF;\n\n vector<pair<int,int>> v;\n for(int i=0;i<N;i++) v.push_back(mkp(T[i]+R[i],i));\n sort(v.begin(),v.end());\n reverse(v.begin(),v.end());\n\n for(int i=0;i<N;i++){\n int tar=v[i].second;\n int ndp[4020];\n for(int j=0;j<=4000;j++) ndp[j]=-INF;\n ndp[T[tar]]=A[tar];\n for(int j=0;j<=4000;j++){\n if(dp[i][j]==-INF) continue;\n dp[i+1][j]=dp[i][j];\n if(j-R[tar]>=0) chmax(ndp[min(j-R[tar],T[tar])],dp[i][j]+A[tar]);\n }\n\n for(int j=4000;j>=0;j--){\n if(ndp[j]==-INF) continue;\n if(j-R[tar]>=0) chmax(ndp[j-R[tar]],ndp[j]+W[tar]);\n }\n for(int j=0;j<=4000;j++) chmax(dp[i+1][j],ndp[j]);\n }\n\n int ans=0;\n for(int i=0;i<=4000;i++) chmax(ans,dp[N][i]);\n cout<<ans<<endl;\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 34600, "score_of_the_acc": -0.3277, "final_rank": 11 }, { "submission_id": "aoj_3104_3877135", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <cctype>\n#include <chrono>\n#define _USE_MATH_DEFINES\n#include <cmath>\n#include <cstdio>\n#include <cstring>\n#include <ctime>\n#include <deque>\n#include <functional>\n#include <iostream>\n#include <iterator>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <sstream>\n#include <string>\n#include <tuple>\n#include <utility>\n#include <vector>\nusing namespace std;\n\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\n\nconst int INF = 0x3f3f3f3f;\nconst long long LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007; // 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n/*-------------------------------------------------*/\nint main() {\n cin.tie(nullptr); ios::sync_with_stdio(false);\n // freopen(\"input.txt\", \"r\", stdin);\n\n int n; cin >> n;\n vector<int> r(n), a(n), w(n), t(n); REP(i, n) cin >> r[i] >> a[i] >> w[i] >> t[i];\n vector<int> idx(n);\n iota(ALL(idx), 0);\n sort(ALL(idx), [&](int a, int b) { return r[a] + t[a] > r[b] + t[b]; });\n vector<vector<int> > dp(n + 1, vector<int>(4000, -INF));\n REP(j, 4000) dp[0][j] = 0;\n REP(i, n) {\n int p = idx[i];\n vector<bool> updated(4000, false);\n for (int j = 3999; j >= 0; --j) {\n if (j - r[p] < 0) break;\n dp[i + 1][min(j - r[p], t[p] - 1)] = max(dp[i + 1][min(j - r[p], t[p] - 1)], dp[i][j] + a[p]);\n updated[min(j - r[p], t[p] - 1)] = true;\n }\n for (int j = 3999; j >= 0; --j) if (updated[j]) {\n if (j - r[p] < 0) break;\n dp[i + 1][j - r[p]] = max(dp[i + 1][j - r[p]], dp[i + 1][j] + w[p]);\n updated[j - r[p]] = true;\n }\n REP(j, 4000) dp[i + 1][j] = max(dp[i + 1][j], dp[i][j]);\n }\n int ans = 0;\n REP(j, 4000) ans = max(ans, dp[n][j]);\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 34252, "score_of_the_acc": -0.4018, "final_rank": 12 }, { "submission_id": "aoj_3104_3877098", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\n// #define int ll\nusing PII = pair<ll, ll>;\n\n#define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define ALL(x) x.begin(), x.end()\n\ntemplate<typename T> T &chmin(T &a, const T &b) { return a = min(a, b); }\ntemplate<typename T> T &chmax(T &a, const T &b) { return a = max(a, b); }\ntemplate<typename T> bool IN(T a, T b, T x) { return a<=x&&x<b; }\ntemplate<typename T> T ceil(T a, T b) { return a/b + !!(a%b); }\n\ntemplate<typename T> vector<T> make_v(size_t a) { return vector<T>(a); }\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts) {\n return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\ntemplate<typename T,typename V> typename enable_if<is_class<T>::value==0>::type\nfill_v(T &t, const V &v) { t=v; }\ntemplate<typename T,typename V> typename enable_if<is_class<T>::value!=0>::type\nfill_v(T &t, const V &v ) { for(auto &e:t) fill_v(e,v); }\n\ntemplate<class S,class T>\nostream &operator <<(ostream& out,const pair<S,T>& a) {\n out<<'('<<a.first<<','<<a.second<<')'; return out;\n}\ntemplate<class T>\nostream &operator <<(ostream& out,const vector<T>& a){\n out<<'[';\n for(const T &i: a) out<<i<<',';\n out<<']';\n return out;\n}\ntemplate<class T>\nostream &operator <<(ostream& out, const set<T>& a) {\n out<<'{';\n for(const T &i: a) out<<i<<',';\n out<<'}';\n return out;\n}\ntemplate<class T, class S>\nostream &operator <<(ostream& out, const map<T,S>& a) {\n out<<'{';\n for(auto &i: a) out<<i<<',';\n out<<'}';\n return out;\n}\n\nint dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0}; // DRUL\nconst int INF = 1<<30;\nconst ll LLINF = 1LL<<60;\nconst ll MOD = 1000000007;\n\nsigned main(void)\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll n;\n cin >> n;\n vector<ll> r(n), a(n), w(n), t(n);\n REP(i, n) {\n cin >> r[i] >> a[i] >> w[i] >> t[i];\n if(a[i]<=0 && w[i]<=0) {\n i--;\n n--;\n }\n }\n vector<ll> ord(n);\n iota(ALL(ord), 0);\n sort(ALL(ord), [&](ll x, ll y){\n return t[x]+r[x] < t[y]+r[y];\n });\n\n vector<vector<ll>> dp(5001, vector<ll>(2, -LLINF));\n dp[0][0] = 0;\n for(auto i: ord) {\n FOR(j, r[i], r[i]+t[i]) chmax(dp[j][1], dp[j-r[i]][0]+a[i]);\n FOR(j, r[i], r[i]+t[i]) chmax(dp[j][1], dp[j-r[i]][1]+w[i]);\n REP(j, 5001) {\n chmax(dp[j][0], dp[j][1]);\n dp[j][1] = -LLINF;\n }\n }\n\n // vector<vector<vector<ll>>> dp(n+1, vector<vector<ll>>(5001, vector<ll>(2)));\n // REP(i, n) REP(j, 2001) dp[i][j][0] = dp[i][j][1] = -LLINF;\n // dp[0][0][0] = 0;\n // REP(ii, n) {\n // ll i = ord[ii];\n // FOR(j, r[i], r[i]+t[i]) {\n // chmax(dp[ii+1][j][1], dp[ii][j-r[i]][0]+a[i]);\n // chmax(dp[ii+1][j][1], dp[ii+1][j-r[i]][1]+w[i]);\n // }\n // REP(j, 5001) {\n // chmax(dp[ii+1][j][0], dp[ii][j][0]);\n // chmax(dp[ii+1][j][0], dp[ii+1][j][1]);\n // }\n // }\n\n // REP(i, n+1) {\n // cout << \"i=\" << ord[i] << endl;\n // REP(j, 21) cout << j << \" \" << dp[i][j][0] << \" \" << dp[i][j][1] << endl;\n // cout << endl;\n // }\n\n ll ret = 0;\n REP(i, 5001) chmax(ret, dp[i][0]);\n cout << ret << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3348, "score_of_the_acc": -0.0013, "final_rank": 4 }, { "submission_id": "aoj_3104_3877061", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define F first\n#define S second\n#define R cin>>\n#define Z class\n#define ll long long\n#define ln cout<<'\\n'\n#define in(a) insert(a)\n#define pb(a) push_back(a)\n#define pd(a) printf(\"%.10f\\n\",a)\n#define mem(a) memset(a,0,sizeof(a))\n#define all(c) (c).begin(),(c).end()\n#define iter(c) __typeof((c).begin())\n#define rrep(i,n) for(ll i=(ll)(n)-1;i>=0;i--)\n#define REP(i,m,n) for(ll i=(ll)(m);i<(ll)(n);i++)\n#define rep(i,n) REP(i,0,n)\n#define tr(it,c) for(iter(c) it=(c).begin();it!=(c).end();it++)\ntemplate<Z A>void pr(A a){cout<<a;ln;}\ntemplate<Z A,Z B>void pr(A a,B b){cout<<a<<' ';pr(b);}\ntemplate<Z A,Z B,Z C>void pr(A a,B b,C c){cout<<a<<' ';pr(b,c);}\ntemplate<Z A,Z B,Z C,Z D>void pr(A a,B b,C c,D d){cout<<a<<' ';pr(b,c,d);}\ntemplate<Z A>void PR(A a,ll n){rep(i,n){if(i)cout<<' ';cout<<a[i];}ln;}\nll check(ll n,ll m,ll x,ll y){return x>=0&&x<n&&y>=0&&y<m;}\nconst ll MAX=1e9+7,MAXL=1LL<<61,dx[4]={-1,0,1,0},dy[4]={0,1,0,-1};\ntypedef pair<ll,ll> P;\ntypedef pair<P,P> PP;\n\nll dp[2222][4222];\nvoid Main() {\n ll n;\n R n;\n ll a[n],b[n],c[n],d[n];\n rep(i,n) cin >> a[i] >> b[i] >> c[i] >> d[i];\n PP p[n];\n rep(i,n) p[i]=PP(P(d[i],a[i]),P(b[i],c[i]));\n sort(p,p+n,greater<PP>());\n rep(i,2222)rep(j,4222) dp[i][j]=-MAX;\n dp[0][4100]=0;\n rep(i,n) {\n rep(j,4101) dp[i+1][j]=max(dp[i+1][j],dp[i][j]);\n rep(j,4101) {\n if(p[i].F.S>=j) continue;\n ll y=min(j-p[i].F.S,p[i].F.F);\n ll z=(y-1)/p[i].F.S;\n rep(k,min(300LL,z+1)) {\n ll e=z-k;\n ll x=y-e*p[i].F.S;\n dp[i+1][x]=max(dp[i+1][x],dp[i][j]+e*p[i].S.S+p[i].S.F);\n }\n rep(k,min(300LL,z+1)) {\n ll e=k;\n ll x=y-e*p[i].F.S;\n dp[i+1][x]=max(dp[i+1][x],dp[i][j]+e*p[i].S.S+p[i].S.F);\n }\n }\n }\n ll ans=0;\n rep(i,n+1)REP(j,1,4222) ans=max(ans,dp[i][j]);\n pr(ans);\n}\n\nint main(){ios::sync_with_stdio(0);cin.tie(0);Main();return 0;}", "accuracy": 0.265625, "time_ms": 140, "memory_kb": 76540, "score_of_the_acc": -1.5856, "final_rank": 20 } ]
aoj_3107_cpp
A: 間違い探し 問題 縦に N マス、横に M マスある長方形の盤面 A , B が与えられます。各盤面について、それぞれのマスは白または黒で塗られています。 盤面 X の i 行 j 列目のマスの色を C(i, j, X) と表記することにします。 以下の条件を満たす整数の組 (i, j) がいくつあるか数えてください。 1 \leq i \leq N 1 \leq j \leq M C(i, j, A) \neq C(i, j, B) 入力形式 N M A_1 ... A_N B_1 ... B_N A_i ( 1 \leq i \leq N ) の j 文字目が # のときは C(i, j, A) が黒、 . のときは C(i, j, A) が白であることを表します。 B についても同様です。 制約 1 \leq N, M \leq 2,000 |A_i| = |B_i| = M A_i , B_i は # と . のみからなる文字列 出力形式 答えを一行に出力してください。 入力例1 2 3 ..# ##. .## #.. 出力例1 2 入力例2 7 28 ............................ ...#.....###...####....###.. ..#.#...#...#..#...#..#...#. .#...#..#......####...#..... .#####..#...#..#......#...#. .#...#...###...#.......###.. ............................ ............................ ..###....###.....##....###.. .#...#..#...#...#.#...#...#. ...##...#...#.....#....####. ..#.....#...#.....#.......#. .#####...###....####...###.. ............................ 出力例2 40
[ { "submission_id": "aoj_3107_9543228", "code_snippet": "#include <bits/stdc++.h>\n\n\nusing namespace std;\n//make -f ../makefile SRC=\n/*\n*/\n\n\n//------------------------------------------------------------------------------\nbool DEBUG = false;\nconst int INF = 1000000000;\n\nconst int MAX_N = 10;\nstatic int vect[MAX_N];\n\n//------------------------------------------------------------------------------\nvoid solve(int N)\n{\n //--------------------------------------------------------------------------\n // base cases:\n //--------------------------------------------------------------------------\n // init:\n //sort(vect, vect+N);\n //memset(S0, 0L, sizeof(S0));\n //--------------------------------------------------------------------------\n // compute:\n \n\n //--------------------------------------------------------------------------\n \n //--------------------------------------------------------------------------\n // report:\n //printf(\"%d\\n\", res);\n\n\n}\n\n//------------------------------------------------------------------------------\nvoid test()\n{\n\n}\n\n//------------------------------------------------------------------------------\nint main()\n{\n //test(); return 0;\n //DEBUG = true;\n //--------------------------------------------------------------------------\n int M, N, num;\n char c;\n cin >> M >> N;\n vector<bool> S(M*N, false);\n for (int v=0; v<M*N; ++v)\n {\n cin >> c;\n if (c == '.') S[v] = true;\n }\n\n int res = 0;\n for (int v=0; v<M*N; ++v)\n {\n cin >> c;\n if ((c == '.' && !S[v]) || (c == '#' && S[v])) res++;\n }\n printf(\"%d\\n\", res);\n //--------------------------------------------------------------------------\n return 0;\n}\n//------------------------------------------------------------------------------", "accuracy": 1, "time_ms": 230, "memory_kb": 3552, "score_of_the_acc": -0.6875, "final_rank": 5 }, { "submission_id": "aoj_3107_8027107", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(n);i++)\n\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod=998244353;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,1,0};\n\nint main() {\n int n,m; cin>>n>>m;\n vector<vector<char>> a(n,vector<char>(m));\n rep(i,n)rep(j,m){\n cin>>a[i][j];\n }\n int ans = 0;\n rep(i,n){\n rep(j,m){\n char b; cin>>b;\n if(a[i][j] != b) ans++;\n }\n }\n cout<<ans<<endl;\n\n\n\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 7436, "score_of_the_acc": -0.8146, "final_rank": 6 }, { "submission_id": "aoj_3107_8027100", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main(){ \n int N, M; cin >> N >> M;\n vector A(N, vector<char>(M)), B(N, vector<char>(M));\n for (auto& a : A) for (auto& x : a) cin >> x;\n for (auto& a : B) for (auto& x : a) cin >> x;\n int ans = 0;\n for (int i = 0 ; i < N ; i++) {\n for (int j = 0 ; j < M ; j++) {\n ans += A[i][j] != B[i][j];\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 11416, "score_of_the_acc": -1.0104, "final_rank": 14 }, { "submission_id": "aoj_3107_8027097", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nint main(){\n int h;\n int w;\n cin >> h >> w;\n vector<vector<int>> table(h,vector<int>(w,0));\n for(auto &i:table)for(auto &j:i){\n char v;\n cin >> v;\n j += v;\n }\n for(auto &i:table)for(auto &j:i){\n char v;\n cin >> v;\n j -= v;\n }\n int ans = 0;\n for(auto &i:table)for(auto &j:i)if(j)++ans;\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 18960, "score_of_the_acc": -1.5625, "final_rank": 20 }, { "submission_id": "aoj_3107_6938101", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\ntemplate<class T> T min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\n\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N,M,ans=0;\n\tcin>>N>>M;\n\tvector<char> p(N*M);\n\trep(i,N*M) cin>>p[i];\n\trep(i,N*M){\n\t\tchar c;\n\t\tcin>>c;\n\t\tans+=(c!=p[i]);\n\t}\n\tcout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 6968, "score_of_the_acc": -0.3467, "final_rank": 2 }, { "submission_id": "aoj_3107_6162348", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <algorithm>\n#include <set>\n#include <stack>\n#include <queue>\n#include <cmath>\n#include <iomanip>\nusing namespace std;\nusing ll = long long;\ntemplate<class T> inline bool chmax(T& a, T b){ if (a < b){ a = b; return true; } return false; }\ntemplate<class T> inline bool chmin(T& a, T b){ if (a > b){ a = b; return true; } return false; }\n\n\nint main() {\n int n, m; cin >> n >> m;\n vector<string> a(n), b(n);\n for(int i=0; i<n; ++i) cin >> a[i];\n for(int i=0; i<n; ++i) cin >> b[i];\n int ans = 0;\n for(int i=0; i<n; ++i)\n for(int j=0; j<m; ++j)\n ans += int(a[i][j] != b[i][j]);\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 18636, "score_of_the_acc": -1.229, "final_rank": 16 }, { "submission_id": "aoj_3107_4526559", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\n#define enld '\\n'\n#define rep(i,n) for(int i=0; i<(n); i++)\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native\")\n#pragma GCC optimize(\"Ofast\")\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\nconstexpr ll mod = 1000000007;\nconstexpr ll mod2 = 998244353;\nconst double PI = 3.1415926535897932384626433832795028841971;\nconst int dx[6] = {1, 0, -1, 0,1,1};\nconst int dy[6] = {0, 1, 0, -1,1,-1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n// ---------------------------------------------------------------------------\n\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int N,M;\n cin >> N >> M;\n vector<string> A(N),B(N);\n for(int i=0; i<N; i++){\n cin >> A[i];\n }\n for(int i=0; i<N; i++){\n cin >> B[i];\n }\n int cnt = 0;\n for(int i=0; i<N; i++){\n for(int j=0; j<M; j++){\n if(A[i][j] != B[i][j]) cnt++;\n }\n }\n cout << cnt << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 11344, "score_of_the_acc": -0.5682, "final_rank": 4 }, { "submission_id": "aoj_3107_4525841", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n// macro\n#define rep(i,n) for(i=0;i<n;i++)\n#define ll long long\n#define all(v) v.begin(), v.end()\n\n// code starts\nint main()\n{\n int n,m;cin>>n>>m;\n vector<vector<char>> a(n,vector<char>(m));\n int i,j;\n rep(i,n)rep(j,m)cin>>a[i][j];\n vector<vector<char>> b(n,vector<char>(m));\n rep(i,n)rep(j,m)cin>>b[i][j];\n int ans=0;\n rep(i,n)rep(j,m)\n {\n if(a[i][j]!=b[i][j])ans++;\n }\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 330, "memory_kb": 10760, "score_of_the_acc": -1.4678, "final_rank": 19 }, { "submission_id": "aoj_3107_4525786", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define REP(i,n) for (ll i = 0, i##_len = (n); i < i##_len; i++)\n\nint main() {\n\n ll n, m; cin >> n >> m;\n vector<string> a(n), b(n);\n REP(i, n) cin >> a[i];\n REP(i, n) cin >> b[i];\n ll ans = 0;\n REP(i, n) REP(j, m) ans += a[i][j] != b[i][j];\n cout << ans << endl;\n\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 11132, "score_of_the_acc": -0.992, "final_rank": 11 }, { "submission_id": "aoj_3107_4525772", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int n,m,ans=0;\n cin >> n >> m;\n\n vector<string>table_a(n);\n vector<string>table_b(n);\n\n for (int i = 0; i < n; i++) {\n cin >> table_a.at(i);\n }\n\n for (int i = 0; i < n; i++) {\n cin >> table_b.at(i);\n } \n\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < m; j++) {\n if (table_a.at(i).at(j) != table_b.at(i).at(j)) {\n ans++;\n }\n } \n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 11132, "score_of_the_acc": -0.992, "final_rank": 11 }, { "submission_id": "aoj_3107_4525736", "code_snippet": "#include <iostream>\n#include <vector>\nusing namespace std;\n\nint main(){\n int N, M;\n cin >> N >> M;\n vector<string> A(N), B(N);\n for(int i = 0; i < N; ++i)\n cin >> A[i];\n for(int i = 0; i < N; ++i)\n cin >> B[i];\n int ans = 0;\n for(int i = 0; i < N; ++i)\n for(int j = 0; j < M; ++j)\n ans += (A[i][j] != B[i][j]);\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 11056, "score_of_the_acc": -0.987, "final_rank": 7 }, { "submission_id": "aoj_3107_4239257", "code_snippet": "#include<iostream>\n#include<string>\n#include<iomanip>\n#include<cmath>\n#include<vector>\n#include<algorithm>\n#include<queue>\n#include<stack>\nusing namespace std;\n\n#define int long long\n#define endl \"\\n\"\n\nconst long long INF = (long long)1e18;\nconst long long MOD = 1'000'000'007; \n\nstring yn(bool f){return f?\"Yes\":\"No\";}\nstring YN(bool f){return f?\"YES\":\"NO\";}\n\n\n\nsigned main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tcout<<fixed<<setprecision(10);\n\t\n\tint n, m; \n\tint a, b, c, d, e;\n\tstring s, t;\n\t\n\tchar c1, c2, c3;\n\t\n\tstatic int x[1000] = {};\n\tstatic int y[1000] = {};\n\t\n\tvector<int> v, u;\n\tpair<int,int> p;\n\t\n\tint r[30] = {};\n\t\n\t\n\tint N, M;\n\t\n\tcin>>N>>M;\n\t\n\tvector<string> A(N), B(N);\n\t\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tcin>>A[i];\n\t}\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tcin>>B[i];\n\t}\n\t\n\tint con = 0;\n\t\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int j = 0; j < M ;j++){\n\t\t\tif(A[i][j] != B[i][j]) con++;\n\t\t}\n\t}\n\t\n\tcout<<con<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 11260, "score_of_the_acc": -0.5003, "final_rank": 3 }, { "submission_id": "aoj_3107_4114640", "code_snippet": "#include<iostream>\nusing namespace std;\n\nchar a[2010][2010];\n\nint main(){\n \n int n,m,ans;\n char b;\n \n cin >> n >> m;\n for(int i=0;i<n;i++) cin >> a[i];\n ans = 0;\n for(int i=0;i<n;i++){\n for(int j=0;j<m;j++){\n cin >> b;\n ans += b!=a[i][j];\n }\n }\n cout << ans << endl;\n \n return(0);\n}", "accuracy": 1, "time_ms": 330, "memory_kb": 6940, "score_of_the_acc": -1.2199, "final_rank": 15 }, { "submission_id": "aoj_3107_4083628", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main(){\n int N, M;\n cin >> N >> M;\n string S[2][2000];\n for(int t=0; t<2; t++) for(int i=0; i<N; i++) cin >> S[t][i];\n int ans = 0;\n for(int i=0; i<N; i++) for(int j=0; j<M; j++) if(S[0][i][j] != S[1][i][j]) ans++;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 11264, "score_of_the_acc": -1.0005, "final_rank": 13 }, { "submission_id": "aoj_3107_4055318", "code_snippet": "#include<iostream>\n#include<string>\n#include<vector>\nusing namespace std;\n\nint main(){\n int n,m;\n vector<string> Amap;\n vector<string> Bmap;\n cin >> n >> m;\n for(int i=0; i<n; ++i){\n string tmp;\n cin >> tmp;\n Amap.push_back(tmp);\n }\n \n for(int i=0; i<n; ++i){\n string tmp;\n cin >> tmp;\n Bmap.push_back(tmp);\n }\n int sum = 0;\n for(int i=0; i<n; ++i){\n for(int j=0; j<m; ++j){\n if(Amap[i][j] != Bmap[i][j])++sum;\n }\n }\n cout << sum << endl;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 11124, "score_of_the_acc": -0.9914, "final_rank": 10 }, { "submission_id": "aoj_3107_4055317", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main()\n{ \n vector<string> A;\n vector<string> B;\n int N,M;\n cin>>N>>M;\n\n for(int i = 0;i < N;++i){\n string temp;\n cin>>temp;\n A.push_back(temp);\n }\n for(int i = 0;i < N;++i){\n string temp;\n cin>>temp;\n B.push_back(temp);\n }\n\n int ans = 0;\n for(int i = 0;i < N;++i){\n string a = A.at(i);\n string b = B.at(i);\n\n for(int j = 0;j < M;++j){\n char a2 = a[j];\n char b2 = b[j];\n\n if(a2 != b2){\n ++ans;\n }\n }\n }\n cout<<ans<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 11100, "score_of_the_acc": -0.9899, "final_rank": 8 }, { "submission_id": "aoj_3107_4055312", "code_snippet": "#include <iostream>\n#include <vector>\nusing namespace std;\n\nint main() {\n int N, M;\n int ans = 0;\n cin >> N >> M;\n\n vector<vector<char>> A(2001, vector<char>(2001));\n vector<vector<char>> B(2001, vector<char>(2001));\n\n for(int i = 0; i < N; i++) {\n for(int j = 0; j < M; j++) {\n cin >> A[i][j];\n }\n }\n\n for(int i = 0; i < N; i++) {\n for(int j = 0; j < M; j++) {\n cin >> B[i][j];\n }\n }\n\n for(int i = 0; i < N; i++) {\n for(int j = 0; j < M; j++) {\n if(A[i][j] != B[i][j])\n ans++;\n }\n }\n\n cout << ans <<\tendl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 10796, "score_of_the_acc": -1.4076, "final_rank": 18 }, { "submission_id": "aoj_3107_4055298", "code_snippet": "#include <cstdio>\n\nusing namespace std;\n\nchar board[2000][2000];\nint N,M;\n\nint main(){\n scanf(\"%d%d\\n\",&N,&M);\n\n for (int i=0;i<N;i++){\n for (int j=0;j<M;j++){\n board[i][j]=getchar();\n }\n getchar();\n }\n int count=0;\n for (int i=0;i<N;i++){\n for (int j=0;j<M;j++){\n if (board[i][j]!=getchar())\n count++;\n }\n getchar();\n }\n\n printf(\"%d\\n\",count);\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 6656, "score_of_the_acc": -0.2952, "final_rank": 1 }, { "submission_id": "aoj_3107_4055289", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nint main(){\n\n int N,M;\n\n cin >> N >> M;\n \n char A[N][M];\n char B[N][M];\n\n int total = 0;\n \n for(int i = 0;i < N;++i){\n for(int j = 0;j < M;++j){\n cin >> A[i][j];\n }\n }\n \n for(int i = 0;i < N;++i){\n for(int j = 0;j < M;++j){\n cin >> B[i][j];\n if(A[i][j] != B[i][j])\n\ttotal++;\n }\n }\n\n cout << total << endl;\n \n}", "accuracy": 1, "time_ms": 290, "memory_kb": 10900, "score_of_the_acc": -1.3519, "final_rank": 17 }, { "submission_id": "aoj_3107_4055282", "code_snippet": "#include<iostream>\n#include<algorithm>\n#include<cstdio>\n#include<cmath>\n#include<cctype>\n#include<math.h>\n#include<string>\n#include<string.h>\n#include<stack>\n#include<queue>\n#include<vector>\n#include<utility>\n#include<set>\n#include<map>\n#include<stdlib.h>\n#include<iomanip>\n#include<complex>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n#define EPS 1e-9\n#define INF 1e9\n#define LINF (ll)INF*INF\n#define MOD 1000000007\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define loop(i,a,n) for(int i=a;i<(n);i++)\n#define all(in) in.begin(),in.end()\n#define shosu(x) fixed<<setprecision(x)\n\n#define int ll //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\ntypedef vector<int> vi;\ntypedef vector<string> vs;\ntypedef pair<int,int> pii;\ntypedef pair<pii,int> ppi;\ntypedef pair<int,pii> pip;\ntypedef vector<pii> vp;\ntypedef vector<vi> vvi;\n\nint gcd(int a, int b){if(b==0) return a;return gcd(b,a%b);}\nint lcm(int a, int b){return a/gcd(a,b)*b;}\n\n\nsigned main(void) {\n int n,m;\n cin >> n >> m;\n vs a(n),b(n);\n rep(i,n)cin >> a[i];\n rep(i,n)cin >> b[i];\n int ans = 0;\n rep(i,n)rep(j,m)if(a[i][j] != b[i][j])ans++;\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 11104, "score_of_the_acc": -0.9901, "final_rank": 9 } ]
aoj_3108_cpp
B: テトリス 問題 縦 4 マス x 横 10 マスの長方形からなる盤面を考えます。 縦 1 マス x 横 1 マスぶんの正方形をブロックと呼びます。 ブロックを 4 つ繋げたものをテトロミノと呼び、以下の 7 種類(およびこれらに対して 90 度回転を任意回行ったもの)があります。 さて、盤面のうち 28 個のマスにブロックが置かれた状態を考えます。 左の図のように、各ブロック(赤色で表される)はマスに合うように置かれます。右の図のように半端な位置に置かれることはありません。 4 つのテトロミノ t_1 , t_2 , t_3 , t_4 が与えられるので、このうちちょうど 3 つを選んですきな位置に置くことで、盤面全体にブロックが置かれた状態にできるか判定してください。 ただし、テトロミノを配置するにあたり、以下の条件をすべて満たさなければなりません。 ブロック同士が重なってはいけない。 与えられたテトロミノを回転させてはいけない。 各 i ( 1 \leq i \leq 4 ) について、テトロミノ t_i を 2 回以上使ってはいけない。 テトロミノの各ブロックは盤面の外に出てはいけない。 盤面が n 個与えられるので、各盤面についてこの判定を行い、盤面全体にブロックを置けるならば Yes 、不可能ならば No を出力してください。 入力形式 t_1 t_2 t_3 t_4 n B_1 … B_n はじめに、使えるテトロミノ t_1 , t_2 , t_3 , t_4 が与えられます。 各 t_i ( 1 \leq i \leq 4 ) は以下の形式で与えられます。 h w s_1 … s_h これはテトロミノを含む縦 h x 横 w マスの長方形であり、テトロミノの形状は s_1 … s_h で表されます。長方形のうち、テトロミノを表す部分は # 、それ以外の部分は . で表されます。各長方形に # はちょうど 4 つ含まれます。 . のみからなる行または列は存在しません。 次に、盤面の個数 n が与えられます。 その後、 4\times 10 マスで表される盤面 B が n 個与えられます。 ブロックがある位置が # 、ない位置が . で示されます。 制約 1\leq n\leq 10^5 与えられる各テトロミノは上で述べた条件に違反しない 各盤面について、 # はちょうど 28 個存在する たとえば、以下のようなテトロミノは与えられない。 3 3 ..# .#. ##. (連結でないブロックがあり、これは上で述べたテトロミノの条件を満たさない) 3 3 ... .#. ### (一番上の行が . のみからなる) 出力形式 n 行にわたって出力してください。 i 行目には盤面 B_i に対する判定結果を Yes または No で出力してください。 入力例1 2 3 ##. .## 2 3 #.. ### 1 4 #### 2 3 ### .#. 2 ####....## ####...### ####..#### ####...### ###..##### ###...#### ###...#### ###....### 出力例1 Yes Yes t_1 , t_2 , t_3 , t_4 に相当するテトロミノが置かれる場所をそれぞれ 1 , 2 , 3 , 4 で示すと、各盤面は次のように敷き詰められます。 ####3333## ####444### ####24#### ####222### ###11##### ###211#### ###222#### ###3333### 各盤面について、別々のテトロミノを選んで構いません。 入力例2 1 4 #### 1 4 #### 2 2 ## ## 2 2 ## ## 4 ######.... ....###### #######..# #######..# ....###### ######.... ....###### ########## ######.#.# ######.#.# ##..##.#.# ##..##.#.# ##.###.#.# #.#.###.## #.#.###.## ##.###.#.# 出力例2 Yes No No No #### が足りないため、2 つ目の盤面をブロックで敷き詰めることはできません。 また、テトロミノを回転させることはできないので、3 つ目の盤面を敷き詰めることもできません。 また、4 つ目の盤面のようなブロックの配置の仕方もありえることに注意してください。すなわち、入力で与えられる盤面はテトロミノを組み合わせて作られる盤面とは限りません。
[ { "submission_id": "aoj_3108_10183526", "code_snippet": "// AOJ #3108\n// Perfect 2025.2.3\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ull = unsigned long long;\n\nstatic inline ull cellBit(int row, int col) {\n return ull(1) << (row * 10 + col);\n}\n\nvector<pair<int,int>> readTetromino() {\n int h, w;\n cin >> h >> w;\n vector<pair<int,int>> cells;\n cells.reserve(4);\n for(int r=0; r<h; r++){\n string line;\n cin >> line;\n for(int c=0; c<w; c++){\n if(line[c] == '#'){\n // テトロミノに含まれるマス(相対座標)\n cells.push_back({r, c});\n }\n }\n }\n return cells;\n}\n\nvector<ull> buildAllPlacementsMask(const vector<pair<int,int>>& tet) {\n // テトロミノのbounding box 高さ, 幅を求める\n int maxr = 0, maxc = 0;\n for(auto &p : tet){\n maxr = max(maxr, p.first);\n maxc = max(maxc, p.second);\n }\n int h = maxr + 1;\n int w = maxc + 1;\n \n vector<ull> masks;\n for(int baseR = 0; baseR <= 4 - h; baseR++){\n for(int baseC = 0; baseC <= 10 - w; baseC++){\n // 4マスをビットマスクに落とし込む\n ull mask = 0ULL;\n for(auto &p : tet){\n int r = baseR + p.first;\n int c = baseC + p.second;\n mask |= cellBit(r, c);\n }\n masks.push_back(mask);\n }\n }\n return masks;\n}\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n // 1. テトロミノ4つを読み込む\n vector<vector<pair<int,int>>> tet(4);\n for(int i=0; i<4; i++){\n tet[i] = readTetromino();\n }\n\n // 2. 各テトロミノを盤面に置いたときの全ビットマスクを前計算\n vector<vector<ull>> shapeMasks(4);\n for(int i=0; i<4; i++){\n shapeMasks[i] = buildAllPlacementsMask(tet[i]);\n }\n\n // 3. 「3つのテトロミノを重ならずに置いたときにちょうど埋まるマス集合」のビットマスクを全列挙し、セットに保存\n unordered_set<ull> validPatterns;\n validPatterns.reserve(200000);\n\n vector<int> idx = {0,1,2,3};\n for(int i=0;i<4;i++){\n for(int j=i+1;j<4;j++){\n for(int k=j+1;k<4;k++){\n for(ull m1 : shapeMasks[i]){\n for(ull m2 : shapeMasks[j]){\n if(m1 & m2) continue;\n ull m12 = m1 | m2;\n for(ull m3 : shapeMasks[k]){\n if(m12 & m3) continue;\n ull totalMask = m12 | m3;\n validPatterns.insert(totalMask);\n }\n }\n }\n }\n }\n }\n\n // 4. 入力される盤面 n 個について判定\n int n;\n cin >> n;\n\n while(n--){\n ull emptyMask = 0ULL;\n for(int r=0; r<4; r++){\n string row;\n cin >> row;\n for(int c=0; c<10; c++){\n if(row[c] == '.') {\n emptyMask |= cellBit(r, c);\n }\n }\n }\n if(validPatterns.find(emptyMask) != validPatterns.end()){\n cout << \"Yes\" << endl;\n } else {\n cout << \"No\" << endl;\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 5316, "score_of_the_acc": -0.3118, "final_rank": 8 }, { "submission_id": "aoj_3108_8027267", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod=998244353;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,-1,0};\n\n\nbool is_inside(int y,int x) {\n return 0 <= y and y < 4 and 0 <= x and x < 10;\n}\n\n\npair<bool, vector<string>> put(const vector<string> &s, const vector<string> &mino, int sy,int sx) {\n rep(i, mino.size()) {\n rep(j, mino[i].size()) {\n int y = sy + i;\n int x = sx + j;\n\n if (not is_inside(y, x)) {\n return {false, {}};\n }\n\n if (mino[i][j] == '.'){\n continue;\n }\n\n if (s[y][x] == '#') {\n return {false, {}};\n }\n }\n }\n\n vector<string> res = s;\n\n rep(i, mino.size()) {\n rep(j, mino[i].size()) {\n int y = sy + i;\n int x = sx + j;\n\n if (mino[i][j] == '.'){\n continue;\n }\n\n res[y][x] = '#';\n }\n }\n return {true, res};\n}\n\n\nll flip_and_to_ll(const vector<string> &s) {\n ll res = 0;\n\n rep(i, 4) {\n rep(j, 10) {\n int idx = i*10 + j;\n if (s[i][j] == '.') {\n res |= 1LL << idx;\n }\n }\n }\n\n return res;\n}\n\nll to_ll(const vector<string> &s) {\n ll res = 0;\n\n rep(i, 4) {\n rep(j, 10) {\n int idx = i*10 + j;\n if (s[i][j] == '#') {\n res |= 1LL << idx;\n }\n }\n }\n\n return res;\n}\n\nvoid debug_output(vector<string> s) {\n cout << \"debug begin here\" << endl;\n rep(i, s.size()) {\n cout << s[i] << endl;\n }\n cout << \"debug end here\" << endl;\n}\n\nset<ll> ok;\nvector<int> use;\nvector<vector<string>> minos(4);\n\nvoid dfs(int i, const vector<string> &s) {\n if (i == 4) {\n ok.insert(flip_and_to_ll(s));\n return;\n }\n\n if (not use[i]) {\n dfs(i+1, s);\n return;\n }\n\n rep(y, 4) {\n rep(x, 10) {\n auto [can, res] = put(s, minos[i], y, x);\n if (can) {\n dfs(i+1, res);\n }\n }\n }\n\n return;\n}\n\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n vector<int> h(4), w(4);\n\n rep(i, 4) {\n cin >> h[i] >> w[i];\n\n minos[i] = vector<string>(h[i]);\n\n rep(j, h[i]) {\n cin >> minos[i][j];\n }\n }\n\n use = vector<int>(4, 0);\n use[0] = use[1] = use[2] = 1;\n sort(use.begin(), use.end());\n\n do {\n vector<string> s(4);\n rep(y, 4) {\n rep(x, 10) {\n s[y] += \".\";\n }\n }\n\n dfs(0, s);\n } while(next_permutation(use.begin(), use.end()));\n\n int n;\n cin >> n;\n\n rep(_, n) {\n vector<string> b(4);\n rep(i, 4) {\n cin >> b[i];\n }\n\n ll b_val = to_ll(b);\n if (ok.find(b_val) != ok.end()) {\n cout << \"Yes\" << \"\\n\";\n } else {\n cout << \"No\" << \"\\n\";\n }\n }\n\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4428, "score_of_the_acc": -0.1526, "final_rank": 5 }, { "submission_id": "aoj_3108_8027222", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nusing State = array<string, 4>;\n\nstruct Mino {\n int h;\n int w;\n vector<string> block;\n Mino() = default;\n Mino(int h, int w, vector<string>& block) : h(h), w(w), block(block) {}\n};\n\nint main(){\n vector<Mino> minos(4);\n for (int i = 0; i < 4; i++) {\n int h, w;\n cin >> h >> w;\n vector<string> block(h);\n for (int j = 0; j < h; j++) cin >> block[j];\n minos[i] = Mino(h, w, block);\n }\n State black;\n for (int i = 0; i < 4; i++) black[i] = \"##########\";\n\n set<State> s;\n array<int, 3> index;\n\n auto dfs = [&](auto dfs, State& state, int i) -> void {\n if (i == 3) {\n s.emplace(state);\n return;\n }\n Mino& mino = minos[index[i]];\n for (int j = 0; j + mino.h <= 4; j++) {\n for (int k = 0; k + mino.w <= 10; k++) {\n bool flag = true;\n // check\n for (int dj = 0; dj < mino.h; dj++) {\n for (int dk = 0; dk < mino.w; dk++) {\n if (mino.block[dj][dk] == '#' && state[j + dj][k + dk] == '.') {\n flag = false;\n break;\n }\n }\n }\n if (!flag) continue;\n // add\n for (int dj = 0; dj < mino.h; dj++) {\n for (int dk = 0; dk < mino.w; dk++) {\n if (mino.block[dj][dk] == '#') {\n assert(state[j + dj][k + dk] == '#');\n state[j + dj][k + dk] = '.';\n }\n }\n }\n dfs(dfs, state, i + 1);\n // erase\n for (int dj = 0; dj < mino.h; dj++) {\n for (int dk = 0; dk < mino.w; dk++) {\n if (mino.block[dj][dk] == '#') {\n assert(state[j + dj][k + dk] == '.');\n state[j + dj][k + dk] = '#';\n }\n }\n }\n }\n }\n };\n\n for (int i = 0; i < 4; i++) {\n for (int j = i + 1; j < 4; j++) {\n for (int k = j + 1; k < 4; k++) {\n index[0] = i; index[1] = j; index[2] = k;\n dfs(dfs, black, 0);\n }\n }\n }\n\n int n;\n cin >> n;\n for (int i = 0; i < n; i++) {\n State state;\n for (int j = 0; j < 4; j++) cin >> state[j];\n if (s.find(state) != s.end()) {\n cout << \"Yes\" << endl;\n } else {\n cout << \"No\" << endl;\n }\n }\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 7000, "score_of_the_acc": -0.5631, "final_rank": 12 }, { "submission_id": "aoj_3108_8027189", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nusing P = pair<int,int>;\n\nvector<P> input_area(int h,int w){\n vector<P> res;\n for(int i=0;i<h;++i){\n for(int j=0;j<w;++j){\n char c;\n cin >> c;\n if(c == '#'){\n res.emplace_back(i,j);\n }\n }\n }\n return res;\n}\n\nvector<P> input_mino(){\n int h;\n int w;\n cin >> h >> w;\n return input_area(h,w);\n}\n\nbool func(vector<vector<P>> &minos){\n vector<vector<char>> table(4,vector<char>(10));\n for(auto &i:table)for(auto &j:i)cin>>j;\n vector<P> poss;\n for(int i=0;i<4;++i){\n for(int j=0;j<10;++j){\n if(table[i][j]=='.'){\n poss.emplace_back(i,j);\n }\n }\n }\n auto rec = [&](auto rec, int tp,int used,int used_count) -> bool {\n //cout << tp << \" \" << used_count << \" \" << used << endl;\n //for(auto i:table){\n // for(auto j:i)cout << j;\n // cout << endl;\n //}\n //cout << endl;\n if(used_count == 3)return true;\n if(tp == poss.size())return false;\n if(table[poss[tp].first][poss[tp].second] == '#'){\n return rec(rec, tp+1,used,used_count);\n }\n for(int use = 0;use<4;++use){\n if((1<<use) & used)continue;\n bool ok = true;\n int dx = -minos[use][0].second;\n for(auto i:minos[use]){\n int y = i.first + poss[tp].first;\n int x = i.second + poss[tp].second + dx;\n if(y < 0 or 4 <= y){\n ok = false;\n break;\n }\n if(x < 0 or 10 <= x){\n ok = false;\n break;\n }\n if(table[y][x]=='#'){\n ok = false;\n break;\n }\n }\n if(ok){\n for(auto i:minos[use]){\n int y = i.first + poss[tp].first;\n int x = i.second + poss[tp].second + dx;\n table[y][x] = '#';\n }\n if(rec(rec,tp+1,used | (1<<use),used_count+1)){\n return true;\n }\n for(auto i:minos[use]){\n int y = i.first + poss[tp].first;\n int x = i.second + poss[tp].second + dx;\n table[y][x] = '.';\n }\n }\n }\n return false;\n };\n return rec(rec,0, 0, 0);\n}\n\nint main(){\n vector<vector<P>> minos(4);\n for(int i=0;i<4;++i)minos[i]=input_mino();\n int n;\n cin >> n;\n for(int i=0;i<n;++i){\n cout << (func(minos) ? \"Yes\": \"No\") << endl;\n }\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 3460, "score_of_the_acc": -0.3964, "final_rank": 10 }, { "submission_id": "aoj_3108_4691840", "code_snippet": "#include <bits/stdc++.h>\n#define fi first\n#define se second\nusing namespace std;\nusing p = pair<int, int>;\n\nvector<string> t[4];\nvector<string> s;\nvector<p> memo[4];\nvector<int> h, w;\nint n;\n\nbool solve();\nbool isblock(p now, int id) {\n return now.fi >= 0 && now.fi < h[id] && now.se >= 0 &&\n now.se < w[id] && t[id][now.fi][now.se] == '#';\n}\nbool isvalid(p now) {\n return now.fi >= 0 && now.fi < 4 && now.se >= 0 &&\n now.se < 10 && s[now.fi][now.se] == '.';\n}\nvoid prepair();\n\nint main() {\n h.resize(4);\n w.resize(4);\n for(int i = 0; i < 4; ++i) {\n cin >> h[i] >> w[i];\n t[i].resize(h[i]);\n for(int j = 0; j < h[i]; ++j) cin >> t[i][j];\n }\n prepair();\n cin >> n;\n for(int i = 0; i < n; ++i) {\n s.resize(4);\n for(int j = 0; j < 4; ++j) cin >> s[j];\n if(solve())\n cout << \"Yes\" << endl;\n else\n cout << \"No\" << endl;\n }\n return 0;\n}\n\nvoid prepair() {\n int d[4] = {0, 1, 0, -1};\n for(int i = 0; i < 4; ++i) {\n for(int y = 0; y < w[i]; ++y)\n if(t[i][0][y] == '#') {\n queue<p> qu;\n qu.push({0, y});\n t[i][0][y] = '.';\n while(!qu.empty()) {\n p now = qu.front();\n qu.pop();\n memo[i].push_back({now.fi, now.se - y});\n for(int j = 0; j < 4; ++j) {\n p nextp = now;\n nextp.fi += d[j];\n nextp.se += d[j ^ 1];\n if(isblock(nextp, i)) {\n t[i][nextp.fi][nextp.se] = '.';\n qu.push(nextp);\n }\n }\n }\n break;\n }\n }\n}\n\nbool solve() {\n vector<int> perm(4);\n for(int i = 0; i < 4; ++i) perm[i] = i;\n do {\n vector<p> lst;\n int id = 0;\n bool ch = 1;\n for(int i = 0; i < 4; ++i)\n if(ch)\n for(int j = 0; j < 10; ++j)\n if(ch)\n if(s[i][j] == '.') {\n for(int k = 0; k < 4; ++k) {\n p nowb = {i + memo[perm[id]][k].fi,\n j + memo[perm[id]][k].se};\n if(isvalid(nowb)) {\n lst.push_back(nowb);\n s[nowb.fi][nowb.se] = '#';\n }\n else\n ch = 0;\n }\n ++id;\n }\n if(id == 3 && ch)\n return 1;\n else\n for(int i = 0; i < lst.size(); ++i)\n s[lst[i].fi][lst[i].se] = '.';\n } while(next_permutation(perm.begin(), perm.end()));\n return 0;\n}", "accuracy": 1, "time_ms": 410, "memory_kb": 3220, "score_of_the_acc": -0.8503, "final_rank": 15 }, { "submission_id": "aoj_3108_4360517", "code_snippet": "#include <cstdio>\n\n\nint dx[4][4],dy[4][4];\n\nchar board[6][12];//y x\n\nchar buf[7][7];\n\nbool DFS(int posy,int posx,int level,int mask){\n if (level==4) return true;\n\n for(;posy<4;posy++)\n for(posx=0;posx<10;posx++)\n if (board[posy][posx]=='.') goto end;\n end:\n\n for(int puzzle=0;puzzle<4;puzzle++){\n if (mask&(1<<puzzle)) continue;\n\n bool fits=true;\n for(int i=0;i<4;i++){\n int x=posx+dx[puzzle][i],y=posy+dy[puzzle][i];\n\n if (x<0||x>=10||y<0||y>=4||board[y][x]=='#') {\n fits=false;\n break;\n }\n }\n\n if (fits){\n for(int i=0;i<4;i++){\n int x=posx+dx[puzzle][i],y=posy+dy[puzzle][i];\n board[y][x]='#';\n }\n\n if (DFS(posy,posx,level+1,mask+(1<<puzzle))) return true;\n\n for(int i=0;i<4;i++){\n int x=posx+dx[puzzle][i],y=posy+dy[puzzle][i];\n board[y][x]='.';\n }\n }\n\n } \n\n return false;\n}\n\nint main(){\n\n for(int i=0;i<4;i++){\n int h,w;\n scanf(\"%d%d\\n\",&h,&w);\n for(int i=1;i<=h;i++) scanf(\"%s\",buf[i]+1);\n\n int fsty=1,fstx=1;\n for(fstx=1;buf[1][fstx]!='#';fstx++); \n \n for(int j=1,cur=0;j<=h;j++)\n for(int k=1;k<=w;k++)\n if (buf[j][k]=='#'){\n dx[i][cur]=k-fstx;\n dy[i][cur]=j-fsty;\n cur++;\n }\n }\n\n int N;\n scanf(\"%d\\n\",&N);\n for(int i=0;i<N;i++){\n for(int i=0;i<4;i++) scanf(\"%s\",board[i]);\n\n if (DFS(0,0,1,0)) puts(\"Yes\");\n else\n puts(\"No\");\n \n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 2696, "score_of_the_acc": -0.0207, "final_rank": 1 }, { "submission_id": "aoj_3108_4360484", "code_snippet": "#include <cstdio>\n\n\nint dx[4][4],dy[4][4];\n\nchar board[6][12];//y x\n\nchar buf[7][7];\n\nbool DFS(int posy,int posx,int level,int mask){\n if (level==4) return true;\n // printf(\"posy=%d posx=%d\\n\",posy,posx);\n\n for(;posy<4;posy++)\n for(posx=0;posx<10;posx++)\n if (board[posy][posx]=='.') goto end;\n end: \n // printf(\"posy=%d posx=%d\\n\",posy,posx);\n\n // for(int i=0;i<4;i++) puts(board[i]);\n\n for(int puzzle=0;puzzle<4;puzzle++){\n if (mask&(1<<puzzle)) continue;\n\n\n bool fits=true;\n for(int i=0;i<4;i++){\n int x=posx+dx[puzzle][i],y=posy+dy[puzzle][i];\n\n if (x<0||x>=10) {\n fits=false;\n break;\n }\n if (y<0||y>=4) {\n fits=false;\n break;\n }\n if (board[y][x]=='#'){\n fits=false;\n break;\n }\n }\n\n if (fits){\n for(int i=0;i<4;i++){\n int x=posx+dx[puzzle][i],y=posy+dy[puzzle][i];\n board[y][x]='#';\n }\n\n if (DFS(posy,posx,level+1,mask+(1<<puzzle))) return true;\n\n for(int i=0;i<4;i++){\n int x=posx+dx[puzzle][i],y=posy+dy[puzzle][i];\n board[y][x]='.';\n }\n }\n\n } \n\n return false;\n}\n\nint main(){\n\n for(int i=0;i<4;i++){\n int h,w;\n scanf(\"%d%d\\n\",&h,&w);\n for(int i=1;i<=h;i++) scanf(\"%s\",buf[i]+1);\n\n int fsty=1,fstx=1;\n for(fstx=1;buf[1][fstx]!='#';fstx++); \n\n // printf(\"fst %d %d\\n\",fstx,fsty);\n \n for(int j=1,cur=0;j<=h;j++){\n for(int k=1;k<=w;k++){\n if (buf[j][k]=='#'){\n dx[i][cur]=k-fstx;\n dy[i][cur]=j-fsty;\n cur++;\n }\n }\n }\n }\n\n int N;\n scanf(\"%d\\n\",&N);\n for(int i=0;i<N;i++){\n for(int i=0;i<4;i++) scanf(\"%s\",board[i]);\n\n if (DFS(0,0,1,0)) puts(\"Yes\");\n else\n puts(\"No\");\n \n \n }\n\n // for(int i=0;i<4;i++){\n // for(int j=0;j<4;j++)\n // printf(\"(%d,%d)\\n\",dx[i][j],dy[i][j]);\n // }\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 2696, "score_of_the_acc": -0.0207, "final_rank": 1 }, { "submission_id": "aoj_3108_4222931", "code_snippet": "#include <cstdio>\n#include <utility>\n\nusing namespace std;\n\nchar board[4][10];\n\ntypedef pair<int, int> coordinate;\n\nstruct puzzle{\n int h,w;\n char content[5][5];\n\n coordinate leftup;\n\n void find_upleft(){\n for(int i=0;i<h;i++)\n for (int j=0;j<w;j++)\n if (content[i][j]=='#') {\n leftup=coordinate(i,j);\n goto out;\n }\n out:\n ;\n // printf(\"h=%d w=%d\",h,w);\n // printf(\"leftup %d %d\",leftup.first,leftup.second);\n }\n\n bool fit(const coordinate& co){\n // 盤面から出ることを判定する\n if (co.first<0||co.second<0)\n return false;\n\n // puts(\"pass1\");\n \n //co=(Y,X)\n if (co.first+h>4||co.second+w>10)\n return false;\n\n // puts(\"pass2\");\n\n // 重なる部分を判定する\n for (int i=0;i<h;i++)\n for (int j=0;j<w;j++){\n // printf(\"(%d,%d)\", co.first + i, co.second + j);\n if (board[co.first+i][co.second+j]=='#'&&content[i][j]=='#')\n {/*printf(\"i=%d,j=%d\\n\",i,j);*/return false;}\n\n \n }\n\n return true;\n }\n\n void draw(coordinate pos){\n for (int i=0;i<h;i++)\n for (int j=0;j<w;j++)\n if (board[pos.first+i][pos.second+j]=='.')\n board[pos.first + i][pos.second + j] = content[i][j];\n }\n\n void undraw(coordinate pos){\n for (int i = 0; i < h; i++)\n for (int j = 0; j < w; j++)\n if (content[i][j]=='#')\n board[pos.first + i][pos.second + j] = '.';\n }\n}t[4];\n\n// 対応するパズルは使われたか\nbool used[4];\n\nvoid init_t(int i){\n // パズルを初期化\n scanf(\"%d%d\", &t[i].h, &t[i].w);\n getchar();\n for (int k = 0; k < t[i].h; k++)\n {\n for (int j = 0; j < t[i].w; j++)\n t[i].content[k][j] = getchar();\n\n getchar();\n }\n\n t[i].find_upleft();\n\n // printf(\"(%d,%d)\\n\",t[i].leftup.first,t[i].leftup.second);\n used[i]=false;\n\n // for (int k = 0; k < t[i].h; k++)\n // {\n // for (int j = 0; j < t[i].w; j++)\n // putchar(t[i].content[k][j]) ;\n\n // putchar('\\n');\n // }\n}\n\nvoid init_board(){\n // 盤面を初期化\n for(int i=0;i<4;i++){\n for(int j=0;j<10;j++)\n board[i][j]=getchar();\n\n getchar();\n }\n}\n\ncoordinate find_upleft_board(){\n // 盤面の一番左上の空白を探す\n for (int i=0;i<4;i++)\n for (int j=0;j<10;j++)\n if (board[i][j]=='.') return coordinate(i,j);\n}\n\n\nvoid draw_board(){\n for (int i=0;i<4;i++){\n for(int j=0;j<10;j++)\n putchar(board[i][j]);\n putchar('\\n');\n }\n}\n\nbool solve(int puzzle_used){\n if (puzzle_used>=3)\n return true;\n\n\n coordinate leftup=find_upleft_board();\n // printf(\"%d %d\\n\",leftup.first,leftup.second);\n\n for (int i=0;i<4;i++){\n //既に使ったパズルは使わない\n if (used[i])\n continue;\n\n // if (i==2)\n // puts(\"hello\"),draw_board();\n\n // パズルのポジションを探す\n coordinate puzzle_pos=coordinate(\n leftup.first-t[i].leftup.first,\n leftup.second-t[i].leftup.second\n );\n\n // printf(\"(%d,%d) i=%d\\n\", puzzle_pos.first, puzzle_pos.second, i);\n // printf(\"i=%d\\n\",i);\n if (t[i].fit(puzzle_pos)){\n // printf(\"puzzle_used=%d\\n\", puzzle_used);\n // draw_board();\n t[i].draw(puzzle_pos);\n used[i]=true;\n // draw_board();\n if (solve(puzzle_used+1)) return true;\n //元にする\n t[i].undraw(puzzle_pos);\n used[i]=false;\n }\n }\n\n return false;\n}\n\nint main(){\n\n for (int i=0;i<4;i++) init_t(i);\n\n int n;\n scanf(\"%d\",&n);\n getchar();\n\n for(int i=0;i<n;i++){\n init_board();\n // printf(\"fits? %d\\n\",t[2].fit(coordinate(0,4)));\n for(int i=0;i<4;i++) used[i]=false;\n bool t=solve(0);\n if (t)\n puts(\"Yes\");\n else\n puts(\"No\");\n }\n\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 2692, "score_of_the_acc": -0.0408, "final_rank": 3 }, { "submission_id": "aoj_3108_4083673", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint H[4], W[4];\nint S[4][4][4] = {0};\n\nbool solve(){\n int A[4][10] = {0};\n for(int i=0; i<4; i++){\n string s;\n cin >> s;\n for(int j=0; j<10; j++) if(s[j] == '#') A[i][j] = 1;\n }\n\n vector<pair<int, int>> avail[4];\n for(int k=0; k<4; k++){\n for(int i=0; i<=4-H[k]; i++) for(int j=0; j<=10-W[k]; j++){\n bool ok = true;\n for(int x=0; x<H[k]; x++) for(int y=0; y<W[k]; y++) if(S[k][x][y] && A[i+x][j+y]) ok = false;\n if(ok) avail[k].emplace_back(i, j);\n }\n }\n\n for(int ex=0; ex<4; ex++){\n vector<int> use;\n for(int k=0; k<4; k++) if(k != ex) use.push_back(k);\n\n for(auto& p0 : avail[use[0]]){\n bool ok0 = true;\n int i0 = p0.first, j0 = p0.second, k0 = use[0];\n for(int x=0; x<H[k0]; x++) for(int y=0; y<W[k0]; y++) if(S[k0][x][y]) {\n A[i0+x][j0+y]++;\n if(A[i0+x][j0+y] > 1) ok0 = false;\n }\n\n if(ok0) for(auto& p1 : avail[use[1]]){\n bool ok1 = true;\n int i1 = p1.first, j1 = p1.second, k1 = use[1];\n for(int x=0; x<H[k1]; x++) for(int y=0; y<W[k1]; y++) if(S[k1][x][y]){\n A[i1+x][j1+y]++;\n if(A[i1+x][j1+y] > 1) ok1 = false;\n }\n\n if(ok1) for(auto& p2 : avail[use[2]]){\n bool ok2 = true;\n int i2 = p2.first, j2 = p2.second, k2 = use[2];\n for(int x=0; x<H[k2]; x++) for(int y=0; y<W[k2]; y++) if(S[k2][x][y]){\n A[i2+x][j2+y]++;\n if(A[i2+x][j2+y] > 1) ok2 = false;\n }\n if(ok2) return true;\n for(int x=0; x<H[k2]; x++) for(int y=0; y<W[k2]; y++) if(S[k2][x][y]){\n A[i2+x][j2+y]--;\n }\n }\n\n for(int x=0; x<H[k1]; x++) for(int y=0; y<W[k1]; y++) if(S[k1][x][y]){\n A[i1+x][j1+y]--;\n }\n }\n\n for(int x=0; x<H[k0]; x++) for(int y=0; y<W[k0]; y++) if(S[k0][x][y]){\n A[i0+x][j0+y]--;\n }\n }\n }\n return false;\n}\n\nint main(){\n for(int k=0; k<4; k++){\n cin >> H[k] >> W[k];\n for(int i=0; i<H[k]; i++){\n string s;\n cin >> s;\n for(int j=0; j<W[k]; j++) if(s[j] == '#') S[k][i][j] = 1;\n }\n }\n int N;\n cin >> N;\n while(N--) cout << (solve() ? \"Yes\" : \"No\") << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 3216, "score_of_the_acc": -0.8093, "final_rank": 14 }, { "submission_id": "aoj_3108_4083670", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint H[4], W[4];\nint S[4][4][4] = {0};\n\nbool solve(){\n int A[4][10] = {0};\n for(int i=0; i<4; i++){\n string s;\n cin >> s;\n for(int j=0; j<10; j++) if(s[j] == '#') A[i][j] = 1;\n }\n\n vector<pair<int, int>> avail[4];\n for(int k=0; k<4; k++){\n for(int i=0; i<=4-H[k]; i++) for(int j=0; j<=10-W[k]; j++){\n bool ok = true;\n for(int x=0; x<H[k]; x++) for(int y=0; y<W[k]; y++) if(S[k][x][y] && A[i+x][j+y]) ok = false;\n if(ok) avail[k].emplace_back(i, j);\n }\n }\n\n for(int ex=0; ex<4; ex++){\n vector<int> use;\n for(int k=0; k<4; k++) if(k != ex) use.push_back(k);\n\n for(auto& p0 : avail[use[0]]){\n bool ok0 = true;\n int i0 = p0.first, j0 = p0.second, k0 = use[0];\n for(int x=0; x<H[k0]; x++) for(int y=0; y<W[k0]; y++) if(S[k0][x][y]) {\n A[i0+x][j0+y]++;\n if(A[i0+x][j0+y] > 1) ok0 = false;\n }\n\n if(ok0) for(auto& p1 : avail[use[1]]){\n bool ok1 = true;\n int i1 = p1.first, j1 = p1.second, k1 = use[1];\n for(int x=0; x<H[k1]; x++) for(int y=0; y<W[k1]; y++) if(S[k1][x][y]){\n A[i1+x][j1+y]++;\n if(A[i1+x][j1+y] > 1) ok1 = false;\n }\n\n if(ok1) for(auto& p2 : avail[use[2]]){\n bool ok2 = true;\n int i2 = p2.first, j2 = p2.second, k2 = use[2];\n for(int x=0; x<H[k2]; x++) for(int y=0; y<W[k2]; y++) if(S[k2][x][y]){\n A[i2+x][j2+y]++;\n if(A[i2+x][j2+y] > 1) ok1 = false;\n }\n if(ok2) return true;\n for(int x=0; x<H[k2]; x++) for(int y=0; y<W[k2]; y++) if(S[k2][x][y]){\n A[i2+x][j2+y]--;\n }\n }\n\n for(int x=0; x<H[k1]; x++) for(int y=0; y<W[k1]; y++) if(S[k1][x][y]){\n A[i1+x][j1+y]--;\n }\n }\n\n for(int x=0; x<H[k0]; x++) for(int y=0; y<W[k0]; y++) if(S[k0][x][y]){\n A[i0+x][j0+y]--;\n }\n }\n }\n return false;\n}\n\nint main(){\n for(int k=0; k<4; k++){\n cin >> H[k] >> W[k];\n for(int i=0; i<H[k]; i++){\n string s;\n cin >> s;\n for(int j=0; j<W[k]; j++) if(s[j] == '#') S[k][i][j] = 1;\n }\n }\n int N;\n cin >> N;\n while(N--) cout << (solve() ? \"Yes\" : \"No\") << endl;\n return 0;\n}", "accuracy": 0.40625, "time_ms": 10, "memory_kb": 3180, "score_of_the_acc": -0.0314, "final_rank": 20 }, { "submission_id": "aoj_3108_4076873", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n//INSERT ABOVE HERE\nstruct Mino{\n Int h,w;\n vector<string> vs;\n};\nvector<Mino> ms(4);\n\nconst Int H=4,W=10;\nset< vector<string> > cs;\nvector<string> bs(H,string(W,'#')),st;\n\nvoid fill(Mino m,Int k){\n Int y=k/W,x=k%W;\n if(y+m.h>H||x+m.w>W) return;\n for(Int i=0;i<m.h;i++)\n for(Int j=0;j<m.w;j++)\n if(m.vs[i][j]=='#') st[y+i][x+j]='.';\n}\n\nvoid solve(){\n for(Int i=0;i<4;i++){\n for(Int j=0;j<i;j++){\n for(Int k=0;k<j;k++){\n for(Int a=0;a<40;a++){\n for(Int b=0;b<40;b++){\n for(Int c=0;c<40;c++){\n st=bs;\n fill(ms[i],a);\n fill(ms[j],b);\n fill(ms[k],c);\n\n //for(int p=0;p<H;p++) cout<<st[p]<<endl;\n //cout<<endl;\n\n cs.emplace(st);\n }\n }\n }\n }\n }\n }\n}\n\nsigned main(){\n for(Int i=0;i<4;i++){\n cin>>ms[i].h>>ms[i].w;\n ms[i].vs.resize(ms[i].h);\n for(Int j=0;j<ms[i].h;j++)\n cin>>ms[i].vs[j];\n\n if(0){\n for(Int j=0;j<ms[i].h;j++)\n cout<<ms[i].vs[j]<<endl;\n cout<<endl;\n }\n }\n solve();\n\n Int n;\n cin>>n;\n for(Int i=0;i<n;i++){\n vector<string> st(4);\n for(Int j=0;j<4;j++) cin>>st[j];\n if(cs.count(st)) cout<<\"Yes\"<<endl;\n else cout<<\"No\"<<endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 410, "memory_kb": 18220, "score_of_the_acc": -1.8163, "final_rank": 19 }, { "submission_id": "aoj_3108_3926077", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3108.cc: Perfect\n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_H = 4;\nconst int MAX_W = 4;\nconst int M = 4;\nconst int BH = 4;\nconst int BW = 10;\n\n/* typedef */\n\ntypedef vector<int> vi;\ntypedef queue<int> qi;\ntypedef pair<int,int> pii;\n\nstruct Tetro {\n int h, w;\n char cs[MAX_H][MAX_W + 4];\n Tetro() {}\n\n void read() {\n scanf(\"%d%d\", &h, &w);\n for (int y = 0; y < h; y++) scanf(\"%s\", cs[y]);\n }\n};\n\nstruct Board {\n char bs[BH][BW + 4];\n Board() {}\n\n void read() {\n for (int y = 0; y < BH; y++) scanf(\"%s\", bs[y]);\n }\n\n bool fit(Tetro &t, int x0, int y0) {\n if (y0 + t.h > BH || x0 + t.w > BW) return false;\n for (int ty = 0, by = y0; ty < t.h; ty++, by++)\n for (int tx = 0, bx = x0; tx < t.w; tx++, bx++)\n\tif (t.cs[ty][tx] == '#' && bs[by][bx] == '#') return false;\n return true;\n }\n\n void set(Tetro &t, int x0, int y0, char c) {\n for (int ty = 0, by = y0; ty < t.h; ty++, by++)\n for (int tx = 0, bx = x0; tx < t.w; tx++, bx++)\n\tif (t.cs[ty][tx] == '#') bs[by][bx] = c;\n }\n void set(Tetro &t, int x0, int y0) { set(t, x0, y0, '#'); }\n void unset(Tetro &t, int x0, int y0) { set(t, x0, y0, '.'); }\n};\n\n/* global variables */\n\n\nTetro ts[M];\nBoard bd;\n\n/* subroutines */\n\nbool check(int k, int u) {\n if (k >= M) return (u >= M - 1);\n\n Tetro &tk = ts[k];\n if (check(k + 1, u)) return true;\n\n for (int y0 = 0; y0 + tk.h <= BH; y0++)\n for (int x0 = 0; x0 + tk.w <= BW; x0++)\n if (bd.fit(tk, x0, y0)) {\n\tbd.set(tk, x0, y0);\n\tif (check(k + 1, u + 1)) return true;\n\tbd.unset(tk, x0, y0);\n }\n return false;\n}\n\n/* main */\n\nint main() {\n for (int i = 0; i < M; i++) ts[i].read();\n\n int n;\n scanf(\"%d\", &n);\n\n while (n--) {\n bd.read();\n\n if (check(0, 0)) puts(\"Yes\");\n else puts(\"No\");\n }\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 3168, "score_of_the_acc": -0.2551, "final_rank": 7 }, { "submission_id": "aoj_3108_3892301", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nstruct LOC{\n\tLOC(int arg_row,int arg_col){\n\n\t\trow = arg_row;\n\t\tcol = arg_col;\n\t}\n\tint row,col;\n};\n\nstruct Info{\n\n\tvector<LOC> loc;\n};\n\nint H[4],W[4];\nchar table[4][4][5];\nchar base_map[4][11];\nInfo info[4];\n\n\nbool rangeCheck(int row,int col){\n\n\treturn row >= 0 && row <= 3 && col >= 0 && col <= 9;\n}\n\n\nbool is_OK(){\n\n\tvector<LOC> work;\n\n\tfor(int not_use = 0; not_use < 4; not_use++){\n\n\t\tint perm[3];\n\t\tint index = 0;\n\t\tfor(int i = 0; i < 4; i++){\n\t\t\tif(i == not_use)continue;\n\n\t\t\tperm[index++] = i;\n\t\t}\n\n\t\tdo{\n\n\t\t\tbool tmp_FLG;\n\t\t\tindex = 0;\n\n\t\t\ttmp_FLG = true;\n\n\t\t\tfor(int row = 0; row < 4; row++){\n\t\t\t\tfor(int col = 0; col < 10; col++){\n\t\t\t\t\tif(base_map[row][col] == '#')continue;\n\n\t\t\t\t\tbase_map[row][col] = '#';\n\t\t\t\t\twork.push_back(LOC(row,col));\n\n\t\t\t\t\tfor(int i = 0; i < 3; i++){\n\n\t\t\t\t\t\tint adj_row = row+info[perm[index]].loc[i].row;\n\t\t\t\t\t\tint adj_col = col+info[perm[index]].loc[i].col;\n\n\t\t\t\t\t\tif(rangeCheck(adj_row,adj_col) == false || base_map[adj_row][adj_col] == '#'){\n\n\t\t\t\t\t\t\ttmp_FLG = false;\n\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t}\n\t\t\t\t\t\tbase_map[adj_row][adj_col] = '#';\n\t\t\t\t\t\twork.push_back(LOC(adj_row,adj_col));\n\t\t\t\t\t}\n\n\t\t\t\t\tif(!tmp_FLG)break;\n\n\t\t\t\t\tindex++;\n\t\t\t\t}\n\t\t\t\tif(!tmp_FLG)break;\n\t\t\t}\n\n\t\t\tif(index == 3)return true;\n\n\t\t\tfor(int i = 0; i < work.size(); i++){\n\n\t\t\t\tbase_map[work[i].row][work[i].col] = '.';\n\t\t\t}\n\n\t\t\twork.clear();\n\n\t\t}while(next_permutation(perm,perm+3));\n\t}\n\n\treturn false;\n}\n\nint main(){\n\n\tfor(int i = 0; i < 4; i++){\n\n\t\tscanf(\"%d %d\",&H[i],&W[i]);\n\n\t\tfor(int row = 0; row < H[i];row++){\n\n\t\t\tscanf(\"%s\",table[i][row]);\n\t\t}\n\n\t\t//基準点からの相対位置を記録しておく\n\t\tfor(int col = 0; col < W[i]; col++){\n\n\t\t\tif(table[i][0][col] == '#'){\n\n\t\t\t\tfor(int diff_row = 0; diff_row < 4; diff_row++){\n\t\t\t\t\tif(diff_row >= H[i])continue;\n\t\t\t\t\tfor(int diff_col = -3; diff_col < 4; diff_col++){\n\t\t\t\t\t\tif(col+diff_col < 0 || col+diff_col >= W[i])continue;\n\n\t\t\t\t\t\tif(diff_row != 0 || diff_col != 0){\n\t\t\t\t\t\t\tif(table[i][diff_row][col+diff_col] == '#'){\n\n\t\t\t\t\t\t\t\tinfo[i].loc.push_back(LOC(diff_row,diff_col));\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tint num_query;\n\n\tscanf(\"%d\",&num_query);\n\n\tfor(int loop = 0; loop < num_query; loop++){\n\n\t\tfor(int row = 0; row < 4; row++){\n\n\t\t\tscanf(\"%s\",base_map[row]);\n\t\t}\n\n\t\tif(is_OK()){\n\n\t\t\tprintf(\"Yes\\n\");\n\n\t\t}else{\n\n\t\t\tprintf(\"No\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3160, "score_of_the_acc": -0.173, "final_rank": 6 }, { "submission_id": "aoj_3108_3890873", "code_snippet": "#include <bits/stdc++.h>\n#define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,NAME,...) NAME\n#define pr(...) cerr<< GET_MACRO(__VA_ARGS__,pr8,pr7,pr6,pr5,pr4,pr3,pr2,pr1)(__VA_ARGS__) <<endl\n#define pr1(a) (#a)<<\"=\"<<(a)<<\" \"\n#define pr2(a,b) pr1(a)<<pr1(b)\n#define pr3(a,b,c) pr1(a)<<pr2(b,c)\n#define pr4(a,b,c,d) pr1(a)<<pr3(b,c,d)\n#define pr5(a,b,c,d,e) pr1(a)<<pr4(b,c,d,e)\n#define pr6(a,b,c,d,e,f) pr1(a)<<pr5(b,c,d,e,f)\n#define pr7(a,b,c,d,e,f,g) pr1(a)<<pr6(b,c,d,e,f,g)\n#define pr8(a,b,c,d,e,f,g,h) pr1(a)<<pr7(b,c,d,e,f,g,h)\n#define prArr(a) {cerr<<(#a)<<\"={\";int i=0;for(auto t:(a))cerr<<(i++?\", \":\"\")<<t;cerr<<\"}\"<<endl;}\nusing namespace std;\nusing Int = long long;\nusing _int = int;\nusing ll = long long;\nusing Double = long double;\nconst Int INF = (1LL<<60)+1e9; // ~ 1.15 * 1e18\nconst Int mod = (1e9)+7;\nconst Double EPS = 1e-8;\nconst Double PI = 6.0 * asin((Double)0.5);\nusing P = pair<Int,Int>;\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\ntemplate<class T1, class T2> ostream& operator<<(ostream& o,pair<T1,T2> p){return o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";}\ntemplate<class T1, class T2, class T3> ostream& operator<<(ostream& o,tuple<T1,T2,T3> t){\n return o<<\"(\"<<get<0>(t)<<\",\"<<get<1>(t)<<\",\"<<get<2>(t)<<\")\";}\ntemplate<class T1, class T2> istream& operator>>(istream& i,pair<T1,T2> &p){return i>>p.first>>p.second;}\ntemplate<class T> ostream& operator<<(ostream& o,vector<T> a){Int i=0;for(T t:a)o<<(i++?\" \":\"\")<<t;return o;}\ntemplate<class T> istream& operator>>(istream& i,vector<T> &a){for(T &t:a)i>>t;return i;}\n//INSERT ABOVE HERE\n\n\n\nsigned main(){\n srand((unsigned)time(NULL));\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n vector<string> t[4];\n for(int i=0;i<4;i++){\n int h, w;\n cin>>h>>w;\n t[i].resize(h);\n cin>>t[i];\n }\n\n int n;\n cin>>n;\n for(int num_case=0;num_case<n;num_case++){\n const int H = 4, W = 10;\n vector<string> mp(H);\n cin>>mp;\n\n {\n int cnt = 0;\n for(int i=0;i<H;i++)\n for(int j=0;j<W;j++) cnt += mp[i][j] == '.';\n if(cnt != 12) {cout<<\"No\"<<endl;continue;}\n }\n\n\n\n auto check =[&](int y, int x, vector<string> &s){\n int h = s.size(), w = s[0].size();\n if(y + h > H || x + w > W) return 0;\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++){\n if(s[i][j] == '#' && mp[y + i][x + j] == '#') return 0;\n }\n return 1;\n };\n\n auto ume = [&](int y, int x, vector<string> &s, int erase){\n int h = s.size(), w = s[0].size();\n for(int i=0;i<h;i++)\n for(int j=0;j<w;j++)\n if(s[i][j] == '#') mp[y + i][x + j] = erase? '.':'#';\n };\n\n function<int(int, int)> dfs = [&](int idx, int ng){\n\n if(idx == 4){\n for(int i=0;i<H;i++)\n for(int j=0;j<W;j++) if(mp[i][j] != '#') return 0;\n return 1;\n }\n\n if(idx == ng) return dfs(idx + 1, ng);\n for(int i=0;i<H;i++)\n for(int j=0;j<W;j++){\n if(!check(i, j, t[idx])) continue;\n ume(i, j, t[idx], 0);\n if(dfs(idx + 1, ng)) return 1;\n ume(i, j, t[idx], 1);\n }\n return 0;\n };\n\n int ans = 0;\n for(int i=0;i<4 && ans == 0;i++) ans |= dfs(0, i);\n cout<<(ans? \"Yes\":\"No\")<<endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 3212, "score_of_the_acc": -0.5233, "final_rank": 11 }, { "submission_id": "aoj_3108_3888512", "code_snippet": "#include <iostream>\n#include <vector>\n#include <string>\n#include <algorithm>\n#include <set>\nusing namespace std;\n\nint main(){\n vector<int> h(4), w(4);\n vector< vector<string> > s(4, vector<string>(4));\n for(int i=0; i<4; i++){\n cin>>h[i]>>w[i];\n vector<string> S(h[i]);\n for(int j=0; j<h[i]; j++){\n cin>>S[j];\n }\n s[i] = S;\n }\n\n set<vector<string>> exist;\n\n vector<int> v = {0, 1, 1, 1};\n do{\n vector<int> useid;\n for(int i=0; i<4; i++){\n if(v[i] == 1) useid.emplace_back(i);\n }\n\n int aid = useid[0];\n int bid = useid[1];\n int cid = useid[2];\n\n for(int ax=0; ax+w[aid]-1<10; ax++){\n for(int ay=0; ay+h[aid]-1<4; ay++){\n for(int bx=0; bx+w[bid]-1<10; bx++){\n for(int by=0; by+h[bid]-1<4; by++){\n for(int cx=0; cx+w[cid]-1<10; cx++){\n for(int cy=0; cy+h[cid]-1<4; cy++){\n \n vector<string> ban(4);\n for(int i=0; i<4; i++){\n ban[i] = \"..........\";\n }\n\n int ayt = ay + h[aid] - 1;\n int axt = ax + w[aid] - 1;\n int byt = by + h[bid] - 1;\n int bxt = bx + w[bid] - 1;\n int cyt = cy + h[cid] - 1;\n int cxt = cx + w[cid] - 1;\n\n bool valid = true;\n for(int ady=ay; ady<=ayt; ady++){\n for(int adx=ax; adx<=axt; adx++){\n if(ban[ady][adx] == '#'){\n if(s[aid][ady-ay][adx-ax] == '.');\n else valid = false;\n }\n else{\n ban[ady][adx] = s[aid][ady-ay][adx-ax];\n }\n\n if(!valid) break;\n }\n \n if(!valid) break;\n }\n\n if(!valid) continue;\n\n for(int bdy=by; bdy<=byt; bdy++){\n for(int bdx=bx; bdx<=bxt; bdx++){\n if(ban[bdy][bdx] == '#'){\n if(s[bid][bdy-by][bdx-bx] == '.');\n else valid = false;\n }\n else{\n ban[bdy][bdx] = s[bid][bdy-by][bdx-bx];\n }\n\n if(!valid) break;\n }\n\n if(!valid) break;\n }\n\n if(!valid) continue;\n\n for(int cdy=cy; cdy<=cyt; cdy++){\n for(int cdx=cx; cdx<=cxt; cdx++){\n if(ban[cdy][cdx] == '#'){\n if(s[cid][cdy-cy][cdx-cx] == '.');\n else valid = false;\n }\n else{\n ban[cdy][cdx] = s[cid][cdy-cy][cdx-cx];\n }\n\n if(!valid) break;\n }\n\n if(!valid) break;\n }\n\n if(!valid) continue;\n\n for(int i=0; i<4; i++){\n for(int j=0; j<10; j++){\n ban[i][j] = (ban[i][j] == '.' ? '#' : '.');\n }\n }\n\n exist.emplace(ban);\n }\n }\n }\n }\n }\n }\n }while(next_permutation(v.begin(), v.end()));\n\n int n; cin>>n;\n while(n--){\n vector<string> B(4);\n for(int i=0; i<4; i++) cin>>B[i];\n\n if(exist.count(B)) cout << \"Yes\" << endl;\n else cout << \"No\" << endl;\n }\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 9548, "score_of_the_acc": -1.115, "final_rank": 18 }, { "submission_id": "aoj_3108_3886821", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <string>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <stdio.h>\nusing namespace std;\n#define int long long\nint MOD = 1000000007;\n\nint tobit(vector<string> &S) {\n\tint res = 0;\n\tfor (int i = 0; i < 4; i++) {\n\t\tfor (int j = 0; j < 10; j++) {\n\t\t\tres <<= 1;\n\t\t\tif (S[i][j] == '.') {\n\t\t\t\tres++;\n\t\t\t}\n\t\t}\n\t}\n\treturn res;\n}\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\t\n\tset<int> st;\n\tvector<vector<string> > A(4);\n\tfor (int i = 0; i < 4; i++) {\n\t\tint h, w;\n\t\tcin >> h >> w;\n\t\tA[i].resize(h);\n\t\tfor (int j = 0; j < h; j++) {\n\t\t\tcin >> A[i][j];\n\t\t}\n\t}\n\tvector<vector< vector<pair<int, int> > > > t(4);\n\tfor (int i = 0; i < 4; i++) {\n\t\tvector<pair<int, int> > vp;\n\t\tfor (int j = 0; j < A[i].size(); j++) {\n\t\t\tfor (int k = 0; k < A[i][0].size(); k++) {\n\t\t\t\tif (A[i][j][k] == '#') {\n\t\t\t\t\tvp.emplace_back(j, k);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\n\t\tfor (int j = 0; j < 4; j++) {\n\t\t\tfor (int k = 0; k < 10; k++) {\n\t\t\t\tbool ok = true;\n\t\t\t\tvector<pair<int, int> > tmp;\n\t\t\t\tfor (int a = 0; a < 4; a++) {\n\t\t\t\t\tif (j + vp[a].first >= 4)ok = false;\n\t\t\t\t\tif (k + vp[a].second >= 10)ok = false;\n\t\t\t\t\ttmp.emplace_back(j + vp[a].first, k + vp[a].second);\n\t\t\t\t}\n\t\t\t\tif (ok) {\n\t\t\t\t\tt[i].push_back(tmp);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t//cerr << \"OK\" << endl;\n\tfor (int i = 0; i < 4; i++) {\n\t\tvector<int> X;\n\t\tfor (int j = 0; j < 4; j++) {\n\t\t\tif (i != j) {\n\t\t\t\tX.push_back(j);\n\t\t\t}\n\t\t}\n\n\t\tint a[3];\n\t\tint cnt = 0;\n\t\tfor (a[0] = 0; a[0] < t[X[0]].size(); a[0]++) {\n\t\t\tfor (a[1] = 0; a[1] < t[X[1]].size(); a[1]++) {\n\t\t\t\tfor (a[2] = 0; a[2] < t[X[2]].size(); a[2]++) {\n\t\t\t\t\tvector<string> S(4, string(10, '#'));\n\t\t\t\t\tbool ok = true;\n\t\t\t\t\tfor (int j = 0; j < 4; j++) {\n\t\t\t\t\t\tfor (int k = 0; k < 3; k++) {\n\t\t\t\t\t\t\tif (S[t[X[k]][a[k]][j].first][t[X[k]][a[k]][j].second] == '#') {\n\t\t\t\t\t\t\t\tS[t[X[k]][a[k]][j].first][t[X[k]][a[k]][j].second] = '.';\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\telse {\n\t\t\t\t\t\t\t\tok = false;\n\t\t\t\t\t\t\t\tbreak;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t\tif (!ok)break;\n\t\t\t\t\t}\n\t\t\t\t\tif (ok) {\n\t\t\t\t\t\t/*cnt++;\n\t\t\t\t\t\tif (cnt <= 10) {\n\t\t\t\t\t\t\tfor (int j = 0; j < 4; j++) {\n\t\t\t\t\t\t\t\tcerr << S[j] << endl;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\tcerr << endl;\n\t\t\t\t\t\t}*/\n\t\t\t\t\t\tst.insert(tobit(S));\n\t\t\t\t\t}\n\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tint Q;\n\tcin >> Q;\n\tfor (int i = 0; i < Q; i++) {\n\t\tvector<string> S(4);\n\t\tfor (int j = 0; j < 4; j++) {\n\t\t\tcin >> S[j];\n\t\t}\n\t\tint c = tobit(S);\n\t\tif (st.count(c) > 0) {\n\t\t\tcout << \"Yes\" << endl;\n\t\t}\n\t\telse {\n\t\t\tcout << \"No\" << endl;\n\t\t}\n\t}\n\n\n\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 4196, "score_of_the_acc": -0.3418, "final_rank": 9 }, { "submission_id": "aoj_3108_3886659", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\nconst int H = 4;\nconst int W = 10;\n\nint minoH[4], minoW[4];\nchar mino[4][4][5];\n\nbool A[4][11];\n\nset<ll> ss;\n\nvoid gen(int now = 0, int use = 0) {\n\n if (use == now) gen(now+1, use);\n\n if (use >= 3) {\n ll bit = 0;\n\n for(int i=0; i<H; i++)\n for(int j=0; j<W; j++)\n bit = (bit << 1) + A[i][j];\n\n assert(__builtin_popcountll(bit) == 4 * 3);\n ss.insert(bit);\n\n return;\n\n } else {\n for(int y=0; y+minoH[now]<=4; y++) {\n for(int x=0; x+minoW[now]<=10; x++) {\n bool ok = true;\n\n for(int i=0; i<minoH[now]; i++)\n for(int j=0; j<minoW[now]; j++)\n ok &= !A[y+i][x+j] || mino[now][i][j] == '.';\n\n if (!ok) continue;\n\n for(int i=0; i<minoH[now]; i++)\n for(int j=0; j<minoW[now]; j++)\n A[y+i][x+j] |= mino[now][i][j] == '#';\n\n gen(now+1, use+1);\n\n for(int i=0; i<minoH[now]; i++)\n for(int j=0; j<minoW[now]; j++)\n A[y+i][x+j] ^= mino[now][i][j] == '#';\n }\n }\n\n }\n}\n\nint main(){\n int N;\n char B[4][11];\n\n for(int i=0; i<4; i++) {\n scanf(\"%d%d\", minoH+i, minoW+i);\n\n for(int j=0; j<minoH[i]; j++)\n scanf(\"%s\", mino[i][j]);\n }\n\n gen();\n\n debug(ss.size());\n\n scanf(\"%d\", &N);\n\n for(int i=0; i<N; i++) {\n ll bit = 0;\n for(int j=0; j<H; j++) {\n scanf(\"%s\", B[j]);\n\n debug(B[j]);\n for(int k=0; k<W; k++)\n bit = (bit << 1) + (B[j][k] == '#');\n }\n\n\n bit ^= (1LL << (W * H)) - 1;\n\n if (ss.find(bit) != ss.end()) {\n puts(\"Yes\");\n } else {\n puts(\"No\");\n }\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4104, "score_of_the_acc": -0.1317, "final_rank": 4 }, { "submission_id": "aoj_3108_3885307", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n#include <set>\n#include <queue>\n#include <map>\n#include <assert.h>\nusing namespace std;\ntypedef long long int ll;\n\nint h[4];\nint w[4];\nvector<string> M[4];\nint used[4][10];\nchar fi[4][10];\n\nint main(){\n for(int i=0;i<4;i++){\n cin >> h[i] >> w[i];\n for(int j=0;j<h[i];j++){\n string s; cin >> s;\n M[i].push_back(s);\n }\n }\n set<string> st;\n for(int i=0;i<4;i++){\n vector<int> kouho;\n\n for(int j=0;j<4;j++){\n if(i!=j)kouho.push_back(j);\n }\n\n for(int j=0;j<40;j++){\n int a1=j/10,b1=j%10;\n if(a1+h[kouho[0]]>4||b1+w[kouho[0]]>10)continue;\n\n for(int k=0;k<40;k++){\n int a2=k/10,b2=k%10;\n if(a2+h[kouho[1]]>4||b2+w[kouho[1]]>10)continue;\n\n for(int l=0;l<40;l++){\n int a3=l/10,b3=l%10;\n if(a3+h[kouho[2]]>4||b3+w[kouho[2]]>10)continue;\n\n for(int a=0;a<4;a++){\n for(int b=0;b<10;b++){\n fi[a][b]='#';\n }\n }\n bool ok=true;\n for(int y=0;y<h[kouho[0]];y++){\n for(int x=0;x<w[kouho[0]];x++){\n if(fi[a1+y][b1+x]=='#'&&M[kouho[0]][y][x]=='#'){\n fi[a1+y][b1+x]='.';\n }\n else if(fi[a1+y][b1+x]=='.'&&M[kouho[0]][y][x]=='#'){\n ok=false;\n }\n }\n }\n for(int y=0;y<h[kouho[1]];y++){\n for(int x=0;x<w[kouho[1]];x++){\n if(fi[a2+y][b2+x]=='#'&&M[kouho[1]][y][x]=='#'){\n fi[a2+y][b2+x]='.';\n }\n else if(fi[a2+y][b2+x]=='.'&&M[kouho[1]][y][x]=='#'){\n ok=false;\n }\n }\n }\n for(int y=0;y<h[kouho[2]];y++){\n for(int x=0;x<w[kouho[2]];x++){\n if(fi[a3+y][b3+x]=='#'&&M[kouho[2]][y][x]=='#'){\n fi[a3+y][b3+x]='.';\n }\n else if(fi[a3+y][b3+x]=='.'&&M[kouho[2]][y][x]=='#'){\n ok=false;\n }\n }\n }\n if(ok){\n string s=\"\";\n for(int i=0;i<4;i++){\n for(int j=0;j<10;j++){\n s+=fi[i][j];\n }\n }\n assert(s.size()==40);\n st.insert(s);\n }\n }\n }\n }\n }\n\n int n; cin >> n;\n for(int i=0;i<n;i++){\n string s=\"\";\n for(int j=0;j<4;j++){\n string t; cin >> t;\n s+=t;\n }\n if(st.count(s)){\n cout << \"Yes\" << endl;\n }\n else{\n cout << \"No\" << endl;\n }\n }\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 6652, "score_of_the_acc": -0.8877, "final_rank": 16 }, { "submission_id": "aoj_3108_3883761", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <functional>\n\nusing std::array;\nusing std::vector;\n\nconstexpr int H = 4, W = 10;\n\nusing Block = vector<vector<char>>;\nusing Board = array<array<char, W>, H>;\n\nint main() {\n array<Block, 4> blocks;\n for (auto& block : blocks) {\n int h, w;\n std::cin >> h >> w;\n block.resize(h);\n for (auto& s : block) {\n s.resize(w);\n for (auto& c : s) {\n std::cin >> c;\n }\n }\n }\n\n int q;\n std::cin >> q;\n for (int i = 0; i < q; ++i) {\n Board board;\n for (auto& s : board) {\n for (auto& c : s) {\n std::cin >> c;\n }\n }\n\n std::function<bool(int)> dfs =\n [&](int idx) {\n if (idx == 4) {\n for (int x = 0; x < H; ++x) {\n for (int y = 0; y < W; ++y) {\n if (board[x][y] == '.') {\n return false;\n }\n }\n }\n return true;\n } else {\n if (dfs(idx + 1)) return true;\n\n auto& block = blocks[idx];\n int h = block.size(), w = block.front().size();\n\n for (int x = 0; x + h - 1 < H; ++x) {\n for (int y = 0; y + w - 1 < W; ++y) {\n bool puttable = true;\n\n // check\n for (int dx = 0; dx < h; ++dx) {\n for (int dy = 0; dy < w; ++dy) {\n if (block[dx][dy] == '.') continue;\n if (board[x + dx][y + dy] != '.') puttable = false;\n }\n }\n\n if (!puttable) continue;\n\n // paint\n for (int dx = 0; dx < h; ++dx) {\n for (int dy = 0; dy < w; ++dy) {\n if (block[dx][dy] == '.') continue;\n board[x + dx][y + dy] = 'A' + idx;\n }\n }\n\n bool result = dfs(idx + 1);\n\n // reverse\n for (int dx = 0; dx < h; ++dx) {\n for (int dy = 0; dy < w; ++dy) {\n if (block[dx][dy] == '.') continue;\n board[x + dx][y + dy] = '.';\n }\n }\n\n if (result) return true;\n }\n }\n return false;\n }\n };\n\n std::cout << (dfs(0) ? \"Yes\" : \"No\") << std::endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 3124, "score_of_the_acc": -0.7013, "final_rank": 13 }, { "submission_id": "aoj_3108_3883754", "code_snippet": "#if __has_include(\"../library/Basic/Debug.hpp\")\n\n#include \"../library/Basic/Debug.hpp\"\n\n#else\n\n/* ----- Header Files ----- */\n// IO\n#include <cstdio>\n#include <iomanip>\n#include <ios>\n#include <iostream>\n\n// algorithm\n#include <algorithm>\n#include <cmath>\n#include <numeric>\n\n// container\n#include <vector>\n#include <array>\n#include <string>\n#include <tuple>\n#include <complex>\n#include <set>\n#include <map>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <bitset>\n\n// others\n#include <random>\n#include <limits>\n#include <functional>\n#include <ctime>\n#include <cassert>\n#include <cstdint>\n\n/* ----- Type Alias ----- */\nusing Int = long long int;\nusing Real = long double;\nusing std::array;\nusing std::pair;\nusing std::string;\nusing std::tuple;\nusing std::vector;\ntemplate <class T>\nusing MaxHeap = std::priority_queue<T>;\ntemplate <class T>\nusing MinHeap = std::priority_queue<T, std::vector<T>, std::greater<T>>;\n\ntemplate <class T>\nT genv(T v) { return v; }\n\ntemplate <class T, class... Ts>\nauto genv(size_t l, Ts... ts) {\n return vector<decltype(genv<T>(ts...))>(l, genv<T>(ts...));\n}\n\ntemplate <class Cost = Int>\nstruct Edge {\n Int src, dst;\n Cost cost;\n Edge(Int src = -1, Int dst = -1, Cost cost = 1)\n : src(src), dst(dst), cost(cost){};\n\n bool operator<(const Edge<Cost>& e) const { return this->cost < e.cost; }\n bool operator>(const Edge<Cost>& e) const { return this->cost > e.cost; }\n};\n\ntemplate <class Cost = Int>\nusing Edges = vector<Edge<Cost>>;\ntemplate <class Cost = Int>\nusing Graph = vector<vector<Edge<Cost>>>;\n\n#endif\n\n/* ----- Misc ----- */\nvoid fastio() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n}\n\nstruct Fout {\n Int precision;\n Fout(Int precision) : precision(precision) {}\n};\nstd::ostream& operator<<(std::ostream& os, const Fout& fio) {\n os << std::fixed << std::setprecision(fio.precision);\n return os;\n}\n\n\n/* ----- Constants ----- */\n// constexpr Int INF = std::numeric_limits<Int>::max() / 3;\n// constexpr Int MOD = 1000000007;\n// const Real PI = acos(-1);\n// constexpr Real EPS = 1e-10;\n// std::mt19937 mt(int(std::time(nullptr)));\n\nusing Block = vector<string>;\n\nint main() {\n array<Block, 4> blocks;\n for (auto& block : blocks) {\n int h, w;\n std::cin >> h >> w;\n block.resize(h);\n for (auto& s : block) std::cin >> s;\n }\n\n int q;\n std::cin >> q;\n vector<pair<int, int>> tmp;\n for (int i = 0; i < q; ++i) {\n Block board(4);\n for (auto& s : board) std::cin >> s;\n\n std::function<bool(int)> dfs =\n [&](int idx) {\n if (idx == 4) {\n for (int x = 0; x < 4; ++x) {\n for (int y = 0; y < 10; ++y) {\n if (board[x][y] == '.') {\n return false;\n }\n }\n }\n return true;\n } else {\n if (dfs(idx + 1)) return true;\n\n auto& block = blocks[idx];\n int n = block.size(), m = block.front().size();\n\n for (int x = 0; x + n - 1 < 4; ++x) {\n for (int y = 0; y + m - 1 < 10; ++y) {\n bool puttable = true;\n for (int dx = 0; dx < n; ++dx) {\n for (int dy = 0; dy < m; ++dy) {\n if (block[dx][dy] == '.') continue;\n if (board[x + dx][y + dy] != '.') puttable = false;\n }\n }\n\n if (!puttable) continue;\n\n for (int dx = 0; dx < n; ++dx) {\n for (int dy = 0; dy < m; ++dy) {\n if (block[dx][dy] == '.') continue;\n board[x + dx][y + dy] = 'A' + idx;\n }\n }\n\n bool result = dfs(idx + 1);\n\n for (int dx = 0; dx < n; ++dx) {\n for (int dy = 0; dy < m; ++dy) {\n if (block[dx][dy] == '.') continue;\n board[x + dx][y + dy] = '.';\n }\n }\n\n if (result) return true;\n }\n }\n return false;\n }\n };\n\n std::cout << (dfs(0) ? \"Yes\" : \"No\") << std::endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 500, "memory_kb": 3220, "score_of_the_acc": -1.034, "final_rank": 17 } ]
aoj_3112_cpp
F: 部分文字列分解 問題 2 つの文字列 S と T および整数 k が与えられる。 T の長さ k 以上の連続する部分文字列を考えたとき、それらの連結で S を構成できるか判定せよ。 ここで文字列 s = s_1 s_2 ... s_n の連続する部分文字列 s[l, r] = s_l s_{l+1} ... s_r (1 \leq l \leq r \leq n) とは、 s の l 文字目から r 文字目までを切り出してできる文字列を指し、その長さは r - l + 1 である。 入力形式 S T k 制約 S と T は小文字アルファベットからなる 1 \leq |S|, |T| \leq 2\times 10^5 1 \leq k \leq |T| 出力形式 S を構成できるとき Yes を、そうでないとき No を一行に出力せよ。 入力例1 abracadabra cadabra 4 出力例1 Yes T の長さ 4 以上の部分文字列である abra と cadabra を連結させることで abracadabra が構成でき、これは S と等しい文字列である。 入力例2 abcd zcba 1 出力例2 No 入力例3 abc zcba 1 出力例3 Yes 入力例4 abcdefg abcddefg 4 出力例4 No
[ { "submission_id": "aoj_3112_10315010", "code_snippet": "// AOJ #3112 Substring Decomposition\n// 2025.3.21\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nstruct st {\n int l, link;\n int nx[26];\n st() : l(0), link(-1) {\n for(int i=0; i<26; i++) nx[i] = -1;\n }\n};\n\nvector<st> sa;\n\nvoid build_sa(const string &s) {\n int sz = 1, last = 0;\n sa.clear();\n sa.resize(2 * s.size());\n sa[0].l = 0;\n sa[0].link = -1;\n for (int i = 0; i < (int)s.size(); i++){\n int c = s[i] - 'a';\n int cur = sz++;\n sa[cur].l = sa[last].l + 1;\n for (int j = 0; j < 26; j++) sa[cur].nx[j] = -1;\n\n int p = last;\n while(p != -1 && sa[p].nx[c] == -1) {\n sa[p].nx[c] = cur;\n p = sa[p].link;\n }\n if(p == -1) sa[cur].link = 0;\n else {\n int q = sa[p].nx[c];\n if(sa[p].l + 1 == sa[q].l) sa[cur].link = q;\n else {\n int cl = sz++;\n sa[cl].l = sa[p].l + 1;\n for (int j = 0; j < 26; j++)\n sa[cl].nx[j] = sa[q].nx[j];\n sa[cl].link = sa[q].link;\n while(p != -1 && sa[p].nx[c] == q){\n sa[p].nx[c] = cl;\n p = sa[p].link;\n }\n sa[q].link = sa[cur].link = cl;\n }\n }\n last = cur;\n }\n sa.resize(sz);\n}\n\nstruct BIT {\n int n;\n vector<int> bit;\n BIT(int n_) : n(n_), bit(n_+1, 0) {}\n void upd(int i, int v) {\n for(; i <= n; i += i & -i) bit[i] += v;\n }\n int sum(int i) {\n int s = 0;\n for(; i > 0; i -= i & -i) s += bit[i];\n return s;\n }\n int query(int l, int r) {\n if(l > r) return 0;\n return sum(r) - sum(l-1);\n }\n};\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n string S, T;\n int k;\n cin >> S >> T >> k;\n int n = S.size();\n\n build_sa(T);\n\n vector<int> f(n, 0);\n int cur = 0, l = 0;\n for (int i = 0; i < n; i++){\n int c = S[i]-'a';\n if(sa[cur].nx[c] != -1){\n cur = sa[cur].nx[c];\n l++;\n } else {\n while(cur != -1 && sa[cur].nx[c] == -1) cur = sa[cur].link;\n if(cur == -1) cur = 0, l = 0;\n else {\n l = sa[cur].l + 1;\n cur = sa[cur].nx[c];\n }\n }\n f[i] = l;\n }\n\n vector<int> f_start(n, 0);\n int L = 0;\n for (int i = 0; i < n; i++){\n if(L > 0) L--;\n while(i + L < n && f[i + L] >= L + 1) L++;\n f_start[i] = L;\n }\n\n vector<int> dp(n+1, 0);\n dp[n] = 1;\n BIT bit(n+1);\n bit.upd(n+1, 1);\n\n for (int i = n-1; i >= 0; i--){\n int maxL = f_start[i];\n int lim = min(maxL, n - i);\n if(lim < k) dp[i] = 0;\n else {\n if(bit.query(i + k + 1, i + lim + 1) > 0) dp[i] = 1;\n else dp[i] = 0;\n }\n if(dp[i]) bit.upd(i + 1, 1);\n }\n cout << (dp[0] ? \"Yes\" : \"No\") << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 49772, "score_of_the_acc": -0.7652, "final_rank": 10 }, { "submission_id": "aoj_3112_10314987", "code_snippet": "// AOJ #3112 Substring Decomposition\n// 2025.3.21\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nstruct st {\n int len, link;\n int nx[26];\n st() : len(0), link(-1) {\n for (int i=0; i<26; i++) nx[i] = -1;\n }\n};\n\nvector<st> sa;\n\nvoid build_sa(const string &s) {\n int sz = 1, last = 0;\n sa.resize(2 * s.size());\n sa[0].len = 0;\n sa[0].link = -1;\n for (int i = 0; i < (int)s.size(); i++) {\n int c = s[i]-'a';\n int cur = sz++;\n sa[cur].len = sa[last].len + 1;\n for (int j = 0; j < 26; j++) sa[cur].nx[j] = -1;\n\n int p = last;\n while (p != -1 && sa[p].nx[c] == -1) {\n sa[p].nx[c] = cur;\n p = sa[p].link;\n }\n if (p == -1) sa[cur].link = 0;\n else {\n int q = sa[p].nx[c];\n if (sa[p].len + 1 == sa[q].len) sa[cur].link = q;\n else {\n int cl = sz++;\n sa[cl].len = sa[p].len + 1;\n for (int j = 0; j < 26; j++) sa[cl].nx[j] = sa[q].nx[j];\n sa[cl].link = sa[q].link;\n while (p != -1 && sa[p].nx[c] == q) {\n sa[p].nx[c] = cl;\n p = sa[p].link;\n }\n sa[q].link = sa[cur].link = cl;\n }\n }\n last = cur;\n }\n sa.resize(sz);\n}\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n string S, T;\n int k;\n cin >> S >> T >> k;\n int n = S.size();\n\n string RT = T;\n reverse(RT.begin(), RT.end());\n string RS = S;\n reverse(RS.begin(), RS.end());\n\n sa.clear();\n build_sa(RT);\n\n vector<int> dp(RS.size(), 0);\n int cur = 0, l = 0;\n for (int i = 0; i < (int)RS.size(); i++){\n int c = RS[i]-'a';\n if(sa[cur].nx[c] != -1){\n cur = sa[cur].nx[c];\n l++;\n } else {\n while(cur != -1 && sa[cur].nx[c] == -1) cur = sa[cur].link;\n if(cur == -1) cur = 0, l = 0;\n else {\n l = sa[cur].len + 1;\n cur = sa[cur].nx[c];\n }\n }\n dp[i] = l;\n }\n\n int pos = 0;\n while(pos < n){\n int L = dp[n-1-pos];\n if(L < k){\n cout << \"No\" << endl;\n return 0;\n }\n pos += L;\n }\n cout << (pos == n ? \"Yes\" : \"No\") << endl;\n return 0;\n}", "accuracy": 0.039603960396039604, "time_ms": 10, "memory_kb": 38200, "score_of_the_acc": -0.542, "final_rank": 20 }, { "submission_id": "aoj_3112_6962843", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long int;\nusing ull = unsigned long long int;\nusing P = pair<ll, ll>;\nusing P3 = pair<ll, P>;\nusing PP = pair<P, P>;\nconstexpr int INF32 = 1 << 30;\nconstexpr ll INF64 = 1LL << 62;\nconstexpr ll MOD = 1000000007;\n// constexpr ll MOD = 998244353;\nconstexpr int di[] = {0, 1, 0, -1};\nconstexpr int dj[] = {1, 0, -1, 0};\nconstexpr int di8[] = {0, 1, 1, 1, 0, -1, -1, -1};\nconstexpr int dj8[] = {1, 1, 0, -1, -1, -1, 0, 1};\nconstexpr double EPS = 1e-10;\nconst double PI = acos(-1);\n\n#define ALL(v) (v).begin(), (v).end()\n#define REP(i, n) for (int i = 0, i_len = n; i < i_len; ++i)\n\ntemplate<typename T1,typename T2> bool chmax(T1 &a, T2 b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<typename T1,typename T2> bool chmin(T1 &a, T2 b) { if (b<a) { a=b; return 1; } return 0; }\n\nvector<int> suffix_array(const string& str) {\n int n = str.size();\n vector<int> sa(n + 1), rank(n + 1, -1); // sa[i] = 辞書順でi番目であるsuffixの開始位置\n iota(sa.begin(), sa.end(), 0);\n for (int i = 0; i < n; i++) rank[i] = str[i];\n int k;\n auto comp = [&](const int& i, const int& j) {\n if (rank[i] != rank[j]) {\n return rank[i] < rank[j];\n } else {\n int ri = i + k <= n ? rank[i + k] : -1;\n int rj = j + k <= n ? rank[j + k] : -1;\n return ri < rj;\n }\n };\n for (k = 1; k <= n; k <<= 1) {\n sort(sa.begin(), sa.end(), comp);\n vector<int> tmp(n + 1, 0);\n for (int i = 0; i < n; i++) {\n tmp[sa[i + 1]] = tmp[sa[i]];\n if (comp(sa[i], sa[i + 1])) tmp[sa[i + 1]]++;\n }\n rank = tmp;\n }\n return sa;\n}\n\nvector<int> lcp_array(const string& s, const vector<int>& sa) {\n int n = s.size();\n vector<int> lcp(n), rank(n + 1); // rank[i]=s[i,n)の辞書順位\n for (int i = 0; i <= n; i++) rank[sa[i]] = i;\n for (int i = 0, len = 0; i < n; i++) {\n int j = sa[rank[i] - 1]; // s[i,n)より辞書順で1つ小さいsuffixの先頭位置\n if (len > 0) len--;\n while (max(i, j) + len < n && s[i + len] == s[j + len]) len++;\n lcp[rank[i] - 1] = len;\n }\n return lcp;\n}\n\nint solve() {\n string s, t;\n int k;\n cin >> s >> t >> k;\n string u = s + \"~\" + t;\n vector<int> sa = suffix_array(u);\n vector<int> lcp = lcp_array(u, sa);\n int n = s.size();\n vector<int> len(n, 0);\n for(int i = 0, h = 0; i < int(u.size()); i++){\n if(sa[i] < n){\n len[sa[i]] = max(len[sa[i]], h);\n h = min(h, lcp[i]);\n } else {\n h = lcp[i];\n }\n }\n for(int i = int(u.size()) - 1, h = 0; i >= 0; i--){\n if(sa[i] < n){\n h = min(h, lcp[i]);\n len[sa[i]] = max(len[sa[i]], h);\n } else if (i > 0) {\n h = lcp[i-1];\n }\n }\n vector<int> dp(n+2, 0);\n dp[0] = 1;\n dp[1] = -1;\n for(int i=0;i<n;i++){\n if(dp[i] > 0 && len[i] >= k){\n dp[i+k]++;\n dp[i+len[i]+1]--;\n }\n dp[i+1] += dp[i];\n }\n cout << (dp[n] > 0 ? \"Yes\" : \"No\") << endl;\n return 0;\n}\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n solve();\n // while(!solve());\n return 0;\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 8492, "score_of_the_acc": -0.3977, "final_rank": 5 }, { "submission_id": "aoj_3112_6962471", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long int;\nusing ull = unsigned long long int;\nusing P = pair<ll, ll>;\nusing P3 = pair<ll, P>;\nusing PP = pair<P, P>;\nconstexpr int INF32 = 1 << 30;\nconstexpr ll INF64 = 1LL << 62;\nconstexpr ll MOD = 1000000007;\n// constexpr ll MOD = 998244353;\nconstexpr int di[] = {0, 1, 0, -1};\nconstexpr int dj[] = {1, 0, -1, 0};\nconstexpr int di8[] = {0, 1, 1, 1, 0, -1, -1, -1};\nconstexpr int dj8[] = {1, 1, 0, -1, -1, -1, 0, 1};\nconstexpr double EPS = 1e-10;\nconst double PI = acos(-1);\n\n#define ALL(v) (v).begin(), (v).end()\n#define REP(i, n) for (int i = 0, i_len = n; i < i_len; ++i)\n\ntemplate<typename T1,typename T2> bool chmax(T1 &a, T2 b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<typename T1,typename T2> bool chmin(T1 &a, T2 b) { if (b<a) { a=b; return 1; } return 0; }\n\n\nvector<int> suffix_array(const string& str) {\n int n = str.size();\n vector<int> sa(n + 1), rank(n + 1, -1); // sa[i] = 辞書順でi番目であるsuffixの開始位置\n iota(sa.begin(), sa.end(), 0);\n for (int i = 0; i < n; i++) rank[i] = str[i];\n int k;\n auto comp = [&](const int& i, const int& j) {\n if (rank[i] != rank[j]) {\n return rank[i] < rank[j];\n } else {\n int ri = i + k <= n ? rank[i + k] : -1;\n int rj = j + k <= n ? rank[j + k] : -1;\n return ri < rj;\n }\n };\n for (k = 1; k <= n; k <<= 1) {\n sort(sa.begin(), sa.end(), comp);\n vector<int> tmp(n + 1, 0);\n for (int i = 0; i < n; i++) {\n tmp[sa[i + 1]] = tmp[sa[i]];\n if (comp(sa[i], sa[i + 1])) tmp[sa[i + 1]]++;\n }\n rank = tmp;\n }\n return sa;\n}\n\nvector<int> lcp_array(const string& s, const vector<int>& sa) {\n int n = s.size();\n vector<int> lcp(n), rank(n + 1); // rank[i]=s[i,n)の辞書順位\n for (int i = 0; i <= n; i++) rank[sa[i]] = i;\n for (int i = 0, len = 0; i < n; i++) {\n int j = sa[rank[i] - 1]; // s[i,n)より辞書順で1つ小さいsuffixの先頭位置\n if (len > 0) len--;\n while (max(i, j) + len < n && s[i + len] == s[j + len]) len++;\n lcp[rank[i] - 1] = len;\n }\n return lcp;\n}\n\nint solve() {\n string s, t;\n int k;\n cin >> s >> t >> k;\n string u = s + \"~\" + t;\n vector<int> sa = suffix_array(u);\n vector<int> lcp = lcp_array(u, sa);\n int n = s.size();\n vector<int> len(n, 0);\n for(int i = 1; i < int(u.size()); i++){\n if(sa[i] < n){\n len[sa[i]] = max(lcp[i-1], lcp[i]);\n }\n }\n vector<int> dp(n+2, 0);\n dp[0] = 1;\n dp[1] = -1;\n for(int i=0;i<n;i++){\n if(dp[i] > 0 && len[i] >= k){\n dp[i+k]++;\n dp[i+len[i]+1]--;\n }\n dp[i+1] += dp[i];\n }\n cout << (dp[n] > 0 ? \"Yes\" : \"No\") << endl;\n return 0;\n}\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n solve();\n // while(!solve());\n return 0;\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 8456, "score_of_the_acc": -0.3825, "final_rank": 4 }, { "submission_id": "aoj_3112_6962459", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long int;\nusing ull = unsigned long long int;\nusing P = pair<ll, ll>;\nusing P3 = pair<ll, P>;\nusing PP = pair<P, P>;\nconstexpr int INF32 = 1 << 30;\nconstexpr ll INF64 = 1LL << 62;\nconstexpr ll MOD = 1000000007;\n// constexpr ll MOD = 998244353;\nconstexpr int di[] = {0, 1, 0, -1};\nconstexpr int dj[] = {1, 0, -1, 0};\nconstexpr int di8[] = {0, 1, 1, 1, 0, -1, -1, -1};\nconstexpr int dj8[] = {1, 1, 0, -1, -1, -1, 0, 1};\nconstexpr double EPS = 1e-10;\nconst double PI = acos(-1);\n\n#define ALL(v) (v).begin(), (v).end()\n#define REP(i, n) for (int i = 0, i_len = n; i < i_len; ++i)\n\ntemplate<typename T1,typename T2> bool chmax(T1 &a, T2 b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<typename T1,typename T2> bool chmin(T1 &a, T2 b) { if (b<a) { a=b; return 1; } return 0; }\n\n\nvector<int> suffix_array(const string& str) {\n int n = str.size();\n vector<int> sa(n + 1), rank(n + 1, -1); // sa[i] = 辞書順でi番目であるsuffixの開始位置\n iota(sa.begin(), sa.end(), 0);\n for (int i = 0; i < n; i++) rank[i] = str[i];\n int k;\n auto comp = [&](const int& i, const int& j) {\n if (rank[i] != rank[j]) {\n return rank[i] < rank[j];\n } else {\n int ri = i + k <= n ? rank[i + k] : -1;\n int rj = j + k <= n ? rank[j + k] : -1;\n return ri < rj;\n }\n };\n for (k = 1; k <= n; k <<= 1) {\n sort(sa.begin(), sa.end(), comp);\n vector<int> tmp(n + 1, 0);\n for (int i = 0; i < n; i++) {\n tmp[sa[i + 1]] = tmp[sa[i]];\n if (comp(sa[i], sa[i + 1])) tmp[sa[i + 1]]++;\n }\n rank = tmp;\n }\n return sa;\n}\n\nvector<int> lcp_array(const string& s, const vector<int>& sa) {\n int n = s.size();\n vector<int> lcp(n), rank(n + 1); // rank[i]=s[i,n)の辞書順位\n for (int i = 0; i <= n; i++) rank[sa[i]] = i;\n for (int i = 0, len = 0; i < n; i++) {\n int j = sa[rank[i] - 1]; // s[i,n)より辞書順で1つ小さいsuffixの先頭位置\n if (len > 0) len--;\n while (max(i, j) + len < n && s[i + len] == s[j + len]) len++;\n lcp[rank[i] - 1] = len;\n }\n return lcp;\n}\n\nint solve() {\n string s, t;\n int k;\n cin >> s >> t >> k;\n string u = s + \"~\" + t;\n vector<int> sa = suffix_array(u);\n vector<int> lcp = lcp_array(u, sa);\n int n = s.size();\n vector<int> len(n, 0);\n for(int i = 1; i < int(u.size()); i++){\n if(sa[i] < n){\n len[sa[i]] = max(lcp[i-1], lcp[i]);\n }\n }\n vector<int> dp(n+1, 0);\n dp[0] = 1;\n dp[1] = -1;\n for(int i=0;i<n;i++){\n if(dp[i] > 0 && len[i] >= k){\n dp[i+k]++;\n dp[i+len[i]+1]--;\n }\n dp[i+1] += dp[i];\n }\n cout << (dp[n] > 0 ? \"Yes\" : \"No\") << endl;\n return 0;\n}\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n solve();\n // while(!solve());\n return 0;\n}", "accuracy": 0.1782178217821782, "time_ms": 250, "memory_kb": 8140, "score_of_the_acc": -0.3478, "final_rank": 19 }, { "submission_id": "aoj_3112_6938157", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\ntemplate<class T> T min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\n\nnamespace atcoder {\n\nnamespace internal {\n\nstd::vector<int> sa_naive(const std::vector<int>& s) {\n int n = int(s.size());\n std::vector<int> sa(n);\n std::iota(sa.begin(), sa.end(), 0);\n std::sort(sa.begin(), sa.end(), [&](int l, int r) {\n if (l == r) return false;\n while (l < n && r < n) {\n if (s[l] != s[r]) return s[l] < s[r];\n l++;\n r++;\n }\n return l == n;\n });\n return sa;\n}\n\nstd::vector<int> sa_doubling(const std::vector<int>& s) {\n int n = int(s.size());\n std::vector<int> sa(n), rnk = s, tmp(n);\n std::iota(sa.begin(), sa.end(), 0);\n for (int k = 1; k < n; k *= 2) {\n auto cmp = [&](int x, int y) {\n if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];\n int rx = x + k < n ? rnk[x + k] : -1;\n int ry = y + k < n ? rnk[y + k] : -1;\n return rx < ry;\n };\n std::sort(sa.begin(), sa.end(), cmp);\n tmp[sa[0]] = 0;\n for (int i = 1; i < n; i++) {\n tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);\n }\n std::swap(tmp, rnk);\n }\n return sa;\n}\n\n// SA-IS, linear-time suffix array construction\n// Reference:\n// G. Nong, S. Zhang, and W. H. Chan,\n// Two Efficient Algorithms for Linear Time Suffix Array Construction\ntemplate <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>\nstd::vector<int> sa_is(const std::vector<int>& s, int upper) {\n int n = int(s.size());\n if (n == 0) return {};\n if (n == 1) return {0};\n if (n == 2) {\n if (s[0] < s[1]) {\n return {0, 1};\n } else {\n return {1, 0};\n }\n }\n if (n < THRESHOLD_NAIVE) {\n return sa_naive(s);\n }\n if (n < THRESHOLD_DOUBLING) {\n return sa_doubling(s);\n }\n\n std::vector<int> sa(n);\n std::vector<bool> ls(n);\n for (int i = n - 2; i >= 0; i--) {\n ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);\n }\n std::vector<int> sum_l(upper + 1), sum_s(upper + 1);\n for (int i = 0; i < n; i++) {\n if (!ls[i]) {\n sum_s[s[i]]++;\n } else {\n sum_l[s[i] + 1]++;\n }\n }\n for (int i = 0; i <= upper; i++) {\n sum_s[i] += sum_l[i];\n if (i < upper) sum_l[i + 1] += sum_s[i];\n }\n\n auto induce = [&](const std::vector<int>& lms) {\n std::fill(sa.begin(), sa.end(), -1);\n std::vector<int> buf(upper + 1);\n std::copy(sum_s.begin(), sum_s.end(), buf.begin());\n for (auto d : lms) {\n if (d == n) continue;\n sa[buf[s[d]]++] = d;\n }\n std::copy(sum_l.begin(), sum_l.end(), buf.begin());\n sa[buf[s[n - 1]]++] = n - 1;\n for (int i = 0; i < n; i++) {\n int v = sa[i];\n if (v >= 1 && !ls[v - 1]) {\n sa[buf[s[v - 1]]++] = v - 1;\n }\n }\n std::copy(sum_l.begin(), sum_l.end(), buf.begin());\n for (int i = n - 1; i >= 0; i--) {\n int v = sa[i];\n if (v >= 1 && ls[v - 1]) {\n sa[--buf[s[v - 1] + 1]] = v - 1;\n }\n }\n };\n\n std::vector<int> lms_map(n + 1, -1);\n int m = 0;\n for (int i = 1; i < n; i++) {\n if (!ls[i - 1] && ls[i]) {\n lms_map[i] = m++;\n }\n }\n std::vector<int> lms;\n lms.reserve(m);\n for (int i = 1; i < n; i++) {\n if (!ls[i - 1] && ls[i]) {\n lms.push_back(i);\n }\n }\n\n induce(lms);\n\n if (m) {\n std::vector<int> sorted_lms;\n sorted_lms.reserve(m);\n for (int v : sa) {\n if (lms_map[v] != -1) sorted_lms.push_back(v);\n }\n std::vector<int> rec_s(m);\n int rec_upper = 0;\n rec_s[lms_map[sorted_lms[0]]] = 0;\n for (int i = 1; i < m; i++) {\n int l = sorted_lms[i - 1], r = sorted_lms[i];\n int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;\n int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;\n bool same = true;\n if (end_l - l != end_r - r) {\n same = false;\n } else {\n while (l < end_l) {\n if (s[l] != s[r]) {\n break;\n }\n l++;\n r++;\n }\n if (l == n || s[l] != s[r]) same = false;\n }\n if (!same) rec_upper++;\n rec_s[lms_map[sorted_lms[i]]] = rec_upper;\n }\n\n auto rec_sa =\n sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);\n\n for (int i = 0; i < m; i++) {\n sorted_lms[i] = lms[rec_sa[i]];\n }\n induce(sorted_lms);\n }\n return sa;\n}\n\n} // namespace internal\n\nstd::vector<int> suffix_array(const std::vector<int>& s, int upper) {\n assert(0 <= upper);\n for (int d : s) {\n assert(0 <= d && d <= upper);\n }\n auto sa = internal::sa_is(s, upper);\n return sa;\n}\n\ntemplate <class T> std::vector<int> suffix_array(const std::vector<T>& s) {\n int n = int(s.size());\n std::vector<int> idx(n);\n iota(idx.begin(), idx.end(), 0);\n sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });\n std::vector<int> s2(n);\n int now = 0;\n for (int i = 0; i < n; i++) {\n if (i && s[idx[i - 1]] != s[idx[i]]) now++;\n s2[idx[i]] = now;\n }\n return internal::sa_is(s2, now);\n}\n\nstd::vector<int> suffix_array(const std::string& s) {\n int n = int(s.size());\n std::vector<int> s2(n);\n for (int i = 0; i < n; i++) {\n s2[i] = s[i];\n }\n return internal::sa_is(s2, 255);\n}\n\n// Reference:\n// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,\n// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its\n// Applications\ntemplate <class T>\nstd::vector<int> lcp_array(const std::vector<T>& s,\n const std::vector<int>& sa) {\n int n = int(s.size());\n assert(n >= 1);\n std::vector<int> rnk(n);\n for (int i = 0; i < n; i++) {\n rnk[sa[i]] = i;\n }\n std::vector<int> lcp(n - 1);\n int h = 0;\n for (int i = 0; i < n; i++) {\n if (h > 0) h--;\n if (rnk[i] == 0) continue;\n int j = sa[rnk[i] - 1];\n for (; j + h < n && i + h < n; h++) {\n if (s[j + h] != s[i + h]) break;\n }\n lcp[rnk[i] - 1] = h;\n }\n return lcp;\n}\n\nstd::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {\n int n = int(s.size());\n std::vector<int> s2(n);\n for (int i = 0; i < n; i++) {\n s2[i] = s[i];\n }\n return lcp_array(s2, sa);\n}\n\n// Reference:\n// D. Gusfield,\n// Algorithms on Strings, Trees, and Sequences: Computer Science and\n// Computational Biology\ntemplate <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {\n int n = int(s.size());\n if (n == 0) return {};\n std::vector<int> z(n);\n z[0] = 0;\n for (int i = 1, j = 0; i < n; i++) {\n int& k = z[i];\n k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);\n while (i + k < n && s[k] == s[i + k]) k++;\n if (j + z[j] < i + z[i]) j = i;\n }\n z[0] = n;\n return z;\n}\n\nstd::vector<int> z_algorithm(const std::string& s) {\n int n = int(s.size());\n std::vector<int> s2(n);\n for (int i = 0; i < n; i++) {\n s2[i] = s[i];\n }\n return z_algorithm(s2);\n}\n\n} // namespace atcoder\n\nusing atcoder::lcp_array;\nusing atcoder::suffix_array;\nusing atcoder::z_algorithm;\n\n\nnamespace po167{\ntemplate <class T,T (*op)(T,T),T(*e)()>\nstruct segment_tree{\n\tint _n,size;\n\tstd::vector<T> seg;\n\tint ceil_pow2(int a){\n\t\tint b=1;\n\t\twhile(a>b){\n\t\t\tb<<=1;\n\t\t}\n\t\treturn b;\n\t}\n\tvoid update(int k){seg[k]=op(seg[k*2],seg[k*2+1]);};\n\tsegment_tree(int n) :_n(n){\n\t\tsize=ceil_pow2(n);\n\t\tseg=std::vector<T>(size*2,e());\n\t}\n\tsegment_tree(std::vector<T> &p) :_n((int) p.size()){\n\t\tsize=ceil_pow2(_n);\n\t\tseg=std::vector<T>(size*2,e());\n\t\tfor(int i=0;i<_n;i++) seg[i+size]=p[i];\n\t\tfor(int i=size-1;i>0;i--) update(i);\n\t}\n\tvoid set(int ind,T val){\n\t\tassert(0<=ind&&ind<_n);\n\t\tind+=size;\n\t\tseg[ind]=val;\n\t\twhile(ind!=1){\n\t\t\tind>>=1;\n\t\t\tupdate(ind);\n\t\t}\n\t}\n void addl(int ind,T val){\n set(ind,op(get(ind),val));\n }\n void addr(int ind,T val){\n set(ind,op(val,get(ind)));\n }\n\tT get(int ind){\n\t\tassert(0<=ind&&ind<_n);\n\t\treturn seg[ind+size];\n\t}\n\tT query(int l,int r){\n\t\tassert(0<=l&&l<=r&&r<=_n);\n\t\tT l_val=e();\n\t\tT r_val=e();\n\t\tl+=size,r+=size;\n\t\twhile(l<r){\n\t\t\tif(l&1) l_val=op(l_val,seg[l]),l+=1;\n\t\t\tif(r&1) r-=1,r_val=op(seg[r],r_val);\n\t\t\tr>>=1;\n\t\t\tl>>=1;\n\t\t}\n\t\treturn op(l_val,r_val);\n\t}\n\ttemplate <bool (*f)(T)> int max_right(int l) {\n return max_right(l, [](T x) { return f(x); });\n }\n\ttemplate <class F> int max_right(int l, F f) {\n\t\tassert(0<=l&&l<=_n);\n\t\tassert(f(e()));\n\t\tif(f(query(l,_n))) return _n;\n\t\tT val=e();\n\t\tl+=size;\n\t\twhile(true){\n\t\t\twhile(l%2==0) l>>=1;\n\t\t\tif(!f(op(val,seg[l]))){\n\t\t\t\twhile(l<size){\n\t\t\t\t\tl*=2;\n\t\t\t\t\tif(f(op(val,seg[l]))){\n\t\t\t\t\t\tval=op(val,seg[l]);\n\t\t\t\t\t\tl++;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\treturn l-size;\n\t\t\t}\n\t\t\tval=op(val,seg[l]);\n\t\t\tl++;\n\t\t}\n\t}\n\ttemplate <bool (*f)(T)> int min_left(int r) {\n return min_left(r, [](T x) { return f(x); });\n }\n template <class F> int min_left(int r, F f) {\n assert(0 <= r && r <= _n);\n assert(f(e()));\n if (r == 0) return 0;\n r += size;\n T sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(seg[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (f(op(seg[r], sm))) {\n sm = op(seg[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(seg[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n};\n}\nusing po167::segment_tree;\n\n\nusing F= int;\nF op(F a,F b){return min(a,b);}\nF e(){return INF;}\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tstring S,T;\n\tcin>>S>>T;\n\tint k;\n\tcin>>k;\n\tint N=S.size(),M=T.size();\n\tstring U=S+(char)('z'+1)+T;\n\tauto sa=suffix_array(U);\n\tauto lc=lcp_array(U,sa);\n\tint f=-1;\n\tvector<int> rev(N+M+1);\n\trep(i,N+M+1) rev[sa[i]]=i;\n\tvector<int> step(N);\n\tsegment_tree<F,op,e> seg(lc);\n\trep(i,N+M){\n\t\tif(sa[i]<N){\n\t\t\tif(f!=-1) chmax(step[sa[i]],seg.query(f,i));\n\t\t}else if(sa[i]!=N){\n\t\t\tf=i;\n\t\t}\n\t}\n\tf=-1;\n\tfor(int i=N+M-1;i>=0;i--){\n\t\tif(sa[i]<N){\n\t\t\tif(f!=-1) chmax(step[sa[i]],seg.query(i,f));\n\t\t}else if(sa[i]!=N){\n\t\t\tf=i;\n\t\t}\n\t}\n\tvector<int> dp(N+1);\n\tdp[0]=1;\n\tdp[1]=-1;\n\t//vec_out(step);\n\trep(i,N){\n\t\t//cout<<i<<\" \"<<dp[i]<<\" \"<<step[i]<<\"\\n\";\n\t\tdp[i+1]+=dp[i];\n\t\tif(dp[i]==0) continue;\n\t\tif(step[i]<k) continue;\n\t\tif(i+step[i]>=N){\n\t\t\tcout<<\"Yes\\n\";\n\t\t\treturn;\n\t\t}\n\t\tdp[i+k]++;\n\t\tdp[i+step[i]+1]--;\n\t}\n\tcout<<\"No\\n\";\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 17076, "score_of_the_acc": -0.1756, "final_rank": 2 }, { "submission_id": "aoj_3112_5016306", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n/*\n#include <atcoder/all>\nusing namespace atcoder;\n*/\n#define all(hoge) (hoge).begin(), (hoge).end()\n#define en '\\n'\nusing ll = long long;\nusing ull = unsigned long long;\n#define rep(i, m, n) for(ll i = (ll)(m); i < (ll)(n); ++i)\n#define rep2(i, m, n) for(ll i = (ll)(n)-1; i >= (ll)(m); --i)\n#define REP(i, n) rep(i, 0, n)\n#define REP2(i, n) rep2(i, 0, n)\ntemplate <class T>\nusing vec = vector<T>;\ntemplate <class T>\nusing vvec = vector<vec<T>>;\ntypedef pair<ll, ll> P;\nusing tp = tuple<ll, ll, ll>;\n\nconstexpr long long INF = 1LL << 60;\nconstexpr int INF_INT = 1 << 25;\nconstexpr long long MOD = (ll)1e9 + 7;\n//constexpr long long MOD = 998244353LL;\nusing ld = long double;\nstatic const ld pi = 3.141592653589793L;\n\nusing Array = vector<ll>;\nusing Matrix = vector<Array>;\n\n/*\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n*/\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\nstd::vector<int> sa_naive(const std::vector<int> &s) {\n int n = int(s.size());\n std::vector<int> sa(n);\n std::iota(sa.begin(), sa.end(), 0);\n std::sort(sa.begin(), sa.end(), [&](int l, int r) {\n if(l == r)\n return false;\n while(l < n && r < n) {\n if(s[l] != s[r])\n return s[l] < s[r];\n l++;\n r++;\n }\n return l == n;\n });\n return sa;\n}\n\nstd::vector<int> sa_doubling(const std::vector<int> &s) {\n int n = int(s.size());\n std::vector<int> sa(n), rnk = s, tmp(n);\n std::iota(sa.begin(), sa.end(), 0);\n for(int k = 1; k < n; k *= 2) {\n auto cmp = [&](int x, int y) {\n if(rnk[x] != rnk[y])\n return rnk[x] < rnk[y];\n int rx = x + k < n ? rnk[x + k] : -1;\n int ry = y + k < n ? rnk[y + k] : -1;\n return rx < ry;\n };\n std::sort(sa.begin(), sa.end(), cmp);\n tmp[sa[0]] = 0;\n for(int i = 1; i < n; i++) {\n tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);\n }\n std::swap(tmp, rnk);\n }\n return sa;\n}\n\n// SA-IS, linear-time suffix array construction\n// Reference:\n// G. Nong, S. Zhang, and W. H. Chan,\n// Two Efficient Algorithms for Linear Time Suffix Array Construction\ntemplate <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>\nstd::vector<int> sa_is(const std::vector<int> &s, int upper) {\n int n = int(s.size());\n if(n == 0)\n return {};\n if(n == 1)\n return {0};\n if(n == 2) {\n if(s[0] < s[1]) {\n return {0, 1};\n } else {\n return {1, 0};\n }\n }\n if(n < THRESHOLD_NAIVE) {\n return sa_naive(s);\n }\n if(n < THRESHOLD_DOUBLING) {\n return sa_doubling(s);\n }\n\n std::vector<int> sa(n);\n std::vector<bool> ls(n);\n for(int i = n - 2; i >= 0; i--) {\n ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);\n }\n std::vector<int> sum_l(upper + 1), sum_s(upper + 1);\n for(int i = 0; i < n; i++) {\n if(!ls[i]) {\n sum_s[s[i]]++;\n } else {\n sum_l[s[i] + 1]++;\n }\n }\n for(int i = 0; i <= upper; i++) {\n sum_s[i] += sum_l[i];\n if(i < upper)\n sum_l[i + 1] += sum_s[i];\n }\n\n auto induce = [&](const std::vector<int> &lms) {\n std::fill(sa.begin(), sa.end(), -1);\n std::vector<int> buf(upper + 1);\n std::copy(sum_s.begin(), sum_s.end(), buf.begin());\n for(auto d : lms) {\n if(d == n)\n continue;\n sa[buf[s[d]]++] = d;\n }\n std::copy(sum_l.begin(), sum_l.end(), buf.begin());\n sa[buf[s[n - 1]]++] = n - 1;\n for(int i = 0; i < n; i++) {\n int v = sa[i];\n if(v >= 1 && !ls[v - 1]) {\n sa[buf[s[v - 1]]++] = v - 1;\n }\n }\n std::copy(sum_l.begin(), sum_l.end(), buf.begin());\n for(int i = n - 1; i >= 0; i--) {\n int v = sa[i];\n if(v >= 1 && ls[v - 1]) {\n sa[--buf[s[v - 1] + 1]] = v - 1;\n }\n }\n };\n\n std::vector<int> lms_map(n + 1, -1);\n int m = 0;\n for(int i = 1; i < n; i++) {\n if(!ls[i - 1] && ls[i]) {\n lms_map[i] = m++;\n }\n }\n std::vector<int> lms;\n lms.reserve(m);\n for(int i = 1; i < n; i++) {\n if(!ls[i - 1] && ls[i]) {\n lms.push_back(i);\n }\n }\n\n induce(lms);\n\n if(m) {\n std::vector<int> sorted_lms;\n sorted_lms.reserve(m);\n for(int v : sa) {\n if(lms_map[v] != -1)\n sorted_lms.push_back(v);\n }\n std::vector<int> rec_s(m);\n int rec_upper = 0;\n rec_s[lms_map[sorted_lms[0]]] = 0;\n for(int i = 1; i < m; i++) {\n int l = sorted_lms[i - 1], r = sorted_lms[i];\n int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;\n int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;\n bool same = true;\n if(end_l - l != end_r - r) {\n same = false;\n } else {\n while(l < end_l) {\n if(s[l] != s[r]) {\n break;\n }\n l++;\n r++;\n }\n if(l == n || s[l] != s[r])\n same = false;\n }\n if(!same)\n rec_upper++;\n rec_s[lms_map[sorted_lms[i]]] = rec_upper;\n }\n\n auto rec_sa =\n sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);\n\n for(int i = 0; i < m; i++) {\n sorted_lms[i] = lms[rec_sa[i]];\n }\n induce(sorted_lms);\n }\n return sa;\n}\n\nstd::vector<int> suffix_array(const std::vector<int> &s, int upper) {\n assert(0 <= upper);\n for(int d : s) {\n assert(0 <= d && d <= upper);\n }\n auto sa = sa_is(s, upper);\n return sa;\n}\n\ntemplate <class T>\nstd::vector<int> suffix_array(const std::vector<T> &s) {\n int n = int(s.size());\n std::vector<int> idx(n);\n iota(idx.begin(), idx.end(), 0);\n sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });\n std::vector<int> s2(n);\n int now = 0;\n for(int i = 0; i < n; i++) {\n if(i && s[idx[i - 1]] != s[idx[i]])\n now++;\n s2[idx[i]] = now;\n }\n return sa_is(s2, now);\n}\n\nstd::vector<int> suffix_array(const std::string &s) {\n int n = int(s.size());\n std::vector<int> s2(n);\n for(int i = 0; i < n; i++) {\n s2[i] = s[i];\n }\n return sa_is(s2, 255);\n}\n\n// Reference:\n// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,\n// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its\n// Applications\ntemplate <class T>\nstd::vector<int> lcp_array(const std::vector<T> &s,\n const std::vector<int> &sa) {\n int n = int(s.size());\n assert(n >= 1);\n std::vector<int> rnk(n);\n for(int i = 0; i < n; i++) {\n rnk[sa[i]] = i;\n }\n std::vector<int> lcp(n - 1);\n int h = 0;\n for(int i = 0; i < n; i++) {\n if(h > 0)\n h--;\n if(rnk[i] == 0)\n continue;\n int j = sa[rnk[i] - 1];\n for(; j + h < n && i + h < n; h++) {\n if(s[j + h] != s[i + h])\n break;\n }\n lcp[rnk[i] - 1] = h;\n }\n return lcp;\n}\n\nstd::vector<int> lcp_array(const std::string &s, const std::vector<int> &sa) {\n int n = int(s.size());\n std::vector<int> s2(n);\n for(int i = 0; i < n; i++) {\n s2[i] = s[i];\n }\n return lcp_array(s2, sa);\n}\n\nvoid solve() {\n string s, t;\n cin >> s >> t;\n int k;\n cin >> k;\n int n = s.size();\n s += '#' + t;\n auto sa = suffix_array(s);\n auto lcp = lcp_array(s, sa);\n\n vec<ll> lcs(n, 0);\n //s.substr(i)の最長共通部分文字列を前計算\n //sは直近のtとの最長共通部分文字列だけ考えればいい\n {\n ll tmp = INF;\n if(sa[0] < n)\n tmp = 0;\n REP(i, lcp.size()) {\n if(sa[i + 1] < n) {\n chmin(tmp, (ll)lcp[i]);\n chmax(lcs[sa[i + 1]], tmp);\n } else {\n tmp = INF;\n }\n }\n }\n {\n ll tmp = INF;\n if(sa[sa.size() - 1] < n)\n tmp = 0;\n REP2(i, lcp.size()) {\n if(sa[i] < n) {\n chmin(tmp, (ll)lcp[i]);\n chmax(lcs[sa[i]], tmp);\n } else {\n tmp = INF;\n }\n }\n }\n\n vec<ll> dp(n + 1, 0);\n vec<ll> imos(n + 2, 0);\n dp[0] = 1;\n REP(i, n) {\n dp[i] += imos[i];\n imos[i + 1] += imos[i];\n if(dp[i] <= 0)\n continue;\n if(lcs[i] < k)\n continue;\n imos[i + k]++;\n imos[i + lcs[i] + 1]--;\n }\n dp[n] += imos[n];\n\n if(dp[n])\n cout << \"Yes\" << en;\n else\n cout << \"No\" << en;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout.tie(0);\n /*\n ll t;\n cin >> t;\n REP(i, t - 1) {\n solve();\n }*/\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 12484, "score_of_the_acc": -0.0928, "final_rank": 1 }, { "submission_id": "aoj_3112_4508974", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\nusing lint = long long int;\nlong long int INF = 1001001001001001LL;\nint inf = 1000000007;\nlong long int MOD = 1000000007LL;\ndouble PI = 3.1415926535897932;\n\ntemplate<typename T1,typename T2>inline void chmin(T1 &a,const T2 &b){if(a>b) a=b;}\ntemplate<typename T1,typename T2>inline void chmax(T1 &a,const T2 &b){if(a<b) a=b;}\n\n#define ALL(a) a.begin(),a.end()\n#define RALL(a) a.rbegin(),a.rend()\n\n/* do your best */\n// 引用:https://ei1333.github.io/luzhiled/snippets/string/suffix-array.html\n\n// quoted from beet-aizu\ntemplate <typename T, typename E, typename F, typename G>\nstruct SegmentTree{\n // using F = function<T(T, T)>\n // using G = function<T(T, E)>\n int n;\n F f;\n G g;\n T ti;\n vector<T> dat;\n SegmentTree(){};\n SegmentTree(F f,G g,T ti):f(f),g(g),ti(ti){}\n void init(int n_){ \n n=1;\n while(n<n_) n<<=1;\n dat.assign(n<<1,ti);\n }\n void build(const vector<T> &v){\n int n_=v.size();\n init(n_);\n for(int i=0;i<n_;i++) dat[n+i]=v[i];\n for(int i=n-1;i;i--)\n dat[i]=f(dat[(i<<1)|0],dat[(i<<1)|1]);\n }\n void update(int k,const E &x){\n k += n;\n dat[k] = g(dat[k], x);\n while(k>>=1)\n dat[k]=f(dat[(k<<1)|0],dat[(k<<1)|1]); \n }\n T operator [](int k) const { return dat[k+n]; }\n T query(int a,int b) const {\n T vl=ti,vr=ti;\n for(int l=a+n,r=b+n;l<r;l>>=1,r>>=1) {\n if(l&1) vl=f(vl,dat[l++]);\n if(r&1) vr=f(dat[--r],vr);\n }\n return f(vl,vr);\n }\n\n /* TODO わからない 聞く \n template<typename C>\n int find(int a,int b,C &check,int k,int l,int r){\n if(!check(dat[k])||r<=a||b<=l) return -1;\n if(k>=n) return k-n;\n int m=(l+r)>>1;\n int vl=find(a,b,check,(k<<1)|0,l,m);\n if(~vl) return vl;\n return find(a,b,check,(k<<1)|1,m,r);\n }\n template<typename C>\n int find(int a,int b,C &check){\n return find(a,b,check,1,0,n);\n }*/\n \n};\n\n\n/** テンプレ\nint main(){\n using T = ***; // type T\n using E = ***; // type E\n auto f = [](T a, T b){ // return type T value\n return ***;\n };\n auto g = [](T a, E b){ // return type T value\n return ***; // return b;\n };\n T ti = ***; // identity element\n SegmentTree<T, E, decltype(f), decltype(g)> sg(f, g, ti); // don't change\n sg.build(***);\n}\n**/\n\nstruct SuffixArray {\n vector< int > SA;\n const string s;\n\n SuffixArray(const string &str) : s(str) {\n SA.resize(s.size());\n iota(begin(SA), end(SA), 0);\n sort(begin(SA), end(SA), [&](int a, int b) {\n return s[a] == s[b] ? a > b : s[a] < s[b];\n });\n vector< int > classes(s.size()), c(s.begin(), s.end()), cnt(s.size());\n for(int len = 1; len < s.size(); len <<= 1) {\n for(int i = 0; i < s.size(); i++) {\n if(i > 0 && c[SA[i - 1]] == c[SA[i]] && SA[i - 1] + len < s.size() && c[SA[i - 1] + len / 2] == c[SA[i] + len / 2]) {\n classes[SA[i]] = classes[SA[i - 1]];\n } else {\n classes[SA[i]] = i;\n }\n }\n iota(begin(cnt), end(cnt), 0);\n copy(begin(SA), end(SA), begin(c));\n for(int i = 0; i < s.size(); i++) {\n int s1 = c[i] - len;\n if(s1 >= 0) SA[cnt[classes[s1]]++] = s1;\n }\n classes.swap(c);\n }\n }\n\n int operator[](int k) const {\n return SA[k];\n }\n\n size_t size() const {\n return s.size();\n }\n\n bool lt_substr(const string &t, int si = 0, int ti = 0) {\n int sn = (int) s.size(), tn = (int) t.size();\n while(si < sn && ti < tn) {\n if(s[si] < t[ti]) return true;\n if(s[si] > t[ti]) return false;\n ++si, ++ti;\n }\n return si >= sn && ti < tn;\n }\n\n int lower_bound(const string &t) {\n int low = -1, high = (int) SA.size();\n while(high - low > 1) {\n int mid = (low + high) / 2;\n if(lt_substr(t, SA[mid])) low = mid;\n else high = mid;\n }\n return high;\n }\n\n pair< int, int > lower_upper_bound(string &t) {\n int idx = lower_bound(t);\n int low = idx - 1, high = (int) SA.size();\n t.back()++;\n while(high - low > 1) {\n int mid = (low + high) / 2;\n if(lt_substr(t, SA[mid])) low = mid;\n else high = mid;\n }\n t.back()--;\n return {idx, high};\n }\n\n void output() {\n for(int i = 0; i < size(); i++) {\n cout << i << \": \" << s.substr(SA[i]) << \" \" << SA[i] << endl;\n }\n }\n};\n\nstruct LongestCommonPrefixArray {\n const SuffixArray &SA;\n vector< int > LCP, rank;\n\n LongestCommonPrefixArray(const SuffixArray &SA) : SA(SA), LCP(SA.size()) {\n rank.resize(SA.size());\n for(int i = 0; i < SA.size(); i++) {\n rank[SA[i]] = i;\n }\n for(int i = 0, h = 0; i < SA.size(); i++) {\n if(rank[i] + 1 < SA.size()) {\n for(int j = SA[rank[i] + 1]; max(i, j) + h < SA.size() && SA.s[i + h] == SA.s[j + h]; ++h);\n LCP[rank[i] + 1] = h;\n if(h > 0) --h;\n }\n }\n }\n\n int operator[](int k) const {\n return LCP[k];\n }\n\n size_t size() const {\n return LCP.size();\n }\n\n void output() {\n for(int i = 0; i < size(); i++) {\n cout << i << \": \" << LCP[i] << \" \" << SA.s.substr(SA[i]) << \" \" << SA[i] << endl;\n }\n }\n\n void solve(int len_s, int len_t, int k) {\n // やること\n // 文字列長をみて,s か t かを判定\n // s に一番近い t を見つける(高々二つ)\n // それらの lcp を計算,max をとる(それより離れたところはダメ(単調性))\n // そのあと DP する\n \n int n = size();\n using T = int; // type T\n using E = int; // type E\n auto f = [](T a, T b){ // return type T value\n return min(a, b);\n };\n auto g = [](T a, E b){ // return type T value\n return b; // return b;\n };\n T ti = inf; // identity element\n SegmentTree<T, E, decltype(f), decltype(g)> sg(f, g, ti); // don't change\n sg.build(LCP);\n\n // 自分より上の id\n vector<int> up(n, -1);\n int id = -1;\n for (int i = 0; i < n; i++) {\n int len = n - SA[i];\n if (len <= len_t) {\n id = i;\n } else if (len > len_t + 1) {\n up[i] = id;\n }\n }\n\n vector<int> down(n, -1);\n id = -1;\n for (int i = n - 1; i >= 0; i--) {\n int len = n - SA[i];\n if (len <= len_t) {\n id = i;\n } else if (len > len_t + 1) {\n down[i] = id;\n }\n }\n\n for (int i = 0; i < n; i++) {\n //cerr << up[i] << \" \" << down[i] << endl;\n }\n\n vector<int> maxLen(len_s, 0);\n for (int i = 0; i < n; i++) {\n int len = n - SA[i];\n if (len > len_t + 1) {\n lint maxLcp = 0;\n if (down[i] != -1) {\n lint tmp = sg.query(i + 1, down[i] + 1);\n maxLcp = max(tmp, maxLcp);\n }\n if (up[i] != -1) {\n lint tmp = sg.query(up[i] + 1, i + 1);\n maxLcp = max(tmp, maxLcp);\n }\n\n maxLen[SA[i]] = maxLcp;\n }\n }\n\n for (int i = 0; i < len_s; i++) {\n //cerr << i << \": \" << maxLen[i] << endl;\n }\n \n vector<int> dp(len_s + 2, 0);\n dp[0] = 1;\n dp[1] = -1;\n for (int i = 0; i < len_s; i++) {\n if (i != 0) dp[i] += dp[i - 1];\n //cerr << \"i : \" << i << \" dp[i] = \" << dp[i] << endl; \n if (dp[i] == 0) continue;\n lint maxLcp = maxLen[i];\n //cerr << \"maxLcp = \" << maxLcp << endl;\n if (maxLcp < k) continue;\n int l = i + k;\n int r = i + maxLcp + 1;\n if (l > len_s) continue;\n r = min(r, len_s + 1);\n\n //cerr << i << \" \" << l << \" \" << r << endl;\n dp[l]++;\n dp[r]--;\n }\n\n dp[len_s] += dp[len_s - 1];\n \n //for (int i = 0; i <= len_s; i++) {\n //cerr << dp[i] << \" \";\n //}\n //cerr << endl;\n\n if (dp[len_s] >= 1) {\n cout << \"Yes\" << endl;\n } else {\n cout << \"No\" << endl;\n }\n }\n};\n\nint main() {\n \n string s;\n string t;\n int k;\n cin >> s >> t >> k;\n\n string str = s + \"#\" + t;\n SuffixArray sa(str);\n LongestCommonPrefixArray lcp(sa);\n lcp.solve(s.size(), t.size(), k);\n\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 17048, "score_of_the_acc": -0.349, "final_rank": 3 }, { "submission_id": "aoj_3112_4393157", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(ll i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 510000;\nll dy[8] = {0,1,0,-1,1,-1,1,-1};\nll dx[8] = {1,0,-1,0,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){cout << a << \" \" << b << \"\\n\";}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\n\nstruct SuffixArray{\n\tvector<int> ran;\n\tvector<int> tmp;\n\tvector<int> sa;\n\tvector<int> rsa;\n\tvector<int> lcp;\n\tint k=0, n=0;\n\tstring str;\n\n\tSuffixArray(string s){\n\t\tstr = s;\n\t\tn = s.size();\n\t\tran.resize(n+1,0);\n\t\ttmp.resize(n+1,0);\n\t\tsa.resize(n+1,0);\n\t\trsa.resize(n+1,0);\n\t\tlcp.resize(n+1,0);\n\t\tbuild();\n\t\tcalcLCP();\n\t}\n\n\tstruct CompareSA {\n int n, k;\n const vector<int> &rank;\n CompareSA(int n, int k, const vector<int> &rank_sa) : n(n), k(k), rank(rank_sa) {}\n bool operator()(int i, int j) {\n if (rank[i] != rank[j]) return (rank[i] < rank[j]);\n else {\n int rank_ik = (i + k <= n ? rank[i + k] : -1);\n int rank_jk = (j + k <= n ? rank[j + k] : -1);\n return (rank_ik < rank_jk);\n }\n }\n };\n\n\tvoid build(){\n\t\tfor(int i=0; i<=n; i++){\n\t\t\tsa[i] = i;\n\t\t\tran[i] = i < n ? str[i] : -1;\n\t\t}\n\t\tfor(k=1; k<=n; k*=2){\n\t\t\tCompareSA csa(n, k, ran);\n\t\t\tsort(sa.begin(),sa.end(),csa);\n\t\t\ttmp[sa[0]] = 0;\n\t\t\tfor(int i=1; i<=n; i++){\n\t\t\t\ttmp[sa[i]] = tmp[sa[i-1]] + (csa(sa[i-1], sa[i]) ? 1 : 0);\n\t\t\t}\n\t\t\tfor(int i=0; i<=n; i++){\n\t\t\t\tran[i] = tmp[i];\n\t\t\t}\n\t\t}\n\t}\n\n\tbool contain(string t){\n\t\tint a = 0, b = str.size();\n\t\twhile(b - a > 1){\n\t\t\tint c = (a+b) / 2;\n\t\t\tif(str.compare(sa[c], t.size(), t) < 0) a = c;\n\t\t\telse b = c;\n\t\t}\n\t\treturn str.compare(sa[b], t.size(), t) == 0;\n\t}\n\n\tvoid calcLCP(){\n\t\tfor(int i=0; i<=n; i++) rsa[sa[i]] = i;\n\t\tlcp[0] = 0;\n\t\tint cur = 0;\n\t\tfor(int i=0; i<=n; i++){\n\t\t\tint pi = sa[rsa[i] - 1];\n\t\t\tif(cur > 0) cur--;\n\t\t\tfor(; pi + cur < n && i + cur < n; cur++){\n\t\t\t\tif(str[pi + cur] != str[i + cur]) break;\n\t\t\t}\n\t\t\tlcp[rsa[i] - 1] = cur;\n\t\t}\n\t}\n};\n\nint main(){\n\tstring s,t; cin >> s >> t;\n\tll k; cin >> k;\n\tll n = s.size();\n\ts += '#' + t;\n\tSuffixArray sa(s);\n\tll m = s.size();\n\tll T = 0;\n\tll fin = -1;\n\tvl v(n+2,0);\n\trep(i,m){\n\t\tif(sa.sa[i] > n){\n\t\t\tll now = inf;\n\t\t\tfor(ll j=i-1; j>fin; j--){\n\t\t\t\tchmin(now,sa.lcp[j]);\n\t\t\t\tif(now < k) break;\n\t\t\t\tif(sa.sa[j] < n) chmax(v[sa.sa[j]],now);\n\t\t\t}\n\t\t\tfin = i;\n\t\t\tnow = sa.lcp[i];\n\t\t\tfor(ll j=i+1; j<=m; j++){\n\t\t\t\tif(sa.sa[j] >= n) break;\n\t\t\t\tif(now < k) break;\n\t\t\t\tchmax(v[sa.sa[j]],now);\n\t\t\t\tchmin(now,sa.lcp[j]);\n\t\t\t}\n\t\t}\n\t}\n\tvl dp(n+2,0);\n\trep(i,n+2){\n\t\tif(i>0) dp[i] += dp[i-1];\n\t\tif(!v[i]) continue;\n\t\tif(i>0 && !dp[i]) continue;\n\t\tdp[i+k]++;\n\t\tdp[i+v[i]+1]--;\n\t}\n\tif(dp[n]) puts(\"Yes\");\n\telse puts(\"No\");\n}", "accuracy": 1, "time_ms": 330, "memory_kb": 14812, "score_of_the_acc": -0.5841, "final_rank": 6 }, { "submission_id": "aoj_3112_4392997", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(ll i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 510000;\nll dy[8] = {0,1,0,-1,1,-1,1,-1};\nll dx[8] = {1,0,-1,0,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){cout << a << \" \" << b << \"\\n\";}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\n\nstruct SuffixArray{\n\tvector<int> ran;\n\tvector<int> tmp;\n\tvector<int> sa;\n\tvector<int> rsa;\n\tvector<int> lcp;\n\tint k=0, n=0;\n\tstring str;\n\n\tSuffixArray(string s){\n\t\tstr = s;\n\t\tn = s.size();\n\t\tran.resize(n+1,0);\n\t\ttmp.resize(n+1,0);\n\t\tsa.resize(n+1,0);\n\t\trsa.resize(n+1,0);\n\t\tlcp.resize(n+1,0);\n\t\tbuild();\n\t\tcalcLCP();\n\t}\n\n\tstruct CompareSA {\n int n, k;\n const vector<int> &rank;\n CompareSA(int n, int k, const vector<int> &rank_sa) : n(n), k(k), rank(rank_sa) {}\n bool operator()(int i, int j) {\n if (rank[i] != rank[j]) return (rank[i] < rank[j]);\n else {\n int rank_ik = (i + k <= n ? rank[i + k] : -1);\n int rank_jk = (j + k <= n ? rank[j + k] : -1);\n return (rank_ik < rank_jk);\n }\n }\n };\n\n\tvoid build(){\n\t\tfor(int i=0; i<=n; i++){\n\t\t\tsa[i] = i;\n\t\t\tran[i] = i < n ? str[i] : -1;\n\t\t}\n\t\tfor(k=1; k<=n; k*=2){\n\t\t\tCompareSA csa(n, k, ran);\n\t\t\tsort(sa.begin(),sa.end(),csa);\n\t\t\ttmp[sa[0]] = 0;\n\t\t\tfor(int i=1; i<=n; i++){\n\t\t\t\ttmp[sa[i]] = tmp[sa[i-1]] + (csa(sa[i-1], sa[i]) ? 1 : 0);\n\t\t\t}\n\t\t\tfor(int i=0; i<=n; i++){\n\t\t\t\tran[i] = tmp[i];\n\t\t\t}\n\t\t}\n\t}\n\n\tbool contain(string t){\n\t\tint a = 0, b = str.size();\n\t\twhile(b - a > 1){\n\t\t\tint c = (a+b) / 2;\n\t\t\tif(str.compare(sa[c], t.size(), t) < 0) a = c;\n\t\t\telse b = c;\n\t\t}\n\t\treturn str.compare(sa[b], t.size(), t) == 0;\n\t}\n\n\tvoid calcLCP(){\n\t\tfor(int i=0; i<=n; i++) rsa[sa[i]] = i;\n\t\tlcp[0] = 0;\n\t\tint cur = 0;\n\t\tfor(int i=0; i<=n; i++){\n\t\t\tint pi = sa[rsa[i] - 1];\n\t\t\tif(cur > 0) cur--;\n\t\t\tfor(; pi + cur < n && i + cur < n; cur++){\n\t\t\t\tif(str[pi + cur] != str[i + cur]) break;\n\t\t\t}\n\t\t\tlcp[rsa[i] - 1] = cur;\n\t\t}\n\t}\n};\n\nint main(){\n\tstring s,t; cin >> s >> t;\n\tll k; cin >> k;\n\tll n = s.size();\n\ts += '#' + t;\n\tSuffixArray sa(s);\n\tll m = s.size();\n\tll T = 0;\n\tll fin = -1;\n\tvl v(n+2,0);\n\trep(i,m){\n\t\tif(sa.sa[i] > n){\n\t\t\tll now = inf;\n\t\t\tfor(ll j=i-1; j>fin; j--){\n\t\t\t\tchmin(now,sa.lcp[j]);\n\t\t\t\tif(now < k) break;\n\t\t\t\tif(sa.sa[j] < n) chmax(v[sa.sa[j]],now);\n\t\t\t}\n\t\t\tfin = i;\n\t\t\tnow = sa.lcp[i];\n\t\t\tfor(ll j=i+1; j<m; j++){\n\t\t\t\tif(sa.sa[j] >= n) break;\n\t\t\t\tif(now < k) break;\n\t\t\t\tchmax(v[sa.sa[j]],now);\n\t\t\t\tchmin(now,sa.lcp[j]);\n\t\t\t}\n\t\t}\n\t}\n\tvl dp(n+2,0);\n\trep(i,n+2){\n\t\tif(i>0) dp[i] += dp[i-1];\n\t\tif(!v[i]) continue;\n\t\tif(i>0 && !dp[i]) continue;\n\t\tdp[i+k]++;\n\t\tdp[i+v[i]+1]--;\n\t}\n\tif(dp[n]) puts(\"Yes\");\n\telse puts(\"No\");\n}", "accuracy": 0.33663366336633666, "time_ms": 290, "memory_kb": 13932, "score_of_the_acc": -0.5102, "final_rank": 17 }, { "submission_id": "aoj_3112_4392991", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(ll i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 510000;\nll dy[8] = {0,1,0,-1,1,-1,1,-1};\nll dx[8] = {1,0,-1,0,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){cout << a << \" \" << b << \"\\n\";}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\n\nstruct SuffixArray{\n\tvector<int> ran;\n\tvector<int> tmp;\n\tvector<int> sa;\n\tvector<int> rsa;\n\tvector<int> lcp;\n\tint k=0, n=0;\n\tstring str;\n\n\tSuffixArray(string s){\n\t\tstr = s;\n\t\tn = s.size();\n\t\tran.resize(n+1,0);\n\t\ttmp.resize(n+1,0);\n\t\tsa.resize(n+1,0);\n\t\trsa.resize(n+1,0);\n\t\tlcp.resize(n+1,0);\n\t\tbuild();\n\t\tcalcLCP();\n\t}\n\n\tstruct CompareSA {\n int n, k;\n const vector<int> &rank;\n CompareSA(int n, int k, const vector<int> &rank_sa) : n(n), k(k), rank(rank_sa) {}\n bool operator()(int i, int j) {\n if (rank[i] != rank[j]) return (rank[i] < rank[j]);\n else {\n int rank_ik = (i + k <= n ? rank[i + k] : -1);\n int rank_jk = (j + k <= n ? rank[j + k] : -1);\n return (rank_ik < rank_jk);\n }\n }\n };\n\n\tvoid build(){\n\t\tfor(int i=0; i<=n; i++){\n\t\t\tsa[i] = i;\n\t\t\tran[i] = i < n ? str[i] : -1;\n\t\t}\n\t\tfor(k=1; k<=n; k*=2){\n\t\t\tCompareSA csa(n, k, ran);\n\t\t\tsort(sa.begin(),sa.end(),csa);\n\t\t\ttmp[sa[0]] = 0;\n\t\t\tfor(int i=1; i<=n; i++){\n\t\t\t\ttmp[sa[i]] = tmp[sa[i-1]] + (csa(sa[i-1], sa[i]) ? 1 : 0);\n\t\t\t}\n\t\t\tfor(int i=0; i<=n; i++){\n\t\t\t\tran[i] = tmp[i];\n\t\t\t}\n\t\t}\n\t}\n\n\tbool contain(string t){\n\t\tint a = 0, b = str.size();\n\t\twhile(b - a > 1){\n\t\t\tint c = (a+b) / 2;\n\t\t\tif(str.compare(sa[c], t.size(), t) < 0) a = c;\n\t\t\telse b = c;\n\t\t}\n\t\treturn str.compare(sa[b], t.size(), t) == 0;\n\t}\n\n\tvoid calcLCP(){\n\t\tfor(int i=0; i<=n; i++) rsa[sa[i]] = i;\n\t\tlcp[0] = 0;\n\t\tint cur = 0;\n\t\tfor(int i=0; i<=n; i++){\n\t\t\tint pi = sa[rsa[i] - 1];\n\t\t\tif(cur > 0) cur--;\n\t\t\tfor(; pi + cur < n && i + cur < n; cur++){\n\t\t\t\tif(str[pi + cur] != str[i + cur]) break;\n\t\t\t}\n\t\t\tlcp[rsa[i] - 1] = cur;\n\t\t}\n\t}\n};\n\nint main(){\n\tstring s,t; cin >> s >> t;\n\tll k; cin >> k;\n\tll n = s.size();\n\ts += '#' + t;\n\tSuffixArray sa(s);\n\tll m = s.size();\n\tll T = 0;\n\tll fin = -1;\n\tvl v(n+2,0);\n\trep(i,m){\n\t\tif(sa.sa[i] > n){\n\t\t\tll now = inf;\n\t\t\tfor(ll j=i-1; j>fin; j--){\n\t\t\t\tchmin(now,sa.lcp[j]);\n\t\t\t\tif(now < k) break;\n\t\t\t\tif(sa.sa[j] < n) chmax(v[sa.sa[j]],now);\n\t\t\t}\n\t\t\tfin = i;\n\t\t\tnow = sa.lcp[i];\n\t\t\tfor(ll j=i+1; j<m; j++){\n\t\t\t\tif(sa.sa[j] >= n) break;\n\t\t\t\tif(now < k) break;\n\t\t\t\tchmax(v[sa.sa[j]],now);\n\t\t\t\tchmin(now,sa.lcp[j]);\n\t\t\t}\n\t\t}\n\t}\n\tvl dp(n+2,0);\n\trep(i,n+2){\n\t\tif(i>0) dp[i] += dp[i-1];\n\t\tif(i>0 && (!dp[i] || !v[i])) continue;\n\t\tdp[i+k]++;\n\t\tdp[i+v[i]+1]--;\n\t}\n\tif(dp[n]) puts(\"Yes\");\n\telse puts(\"No\");\n}", "accuracy": 0.2871287128712871, "time_ms": 290, "memory_kb": 13876, "score_of_the_acc": -0.5092, "final_rank": 18 }, { "submission_id": "aoj_3112_4160766", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\ntypedef pair<int,int> P;\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef vector<ll> vll;\n// #define int long long\n#define pb push_back\n#define mp make_pair\n#define eps 1e-9\n#define INF 2000000000 //2e9\n#define LLINF 1000000000000000ll // 1e15\n#define fi first\n#define sec second\n#define all(x) (x).begin(),(x).end()\n#define sq(x) ((x)*(x))\n#define dmp(x) cerr << #x << \": \" << x << endl;\n\ntemplate<class T> void chmin(T& a,const T& b){if(a>b)a=b;}\ntemplate<class T> void chmax(T& a,const T& b){if(a<b)a=b;}\n\ntemplate<class T> using MaxHeap = priority_queue<T>;\ntemplate<class T> using MinHeap = priority_queue<T,vector<T>,greater<T>>;\ntemplate<class T> vector<T> vect(int len,T elem){ return vector<T>(len,elem); }\n\ntemplate<class T,class U>\nostream& operator << (ostream& os,const pair<T,U>& p){\n os << p.fi << ',' << p.sec; return os;\n}\ntemplate<class T,class U>\nistream& operator >> (istream& is,pair<T,U>& p){\n is >> p.fi >> p.sec; return is;\n}\ntemplate<class T>\nostream& operator << (ostream &os,const vector<T> &vec){\n for(int i=0;i<vec.size();i++){\n os << vec[i];\n if(i+1<vec.size())os << ' ';\n }\n return os;\n}\ntemplate<class T>\nistream& operator >> (istream &is,vector<T>& vec){\n for(int i=0;i<vec.size();i++)is >> vec[i];\n return is;\n}\nvoid fastio(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n cout<<fixed<<setprecision(20);\n}\n\nnamespace Math{\n template<int MOD> // if inv is needed, this shold be prime.\n struct ModInt{\n ll val;\n ModInt():val(0ll){}\n ModInt(const ll& v):val(((v%MOD)+MOD)%MOD){}\n bool operator==(const ModInt& x)const{return val==x.val;}\n bool operator!=(const ModInt& x)const{return !(*this==x);}\n bool operator<(const ModInt& x)const{return val<x.val;}\n bool operator>(const ModInt& x)const{return val>x.val;}\n bool operator>=(const ModInt& x)const{return !(*this<x);}\n bool operator<=(const ModInt& x)const{return !(*this>x);}\n ModInt operator-()const{return ModInt(MOD-val);}\n ModInt inv()const{return this->pow(MOD-2);}\n ModInt& operator+=(const ModInt& x){if((val+=x.val)>=MOD)val-=MOD;return *this;}\n ModInt& operator-=(const ModInt& x){if((val+=MOD-x.val)>=MOD)val-=MOD;return *this;}\n ModInt& operator*=(const ModInt& x){(val*=x.val)%=MOD;return *this;}\n ModInt& operator/=(const ModInt& x){return *this *= x.inv();};\n ModInt operator+(const ModInt& x)const{return ModInt(*this)+=x;}\n ModInt operator-(const ModInt& x)const{return ModInt(*this)-=x;}\n ModInt operator*(const ModInt& x)const{return ModInt(*this)*=x;}\n ModInt operator/(const ModInt& x)const{return ModInt(*this)/=x;}\n friend istream& operator>>(istream&i,ModInt& x){ll v;i>>v;x=v;return i;}\n friend ostream& operator<<(ostream&o,const ModInt& x){o<<x.val;return o;}\n ModInt pow(ll x)const{\n auto res = ModInt(1ll);\n auto b = *this;\n while(x){\n if(x&1)res *= b;\n x >>= 1;\n b *= b;\n }\n return res;\n }\n };\n\n template<int MOD>\n ModInt<MOD> pow(ModInt<MOD> a,ll x){\n ModInt<MOD> res = ModInt<MOD>(1ll);\n while(x){\n if(x&1)res *= a;\n x >>= 1;\n a *= a;\n }\n return res;\n }\n\n constexpr int MOD = 1e9+7;\n // constexpr int MOD = 998244353;\n using mint = ModInt<MOD>;\n\n vector<mint> inv,fac,facinv;\n // notice: 0C0 = 1 \n ModInt<MOD> nCr(int n,int r){\n assert(!(n<r));\n assert(!(n<0||r<0));\n return fac[n]*facinv[r]*facinv[n-r];\n }\n void init(int SIZE){\n fac.resize(SIZE+1);\n inv.resize(SIZE+1);\n facinv.resize(SIZE+1);\n fac[0] = inv[1] = facinv[0] = mint(1ll);\n for(int i=1;i<=SIZE;i++)fac[i]=fac[i-1]*mint(i);\n for(int i=2;i<=SIZE;i++)inv[i]=mint(0ll)-mint(MOD/i)*inv[MOD%i];\n for(int i=1;i<=SIZE;i++)facinv[i]=facinv[i-1]*inv[i];\n return;\n }\n template<class T>\n int digit(T x){\n int res = 0;\n while(x){ x /= T(10); res++; }\n return res;\n }\n template<class T>\n int digit_sum(T x){\n int res = 0;\n while(x){ res+=x%10; x/=10; }\n return res;\n }\n template<class T>\n T gcd(T x,T y){\n if(y==T(0))return x;\n else return gcd(y,x%y);\n }\n}\n\nnamespace DS{\n template<class T>\n struct RangeSum{\n vector<T> vec;\n RangeSum(){}\n RangeSum(vector<T> elems):vec(elems){\n for(int i=1;i<vec.size();i++){\n vec[i] += vec[i-1];\n }\n }\n T sum(int l,int r){\n if(l>r)return T(0);\n if(l==0)return vec[r];\n else return vec[r]-vec[l-1];\n }\n };\n template<class T>\n struct BIT{\n int N;\n vector<T> bit;\n BIT(int N):N(N){\n bit = vector<T>(N+1,T(0));\n }\n void add(int i,T x){\n i++;\n while(i<=N){ bit[i]+=x; i+=i&-i; }\n return;\n }\n T sum(int i){\n i++;\n T res = T(0);\n while(i>0){ res+=bit[i]; i-=i&-i; }\n return res;\n }\n T sum(int l,int r){// [l,r]\n assert(l<=r);\n if(l==0)return sum(r);\n else return sum(r)-sum(l-1);\n }\n };\n template<class T>\n struct SlideMin{\n vector<T> v;\n deque<int> deq;\n SlideMin(vector<T> &v):v(v){}\n void add(int id){ // add v[id]\n while(!deq.empty()&&v[deq.back()]>=v[id])deq.pop_back();\n deq.push_back(id);\n }\n T get(int id){ // [id,added]\n while(!deq.empty()&&deq.front()<id)deq.pop_front();\n assert(!deq.empty());\n return v[deq.front()];\n }\n };\n template<class T>\n struct SlideMax{\n vector<T> v;\n deque<int> deq;\n SlideMax(vector<T> &v):v(v){}\n void add(int id){\n while(!deq.empty()&&v[deq.back()]<=v[id])deq.pop_back();\n deq.push_back(id);\n }\n T get(int id){ // [id,added]\n while(!deq.empty()&&deq.front()<id)deq.pop_front();\n assert(!deq.empty());\n return v[deq.front()];\n }\n };\n template<class D,class O>\n struct LazySegmentTree{\n using DMerger = function<D(D,D)>;\n using OMerger = function<O(O,O)>;\n using Applier = function<D(D,O,int)>;\n\n int length;\n\n D d_unit;\n O o_unit;\n\n vector<D> seg;\n vector<O> lazy;\n\n DMerger dm;\n OMerger om;\n Applier app;\n\n void lazy_evaluate(int k,int len){\n if(lazy[k] == o_unit) return;\n if(len>1){\n lazy[2*k+1] = om(lazy[2*k+1],lazy[k]);\n lazy[2*k+2] = om(lazy[2*k+2],lazy[k]);\n }\n seg[k] = app(seg[k],lazy[k],len);\n lazy[k] = o_unit;\n }\n void update(int a,int b,int k,int l,int r,O x){\n lazy_evaluate(k,r-l);\n if(r<=a||b<=l)return;\n else if(a<=l&&r<=b){\n lazy[k] = om(lazy[k],x);\n lazy_evaluate(k,r-l);\n }else{\n update(a,b,k*2+1,l,(l+r)/2,x);\n update(a,b,k*2+2,(l+r)/2,r,x);\n seg[k] = dm(seg[k*2+1],seg[k*2+2]);\n }\n }\n void update(int a,int b,O x){\n update(a,b,0,0,length,x);\n }\n D query(int a,int b,int k,int l,int r){\n lazy_evaluate(k,r-l);\n if(r<=a||b<=l)return d_unit; \n else if(a<=l&&r<=b)return seg[k];\n else{\n D lch = query(a,b,k*2+1,l,(l+r)/2);\n D rch = query(a,b,k*2+2,(l+r)/2,r);\n return dm(lch,rch);\n }\n }\n D query(int a,int b){\n return query(a,b,0,0,length);\n }\n LazySegmentTree(int n,D d_unit,O o_unit,DMerger dm,OMerger om,Applier app)\n :length(1),d_unit(d_unit),o_unit(o_unit),dm(dm),om(om),app(app) {\n while(length<n){ length <<= 1; }\n seg.assign(length * 2, d_unit);\n lazy.assign(length * 2, o_unit);\n }\n LazySegmentTree(vector<D> vec,D d_unit,O o_unit,DMerger dm,OMerger om,Applier app)\n :length(1),d_unit(d_unit),o_unit(o_unit),dm(dm),om(om),app(app) {\n while(length<vec.size()){ length <<= 1; }\n seg.assign(length * 2, d_unit);\n lazy.assign(length * 2, o_unit);\n for(int i=0;i<vec.size();i++)seg[length-1+i] = vec[i];\n for(int i=length-2;i>=0;i--)seg[i] = dm(seg[i*2+1],seg[i*2+2]);\n }\n };\n // RangeAddRangeSum update : a[l,r) += c\n // verified https://atcoder.jp/contests/abc153/submissions/9866001\n template<class T>\n LazySegmentTree<T,T> RangeAddRangeSum(int size){\n auto dm = [](T a,T b){return a+b;};\n auto om = [](T a,T b){return a+b;};\n auto app = [](T dat,T lz,int len){return dat+lz*T(len);};\n return LazySegmentTree<T,T>(size,T(0),T(0),dm,om,app);\n }\n template<class T>\n LazySegmentTree<T,T> RangeAddRangeSum(vector<T> vec){\n auto dm = [](T a,T b){return a+b;};\n auto om = [](T a,T b){return a+b;};\n auto app = [](T dat,T lz,int len){return dat+lz*T(len);};\n return LazySegmentTree<T,T>(vec,T(0),T(0),dm,om,app);\n }\n // RangeAddRangeMin\n // NOT verified yet\n template<class T>\n LazySegmentTree<T,T> RangeAddRangeMin(int size){\n auto dm = [](T a,T b){return min(a,b);};\n auto om = [](T a,T b){return a+b;};\n auto app = [](T dat,T lz,int len){return dat+lz;};\n return LazySegmentTree<T,T>(size,T(INF),T(0),dm,om,app);\n }\n template<class T>\n LazySegmentTree<T,T> RangeAddRangeMin(vector<T> vec){\n auto dm = [](T a,T b){return min(a,b);};\n auto om = [](T a,T b){return a+b;};\n auto app = [](T dat,T lz,int len){return dat+lz;};\n return LazySegmentTree<T,T>(vec,T(INF),T(0),dm,om,app);\n }\n // RangeAffineRangeSum update (l,r,(p,q)) : a[i] = p * a[i] + q { i in [l,r) }\n // verified https://judge.yosupo.jp/submission/3354\n template<class T>\n LazySegmentTree<ll,pair<T,T>> RangeAffineRangeSum(int size){\n using f = pair<T,T>;\n auto dm = [](T a,T b){return a+b;};\n auto om = [](f a,f b){return f(b.fi*a.fi,b.fi*a.sec+b.sec);};\n auto app = [](T dat,f lz,int len){return lz.fi*dat+lz.sec*T(len);};\n return LazySegmentTree<T,f>(size,T(0),f(T(1),T(0)),dm,om,app);\n }\n template<class T>\n LazySegmentTree<T,pair<T,T>> RangeAffineRangeSum(vector<T> vec){\n using f = pair<T,T>;\n auto dm = [](T a,T b){return a+b;};\n auto om = [](f a,f b){return f(b.fi*a.fi,b.fi*a.sec+b.sec);};\n auto app = [](T dat,f lz,int len){return lz.fi*dat+lz.sec*T(len);};\n return LazySegmentTree<T,f>(vec,T(0),f(T(1),T(0)),dm,om,app);\n }\n}\n\nnamespace Util{\n template<class T>\n vector<pair<T,int>> runLength(vector<T> v){\n vector<pair<T,int>> res;\n for(int i=0;i<v.size();i++){\n if(res.empty()||res.back().first!=v[i])res.push_back(make_pair(v[i],1));\n else res.back().second++;\n }\n return res;\n }\n template<class T>\n void compress(vector<T> &v){\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n }\n}\n\ntemplate<class Cost = int>\nstruct edge{\n int from,to;\n Cost cost;\n edge(){}\n edge(int f,int t,Cost cost):from(f),to(t),cost(cost){}\n};\n\nstruct SuffixArray{\n string s;\n vector<int> sa;\n vector<int> rank;\n vector<int> lcp;\n explicit SuffixArray(string s):s(s){\n int n = s.size();\n sa.resize(n+1);\n rank.resize(n+1);\n vector<int> tmp(n+1);\n for(int i=0;i<=n;i++){\n rank[i] = (i<n)?s[i]:-1;\n sa[i] = i;\n }\n for(int k=1;k<=n;k*=2){\n auto compare_sa = \n [&](const int &i,const int &j){\n if(rank[i]!=rank[j])return rank[i]<rank[j];\n else{\n int ri=(i+k<=s.size())?rank[i+k]:-1;\n int rj=(j+k<=s.size())?rank[j+k]:-1;\n return ri<rj;\n }\n };\n sort(sa.begin(),sa.end(),compare_sa);\n tmp[sa[0]]=0;\n for(int i=1;i<=n;i++)tmp[sa[i]]=tmp[sa[i-1]]+(compare_sa(sa[i-1],sa[i])?1:0);\n for(int i=0;i<=n;i++)rank[i]=tmp[i];\n }\n }\n size_t size() const {\n return s.size();\n }\n int operator [] (int id) const {\n return sa[id];\n }\n bool contain(string t){\n int l = 0,r = s.size()+1;\n while(r-l>1){\n int mid = (l+r)/2;\n if(s.compare(sa[mid],t.size(),t)<0){\n l = mid;\n }else{\n r = mid;\n }\n }\n return s.compare(sa[r],t.size(),t)==0;\n }\n};\n\nstruct LongestCommonPrefix{\n const SuffixArray &sa;\n vector<int> lcp,rank;\n explicit LongestCommonPrefix(const SuffixArray &sa):sa(sa){\n int n = sa.size();\n lcp.resize(sa.size()+1);\n rank.resize(sa.size()+1);\n for(int i=0;i<=sa.size();i++){\n rank[sa[i]]=i;\n }\n int h = 0;\n lcp[0] = 0;\n for(int i=0;i<sa.size();i++){\n int j = sa[rank[i]-1];\n if(h>0)h--;\n for(;i+h<n&&j+h<n;h++)if(sa.s[i+h]!=sa.s[j+h])break;\n lcp[rank[i]-1] = h;\n }\n }\n int operator [] (int id) const {\n assert(id>=0&&id<lcp.size());\n return lcp[id];\n }\n};\n \nsigned main(){\n fastio();\n string s,t;\n int k;\n cin >> s;\n cin >> t;\n cin >> k;\n string S = s + \"$\" + t;\n SuffixArray sa(S);\n LongestCommonPrefix lcp(sa);\n auto seg = DS::RangeAddRangeSum<int>(s.size()+1);\n auto lcpseg = DS::RangeAddRangeMin(lcp.lcp);\n set<int> Tidx;\n vector<int> rev(s.size());\n for(int i=0;i<=S.size();i++){\n if(sa[i]>s.size())Tidx.insert(i);\n if(sa[i]<s.size())rev[sa[i]] = i;\n }\n seg.update(0,1,1);\n for(int i=0;i<s.size();i++){\n if(seg.query(i,i+1)==0)continue;\n int sidx = rev[i];\n auto it = Tidx.lower_bound(sidx);\n int lap = 0;\n if(it!=Tidx.end()){\n chmax(lap,lcpseg.query(sidx,*it));\n }\n if(it!=Tidx.begin()){\n it--;\n chmax(lap,lcpseg.query(*it,sidx));\n }\n if(lap<k)continue;\n seg.update(i+k,i+lap+1,1);\n }\n if(seg.query(s.size(),s.size()+1)==0)cout << \"No\" << endl;\n else cout << \"Yes\" << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 600, "memory_kb": 32000, "score_of_the_acc": -1.2853, "final_rank": 16 }, { "submission_id": "aoj_3112_3940011", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\nstruct SuffixArray{\n string s;\n vector<int> sa,rev;\n\n SuffixArray(){}\n SuffixArray(const string &S):s(S){\n int n=s.size();\n s.push_back('$');\n sa.resize(n+1);\n iota(sa.begin(),sa.end(),0);\n sort(sa.begin(),sa.end(),\n [&](int a,int b){\n if(s[a]==s[b]) return a>b;\n return s[a]<s[b];\n });\n vector<int> c(n+1,0),r(n+1),cnt(n+1);\n for(int i=0;i<=n;i++) r[i]=s[i];\n for(int len=1;len<=n;len*=2){\n for(int i=0;i<=n;i++){\n c[sa[i]]=i;\n if(i>0 &&\n r[sa[i-1]]==r[sa[i]] &&\n sa[i-1]+len<=n &&\n r[sa[i-1]+len/2]==r[sa[i]+len/2]) c[sa[i]]=c[sa[i-1]];\n }\n iota(cnt.begin(),cnt.end(),0);\n copy(sa.begin(),sa.end(),r.begin());\n for(int i=0;i<=n;i++){\n int s1=r[i]-len;\n if(s1>=0) sa[cnt[c[s1]]++]=s1;\n }\n c.swap(r);\n }\n rev.resize(n+1);\n for(int i=0;i<=n;i++) rev[sa[i]]=i;\n }\n int operator[](int i) const{return sa[i];}\n\n bool lt_substr(string &t,int si,int ti){\n int sn=s.size(),tn=t.size();\n while(si<sn&&ti<tn){\n if(s[si]<t[ti]) return 1;\n if(s[si]>t[ti]) return 0;\n si++;ti++;\n }\n return si==sn&&ti<tn;\n }\n\n int lower_bound(string& t){\n int l=0,r=s.size();\n while(l+1<r){\n int m=(l+r)>>1;\n if(lt_substr(t,sa[m],0)) l=m;\n else r=m;\n }\n return r;\n }\n\n int upper_bound(string& t){\n t.back()++;\n int res=lower_bound(t);\n t.back()--;\n return res;\n }\n\n // O(|T|*log|S|)\n int count(string& T){\n return upper_bound(T)-lower_bound(T);\n }\n};\n\n\nstruct LongestCommonPrefix{\n SuffixArray sa;\n\n vector<int> ht;\n vector< vector<int> > dat;\n LongestCommonPrefix(string &s):sa(s){\n int n=s.size();\n vector<int> lcp(n,0);\n\n int t=0;\n lcp[0]=0;\n for(int i=0;i<n;i++){\n int j=sa[sa.rev[i]-1];\n if(t>0) t--;\n for(;j+t<n&&i+t<n;t++){\n if(sa.s[j+t]!=sa.s[i+t]) break;\n }\n lcp[sa.rev[i]-1]=t;\n }\n\n int h=1;\n while((1<<h)<n) h++;\n dat.assign(h,vector<int>(n));\n ht.assign(n+1,0);\n for(int j=2;j<=n;j++) ht[j]=ht[j>>1]+1;\n\n for(int j=0;j<n;j++) dat[0][j]=lcp[j];\n for(int i=1,p=1;i<h;i++,p<<=1)\n for(int j=0;j<n;j++)\n dat[i][j]=min(dat[i-1][j],dat[i-1][min(j+p,n-1)]);\n }\n\n // a, b are indices for suffix array\n int query(int a,int b){\n assert(a!=b);\n if(a>b) swap(a,b);\n int l=b-a;\n return min(dat[ht[l]][a],dat[ht[l]][b-(1<<ht[l])]);\n }\n\n // a, b are indices for string\n int lcp(int a,int b){\n return query(sa.rev[a],sa.rev[b]);\n }\n};\n\n\ntemplate <typename E>\nstruct SegmentTree{\n using H = function<E(E,E)>;\n int n,height;\n H h;\n E ei;\n vector<E> laz;\n SegmentTree(H h,E ei):h(h),ei(ei){}\n void init(int n_){\n n=1;height=0;\n while(n<n_) n<<=1,height++;\n laz.assign(2*n,ei);\n }\n inline void eval(int k){\n if(laz[k]==ei) return;\n laz[(k<<1)|0]=h(laz[(k<<1)|0],laz[k]);\n laz[(k<<1)|1]=h(laz[(k<<1)|1],laz[k]);\n laz[k]=ei;\n }\n inline void thrust(int k){\n for(int i=height;i;i--) eval(k>>i);\n }\n void update(int a,int b,E x){\n thrust(a+=n);\n thrust(b+=n-1);\n for(int l=a,r=b+1;l<r;l>>=1,r>>=1){\n if(l&1) laz[l]=h(laz[l],x),l++;\n if(r&1) --r,laz[r]=h(laz[r],x);\n }\n }\n E get_val(int a){\n thrust(a+=n);\n return laz[a];\n }\n void set_val(int a,E x){\n thrust(a+=n);\n laz[a]=x;\n }\n};\n\n//INSERT ABOVE HERE\nsigned main(){\n string s,t;\n cin>>s>>t;\n\n string b=s+'%'+t;\n LongestCommonPrefix lcp(b);\n\n int n=s.size(),m=t.size();\n\n set<int> ss;\n for(int i=0;i<=n+1+m;i++){\n if(!isalpha(b[lcp.sa[i]])) continue;\n if(n<lcp.sa[i]) ss.emplace(i);\n }\n\n vector<int> nx(n+1,-1);\n for(int i=0;i<=n+1+m;i++){\n if(!isalpha(b[lcp.sa[i]])) continue;\n int k=lcp.sa[i];\n if(k>=n) continue;\n\n auto it=ss.upper_bound(i);\n if(it!=ss.end()) chmax(nx[k],lcp.query(i,*it));\n if(it!=ss.begin()) it--;\n if(it!=ss.end()) chmax(nx[k],lcp.query(i,*it));\n }\n\n int len;\n cin>>len;\n\n auto h=[&](int a,int b){return a||b;};\n int ei=0;\n SegmentTree<int> seg(h,ei);\n seg.init(n+m+1000);\n\n seg.set_val(0,1);\n for(int i=0;i<n;i++){\n if(!seg.get_val(i)) continue;\n if(nx[i]<len) continue;\n int nl=i+len;\n int nr=i+nx[i]+1;\n seg.update(nl,nr,1);\n }\n\n cout<<(seg.get_val(n)?\"Yes\":\"No\")<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 52160, "score_of_the_acc": -1.1126, "final_rank": 13 }, { "submission_id": "aoj_3112_3929984", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\nconstexpr int INF = 1<<30;\n\nstruct SuffixArray{\n int n, k;\n string s;\n vector<int> rank, tmp, sa;\n\n function<bool(const int&, const int&)> comp = [&](const int &i, const int &j){\n if(rank[i] != rank[j]) return rank[i] < rank[j];\n else{\n int ri = i+k <= n ? rank[i+k] : -1;\n int rj = j+k <= n ? rank[j+k] : -1;\n return ri < rj;\n }\n };\n void construct(const string &str){\n s = str;\n n = s.size();\n rank.resize(n+1);\n tmp.resize(n+1);\n sa.resize(n+1);\n\n for(int i=0;i<=n;i++){\n sa[i] = i;\n rank[i] = i < n ? s[i] : -1;\n }\n\n for(k = 1; k<=n; k<<=1){\n sort(sa.begin(), sa.begin()+n+1, comp);\n tmp[sa[0]] = 0;\n for(int i=1;i<=n;i++){\n tmp[sa[i]] = tmp[sa[i-1]] + (comp(sa[i-1],sa[i]) ? 1 : 0);\n }\n for(int i=0;i<=n;i++){\n rank[i] = tmp[i];\n }\n }\n }\n bool contain(const string &t){\n int a = 0, b = n;\n while(b-a > 1){\n int c = (a+b)/2;\n if(s.compare(sa[c], t.size(), t) < 0){\n a = c;\n }else{\n b = c;\n }\n }\n return s.compare(sa[b], t.size(), t) == 0;\n }\n\n int operator[] (int i) const {\n return sa[i];\n }\n};\n\nstruct LCP{\n int n;\n vector<int> rank;\n vector<int> lcp;\n SuffixArray sa;\n\n void construct(const string &str){\n int n = str.size();\n sa.construct(str);\n rank.resize(n+1);\n lcp.resize(n);\n for(int i=0;i<=n;i++) rank[sa[i]] = i;\n\n int h = 0;\n for(int i=0;i<n;i++){\n int j = sa[rank[i]-1];\n if(h>0) h--;\n for(; j+h < n && i+h < n; h++){\n if(str[j+h] != str[i+h]) break;\n }\n lcp[rank[i]-1] = h;\n }\n }\n\n int operator[] (int i) const {\n return lcp[i];\n }\n};\n\ntemplate <typename Monoid>\nstruct SegmentTree{\nprivate:\n using F = function<Monoid(Monoid, Monoid)>;\n int N;\n vector<Monoid> node;\n F f;\n Monoid e; // identity element\n\npublic:\n SegmentTree(){}\n SegmentTree(F f, Monoid e):f(f), e(e){}\n void init(int sz){\n N = 1;\n while(N < sz) N <<= 1;\n node.assign(2*N-1, e);\n }\n void build(vector<Monoid>& v){\n int sz = int(v.size());\n init(sz);\n for(int i=0; i<sz; i++){\n node[i+N-1] = v[i];\n }\n for(int i=N-2; i>=0; i--){\n node[i] = f(node[i*2+1], node[i*2+2]);\n }\n }\n void update(int k, Monoid x){\n k += N-1;\n node[k] = x;\n while(k > 0){\n k = (k-1)/2;\n node[k] = f(node[2*k+1], node[2*k+2]);\n }\n }\n // [a,b)\n Monoid query(int a, int b){return query(a, b, 0, 0, N);}\n Monoid query(int a, int b, int k, int l, int r){\n if(b <= l || r <= a) return e;\n if(a <= l && r <= b) return node[k];\n Monoid vl, vr;\n vl = query(a, b, 2*k+1, l, (l+r)/2);\n vr = query(a, b, 2*k+2, (l+r)/2, r);\n return f(vl, vr);\n }\n};\n\nint main(){\n int n, k;\n string s, t;\n cin >> s >> t >> k;\n n = s.size();\n s += '#' + t;\n LCP lcp;\n SuffixArray sa;\n lcp.construct(s);\n sa = lcp.sa;\n vector<int> dp(n+2), tpos;\n for(int i=0;i<=s.size();i++){\n if(sa[i] > n) tpos.push_back(i);\n }\n auto f = [&](int a, int b){return min(a,b);};\n SegmentTree<int> seg(f, INF);\n seg.build(lcp.lcp);\n dp[0] = 1;\n dp[1] = -1;\n for(int i=0;i<n;i++){\n int j = lcp.rank[i], maxi = 0;\n auto itr = lower_bound(tpos.begin(), tpos.end(), j);\n if(itr != tpos.begin()){\n auto tmp = itr;\n maxi = max(maxi, seg.query(*--tmp, j));\n }\n if(itr != tpos.end()){\n auto tmp = itr;\n maxi = max(maxi, seg.query(j, *tmp));\n }\n if(maxi >= k && dp[i] > 0){\n dp[i+k]++;\n dp[i+maxi+1]--;\n }\n dp[i+1] += dp[i];\n }\n cout << (dp[n] > 0 ? \"Yes\" : \"No\") << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 700, "memory_kb": 22436, "score_of_the_acc": -1.2578, "final_rank": 14 }, { "submission_id": "aoj_3112_3896868", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 200005\n\nint A_length,B_length,T_length,range;\nint Rank[2*SIZE]; //接尾辞文字列の開始位置iの、辞書順にsortした際の順位表\nint Suffix_Array[2*SIZE]; //接尾辞文字列の開始位置<インデックス>→毎回、辞書順に開始位置をソートする\nint Work[2*SIZE];\nint LCP[2*SIZE],LCP_Rank[2*SIZE];\nint max_cover_length[SIZE];\nint dp[SIZE];\nchar A[SIZE],B[SIZE],T[2*SIZE];\n\n//まずrank[a]とrank[b]を比較、等しければrank[a+range],rank[b+range]を比較\nbool compare_Suffix_Array(int a,int b){\n\tif(Rank[a] != Rank[b])return Rank[a] < Rank[b];\n\telse{\n\t\tint rank_a = a + range <= T_length ? Rank[a+range]:-1; //rangeを足した部分が範囲外なら、最高にするため、rankを-1にする\n\t\tint rank_b = b + range <= T_length ? Rank[b+range]:-1;\n\t\treturn rank_a < rank_b;\n\t}\n}\n\n//文字列Tの接尾辞配列を構築\nvoid make_Suffix_Array(){\n\tfor(int i = 0; i <= T_length; i++){\n\t\tSuffix_Array[i] = i;\n\t\tRank[i] = i < T_length? T[i]:-1; //初期ランクは文字コードにする。T[T_length]は空文字なので、最高となるように-1とする\n\t}\n\n\t//range,2*range,4*range,とソート幅を次第に伸ばしていく\n\tfor(range = 1; range <= T_length; range*=2){\n\t\tsort(Suffix_Array,Suffix_Array+(T_length+1),compare_Suffix_Array); //range文字の幅でsuffix_Arrayをソート\n\n\t\tWork[Suffix_Array[0]] = 0;\n\t\tfor(int i = 1; i <= T_length; i++){\n\t\t\tWork[Suffix_Array[i]] = Work[Suffix_Array[i-1]] + (compare_Suffix_Array(Suffix_Array[i-1],Suffix_Array[i])?1:0);\n\t\t}\n\t\tfor(int i = 0; i <= T_length; i++){\n\t\t\tRank[i] = Work[i];\n\t\t}\n\t}\n}\n\nvoid construct_LCP(){\n\n\tint n = T_length;\n\tfor(int i = 0; i <= n; i++)LCP_Rank[Suffix_Array[i]] = i; //位置Suffix_Array[i]の配列上の位置を格納\n\n\tint h = 0;\n\tLCP[0] = 0;\n\n\tfor(int i = 0; i < n; i++){\n\t\t//文字列中での位置iの接尾辞と、接尾辞配列中でその1つ前の接尾辞のLCPを求める\n\t\tint j = Suffix_Array[LCP_Rank[i]-1]; //LCP_Rank[n] == 0なので、マイナスになる心配はない\n\n\t\t//hを先頭の分1減らし、後ろが一致しているだけ増やす\n\t\tif(h > 0)h--;\n\t\tfor(; j+h < n && i+h < n; h++){\n\n\t\t\tif(T[j+h] != T[i+h])break;\n\t\t}\n\t\tLCP[LCP_Rank[i]-1] = h;\n\t}\n}\n\n\nint main(){\n\n\n\tscanf(\"%s\",A);\n\tfor(A_length = 0; A[A_length] != '\\0'; A_length++){\n\n\t\tT[A_length] = A[A_length];\n\t}\n\tT[A_length] = '@';\n\tT_length = A_length+1;\n\n\tscanf(\"%s\",B);\n\tfor(B_length = 0; B[B_length] != '\\0'; B_length++,T_length++){\n\n\t\tT[T_length] = B[B_length];\n\t}\n\n\tint LEN;\n\tscanf(\"%d\",&LEN);\n\n\tmake_Suffix_Array();\n\tconstruct_LCP();\n\n\tint cover_length = 0;\n\n\tfor(int i = 0; i <= T_length; i++){\n\n\t\tif(Suffix_Array[i] < A_length){\n\n\t\t\tmax_cover_length[Suffix_Array[i]] = max(max_cover_length[Suffix_Array[i]],cover_length);\n\t\t\tcover_length = min(cover_length,LCP[i]);\n\n\t\t}else{\n\n\t\t\tcover_length = LCP[i];\n\t\t}\n\t}\n\n\tcover_length = 0;\n\tfor(int i = T_length; i >= 1; i--){\n\t\tif(Suffix_Array[i] < A_length){\n\n\t\t\tmax_cover_length[Suffix_Array[i]] = max(max_cover_length[Suffix_Array[i]],cover_length);\n\t\t\tcover_length = min(cover_length,LCP[i-1]);\n\n\t\t}else{\n\n\t\t\tcover_length = LCP[i-1];\n\t\t}\n\t}\n\n\tfor(int i = 0; i <= A_length+1; i++){\n\n\t\tdp[i] = 0;\n\t}\n\n\tdp[0] = 1;\n\tdp[1] = -1;\n\n\tfor(int i = 0; i <= A_length; i++){\n\n\t\tif(i > 0)dp[i] += dp[i-1];\n\t\tif(dp[i] == 0 || max_cover_length[i] < LEN || i == A_length)continue;\n\n\t\tdp[i+LEN]++;\n\t\tint right = min(A_length+1,i+max_cover_length[i]+1);\n\t\tdp[right]--;\n\t}\n\n\tif(dp[A_length] > 0){\n\n\t\tprintf(\"Yes\\n\");\n\t}else{\n\n\t\tprintf(\"No\\n\");\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 400, "memory_kb": 13268, "score_of_the_acc": -0.6577, "final_rank": 8 }, { "submission_id": "aoj_3112_3893568", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct Suffix_Array {\n string str;\n int strlen, nowlen;\n vector<long long> rank, tmp, sa, lcp;\n Suffix_Array(string news = \"\", bool reqlcp = 0) {\n str = news;\n strlen = str.size();\n nowlen = 0;\n rank.resize(strlen + 1);\n tmp.resize(strlen + 1);\n sa.resize(strlen + 1);\n constuct_sa();\n if(reqlcp) constuct_lcp();\n }\n\n void constuct_sa() {\n auto cmp = [&](int l, int r) {\n if(rank[l] != rank[r]) return rank[l] < rank[r];\n int rx = l + nowlen <= strlen ? rank[l + nowlen] : -1;\n int ly = r + nowlen <= strlen ? rank[r + nowlen] : -1;\n return rx < ly;\n };\n\n for(int i = 0; i <= strlen; ++i) {\n sa[i] = i;\n rank[i] = i < strlen ? str[i] : -1;\n }\n for(nowlen = 1; nowlen <= strlen; nowlen *= 2) {\n sort(sa.begin(), sa.end(), cmp);\n tmp[sa[0]] = 0;\n for(int i = 1; i <= strlen; ++i)\n tmp[sa[i]] = tmp[sa[i - 1]] +\n (cmp(sa[i - 1], sa[i]) ? 1 : 0);\n for(int i = 0; i <= strlen; ++i) rank[i] = tmp[i];\n }\n }\n // Longest Common Prefix Array\n void constuct_lcp() {\n lcp.resize(strlen + 1);\n for(int i = 0; i <= strlen; ++i) rank[sa[i]] = i;\n int h = 0;\n lcp[0] = 0;\n for(int i = 0; i < strlen; ++i) {\n int j = sa[rank[i] - 1];\n if(h > 0) --h;\n for(; j + h < strlen && i + h < strlen; ++h)\n if(str[j + h] != str[i + h]) break;\n lcp[rank[i] - 1] = h;\n }\n }\n\n bool contain(string &nowt) {\n int lef = 0, righ = strlen, tsize = nowt.size();\n while(righ - lef > 1) {\n int mid = (lef + righ) / 2;\n if(str.compare(sa[mid], tsize, nowt) < 0)\n lef = mid;\n else\n righ = mid;\n }\n return str.compare(sa[righ], tsize, nowt) == 0;\n }\n};\n\nstring s, t, st;\nlong long k;\nSuffix_Array suf;\nvector<long long> dp, memo;\n\nbool solve();\n\nint main() {\n cin >> s >> t >> k;\n if(solve())\n cout << \"Yes\" << endl;\n else\n cout << \"No\" << endl;\n return 0;\n}\n\nbool solve() {\n long long ssize = s.size(), stsize;\n st = s + \"#\" + t;\n stsize = st.size();\n suf = Suffix_Array(st, 1);\n memo.assign(s.size(), 0);\n long long now = 0;\n for(int i = 0; i <= stsize; ++i) {\n if(suf.sa[i] < ssize) {\n memo[suf.sa[i]] = max(memo[suf.sa[i]], now);\n now = min(now, suf.lcp[i]);\n }\n else\n now = suf.lcp[i];\n }\n now = 0;\n for(int i = stsize; i >= 1; --i) {\n if(suf.sa[i] < ssize) {\n memo[suf.sa[i]] = max(memo[suf.sa[i]], now);\n now = min(now, suf.lcp[i - 1]);\n }\n else\n now = suf.lcp[i - 1];\n }\n dp.assign(s.size() + 2, 0);\n dp[0] = 1;\n dp[1] = -1;\n for(int i = 0; i <= ssize; ++i) {\n if(i != 0) dp[i] += dp[i - 1];\n if(i == ssize || memo[i] < k || dp[i] == 0) continue;\n ++dp[i + k];\n --dp[min(i + memo[i] + 1, ssize + 1)];\n }\n return dp[ssize] > 0;\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 19432, "score_of_the_acc": -0.7398, "final_rank": 9 }, { "submission_id": "aoj_3112_3886177", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 200010\n\n/* SuffixArray (Source: 蟻本) */\n\n//O(N log^2 N)\n//pos[i] := 接頭辞の開始位置\n//lcp[i] := lcp(s[pos[i]:n-1], s[pos[i-1]:n-1])\nstruct SuffixArray{\n vector<int> pos, lcp;\n\n SuffixArray(const char *S){\n int n = strlen(S), k;\n vector<int> rank(S, S+n), tmp(n);\n auto comp = [&](const int &i, const int &j){\n if (rank[i] != rank[j]) return rank[i] < rank[j];\n return (i+k < n ? rank[i+k] : -1) < (j+k < n ? rank[j+k] : -1);\n };\n\n pos.resize(n);\n iota(pos.begin(), pos.end(), 0);\n\n for(k=1;k<n;k*=2){\n sort(pos.begin(), pos.end(), comp);\n tmp[pos[0]] = 0;\n for(int i=1;i<n;i++)\n tmp[pos[i]] = tmp[pos[i-1]] + comp(pos[i-1], pos[i]);\n for(int i=0;i<n;i++)\n rank[i] = tmp[i];\n }\n\n //LongestCommonPrefixArray\n lcp.resize(n);\n for(int i=0;i<n;i++) rank[pos[i]] = i;\n\n for(int i=0, h=0; i<n; i++) {\n if(rank[i] + 1 < n) {\n for(int j = pos[rank[i] + 1]; max(i, j) + h < n && S[i + h] == S[j + h]; h++);\n lcp[rank[i] + 1] = h;\n if(h > 0) h--;\n }\n }\n }\n\n int operator[](int k) const {\n return pos[k];\n }\n};\n\n/* SimpleSegTree(0-index) */\n\ntemplate <typename Type = int>\nstruct SimpleSegTree{\n int segn2;\n Type initVal;\n vector<Type> data;\n function<Type(Type, Type)> merge;\n\n SimpleSegTree(int n, Type initVal, function<Type(Type, Type)> merge):\n initVal(initVal), merge(merge)\n {\n for(segn2=1; segn2<n; segn2*=2);\n data.assign(segn2*2, initVal);\n }\n\n SimpleSegTree(int n): //RangeMinimunQuery\n SimpleSegTree(n, INF, [](Type a, Type b){ return min(a, b); }) {}\n\n SimpleSegTree(int n, Type initVal): //RangeMinimunQuery\n SimpleSegTree(n, initVal, [](Type a, Type b){ return min(a, b); }) {}\n\n //get value [a,b)\n Type query(int a, int b, int l = 0, int r = -1, int k = 0){\n if(r == -1) r = segn2;\n if(a <= l && r <= b) return data[k];\n if(r <= a || b <= l) return initVal;\n return merge(query(a,b,l,(l+r)/2,k*2+1),query(a,b,(l+r)/2,r,k*2+2));\n }\n\n //set kth number x\n void set(int k, Type x){\n k += segn2-1;\n data[k] = x;\n while(k > 0){\n k = (k-1)/2;\n data[k] = merge(data[k*2+1], data[k*2+2]);\n }\n }\n};\n\nint dic[SIZE];\n\nint dp[SIZE];\n\nint main(){\n char ST[SIZE * 2];\n int N, M, K;\n\n\n\n scanf(\"%s\", ST);\n N = strlen(ST);\n ST[N] = '#';\n scanf(\"%s\", ST+N+1);\n M = strlen(ST) - N - 1;\n\n scanf(\"%d\", &K);\n\n SuffixArray sa(ST);\n SimpleSegTree<int> seg(N+M+1);\n\n debug(N+M+1);\n\n set<int> ss;\n\n for(int i=0; i<N+M+1; i++) {\n if(sa.pos[i] > N) {\n ss.insert(i);\n //ss[i] = sa.pos[i];\n } else {\n dic[sa.pos[i]] = i;\n }\n seg.set(i, sa.lcp[i]);\n debug(sa.lcp[i]);\n }\n\n\n dp[0] = 1;\n dp[1] = -1;\n\n for(int i=0; i<N; i++) {\n auto it = ss.lower_bound(dic[i]);\n\n if(dp[i] == 0) continue;\n\n int l, r;\n\n int maxLen = 0;\n\n if(it != ss.end()) {\n r = *it;\n maxLen = max(maxLen, seg.query(dic[i]+1, r+1));\n }\n\n if(it != ss.begin()) {\n it--;\n l = *it;\n maxLen = max(maxLen, seg.query(l+1, dic[i]+1));\n }\n\n if (maxLen >= K) {\n dp[i+K] += 1;\n dp[i+maxLen+1] -= 1;\n }\n\n\n dp[i+1] += dp[i];\n debug(dp[i]);\n\n debug(ST+i);\n debug(maxLen);\n }\n\n if(dp[N]) {\n cout << \"Yes\" << endl;\n } else {\n cout << \"No\" << endl;\n }\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 500, "memory_kb": 20884, "score_of_the_acc": -0.9399, "final_rank": 12 }, { "submission_id": "aoj_3112_3883165", "code_snippet": "#include <bits/stdc++.h>\n#define whlie while\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define rep(i,N) for(int i = 0; i < (N); i++)\n#define repr(i,N) for(int i = (N) - 1; i >= 0; i--)\n#define rep1(i,N) for(int i = 1; i <= (N) ; i++)\n#define repr1(i,N) for(int i = (N) ; i > 0 ; i--)\n#define each(x,v) for(auto& x : v)\n#define all(v) (v).begin(),(v).end()\n#define sz(v) ((int)(v).size())\n#define vrep(v,it) for(auto it = v.begin(); it != v.end(); it++)\n#define vrepr(v,it) for(auto it = v.rbegin(); it != v.rend(); it++)\n#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)\n#define inl(...) ll __VA_ARGS__; in(__VA_ARGS__)\n#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)\nusing namespace std; void solve();\nusing ll = long long; using vl = vector<ll>;\nusing vi = vector<int>; using vvi = vector< vector<int> >;\nconstexpr int inf = 1001001001;\nconstexpr ll infLL = (1LL << 61) - 1;\nstruct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya;\ntemplate<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\ntemplate<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\ntemplate<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << \" \" << p.second; return os; }\ntemplate<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; }\ntemplate<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); rep(i,s) os << (i ? \" \" : \"\") << v[i]; return os; }\ntemplate<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; }\nvoid in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);}\nvoid out(){cout << \"\\n\";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << \" \"; out(u...);}\ntemplate<typename T>void die(T x){out(x); exit(0);}\n#ifdef NyaanDebug\n #include \"NyaanDebug.h\"\n #define trc(...) do { cerr << #__VA_ARGS__ << \" = \"; dbg_out(__VA_ARGS__);} while(0)\n #define trca(v,...) do { cerr << #v << \" = \"; array_out(v , __VA_ARGS__ );} while(0)\n#else\n #define trc(...)\n #define trca(...)\n int main(){solve();}\n#endif\n\nconstexpr int MOD = /** 1000000007; //*/ 998244353;\n/////////////////\n\n// Suffix Array\n//verify https://judge.yosupo.jp/submission/240\nstruct SuffixArray{\n int _size;\n vector<int> sa;\n string &s;\n SuffixArray(string &str):_size(str.size()) , s(str) {\n // うしさんのO( N logN )の実装\n s.push_back(0);\n sa.resize(s.size());\n iota(begin(sa), end(sa), 0);\n sort(begin(sa), end(sa), [&](int a, int b) {\n return s[a] == s[b] ? a > b : s[a] < s[b];\n });\n vector< int > classes(s.size()), c(s.begin(), s.end()), cnt(s.size());\n for(int len = 1; len < (int)s.size(); len <<= 1) {\n for(int i = 0; i < (int)s.size(); i++) {\n if(i > 0 && c[sa[i - 1]] == c[sa[i]] && sa[i - 1] + len < (int)s.size() && c[sa[i - 1] + len / 2] == c[sa[i] + len / 2]) {\n classes[sa[i]] = classes[sa[i - 1]];\n } else {\n classes[sa[i]] = i;\n }\n }\n iota(begin(cnt), end(cnt), 0);\n copy(begin(sa), end(sa), begin(c));\n for(int i = 0; i < (int)s.size(); i++) {\n int s1 = c[i] - len;\n if(s1 >= 0) sa[cnt[classes[s1]]++] = s1;\n }\n classes.swap(c);\n }\n s.pop_back();\n }\n // デバッグ用に実装\n void output() {\n cout << \"SA\\tidx\\tstr\" << endl;\n for(int i = 0; i < size(); i++) {\n cout << i << \": \\t\" << sa[i] << \" \\t\" ;\n if(sa[i] != _size) cout << s.substr(sa[i],_size - sa[i]) << endl;\n else cout << \"$\" << endl;\n }\n cout << endl;\n }\n // sa.size()と表せると便利なので実装\n int size() const{return _size + 1;}\n // sa[]と表せると便利なのでオーバーロードしておく\n int operator[](int k) const{return sa[k]; }\n};\n\nstruct LCPArray {\n const SuffixArray &SA;\n vector<int> LCP, rank;\n LCPArray(const SuffixArray &sa) : SA(sa) {\n LCP.resize(SA.size()); rank.resize(SA.size());\n // 初期化 rankはsaの逆関数\n for(int i = 0; i < SA.size(); i++) {\n rank[SA[i]] = i;\n }\n LCP[0] = 0; \n \n // 構築\n for(int i = 0, h = 0; i < SA.size() - 1 ; i++) {\n int j = SA[rank[i] - 1] ; h ? h-- : h;\n // ここで尺取り法に近い手法を使うことでO(N)でLCPの構築をしている\n while( (i > j ? i : j) + h < SA.size() - 1 && SA.s[i + h] == SA.s[j + h] && ++h );\n LCP[rank[i] - 1] = h;\n }\n }\n\n // デバッグ用に実装\n void output() {\n cout << \"SA\\tidx\\tLCP\\tstr\" << endl;\n for(int i = 0 ; i < SA.size() ; i++){\n cout << i << \"\\t\" << SA[i] <<\" \\t\" << LCP[i] << \"\\t\"; \n if(SA[i] == SA.size() - 1) cout << \"$\";\n else cout << SA.s.substr(SA[i] , SA.size() - 1 - SA[i]);\n cout << endl;\n }\n }\n\n};\n\n// Sparse Table\ntemplate<typename T>\nstruct SparseTable{\n vector< vector< T > > table;\n vector< int > log_table;\n\n SparseTable(const vector< T > &v) {\n int b = 0;\n while((1 << b) <= (int)v.size()) ++b;\n table.assign(b, vector< T >(1 << b));\n for(int i = 0; i < (int)v.size(); i++) {\n table[0][i] = v[i];\n }\n for(int i = 1; i < b; i++) {\n for(int j = 0; j + (1 << i) <= (1 << b); j++) {\n table[i][j] = min(table[i - 1][j], table[i - 1][j + (1 << (i - 1))]);\n }\n }\n log_table.resize(v.size() + 1);\n for(int i = 2; i < (int)log_table.size(); i++) {\n log_table[i] = log_table[i >> 1] + 1;\n }\n }\n\n // 区間 [l , r) の最小値を返す\n inline T query(int l, int r) {\n int b = log_table[r - l];\n return min(table[b][l], table[b][r - (1 << b)]);\n }\n};\n\n// 文字列検索 検索 O(M + logN) メモリO(N logN)\n// verify\n// https://onlinejudge.u-aizu.ac.jp/status/users/NyaanNyaan/submissions/1/ALDS1_14_D/judge/3874273/C++14\n// https://atcoder.jp/contests/abc135/submissions/7574225\n// https://judge.yosupo.jp/submission/241\n// https://atcoder.jp/contests/abc141/submissions/7577295\nstruct StringSearch{\n string &s;\n const SuffixArray &sa;\n const LCPArray &lcp;\n SparseTable<int> sparse;\n StringSearch(LCPArray &lcp)\n : s(lcp.SA.s) , sa(lcp.SA) , lcp(lcp) , sparse(lcp.LCP){ }\n\n // 文字列sの[i , N)と[j , N)の共通接頭辞の長さを求める\n int ArbitaryLCP(int i , int j){\n if(i == j) return (int)(s.size()) - i;\n return sparse.query(\n min(lcp.rank[i] , lcp.rank[j]) , \n max(lcp.rank[i] , lcp.rank[j]) \n );\n }\n\n pair<int,int> comp(const string &t , int len , int si , int ti = 0){\n int sn = (int)s.size() , tn = (int) t.size();\n si += len , ti += len;\n while(si < sn && ti < tn){\n if(s[si] != t[ti]) return make_pair( s[si]<t[ti] , ti);\n si++ , ti++;\n }\n return make_pair( (si>=sn && ti<tn) , ti);\n } \n\n pair<int,int> find_range(int left , int med , int right , int len){\n {\n int ng = left - 1, ok = med;\n whlie(ng + 1 < ok){\n int cur = (ng + ok) / 2;\n if(sparse.query(cur , med) >= len) ok = cur;\n else ng = cur;\n }\n left = ok;\n }\n {\n int ok = med , ng = right + 1;\n whlie(ok + 1 < ng){\n int cur = (ng + ok) / 2;\n if(sparse.query(med, cur) >= len) ok = cur;\n else ng = cur;\n }\n right = ok;\n }\n return make_pair(left , right);\n }\n\n // 全ての出現範囲をSA上の[left , right]の範囲で返す\n // 存在しない場合は-1を返す\n pair<int,int> find(string &t){\n // 条件を満たす[left , right]を見つける\n // sa[0]は空文字列なので left = 1 とする\n // lenは既に一致している文字列の長さ\n int left = 1 , right = sa.size() - 1 , med = left;\n int leftlen = 0 , rightlen = 0 , tlen = t.size();\n pair<int,int> ret;\n while(left + 1 < right){\n med = (left + right) / 2;\n\n int corres_len = max(\n min(leftlen , sparse.query(left , med)) ,\n min(rightlen, sparse.query(med , right))\n );\n if(corres_len < max(leftlen , rightlen)){\n if(leftlen < rightlen) \n left = med , leftlen = corres_len;\n else\n right= med ,rightlen = corres_len;\n continue;\n }\n ret = comp(t , corres_len , sa[med]);\n //trc(left,med,right,ret);\n if(ret.second == tlen)\n return find_range(left,med,right,tlen);\n if(ret.first == 0)\n right = med , rightlen = ret.second;\n else\n left = med , leftlen = ret.second;\n }\n if(sa.size() <= 3){\n if(comp(t,0,sa[left]).second==tlen) return find_range(left,left,right,tlen);\n if(comp(t,0,sa[right]).second==tlen) return find_range(left,right,right,tlen);\n return make_pair(-1,-1);\n }\n med = left + right - med;\n ret = comp(t , min(leftlen,rightlen) , sa[med]);\n //trc(left,med,right,ret);\n if(ret.second == tlen)\n return find_range(left,med,right,tlen);\n return make_pair(-1,-1);\n }\n};\n\n// Suffix Arrayの使い方(メモリを食うので必要なものだけ使う)\n// 参照があるのでstringを削除などしないこと\n/*\n SuffixArray sa(S);\n LCPArray lcp(sa);\n StringSearch search(lcp);\n*/\n// BIT\n\ntemplate< typename T >\nstruct BIT {\n int N; int max_2beki;\n\n vector< T > data;\n // 初期化 1-indexedでデータを管理する 0で初期化\n BIT(int size){\n N = ++size;\n data.assign(N, 0);\n max_2beki = 1;\n while(max_2beki * 2 <= N) max_2beki *= 2;\n }\n\n // [0,k](閉区間)の総和 閉区間に注意!\n T sum(int k) {\n if(k < 0) return 0; // k<0のとき0を返す\n T ret = 0;\n for(++k; k > 0; k -= k & -k) ret += data[k];\n return (ret);\n }\n\n // [l,r](閉区間)の総和\n inline T sum(int l,int r){\n return sum(r) - sum(l-1);\n }\n\n // 一点取得 更新はできないことに注意\n inline T operator[](int k){\n return sum(k) - sum(k-1);\n }\n\n // data[k] += x;\n void add(int k, T x) {\n for(++k; k < N; k += k & -k) data[k] += x;\n }\n\n // imos法 [l,r]にxを加算\n void imos(int l,int r,T x){\n add(l , x); add(r + 1 , -x);\n }\n\n // lower_bound sum(i)がval以上となる最小のi\n int lower_bound(T w){\n if(w <= 0) return 0;\n int x = 0;\n for(int k = max_2beki; k > 0; k /= 2){\n if(x+k <= N - 1 && data[x + k] < w){\n w -= data[x + k];\n x += k;\n }\n }\n return x;\n }\n\n // upper_bound sum(i)がvalより大きくなる最小のi\n int upper_bound(T w){\n if(w < 0) return 0;\n int x = 0;\n for(int k = max_2beki; k > 0; k /= 2){\n if(x+k <= N - 1 && data[x + k] <= w){\n w -= data[x + k];\n x += k;\n }\n }\n return x;\n }\n\n};\n\nvoid solve(){\n ins(T,S);ini(K);\n int N = sz(S) , M = sz(T);\n int offset = N + 1;\n S += \"&\";\n S += T;\n SuffixArray sa(S);\n LCPArray lcp(sa);\n //lcp.output();\n StringSearch search(lcp);\n vi left(sz(S) + 1, -1) , right(sz(S) + 1 , -1);\n {\n int cur = -1;\n rep(i,sz(S) + 1){\n left[i] = cur;\n if(sa.sa[i] <= N) cur = i;\n }\n }\n trc(left);\n {\n int cur = -1;\n repr(i,sz(S) + 1){\n right[i] = cur;\n if(sa.sa[i] <= N) cur = i;\n }\n }\n trc(right);\n BIT<int> bit(M + 3);\n vvi g(M + 1);\n for(int i=N+1;i<sz(S);i++){\n trc(left[lcp.rank[i]] , lcp.rank[i] , right[lcp.rank[i]]);\n int len = max(\n (left[lcp.rank[i]]!=-1? \n search.ArbitaryLCP(sa.sa[left[lcp.rank[i]]],i): 0) ,\n (right[lcp.rank[i]]!=-1? \n search.ArbitaryLCP(i,sa.sa[right[lcp.rank[i]]]): 0)\n );\n trc(len);\n if(len >= K){\n trc(i + K , i + len - 1);\n g[i-offset].pb(i-offset+K);\n if(K<=len-1) bit.imos( i-offset + K , i-offset + len - 1 , 1);\n }\n }\n rep(i,M){\n if(bit.sum(i)) g[i].pb(i + 1);\n }\n each(x,g) trc(x);\n vi ans(sz(T) + 1 , 0); ans[0] = 1;\n rep(i,sz(T)){\n if(ans[i] == 0) continue;\n each(x , g[i]) ans[x] = 1;\n }\n trc(ans);\n out(ans[sz(T)] ? \"Yes\" : \"No\");\n\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 63600, "score_of_the_acc": -1.2609, "final_rank": 15 }, { "submission_id": "aoj_3112_3882057", "code_snippet": "#include <iostream>\n#include <string>\n#include <algorithm>\n#include <vector>\n#include <utility>\n#define llint long long\n#define mod 1000000007\n#define inf 1e9\n\nusing namespace std;\ntypedef pair<llint, llint> P;\n\nstruct SegTree{\n\tint size;\n\tvector<int> seg;\n\n\tSegTree(){}\n\tSegTree(int size){\n\t\tthis->size = size;\n\t\tseg.resize(1<<(size+1));\n\t}\n\n\tvoid init()\n\t{\n\t\tfor(int i = 0; i < (1<<(size+1)); i++) seg[i] = inf;\n\t}\n\n\tvoid update(int i, int val)\n\t{\n\t\ti += (1 << size);\n\t\tseg[i] = val;\n\t\twhile(i > 1){\n\t\t\ti /= 2;\n\t\t\tseg[i] = min(seg[i*2], seg[i*2+1]);\n\t\t}\n\t}\n\n\tint query(int a, int b, int k, int l, int r)\n\t{\n\t\tif(b < l || r < a) return inf;\n\t\tif(a <= l && r <= b) return seg[k];\n\t\tint lval = query(a, b, k*2, l, (l+r)/2);\n\t\tint rval = query(a, b, k*2+1, (l+r)/2+1, r);\n\t\treturn min(lval, rval);\n\t}\n\tint query(int a, int b)\n\t{\n\t\treturn query(a, b, 1, 0, (1<<size)-1);\n\t}\n};\n\nint kk, nn;\nint Rank[400005];\nint tmp[400005];\n\nbool compare_sa(int i, int j)\n{\n\tif(Rank[i] != Rank[j]) return Rank[i] < Rank[j];\n\tint ri, rj;\n\tif(i+kk <= nn) ri = Rank[i+kk]; else ri = -1;\n\tif(j+kk <= nn) rj = Rank[j+kk]; else rj = -1;\n\treturn ri < rj;\n}\n\nvoid makeSA(string s, int sa[]){\n\tnn = s.size();\n\tfor(int i = 0; i <= nn; i++) sa[i] = i;\n\tfor(int i = 0; i < nn; i++) Rank[i] = s[i];\n\ts += \" \";\n\ts[nn] = -1;\n\n\tfor(kk = 1; kk <= nn; kk*=2){\n\t\tsort(sa, sa+nn+1, compare_sa);\n\t\tint val = 0;\n\t\ttmp[sa[0]] = 0;\n\t\tfor(int i = 1; i <= nn; i++){\n\t\t\tif(compare_sa(sa[i-1], sa[i])) val++;\n\t\t\ttmp[sa[i]] = val;\n\t\t}\n\t\tfor(int i = 0; i <= nn; i++) Rank[i] = tmp[i];\n\t}\n}\n\nvoid makeLCP(string s, int sa[], int lcp[]){\n\tnn = s.size();\n\tfor(int i = 0; i <= nn; i++) Rank[sa[i]] = i;\n\n\tint h = 0;\n\tlcp[0] = 0;\n\tfor(int i = 0; i < nn; i++){\n\t\tint j = sa[Rank[i]-1];\n\t\twhile(i+h < nn && j+h < nn && s[i+h] == s[j+h]) h++;\n\t\tlcp[Rank[i]-1] = h;\n\t\tif(h > 0) h--;\n\t}\n}\n\nstring s, t;\nint k;\nint sa[400005], lcp[400005], sa_inv[400005];\nint pred[400005], succ[400005];\nint dp[400005];\nSegTree seg(19);\n\nint main(void)\n{\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n cin >> s >> t;\n cin >> k;\n\n string S = s + \"#\" + t;\n makeSA(S, sa);\n makeLCP(S, sa, lcp);\n for(int i = 0; i <= S.size(); i++) sa_inv[sa[i]] = i;\n\n /*for(int i = 0; i <= S.size(); i++){\n cout << i << \" \" << S.substr(sa[i]) << \" \" << lcp[i] << endl;\n }*/\n\n int x = -1;\n for(int i = 0; i <= S.size(); i++){\n pred[i] = x;\n if(sa[i] > s.size()) x = i;\n }\n x = S.size()+1;\n for(int i = S.size(); i >= 0; i--){\n succ[i] = x;\n if(sa[i] > s.size()) x = i;\n }\n\n seg.init();\n for(int i = 0; i <= S.size(); i++) seg.update(i, lcp[i]);\n\n int n = s.size();\n s = \"#\" + s; int sum = 0;\n dp[0] = 1, dp[1] = -1;\n for(int i = 0; i <= n; i++){\n sum += dp[i];\n if(sum == 0) continue;\n int mx = 0, pos = sa_inv[i];\n if(pred[pos] >= 0){\n mx = max(mx, seg.query(pred[pos], pos-1));\n }\n if(succ[pos] <= S.size()){\n mx = max(mx, seg.query(pos, succ[pos]-1));\n }\n //cout << i << \" \" << pos << \" \" << pred[pos] << \" \" << succ[pos] << \" \" << mx << endl;\n if(mx < k) continue;\n dp[i+k]++, dp[i+mx+1]--;\n }\n if(sum) cout << \"Yes\" << endl;\n else cout << \"No\" << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 450, "memory_kb": 19140, "score_of_the_acc": -0.836, "final_rank": 11 }, { "submission_id": "aoj_3112_3881649", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <complex>\n#include <cstring>\n#include <deque>\n#include <functional>\n#include <iostream>\n#include <list>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n#include <cstdint>\nusing namespace std;\ntypedef long long ll;\n#define MP make_pair\n#define PB push_back\n#define inf 1000000007\n#define mod 1000000007\n#define rep(i,n) for(int i = 0; i < (int)(n); ++i)\nclass suffixarray{\npublic:\n int sz,index1,index2;\n vector<int> rnk,tmp,sa,lcp;\n string recs;\n suffixarray(string s){\n recs = s;\n sz = (int)s.size();\n rnk.resize(sz+1),tmp.resize(sz+1);\n make_sa();\n make_lcp();\n }\n void make_sa(){\n index1 = sz;\n sa.resize(index1+1);\n for(int i = 0; i < index1+1; i++){\n sa[i] = i;\n rnk[i] = i<index1?recs[i]:-1;\n }\n auto comp = [&](int i,int j){\n if(rnk[i] != rnk[j]){\n return rnk[i] < rnk[j];\n }else{\n int ri = (i+index2<=index1)?rnk[i+index2]:-1;\n int rj = (j+index2<=index1)?rnk[j+index2]:-1;\n return ri < rj;\n }\n };\n for(index2=1;index2<=index1;index2*=2){\n sort(sa.begin(),sa.end(),comp);\n tmp[sa[0]] = 0;\n for(int i=1;i<=index1;i++){\n tmp[sa[i]] = tmp[sa[i-1]]+(comp(sa[i-1],sa[i])?1:0);\n }\n for(int i = 0; i < index1+1; i++){\n rnk[i] = tmp[i];\n }\n }\n }\n void make_lcp(){\n lcp.resize(sz+1);\n for(int i = 0; i < sz+1; i++){\n rnk[sa[i]] = i;\n }\n int h = 0;\n lcp[0] = 0;\n for(int i = 0; i < sz; i++){\n int j = sa[rnk[i]-1];\n if(h > 0){\n h--;\n }\n for(;j+h<sz&&i+h<sz;h++){\n if(recs[j+h] != recs[i+h]){\n break;\n }\n }\n lcp[rnk[i]-1] = h;\n }\n }\n};\nint main(){\n string s,t;\n cin >> s >> t;\n int n = s.size();\n int m = t.size();\n int sz = s.size()+t.size()+1;\n string p = s + \"~\" + t;\n int a = s.size();\n int b = t.size();\n suffixarray SA(p);\n vector<int> sa = SA.sa;\n vector<int> lcp = SA.lcp;\n sz = sa.size();\n // rep(i,sz){\n // cerr << sa[i] << \" \" << lcp[i] << endl;\n // cerr << p[sa[i]] << endl;\n // }\n vector<int> flag(sz+100000);\n rep(i,sz){\n if(sa[i]>=a+1&&sa[i]<a+1+b){\n //cerr <<sa[i] << \" \" << p[sa[i]] << endl;\n flag[i] = true;\n }\n }\n vector<int> len(a+100000);\n int tmp = 0;\n rep(i,sz){\n if(flag[i]){\n tmp = lcp[i];\n }else{\n len[sa[i]] = max(len[sa[i]],tmp);\n tmp = min(tmp,lcp[i]);\n }\n }\n int k;\n cin >> k;\n \n tmp = 0;\n rep(i,sz){\n if(flag[sz-1-i]){\n if(sz-2-i<0)continue;\n tmp = lcp[sz-2-i];\n }else{\n len[sa[sz-1-i]] = max(len[sa[sz-1-i]],tmp);\n if(i!=sz-1)tmp = min(tmp,lcp[sz-2-i]);\n }\n }\n // rep(i,a){\n // cout << len[i] << endl;\n // }\n \n // if(k!=4&&k!=1){\n // cout << \"WA\" << endl;\n // return 0;\n // }\n vector<int> dp(a+100000);\n dp[a] = 1;\n vector<int> dp2(a+300000);\n dp2[a] = 1;\n \n for(int i=sz-1;i>=0;i--){\n dp2[i] += dp2[i+1];\n \n if(len[i]<k)continue;\n \n if(len[i]>=k){\n if(dp2[i+k]-dp2[i+len[i]+1]>0){\n dp[i] = 1;\n }\n // for(int j=i+k;j<=i+len[i];j++){\n // if(dp[j]){\n // dp[i] = true;\n // break;\n // }\n // }\n }\n dp2[i] += dp[i];\n }\n if(dp[0]){\n cout << \"Yes\" << endl;\n }else{\n cout << \"No\" << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 19504, "score_of_the_acc": -0.6397, "final_rank": 7 } ]
aoj_3110_cpp
D: Many Decimal Integers 問題 数字 ( 0 から 9 ) のみからなる文字列 S と、数字 と ? のみからなる文字列 T が与えられます。 S と T は同じ長さです。 T 内に存在するそれぞれの ? について、 0 から 9 までの数字のいずれか 1 つに変更し、数字のみからなる文字列 T' を作ることを考えます。このとき、 f(T') \leq f(S) である必要があります。ここで f(t) は、文字列 t を 10 進数として読んだときの整数値を返す関数とします。 また、 T' の最上位の桁にある数字は 0 であってもよいものとします。 あり得る文字列 T' すべてについて、 f(T') の値の総和を 10^9+7 で割った余りを求めてください。なお、条件を満たす T' がひとつも存在しない場合は 0 と答えてください。 入力形式 S T 制約 1 \leq |S| = |T| \leq 2 \times 10^5 S は数字 ( 0 から 9 ) のみからなる文字列 T は数字と ? のみからなる文字列 出力形式 条件を満たす T' の総和を 10^9+7 で割った余りを一行に出力してください。 入力例1 73 6? 出力例1 645 T' としてあり得る文字列は、 60 から 69 までの 10 通りあります。これらの合計は 645 です。 入力例2 42 ?1 出力例2 105 T' の最上位の桁にある数字は 0 でもよいため、 01 も条件を満たします。 入力例3 1730597319 16??35??8? 出力例3 502295105 10^9 + 7 で割った余りを求めてください。
[ { "submission_id": "aoj_3110_9805499", "code_snippet": "#include <iostream>\n#include <vector>\n#include <string>\n#include <algorithm>\n#include <random>\n#include <cassert>\n#include <bitset>\n#include <numeric>\n#include <queue>\n#include <unordered_map>\n#include <climits>\n#include <array>\n#include <memory>\n#include <iomanip>\n\n\n\nconstexpr int MOD = 1'000'000'007;\n\nlong long int powMod(long long int base, long long int exp) {\n\tlong long int result{ 1 };\n\tbase %= MOD;\n\twhile (exp > 0) {\n\t\tif (exp & 1) {\n\t\t\tresult = result * base % MOD;\n\t\t}\n\t\tbase = base * base % MOD;\n\t\texp >>= 1;\n\t}\n\treturn result;\n}\nlong long int solve(const std::string s, const std::string t) {\n\tconst int n = s.size();\n\tstd::vector<long long int> counts(n + 1, 1), sums(n + 1, 0);\n\tfor (long long int digit{ 1 }, i = 1; i <= n; ++i, digit = digit * 10 % MOD) {\n\t\tswitch (t[n - i]) {\n\t\tcase '?':\n\t\t{\n\t\t\tcounts[n - i] = counts[n - i + 1] * 10 % MOD;\n\t\t\tsums[n - i] = (sums[n - i + 1] * 10 + 45 * digit % MOD * counts[n - i + 1]) % MOD;\n\t\t\tbreak;\n\t\t}\n\t\tdefault:\n\t\t{\n\t\t\tcounts[n - i] = counts[n - i + 1];\n\t\t\tsums[n - i] = (sums[n - i + 1] + (t[n - i] - '0') * digit % MOD * counts[n - i + 1]) % MOD;\n\t\t\tbreak;\n\t\t}\n\t\t}\n\t}\n\tlong long int result{ 0 };\n\tlong long int just{ 0 };\n\tint justCount{ 1 };\n\tfor (auto i = 0; i < n; ++i) {\n\t\tconst auto digit{ powMod(10, n - i - 1) };\n\t\tif (t[i] == '?')\n\t\t{\n\t\t\tfor (auto d = 0; d < s[i] - '0'; ++d) {\n\t\t\t\tresult = (result + (d * digit + just) % MOD * counts[i + 1] + sums[i + 1]) % MOD;\n\t\t\t}\n\t\t}\n\t\telse if (s[i] > t[i]) {\n\t\t\tresult = ((result + ((t[i] - '0') * digit + just) % MOD * counts[i + 1])+ sums[i + 1]) % MOD;\n\t\t}\n\t\tif (t[i] != '?' && s[i] != t[i]) {\n\t\t\tjustCount = 0;\n\t\t\tbreak;\n\t\t}\n\t\tjust = (just + (s[i] - '0') * digit) % MOD;\n\t}\n\treturn (result + just * justCount) % MOD;\n}\n\nint main() {\n\tstd::string s, t;\n\tstd::cin >> s >> t;\n\tconst auto result{ solve(s, t) };\n\tstd::cout << result << '\\n';\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 7040, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3110_8313882", "code_snippet": "#include <bits/stdc++.h>\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\n\n#include <utility>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nconstexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n\nstruct barrett {\n unsigned int _m;\n unsigned long long im;\n\n explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n\n unsigned int umod() const { return _m; }\n\n unsigned int mul(unsigned int a, unsigned int b) const {\n\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned long long y = x * _m;\n return (unsigned int)(z - y + (z < y ? _m : 0));\n }\n};\n\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr long long bases[3] = {2, 7, 61};\n for (long long a : bases) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n}\ntemplate <int n> constexpr bool is_prime = is_prime_constexpr(n);\n\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\nunsigned long long floor_sum_unsigned(unsigned long long n,\n unsigned long long m,\n unsigned long long a,\n unsigned long long b) {\n unsigned long long ans = 0;\n while (true) {\n if (a >= m) {\n ans += n * (n - 1) / 2 * (a / m);\n a %= m;\n }\n if (b >= m) {\n ans += n * (b / m);\n b %= m;\n }\n\n unsigned long long y_max = a * n + b;\n if (y_max < m) break;\n n = (unsigned long long)(y_max / m);\n b = (unsigned long long)(y_max % m);\n std::swap(m, a);\n }\n return ans;\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n\nnamespace internal {\n\n#ifndef _MSC_VER\ntemplate <class T>\nusing is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n\ntemplate <class T>\nusing is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n\n#else\n\ntemplate <class T> using is_integral = typename std::is_integral<T>;\n\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n\n#endif\n\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n\ntemplate <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n\n} // namespace internal\n\n} // namespace atcoder\n\n\nnamespace atcoder {\n\nnamespace internal {\n\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\n\ntemplate <class T> using is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n\n} // namespace internal\n\ntemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n\n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\n\ntemplate <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id> internal::barrett dynamic_modint<id>::bt(998244353);\n\nusing modint998244353 = static_modint<998244353>;\nusing modint1000000007 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\n\nnamespace internal {\n\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n\ntemplate <class> struct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n\n} // namespace internal\n\n} // namespace atcoder\n\n\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing mint = atcoder::modint1000000007;\nusing Pair = pair<int, int>;\nusing Tuple = tuple<int, int, int>;\nusing VI1 = vector<int>;\nusing VI2 = vector<VI1>;\nusing VL1 = vector<ll>;\nusing VL2 = vector<VL1>;\nusing VD1 = vector<ld>;\nusing VD2 = vector<VD1>;\nusing VB1 = vector<bool>;\nusing VB2 = vector<VB1>;\nusing VP1 = vector<Pair>;\nusing VP2 = vector<VP1>;\nusing VT1 = vector<Tuple>;\nusing VT2 = vector<VT1>;\nusing VM1 = vector<mint>;\nusing VM2 = vector<VM1>;\nusing VM3 = vector<VM2>;\nusing Queue = queue<int>;\nusing DQ = deque<int>;\nusing PQ = priority_queue<int, vector<int>, greater<int>>;\nusing Table = VI2;\nusing Graph = VI2;\n\n/** io */\ntemplate <typename T>\nstd::vector<T> input_vec(int N);\ntemplate <typename T>\nvoid output_row(std::vector<T> &row);\ntemplate <typename T>\nvoid output_col(std::vector<T> &col);\nvoid outputYesNo(bool yes, const string &Yes = \"Yes\", const string &No = \"No\");\n/** minmax */\ntemplate <typename T>\nbool chmin(T &a, T b);\ntemplate <typename T>\nbool chmax(T &a, T b);\n\nvoid add(VM3 &dp, int i, int si, int ti) {\n dp[i + 1][0][1] += dp[i][0][1];\n dp[i + 1][1][1] += dp[i][1][1] * 10 + ti * dp[i][0][1];\n if (si > ti) {\n dp[i + 1][0][1] += dp[i][0][0];\n dp[i + 1][1][1] += dp[i][1][0] * 10 + ti * dp[i][0][0];\n } else if (si == ti) {\n dp[i + 1][0][0] += dp[i][0][0];\n dp[i + 1][1][0] += dp[i][1][0] * 10 + ti * dp[i][0][0];\n }\n}\n\nauto solve() {\n string S, T;\n cin >> S >> T;\n int N = S.size();\n VM3 dp(N + 1, VM2(2, VM1(2, 0)));\n dp[0][0][0] = 1;\n for (int i = 0; i < N; ++i) {\n int si = S.at(i) - '0';\n auto Ti = T.at(i);\n if (Ti == '?') {\n for (int ti = 0; ti < 10; ++ti) {\n add(dp, i, si, ti);\n }\n } else {\n add(dp, i, si, Ti - '0');\n }\n }\n return (dp[N][1][0] + dp[N][1][1]).val();\n}\n\nint main() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n int t = 1;\n // cin >> t;\n while (t--) {\n auto result = solve();\n cout << result << '\\n';\n // output_row(result);\n // output_col(result);\n // outputYesNo(result, \"Yes\", \"No\");\n }\n}\n\n/** @note 使用頻度が高く毎回貼付するのが面倒なライブラリを実装しておく。*/\n\ntemplate <typename T>\nstd::vector<T> input_vec(int N) {\n std::vector<T> v(N);\n for (auto &vi : v) {\n cin >> vi;\n }\n return v;\n}\n\nvoid outputYesNo(bool yes, const string &Yes, const string &No) {\n if (yes)\n cout << Yes << '\\n';\n else\n cout << No << '\\n';\n}\n\ntemplate <typename T>\nvoid output_row(std::vector<T> &row) {\n int N = row.size();\n for (int i = 0; i < N; ++i) {\n if (i > 0) cout << ' ';\n cout << row.at(i);\n }\n cout << '\\n';\n}\n\ntemplate <typename T>\nvoid output_col(std::vector<T> &col) {\n int N = col.size();\n for (int i = 0; i < N; ++i) {\n cout << col.at(i) << '\\n';\n }\n}\n\ntemplate <typename T>\nbool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <typename T>\nbool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 33052, "score_of_the_acc": -0.9798, "final_rank": 14 }, { "submission_id": "aoj_3110_8028998", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nconstexpr long long mod = 1000000007;\n\nstruct Data {\n ll n = -1;\n ll sum = -1;\n Data() = default;\n Data(ll n, ll sum) : n(n), sum(sum) {}\n};\n\nData operator+(const Data& lhs, const Data& rhs) {\n return Data((lhs.n + rhs.n) % mod, (lhs.sum + rhs.sum) % mod);\n}\n\nbool operator==(const Data& lhs, const Data& rhs) {\n return (lhs.n == rhs.n) && (lhs.sum == rhs.sum);\n}\n\nbool operator!=(const Data& lhs, const Data& rhs) {\n return !(lhs == rhs);\n}\n\n\nint main() {\n string S, T;\n cin >> S >> T;\n\n vector<vector<Data>> memo(S.size(), vector<Data>(2));\n vector<ll> p10(S.size() + 1, 1);\n for (int i = 0; i < (int)S.size(); i++) {\n p10[i + 1] = p10[i] * 10 % mod;\n }\n\n vector<char> term(10);\n iota(term.begin(), term.end(), '0');\n Data init;\n\n auto solve = [&](auto solve, int i, bool smaller = false) -> Data {\n if (i == (int)S.size()) return Data(1, 0);\n if (memo[i][smaller] != init) return memo[i][smaller];\n \n Data res(0, 0);\n if (smaller) {\n for (char c: term) {\n if (T[i] == '?' || T[i] == c) {\n Data now = solve(solve, i + 1, smaller);\n res = res + now;\n res.sum += now.n * (c - '0') % mod * p10[S.size() - i - 1] % mod;\n res.sum %= mod;\n }\n }\n } else {\n for (char c: term) {\n if (c > S[i]) continue;\n if (T[i] != '?' && T[i] != c) continue;\n Data now;\n if (c == S[i]) {\n now = solve(solve, i + 1);\n } else {\n now = solve(solve, i + 1, true);\n }\n res = res + now;\n res.sum += now.n * (c - '0') % mod * p10[S.size() - i - 1] % mod;\n res.sum %= mod;\n }\n }\n\n return memo[i][smaller] = res;\n };\n\n cout << solve(solve, 0).sum << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 47276, "score_of_the_acc": -1.6667, "final_rank": 18 }, { "submission_id": "aoj_3110_8027783", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nconst ll MOD = (ll)1e9+7;\nconst int MAX_N = (ll)2e5+10;\n\nll modpow(ll a, ll exp){\n ll res = 1, x = a;\n for(; exp > 0; exp >>= 1){\n if(exp & 1) res = res * x % MOD;\n x = x * x % MOD;\n }\n return res;\n}\n\nint main(){\n string s, t; cin >> s >> t;\n \n int N = s.size(), M = t.size();\n string tmps = \"\";\n for(int i = 0; i < M - N; i++) tmps += '0';\n s = tmps + s;\n string tmpt = \"\";\n for(int i = 0; i < N - M; i++) tmpt += '0';\n t = tmpt + t;\n\n N = max(N, M);\n //cerr << tmps << endl;\n //cerr << tmpt << endl;\n //cerr << s << t << endl;\n assert(s.size() == t.size() && (int)t.size() == N);\n\n\n vector<ll> p10(MAX_N), inv(11);\n p10[0] = 1;\n for(int i = 1; i < MAX_N; i++){\n p10[i] = p10[i - 1] * 10 % MOD;\n }\n for(int i = 1; i <= 10; i++) inv[i] = modpow(i, MOD - 2);\n\n for (int i = 1 ; i <= 10 ; i++) assert((i * inv[i]) % MOD == 1);\n\n vector<ll> hatena(N + 1);\n for(int i = N; i > 0; i--){\n hatena[i - 1] = hatena[i] + (t[i - 1] == '?');\n }\n\n vector<ll> sum(N + 1);\n for(int i = 0; i < N; i++){\n if(t[i] != '?') sum[0] = (sum[0] + ((t[i] - '0') * p10[N - i - 1])) % MOD;\n }\n for(int i = 1; i <= N; i++){\n if(t[i - 1] == '?') sum[i] = (sum[i - 1] + ll(s[i - 1] - '0') * p10[N - i]) % MOD;\n else sum[i] = sum[i - 1];\n }\n\n vector<ll> sum2(N + 1);\n for(int i = N - 2; i >= 0; i--){\n ll val = 0;\n if(t[i + 1] == '?'){\n val = 45 * p10[N - i - 2] % MOD;\n val = val * inv[10] % MOD; \n }\n sum2[i] = (sum2[i + 1] + val) % MOD;\n }\n\n //for(int i = 0; i <= N; i++) cout << sum[i] << \" \" << sum2[i] << endl;\n\n\n ll ans = 0;\n bool flag = 0;\n // i [0, N)\n for(int i = 0; i < N; i++){\n if(t[i] != '?' && s[i] < t[i]){\n flag = 1;\n break;\n }\n if(s[i] == t[i] || s[i] == '0') continue;\n\n ll tori = (t[i] == '?') ? (s[i] - '0') : 1;\n tori = tori * p10[hatena[i + 1]] % MOD;\n //cerr << \"?\" << hatena[i + 1] << endl;\n ll val1 = sum[i];\n ll val2 = sum2[i];\n //cerr << tori << endl;\n ll val2_2 = 0;\n if(t[i] == '?'){\n val2_2 = (ll(s[i]-'0') * ll(s[i]-'0'-1)) / 2 * p10[N - i - 1] % MOD;\n val2_2 = val2_2 * inv[s[i] - '0'] % MOD;\n }\n //cerr << val2_2 << \" v2\" << endl;\n val2 = (val2 + val2_2) % MOD;\n\n ans = (ans + tori * val1) % MOD;\n //cout << ans << \" hi\" << endl;\n ans = (ans + tori * val2) % MOD;\n //cout << ans << \" foo\" << endl;\n //cerr << val1 << \" \" << val2 << \" \" << ans << endl;\n if(t[i] != '?' && s[i] > t[i]){\n flag = 1;\n break;\n }\n //cerr << val1 << \" \" << val2 << \" \" << ans << endl;\n //cout << ans << endl;\n }\n if(flag == 0)for(int i = 0; i < N; i++){\n ans = (ans + (s[i] - '0') * p10[N - i - 1]) % MOD;\n }\n \n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 9640, "score_of_the_acc": -0.0646, "final_rank": 3 }, { "submission_id": "aoj_3110_8027460", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(n);i++)\n\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod=1000000007;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,-1,0};\n\ntemplate <typename T, T MOD = 1000000007>\nstruct Mint {\n inline static constexpr T mod = MOD;\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n static Mint add_identity(){return Mint(0);}\n static Mint mul_identity(){return Mint(1);}\n\n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n\n Mint operator+(Mint a) const{return Mint(v)+=a;}\n Mint operator-(Mint a) const{return Mint(v)-=a;}\n Mint operator*(Mint a) const{return Mint(v)*=a;}\n Mint operator*(int a) const{return Mint(v)*=Mint(a);}\n\n Mint operator+() const{return *this;}\n Mint operator-() const{return v?Mint(MOD-v):Mint(v);}\n\n friend Mint operator*(int lhs, Mint rhs) {\n return Mint(lhs)*rhs;\n }\n};\n\ntemplate<typename T, T MOD>\nostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}\n\nusing mint = Mint<int>;\n\nint main() {\n string s,t;\n cin>>s>>t;\n int n = s.size();\n vector<vector<mint>> dp(n+1,vector<mint>(2));\n vector<vector<mint>> A(n+1,vector<mint>(2));\n A[0][1] = 1;\n vector<mint> sum(11);\n rep(i,10){\n sum[i+1] = sum[i]+i+1;\n //cout<<sum[i+1]<<\" \";\n }\n //cout<<endl;\n\n for(int i = 0; i<n; i++){\n if(t[i] == '?'){\n dp[i+1][1] = (dp[i][1] *10 + (int)(s[i]-'0')*A[i][1]);\n dp[i+1][0] = ((dp[i][0]*10*10) + (45*A[i][0]));\n dp[i+1][0] = (dp[i+1][0] + (dp[i][1]*10 * (max(0,(int)(s[i]-'0')))) \n + (A[i][1]*(sum[max(0,((int)(s[i]-'0')-1))])));\n\n A[i+1][1] = A[i][1];\n A[i+1][0] = (A[i][0]*10 + A[i][1]*(max((int)(s[i]-'0'),0)));\n }else{\n if(s[i] == t[i]){\n dp[i+1][1] = (dp[i][1]*10+((int)(s[i]-'0')*A[i][1]));\n dp[i+1][0] = ((dp[i][0]*10)+(((int)(s[i]-'0')*A[i][0])));\n\n A[i+1][1] = A[i][1];\n A[i+1][0] = A[i][0];\n }else if(s[i] < t[i]){\n dp[i+1][1] = 0;\n dp[i+1][0] = ((dp[i][0]*10) + (((int)(t[i]-'0')*A[i][0])));\n\n A[i+1][1] = 0;\n A[i+1][0] = A[i][0];\n }else{\n dp[i+1][1] = 0;\n dp[i+1][0] = ((dp[i][0]*10)+(((int)(t[i] -'0') * A[i][0])));\n dp[i+1][0] = (dp[i+1][0] + ((dp[i][1]*10 + (int)(t[i]-'0')*A[i][1])));\n\n A[i+1][1] = 0;\n A[i+1][0] = (A[i][0] + A[i][1]);\n }\n }\n // cout<<dp[i+1][0]<<\" \"<<dp[i+1][1]<<\" \"<<A[i+1][0]<<\" \"<<A[i+1][1]<<endl;\n }\n cout<<(dp[n][1]+dp[n][0])<<endl;\n\n\n\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 25376, "score_of_the_acc": -0.789, "final_rank": 13 }, { "submission_id": "aoj_3110_8027270", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nusing ll = long long;\nconst ll MOD = 1e9 + 7;\n\nll func(){\n string s;\n string t;\n cin >> s >> t;\n int n = s.size();\n vector<ll> pow10(1,1);\n for(int i=0;i<n-1;++i){\n ll add = pow10.back() * 10 % MOD;\n pow10.push_back(add);\n }\n\n reverse(pow10.begin(),pow10.end());\n\n using P = pair<ll,ll>;\n vector<vector<P>> dp(2,vector<P>(n,P(-1,-1)));\n auto rec = [&](auto rec, int p,bool touch) -> P{\n if(p == n)return P(1,0);\n auto &it = dp[touch][p];\n if(it.first >= 0)return it;\n it = P(0,0);\n for(int i=0;i<10;++i){\n int c = i + '0';\n if(t[p] != '?' and t[p] != c)continue;\n if(touch and s[p] < c)break;\n int ntouch = touch and s[p] == c;\n P tmp = rec(rec, p + 1, ntouch);\n it.second += pow10[p] * i % MOD * tmp.first;\n it.second += tmp.second;\n it.second %= MOD;\n it.first += tmp.first;\n it.first %= MOD;\n }\n return it;\n };\n return rec(rec, 0, true).second;\n}\n\nint main(){\n cout << func() << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 36332, "score_of_the_acc": -1.0613, "final_rank": 15 }, { "submission_id": "aoj_3110_4697520", "code_snippet": "#include<iostream>\n#include<algorithm>\n#include<vector>\n#include<string>\n#include<utility>\n#include<map>\n#include<set>\n#include<queue>\n#include<stack>\n#include<functional>\n#include<math.h>\n#include<random>\n#include <bitset>\nusing namespace std;\n#define N (1000000000+7)\n//#define N 998244353\n#define INF 1e16\ntypedef long long ll;\ntypedef pair<int,int> P;\ntypedef pair<int,P> Q;\n\nconst int inf = (int)1e9; \n\nll gcd(ll a, ll b) {\n\tif (b > a) {\n\t\tll tmp = b;\n\t\tb = a;\n\t\ta = tmp;\n\t}\n\tif (a%b == 0)return b;\n\telse return gcd(b, a%b);\n}\n\nll dp[200010][2][2];\n\nll ten[200010];\n\nint main(void){\n\tstring S,T;\n\tcin>>S>>T;\n\tll n = S.length();\n\tdp[0][1][0]=1;\n\tdp[0][0][0]=0;\n\tten[0]=1;\n\tfor(ll i=0;i<=200000;i++){\n\t\tten[i+1] = (10*ten[i])%N;\n\t}\n\tfor(ll i=0;i<n;i++){\n\t\tif(T[i]=='?'){\n\t\t\tll x = S[i]-'0';\n\t\t\tll s = x*(x-1)/2;\n\t\t\tdp[i+1][1][0] = dp[i][1][0];\n\t\t\tdp[i+1][0][0] = ((dp[i][1][0]*x)%N+(dp[i][0][0])*10)%N;\n\t\t\tdp[i+1][1][1] = dp[i][1][1] + (x*((dp[i+1][1][0]*ten[n-i-1])%N))%N;\n\t\t\tdp[i+1][1][1] = dp[i+1][1][1]%N;\n\t\t\tdp[i+1][0][1] = (dp[i][0][1]*10)%N+(45*((ten[n-i-1]*dp[i][0][0])%N))%N;\n\t\t\tdp[i+1][0][1] = dp[i+1][0][1]%N;\n\t\t\tdp[i+1][0][1] = dp[i+1][0][1]+ (dp[i][1][1]*x)%N+(((s*ten[n-i-1])%N)*(dp[i][1][0]))%N;\n\t\t\tdp[i+1][0][1] = dp[i+1][0][1]%N;\n\t\t}\n\t\telse{\n\t\t\tif(S[i]==T[i]){\n\t\t\t\tll x = T[i]-'0';\n\t\t\t\tdp[i+1][1][0] = dp[i][1][0];\n\t\t\t\tdp[i+1][0][0] = dp[i][0][0];\n\t\t\t\tdp[i+1][1][1] = dp[i][1][1] + (((x*ten[n-i-1])%N)*dp[i][1][0])%N;\n\t\t\t\tdp[i+1][0][1] = dp[i][0][1] + (((x*ten[n-i-1])%N)*dp[i][0][0])%N;\n\t\t\t\tdp[i+1][1][1] = dp[i+1][1][1]%N;\n\t\t\t\tdp[i+1][0][1] = dp[i+1][0][1]%N;\n\t\t\t}\n\t\t\telse{\n\t\t\t\tif(S[i]<T[i]){\n\t\t\t\t\tll x = T[i]-'0';\n\t\t\t\t\tdp[i+1][0][0] = dp[i][0][0];\n\t\t\t\t\tdp[i+1][0][1] = dp[i][0][1]+(((x*ten[n-i-1])%N)*dp[i+1][0][0])%N;\n\t\t\t\t\tdp[i+1][0][1] = dp[i+1][0][1]%N;\n\t\t\t\t}\n\t\t\t\telse{\n\t\t\t\t\tll x = T[i]-'0';\n\t\t\t\t\tdp[i+1][0][0] = (dp[i][0][0]+dp[i][1][0])%N;\n\t\t\t\t\tdp[i+1][0][1] = (dp[i][0][1]+dp[i][1][1])%N+(((x*ten[n-i-1])%N)*dp[i+1][0][0])%N;\n\t\t\t\t\tdp[i+1][0][1] = dp[i+1][0][1]%N;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t//cout<<dp[3][0][0]<<endl;\n\tcout<<(dp[n][0][1]+dp[n][1][1])%N<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 11100, "score_of_the_acc": -0.1009, "final_rank": 8 }, { "submission_id": "aoj_3110_4696676", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }\nusing ll = long long;\nusing P = pair<ll, ll>;\nconst long double PI = acos(-1.0L);\nll GCD(ll a, ll b) { return b?GCD(b, a%b):a; }\nll LCM(ll a, ll b) { return a/GCD(a, b)*b; }\n\n// auto mod int\nconst int mod = 1000000007;\n// const int mod = 998244353;\nstruct mint {\n ll x; // typedef long long ll;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}\n mint operator+(const mint a) const { return mint(*this) += a;}\n mint operator-(const mint a) const { return mint(*this) -= a;}\n mint operator*(const mint a) const { return mint(*this) *= a;}\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n\n // for prime mod\n mint inv() const { return pow(mod-2);}\n mint& operator/=(const mint a) { return *this *= a.inv();}\n mint operator/(const mint a) const { return mint(*this) /= a;}\n};\nistream& operator>>(istream& is, mint& a) { return is >> a.x;}\nostream& operator<<(ostream& os, const mint& a) { return os << a.x;}\n\nstring s, t;\n// dp[上から何桁目][未満フラグ]\nmint dp[200200][2]; // 求めたい答え\nmint num[200200][2]; // 組み合わせの数\n\nint main() {\n cin >> s >> t;\n int slen = s.length();\n memset(dp, 0, sizeof(dp));\n memset(num, 0, sizeof(num));\n num[0][1] = 1;\n\n for(int i = 0; i < slen; ++i) {\n int sch = s[i] - '0';\n if(t[i] == '?') {\n // tが?だったとき\n // 未満の時、未満→未満\n for(int d = 0; d <= 9; ++d) {\n dp[i+1][0] += (dp[i][0]*(mint)10 + (mint)d*num[i][0]);\n num[i+1][0] += num[i][0];\n }\n\n // 一致しているとき、一致→一致or一致→未満\n for(int d = 0; d < sch; ++d) {\n dp[i+1][0] += (dp[i][1]*(mint)10 + (mint)d*num[i][1]);\n num[i+1][0] += num[i][1];\n }\n dp[i+1][1] += (dp[i][1]*(mint)10 + (mint)sch*num[i][1]);\n num[i+1][1] += num[i][1];\n \n }else {\n int tch = t[i] - '0';\n // 未満の時、未満→未満、tchが何であっても処理は一緒\n dp[i+1][0] += (dp[i][0]*(mint)10 + (mint)tch*num[i][0]);\n num[i+1][0] += num[i][0];\n\n // 一致しているとき、一致→一致or一致→未満\n if(tch == sch) {\n dp[i+1][1] += (dp[i][1]*(mint)10 + (mint)tch*num[i][1]);\n num[i+1][1] += num[i][1];\n }else if(tch < sch) {\n dp[i+1][0] += (dp[i][1]*(mint)10 + (mint)tch*num[i][1]);\n num[i+1][0] += num[i][1];\n }\n }\n }\n mint ans = dp[slen][0] + dp[slen][1];\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 9852, "score_of_the_acc": -0.4032, "final_rank": 11 }, { "submission_id": "aoj_3110_4691841", "code_snippet": "#include <bits/stdc++.h>\n#define MOD (long long)(1e9 + 7)\nusing namespace std;\n\nlong long ssize = 0;\nlong long dp[200005][2] = {0}, sum[200005][2] = {0};\nstring s, t;\n\nlong long solve();\n\nint main() {\n cin >> s >> t;\n cout << solve() << endl;\n return 0;\n}\n\nlong long solve() {\n ssize = s.size();\n dp[0][0] = 1;\n for(int i = 0; i < ssize; ++i) {\n int nums = s[i] - '0', numt = t[i] - '0';\n if(t[i] != '?') {\n if(nums == numt) {\n (dp[i + 1][1] += dp[i][1]) %= MOD;\n (dp[i + 1][0] += dp[i][0]) %= MOD;\n\n sum[i + 1][1] +=\n (sum[i][1] * 10 % MOD + dp[i][1] * numt % MOD) %\n MOD;\n sum[i + 1][1] %= MOD;\n sum[i + 1][0] +=\n (sum[i][0] * 10 % MOD + dp[i][0] * numt % MOD) %\n MOD;\n sum[i + 1][0] %= MOD;\n }\n else if(nums < numt) {\n dp[i + 1][1] += dp[i][1];\n dp[i + 1][1] %= MOD;\n\n sum[i + 1][1] +=\n (sum[i][1] * 10 % MOD + dp[i][1] * numt % MOD) %\n MOD;\n sum[i + 1][1] %= MOD;\n }\n else {\n dp[i + 1][1] += dp[i][1];\n (dp[i + 1][1] += dp[i][0]) %= MOD;\n\n sum[i + 1][1] +=\n (sum[i][1] * 10 % MOD + dp[i][1] * numt % MOD) %\n MOD;\n sum[i + 1][1] %= MOD;\n sum[i + 1][1] +=\n (sum[i][0] * 10 % MOD + dp[i][0] * numt % MOD) %\n MOD;\n sum[i + 1][1] %= MOD;\n }\n }\n else {\n for(int k = 0; k < 10; ++k) {\n numt = k;\n if(nums == numt) {\n (dp[i + 1][1] += dp[i][1]) %= MOD;\n (dp[i + 1][0] += dp[i][0]) %= MOD;\n\n sum[i + 1][1] += (sum[i][1] * 10 % MOD +\n dp[i][1] * numt % MOD) %\n MOD;\n sum[i + 1][1] %= MOD;\n sum[i + 1][0] += (sum[i][0] * 10 % MOD +\n dp[i][0] * numt % MOD) %\n MOD;\n sum[i + 1][0] %= MOD;\n }\n else if(nums < numt) {\n dp[i + 1][1] += dp[i][1];\n dp[i + 1][1] %= MOD;\n\n sum[i + 1][1] += (sum[i][1] * 10 % MOD +\n dp[i][1] * numt % MOD) %\n MOD;\n sum[i + 1][1] %= MOD;\n }\n else {\n dp[i + 1][1] += dp[i][1];\n (dp[i + 1][1] += dp[i][0]) %= MOD;\n\n sum[i + 1][1] += (sum[i][1] * 10 % MOD +\n dp[i][1] * numt % MOD) %\n MOD;\n sum[i + 1][1] %= MOD;\n sum[i + 1][1] += (sum[i][0] * 10 % MOD +\n dp[i][0] * numt % MOD) %\n MOD;\n sum[i + 1][1] %= MOD;\n }\n }\n }\n }\n\n return (sum[ssize][1] + sum[ssize][0]) % MOD;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 9612, "score_of_the_acc": -0.0639, "final_rank": 2 }, { "submission_id": "aoj_3110_4393325", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(ll i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 510000;\nll dy[8] = {0,1,0,-1,1,-1,1,-1};\nll dx[8] = {1,0,-1,0,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){cout << a << \" \" << b << \"\\n\";}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\ntemplate <std::uint_fast64_t Modulus> class modint {\n using u64 = std::uint_fast64_t;\n\npublic:\n u64 a;\n\n constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}\n constexpr u64 &value() noexcept { return a; }\n constexpr const u64 &value() const noexcept { return a; }\n constexpr modint operator+(const modint rhs) const noexcept {\n\treturn modint(*this) += rhs;\n }\n constexpr modint operator-(const modint rhs) const noexcept {\n\treturn modint(*this) -= rhs;\n }\n constexpr modint operator*(const modint rhs) const noexcept {\n\treturn modint(*this) *= rhs;\n }\n constexpr modint operator/(const modint rhs) const noexcept {\n\treturn modint(*this) /= rhs;\n }\n constexpr modint &operator+=(const modint rhs) noexcept {\n\ta += rhs.a;\n\tif (a >= Modulus) {\n\t a -= Modulus;\n\t}\n\treturn *this;\n }\n constexpr modint &operator-=(const modint rhs) noexcept {\n\tif (a < rhs.a) {\n\t a += Modulus;\n\t}\n\ta -= rhs.a;\n\treturn *this;\n }\n constexpr modint &operator*=(const modint rhs) noexcept {\n\ta = a * rhs.a % Modulus;\n\treturn *this;\n }\n constexpr modint &operator/=(modint rhs) noexcept {\n\tu64 exp = Modulus - 2;\n\twhile (exp) {\n\t if (exp % 2) {\n\t\t*this *= rhs;\n\t }\n\t rhs *= rhs;\n\t exp /= 2;\n\t}\n\treturn *this;\n }\n};\n\nusing mint = modint<mod>;\n\nmint dp[202020][2];\nmint ep[202020][2];\n\nint main(){\n\tstring s,t; cin >> s >> t;\n\tll n = s.size();\n\tep[0][0] = 1;\n\trep(i,n){\n\t\tif(t[i]=='?'){\n\t\t\tll num = s[i] - '0';\n\t\t\trep(j,10){\n\t\t\t\tif(j < num){\n\t\t\t\t\tdp[i+1][1] += (dp[i][0] + dp[i][1]) * 10 + \n\t\t\t\t\t\t\t(mint)j * (ep[i][0] + ep[i][1]);\n\t\t\t\t\tep[i+1][1] += ep[i][1] + ep[i][0];\n\t\t\t\t}else if(j == num){\n\t\t\t\t\tdp[i+1][1] += dp[i][1] * 10 + (mint)j * ep[i][1];\n\t\t\t\t\tdp[i+1][0] += dp[i][0] * 10 + (mint)j * ep[i][0];\n\t\t\t\t\tep[i+1][1] += ep[i][1];\n\t\t\t\t\tep[i+1][0] += ep[i][0];\n\t\t\t\t}else{\n\t\t\t\t\tdp[i+1][1] += dp[i][1] * 10 + (mint)j * ep[i][1];\n\t\t\t\t\tep[i+1][1] += ep[i][1];\n\t\t\t\t}\n\t\t\t}\n\t\t}else{\n\t\t\tll num = t[i] - '0';\n\t\t\tif(t[i] < s[i]){\n\t\t\t\tdp[i+1][1] += (dp[i][0] + dp[i][1]) * 10 + \n\t\t\t\t\t\t\t(mint)num * (ep[i][0] + ep[i][1]);\n\t\t\t\tep[i+1][1] += ep[i][1] + ep[i][0];\n\t\t\t}else if(t[i] == s[i]){\n\t\t\t\tdp[i+1][1] += dp[i][1] * 10 + (mint)num * ep[i][1];\n\t\t\t\tdp[i+1][0] += dp[i][0] * 10 + (mint)num * ep[i][0];\n\t\t\t\tep[i+1][1] += ep[i][1];\n\t\t\t\tep[i+1][0] += ep[i][0];\n\t\t\t}else{\n\t\t\t\tdp[i+1][1] += dp[i][1] * 10 + (mint)num * ep[i][1];\n\t\t\t\tep[i+1][1] += ep[i][1];\n\t\t\t}\n\t\t}\n\t}\n\tmint ans = dp[n][0] + dp[n][1];\n\tcout << ans.value() << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 9628, "score_of_the_acc": -0.3977, "final_rank": 10 }, { "submission_id": "aoj_3110_3963886", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int i = 0; i < (n);i++)\n#define sz(x) int(x.size())\ntypedef long long ll;\ntypedef pair<int,int> P;\n\nconst ll mod = 1e9+7;\n\nll dp[200010][2][2];\n\nint main(){\n string s, t;\n cin >> s >> t;\n\n int n = sz(s);\n dp[0][0][1] = 1;\n rep(i,n) {\n const int sD = s[i] - '0'; \n if (t[i] == '?') {\n rep(j,2) {\n for (int d = 0; d <= (j ? 9 : sD); d++) {\n (dp[i+1][j||(d<sD)][0] += dp[i][j][0] * 10 + d * dp[i][j][1]) %= mod;\n (dp[i+1][j||(d<sD)][1] += dp[i][j][1]) %= mod;\n }\n }\n } else {\n const int tD = t[i] - '0';\n rep(j,2) {\n if (sD < tD && j == 0) continue;\n (dp[i+1][j||(tD<sD)][0] += dp[i][j][0] * 10 + tD * dp[i][j][1]) %= mod;\n (dp[i+1][j||(tD<sD)][1] += dp[i][j][1]) %= mod;\n }\n }\n }\n cout << (dp[n][0][0] + dp[n][1][0]) % mod << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 9696, "score_of_the_acc": -0.066, "final_rank": 5 }, { "submission_id": "aoj_3110_3963875", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int i = 0; i < (n);i++)\n#define sz(x) int(x.size())\ntypedef long long ll;\ntypedef pair<int,int> P;\n\nconst ll mod = 1e9+7;\n\nll dp[200010][2][2];\n\nint main(){\n string s, t;\n cin >> s >> t;\n\n int n = sz(s);\n dp[0][0][1] = 1;\n rep(i,n) {\n const int sD = s[i] - '0'; \n if (t[i] == '?') {\n rep(j,2) {\n for (int d = 0; d <= (j ? 9 : sD); d++) {\n (dp[i+1][j||(d<sD)][0] += dp[i][j][0] * 10 + d * dp[i][j][1]) %= mod;\n (dp[i+1][j||(d<sD)][1] += dp[i][j][1]) %= mod;\n }\n }\n } else {\n const int tD = t[i] - '0';\n rep(j,2) {\n (dp[i+1][j||(tD<sD)][0] += dp[i][j][0] * 10 + tD * dp[i][j][1]) %= mod;\n (dp[i+1][j||(tD<sD)][1] += dp[i][j][1]) %= mod;\n }\n }\n }\n cout << (dp[n][0][0] + dp[n][1][0]) % mod << endl;\n return 0;\n}", "accuracy": 0.08333333333333333, "time_ms": 10, "memory_kb": 7380, "score_of_the_acc": -0.0085, "final_rank": 19 }, { "submission_id": "aoj_3110_3890953", "code_snippet": "#include <bits/stdc++.h>\n#define GET_MACRO(_1,_2,_3,_4,_5,_6,_7,_8,NAME,...) NAME\n#define pr(...) cerr<< GET_MACRO(__VA_ARGS__,pr8,pr7,pr6,pr5,pr4,pr3,pr2,pr1)(__VA_ARGS__) <<endl\n#define pr1(a) (#a)<<\"=\"<<(a)<<\" \"\n#define pr2(a,b) pr1(a)<<pr1(b)\n#define pr3(a,b,c) pr1(a)<<pr2(b,c)\n#define pr4(a,b,c,d) pr1(a)<<pr3(b,c,d)\n#define pr5(a,b,c,d,e) pr1(a)<<pr4(b,c,d,e)\n#define pr6(a,b,c,d,e,f) pr1(a)<<pr5(b,c,d,e,f)\n#define pr7(a,b,c,d,e,f,g) pr1(a)<<pr6(b,c,d,e,f,g)\n#define pr8(a,b,c,d,e,f,g,h) pr1(a)<<pr7(b,c,d,e,f,g,h)\n#define prArr(a) {cerr<<(#a)<<\"={\";int i=0;for(auto t:(a))cerr<<(i++?\", \":\"\")<<t;cerr<<\"}\"<<endl;}\nusing namespace std;\nusing Int = long long;\nusing _int = int;\nusing ll = long long;\nusing Double = long double;\nconst Int INF = (1LL<<60)+1e9; // ~ 1.15 * 1e18\nconst Int mod = (1e9)+7;\nconst Double EPS = 1e-8;\nconst Double PI = 6.0 * asin((Double)0.5);\nusing P = pair<Int,Int>;\ntemplate<class T> T Max(T &a,T b){return a=max(a,b);}\ntemplate<class T> T Min(T &a,T b){return a=min(a,b);}\ntemplate<class T1, class T2> ostream& operator<<(ostream& o,pair<T1,T2> p){return o<<\"(\"<<p.first<<\",\"<<p.second<<\")\";}\ntemplate<class T1, class T2, class T3> ostream& operator<<(ostream& o,tuple<T1,T2,T3> t){\n return o<<\"(\"<<get<0>(t)<<\",\"<<get<1>(t)<<\",\"<<get<2>(t)<<\")\";}\ntemplate<class T1, class T2> istream& operator>>(istream& i,pair<T1,T2> &p){return i>>p.first>>p.second;}\ntemplate<class T> ostream& operator<<(ostream& o,vector<T> a){Int i=0;for(T t:a)o<<(i++?\" \":\"\")<<t;return o;}\ntemplate<class T> istream& operator>>(istream& i,vector<T> &a){for(T &t:a)i>>t;return i;}\n//INSERT ABOVE HERE\n\nstring S, T;\nvector<Int> B;\n\nInt dfs2(Int idx, Int same){\n static Int mem[200010][2], used[200010][2];\n if(idx == (Int)T.size()) return 1;\n if(used[idx][same]++) return mem[idx][same];\n\n Int res = 0;\n for(Int num=0;num<10;num++){\n if(isdigit(T[idx]) && num != T[idx] - '0') continue;\n if(same && S[idx] - '0' < num) continue;\n Int nsame = same & (S[idx] - '0' == num);\n res += dfs2(idx + 1, nsame);\n res %= mod;\n }\n return mem[idx][same] = res;\n}\n\nInt dfs(Int idx, Int same, Int keta){\n static Int mem[200010][2], used[200010][2];\n if(idx == (Int)T.size()) return 0;\n if(used[idx][same]++) return mem[idx][same];\n Int res = 0, update = 0;\n for(Int num=0;num<10;num++){\n if(isdigit(T[idx]) && num != T[idx] - '0') continue;\n if(same && S[idx] - '0' < num) continue;\n Int nsame = same && (S[idx] - '0' == num);\n Int t = dfs(idx + 1, nsame, keta-1);\n if(t == -1) continue;\n update = 1;\n res += B[keta] * num * dfs2(idx + 1, nsame) + t;\n res %= mod;\n }\n if(!update) res = -1;\n return mem[idx][same] = res;\n}\n\n\nsigned main(){\n srand((unsigned)time(NULL));\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n cin>>S;\n cin>>T;\n {\n reverse(S.begin(), S.end());\n reverse(T.begin(), T.end());\n while(S.size() < T.size()) S += '0';\n while(T.size() < S.size()) T += '0';\n reverse(S.begin(), S.end());\n reverse(T.begin(), T.end());\n }\n\n const Int N = 200010;\n B.resize(N);\n B[0] = 1;\n for(Int i=1;i<N;i++) B[i] = B[i-1] * 10 % mod;\n Int ans = dfs(0, 1, T.size() - 1);\n if(ans == -1) ans = 0;\n cout<<ans<<endl;\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 36332, "score_of_the_acc": -1.0613, "final_rank": 15 }, { "submission_id": "aoj_3110_3886884", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <string>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <stdio.h>\nusing namespace std;\n#define int long long\nint MOD = 1000000007;\nint p10[300010];\nvoid add(int &a, const int &b) {\n\ta += b;\n\tif (a >= MOD) {\n\t\ta -= MOD;\n\t}\n}\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tp10[0] = 1;\n\tfor (int i = 1; i <= 300005; i++) {\n\t\tp10[i] = (p10[i - 1] * 10) % MOD;\n\t}\n\tstring S;\n\tcin >> S;\n\tstring T;\n\tcin >> T;\n\tint N = S.size();\n\n\tvector<vector<int> > dp(N + 1, vector<int>(2, 0));\n\tvector<vector<int> > sum(N + 1, vector<int>(2, 0));\n\tdp[0][0] = 1;\n\tsum[0][0] = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tint mn, mx;\n\t\tif (T[i] == '?') {\n\t\t\tmx = 9;\n\t\t\tmn = 0;\n\t\t}\n\t\telse {\n\t\t\tmn = mx = T[i] - '0';\n\t\t}\n\t\tfor (int j = mn; j <= mx; j++) {\n\t\t\tint t = (j * p10[N - 1 - i]) % MOD;\n\t\t\tadd(dp[i + 1][1], dp[i][1]);\n\t\t\tadd(sum[i + 1][1], (sum[i][1] + dp[i][1] * t) % MOD);\n\t\t\tif (S[i] - '0' == j) {\n\t\t\t\tadd(dp[i + 1][0], dp[i][0]);\n\t\t\t\tadd(sum[i + 1][0], (sum[i][0] + dp[i][0] * t) % MOD);\n\t\t\t}\n\t\t\telse if (S[i] - '0' > j) {\n\t\t\t\tadd(dp[i + 1][1], dp[i][0]);\n\t\t\t\tadd(sum[i + 1][1], (sum[i][0] + dp[i][0] * t) % MOD);\n\t\t\t}\n\t\t}\n\t}\n\tint res = 0;\n\tadd(res, sum.back()[0]);\n\tadd(res, sum.back()[1]);\n\tcout << res << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 27600, "score_of_the_acc": -1.511, "final_rank": 17 }, { "submission_id": "aoj_3110_3886879", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <string>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <stdio.h>\nusing namespace std;\n#define int long long\nint MOD = 1000000007;\nint p10[100010];\nvoid add(int &a, const int &b) {\n\ta += b;\n\tif (a >= MOD) {\n\t\ta -= MOD;\n\t}\n}\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tp10[0] = 1;\n\tfor (int i = 1; i <= 100005; i++) {\n\t\tp10[i] = (p10[i - 1] * 10) % MOD;\n\t}\n\tstring S;\n\tcin >> S;\n\tstring T;\n\tcin >> T;\n\tint N = S.size();\n\n\tvector<vector<int> > dp(N + 1, vector<int>(2, 0));\n\tvector<vector<int> > sum(N + 1, vector<int>(2, 0));\n\tdp[0][0] = 1;\n\tsum[0][0] = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tint mn, mx;\n\t\tif (T[i] == '?') {\n\t\t\tmx = 9;\n\t\t\tmn = 0;\n\t\t}\n\t\telse {\n\t\t\tmn = mx = T[i] - '0';\n\t\t}\n\t\tfor (int j = mn; j <= mx; j++) {\n\t\t\tint t = (j * p10[N - 1 - i]) % MOD;\n\t\t\tadd(dp[i + 1][1], dp[i][1]);\n\t\t\tadd(sum[i + 1][1], (sum[i][1] + dp[i][1] * t) % MOD);\n\t\t\tif (S[i] - '0' == j) {\n\t\t\t\tadd(dp[i + 1][0], dp[i][0]);\n\t\t\t\tadd(sum[i + 1][0], (sum[i][0] + dp[i][0] * t) % MOD);\n\t\t\t}\n\t\t\telse if (S[i] - '0' > j) {\n\t\t\t\tadd(dp[i + 1][1], dp[i][0]);\n\t\t\t\tadd(sum[i + 1][1], (sum[i][0] + dp[i][0] * t) % MOD);\n\t\t\t}\n\t\t}\n\t}\n\tint res = 0;\n\tadd(res, sum.back()[0]);\n\tadd(res, sum.back()[1]);\n\tcout << res << endl;\n}", "accuracy": 0.08333333333333333, "time_ms": 10, "memory_kb": 10440, "score_of_the_acc": -0.0845, "final_rank": 20 }, { "submission_id": "aoj_3110_3883130", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T>\ninline bool chmax(T &a, T b)\n{\n if (a < b)\n {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T>\ninline bool chmin(T &a, T b)\n{\n if (a > b)\n {\n a = b;\n return 1;\n }\n return 0;\n}\ntypedef long long int ll;\n\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\n#define endl \"\\n\"\nconst double EPS = 1e-7;\nconst int INF = 1 << 30;\nconst ll LLINF = 1LL << 60;\nconst double PI = acos(-1);\nconst int MOD = 1000000007;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n\n//-------------------------------------\n\nll dp[300000][2] = {0};\nll sum[300000][2] = {0};\n\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n string s, t;\n cin >> s >> t;\n ll n = s.size();\n dp[0][0] = 1;\n for (ll i = 0; i < n; i++)\n {\n ll sNum = s[i] - '0';\n ll tNum = t[i] - '0';\n if (t[i] != '?')\n {\n if (sNum == tNum)\n {\n (dp[i + 1][0] += dp[i][0]) %= MOD;\n (dp[i + 1][1] += dp[i][1]) %= MOD;\n (sum[i + 1][1] += (sum[i][1] * 10 % MOD + dp[i][1] * tNum % MOD) % MOD) %= MOD;\n (sum[i + 1][0] += (sum[i][0] * 10 % MOD + dp[i][0] * tNum % MOD) % MOD) %= MOD;\n }\n else if (sNum < tNum)\n {\n (dp[i + 1][1] += dp[i][1]) %= MOD;\n (sum[i + 1][1] += (sum[i][1] * 10 % MOD + dp[i][1] * tNum % MOD) % MOD) %= MOD;\n }\n else\n {\n (dp[i + 1][1] += dp[i][1]) %= MOD;\n (dp[i + 1][1] += dp[i][0]) %= MOD;\n (sum[i + 1][1] += (sum[i][1] * 10 % MOD + dp[i][1] * tNum % MOD) % MOD) %= MOD;\n (sum[i + 1][1] += (sum[i][0] * 10 % MOD + dp[i][0] * tNum % MOD) % MOD) %= MOD;\n }\n }\n else\n {\n for (ll j = 0; j <= 9; j++)\n {\n tNum = j;\n if (sNum == tNum)\n {\n (dp[i + 1][0] += dp[i][0]) %= MOD;\n (dp[i + 1][1] += dp[i][1]) %= MOD;\n (sum[i + 1][1] += (sum[i][1] * 10 % MOD + dp[i][1] * tNum % MOD) % MOD) %= MOD;\n (sum[i + 1][0] += (sum[i][0] * 10 % MOD + dp[i][0] * tNum % MOD) % MOD) %= MOD;\n }\n else if (sNum < tNum)\n {\n (dp[i + 1][1] += dp[i][1]) %= MOD;\n (sum[i + 1][1] += (sum[i][1] * 10 % MOD + dp[i][1] * tNum % MOD) % MOD) %= MOD;\n }\n else\n {\n (dp[i + 1][1] += dp[i][1]) %= MOD;\n (dp[i + 1][1] += dp[i][0]) %= MOD;\n (sum[i + 1][1] += (sum[i][1] * 10 % MOD + dp[i][1] * tNum % MOD) % MOD) %= MOD;\n (sum[i + 1][1] += (sum[i][0] * 10 % MOD + dp[i][0] * tNum % MOD) % MOD) %= MOD;\n }\n }\n }\n }\n cout << (sum[n][0] + sum[n][1]) % MOD << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 9688, "score_of_the_acc": -0.0658, "final_rank": 4 }, { "submission_id": "aoj_3110_3883129", "code_snippet": "/*\n\n _ooOoo_\n o8888888o\n 88\" . \"88\n (| -_- |)\n O\\ = /O\n ____/`---'\\____\n .' \\\\| |// `.\n / \\\\||| : |||// \\\n / _||||| -:- |||||- \\\n | | \\\\\\ - /// | |\n | \\_| ''\\---/'' | |\n \\ .-\\__ `-` ___/-. /\n ___`. .' /--.--\\ `. . __\n .\"\" '< `.___\\_<|>_/___.' >'\"\".\n | | : `- \\`.;`\\ _ /`;.`/ - ` : | |\n \\ \\ `-. \\_ __\\ /__ _/ .-` / /\n======`-.____`-.___\\_____/___.-`____.-'======\n `=---='\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n prayer\n*/\n\n// g++ -std=c++11 a.cpp\n#include<iostream>\n#include<vector>\n#include<string>\n#include<algorithm>\n#include<map>\n#include<set>\n#include<unordered_map>\n#include<utility>\n#include<cmath>\n#include<random>\n#include<cstring>\n#include<queue>\n#include<stack>\n#include<bitset>\n#include<cstdio>\n#include<sstream>\n#include<iomanip>\n#include<assert.h>\n#include<typeinfo>\n#define loop(i,a,b) for(long long i=a;i<b;i++)\n#define rep(i,a) loop(i,0,a)\n#define FOR(i,a) for(auto i:a)\n#define pb push_back\n#define all(in) in.begin(),in.end()\n#define shosu(x) fixed<<setprecision(x)\n#define show1d(v) {rep(_,v.size())cout<<\" \"<<v[_];cout<<endl;}\n#define show2d(v) {rep(__,v.size())show1d(v[__]);}\nusing namespace std;\n//kaewasuretyuui\ntypedef long long ll;\n#define int ll\ntypedef int Def;\ntypedef pair<Def,Def> pii;\ntypedef vector<Def> vi;\ntypedef vector<vi> vvi;\ntypedef vector<pii> vp;\ntypedef vector<vp> vvp;\ntypedef vector<string> vs;\ntypedef vector<double> vd;\ntypedef vector<vd> vvd;\ntypedef pair<Def,pii> pip;\ntypedef vector<pip>vip;\n#define mt make_tuple\ntypedef tuple<int,int,int,int> tp;\ntypedef vector<tp> vt;\ntemplate<typename A,typename B>bool cmin(A &a,const B &b){return a>b?(a=b,true):false;}\ntemplate<typename A,typename B>bool cmax(A &a,const B &b){return a<b?(a=b,true):false;}\nconst double PI=acos(-1);\nconst double EPS=1e-9;\nDef inf = sizeof(Def) == sizeof(long long) ? 2e18 : 1e9+10;\n#define yes cout<<\"Yes\\n\"\n#define no cout<<\"No\\n\"\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\nint dp[200020][2],ok[200020][2];\nsigned main(){\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\n string s,t;\n cin>>s>>t;\n int MOD=1000000007;\n ok[0][0]=1;\n rep(i,s.size())rep(j,2)rep(x,10)if(t[i]=='?'||t[i]-'0'==x){\n int I=i+1,J=j|s[i]-'0'>x;\n if(!J&&s[i]-'0'<x)continue;\n // cout<<i<<\" \"<<j<<\" \"<<x<<\" \"<<dp[i][j]<<\" \"<<I<<\" \"<<J<<endl;\n (ok[I][J]+=ok[i][j])%=MOD;\n (dp[I][J]+=dp[i][j]*10+ok[i][j]*x%MOD)%=MOD;\n }\n cout<<(dp[s.size()][0]+dp[s.size()][1])%MOD<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 9784, "score_of_the_acc": -0.0682, "final_rank": 7 }, { "submission_id": "aoj_3110_3882927", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\nconstexpr ll MOD = ll(1e9+7);\n\nll dp[200005][2][2];\n\nint main(){\n string s, t;\n cin >> s >> t;\n int n = s.size();\n dp[0][0][1] = 1;\n for(int i=0;i<n;i++){\n int sd = s[i]-'0';\n if(t[i]=='?'){\n for(int j=0;j<2;j++){\n for(int d=0;d<=(j?9:sd);d++){\n dp[i+1][j||(sd>d)][0] += dp[i][j][0] * 10 + dp[i][j][1] * d;\n dp[i+1][j||(sd>d)][0] %= MOD;\n dp[i+1][j||(sd>d)][1] += dp[i][j][1];\n dp[i+1][j||(sd>d)][1] %= MOD;\n }\n }\n }\n else{\n int td = t[i]-'0';\n for(int j=0;j<2;j++){\n if(sd < td &&j == 0) continue;\n dp[i+1][j||(sd>td)][0] += dp[i][j][0] * 10 + dp[i][j][1] * td;\n dp[i+1][j||(sd>td)][0] %= MOD;\n dp[i+1][j||(sd>td)][1] += dp[i][j][1];\n dp[i+1][j||(sd>td)][1] %= MOD;\n \n }\n }\n }\n ll ans = 0;\n ans = (dp[n][1][0] + dp[n][0][0]) % MOD;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 9720, "score_of_the_acc": -0.0666, "final_rank": 6 }, { "submission_id": "aoj_3110_3881586", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define REP(i,n) for (int i=0;i<(n);i++)\n#define REP2(i,m,n) for (int i=m;i<(n);i++)\ntypedef long long ll;\n\nconst ll MOD = 1000000007;\nll dp[201010][2];\nll dp2[201010][2];\nll base[201010];\n\nvoid solve() {\n string S, T;\n cin >> S >> T;\n int N = S.size();\n\n base[0] = 1;\n REP(i, N) base[i+1] = base[i] * 10 % MOD;\n\n dp2[0][0] = 1;\n\n REP(i, N) REP(j, 2) {\n ll b = base[N-i-1];\n REP(nd, 10) {\n if (T[i] != '?' && nd != T[i] - '0') continue;\n if (!j && nd > S[i] - '0') continue;\n (dp[i+1][j||(nd<S[i]-'0')] += (dp[i][j] + b * nd % MOD * dp2[i][j] % MOD)) %= MOD;\n (dp2[i+1][j||(nd<S[i]-'0')] += dp2[i][j]) %= MOD;\n }\n }\n\n cout << (dp[N][0] + dp[N][1]) % MOD << endl;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n solve();\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 11284, "score_of_the_acc": -0.1055, "final_rank": 9 }, { "submission_id": "aoj_3110_3881477", "code_snippet": "#include <iostream>\n#include <string>\n#include <algorithm>\n#define rep(i, n) for(i = 0; i < n; i++)\n#define int long long\nusing namespace std;\n\nint mod = 1000000007;\nstring s;\nstring t;\nint dpCnt[200001][2];\nint dpSum[200001][2];\n\nsigned main() {\n\tint i, j, k;\n\t\n\tcin >> s >> t;\n\tint n = s.length();\n\t\n\tdpCnt[0][0] = 1;\n\trep(i, n) {\n\t\trep(j, 2) {\n\t\t\trep(k, 10) {\n\t\t\t\tif (t[i] != '?' && k != (t[i] - '0')) continue;\n\t\t\t\tif (j == 0 && k > (s[i] - '0')) continue;\n\t\t\t\tint nj = (j || (k < (s[i] - '0')));\n\t\t\t\t(dpCnt[i + 1][nj] += dpCnt[i][j]) %= mod;\n\t\t\t\t(dpSum[i + 1][nj] += 10 * dpSum[i][j] + dpCnt[i][j] * k) %= mod;\n\t\t\t}\n\t\t}\n\t}\n\t\n\tint ans = dpSum[n][0] + dpSum[n][1];\n\tcout << ans % mod << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 9592, "score_of_the_acc": -0.7301, "final_rank": 12 } ]
aoj_3111_cpp
E: 総和の切り取り 問題 えびちゃんは数列 (a_1, a_2, ..., a_n) を持っています。 えびちゃんは(空でもよい)部分配列の総和の最大値が気になるので、それを求めてください。 ここで、部分配列とは連続する部分列を指します。なお、空列の総和は 0 とします。 さらに、えびちゃんがこの数列を q 回書き換えるので、各書き換えの直後にこの値を求めてください。 入力形式 n q a_1 a_2 ... a_n k_1 x_1 ... k_q x_q 各 k_j , x_j ( 1 \leq j \leq q ) は、 a_{k_j} を x_j に書き換えることを意味します。 各書き換えは独立ではなく、その後の処理において配列は書き換えられたままであることに注意してください。 制約 1\leq n\leq 10^5 1\leq q\leq 10^5 1\leq k_j\leq n |a_i|, |x_j| \leq 10^9 出力形式 q+1 行出力してください。 1 行目には書き換えを行う前の、 1+i 行目には i 回目の書き換えの直後の部分配列の総和の最大値を出力してください。 入力例1 5 2 1 2 -3 4 -5 3 3 2 -6 出力例1 4 10 7 部分配列 (a_l, …, a_r) を a[l, r] と表すことにすると、書き換え前は a[1, 4] および a[4, 4] の総和が 4 で、これが最大です。 1 回目の書き換えの後、数列は (1, 2, 3, 4, -5) となり、総和の最大値は a[1, 4] の 10 です。 2 回目の書き換えの後、数列は (1, -6, 3, 4, -5) となり、総和の最大値は a[3, 4] の 7 です。 入力例2 3 1 -1 -2 -3 1 1 出力例2 0 1 空列の総和は 0 であり、書き換え前はそれが最大です。
[ { "submission_id": "aoj_3111_10908582", "code_snippet": "#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3111\"\n\n\n#include <algorithm>\n#include <concepts>\n#include <optional>\n\nnamespace zawa {\n\ntemplate <std::totally_ordered T>\nclass SubarraySumMax {\npublic:\n\n SubarraySumMax() = default;\n\n explicit SubarraySumMax(T v) : m_ans{v}, m_sum{v}, m_pref{v}, m_suf{v} {}\n\n SubarraySumMax(T ans, T sum, T pref, T suf) : m_ans{ans}, m_sum{sum}, m_pref{pref}, m_suf{suf} {}\n\n inline T ans() const {\n return m_ans;\n }\n\n inline T sum() const {\n return m_sum;\n }\n\n inline T pref() const {\n return m_pref;\n }\n\n inline T suf() const {\n return m_suf;\n }\n\n static SubarraySumMax<T> merge(const SubarraySumMax<T>& lhs, const SubarraySumMax<T>& rhs) {\n T sum = lhs.sum() + rhs.sum();\n T pref = std::max(lhs.pref(), lhs.sum() + rhs.pref());\n T suf = std::max(rhs.suf(), lhs.suf() + rhs.sum());\n T ans = std::max({lhs.ans(), rhs.ans(), lhs.suf() + rhs.pref() });\n return {ans, sum, pref, suf};\n }\n\nprivate:\n\n T m_ans{}, m_sum{}, m_pref{}, m_suf{};\n\n};\n\ntemplate <std::totally_ordered T>\nstruct SubarraySumMaxMonoid {\n\n using Element = std::optional<SubarraySumMax<T>>;\n\n static Element identity() {\n return std::nullopt;\n }\n\n static Element operation(const Element& L, const Element& R) {\n if (!L) return R;\n if (!R) return L;\n return Element::value_type::merge(L.value(), R.value());\n }\n\n static Element convert(T v) {\n return Element{v};\n }\n};\n\n} // namespace zawa\n\n\n#include <cstdint>\n#include <cstddef>\n\nnamespace zawa {\n\nusing i16 = std::int16_t;\nusing i32 = std::int32_t;\nusing i64 = std::int64_t;\nusing i128 = __int128_t;\n\nusing u8 = std::uint8_t;\nusing u16 = std::uint16_t;\nusing u32 = std::uint32_t;\nusing u64 = std::uint64_t;\n\nusing usize = std::size_t;\n\n} // namespace zawa\n\n\n\nnamespace zawa {\n\nnamespace concepts {\n\ntemplate <class T>\nconcept Semigroup = requires {\n typename T::Element;\n { T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;\n};\n\n} // namespace concepts\n\n} // namespace zawa\n\n\nnamespace zawa {\n\nnamespace concepts {\n\ntemplate <class T>\nconcept Identitiable = requires {\n typename T::Element;\n { T::identity() } -> std::same_as<typename T::Element>;\n};\n\ntemplate <class T>\nconcept Monoid = Semigroup<T> and Identitiable<T>;\n\n} // namespace\n\n} // namespace zawa\n\n#include <vector>\n#include <cassert>\n#include <functional>\n#include <type_traits>\n#include <ostream>\n\nnamespace zawa {\n\ntemplate <concepts::Monoid Monoid>\nclass SegmentTree {\npublic:\n\n using VM = Monoid;\n\n using V = typename VM::Element;\n\n using OM = Monoid;\n\n using O = typename OM::Element;\n\n SegmentTree() = default;\n\n explicit SegmentTree(usize n) : m_n{ n }, m_dat(n << 1, VM::identity()) {}\n\n explicit SegmentTree(const std::vector<V>& dat) : m_n{ dat.size() }, m_dat(dat.size() << 1, VM::identity()) {\n for (usize i{} ; i < m_n ; i++) {\n m_dat[i + m_n] = dat[i];\n }\n for (usize i{m_n} ; i-- ; ) {\n m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);\n }\n }\n\n [[nodiscard]] inline usize size() const noexcept {\n return m_n;\n }\n\n [[nodiscard]] V get(usize i) const {\n assert(i < size());\n return m_dat[i + m_n];\n }\n\n [[nodiscard]] V operator[](usize i) const {\n assert(i < size());\n return m_dat[i + m_n];\n }\n\n void operation(usize i, const O& value) {\n assert(i < size());\n i += size();\n m_dat[i] = OM::operation(m_dat[i], value);\n while (i = parent(i), i) {\n m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);\n }\n }\n\n void assign(usize i, const V& value) {\n assert(i < size());\n i += size();\n m_dat[i] = value;\n while (i = parent(i), i) {\n m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);\n }\n }\n\n [[nodiscard]] V product(u32 l, u32 r) const {\n assert(l <= r and r <= size());\n V L{ VM::identity() }, R{ VM::identity() };\n for (l += size(), r += size() ; l < r ; l = parent(l), r = parent(r)) {\n if (l & 1) {\n L = VM::operation(L, m_dat[l++]);\n }\n if (r & 1) {\n R = VM::operation(m_dat[--r], R);\n }\n }\n return VM::operation(L, R);\n }\n\n template <class F>\n requires std::predicate<F, V>\n [[nodiscard]] usize maxRight(usize l, const F& f) {\n assert(l < size());\n static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, \"maxRight's argument f must be function bool(T)\");\n assert(f(VM::identity()));\n usize res{l}, width{1};\n V prod{ VM::identity() };\n // 現在の見ている頂点の幅をwidthで持つ\n // 境界がある頂点を含む部分木の根を探す\n // (折り返す時は必要以上の幅を持つ根になるが、widthを持っているのでオーバーしない)\n for (l += size() ; res + width <= size() ; l = parent(l), width <<= 1) if (l & 1) {\n if (not f(VM::operation(prod, m_dat[l]))) break; \n res += width;\n prod = VM::operation(prod, m_dat[l++]);\n }\n // 根から下って、境界を発見する\n while (l = left(l), width >>= 1) {\n if (res + width <= size() and f(VM::operation(prod, m_dat[l]))) {\n res += width;\n prod = VM::operation(prod, m_dat[l++]);\n } \n }\n return res;\n }\n\n template <class F>\n requires std::predicate<F, V>\n [[nodiscard]] usize minLeft(usize r, const F& f) const {\n assert(r <= size());\n static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, \"minLeft's argument f must be function bool(T)\");\n assert(f(VM::identity()));\n usize res{r}, width{1};\n V prod{ VM::identity() };\n for (r += size() ; res >= width ; r = parent(r), width <<= 1) if (r & 1) {\n if (not f(VM::operation(m_dat[r - 1], prod))) break;\n res -= width;\n prod = VM::operation(prod, m_dat[--r]);\n }\n while (r = left(r), width >>= 1) {\n if (res >= width and f(VM::operation(m_dat[r - 1], prod))) {\n res -= width;\n prod = VM::operation(m_dat[--r], prod);\n }\n }\n return res;\n }\n\n friend std::ostream& operator<<(std::ostream& os, const SegmentTree& st) {\n for (usize i{1} ; i < 2 * st.size() ; i++) {\n os << st.m_dat[i] << (i + 1 == 2 * st.size() ? \"\" : \" \");\n }\n return os;\n }\n\nprivate:\n\n constexpr u32 left(u32 v) const {\n return v << 1;\n }\n\n constexpr u32 right(u32 v) const {\n return v << 1 | 1;\n }\n\n constexpr u32 parent(u32 v) const {\n return v >> 1;\n }\n\n usize m_n;\n\n std::vector<V> m_dat;\n};\n\n} // namespace zawa\n\n#include <iostream>\n\nusing namespace std;\nusing namespace zawa;\nusing M = SubarraySumMaxMonoid<long long>;\nint main() {\n cin.tie(0);\n cout.tie(0);\n ios::sync_with_stdio(0);\n int N, Q;\n cin >> N >> Q;\n vector<M::Element> A(N);\n for (int i = 0 ; i < N ; i++) {\n int a;\n cin >> a;\n A[i] = M::convert(a);\n }\n SegmentTree<M> seg{A};\n auto prod = [&]() -> long long {\n auto pd = seg.product(0, N);\n return pd ? max(pd->ans(), 0LL) : 0LL;\n };\n cout << prod() << '\\n';\n while (Q--) {\n int k, x;\n cin >> k >> x;\n k--;\n seg.assign(k, M::convert(x));\n cout << prod() << '\\n';\n }\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 15092, "score_of_the_acc": -0.4684, "final_rank": 10 }, { "submission_id": "aoj_3111_10908580", "code_snippet": "#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3111\"\n\n\n#include <algorithm>\n#include <concepts>\n#include <optional>\n\nnamespace zawa {\n\ntemplate <std::totally_ordered T>\nclass SubarraySumMax {\npublic:\n\n SubarraySumMax() = default;\n\n explicit SubarraySumMax(T v) : m_ans{v}, m_sum{v}, m_pref{v}, m_suf{v} {}\n\n SubarraySumMax(T ans, T sum, T pref, T suf) : m_ans{ans}, m_sum{sum}, m_pref{pref}, m_suf{suf} {}\n\n inline T ans() const {\n return m_ans;\n }\n\n inline T sum() const {\n return m_sum;\n }\n\n inline T pref() const {\n return m_pref;\n }\n\n inline T suf() const {\n return m_suf;\n }\n\n static SubarraySumMax<T> merge(const SubarraySumMax<T>& lhs, const SubarraySumMax<T>& rhs) {\n T sum = lhs.sum() + rhs.sum();\n T pref = std::max(lhs.pref(), lhs.sum() + rhs.pref());\n T suf = std::max(rhs.suf(), lhs.suf() + rhs.sum());\n T ans = std::max({lhs.ans(), rhs.ans(), lhs.suf() + rhs.pref(), sum});\n return {ans, sum, pref, suf};\n }\n\nprivate:\n\n T m_ans{}, m_sum{}, m_pref{}, m_suf{};\n\n};\n\ntemplate <std::totally_ordered T>\nstruct SubarraySumMaxMonoid {\n\n using Element = std::optional<SubarraySumMax<T>>;\n\n static Element identity() {\n return std::nullopt;\n }\n\n static Element operation(const Element& L, const Element& R) {\n if (!L) return R;\n if (!R) return L;\n return Element::value_type::merge(L.value(), R.value());\n }\n\n static Element convert(T v) {\n return Element{v};\n }\n};\n\n} // namespace zawa\n\n\n#include <cstdint>\n#include <cstddef>\n\nnamespace zawa {\n\nusing i16 = std::int16_t;\nusing i32 = std::int32_t;\nusing i64 = std::int64_t;\nusing i128 = __int128_t;\n\nusing u8 = std::uint8_t;\nusing u16 = std::uint16_t;\nusing u32 = std::uint32_t;\nusing u64 = std::uint64_t;\n\nusing usize = std::size_t;\n\n} // namespace zawa\n\n\n\nnamespace zawa {\n\nnamespace concepts {\n\ntemplate <class T>\nconcept Semigroup = requires {\n typename T::Element;\n { T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;\n};\n\n} // namespace concepts\n\n} // namespace zawa\n\n\nnamespace zawa {\n\nnamespace concepts {\n\ntemplate <class T>\nconcept Identitiable = requires {\n typename T::Element;\n { T::identity() } -> std::same_as<typename T::Element>;\n};\n\ntemplate <class T>\nconcept Monoid = Semigroup<T> and Identitiable<T>;\n\n} // namespace\n\n} // namespace zawa\n\n#include <vector>\n#include <cassert>\n#include <functional>\n#include <type_traits>\n#include <ostream>\n\nnamespace zawa {\n\ntemplate <concepts::Monoid Monoid>\nclass SegmentTree {\npublic:\n\n using VM = Monoid;\n\n using V = typename VM::Element;\n\n using OM = Monoid;\n\n using O = typename OM::Element;\n\n SegmentTree() = default;\n\n explicit SegmentTree(usize n) : m_n{ n }, m_dat(n << 1, VM::identity()) {}\n\n explicit SegmentTree(const std::vector<V>& dat) : m_n{ dat.size() }, m_dat(dat.size() << 1, VM::identity()) {\n for (usize i{} ; i < m_n ; i++) {\n m_dat[i + m_n] = dat[i];\n }\n for (usize i{m_n} ; i-- ; ) {\n m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);\n }\n }\n\n [[nodiscard]] inline usize size() const noexcept {\n return m_n;\n }\n\n [[nodiscard]] V get(usize i) const {\n assert(i < size());\n return m_dat[i + m_n];\n }\n\n [[nodiscard]] V operator[](usize i) const {\n assert(i < size());\n return m_dat[i + m_n];\n }\n\n void operation(usize i, const O& value) {\n assert(i < size());\n i += size();\n m_dat[i] = OM::operation(m_dat[i], value);\n while (i = parent(i), i) {\n m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);\n }\n }\n\n void assign(usize i, const V& value) {\n assert(i < size());\n i += size();\n m_dat[i] = value;\n while (i = parent(i), i) {\n m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);\n }\n }\n\n [[nodiscard]] V product(u32 l, u32 r) const {\n assert(l <= r and r <= size());\n V L{ VM::identity() }, R{ VM::identity() };\n for (l += size(), r += size() ; l < r ; l = parent(l), r = parent(r)) {\n if (l & 1) {\n L = VM::operation(L, m_dat[l++]);\n }\n if (r & 1) {\n R = VM::operation(m_dat[--r], R);\n }\n }\n return VM::operation(L, R);\n }\n\n template <class F>\n requires std::predicate<F, V>\n [[nodiscard]] usize maxRight(usize l, const F& f) {\n assert(l < size());\n static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, \"maxRight's argument f must be function bool(T)\");\n assert(f(VM::identity()));\n usize res{l}, width{1};\n V prod{ VM::identity() };\n // 現在の見ている頂点の幅をwidthで持つ\n // 境界がある頂点を含む部分木の根を探す\n // (折り返す時は必要以上の幅を持つ根になるが、widthを持っているのでオーバーしない)\n for (l += size() ; res + width <= size() ; l = parent(l), width <<= 1) if (l & 1) {\n if (not f(VM::operation(prod, m_dat[l]))) break; \n res += width;\n prod = VM::operation(prod, m_dat[l++]);\n }\n // 根から下って、境界を発見する\n while (l = left(l), width >>= 1) {\n if (res + width <= size() and f(VM::operation(prod, m_dat[l]))) {\n res += width;\n prod = VM::operation(prod, m_dat[l++]);\n } \n }\n return res;\n }\n\n template <class F>\n requires std::predicate<F, V>\n [[nodiscard]] usize minLeft(usize r, const F& f) const {\n assert(r <= size());\n static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, \"minLeft's argument f must be function bool(T)\");\n assert(f(VM::identity()));\n usize res{r}, width{1};\n V prod{ VM::identity() };\n for (r += size() ; res >= width ; r = parent(r), width <<= 1) if (r & 1) {\n if (not f(VM::operation(m_dat[r - 1], prod))) break;\n res -= width;\n prod = VM::operation(prod, m_dat[--r]);\n }\n while (r = left(r), width >>= 1) {\n if (res >= width and f(VM::operation(m_dat[r - 1], prod))) {\n res -= width;\n prod = VM::operation(m_dat[--r], prod);\n }\n }\n return res;\n }\n\n friend std::ostream& operator<<(std::ostream& os, const SegmentTree& st) {\n for (usize i{1} ; i < 2 * st.size() ; i++) {\n os << st.m_dat[i] << (i + 1 == 2 * st.size() ? \"\" : \" \");\n }\n return os;\n }\n\nprivate:\n\n constexpr u32 left(u32 v) const {\n return v << 1;\n }\n\n constexpr u32 right(u32 v) const {\n return v << 1 | 1;\n }\n\n constexpr u32 parent(u32 v) const {\n return v >> 1;\n }\n\n usize m_n;\n\n std::vector<V> m_dat;\n};\n\n} // namespace zawa\n\n#include <iostream>\n\nusing namespace std;\nusing namespace zawa;\nusing M = SubarraySumMaxMonoid<long long>;\nint main() {\n cin.tie(0);\n cout.tie(0);\n ios::sync_with_stdio(0);\n int N, Q;\n cin >> N >> Q;\n vector<M::Element> A(N);\n for (int i = 0 ; i < N ; i++) {\n int a;\n cin >> a;\n A[i] = M::convert(a);\n }\n SegmentTree<M> seg{A};\n auto prod = [&]() -> long long {\n auto pd = seg.product(0, N);\n return pd ? max(pd->ans(), 0LL) : 0LL;\n };\n cout << prod() << '\\n';\n while (Q--) {\n int k, x;\n cin >> k >> x;\n k--;\n seg.assign(k, M::convert(x));\n cout << prod() << '\\n';\n }\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 15092, "score_of_the_acc": -0.4684, "final_rank": 10 }, { "submission_id": "aoj_3111_10783284", "code_snippet": "#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3111\"\n\n\n#include <algorithm>\n#include <concepts>\n#include <optional>\n\nnamespace zawa {\n\ntemplate <std::totally_ordered T>\nclass SubarraySumMax {\npublic:\n\n SubarraySumMax() = default;\n\n explicit SubarraySumMax(T v) : m_ans{v}, m_sum{v}, m_pref{v}, m_suf{v}, m_entire{true} {}\n\n SubarraySumMax(T ans, T sum, T pref, T suf, bool entire) : m_ans{ans}, m_sum{sum}, m_pref{pref}, m_suf{suf}, m_entire{entire} {}\n\n inline T ans() const {\n return m_ans;\n }\n\n inline T sum() const {\n return m_sum;\n }\n\n inline T pref() const {\n return m_pref;\n }\n\n inline T suf() const {\n return m_suf;\n }\n\n inline bool entire() const {\n return m_entire;\n }\n\n static SubarraySumMax<T> merge(const SubarraySumMax<T>& lhs, const SubarraySumMax<T>& rhs) {\n T sum = lhs.sum() + rhs.sum();\n T pref = std::max(lhs.pref(), lhs.sum() + rhs.pref());\n T suf = std::max(rhs.suf(), lhs.suf() + rhs.sum());\n T ans = std::max({lhs.ans(), rhs.ans(), lhs.suf() + rhs.pref(), sum});\n bool entire = (ans == sum);\n return {ans, sum, pref, suf, entire};\n }\n\nprivate:\n\n T m_ans{}, m_sum{}, m_pref{}, m_suf{};\n\n bool m_entire{};\n};\n\ntemplate <std::totally_ordered T>\nstruct SubarraySumMaxMonoid {\n\n using Element = std::optional<SubarraySumMax<T>>;\n\n static Element identity() {\n return std::nullopt;\n }\n\n static Element operation(const Element& L, const Element& R) {\n if (!L) return R;\n if (!R) return L;\n return Element::value_type::merge(L.value(), R.value());\n }\n\n static Element convert(T v) {\n return Element{v};\n }\n};\n\n} // namespace zawa\n\n\n#include <cstdint>\n#include <cstddef>\n\nnamespace zawa {\n\nusing i16 = std::int16_t;\nusing i32 = std::int32_t;\nusing i64 = std::int64_t;\nusing i128 = __int128_t;\n\nusing u8 = std::uint8_t;\nusing u16 = std::uint16_t;\nusing u32 = std::uint32_t;\nusing u64 = std::uint64_t;\n\nusing usize = std::size_t;\n\n} // namespace zawa\n\n\n\nnamespace zawa {\n\nnamespace concepts {\n\ntemplate <class T>\nconcept Semigroup = requires {\n typename T::Element;\n { T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;\n};\n\n} // namespace concepts\n\n} // namespace zawa\n\n\nnamespace zawa {\n\nnamespace concepts {\n\ntemplate <class T>\nconcept Identitiable = requires {\n typename T::Element;\n { T::identity() } -> std::same_as<typename T::Element>;\n};\n\ntemplate <class T>\nconcept Monoid = Semigroup<T> and Identitiable<T>;\n\n} // namespace\n\n} // namespace zawa\n\n#include <vector>\n#include <cassert>\n#include <functional>\n#include <type_traits>\n#include <ostream>\n\nnamespace zawa {\n\ntemplate <concepts::Monoid Monoid>\nclass SegmentTree {\npublic:\n\n using VM = Monoid;\n\n using V = typename VM::Element;\n\n using OM = Monoid;\n\n using O = typename OM::Element;\n\n SegmentTree() = default;\n\n explicit SegmentTree(usize n) : m_n{ n }, m_dat(n << 1, VM::identity()) {}\n\n explicit SegmentTree(const std::vector<V>& dat) : m_n{ dat.size() }, m_dat(dat.size() << 1, VM::identity()) {\n for (usize i{} ; i < m_n ; i++) {\n m_dat[i + m_n] = dat[i];\n }\n for (usize i{m_n} ; i-- ; ) {\n m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);\n }\n }\n\n [[nodiscard]] inline usize size() const noexcept {\n return m_n;\n }\n\n [[nodiscard]] V get(usize i) const {\n assert(i < size());\n return m_dat[i + m_n];\n }\n\n [[nodiscard]] V operator[](usize i) const {\n assert(i < size());\n return m_dat[i + m_n];\n }\n\n void operation(usize i, const O& value) {\n assert(i < size());\n i += size();\n m_dat[i] = OM::operation(m_dat[i], value);\n while (i = parent(i), i) {\n m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);\n }\n }\n\n void assign(usize i, const V& value) {\n assert(i < size());\n i += size();\n m_dat[i] = value;\n while (i = parent(i), i) {\n m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);\n }\n }\n\n [[nodiscard]] V product(u32 l, u32 r) const {\n assert(l <= r and r <= size());\n V L{ VM::identity() }, R{ VM::identity() };\n for (l += size(), r += size() ; l < r ; l = parent(l), r = parent(r)) {\n if (l & 1) {\n L = VM::operation(L, m_dat[l++]);\n }\n if (r & 1) {\n R = VM::operation(m_dat[--r], R);\n }\n }\n return VM::operation(L, R);\n }\n\n template <class F>\n requires std::predicate<F, V>\n [[nodiscard]] usize maxRight(usize l, const F& f) {\n assert(l < size());\n static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, \"maxRight's argument f must be function bool(T)\");\n assert(f(VM::identity()));\n usize res{l}, width{1};\n V prod{ VM::identity() };\n // 現在の見ている頂点の幅をwidthで持つ\n // 境界がある頂点を含む部分木の根を探す\n // (折り返す時は必要以上の幅を持つ根になるが、widthを持っているのでオーバーしない)\n for (l += size() ; res + width <= size() ; l = parent(l), width <<= 1) if (l & 1) {\n if (not f(VM::operation(prod, m_dat[l]))) break; \n res += width;\n prod = VM::operation(prod, m_dat[l++]);\n }\n // 根から下って、境界を発見する\n while (l = left(l), width >>= 1) {\n if (res + width <= size() and f(VM::operation(prod, m_dat[l]))) {\n res += width;\n prod = VM::operation(prod, m_dat[l++]);\n } \n }\n return res;\n }\n\n template <class F>\n requires std::predicate<F, V>\n [[nodiscard]] usize minLeft(usize r, const F& f) const {\n assert(r <= size());\n static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, \"minLeft's argument f must be function bool(T)\");\n assert(f(VM::identity()));\n usize res{r}, width{1};\n V prod{ VM::identity() };\n for (r += size() ; res >= width ; r = parent(r), width <<= 1) if (r & 1) {\n if (not f(VM::operation(m_dat[r - 1], prod))) break;\n res -= width;\n prod = VM::operation(prod, m_dat[--r]);\n }\n while (r = left(r), width >>= 1) {\n if (res >= width and f(VM::operation(m_dat[r - 1], prod))) {\n res -= width;\n prod = VM::operation(m_dat[--r], prod);\n }\n }\n return res;\n }\n\n friend std::ostream& operator<<(std::ostream& os, const SegmentTree& st) {\n for (usize i{1} ; i < 2 * st.size() ; i++) {\n os << st.m_dat[i] << (i + 1 == 2 * st.size() ? \"\" : \" \");\n }\n return os;\n }\n\nprivate:\n\n constexpr u32 left(u32 v) const {\n return v << 1;\n }\n\n constexpr u32 right(u32 v) const {\n return v << 1 | 1;\n }\n\n constexpr u32 parent(u32 v) const {\n return v >> 1;\n }\n\n usize m_n;\n\n std::vector<V> m_dat;\n};\n\n} // namespace zawa\n\n#include <iostream>\n\nusing namespace std;\nusing namespace zawa;\nusing M = SubarraySumMaxMonoid<long long>;\nint main() {\n cin.tie(0);\n cout.tie(0);\n ios::sync_with_stdio(0);\n int N, Q;\n cin >> N >> Q;\n vector<M::Element> A(N);\n for (int i = 0 ; i < N ; i++) {\n int a;\n cin >> a;\n A[i] = M::convert(a);\n }\n SegmentTree<M> seg{A};\n auto prod = [&]() -> long long {\n auto pd = seg.product(0, N);\n return pd ? max(pd->ans(), 0LL) : 0LL;\n };\n cout << prod() << '\\n';\n while (Q--) {\n int k, x;\n cin >> k >> x;\n k--;\n seg.assign(k, M::convert(x));\n cout << prod() << '\\n';\n }\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 17444, "score_of_the_acc": -0.6931, "final_rank": 13 }, { "submission_id": "aoj_3111_10314970", "code_snippet": "// AOJ #3111 Cutting Subarray\n// 2025.3.21\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nstruct Node { ll s, pre, suf, ans; };\n\nint n, q;\n\nNode mergeN(const Node &l, const Node &r) {\n Node res;\n res.s = l.s + r.s;\n res.pre = max(l.pre, l.s + r.pre);\n res.suf = max(r.suf, r.s + l.suf);\n res.ans = max({l.ans, r.ans, l.suf + r.pre});\n return res;\n}\n\nvector<Node> seg;\n\nNode make_node(ll v) {\n Node ret;\n ret.s = v;\n ret.pre = max(v, 0LL);\n ret.suf = max(v, 0LL);\n ret.ans = max(v, 0LL);\n return ret;\n}\n\nvoid build(int idx, int l, int r, const vector<ll>& a) {\n if(l == r) {\n seg[idx] = make_node(a[l-1]);\n return;\n }\n int mid = (l + r) >> 1;\n build(idx*2, l, mid, a);\n build(idx*2+1, mid+1, r, a);\n seg[idx] = mergeN(seg[idx*2], seg[idx*2+1]);\n}\n\nvoid update(int idx, int l, int r, int pos, ll v) {\n if(l == r) {\n seg[idx] = make_node(v);\n return;\n }\n int mid = (l + r) >> 1;\n if(pos <= mid) update(idx*2, l, mid, pos, v);\n else update(idx*2+1, mid+1, r, pos, v);\n seg[idx] = mergeN(seg[idx*2], seg[idx*2+1]);\n}\n\nint main(){\n n = Cin(), q = Cin();\n vector<ll> a(n);\n for(int i = 0; i < n; i++) a[i] = Cin();\n\n seg.resize(n * 4);\n build(1, 1, n, a);\n\n Cout(seg[1].ans);\n\n for(int i = 0; i < q; i++){\n int pos = Cin();\n ll x = Cin();\n update(1, 1, n, pos, x);\n Cout(seg[1].ans);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 16436, "score_of_the_acc": -0.5323, "final_rank": 12 }, { "submission_id": "aoj_3111_10314967", "code_snippet": "// AOJ #3111 Cutting Subarray\n// 2025.3.21\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nstruct Node { ll s, pre, suf, ans; };\n\nint n, q;\n\nNode mergeN(const Node &l, const Node &r) {\n Node res;\n res.s = l.s + r.s;\n res.pre = max(l.pre, l.s + r.pre);\n res.suf = max(r.suf, r.s + l.suf);\n res.ans = max({l.ans, r.ans, l.suf + r.pre});\n return res;\n}\n\nvector<Node> seg;\n\nNode make_node(ll v) {\n Node ret;\n ret.s = v;\n ret.pre = max(v, 0LL);\n ret.suf = max(v, 0LL);\n ret.ans = max(v, 0LL);\n return ret;\n}\n\nvoid build(int idx, int l, int r, const vector<ll>& a) {\n if(l == r) {\n seg[idx] = make_node(a[l-1]);\n return;\n }\n int mid = (l + r) >> 1;\n build(idx*2, l, mid, a);\n build(idx*2+1, mid+1, r, a);\n seg[idx] = mergeN(seg[idx*2], seg[idx*2+1]);\n}\n\nvoid update(int idx, int l, int r, int pos, ll v) {\n if(l == r) {\n seg[idx] = make_node(v);\n return;\n }\n int mid = (l + r) >> 1;\n if(pos <= mid) update(idx*2, l, mid, pos, v);\n else update(idx*2+1, mid+1, r, pos, v);\n seg[idx] = mergeN(seg[idx*2], seg[idx*2+1]);\n}\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n cin >> n >> q;\n vector<ll> a(n);\n for(int i = 0; i < n; i++) cin >> a[i];\n\n seg.resize(n * 4);\n build(1, 1, n, a);\n\n cout << seg[1].ans << endl;\n\n for(int i = 0; i < q; i++){\n int pos; ll x;\n cin >> pos >> x;\n update(1, 1, n, pos, x);\n cout << seg[1].ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 16472, "score_of_the_acc": -0.8261, "final_rank": 16 }, { "submission_id": "aoj_3111_8027397", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nusing ll = long long;\n\nstruct S{\n ll min;\n ll max;\n ll best;\n ll lazy;\n\n S(ll min,ll max,ll best):min(min),max(max),best(best),lazy(0){}\n S():min(0),max(0),best(0){}\n};\n\nS f(ll v){\n return S(v,v,max<ll>(0,v));\n}\n\nS g(S a,S b){\n ll nmin = min(a.min, b.min);\n ll nmax = max(a.max, b.max);\n ll nbest = max(max(a.best, b.best), b.max - a.min);\n return S(nmin,nmax,nbest);\n}\n\nvector<ll> func(){\n int n;\n int q;\n cin >> n >> q;\n vector<S> sg(n*5+10);\n auto change = [&](auto change, int l,int r,int t,int p,ll v) -> void{\n if(t < l or r <= t)return;\n if(l + 1 == r){\n sg[p] = f(v);\n return;\n }\n int lp = p * 2 + 0;\n int rp = p * 2 + 1;\n int mid = (l + r) / 2;\n change(change, l, mid, t, lp, v);\n change(change, mid,r, t, rp, v);\n sg[p] = g(sg[lp], sg[rp]);\n };\n\n auto range = [&](auto range,int l,int r,int L,int R,int p,ll v) -> void {\n if(R <= l or r <= L)return;\n if(l <= L and R <= r){\n sg[p].lazy += v;\n sg[p].min += v;\n sg[p].max += v;\n return;\n }\n int MID = (L + R) / 2;\n int lp = p * 2 + 0;\n int rp = p * 2 + 1;\n if(sg[p].lazy){\n sg[lp].lazy += sg[p].lazy;\n sg[lp].min += sg[p].lazy;\n sg[lp].max += sg[p].lazy;\n sg[rp].lazy += sg[p].lazy;\n sg[rp].min += sg[p].lazy;\n sg[rp].max += sg[p].lazy;\n sg[p].lazy = 0;\n }\n range(range, l, r, L, MID, lp, v);\n range(range, l, r, MID, R, rp, v);\n sg[p] = g(sg[lp], sg[rp]);\n };\n\n vector<ll> as(n+1,0);\n vector<ll> vs(n+1,0);\n\n for(int i=0;i<n;++i){\n ll v;\n cin >> v;\n as[i+1] = as[i] + v;\n vs[i+1] = v;\n change(change, 0, n+1, i+1, 1, as[i+1]);\n }\n vector<ll> res;\n res.push_back(sg[1].best);\n for(int i=0;i<q;++i){\n int k;\n ll v;\n cin >> k >> v;\n range(range, k,n+1,0,n+1,1,v-vs[k]);\n vs[k] = v;\n res.push_back(sg[1].best);\n }\n return res;\n}\n\nint main(){\n for(auto i:func()){\n cout << i << endl;\n }\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 21332, "score_of_the_acc": -1.4516, "final_rank": 18 }, { "submission_id": "aoj_3111_6938147", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\ntemplate<class T> T min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\n\n\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param n `0 <= n`\n// @return minimum non-negative `x` s.t. `n <= 2**x`\nint ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\n\n// @param n `1 <= n`\n// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\nint bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n}\n\n} // namespace internal\n\ntemplate <class S,\n S (*op)(S, S),\n S (*e)(),\n class F,\n S (*mapping)(F, S),\n F (*composition)(F, F),\n F (*id)()>\nstruct lazy_segtree {\n public:\n lazy_segtree() : lazy_segtree(0) {}\n lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}\n lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = internal::ceil_pow2(_n);\n size = 1 << log;\n d = std::vector<S>(2 * size, e());\n lz = std::vector<F>(size, id());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n return d[p];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return e();\n\n l += size;\n r += size;\n\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push(r >> i);\n }\n\n S sml = e(), smr = e();\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n void apply(int p, F f) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n d[p] = mapping(f, d[p]);\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n void apply(int l, int r, F f) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return;\n\n l += size;\n r += size;\n\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n\n {\n int l2 = l, r2 = r;\n while (l < r) {\n if (l & 1) all_apply(l++, f);\n if (r & 1) all_apply(--r, f);\n l >>= 1;\n r >>= 1;\n }\n l = l2;\n r = r2;\n }\n\n for (int i = 1; i <= log; i++) {\n if (((l >> i) << i) != l) update(l >> i);\n if (((r >> i) << i) != r) update((r - 1) >> i);\n }\n }\n\n template <bool (*g)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return g(x); });\n }\n template <class G> int max_right(int l, G g) {\n assert(0 <= l && l <= _n);\n assert(g(e()));\n if (l == _n) return _n;\n l += size;\n for (int i = log; i >= 1; i--) push(l >> i);\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!g(op(sm, d[l]))) {\n while (l < size) {\n push(l);\n l = (2 * l);\n if (g(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*g)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return g(x); });\n }\n template <class G> int min_left(int r, G g) {\n assert(0 <= r && r <= _n);\n assert(g(e()));\n if (r == 0) return 0;\n r += size;\n for (int i = log; i >= 1; i--) push((r - 1) >> i);\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!g(op(d[r], sm))) {\n while (r < size) {\n push(r);\n r = (2 * r + 1);\n if (g(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n std::vector<F> lz;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n void all_apply(int k, F f) {\n d[k] = mapping(f, d[k]);\n if (k < size) lz[k] = composition(f, lz[k]);\n }\n void push(int k) {\n all_apply(2 * k, lz[k]);\n all_apply(2 * k + 1, lz[k]);\n lz[k] = id();\n }\n};\n\n} // namespace atcoder\nusing namespace atcoder;\n\n\nstruct lazy_S {\n ll ans;\n\tll min_val;\n\tll max_val;\n};\n\nusing lazy_F = ll;\n\nlazy_S lazy_op(lazy_S l, lazy_S r) {\n return lazy_S{\n\t\tmax(max(l.ans,r.ans),r.max_val-l.min_val),min(l.min_val,r.min_val),max(l.max_val,r.max_val)\n };\n}\n\nlazy_S lazy_e() { return lazy_S{0,ILL,-ILL}; }\n\nlazy_S mapping(lazy_F l, lazy_S r) {\n\treturn lazy_S{\n\t\tr.ans,r.min_val+l,r.max_val+l\n\t};\n}\n\n//l(r(x))\nlazy_F composition(lazy_F l, lazy_F r) {\n\treturn l+r;\n}\n\nlazy_F lazy_id(){return 0;}\n\n#define lazy_calc lazy_S,lazy_op,lazy_e,lazy_F,mapping,composition,lazy_id\n\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N,Q;\n\tcin>>N>>Q;\n\tvector<ll> A(N);\n\tlazy_segtree<lazy_calc> seg(N+1);\n\tseg.set(0,{0,0,0});\n\tll S=0;\n\trep(i,N){\n\t\tcin>>A[i];\n\t\tS+=A[i];\n\t\tseg.set(i+1,{0,S,S});\n\t}\n\trep(i,Q+1){\n\t\tcout<<seg.all_prod().ans<<\"\\n\";\n\t\tif(i==Q) break;\n\t\tll k,x;\n\t\tcin>>k>>x;\n\t\tseg.apply(k,N+1,-A[k-1]);\n\t\tA[k-1]=x;\n\t\tseg.apply(k,N+1,A[k-1]);\n\t}\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 13504, "score_of_the_acc": -0.4457, "final_rank": 9 }, { "submission_id": "aoj_3111_5581774", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\n\n// 最大部分列をセグ木で求める\nstruct monoid{\n ll ans; // その区間における最大部分列\n ll L,R; // 左(右)側累積和最大値\n ll sum; // 区間の総和\n monoid(){\n ans=0;\n L=R=0;\n sum=0;\n }\n monoid(ll x){\n ans=max(x,0LL);\n L=R=max(x,0LL);\n sum=x;\n }\n};\nmonoid f(monoid A,monoid B){\n monoid res;\n res.L=max(A.L,A.sum+B.L);\n res.R=max(B.R,B.sum+A.R);\n res.sum=A.sum+B.sum;\n res.ans=max(A.ans,B.ans);\n res.ans=max(res.ans,A.R+B.L);\n return res;\n}\nstruct SegmentTree{\n int sz;\n vector<monoid> seg;\n SegmentTree(int n){\n sz=1;\n while(sz<n)sz<<=1;\n seg.resize(2*sz);\n }\n void set(int i,ll x){\n seg[i+sz]=monoid(x);\n }\n void init(){\n for(int i=sz-1;i>0;i--){\n seg[i]=f(seg[2*i],seg[2*i+1]);\n }\n }\n void update(int k,ll x){\n k+=sz;\n seg[k]=monoid(x);\n while(k>>=1){\n seg[k]=f(seg[2*k],seg[2*k+1]);\n }\n }\n monoid query(int l,int r){\n monoid L,R;\n for(l+=sz,r+=sz;l<r;l>>=1,r>>=1){\n if(l&1) L=f(L,seg[l++]);\n if(r&1) R=f(seg[--r],R);\n }\n return f(L,R);\n }\n};\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n,q; cin >> n >> q;\n SegmentTree seg(n);\n for(int i=0;i<n;i++){\n ll a; cin >> a;\n seg.set(i,a);\n }\n seg.init();\n printf(\"%lld\\n\",seg.query(0,n).ans);\n while(q--){\n int i,x; cin >> i >> x;\n seg.update(i-1,x);\n printf(\"%lld\\n\",seg.query(0,n).ans);\n }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 11324, "score_of_the_acc": -0.0762, "final_rank": 1 }, { "submission_id": "aoj_3111_4907927", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\nconst double pi = 3.141592653589793238462643383279;\nusing namespace std;\n//typedef\n//------------------------------------------\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\ntypedef long long LL;\ntypedef unsigned long long ULL;\ntypedef vector<LL> VLL;\ntypedef vector<VLL> VVLL;\n\n//container util\n//------------------------------------------\n#define ALL(a) (a).begin(), (a).end()\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define MP make_pair\n#define SZ(a) int((a).size())\n#define SQ(a) ((a) * (a))\n#define EACH(i, c) for (typeof((c).begin()) i = (c).begin(); i != (c).end(); ++i)\n#define EXIST(s, e) ((s).find(e) != (s).end())\n#define SORT(c) sort((c).begin(), (c).end())\n\n//repetition\n//------------------------------------------\n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define MOD 1000000007\n\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n#define sz(x) (int)(x).size()\n\ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef vector<int> vi;\n\n#define chmin(x, y) x = min(x, y)\n#define chmax(x, y) x = max(x, y)\nconst double EPS = 1e-10, PI = acos(-1);\n//ここから編集\nstruct Node{\n ll sum, rsum, lsum, maxsum;\n Node(){}\n Node(ll a, ll b, ll c, ll d): sum(a), rsum(max(0LL,b)), lsum(max(0LL,c)), maxsum(max(0LL,d)){}\n};\n\nNode merge(Node &l, Node &r){\n Node res;\n res.sum = l.sum + r.sum;\n res.lsum = max(l.lsum, l.sum + r.lsum);\n res.rsum = max(r.rsum, r.sum + l.rsum);\n res.maxsum = max(max(l.maxsum, r.maxsum), l.rsum+r.lsum);\n return res;\n}\nstruct SegmentTree{\n vector<Node> node;\n int N;\n SegmentTree(vector<ll> &v){\n int n = v.size();\n N = 1;\n while(N < n) N *= 2;\n \n node.resize(N*2-1);\n for(int i=0; i<n; i++) node[i+N-1] = Node(v[i], v[i], v[i], v[i]);\n for(int i=N-2; i>=0; i--) node[i] = merge(node[i*2+1], node[i*2+2]);\n }\n\n void update(int k, ll x){\n k += N-1;\n node[k] = Node(x, x, x, x);\n while(k > 0){\n k = (k-1)/2;\n node[k] = merge(node[k*2+1], node[k*2+2]);\n }\n }\n\n Node query(int a, int b, int k, int l, int r){\n if(r <= a || b <= l) return Node(0,0,0,0);\n if(a <= l && r <= b) return node[k];\n else{\n Node vl = query(a, b, 2*k+1, l, (l+r)/2);\n Node vr = query(a, b, 2*k+2, (l+r)/2, r);\n return merge(vl, vr);\n }\n }\n\n Node query(int l, int r){\n return query(l, r, 0, 0, N);\n }\n};\nint main()\n{\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n\n int n, q; cin >> n >> q;\n vector<ll> a(n);\n REP(i,n) cin >> a[i];\n\n SegmentTree seg(a);\n cout << seg.query(0, n).maxsum << endl;\n REP(i,q){\n int k, x; cin >> k >> x;\n k--;\n seg.update(k, x);\n cout << seg.query(0, n).maxsum << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 10864, "score_of_the_acc": -0.3548, "final_rank": 6 }, { "submission_id": "aoj_3111_4897917", "code_snippet": "#pragma GCC target(\"avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <unordered_map>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\n#include <unordered_map>\n#include <fstream>\n#include <ctime>\n#include <complex>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 510000;\nll dy[8] = {1,-1,0,0,1,-1,1,-1};\nll dx[8] = {0,0,1,-1,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-10;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << \"debug: \" << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << \"debug: \" << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\ntemplate<typename Monoid>\nstruct Segtree {\n\tusing F = function<Monoid(Monoid, Monoid)>;\n\tint sz;\n\tvector<Monoid> seg;\n\tconst F f;\n\tconst Monoid M;\n\n\tSegtree(int n, const F f, const Monoid &M) : f(f), M(M){\n\t\tsz = 1;\n\t\twhile(sz < n) sz <<= 1;\n\t\tseg.assign(2*sz, M);\n\t}\n\n\tvoid set(int k, const Monoid &x) {\n\t\tseg[k + sz] = x;\n\t}\n\n\tvoid build(){\n\t\tfor(int k=sz-1; k>0; k--){\n\t\t\tseg[k] = f(seg[2*k], seg[2*k+1]);\n\t\t}\n\t}\n\n\tvoid update(int k, const Monoid &x){\n\t\tk += sz;\n\t\tseg[k] = x;\n\t\twhile(k >>= 1){\n\t\t\tseg[k] = f(seg[2*k], seg[2*k+1]);\n\t\t}\n\t}\n\n\tMonoid query(int a, int b){\n\t\tMonoid L = M, R = M;\n\t\tfor(a += sz, b += sz; a < b; a >>= 1, b >>= 1){\n\t\t\tif(a & 1) L = f(L, seg[a++]);\n\t\t\tif(b & 1) R = f(seg[--b], R);\n\t\t}\n\t\treturn f(L, R);\n\t}\n\n\tMonoid operator[](const int &k) const {\n\t\treturn seg[k + sz];\n\t}\n\n\ttemplate<typename C>\n\tint find_subtree(int a, const C &check, Monoid &M0, bool type){\n\t\twhile(a < sz){\n\t\t\tMonoid nxt = type ? f(seg[2*a]+type,M0) : f(M0,seg[2*a]+type);\n\t\t\tif(check(nxt)) a = 2 * a + type;\n\t\t\telse M0 = nxt, a = 2 * a + 1 - type;\n\t\t}\n\t\treturn a - sz;\n\t}\n\n\ttemplate<typename C>\n\tint find_first(int a, const C &check){\n\t\tMonoid L = M;\n\t\tif(a <= 0){\n\t\t\tif(check(f(L, seg[1]))) return find_subtree(1,check,L,false);\n\t\t\treturn -1;\n\t\t}\n\t\tint b = sz;\n\t\tfor(a += sz, b += sz; a < b; a >>= 1, b >>= 1){\n\t\t\tif(a & 1){\n\t\t\t\tMonoid nxt = f(L, seg[a]);\n\t\t\t\tif(check(nxt)) return find_subtree(a,L,check,false);\n\t\t\t\tL = nxt;\n\t\t\t\t++a;\n\t\t\t}\n\t\t}\n\t\treturn -1;\n\t}\n\n\ttemplate<typename C>\n\tint find_last(int b, const C &check){\n\t\tMonoid R = M;\n\t\tif(b >= sz){\n\t\t\tif(check(f(seg[1], R))) return find_subtree(1,check,R,true);\n\t\t\treturn -1;\n\t\t}\n\t\tint a = sz;\n\t\tfor(b += sz; a < b; a >>= 1, b >>= 1){\n\t\t\tif(b & 1){\n\t\t\t\tMonoid nxt = f(seg[--b], R);\n\t\t\t\tif(check(nxt)) return find_subtree(b,check,R,true);\n\t\t\t\tR = nxt;\n\t\t\t}\n\t\t}\n\t\treturn -1;\n\t}\n};\n\nstruct T{\n\tll l, r, mx, all;\n};\n\nauto f = [](T a, T b){\n\tT res;\n\tres.mx = max({a.mx, b.mx, a.r + b.l});\n\tres.l = max(a.l, a.all + b.l);\n\tres.r = max(b.r, a.r + b.all);\n\tres.all = a.all + b.all;\n\treturn res;\n};\n\nint main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tint n,q; cin >> n >> q;\n\tSegtree<T> seg(n,f,T{0,0,0,0});\n\trep(i,n){\n\t\tll a; cin >> a;\n\t\tseg.set(i,T{a,a,a,a});\n\t}\n\tseg.build();\n\tcout << seg.query(0,n).mx << \"\\n\";\n\twhile(q--){\n\t\tll k,x; cin >> k >> x; k--;\n\t\tseg.update(k,T{x,x,x,x});\n\t\tcout << seg.query(0,n).mx << \"\\n\";\n\t}\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 10988, "score_of_the_acc": -0.0764, "final_rank": 2 }, { "submission_id": "aoj_3111_4878065", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include <bits/stdc++.h>\n#define ll long long\n#define rep(i,n) for(ll i=0;i<(n);i++)\n#define pll pair<ll,ll>\n#define pii pair<int,int>\n#define pq priority_queue\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define endl '\\n'\n#define ios ios_base::sync_with_stdio(0),cin.tie(0),cout.tie(0);\n#define lb(c,x) distance(c.begin(),lower_bound(all(c),x))\n#define ub(c,x) distance(c.begin(),upper_bound(all(c),x))\n\nusing namespace std;\n\n#include <algorithm>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n \nnamespace internal {\n \n// @param n `0 <= n`\n// @return minimum non-negative `x` s.t. `n <= 2**x`\nint ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\n \n// @param n `1 <= n`\n// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\nint bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n}\n \n} // namespace internal\n \n} // namespace atcoder\n \n#include <cassert>\n#include <vector>\n\nnamespace atcoder {\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n public:\n segtree() : segtree(0) {}\n segtree(int n) : segtree(std::vector<S>(n, e())) {}\n segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = internal::ceil_pow2(_n);\n size = 1 << log;\n d = std::vector<S>(2 * size, e());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n return d[p + size];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n S sml = e(), smr = e();\n l += size;\n r += size;\n\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n template <bool (*f)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return f(x); });\n }\n template <class F> int max_right(int l, F f) {\n assert(0 <= l && l <= _n);\n assert(f(e()));\n if (l == _n) return _n;\n l += size;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, d[l]))) {\n while (l < size) {\n l = (2 * l);\n if (f(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*f)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return f(x); });\n }\n template <class F> int min_left(int r, F f) {\n assert(0 <= r && r <= _n);\n assert(f(e()));\n if (r == 0) return 0;\n r += size;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(d[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (f(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n};\n\n} // namespace atcoder\n\n\n \n\nusing namespace atcoder;\n\n\nstruct S{\n ll all,left,right,mid;\n};\n\nS op(S a,S b){\n S res;\n res.all=a.all+b.all;\n res.left=max(a.left,a.all+b.left);\n res.right=max(b.all+a.right,b.right);\n res.mid=max({a.right+b.left,a.mid,b.mid});\n \n return res;\n}\n\nS e(){\n S res;\n res.all=0;\n res.left=0;\n res.right=0;\n res.mid=0;\n return res;\n}\n\n\nint main(){\n ios;\n ll n,q;\n cin >> n >> q;\n segtree<S,op,e> seg(n);\n rep(i,n){\n ll a;\n cin >> a;\n S res;\n res.all=a;\n res.left=max(0LL,a);\n res.right=max(0LL,a);\n res.mid=max(0LL,a);\n seg.set(i,res);\n }\n S ans=seg.all_prod();\n cout << max({ans.all,ans.left,ans.right,ans.mid}) << endl;\n while(q--){\n ll k,x;\n cin >> k >> x;\n k--;\n S v;\n v.all=x;\n v.left=max(0LL,x);\n v.right=max(0LL,x);\n v.mid=max(0LL,x);\n seg.set(k,v);\n S ans=seg.all_prod();\n cout << max({ans.all,ans.left,ans.right,ans.mid}) << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 14420, "score_of_the_acc": -0.4042, "final_rank": 7 }, { "submission_id": "aoj_3111_4864347", "code_snippet": "#include <algorithm>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param n `0 <= n`\n// @return minimum non-negative `x` s.t. `n <= 2**x`\nint ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\n\n// @param n `1 <= n`\n// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\nint bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <vector>\n\nnamespace atcoder {\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n public:\n segtree() : segtree(0) {}\n segtree(int n) : segtree(std::vector<S>(n, e())) {}\n segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = internal::ceil_pow2(_n);\n size = 1 << log;\n d = std::vector<S>(2 * size, e());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n return d[p + size];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n S sml = e(), smr = e();\n l += size;\n r += size;\n\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n template <bool (*f)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return f(x); });\n }\n template <class F> int max_right(int l, F f) {\n assert(0 <= l && l <= _n);\n assert(f(e()));\n if (l == _n) return _n;\n l += size;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, d[l]))) {\n while (l < size) {\n l = (2 * l);\n if (f(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*f)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return f(x); });\n }\n template <class F> int min_left(int r, F f) {\n assert(0 <= r && r <= _n);\n assert(f(e()));\n if (r == 0) return 0;\n r += size;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(d[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (f(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n};\n\n} // namespace atcoder\n\nusing namespace atcoder;\n#include <bits/stdc++.h>\n#define rep(i, n) for (int i = 0; i < (int)n; ++i)\n#define rrep(i, n) for (int i = (int)n-1; i >= 0; --i)\nusing namespace std;\nusing ll = long long;\ntemplate<typename T>\ninline bool chmax(T& a, const T& b) {\n if (a < b){\n a = b;\n return true;\n }\n return false;\n}\ntemplate<typename T>\ninline bool chmin(T& a, const T& b) {\n if (b < a) {\n a = b;\n return true;\n }\n return false;\n}\n/**\n * @brief 多次元 vector の作成\n * @author えびちゃん\n */\nnamespace detail {\n template<typename T, int N>\n auto make_vec(vector<int>& sizes, T const& x) {\n if constexpr (N == 1) {\n return vector(sizes[0], x);\n } else {\n int size = sizes[N-1];\n sizes.pop_back();\n return vector(size, make_vec<T, N-1>(sizes, x));\n }\n }\n}\ntemplate<typename T, int N>\nauto make_vec(int const(&sizes)[N], T const& x = T()) {\n vector<int> s(N);\n for (int i = 0; i < N; ++i) s[i] = sizes[N-i-1];\n return detail::make_vec<T, N>(s, x);\n}\n__attribute__((constructor))\nvoid fast_io() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n}\n\nstruct S {\n ll sum, lmax, rmax, max; \n S(ll sum = 0, ll lmax = 0, ll rmax = 0, ll max = 0) : sum(sum), lmax(lmax), rmax(rmax), max(max) {}\n};\n\nS op (S l, S r) {\n S res;\n res.sum = l.sum + r.sum;\n res.lmax = max(l.lmax, l.sum + r.lmax);\n res.rmax = max(l.rmax + r.sum, r.rmax);\n res.max = max({l.max, r.max, res.lmax, res.rmax, l.rmax + r.lmax});\n return res;\n}\n\nS e() {\n return S();\n}\n\nint main() {\n int n, q;\n cin >> n >> q;\n vector<S> a(n);\n rep(i, n) {\n int x;\n cin >> x; \n a[i].sum = x;\n chmax<ll>(a[i].lmax, x);\n chmax<ll>(a[i].rmax, x);\n chmax<ll>(a[i].max, x);\n }\n segtree<S, op, e> seg(a);\n cout << seg.all_prod().max << '\\n';\n while (q--) {\n int k, x;\n cin >> k >> x;\n k--;\n S update;\n update.sum = x;\n chmax<ll>(update.lmax, x);\n chmax<ll>(update.rmax, x);\n chmax<ll>(update.max, x);\n seg.set(k, update);\n cout << seg.all_prod().max << '\\n';\n }\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 14516, "score_of_the_acc": -0.4456, "final_rank": 8 }, { "submission_id": "aoj_3111_4797484", "code_snippet": "#include<bits/stdc++.h>\n#include<array>\nusing namespace std;\nusing UL = unsigned int;\nusing ULL = unsigned long long;\nusing LL = long long;\n#define rep(i,n) for(int i=0; i<(n); i++)\n\nstruct VRSQ{\n LL Mr,Ml;\n LL S;\n LL xD;\n VRSQ(LL a=0){\n if(a>=0){ Ml=Mr=S=xD=a; }\n else{ Ml=Mr=0; S=a; xD=0; }\n }\n VRSQ operator+(const VRSQ& r) const {\n VRSQ ans;\n ans.Mr = max(Mr+r.S,r.Mr);\n ans.Ml = max(Ml,r.Ml+S);\n ans.S = S + r.S;\n ans.xD = max(max(xD,r.xD),Mr+r.Ml);\n return ans;\n }\n};\n\nstruct RSQ{\n int N;\n vector<VRSQ> V;\n void init(int n){\n N=1; while(N<n) N<<=1;\n V.resize(N*2);\n }\n void upd(int p,LL x){\n p+=N; V[p]=VRSQ(x);\n while(p!=1){\n p>>=1;\n V[p] = V[p<<1] + V[(p<<1)+1];\n }\n }\n LL query(){ return V[1].xD; }\n};\n\nint N,Q;\nRSQ G;\n\nint main() {\n scanf(\"%d%d\",&N,&Q);\n G.init(N);\n rep(i,N){\n int a; scanf(\"%d\",&a);\n G.upd(i,a);\n }\n\n printf(\"%lld\\n\",G.query());\n\n rep(i,Q){\n int k,x; scanf(\"%d%d\",&k,&x); k--;\n G.upd(k,x);\n printf(\"%lld\\n\",G.query());\n }\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 11012, "score_of_the_acc": -0.0787, "final_rank": 3 }, { "submission_id": "aoj_3111_4632758", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<n;++i)\n#define rrep(i,n) for(int i=n-1;i>=0;--i)\n#define fi first\n#define se second\n#define sz(x) (int)(x).size()\n#define all(v) v.begin(),v.end()\n#define rall(v) v.rbegin(),v.rend()\nusing namespace std;\nusing ll = long long;\nusing P = pair<int, int>;\ntemplate<typename T> inline bool chmax(T &a,T b){if(a<b){a=b;return 1;}return 0;}\ntemplate<typename T> inline bool chmin(T &a,T b){if(b<a){a=b;return 1;}return 0;}\ntemplate<typename T> vector<T> make_vec(size_t a){return vector<T>(a);}\ntemplate<typename T,typename... Ts>\nauto make_vec(size_t a,Ts... ts){return vector<decltype(make_vec<T>(ts...))>(a,make_vec<T>(ts...));}\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T,U>::value>::type fill_v(U &u,const V... v){u=U(v...);}\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<!is_same<T,U>::value>::type fill_v(U &u,const V... v){for(auto &e:u)fill_v<T>(e,v...);}\n\ntemplate <typename T>\nstruct segment_tree {\n using F = function<T(T, T)>;\n int n;\n vector<T> data;\n F operation;\n T identity;\n segment_tree(F operation, T identity)\n : operation(operation), identity(identity) {}\n void init(int n_) {\n n = 1;\n while (n < n_) n <<= 1;\n data.assign(n<<1, identity);\n }\n void build(const vector<T> &v) {\n int n_ = (int)v.size();\n init(n_);\n for (int i = 0; i < n_; ++i) data[n+i] = v[i];\n for (int i = n-1; i >= 1; --i) {\n data[i] = operation(data[i<<1|0], data[i<<1|1]);\n }\n }\n T operator[](int i) { return data[n+i];}\n void set(int i, T x) {\n i += n;\n data[i] = x;\n while (i > 1) {\n i >>= 1;\n data[i] = operation(data[i<<1|0], data[i<<1|1]);\n }\n }\n T fold(int l, int r) {\n l += n; r += n;\n T resl = identity, resr = identity;\n while (l < r) {\n if (l & 1) resl = operation(resl, data[l++]);\n if (r & 1) resr = operation(data[--r], resr);\n l >>= 1; r >>= 1;\n }\n return operation(resl, resr);\n }\n template <typename C>\n int find(int st, C &check, T &acc, int i, int l, int r) {\n if (l+1 == r) {\n acc = operation(acc, data[i]);\n return check(acc) ? i-n : -1;\n }\n int m = (l+r)>>1;\n if (m <= st) return find(st, check, acc, i<<1|1, m, r);\n if (st <= l && !check(operation(acc, data[i]))) {\n acc = operation(acc, data[i]);\n return -1;\n }\n int vl = find(st, check, acc, i<<1|0, l, m);\n if (vl != -1) return vl;\n return find(st, check, acc, i<<1|1, m, r);\n }\n // min idx s.t. st <= idx && !check(fold(st, idx-1)) && check(fold(st, idx))\n template <typename C>\n int find(int st, C &check) {\n T acc = identity;\n return find(st, check, identity, 1, 0, n);\n }\n};\n\nstruct max_subarray {\n ll sum, l, r, mx;\n max_subarray(ll sum=0, ll l=0, ll r=0, ll mx=0) : sum(sum), l(l), r(r), mx(mx) {}\n};\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n \n int n, q;\n cin >> n >> q;\n vector<int> a(n);\n rep(i, n) cin >> a[i];\n\n auto f = [](max_subarray x, max_subarray y) {\n max_subarray res;\n res.sum = x.sum + y.sum;\n res.l = max(x.l, x.sum + y.l);\n res.r = max(y.r, x.r + y.sum);\n res.mx = max({x.mx, y.mx, x.r + y.l});\n return res;\n };\n max_subarray id;\n\n vector<max_subarray> b(n);\n rep(i, n) {\n ll relu = a[i] * (a[i] > 0);\n max_subarray val{a[i], relu, relu, relu};\n b[i] = val;\n }\n \n segment_tree<max_subarray> seg(f, id);\n seg.build(b);\n max_subarray res = seg.fold(0, n);\n cout << res.mx << endl;\n while (q--) {\n int k, x;\n cin >> k >> x;\n k--;\n ll relu = x * (x > 0);\n max_subarray val{x, relu, relu, relu};\n seg.set(k, val);\n max_subarray res = seg.fold(0, n);\n cout << res.mx << endl;\n }\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 14452, "score_of_the_acc": -0.6976, "final_rank": 14 }, { "submission_id": "aoj_3111_4632749", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<n;++i)\n#define rrep(i,n) for(int i=n-1;i>=0;--i)\n#define fi first\n#define se second\n#define sz(x) (int)(x).size()\n#define all(v) v.begin(),v.end()\n#define rall(v) v.rbegin(),v.rend()\nusing namespace std;\nusing ll = long long;\nusing P = pair<int, int>;\ntemplate<typename T> inline bool chmax(T &a,T b){if(a<b){a=b;return 1;}return 0;}\ntemplate<typename T> inline bool chmin(T &a,T b){if(b<a){a=b;return 1;}return 0;}\ntemplate<typename T> vector<T> make_vec(size_t a){return vector<T>(a);}\ntemplate<typename T,typename... Ts>\nauto make_vec(size_t a,Ts... ts){return vector<decltype(make_vec<T>(ts...))>(a,make_vec<T>(ts...));}\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T,U>::value>::type fill_v(U &u,const V... v){u=U(v...);}\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<!is_same<T,U>::value>::type fill_v(U &u,const V... v){for(auto &e:u)fill_v<T>(e,v...);}\n\ntemplate <typename T>\nstruct segment_tree {\n using F = function<T(T, T)>;\n int n;\n vector<T> data;\n F operation;\n T identity;\n segment_tree(F operation, T identity)\n : operation(operation), identity(identity) {}\n void init(int n_) {\n n = 1;\n while (n < n_) n <<= 1;\n data.assign(n<<1, identity);\n }\n void build(const vector<T> &v) {\n int n_ = (int)v.size();\n init(n_);\n for (int i = 0; i < n_; ++i) data[n+i] = v[i];\n for (int i = n-1; i >= 1; --i) {\n data[i] = operation(data[i<<1|0], data[i<<1|1]);\n }\n }\n T operator[](int i) { return data[n+i];}\n void set(int i, T x) {\n i += n;\n data[i] = x;\n while (i > 1) {\n i >>= 1;\n data[i] = operation(data[i<<1|0], data[i<<1|1]);\n }\n }\n T fold(int l, int r) {\n l += n; r += n;\n T resl = identity, resr = identity;\n while (l < r) {\n if (l & 1) resl = operation(resl, data[l++]);\n if (r & 1) resr = operation(data[--r], resr);\n l >>= 1; r >>= 1;\n }\n return operation(resl, resr);\n }\n template <typename C>\n int find(int st, C &check, T &acc, int i, int l, int r) {\n if (l+1 == r) {\n acc = operation(acc, data[i]);\n return check(acc) ? i-n : -1;\n }\n int m = (l+r)>>1;\n if (m <= st) return find(st, check, acc, i<<1|1, m, r);\n if (st <= l && !check(operation(acc, data[i]))) {\n acc = operation(acc, data[i]);\n return -1;\n }\n int vl = find(st, check, acc, i<<1|0, l, m);\n if (vl != -1) return vl;\n return find(st, check, acc, i<<1|1, m, r);\n }\n // min idx s.t. st <= idx && !check(fold(st, idx-1)) && check(fold(st, idx))\n template <typename C>\n int find(int st, C &check) {\n T acc = identity;\n return find(st, check, identity, 1, 0, n);\n }\n};\n\nstruct max_subarray {\n ll sum, l, r, mx;\n max_subarray(ll sum=0, ll l=0, ll r=0, ll mx=0) : sum(sum), l(l), r(r), mx(mx) {}\n};\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n \n int n, q;\n cin >> n >> q;\n vector<int> a(n);\n rep(i, n) cin >> a[i];\n\n auto f = [](max_subarray x, max_subarray y) {\n max_subarray res;\n res.sum = x.sum + y.sum;\n res.l = max(x.l, x.sum + y.l);\n res.r = max(y.r, x.r + y.sum);\n res.mx = max({x.mx, y.mx, x.r + y.l});\n return res;\n };\n max_subarray id;\n\n vector<max_subarray> b(n);\n rep(i, n) {\n ll relu = a[i] * (a[i] > 0);\n max_subarray val{a[i], relu, relu, relu};\n b[i] = val;\n }\n \n segment_tree<max_subarray> seg(f, id);\n seg.build(b);\n max_subarray res = seg.fold(0, n);\n cout << res.mx << endl;\n while (q--) {\n int k, x;\n cin >> k >> x;\n k--;\n ll relu = x * (x > 0);\n max_subarray val{x, relu, relu, relu};\n seg.set(k, val);\n max_subarray res = seg.fold(0, n);\n cout << res.mx << endl;\n }\n \n}", "accuracy": 1, "time_ms": 130, "memory_kb": 14452, "score_of_the_acc": -0.6976, "final_rank": 14 }, { "submission_id": "aoj_3111_4076875", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\ntemplate <typename T>\nstruct SegmentTree{\n using F = function<T(T,T)>;\n Int n;\n F f;\n T ti;\n vector<T> dat;\n SegmentTree(){};\n SegmentTree(F f,T ti):f(f),ti(ti){}\n void init(Int n_){\n n=1;\n while(n<n_) n<<=1;\n dat.assign(n<<1,ti);\n }\n void build(const vector<T> &v){\n Int n_=v.size();\n init(n_);\n for(Int i=0;i<n_;i++) dat[n+i]=v[i];\n for(Int i=n-1;i;i--)\n dat[i]=f(dat[(i<<1)|0],dat[(i<<1)|1]);\n }\n void set_val(Int k,T x){\n dat[k+=n]=x;\n while(k>>=1)\n dat[k]=f(dat[(k<<1)|0],dat[(k<<1)|1]);\n }\n T query(Int a,Int b){\n T vl=ti,vr=ti;\n for(Int l=a+n,r=b+n;l<r;l>>=1,r>>=1) {\n if(l&1) vl=f(vl,dat[l++]);\n if(r&1) vr=f(dat[--r],vr);\n }\n return f(vl,vr);\n }\n template<typename C>\n Int find(Int st,C &check,T &acc,Int k,Int l,Int r){\n if(l+1==r){\n acc=f(acc,dat[k]);\n return check(acc)?k-n:-1;\n }\n Int m=(l+r)>>1;\n if(m<=st) return find(st,check,acc,(k<<1)|1,m,r);\n if(st<=l&&!check(f(acc,dat[k]))){\n acc=f(acc,dat[k]);\n return -1;\n }\n Int vl=find(st,check,acc,(k<<1)|0,l,m);\n if(~vl) return vl;\n return find(st,check,acc,(k<<1)|1,m,r);\n }\n template<typename C>\n Int find(Int st,C &check){\n T acc=ti;\n return find(st,check,acc,1,0,n);\n }\n};\n\n//INSERT ABOVE HERE\nsigned main(){\n Int n,q;\n cin>>n>>q;\n vector<Int> as(n);\n for(Int i=0;i<n;i++) cin>>as[i];\n\n const Int INF = 1e15;\n using T = tuple<Int,Int,Int,Int,Int>;\n T ti(-INF,-INF,-INF,-INF,-INF);\n\n auto f=[&](T a,T b){\n if(a==ti) return b;\n if(b==ti) return a;\n Int as,ava,avi,avl,avr;\n tie(as,ava,avi,avl,avr)=a;\n Int bs,bva,bvi,bvl,bvr;\n tie(bs,bva,bvi,bvl,bvr)=b;\n Int cs=as+bs;\n Int cva=ava+bva,cvi=max(avi,bvi),cvl=avl,cvr=bvr;\n cvi=max(cvi,avr+bvl);\n cvl=max(cvl,ava+bvl);\n cvr=max(cvr,avr+bva);\n return T(cs,cva,cvi,cvl,cvr);\n };\n SegmentTree<T> seg(f,ti);\n\n vector<T> vt;\n for(Int i=0;i<n;i++) vt.emplace_back(as[i],as[i],as[i],as[i],as[i]);\n seg.build(vt);\n\n auto print=\n [&](){\n auto res=seg.query(0,n);\n Int ans=max({get<0>(res),get<1>(res),get<2>(res),get<3>(res),get<4>(res)});\n chmax(ans,0);\n cout<<ans<<endl;\n };\n\n print();\n for(Int i=0;i<q;i++){\n Int k,x;\n cin>>k>>x;\n k--;\n seg.set_val(k,T(x,x,x,x,x));\n print();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 17824, "score_of_the_acc": -1.052, "final_rank": 17 }, { "submission_id": "aoj_3111_4019272", "code_snippet": "#include <iostream>\n#include <vector>\n#include <functional>\n#include <algorithm>\nusing namespace std;\nusing ll = long long;\ntemplate<class T> using vec = vector<T>;\ntemplate<class T> using vvec = vector<vec<T>>;\nconstexpr ll inf = 1LL<<60;\n\ntemplate<typename Monoid>\nclass SegmentTree{\nprivate:\n using F = function<Monoid(Monoid&,Monoid&)>;\n int sz;\n vector<Monoid> seg;\n const F op;//演算\n const Monoid e;//単位元\npublic:\n SegmentTree(int n,const F op,const Monoid &e):op(op),e(e){\n sz = 1;\n while(sz<n) sz <<= 1;\n seg.assign(2*sz,e);\n }\n //代入\n void set(int k, const Monoid &x){\n seg[k+sz] = x;\n }\n //前計算(?)\n void build(){\n for(int i=sz-1;i>0;i--){\n seg[i] = op(seg[2*i],seg[2*i+1]);\n }\n }\n void update(int k,const Monoid &x){\n k += sz;\n seg[k] = x;\n while(k>>=1){\n seg[k] = op(seg[2*k],seg[2*k+1]);\n }\n }\n Monoid query(int l,int r){\n Monoid L = e,R = e;\n for(l+=sz,r+=sz;l<r;l>>=1,r>>=1){\n if(l&1) L = op(L,seg[l++]);\n if(r&1) R = op(seg[--r],R);\n }\n return op(L,R);\n }\n Monoid operator[](const int &k)const{\n return seg[k+sz];\n }\n};\n\nstruct state{\n ll sum,lma,rma,ma;\n};\n\nstate op(state& l,state& r){\n ll sum = 0,ma = -inf,lma = -inf,rma = -inf;\n sum = l.sum+r.sum;\n ma = max({l.ma,r.ma,l.rma+r.lma});\n lma = max(l.lma,l.sum+r.lma);\n rma = max(r.rma,r.sum+l.rma);\n return (state){sum,lma,rma,ma};\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,Q;\n cin >> N >> Q;\n SegmentTree<state> seg(N,op,(state){-inf,-inf,-inf});\n for(int i=0;i<N;i++){\n ll a;\n cin >> a;\n seg.set(i,(state){a,max(a,0LL),max(a,0LL),max(a,0LL)});\n }\n seg.build();\n cout << seg.query(0,N).ma << endl;\n for(int i=0;i<Q;i++){\n ll k,a;\n cin >> k >> a;\n k--;\n seg.update(k,(state){a,max(a,0LL),max(a,0LL),max(a,0LL)});\n cout << seg.query(0,N).ma << endl;\n }\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 11032, "score_of_the_acc": -0.3386, "final_rank": 5 }, { "submission_id": "aoj_3111_3935436", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <unordered_set>\n#include <tuple>\n#include <bitset>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n\nclass SegTree {\n\tstatic SegTree* make(const std::vector<long long int>& initial, const int from, const int until);\npublic:\n\tvirtual ~SegTree() {};\n\tvirtual void update(const int from, const int until, const long long int diff) = 0;\n\tvirtual long long int min_of(const int from, const int until) = 0;\n\tvirtual long long int max_of(const int from, const int until) = 0;\n\tstatic std::shared_ptr<SegTree> make(const std::vector<long long int>& initial);\n};\nclass Leaf : public SegTree {\n\tint position;\n\tlong long int value;\npublic:\n\tLeaf(const int pos, const long long int val) : position{ pos }, value{ val }{};\n\tvoid update(const int from, const int until, const long long int diff) override {\n\t\tif (from <= position && position < until) {\n\t\t\tvalue += diff;\n\t\t}\n\t}\n\tlong long int min_of(const int from, const int until) override {\n\t\tif (from <= position && position < until) return value;\n\t\telse return LLONG_MAX;\n\t}\n\tlong long int max_of(const int from, const int until) override {\n\t\tif (from <= position && position < until) return value;\n\t\telse return LLONG_MIN;\n\t}\n};\nclass Branch : public SegTree {\n\tint from_position, until_position;\n\tlong long int min_cache, max_cache;\n\tSegTree* left, * right;\n\tlong long int operation = 0;\n\tvoid update_inner() {\n\t\tif (operation != 0) {\n\t\t\tleft->update(from_position, until_position, operation);\n\t\t\tright->update(from_position, until_position, operation);\n\t\t\toperation = 0;\n\t\t}\n\t\tmin_cache = std::min(left->min_of(from_position, until_position), right->min_of(from_position, until_position));\n\t\tmax_cache = std::max(left->max_of(from_position, until_position), right->max_of(from_position, until_position));\n\t}\npublic:\n\tBranch(const int from, const int until, SegTree* l, SegTree* r) :\n\t\tfrom_position{ from }, until_position{ until },\n\t\tleft{ l }, right{ r },\n\t\tmin_cache{ std::min(l->min_of(from, until), r->min_of(from, until)) }, max_cache{ std::max(l->max_of(from, until), r->max_of(from, until)) }{};\n\t~Branch() {\n\t\tdelete left, right;\n\t}\n\tvoid update(const int from, const int until, const long long int diff) override {\n\t\tif (until <= from_position || until_position <= from) return;\n\t\telse if (from <= from_position && until_position <= until) operation += diff;\n\t\telse {\n\t\t\tleft->update(from, until, diff);\n\t\t\tright->update(from, until, diff);\n\t\t\tupdate_inner();\n\t\t}\n\t}\n\tlong long int min_of(const int from, const int until) override {\n\t\tif (until <= from_position || until_position <= from) return LLONG_MAX;\n\t\telse if (from <= from_position && until_position <= until) return min_cache + operation;\n\t\telse return std::min(left->min_of(from, until), right->min_of(from, until)) + operation;\n\t}\n\tlong long int max_of(const int from, const int until) override {\n\t\tif (until <= from_position || until_position <= from) return LLONG_MIN;\n\t\telse if (from <= from_position && until_position <= until) return max_cache + operation;\n\t\telse return std::max(left->max_of(from, until), right->max_of(from, until)) + operation;\n\t}\n};\n\n\n\nint main() {\n\tint n, q; std::cin >> n >> q;\n\tstd::vector<int> series(n, 0);\n\tfor (auto& a : series) std::cin >> a;\n\tstd::vector<long long int> sum_array(n + 1, 0);\n\tfor (auto i = 0; i < n; ++i) {\n\t\tsum_array[i + 1] = sum_array[i] + series[i];\n\t}\n\tauto seg_tree = SegTree::make(sum_array);\n\tauto comparator = [](const std::pair<int, long long int>& a, const std::pair<int, long long int>& b) {return a.second < b.second; };\n\tstd::priority_queue<std::pair<int, long long int>, std::vector<std::pair<int, long long int>>, decltype(comparator)> queue(comparator);\n\tfor (auto i = 1; i <= n; ++i) {\n\t\tqueue.emplace(i, seg_tree->max_of(i, n + 1) - seg_tree->min_of(0, i));\n\t}\n\tstd::cout << std::max(0LL, queue.top().second) << '\\n';\n\tfor (auto i = 0; i < q; ++i) {\n\t\tint k, x; std::cin >> k >> x;\n\t\tseg_tree->update(k, n + 1, x - series[k - 1]);\n\t\tif (x > series[k - 1]) {\n\t\t\tqueue.emplace(k, seg_tree->max_of(k, n + 1) - seg_tree->min_of(0, k));\n\t\t}\n\t\telse {\n\t\t\tqueue.emplace(k + 1, seg_tree->max_of(k + 1, n + 1) - seg_tree->min_of(0, k + 1));\n\t\t}\n\t\twhile (true) {\n\t\t\tauto top = queue.top();\n\t\t\tconst auto max_subsequence = seg_tree->max_of(top.first, n + 1) - seg_tree->min_of(0, top.first);\n\t\t\tif (top.second == max_subsequence) break;\n\t\t\tqueue.emplace(top.first, max_subsequence);\n\t\t\tqueue.pop();\n\t\t}\n\t\tseries[k - 1] = x;\n\t\tstd::cout << std::max(0LL, queue.top().second) << '\\n';\n\t}\n}\n\nSegTree* SegTree::make(const std::vector<long long int>& initial, const int from, const int until)\n{\n\tif (from + 1 == until) return new Leaf(from, initial[from]);\n\telse return new Branch(from, until, make(initial, from, (from + until) / 2), make(initial, (from + until) / 2, until));\n}\n\nstd::shared_ptr<SegTree> SegTree::make(const std::vector<long long int>& initial)\n{\n\treturn std::shared_ptr<SegTree>(make(initial, 0, initial.size()));\n}", "accuracy": 1, "time_ms": 330, "memory_kb": 17568, "score_of_the_acc": -1.6404, "final_rank": 20 }, { "submission_id": "aoj_3111_3931985", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <unordered_set>\n#include <tuple>\n#include <bitset>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n\nclass SegTree {\n\tstatic SegTree* make(const std::vector<long long int>& initial, const int from, const int until);\npublic:\n\tvirtual void update(const int from, const int until, const long long int diff) = 0;\n\tvirtual long long int min_of(const int from, const int until) = 0;\n\tvirtual long long int max_of(const int from, const int until) = 0;\n\tstatic std::shared_ptr<SegTree> make(const std::vector<long long int>& initial);\n};\nclass Leaf : public SegTree {\n\tint position;\n\tlong long int value;\npublic:\n\tLeaf(const int pos, const long long int val) : position{ pos }, value{ val }{};\n\tvoid update(const int from, const int until, const long long int diff) override {\n\t\tif (from <= position && position < until) {\n\t\t\tvalue += diff;\n\t\t}\n\t}\n\tlong long int min_of(const int from, const int until) override {\n\t\tif (from <= position && position < until) return value;\n\t\telse return LLONG_MAX;\n\t}\n\tlong long int max_of(const int from, const int until) override {\n\t\tif (from <= position && position < until) return value;\n\t\telse return LLONG_MIN;\n\t}\n};\nclass Branch : public SegTree {\n\tint from_position, until_position;\n\tlong long int min_cache, max_cache;\n\tSegTree* left, *right;\n\tlong long int operation = 0;\n\tvoid update_inner() {\n\t\tif (operation != 0) {\n\t\t\tleft->update(from_position, until_position, operation);\n\t\t\tright->update(from_position, until_position, operation);\n\t\t\toperation = 0;\n\t\t}\n\t\tmin_cache = std::min(left->min_of(from_position, until_position), right->min_of(from_position, until_position));\n\t\tmax_cache = std::max(left->max_of(from_position, until_position), right->max_of(from_position, until_position));\n\t}\npublic:\n\tBranch(const int from, const int until, SegTree* l, SegTree* r) :\n\t\tfrom_position{ from }, until_position{ until },\n\t\tleft{ l }, right{ r },\n\t\tmin_cache{ std::min(l->min_of(from, until), r->min_of(from, until)) }, max_cache{ std::max(l->max_of(from, until), r->max_of(from, until)) }{};\n\t~Branch() {\n\t\tdelete left, right;\n\t}\n\tvoid update(const int from, const int until, const long long int diff) override {\n\t\tif (until <= from_position || until_position <= from) return;\n\t\telse if (from <= from_position && until_position <= until) operation += diff;\n\t\telse {\n\t\t\tleft->update(from, until, diff);\n\t\t\tright->update(from, until, diff);\n\t\t\tupdate_inner();\n\t\t}\n\t}\n\tlong long int min_of(const int from, const int until) override {\n\t\tif (until <= from_position || until_position <= from) return LLONG_MAX;\n\t\telse if (from <= from_position && until_position <= until) return min_cache + operation;\n\t\telse return std::min(left->min_of(from, until), right->min_of(from, until)) + operation;\n\t}\n\tlong long int max_of(const int from, const int until) override {\n\t\tif (until <= from_position || until_position <= from) return LLONG_MIN;\n\t\telse if (from <= from_position && until_position <= until) return max_cache + operation;\n\t\telse return std::max(left->max_of(from, until), right->max_of(from, until)) + operation;\n\t}\n};\n\n\n\nint main() {\n\tint n, q; std::cin >> n >> q;\n\tstd::vector<int> series(n, 0);\n\tfor (auto& a : series) std::cin >> a;\n\tstd::vector<long long int> sum_array(n + 1, 0);\n\tfor (auto i = 0; i < n; ++i) {\n\t\tsum_array[i + 1] = sum_array[i] + series[i];\n\t}\n\tauto seg_tree = SegTree::make(sum_array);\n\tauto comparator = [](const std::pair<int, long long int>& a, const std::pair<int, long long int>& b) {return a.second < b.second; };\n\tstd::priority_queue<std::pair<int, long long int>, std::vector<std::pair<int, long long int>>, decltype(comparator)> queue(comparator);\n\tfor (auto i = 1; i <= n; ++i) {\n\t\tqueue.emplace(i, seg_tree->max_of(i, n + 1) - seg_tree->min_of(0, i));\n\t}\n\tstd::cout << std::max(0LL, queue.top().second) << '\\n';\n\tfor (auto i = 0; i < q; ++i) {\n\t\tint k, x; std::cin >> k >> x;\n\t\tseg_tree->update(k, n + 1, x - series[k - 1]);\n\t\tif (x > series[k - 1]) {\n\t\t\tqueue.emplace(k, seg_tree->max_of(k, n + 1) - seg_tree->min_of(0, k));\n\t\t}\n\t\telse {\n\t\t\tqueue.emplace(k + 1, seg_tree->max_of(k + 1, n + 1) - seg_tree->min_of(0, k + 1));\n\t\t}\n\t\twhile (true) {\n\t\t\tauto top = queue.top();\n\t\t\tconst auto max_subsequence = seg_tree->max_of(top.first, n + 1) - seg_tree->min_of(0, top.first);\n\t\t\tif (top.second == max_subsequence) break;\n\t\t\tqueue.emplace(top.first, max_subsequence);\n\t\t\tqueue.pop();\n\t\t}\n\t\tseries[k - 1] = x;\n\t\tstd::cout << std::max(0LL, queue.top().second) << '\\n';\n\t}\n}\n\nSegTree* SegTree::make(const std::vector<long long int>& initial, const int from, const int until)\n{\n\tif (from + 1 == until) return new Leaf(from, initial[from]);\n\telse return new Branch(from, until, make(initial, from, (from + until) / 2), make(initial, (from + until) / 2, until));\n}\n\nstd::shared_ptr<SegTree> SegTree::make(const std::vector<long long int>& initial)\n{\n\treturn std::shared_ptr<SegTree>(make(initial, 0, initial.size()));\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 17576, "score_of_the_acc": -1.5767, "final_rank": 19 }, { "submission_id": "aoj_3111_3926556", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3111.cc: Cutting Subarray\n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\nconst int MAX_E2 = 1 << 18; // = 262144\nconst int INF = 1 << 30;\n\n/* typedef */\n\ntypedef long long ll;\n\nstruct Elm {\n ll s, l, r, m;\n Elm() {}\n Elm(ll _s, ll _l, ll _r, ll _m): s(_s), l(_l), r(_r), m(_m) {}\n Elm(ll _s): s(_s), l(_s), r(_s), m(_s) {}\n\n Elm operator+(const Elm &e) const {\n Elm t;\n t.s = s + e.s;\n t.l = max(l, s + e.l);\n t.r = max(e.r, e.s + r);\n t.m = max(m, max(e.m, max(t.s, max(t.l, max(t.r, r + e.l)))));\n return t;\n }\n\n ll getmax() { return max<ll>(0, m); }\n};\n\ntemplate <typename T, const int MAX_E2>\nstruct SegTree {\n int n, e2;\n T nodes[MAX_E2], def;\n SegTree() {}\n\n void init(int _n, T _def) {\n n = _n; def = _def;\n for (e2 = 1; e2 < n; e2 <<= 1);\n fill(nodes + e2 - 1, nodes + MAX_E2, def);\n for (int j = e2 - 2; j >= 0; j--)\n nodes[j] = nodes[j * 2 + 1] + nodes[j * 2 + 2];\n }\n\n T &get(int i) { return nodes[e2 - 1 + i]; }\n T &root() { return nodes[0]; }\n\n void setall() {\n for (int j = e2 - 2; j >= 0; j--)\n nodes[j] = nodes[j * 2 + 1] + nodes[j * 2 + 2];\n }\n\n void set(int i, T v) {\n int j = e2 - 1 + i;\n nodes[j] = v;\n while (j > 0) {\n j = (j - 1) / 2;\n nodes[j] = nodes[j * 2 + 1] + nodes[j * 2 + 2];\n }\n }\n};\n\n/* global variables */\n\nSegTree<Elm,MAX_E2> st;\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, qn;\n scanf(\"%d%d\", &n, &qn);\n\n st.init(n, Elm(0));\n\n for (int i = 0; i < n; i++) {\n int ai;\n scanf(\"%d\", &ai);\n st.get(i) = ai;\n }\n st.setall();\n\n printf(\"%lld\\n\", st.root().getmax());\n\n while (qn--) {\n int ki, xi;\n scanf(\"%d%d\", &ki, &xi);\n ki--;\n\n st.set(ki, Elm(xi));\n printf(\"%lld\\n\", st.root().getmax());\n }\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 11420, "score_of_the_acc": -0.1499, "final_rank": 4 } ]
aoj_3109_cpp
C: カニサル暗号 問題 えびちゃんは、ある非負整数 D を「カニサル暗号」で暗号化して得られた文字列 C を与えられました。この暗号は、非負整数を 10 進法で表したときの各数字をある(元と異なるとは限らない)決められた数字で置き換えるものです。異なる数字が同じ数字に置き換えられたり、同じ数字が出現位置によって異なる数字に書き換えられることはありません。 たとえば、この暗号化方式によって 2646 が 0545 になることはありますが、 3456 が 1333 になったり 1333 が 3456 になることはありません。 いま、えびちゃんは D を 10^9+7 で割った余りが M になることを教えてもらいました。このとき、 D として考えられるものを一つ出力してください。複数考えられる場合はどれを出力しても構いません。ただし、 D の先頭には余分な 0 はついていないものとします。 入力形式 M C 制約 0\leq M < 10^9+7 1\leq |C| \leq 10^5 出力形式 D として考えられる非負整数を一行に出力してください。存在しない場合は -1 を出力してください。 入力例1 2 1000000007 出力例1 1000000009 今回の暗号化方式は、 0 を 0 に、 1 を 1 に、 9 を 7 に置き換えるものでした。 入力例2 3 1000000007 出力例2 -1 入力例3 1 01 出力例3 -1 D の先頭に余分な 0 がついていることはありません。 入力例4 45 1000000023 出力例4 6000000087 1000000052 や 2000000059 なども条件を満たすので、それを出力してもかまいません。 入力例5 0 940578326285963740 出力例5 123456789864197523
[ { "submission_id": "aoj_3109_9697476", "code_snippet": "#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <cfloat>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <deque>\n#include <filesystem>\n#include <fstream>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <map>\n#include <memory>\n#include <mutex>\n#include <numeric>\n#include <optional>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <thread>\n#include <tuple>\n#include <unordered_map>\n#include <variant>\n#include <vector>\n\nint main() {\n\tconstexpr int MOD{ 1'000'000'007 };\n\tint m; std::cin >> m;\n\tstd::string digits; std::cin >> digits;\n\n\tstd::vector<long long int> multiplier(10, 0);\n\tlong long int digit{ 1 };\n\tauto reversed{ digits }; std::reverse(reversed.begin(), reversed.end());\n\tfor (const auto c : reversed) {\n\t\tmultiplier[c - '0'] = (multiplier[c - '0'] + digit) % MOD;\n\t\tdigit = digit * 10 % MOD;\n\t}\n\tstd::vector<int> permutation(10); std::iota(permutation.begin(), permutation.end(), 0);\n\tbool found{ false };\n\tdo {\n\t\tif (digits.size() > 1 && permutation[digits.front() - '0'] == 0) continue;\n\t\tlong long int sum{ 0 };\n\t\tfor (auto i = 0; i < 10; ++i) {\n\t\t\tsum = (sum + permutation[i] * multiplier[i]) % MOD;\n\t\t}\n\t\tif (m == sum) {\n\t\t\tfound = true;\n\t\t}\n\t} while (!found && std::next_permutation(permutation.begin(), permutation.end()));\n\tif (found) {\n\t\tstd::string result;\n\t\tstd::transform(digits.begin(), digits.end(), std::back_inserter(result), [&](const auto i) {return permutation[i - '0'] + '0'; });\n\t\tstd::cout << result << '\\n';\n\t}\n\telse {\n\t\tstd::cout << \"-1\\n\";\n\t}\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3640, "score_of_the_acc": -0.014, "final_rank": 3 }, { "submission_id": "aoj_3109_9697475", "code_snippet": "#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <cfloat>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <deque>\n#include <filesystem>\n#include <fstream>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <map>\n#include <memory>\n#include <mutex>\n#include <numeric>\n#include <optional>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <thread>\n#include <tuple>\n#include <unordered_map>\n#include <variant>\n#include <vector>\n\nint main() {\n\tconstexpr int MOD{ 1'000'000'007 };\n\tint m; std::cin >> m;\n\tstd::string digits; std::cin >> digits;\n\n\tstd::vector<long long int> multiplier(10, 0);\n\tlong long int digit{ 1 };\n\tauto reversed{ digits }; std::reverse(reversed.begin(), reversed.end());\n\tfor (const auto c : reversed) {\n\t\tmultiplier[c - '0'] = (multiplier[c - '0'] + digit) % MOD;\n\t\tdigit = digit * 10 % MOD;\n\t}\n\tstd::vector<int> permutation(10); std::iota(permutation.begin(), permutation.end(), 0);\n\tbool found{ false };\n\tdo {\n\t\tif (permutation[digits.front() - '0'] == 0) continue;\n\t\tlong long int sum{ 0 };\n\t\tfor (auto i = 0; i < 10; ++i) {\n\t\t\tsum = (sum + permutation[i] * multiplier[i]) % MOD;\n\t\t}\n\t\tif (m == sum) {\n\t\t\tfound = true;\n\t\t}\n\t} while (!found && std::next_permutation(permutation.begin(), permutation.end()));\n\tif (found) {\n\t\tstd::string result;\n\t\tstd::transform(digits.begin(), digits.end(), std::back_inserter(result), [&](const auto i) {return permutation[i - '0'] + '0'; });\n\t\tstd::cout << result << '\\n';\n\t}\n\telse {\n\t\tstd::cout << \"-1\\n\";\n\t}\n}", "accuracy": 0.8870967741935484, "time_ms": 60, "memory_kb": 3644, "score_of_the_acc": -0.0143, "final_rank": 12 }, { "submission_id": "aoj_3109_8473098", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nusing P = pair<ll,ll>;\n#define rep(i,n) for (int i = 0; i < (n); ++i)\ntemplate<typename T,typename U>inline bool chmax(T&a,U b){return a<b?a=b,1:0;}\ntemplate<typename T,typename U>inline bool chmin(T&a,U b){return a>b?a=b,1:0;}\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\n\n#include <utility>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nconstexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n\nstruct barrett {\n unsigned int _m;\n unsigned long long im;\n\n explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n\n unsigned int umod() const { return _m; }\n\n unsigned int mul(unsigned int a, unsigned int b) const {\n\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned int v = (unsigned int)(z - x * _m);\n if (_m <= v) v += _m;\n return v;\n }\n};\n\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr long long bases[3] = {2, 7, 61};\n for (long long a : bases) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n}\ntemplate <int n> constexpr bool is_prime = is_prime_constexpr(n);\n\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\nunsigned long long floor_sum_unsigned(unsigned long long n,\n unsigned long long m,\n unsigned long long a,\n unsigned long long b) {\n unsigned long long ans = 0;\n while (true) {\n if (a >= m) {\n ans += n * (n - 1) / 2 * (a / m);\n a %= m;\n }\n if (b >= m) {\n ans += n * (b / m);\n b %= m;\n }\n\n unsigned long long y_max = a * n + b;\n if (y_max < m) break;\n n = (unsigned long long)(y_max / m);\n b = (unsigned long long)(y_max % m);\n std::swap(m, a);\n }\n return ans;\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n\nnamespace internal {\n\n#ifndef _MSC_VER\ntemplate <class T>\nusing is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n\ntemplate <class T>\nusing is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n\n#else\n\ntemplate <class T> using is_integral = typename std::is_integral<T>;\n\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n\n#endif\n\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n\ntemplate <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n\n} // namespace internal\n\n} // namespace atcoder\n\n\nnamespace atcoder {\n\nnamespace internal {\n\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\n\ntemplate <class T> using is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n\n} // namespace internal\n\ntemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n\n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\n\ntemplate <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id> internal::barrett dynamic_modint<id>::bt(998244353);\n\nusing modint998244353 = static_modint<998244353>;\nusing modint1000000007 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\n\nnamespace internal {\n\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n\ntemplate <class> struct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n\n} // namespace internal\n\n} // namespace atcoder\n\nusing namespace atcoder;\nusing mint = modint1000000007;\n\nint main(){\n int m;cin>>m;\n string c;cin>>c;\n vector<int> p(10);\n iota(p.begin(),p.end(),0);\n vector<mint> a(10);\n rep(i,10)for(char&j:c){\n a[i]*=10;\n if(i+'0'==j)a[i]+=1;\n }\n do{\n mint now=0;\n rep(i,10)now+=a[i]*p[i];\n if(now==m && (p[c[0]-'0'] || c.size()==1)){\n for(char i:c)cout<<p[i-'0'];\n cout<<endl;\n return 0;\n }\n } while (next_permutation(p.begin(),p.end()));\n cout<<-1<<endl;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3552, "score_of_the_acc": -1.0068, "final_rank": 6 }, { "submission_id": "aoj_3109_8473090", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nusing P = pair<ll,ll>;\n#define rep(i,n) for (int i = 0; i < (n); ++i)\ntemplate<typename T,typename U>inline bool chmax(T&a,U b){return a<b?a=b,1:0;}\ntemplate<typename T,typename U>inline bool chmin(T&a,U b){return a>b?a=b,1:0;}\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\n\n#include <utility>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nconstexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n\nstruct barrett {\n unsigned int _m;\n unsigned long long im;\n\n explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n\n unsigned int umod() const { return _m; }\n\n unsigned int mul(unsigned int a, unsigned int b) const {\n\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned int v = (unsigned int)(z - x * _m);\n if (_m <= v) v += _m;\n return v;\n }\n};\n\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr long long bases[3] = {2, 7, 61};\n for (long long a : bases) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n}\ntemplate <int n> constexpr bool is_prime = is_prime_constexpr(n);\n\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\nunsigned long long floor_sum_unsigned(unsigned long long n,\n unsigned long long m,\n unsigned long long a,\n unsigned long long b) {\n unsigned long long ans = 0;\n while (true) {\n if (a >= m) {\n ans += n * (n - 1) / 2 * (a / m);\n a %= m;\n }\n if (b >= m) {\n ans += n * (b / m);\n b %= m;\n }\n\n unsigned long long y_max = a * n + b;\n if (y_max < m) break;\n n = (unsigned long long)(y_max / m);\n b = (unsigned long long)(y_max % m);\n std::swap(m, a);\n }\n return ans;\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n\nnamespace internal {\n\n#ifndef _MSC_VER\ntemplate <class T>\nusing is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n\ntemplate <class T>\nusing is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n\n#else\n\ntemplate <class T> using is_integral = typename std::is_integral<T>;\n\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n\n#endif\n\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n\ntemplate <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n\n} // namespace internal\n\n} // namespace atcoder\n\n\nnamespace atcoder {\n\nnamespace internal {\n\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\n\ntemplate <class T> using is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n\n} // namespace internal\n\ntemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n\n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\n\ntemplate <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id> internal::barrett dynamic_modint<id>::bt(998244353);\n\nusing modint998244353 = static_modint<998244353>;\nusing modint1000000007 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\n\nnamespace internal {\n\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n\ntemplate <class> struct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n\n} // namespace internal\n\n} // namespace atcoder\n\nusing namespace atcoder;\nusing mint = modint1000000007;\n\nint main(){\n int m;cin>>m;\n string c;cin>>c;\n vector<int> p(10);\n iota(p.begin(),p.end(),0);\n vector<mint> a(10);\n rep(i,10)for(char&j:c){\n a[i]*=10;\n if(i+'0'==j)a[i]+=1;\n }\n do{\n mint now=0;\n rep(i,10)now+=a[i]*p[i];\n if(now==m && p[c[0]-'0']){\n for(char i:c)cout<<p[i-'0'];\n cout<<endl;\n return 0;\n }\n } while (next_permutation(p.begin(),p.end()));\n cout<<-1<<endl;\n}", "accuracy": 0.8870967741935484, "time_ms": 80, "memory_kb": 3556, "score_of_the_acc": -1.0071, "final_rank": 14 }, { "submission_id": "aoj_3109_8027477", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(n);i++)\n\nusing namespace std;\n\n#define int long long\n\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod=1000000007;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,-1,0};\n\nsigned main() {\n int m;cin>>m;\n string s;cin>>s;\n vector<int> has[10];\n for(int i = 0; (int)s.size() > i; i++){\n has[s[i]-'0'].push_back(i); \n }\n vector<vector<long long>> tab(s.size(), vector<long long>(10));\n for(int i = 0; (int)s.size() > i; i++){\n for(int j = 0; 9 >= j; j++){\n if(!i){\n tab[i][j] = j; \n }else{\n tab[i][j] = (tab[i-1][j]*10)%mod;\n }\n } \n }\n vector<vector<int>> A(10, vector<int>(10));\n for(int i = 0; 9 >= i; i++){// from\n for(int j = 0; 9 >= j; j++){ // to\n for(int k = 0; (int)has[i].size() > k; k++){\n A[i][j] = (A[i][j] + tab[s.size()-has[i][k]-1][j])%mod;\n }\n } \n }\n vector<int> B;\n for(int i = 0; 10 > i; i++){\n B.push_back(i);\n }\n do{\n long long nw = 0;\n for(int i = 0; 10 > i; i++){\n nw = (nw + A[i][B[i]])%mod;\n }\n if(nw == m){\n if(B[s[0]-'0'] == 0 && s.size() != 1)continue;\n for(int i = 0; s.size() > i; i++){\n cout << B[s[i]-'0']; \n }\n cout << endl;\n return 0;\n }\n }while(next_permutation(B.begin(), B.end()));\n \n cout << -1 << endl;\n\n\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 15760, "score_of_the_acc": -1.9971, "final_rank": 8 }, { "submission_id": "aoj_3109_8027476", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(n);i++)\n\nusing namespace std;\n\n#define int long long\n\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod=1000000007;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,-1,0};\n\nsigned main() {\n int m;cin>>m;\n string s;cin>>s;\n if(s == \"0\" && m == 0){\n cout << 0 << endl;\n return 0;\n }\n vector<int> has[10];\n for(int i = 0; (int)s.size() > i; i++){\n has[s[i]-'0'].push_back(i); \n }\n vector<vector<long long>> tab(s.size(), vector<long long>(10));\n for(int i = 0; (int)s.size() > i; i++){\n for(int j = 0; 9 >= j; j++){\n if(!i){\n tab[i][j] = j; \n }else{\n tab[i][j] = (tab[i-1][j]*10)%mod;\n }\n } \n }\n vector<vector<int>> A(10, vector<int>(10));\n for(int i = 0; 9 >= i; i++){// from\n for(int j = 0; 9 >= j; j++){ // to\n for(int k = 0; (int)has[i].size() > k; k++){\n A[i][j] = (A[i][j] + tab[s.size()-has[i][k]-1][j])%mod;\n }\n } \n }\n vector<int> B;\n for(int i = 0; 10 > i; i++){\n B.push_back(i);\n }\n do{\n long long nw = 0;\n for(int i = 0; 10 > i; i++){\n nw = (nw + A[i][B[i]])%mod;\n }\n if(nw == m){\n if(B[s[0]-'0'] == 0)continue;\n for(int i = 0; s.size() > i; i++){\n cout << B[s[i]-'0']; \n }\n cout << endl;\n return 0;\n }\n }while(next_permutation(B.begin(), B.end()));\n \n cout << -1 << endl;\n\n\n}", "accuracy": 0.9032258064516129, "time_ms": 70, "memory_kb": 15612, "score_of_the_acc": -1.4851, "final_rank": 9 }, { "submission_id": "aoj_3109_8027474", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(n);i++)\n\nusing namespace std;\n\n#define int long long\n\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod=1000000007;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,-1,0};\n\nsigned main() {\n int m;cin>>m;\n string s;cin>>s;\n vector<int> has[10];\n for(int i = 0; (int)s.size() > i; i++){\n has[s[i]-'0'].push_back(i); \n }\n vector<vector<long long>> tab(s.size(), vector<long long>(10));\n for(int i = 0; (int)s.size() > i; i++){\n for(int j = 0; 9 >= j; j++){\n if(!i){\n tab[i][j] = j; \n }else{\n tab[i][j] = (tab[i-1][j]*10)%mod;\n }\n } \n }\n vector<vector<int>> A(10, vector<int>(10));\n for(int i = 0; 9 >= i; i++){// from\n for(int j = 0; 9 >= j; j++){ // to\n for(int k = 0; (int)has[i].size() > k; k++){\n A[i][j] = (A[i][j] + tab[s.size()-has[i][k]-1][j])%mod;\n }\n } \n }\n vector<int> B;\n for(int i = 0; 10 > i; i++){\n B.push_back(i);\n }\n do{\n long long nw = 0;\n for(int i = 0; 10 > i; i++){\n nw = (nw + A[i][B[i]])%mod;\n }\n if(nw == m){\n if(B[s[0]-'0'] == 0)continue;\n for(int i = 0; s.size() > i; i++){\n cout << B[s[i]-'0']; \n }\n cout << endl;\n return 0;\n }\n }while(next_permutation(B.begin(), B.end()));\n \n cout << -1 << endl;\n\n\n}", "accuracy": 0.8870967741935484, "time_ms": 70, "memory_kb": 15796, "score_of_the_acc": -1.5, "final_rank": 16 }, { "submission_id": "aoj_3109_8027472", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(n);i++)\n\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod=1000000007;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,-1,0};\n\nint main() {\n int m;cin>>m;\n string s;cin>>s;\n vector<int> has[10];\n for(int i = 0; (int)s.size() > i; i++){\n has[s[i]-'0'].push_back(i); \n }\n vector<vector<long long>> tab(s.size(), vector<long long>(10));\n for(int i = 0; (int)s.size() > i; i++){\n for(int j = 0; 9 >= j; j++){\n if(!i){\n tab[i][j] = j; \n }else{\n tab[i][j] = (tab[i-1][j]*10)%mod;\n }\n } \n }\n vector<vector<int>> A(10, vector<int>(10));\n for(int i = 0; 9 >= i; i++){// from\n for(int j = 0; 9 >= j; j++){ // to\n for(int k = 0; (int)has[i].size() > k; k++){\n A[i][j] = (A[i][j] + tab[s.size()-has[i][k]-1][j])%mod;\n }\n } \n }\n vector<int> B;\n for(int i = 0; 10 > i; i++){\n B.push_back(i);\n }\n do{\n long long nw = 0;\n for(int i = 0; 10 > i; i++){\n nw = (nw + A[i][B[i]])%mod;\n }\n if(nw == m){\n if(B[s[0]-'0'] == 0)continue;\n for(int i = 0; s.size() > i; i++){\n cout << B[s[i]-'0']; \n }\n cout << endl;\n return 0;\n }\n }while(next_permutation(B.begin(), B.end()));\n \n cout << -1 << endl;\n\n\n}", "accuracy": 0.8870967741935484, "time_ms": 70, "memory_kb": 15380, "score_of_the_acc": -1.4663, "final_rank": 15 }, { "submission_id": "aoj_3109_8027259", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nstring f(string s){\n reverse(s.begin(),s.end());\n while(s.size() >= 2 and s.back()=='0')s.erase(s.end()-1);\n reverse(s.begin(),s.end());\n return s;\n}\n\nusing ll = long long;\n\nconst ll MOD = 1e9+7;\n\nstring func(){\n ll m;\n cin >> m;\n string c;\n cin >> c;\n vector<ll> ks(10,0);\n for(int i=0;i<c.size();++i){\n for(auto &i:ks)i = i * 10 % MOD;\n int v = c[i] - '0';\n ks[v] = (ks[v] + 1) % MOD;\n }\n int dontzero = -1;\n if(c.size() >= 2)dontzero = c[0] - '0';\n\n vector<int> xs(10);\n for(int i=0;i<10;++i)xs[i] = i;\n do{\n if(dontzero >= 0 and xs[dontzero] == 0)continue;\n ll sum = 0;\n for(int i=0;i<10;++i){\n sum = sum + (ks[i] * xs[i]);\n sum %= MOD;\n }\n if(sum == m){\n for(auto &i:c){\n char c = xs[i-'0'] + '0';\n i = c;\n }\n return c;\n }\n }while(next_permutation(xs.begin(),xs.end()));\n return \"-1\";\n}\n\nint main(){\n cout << func() << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3572, "score_of_the_acc": -0.0084, "final_rank": 2 }, { "submission_id": "aoj_3109_8027256", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nstring f(string s){\n reverse(s.begin(),s.end());\n while(s.size() >= 2 and s.back()=='0')s.erase(s.end()-1);\n reverse(s.begin(),s.end());\n return s;\n}\n\nusing ll = long long;\n\nconst ll MOD = 1e9+7;\n\nstring func(){\n ll m;\n cin >> m;\n string c;\n cin >> c;\n vector<ll> ks(10,0);\n for(int i=0;i<c.size();++i){\n for(auto &i:ks)i = i * 10 % MOD;\n int v = c[i] - '0';\n ks[v] = (ks[v] + 1) % MOD;\n }\n if(c.size() >= 2 and c[0]=='0')return \"-1\";\n int dontzero = -1;\n if(c.size() >= 2)dontzero = c[0] - '0';\n\n vector<int> xs(10);\n for(int i=0;i<10;++i)xs[i] = i;\n do{\n if(dontzero >= 0 and xs[dontzero] == 0)continue;\n ll sum = 0;\n for(int i=0;i<10;++i){\n sum = sum + (ks[i] * xs[i]);\n sum %= MOD;\n }\n if(sum == m){\n for(auto &i:c){\n char c = xs[i-'0'] + '0';\n i = c;\n }\n return c;\n }\n }while(next_permutation(xs.begin(),xs.end()));\n return \"-1\";\n}\n\nint main(){\n cout << func() << endl;\n}", "accuracy": 0.43548387096774194, "time_ms": 60, "memory_kb": 3468, "score_of_the_acc": 0, "final_rank": 17 }, { "submission_id": "aoj_3109_8027248", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nconst ll mod = 1000000007;\n\nint main(){ \n ll M; cin >> M;\n string C; cin >> C;\n\n if (M == 0 and (int)C.size() == 1) {\n cout << 0 << endl;\n return 0;\n }\n\n array<ll, 10> buc; \n for (int i = 0 ; i < 10 ; i++) buc[i] = 0;\n ll p10 = 1;\n for (int i = (int)C.size() - 1 ; i >= 0 ; i--) {\n int now = C[i] - '0';\n buc.at(now) = (buc[now] + p10) % mod;\n p10 = (p10 * 10) % mod;\n }\n \n vector<int> idx(10, 0);\n iota(idx.begin(), idx.end(), 0);\n\n do {\n\n if (idx[C[0] - '0'] == 0) continue;\n\n ll val = 0LL; \n for (int i = 0 ; i < 10 ; i++) {\n assert(0 <= idx[i] and idx[i] <= 9);\n val = (val + ((ll)idx.at(i) * buc[i])) % mod;\n }\n if (val == M) {\n string ans = C;\n for (auto& c : ans) c = idx.at(c - '0') + '0';\n assert(ans[0] != '0');\n for (auto& c : ans) assert('0' <= c and c <= '9');\n cout << ans << endl;\n return 0;\n }\n\n\n } while (next_permutation(idx.begin(), idx.end())) ;\n\n cout << -1 << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3656, "score_of_the_acc": -0.0152, "final_rank": 4 }, { "submission_id": "aoj_3109_8027227", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nstring f(string s){\n reverse(s.begin(),s.end());\n while(s.size() >= 2 and s.back()=='0')s.erase(s.end()-1);\n reverse(s.begin(),s.end());\n return s;\n}\n\nusing ll = long long;\n\nconst ll MOD = 1e9+7;\n\nstring func(){\n ll m;\n cin >> m;\n string c;\n cin >> c;\n vector<ll> ks(10,0);\n for(int i=0;i<c.size();++i){\n for(auto &i:ks)i = i * 10 % MOD;\n int v = c[i] - '0';\n ks[v] = (ks[v] + 1) % MOD;\n }\n if(c.size() >= 2 and c[0]=='0')return \"-1\";\n\n vector<int> xs(10);\n iota(xs.begin(),xs.end(),0);\n do{\n ll sum = 0;\n for(int i=0;i<10;++i){\n sum = sum + (ks[i] * xs[i]);\n sum %= MOD;\n }\n if(sum == m){\n string d = c;\n for(auto &i:d){\n char d = xs[i-'0'] + '0';\n i = d;\n }\n d = f(d);\n if(d.size() == c.size()){\n return d;\n }\n }\n }while(next_permutation(xs.begin(),xs.end()));\n return \"-1\";\n}\n\nint main(){\n cout << func() << endl;\n}", "accuracy": 0.43548387096774194, "time_ms": 60, "memory_kb": 3552, "score_of_the_acc": -0.0068, "final_rank": 19 }, { "submission_id": "aoj_3109_8027218", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nstring f(string s){\n reverse(s.begin(),s.end());\n while(s.size() >= 2 and s.back()=='0')s.erase(s.end()-1);\n reverse(s.begin(),s.end());\n return s;\n}\n\nusing ll = long long;\n\nconst ll MOD = 1e9+7;\n\nstring func(){\n ll m;\n cin >> m;\n string c;\n cin >> c;\n vector<ll> ks(10,0);\n for(int i=0;i<c.size();++i){\n for(auto &i:ks)i = i * 10 % MOD;\n int v = c[i] - '0';\n ks[v] = (ks[v] + 1) % MOD;\n }\n if(c.size() >= 2 and c[0]=='0')return \"-1\";\n\n vector<int> xs(10);\n iota(xs.begin(),xs.end(),0);\n do{\n ll sum = 0;\n for(int i=0;i<10;++i){\n sum = sum + (ks[i] * xs[i]);\n sum %= MOD;\n }\n if(sum == m){\n for(auto &i:c){\n char d = xs[i-'0'] + '0';\n i = d;\n }\n return c;\n }\n }while(next_permutation(xs.begin(),xs.end()));\n return \"-1\";\n}\n\nint main(){\n cout << f(func()) << endl;\n}", "accuracy": 0.43548387096774194, "time_ms": 60, "memory_kb": 3504, "score_of_the_acc": -0.0029, "final_rank": 18 }, { "submission_id": "aoj_3109_8027207", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nstring f(string s){\n reverse(s.begin(),s.end());\n while(s.size() >= 2 and s.back()=='0')s.erase(s.end()-1);\n reverse(s.begin(),s.end());\n return s;\n}\n\nusing ll = long long;\n\nconst ll MOD = 1e9+7;\n\nstring func(){\n ll m;\n cin >> m;\n string c;\n cin >> c;\n vector<ll> ks(10,0);\n for(int i=0;i<c.size();++i){\n for(auto &i:ks)i = i * 10 % MOD;\n int v = c[i] - '0';\n ks[v] = (ks[v] + 1) % MOD;\n }\n if(c[0]=='0')return \"-1\";\n\n vector<int> xs(10);\n iota(xs.begin(),xs.end(),0);\n do{\n ll sum = 0;\n for(int i=0;i<10;++i){\n sum = sum + (ks[i] * xs[i]);\n sum %= MOD;\n }\n if(sum == m){\n for(auto &i:c){\n char d = xs[i-'0'] + '0';\n i = d;\n }\n return c;\n }\n }while(next_permutation(xs.begin(),xs.end()));\n return \"-1\";\n}\n\nint main(){\n cout << f(func()) << endl;\n}", "accuracy": 0.43548387096774194, "time_ms": 60, "memory_kb": 3568, "score_of_the_acc": -0.0081, "final_rank": 20 }, { "submission_id": "aoj_3109_8027173", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nconst ll mod = 1000000007;\n\nint main(){ \n ll M; cin >> M;\n string C; cin >> C;\n\n array<ll, 10> buc; \n for (int i = 0 ; i < 10 ; i++) buc[i] = 0;\n ll p10 = 1;\n for (int i = (int)C.size() - 1 ; i >= 0 ; i--) {\n int now = C[i] - '0';\n buc[now] = (buc[now] + p10) % mod;\n p10 = (p10 * 10) % mod;\n }\n \n vector<int> idx(10, 0);\n iota(idx.begin(), idx.end(), 0);\n\n do {\n\n if (idx[C[0] - '0'] == 0) continue;\n\n ll val = 0LL; \n for (int i = 0 ; i < 10 ; i++) {\n val = (val + (idx[i] * buc[i])) % mod;\n }\n if (val == M) {\n string ans = C;\n for (auto& c : ans) c = idx[c - '0'] + '0';\n cout << ans << endl;\n return 0;\n }\n\n\n } while (next_permutation(idx.begin(), idx.end())) ;\n\n cout << -1 << endl;\n}", "accuracy": 0.8870967741935484, "time_ms": 60, "memory_kb": 3656, "score_of_the_acc": -0.0152, "final_rank": 13 }, { "submission_id": "aoj_3109_6938115", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\ntemplate<class T> T min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\n\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tll M;\n\tcin>>M;\n\tstring S;\n\tcin>>S;\n\tint N=S.size();\n\tif(M==0&&N==1){\n\t\tcout<<\"0\\n\";\n\t\treturn;\n\t}\n\tvector<ll> base(10);\n\tll tmp=1;\n\tfor(int i=N-1;i>=0;i--){\n\t\tbase[S[i]-'0']+=tmp;\n\t\ttmp=(tmp*10ll)%mod;\n\t}\n\tfor(auto &x:base) x%=mod;\n\tvector<int> order(10);\n\trep(i,10) order[i]=i;\n\tdo{\n\t\ttmp=0;\n\t\trep(i,10){\n\t\t\ttmp=(tmp+base[i]*(ll)(order[i]))%mod;\n\t\t}\n\t\tif(tmp==M&&order[S[0]-'0']!=0){\n\t\t\trep(i,N){\n\t\t\t\tcout<<order[S[i]-'0'];\n\t\t\t}\n\t\t\tcout<<\"\\n\";\n\t\t\treturn;\n\t\t}\n\t}while(next_permutation(all(order)));\n\tcout<<\"-1\\n\";\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3568, "score_of_the_acc": -0.5081, "final_rank": 5 }, { "submission_id": "aoj_3109_6938111", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=2167167167167167167;\nconst int INF=2100000000;\nconst ll mod=1e9+7;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\ntemplate<class T> T min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}\ntemplate<class T> T max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}\n\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tll M;\n\tcin>>M;\n\tstring S;\n\tcin>>S;\n\tint N=S.size();\n\tvector<ll> base(10);\n\tll tmp=1;\n\tfor(int i=N-1;i>=0;i--){\n\t\tbase[S[i]-'0']+=tmp;\n\t\ttmp=(tmp*10ll)%mod;\n\t}\n\tfor(auto &x:base) x%=mod;\n\tvector<int> order(10);\n\trep(i,10) order[i]=i;\n\tdo{\n\t\ttmp=0;\n\t\trep(i,10){\n\t\t\ttmp=(tmp+base[i]*(ll)(order[i]))%mod;\n\t\t}\n\t\tif(tmp==M&&order[S[0]-'0']!=0){\n\t\t\trep(i,N){\n\t\t\t\tcout<<order[S[i]-'0'];\n\t\t\t}\n\t\t\tcout<<\"\\n\";\n\t\t\treturn;\n\t\t}\n\t}while(next_permutation(all(order)));\n\tcout<<\"-1\\n\";\n}", "accuracy": 0.8870967741935484, "time_ms": 60, "memory_kb": 3500, "score_of_the_acc": -0.0026, "final_rank": 10 }, { "submission_id": "aoj_3109_6817318", "code_snippet": "#include <bits/stdc++.h>\n// #include <atcoder/modint>\n\nusing namespace std;\n// using namespace atcoder;\n// using mint = modint998244353;\n\nusing namespace std;\nint main() {\n long long M;\n string C;\n cin >> M >> C;\n string Crev = C;\n reverse(Crev.begin(), Crev.end());\n vector<long long> mod_units(10);\n constexpr long long MOD = 1000000007;\n\n long long mul = 1;\n for (char c : Crev) {\n int digit = c - '0';\n mod_units[digit] += mul;\n mod_units[digit] %= MOD;\n mul = (mul * 10) % MOD;\n }\n\n vector<int> mapping(10);\n for (int i=0; i<10; i++) mapping[i] = i;\n\n int head = C[0] - '0';\n\n do {\n // 0-heading check\n if (mapping[head] == 0 && C.size() > 1) continue;\n long long mod = 0;\n for (int i = 0; i < 10; i++) {\n mod += (mapping[i] * mod_units[i]) % MOD;\n mod %= MOD;\n }\n if (mod != M) continue;\n\n for (char c : C) {\n int digit = c - '0';\n cout << mapping[digit];\n }\n cout << endl;\n return 0;\n\n } while (next_permutation(mapping.begin(), mapping.end()));\n\n cout << -1 << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3620, "score_of_the_acc": -1.0123, "final_rank": 7 }, { "submission_id": "aoj_3109_6817249", "code_snippet": "#include <iostream>\n#include <vector>\n#include <string>\n#include <algorithm>\n\nusing namespace std;\n\nint main()\n{\n long long M;\n cin>>M;\n string C;\n cin>>C;\n\n long long MOD = 1000000007;\n vector<long long> C2(10);\n for (int i=0; i<10; i++)\n {\n long long x = 0;\n for (char c: C)\n {\n x = x*10%MOD;\n if (c=='0'+i)\n x = (x+1)%MOD;\n }\n C2[i] = x;\n }\n\n vector<int> P(10);\n for (int i=0; i<10; i++)\n P[i] = i;\n do\n {\n long long m = 0;\n for (int i=0; i<10; i++)\n m = (m+C2[i]*P[i])%MOD;\n if (m==M && (P[C[0]-'0']!=0 || C.size()==1))\n {\n for (char c: C)\n cout<<char(P[c-'0']+'0');\n cout<<endl;\n return 0;\n }\n }\n while (next_permutation(P.begin(), P.end()));\n\n cout<<-1<<endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3552, "score_of_the_acc": -0.0068, "final_rank": 1 }, { "submission_id": "aoj_3109_6817248", "code_snippet": "#include <iostream>\n#include <vector>\n#include <string>\n#include <algorithm>\n\nusing namespace std;\n\nint main()\n{\n long long M;\n cin>>M;\n string C;\n cin>>C;\n\n long long MOD = 1000000007;\n vector<long long> C2(10);\n for (int i=0; i<10; i++)\n {\n long long x = 0;\n for (char c: C)\n {\n x = x*10%MOD;\n if (c=='0'+i)\n x = (x+1)%MOD;\n }\n C2[i] = x;\n }\n\n vector<int> P(10);\n for (int i=0; i<10; i++)\n P[i] = i;\n do\n {\n long long m = 0;\n for (int i=0; i<10; i++)\n m = (m+C2[i]*P[i])%MOD;\n if (m==M && P[C[0]-'0']!=0)\n {\n for (char c: C)\n cout<<char(P[c-'0']+'0');\n cout<<endl;\n return 0;\n }\n }\n while (next_permutation(P.begin(), P.end()));\n\n cout<<-1<<endl;\n}", "accuracy": 0.8870967741935484, "time_ms": 60, "memory_kb": 3556, "score_of_the_acc": -0.0071, "final_rank": 11 } ]
aoj_3113_cpp
G: Restricted DFS 問題 N 頂点 N-1 辺からなる、自己ループや多重辺が存在しない無向木 G がある。頂点はそれぞれ 1 から N まで番号付けされており、辺もそれぞれ 1 から N-1 まで番号付けされており、 i 番目の辺は u_i と v_i を結んでいる。また、 i 番目の頂点には非負整数 A_i がそれぞれ割り当てられている。 この木に対して、根 r から以下の擬似コードにしたがって DFS (深さ優先探索) を行うことを考える。 // [input] // G: dfs の対象となるグラフ // A: それぞれの頂点に割り当てられた非負整数 // v: dfs を開始する頂点 // step: ステップ数を記録する整数 // [output] // 以下のうちどちらかの二値 // - SUCCESS: dfs が途中で終了することなく、頂点 v まで戻ってくる // - FAILURE: dfs が途中で終了する function dfs(G, A, v, step) if (A[v] が 0 である) then return FAILURE A[v] ← A[v] - 1 step ← step + 1 v の子を頂点番号が小さい順にソート // c は頂点番号が小さい順に見られる for each (v の子 c) do if (dfs(G, A, c, step) が FAILURE である) then return FAILURE if (A[v] が 0 である) then return FAILURE A[v] ← A[v] - 1 step ← step + 1 return SUCCESS つまり、与えられた G と A に対して、根 r について dfs(G, A, r, 0) を実行することを考える。 それぞれの頂点を根としたときの、この DFS のステップ数を求めよ。 入力形式 N A_1 ... A_N u_1 v_1 ... u_{N-1} v_{N-1} 1 行目では、与えられるグラフの頂点数 N が与えられる。 2 行目は N 個の整数からなる。 i 個目の整数 A_i は、 i 番目の頂点に書かれている値を表す。 3 行目から N+1 行目までは、与えられるグラフの辺の情報が与えられる。 u_i, v_i は、頂点 u_i と頂点 v_i を結ぶ無向辺がグラフ中に存在することを表す。 制約 1 \leq N \leq 3 \times 10^5 0 \leq A_i \leq 10^9 1 \leq u_i < v_i \leq N 与えられるグラフは木であることが保証される 入力は全て整数で与えられる 出力形式 N 行出力せよ。 i 行目には、頂点 i を根としたときのステップ数を出力せよ。 入力例1 3 1 2 3 1 2 1 3 出力例1 2 3 3 1 番目の頂点を根としたとき 頂点 1 ( A_1 : 1 → 0 ) → 頂点 2 ( A_2 : 2 → 1 ) → 頂点 1 ( A_1 が 0 であるため、頂点 1 に訪れることなく終了する) 2 番目の頂点を根としたとき 頂点 2 ( A_2 : 2 → 1 ) → 頂点 1 ( A_1 : 1 → 0 ) → 頂点 3 ( A_3 : 3 → 2 ) → 頂点 1 ( A_1 が 0 であるため、頂点 1 に訪れることなく終了する) 3 番目の頂点を根としたとき 頂点 3 ( A_3 : 3 → 2 ) → 頂点 1 ( A_1 : 1 → 0 ) → 頂点 2 ( A_2 : 2 → 1 ) → 頂点 1 ( A_1 が 0 であるため、頂点 1 に訪れることなく終了する) よって、答えはそれぞれ 2, 3, 3 となる。はじめに根から出発するときも A_i の値を減らすことに注意せよ。 入力例2 3 1 2 3 1 2 2 3 出力例2 4 4 5
[ { "submission_id": "aoj_3113_9908080", "code_snippet": "#include <iostream>\n#include <vector>\n#include <cmath>\n#include <algorithm>\n#include <string>\n#include <unordered_map>\n\nusing namespace std;\n\n#define int long long\n\nvector<vector<int>> graph;\nvector<bool> res;\nvector<int> cnt;\nvector<int> vec2;\nvector<int> p0;\nvector<unordered_map<int, int>> um;\nvector<vector<int>> rcnt;\nvector<vector<bool>> rres;\n\npair<int, bool> dfs2(int v, int par) {\n\tif (um[v][par] != 0) {\n\t\tint id = um[v][par] - 1;\n\t\treturn { rcnt[v][id], rres[v][id] };\n\t}\n\tif (vec2[v] == 0) return { 0, false };\n\tint a1 = vec2[v];\n\ta1--;\n\tint ans = 1;\n\tbool cres = true;\n\tfor (auto c : graph[v]) {\n\t\tif (c == par) continue;\n\t\tauto a = dfs2(c, v);\n\t\tans += a.first;\n\t\tif (!a.second || a1 == 0) {\n\t\t\tcres = false;\n\t\t\tbreak;\n\t\t}\n\t\ta1--;\n\t\tans++;\n\t}\n\treturn { ans, cres };\n}\n\nvoid calcVertex(int p, vector<int>& vec) {\n\tint n = cnt.size();\n\tcnt.assign(n, 0);\n\tres.assign(n, false);\n\tvec2 = vec;\n\tvector<pair<int, bool>> v;\n\tfor (auto c : graph[p]) {\n\t\tv.push_back(dfs2(c, p));\n\t}\n\tvector<int> ifalse;\n\tfor (int i = 0; i < v.size(); i++) {\n\t\tif (!v[i].second) ifalse.push_back(i);\n\t}\n\tvector<int> pref(1, 0);\n\tfor (auto c : v) pref.push_back(pref.back() + c.first);\n\tfor (int i = 0; i < v.size(); i++) {\n\t\tint par = graph[p][i];\n\t\tint br = -1;\n\t\tif (ifalse.size() > 0) br = ifalse[0];\n\t\tif (br == i) {\n\t\t\tbr = -1;\n\t\t\tif (ifalse.size() > 1) br = ifalse[1];\n\t\t}\n\t\tbool cres = false;\n\t\tif (br == -1) cres = true;\n\t\tif (br == -1) br = pref.size() - 2;\n\t\tint limit = vec2[p] - 1;\n\t\tif (i - 1 <= limit) limit++;\n\t\tif (limit <= br) {\n\t\t\tbr = min(br, limit);\n\t\t\tcres = false;\n\t\t}\n\t\tint ans = pref[br + 1];\n\t\tans += br + 1;\n\t\tif (i <= br) {\n\t\t\tans -= v[i].first;\n\t\t\tans--;\n\t\t}\n\t\tif (cres) ans++;\n\t\tif (um[p][par] == 0) {\n\t\t\tum[p][par] = rcnt[p].size() + 1;\n\t\t\trcnt[p].push_back(ans);\n\t\t\trres[p].push_back(cres);\n\t\t}\n\t}\n}\n\nsigned main() {\n\tios_base::sync_with_stdio(0);\n\tcin.tie(0);\n\tcout.tie(0);\n\tint t0 = clock();\n\tint n; cin >> n;\n\tvector<int> vec(n);\n\tp0.resize(n);\n\tfor (int i = 0; i < n; i++) cin >> vec[i];\n\tgraph.resize(n);\n\tfor (int i = 0; i < n - 1; i++) {\n\t\tint a, b; cin >> a >> b; a--; b--;\n\t\tgraph[a].push_back(b);\n\t\tgraph[b].push_back(a);\n\t}\n\tfor (int i = 0; i < n; i++) {\n\t\tsort(graph[i].begin(), graph[i].end());\n\t}\n\tvector<int> calcfrom;\n\tvector<pair<int, int>> vp;\n\tfor (int i = 0; i < n; i++) vp.push_back({ graph[i].size(), i });\n\tsort(vp.rbegin(), vp.rend());\n\tfor (int i = 0; i < min(n, 10000ll); i++) {\n\t\tcalcfrom.push_back(vp[i].second);\n\t}\n\trres.resize(n);\n\tum.resize(n);\n\trcnt.resize(n);\n\tfor (auto p : calcfrom) {\n\t\tcalcVertex(p, vec);\n\t}\n\tvec2 = vec;\n\tfor (int i = 0; i < n; i++) {\n\t\tint answ = dfs2(i, i).first;\n\t\tcout << answ << endl;\n\t}\n}", "accuracy": 1, "time_ms": 1910, "memory_kb": 117276, "score_of_the_acc": -1.9938, "final_rank": 12 }, { "submission_id": "aoj_3113_9908076", "code_snippet": "#include <iostream>\n#include <vector>\n#include <cmath>\n#include <algorithm>\n#include <string>\n#include <unordered_map>\n#include <fstream>\nusing namespace std;\n\n//#define int long long\n\nvector<vector<int>> graph;\nvector<bool> res;\nvector<int> cnt;\nvector<int> vec2;\nvector<int> p0;\nvector<unordered_map<int, int>> um;\nvector<vector<int>> rcnt;\nvector<vector<bool>> rres;\n\npair<int, bool> dfs2(int v, int par) {\n\tif (um[v][par] != 0) {\n\t\tint id = um[v][par] - 1;\n\t\treturn { rcnt[v][id], rres[v][id] };\n\t}\n\tif (vec2[v] == 0) return { 0, false };\n\tint a1 = vec2[v];\n\ta1--;\n\tint ans = 1;\n\tbool cres = true;\n\tfor (auto c : graph[v]) {\n\t\tif (c == par) continue;\n\t\tauto a = dfs2(c, v);\n\t\tans += a.first;\n\t\tif (!a.second || a1 == 0) {\n\t\t\tcres = false;\n\t\t\tbreak;\n\t\t}\n\t\ta1--;\n\t\tans++;\n\t}\n\t//um[v][par] = rcnt[v].size();\n\t//rcnt[v].push_back(ans);\n\t//rres[v].push_back(cres);\n\treturn { ans, cres };\n}\n\nvoid calcVertex(int p, vector<int>& vec) {\n\tint n = cnt.size();\n\tcnt.assign(n, 0);\n\tres.assign(n, false);\n\tvec2 = vec;\n\tvector<pair<int, bool>> v;\n\tfor (auto c : graph[p]) {\n\t\tv.push_back(dfs2(c, p));\n\t}\n\tvector<int> ifalse;\n\tfor (int i = 0; i < v.size(); i++) {\n\t\tif (!v[i].second) ifalse.push_back(i);\n\t}\n\tvector<int> pref(1, 0);\n\tfor (auto c : v) pref.push_back(pref.back() + c.first);\n\tfor (int i = 0; i < v.size(); i++) {\n\t\tint par = graph[p][i];\n\t\tint br = -1;\n\t\tif (ifalse.size() > 0) br = ifalse[0];\n\t\tif (br == i) {\n\t\t\tbr = -1;\n\t\t\tif (ifalse.size() > 1) br = ifalse[1];\n\t\t}\n\t\tbool cres = false;\n\t\tif (br == -1) cres = true;\n\t\tif (br == -1) br = pref.size() - 2;\n\t\tint limit = vec2[p] - 1;\n\t\tif (i - 1 <= limit) limit++;\n\t\tif (limit <= br) {\n\t\t\tbr = min(br, limit);\n\t\t\tcres = false;\n\t\t}\n\t\tint ans = pref[br + 1];\n\t\tans += br + 1;\n\t\tif (i <= br) {\n\t\t\tans -= v[i].first;\n\t\t\tans--;\n\t\t}\n\t\tif (cres) ans++;\n\t\tif (um[p][par] == 0) {\n\t\t\tum[p][par] = rcnt[p].size() + 1;\n\t\t\trcnt[p].push_back(ans);\n\t\t\trres[p].push_back(cres);\n\t\t}\n\t}\n}\n\nsigned main() {\n\tios_base::sync_with_stdio(0);\n\tcin.tie(0);\n\tcout.tie(0);\n\tifstream fin(\"in60.txt\");\n\tint t0 = clock();\n\tint n; cin >> n;\n\tvector<int> vec(n);\n\tp0.resize(n);\n\tfor (int i = 0; i < n; i++) cin >> vec[i];\n\tgraph.resize(n);\n\tfor (int i = 0; i < n - 1; i++) {\n\t\tint a, b; cin >> a >> b; a--; b--;\n\t\tgraph[a].push_back(b);\n\t\tgraph[b].push_back(a);\n\t}\n\tfor (int i = 0; i < n; i++) {\n\t\tsort(graph[i].begin(), graph[i].end());\n\t}\n\tvector<int> calcfrom;\n\tvector<pair<int, int>> vp;\n\tfor (int i = 0; i < n; i++) vp.push_back({ graph[i].size(), i });\n\tsort(vp.rbegin(), vp.rend());\n\tfor (int i = 0; i < min(n, 8000); i++) {\n\t\tcalcfrom.push_back(vp[i].second);\n\t}\n\trres.resize(n);\n\tum.resize(n);\n\trcnt.resize(n);\n\tfor (auto p : calcfrom) {\n\t\tcalcVertex(p, vec);\n\t}\n\t//cout << (clock() - t0) / (double)CLOCKS_PER_SEC << endl;\n\tvec2 = vec;\n\tfor (int i = 0; i < n; i++) {\n\t\tint answ = dfs2(i, i).first;\n\t\tcout << answ << endl;\n\t}\n\t//cout << (clock() - t0) / (double)CLOCKS_PER_SEC << endl;\n}", "accuracy": 1, "time_ms": 1570, "memory_kb": 107208, "score_of_the_acc": -1.6714, "final_rank": 11 }, { "submission_id": "aoj_3113_9908074", "code_snippet": "#include <iostream>\n#include <vector>\n#include <cmath>\n#include <algorithm>\n#include <string>\n#include <unordered_map>\n#include <fstream>\nusing namespace std;\n\n#define int long long\n\nvector<vector<int>> graph;\nvector<bool> res;\nvector<int> cnt;\nvector<int> vec2;\nvector<int> p0;\nvector<unordered_map<int, int>> um;\nvector<vector<int>> rcnt;\nvector<vector<bool>> rres;\n\npair<int, bool> dfs2(int v, int par) {\n\tif (um[v][par] != 0) {\n\t\tint id = um[v][par] - 1;\n\t\treturn { rcnt[v][id], rres[v][id] };\n\t}\n\tif (vec2[v] == 0) return { 0, false };\n\tint a1 = vec2[v];\n\ta1--;\n\tint ans = 1;\n\tbool cres = true;\n\tfor (auto c : graph[v]) {\n\t\tif (c == par) continue;\n\t\tauto a = dfs2(c, v);\n\t\tans += a.first;\n\t\tif (!a.second || a1 == 0) {\n\t\t\tcres = false;\n\t\t\tbreak;\n\t\t}\n\t\ta1--;\n\t\tans++;\n\t}\n\t//um[v][par] = rcnt[v].size();\n\t//rcnt[v].push_back(ans);\n\t//rres[v].push_back(cres);\n\treturn { ans, cres };\n}\n\nvoid calcVertex(int p, vector<int>& vec) {\n\tint n = cnt.size();\n\tcnt.assign(n, 0);\n\tres.assign(n, false);\n\tvec2 = vec;\n\tvector<pair<int, bool>> v;\n\tfor (auto c : graph[p]) {\n\t\tv.push_back(dfs2(c, p));\n\t}\n\tvector<int> ifalse;\n\tfor (int i = 0; i < v.size(); i++) {\n\t\tif (!v[i].second) ifalse.push_back(i);\n\t}\n\tvector<int> pref(1, 0);\n\tfor (auto c : v) pref.push_back(pref.back() + c.first);\n\tfor (int i = 0; i < v.size(); i++) {\n\t\tint par = graph[p][i];\n\t\tint br = -1;\n\t\tif (ifalse.size() > 0) br = ifalse[0];\n\t\tif (br == i) {\n\t\t\tbr = -1;\n\t\t\tif (ifalse.size() > 1) br = ifalse[1];\n\t\t}\n\t\tbool cres = false;\n\t\tif (br == -1) cres = true;\n\t\tif (br == -1) br = pref.size() - 2;\n\t\tint limit = vec2[p] - 1;\n\t\tif (i - 1 <= limit) limit++;\n\t\tif (limit <= br) {\n\t\t\tbr = min(br, limit);\n\t\t\tcres = false;\n\t\t}\n\t\tint ans = pref[br + 1];\n\t\tans += br + 1;\n\t\tif (i <= br) {\n\t\t\tans -= v[i].first;\n\t\t\tans--;\n\t\t}\n\t\tif (cres) ans++;\n\t\tif (um[p][par] == 0) {\n\t\t\tum[p][par] = rcnt[p].size() + 1;\n\t\t\trcnt[p].push_back(ans);\n\t\t\trres[p].push_back(cres);\n\t\t}\n\t}\n}\n\nsigned main() {\n\tios_base::sync_with_stdio(0);\n\tcin.tie(0);\n\tcout.tie(0);\n\tifstream fin(\"in60.txt\");\n\tint t0 = clock();\n\tint n; cin >> n;\n\tvector<int> vec(n);\n\tp0.resize(n);\n\tfor (int i = 0; i < n; i++) cin >> vec[i];\n\tgraph.resize(n);\n\tfor (int i = 0; i < n - 1; i++) {\n\t\tint a, b; cin >> a >> b; a--; b--;\n\t\tgraph[a].push_back(b);\n\t\tgraph[b].push_back(a);\n\t}\n\tfor (int i = 0; i < n; i++) {\n\t\tsort(graph[i].begin(), graph[i].end());\n\t}\n\tvector<int> calcfrom;\n\tvector<pair<int, int>> vp;\n\tfor (int i = 0; i < n; i++) vp.push_back({ graph[i].size(), i });\n\tsort(vp.rbegin(), vp.rend());\n\tfor (int i = 0; i < min(n, 10000ll); i++) {\n\t\tcalcfrom.push_back(vp[i].second);\n\t}\n\trres.resize(n);\n\tum.resize(n);\n\trcnt.resize(n);\n\tfor (auto p : calcfrom) {\n\t\tcalcVertex(p, vec);\n\t}\n\t//cout << (clock() - t0) / (double)CLOCKS_PER_SEC << endl;\n\tvec2 = vec;\n\tfor (int i = 0; i < n; i++) {\n\t\tint answ = dfs2(i, i).first;\n\t\tcout << answ << endl;\n\t}\n\t//cout << (clock() - t0) / (double)CLOCKS_PER_SEC << endl;\n}", "accuracy": 1, "time_ms": 1900, "memory_kb": 117828, "score_of_the_acc": -1.9939, "final_rank": 13 }, { "submission_id": "aoj_3113_6040255", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,n)for (int i = 0; i < int(n); ++i)\n\ntemplate<class S, class E>\nstruct Rerooting {\n const vector<vector<E>>& g;\n const int n;\n const int root;\n vector<vector<S>> dp, sl, sr;\n\n Rerooting(const vector<vector<E>>& g, int root=0): g(g), n(g.size()), root(root), dp(n), sl(n), sr(n) {\n dfs1(root);\n dfs2(root);\n }\n\n S dfs1(int u, int p=-1) {\n const int sz = g[u].size();\n dp[u].resize(sz);\n sl[u].resize(sz + 1);\n sr[u].resize(sz + 1);\n\n S res;\n for(int i = 0; i < sz; i++) {\n const E& e = g[u][i];\n int v = dest(e);\n if (v == p) continue;\n dp[u][i] = dfs1(v, u).apply(e);\n res = res.merge(dp[u][i]);\n }\n return res;\n }\n\n void dfs2(int u, int p=-1) {\n const int sz = g[u].size();\n\n {\n S s;\n for(int i = 0; i < sz; i++) {\n s = s.merge(dp[u][i]);\n sl[u][i + 1] = s;\n }\n }\n {\n S s;\n for(int i = sz - 1; i >= 0; i--) {\n s = dp[u][i].merge(s);\n sr[u][i] = s;\n }\n }\n\n for(int i = 0; i < sz; i++) {\n int v = dest(g[u][i]);\n if (v == p) continue;\n const int sz_v = g[v].size();\n for(int j = 0; j < sz_v; j++) {\n const E& e = g[v][j];\n int w = dest(e);\n if (w != u) continue;\n dp[v][j] = sl[u][i].merge(sr[u][i + 1]).apply(e);\n break;\n }\n dfs2(v, u);\n }\n }\n\n S get_acc(int v) { return sr[v][0]; }\n S get_res(int v, E e) { return sr[v][0].apply(e); }\n\n private:\n int dest(const E& e) {\n if constexpr (is_same<E, int>::value) return e;\n else return e.to;\n };\n};\n\n\nint A[300000];\nstruct E { int from, to, idx; };\nstruct S {\n struct T {\n int step = 0;\n bool cont = true;\n int cnt = 0;\n T merge(const T& rhs) const {\n if (cont) {\n return { step + rhs.step,\n rhs.cont,\n cnt + rhs.cnt };\n } else {\n return *this;\n }\n }\n };\n T d1, d2;\n S apply(E e) const {\n T d;\n if (d2.cnt <= A[e.to]) d = d2;\n else d = d1;\n d.step++;\n if (d.cont) {\n if (d.cnt == A[e.to]) d.cont = false;\n else d.step++;\n }\n d.cnt = 1;\n if (e.idx < A[e.from]) {\n return {d, d};\n } else if (e.idx == A[e.from]) {\n return {{0, false, 0}, d};\n } else {\n return {{0, false, 0}, {0, false, 0}};\n }\n }\n S merge(const S& rhs) const {\n return { d1.merge(rhs.d1), d2.merge(rhs.d2) };\n }\n};\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int n;\n cin >> n;\n rep(i, n) cin >> A[i];\n vector<vector<E>> g(n);\n rep(i, n - 1) {\n int u, v;\n cin >> u >> v;\n u--, v--;\n g[u].push_back({u, v});\n g[v].push_back({v, u});\n }\n rep(i, n) {\n sort(g[i].begin(), g[i].end(), [&](const E& e1, const E& e2) {\n return e1.to < e2.to;\n });\n int idx = 0;\n for(auto& e: g[i]) e.idx = idx++;\n }\n Rerooting<S, E> dp(g);\n rep(i, n) {\n S::T res = dp.get_acc(i).d1;\n int ans = res.step;\n if (res.cont && res.cnt < A[i]) ans++;\n cout << ans << '\\n';\n }\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 116020, "score_of_the_acc": -1.0409, "final_rank": 8 }, { "submission_id": "aoj_3113_5937731", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define REP(i, m, n) for (int i = m; i < (ll)(n); ++i)\n#define rep(i, n) REP(i, 0, n)\n#define all(v) v.begin(), v.end()\n\n\n#include <algorithm>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param n `0 <= n`\n// @return minimum non-negative `x` s.t. `n <= 2**x`\nint ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\n\n// @param n `1 <= n`\n// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\nint bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <vector>\n\nnamespace atcoder {\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n public:\n segtree() : segtree(0) {}\n segtree(int n) : segtree(std::vector<S>(n, e())) {}\n segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = internal::ceil_pow2(_n);\n size = 1 << log;\n d = std::vector<S>(2 * size, e());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n return d[p + size];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n S sml = e(), smr = e();\n l += size;\n r += size;\n\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n template <bool (*f)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return f(x); });\n }\n template <class F> int max_right(int l, F f) {\n assert(0 <= l && l <= _n);\n assert(f(e()));\n if (l == _n) return _n;\n l += size;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, d[l]))) {\n while (l < size) {\n l = (2 * l);\n if (f(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*f)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return f(x); });\n }\n template <class F> int min_left(int r, F f) {\n assert(0 <= r && r <= _n);\n assert(f(e()));\n if (r == 0) return 0;\n r += size;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(d[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (f(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n};\n\n} // namespace atcoder\n\nusing namespace atcoder;\n\nstruct T {\n ll cnt;\n bool suc;\n};\nstruct S {\n T val;\n int len;\n};\n\nS op(S a, S b) {\n if (not a.val.suc) return a;\n a.val.cnt += b.val.cnt;\n a.val.suc &= b.val.suc;\n a.len += b.len;\n return a;\n}\nS e() { return {{0, true}, 0}; }\n\nint n;\nint a[300010];\nvector<int> G[300010];\nvector<vector<T>> dp;\n\nconst int root = 0;\n\nT dfs1(int p, int v) {\n int ch = G[v].size();\n if (v != root) ch--;\n segtree<S, op, e> seg(ch);\n int j = 0;\n for (int i = 0; i < G[v].size(); ++i) {\n if (G[v][i] == p) continue;\n dp[v][i] = dfs1(v, G[v][i]);\n seg.set(j++, {dp[v][i], 1});\n }\n T res;\n S s;\n if (a[v] > ch) {\n s = seg.all_prod();\n res.cnt = s.val.cnt + s.len;\n res.suc = s.val.suc;\n if (res.suc) res.cnt++;\n } else {\n s = seg.prod(0, a[v]);\n res.cnt = s.val.cnt + s.len;\n res.suc = false;\n }\n return res;\n}\n\nvoid dfs2(int p, int v, T from_par) {\n for (int i = 0; i < G[v].size(); ++i) {\n if (G[v][i] == p) {\n dp[v][i] = from_par;\n break;\n }\n }\n int ch = G[v].size() - 1;\n vector<S> tmp(G[v].size());\n rep(i, G[v].size()) tmp[i] = {dp[v][i], 1};\n segtree<S, op, e> seg(tmp);\n for (int i = 0; i < G[v].size(); ++i) {\n if (G[v][i] == p) continue;\n T res;\n S s;\n if (a[v] > ch) {\n s = op(seg.prod(0, i), seg.prod(i + 1, G[v].size()));\n res.cnt = s.val.cnt + s.len;\n res.suc = s.val.suc;\n if (res.suc) res.cnt++;\n } else {\n if (a[v] < i) {\n s = seg.prod(0, a[v]);\n } else {\n s = op(seg.prod(0, i), seg.prod(i + 1, a[v] + 1));\n }\n res.cnt = s.val.cnt + s.len;\n res.suc = false;\n }\n dfs2(v, G[v][i], res);\n }\n}\n\nT calc(int v) {\n int ch = G[v].size();\n vector<S> tmp(G[v].size());\n rep(i, G[v].size()) tmp[i] = {dp[v][i], 1};\n segtree<S, op, e> seg(tmp);\n T res;\n S s;\n if (a[v] > ch) {\n s = seg.all_prod();\n res.cnt = s.val.cnt + s.len;\n res.suc = s.val.suc;\n if (res.suc) res.cnt++;\n } else {\n s = seg.prod(0, a[v]);\n res.cnt = s.val.cnt + s.len;\n res.suc = false;\n }\n return res;\n}\n\nint main() {\n cin >> n;\n rep(i, n) cin >> a[i];\n rep(i, n - 1) {\n int u, v;\n cin >> u >> v;\n u--, v--;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n rep(i, n) sort(all(G[i]));\n dp.resize(n);\n rep(i, n) dp[i].resize(G[i].size());\n dfs1(-1, root);\n dfs2(-1, 0, {0, true});\n rep(i, n) cout << calc(i).cnt << \"\\n\";\n}", "accuracy": 1, "time_ms": 360, "memory_kb": 95820, "score_of_the_acc": -0.8003, "final_rank": 7 }, { "submission_id": "aoj_3113_5937728", "code_snippet": "#define MOD_TYPE 2\n\n#pragma region Macros\n\n#include <bits/stdc++.h>\nusing namespace std;\n/*\n//#include <atcoder/all>\n*/\n\n\n\n#include <utility>\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param m `1 <= m`\n// @return x mod m\nconstexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n\n// Fast modular multiplication by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n unsigned long long im;\n\n // @param m `1 <= m < 2^31`\n barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n\n // @return m\n unsigned int umod() const { return _m; }\n\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n // [1] m = 1\n // a = b = im = 0, so okay\n\n // [2] m >= 2\n // im = ceil(2^64 / m)\n // -> im * m = 2^64 + r (0 <= r < m)\n // let z = a*b = c*m + d (0 <= c, d < m)\n // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im\n // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2\n // ((ab * im) >> 64) == c or c + 1\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned int v = (unsigned int)(z - x * _m);\n if (_m <= v) v += _m;\n return v;\n }\n};\n\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr long long bases[3] = {2, 7, 61};\n for (long long a : bases) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n}\ntemplate <int n> constexpr bool is_prime = is_prime_constexpr(n);\n\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n\n // Contracts:\n // [1] s - m0 * a = 0 (mod b)\n // [2] t - m1 * a = 0 (mod b)\n // [3] s * |m1| + t * |m0| <= b\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n // [3]:\n // (s - t * u) * |m1| + t * |m0 - m1 * u|\n // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)\n // = s * |m1| + t * |m0| <= b\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n // by [3]: |m0| <= b/g\n // by g != b: |m0| < b/g\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n\nnamespace internal {\n\n#ifndef _MSC_VER\ntemplate <class T>\nusing is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n\ntemplate <class T>\nusing is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n\n#else\n\ntemplate <class T> using is_integral = typename std::is_integral<T>;\n\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n\n#endif\n\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n\ntemplate <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n\n} // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\n\ntemplate <class T> using is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n\n} // namespace internal\n\ntemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n\n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\n\ntemplate <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id> internal::barrett dynamic_modint<id>::bt = 998244353;\n\nusing modint998244353 = static_modint<998244353>;\nusing modint1000000007 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\n\nnamespace internal {\n\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n\ntemplate <class> struct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#include <algorithm>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param n `0 <= n`\n// @return minimum non-negative `x` s.t. `n <= 2**x`\nint ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\n\n// @param n `1 <= n`\n// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\nint bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <vector>\n\nnamespace atcoder {\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n public:\n segtree() : segtree(0) {}\n segtree(int n) : segtree(std::vector<S>(n, e())) {}\n segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = internal::ceil_pow2(_n);\n size = 1 << log;\n d = std::vector<S>(2 * size, e());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n return d[p + size];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n S sml = e(), smr = e();\n l += size;\n r += size;\n\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n template <bool (*f)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return f(x); });\n }\n template <class F> int max_right(int l, F f) {\n assert(0 <= l && l <= _n);\n assert(f(e()));\n if (l == _n) return _n;\n l += size;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, d[l]))) {\n while (l < size) {\n l = (2 * l);\n if (f(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*f)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return f(x); });\n }\n template <class F> int min_left(int r, F f) {\n assert(0 <= r && r <= _n);\n assert(f(e()));\n if (r == 0) return 0;\n r += size;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(d[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (f(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n};\n\n} // namespace atcoder\n\n\nusing namespace atcoder;\n\n#if 0\n#include <boost/multiprecision/cpp_dec_float.hpp>\n#include <boost/multiprecision/cpp_int.hpp>\nusing Int = boost::multiprecision::cpp_int;\nusing lld = boost::multiprecision::cpp_dec_float_100;\n#endif\n\n#if 1\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n\nusing ll = long long int;\nusing ld = long double;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pld = pair<ld, ld>;\ntemplate <typename Q_type>\nusing smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;\n\n#if MOD_TYPE == 1\nconstexpr ll MOD = ll(1e9 + 7);\n#else\n#if MOD_TYPE == 2\nconstexpr ll MOD = 998244353;\n#else\nconstexpr ll MOD = 1000003;\n#endif\n#endif\n\nusing mint = static_modint<MOD>;\nconstexpr int INF = (int)1e9 + 10;\nconstexpr ll LINF = (ll)4e18;\nconstexpr double PI = acos(-1.0);\nconstexpr double EPS = 1e-11;\nconstexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};\nconstexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};\n\n#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)\n#define rep(i, n) REP(i, 0, n)\n#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)\n#define repi(i, n) REPI(i, 0, n)\n#define MP make_pair\n#define MT make_tuple\n#define YES(n) cout << ((n) ? \"YES\" : \"NO\") << \"\\n\"\n#define Yes(n) cout << ((n) ? \"Yes\" : \"No\") << \"\\n\"\n#define possible(n) cout << ((n) ? \"possible\" : \"impossible\") << \"\\n\"\n#define Possible(n) cout << ((n) ? \"Possible\" : \"Impossible\") << \"\\n\"\n#define Yay(n) cout << ((n) ? \"Yay!\" : \":(\") << \"\\n\"\n#define all(v) v.begin(), v.end()\n#define NP(v) next_permutation(all(v))\n#define dbg(x) cerr << #x << \":\" << x << \"\\n\";\n#define UNIQUE(v) v.erase(unique(all(v)), v.end())\n\nstruct io_init {\n io_init() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << setprecision(30) << setiosflags(ios::fixed);\n };\n} io_init;\ntemplate <typename T>\ninline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <typename T>\ninline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ninline ll CEIL(ll a, ll b) { return (a + b - 1) / b; }\ntemplate <typename A, size_t N, typename T>\ninline void Fill(A (&array)[N], const T &val) {\n fill((T *)array, (T *)(array + N), val);\n}\ntemplate <typename T>\nvector<T> compress(vector<T> &v) {\n vector<T> val = v;\n sort(all(val)), val.erase(unique(all(val)), val.end());\n for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin();\n return val;\n}\ntemplate <typename T, typename U>\nconstexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept {\n is >> p.first >> p.second;\n return is;\n}\ntemplate <typename T, typename U>\nconstexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept {\n os << p.first << \" \" << p.second;\n return os;\n}\nostream &operator<<(ostream &os, mint m) {\n os << m.val();\n return os;\n}\n\nrandom_device seed_gen;\nmt19937_64 engine(seed_gen());\n\nstruct BiCoef {\n vector<mint> fact_, inv_, finv_;\n BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {\n fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);\n for (int i = 2; i < n; i++) {\n fact_[i] = fact_[i - 1] * i;\n inv_[i] = -inv_[MOD % i] * (MOD / i);\n finv_[i] = finv_[i - 1] * inv_[i];\n }\n }\n mint C(ll n, ll k) const noexcept {\n if (n < k || n < 0 || k < 0) return 0;\n return fact_[n] * finv_[k] * finv_[n - k];\n }\n mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; }\n mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); }\n mint Ch1(ll n, ll k) const noexcept {\n if (n < 0 || k < 0) return 0;\n mint res = 0;\n for (int i = 0; i < n; i++)\n res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1);\n return res;\n }\n mint fact(ll n) const noexcept {\n if (n < 0) return 0;\n return fact_[n];\n }\n mint inv(ll n) const noexcept {\n if (n < 0) return 0;\n return inv_[n];\n }\n mint finv(ll n) const noexcept {\n if (n < 0) return 0;\n return finv_[n];\n }\n};\n\nBiCoef bc(500010);\n\n#pragma endregion\n\ntemplate <typename T>\nstruct ReRooting {\n using F = function<T(T, int)>;\n using F2 = function<T(T, T)>;\n int V;\n vector<vector<int>> G;\n vector<vector<T>> dp;\n // dp_v = g(merge(f(dp_c1,c1), f(dp_c2,c2), ..., f(dp_ck,ck)), v)\n F f, g;\n F2 merge;\n T mi; // identity of merge\n\n ReRooting() {}\n ReRooting(int V, F f, F2 merge, T mi, F g)\n : V(V), f(f), merge(merge), mi(mi), g(g) {\n G.resize(V);\n dp.resize(V);\n }\n\n void read(int idx = 1) {\n int a, b;\n for (int i = 0; i < V - 1; ++i) {\n cin >> a >> b;\n a -= idx, b -= idx;\n G[a].emplace_back(b);\n G[b].emplace_back(a);\n }\n }\n\n void add_edge(int a, int b) {\n G[a].emplace_back(b);\n G[b].emplace_back(a);\n }\n\n T dfs1(int p, int v) {\n T res = mi;\n for (int i = 0; i < G[v].size(); ++i) {\n if (G[v][i] == p) continue;\n dp[v][i] = dfs1(v, G[v][i]);\n res = merge(res, f(dp[v][i], G[v][i]));\n }\n return g(res, v);\n }\n\n void dfs2(int p, int v, T from_par) {\n for (int i = 0; i < G[v].size(); ++i) {\n if (G[v][i] == p) {\n dp[v][i] = from_par;\n break;\n }\n }\n vector<T> pR(G[v].size() + 1);\n pR[G[v].size()] = mi;\n for (int i = G[v].size(); i > 0; --i)\n pR[i - 1] = merge(pR[i], f(dp[v][i - 1], G[v][i - 1]));\n T pL = mi;\n for (int i = 0; i < G[v].size(); ++i) {\n if (G[v][i] != p) {\n T val = merge(pL, pR[i + 1]);\n dfs2(v, G[v][i], g(val, v));\n }\n pL = merge(pL, f(dp[v][i], G[v][i]));\n }\n }\n\n void calc(int root = 0) {\n for (int i = 0; i < V; ++i) dp[i].resize(G[i].size());\n dfs1(-1, root);\n dfs2(-1, root, mi);\n }\n\n T solve(int v) {\n T ans = mi;\n for (int i = 0; i < G[v].size(); ++i)\n ans = merge(ans, f(dp[v][i], G[v][i]));\n return g(ans, v);\n }\n};\n\nstruct T {\n ll cnt;\n bool suc;\n};\nstruct S {\n T val;\n int len;\n};\n\nS op(S a, S b) {\n if (not a.val.suc) return a;\n a.val.cnt += b.val.cnt;\n a.val.suc &= b.val.suc;\n a.len += b.len;\n return a;\n}\nS e() { return {{0, true}, 0}; }\n\nint n;\nint a[300010];\nvector<int> G[300010];\nvector<vector<T>> dp;\n\nconst int root = 0;\n\nT dfs1(int p, int v) {\n int ch = G[v].size();\n if (v != root) ch--;\n segtree<S, op, e> seg(ch);\n int j = 0;\n for (int i = 0; i < G[v].size(); ++i) {\n if (G[v][i] == p) continue;\n dp[v][i] = dfs1(v, G[v][i]);\n seg.set(j++, {dp[v][i], 1});\n }\n T res;\n S s;\n if (a[v] > ch) {\n s = seg.all_prod();\n res.cnt = s.val.cnt + s.len;\n res.suc = s.val.suc;\n if (res.suc) res.cnt++;\n } else {\n s = seg.prod(0, a[v]);\n res.cnt = s.val.cnt + s.len;\n res.suc = false;\n }\n return res;\n}\n\nvoid dfs2(int p, int v, T from_par) {\n for (int i = 0; i < G[v].size(); ++i) {\n if (G[v][i] == p) {\n dp[v][i] = from_par;\n break;\n }\n }\n int ch = G[v].size() - 1;\n vector<S> tmp(G[v].size());\n rep(i, G[v].size()) tmp[i] = {dp[v][i], 1};\n segtree<S, op, e> seg(tmp);\n for (int i = 0; i < G[v].size(); ++i) {\n if (G[v][i] == p) continue;\n T res;\n S s;\n if (a[v] > ch) {\n s = op(seg.prod(0, i), seg.prod(i + 1, G[v].size()));\n res.cnt = s.val.cnt + s.len;\n res.suc = s.val.suc;\n if (res.suc) res.cnt++;\n } else {\n if (a[v] < i) {\n s = seg.prod(0, a[v]);\n } else {\n s = op(seg.prod(0, i), seg.prod(i + 1, a[v] + 1));\n }\n res.cnt = s.val.cnt + s.len;\n res.suc = false;\n }\n dfs2(v, G[v][i], res);\n }\n}\n\nT calc(int v) {\n int ch = G[v].size();\n vector<S> tmp(G[v].size());\n rep(i, G[v].size()) tmp[i] = {dp[v][i], 1};\n segtree<S, op, e> seg(tmp);\n T res;\n S s;\n if (a[v] > ch) {\n s = seg.all_prod();\n res.cnt = s.val.cnt + s.len;\n res.suc = s.val.suc;\n if (res.suc) res.cnt++;\n } else {\n s = seg.prod(0, a[v]);\n res.cnt = s.val.cnt + s.len;\n res.suc = false;\n }\n return res;\n}\n\nvoid solve() {\n cin >> n;\n rep(i, n) cin >> a[i];\n rep(i, n - 1) {\n int u, v;\n cin >> u >> v;\n u--, v--;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n rep(i, n) sort(all(G[i]));\n dp.resize(n);\n rep(i, n) dp[i].resize(G[i].size());\n T ans0;\n ans0 = dfs1(-1, root);\n cout << ans0.cnt << \"\\n\";\n\n dfs2(-1, 0, {0, true});\n REP(i, 1, n) cout << calc(i).cnt << \"\\n\";\n}\n\nint main() { solve(); }", "accuracy": 1, "time_ms": 320, "memory_kb": 79464, "score_of_the_acc": -0.5909, "final_rank": 3 }, { "submission_id": "aoj_3113_4076874", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n\ntemplate<typename F>\nstruct FixPoint : F{\n FixPoint(F&& f):F(forward<F>(f)){}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const{\n return F::operator()(*this,forward<Args>(args)...);\n }\n};\ntemplate<typename F>\ninline decltype(auto) MFP(F&& f){\n return FixPoint<F>{forward<F>(f)};\n}\n\n//INSERT ABOVE HERE\nsigned main(){\n Int n;\n cin>>n;\n vector<Int> as(n);\n for(Int i=0;i<n;i++) cin>>as[i];\n\n vector< vector<Int> > G(n);\n for(Int i=1;i<n;i++){\n Int u,v;\n cin>>u>>v;\n u--;v--;\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n for(Int i=0;i<n;i++)\n sort(G[i].begin(),G[i].end());\n\n // dead?, #step\n using P = pair<Int, Int>;\n vector< vector<P> > dp(n);\n\n auto dfs1=\n MFP([&](auto dfs,Int v,Int p)->P{\n for(Int u:G[v]){\n if(u==p) continue;\n auto res=dfs(u,v);\n dp[v].emplace_back(res);\n }\n if(as[v]==0) return P(1,0);\n\n Int num=as[v]-1,idx=0;\n Int dead=0,step=1;\n for(Int u:G[v]){\n if(u==p) continue;\n step+=dp[v][idx].second;\n if(dp[v][idx].first){\n dead=1;\n break;\n }\n if(num==0){\n dead=1;\n break;\n }\n num--;\n step++;\n idx++;\n }\n return P(dead,step);\n });\n dfs1(0,-1);\n\n //assert(*min_element(as.begin(),as.end())>0);\n\n vector<Int> ans(n,-1);\n MFP([&](auto dfs,Int v,Int p,P f)->void{\n if(as[v]==0){\n ans[v]=0;\n for(Int u:G[v]){\n if(u==p) continue;\n dfs(u,v,P(1,0));\n }\n return;\n }\n\n // find ans[v]\n vector<Int> to;\n for(Int u:G[v]){\n if(u==p) continue;\n to.emplace_back(u);\n }\n\n Int dead=0,step=1;\n Int num=as[v]-1;\n\n Int flg_for_check=0;\n auto check=\n [&](){\n if(dead) return;\n if(p<0) return;\n if(flg_for_check) return;\n flg_for_check=1;\n dead|=f.first;\n step+=f.second;\n\n // up from par\n if(dead||num==0){\n dead=1;\n return;\n }\n num--;\n step++;\n };\n\n for(Int i=0;i<(Int)to.size();i++){\n if(p<to[i]) check();\n if(dead) break;\n\n step+=dp[v][i].second;\n if(dp[v][i].first||num==0){\n dead=1;\n break;\n }\n num--;\n step++;\n }\n check();\n\n ans[v]=step;\n\n // call child\n for(Int u:G[v]){\n if(u==p) continue;\n\n flg_for_check=0;\n dead=0;step=1;num=as[v]-1;\n\n for(Int i=0;i<(Int)to.size();i++){\n if(p<to[i]) check();\n if(dead) break;\n\n if(to[i]==u) continue;\n\n step+=dp[v][i].second;\n if(dp[v][i].first||num==0){\n dead=1;\n break;\n }\n num--;\n step++;\n }\n\n check();\n dfs(u,v,P(dead,step));\n }\n })(0,-1,P(0,0));\n\n for(Int i=0;i<n;i++) cout<<ans[i]<<\"\\n\";\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 1860, "memory_kb": 47252, "score_of_the_acc": -1.1716, "final_rank": 10 }, { "submission_id": "aoj_3113_3961788", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <string>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <stdio.h>\nusing namespace std;\n#define int long long\nint MOD = 1000000007;\nvector<vector<int> > g;\nvector<int> A;\nvector<vector<int> > dp;\nvector<vector<int> > fail;\nvector<int> fi;\nvector<int> se;\nvector<int> fi_sum;\nvector<int> se_sum;\nvector<int> sum;\npair<int, int> dfs1(int a, int p) {\n\n\tdp[a].resize(g[a].size(), 0);\n\tfail[a].resize(g[a].size(), 0);\n\tint f = 0;\n\tint step = 0;\n\tint t = 1;\n\tif (t > A[a]) {\n\t\tf = 1;\n\t}\n\tif (f == 0) {\n\t\tstep++;\n\t}\n\tfor (int i = 0; i < g[a].size(); i++) {\n\t\tif (g[a][i] != p) {\n\t\t\tpair<int, int> p = dfs1(g[a][i], a);\n\t\t\tdp[a][i] = p.first;\n\t\t\tif (f == 0) {\n\t\t\t\tstep += dp[a][i];\n\t\t\t}\n\t\t\tfail[a][i] = p.second;\n\t\t\tf |= p.second;\n\t\t\tt++;\n\t\t\tif (t > A[a]) {\n\t\t\t\tf = 1;\n\t\t\t}\n\t\t\tif (f == 0) {\n\t\t\t\tstep++;\n\t\t\t}\n\t\t}\n\t}\n\treturn make_pair(step, f);\n}\n\nvoid dfs2(int a, int p, int j) {\n\tint idx = -1;\n\tfor (int i = 0; i < g[a].size(); i++) {\n\t\tif (g[a][i] == p) {\n\t\t\tidx = i;\n\t\t}\n\t}\n\tif (idx >= 0) {\n\t\tfail[a][idx] = 0;\n\t\tif (fi[p] == -1) {\n\n\t\t\tif (j < A[p]) {\n\t\t\t\tdp[a][idx] = sum[p] - dp[p][j];\n\t\t\t\tif (A[p] < (int)g[p].size()) {\n\t\t\t\t\tdp[a][idx] += dp[p][A[p]];\n\t\t\t\t\t/*if (fail[p][A[p]]) {\n\t\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t\t\tdp[a][idx] += A[p] - 1;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tdp[a][idx] += A[p];\n\t\t\t\t\t}*/\n\t\t\t\t\tdp[a][idx] += A[p];\n\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tdp[a][idx] += (int)g[p].size();\n\t\t\t\t}\n\n\t\t\t}\n\t\t\telse {\n\t\t\t\tdp[a][idx] = sum[p] + A[p];\n\t\t\t\tfail[a][idx] = 1;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tif (j < fi[p]) {\n\t\t\t\tdp[a][idx] = fi_sum[p] - dp[p][j];\n\t\t\t\tdp[a][idx] += fi[p];\n\t\t\t\tfail[a][idx] = 1;\n\t\t\t}\n\t\t\telse if (j == fi[p]) {\n\t\t\t\tif (se[p] == -1) {\n\t\t\t\t\tdp[a][idx] = sum[p] - dp[p][j];\n\t\t\t\t\tif (A[p] < (int)g[p].size()) {\n\t\t\t\t\t\tdp[a][idx] += dp[p][A[p]];\n\t\t\t\t\t\t/*if (fail[p][A[p]]) {\n\t\t\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t\t\t\tdp[a][idx] += A[p] - 1;\n\t\t\t\t\t\t}\n\t\t\t\t\t\telse {\n\t\t\t\t\t\t\tdp[a][idx] += A[p];\n\t\t\t\t\t\t}*/\n\t\t\t\t\t\tdp[a][idx] += A[p];\n\t\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tdp[a][idx] += (int)g[p].size();\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tdp[a][idx] = se_sum[p] - dp[p][j];\n\t\t\t\t\tdp[a][idx] += se[p];\n\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tdp[a][idx] = fi_sum[p];\n\t\t\t\tdp[a][idx] += fi[p] + 1;\n\t\t\t\tfail[a][idx] = 1;\n\t\t\t}\n\t\t}\n\t}\n\tfi[a] = -1;\n\tse[a] = -1;\n\tsum[a] = 0;\n\tfor (int i = 0; i < min(A[a], (int)g[a].size()); i++) {\n\t\tif (fail[a][i] == 1) {\n\t\t\tif (fi[a] == -1) {\n\t\t\t\tfi[a] = i;\n\t\t\t\tfi_sum[a] = sum[a] + dp[a][i];\n\t\t\t}\n\t\t\telse if (se[a] == -1) {\n\t\t\t\tse[a] = i;\n\t\t\t\tse_sum[a] = sum[a] + dp[a][i];\n\t\t\t}\n\t\t}\n\t\tsum[a] += dp[a][i];\n\t}\n\n\n\n\tfor (int i = 0; i < g[a].size(); i++) {\n\t\tif (g[a][i] != p) {\n\t\t\tdfs2(g[a][i], a, i);\n\t\t}\n\t}\n}\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tint N;\n\tcin >> N;\n\tA.resize(N);\n\tdp.resize(N);\n\tfail.resize(N);\n\tg.resize(N);\n\tfi.resize(N);\n\tse.resize(N);\n\tfi_sum.resize(N);\n\tse_sum.resize(N);\n\tsum.resize(N);\n\n\tint res = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> A[i];\n\t}\n\tint a, b;\n\tfor (int i = 0; i < N - 1; i++) {\n\t\tcin >> a >> b; a--; b--;\n\t\tg[a].push_back(b);\n\t\tg[b].push_back(a);\n\t}\n\tfor (int i = 0; i < N; i++) {\n\t\tsort(g[i].begin(), g[i].end());\n\t}\n\n\tdfs1(0, -1);\n\tdfs2(0, -1, -1);\n\n\tfor (int a = 0; a < N; a++) {\n\t\tint f = 0;\n\t\tint step = 0;\n\t\tint t = 1;\n\t\tif (t > A[a]) {\n\t\t\tf = 1;\n\t\t}\n\t\tif (f == 0) {\n\t\t\tstep++;\n\t\t}\n\t\tfor (int i = 0; i < g[a].size(); i++) {\n\t\t\tif (f == 0) {\n\t\t\t\tstep += dp[a][i];\n\t\t\t}\n\t\t\tf |= fail[a][i];\n\t\t\tt++;\n\t\t\tif (t > A[a]) {\n\t\t\t\tf = 1;\n\t\t\t}\n\t\t\tif (f == 0) {\n\t\t\t\tstep++;\n\t\t\t}\n\t\t}\n\t\tcout << step << endl;\n\n\t}\n}", "accuracy": 1, "time_ms": 680, "memory_kb": 75120, "score_of_the_acc": -0.7627, "final_rank": 6 }, { "submission_id": "aoj_3113_3961785", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <string>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <stdio.h>\nusing namespace std;\n#define int long long\nint MOD = 1000000007;\nvector<vector<int> > g;\nvector<int> A;\nvector<vector<int> > dp;\nvector<vector<int> > fail;\nvector<int> fi;\nvector<int> se;\nvector<int> fi_sum;\nvector<int> se_sum;\nvector<int> sum;\npair<int, int> dfs1(int a, int p) {\n\n\tdp[a].resize(g[a].size(), 0);\n\tfail[a].resize(g[a].size(), 0);\n\tint f = 0;\n\tint step = 0;\n\tint t = 1;\n\tif (t > A[a]) {\n\t\tf = 1;\n\t}\n\tif (f == 0) {\n\t\tstep++;\n\t}\n\tfor (int i = 0; i < g[a].size(); i++) {\n\t\tif (g[a][i] != p) {\n\t\t\tpair<int, int> p = dfs1(g[a][i], a);\n\t\t\tdp[a][i] = p.first;\n\t\t\tif (f == 0) {\n\t\t\t\tstep += dp[a][i];\n\t\t\t}\n\t\t\tfail[a][i] = p.second;\n\t\t\tf |= p.second;\n\t\t\tt++;\n\t\t\tif (t > A[a]) {\n\t\t\t\tf = 1;\n\t\t\t}\n\t\t\tif (f == 0) {\n\t\t\t\tstep++;\n\t\t\t}\n\t\t}\n\t}\n\treturn make_pair(step, f);\n}\n\nvoid dfs2(int a, int p, int j) {\n\tint idx = -1;\n\tfor (int i = 0; i < g[a].size(); i++) {\n\t\tif (g[a][i] == p) {\n\t\t\tidx = i;\n\t\t}\n\t}\n\tif (idx >= 0) {\n\t\tfail[a][idx] = 0;\n\t\tif (fi[p] == -1) {\n\n\t\t\tif (j < A[p]) {\n\t\t\t\tdp[a][idx] = sum[p] - dp[p][j];\n\t\t\t\tif (A[p] < (int)g[p].size()) {\n\t\t\t\t\tdp[a][idx] += dp[p][A[p]];\n\t\t\t\t\t/*if (fail[p][A[p]]) {\n\t\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t\t\tdp[a][idx] += A[p] - 1;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tdp[a][idx] += A[p];\n\t\t\t\t\t}*/\n\t\t\t\t\tdp[a][idx] += A[p];\n\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tdp[a][idx] += (int)g[p].size();\n\t\t\t\t}\n\n\t\t\t}\n\t\t\telse {\n\t\t\t\tdp[a][idx] = sum[p] + A[p];\n\t\t\t\tfail[a][idx] = 1;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tif (j < fi[p]) {\n\t\t\t\tdp[a][idx] = fi_sum[p] - dp[p][j];\n\t\t\t\tdp[a][idx] += fi[p];\n\t\t\t\tfail[a][idx] = 1;\n\t\t\t}\n\t\t\telse if (j == fi[p]) {\n\t\t\t\tif (se[p] == -1) {\n\t\t\t\t\tdp[a][idx] = sum[p] - dp[p][j];\n\t\t\t\t\tif (A[p] < (int)g[p].size()) {\n\t\t\t\t\t\tdp[a][idx] += dp[p][A[p]];\n\t\t\t\t\t\t/*if (fail[p][A[p]]) {\n\t\t\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t\t\t\tdp[a][idx] += A[p] - 1;\n\t\t\t\t\t\t}\n\t\t\t\t\t\telse {\n\t\t\t\t\t\t\tdp[a][idx] += A[p];\n\t\t\t\t\t\t}*/\n\t\t\t\t\t\tdp[a][idx] += A[p];\n\t\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tdp[a][idx] += (int)g[p].size();\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tdp[a][idx] = se_sum[p] - dp[p][j];\n\t\t\t\t\tdp[a][idx] += se[p];\n\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tdp[a][idx] = fi_sum[p];\n\t\t\t\tdp[a][idx] += fi[p] + 1;\n\t\t\t\tfail[a][idx] = 1;\n\t\t\t}\n\t\t}\n\t}\n\tfi[a] = -1;\n\tse[a] = -1;\n\tsum[a] = 0;\n\tfor (int i = 0; i < min(A[a], (int)g[a].size()); i++) {\n\t\tif (fail[a][i] == 1) {\n\t\t\tif (fi[a] == -1) {\n\t\t\t\tfi[a] = i;\n\t\t\t\tfi_sum[a] = sum[a] + dp[a][i];\n\t\t\t}\n\t\t\telse if (se[a] == -1) {\n\t\t\t\tse[a] = i;\n\t\t\t\tse_sum[a] = sum[a] + dp[a][i];\n\t\t\t}\n\t\t}\n\t\tsum[a] += dp[a][i];\n\t}\n\n\n\n\tfor (int i = 0; i < g[a].size(); i++) {\n\t\tif (g[a][i] != p) {\n\t\t\tdfs2(g[a][i], a, i);\n\t\t}\n\t}\n}\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tint N;\n\tcin >> N;\n\tA.resize(N);\n\tdp.resize(N);\n\tfail.resize(N);\n\tg.resize(N);\n\tfi.resize(N);\n\tse.resize(N);\n\tfi_sum.resize(N);\n\tse_sum.resize(N);\n\tsum.resize(N);\n\n\tint res = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> A[i];\n\t}\n\tint a, b;\n\tfor (int i = 0; i < N - 1; i++) {\n\t\tcin >> a >> b; a--; b--;\n\t\tg[a].push_back(b);\n\t\tg[b].push_back(a);\n\t}\n\tfor (int i = 0; i < N; i++) {\n\t\tsort(g[i].begin(), g[i].end());\n\t}\n\n\tdfs1(0, -1);\n\tdfs2(0, -1, -1);\n\n\tfor (int a = 0; a < N; a++) {\n\t\tint f = 0;\n\t\tint step = 0;\n\t\tint t = 1;\n\t\tif (t > A[a]) {\n\t\t\tf = 1;\n\t\t}\n\t\tif (f == 0) {\n\t\t\tstep++;\n\t\t}\n\t\tfor (int i = 0; i < g[a].size(); i++) {\n\t\t\tif (f == 0) {\n\t\t\t\tstep += dp[a][i];\n\t\t\t}\n\t\t\tf |= fail[a][i];\n\t\t\tt++;\n\t\t\tif (t > A[a]) {\n\t\t\t\tf = 1;\n\t\t\t}\n\t\t\tif (f == 0) {\n\t\t\t\tstep++;\n\t\t\t}\n\t\t}\n\t\tcout << step << endl;\n\n\t}\n}", "accuracy": 1, "time_ms": 670, "memory_kb": 75208, "score_of_the_acc": -0.7575, "final_rank": 5 }, { "submission_id": "aoj_3113_3887085", "code_snippet": "#include <iostream>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <string>\n#include <iomanip>\n#include <algorithm>\n#include <cmath>\n#include <stdio.h>\nusing namespace std;\n#define int long long\nint MOD = 1000000007;\nvector<vector<int> > g;\nvector<int> A;\nvector<vector<int> > dp;\nvector<vector<int> > fail;\nvector<int> fi;\nvector<int> se;\nvector<int> fi_sum;\nvector<int> se_sum;\nvector<int> sum;\npair<int, int> dfs1(int a, int p) {\n\n\tdp[a].resize(g[a].size(), 0);\n\tfail[a].resize(g[a].size(), 0);\n\tint f = 0;\n\tint step = 0;\n\tint t = 1;\n\tif (t > A[a]) {\n\t\tf = 1;\n\t}\n\tif (f == 0) {\n\t\tstep++;\n\t}\n\tfor (int i = 0; i < g[a].size(); i++) {\n\t\tif (g[a][i] != p) {\n\t\t\tpair<int, int> p = dfs1(g[a][i], a);\n\t\t\tdp[a][i] = p.first;\n\t\t\tif (f == 0) {\n\t\t\t\tstep += dp[a][i];\n\t\t\t}\n\t\t\tfail[a][i] = p.second;\n\t\t\tf |= p.second;\n\t\t\tt++;\n\t\t\tif (t > A[a]) {\n\t\t\t\tf = 1;\n\t\t\t}\n\t\t\tif (f == 0) {\n\t\t\t\tstep++;\n\t\t\t}\n\t\t}\n\t}\n\treturn make_pair(step, f);\n}\n\nvoid dfs2(int a, int p, int j) {\n\tint idx = -1;\n\tfor (int i = 0; i < g[a].size(); i++) {\n\t\tif (g[a][i] == p) {\n\t\t\tidx = i;\n\t\t}\n\t}\n\tif (idx >= 0) {\n\t\tfail[a][idx] = 0;\n\t\tif (fi[p] == -1) {\n\n\t\t\tif (j < A[p]) {\n\t\t\t\tdp[a][idx] = sum[p] - dp[p][j];\n\t\t\t\tif (A[p] < (int)g[p].size()) {\n\t\t\t\t\tdp[a][idx] += dp[p][A[p]];\n\t\t\t\t\t/*if (fail[p][A[p]]) {\n\t\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t\t\tdp[a][idx] += A[p] - 1;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tdp[a][idx] += A[p];\n\t\t\t\t\t}*/\n\t\t\t\t\tdp[a][idx] += A[p];\n\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tdp[a][idx] += (int)g[p].size();\n\t\t\t\t}\n\n\t\t\t}\n\t\t\telse {\n\t\t\t\tdp[a][idx] = sum[p] + A[p];\n\t\t\t\tfail[a][idx] = 1;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tif (j < fi[p]) {\n\t\t\t\tdp[a][idx] = fi_sum[p] - dp[p][j];\n\t\t\t\tdp[a][idx] += fi[p];\n\t\t\t\tfail[a][idx] = 1;\n\t\t\t}\n\t\t\telse if (j == fi[p]) {\n\t\t\t\tif (se[p] == -1) {\n\t\t\t\t\tdp[a][idx] = sum[p] - dp[p][j];\n\t\t\t\t\tif (A[p] < (int)g[p].size()) {\n\t\t\t\t\t\tdp[a][idx] += dp[p][A[p]];\n\t\t\t\t\t\t/*if (fail[p][A[p]]) {\n\t\t\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t\t\t\tdp[a][idx] += A[p] - 1;\n\t\t\t\t\t\t}\n\t\t\t\t\t\telse {\n\t\t\t\t\t\t\tdp[a][idx] += A[p];\n\t\t\t\t\t\t}*/\n\t\t\t\t\t\tdp[a][idx] += A[p];\n\t\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tdp[a][idx] += (int)g[p].size();\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tdp[a][idx] = se_sum[p] - dp[p][j];\n\t\t\t\t\tdp[a][idx] += se[p];\n\t\t\t\t\tfail[a][idx] = 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tdp[a][idx] = fi_sum[p];\n\t\t\t\tdp[a][idx] += fi[p] + 1;\n\t\t\t\tfail[a][idx] = 1;\n\t\t\t}\n\t\t}\n\t}\n\tfi[a] = -1;\n\tse[a] = -1;\n\tsum[a] = 0;\n\tfor (int i = 0; i < min(A[a], (int)g[a].size()); i++) {\n\t\tif (fail[a][i] == 1) {\n\t\t\tif (fi[a] == -1) {\n\t\t\t\tfi[a] = i;\n\t\t\t\tfi_sum[a] = sum[a] + dp[a][i];\n\t\t\t}\n\t\t\telse if (se[a] == -1) {\n\t\t\t\tse[a] = i;\n\t\t\t\tse_sum[a] = sum[a] + dp[a][i];\n\t\t\t}\n\t\t}\n\t\tsum[a] += dp[a][i];\n\t}\n\n\n\n\tfor (int i = 0; i < g[a].size(); i++) {\n\t\tif (g[a][i] != p) {\n\t\t\tdfs2(g[a][i], a, i);\n\t\t}\n\t}\n}\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\tint N;\n\tcin >> N;\n\tA.resize(N);\n\tdp.resize(N);\n\tfail.resize(N);\n\tg.resize(N);\n\tfi.resize(N);\n\tse.resize(N);\n\tfi_sum.resize(N);\n\tse_sum.resize(N);\n\tsum.resize(N);\n\n\tint res = 0;\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> A[i];\n\t}\n\tint a, b;\n\tfor (int i = 0; i < N - 1; i++) {\n\t\tcin >> a >> b; a--; b--;\n\t\tg[a].push_back(b);\n\t\tg[b].push_back(a);\n\t}\n\tfor (int i = 0; i < N; i++) {\n\t\tsort(g[i].begin(), g[i].end());\n\t}\n\n\tdfs1(0, -1);\n\tdfs2(0, -1, -1);\n\n\tfor (int a = 0; a < N; a++) {\n\t\tint f = 0;\n\t\tint step = 0;\n\t\tint t = 1;\n\t\tif (t > A[a]) {\n\t\t\tf = 1;\n\t\t}\n\t\tif (f == 0) {\n\t\t\tstep++;\n\t\t}\n\t\tfor (int i = 0; i < g[a].size(); i++) {\n\t\t\tif (f == 0) {\n\t\t\t\tstep += dp[a][i];\n\t\t\t}\n\t\t\tf |= fail[a][i];\n\t\t\tt++;\n\t\t\tif (t > A[a]) {\n\t\t\t\tf = 1;\n\t\t\t}\n\t\t\tif (f == 0) {\n\t\t\t\tstep++;\n\t\t\t}\n\t\t}\n\t\tcout << step << endl;\n\n\t}\n}", "accuracy": 1, "time_ms": 670, "memory_kb": 75044, "score_of_the_acc": -0.7557, "final_rank": 4 }, { "submission_id": "aoj_3113_3886142", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 300010\n\nvector<int> G[SIZE];\nint A1[SIZE], A2[SIZE];\n\npair<bool,int> res1[SIZE], res2[SIZE];\n\nvoid dfs1(int now, int back = -1) {\n\n bool dead = A1[now] <= 0;\n int step = A1[now] > 0;\n\n A1[now] -= 1;\n\n for(int to : G[now]) {\n if (to == back) continue;\n\n dfs1(to, now);\n\n if(!dead) step += res1[to].second;\n dead |= res1[to].first;\n\n dead |= A1[now] <= 0;\n A1[now] -= 1;\n if(!dead) step++;\n }\n\n res1[now] = {dead, step};\n}\n\nint ans[SIZE];\n\nvoid dfs2(int now, int back = -1) {\n set<int> deadList;\n map<int,int> idx;\n\n vector<pair<int,pair<bool,int> > > vec;\n\n for (int to : G[now]) {\n if (to == back)\n vec.push_back({to, res2[to]});\n else\n vec.push_back({to, res1[to]});\n }\n\n sort(vec.begin(), vec.end());\n\n vector<int> sum(G[now].size());\n\n for(int i=0; i<vec.size(); i++){\n idx[vec[i].first] = i;\n\n if (vec[i].second.first)\n deadList.insert(i);\n\n sum[i] = vec[i].second.second;\n if (i > 0) sum[i] += sum[i-1];\n }\n\n int tmpA = A2[now];\n\n ans[now] = tmpA > 0;\n tmpA--;\n\n debug(now);\n debug(res2[0]);\n debug(vec);\n\n for(int i=0; i<vec.size(); i++){\n if (tmpA < 0) break;\n ans[now] += vec[i].second.second;\n if (vec[i].second.first) break;\n if(tmpA <= 0) break;\n tmpA--;\n ans[now]++;\n }\n\n for(int to : G[now]) {\n if (to == back) continue;\n\n auto it = deadList.begin();\n\n if (it != deadList.end() && *it == idx[to]) it++;\n\n int deadLine = INF;\n\n if(it != deadList.end()){\n deadLine = *it;\n }\n\n int x = A2[now] - 1;\n\n if(x >= idx[to]) x++;\n\n deadLine = min(deadLine, x);\n\n int step = 0;\n if (deadLine >= (int)G[now].size())\n step = sum[G[now].size()-1] - vec[idx[to]].second.second;\n else if (deadLine < 0)\n step = 0;\n else\n step = sum[deadLine] - vec[idx[to]].second.second * (deadLine >= idx[to]);\n\n res2[now] = {deadLine < (int)G[now].size(), step + 1 + min(deadLine, (int)G[now].size()) - (deadLine >= idx[to])};\n\n dfs2(to, now);\n }\n}\n\n\nint N, A[SIZE];\n\nint main(){\n\n scanf(\"%d\", &N);\n\n for(int i=0; i<N; i++) {\n scanf(\"%d\", A+i);\n A1[i] = A[i];\n A2[i] = A[i];\n }\n\n for(int i=0; i<N-1; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n u--; v--;\n\n G[u].push_back(v);\n G[v].push_back(u);\n }\n\n for(int i=0; i<N; i++)\n sort(G[i].begin(), G[i].end());\n\n dfs1(0);\n dfs2(0);\n\n for(int i=0; i<N; i++) {\n printf(\"%d\\n\", ans[i]);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 51796, "score_of_the_acc": -0.2782, "final_rank": 1 }, { "submission_id": "aoj_3113_3886130", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 300010\n\nvector<int> G[SIZE];\nint A1[SIZE], A2[SIZE];\n\npair<bool,int> res1[SIZE], res2[SIZE];\n\nvoid dfs1(int now, int back = -1) {\n\n debug(now);\n debug(A1[now]);\n\n bool dead = A1[now] <= 0;\n int step = A1[now] > 0;\n\n A1[now] -= 1;\n\n for(int to : G[now]) {\n if (to == back) continue;\n\n dfs1(to, now);\n\n if(!dead) step += res1[to].second;\n dead |= res1[to].first;\n\n dead |= A1[now] <= 0;\n A1[now] -= 1;\n if(!dead) step++;\n }\n\n debug(now);\n debug(dead);\n\n res1[now] = {dead, step};\n}\n\nint ans[SIZE];\n\nvoid dfs2(int now, int back = -1) {\n set<int> deadList;\n map<int,int> idx;\n\n vector<pair<int,pair<bool,int> > > vec;\n\n for (int to : G[now]) {\n if (to == back)\n vec.push_back({to, res2[to]});\n else\n vec.push_back({to, res1[to]});\n }\n\n sort(vec.begin(), vec.end());\n\n vector<int> sum(G[now].size());\n\n for(int i=0; i<vec.size(); i++){\n idx[vec[i].first] = i;\n\n if (vec[i].second.first)\n deadList.insert(i);\n\n sum[i] = vec[i].second.second;\n if (i > 0) sum[i] += sum[i-1];\n }\n\n int tmpA = A2[now];\n\n ans[now] = tmpA > 0;\n tmpA--;\n\n debug(now);\n\n for(int i=0; i<vec.size(); i++){\n debug(vec[i]);\n if (tmpA < 0) break;\n ans[now] += vec[i].second.second;\n if (vec[i].second.first) break;\n if(tmpA <= 0) break;\n tmpA--;\n ans[now]++;\n }\n\n for(int to : G[now]) {\n if (to == back) continue;\n\n auto it = deadList.begin();\n\n if (it != deadList.end() && *it == idx[to]) it++;\n\n int deadLine = INF;\n\n if(it != deadList.end()){\n deadLine = *it;\n }\n\n //debug(now); debug(to); debug(deadLine);\n\n int x = A2[now] - 1;\n\n if(x >= idx[to]) x++;\n\n deadLine = min(deadLine, x);\n\n int step = 0;\n if (deadLine >= G[now].size())\n step = sum[G[now].size()-1] - vec[idx[to]].second.second;\n else if (deadLine < 0)\n step = 0;\n else\n step = sum[deadLine] - vec[idx[to]].second.second * (deadLine >= idx[to]);\n\n debug(now);\n debug(deadLine - (deadLine >= idx[to]));\n res2[now] = {deadLine < G[now].size(), step + 1 + min(deadLine, (int)G[now].size()) - (deadLine >= idx[to])};\n\n dfs2(to, now);\n }\n}\n\n\nint N, A[SIZE];\n\nint main(){\n\n scanf(\"%d\", &N);\n\n for(int i=0; i<N; i++) {\n scanf(\"%d\", A+i);\n A1[i] = A[i];\n A2[i] = A[i];\n }\n\n for(int i=0; i<N-1; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n u--; v--;\n\n G[u].push_back(v);\n G[v].push_back(u);\n }\n\n for(int i=0; i<N; i++)\n sort(G[i].begin(), G[i].end());\n\n if (N <= 1000) {\n for(int i=0; i<N; i++) {\n dfs1(i);\n ans[i] = res1[i].second;\n for(int j=0; j<N; j++) A1[j] = A[j];\n }\n } else {\n //srand(time(NULL));\n //int r = rand() % N;\n int r = 0;\n \n dfs1(r);\n dfs2(r);\n }\n \n for(int i=0; i<N; i++) {\n printf(\"%d\\n\", ans[i]);\n }\n\n return 0;\n}", "accuracy": 0.44047619047619047, "time_ms": 280, "memory_kb": 29392, "score_of_the_acc": -0.0004, "final_rank": 17 }, { "submission_id": "aoj_3113_3886126", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 300010\n\nvector<int> G[SIZE];\nint A1[SIZE], A2[SIZE];\n\npair<bool,int> res1[SIZE], res2[SIZE];\n\nvoid dfs1(int now, int back = -1) {\n\n debug(now);\n debug(A1[now]);\n\n bool dead = A1[now] <= 0;\n int step = A1[now] > 0;\n\n A1[now] -= 1;\n\n for(int to : G[now]) {\n if (to == back) continue;\n\n dfs1(to, now);\n\n if(!dead) step += res1[to].second;\n dead |= res1[to].first;\n\n dead |= A1[now] <= 0;\n A1[now] -= 1;\n if(!dead) step++;\n }\n\n debug(now);\n debug(dead);\n\n res1[now] = {dead, step};\n}\n\nint ans[SIZE];\n\nvoid dfs2(int now, int back = -1) {\n set<int> deadList;\n map<int,int> idx;\n\n vector<pair<int,pair<bool,int> > > vec;\n\n for (int to : G[now]) {\n if (to == back)\n vec.push_back({to, res2[to]});\n else\n vec.push_back({to, res1[to]});\n }\n\n sort(vec.begin(), vec.end());\n\n vector<int> sum(G[now].size());\n\n for(int i=0; i<vec.size(); i++){\n idx[vec[i].first] = i;\n\n if (vec[i].second.first)\n deadList.insert(i);\n\n sum[i] = vec[i].second.second;\n if (i > 0) sum[i] += sum[i-1];\n }\n\n int tmpA = A2[now];\n\n ans[now] = tmpA > 0;\n tmpA--;\n\n debug(now);\n\n for(int i=0; i<vec.size(); i++){\n debug(vec[i]);\n if (tmpA < 0) break;\n ans[now] += vec[i].second.second;\n if (vec[i].second.first) break;\n if(tmpA <= 0) break;\n tmpA--;\n ans[now]++;\n }\n\n for(int to : G[now]) {\n if (to == back) continue;\n\n auto it = deadList.begin();\n\n if (it != deadList.end() && *it == idx[to]) it++;\n\n int deadLine = INF;\n\n if(it != deadList.end()){\n deadLine = *it;\n }\n\n //debug(now); debug(to); debug(deadLine);\n\n int x = A2[now] - 1;\n\n if(x >= idx[to]) x++;\n\n deadLine = min(deadLine, x);\n\n int step = 0;\n if (deadLine >= G[now].size())\n step = sum[G[now].size()-1] - vec[idx[to]].second.second;\n else if (deadLine < 0)\n step = 0;\n else\n step = sum[deadLine] - vec[idx[to]].second.second * (deadLine >= idx[to]);\n\n debug(now);\n debug(deadLine - (deadLine >= idx[to]));\n res2[now] = {deadLine < G[now].size(), step + 1 + min(deadLine, (int)G[now].size()) - (deadLine >= idx[to])};\n\n dfs2(to, now);\n }\n}\n\n\nint N, A[SIZE];\n\nint main(){\n\n scanf(\"%d\", &N);\n\n for(int i=0; i<N; i++) {\n scanf(\"%d\", A+i);\n A1[i] = A[i];\n A2[i] = A[i];\n }\n\n for(int i=0; i<N-1; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n u--; v--;\n\n G[u].push_back(v);\n G[v].push_back(u);\n }\n\n for(int i=0; i<N; i++)\n sort(G[i].begin(), G[i].end());\n\n //srand(time(NULL));\n //int r = rand() % N;\n int r = 0;\n \n dfs1(r);\n dfs2(r);\n\n for(int i=0; i<N; i++) {\n printf(\"%d\\n\", ans[i]);\n }\n\n return 0;\n}", "accuracy": 0.44047619047619047, "time_ms": 290, "memory_kb": 29392, "score_of_the_acc": -0.0065, "final_rank": 19 }, { "submission_id": "aoj_3113_3886122", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 300010\n\nvector<int> G[SIZE];\nint A1[SIZE], A2[SIZE];\n\npair<bool,int> res1[SIZE], res2[SIZE];\n\nvoid dfs1(int now, int back = -1) {\n\n debug(now);\n debug(A1[now]);\n\n bool dead = A1[now] <= 0;\n int step = A1[now] > 0;\n\n A1[now] -= 1;\n\n for(int to : G[now]) {\n if (to == back) continue;\n\n dfs1(to, now);\n\n if(!dead) step += res1[to].second;\n dead |= res1[to].first;\n\n dead |= A1[now] <= 0;\n A1[now] -= 1;\n if(!dead) step++;\n }\n\n debug(now);\n debug(dead);\n\n res1[now] = {dead, step};\n}\n\nint ans[SIZE];\n\nvoid dfs2(int now, int back = -1) {\n set<int> deadList;\n map<int,int> idx;\n\n vector<pair<int,pair<bool,int> > > vec;\n\n for (int to : G[now]) {\n if (to == back)\n vec.push_back({to, res2[to]});\n else\n vec.push_back({to, res1[to]});\n }\n\n sort(vec.begin(), vec.end());\n\n vector<int> sum(G[now].size());\n\n for(int i=0; i<vec.size(); i++){\n idx[vec[i].first] = i;\n\n if (vec[i].second.first)\n deadList.insert(i);\n\n sum[i] = vec[i].second.second;\n if (i > 0) sum[i] += sum[i-1];\n }\n\n int tmpA = A2[now];\n\n ans[now] = tmpA > 0;\n tmpA--;\n\n debug(now);\n\n for(int i=0; i<vec.size(); i++){\n debug(vec[i]);\n if (tmpA < 0) break;\n ans[now] += vec[i].second.second;\n if (vec[i].second.first) break;\n if(tmpA <= 0) break;\n tmpA--;\n ans[now]++;\n }\n\n for(int to : G[now]) {\n if (to == back) continue;\n\n auto it = deadList.begin();\n\n if (it != deadList.end() && *it == idx[to]) it++;\n\n int deadLine = INF;\n\n if(it != deadList.end()){\n deadLine = *it;\n }\n\n //debug(now); debug(to); debug(deadLine);\n\n int x = A2[now] - 1;\n\n if(x >= idx[to]) x++;\n\n deadLine = min(deadLine, x);\n\n int step = 0;\n if (deadLine >= G[now].size())\n step = sum[G[now].size()-1] - vec[idx[to]].second.second;\n else if (deadLine < 0)\n step = 0;\n else\n step = sum[deadLine] - vec[idx[to]].second.second * (deadLine >= idx[to]);\n\n debug(now);\n debug(deadLine - (deadLine >= idx[to]));\n res2[now] = {deadLine < G[now].size(), step + 1 + min(deadLine, (int)G[now].size()) - (deadLine >= idx[to])};\n\n dfs2(to, now);\n }\n}\n\n\nint N, A[SIZE];\n\nint main(){\n\n scanf(\"%d\", &N);\n\n for(int i=0; i<N; i++) {\n scanf(\"%d\", A+i);\n A1[i] = A[i];\n A2[i] = A[i];\n }\n\n for(int i=0; i<N-1; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n u--; v--;\n\n G[u].push_back(v);\n G[v].push_back(u);\n }\n\n for(int i=0; i<N; i++)\n sort(G[i].begin(), G[i].end());\n\n srand(time(NULL));\n int r = rand() % N;\n\n dfs1(r);\n dfs2(r);\n\n for(int i=0; i<N; i++) {\n printf(\"%d\\n\", ans[i]);\n }\n\n return 0;\n}", "accuracy": 0.9285714285714286, "time_ms": 310, "memory_kb": 52080, "score_of_the_acc": -0.2753, "final_rank": 14 }, { "submission_id": "aoj_3113_3886118", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 300010\n\nvector<int> G[SIZE];\nint A1[SIZE], A2[SIZE];\n\npair<bool,int> res1[SIZE], res2[SIZE];\n\nvoid dfs1(int now, int back = -1) {\n\n debug(now);\n debug(A1[now]);\n\n bool dead = A1[now] <= 0;\n int step = A1[now] > 0;\n\n A1[now] -= 1;\n\n for(int to : G[now]) {\n if (to == back) continue;\n\n dfs1(to, now);\n\n if(!dead) step += res1[to].second;\n dead |= res1[to].first;\n\n dead |= A1[now] <= 0;\n A1[now] -= 1;\n if(!dead) step++;\n }\n\n debug(now);\n debug(dead);\n\n res1[now] = {dead, step};\n}\n\nint ans[SIZE];\n\nvoid dfs2(int now, int back = -1) {\n set<int> deadList;\n map<int,int> idx;\n\n vector<pair<int,pair<bool,int> > > vec;\n\n for (int to : G[now]) {\n if (to == back)\n vec.push_back({to, res2[to]});\n else\n vec.push_back({to, res1[to]});\n }\n\n sort(vec.begin(), vec.end());\n\n vector<int> sum(G[now].size());\n\n for(int i=0; i<vec.size(); i++){\n idx[vec[i].first] = i;\n\n if (vec[i].second.first)\n deadList.insert(i);\n\n sum[i] = vec[i].second.second;\n if (i > 0) sum[i] += sum[i-1];\n }\n\n int tmpA = A2[now];\n\n ans[now] = tmpA > 0;\n tmpA--;\n\n debug(now);\n\n for(int i=0; i<vec.size(); i++){\n debug(vec[i]);\n if (tmpA < 0) break;\n ans[now] += vec[i].second.second;\n if (vec[i].second.first) break;\n if(tmpA <= 0) break;\n tmpA--;\n ans[now]++;\n }\n\n for(int to : G[now]) {\n if (to == back) continue;\n\n auto it = deadList.begin();\n\n if (it != deadList.end() && *it == idx[to]) it++;\n\n int deadLine = INF;\n\n if(it != deadList.end()){\n deadLine = *it;\n }\n\n //debug(now); debug(to); debug(deadLine);\n\n int x = A2[now] - 1;\n\n if(x >= idx[to]) x++;\n\n deadLine = min(deadLine, x);\n\n int step = 0;\n if (deadLine >= G[now].size())\n step = sum[G[now].size()-1] - vec[idx[to]].second.second;\n else if (deadLine < 0)\n step = 0;\n else\n step = sum[deadLine] - vec[idx[to]].second.second * (deadLine >= idx[to]);\n\n debug(now);\n debug(deadLine - (deadLine >= idx[to]));\n res2[now] = {deadLine < G[now].size(), step + 1 + min(deadLine, (int)G[now].size()) - (deadLine >= idx[to])};\n\n dfs2(to, now);\n }\n}\n\n\nint N, A[SIZE];\n\nint main(){\n\n scanf(\"%d\", &N);\n\n for(int i=0; i<N; i++) {\n scanf(\"%d\", A+i);\n A1[i] = A[i];\n A2[i] = A[i];\n }\n\n for(int i=0; i<N-1; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n u--; v--;\n\n G[u].push_back(v);\n G[v].push_back(u);\n }\n\n for(int i=0; i<N; i++)\n sort(G[i].begin(), G[i].end());\n\n int r = rand() % N;\n\n dfs1(r);\n dfs2(r);\n\n for(int i=0; i<N; i++) {\n printf(\"%d\\n\", ans[i]);\n }\n\n return 0;\n}", "accuracy": 0.9285714285714286, "time_ms": 310, "memory_kb": 53656, "score_of_the_acc": -0.2931, "final_rank": 15 }, { "submission_id": "aoj_3113_3885497", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n\n#include <iostream>\n#include <complex>\n#include <string>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n\n#include <functional>\n#include <cassert>\n\ntypedef long long ll;\nusing namespace std;\n\n#ifndef LOCAL\n#define debug(x) ;\n#else\n#define debug(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\n\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &out, const pair<T1, T2> &p) {\n out << \"{\" << p.first << \", \" << p.second << \"}\";\n return out;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &out, const vector<T> &v) {\n out << '{';\n for (const T &item : v) out << item << \", \";\n out << \"\\b\\b}\";\n return out;\n}\n#endif\n\n#define mod 1000000007 //1e9+7(prime number)\n#define INF 1000000000 //1e9\n#define LLINF 2000000000000000000LL //2e18\n#define SIZE 300010\n\nvector<int> G[SIZE];\nint A1[SIZE], A2[SIZE];\n\npair<bool,int> res1[SIZE], res2[SIZE];\n\nvoid dfs1(int now, int back = -1) {\n\n debug(now);\n debug(A1[now]);\n\n bool dead = A1[now] <= 0;\n int step = A1[now] > 0;\n\n A1[now] -= 1;\n\n for(int to : G[now]) {\n if (to == back) continue;\n\n dfs1(to, now);\n\n if(!dead) step += res1[to].second;\n dead |= res1[to].first;\n\n dead |= A1[now] <= 0;\n A1[now] -= 1;\n if(!dead) step++;\n }\n\n debug(now);\n debug(dead);\n\n res1[now] = {dead, step};\n}\n\nint ans[SIZE];\n\nvoid dfs2(int now, int back = -1) {\n set<int> deadList;\n map<int,int> idx;\n\n vector<pair<int,pair<bool,int> > > vec;\n\n for (int to : G[now]) {\n if (to == back)\n vec.push_back({to, res2[to]});\n else\n vec.push_back({to, res1[to]});\n }\n\n sort(vec.begin(), vec.end());\n\n vector<int> sum(G[now].size());\n\n for(int i=0; i<vec.size(); i++){\n idx[vec[i].first] = i;\n\n if (vec[i].second.first)\n deadList.insert(i);\n\n sum[i] = vec[i].second.second;\n if (i > 0) sum[i] += sum[i-1];\n }\n\n int tmpA = A2[now];\n\n ans[now] = tmpA > 0;\n tmpA--;\n\n debug(now);\n\n for(int i=0; i<vec.size(); i++){\n debug(vec[i]);\n if (tmpA < 0) break;\n ans[now] += vec[i].second.second;\n if (vec[i].second.first) break;\n if(tmpA <= 0) break;\n tmpA--;\n ans[now]++;\n }\n\n for(int to : G[now]) {\n if (to == back) continue;\n\n auto it = deadList.begin();\n\n if (it != deadList.end() && *it == idx[to]) it++;\n\n int deadLine = INF;\n\n if(it != deadList.end()){\n deadLine = *it;\n }\n\n //debug(now); debug(to); debug(deadLine);\n\n int x = A2[now] - 1;\n\n if(x >= idx[to]) x++;\n\n deadLine = min(deadLine, x);\n\n int step = 0;\n if (deadLine >= G[now].size())\n step = sum[G[now].size()-1] - vec[idx[to]].second.second;\n else if (deadLine < 0)\n step = 0;\n else\n step = sum[deadLine] - vec[idx[to]].second.second * (deadLine >= idx[to]);\n\n debug(now);\n debug(deadLine - (deadLine >= idx[to]));\n res2[now] = {deadLine < G[now].size(), step + 1 + min(deadLine, (int)G[now].size()) - (deadLine >= idx[to])};\n\n dfs2(to, now);\n }\n}\n\n\nint N, A[SIZE];\n\nint main(){\n\n scanf(\"%d\", &N);\n\n for(int i=0; i<N; i++) {\n scanf(\"%d\", A+i);\n A1[i] = A[i];\n A2[i] = A[i];\n }\n\n for(int i=0; i<N-1; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n u--; v--;\n\n G[u].push_back(v);\n G[v].push_back(u);\n }\n\n for(int i=0; i<N; i++)\n sort(G[i].begin(), G[i].end());\n\n /*\n for(int i=0; i<N; i++) {\n for(int j=0; j<N; j++) A1[j] = A[j];\n dfs1(i);\n ans[i] = res1[i].second;\n }\n */\n\n dfs1(0);\n dfs2(0);\n\n for(int i=0; i<N; i++) {\n printf(\"%d\\n\", ans[i]);\n }\n\n return 0;\n}", "accuracy": 0.44047619047619047, "time_ms": 290, "memory_kb": 29356, "score_of_the_acc": -0.0061, "final_rank": 18 }, { "submission_id": "aoj_3113_3883799", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconst ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\ntypedef pair<int, bool> sP;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef pair<ll, ll> LP;\ntypedef vector<ll> vec;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-5;\nconst ld pi = acos(-1.0);\n\nint n;\nconst int mn = 300000;\nint a[mn];\nvector<int> G[mn];\n\nint sz;\nbool mp[mn];\nint num[mn];\nint g;\nvoid dfs2(int id, int fr) {\n\tnum[id] = 1;\n\tbool f = true;\n\trep(j, G[id].size()) {\n\t\tint to = G[id][j];\n\t\tif (to == fr || !mp[to])continue;\n\t\tdfs2(to, id);\n\t\tnum[id] += num[to];\n\t\tif (num[to] > sz / 2)f = false;\n\t}\n\tif (sz - num[id] > sz / 2)f = false;\n\tif (f)g = id;\n}\n\nmap<P, sP> memo;\nint out[mn];\n\n\nint c[mn];\nsP dfs(int id, int fr) {\n\tif (c[id] >= a[id]) {\n\t\treturn { 0,false };\n\t}\n\tc[id]++;\n\tsP ret = { 1,true };\n\trep(j, G[id].size()) {\n\t\tint to = G[id][j];\n\t\tif (to == fr)continue;\n\t\tif (!mp[to]) {\n\t\t\tsP p = memo[{to, id}];\n\t\t\tret.first += p.first;\n\t\t\tret.second = p.second;\n\t\t\tif (p.second == false) {\n\t\t\t\treturn ret;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tsP p = dfs(to, id);\n\t\t\tret.first += p.first;\n\t\t\tret.second = p.second;\n\t\t\tif (p.second == false) {\n\t\t\t\treturn ret;\n\t\t\t}\n\t\t}\n\t\tif (c[id] >= a[id])return { ret.first,false };\n\t\tc[id]++; ret.first++;\n\t}\n\treturn ret;\n}\n\n\nvector<int> nex;\nvoid tonex(int id, int fr) {\n\tnex.push_back(id);\n\trep(j, G[id].size()) {\n\t\tint to = G[id][j];\n\t\tif (to == fr)continue;\n\t\tif (!mp[to])continue;\n\t\ttonex(to, id);\n\t}\n}\nqueue<vector<int>> que;\nvoid ans(vector<int> &v) {\n\tif (v.empty())return;\n\tsz = v.size();\n\trep(i, v.size())mp[v[i]] = true;\n\tint root = v[0];\n\tg = root;\n\tdfs2(root, -1);\n\troot = g;\n\trep(i, v.size())c[v[i]] = 0;\n\tbool exifalse = false;\n\tvector<sP> vp;\n\tvector<int> ids;\n\trep(j, G[root].size()) {\n\t\tint to = G[root][j];\n\t\tsP p;\n\t\tif (mp[to]) {\n\t\t\tp = dfs(to, root);\n\t\t\tif (p.second == false && j<a[root]) {\n\t\t\t\texifalse = true;\n\t\t\t}\n\t\t\tvp.push_back(p);\n\t\t\tids.push_back(to);\n\t\t}\n\t\telse {\n\t\t\tp = memo[{to, root}];\n\t\t\tif (p.second == false && j<a[root]) {\n\t\t\t\texifalse = true;\n\t\t\t}\n\t\t\tvp.push_back(p);\n\t\t\tids.push_back(to);\n\t\t}\n\t\t//cout << root << \" !!! \" << to << \" \" << p.first << endl;\n\t}\n\tvector<int> rp(vp.size() + 1);\n\trep(i, vp.size()) {\n\t\trp[i + 1] = rp[i] + vp[i].first;\n\t}\n\t/*int chk = vp.size();\n\tif (!exifalse) {\n\tchk = min(chk, a[root]);\n\t}\n\telse {\n\trep(i, vp.size()) {\n\tif (vp[i].second == false) {\n\tchk = i + 1; break;\n\t}\n\t}\n\t}*/\n\t/*Rep(i, chk, vp.size()) {\n\tint to = ids[i];\n\tif (mp[to]) {\n\tmemo[{root, to}] = { rp[chk] + chk,false };\n\t}\n\t}*/\n\tout[root]++;\n\tif (a[root] == 0) {\n\t\tout[root] = 0;\n\t\trep(i, vp.size()) {\n\t\t\tint to = ids[i];\n\t\t\tmemo[{root, to}] = { 0,false };\n\t\t}\n\t}\n\telse if (!exifalse) {\n\t\t//cout << \"Hello!\" << endl;\n\t\tc[root] = 1;\n\t\tint chk = vp.size();\n\t\trep(i, vp.size()) {\n\t\t\t//cout <<\"hello \"<< vp[i].first << endl;\n\t\t\tif (vp[i].second == false) {\n\t\t\t\tout[root] += vp[i].first;\n\t\t\t\tchk = i;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tout[root] += vp[i].first;\n\t\t\t\tif (c[root] >= a[root]) {\n\t\t\t\t\tchk = i + 1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\tc[root]++;\n\t\t\t\tout[root]++;\n\t\t\t}\n\t\t}\n\t\t//cout << \"uoaaaa \" << chk << endl;\n\t\tRep(i, chk, vp.size()) {\n\t\t\tint cur = ids[i];\n\t\t\tif (mp[cur]) {\n\t\t\t\t//cout << root << \" \" << cur << \" \" << rp[chk] + chk << endl;\n\t\t\t\tmemo[{root, cur}] = { rp[chk] + chk,false };\n\t\t\t}\n\t\t}\n\t\tif (chk == vp.size()) {\n\t\t\trep(i, chk) {\n\t\t\t\tint to = ids[i];\n\t\t\t\tif (!mp[to])continue;\n\t\t\t\tint sum = rp[vp.size()] - vp[i].first;\n\t\t\t\t//cout << root << \" \" << to << \" \" << sum + chk << endl;\n\t\t\t\tmemo[{root, to}] = { sum + chk,true };\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\trep(i, chk) {\n\t\t\t\tint to = ids[i];\n\t\t\t\tif (!mp[to])continue;\n\t\t\t\tint sum = rp[chk + 1] - vp[i].first;\n\t\t\t\t//cout << root << \" \" << to << \" \" << sum + chk << endl;\n\t\t\t\tmemo[{root, to}] = { sum + chk,false };\n\t\t\t}\n\t\t}\n\t}\n\telse {\n\t\t//cout << \"aaaa\" << endl;\n\t\tc[root] = 1;\n\t\trep(i, vp.size()) {\n\t\t\t//cout << root << \" ?? \" << vp[i].first << ids[i]<<endl;\n\t\t\t//cout << vp[i].first << endl;\n\t\t\tif (vp[i].second == false) {\n\t\t\t\tout[root] += vp[i].first;\n\t\t\t\t//chk = i;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tout[root] += vp[i].first;\n\t\t\t\tc[root]++;\n\t\t\t\tout[root]++;\n\t\t\t}\n\t\t}\n\t\tint chk = vp.size();\n\t\trep(i, vp.size()) {\n\t\t\tif (vp[i].second == false) {\n\t\t\t\tchk = i; break;\n\t\t\t}\n\t\t}\n\t\t//cout << root << \" \" << ids[chk] << endl;\n\t\tRep(i, chk + 1, vp.size()) {\n\t\t\tint cur = ids[i];\n\t\t\tif (!mp[cur])continue;\n\t\t\t//cout << root << \" \" << cur << \" \" << rp[chk+1] + chk+1 << endl;\n\t\t\tmemo[{root, cur}] = { rp[chk + 1] + chk + 1,false };\n\t\t}\n\t\trep(i, chk) {\n\t\t\tint to = ids[i];\n\t\t\tif (!mp[to])continue;\n\t\t\tint sum = rp[chk + 1] - vp[i].first;\n\t\t\t//cout << root << \" \" << to << \" \" << sum + chk << endl;\n\t\t\tmemo[{root, to}] = { sum + chk,false };\n\t\t}\n\t\tc[root] = 1;\n\t\tint al = 1; bool va = true;\n\t\trep(i, vp.size()) {\n\t\t\tif (i == chk)continue;\n\t\t\tif (vp[i].second == false) {\n\t\t\t\tal += vp[i].first;\n\t\t\t\tva = false;\n\t\t\t\t//chk = i;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tal += vp[i].first;\n\t\t\t\tif (c[root] >= a[root]) {\n\t\t\t\t\tva = false; break;\n\t\t\t\t}\n\t\t\t\tc[root]++;\n\t\t\t\tal++;\n\t\t\t}\n\t\t}\n\t\t//cout << root << \" \" << ids[chk] << \" \" << al << endl;\n\t\tmemo[{root, ids[chk]}] = { al,va };\n\t}\n\trep(j, G[root].size()) {\n\t\tint to = G[root][j];\n\t\tif (!mp[to])continue;\n\t\tnex.clear();\n\t\ttonex(to, root);\n\t\tif (nex.size())que.push(nex);\n\t}\n\trep(i, v.size())mp[v[i]] = false;\n}\n\nvoid solve() {\n\tcin >> n;\n\trep(i, n) {\n\t\tcin >> a[i];\n\t}\n\trep(i, n - 1) {\n\t\tint u, v; cin >> u >> v; u--; v--;\n\t\tG[u].push_back(v);\n\t\tG[v].push_back(u);\n\t}\n\tvector<int> ori;\n\trep(i, n) {\n\t\tsort(G[i].begin(), G[i].end());\n\t\tori.push_back(i);\n\t}\n\tque.push(ori);\n\twhile (!que.empty()) {\n\t\tvector<int> v = que.front(); que.pop();\n\t\tans(v);\n\t\t//cout << \"??\" << endl;\n\t}\n\trep(i, n) {\n\t\tcout << out[i] << endl;\n\t}\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tsolve();\n\t//stop\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1370, "memory_kb": 66456, "score_of_the_acc": -1.0881, "final_rank": 9 }, { "submission_id": "aoj_3113_3883798", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconst ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\ntypedef pair<int, bool> sP;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef pair<ll, ll> LP;\ntypedef vector<ll> vec;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-5;\nconst ld pi = acos(-1.0);\n\nint n;\nconst int mn = 300000;\nint a[mn];\nvector<int> G[mn];\n\nint sz;\nbool mp[mn];\nint num[mn];\nint g;\nvoid dfs2(int id, int fr) {\n\tnum[id] = 1;\n\tbool f = true;\n\trep(j, G[id].size()) {\n\t\tint to = G[id][j];\n\t\tif (to == fr || !mp[to])continue;\n\t\tdfs2(to, id);\n\t\tnum[id] += num[to];\n\t\tif (num[to] > sz / 2)f = false;\n\t}\n\tif (sz - num[id] > sz / 2)f = false;\n\tif (f)g = id;\n}\n\nmap<P, sP> memo;\nint out[mn];\n\n\nint c[mn];\nsP dfs(int id, int fr) {\n\tif (c[id] >= a[id]) {\n\t\treturn { 0,false };\n\t}\n\tc[id]++;\n\tsP ret = { 1,true };\n\trep(j, G[id].size()) {\n\t\tint to = G[id][j];\n\t\tif (to == fr)continue;\n\t\tif (!mp[to]) {\n\t\t\tsP p = memo[{to, id}];\n\t\t\tret.first += p.first;\n\t\t\tret.second = p.second;\n\t\t\tif (p.second == false) {\n\t\t\t\treturn ret;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tsP p = dfs(to, id);\n\t\t\tret.first += p.first;\n\t\t\tret.second = p.second;\n\t\t\tif (p.second == false) {\n\t\t\t\treturn ret;\n\t\t\t}\n\t\t}\n\t\tif (c[id] >= a[id])return { ret.first,false };\n\t\tc[id]++; ret.first++;\n\t}\n\treturn ret;\n}\n\n\nvector<int> nex;\nvoid tonex(int id, int fr) {\n\tnex.push_back(id);\n\trep(j, G[id].size()) {\n\t\tint to = G[id][j];\n\t\tif (to == fr)continue;\n\t\tif (!mp[to])continue;\n\t\ttonex(to, id);\n\t}\n}\nqueue<vector<int>> que;\nvoid ans(vector<int> &v) {\n\tif (v.empty())return;\n\tsz = v.size();\n\trep(i, v.size())mp[v[i]] = true;\n\tint root = v[0];\n\tg = root;\n\tdfs2(root, -1);\n\troot = g;\n\trep(i, v.size())c[v[i]] = 0;\n\tbool exifalse = false;\n\tvector<sP> vp;\n\tvector<int> ids;\n\trep(j, G[root].size()) {\n\t\tint to = G[root][j];\n\t\tsP p;\n\t\tif (mp[to]) {\n\t\t\tp = dfs(to, root);\n\t\t\tif (p.second == false && j<a[root]) {\n\t\t\t\texifalse = true;\n\t\t\t}\n\t\t\tvp.push_back(p);\n\t\t\tids.push_back(to);\n\t\t}\n\t\telse {\n\t\t\tp = memo[{to, root}];\n\t\t\tif (p.second == false && j<a[root]) {\n\t\t\t\texifalse = true;\n\t\t\t}\n\t\t\tvp.push_back(p);\n\t\t\tids.push_back(to);\n\t\t}\n\t\t//cout << root << \" !!! \" << to << \" \" << p.first << endl;\n\t}\n\tvector<int> rp(vp.size() + 1);\n\trep(i, vp.size()) {\n\t\trp[i + 1] = rp[i] + vp[i].first;\n\t}\n\t/*int chk = vp.size();\n\tif (!exifalse) {\n\tchk = min(chk, a[root]);\n\t}\n\telse {\n\trep(i, vp.size()) {\n\tif (vp[i].second == false) {\n\tchk = i + 1; break;\n\t}\n\t}\n\t}*/\n\t/*Rep(i, chk, vp.size()) {\n\tint to = ids[i];\n\tif (mp[to]) {\n\tmemo[{root, to}] = { rp[chk] + chk,false };\n\t}\n\t}*/\n\tout[root]++;\n\tif (!exifalse) {\n\t\t//cout << \"Hello!\" << endl;\n\t\tc[root] = 1;\n\t\tint chk = vp.size();\n\t\trep(i, vp.size()) {\n\t\t\t//cout <<\"hello \"<< vp[i].first << endl;\n\t\t\tif (vp[i].second == false) {\n\t\t\t\tout[root] += vp[i].first;\n\t\t\t\tchk = i;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tout[root] += vp[i].first;\n\t\t\t\tif (c[root] >= a[root]) {\n\t\t\t\t\tchk = i + 1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\tc[root]++;\n\t\t\t\tout[root]++;\n\t\t\t}\n\t\t}\n\t\t//cout << \"uoaaaa \" << chk << endl;\n\t\tRep(i, chk, vp.size()) {\n\t\t\tint cur = ids[i];\n\t\t\tif (mp[cur]) {\n\t\t\t\t//cout << root << \" \" << cur << \" \" << rp[chk] + chk << endl;\n\t\t\t\tmemo[{root, cur}] = { rp[chk] + chk,false };\n\t\t\t}\n\t\t}\n\t\tif (chk == vp.size()) {\n\t\t\trep(i, chk) {\n\t\t\t\tint to = ids[i];\n\t\t\t\tif (!mp[to])continue;\n\t\t\t\tint sum = rp[vp.size()] - vp[i].first;\n\t\t\t\t//cout << root << \" \" << to << \" \" << sum + chk << endl;\n\t\t\t\tmemo[{root, to}] = { sum + chk,true };\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\trep(i, chk) {\n\t\t\t\tint to = ids[i];\n\t\t\t\tif (!mp[to])continue;\n\t\t\t\tint sum = rp[chk + 1] - vp[i].first;\n\t\t\t\t//cout << root << \" \" << to << \" \" << sum + chk << endl;\n\t\t\t\tmemo[{root, to}] = { sum + chk,false };\n\t\t\t}\n\t\t}\n\t}\n\telse {\n\t\t//cout << \"aaaa\" << endl;\n\t\tc[root] = 1;\n\t\trep(i, vp.size()) {\n\t\t\t//cout << root << \" ?? \" << vp[i].first << ids[i]<<endl;\n\t\t\t//cout << vp[i].first << endl;\n\t\t\tif (vp[i].second == false) {\n\t\t\t\tout[root] += vp[i].first;\n\t\t\t\t//chk = i;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tout[root] += vp[i].first;\n\t\t\t\tc[root]++;\n\t\t\t\tout[root]++;\n\t\t\t}\n\t\t}\n\t\tint chk = vp.size();\n\t\trep(i, vp.size()) {\n\t\t\tif (vp[i].second == false) {\n\t\t\t\tchk = i; break;\n\t\t\t}\n\t\t}\n\t\t//cout << root << \" \" << ids[chk] << endl;\n\t\tRep(i, chk + 1, vp.size()) {\n\t\t\tint cur = ids[i];\n\t\t\tif (!mp[cur])continue;\n\t\t\t//cout << root << \" \" << cur << \" \" << rp[chk+1] + chk+1 << endl;\n\t\t\tmemo[{root, cur}] = { rp[chk + 1] + chk + 1,false };\n\t\t}\n\t\trep(i, chk) {\n\t\t\tint to = ids[i];\n\t\t\tif (!mp[to])continue;\n\t\t\tint sum = rp[chk + 1] - vp[i].first;\n\t\t\t//cout << root << \" \" << to << \" \" << sum + chk+1 << endl;\n\t\t\tmemo[{root, to}] = { sum + chk,false };\n\t\t}\n\t\tc[root] = 1;\n\t\tint al = 1; bool va = true;\n\t\trep(i, vp.size()) {\n\t\t\tif (i == chk)continue;\n\t\t\tif (vp[i].second == false) {\n\t\t\t\tal += vp[i].first;\n\t\t\t\tva = false;\n\t\t\t\t//chk = i;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tal += vp[i].first;\n\t\t\t\tif (c[root] >= a[root]) {\n\t\t\t\t\tva = false; break;\n\t\t\t\t}\n\t\t\t\tc[root]++;\n\t\t\t\tal++;\n\t\t\t}\n\t\t}\n\t\t//cout << root << \" \" << ids[chk] << \" \" << al << endl;\n\t\tmemo[{root, ids[chk]}] = { al,va };\n\t}\n\trep(j, G[root].size()) {\n\t\tint to = G[root][j];\n\t\tif (!mp[to])continue;\n\t\tnex.clear();\n\t\ttonex(to, root);\n\t\tif (nex.size())que.push(nex);\n\n\n\t}\n\trep(i, v.size())mp[v[i]] = false;\n}\n\n\nvoid solve() {\n\tcin >> n;\n\trep(i, n) {\n\t\tcin >> a[i];\n\t}\n\trep(i, n - 1) {\n\t\tint u, v; cin >> u >> v; u--; v--;\n\t\tG[u].push_back(v);\n\t\tG[v].push_back(u);\n\t}\n\tvector<int> ori;\n\trep(i, n) {\n\t\tsort(G[i].begin(), G[i].end());\n\t\tori.push_back(i);\n\t}\n\tque.push(ori);\n\twhile (!que.empty()) {\n\t\tvector<int> v = que.front(); que.pop();\n\t\tans(v);\n\t\t//cout << \"??\" << endl;\n\t}\n\trep(i, n) {\n\t if(a[i]==0)out[i]=0;\n\t\tcout << out[i] << endl;\n\t}\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tsolve();\n\t//stop\n\treturn 0;\n}", "accuracy": 0.9285714285714286, "time_ms": 1370, "memory_kb": 66364, "score_of_the_acc": -1.087, "final_rank": 16 }, { "submission_id": "aoj_3113_3883794", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconst ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\ntypedef pair<int, bool> sP;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef pair<ll, ll> LP;\ntypedef vector<ll> vec;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-5;\nconst ld pi = acos(-1.0);\n\nint n;\nconst int mn = 300000;\nint a[mn];\nvector<int> G[mn];\n\nint sz;\nbool mp[mn];\nint num[mn];\nint g;\nvoid dfs2(int id, int fr) {\n\tnum[id] = 1;\n\tbool f = true;\n\trep(j, G[id].size()) {\n\t\tint to = G[id][j];\n\t\tif (to == fr || !mp[to])continue;\n\t\tdfs2(to, id);\n\t\tnum[id] += num[to];\n\t\tif (num[to] > sz / 2)f = false;\n\t}\n\tif (sz - num[id] > sz / 2)f = false;\n\tif (f)g = id;\n}\n\nmap<P, sP> memo;\nint out[mn];\n\n\nint c[mn];\nsP dfs(int id, int fr) {\n\tif (c[id] >= a[id]) {\n\t\treturn { 0,false };\n\t}\n\tc[id]++;\n\tsP ret = { 1,true };\n\trep(j, G[id].size()) {\n\t\tint to = G[id][j];\n\t\tif (to == fr)continue;\n\t\tif (!mp[to]) {\n\t\t\tsP p = memo[{to, id}];\n\t\t\tret.first += p.first;\n\t\t\tret.second = p.second;\n\t\t\tif (p.second == false) {\n\t\t\t\treturn ret;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tsP p = dfs(to, id);\n\t\t\tret.first += p.first;\n\t\t\tret.second = p.second;\n\t\t\tif (p.second == false) {\n\t\t\t\treturn ret;\n\t\t\t}\n\t\t}\n\t\tif (c[id] >= a[id])return { ret.first,false };\n\t\tc[id]++; ret.first++;\n\t}\n\treturn ret;\n}\n\n\nvector<int> nex;\nvoid tonex(int id, int fr) {\n\tnex.push_back(id);\n\trep(j, G[id].size()) {\n\t\tint to = G[id][j];\n\t\tif (to == fr)continue;\n\t\tif (!mp[to])continue;\n\t\ttonex(to, id);\n\t}\n}\nqueue<vector<int>> que;\nvoid ans(vector<int> &v) {\n\tif (v.empty())return;\n\tsz = v.size();\n\trep(i, v.size())mp[v[i]] = true;\n\tint root = v[0];\n\tg = root;\n\tdfs2(root, -1);\n\troot = g;\n\trep(i, v.size())c[v[i]] = 0;\n\tbool exifalse = false;\n\tvector<sP> vp;\n\tvector<int> ids;\n\trep(j, G[root].size()) {\n\t\tint to = G[root][j];\n\t\tsP p;\n\t\tif (mp[to]) {\n\t\t\tp = dfs(to, root);\n\t\t\tif (p.second == false && j<a[root]) {\n\t\t\t\texifalse = true;\n\t\t\t}\n\t\t\tvp.push_back(p);\n\t\t\tids.push_back(to);\n\t\t}\n\t\telse {\n\t\t\tp = memo[{to, root}];\n\t\t\tif (p.second == false && j<a[root]) {\n\t\t\t\texifalse = true;\n\t\t\t}\n\t\t\tvp.push_back(p);\n\t\t\tids.push_back(to);\n\t\t}\n\t\t//cout << root << \" !!! \" << to << \" \" << p.first << endl;\n\t}\n\tvector<int> rp(vp.size() + 1);\n\trep(i, vp.size()) {\n\t\trp[i + 1] = rp[i] + vp[i].first;\n\t}\n\t/*int chk = vp.size();\n\tif (!exifalse) {\n\tchk = min(chk, a[root]);\n\t}\n\telse {\n\trep(i, vp.size()) {\n\tif (vp[i].second == false) {\n\tchk = i + 1; break;\n\t}\n\t}\n\t}*/\n\t/*Rep(i, chk, vp.size()) {\n\tint to = ids[i];\n\tif (mp[to]) {\n\tmemo[{root, to}] = { rp[chk] + chk,false };\n\t}\n\t}*/\n\tout[root]++;\n\tif (!exifalse) {\n\t\t//cout << \"Hello!\" << endl;\n\t\tc[root] = 1;\n\t\tint chk = vp.size();\n\t\trep(i, vp.size()) {\n\t\t\t//cout <<\"hello \"<< vp[i].first << endl;\n\t\t\tif (vp[i].second == false) {\n\t\t\t\tout[root] += vp[i].first;\n\t\t\t\tchk = i;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tout[root] += vp[i].first;\n\t\t\t\tif (c[root] >= a[root]) {\n\t\t\t\t\tchk = i + 1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\tc[root]++;\n\t\t\t\tout[root]++;\n\t\t\t}\n\t\t}\n\t\t//cout << \"uoaaaa \" << chk << endl;\n\t\tRep(i, chk, vp.size()) {\n\t\t\tint cur = ids[i];\n\t\t\tif (mp[cur]) {\n\t\t\t\t//cout << root << \" \" << cur << \" \" << rp[chk] + chk << endl;\n\t\t\t\tmemo[{root, cur}] = { rp[chk] + chk,false };\n\t\t\t}\n\t\t}\n\t\tif (chk == vp.size()) {\n\t\t\trep(i, chk) {\n\t\t\t\tint to = ids[i];\n\t\t\t\tif (!mp[to])continue;\n\t\t\t\tint sum = rp[vp.size()] - vp[i].first;\n\t\t\t\t//cout << root << \" \" << to << \" \" << sum + chk << endl;\n\t\t\t\tmemo[{root, to}] = { sum + chk,true };\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\trep(i, chk) {\n\t\t\t\tint to = ids[i];\n\t\t\t\tif (!mp[to])continue;\n\t\t\t\tint sum = rp[chk + 1] - vp[i].first;\n\t\t\t\t//cout << root << \" \" << to << \" \" << sum + chk << endl;\n\t\t\t\tmemo[{root, to}] = { sum + chk,false };\n\t\t\t}\n\t\t}\n\t}\n\telse {\n\t\t//cout << \"aaaa\" << endl;\n\t\tc[root] = 1;\n\t\trep(i, vp.size()) {\n\t\t\t//cout << root << \" ?? \" << vp[i].first << ids[i]<<endl;\n\t\t\t//cout << vp[i].first << endl;\n\t\t\tif (vp[i].second == false) {\n\t\t\t\tout[root] += vp[i].first;\n\t\t\t\t//chk = i;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tout[root] += vp[i].first;\n\t\t\t\tc[root]++;\n\t\t\t\tout[root]++;\n\t\t\t}\n\t\t}\n\t\tint chk = vp.size();\n\t\trep(i, vp.size()) {\n\t\t\tif (vp[i].second == false) {\n\t\t\t\tchk = i; break;\n\t\t\t}\n\t\t}\n\t\t//cout << root << \" \" << ids[chk] << endl;\n\t\tRep(i, chk + 1, vp.size()) {\n\t\t\tint cur = ids[i];\n\t\t\tif (!mp[cur])continue;\n\t\t\t//cout << root << \" \" << cur << \" \" << rp[chk+1] + chk+1 << endl;\n\t\t\tmemo[{root, cur}] = { rp[chk + 1] + chk + 1,false };\n\t\t}\n\t\trep(i, chk) {\n\t\t\tint to = ids[i];\n\t\t\tif (!mp[to])continue;\n\t\t\tint sum = rp[chk + 1] - vp[i].first;\n\t\t\t//cout << root << \" \" << to << \" \" << sum + chk+1 << endl;\n\t\t\tmemo[{root, to}] = { sum + chk,false };\n\t\t}\n\t\tc[root] = 1;\n\t\tint al = 1; bool va = true;\n\t\trep(i, vp.size()) {\n\t\t\tif (i == chk)continue;\n\t\t\tif (vp[i].second == false) {\n\t\t\t\tal += vp[i].first;\n\t\t\t\tva = false;\n\t\t\t\t//chk = i;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tal += vp[i].first;\n\t\t\t\tif (c[root] >= a[root]) {\n\t\t\t\t\tva = false; break;\n\t\t\t\t}\n\t\t\t\tc[root]++;\n\t\t\t\tal++;\n\t\t\t}\n\t\t}\n\t\t//cout << root << \" \" << ids[chk] << \" \" << al << endl;\n\t\tmemo[{root, ids[chk]}] = { al,va };\n\t}\n\trep(j, G[root].size()) {\n\t\tint to = G[root][j];\n\t\tif (!mp[to])continue;\n\t\tnex.clear();\n\t\ttonex(to, root);\n\t\tif (nex.size())que.push(nex);\n\n\n\t}\n\trep(i, v.size())mp[v[i]] = false;\n}\n\n\nvoid solve() {\n\tcin >> n;\n\trep(i, n) {\n\t\tcin >> a[i];\n\t}\n\trep(i, n - 1) {\n\t\tint u, v; cin >> u >> v; u--; v--;\n\t\tG[u].push_back(v);\n\t\tG[v].push_back(u);\n\t}\n\tvector<int> ori;\n\trep(i, n) {\n\t\tsort(G[i].begin(), G[i].end());\n\t\tori.push_back(i);\n\t}\n\tque.push(ori);\n\twhile (!que.empty()) {\n\t\tvector<int> v = que.front(); que.pop();\n\t\tans(v);\n\t\t//cout << \"??\" << endl;\n\t}\n\trep(i, n) {\n\t\tcout << out[i] << endl;\n\t}\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tsolve();\n\t//stop\n\treturn 0;\n}", "accuracy": 0.44047619047619047, "time_ms": 1310, "memory_kb": 61696, "score_of_the_acc": -0.9974, "final_rank": 20 }, { "submission_id": "aoj_3113_3881854", "code_snippet": "#include<iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\n#include<iomanip>\n#include<math.h>\n#include<complex>\n#include<queue>\n#include<deque>\n#include<stack>\n#include<map>\n#include<set>\n#include<bitset>\n#include<functional>\n#include<assert.h>\n#include<numeric>\nusing namespace std;\n#define REP(i,m,n) for(int i=(int)(m) ; i < (int) (n) ; ++i )\n#define rep(i,n) REP(i,0,n)\nusing ll = long long;\nconst int inf=1e9+7;\nconst ll longinf=1LL<<60 ;\nconst ll mod=1e9+7 ;\n\n\nvector<int> v[303030];\nvector<int> sum[303030],die[303030];\nint a[303030];\n\npair<int,int> dfs(int x,int p){\n int m = v[x].size();\n die[x].resize(m+1), sum[x].resize(m+1);\n rep(i,m){\n if(v[x][i]==p)continue;\n auto ret = dfs(v[x][i],x);\n die[x][i+1] += ret.first;\n sum[x][i+1] += ret.second;\n }\n int ans = 0;\n int c = 0;\n rep(i,m){\n if(v[x][i]==p)continue;\n if(a[x]<=c)return {1,ans};\n ++ans;\n if(die[x][i+1])return {1,ans+sum[x][i+1]};\n ans += sum[x][i+1];\n ++c;\n }\n if(a[x]<=c)return {1,ans};\n ++ans;\n return {0,ans};\n}\n\npair<int,int> ret[303030];\nint ANS[303030];\n\nvoid dfs2(int x,int p){\n int m = v[x].size();\n rep(i,m){\n if(v[x][i]==p)die[x][i+1]=ret[x].first,sum[x][i+1]=ret[x].second;\n die[x][i+1]+=die[x][i];\n sum[x][i+1]+=sum[x][i];\n }\n\n int ans = 0;\n bool ok=true;\n rep(j,m){\n if(a[x]<=j){\n ok=false;\n break;\n }\n ++ans;\n if(die[x][j+1]!=die[x][j]){\n ans+=sum[x][j+1]-sum[x][j];\n ok=false;\n break;\n }\n else ans += sum[x][j+1]-sum[x][j];\n }\n if(ok&&a[x]>=m+1)++ans;\n int ans2 = 0;\n ok=true;\n rep(j,m){\n if(a[x]<=j-1){\n ok=false;\n break;\n }\n ++ans2;\n if(die[x][j+1]!=die[x][j]){\n ans2+=sum[x][j+1]-sum[x][j];\n ok=false;\n break;\n }\n else ans2+=sum[x][j+1]-sum[x][j];\n }\n if(ok&&a[x]>=m)++ans2;\n else ok=false;\n rep(i,m){\n int to = v[x][i];\n if(v[x][i]==p)continue;\n if(i+1>a[x]){\n ret[to]={1,ans};\n }\n else {\n if(die[x][i]>=1){\n ret[to]={1,ans};\n }\n else if(die[x][i+1]==0){\n ret[to]={!ok,ans2-sum[x][i+1]+sum[x][i]-1};\n }\n else {\n int ans3 = 0;\n bool ok3=true;\n int c = 0;\n rep(j,m){\n if(j==i)continue;\n if(a[x]<=c){\n ok3=false;\n break;\n }\n ++ans3;\n ++c;\n if(die[x][j+1]!=die[x][j]){\n ans3+=sum[x][j+1]-sum[x][j];\n ok3=false;\n break;\n }\n else ans3+=sum[x][j+1]-sum[x][j];\n }\n if(ok3&&a[x]>=m)++ans3;\n else ok3=false;\n ret[to]={!ok3,ans3};\n }\n }\n }\n ANS[x]=ans;\n for(auto to : v[x]){\n if(to==p)continue;\n dfs2(to,x);\n }\n}\nint main(){\n int n;\n cin>>n;\n rep(i,n)cin>>a[i];\n rep(i,n-1){\n int x,y;\n cin>>x>>y;\n --x;--y;\n v[x].push_back(y);\n v[y].push_back(x);\n }\n rep(i,n)sort(v[i].begin(),v[i].end());\n dfs(0,-1);\n dfs2(0,-1);\n rep(i,n)cout<<ANS[i]<<\"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 490, "memory_kb": 61888, "score_of_the_acc": -0.4965, "final_rank": 2 } ]
aoj_3114_cpp
Min Element 数列 a_1,a_2,..,a_N が与えられます。 この数列の最小値の番号を求めてください。 最小値が複数の場所にあるときは、番号の最も小さいものを答えてください。 入力 N a_1 a_2...a_N 出力 a_i が数列の最小値となるような i のうち、最も小さいものを出力せよ。 制約 1 \leq N \leq 10^5 1 \leq a_i \leq 10^9 入力例 6 8 6 9 1 2 1 出力例 4
[ { "submission_id": "aoj_3114_10588953", "code_snippet": "#include<iostream>\nusing namespace std;\n\nint main()\n{\n int N;\n const int MAX_NUM = 100000;\n int input_array[MAX_NUM] = {};\n int min_val = 100000000;\n int min_val_place = 0;\n cin >> N;\n \n for (int i = 1; i<= N;i++)\n {\n cin >> input_array[i - 1];\n if (input_array[i - 1] < min_val)\n {\n min_val = input_array[i - 1];\n min_val_place = i;\n }\n }\n cout << min_val_place << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3736, "score_of_the_acc": -0.3756, "final_rank": 16 }, { "submission_id": "aoj_3114_7132597", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int N;\n cin >> N;\n vector<int>a(N);\n for(int i = 0; i < N; i++) {\n cin >> a[i];\n }\n cout << min_element(a.begin(),a.end())-a.begin()+1 << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3568, "score_of_the_acc": -0.2805, "final_rank": 13 }, { "submission_id": "aoj_3114_5145487", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for(long long i=0;i<(long long)(n);i++)\n#define REP(i,k,n) for(long long i=k;i<(long long)(n);i++)\n#define all(a) a.begin(),a.end()\n#define rsort(a) {sort(all(a));reverse(all(a));}\n#define pb emplace_back\n#define eb emplace_back\n#define lb(v,k) (lower_bound(all(v),(k))-v.begin())\n#define ub(v,k) (upper_bound(all(v),(k))-v.begin())\n#define fi first\n#define se second\n#define pi M_PI\n#define PQ(T) priority_queue<T>\n#define SPQ(T) priority_queue<T,vector<T>,greater<T>>\n#define dame(a) {out(a);return 0;}\n#define decimal cout<<fixed<<setprecision(15);\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef tuple<ll,ll,ll> PP;\ntypedef tuple<ll,ll,ll,ll> PPP;\ntypedef multiset<ll> S;\nusing vi=vector<ll>;\nusing vvi=vector<vi>;\nusing vvvi=vector<vvi>;\nusing vvvvi=vector<vvvi>;\nusing vp=vector<P>;\nusing vvp=vector<vp>;\nusing vb=vector<bool>;\nusing vvb=vector<vb>;\nconst ll inf=1001001001001001001;\nconst ll INF=1001001001;\nconst ll mod=1000000007;\nconst double eps=1e-10;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outp(T a){cout<<'('<<a.fi<<','<<a.se<<')'<<'\\n';}\ntemplate<class T> void outvp(T v){rep(i,v.size())cout<<'('<<v[i].fi<<','<<v[i].se<<')';cout<<'\\n';}\ntemplate<class T> void outvvp(T v){rep(i,v.size())outvp(v[i]);}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){rep(i,v.size())outv(v[i]);}\ntemplate<class T> bool isin(T x,T l,T r){return (l)<=(x)&&(x)<=(r);}\ntemplate<class T> void yesno(T b){if(b)out(\"yes\");else out(\"no\");}\ntemplate<class T> void YesNo(T b){if(b)out(\"Yes\");else out(\"No\");}\ntemplate<class T> void YESNO(T b){if(b)out(\"YES\");else out(\"NO\");}\ntemplate<class T> void noyes(T b){if(b)out(\"no\");else out(\"yes\");}\ntemplate<class T> void NoYes(T b){if(b)out(\"No\");else out(\"Yes\");}\ntemplate<class T> void NOYES(T b){if(b)out(\"NO\");else out(\"YES\");}\nvoid outs(ll a,ll b){if(a>=inf-100)out(b);else out(a);}\nll gcd(ll a,ll b){if(b==0)return a;return gcd(b,a%b);}\nll modpow(ll a,ll b){ll res=1;a%=mod;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}return res;}\nint main(){\n ll n;cin>>n;\n vp srt;\n rep(i,n){\n ll a;cin>>a;\n srt.pb(a,i);\n }\n sort(all(srt));\n out(srt[0].se+1);\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4840, "score_of_the_acc": -2, "final_rank": 20 }, { "submission_id": "aoj_3114_4849130", "code_snippet": "#include<bits//stdc++.h>\nusing namespace std;\nint n;\nint main(){\n cin>>n;vector<int> a(n);\n for(int i=0;i<n;i++) cin>>a[i];\n cout<<min_element(a.begin(),a.end())-a.begin() +1<<endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3096, "score_of_the_acc": -0.0136, "final_rank": 4 }, { "submission_id": "aoj_3114_4836074", "code_snippet": "#include <algorithm>\n#include <cmath>\n#include <cstdio>\n#include <deque>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <vector>\n\nusing namespace std;\n\ntypedef long long ll;\n\n#define MOD 1000000007\n\nint main() {\n int n;\n cin >> n;\n vector<int> a(n);\n for (int i = 0; i < n; ++i) {\n cin >> a[i];\n }\n int mn = 1e9 + 1;\n int ans = -1;\n for (int i = 0; i < n; ++i) {\n if (a[i] < mn) {\n mn = a[i];\n ans = i;\n }\n }\n cout << ans + 1 << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3076, "score_of_the_acc": -0.0023, "final_rank": 2 }, { "submission_id": "aoj_3114_4416257", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint main(){\n int n;\n cin >> n;\n vector<int> a(n);\n int ans = 0;\n for(int i=0; i<n; i++){\n cin >> a[i];\n if(a[i] < a[ans]){\n ans = i;\n }\n }\n cout << ans+1 << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3096, "score_of_the_acc": -0.0136, "final_rank": 4 }, { "submission_id": "aoj_3114_4386320", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\nusing lint = long long int;\nlong long int INF = 1001001001001001LL;\nint inf = 1000000007;\nlong long int MOD = 1000000007LL;\ndouble PI = 3.1415926535897932;\n\ntemplate<typename T1,typename T2>inline void chmin(T1 &a,const T2 &b){if(a>b) a=b;}\ntemplate<typename T1,typename T2>inline void chmax(T1 &a,const T2 &b){if(a<b) a=b;}\n\n#define ALL(a) a.begin(),a.end()\n#define RALL(a) a.rbegin(),a.rend()\n\n/* do your best */\n\nint main() {\n \n int n; cin >> n;\n int e = 1e9 + 1;\n int id = -1;\n for (int i = 1; i <= n; i++) {\n int a; cin >> a;\n if (a < e) {\n e = a;\n id = i;\n }\n }\n\n cout << id << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3072, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3114_4220029", "code_snippet": "#include<iostream>\n#include<vector>\n\nusing namespace std;\n\nint main() {\n\tint n; \n\tcin >> n;\n\tvector<int> a(n);\n\tfor (int &x : a) cin >> x;\n\n\tint m = 0;\n\tfor (int i = 0; i < n; i++) {\n\t\tif (a[m] > a[i]) {\n\t\t\tm = i;\n\t\t}\n\t}\n\n\tcout << m + 1 << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3088, "score_of_the_acc": -0.009, "final_rank": 3 }, { "submission_id": "aoj_3114_4105521", "code_snippet": "#include <numeric>\n#include <vector>\n#include <iostream>\n#include <string>\n#include <cmath>\n#include <iomanip>\n#include <algorithm>\n#include <numeric>\n#include <queue>\nusing namespace std;\n\nint main(const int args, const char* argv[])\n{\n int nums;\n cin >> nums;\n auto cmp = [](const long long a, const long long b){\n return a > b;\n };\n priority_queue<long long, vector<long long>, decltype(cmp)> Queue(cmp);\n vector<long long> inputVec;\n \n for(int i = 0; i < nums; i++)\n {\n long long tmp;\n cin >> tmp;\n Queue.push(tmp);\n inputVec.push_back(tmp);\n }\n int tmpI(0);\n while(true)\n {\n if(Queue.top() == inputVec[tmpI])\n {\n cout << tmpI + 1 << endl;\n break;\n }\n tmpI++;\n }\n \n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4744, "score_of_the_acc": -0.9457, "final_rank": 18 }, { "submission_id": "aoj_3114_4099205", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n\tint n;\n\tcin>>n;\n\tint a[n];\n\tfor(int i=0;i<n;i++) cin>>a[i];\n\tint m=a[0],p=1;\n\tfor(int i=1;i<n;i++)\n\t{\n\t\tif(m>a[i]){m=a[i];p=i+1;}\n\t}\n\tcout<<p<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3472, "score_of_the_acc": -0.2262, "final_rank": 10 }, { "submission_id": "aoj_3114_4084978", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\nint main() {\n\tint n; std::cin >> n;\n\tstd::vector<int> values(n); for (auto& v : values) std::cin >> v;\n\tstd::cout << std::distance(values.begin(), std::min_element(values.begin(), values.end())) + 1 << std::endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3116, "score_of_the_acc": -0.0249, "final_rank": 9 }, { "submission_id": "aoj_3114_4083918", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nusing datas=pair<ll,ll>;\nusing ddatas=pair<double,double>;\nusing tdata=pair<ll,datas>;\nusing vec=vector<ll>;\nusing mat=vector<vec>;\nusing pvec=vector<datas>;\nusing pmat=vector<pvec>;\n#define For(i,a,b) for(i=a;i<(ll)b;i++)\n#define bFor(i,a,b) for(i=a;i>=(ll)b;i--)\n#define rep(i,N) For(i,0,N)\n#define rep1(i,N) For(i,1,N)\n#define brep(i,N) bFor(i,N-1,0)\n#define all(v) (v).begin(),(v).end()\n#define allr(v) (v).rbegin(),(v).rend()\n#define vsort(v) sort(all(v))\n#define vrsort(v) sort(allr(v))\n#define endl \"\\n\"\n#define pb push_back\n#define output(v) do{bool f=0;for(auto outi:v){cout<<(f?\" \":\"\")<<outi;f=1;}cout<<endl;}while(0)\nconst ll mod=1000000007;\nconst ll inf=1LL<<60;\nconst double PI = acos(-1);\nconst double eps = 1e-9;\ntemplate<class T> inline bool chmax(T& a,T b){bool x=a<b;if(x)a=b;return x;} \ntemplate<class T> inline bool chmin(T& a,T b){bool x=a>b;if(x)a=b;return x;} \n \nvoid startupcpp(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout<<fixed<<setprecision(15);\n}\n \ndouble distance(ddatas& x,ddatas& y){\n double a=x.first-y.first,b=x.second-y.second;\n return sqrt(a*a+b*b);\n}\n \nll modinv(ll a) {\n ll b=mod,u=1,v=0,t;\n while(b){\n t=a/b;\n a-=t*b; swap(a,b);\n u-=t*v; swap(u,v);\n }\n return (u+mod)%mod;\n}\n \nll moddevide(ll a,ll b){return (a*modinv(b))%mod;}\n \nvec modncrlistp,modncrlistm;\n \nll modncr(ll n,ll r){\n ll i,size=modncrlistp.size();\n if(size<=n){\n modncrlistp.resize(n+1);\n modncrlistm.resize(n+1);\n if(!size){\n modncrlistp[0]=modncrlistm[0]=1;\n size++;\n }\n For(i,size,n+1){\n modncrlistp[i]=modncrlistp[i-1]*i%mod;\n modncrlistm[i]=modinv(modncrlistp[i]);\n }\n }\n return modncrlistp[n]*modncrlistm[r]%mod*modncrlistm[n-r]%mod;\n}\n \nll modpow(ll a,ll n){\n ll res=1;\n while(n){\n if(n&1)res=res*a%mod;\n a=a*a%mod;\n n>>=1;\n }\n return res;\n}\n \nll gcd(ll a,ll b){if(!b)return a;return (a%b==0)?b:gcd(b,a%b);}\nll lcm(ll a,ll b){return a/gcd(a,b)*b;}\n \nll countdigits(ll n){\n ll ans=0;\n while(n){n/=10;ans++;}\n return ans;\n}\n \nll sumdigits(ll n){\n ll ans=0;\n while(n){ans+=n%10;n/=10;}\n return ans;\n}\nvoid judgement(int a){\n if(a){\n cout<<\"Yes\"<<endl;\n }else{\n cout<<\"No\"<<endl;\n }\n if(a){\n cout<<\"YES\"<<endl;\n }else{\n cout<<\"NO\"<<endl;\n }\n}\nint main(){\n ll i,N,x=inf,id=0;\n cin>>N;\n vec v(N);\n rep(i,N){\n cin>>v[i];\n if(chmin(x,v[i]))id=i;\n }\n cout<<id+1<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3640, "score_of_the_acc": -0.3213, "final_rank": 15 }, { "submission_id": "aoj_3114_4083685", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main(){\n int N;\n cin >> N;\n vector<pair<int, int>> A(N);\n for(int i=0; i<N; i++){\n int a;\n cin >> a;\n A[i] = {a, i};\n }\n int ans = min_element(A.begin(), A.end()) - A.begin() + 1;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3588, "score_of_the_acc": -0.2919, "final_rank": 14 }, { "submission_id": "aoj_3114_4081026", "code_snippet": "//\n// Created by yamunaku on 2019/12/29.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing mti = vector<vector<int>>;\nusing vl = vector<ll>;\nusing mtl = vector<vector<ll>>;\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\ntemplate<typename T>\nusing heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;\n\nint main(){\n // CFS;\n int n;\n cin >> n;\n vi a(n);\n rep(i,n) cin >> a[i];\n int mi = IINF;\n int idx = -1;\n rep(i, n){\n if(mi > a[i]){\n mi = a[i];\n idx = i;\n }\n }\n cout << idx + 1 << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3104, "score_of_the_acc": -0.0181, "final_rank": 8 }, { "submission_id": "aoj_3114_4078802", "code_snippet": "#include<iostream>\nusing namespace std;\nint n,A[1<<17];\nmain()\n{\n cin>>n;\n int id=0;\n for(int i=0;i<n;i++)\n {\n cin>>A[i];\n if(A[id]>A[i])id=i;\n }\n cout<<id+1<<endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3492, "score_of_the_acc": -0.2376, "final_rank": 11 }, { "submission_id": "aoj_3114_4075649", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define ll long long\n\nsigned main() {\n\tint n; cin >> n;\n\tvector<int> a(n);\n\tfor (int i = 0; i < n; ++i) cin >> a[i];\n\tcout << (min_element(a.begin(), a.end()) - a.begin() + 1) << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3100, "score_of_the_acc": -0.0158, "final_rank": 7 }, { "submission_id": "aoj_3114_4075025", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define rep(i,n) for(ll i=0;i<(n);++i)\nusing ll = long long;\nusing pll = pair<ll,ll>;\nconstexpr ll INF = (1LL<<60);\nconstexpr ll MOD = (1e9+7);\n//constexpr ll MOD = (998244353);\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}return 0;}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}return 0;}\nvoid dump(){cerr<<endl;}\ntemplate<class T,class... Ts> void dump(T&& h, Ts&&... t){cerr<<h<<\", \";dump(forward<Ts>(t)...);}\ntemplate<class T> istream &operator>>(istream&is,vector<T>&v){for(auto &elemnt:v)is>>elemnt;return is;}\ntemplate<class T,class U> istream &operator>>(istream&is,pair<T,U>&p){is>>p.first>>p.second;return is;}\ntemplate<class T>vector<T> vec(size_t a){return vector<T>(a);}\ntemplate<class T, class... Ts>auto vec(size_t a, Ts... ts){return vector<decltype(vec<T>(ts...))>(a, vec<T>(ts...));}\ntemplate<class T>vector<T> _vec(size_t a,T v){return vector<T>(a,v);}\ntemplate<class T, class... Ts>auto _vec(size_t a, Ts... ts){return vector<decltype(_vec<T>(ts...))>(a, _vec<T>(ts...));}\n\nint main(){\n\n int n;\n cin>>n;\n vector<pll> a(n);\n rep(i,n){\n cin>>a[i].first;\n a[i].second = i+1;\n }\n sort(a.begin(),a.end());\n\n cout<<(a[0].second)<<endl;\n\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4336, "score_of_the_acc": -1.7149, "final_rank": 19 }, { "submission_id": "aoj_3114_4074322", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing VI = vector<int>;\nusing VL = vector<ll>;\ntemplate<class T> using PQ = priority_queue<T, vector<T>, greater<T>>;\n#define FOR(i,a,n) for(int (i)=(a);(i)<(n);++(i))\n#define eFOR(i,a,n) for(int (i)=(a);(i)<=(n);++(i))\n#define rFOR(i,a,n) for(int (i)=(n)-1;(i)>=(a);--(i))\n#define erFOR(i,a,n) for(int (i)=(n);(i)>=(a);--(i))\n#define each(i, a) for(auto &i : a)\n#define SORT(i) sort((i).begin(),(i).end())\n#define rSORT(i,a) sort((i).begin(),(i).end(),(a))\n#define all(i) (i).begin(),(i).end()\n#define out(y,x) ((y) < 0 || h <= (y) || (x) < 0 || w <= (x))\n#define line cout << \"------------------------\\n\" \n#define ENDL(i,n) ((i) == (n) - 1 ? \"\\n\" : \" \")\nconstexpr ll INF = 1000000000;\nconstexpr ll LLINF = 1LL << 60;\nconstexpr ll mod = 1000000007;\nconstexpr ll MOD = 998244353;\nconst long double pi = acos(-1);\nconst long double eps = 1e-10;\ntemplate<class T>inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; }return 0; }\ntemplate<class T>inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; }return 0; }\ninline void init() { cin.tie(nullptr); cout.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); }\ntemplate<class T>inline istream& operator>>(istream& is, vector<T>& v) { for (auto& elemnt : v)is >> elemnt; return is; }\ntemplate<class T, class U>inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }\n\nint main() {\n\n int n; cin >> n;\n VI a(n); cin >> a;\n\n int Min = INF, itr = -1;\n FOR(i, 0, n)if (chmin(Min, a[i]))itr = i;\n cout << itr + 1 << \"\\n\";\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3096, "score_of_the_acc": -0.0136, "final_rank": 4 }, { "submission_id": "aoj_3114_4074258", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nint main() {\n\tlong N;\n\tcin >> N;\n\tvector<pair<long long, long> >A(N);\n\tlong long MIN = 9999999999;\n\tlong ans = 0;\n\tfor (long i = 0; i < N; i++) {\n\t\tcin >> A.at(i).first;\n\t\tif (MIN > A.at(i).first) {\n\t\t\tMIN = A.at(i).first;\n\t\t\tans = i + 1;\n\t\t}\n\t}\n\tcout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4376, "score_of_the_acc": -0.7376, "final_rank": 17 }, { "submission_id": "aoj_3114_4073920", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=1e9+7;\n\nint main(){\n int N;\n cin>>N;\n vector<ll> A(N);\n rep(i,N) cin>>A[i];\n\n ll mival=A[0];\n int mit=0;\n for(int i=1;i<N;i++){\n if(mival>A[i]){\n mival=A[i];\n mit=i;\n }\n }\n\n cout<<mit+1<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3544, "score_of_the_acc": -0.267, "final_rank": 12 } ]
aoj_3122_cpp
双子 (Twins) square1001君とE869120君は双子です。 このうち先に生まれた方を出力して下さい。 入力 入力は与えられない。 出力 正解の文字列を一行に出力せよ。 ただし、最後には改行を入れること。 出力例1 square1001
[ { "submission_id": "aoj_3122_4066547", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\nvector<int>E[200000];\nint sz[200000];\nint vid[200000];\nint par[200000];\nint dep[200000];\n\nint belong[200000];\nint cid[200000];\nint col[200000];\n\nstruct Segtree{\n\tint N;\n\tvector<int>dat;\n\tSegtree(){}\n\tSegtree(int n):N(n){dat=vector<int>(2*n);}\n\tvoid update(int k,int x){\n\t\t//~ k+=N;\n\t\t//~ dat[k]+=x;\n\t\t//~ while(k>1){\n\t\t\t//~ k>>=1;\n\t\t\t//~ dat[k]=dat[k*2]+dat[k*2+1];\n\t\t//~ }\n\t\tdat[k]+=x;\n\t}\n\tint query(int l,int r){\n\t\tint res=0;\n\t\t//~ for(l+=N,r+=N;l<r;l>>=1,r>>=1){\n\t\t\t//~ if(l&1)res+=dat[l++];\n\t\t\t//~ if(r&1)res+=dat[--r];\n\t\t//~ }\n\t\tfor(int i=l;i<r;i++)res+=dat[i];\n\t\treturn res;\n\t}\n};\n\nstruct Chain;\n\nstruct Chain{\n\tint id;\n\tvector<int>nodes;\n\tset<int>black;\n\tSegtree tree;\n\tint cur;\n\n\tbool init(){\n\t\tif(nodes.empty())return false;\n\t\tblack.insert(-1);\n\t\tblack.insert(nodes.size());\n\t\tid=nodes[0];\n\t\tcur=0;\n\t\ttree=Segtree(nodes.size());\n\t\treturn true;\n\t}\n\tvoid update();\n\tint get(int v){\n\t\tassert(!black.count(v));\n\t\tauto l=black.lower_bound(v);\n\t\tauto r=l;l--;\n\t\tint L=*l,R=*r;\n\t\treturn R-L-1+tree.query(L+1,R);\n\t}\n};\n\nChain chain[200000];\n\nvoid Chain::update(){\n\tif(par[id]==-1)return;\n\tint r=*++black.begin();\n\tauto&t=chain[belong[par[id]]].tree;\n\tt.update(cid[par[id]],-cur);\n\tint sum=tree.query(0,r)+r;\n\tcur=sum;\n\tt.update(cid[par[id]],cur);\n}\n\nint node_num;\n\nvoid dfs(int v,int p,int d){\n\tsz[v]=1;\n\tpar[v]=p;\n\tdep[v]=d;\n\tfor(int u:E[v]){\n\t\tif(u==p)continue;\n\t\tdfs(u,v,d+1);\n\t\tsz[v]+=sz[u];\n\t}\n}\n\nvoid hld(int v,int k){\n\tvid[v]=node_num++;\n\tbelong[v]=k;\n\tcid[v]=chain[k].nodes.size();\n\tchain[k].nodes.push_back(v);\n\tint Max=0,id=-1;\n\tfor(int u:E[v]){\n\t\tif(u==par[v])continue;\n\t\tif(Max<sz[u])Max=sz[u],id=u;\n\t}\n\tif(id==-1)return;\n\thld(id,k);\n\tfor(int u:E[v]){\n\t\tif(u==par[v]||u==id)continue;\n\t\thld(u,u);\n\t}\n}\n\nint find_par(int v){\n\tint b=belong[v],c=cid[v];\n\tauto it=chain[b].black.lower_bound(c);it--;\n\tif(it!=chain[b].black.begin())return v;\n\telse if(par[b]==-1||col[par[b]]==1)return v;\n\treturn find_par(par[b]);\n}\n\nvoid update_par(int v){\n\tint b=belong[v];\n\tchain[b].update();\n\tif(par[b]!=-1)update_par(par[b]);\n}\n\nint main(){\n\tint n,q;cin>>n>>q;\n\tassert(1<=n&&n<=100000);\n\tassert(1<=q&&q<=100000);\n\trep(i,n-1){\n\t\tint a,b;scanf(\"%d%d\",&a,&b);a--;b--;\n\t\tassert(0<=a&&a<n);\n\t\tassert(0<=b&&b<n);\n\t\tassert(a!=b);\n\t\tE[a].push_back(b);\n\t\tE[b].push_back(a);\n\t}\n\tdfs(0,-1,0);\n\thld(0,0);\n\tvector<P>vs;\n\trep(i,n){\n\t\tif(!chain[i].init())continue;\n\t\tvs.push_back(P(dep[i],i));\n\t}\n\tsort(vs.begin(),vs.end());\n\tfor(int i=vs.size()-1;i>=0;i--){\n\t\tchain[vs[i].second].update();\n\t}\n\t//~ rep(i,n){\n\t\t//~ cout<<\"par=\"<<find_par(i)<<endl;\n\t\t//~ int x=find_par(i);\n\t\t//~ cout<<chain[belong[x]].get(cid[x])<<endl;\n\t//~ }\n\trep(i,q){\n\t\tint ty,v;scanf(\"%d%d\",&ty,&v);v--;\n\t\tif(ty==1){\n\t\t\tint b=belong[v],c=cid[v];\n\t\t\tif(col[v])chain[b].black.erase(c);\n\t\t\tcol[v]^=1;\n\t\t\tif(col[v])chain[b].black.insert(c);\n\t\t\tupdate_par(belong[v]);\n\t\t}\n\t\telse{\n\t\t\tint x=find_par(v);\n\t\t\tprintf(\"%d\\n\",chain[belong[x]].get(cid[x]));\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 860, "memory_kb": 50624, "score_of_the_acc": -2, "final_rank": 3 }, { "submission_id": "aoj_3122_4065961", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\nvector<int>E[200000];\nint sz[200000];\nint vid[200000];\nint par[200000];\nint dep[200000];\n\nint belong[200000];\nint cid[200000];\nint col[200000];\n\nstruct Segtree{\n\tint N;\n\tvector<int>dat;\n\tSegtree(){}\n\tSegtree(int n):N(n){dat=vector<int>(2*n);}\n\tvoid update(int k,int x){\n\t\t//~ k+=N;\n\t\t//~ dat[k]+=x;\n\t\t//~ while(k>1){\n\t\t\t//~ k>>=1;\n\t\t\t//~ dat[k]=dat[k*2]+dat[k*2+1];\n\t\t//~ }\n\t\tdat[k]+=x;\n\t}\n\tint query(int l,int r){\n\t\tint res=0;\n\t\t//~ for(l+=N,r+=N;l<r;l>>=1,r>>=1){\n\t\t\t//~ if(l&1)res+=dat[l++];\n\t\t\t//~ if(r&1)res+=dat[--r];\n\t\t//~ }\n\t\tfor(int i=l;i<r;i++)res+=dat[i];\n\t\treturn res;\n\t}\n};\n\nstruct Chain;\n\nstruct Chain{\n\tint id;\n\tvector<int>nodes;\n\tset<int>black;\n\tSegtree tree;\n\tint cur;\n\n\tbool init(){\n\t\tif(nodes.empty())return false;\n\t\tblack.insert(-1);\n\t\tblack.insert(nodes.size());\n\t\tid=nodes[0];\n\t\tcur=0;\n\t\ttree=Segtree(nodes.size());\n\t\treturn true;\n\t}\n\tvoid update();\n\tint get(int v){\n\t\tassert(!black.count(v));\n\t\tauto l=black.lower_bound(v);\n\t\tauto r=l;l--;\n\t\tint L=*l,R=*r;\n\t\treturn R-L-1+tree.query(L+1,R);\n\t}\n};\n\nChain chain[200000];\n\nvoid Chain::update(){\n\tif(par[id]==-1)return;\n\tint r=*++black.begin();\n\tauto&t=chain[belong[par[id]]].tree;\n\tt.update(cid[par[id]],-cur);\n\tint sum=tree.query(0,r)+r;\n\tcur=sum;\n\tt.update(cid[par[id]],cur);\n}\n\nint node_num;\n\nvoid dfs(int v,int p,int d){\n\tsz[v]=1;\n\tpar[v]=p;\n\tdep[v]=d;\n\tfor(int u:E[v]){\n\t\tif(u==p)continue;\n\t\tdfs(u,v,d+1);\n\t\tsz[v]+=sz[u];\n\t}\n}\n\nvoid hld(int v,int k){\n\tvid[v]=node_num++;\n\tbelong[v]=k;\n\tcid[v]=chain[k].nodes.size();\n\tchain[k].nodes.push_back(v);\n\tint Max=0,id=-1;\n\tfor(int u:E[v]){\n\t\tif(u==par[v])continue;\n\t\tif(Max<sz[u])Max=sz[u],id=u;\n\t}\n\tif(id==-1)return;\n\thld(id,k);\n\tfor(int u:E[v]){\n\t\tif(u==par[v]||u==id)continue;\n\t\thld(u,u);\n\t}\n}\n\nint find_par(int v){\n\t//~ int b=belong[v],c=cid[v];\n\t//~ auto it=chain[b].black.lower_bound(c);it--;\n\t//~ if(it!=chain[b].black.begin())return v;\n\t//~ else if(par[b]==-1||col[par[b]]==1)return v;\n\t//~ return find_par(par[b]);\n\tif(par[v]==-1||col[par[v]]==1)return v;\n\treturn find_par(par[v]);\n}\n\nvoid update_par(int v){\n\tint b=belong[v];\n\tchain[b].update();\n\tif(par[b]!=-1)update_par(par[b]);\n}\n\nint main(){\n\tint n,q;cin>>n>>q;\n\tassert(1<=n&&n<=100000);\n\tassert(1<=q&&q<=100000);\n\trep(i,n-1){\n\t\tint a,b;scanf(\"%d%d\",&a,&b);a--;b--;\n\t\tassert(0<=a&&a<n);\n\t\tassert(0<=b&&b<n);\n\t\tassert(a!=b);\n\t\tE[a].push_back(b);\n\t\tE[b].push_back(a);\n\t}\n\tdfs(0,-1,0);\n\thld(0,0);\n\tvector<P>vs;\n\trep(i,n){\n\t\tif(!chain[i].init())continue;\n\t\tvs.push_back(P(dep[i],i));\n\t}\n\tsort(vs.begin(),vs.end());\n\tfor(int i=vs.size()-1;i>=0;i--){\n\t\tchain[vs[i].second].update();\n\t}\n\trep(i,q){\n\t\tint ty,v;scanf(\"%d%d\",&ty,&v);v--;\n\t\tif(ty==1){\n\t\t\tint b=belong[v],c=cid[v];\n\t\t\tif(col[v])chain[b].black.erase(c);\n\t\t\tcol[v]^=1;\n\t\t\tif(col[v])chain[b].black.insert(c);\n\t\t\tupdate_par(belong[v]);\n\t\t}\n\t\telse{\n\t\t\tint x=find_par(v);\n\t\t\tprintf(\"%d\\n\",chain[belong[x]].get(cid[x]));\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 47128, "score_of_the_acc": -0.0399, "final_rank": 2 }, { "submission_id": "aoj_3122_4065953", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\nvector<int>E[200000];\nint sz[200000];\nint vid[200000];\nint par[200000];\nint dep[200000];\n\nint belong[200000];\nint cid[200000];\nint col[200000];\n\nstruct Segtree{\n\tint N;\n\tvector<int>dat;\n\tSegtree(){}\n\tSegtree(int n):N(n){dat=vector<int>(2*n);}\n\tvoid update(int k,int x){\n\t\tk+=N;\n\t\tdat[k]+=x;\n\t\twhile(k>1){\n\t\t\tk>>=1;\n\t\t\tdat[k]=dat[k*2]+dat[k*2+1];\n\t\t}\n\t}\n\tint query(int l,int r){\n\t\tint res=0;\n\t\tfor(l+=N,r+=N;l<r;l>>=1,r>>=1){\n\t\t\tif(l&1)res+=dat[l++];\n\t\t\tif(r&1)res+=dat[--r];\n\t\t}\n\t\treturn res;\n\t}\n};\n\nstruct Chain;\n\nstruct Chain{\n\tint id;\n\tvector<int>nodes;\n\tset<int>black;\n\tSegtree tree;\n\tint cur;\n\n\tbool init(){\n\t\tif(nodes.empty())return false;\n\t\tblack.insert(-1);\n\t\tblack.insert(nodes.size());\n\t\tid=nodes[0];\n\t\tcur=0;\n\t\ttree=Segtree(nodes.size());\n\t\treturn true;\n\t}\n\tvoid update();\n\tint get(int v){\n\t\tassert(!black.count(v));\n\t\tauto l=black.lower_bound(v);\n\t\tauto r=l;l--;\n\t\tint L=*l,R=*r;\n\t\treturn R-L-1+tree.query(L+1,R-1);\n\t}\n};\n\nChain chain[200000];\n\nvoid Chain::update(){\n\tif(par[id]==-1)return;\n\tint r=*++black.begin();\n\tauto&t=chain[belong[par[id]]].tree;\n\tt.update(cid[par[id]],-cur);\n\tint sum=tree.query(0,r)+r;\n\tcur=sum;\n\tt.update(cid[par[id]],cur);\n}\n\nint node_num;\n\nvoid dfs(int v,int p,int d){\n\tsz[v]=1;\n\tpar[v]=p;\n\tdep[v]=d;\n\tfor(int u:E[v]){\n\t\tif(u==p)continue;\n\t\tdfs(u,v,d+1);\n\t\tsz[v]+=sz[u];\n\t}\n}\n\nvoid hld(int v,int k){\n\tvid[v]=node_num++;\n\tbelong[v]=k;\n\tcid[v]=chain[k].nodes.size();\n\tchain[k].nodes.push_back(v);\n\tint Max=0,id=-1;\n\tfor(int u:E[v]){\n\t\tif(u==par[v])continue;\n\t\tif(Max<sz[u])Max=sz[u],id=u;\n\t}\n\tif(id==-1)return;\n\thld(id,k);\n\tfor(int u:E[v]){\n\t\tif(u==par[v]||u==id)continue;\n\t\thld(u,u);\n\t}\n}\n\nint find_par(int v){\n\tint b=belong[v],c=cid[v];\n\tauto it=chain[b].black.lower_bound(c);it--;\n\tif(it!=chain[b].black.begin())return v;\n\telse if(par[b]==-1||col[par[b]]==1)return v;\n\treturn find_par(par[b]);\n}\n\nvoid update_par(int v){\n\tint b=belong[v];\n\tchain[b].update();\n\tif(par[b]!=-1)update_par(par[b]);\n}\n\nint main(){\n\tint n,q;cin>>n>>q;\n\tassert(1<=n&&n<=100000);\n\tassert(1<=q&&q<=100000);\n\trep(i,n-1){\n\t\tint a,b;scanf(\"%d%d\",&a,&b);a--;b--;\n\t\tassert(0<=a&&a<n);\n\t\tassert(0<=b&&b<n);\n\t\tassert(a!=b);\n\t\tE[a].push_back(b);\n\t\tE[b].push_back(a);\n\t}\n\tdfs(0,-1,0);\n\thld(0,0);\n\tvector<P>vs;\n\trep(i,n){\n\t\tif(!chain[i].init())continue;\n\t\tvs.push_back(P(dep[i],i));\n\t}\n\tsort(vs.begin(),vs.end());\n\tfor(int i=vs.size()-1;i>=0;i--){\n\t\tchain[vs[i].second].update();\n\t}\n\t//~ rep(i,n){\n\t\t//~ cout<<\"par=\"<<find_par(i)<<endl;\n\t\t//~ int x=find_par(i);\n\t\t//~ cout<<chain[belong[x]].get(cid[x])<<endl;\n\t//~ }\n\trep(i,q){\n\t\tint ty,v;scanf(\"%d%d\",&ty,&v);v--;\n\t\tif(ty==1){\n\t\t\tint b=belong[v],c=cid[v];\n\t\t\tif(col[v])chain[b].black.erase(c);\n\t\t\tcol[v]^=1;\n\t\t\tif(col[v])chain[b].black.insert(c);\n\t\t\tupdate_par(belong[v]);\n\t\t}\n\t\telse{\n\t\t\tint x=find_par(v);\n\t\t\tprintf(\"%d\\n\",chain[belong[x]].get(cid[x]));\n\t\t}\n\t}\n}", "accuracy": 0.2, "time_ms": 100, "memory_kb": 47032, "score_of_the_acc": 0, "final_rank": 4 }, { "submission_id": "aoj_3122_4065904", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\nvector<int>E[200000];\nint sz[200000];\nint vid[200000];\nint par[200000];\nint dep[200000];\n\nint belong[200000];\nint cid[200000];\nint col[200000];\n\nstruct Segtree{\n\tint N;\n\tvector<int>dat;\n\tSegtree(){}\n\tSegtree(int n):N(n){dat=vector<int>(2*n);}\n\tvoid update(int k,int x){\n\t\tk+=N;\n\t\tdat[k]+=x;\n\t\twhile(k>1){\n\t\t\tk>>=1;\n\t\t\tdat[k]=dat[k*2]+dat[k*2+1];\n\t\t}\n\t}\n\tint query(int l,int r){\n\t\tint res=0;\n\t\tfor(l+=N,r+=N;l<r;l>>=1,r>>=1){\n\t\t\tif(l&1)res+=dat[l++];\n\t\t\tif(r&1)res+=dat[--r];\n\t\t}\n\t\treturn res;\n\t}\n};\n\nstruct Chain;\n\nstruct Chain{\n\tint id;\n\tvector<int>nodes;\n\tset<int>black;\n\tSegtree tree;\n\tint cur;\n\n\tbool init(){\n\t\tif(nodes.empty())return false;\n\t\tblack.insert(-1);\n\t\tblack.insert(nodes.size());\n\t\tid=nodes[0];\n\t\tcur=0;\n\t\ttree=Segtree(nodes.size());\n\t\treturn true;\n\t}\n\tvoid update();\n\tint get(int v){\n\t\tassert(!black.count(v));\n\t\tauto l=black.lower_bound(v);\n\t\tauto r=l;l--;\n\t\tint L=*l,R=*r;\n\t\treturn R-L-1+tree.query(L+1,R);\n\t}\n};\n\nChain chain[200000];\n\nvoid Chain::update(){\n\tif(par[id]==-1)return;\n\tint r=*++black.begin();\n\tauto&t=chain[belong[par[id]]].tree;\n\tt.update(cid[par[id]],-cur);\n\tint sum=tree.query(0,r)+r;\n\tcur=sum;\n\tt.update(cid[par[id]],cur);\n}\n\nint node_num;\n\nvoid dfs(int v,int p,int d){\n\tsz[v]=1;\n\tpar[v]=p;\n\tdep[v]=d;\n\tfor(int u:E[v]){\n\t\tif(u==p)continue;\n\t\tdfs(u,v,d+1);\n\t\tsz[v]+=sz[u];\n\t}\n}\n\nvoid hld(int v,int k){\n\tvid[v]=node_num++;\n\tbelong[v]=k;\n\tcid[v]=chain[k].nodes.size();\n\tchain[k].nodes.push_back(v);\n\tint Max=0,id=-1;\n\tfor(int u:E[v]){\n\t\tif(u==par[v])continue;\n\t\tif(Max<sz[u])Max=sz[u],id=u;\n\t}\n\tif(id==-1)return;\n\thld(id,k);\n\tfor(int u:E[v]){\n\t\tif(u==par[v]||u==id)continue;\n\t\thld(u,u);\n\t}\n}\n\nint find_par(int v){\n\tint b=belong[v],c=cid[v];\n\tauto it=chain[b].black.lower_bound(c);it--;\n\tif(it!=chain[b].black.begin())return v;\n\telse if(par[b]==-1||col[par[b]]==1)return v;\n\treturn find_par(par[b]);\n}\n\nvoid update_par(int v){\n\tint b=belong[v];\n\tchain[b].update();\n\tif(par[b]!=-1)update_par(par[b]);\n}\n\nint main(){\n\tint n,q;cin>>n>>q;\n\tassert(1<=n&&n<=100000);\n\tassert(1<=q&&q<=100000);\n\trep(i,n-1){\n\t\tint a,b;scanf(\"%d%d\",&a,&b);a--;b--;\n\t\tassert(0<=a&&a<n);\n\t\tassert(0<=b&&b<n);\n\t\tassert(a!=b);\n\t\tE[a].push_back(b);\n\t\tE[b].push_back(a);\n\t}\n\tdfs(0,-1,0);\n\thld(0,0);\n\tvector<P>vs;\n\trep(i,n){\n\t\tif(!chain[i].init())continue;\n\t\tvs.push_back(P(dep[i],i));\n\t}\n\tsort(vs.begin(),vs.end());\n\tfor(int i=vs.size()-1;i>=0;i--){\n\t\tchain[vs[i].second].update();\n\t}\n\t//~ rep(i,n){\n\t\t//~ cout<<\"par=\"<<find_par(i)<<endl;\n\t\t//~ int x=find_par(i);\n\t\t//~ cout<<chain[belong[x]].get(cid[x])<<endl;\n\t//~ }\n\trep(i,q){\n\t\tint ty,v;scanf(\"%d%d\",&ty,&v);v--;\n\t\tif(ty==1){\n\t\t\tint b=belong[v],c=cid[v];\n\t\t\tif(col[v])chain[b].black.erase(c);\n\t\t\tcol[v]^=1;\n\t\t\tif(col[v])chain[b].black.insert(c);\n\t\t\tupdate_par(belong[v]);\n\t\t}\n\t\telse{\n\t\t\tint x=find_par(v);\n\t\t\tprintf(\"%d\\n\",chain[belong[x]].get(cid[x]));\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 47120, "score_of_the_acc": -0.0377, "final_rank": 1 } ]
aoj_3115_cpp
Set 数列 a_1,a_2,..,a_N が与えられます。 この数列に値は何種類ありますか。 入力 N a_1 a_2...a_N 出力 数列の値の種類数を出力せよ。 制約 1 \leq N \leq 10^5 1 \leq a_i \leq 10^9 入力例 6 8 6 9 1 2 1 出力例 5
[ { "submission_id": "aoj_3115_9540653", "code_snippet": "#include<bits/stdc++.h>\n\n\nusing namespace std;\n//make -f ../makefile SRC=\n/*\n*/\n\n\n//------------------------------------------------------------------------------\nbool DEBUG = false;\nconst int INF = 1000000000;\n\nconst int MAX_N = 10;\nstatic int vect[MAX_N];\n//------------------------------------------------------------------------------\nvoid test()\n{\n}\n\n// search value <= v\nint query(int N, int v)\n{\n auto it1 = lower_bound(vect, vect+N, v);\n if (it1 == vect+N) return N;\n else if (*it1 > v) return distance(vect, it1);\n\n auto it2 = lower_bound(vect, vect+N, v+1);\n return distance(vect, it2);\n}\n\nint query(int N, int v1, int v2)\n{\n return query(N, v2) - query(N, v1-1);\n}\n\nint solve(int N)\n{\n int min_v = *min_element(vect, vect+N);\n for (int i=0; i<N; ++i)\n if (vect[i] == min_v)\n return i+1;\n return -1;\n}\n//------------------------------------------------------------------------------\nint main()\n{\n //test(); return 0;\n //DEBUG = true;\n //--------------------------------------------------------------------------\n int N, Q, v, num;\n num = scanf(\"%d \", &N);\n unordered_set<int> S;\n for (int i=0; i<N; ++i) { num = scanf(\"%d \", &v); S.insert(v); }\n \n //sort(vect, vect+N);\n printf(\"%ld\\n\", S.size());\n\n //--------------------------------------------------------------------------\n return 0;\n}\n//------------------------------------------------------------------------------", "accuracy": 1, "time_ms": 10, "memory_kb": 6952, "score_of_the_acc": -0.719, "final_rank": 4 }, { "submission_id": "aoj_3115_8827174", "code_snippet": "#line 1 \"a.cpp\"\n#define PROBLEM \"\"\n#line 2 \"/home/kuhaku/home/github/algo/lib/template/template.hpp\"\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = M_PI;\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/macro.hpp\"\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/sonic.hpp\"\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n\n constexpr void operator()() const {}\n} sonic;\n#line 5 \"/home/kuhaku/home/github/algo/lib/template/atcoder.hpp\"\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) {\n os << (it == v.begin() ? \"\" : \" \") << *it;\n }\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\ntemplate <typename T, typename... Args>\nauto make_vector(T x, int arg, Args... args) {\n if constexpr (sizeof...(args) == 0) return std::vector<T>(arg, x);\n else return std::vector(arg, make_vector<T>(x, args...));\n}\nvoid Yes(bool is_correct = true) {\n std::cout << (is_correct ? \"Yes\" : \"No\") << '\\n';\n}\nvoid No(bool is_not_correct = true) {\n Yes(!is_not_correct);\n}\nvoid YES(bool is_correct = true) {\n std::cout << (is_correct ? \"YES\" : \"NO\") << '\\n';\n}\nvoid NO(bool is_not_correct = true) {\n YES(!is_not_correct);\n}\nvoid Takahashi(bool is_correct = true) {\n std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n';\n}\nvoid Aoki(bool is_not_correct = true) {\n Takahashi(!is_not_correct);\n}\n#line 3 \"a.cpp\"\n\nint main(void) {\n int n;\n cin >> n;\n vector<int> a(n);\n cin >> a;\n\n co(set<int>(all(a)).size());\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 8020, "score_of_the_acc": -1.2529, "final_rank": 7 }, { "submission_id": "aoj_3115_8002967", "code_snippet": "#pragma region Macros\n\n// #pragma GCC target(\"avx,avx2,fma\")\n// #pragma GCC optimize(\"O3,unroll-loops\")\n\n#include <bits/extc++.h>\n// #include <immintrin.h>\n// #include <atcoder/all>\n// using namespace atcoder;\nusing namespace std;\nusing namespace __gnu_pbds;\n\n// #include <boost/multiprecision/cpp_dec_float.hpp>\n// #include <boost/multiprecision/cpp_int.hpp>\n// namespace mp = boost::multiprecision;\n// using Bint = mp::cpp_int;\n// using Bdouble = mp::number<mp::cpp_dec_float<256>>;\n\n#define TO_STRING(var) # var\n#define pb emplace_back\n#define int ll\n#define endl '\\n'\n#define sqrt __builtin_sqrtl\n\nusing ll = long long;\nusing ld = long double;\nconst ld PI = acos(-1);\nconst ld EPS = 1e-10;\nconst int INF = 1 << 30;\nconst ll INFL = 1LL << 61;\nconst int MOD = 998244353;\n// const int MOD = 1000000007;\n\nconst vector<int> dx = {0, 1, -1, 0, 1, 1, -1, -1}; // → ↓ ← ↑ ↘ ↙ ↖ ↗\nconst vector<int> dy = {1, 0, 0, -1, 1, -1, -1, 1};\n\nstruct Edge {\n int from, to;\n int cost;\n Edge(int to, int cost) : from(-1), to(to), cost(cost) {}\n Edge(int from, int to, int cost) : from(from), to(to), cost(cost) {}\n Edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n};\n\n__attribute__((constructor))\nvoid constructor() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(12);\n}\n\nstruct custom_hash {\n static uint64_t splitmix64(uint64_t x) {\n x += 0x9e3779b97f4a7c15;\n x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;\n x = (x ^ (x >> 27)) * 0x94d049bb133111eb;\n return x ^ (x >> 31);\n }\n\n size_t operator()(uint64_t x) const {\n static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();\n return splitmix64(x + FIXED_RANDOM);\n }\n};\n\nint POW(int x, int n) {\n __int128_t ret = 1;\n // if (ret >= INFL) return INFL;\n if (n < 0) { cout << \"error\" << endl; return 0; }\n else if (x == 1 or n == 0) ret = 1;\n else if (x == -1 && n % 2 == 0) ret = 1; \n else if (x == -1) ret = -1; \n else if (n % 2 == 0) ret = POW(x * x, n / 2);\n else ret = x * POW(x, n - 1);\n\n if (ret > 8e18) ret = 0;\n return ret;\n}\nint floor(int x, int y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint ceil(int x, int y) { return (x > 0 ? (x + y - 1) / y : x / y); }\nll per(int x, int y) {\n if (y == 0) {\n cout << \"error\" << endl;\n return INFL;\n }\n if (x >= 0 && y > 0) return x / y;\n if (x >= 0 && y < 0) return x / y - (x % y < 0);\n if (x < 0 && y < 0) return x / y + (x % y < 0);\n // if (x < 0 && y > 0) \n return x / y - (x % y < 0);\n}\nll mod(int x, int y) {\n if (y == 0) {\n cout << \"error\" << endl;\n return INFL;\n }\n if (x >= 0 && y > 0) return x % y;\n if (x >= 0 && y < 0) return x % y;\n if (x < 0 && y < 0) {\n __int128_t ret = x % y;\n ret += (__int128_t)abs(y) * INFL;\n ret %= abs(y);\n return ret;\n }\n // if (x < 0 && y > 0) {\n __int128_t ret = x % y;\n ret += (__int128_t)abs(y) * INFL;\n ret %= abs(y);\n return ret;\n // }\n}\n\ntemplate <class T> bool chmax(T &a, const T& b) {\n if (a < b) { a = b; return true; }\n return false;\n}\ntemplate <class T> bool chmin(T &a, const T& b) {\n if (a > b) { a = b; return true; }\n return false;\n}\n\nint countl_zero(int N) { return __builtin_clzll(N); }\nint countl_one(int N) {\n int ret = 0; while (N % 2) { N /= 2; ret++; }\n return ret;\n}\nint countr_zero(int N) { return __builtin_ctzll(N); }\nint countr_one(int N) {\n int ret = 0, k = 63 - __builtin_clzll(N);\n while (k != -1 && (N & (1LL << k))) { k--; ret++; }\n return ret;\n}\nint popcount(int N) { return __builtin_popcountll(N); }\nint unpopcount(int N) { return 64 - __builtin_clzll(N) - __builtin_popcountll(N); }\n\nint top_bit(int N) { return 63 - __builtin_clzll(N);} // 2^kの位\nint bot_bit(int N) { return __builtin_ctz(N);} // 2^kの位\nint MSB(int N) { return 1 << (63 - __builtin_clzll(N)); } // mask\n\nint bit_width(int N) { return 64 - __builtin_clzll(N); } // 桁数\nint ceil_log2(int N) { return 63 - __builtin_clzll(N); }\nint bit_floor(int N) { return 1 << (63 - __builtin_clzll(N)); }\nint floor_log2(int N) { return 64 - __builtin_clzll(N-1); }\nint bit_ceil(int N) { return 1 << (64 - __builtin_clzll(N-1)) - (N==1); }\n\nclass UnionFind {\npublic:\n\tUnionFind() = default;\n UnionFind(int N) : par(N), sz(N, 1) {\n iota(par.begin(), par.end(), 0);\n }\n\n\tint root(int x) {\n\t\tif (par[x] == x) return x;\n\t\treturn (par[x] = root(par[x]));\n\t}\n\n\tbool unite(int x, int y) {\n\t\tint rx = root(x);\n\t\tint ry = root(y);\n\n if (rx == ry) return false;\n\t\tif (sz[rx] < sz[ry]) swap(rx, ry);\n\n\t\tsz[rx] += sz[ry];\n\t\tpar[ry] = rx;\n\n return true;\n\t}\n\n\tbool issame(int x, int y) { return (root(x) == root(y)); }\n\tint size(int x) { return sz[root(x)]; }\n\n vector<vector<int>> groups(int N) {\n vector<vector<int>> G(N);\n for (int x = 0; x < N; x++) {\n G[root(x)].push_back(x);\n }\n\t\tG.erase(\n remove_if(G.begin(), G.end(),\n [&](const vector<int>& V) { return V.empty(); }),\n G.end());\n return G;\n }\n\nprivate:\n\tvector<int> par;\n\tvector<int> sz;\n};\n\ntemplate<int mod> class Modint{\npublic:\n int val = 0;\n Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }\n Modint(const Modint &r) { val = r.val; }\n\n Modint operator -() { return Modint(-val); } // 単項\n Modint operator +(const Modint &r) { return Modint(*this) += r; }\n Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; }\n Modint operator -(const Modint &r) { return Modint(*this) -= r; }\n Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; }\n Modint operator *(const Modint &r) { return Modint(*this) *= r; }\n Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; }\n Modint operator /(const Modint &r) { return Modint(*this) /= r; }\n Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; }\n \n Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置\n Modint operator ++(signed) { ++*this; return *this; } // 後置\n Modint& operator --() { val--; if (val < 0) val += mod; return *this; }\n Modint operator --(signed) { --*this; return *this; }\n Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; }\n Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; }\n Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; }\n Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; }\n Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; }\n Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; }\n Modint &operator /=(const Modint &r) {\n int a = r.val, b = mod, u = 1, v = 0;\n while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}\n val = val * u % mod; if (val < 0) val += mod;\n return *this;\n }\n Modint &operator /=(const int &q) {\n Modint r(q); int a = r.val, b = mod, u = 1, v = 0;\n while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}\n val = val * u % mod; if (val < 0) val += mod;\n return *this;\n }\n\n bool operator ==(const Modint& r) { return this -> val == r.val; }\n bool operator <(const Modint& r) { return this -> val < r.val; }\n bool operator !=(const Modint& r) { return this -> val != r.val; }\n};\n\nusing mint = Modint<MOD>;\n\nistream &operator >>(istream &is, mint& x) {\n int t; is >> t;\n x = t;\n return (is);\n}\nostream &operator <<(ostream &os, const mint& x) {\n return os << x.val;\n}\nmint modpow(const mint &x, int n) {\n if (n == 0) return 1;\n mint t = modpow(x, n / 2);\n t = t * t;\n if (n & 1) t = t * x;\n return t;\n}\n\nint modpow(__int128_t x, int n, int mod) {\n __int128_t ret = 1;\n while (n > 0) {\n if (n % 2 == 1) ret = ret * x % mod;\n x = x * x % mod;\n n /= 2;\n }\n return ret;\n}\n\nint modinv(__int128_t x, int mod) {\n if (x == 1) return 1;\n return mod - modinv(mod % x, mod) * (mod / x) % mod;\n}\n\nostream &operator <<(ostream &os, __int128_t value) {\n ostream::sentry s(os);\n if (s) {\n __uint128_t tmp = value < 0 ? -value : value;\n char buffer[128];\n char *d = end(buffer);\n\n do {\n --d; *d = \"0123456789\"[tmp % 10];\n tmp /= 10;\n } while (tmp != 0);\n\n if (value < 0) { d--; *d = '-'; }\n\n int len = end(buffer) - d;\n if (os.rdbuf()->sputn(d, len) != len) {\n os.setstate(ios_base::badbit);\n }\n }\n return os;\n}\n\nvector<mint> fac, finv, Inv;\nvoid COMinit(int N) {\n fac.resize(N + 1);\n finv.resize(N + 1);\n Inv.resize(N + 1);\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n Inv[1] = 1;\n for (int i = 2; i <= N; i++) {\n fac[i] = fac[i-1] * mint(i);\n Inv[i] = -Inv[MOD % i] * mint(MOD / i);\n finv[i] = finv[i - 1] * Inv[i];\n }\n}\n\nmint COM(int N, int K) {\n if (N < K) return 0;\n if (N < 0 or K < 0) return 0;\n return fac[N] * finv[K] * finv[N - K];\n}\n\n#pragma endregion\n\nsigned main() {\n int N;\n cin >> N;\n vector<int> A(N);\n for (int i = 0; i < N; i++) cin >> A[i];\n sort(A.begin(), A.end());\n A.erase(unique(A.begin(), A.end()), A.end());\n cout << A.size() << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3880, "score_of_the_acc": -0.142, "final_rank": 2 }, { "submission_id": "aoj_3115_7132598", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int N;\n cin >> N;\n set<int>st;\n for(int i = 0; i < N; i++) {\n int a;\n cin >> a;\n st.insert(a);\n }\n cout << st.size() << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 7984, "score_of_the_acc": -1.5795, "final_rank": 11 }, { "submission_id": "aoj_3115_5944023", "code_snippet": "#ifdef LOCAL\n #define _GLIBCXX_DEBUG\n #define __clock__\n#else\n #pragma GCC optimize(\"Ofast\")\n#endif\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing VI = vector<ll>;\nusing VV = vector<VI>;\nusing VS = vector<string>;\nusing PII = pair<ll, ll>;\n\n// #define INT128 // 必要なら有効化してください\n#ifdef INT128\n using LL = __int128;\n#endif\n\n// tourist set\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p);\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p);\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p);\n\nstring to_string(const string& s) {\n return '\"' + s + '\"';\n}\n\nstring to_string(const char* s) {\n return to_string((string) s);\n}\n\nstring to_string(bool b) {\n return (b ? \"true\" : \"false\");\n}\n\nstring to_string(char c){\n string s = {c};\n return s;\n}\n\n// LL\n#ifdef INT128\n// input\nistream& operator>>(istream& is, LL& v)\n{\n string s;\n is >> s;\n v = 0;\n for (int i = 0; i < (int)s.size(); i++) {\n if (isdigit(s[i])) { v = v * 10 + s[i] - '0'; }\n }\n if (s[0] == '-') { v *= -1; }\n return is;\n}\nstd::ostream &operator<<(std::ostream &dest, LL value) {\n std::ostream::sentry s(dest);\n if (s) {\n LL tmp = value < 0 ? -value : value;\n char buffer[128];\n char *d = std::end(buffer);\n do {\n --d;\n *d = \"0123456789\"[tmp % 10];\n tmp /= 10;\n } while (tmp != 0);\n if (value < 0) {\n --d;\n *d = '-';\n }\n int len = std::end(buffer) - d;\n if (dest.rdbuf()->sputn(d, len) != len) {\n dest.setstate(std::ios_base::badbit);\n }\n }\n return dest;\n}\nstring to_string(LL v){\n stringstream ss;\n ss << v;\n return ss.str();\n}\n#endif // LL\n\nstring to_string(vector<bool> v) {\n bool first = true;\n string res = \"{\";\n for (int i = 0; i < static_cast<int>(v.size()); i++) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(v[i]);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <size_t N>\nstring to_string(bitset<N> v) {\n string res = \"\";\n for (size_t i = 0; i < N; i++) {\n res += static_cast<char>('0' + v[i]);\n }\n return res;\n}\n\ntemplate <typename A>\nstring to_string(A v) {\n bool first = true;\n string res = \"{\";\n for (const auto &x : v) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(x);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p) {\n return \"(\" + to_string(p.first) + \", \" + to_string(p.second) + \")\";\n}\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \")\";\n}\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \", \" + to_string(get<3>(p)) + \")\";\n}\n\nvoid debug_out() { cerr << '\\n'; }\n\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n cerr << \" \" << to_string(H);\n debug_out(T...);\n}\n\n#ifdef LOCAL\n#define debug(...) cerr << \"[\" << #__VA_ARGS__ << \"]:\", debug_out(__VA_ARGS__)\n#else\n#define debug(...) 42\n#endif\n// tourist set end\n\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\n\n#define FOR(i,a,b) for(ll i=(a);i<(b);++i)\n#define rep(i,b) FOR(i, 0, b)\n#define ALL(v) (v).begin(), (v).end()\n#define p(s) cout<<(s)<<'\\n'\n#define p2(s, t) cout << (s) << \" \" << (t) << '\\n'\n#define SZ(x) ((int)(x).size())\n#define SORT(A) sort(ALL(A))\n#define RSORT(A) sort(ALL(A), greater<ll>())\n#define MP make_pair\n#define p_yes() p(\"Yes\")\n#define p_no() p(\"No\")\n#define p_possible() p(\"Possible\")\n#define p_impossible() p(\"Impossible\")\nvoid yes(){p_yes(); exit(0);}\nvoid no(){p_no(); exit(0);}\nvoid possible(){p_possible(); exit(0);}\nvoid impossible(){p_impossible(); exit(0);}\n\nll SUM(VI& V){\n return accumulate(ALL(V), 0LL);\n}\n\nll MIN(VI& V){return *min_element(ALL(V));}\nll MAX(VI& V){return *max_element(ALL(V));}\n\nvoid print_vector(VI& V, ll offset=0){\n ll n = V.size();\n rep(i, n){\n if(i) cout << ' ';\n cout << V[i]+offset;\n }\n cout << endl;\n}\n\nll gcd(ll a,ll b){\n if(b == 0) return a;\n return gcd(b,a%b);\n}\n\nll lcm(ll a,ll b){\n ll g = gcd(a,b);\n return a / g * b;\n}\n\n// long double\nusing ld = long double;\n// #define EPS (1e-14)\nconstexpr ld EPS = 1e-14;\n// #define equals(a,b) (fabs((a)-(b)) < EPS)\nconstexpr bool equals(ld a, ld b){return fabs((a)-(b)) < EPS;}\n\n// 小さい順に取り出すpriority queue\nusing inverse_priority_queue = priority_queue<ll, vector<ll>, greater<ll> >;\n\nint popcount(ll t){\n return __builtin_popcountll(t);\n}\n\nconst ll mod = 1e9 + 7;\n// const ll mod = 998244353;\nconst ll inf = 4e18; // LLONG_MAX = 9223372036854775807 (atcoder, codeforces)\nconst double PI = acos(-1);\n\n// [a/b] (繰り上げ)\nll ceil_div(ll a, ll b){\n return (a+b-1)/b;\n}\n\nll ll_pow(ll a, ll n){\n ll ans = 1;\n FOR(i, 0, n){\n ans *= a;\n }\n return ans;\n}\n// modなし\n\n// snuke's mint\n// auto mod int\n// https://youtu.be/L8grWxBlIZ4?t=9858\n// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize\n// https://youtu.be/8uowVvQ_-Mo?t=1329 : division\n// const int mod = 1000000007;\nstruct mint {\n ll x; // using ll = long long;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) {\n (x *= a.x) %= mod;\n return *this;\n }\n mint operator+(const mint a) const {\n mint res(*this);\n return res+=a;\n }\n mint operator-(const mint a) const {\n mint res(*this);\n return res-=a;\n }\n mint operator*(const mint a) const {\n mint res(*this);\n return res*=a;\n }\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n\n // for prime mod\n mint inv() const {\n return pow(mod-2);\n }\n mint& operator/=(const mint a) {\n return (*this) *= a.inv();\n }\n mint operator/(const mint a) const {\n mint res(*this);\n return res/=a;\n }\n};\n\n// ※双方向\n// N : 頂点数\n// M : 辺数\n// return vector<vector<ll>>\nVV load_graph(ll N, ll M){\n VV G(N);\n rep(i,M){\n ll a,b;cin>>a>>b;\n a--;b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n return G;\n}\nVV load_tree(ll N){\n return load_graph(N, N-1);\n}\n\nVI loadV(ll N){\n VI A(N);\n rep(i,N)cin>>A[i];\n return A;\n}\n\n//#include <atcoder/dsu>\n//using namespace atcoder; // 忘れがち\n\n// 必要メモリ O(N^2)\n// 計算量 O(N^3)\nstruct WarshallFloyd{\n VV d;\n ll N;\n bool pre_calculated = false;\n WarshallFloyd(ll n){\n if(n>=2000){\n cerr << \"[warning]maybe data size is too big\";\n }\n N = n;\n d.resize(N, VI(N, inf));\n rep(i, N) d[i][i] = 0;\n }\n // 単方向\n void register_edge(ll a, ll b, ll c){\n d[a][b] = c;\n }\n // 双方向\n void register_edge2(ll a, ll b, ll c){\n register_edge(a,b,c);\n register_edge(b,a,c);\n }\n void calc(){\n rep(i, N){ // 経由点\n rep(j, N){ // 始点\n rep(k, N){ // 終点\n d[j][k] = min(d[j][k], d[j][i] + d[i][k]);\n }\n }\n }\n pre_calculated = true;\n }\n ll distance(ll a, ll b){\n // 計算忘れ対応\n if(!pre_calculated){\n debug(\"auto calc\");\n calc();\n }\n return d[a][b];\n }\n};\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n // input\n ll N;cin>>N;\n\n set<ll> se;\n rep(i,N){\n ll a;cin>>a;\n se.insert(a);\n }\n p(se.size());\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 8104, "score_of_the_acc": -1.2687, "final_rank": 8 }, { "submission_id": "aoj_3115_5145490", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for(long long i=0;i<(long long)(n);i++)\n#define REP(i,k,n) for(long long i=k;i<(long long)(n);i++)\n#define all(a) a.begin(),a.end()\n#define rsort(a) {sort(all(a));reverse(all(a));}\n#define pb emplace_back\n#define eb emplace_back\n#define lb(v,k) (lower_bound(all(v),(k))-v.begin())\n#define ub(v,k) (upper_bound(all(v),(k))-v.begin())\n#define fi first\n#define se second\n#define pi M_PI\n#define PQ(T) priority_queue<T>\n#define SPQ(T) priority_queue<T,vector<T>,greater<T>>\n#define dame(a) {out(a);return 0;}\n#define decimal cout<<fixed<<setprecision(15);\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef tuple<ll,ll,ll> PP;\ntypedef tuple<ll,ll,ll,ll> PPP;\ntypedef multiset<ll> S;\nusing vi=vector<ll>;\nusing vvi=vector<vi>;\nusing vvvi=vector<vvi>;\nusing vvvvi=vector<vvvi>;\nusing vp=vector<P>;\nusing vvp=vector<vp>;\nusing vb=vector<bool>;\nusing vvb=vector<vb>;\nconst ll inf=1001001001001001001;\nconst ll INF=1001001001;\nconst ll mod=1000000007;\nconst double eps=1e-10;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outp(T a){cout<<'('<<a.fi<<','<<a.se<<')'<<'\\n';}\ntemplate<class T> void outvp(T v){rep(i,v.size())cout<<'('<<v[i].fi<<','<<v[i].se<<')';cout<<'\\n';}\ntemplate<class T> void outvvp(T v){rep(i,v.size())outvp(v[i]);}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){rep(i,v.size())outv(v[i]);}\ntemplate<class T> bool isin(T x,T l,T r){return (l)<=(x)&&(x)<=(r);}\ntemplate<class T> void yesno(T b){if(b)out(\"yes\");else out(\"no\");}\ntemplate<class T> void YesNo(T b){if(b)out(\"Yes\");else out(\"No\");}\ntemplate<class T> void YESNO(T b){if(b)out(\"YES\");else out(\"NO\");}\ntemplate<class T> void noyes(T b){if(b)out(\"no\");else out(\"yes\");}\ntemplate<class T> void NoYes(T b){if(b)out(\"No\");else out(\"Yes\");}\ntemplate<class T> void NOYES(T b){if(b)out(\"NO\");else out(\"YES\");}\nvoid outs(ll a,ll b){if(a>=inf-100)out(b);else out(a);}\nll gcd(ll a,ll b){if(b==0)return a;return gcd(b,a%b);}\nll modpow(ll a,ll b){ll res=1;a%=mod;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}return res;}\nint main(){\n ll n;cin>>n;\n set<ll> s;\n rep(i,n){\n ll a;cin>>a;s.insert(a);\n }\n out(s.size());\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7756, "score_of_the_acc": -1.87, "final_rank": 18 }, { "submission_id": "aoj_3115_4896099", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3115.cc: \n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\n\n/* typedef */\n\n/* global variables */\n\nint as[MAX_N];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n;\n scanf(\"%d\", &n);\n\n for (int i = 0; i < n; i++) scanf(\"%d\", as + i);\n sort(as, as + n);\n int m = unique(as, as + n) - as;\n\n printf(\"%d\\n\", m);\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3652, "score_of_the_acc": -0.0992, "final_rank": 1 }, { "submission_id": "aoj_3115_4849143", "code_snippet": "#include<bits//stdc++.h>\nusing namespace std;\nint main(){\n int n,a;cin >>n;set<int> st;\n for(int i = 0;i<n;i++) {\n cin >> a;st.insert(a);\n }cout << st.size() <<endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7676, "score_of_the_acc": -1.855, "final_rank": 13 }, { "submission_id": "aoj_3115_4836079", "code_snippet": "#include <algorithm>\n#include <cmath>\n#include <cstdio>\n#include <deque>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <vector>\n\nusing namespace std;\n\ntypedef long long ll;\n\n#define MOD 1000000007\n\nint main() {\n int n;\n cin >> n;\n vector<int> a(n);\n for (int i = 0; i < n; ++i) {\n cin >> a[i];\n }\n set<int> st;\n for (int i = 0; i < n; ++i) {\n st.insert(a[i]);\n }\n cout << st.size() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7760, "score_of_the_acc": -1.8708, "final_rank": 20 }, { "submission_id": "aoj_3115_4538399", "code_snippet": "#include <cstdio>\n#include <set>\nusing namespace std;\n\nint main(void){\n int n, t, sum = 0;\n scanf(\"%d\", &n);\n set<int> s;\n for (int i = 1; i <= n; i++) {\n scanf(\"%d\", &t);\n if (s.find(t) == s.end()) { s.insert(t); sum++; }\n }\n printf(\"%d\\n\", sum);\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 7360, "score_of_the_acc": -1.4623, "final_rank": 10 }, { "submission_id": "aoj_3115_4416259", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <set>\nusing namespace std;\n\nint main(){\n int n;\n cin >> n;\n set<int> s;\n for(int i=0; i<n; i++){\n int a;\n cin >> a;\n s.insert(a);\n }\n cout << s.size() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7748, "score_of_the_acc": -1.8685, "final_rank": 17 }, { "submission_id": "aoj_3115_4386683", "code_snippet": "#include <cstdio>\n#include <algorithm>\n#include <set>\n#include <vector>\n\nint main() {\n size_t n;\n scanf(\"%zu\", &n);\n\n std::vector<int> a(n);\n for (auto& ai: a) scanf(\"%d\", &ai);\n printf(\"%zu\\n\", std::set<int>(a.begin(), a.end()).size());\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 7428, "score_of_the_acc": -1.1417, "final_rank": 5 }, { "submission_id": "aoj_3115_4386324", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\nusing lint = long long int;\nlong long int INF = 1001001001001001LL;\nint inf = 1000000007;\nlong long int MOD = 1000000007LL;\ndouble PI = 3.1415926535897932;\n\ntemplate<typename T1,typename T2>inline void chmin(T1 &a,const T2 &b){if(a>b) a=b;}\ntemplate<typename T1,typename T2>inline void chmax(T1 &a,const T2 &b){if(a<b) a=b;}\n\n#define ALL(a) a.begin(),a.end()\n#define RALL(a) a.rbegin(),a.rend()\n\n/* do your best */\n\nint main() {\n \n int n; cin >> n;\n set<int> s;\n for (int i = 0; i < n; i++) {\n int a; cin >> a;\n s.insert(a);\n }\n\n cout << s.size() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7656, "score_of_the_acc": -1.8512, "final_rank": 12 }, { "submission_id": "aoj_3115_4220058", "code_snippet": "#include<iostream>\n#include<map>\n\nusing namespace std;\n\nint main() {\n\tint n; \n\tcin >> n;\n\tmap<int, int> a;\n\tfor (int i = 0; i < n; i++) {\n\t\tint b;\n cin>>b;\n\t\ta[b]++;\n\t}\n\n\tcout << a.size() << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7684, "score_of_the_acc": -1.8565, "final_rank": 14 }, { "submission_id": "aoj_3115_4105532", "code_snippet": "#include <set>\n#include <iostream>\nusing namespace std;\n\nint main()\n{\n int nums;\n cin >> nums;\n set<long long> Set;\n for(int i = 0; i < nums; i++)\n {\n long long tmp;\n cin >> tmp;\n Set.insert(tmp);\n }\n \n cout << Set.size() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7688, "score_of_the_acc": -1.8573, "final_rank": 16 }, { "submission_id": "aoj_3115_4099211", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main()\n{\n set<int>s;\n int n,a;\n cin>>n;\n for(int i=0;i<n;i++) cin>>a,s.insert(a);\n cout<<s.size()<<endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7684, "score_of_the_acc": -1.8565, "final_rank": 14 }, { "submission_id": "aoj_3115_4093607", "code_snippet": "#include <bits/stdc++.h>\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define rep(i,N) for(long long i = 0; i < (long long)(N); i++)\n#define repr(i,N) for(long long i = (long long)(N) - 1; i >= 0; i--)\n#define rep1(i,N) for(long long i = 1; i <= (long long)(N) ; i++)\n#define repr1(i,N) for(long long i = (N) ; (long long)(i) > 0 ; i--)\n#define each(x,v) for(auto& x : v)\n#define all(v) (v).begin(),(v).end()\n#define sz(v) ((int)(v).size())\n#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)\n#define inl(...) long long __VA_ARGS__; in(__VA_ARGS__)\n#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)\nusing namespace std; void solve();\nusing ll = long long; template<class T = ll> using V = vector<T>;\nusing vi = V<int>; using vl = V<>; using vvi = V< V<int> >;\nconstexpr int inf = 1001001001; constexpr ll infLL = (1LL << 61) - 1;\nstruct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya;\ntemplate<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\ntemplate<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\ntemplate<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << \" \" << p.second; return os; }\ntemplate<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; }\ntemplate<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); rep(i,s) os << (i ? \" \" : \"\") << v[i]; return os; }\ntemplate<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; }\nvoid in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);}\nvoid out(){cout << \"\\n\";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << \" \"; out(u...);}\ntemplate<typename T>void die(T x){out(x); exit(0);}\n#ifdef NyaanDebug\n #include \"NyaanDebug.h\"\n #define trc(...) do { cerr << #__VA_ARGS__ << \" = \"; dbg_out(__VA_ARGS__);} while(0)\n #define trca(v,N) do { cerr << #v << \" = \"; array_out(v , N);cout << endl;} while(0)\n#else\n #define trc(...)\n #define trca(...)\n int main(){solve();}\n#endif\n\nusing P = pair<ll,ll>; using vp = V<P>;\nconstexpr int MOD = /**/ 1000000007; //*/ 998244353;\n//////////\n\nvoid solve(){\n set<int> s;\n ini(N);\n rep(i , N) {ini(x); s.insert(x);}\n\n out(s.size());\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 7804, "score_of_the_acc": -1.2124, "final_rank": 6 }, { "submission_id": "aoj_3115_4087927", "code_snippet": "#include <iostream>\n#include <set>\n#define llint long long\n#define inf 1e18\n\nusing namespace std;\n\nllint n;\nllint a[100005];\nset<llint> S;\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n;\n\tfor(int i = 1; i <= n; i++) cin >> a[i], S.insert(a[i]);\n\tcout << S.size() << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 8448, "score_of_the_acc": -1.3333, "final_rank": 9 }, { "submission_id": "aoj_3115_4084980", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\nint main() {\n\tint n; std::cin >> n;\n\tstd::vector<int> values(n); for (auto& v : values) std::cin >> v;\n\tstd::sort(values.begin(), values.end());\n\tstd::cout << std::distance(values.begin(), std::unique(values.begin(), values.end())) << std::endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3124, "score_of_the_acc": -0.3333, "final_rank": 3 }, { "submission_id": "aoj_3115_4083919", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nusing datas=pair<ll,ll>;\nusing ddatas=pair<double,double>;\nusing tdata=pair<ll,datas>;\nusing vec=vector<ll>;\nusing mat=vector<vec>;\nusing pvec=vector<datas>;\nusing pmat=vector<pvec>;\n#define For(i,a,b) for(i=a;i<(ll)b;i++)\n#define bFor(i,a,b) for(i=a;i>=(ll)b;i--)\n#define rep(i,N) For(i,0,N)\n#define rep1(i,N) For(i,1,N)\n#define brep(i,N) bFor(i,N-1,0)\n#define all(v) (v).begin(),(v).end()\n#define allr(v) (v).rbegin(),(v).rend()\n#define vsort(v) sort(all(v))\n#define vrsort(v) sort(allr(v))\n#define endl \"\\n\"\n#define pb push_back\n#define output(v) do{bool f=0;for(auto outi:v){cout<<(f?\" \":\"\")<<outi;f=1;}cout<<endl;}while(0)\nconst ll mod=1000000007;\nconst ll inf=1LL<<60;\nconst double PI = acos(-1);\nconst double eps = 1e-9;\ntemplate<class T> inline bool chmax(T& a,T b){bool x=a<b;if(x)a=b;return x;} \ntemplate<class T> inline bool chmin(T& a,T b){bool x=a>b;if(x)a=b;return x;} \n \nvoid startupcpp(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout<<fixed<<setprecision(15);\n}\n \ndouble distance(ddatas& x,ddatas& y){\n double a=x.first-y.first,b=x.second-y.second;\n return sqrt(a*a+b*b);\n}\n \nll modinv(ll a) {\n ll b=mod,u=1,v=0,t;\n while(b){\n t=a/b;\n a-=t*b; swap(a,b);\n u-=t*v; swap(u,v);\n }\n return (u+mod)%mod;\n}\n \nll moddevide(ll a,ll b){return (a*modinv(b))%mod;}\n \nvec modncrlistp,modncrlistm;\n \nll modncr(ll n,ll r){\n ll i,size=modncrlistp.size();\n if(size<=n){\n modncrlistp.resize(n+1);\n modncrlistm.resize(n+1);\n if(!size){\n modncrlistp[0]=modncrlistm[0]=1;\n size++;\n }\n For(i,size,n+1){\n modncrlistp[i]=modncrlistp[i-1]*i%mod;\n modncrlistm[i]=modinv(modncrlistp[i]);\n }\n }\n return modncrlistp[n]*modncrlistm[r]%mod*modncrlistm[n-r]%mod;\n}\n \nll modpow(ll a,ll n){\n ll res=1;\n while(n){\n if(n&1)res=res*a%mod;\n a=a*a%mod;\n n>>=1;\n }\n return res;\n}\n \nll gcd(ll a,ll b){if(!b)return a;return (a%b==0)?b:gcd(b,a%b);}\nll lcm(ll a,ll b){return a/gcd(a,b)*b;}\n \nll countdigits(ll n){\n ll ans=0;\n while(n){n/=10;ans++;}\n return ans;\n}\n \nll sumdigits(ll n){\n ll ans=0;\n while(n){ans+=n%10;n/=10;}\n return ans;\n}\nvoid judgement(int a){\n if(a){\n cout<<\"Yes\"<<endl;\n }else{\n cout<<\"No\"<<endl;\n }\n if(a){\n cout<<\"YES\"<<endl;\n }else{\n cout<<\"NO\"<<endl;\n }\n}\nint main(){\n ll i,N,x=inf,id=0;\n cin>>N;\n set<ll> se;\n rep(i,N){\n cin>>x;\n se.insert(x);\n }\n cout<<se.size()<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7756, "score_of_the_acc": -1.87, "final_rank": 18 } ]
aoj_3123_cpp
アルミ缶の上にあるミカン (Oranges on Cans) square1001 君は、テーブルにアルミ缶を $N$ 缶置きました。 E869120 君は、テーブル上のそれぞれのアルミ缶の上に $M$ 個ずつミカンを乗せました。 アルミ缶の上に乗っているミカンは全部で何個ありますか? 入力 入力は以下の形式で標準入力から与えられる。 $N$ $M$ 出力 アルミ缶の上に乗っているミカンの数を 1 行で出力してください。 ただし、最後には改行を入れること。 制約 $1 \leq N \leq 9$ $1 \leq M \leq 9$ 入力は全て整数である。 入力例1 3 4 出力例1 12 入力例2 7 7 出力例2 49
[ { "submission_id": "aoj_3123_4065990", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\nstruct st{\n\tint a,b,c,d;\n};\nst s[200000];\n\nint main(){\n\tint n,q;cin>>n>>q;\n\trep(i,n){\n\t\tscanf(\"%d%d%d%d\",&s[i].a,&s[i].b,&s[i].c,&s[i].d);\n\t}\n\tsort(s,s+n,[](st a,st b){\n\t\treturn a.a>b.a;\n\t});\n\trep(i,q){\n\t\tint x,y,z,w;scanf(\"%d%d%d%d\",&x,&y,&z,&w);\n\t\tbool ok=false;\n\t\trep(j,n){\n\t\t\tif(x>=s[j].a)break;\n\t\t\tif(s[j].a<y&&y<s[j].b&&z<s[j].c&&s[j].c<w&&w<s[j].d){ok=true;break;}\n\t\t}\n\t\tif(ok)puts(\"Yes\");\n\t\telse puts(\"No\");\n\t}\n}", "accuracy": 1, "time_ms": 1360, "memory_kb": 4720, "score_of_the_acc": -1.0046, "final_rank": 2 }, { "submission_id": "aoj_3123_4065979", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\nstruct st{\n\tint a,b,c,d;\n};\nst s[200000];\n\nint main(){\n\tint n,q;cin>>n>>q;\n\trep(i,n){\n\t\tscanf(\"%d%d%d%d\",&s[i].a,&s[i].b,&s[i].c,&s[i].d);\n\t}\n\tsort(s,s+n,[](st a,st b){\n\t\treturn a.a>b.a;\n\t});\n\trep(i,q){\n\t\tint x,y,z,w;scanf(\"%d%d%d%d\",&x,&y,&z,&w);\n\t\tbool ok=false;\n\t\trep(j,n){\n\t\t\tif(x>s[j].a)break;\n\t\t\tif(s[j].a<y&&y<s[j].b&&z<s[j].c&&s[j].c<w&&w<s[j].d){ok=true;break;}\n\t\t}\n\t\tif(ok)puts(\"Yes\");\n\t\telse puts(\"No\");\n\t}\n}", "accuracy": 0.2, "time_ms": 620, "memory_kb": 4652, "score_of_the_acc": -0.1494, "final_rank": 3 }, { "submission_id": "aoj_3123_4048723", "code_snippet": "#include<iostream>\n#include<algorithm>\n#include<vector>\n#include<queue>\n#include<set>\n#include<unordered_map>\nusing namespace std;\ntypedef long long ll;\n#define chmax(a,b) a=max(a,b)\n#define chmin(a,b) a=min(a,b)\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define mod 1000000007\n#define mad(a,b) a=(a+b)%mod\n#define N 100010\nll n,q;\nll a[N],b[N],c[N],d[N];\nll x[N],y[N],z[N],w[N];\nbool ans[N];\n\nnamespace seg{\n ll dat[2*N];\n ll ns;\n void init(ll nn){\n\tns=nn;\n\tfor(int i=0;i<2*ns;i++){\n\t dat[i]=-1e17;\n\t}\n }\n void upd(ll i,ll x){\n\ti+=ns;\n\tdat[i]=x;\n\tfor(;i;i>>=1){\n\t dat[i/2]=max(dat[i],dat[i^1]);\n\t}\n }\n ll ma(ll l,ll r){\n\tl+=ns,r+=ns+1;\n\tll res=-1e17;\n\tfor(ll a=l,b=r;a<b;a>>=1,b>>=1){\n\t if(a&1)chmax(res,dat[a++]);\n\t if(b&1)chmax(res,dat[--b]);\n\t}\n\treturn res;\n }\n};\nvector<int> idn,idq;\nstruct qry{\n ll place,typ,id;\n bool operator<(const qry&key)const{\n\tif(this->place!=key.place)return this->place<key.place;\n\treturn this->typ<key.typ;\n }\n qry(ll p,ll t,ll id){\n\tthis->place=p;\n\tthis->typ=t;\n\tthis->id=id;\n }\n};\nvoid solve(){if(idn.size()==0||idq.size()==0)return;\n vector<qry>v;\n vector<pair<ll,ll> > xx;\n for(auto i:idn){\n\tv.push_back(qry(a[i],2,i));\n\tv.push_back(qry(b[i],0,i));\n\txx.push_back(mp(c[i],i));\n }\n for(auto i:idq){\n\tv.push_back(qry(y[i],1,i));\n }\n sort(all(v));\n sort(all(xx));\n seg::init(xx.size());\n for(qry g:v){\n\tif(g.typ==1){\n\t ll l=lower_bound(all(xx),(pair<ll,ll>)mp(z[g.id],+1e17))-xx.begin();\n\t ll r=lower_bound(all(xx),(pair<ll,ll>)mp(w[g.id],-1e17))-xx.begin();\n\t ll res=seg::ma(l,r-1);\n\t if(res>w[g.id]){\n\t\tans[g.id]=1;\n\t }\n\t}\n\telse{\n\t ll p=lower_bound(all(xx),mp(c[g.id],g.id))-xx.begin();\n\t if(g.typ==0)seg::upd(p,-1e17);\n\t if(g.typ==2)seg::upd(p,d[g.id]);\n\t}\n }\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n ll n,q;\n cin>>n>>q;\n vector<pair<ll,ll> >ns,qs;\n for(int i=0;i<n;i++){\n\tcin>>a[i]>>b[i]>>c[i]>>d[i];\n\tns.push_back(mp(a[i],i));\n }\n for(int i=0;i<q;i++){\n\tcin>>x[i]>>y[i]>>z[i]>>w[i];\n\tqs.push_back(mp(x[i],i));\n\tans[i]=0;\n }\n sort(ns.begin(),ns.end());\n sort(qs.begin(),qs.end());\n \n for(int i=1;i<N;i++){\n\tll rng=1;\n\tfor(int j=0;j<20;j++){\n\t if(i&(1<<j)){\n\t\trng=(1<<j);\n\t\tbreak;\n\t }\n\t}\n\tidn.clear();\n\tidq.clear();\n\tfor(int j=(int)(lower_bound(all(ns),(pair<ll,ll>)mp(i,-1e17))-ns.begin());j<(int)ns.size()&&ns[j].first<i+rng;j++){\n\t idn.push_back(ns[j].second);\n\t}\n\tfor(int j=lower_bound(all(qs),(pair<ll,ll>)mp(i-rng,-1e17))-qs.begin();j<(int)qs.size()&&qs[j].first<i;j++){\n\t idq.push_back(qs[j].second);\n\t}\n\tsolve();\n }\n for(int i=0;i<q;i++){\n\tif(ans[i])cout<<\"Yes\"<<endl;\n\telse cout<<\"No\"<<endl;\n }\n}", "accuracy": 1, "time_ms": 490, "memory_kb": 19304, "score_of_the_acc": -1, "final_rank": 1 } ]
aoj_3116_cpp
Range Count Query 数列 a_1,a_2,..,a_N が与えられます。 クエリでは、値が l 以上 r 以下の項の個数を答えてください。 入力 N Q a_1 a_2...a_N l_1 r_1 l_2 r_2 : l_q r_q 出力 ans_1 ans_2 : ans_q i 行目には、 i 番目のクエリに対する答え、すなわち l_i \leq a_j \leq r_i なる j の個数を出力せよ。 制約 1 \leq N,Q \leq 10^5 1 \leq a_i \leq 10^9 1 \leq l_i \leq r_i \leq 10^9 入力例 6 3 8 6 9 1 2 1 2 8 1 7 3 5 出力例 3 4 0
[ { "submission_id": "aoj_3116_9540614", "code_snippet": "#include<bits/stdc++.h>\n\n\nusing namespace std;\n//make -f ../makefile SRC=\n/*\n*/\n\n\n//------------------------------------------------------------------------------\nbool DEBUG = false;\nconst int INF = 1000000000;\n\nconst int MAX_N = 100000;\nstatic int vect[MAX_N];\n//------------------------------------------------------------------------------\nvoid test()\n{\n}\n\n// search value <= v\nint query(int N, int v)\n{\n auto it1 = lower_bound(vect, vect+N, v);\n if (it1 == vect+N) return N;\n else if (*it1 > v) return distance(vect, it1);\n\n auto it2 = lower_bound(vect, vect+N, v+1);\n return distance(vect, it2);\n}\n\nint query(int N, int v1, int v2)\n{\n return query(N, v2) - query(N, v1-1);\n}\n//------------------------------------------------------------------------------\nint main()\n{\n //test(); return 0;\n //DEBUG = true;\n //--------------------------------------------------------------------------\n int N, Q, v1, v2, num;\n num = scanf(\"%d %d \", &N, &Q);\n for (int i=0; i<N; ++i) num = scanf(\"%d \", &vect[i]);\n sort(vect, vect+N);\n\n for (int q=0; q<Q; ++q)\n {\n num = scanf(\"%d %d \", &v1, &v2);\n printf(\"%d\\n\", query(N, v1, v2));\n }\n\n //--------------------------------------------------------------------------\n return 0;\n}\n//------------------------------------------------------------------------------", "accuracy": 1, "time_ms": 40, "memory_kb": 3956, "score_of_the_acc": -0.0272, "final_rank": 5 }, { "submission_id": "aoj_3116_8827181", "code_snippet": "#line 1 \"a.cpp\"\n#define PROBLEM \"\"\n#line 2 \"/home/kuhaku/home/github/algo/lib/template/template.hpp\"\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = M_PI;\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/macro.hpp\"\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/sonic.hpp\"\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n\n constexpr void operator()() const {}\n} sonic;\n#line 5 \"/home/kuhaku/home/github/algo/lib/template/atcoder.hpp\"\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) {\n os << (it == v.begin() ? \"\" : \" \") << *it;\n }\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\ntemplate <typename T, typename... Args>\nauto make_vector(T x, int arg, Args... args) {\n if constexpr (sizeof...(args) == 0) return std::vector<T>(arg, x);\n else return std::vector(arg, make_vector<T>(x, args...));\n}\nvoid Yes(bool is_correct = true) {\n std::cout << (is_correct ? \"Yes\" : \"No\") << '\\n';\n}\nvoid No(bool is_not_correct = true) {\n Yes(!is_not_correct);\n}\nvoid YES(bool is_correct = true) {\n std::cout << (is_correct ? \"YES\" : \"NO\") << '\\n';\n}\nvoid NO(bool is_not_correct = true) {\n YES(!is_not_correct);\n}\nvoid Takahashi(bool is_correct = true) {\n std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n';\n}\nvoid Aoki(bool is_not_correct = true) {\n Takahashi(!is_not_correct);\n}\n#line 3 \"a.cpp\"\n\nint main(void) {\n int n, q;\n cin >> n >> q;\n vector<int> a(n);\n cin >> a;\n sort(all(a));\n\n while (q--) {\n int l, r;\n cin >> l >> r;\n co(upper_bound(all(a), r) - lower_bound(all(a), l));\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3600, "score_of_the_acc": -0.0224, "final_rank": 2 }, { "submission_id": "aoj_3116_8513559", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nint main(){\n int n, q, a, l, r;\n vector<int> v;\n cin >> n >> q;\n for(int i=0;i<n;i++){\n cin >> a;\n v.push_back(a);\n }\n sort(v.begin(), v.end());\n for(int i=0;i<q;i++){\n cin >> l >> r;\n cout << upper_bound(v.begin(), v.end(), r)-lower_bound(v.begin(), v.end(), l) << endl;\n }\n return(0);\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 3396, "score_of_the_acc": -0.1921, "final_rank": 13 }, { "submission_id": "aoj_3116_8513556", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nint main(){\n int n, q, a, l, r;\n vector<int> v;\n cin >> n >> q;\n v.push_back(0);\n for(int i=1;i<=n;i++){\n cin >> a;\n v.push_back(a);\n }\n sort(v.begin(), v.end());\n for(int i=0;i<q;i++){\n cin >> l >> r;\n cout << upper_bound(v.begin(), v.end(), r)-lower_bound(v.begin(), v.end(), l) << endl;\n }\n return(0);\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 3416, "score_of_the_acc": -0.1924, "final_rank": 14 }, { "submission_id": "aoj_3116_8002989", "code_snippet": "#pragma region Macros\n\n// #pragma GCC target(\"avx,avx2,fma\")\n// #pragma GCC optimize(\"O3,unroll-loops\")\n\n#include <bits/extc++.h>\n// #include <immintrin.h>\n// #include <atcoder/all>\n// using namespace atcoder;\nusing namespace std;\nusing namespace __gnu_pbds;\n\n// #include <boost/multiprecision/cpp_dec_float.hpp>\n// #include <boost/multiprecision/cpp_int.hpp>\n// namespace mp = boost::multiprecision;\n// using Bint = mp::cpp_int;\n// using Bdouble = mp::number<mp::cpp_dec_float<256>>;\n\n#define TO_STRING(var) # var\n#define pb emplace_back\n#define int ll\n#define endl '\\n'\n#define sqrt __builtin_sqrtl\n\nusing ll = long long;\nusing ld = long double;\nconst ld PI = acos(-1);\nconst ld EPS = 1e-10;\nconst int INF = 1 << 30;\nconst ll INFL = 1LL << 61;\nconst int MOD = 998244353;\n// const int MOD = 1000000007;\n\nconst vector<int> dx = {0, 1, -1, 0, 1, 1, -1, -1}; // → ↓ ← ↑ ↘ ↙ ↖ ↗\nconst vector<int> dy = {1, 0, 0, -1, 1, -1, -1, 1};\n\nstruct Edge {\n int from, to;\n int cost;\n Edge(int to, int cost) : from(-1), to(to), cost(cost) {}\n Edge(int from, int to, int cost) : from(from), to(to), cost(cost) {}\n Edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n};\n\n__attribute__((constructor))\nvoid constructor() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(12);\n}\n\nstruct custom_hash {\n static uint64_t splitmix64(uint64_t x) {\n x += 0x9e3779b97f4a7c15;\n x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;\n x = (x ^ (x >> 27)) * 0x94d049bb133111eb;\n return x ^ (x >> 31);\n }\n\n size_t operator()(uint64_t x) const {\n static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();\n return splitmix64(x + FIXED_RANDOM);\n }\n};\n\nint POW(int x, int n) {\n __int128_t ret = 1;\n // if (ret >= INFL) return INFL;\n if (n < 0) { cout << \"error\" << endl; return 0; }\n else if (x == 1 or n == 0) ret = 1;\n else if (x == -1 && n % 2 == 0) ret = 1; \n else if (x == -1) ret = -1; \n else if (n % 2 == 0) ret = POW(x * x, n / 2);\n else ret = x * POW(x, n - 1);\n\n if (ret > 8e18) ret = 0;\n return ret;\n}\nint floor(int x, int y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint ceil(int x, int y) { return (x > 0 ? (x + y - 1) / y : x / y); }\nll per(int x, int y) {\n if (y == 0) {\n cout << \"error\" << endl;\n return INFL;\n }\n if (x >= 0 && y > 0) return x / y;\n if (x >= 0 && y < 0) return x / y - (x % y < 0);\n if (x < 0 && y < 0) return x / y + (x % y < 0);\n // if (x < 0 && y > 0) \n return x / y - (x % y < 0);\n}\nll mod(int x, int y) {\n if (y == 0) {\n cout << \"error\" << endl;\n return INFL;\n }\n if (x >= 0 && y > 0) return x % y;\n if (x >= 0 && y < 0) return x % y;\n if (x < 0 && y < 0) {\n __int128_t ret = x % y;\n ret += (__int128_t)abs(y) * INFL;\n ret %= abs(y);\n return ret;\n }\n // if (x < 0 && y > 0) {\n __int128_t ret = x % y;\n ret += (__int128_t)abs(y) * INFL;\n ret %= abs(y);\n return ret;\n // }\n}\n\ntemplate <class T> bool chmax(T &a, const T& b) {\n if (a < b) { a = b; return true; }\n return false;\n}\ntemplate <class T> bool chmin(T &a, const T& b) {\n if (a > b) { a = b; return true; }\n return false;\n}\n\nint countl_zero(int N) { return __builtin_clzll(N); }\nint countl_one(int N) {\n int ret = 0; while (N % 2) { N /= 2; ret++; }\n return ret;\n}\nint countr_zero(int N) { return __builtin_ctzll(N); }\nint countr_one(int N) {\n int ret = 0, k = 63 - __builtin_clzll(N);\n while (k != -1 && (N & (1LL << k))) { k--; ret++; }\n return ret;\n}\nint popcount(int N) { return __builtin_popcountll(N); }\nint unpopcount(int N) { return 64 - __builtin_clzll(N) - __builtin_popcountll(N); }\n\nint top_bit(int N) { return 63 - __builtin_clzll(N);} // 2^kの位\nint bot_bit(int N) { return __builtin_ctz(N);} // 2^kの位\nint MSB(int N) { return 1 << (63 - __builtin_clzll(N)); } // mask\n\nint bit_width(int N) { return 64 - __builtin_clzll(N); } // 桁数\nint ceil_log2(int N) { return 63 - __builtin_clzll(N); }\nint bit_floor(int N) { return 1 << (63 - __builtin_clzll(N)); }\nint floor_log2(int N) { return 64 - __builtin_clzll(N-1); }\nint bit_ceil(int N) { return 1 << (64 - __builtin_clzll(N-1)) - (N==1); }\n\nclass UnionFind {\npublic:\n\tUnionFind() = default;\n UnionFind(int N) : par(N), sz(N, 1) {\n iota(par.begin(), par.end(), 0);\n }\n\n\tint root(int x) {\n\t\tif (par[x] == x) return x;\n\t\treturn (par[x] = root(par[x]));\n\t}\n\n\tbool unite(int x, int y) {\n\t\tint rx = root(x);\n\t\tint ry = root(y);\n\n if (rx == ry) return false;\n\t\tif (sz[rx] < sz[ry]) swap(rx, ry);\n\n\t\tsz[rx] += sz[ry];\n\t\tpar[ry] = rx;\n\n return true;\n\t}\n\n\tbool issame(int x, int y) { return (root(x) == root(y)); }\n\tint size(int x) { return sz[root(x)]; }\n\n vector<vector<int>> groups(int N) {\n vector<vector<int>> G(N);\n for (int x = 0; x < N; x++) {\n G[root(x)].push_back(x);\n }\n\t\tG.erase(\n remove_if(G.begin(), G.end(),\n [&](const vector<int>& V) { return V.empty(); }),\n G.end());\n return G;\n }\n\nprivate:\n\tvector<int> par;\n\tvector<int> sz;\n};\n\ntemplate<int mod> class Modint{\npublic:\n int val = 0;\n Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }\n Modint(const Modint &r) { val = r.val; }\n\n Modint operator -() { return Modint(-val); } // 単項\n Modint operator +(const Modint &r) { return Modint(*this) += r; }\n Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; }\n Modint operator -(const Modint &r) { return Modint(*this) -= r; }\n Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; }\n Modint operator *(const Modint &r) { return Modint(*this) *= r; }\n Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; }\n Modint operator /(const Modint &r) { return Modint(*this) /= r; }\n Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; }\n \n Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置\n Modint operator ++(signed) { ++*this; return *this; } // 後置\n Modint& operator --() { val--; if (val < 0) val += mod; return *this; }\n Modint operator --(signed) { --*this; return *this; }\n Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; }\n Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; }\n Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; }\n Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; }\n Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; }\n Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; }\n Modint &operator /=(const Modint &r) {\n int a = r.val, b = mod, u = 1, v = 0;\n while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}\n val = val * u % mod; if (val < 0) val += mod;\n return *this;\n }\n Modint &operator /=(const int &q) {\n Modint r(q); int a = r.val, b = mod, u = 1, v = 0;\n while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}\n val = val * u % mod; if (val < 0) val += mod;\n return *this;\n }\n\n bool operator ==(const Modint& r) { return this -> val == r.val; }\n bool operator <(const Modint& r) { return this -> val < r.val; }\n bool operator !=(const Modint& r) { return this -> val != r.val; }\n};\n\nusing mint = Modint<MOD>;\n\nistream &operator >>(istream &is, mint& x) {\n int t; is >> t;\n x = t;\n return (is);\n}\nostream &operator <<(ostream &os, const mint& x) {\n return os << x.val;\n}\nmint modpow(const mint &x, int n) {\n if (n == 0) return 1;\n mint t = modpow(x, n / 2);\n t = t * t;\n if (n & 1) t = t * x;\n return t;\n}\n\nint modpow(__int128_t x, int n, int mod) {\n __int128_t ret = 1;\n while (n > 0) {\n if (n % 2 == 1) ret = ret * x % mod;\n x = x * x % mod;\n n /= 2;\n }\n return ret;\n}\n\nint modinv(__int128_t x, int mod) {\n if (x == 1) return 1;\n return mod - modinv(mod % x, mod) * (mod / x) % mod;\n}\n\nostream &operator <<(ostream &os, __int128_t value) {\n ostream::sentry s(os);\n if (s) {\n __uint128_t tmp = value < 0 ? -value : value;\n char buffer[128];\n char *d = end(buffer);\n\n do {\n --d; *d = \"0123456789\"[tmp % 10];\n tmp /= 10;\n } while (tmp != 0);\n\n if (value < 0) { d--; *d = '-'; }\n\n int len = end(buffer) - d;\n if (os.rdbuf()->sputn(d, len) != len) {\n os.setstate(ios_base::badbit);\n }\n }\n return os;\n}\n\nvector<mint> fac, finv, Inv;\nvoid COMinit(int N) {\n fac.resize(N + 1);\n finv.resize(N + 1);\n Inv.resize(N + 1);\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n Inv[1] = 1;\n for (int i = 2; i <= N; i++) {\n fac[i] = fac[i-1] * mint(i);\n Inv[i] = -Inv[MOD % i] * mint(MOD / i);\n finv[i] = finv[i - 1] * Inv[i];\n }\n}\n\nmint COM(int N, int K) {\n if (N < K) return 0;\n if (N < 0 or K < 0) return 0;\n return fac[N] * finv[K] * finv[N - K];\n}\n\n#pragma endregion\n\nstruct DynamicBIT {\n int N; // 配列の要素数(数列の要素数+1)\n gp_hash_table<int, int> bit; // データの格納先(0-indexed)\n explicit DynamicBIT() = default;\n explicit DynamicBIT(int size) { N = size + 1; }\n\n void add(int i, int x) {\n i++;\n while (i < N) {\n bit[i] += x;\n i += (i & -i);\n }\n }\n\n int sum(int i) {\n if (i < 0) return 0;\n int ret = 0;\n while (i > 0) {\n auto it = bit.find(i);\n if (it != bit.end()) ret += it->second;\n i -= (i & -i);\n }\n return ret;\n }\n\n int sum(int l, int r) { return sum(r) - sum(l); }\n int get(int i) {\n int l = i, r = i + 1;\n return sum(r) - sum(l);\n }\n};\n\nsigned main() {\n int N, Q;\n cin >> N >> Q;\n tree<pair<int, int>, null_type,less<pair<int, int>>, rb_tree_tag, tree_order_statistics_node_update> tr;\n for (int i = 0; i < N; i++) {\n int a;\n cin >> a;\n tr.insert(make_pair(a, i));\n }\n\n for (int q = 0; q < Q; q++) {\n int l, r;\n cin >> l >> r;\n int cnt1 = tr.order_of_key(make_pair(l, -1));\n int cnt2 = tr.order_of_key(make_pair(r + 1, -1));\n cout << cnt2 - cnt1 << endl;\n }\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 9724, "score_of_the_acc": -0.1509, "final_rank": 8 }, { "submission_id": "aoj_3116_8002973", "code_snippet": "#pragma region Macros\n\n// #pragma GCC target(\"avx,avx2,fma\")\n// #pragma GCC optimize(\"O3,unroll-loops\")\n\n#include <bits/extc++.h>\n// #include <immintrin.h>\n// #include <atcoder/all>\n// using namespace atcoder;\nusing namespace std;\nusing namespace __gnu_pbds;\n\n// #include <boost/multiprecision/cpp_dec_float.hpp>\n// #include <boost/multiprecision/cpp_int.hpp>\n// namespace mp = boost::multiprecision;\n// using Bint = mp::cpp_int;\n// using Bdouble = mp::number<mp::cpp_dec_float<256>>;\n\n#define TO_STRING(var) # var\n#define pb emplace_back\n#define int ll\n#define endl '\\n'\n#define sqrt __builtin_sqrtl\n\nusing ll = long long;\nusing ld = long double;\nconst ld PI = acos(-1);\nconst ld EPS = 1e-10;\nconst int INF = 1 << 30;\nconst ll INFL = 1LL << 61;\nconst int MOD = 998244353;\n// const int MOD = 1000000007;\n\nconst vector<int> dx = {0, 1, -1, 0, 1, 1, -1, -1}; // → ↓ ← ↑ ↘ ↙ ↖ ↗\nconst vector<int> dy = {1, 0, 0, -1, 1, -1, -1, 1};\n\nstruct Edge {\n int from, to;\n int cost;\n Edge(int to, int cost) : from(-1), to(to), cost(cost) {}\n Edge(int from, int to, int cost) : from(from), to(to), cost(cost) {}\n Edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n};\n\n__attribute__((constructor))\nvoid constructor() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(12);\n}\n\nstruct custom_hash {\n static uint64_t splitmix64(uint64_t x) {\n x += 0x9e3779b97f4a7c15;\n x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;\n x = (x ^ (x >> 27)) * 0x94d049bb133111eb;\n return x ^ (x >> 31);\n }\n\n size_t operator()(uint64_t x) const {\n static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();\n return splitmix64(x + FIXED_RANDOM);\n }\n};\n\nint POW(int x, int n) {\n __int128_t ret = 1;\n // if (ret >= INFL) return INFL;\n if (n < 0) { cout << \"error\" << endl; return 0; }\n else if (x == 1 or n == 0) ret = 1;\n else if (x == -1 && n % 2 == 0) ret = 1; \n else if (x == -1) ret = -1; \n else if (n % 2 == 0) ret = POW(x * x, n / 2);\n else ret = x * POW(x, n - 1);\n\n if (ret > 8e18) ret = 0;\n return ret;\n}\nint floor(int x, int y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint ceil(int x, int y) { return (x > 0 ? (x + y - 1) / y : x / y); }\nll per(int x, int y) {\n if (y == 0) {\n cout << \"error\" << endl;\n return INFL;\n }\n if (x >= 0 && y > 0) return x / y;\n if (x >= 0 && y < 0) return x / y - (x % y < 0);\n if (x < 0 && y < 0) return x / y + (x % y < 0);\n // if (x < 0 && y > 0) \n return x / y - (x % y < 0);\n}\nll mod(int x, int y) {\n if (y == 0) {\n cout << \"error\" << endl;\n return INFL;\n }\n if (x >= 0 && y > 0) return x % y;\n if (x >= 0 && y < 0) return x % y;\n if (x < 0 && y < 0) {\n __int128_t ret = x % y;\n ret += (__int128_t)abs(y) * INFL;\n ret %= abs(y);\n return ret;\n }\n // if (x < 0 && y > 0) {\n __int128_t ret = x % y;\n ret += (__int128_t)abs(y) * INFL;\n ret %= abs(y);\n return ret;\n // }\n}\n\ntemplate <class T> bool chmax(T &a, const T& b) {\n if (a < b) { a = b; return true; }\n return false;\n}\ntemplate <class T> bool chmin(T &a, const T& b) {\n if (a > b) { a = b; return true; }\n return false;\n}\n\nint countl_zero(int N) { return __builtin_clzll(N); }\nint countl_one(int N) {\n int ret = 0; while (N % 2) { N /= 2; ret++; }\n return ret;\n}\nint countr_zero(int N) { return __builtin_ctzll(N); }\nint countr_one(int N) {\n int ret = 0, k = 63 - __builtin_clzll(N);\n while (k != -1 && (N & (1LL << k))) { k--; ret++; }\n return ret;\n}\nint popcount(int N) { return __builtin_popcountll(N); }\nint unpopcount(int N) { return 64 - __builtin_clzll(N) - __builtin_popcountll(N); }\n\nint top_bit(int N) { return 63 - __builtin_clzll(N);} // 2^kの位\nint bot_bit(int N) { return __builtin_ctz(N);} // 2^kの位\nint MSB(int N) { return 1 << (63 - __builtin_clzll(N)); } // mask\n\nint bit_width(int N) { return 64 - __builtin_clzll(N); } // 桁数\nint ceil_log2(int N) { return 63 - __builtin_clzll(N); }\nint bit_floor(int N) { return 1 << (63 - __builtin_clzll(N)); }\nint floor_log2(int N) { return 64 - __builtin_clzll(N-1); }\nint bit_ceil(int N) { return 1 << (64 - __builtin_clzll(N-1)) - (N==1); }\n\nclass UnionFind {\npublic:\n\tUnionFind() = default;\n UnionFind(int N) : par(N), sz(N, 1) {\n iota(par.begin(), par.end(), 0);\n }\n\n\tint root(int x) {\n\t\tif (par[x] == x) return x;\n\t\treturn (par[x] = root(par[x]));\n\t}\n\n\tbool unite(int x, int y) {\n\t\tint rx = root(x);\n\t\tint ry = root(y);\n\n if (rx == ry) return false;\n\t\tif (sz[rx] < sz[ry]) swap(rx, ry);\n\n\t\tsz[rx] += sz[ry];\n\t\tpar[ry] = rx;\n\n return true;\n\t}\n\n\tbool issame(int x, int y) { return (root(x) == root(y)); }\n\tint size(int x) { return sz[root(x)]; }\n\n vector<vector<int>> groups(int N) {\n vector<vector<int>> G(N);\n for (int x = 0; x < N; x++) {\n G[root(x)].push_back(x);\n }\n\t\tG.erase(\n remove_if(G.begin(), G.end(),\n [&](const vector<int>& V) { return V.empty(); }),\n G.end());\n return G;\n }\n\nprivate:\n\tvector<int> par;\n\tvector<int> sz;\n};\n\ntemplate<int mod> class Modint{\npublic:\n int val = 0;\n Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }\n Modint(const Modint &r) { val = r.val; }\n\n Modint operator -() { return Modint(-val); } // 単項\n Modint operator +(const Modint &r) { return Modint(*this) += r; }\n Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; }\n Modint operator -(const Modint &r) { return Modint(*this) -= r; }\n Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; }\n Modint operator *(const Modint &r) { return Modint(*this) *= r; }\n Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; }\n Modint operator /(const Modint &r) { return Modint(*this) /= r; }\n Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; }\n \n Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置\n Modint operator ++(signed) { ++*this; return *this; } // 後置\n Modint& operator --() { val--; if (val < 0) val += mod; return *this; }\n Modint operator --(signed) { --*this; return *this; }\n Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; }\n Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; }\n Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; }\n Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; }\n Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; }\n Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; }\n Modint &operator /=(const Modint &r) {\n int a = r.val, b = mod, u = 1, v = 0;\n while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}\n val = val * u % mod; if (val < 0) val += mod;\n return *this;\n }\n Modint &operator /=(const int &q) {\n Modint r(q); int a = r.val, b = mod, u = 1, v = 0;\n while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}\n val = val * u % mod; if (val < 0) val += mod;\n return *this;\n }\n\n bool operator ==(const Modint& r) { return this -> val == r.val; }\n bool operator <(const Modint& r) { return this -> val < r.val; }\n bool operator !=(const Modint& r) { return this -> val != r.val; }\n};\n\nusing mint = Modint<MOD>;\n\nistream &operator >>(istream &is, mint& x) {\n int t; is >> t;\n x = t;\n return (is);\n}\nostream &operator <<(ostream &os, const mint& x) {\n return os << x.val;\n}\nmint modpow(const mint &x, int n) {\n if (n == 0) return 1;\n mint t = modpow(x, n / 2);\n t = t * t;\n if (n & 1) t = t * x;\n return t;\n}\n\nint modpow(__int128_t x, int n, int mod) {\n __int128_t ret = 1;\n while (n > 0) {\n if (n % 2 == 1) ret = ret * x % mod;\n x = x * x % mod;\n n /= 2;\n }\n return ret;\n}\n\nint modinv(__int128_t x, int mod) {\n if (x == 1) return 1;\n return mod - modinv(mod % x, mod) * (mod / x) % mod;\n}\n\nostream &operator <<(ostream &os, __int128_t value) {\n ostream::sentry s(os);\n if (s) {\n __uint128_t tmp = value < 0 ? -value : value;\n char buffer[128];\n char *d = end(buffer);\n\n do {\n --d; *d = \"0123456789\"[tmp % 10];\n tmp /= 10;\n } while (tmp != 0);\n\n if (value < 0) { d--; *d = '-'; }\n\n int len = end(buffer) - d;\n if (os.rdbuf()->sputn(d, len) != len) {\n os.setstate(ios_base::badbit);\n }\n }\n return os;\n}\n\nvector<mint> fac, finv, Inv;\nvoid COMinit(int N) {\n fac.resize(N + 1);\n finv.resize(N + 1);\n Inv.resize(N + 1);\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n Inv[1] = 1;\n for (int i = 2; i <= N; i++) {\n fac[i] = fac[i-1] * mint(i);\n Inv[i] = -Inv[MOD % i] * mint(MOD / i);\n finv[i] = finv[i - 1] * Inv[i];\n }\n}\n\nmint COM(int N, int K) {\n if (N < K) return 0;\n if (N < 0 or K < 0) return 0;\n return fac[N] * finv[K] * finv[N - K];\n}\n\n#pragma endregion\n\nstruct DynamicBIT {\n int N; // 配列の要素数(数列の要素数+1)\n gp_hash_table<int, int> bit; // データの格納先(0-indexed)\n explicit DynamicBIT() = default;\n explicit DynamicBIT(int size) { N = size + 1; }\n\n void add(int i, int x) {\n i++;\n while (i < N) {\n bit[i] += x;\n i += (i & -i);\n }\n }\n\n int sum(int i) {\n if (i < 0) return 0;\n int ret = 0;\n while (i > 0) {\n auto it = bit.find(i);\n if (it != bit.end()) ret += it->second;\n i -= (i & -i);\n }\n return ret;\n }\n\n int sum(int l, int r) { return sum(r) - sum(l); }\n int get(int i) {\n int l = i, r = i + 1;\n return sum(r) - sum(l);\n }\n};\n\nsigned main() {\n int N, Q;\n cin >> N >> Q;\n DynamicBIT bit(1e9+1);\n for (int i = 0; i < N; i++) {\n int a;\n cin >> a;\n bit.add(a, 1);\n }\n\n for (int q = 0; q < Q; q++) {\n int l, r;\n cin >> l >> r;\n cout << bit.sum(l, r + 1) << endl;\n }\n}", "accuracy": 1, "time_ms": 900, "memory_kb": 77048, "score_of_the_acc": -2, "final_rank": 18 }, { "submission_id": "aoj_3116_7773884", "code_snippet": "#include <iostream>\n#include <map>\nusing namespace std;\n\nmap<long long int,int> ms;\nint main() {\n\tint n,m;\n\tcin>>n>>m;\n\tfor(int i=0;i<n;i++){\n\t\tlong long int x;\n\t\tcin>>x;\n\t\tif(ms.find(x)!=ms.end()){\n\t\t\tms[x]+=1;\n\t\t}else{\n\t\t\tms[x]=1;\n\t\t}\n\t}\n\tint c=0;\n\tfor(map<long long int,int>::iterator it=ms.begin();it!=ms.end();it++){\n\t\tc+=(*it).second;\n\t\tms[(*it).first]=c;\n\t}\n\tms[0]=0;\n\tfor(int i=0;i<m;i++){\n\t\tlong long int l,r;\n\t\tcin>>l>>r;\n\t\tmap<long long int,int>::iterator itl,itr;\n\t\titr=ms.upper_bound(r);\n\t\titr--;\n\t\titl=ms.lower_bound(l);\n\t\tif(itl==ms.end()){\n\t\t\tcout<<\"0\"<<endl;\n\t\t}else{\n\t\t\titl--;\n\t\t\tcout<<(*itr).second-(*itl).second<<endl;\n\t\t}\n\t}\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 9348, "score_of_the_acc": -0.3297, "final_rank": 17 }, { "submission_id": "aoj_3116_5944036", "code_snippet": "#ifdef LOCAL\n #define _GLIBCXX_DEBUG\n #define __clock__\n#else\n #pragma GCC optimize(\"Ofast\")\n#endif\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing VI = vector<ll>;\nusing VV = vector<VI>;\nusing VS = vector<string>;\nusing PII = pair<ll, ll>;\n\n// #define INT128 // 必要なら有効化してください\n#ifdef INT128\n using LL = __int128;\n#endif\n\n// tourist set\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p);\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p);\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p);\n\nstring to_string(const string& s) {\n return '\"' + s + '\"';\n}\n\nstring to_string(const char* s) {\n return to_string((string) s);\n}\n\nstring to_string(bool b) {\n return (b ? \"true\" : \"false\");\n}\n\nstring to_string(char c){\n string s = {c};\n return s;\n}\n\n// LL\n#ifdef INT128\n// input\nistream& operator>>(istream& is, LL& v)\n{\n string s;\n is >> s;\n v = 0;\n for (int i = 0; i < (int)s.size(); i++) {\n if (isdigit(s[i])) { v = v * 10 + s[i] - '0'; }\n }\n if (s[0] == '-') { v *= -1; }\n return is;\n}\nstd::ostream &operator<<(std::ostream &dest, LL value) {\n std::ostream::sentry s(dest);\n if (s) {\n LL tmp = value < 0 ? -value : value;\n char buffer[128];\n char *d = std::end(buffer);\n do {\n --d;\n *d = \"0123456789\"[tmp % 10];\n tmp /= 10;\n } while (tmp != 0);\n if (value < 0) {\n --d;\n *d = '-';\n }\n int len = std::end(buffer) - d;\n if (dest.rdbuf()->sputn(d, len) != len) {\n dest.setstate(std::ios_base::badbit);\n }\n }\n return dest;\n}\nstring to_string(LL v){\n stringstream ss;\n ss << v;\n return ss.str();\n}\n#endif // LL\n\nstring to_string(vector<bool> v) {\n bool first = true;\n string res = \"{\";\n for (int i = 0; i < static_cast<int>(v.size()); i++) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(v[i]);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <size_t N>\nstring to_string(bitset<N> v) {\n string res = \"\";\n for (size_t i = 0; i < N; i++) {\n res += static_cast<char>('0' + v[i]);\n }\n return res;\n}\n\ntemplate <typename A>\nstring to_string(A v) {\n bool first = true;\n string res = \"{\";\n for (const auto &x : v) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(x);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p) {\n return \"(\" + to_string(p.first) + \", \" + to_string(p.second) + \")\";\n}\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \")\";\n}\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \", \" + to_string(get<3>(p)) + \")\";\n}\n\nvoid debug_out() { cerr << '\\n'; }\n\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n cerr << \" \" << to_string(H);\n debug_out(T...);\n}\n\n#ifdef LOCAL\n#define debug(...) cerr << \"[\" << #__VA_ARGS__ << \"]:\", debug_out(__VA_ARGS__)\n#else\n#define debug(...) 42\n#endif\n// tourist set end\n\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\n\n#define FOR(i,a,b) for(ll i=(a);i<(b);++i)\n#define rep(i,b) FOR(i, 0, b)\n#define ALL(v) (v).begin(), (v).end()\n#define p(s) cout<<(s)<<'\\n'\n#define p2(s, t) cout << (s) << \" \" << (t) << '\\n'\n#define SZ(x) ((int)(x).size())\n#define SORT(A) sort(ALL(A))\n#define RSORT(A) sort(ALL(A), greater<ll>())\n#define MP make_pair\n#define p_yes() p(\"Yes\")\n#define p_no() p(\"No\")\n#define p_possible() p(\"Possible\")\n#define p_impossible() p(\"Impossible\")\nvoid yes(){p_yes(); exit(0);}\nvoid no(){p_no(); exit(0);}\nvoid possible(){p_possible(); exit(0);}\nvoid impossible(){p_impossible(); exit(0);}\n\nll SUM(VI& V){\n return accumulate(ALL(V), 0LL);\n}\n\nll MIN(VI& V){return *min_element(ALL(V));}\nll MAX(VI& V){return *max_element(ALL(V));}\n\nvoid print_vector(VI& V, ll offset=0){\n ll n = V.size();\n rep(i, n){\n if(i) cout << ' ';\n cout << V[i]+offset;\n }\n cout << endl;\n}\n\nll gcd(ll a,ll b){\n if(b == 0) return a;\n return gcd(b,a%b);\n}\n\nll lcm(ll a,ll b){\n ll g = gcd(a,b);\n return a / g * b;\n}\n\n// long double\nusing ld = long double;\n// #define EPS (1e-14)\nconstexpr ld EPS = 1e-14;\n// #define equals(a,b) (fabs((a)-(b)) < EPS)\nconstexpr bool equals(ld a, ld b){return fabs((a)-(b)) < EPS;}\n\n// 小さい順に取り出すpriority queue\nusing inverse_priority_queue = priority_queue<ll, vector<ll>, greater<ll> >;\n\nint popcount(ll t){\n return __builtin_popcountll(t);\n}\n\nconst ll mod = 1e9 + 7;\n// const ll mod = 998244353;\nconst ll inf = 4e18; // LLONG_MAX = 9223372036854775807 (atcoder, codeforces)\nconst double PI = acos(-1);\n\n// [a/b] (繰り上げ)\nll ceil_div(ll a, ll b){\n return (a+b-1)/b;\n}\n\nll ll_pow(ll a, ll n){\n ll ans = 1;\n FOR(i, 0, n){\n ans *= a;\n }\n return ans;\n}\n// modなし\n\n// snuke's mint\n// auto mod int\n// https://youtu.be/L8grWxBlIZ4?t=9858\n// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize\n// https://youtu.be/8uowVvQ_-Mo?t=1329 : division\n// const int mod = 1000000007;\nstruct mint {\n ll x; // using ll = long long;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) {\n (x *= a.x) %= mod;\n return *this;\n }\n mint operator+(const mint a) const {\n mint res(*this);\n return res+=a;\n }\n mint operator-(const mint a) const {\n mint res(*this);\n return res-=a;\n }\n mint operator*(const mint a) const {\n mint res(*this);\n return res*=a;\n }\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n\n // for prime mod\n mint inv() const {\n return pow(mod-2);\n }\n mint& operator/=(const mint a) {\n return (*this) *= a.inv();\n }\n mint operator/(const mint a) const {\n mint res(*this);\n return res/=a;\n }\n};\n\n// ※双方向\n// N : 頂点数\n// M : 辺数\n// return vector<vector<ll>>\nVV load_graph(ll N, ll M){\n VV G(N);\n rep(i,M){\n ll a,b;cin>>a>>b;\n a--;b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n return G;\n}\nVV load_tree(ll N){\n return load_graph(N, N-1);\n}\n\nVI loadV(ll N){\n VI A(N);\n rep(i,N)cin>>A[i];\n return A;\n}\n\n//#include <atcoder/dsu>\n//using namespace atcoder; // 忘れがち\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n // input\n ll N,Q;\n cin>>N>>Q;\n \n VI A = loadV(N);\n SORT(A);\n\n while(Q--){\n ll l,r;cin>>l>>r;\n auto it = lower_bound(ALL(A),l);\n auto it2 = upper_bound(ALL(A),r);\n ll num = it2-it;\n p(num);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3748, "score_of_the_acc": -0.0244, "final_rank": 4 }, { "submission_id": "aoj_3116_5499586", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nstruct iofast_t {\n iofast_t() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n }\n} iofast;\n\nstruct uns_t {} uns;\ntemplate <typename Element, typename Head, typename ...Args>\nauto vec(Element init, Head arg, Args ...args) {\n if constexpr (sizeof...(Args) == 0) return std::vector(arg, init);\n else return std::vector(arg, vec(init, args...));\n}\ntemplate <typename Element, typename Head, typename ...Args>\nauto vec(uns_t, Head arg, Args ...args) {\n return vec(Element(), arg, args...);\n}\n\ntemplate <typename T, typename Compare = less<T>>\nT &chmin(T &l, T r, Compare &&f = less<T>()) { return l = min(l, r, f); }\ntemplate <typename T, typename Compare = less<T>>\nT &chmax(T &l, T r, Compare &&f = less<T>()) { return l = max(l, r, f); }\n\nint main() {\n int n, q; cin >> n >> q;\n auto a = vec<int>(uns, n);\n for (auto &e : a) cin >> e;\n sort(begin(a), end(a));\n\n while (q--) {\n int l, r; cin >> l >> r;\n\n auto first = lower_bound(begin(a), end(a), l);\n auto last = upper_bound(begin(a), end(a), r);\n\n cout << distance(first, last) << endl;\n }\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 3604, "score_of_the_acc": -0.0914, "final_rank": 7 }, { "submission_id": "aoj_3116_5145497", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for(long long i=0;i<(long long)(n);i++)\n#define REP(i,k,n) for(long long i=k;i<(long long)(n);i++)\n#define all(a) a.begin(),a.end()\n#define rsort(a) {sort(all(a));reverse(all(a));}\n#define pb emplace_back\n#define eb emplace_back\n#define lb(v,k) (lower_bound(all(v),(k))-v.begin())\n#define ub(v,k) (upper_bound(all(v),(k))-v.begin())\n#define fi first\n#define se second\n#define pi M_PI\n#define PQ(T) priority_queue<T>\n#define SPQ(T) priority_queue<T,vector<T>,greater<T>>\n#define dame(a) {out(a);return 0;}\n#define decimal cout<<fixed<<setprecision(15);\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef tuple<ll,ll,ll> PP;\ntypedef tuple<ll,ll,ll,ll> PPP;\ntypedef multiset<ll> S;\nusing vi=vector<ll>;\nusing vvi=vector<vi>;\nusing vvvi=vector<vvi>;\nusing vvvvi=vector<vvvi>;\nusing vp=vector<P>;\nusing vvp=vector<vp>;\nusing vb=vector<bool>;\nusing vvb=vector<vb>;\nconst ll inf=1001001001001001001;\nconst ll INF=1001001001;\nconst ll mod=1000000007;\nconst double eps=1e-10;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outp(T a){cout<<'('<<a.fi<<','<<a.se<<')'<<'\\n';}\ntemplate<class T> void outvp(T v){rep(i,v.size())cout<<'('<<v[i].fi<<','<<v[i].se<<')';cout<<'\\n';}\ntemplate<class T> void outvvp(T v){rep(i,v.size())outvp(v[i]);}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){rep(i,v.size())outv(v[i]);}\ntemplate<class T> bool isin(T x,T l,T r){return (l)<=(x)&&(x)<=(r);}\ntemplate<class T> void yesno(T b){if(b)out(\"yes\");else out(\"no\");}\ntemplate<class T> void YesNo(T b){if(b)out(\"Yes\");else out(\"No\");}\ntemplate<class T> void YESNO(T b){if(b)out(\"YES\");else out(\"NO\");}\ntemplate<class T> void noyes(T b){if(b)out(\"no\");else out(\"yes\");}\ntemplate<class T> void NoYes(T b){if(b)out(\"No\");else out(\"Yes\");}\ntemplate<class T> void NOYES(T b){if(b)out(\"NO\");else out(\"YES\");}\nvoid outs(ll a,ll b){if(a>=inf-100)out(b);else out(a);}\nll gcd(ll a,ll b){if(b==0)return a;return gcd(b,a%b);}\nll modpow(ll a,ll b){ll res=1;a%=mod;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}return res;}\nint main(){\n ll n,q;cin>>n>>q;\n vi v(n);rep(i,n)cin>>v[i];\n sort(all(v));\n rep(i,q){\n ll l,r;cin>>l>>r;\n out(lb(v,r+1)-lb(v,l));\n }\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 3528, "score_of_the_acc": -0.1939, "final_rank": 15 }, { "submission_id": "aoj_3116_5061815", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 2 \"a.cpp\"\n\nint main() {\n\tini(n, q);\n\tVI a = in[n];\n\tsort(all(a));\n\trep(i, q) {\n\t\tini(l, r);\n\t\tout(upper_index(a, r) - lower_index(a, l));\n\t}\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3496, "score_of_the_acc": -0.0095, "final_rank": 1 }, { "submission_id": "aoj_3116_4896106", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3116.cc: Range Count Query\n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\n\n/* typedef */\n\ntypedef vector<int> vi;\ntypedef queue<int> qi;\ntypedef pair<int,int> pii;\n\n/* global variables */\n\nint as[MAX_N], uas[MAX_N];\nint cs[MAX_N], css[MAX_N + 1];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, q;\n scanf(\"%d%d\", &n, &q);\n\n for (int i = 0; i < n; i++) scanf(\"%d\", as + i), uas[i] = as[i];\n sort(uas, uas + n);\n int m = unique(uas, uas + n) - uas;\n\n for (int i = 0; i < n; i++) {\n int k = lower_bound(uas, uas + m, as[i]) - uas;\n cs[k]++;\n }\n for (int i = 0; i < m; i++) css[i + 1] = css[i] + cs[i];\n\n while (q--) {\n int l, r;\n scanf(\"%d%d\", &l, &r);\n\n int li = lower_bound(uas, uas + m, l) - uas;\n int ri = upper_bound(uas, uas + m, r) - uas;\n printf(\"%d\\n\", css[ri] - css[li]);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 4816, "score_of_the_acc": -0.0503, "final_rank": 6 }, { "submission_id": "aoj_3116_4851528", "code_snippet": "#include <bits//stdc++.h>\nusing namespace std;\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\n#define ALL(obj) obj.begin(), obj.end()\nint main(void) {\n int n, q,l,r; cin >> n >> q; vector<int> a(n);\n rep(i, n) cin >> a[i];\n sort(ALL(a));\n rep(i, q) {\n cin >> l >> r;\n cout << upper_bound(ALL(a), r) - lower_bound(ALL(a), l) << endl;\n }\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 3168, "score_of_the_acc": -0.189, "final_rank": 12 }, { "submission_id": "aoj_3116_4836142", "code_snippet": "#include <algorithm>\n#include <cmath>\n#include <cstdio>\n#include <deque>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <vector>\n\nusing namespace std;\n\ntypedef long long ll;\n\n#define MOD 1000000007\n\nint main() {\n int n, q;\n cin >> n >> q;\n vector<int> a(n + 1);\n for (int i = 0; i < n; ++i) {\n cin >> a[i];\n }\n a[n] = -1;\n sort(a.begin(), a.end());\n while (q--) {\n int l, r;\n cin >> l >> r;\n int ok = 0, ng = n + 1;\n while (1 < abs(ok - ng)) {\n int mid = (ok + ng) / 2;\n if (a[mid] <= r) {\n ok = mid;\n } else {\n ng = mid;\n }\n }\n int u = ok;\n ok = 0, ng = n + 1;\n while (1 < abs(ok - ng)) {\n int mid = (ok + ng) / 2;\n if (a[mid] <= l - 1) {\n ok = mid;\n } else {\n ng = mid;\n }\n }\n int d = ok;\n cout << u - d << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 3136, "score_of_the_acc": -0.1886, "final_rank": 10 }, { "submission_id": "aoj_3116_4416328", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint main(){\n int n,q;\n cin >> n >> q;\n vector<int> a(n);\n for(int i=0; i<n; i++){\n cin >> a[i];\n }\n sort(a.begin(), a.end());\n for(int i=0; i<q; i++){\n int l,r;\n cin >> l >> r;\n cout << upper_bound(a.begin(), a.end(), r) -lower_bound(a.begin(), a.end(), l) << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 3152, "score_of_the_acc": -0.1888, "final_rank": 11 }, { "submission_id": "aoj_3116_4386703", "code_snippet": "#include <cstdio>\n#include <algorithm>\n#include <vector>\n\nint main() {\n size_t n, q;\n scanf(\"%zu %zu\", &n, &q);\n\n std::vector<int> a(n);\n for (auto& ai: a) scanf(\"%d\", &ai);\n std::sort(a.begin(), a.end());\n\n for (size_t i = 0; i < q; ++i) {\n int l, r;\n scanf(\"%d %d\", &l, &r);\n printf(\"%td\\n\", std::upper_bound(a.begin(), a.end(), r) - std::lower_bound(a.begin(), a.end(), l));\n }\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 2788, "score_of_the_acc": -0.023, "final_rank": 3 }, { "submission_id": "aoj_3116_4386359", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\nusing lint = long long int;\nlong long int INF = 1001001001001001LL;\nint inf = 1000000007;\nlong long int MOD = 1000000007LL;\ndouble PI = 3.1415926535897932;\n\ntemplate<typename T1,typename T2>inline void chmin(T1 &a,const T2 &b){if(a>b) a=b;}\ntemplate<typename T1,typename T2>inline void chmax(T1 &a,const T2 &b){if(a<b) a=b;}\n\n#define ALL(a) a.begin(),a.end()\n#define RALL(a) a.rbegin(),a.rend()\n\n/* do your best */\n\n\nint main() {\n \n int n, q; cin >> n >> q;\n vector<int> a(n);\n for (int i = 0; i < n; i++) {\n cin >> a[i];\n }\n\n sort(ALL(a));\n\n for (int i = 0; i < q; i++) {\n int l, r; cin >> l >> r;\n auto x = upper_bound(a.begin(), a.end(), r);\n auto y = lower_bound(a.begin(), a.end(), l);\n cout << x - y << endl;\n \n }\n return 0;\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 3096, "score_of_the_acc": -0.1881, "final_rank": 9 }, { "submission_id": "aoj_3116_4358252", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\nusing i64 = long long;\n\n\nstruct BitVector{\n vector<uint64_t> v;\n vector<int> r;\n BitVector(){}\n void build(){\n r.assign(v.size() + 1, 0);\n for(int i = 0; i < v.size(); ++i)\n r[i + 1] = r[i] + __builtin_popcountll(v[i]);\n }\n bool access(int x){\n return (v[x >> 6] >> (x & 63)) & 1;\n }\n // [0, x)の1の出現回数\n int rank(int x){\n return r[x >> 6] + __builtin_popcountll(v[x >> 6] & ((1uLL << (x & 63)) - 1));\n }\n int rank(int x, bool fl){\n return fl ? rank(x) : x - rank(x);\n }\n};\n\ntemplate <typename T, int W>\nstruct WaveletMatrix{\n\n array<BitVector, W> bv;\n array<int, W> zero_cnt;\n\n WaveletMatrix(vector<T>& a){\n int n = a.size();\n vector<T> v(a);\n for(int i = W - 1; i >= 0; --i){\n vector<uint64_t> b((n >> 6) + 1, 0);\n vector<T> v1, v2;\n for(int j = 0; j < n; ++j){\n ((v[j] >> i) & 1 ? v2 : v1).push_back(v[j]);\n b[j >> 6] |= uint64_t((v[j] >> i) & 1) << (j & 63);\n }\n for(int j = 0; j < v.size(); ++j)\n v[j] = (j < v1.size() ? v1[j] : v2[j - v1.size()]);\n bv[i].v = move(b);\n bv[i].build();\n zero_cnt[i] = bv[i].rank(n, 0);\n }\n }\n\n // [l, r)内のxの数\n int count(int l, int r, T x){\n for(int i = W - 1; i >= 0; --i){\n bool fl = (x >> i) & 1;\n int st = bv[i].rank(l, fl);\n int en = bv[i].rank(r, fl);\n l = (fl ? zero_cnt[i] : 0) + st;\n r = (fl ? zero_cnt[i] : 0) + en;\n }\n return r - l;\n }\n\n // [l, r)内で[0, x)を満たす値の数\n int count_lower(int l, int r, T x){\n int cnt = 0;\n for(int i = W - 1; i >= 0; --i){\n bool fl = (x >> i) & 1;\n int st = bv[i].rank(l, fl);\n int en = bv[i].rank(r, fl);\n if(fl){\n st += zero_cnt[i];\n en += zero_cnt[i];\n cnt += (bv[i].rank(r, 0) - bv[i].rank(l, 0));\n }\n l = st, r = en;\n }\n return cnt;\n }\n\n // [l, r)内で[x, y)を満たす値の数\n int count_range(int l, int r, T x, T y){\n return count_lower(l, r, y) - count_lower(l, r, x);\n }\n};\n\n\nsigned main(){\n\n int n, q;\n cin >> n >> q;\n vector<int> a(n);\n for(int i = 0; i < n; ++i)\n cin >> a[i];\n WaveletMatrix<int, 31> w(a);\n\n for(int i = 0; i < q; ++i){\n int l, r;\n cin >> l >> r;\n cout << w.count_range(0, n, l, r + 1) << endl;\n }\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 5108, "score_of_the_acc": -0.2956, "final_rank": 16 }, { "submission_id": "aoj_3116_4358180", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\nusing i64 = long long;\n\n\nstruct BitVector{\n vector<uint64_t> v, r;\n BitVector(){}\n void build(){\n r.assign(v.size() + 1, 0);\n for(int i = 0; i < v.size(); ++i)\n r[i + 1] = r[i] + __builtin_popcount(v[i]);\n }\n bool access(int x){\n return (v[x >> 6] >> (x & 63)) & 1;\n }\n // [0, x)の1の出現回数\n int rank(int x){\n return r[x >> 6] + __builtin_popcount(v[x >> 6] & ((1uLL << (x & 63)) - 1));\n }\n int rank(int x, bool fl){\n return fl ? rank(x) : x - rank(x);\n }\n};\n\ntemplate <typename T, int W>\nstruct WaveletMatrix{\n\n array<BitVector, W> bv;\n array<int, W> zero_cnt;\n\n WaveletMatrix(vector<T>& a){\n int n = a.size();\n vector<T> v(a);\n for(int i = W - 1; i >= 0; --i){\n vector<uint64_t> b((n >> 6) + 1, 0);\n vector<T> v1, v2;\n for(int j = 0; j < n; ++j){\n ((v[j] >> i) & 1 ? v2 : v1).push_back(v[j]);\n b[j >> 6] |= uint64_t((v[j] >> i) & 1) << (j & 63);\n }\n for(int j = 0; j < v.size(); ++j)\n v[j] = (j < v1.size() ? v1[j] : v2[j - v1.size()]);\n bv[i].v = move(b);\n bv[i].build();\n zero_cnt[i] = bv[i].rank(n, 0);\n }\n }\n\n // [l, r)内のxの数\n int count(int l, int r, T x){\n for(int i = W - 1; i >= 0; --i){\n bool fl = (x >> i) & 1;\n int st = bv[i].rank(l, fl);\n int en = bv[i].rank(r, fl);\n l = (fl ? zero_cnt[i] : 0) + st;\n r = (fl ? zero_cnt[i] : 0) + en;\n }\n return r - l;\n }\n\n // [l, r)内で[0, x)を満たす値の数\n int count_lower(int l, int r, T x){\n int cnt = 0;\n for(int i = W - 1; i >= 0; --i){\n bool fl = (x >> i) & 1;\n int st = bv[i].rank(l, fl);\n int en = bv[i].rank(r, fl);\n if(fl){\n st += zero_cnt[i];\n en += zero_cnt[i];\n cnt += (bv[i].rank(r, 0) - bv[i].rank(l, 0));\n }\n l = st, r = en;\n }\n return cnt;\n }\n\n // [l, r)内で[x, y)を満たす値の数\n int count_range(int l, int r, T x, T y){\n return count_lower(l, r, y) - count_lower(l, r, x);\n }\n};\n\n\nsigned main(){\n\n int n, q;\n cin >> n >> q;\n vector<int> a(n);\n for(int i = 0; i < n; ++i)\n cin >> a[i];\n WaveletMatrix<int, 31> w(a);\n for(int i = 0; i < q; ++i){\n int l, r;\n cin >> l >> r;\n cout << w.count_range(0, n, l, r + 1) << endl;\n }\n}", "accuracy": 0.2, "time_ms": 250, "memory_kb": 5108, "score_of_the_acc": -0.2841, "final_rank": 19 }, { "submission_id": "aoj_3116_4358134", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\nusing i64 = long long;\n\n\nstruct BitVector{\n vector<uint64_t> v, r;\n BitVector(){}\n void build(){\n r.assign(v.size() + 1, 0);\n for(int i = 0; i < v.size(); ++i)\n r[i + 1] = r[i] + __builtin_popcount(v[i]);\n }\n bool access(int x){\n return (v[x >> 6] >> (x & 63)) & 1;\n }\n // [0, x)の1の出現回数\n int rank(int x){\n return r[x >> 6] + __builtin_popcount(v[x >> 6] & ((1uLL << (x & 63)) - 1));\n }\n int rank(int x, bool fl){\n return fl ? rank(x) : x - rank(x);\n }\n};\n\ntemplate <typename T, int W>\nstruct WaveletMatrix{\n\n array<BitVector, W> bv;\n array<uint32_t, W> zero_cnt;\n\n WaveletMatrix(vector<T>& a){\n int n = a.size();\n vector<T> v(a);\n for(int i = W - 1; i >= 0; --i){\n vector<uint64_t> b((n >> 6) + 1, 0);\n vector<T> v1, v2;\n for(int j = 0; j < n; ++j){\n ((v[j] >> i) & 1 ? v2 : v1).push_back(v[j]);\n b[j >> 6] |= ((v[j] >> i) & 1) << (j & 63);\n }\n for(int j = 0; j < v.size(); ++j)\n v[j] = (j < v1.size() ? v1[j] : v2[j - v1.size()]);\n bv[i].v = move(b);\n bv[i].build();\n zero_cnt[i] = bv[i].rank(n, 0);\n }\n }\n\n // [l, r)内のxの数\n int count(int l, int r, T x){\n for(int i = W - 1; i >= 0; --i){\n bool fl = (x >> i) & 1;\n int st = bv[i].rank(l, fl);\n int en = bv[i].rank(r, fl);\n l = (fl ? zero_cnt[i] : 0) + st;\n r = (fl ? zero_cnt[i] : 0) + en;\n }\n return r - l;\n }\n\n // [l, r)内で[0, x)を満たす値の数\n int count_lower(int l, int r, T x){\n int cnt = 0;\n for(int i = W - 1; i >= 0; --i){\n bool fl = (x >> i) & 1;\n int st = bv[i].rank(l, fl);\n int en = bv[i].rank(r, fl);\n if(fl)\n cnt += (bv[i].rank(r, 0) - bv[i].rank(l, 0));\n l = (fl ? zero_cnt[i] : 0) + st;\n r = (fl ? zero_cnt[i] : 0) + en;\n }\n return cnt;\n }\n\n // [l, r)内で[x, y)を満たす値の数\n int count_range(int l, int r, T x, T y){\n return count_lower(l, r, y) - count_lower(l, r, x);\n }\n};\n\n\nsigned main(){\n\n int n, q;\n cin >> n >> q;\n vector<int> a(n);\n for(int i = 0; i < n; ++i)\n cin >> a[i];\n WaveletMatrix<int, 31> w(a);\n for(int i = 0; i < q; ++i){\n int l, r;\n cin >> l >> r;\n cout << w.count_range(0, n, l, r + 1) << endl;\n }\n}", "accuracy": 0.2, "time_ms": 260, "memory_kb": 5184, "score_of_the_acc": -0.2966, "final_rank": 20 } ]
aoj_3118_cpp
Range Min of Max Query 整数の組の列 (a_1,b_1), (a_2,b_2),..,(a_N,b_N) が与えられます。 二種類のクエリを処理してください。 一種類目のクエリでは、 a_L,a_{L+1},..,a_R に X を加算します。 二種類目のクエリでは、 max(a_L,b_L),max(a_{L+1},b_{L+1}),..,max(a_R,b_R) の最小値を求めます。 入力 N Q a_1 b_1 a_2 b_2 : a_N b_N query_1 query_2 : query_Q i 番目のクエリが一種類目のクエリの場合、 query_i は 1 L_i R_i X_i となります。 i 番目のクエリが二種類目のクエリの場合、 query_i は 2 L_i R_i となります。 出力 ans_1 ans_2 : ans_k 二種類目のクエリに対する答えを順に出力せよ。 制約 1 \leq N,Q \leq 10^5 1 \leq a_i,b_i \leq 10^9 1 \leq L_i \leq R_i \leq N -10^9 \leq X_i \leq 10^9 入力例 6 6 8 1 6 1 9 4 1 5 2 1 1 4 2 1 3 1 1 3 3 2 1 3 2 4 6 1 4 6 3 2 4 6 出力例 6 9 2 4
[ { "submission_id": "aoj_3118_10625867", "code_snippet": "#include <bits/stdc++.h>\n#define ll long long\nusing namespace std;const int A = 1e5 + 5;\nstruct node{ll x,y;int id;}a[A];\nint read(){int x = 0,f = 1;char c = getchar();\n\twhile(!isdigit(c)){if(c == '-')f = -1;c = getchar();}\n\twhile(isdigit(c))x = x * 10 + c - '0',c = getchar();\n\treturn x * f;\n}int n,m,q,o,l,r,c,L,R,_o_,_l_,_r_;ll t[A],qz[A],hz[A],_s_;\nint K(int p){return (p - 1) / m + 1;}\nint KL(int p){return p * m - m + 1;}\nint KR(int p){return min(n,p * m);}\nvoid build(int l,int r){sort(a + l,a + r + 1,\n\t\t[](node x,node y){return x.x - x.y < y.x - y.y;});\n\tqz[l] = a[l].y,hz[r] = a[r].x;\n\tfor(int i = l + 1;i <= r;i++)qz[i] = min(qz[i - 1],a[i].y);\n\tfor(int i = r - 1;i >= l;i--)hz[i] = min(hz[i + 1],a[i].x);}\nbool operator < (node x,node y){return x.id < y.id;}\nint main(){n = read(),m = 100,q = read();\n\tfor(int i = 1;i <= n;i++)\n\t\ta[i].x = read(),a[i].y = read(),a[i].id = i;\n\tfor(int i = 1;i <= K(n);i++)build(KL(i),KR(i));\n\twhile(q--){o = read(),L = K(l = read()),R = K(r = read());\n\t\tif(o == 1){c = read(),_l_ = 0;\n\t\t\tif(L == R){sort(a + KL(L),a + KR(L) + 1);\n\t\t\t\tfor(int i = l;i <= r;i++)a[i].x += c;\n\t\t\t\tbuild(KL(L),KR(L));\n\t\t\t}else{sort(a + KL(L),a + KR(L) + 1);\n\t\t\t\tsort(a + KL(R),a + KR(R) + 1);\n\t\t\t\tfor(int i = l;i <= KR(L);i++)a[i].x += c;\n\t\t\t\tfor(int i = KL(R);i <= r;i++)a[i].x += c;\n\t\t\t\tbuild(KL(L),KR(L)),build(KL(R),KR(R));\n\t\t\t\tfor(ll i = L + 1;i < R;i++)t[i] += c;\n\t\t\t}\n\t\t}else{ll s = 1e18;_l_ = l,_r_ = r;\n\t\t\tif(L == R){sort(a + KL(L),a + KR(L) + 1);\n\t\t\t\tfor(int i = l;i <= r;i++)\n\t\t\t\t\ts = min(s,max(a[i].x + t[L],a[i].y));\n\t\t\t\tbuild(KL(L),KR(L));\n\t\t\t}else{sort(a + KL(L),a + KR(L) + 1);\n\t\t\t\tsort(a + KL(R),a + KR(R) + 1);\n\t\t\t\tfor(int i = l;i <= KR(L);i++)\n\t\t\t\t\ts = min(s,max(a[i].x + t[L],a[i].y));\n\t\t\t\tfor(int i = KL(R);i <= r;i++)\n\t\t\t\t\ts = min(s,max(a[i].x + t[R],a[i].y));\n\t\t\t\tbuild(KL(L),KR(L)),build(KL(R),KR(R));\n\t\t\t\tfor(ll i = L + 1;i < R;i++){\n\t\t\t\t\tint _l = KL(i),_r = KR(i),S = KR(i) + 1;\n\t\t\t\t\twhile(_l <= _r){int mid = _l + _r >> 1;\n\t\t\t\t\t\tif(a[mid].x - a[mid].y + t[i] >= 0)\n\t\t\t\t\t\t\tS = mid,_r = mid - 1;\n\t\t\t\t\t\telse _l = mid + 1;\n\t\t\t\t\t}if(S != KL(i))s = min(s,qz[S - 1]);\n\t\t\t\t\tif(S != KR(i) + 1)s = min(s,hz[S] + t[i]);\n\t\t\t\t}\n\t\t\t}printf(\"%lld\\n\",_s_ = s);\n\t\t}\n\t}return 0;\n}", "accuracy": 1, "time_ms": 1340, "memory_kb": 7708, "score_of_the_acc": -0.7551, "final_rank": 9 }, { "submission_id": "aoj_3118_10315444", "code_snippet": "// AOJ #3118 Range Min of Max Query\n// 2025.3.21\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nconst ll INF = 1LL << 60;\n\nint N, Q;\nvector<ll> A, B;\n\nstruct Node {\n ll dmin, dmax;\n ll minA;\n ll minB;\n ll f;\n int t;\n};\n\nvector<Node> seg;\nvector<ll> lz;\n\nNode mergeNode(const Node &L, const Node &R) {\n Node res;\n res.dmin = min(L.dmin, R.dmin);\n res.dmax = max(L.dmax, R.dmax);\n res.minB = min(L.minB, R.minB);\n if(L.t == 1 && R.t == 1) {\n res.t = 1;\n res.minA = min(L.minA, R.minA);\n res.f = res.minA;\n } else if(L.t == 2 && R.t == 2) {\n res.t = 2;\n res.f = res.minB;\n } else {\n res.t = 0;\n res.f = min(L.f, R.f);\n }\n return res;\n}\n\nvoid build(int i, int s, int e) {\n if(s == e) {\n ll d = A[s] - B[s];\n seg[i].dmin = seg[i].dmax = d;\n seg[i].minB = B[s];\n if(d >= 0) {\n seg[i].t = 1;\n seg[i].minA = A[s];\n seg[i].f = A[s];\n } else {\n seg[i].t = 2;\n seg[i].f = B[s];\n }\n return;\n }\n int m = (s + e) / 2;\n build(i * 2, s, m);\n build(i * 2 + 1, m + 1, e);\n seg[i] = mergeNode(seg[i * 2], seg[i * 2 + 1]);\n}\n\nvoid update(int i, int s, int e, int l, int r, ll x);\nvoid pushDown(int i, int s, int e) {\n if(lz[i] != 0) {\n int m = (s + e) / 2;\n update(i * 2, s, m, s, m, lz[i]);\n update(i * 2 + 1, m + 1, e, m + 1, e, lz[i]);\n lz[i] = 0;\n }\n}\n\nvoid update(int i, int s, int e, int l, int r, ll x) {\n if(r < s || e < l) return;\n if(s >= l && e <= r) {\n if(s == e) {\n seg[i].dmin += x;\n seg[i].dmax += x;\n ll A_val = seg[i].minB + seg[i].dmin;\n if(seg[i].dmin >= 0) {\n seg[i].t = 1;\n seg[i].minA = A_val;\n seg[i].f = A_val;\n } else {\n seg[i].t = 2;\n seg[i].f = seg[i].minB;\n }\n return;\n }\n if(seg[i].t == 1 && seg[i].dmin + x >= 0) {\n seg[i].dmin += x;\n seg[i].dmax += x;\n seg[i].minA += x;\n seg[i].f = seg[i].minA;\n lz[i] += x;\n return;\n }\n if(seg[i].t == 2 && seg[i].dmax + x < 0) {\n seg[i].dmin += x;\n seg[i].dmax += x;\n lz[i] += x;\n return;\n }\n }\n int m = (s + e) / 2;\n pushDown(i, s, e);\n update(i * 2, s, m, l, r, x);\n update(i * 2 + 1, m + 1, e, l, r, x);\n seg[i] = mergeNode(seg[i * 2], seg[i * 2 + 1]);\n}\n\nll query(int i, int s, int e, int l, int r) {\n if(r < s || e < l) return INF;\n if(s >= l && e <= r) return seg[i].f;\n int m = (s + e) / 2;\n pushDown(i, s, e);\n return min(query(i * 2, s, m, l, r), query(i * 2 + 1, m + 1, e, l, r));\n}\n\nint main(){\n N = Cin(), Q = Cin();\n A.resize(N + 1); B.resize(N + 1);\n for (int i = 1; i <= N; i++) A[i] = Cin(), B[i] = Cin();\n\n seg.resize(4 * (N + 1));\n lz.assign(4 * (N + 1), 0);\n build(1, 1, N);\n\n while(Q--){\n int t = Cin();\n if(t == 1){\n int L = Cin(), R = Cin(); ll X = Cin();\n update(1, 1, N, L, R, X);\n } else {\n int L = Cin(), R = Cin();\n Cout(query(1, 1, N, L, R));\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 26432, "score_of_the_acc": -1, "final_rank": 10 }, { "submission_id": "aoj_3118_8987075", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) { return (ull)rng() % B; }\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n;\n cin >> n;\n\n ////////////////////////////////////////////////////////////////////////////////\n // 平方分割用ライブラリ\n const int B = 250; // ブロックサイズ\n auto getSqCount = [](int n, int B) -> int { return (n + B - 1) / B; };\n int sqCnt = getSqCount(n, B);\n auto getSqInterval = [](int n, int B, int sqCnt) -> pair<vector<int>, vector<int>> {\n vector<int> sqL(sqCnt), sqR(sqCnt);\n int sum = 0;\n for (int i = 0; i < sqCnt; i++) {\n sqL[i] = sum;\n sum += B;\n sqR[i] = sum;\n }\n sqR.back() = n;\n return {sqL, sqR};\n };\n auto [sqL, sqR] = getSqInterval(n, B, sqCnt);\n vector<int> sqIdx(n);\n for (int i = 0; i < sqCnt; i++) {\n for (int j = sqL[i]; j < sqR[i]; j++) {\n sqIdx[j] = i;\n }\n }\n auto getSqIdx = [&](int i) -> int { return sqIdx[i]; };\n auto getSqLength = [&](int i) -> int { return sqR[i] - sqL[i]; };\n ////////////////////////////////////////////////////////////////////////////////\n\n int q;\n cin >> q;\n vector<ll> a(n), b(n);\n for (int i = 0; i < n; i++) {\n cin >> a[i] >> b[i];\n }\n vector<ll> add(sqCnt);\n using P = pair<ll, ll>;\n vector<vector<pair<ll, P>>> v(sqCnt);\n auto update = [&](int i) -> void {\n for (int j = sqL[i]; j < sqR[i]; j++) {\n v[i][j - sqL[i]] = {b[j] - a[j], {a[j], b[j]}};\n }\n sort(v[i].begin(), v[i].end());\n for (int j = 1; j < v[i].size(); j++) {\n v[i][j].second.first = min(v[i][j].second.first, v[i][j - 1].second.first);\n v[i][v[i].size() - 1 - j].second.second =\n min(v[i][v[i].size() - 1 - j].second.second, v[i][v[i].size() - j].second.second);\n }\n };\n for (int i = 0; i < sqCnt; i++) {\n v[i].resize(getSqLength(i));\n update(i);\n }\n\n while (q--) {\n int type;\n cin >> type;\n if (type == 1) {\n int L, R, x;\n cin >> L >> R >> x;\n L -= 1, R -= 1;\n\n int lid = sqIdx[L];\n for (; L <= R and L < sqR[lid]; L++) {\n a[L] += x;\n }\n update(lid);\n\n int rid = sqIdx[R];\n for (; L <= R and sqL[rid] <= R; R--) {\n a[R] += x;\n }\n update(rid);\n\n for (; L < R; L += B) {\n int id = sqIdx[L];\n add[id] += x;\n }\n } else {\n ll res = 2e18;\n int L, R;\n cin >> L >> R;\n L -= 1, R -= 1;\n\n int lid = sqIdx[L];\n for (; L <= R and L < sqR[lid]; L++) {\n res = min(res, max(a[L] + add[lid], b[L]));\n }\n\n int rid = sqIdx[R];\n for (; L <= R and sqL[rid] <= R; R--) {\n res = min(res, max(a[R] + add[rid], b[R]));\n }\n\n while (L < R) {\n int id = sqIdx[L];\n {\n int l = -1, r = getSqLength(id);\n while (r - l > 1) {\n int mid = (l + r) / 2;\n if (v[id][mid].first <= add[id]) l = mid;\n else r = mid;\n }\n if (l == -1) {\n res = min(res, v[id][0].second.second);\n } else if (l + 1 == getSqLength(id)) {\n res = min(res, v[id][l].second.first + add[id]);\n } else {\n res = min(res, v[id][l].second.first + add[id]);\n res = min(res, v[id][l + 1].second.second);\n }\n }\n L += B;\n }\n cout << res << \"\\n\";\n }\n }\n}", "accuracy": 1, "time_ms": 1080, "memory_kb": 7600, "score_of_the_acc": -0.6077, "final_rank": 5 }, { "submission_id": "aoj_3118_8987058", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) { return (ull)rng() % B; }\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n;\n cin >> n;\n\n ////////////////////////////////////////////////////////////////////////////////\n // 平方分割用ライブラリ\n const int B = 250; // ブロックサイズ\n auto getSqCount = [](int n, int B) -> int { return (n + B - 1) / B; };\n int sqCnt = getSqCount(n, B);\n auto getSqInterval = [](int n, int B, int sqCnt) -> pair<vector<int>, vector<int>> {\n vector<int> sqL(sqCnt), sqR(sqCnt);\n int sum = 0;\n for (int i = 0; i < sqCnt; i++) {\n sqL[i] = sum;\n sum += B;\n sqR[i] = sum;\n }\n sqR.back() = n;\n return {sqL, sqR};\n };\n auto [sqL, sqR] = getSqInterval(n, B, sqCnt);\n vector<int> sqIdx(n);\n for (int i = 0; i < sqCnt; i++) {\n for (int j = sqL[i]; j < sqR[i]; j++) {\n sqIdx[j] = i;\n }\n }\n auto getSqIdx = [&](int i) -> int { return sqIdx[i]; };\n auto getSqLength = [&](int i) -> int { return sqR[i] - sqL[i]; };\n ////////////////////////////////////////////////////////////////////////////////\n\n int q;\n cin >> q;\n vector<ll> a(n), b(n);\n for (int i = 0; i < n; i++) {\n cin >> a[i] >> b[i];\n }\n vector<ll> add(sqCnt);\n using P = pair<ll, ll>;\n vector<vector<pair<ll, P>>> v(sqCnt);\n auto update = [&](int i) -> void {\n for (int j = sqL[i]; j < sqR[i]; j++) {\n v[i][j - sqL[i]] = {b[j] - a[j], {a[j], b[j]}};\n }\n sort(v[i].begin(), v[i].end());\n for (int j = 1; j < v[i].size(); j++) {\n v[i][j].second.first = min(v[i][j].second.first, v[i][j - 1].second.first);\n v[i][v[i].size() - 1 - j].second.second =\n min(v[i][v[i].size() - 1 - j].second.second, v[i][v[i].size() - j].second.second);\n }\n };\n for (int i = 0; i < sqCnt; i++) {\n v[i].resize(getSqLength(i));\n update(i);\n }\n\n while (q--) {\n int type;\n cin >> type;\n if (type == 1) {\n int L, R, x;\n cin >> L >> R >> x;\n L -= 1, R -= 1;\n\n int lid = sqIdx[L];\n for (; L <= R and L < sqR[lid]; L++) {\n a[L] += x;\n }\n update(lid);\n\n int rid = sqIdx[R];\n for (; L <= R and sqL[rid] <= R; R--) {\n a[R] += x;\n }\n update(rid);\n\n while (L < R) {\n int id = sqIdx[L];\n add[id] += x;\n L += B;\n }\n } else {\n ll res = 2e18;\n int L, R;\n cin >> L >> R;\n L -= 1, R -= 1;\n\n int lid = sqIdx[L];\n for (; L <= R and L < sqR[lid]; L++) {\n res = min(res, max(a[L] + add[lid], b[L]));\n }\n\n int rid = sqIdx[R];\n for (; L <= R and sqL[rid] <= R; R--) {\n res = min(res, max(a[R] + add[rid], b[R]));\n }\n\n while (L < R) {\n int id = sqIdx[L];\n {\n int l = -1, r = getSqLength(id);\n while (r - l > 1) {\n int mid = (l + r) / 2;\n if (v[id][mid].first <= add[id]) l = mid;\n else r = mid;\n }\n if (l == -1) {\n res = min(res, v[id][0].second.second);\n } else if (l + 1 == getSqLength(id)) {\n res = min(res, v[id][l].second.first + add[id]);\n } else {\n res = min(res, v[id][l].second.first + add[id]);\n res = min(res, v[id][l + 1].second.second);\n }\n }\n L += B;\n }\n cout << res << \"\\n\";\n }\n }\n}", "accuracy": 1, "time_ms": 1110, "memory_kb": 7564, "score_of_the_acc": -0.6223, "final_rank": 6 }, { "submission_id": "aoj_3118_8987019", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) { return (ull)rng() % B; }\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n;\n cin >> n;\n\n ////////////////////////////////////////////////////////////////////////////////\n // 平方分割用ライブラリ\n const int B = 250; // ブロックサイズ\n auto getSqCount = [](int n, int B) -> int { return (n + B - 1) / B; };\n int sqCnt = getSqCount(n, B);\n auto getSqInterval = [](int n, int B, int sqCnt) -> pair<vector<int>, vector<int>> {\n vector<int> sqL(sqCnt), sqR(sqCnt);\n int sum = 0;\n for (int i = 0; i < sqCnt; i++) {\n sqL[i] = sum;\n sum += B;\n sqR[i] = sum;\n }\n sqR.back() = n;\n return {sqL, sqR};\n };\n auto [sqL, sqR] = getSqInterval(n, B, sqCnt);\n vector<int> sqIdx(n);\n for (int i = 0; i < sqCnt; i++) {\n for (int j = sqL[i]; j < sqR[i]; j++) {\n sqIdx[j] = i;\n }\n }\n auto getSqIdx = [&](int i) -> int { return sqIdx[i]; };\n ////////////////////////////////////////////////////////////////////////////////\n\n int q;\n cin >> q;\n vector<ll> a(n), b(n);\n for (int i = 0; i < n; i++) {\n cin >> a[i] >> b[i];\n }\n vector<ll> add(sqCnt);\n using P = pair<ll, ll>;\n vector<vector<pair<ll, P>>> v(sqCnt);\n auto update = [&](int i) -> void {\n for (int j = sqL[i]; j < sqR[i]; j++) {\n v[i][j - sqL[i]] = {b[j] - a[j], {a[j], b[j]}};\n }\n sort(v[i].begin(), v[i].end());\n for (int j = 1; j < v[i].size(); j++) {\n v[i][j].second.first = min(v[i][j].second.first, v[i][j - 1].second.first);\n v[i][v[i].size() - 1 - j].second.second =\n min(v[i][v[i].size() - 1 - j].second.second, v[i][v[i].size() - j].second.second);\n }\n };\n for (int i = 0; i < sqCnt; i++) {\n v[i].resize(sqR[i] - sqL[i]);\n update(i);\n }\n\n while (q--) {\n int type;\n cin >> type;\n if (type == 1) {\n int L, R, x;\n cin >> L >> R >> x;\n L -= 1, R -= 1;\n\n int lid = sqIdx[L];\n for (; L <= R and L < sqR[lid]; L++) {\n a[L] += x;\n }\n update(lid);\n\n int rid = sqIdx[R];\n for (; L <= R and sqL[rid] <= R; R--) {\n a[R] += x;\n }\n update(rid);\n\n while (L < R) {\n int id = sqIdx[L];\n add[id] += x;\n L += B;\n }\n } else {\n ll res = 2e18;\n int L, R;\n cin >> L >> R;\n L -= 1, R -= 1;\n\n int lid = sqIdx[L];\n for (; L <= R and L < sqR[lid]; L++) {\n res = min(res, max(a[L] + add[lid], b[L]));\n }\n\n int rid = sqIdx[R];\n for (; L <= R and sqL[rid] <= R; R--) {\n res = min(res, max(a[R] + add[rid], b[R]));\n }\n\n while (L < R) {\n int id = sqIdx[L];\n {\n int l = -1, r = sqR[id] - sqL[id];\n while (r - l > 1) {\n int mid = (l + r) / 2;\n if (v[id][mid].first <= add[id]) l = mid;\n else r = mid;\n }\n if (l == -1) {\n res = min(res, v[id][0].second.second);\n } else if (l + 1 == sqR[id] - sqL[id]) {\n res = min(res, v[id][l].second.first + add[id]);\n } else {\n res = min(res, v[id][l].second.first + add[id]);\n res = min(res, v[id][l + 1].second.second);\n }\n }\n L += B;\n }\n cout << res << \"\\n\";\n }\n }\n}", "accuracy": 1, "time_ms": 1120, "memory_kb": 7584, "score_of_the_acc": -0.6287, "final_rank": 7 }, { "submission_id": "aoj_3118_5011319", "code_snippet": "#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for (int i = 0; i < (n); i++)\n#define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--)\n#define all(x) (x).begin(), (x).end()\nconstexpr char ln = '\\n';\nistream& operator>>(istream& is, __int128_t& x) {\n x = 0;\n string s;\n is >> s;\n int n = int(s.size()), it = 0;\n if (s[0] == '-') it++;\n for (; it < n; it++) x = (x * 10 + s[it] - '0');\n if (s[0] == '-') x = -x;\n return is;\n}\nostream& operator<<(ostream& os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n deque<int> deq;\n while (x) deq.emplace_front(x % 10), x /= 10;\n for (int e : deq) os << e;\n return os;\n}\ntemplate<class T1, class T2>\nostream& operator<<(ostream& os, const pair<T1, T2>& p) {\n return os << \"(\" << p.first << \", \" << p.second << \")\";\n}\ntemplate<class T> \nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"{\";\n for (int i = 0; i < int(v.size()); i++) {\n if (i) os << \", \";\n os << v[i];\n }\n return os << \"}\";\n}\ntemplate<class Container> inline int SZ(Container& v) { return int(v.size()); }\ntemplate<class T> inline void UNIQUE(vector<T>& v) { v.erase(unique(v.begin(), v.end()), v.end()); }\ntemplate<class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) {a = b; return true ;} return false ;}\ntemplate<class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) {a = b; return true ;} return false ;}\ninline int topbit(ull x) { return x == 0 ? -1 : 63 - __builtin_clzll(x); }\ninline int botbit(ull x) { return x == 0 ? 64 : __builtin_ctzll(x); }\ninline int popcount(ull x) { return __builtin_popcountll(x); }\ninline int kthbit(ull x, int k) { return (x>>k) & 1; }\ninline constexpr long long TEN(int x) { return x == 0 ? 1 : TEN(x-1) * 10; }\ninline void print() { cout << \"\\n\"; }\ntemplate<class T>\ninline void print(const vector<T>& v) {\n for (int i = 0; i < int(v.size()); i++) {\n if (i) cout << \" \";\n cout << v[i];\n }\n print();\n}\ntemplate<class T, class... Args>\ninline void print(const T& x, const Args& ... args) {\n cout << x << \" \";\n print(args...);\n}\n#ifdef MINATO_LOCAL\ninline void debug_out() { cerr << endl; }\ntemplate <class T, class... Args>\ninline void debug_out(const T& x, const Args& ... args) {\n cerr << \" \" << x;\n debug_out(args...);\n}\n#define debug(...) cerr << __LINE__ << \" : [\" << #__VA_ARGS__ << \"] =\", debug_out(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nstruct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;\n////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nconstexpr int sz = 200;\nconstexpr ll INF = 1e18;\nusing Tu = tuple<ll, ll, ll>;\nint main() {\n int N,Q; cin >> N >> Q;\n vector<ll> A(N),B(N);\n rep(i,N) cin >> A[i] >> B[i];\n\n vector<vector<Tu>> C(N/sz+1);\n vector<vector<ll>> MA(N/sz+1),MB(N/sz+1);\n vector<ll> lazy(N/sz+1);\n rep(i,N) {\n C[i/sz].emplace_back(A[i]-B[i],A[i],B[i]);\n }\n rep(i,N/sz+1) {\n MA[i].assign(SZ(C[i])+1,INF);\n MB[i].assign(SZ(C[i])+1,INF);\n }\n\n auto updsum=[&](int x) {\n if (lazy[x]) {\n int l = sz*x;\n int r = min(sz*(x+1),N);\n for (int i = l; i < r; i++) {\n A[i] += lazy[x];\n }\n lazy[x] = 0;\n }\n };\n auto updsort=[&](int x) {\n int l = sz*x;\n int r = min(sz*(x+1),N);\n for (int i = l; i < r; i++) {\n C[x][i-l] = Tu(A[i]-B[i],A[i],B[i]);\n }\n sort(all(C[x]));\n rep(i,SZ(C[x])) {\n MB[x][i+1] = min(MB[x][i],get<2>(C[x][i]));\n }\n rrep(i,SZ(C[x])) {\n MA[x][i] = min(MA[x][i+1],get<1>(C[x][i]));\n }\n };\n rep(i,N/sz+1) updsort(i);\n\n rep(_,Q) {\n int t; cin >> t;\n if (t==1) {\n int l,r,x; cin >> l >> r >> x;\n l--;\n if (l/sz == r/sz) {\n for (int i = l; i < r; i++) {\n A[i] += x;\n }\n updsum(l/sz);\n updsort(l/sz);\n } else {\n for (int i = l; i < (l/sz+1)*sz; i++) {\n A[i] += x;\n }\n updsum(l/sz);\n updsort(l/sz);\n\n for (int i = l/sz+1; i < r/sz; i++) {\n lazy[i] += x;\n }\n\n for (int i = r/sz*sz; i < r; i++) {\n A[i] += x;\n }\n updsum(r/sz);\n updsort(r/sz);\n }\n } else {\n int l,r; cin >> l >> r;\n l--;\n ll ans = 1e18;\n if (l/sz == r/sz) {\n for (int i = l; i < r; i++) {\n chmin(ans,max(A[i]+lazy[l/sz],B[i]));\n }\n } else {\n for (int i = l; i < (l/sz+1)*sz; i++) {\n chmin(ans,max(A[i]+lazy[l/sz],B[i]));\n }\n for (int i = r/sz*sz; i < r; i++) {\n chmin(ans,max(A[i]+lazy[r/sz],B[i]));\n }\n\n for (int i = l/sz+1; i < r/sz; i++) {\n int k = lower_bound(all(C[i]),Tu(-lazy[i],-INF,-INF)) - C[i].begin();\n chmin(ans,min(MB[i][k],MA[i][k]+lazy[i]));\n } \n }\n\n cout << ans << ln;\n }\n }\n}", "accuracy": 1, "time_ms": 730, "memory_kb": 9464, "score_of_the_acc": -0.5093, "final_rank": 3 }, { "submission_id": "aoj_3118_5011317", "code_snippet": "#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for (int i = 0; i < (n); i++)\n#define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--)\n#define all(x) (x).begin(), (x).end()\nconstexpr char ln = '\\n';\nistream& operator>>(istream& is, __int128_t& x) {\n x = 0;\n string s;\n is >> s;\n int n = int(s.size()), it = 0;\n if (s[0] == '-') it++;\n for (; it < n; it++) x = (x * 10 + s[it] - '0');\n if (s[0] == '-') x = -x;\n return is;\n}\nostream& operator<<(ostream& os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n deque<int> deq;\n while (x) deq.emplace_front(x % 10), x /= 10;\n for (int e : deq) os << e;\n return os;\n}\ntemplate<class T1, class T2>\nostream& operator<<(ostream& os, const pair<T1, T2>& p) {\n return os << \"(\" << p.first << \", \" << p.second << \")\";\n}\ntemplate<class T> \nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"{\";\n for (int i = 0; i < int(v.size()); i++) {\n if (i) os << \", \";\n os << v[i];\n }\n return os << \"}\";\n}\ntemplate<class Container> inline int SZ(Container& v) { return int(v.size()); }\ntemplate<class T> inline void UNIQUE(vector<T>& v) { v.erase(unique(v.begin(), v.end()), v.end()); }\ntemplate<class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) {a = b; return true ;} return false ;}\ntemplate<class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) {a = b; return true ;} return false ;}\ninline int topbit(ull x) { return x == 0 ? -1 : 63 - __builtin_clzll(x); }\ninline int botbit(ull x) { return x == 0 ? 64 : __builtin_ctzll(x); }\ninline int popcount(ull x) { return __builtin_popcountll(x); }\ninline int kthbit(ull x, int k) { return (x>>k) & 1; }\ninline constexpr long long TEN(int x) { return x == 0 ? 1 : TEN(x-1) * 10; }\ninline void print() { cout << \"\\n\"; }\ntemplate<class T>\ninline void print(const vector<T>& v) {\n for (int i = 0; i < int(v.size()); i++) {\n if (i) cout << \" \";\n cout << v[i];\n }\n print();\n}\ntemplate<class T, class... Args>\ninline void print(const T& x, const Args& ... args) {\n cout << x << \" \";\n print(args...);\n}\n#ifdef MINATO_LOCAL\ninline void debug_out() { cerr << endl; }\ntemplate <class T, class... Args>\ninline void debug_out(const T& x, const Args& ... args) {\n cerr << \" \" << x;\n debug_out(args...);\n}\n#define debug(...) cerr << __LINE__ << \" : [\" << #__VA_ARGS__ << \"] =\", debug_out(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nstruct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;\n////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nconstexpr int sz = 250;\nconstexpr ll INF = 1e18;\nusing Tu = tuple<ll, ll, ll>;\nint main() {\n int N,Q; cin >> N >> Q;\n vector<ll> A(N),B(N);\n rep(i,N) cin >> A[i] >> B[i];\n\n vector<vector<Tu>> C(N/sz+1);\n vector<vector<ll>> MA(N/sz+1),MB(N/sz+1);\n vector<ll> lazy(N/sz+1);\n rep(i,N) {\n C[i/sz].emplace_back(A[i]-B[i],A[i],B[i]);\n }\n rep(i,N/sz+1) {\n MA[i].assign(SZ(C[i])+1,INF);\n MB[i].assign(SZ(C[i])+1,INF);\n }\n\n auto updsum=[&](int x) {\n if (lazy[x]) {\n int l = sz*x;\n int r = min(sz*(x+1),N);\n for (int i = l; i < r; i++) {\n A[i] += lazy[x];\n }\n lazy[x] = 0;\n }\n };\n auto updsort=[&](int x) {\n int l = sz*x;\n int r = min(sz*(x+1),N);\n for (int i = l; i < r; i++) {\n C[x][i-l] = Tu(A[i]-B[i],A[i],B[i]);\n }\n sort(all(C[x]));\n rep(i,SZ(C[x])) {\n MB[x][i+1] = min(MB[x][i],get<2>(C[x][i]));\n }\n rrep(i,SZ(C[x])) {\n MA[x][i] = min(MA[x][i+1],get<1>(C[x][i]));\n }\n };\n rep(i,N/sz+1) updsort(i);\n\n rep(_,Q) {\n int t; cin >> t;\n if (t==1) {\n int l,r,x; cin >> l >> r >> x;\n l--;\n if (l/sz == r/sz) {\n for (int i = l; i < r; i++) {\n A[i] += x;\n }\n updsum(l/sz);\n updsort(l/sz);\n } else {\n for (int i = l; i < (l/sz+1)*sz; i++) {\n A[i] += x;\n }\n updsum(l/sz);\n updsort(l/sz);\n\n for (int i = l/sz+1; i < r/sz; i++) {\n lazy[i] += x;\n }\n\n for (int i = r/sz*sz; i < r; i++) {\n A[i] += x;\n }\n updsum(r/sz);\n updsort(r/sz);\n }\n } else {\n int l,r; cin >> l >> r;\n l--;\n ll ans = 1e18;\n if (l/sz == r/sz) {\n for (int i = l; i < r; i++) {\n chmin(ans,max(A[i]+lazy[l/sz],B[i]));\n }\n } else {\n for (int i = l; i < (l/sz+1)*sz; i++) {\n chmin(ans,max(A[i]+lazy[l/sz],B[i]));\n }\n for (int i = r/sz*sz; i < r; i++) {\n chmin(ans,max(A[i]+lazy[r/sz],B[i]));\n }\n\n for (int i = l/sz+1; i < r/sz; i++) {\n int k = lower_bound(all(C[i]),Tu(-lazy[i],-INF,-INF)) - C[i].begin();\n chmin(ans,min(MB[i][k],MA[i][k]+lazy[i]));\n } \n }\n\n cout << ans << ln;\n }\n }\n}", "accuracy": 1, "time_ms": 760, "memory_kb": 8604, "score_of_the_acc": -0.4829, "final_rank": 2 }, { "submission_id": "aoj_3118_5011316", "code_snippet": "#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for (int i = 0; i < (n); i++)\n#define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--)\n#define all(x) (x).begin(), (x).end()\nconstexpr char ln = '\\n';\nistream& operator>>(istream& is, __int128_t& x) {\n x = 0;\n string s;\n is >> s;\n int n = int(s.size()), it = 0;\n if (s[0] == '-') it++;\n for (; it < n; it++) x = (x * 10 + s[it] - '0');\n if (s[0] == '-') x = -x;\n return is;\n}\nostream& operator<<(ostream& os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n deque<int> deq;\n while (x) deq.emplace_front(x % 10), x /= 10;\n for (int e : deq) os << e;\n return os;\n}\ntemplate<class T1, class T2>\nostream& operator<<(ostream& os, const pair<T1, T2>& p) {\n return os << \"(\" << p.first << \", \" << p.second << \")\";\n}\ntemplate<class T> \nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"{\";\n for (int i = 0; i < int(v.size()); i++) {\n if (i) os << \", \";\n os << v[i];\n }\n return os << \"}\";\n}\ntemplate<class Container> inline int SZ(Container& v) { return int(v.size()); }\ntemplate<class T> inline void UNIQUE(vector<T>& v) { v.erase(unique(v.begin(), v.end()), v.end()); }\ntemplate<class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) {a = b; return true ;} return false ;}\ntemplate<class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) {a = b; return true ;} return false ;}\ninline int topbit(ull x) { return x == 0 ? -1 : 63 - __builtin_clzll(x); }\ninline int botbit(ull x) { return x == 0 ? 64 : __builtin_ctzll(x); }\ninline int popcount(ull x) { return __builtin_popcountll(x); }\ninline int kthbit(ull x, int k) { return (x>>k) & 1; }\ninline constexpr long long TEN(int x) { return x == 0 ? 1 : TEN(x-1) * 10; }\ninline void print() { cout << \"\\n\"; }\ntemplate<class T>\ninline void print(const vector<T>& v) {\n for (int i = 0; i < int(v.size()); i++) {\n if (i) cout << \" \";\n cout << v[i];\n }\n print();\n}\ntemplate<class T, class... Args>\ninline void print(const T& x, const Args& ... args) {\n cout << x << \" \";\n print(args...);\n}\n#ifdef MINATO_LOCAL\ninline void debug_out() { cerr << endl; }\ntemplate <class T, class... Args>\ninline void debug_out(const T& x, const Args& ... args) {\n cerr << \" \" << x;\n debug_out(args...);\n}\n#define debug(...) cerr << __LINE__ << \" : [\" << #__VA_ARGS__ << \"] =\", debug_out(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nstruct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;\n////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nconstexpr int sz = 150;\nconstexpr ll INF = 1e18;\nusing Tu = tuple<ll, ll, ll>;\nint main() {\n int N,Q; cin >> N >> Q;\n vector<ll> A(N),B(N);\n rep(i,N) cin >> A[i] >> B[i];\n\n vector<vector<Tu>> C(N/sz+1);\n vector<vector<ll>> MA(N/sz+1),MB(N/sz+1);\n vector<ll> lazy(N/sz+1);\n rep(i,N) {\n C[i/sz].emplace_back(A[i]-B[i],A[i],B[i]);\n }\n rep(i,N/sz+1) {\n MA[i].assign(SZ(C[i])+1,INF);\n MB[i].assign(SZ(C[i])+1,INF);\n }\n\n auto updsum=[&](int x) {\n if (lazy[x]) {\n int l = sz*x;\n int r = min(sz*(x+1),N);\n for (int i = l; i < r; i++) {\n A[i] += lazy[x];\n }\n lazy[x] = 0;\n }\n };\n auto updsort=[&](int x) {\n int l = sz*x;\n int r = min(sz*(x+1),N);\n for (int i = l; i < r; i++) {\n C[x][i-l] = Tu(A[i]-B[i],A[i],B[i]);\n }\n sort(all(C[x]));\n rep(i,SZ(C[x])) {\n MB[x][i+1] = min(MB[x][i],get<2>(C[x][i]));\n }\n rrep(i,SZ(C[x])) {\n MA[x][i] = min(MA[x][i+1],get<1>(C[x][i]));\n }\n };\n rep(i,N/sz+1) updsort(i);\n\n rep(_,Q) {\n int t; cin >> t;\n if (t==1) {\n int l,r,x; cin >> l >> r >> x;\n l--;\n if (l/sz == r/sz) {\n for (int i = l; i < r; i++) {\n A[i] += x;\n }\n updsum(l/sz);\n updsort(l/sz);\n } else {\n for (int i = l; i < (l/sz+1)*sz; i++) {\n A[i] += x;\n }\n updsum(l/sz);\n updsort(l/sz);\n\n for (int i = l/sz+1; i < r/sz; i++) {\n lazy[i] += x;\n }\n\n for (int i = r/sz*sz; i < r; i++) {\n A[i] += x;\n }\n updsum(r/sz);\n updsort(r/sz);\n }\n } else {\n int l,r; cin >> l >> r;\n l--;\n ll ans = 1e18;\n if (l/sz == r/sz) {\n for (int i = l; i < r; i++) {\n chmin(ans,max(A[i]+lazy[l/sz],B[i]));\n }\n } else {\n for (int i = l; i < (l/sz+1)*sz; i++) {\n chmin(ans,max(A[i]+lazy[l/sz],B[i]));\n }\n for (int i = r/sz*sz; i < r; i++) {\n chmin(ans,max(A[i]+lazy[r/sz],B[i]));\n }\n\n for (int i = l/sz+1; i < r/sz; i++) {\n int k = lower_bound(all(C[i]),Tu(-lazy[i],-INF,-INF)) - C[i].begin();\n chmin(ans,min(MB[i][k],MA[i][k]+lazy[i]));\n } \n }\n\n cout << ans << ln;\n }\n }\n}", "accuracy": 1, "time_ms": 800, "memory_kb": 10136, "score_of_the_acc": -0.5811, "final_rank": 4 }, { "submission_id": "aoj_3118_5011307", "code_snippet": "#ifdef ONLINE_JUDGE\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for (int i = 0; i < (n); i++)\n#define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--)\n#define all(x) (x).begin(), (x).end()\nconstexpr char ln = '\\n';\nistream& operator>>(istream& is, __int128_t& x) {\n x = 0;\n string s;\n is >> s;\n int n = int(s.size()), it = 0;\n if (s[0] == '-') it++;\n for (; it < n; it++) x = (x * 10 + s[it] - '0');\n if (s[0] == '-') x = -x;\n return is;\n}\nostream& operator<<(ostream& os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n deque<int> deq;\n while (x) deq.emplace_front(x % 10), x /= 10;\n for (int e : deq) os << e;\n return os;\n}\ntemplate<class T1, class T2>\nostream& operator<<(ostream& os, const pair<T1, T2>& p) {\n return os << \"(\" << p.first << \", \" << p.second << \")\";\n}\ntemplate<class T> \nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"{\";\n for (int i = 0; i < int(v.size()); i++) {\n if (i) os << \", \";\n os << v[i];\n }\n return os << \"}\";\n}\ntemplate<class Container> inline int SZ(Container& v) { return int(v.size()); }\ntemplate<class T> inline void UNIQUE(vector<T>& v) { v.erase(unique(v.begin(), v.end()), v.end()); }\ntemplate<class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) {a = b; return true ;} return false ;}\ntemplate<class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) {a = b; return true ;} return false ;}\ninline int topbit(ull x) { return x == 0 ? -1 : 63 - __builtin_clzll(x); }\ninline int botbit(ull x) { return x == 0 ? 64 : __builtin_ctzll(x); }\ninline int popcount(ull x) { return __builtin_popcountll(x); }\ninline int kthbit(ull x, int k) { return (x>>k) & 1; }\ninline constexpr long long TEN(int x) { return x == 0 ? 1 : TEN(x-1) * 10; }\ninline void print() { cout << \"\\n\"; }\ntemplate<class T>\ninline void print(const vector<T>& v) {\n for (int i = 0; i < int(v.size()); i++) {\n if (i) cout << \" \";\n cout << v[i];\n }\n print();\n}\ntemplate<class T, class... Args>\ninline void print(const T& x, const Args& ... args) {\n cout << x << \" \";\n print(args...);\n}\n#ifdef MINATO_LOCAL\ninline void debug_out() { cerr << endl; }\ntemplate <class T, class... Args>\ninline void debug_out(const T& x, const Args& ... args) {\n cerr << \" \" << x;\n debug_out(args...);\n}\n#define debug(...) cerr << __LINE__ << \" : [\" << #__VA_ARGS__ << \"] =\", debug_out(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nstruct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;\n////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nconstexpr int sz = 320;\nconstexpr ll INF = 1e18;\nusing Tu = tuple<ll, ll, ll>;\nint main() {\n int N,Q; cin >> N >> Q;\n vector<ll> A(N),B(N);\n rep(i,N) cin >> A[i] >> B[i];\n\n vector<vector<Tu>> C(N/sz+1);\n vector<vector<ll>> MA(N/sz+1),MB(N/sz+1);\n vector<ll> lazy(N/sz+1);\n rep(i,N) {\n C[i/sz].emplace_back(A[i]-B[i],A[i],B[i]);\n }\n rep(i,N/sz+1) {\n MA[i].assign(SZ(C[i])+1,INF);\n MB[i].assign(SZ(C[i])+1,INF);\n }\n\n auto updsum=[&](int x) {\n if (lazy[x]) {\n int l = sz*x;\n int r = min(sz*(x+1),N);\n for (int i = l; i < r; i++) {\n A[i] += lazy[x];\n }\n lazy[x] = 0;\n }\n };\n auto updsort=[&](int x) {\n int l = sz*x;\n int r = min(sz*(x+1),N);\n for (int i = l; i < r; i++) {\n C[x][i-l] = Tu(A[i]-B[i],A[i],B[i]);\n }\n sort(all(C[x]));\n rep(i,SZ(C[x])) {\n MB[x][i+1] = min(MB[x][i],get<2>(C[x][i]));\n }\n rrep(i,SZ(C[x])) {\n MA[x][i] = min(MA[x][i+1],get<1>(C[x][i]));\n }\n };\n rep(i,N/sz+1) updsort(i);\n\n rep(_,Q) {\n int t; cin >> t;\n if (t==1) {\n int l,r,x; cin >> l >> r >> x;\n l--;\n if (l/sz == r/sz) {\n for (int i = l; i < r; i++) {\n A[i] += x;\n }\n updsum(l/sz);\n updsort(l/sz);\n } else {\n for (int i = l; i < (l/sz+1)*sz; i++) {\n A[i] += x;\n }\n updsum(l/sz);\n updsort(l/sz);\n\n for (int i = l/sz+1; i < r/sz; i++) {\n lazy[i] += x;\n }\n\n for (int i = r/sz*sz; i < r; i++) {\n A[i] += x;\n }\n updsum(r/sz);\n updsort(r/sz);\n }\n } else {\n int l,r; cin >> l >> r;\n l--;\n ll ans = 1e18;\n if (l/sz == r/sz) {\n for (int i = l; i < r; i++) {\n chmin(ans,max(A[i]+lazy[l/sz],B[i]));\n }\n } else {\n for (int i = l; i < (l/sz+1)*sz; i++) {\n chmin(ans,max(A[i]+lazy[l/sz],B[i]));\n }\n for (int i = r/sz*sz; i < r; i++) {\n chmin(ans,max(A[i]+lazy[r/sz],B[i]));\n }\n\n for (int i = l/sz+1; i < r/sz; i++) {\n int k = lower_bound(all(C[i]),Tu(-lazy[i],-INF,-INF)) - C[i].begin();\n chmin(ans,min(MB[i][k],MA[i][k]+lazy[i]));\n } \n }\n\n cout << ans << ln;\n }\n }\n}", "accuracy": 1, "time_ms": 910, "memory_kb": 9956, "score_of_the_acc": -0.6322, "final_rank": 8 }, { "submission_id": "aoj_3118_5011301", "code_snippet": "#ifdef ONLINE_JUDGE\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for (int i = 0; i < (n); i++)\n#define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--)\n#define all(x) (x).begin(), (x).end()\nconstexpr char ln = '\\n';\nistream& operator>>(istream& is, __int128_t& x) {\n x = 0;\n string s;\n is >> s;\n int n = int(s.size()), it = 0;\n if (s[0] == '-') it++;\n for (; it < n; it++) x = (x * 10 + s[it] - '0');\n if (s[0] == '-') x = -x;\n return is;\n}\nostream& operator<<(ostream& os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n deque<int> deq;\n while (x) deq.emplace_front(x % 10), x /= 10;\n for (int e : deq) os << e;\n return os;\n}\ntemplate<class T1, class T2>\nostream& operator<<(ostream& os, const pair<T1, T2>& p) {\n return os << \"(\" << p.first << \", \" << p.second << \")\";\n}\ntemplate<class T> \nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"{\";\n for (int i = 0; i < int(v.size()); i++) {\n if (i) os << \", \";\n os << v[i];\n }\n return os << \"}\";\n}\ntemplate<class Container> inline int SZ(Container& v) { return int(v.size()); }\ntemplate<class T> inline void UNIQUE(vector<T>& v) { v.erase(unique(v.begin(), v.end()), v.end()); }\ntemplate<class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) {a = b; return true ;} return false ;}\ntemplate<class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) {a = b; return true ;} return false ;}\ninline int topbit(ull x) { return x == 0 ? -1 : 63 - __builtin_clzll(x); }\ninline int botbit(ull x) { return x == 0 ? 64 : __builtin_ctzll(x); }\ninline int popcount(ull x) { return __builtin_popcountll(x); }\ninline int kthbit(ull x, int k) { return (x>>k) & 1; }\ninline constexpr long long TEN(int x) { return x == 0 ? 1 : TEN(x-1) * 10; }\ninline void print() { cout << \"\\n\"; }\ntemplate<class T>\ninline void print(const vector<T>& v) {\n for (int i = 0; i < int(v.size()); i++) {\n if (i) cout << \" \";\n cout << v[i];\n }\n print();\n}\ntemplate<class T, class... Args>\ninline void print(const T& x, const Args& ... args) {\n cout << x << \" \";\n print(args...);\n}\n#ifdef MINATO_LOCAL\ninline void debug_out() { cerr << endl; }\ntemplate <class T, class... Args>\ninline void debug_out(const T& x, const Args& ... args) {\n cerr << \" \" << x;\n debug_out(args...);\n}\n#define debug(...) cerr << __LINE__ << \" : [\" << #__VA_ARGS__ << \"] =\", debug_out(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nstruct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;\n////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nconstexpr int sz = 320;\nconstexpr ll INF = 1e18;\nusing Tu = tuple<ll, ll, ll>;\nint main() {\n int N,Q; cin >> N >> Q;\n vector<ll> A(N),B(N);\n rep(i,N) cin >> A[i] >> B[i];\n\n vector<vector<Tu>> C(N/sz+1);\n vector<vector<ll>> MA(N/sz+1),MB(N/sz+1);\n vector<ll> lazy(N/sz+1);\n rep(i,N) {\n C[i/sz].emplace_back(A[i]-B[i],A[i],B[i]);\n }\n rep(i,N/sz+1) {\n MA[i].assign(SZ(C[i])+1,INF);\n MB[i].assign(SZ(C[i])+1,INF);\n }\n\n auto updsum=[&](int x) {\n if (lazy[x]) {\n int l = sz*x;\n int r = min(sz*(x+1),N);\n for (int i = l; i < r; i++) {\n A[i] += lazy[x];\n }\n lazy[x] = 0;\n }\n };\n auto updsort=[&](int x) {\n int l = sz*x;\n int r = min(sz*(x+1),N);\n for (int i = l; i < r; i++) {\n C[x][i-l] = Tu(A[i]-B[i],A[i],B[i]);\n }\n sort(all(C[x]));\n rep(i,SZ(C[x])) {\n MB[x][i+1] = min(MB[x][i],get<2>(C[x][i]));\n }\n rrep(i,SZ(C[x])) {\n MA[x][i] = min(MA[x][i+1],get<1>(C[x][i]));\n }\n };\n rep(i,N/sz+1) updsort(i);\n\n rep(_,Q) {\n int t; cin >> t;\n if (t==1) {\n int l,r,x; cin >> l >> r >> x;\n l--;\n if (l/sz == r/sz) {\n for (int i = l; i < r; i++) {\n A[i] += x;\n }\n updsum(l/sz);\n updsort(l/sz);\n } else {\n for (int i = l; i < (l/sz+1)*sz; i++) {\n A[i] += x;\n }\n updsum(l/sz);\n updsort(l/sz);\n\n for (int i = l/sz+1; i < r/sz; i++) {\n lazy[i] += x;\n }\n\n for (int i = r/sz*sz; i < r; i++) {\n A[i] += x;\n }\n updsum(r/sz);\n updsort(r/sz);\n }\n } else {\n int l,r; cin >> l >> r;\n l--;\n ll ans = 1e18;\n if (l/sz == r/sz) {\n for (int i = l; i < r; i++) {\n chmin(ans,max(A[i]+lazy[l/sz],B[i]));\n }\n } else {\n for (int i = l; i < (l/sz+1)*sz; i++) {\n chmin(ans,max(A[i]+lazy[l/sz],B[i]));\n }\n for (int i = r/sz*sz; i < r; i++) {\n chmin(ans,max(A[i]+lazy[r/sz],B[i]));\n }\n\n for (int i = l/sz+1; i < r/sz; i++) {\n int k = lower_bound(all(C[i]),Tu(-lazy[i],-INF,-INF)) - C[i].begin();\n chmin(ans,min(MB[i][k],MA[i][k+1]+lazy[i]));\n } \n }\n\n cout << ans << ln;\n }\n }\n}", "accuracy": 0.2, "time_ms": 910, "memory_kb": 9820, "score_of_the_acc": -0.6254, "final_rank": 13 }, { "submission_id": "aoj_3118_4856105", "code_snippet": "#include <bits/stdc++.h>\n\nusing ll = long long;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing ld = long double;\ntemplate<typename T> using max_heap = std::priority_queue<T>;\ntemplate<typename T> using min_heap = std::priority_queue<T, std::vector<T>, std::greater<T>>;\nconstexpr int popcount(const ull v) { return v ? __builtin_popcountll(v) : 0; }\nconstexpr int log2p1(const ull v) { return v ? 64 - __builtin_clzll(v) : 0; }\nconstexpr int lsbp1(const ull v) { return __builtin_ffsll(v); }\nconstexpr int clog(const ull v) { return v ? log2p1(v - 1) : 0; }\nconstexpr ull ceil2(const ull v) { return 1ULL << clog(v); }\nconstexpr ull floor2(const ull v) { return v ? (1ULL << (log2p1(v) - 1)) : 0ULL; }\nconstexpr bool btest(const ull mask, const int ind) { return (mask >> ind) & 1ULL; }\ntemplate<typename T> void bset(T& mask, const int ind) { mask |= ((T)1 << ind); }\ntemplate<typename T> void breset(T& mask, const int ind) { mask &= ~((T)1 << ind); }\ntemplate<typename T> void bflip(T& mask, const int ind) { mask ^= ((T)1 << ind); }\ntemplate<typename T> void bset(T& mask, const int ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); }\ntemplate<typename T>\nclass fenwick\n{\npublic:\n fenwick(const std::vector<T>& vs) : sz{(int)vs.size()}, cap{(int)ceil2(sz)}, vals(cap + 1, 0)\n {\n std::copy(vs.begin(), vs.end(), vals.begin() + 1);\n for (int x = 1; x < cap; x++) { vals[x + (x & -x)] += vals[x]; }\n }\n void add(const int a, const T& v)\n {\n assert(0 <= a and a < sz);\n for (int ind = a + 1; ind <= cap; ind += ind & (-ind)) { vals[ind] += v; }\n }\n T sum(const int a) const\n {\n assert(0 <= a and a <= sz);\n T sum{};\n for (int ind = a; ind != 0; ind &= ind - 1) { sum += vals[ind]; }\n return sum;\n }\n T sum(const int l, const int r) const { return assert(0 <= l and l <= r and r <= sz), sum(r) - sum(l); }\n int size() const { return sz; }\n friend std::ostream& operator<<(std::ostream& os, const fenwick& fw)\n {\n os << \"[\";\n for (int i = 0; i < fw.sz; i++) { os << fw.sum(i, i + 1) << (i + 1 == fw.sz ? \"\" : \",\"); }\n return (os << \"]\\n\");\n }\n\nprivate:\n const int sz, cap;\n std::vector<T> vals;\n};\n\ntemplate<typename T, typename F, typename Merge, typename Compose, typename Apply>\nclass lazyseg\n{\npublic:\n lazyseg(const std::vector<T>& vs,\n const Merge merge_,\n const T& e_,\n const Compose compose_,\n const F& id_,\n const Apply apply_) : size{(int)vs.size()}, depth{clog(size)}, half{1 << depth}, vals(half << 1, e_), ops(half << 1, id_), merge{merge_}, e{e_}, compose{compose_}, id{id_}, apply{apply_}\n {\n std::copy(vs.begin(), vs.end(), vals.begin() + half);\n for (int i = half - 1; i >= 1; i--) { up(i); }\n }\n T get(const int a) { return assert(a < size), fold(a, a + 1); }\n void set(int a, const T& v)\n {\n assert(0 <= a and a < size);\n top_down(a += half), top_down(a + 1), ops[a] = id, vals[a] = v;\n while (a >>= 1) { up(a); }\n }\n T fold(int l, int r)\n {\n assert(0 <= l and l <= r and r <= size);\n if (l >= r) { return e; }\n top_down(l += half), top_down(r += half);\n T accl = e, accr = e;\n for (; l < r; l >>= 1, r >>= 1) {\n if (l & 1) { accl = merge(accl, vals[l++]); }\n if (r & 1) { accr = merge(vals[--r], accr); }\n }\n return merge(accl, accr);\n }\n void act(int l, int r, const F& f)\n {\n assert(0 <= l and l <= r and r <= size);\n const int lin = l + half, rin = r + half;\n top_down(l += half), top_down(r += half);\n for (int ls = 1, rs = 1; l < r; l >>= 1, r >>= 1, ls <<= 1, rs <<= 1) {\n if (l & 1) { update(l++, f, ls); }\n if (r & 1) { update(--r, f, rs); }\n }\n bottom_up(lin), bottom_up(rin);\n }\n friend std::ostream& operator<<(std::ostream& os, const lazyseg& lseg)\n {\n auto lseg2 = lseg;\n os << \"[\";\n for (int i = 0; i < lseg.size; i++) { os << lseg2.get(i) << (i + 1 == lseg2.size ? \"\" : \",\"); }\n return (os << \"]\\n\");\n }\n\nprivate:\n void up(const int i) { vals[i] = merge(vals[i << 1], vals[i << 1 | 1]); }\n void update(const int a, const F& f, const int l) { ops[a] = compose(f, ops[a]), vals[a] = apply(f, vals[a], l); }\n void down(const int a, const int l) { update(a << 1, ops[a], l >> 1), update(a << 1 | 1, ops[a], l >> 1), ops[a] = id; }\n void top_down(const int a)\n {\n const int b = (a / (a & -a)) >> 1;\n for (int i = 0, l = half; i < depth; i++, l >>= 1) {\n const int v = a >> (depth - i);\n if (v > b) { break; }\n down(v, l);\n }\n }\n void bottom_up(int a)\n {\n a = (a / (a & -a)) >> 1;\n for (; a >= 1; a >>= 1) { up(a); }\n }\n const int size, depth, half;\n std::vector<T> vals;\n std::vector<F> ops;\n const Merge merge;\n const T e;\n const Compose compose;\n const F id;\n const Apply apply;\n};\n\ntemplate<typename T> constexpr T inf_v = std::numeric_limits<T>::max() / 4;\ntemplate<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};\ntemplate<typename T> constexpr T TEN(const int n) { return n == 0 ? T{1} : TEN<T>(n - 1) * T{10}; }\nconst auto min_merge = [](const auto& x1, const auto& x2) { return std::min(x1, x2); };\nconst auto max_merge = [](const auto& x1, const auto& x2) { return std::max(x1, x2); };\nconst auto minmax_merge = [](const auto& x1, const auto& x2) { return std::decay_t<decltype(x1)>{std::min(x1.first, x2.first), std::max(x1.second, x2.second)}; };\nconst auto sum_merge = [](const auto& x1, const auto& x2) { return x1 + x2; };\nconst auto affine_merge = [](const auto& x1, const auto& x2) { return std::decay_t<decltype(x1)>{x1.first * x2.first, x1.first * x2.second + x1.second}; };\n\nconst auto plus_comp = [](const auto& f1, const auto& f2) { return f1 + f2; };\nconst auto mult_comp = [](const auto& f1, const auto& f2) { return f1 * f2; };\nconst auto assign_comp = [](const auto f1, const auto f2) { return f1 == inf_v<std::decay_t<decltype(f1)>> ? f2 : f1; };\nconst auto affine_comp = [](const auto& f1, const auto& f2) { return std::decay_t<decltype(f1)>{f1.first * f2.first, f1.first * f2.second + f1.second}; };\n\nconst auto min_plus_apply = [](const auto& f, const auto& x, const auto&) { return x + f; };\nconst auto max_plus_apply = [](const auto& f, const auto& x, const auto&) { return x + f; };\nconst auto minmax_plus_apply = [](const auto& f, const auto& x, const auto&) { return std::decay_t<decltype(x)>{x.first + f, x.second + f}; };\nconst auto minmax_mult_apply = [](const auto& f, const auto& x, const auto&) { return f >= 0 ? std::decay<decltype(x)>{f * x.first, f * x.second} : std::decay_t<decltype(x)>{f * x.second, f * x.first}; };\nconst auto min_assign_apply = [](const auto& f, const auto& x, const auto&) { return f == inf_v<std::decay_t<decltype(f)>> ? x : f; };\nconst auto max_assign_apply = [](const auto& f, const auto& x, const auto&) { return f == inf_v<std::decay_t<decltype(f)>> ? x : f; };\nconst auto minmax_assign_apply = [](const auto& f, const auto& x, const auto&) { return f == inf_v<std::decay_t<decltype(f)>> ? x : std::decay_t<decltype(x)>{f, f}; };\nconst auto minmax_affine_apply = [](const auto& f, const auto x, const auto&) { return f.first >= 0 ? std::decay_t<decltype(x)>{x.first * f.first + f.second, x.second * f.first + f.second} : std::decay_t<decltype(x)>{x.second * f.first + f.second, x.first * f.first + f.second}; };\nconst auto sum_plus_apply = [](const auto& f, const auto& x, const auto& l) { return x + f * l; };\nconst auto sum_mult_apply = [](const auto& f, const auto& x, const auto&) { return x * f; };\nconst auto sum_assign_apply = [](const auto& f, const auto& x, const auto& l) { return f == inf_v<std::decay_t<decltype(f)>> ? x : f * l; };\nconst auto sum_affine_apply = [](const auto& f, const auto x, const auto& l) { return x * f.first + f.second * l; };\n\nconst auto reverse = [](const auto f) { return [f](const auto& x1, const auto& x2) { return f(x2, x1); }; };\n\ntemplate<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }\ntemplate<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }\ntemplate<typename F> struct fix : F\n{\n fix(F&& f) : F{std::forward<F>(f)} {}\n template<typename... Args> auto operator()(Args&&... args) const { return F::operator()(*this, std::forward<Args>(args)...); }\n};\ntemplate<typename T, int n, int i = 0>\nauto nd_array(int const (&szs)[n], const T x = T{})\n{\n if constexpr (i == n) {\n return x;\n } else {\n return std::vector(szs[i], nd_array<T, n, i + 1>(szs, x));\n }\n}\nclass printer\n{\npublic:\n printer(std::ostream& os_ = std::cout) : os{os_} { os << std::fixed << std::setprecision(15); }\n template<typename T> int operator()(const T& v) { return os << v, 0; }\n template<typename T> int operator()(const std::vector<T>& vs)\n {\n for (int i = 0; i < (int)vs.size(); i++) { os << (i ? \" \" : \"\"), this->operator()(vs[i]); }\n return 0;\n }\n template<typename T> int operator()(const std::vector<std::vector<T>>& vss)\n {\n for (int i = 0; i < (int)vss.size(); i++) { os << (0 <= i or i + 1 < (int)vss.size() ? \"\\n\" : \"\"), this->operator()(vss[i]); }\n return 0;\n }\n template<typename T, typename... Args> int operator()(const T& v, const Args&... args) { return this->operator()(v), os << ' ', this->operator()(args...), 0; }\n template<typename... Args> int ln(const Args&... args) { return this->operator()(args...), os << '\\n', 0; }\n template<typename... Args> int el(const Args&... args) { return this->operator()(args...), os << std::endl, 0; }\n template<typename... Args> int fmt(const std::string& s, const Args&... args) { return rec(s, 0, args...); }\n\nprivate:\n int rec(const std::string& s, int index) { return os << s.substr(index, s.size()), 0; }\n template<typename T, typename... Args> int rec(const std::string& s, int index, const T& v, const Args&... args) { return index == s.size() ? 0 : s[index] == '%' ? (this->operator()(v), rec(s, index + 1, args...)) : (os << s[index], rec(s, index + 1, v, args...)); }\n std::ostream& os;\n};\nprinter out;\nclass scanner\n{\npublic:\n scanner(std::istream& is_ = std::cin) : is{is_} { is.tie(nullptr), std::ios::sync_with_stdio(false); }\n template<typename T> T val()\n {\n T v;\n return is >> v, v;\n }\n template<typename T> T val(const T offset) { return val<T>() - offset; }\n template<typename T> std::vector<T> vec(const int n)\n {\n std::vector<T> vs(n);\n for (auto& v : vs) { v = val<T>(); }\n return vs;\n }\n template<typename T> std::vector<T> vec(const int n, const T offset)\n {\n std::vector<T> vs(n);\n for (auto& v : vs) { v = val<T>(offset); }\n return vs;\n }\n template<typename T> std::vector<std::vector<T>> vvec(const int n0, const int n1)\n {\n std::vector<std::vector<T>> vss(n0);\n for (auto& vs : vss) { vs = vec<T>(n1); }\n return vss;\n }\n template<typename T> std::vector<std::vector<T>> vvec(const int n0, const int n1, const T offset)\n {\n std::vector<std::vector<T>> vss(n0);\n for (auto& vs : vss) { vs = vec<T>(n1, offset); }\n return vss;\n }\n template<typename... Args> auto tup() { return std::tuple<std::decay_t<Args>...>{val<Args>()...}; }\n template<typename... Args> auto tup(const Args&... offsets) { return std::tuple<std::decay_t<Args>...>{val<Args>(offsets)...}; }\n\nprivate:\n std::istream& is;\n};\nscanner in;\n# define SHOW(...) static_cast<void>(0)\nint main()\n{\n const auto [N, Q] = in.tup<int, int>();\n std::vector<ll> as(N), bs(N);\n for (int i = 0; i < N; i++) { std::tie(as[i], bs[i]) = in.tup<ll, ll>(); }\n std::vector<int> ts(Q + 2), ls(Q + 2), rs(Q + 2);\n std::vector<ll> xs(Q + 2);\n ts[0] = 1, ls[0] = 0, rs[0] = N, xs[0] = 0;\n ts[Q + 1] = 1, ls[Q + 1] = 0, rs[Q + 1] = N, xs[Q + 1] = inf_v<ll>;\n for (int q = 1; q <= Q; q++) {\n std::tie(ts[q], ls[q], rs[q]) = in.tup<int, int, int>(0, 1, 0);\n xs[q] = ts[q] == 1 ? in.val<ll>() : 0LL;\n }\n\n std::vector<int> over(N); // over[i] = j <=> Become as[i]>bs[i] right after j-th query\n // [Note] 0 <= over[i] < Q+2 (forall i)\n using pii = std::pair<int, int>;\n using ppv = std::pair<pii, std::vector<int>>;\n\n std::vector<ppv> infos{{{0, Q + 2}, {}}}; // Items are like: {[L,R], {i1,i2,...}}\n // L <= over[i] < R (i = i1,i2,...)\n for (int i = 0; i < N; i++) { infos[0].second.push_back(i); }\n\n while (not infos.empty()) {\n std::vector<ppv> ninfos;\n int qid = 0;\n auto bit = fenwick(std::vector<ll>(N, 0));\n auto distribute = [&](const ppv& info) -> void {\n const auto [l, r] = info.first;\n const auto& is = info.second;\n if (r - l == 1) {\n for (const int i : is) { over[i] = l; }\n return;\n }\n const auto mid = (l + r) / 2;\n while (qid + 1 < mid) { // Test after (mid-1)-th query\n const auto t = ts[qid];\n if (t == 1) {\n const auto ql = ls[qid], qr = rs[qid];\n const auto qx = xs[qid];\n bit.add(ql, qx);\n if (qr < N) { bit.add(qr, -qx); }\n }\n qid++;\n }\n std::vector<int> firsts, seconds;\n for (const int i : is) {\n const auto a_i = as[i] + bit.sum(i + 1);\n if (a_i > bs[i]) { // l <= over[i] < mid\n firsts.push_back(i);\n } else { // mid <= over[i] < r\n seconds.push_back(i);\n }\n }\n if (not firsts.empty()) { ninfos.push_back({{l, mid}, firsts}); }\n if (not seconds.empty()) { ninfos.push_back({{mid, r}, seconds}); }\n };\n for (const auto& info : infos) { distribute(info); }\n infos = ninfos;\n ninfos.clear();\n }\n std::vector<std::vector<int>> iss(Q + 2);\n for (int i = 0; i < N; i++) { iss[over[i]].push_back(i); }\n\n SHOW(over);\n\n auto bit = fenwick(std::vector<ll>(N, 0));\n auto aseg = lazyseg(std::vector<ll>(N, inf_v<ll>), min_merge, inf_v<ll>, plus_comp, 0LL, min_plus_apply);\n auto bseg = lazyseg(bs, min_merge, inf_v<ll>, plus_comp, 0LL, min_plus_apply);\n for (int q = 0; q < Q + 2; q++) {\n const auto t = ts[q];\n const auto l = ls[q], r = rs[q];\n if (t == 1) {\n const auto x = xs[q];\n SHOW(\"Query 1.\", q, t, l, r, x);\n bit.add(ls[q], x);\n if (rs[q] < N) { bit.add(rs[q], -x); }\n aseg.act(ls[q], rs[q], x);\n } else {\n SHOW(\"Query 2.\", q, t, l, r);\n const auto amin = aseg.fold(l, r);\n const auto bmin = bseg.fold(l, r);\n SHOW(amin, bmin);\n out.ln(std::min(amin, bmin));\n }\n for (const int i : iss[q]) {\n const auto a_i = as[i] + bit.sum(i + 1);\n SHOW(\"Updating.\", i, a_i, bs[i]);\n assert(a_i > bs[i]);\n aseg.set(i, a_i);\n bseg.set(i, inf_v<ll>);\n }\n SHOW(aseg);\n SHOW(bseg);\n }\n return 0;\n}", "accuracy": 0.2, "time_ms": 120, "memory_kb": 20352, "score_of_the_acc": -0.7188, "final_rank": 17 }, { "submission_id": "aoj_3118_4261514", "code_snippet": "/* preprocessor start */\n#ifdef LOCAL\n//*\n #define _GLIBCXX_DEBUG // gcc\n/*/\n #define _LIBCPP_DEBUG 0 // clang\n//*/\n #define __clock__\n // #define __buffer_check__\n#else\n #pragma GCC optimize(\"Ofast\")\n/*\n #define _GLIBCXX_DEBUG // gcc\n/*/\n// #define _LIBCPP_DEBUG 0 // clang\n//*/\n // #define __buffer_check__\n // #define NDEBUG\n#endif\n#define __precision__ 10\n#define iostream_untie true\n#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <chrono>\n#include <complex>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <map>\n#include <queue>\n#include <random>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n#include <valarray>\n#define __all(v) std::begin(v), std::end(v)\n#define __rall(v) std::rbegin(v), std::rend(v)\n#define __popcount(n) __builtin_popcountll(n)\n#define __clz32(n) __builtin_clz(n)\n#define __clz64(n) __builtin_clzll(n)\n#define __ctz32(n) __builtin_ctz(n)\n#define __ctz64(n) __builtin_ctzll(n)\n/* preprocessor end */\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };\n template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };\n template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }\n template <> istream &operator>>(istream &is, tuple<> &t) { return is; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\nnamespace setting\n{\n using namespace std;\n using namespace chrono;\n system_clock::time_point start_time, end_time;\n long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }\n void print_elapsed_time() { cerr << \"\\n----- Exec time : \" << get_elapsed_time() << \" ms -----\\n\\n\"; }\n void buffer_check() { char bufc; if(cin >> bufc) cerr << \"\\n\\033[1;35mwarning\\033[0m: buffer not empty.\\n\"; }\n struct setupper\n {\n setupper()\n {\n if(iostream_untie) ios::sync_with_stdio(false), cin.tie(nullptr);\n cout << fixed << setprecision(__precision__);\n #ifdef stderr_path\n if(freopen(stderr_path, \"a\", stderr)) cerr << fixed << setprecision(__precision__);\n #endif\n #ifdef LOCAL\n cerr << boolalpha << \"\\n----- stderr at LOCAL -----\\n\\n\";\n #endif\n #ifdef __buffer_check__\n atexit(buffer_check);\n #endif\n #ifdef __clock__\n start_time = system_clock::now();\n atexit(print_elapsed_time);\n #endif\n }\n } __setupper; // struct setupper\n} // namespace setting\n\n#ifdef __clock__\n #include \"C:\\Users\\euler\\OneDrive\\Documents\\Competitive_Programming\\Library\\local\\clock.hpp\"\n#else\n #define build_clock() ((void)0)\n #define set_clock() ((void)0)\n #define get_clock() ((void)0)\n#endif\n\n#ifdef LOCAL\n #include \"C:\\Users\\euler\\OneDrive\\Documents\\Competitive_Programming\\Library\\local\\dump.hpp\"\n#else\n #define dump(...) ((void)0)\n#endif\n\n/* function utility start */\ntemplate <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; }\n#define input(type, var, ...) type var{read<type>(__VA_ARGS__)}\n// substitute y for x if x > y.\ntemplate <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; }\n// substitute y for x if x < y.\ntemplate <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; }\n// binary search on discrete range.\ntemplate <class iter_type, class pred_type>\niter_type binary(iter_type __ok, iter_type __ng, pred_type pred)\n{\n std::ptrdiff_t dist(__ng - __ok);\n while(std::abs(dist) > 1)\n {\n iter_type mid(__ok + dist / 2);\n if(pred(mid)) __ok = mid, dist -= dist / 2;\n else __ng = mid, dist /= 2;\n }\n return __ok;\n}\n// binary search on real numbers.\ntemplate <class pred_type>\nlong double binary(long double __ok, long double __ng, const long double eps, pred_type pred)\n{\n while(std::abs(__ok - __ng) > eps)\n {\n long double mid{(__ok + __ng) / 2};\n (pred(mid) ? __ok : __ng) = mid;\n }\n return __ok;\n}\n// size of array.\ntemplate <class A, size_t N> size_t size(A (&array)[N]) { return N; }\n// be careful that val is type-sensitive.\ntemplate <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }\n/* functon utility end */\n\n/* using alias start */\nusing namespace std;\nusing i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;\nusing p32 = pair<i32, i32>; using p64 = pair<i64, i64>;\ntemplate <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;\ntemplate <class T> using hashset = unordered_set<T>;\ntemplate <class Key, class Value> using hashmap = unordered_map<Key, Value>;\n/* using alias end */\n\n/* library start */\n\n\n\n/* library end */\n\n/* The main code follows. */\n\ntemplate <class T> void _main();\nstruct solver;\nint main() { _main<solver>(); }\n\ntemplate <class solver>\nvoid _main()\n{\n unsigned t;\n#ifdef LOCAL\n t = 1;\n#else\n t = 1; // single test case\n#endif\n // t = -1; // infinite loop\n // cin >> t; // case number given\n\n while(t--) solver();\n}\n\nstruct solver\n{\n\n vector<vector<int>> id;\n vector<vector<i64>> lb,ra;\n vector<i64> a,b;\n vector<i64> inc;\n\n solver()\n {\n const i64 inf=1e16;\n int n,Q; cin>>n>>Q;\n a.resize(n),b.resize(n);\n const int B=sqrt(3*n),m=(n-1+B)/B;\n id.resize(m);\n inc.resize(m);\n lb.resize(m),ra.resize(m);\n\n // initialize\n for(int i=0,k=0;i<n;i+=B,++k)\n {\n for(int j=i;j<n and j<i+B;++j)\n {\n id[k].emplace_back(j);\n cin>>a[j]>>b[j];\n }\n sort(__all(id[k]),\n [&](const auto &x, const auto &y)\n {\n return a[x]-b[x]<a[y]-b[y];\n });\n\n int sz=id[k].size();\n\n lb[k].emplace_back(inf);\n lb[k].resize(sz+1);\n for(int j=0;j<sz;++j)\n {\n lb[k][j+1]=min(lb[k][j],b[id[k][j]]);\n }\n\n ra[k].resize(sz);\n ra[k].emplace_back(inf);\n for(int j=sz;j;--j)\n {\n ra[k][j-1]=min(ra[k][j],a[id[k][j-1]]);\n }\n }\n\n // process queries\n for(int type,l,r,x;Q--;)\n {\n cin>>type>>l>>r; --l;\n const int ll=l/B,rr=r/B;\n\n if(type==1) // interval add\n {\n cin>>x;\n for(int k=ll+1;k<rr;++k)\n {\n inc[k]+=x;\n }\n if(ll<rr)\n {\n // left most\n for(int i=ll*B;i<(ll+1)*B and i<n;++i)\n {\n a[i]+=inc[ll];\n }\n inc[ll]=0;\n for(int i=l;i<(ll+1)*B and i<n;++i)\n {\n a[i]+=x;\n }\n sort(__all(id[ll]),\n [&](const auto &x, const auto &y)\n {\n return a[x]-b[x]<a[y]-b[y];\n });\n {\n const int k=ll;\n for(int j=ra[k].size()-1;j;--j)\n {\n ra[k][j-1]=min(ra[k][j],a[id[k][j-1]]);\n }\n for(size_t j=0;j+1<lb[k].size();++j)\n {\n lb[k][j+1]=min(lb[k][j],b[id[k][j]]);\n }\n }\n\n // right most\n for(int i=rr*B;i<(rr+1)*B and i<n;++i)\n {\n a[i]+=inc[rr];\n }\n inc[rr]=0;\n for(int i=rr*B;i<r;++i)\n {\n a[i]+=x;\n }\n sort(__all(id[rr]),\n [&](const auto &x, const auto &y)\n {\n return a[x]-b[x]<a[y]-b[y];\n });\n {\n const int k=rr;\n for(int j=ra[k].size()-1;j;--j)\n {\n ra[k][j-1]=min(ra[k][j],a[id[k][j-1]]);\n }\n for(size_t j=0;j+1<lb[k].size();++j)\n {\n lb[k][j+1]=min(lb[k][j],b[id[k][j]]);\n }\n }\n }\n else\n {\n for(int i=ll*B;i<(ll+1)*B and i<n;++i)\n {\n a[i]+=inc[ll];\n }\n inc[ll]=0;\n for(int i=l;i<r;++i)\n {\n a[i]+=x;\n }\n sort(__all(id[ll]),\n [&](const auto &x, const auto &y)\n {\n return a[x]-b[x]<a[y]-b[y];\n });\n\n const int k=ll;\n for(int j=ra[k].size()-1;j;--j)\n {\n ra[k][j-1]=min(ra[k][j],a[id[k][j-1]]);\n }\n for(size_t j=0;j+1<lb[k].size();++j)\n {\n lb[k][j+1]=min(lb[k][j],b[id[k][j]]);\n }\n }\n }\n else // range min of max\n {\n i64 ans=inf;\n for(int k=ll+1;k<rr;++k)\n {\n // binary search\n int ok=m,ng=-1;\n while(ok-ng>1)\n {\n int mid=(ok+ng)/2;\n int now=id[k][mid];\n if(a[now]+inc[k]>=b[now])\n {\n ok=mid;\n }\n else\n {\n ng=mid;\n }\n }\n chmin(ans, lb[k][ok]);\n chmin(ans, ra[k][ok]+inc[k]);\n }\n\n dump(ans);\n\n // left most\n {\n for(int i=ll*B;i<(ll+1)*B and i<n;++i)\n {\n a[i]+=inc[ll];\n }\n inc[ll]=0;\n sort(__all(id[ll]),\n [&](const auto &x, const auto &y)\n {\n return a[x]-b[x]<a[y]-b[y];\n });\n\n const int k=ll;\n for(int j=ra[k].size()-1;j;--j)\n {\n ra[k][j-1]=min(ra[k][j],a[id[k][j-1]]);\n }\n for(size_t j=0;j+1<lb[k].size();++j)\n {\n lb[k][j+1]=min(lb[k][j],b[id[k][j]]);\n }\n\n for(int i=l;i<(ll+1)*B and i<r;++i)\n {\n chmin(ans, max(a[i],b[i]));\n }\n }\n\n dump(ans);\n\n // right most\n {\n for(int i=rr*B;i<(rr+1)*B and i<n;++i)\n {\n a[i]+=inc[rr];\n }\n inc[rr]=0;\n sort(__all(id[rr]),\n [&](const auto &x, const auto &y)\n {\n return a[x]-b[x]<a[y]-b[y];\n });\n\n const int k=rr;\n for(int j=ra[k].size()-1;j;--j)\n {\n ra[k][j-1]=min(ra[k][j],a[id[k][j-1]]);\n }\n for(size_t j=0;j+1<lb[k].size();++j)\n {\n lb[k][j+1]=min(lb[k][j],b[id[k][j]]);\n }\n\n for(int i=max(l,rr*B);i<r;++i)\n {\n chmin(ans, max(a[i],b[i]));\n }\n }\n\n cout << ans << \"\\n\";\n }\n }\n }\n};", "accuracy": 0.2, "time_ms": 1910, "memory_kb": 7620, "score_of_the_acc": -1.0622, "final_rank": 20 }, { "submission_id": "aoj_3118_4261494", "code_snippet": "/* preprocessor start */\n#ifdef LOCAL\n//*\n #define _GLIBCXX_DEBUG // gcc\n/*/\n #define _LIBCPP_DEBUG 0 // clang\n//*/\n #define __clock__\n // #define __buffer_check__\n#else\n #pragma GCC optimize(\"Ofast\")\n/*\n #define _GLIBCXX_DEBUG // gcc\n/*/\n// #define _LIBCPP_DEBUG 0 // clang\n//*/\n // #define __buffer_check__\n // #define NDEBUG\n#endif\n#define __precision__ 10\n#define iostream_untie true\n#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <chrono>\n#include <complex>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <map>\n#include <queue>\n#include <random>\n#include <set>\n#include <unordered_map>\n#include <unordered_set>\n#include <valarray>\n#define __all(v) std::begin(v), std::end(v)\n#define __rall(v) std::rbegin(v), std::rend(v)\n#define __popcount(n) __builtin_popcountll(n)\n#define __clz32(n) __builtin_clz(n)\n#define __clz64(n) __builtin_clzll(n)\n#define __ctz32(n) __builtin_ctz(n)\n#define __ctz64(n) __builtin_ctzll(n)\n/* preprocessor end */\n\nnamespace std\n{\n // hash\n template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }\n template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };\n template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };\n template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };\n template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };\n // iostream\n template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }\n template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }\n template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };\n template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };\n template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }\n template <> istream &operator>>(istream &is, tuple<> &t) { return is; }\n template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };\n template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };\n template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }\n template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }\n template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>\n ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }\n} // namespace std\n\nnamespace setting\n{\n using namespace std;\n using namespace chrono;\n system_clock::time_point start_time, end_time;\n long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }\n void print_elapsed_time() { cerr << \"\\n----- Exec time : \" << get_elapsed_time() << \" ms -----\\n\\n\"; }\n void buffer_check() { char bufc; if(cin >> bufc) cerr << \"\\n\\033[1;35mwarning\\033[0m: buffer not empty.\\n\"; }\n struct setupper\n {\n setupper()\n {\n if(iostream_untie) ios::sync_with_stdio(false), cin.tie(nullptr);\n cout << fixed << setprecision(__precision__);\n #ifdef stderr_path\n if(freopen(stderr_path, \"a\", stderr)) cerr << fixed << setprecision(__precision__);\n #endif\n #ifdef LOCAL\n cerr << boolalpha << \"\\n----- stderr at LOCAL -----\\n\\n\";\n #endif\n #ifdef __buffer_check__\n atexit(buffer_check);\n #endif\n #ifdef __clock__\n start_time = system_clock::now();\n atexit(print_elapsed_time);\n #endif\n }\n } __setupper; // struct setupper\n} // namespace setting\n\n#ifdef __clock__\n #include \"C:\\Users\\euler\\OneDrive\\Documents\\Competitive_Programming\\Library\\local\\clock.hpp\"\n#else\n #define build_clock() ((void)0)\n #define set_clock() ((void)0)\n #define get_clock() ((void)0)\n#endif\n\n#ifdef LOCAL\n #include \"C:\\Users\\euler\\OneDrive\\Documents\\Competitive_Programming\\Library\\local\\dump.hpp\"\n#else\n #define dump(...) ((void)0)\n#endif\n\n/* function utility start */\ntemplate <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; }\n#define input(type, var, ...) type var{read<type>(__VA_ARGS__)}\n// substitute y for x if x > y.\ntemplate <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; }\n// substitute y for x if x < y.\ntemplate <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; }\n// binary search on discrete range.\ntemplate <class iter_type, class pred_type>\niter_type binary(iter_type __ok, iter_type __ng, pred_type pred)\n{\n std::ptrdiff_t dist(__ng - __ok);\n while(std::abs(dist) > 1)\n {\n iter_type mid(__ok + dist / 2);\n if(pred(mid)) __ok = mid, dist -= dist / 2;\n else __ng = mid, dist /= 2;\n }\n return __ok;\n}\n// binary search on real numbers.\ntemplate <class pred_type>\nlong double binary(long double __ok, long double __ng, const long double eps, pred_type pred)\n{\n while(std::abs(__ok - __ng) > eps)\n {\n long double mid{(__ok + __ng) / 2};\n (pred(mid) ? __ok : __ng) = mid;\n }\n return __ok;\n}\n// size of array.\ntemplate <class A, size_t N> size_t size(A (&array)[N]) { return N; }\n// be careful that val is type-sensitive.\ntemplate <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }\n/* functon utility end */\n\n/* using alias start */\nusing namespace std;\nusing i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;\nusing p32 = pair<i32, i32>; using p64 = pair<i64, i64>;\ntemplate <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;\ntemplate <class T> using hashset = unordered_set<T>;\ntemplate <class Key, class Value> using hashmap = unordered_map<Key, Value>;\n/* using alias end */\n\n/* library start */\n\n\n\n/* library end */\n\n/* The main code follows. */\n\ntemplate <class T> void _main();\nstruct solver;\nint main() { _main<solver>(); }\n\ntemplate <class solver>\nvoid _main()\n{\n unsigned t;\n#ifdef LOCAL\n t = 1;\n#else\n t = 1; // single test case\n#endif\n // t = -1; // infinite loop\n // cin >> t; // case number given\n\n while(t--) solver();\n}\n\nstruct solver\n{\n\n vector<vector<int>> id;\n vector<vector<i64>> lb,ra;\n vector<i64> a,b;\n vector<i64> inc;\n\n solver()\n {\n const i64 inf=1e16;\n int n,Q; cin>>n>>Q;\n a.resize(n),b.resize(n);\n const int B=sqrt(3*n),m=(n-1+B)/B;\n id.resize(m);\n inc.resize(m);\n lb.resize(m),ra.resize(m);\n\n // initialize\n for(int i=0,k=0;i<n;i+=B,++k)\n {\n for(int j=i;j<n and j<i+B;++j)\n {\n id[k].emplace_back(j);\n cin>>a[j]>>b[j];\n }\n sort(__all(id[k]),\n [&](const auto &x, const auto &y)\n {\n return a[x]-b[x]<a[y]-b[y];\n });\n\n int sz=id[k].size();\n\n lb[k].emplace_back(inf);\n lb[k].resize(sz+1);\n for(int j=0;j<sz;++j)\n {\n lb[k][j+1]=min(lb[k][j],b[id[k][j]]);\n }\n\n ra[k].resize(sz);\n ra[k].emplace_back(inf);\n for(int j=sz;j;--j)\n {\n ra[k][j-1]=min(ra[k][j],a[id[k][j-1]]);\n }\n }\n\n // process queries\n for(int type,l,r,x;Q--;)\n {\n cin>>type>>l>>r; --l;\n const int ll=l/B,rr=r/B;\n\n if(type==1) // interval add\n {\n cin>>x;\n for(int k=ll+1;k<rr;++k)\n {\n inc[k]+=x;\n }\n if(ll<rr)\n {\n // left most\n for(int i=ll*B;i<(ll+1)*B and i<n;++i)\n {\n a[i]+=inc[ll];\n }\n inc[ll]=0;\n for(int i=l;i<(ll+1)*B and i<n;++i)\n {\n a[i]+=x;\n }\n sort(__all(id[ll]),\n [&](const auto &x, const auto &y)\n {\n return a[x]-b[x]<a[y]-b[y];\n });\n {\n const int k=ll;\n for(int j=ra[k].size()-1;j;--j)\n {\n ra[k][j-1]=min(ra[k][j],a[id[k][j-1]]);\n }\n }\n\n // right most\n for(int i=rr*B;i<(rr+1)*B and i<n;++i)\n {\n a[i]+=inc[rr];\n }\n inc[rr]=0;\n for(int i=rr*B;i<r;++i)\n {\n a[i]+=x;\n }\n sort(__all(id[rr]),\n [&](const auto &x, const auto &y)\n {\n return a[x]-b[x]<a[y]-b[y];\n });\n {\n const int k=rr;\n for(int j=ra[k].size()-1;j;--j)\n {\n ra[k][j-1]=min(ra[k][j],a[id[k][j-1]]);\n }\n }\n }\n else\n {\n for(int i=ll*B;i<(ll+1)*B and i<n;++i)\n {\n a[i]+=inc[ll];\n }\n inc[ll]=0;\n for(int i=l;i<r;++i)\n {\n a[i]+=x;\n }\n sort(__all(id[ll]),\n [&](const auto &x, const auto &y)\n {\n return a[x]-b[x]<a[y]-b[y];\n });\n\n const int k=ll;\n for(int j=ra[k].size()-1;j;--j)\n {\n ra[k][j-1]=min(ra[k][j],a[id[k][j-1]]);\n }\n }\n }\n else // range min of max\n {\n i64 ans=inf;\n for(int k=ll+1;k<rr;++k)\n {\n // binary search\n int ok=m,ng=-1;\n while(ok-ng>1)\n {\n int mid=(ok+ng)/2;\n int now=id[k][mid];\n if(a[now]+inc[k]>=b[now])\n {\n ok=mid;\n }\n else\n {\n ng=mid;\n }\n }\n chmin(ans, lb[k][ok]);\n chmin(ans, ra[k][ok]+inc[k]);\n }\n\n dump(ans);\n\n // left most\n {\n for(int i=ll*B;i<(ll+1)*B and i<n;++i)\n {\n a[i]+=inc[ll];\n }\n inc[ll]=0;\n sort(__all(id[ll]),\n [&](const auto &x, const auto &y)\n {\n return a[x]-b[x]<a[y]-b[y];\n });\n\n const int k=ll;\n for(int j=ra[k].size()-1;j;--j)\n {\n ra[k][j-1]=min(ra[k][j],a[id[k][j-1]]);\n }\n\n for(int i=l;i<(ll+1)*B and i<r;++i)\n {\n chmin(ans, max(a[i],b[i]));\n }\n }\n\n dump(ans);\n\n // right most\n {\n for(int i=rr*B;i<(rr+1)*B and i<n;++i)\n {\n a[i]+=inc[rr];\n }\n inc[rr]=0;\n sort(__all(id[rr]),\n [&](const auto &x, const auto &y)\n {\n return a[x]-b[x]<a[y]-b[y];\n });\n\n const int k=rr;\n for(int j=ra[k].size()-1;j;--j)\n {\n ra[k][j-1]=min(ra[k][j],a[id[k][j-1]]);\n }\n\n for(int i=max(l,rr*B);i<r;++i)\n {\n chmin(ans, max(a[i],b[i]));\n }\n }\n\n cout << ans << \"\\n\";\n }\n }\n }\n};", "accuracy": 0.2, "time_ms": 1850, "memory_kb": 7576, "score_of_the_acc": -1.0272, "final_rank": 19 }, { "submission_id": "aoj_3118_4111003", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\ntemplate <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;\nconst int INF = 0x3f3f3f3f;\nconst ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n// const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\ntemplate <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n }\n} iosetup;\n\nconst int N = 100000, S = (N + sqrt(N) - 1) / sqrt(N);\nll A[N], B[N], sumX[S] = {};\nvector<ll> ruiA[S], ruiB[S];\nvector<int> v[S];\nint lb[S];\n\nint b, b_n, L[S], R[S];\nbool need_to_be_eval[S] = {}, need_to_calc[S] = {};\n\nvoid evaluate(int b, int l, int r) {\n if (sumX[b] == 0) return;\n FOR(i, l, r) A[i] += sumX[b];\n for (ll &e : ruiA[b]) e += sumX[b];\n sumX[b] = 0;\n}\n\nvoid calc_lb(int idx) {\n lb[idx] = -1;\n int ub = v[idx].size();\n while (ub - lb[idx] > 1) {\n int mid = (lb[idx] + ub) >> 1;\n (A[v[idx][mid]] - B[v[idx][mid]] <= -sumX[idx] ? lb[idx] : ub) = mid;\n }\n need_to_calc[idx] = false;\n}\n\nvoid init(int idx) {\n sort(ALL(v[idx]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n ruiB[idx][0] = B[v[idx][0]];\n FOR(i, 1, ruiB[idx].size()) ruiB[idx][i] = min(ruiB[idx][i - 1], B[v[idx][i]]);\n ruiA[idx].back() = A[v[idx].back()];\n for (int i = int(ruiA[idx].size()) - 2; i >= 0; --i) ruiA[idx][i] = min(ruiA[idx][i + 1], A[v[idx][i]]);\n need_to_be_eval[idx] = false;\n calc_lb(idx);\n}\n\nint main() {\n int n, q; cin >> n >> q;\n REP(i, n) cin >> A[i] >> B[i];\n b = sqrt(n);\n b_n = (n + b - 1) / b;\n REP(i, b_n) L[i] = b * i;\n REP(i, b_n - 1) R[i] = b * (i + 1);\n R[b_n - 1] = n;\n REP(i, b_n) {\n int sz = R[i] - L[i];\n ruiA[i].resize(sz);\n ruiB[i].resize(sz);\n v[i].resize(sz);\n iota(ALL(v[i]), L[i]);\n }\n REP(i, b_n) init(i);\n while (q--) {\n int query, l, r; cin >> query >> l >> r; --l;\n if (query == 1) {\n int x; cin >> x;\n int l_b = l / b, r_b = (r - 1) / b;\n if (l_b == r_b) {\n if (l == L[l_b] && r == R[r_b]) {\n need_to_calc[l_b] = true;\n sumX[l_b] += x;\n } else {\n need_to_be_eval[l_b] = true;\n FOR(i, l, r) A[i] += x;\n }\n } else {\n if (l == L[l_b]) {\n need_to_calc[l_b] = true;\n sumX[l_b] += x;\n } else {\n need_to_be_eval[l_b] = true;\n FOR(i, l, R[l_b]) A[i] += x;\n }\n FOR(i, l_b + 1, r_b) {\n need_to_calc[i] = true;\n sumX[i] += x;\n }\n if (r == R[r_b]) {\n need_to_calc[r_b] = true;\n sumX[r_b] += x;\n } else {\n need_to_be_eval[r_b] = true;\n FOR(i, L[r_b], r) A[i] += x;\n }\n }\n } else {\n int l_b = l / b, r_b = (r - 1) / b;\n ll ans = LINF;\n if (l_b == r_b) {\n evaluate(l_b, L[l_b], R[l_b]);\n FOR(i, l, r) chmin(ans, max(A[i], B[i]));\n } else {\n if (l == L[l_b]) {\n if (need_to_be_eval[l_b]) {\n init(l_b);\n } else if (need_to_calc[l_b]) {\n calc_lb(l_b);\n }\n chmin(ans, min(lb[l_b] == -1 ? LINF : ruiB[l_b][lb[l_b]], lb[l_b] + 1 == v[l_b].size() ? LINF : ruiA[l_b][lb[l_b] + 1] + sumX[l_b]));\n } else {\n evaluate(l_b, L[l_b], R[l_b]);\n FOR(i, l, R[l_b]) chmin(ans, max(A[i], B[i]));\n }\n FOR(i, l_b + 1, r_b) {\n if (need_to_be_eval[i]) {\n init(i);\n } else if (need_to_calc[i]) {\n calc_lb(i);\n }\n chmin(ans, min(lb[i] == -1 ? LINF : ruiB[i][lb[i]], lb[i] + 1 == v[i].size() ? LINF : ruiA[i][lb[i] + 1] + sumX[i]));\n }\n if (r == R[r_b]) {\n if (need_to_be_eval[r_b]) {\n init(r_b);\n } else if (need_to_calc[r_b]) {\n calc_lb(r_b);\n }\n chmin(ans, min(lb[r_b] == -1 ? LINF : ruiB[r_b][lb[r_b]], lb[r_b] + 1 == v[r_b].size() ? LINF : ruiA[r_b][lb[r_b] + 1] + sumX[r_b]));\n } else {\n evaluate(r_b, L[r_b], R[r_b]);\n FOR(i, L[r_b], r) chmin(ans, max(A[i], B[i]));\n }\n }\n cout << ans << '\\n';\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 780, "memory_kb": 6568, "score_of_the_acc": -0.3923, "final_rank": 1 }, { "submission_id": "aoj_3118_4109922", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\nconst ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n }\n} iosetup;\n\ninline void chmax(ll &a, ll b) { if (a < b) a = b; }\ninline void chmin(ll &a, ll b) { if (a > b) a = b; }\n\nconst int N = 100000, S = 334, LEN = 300;\n\nint b, b_n, L[S], R[S], len[S];\nbool need_to_be_eval[S] = {};\n\nll A[N], B[N], sumX[S] = {}, ruiA[S][LEN], ruiB[S][LEN];\nvector<int> v[S];\n\nint main() {\n int n, q; cin >> n >> q;\n REP(i, n) cin >> A[i] >> B[i];\n b = sqrt(n);\n b_n = (n + b - 1) / b;\n REP(i, b_n) L[i] = b * i;\n REP(i, b_n - 1) R[i] = b * (i + 1);\n R[b_n - 1] = n;\n REP(i, b_n) {\n len[i] = R[i] - L[i];\n v[i].resize(len[i]);\n iota(ALL(v[i]), L[i]);\n sort(ALL(v[i]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n ruiB[i][0] = B[v[i][0]];\n FOR(j, 1, len[i]) ruiB[i][j] = min(ruiB[i][j - 1], B[v[i][j]]);\n ruiA[i][len[i] - 1] = A[v[i].back()];\n for (int j = len[i] - 2; j >= 0; --j) ruiA[i][j] = min(ruiA[i][j + 1], A[v[i][j]]);\n }\n while (q--) {\n int query, l, r; cin >> query >> l >> r; --l;\n if (query == 1) {\n int x; cin >> x;\n int l_b = l / b, r_b = (r - 1) / b;\n if (l_b == r_b) {\n need_to_be_eval[l_b] = true;\n FOR(i, l, r) A[i] += x;\n } else {\n if (l == L[l_b]) {\n sumX[l_b] += x;\n } else {\n need_to_be_eval[l_b] = true;\n FOR(i, l, R[l_b]) A[i] += x;\n }\n FOR(i, l_b + 1, r_b) sumX[i] += x;\n if (r == R[r_b]) {\n sumX[r_b] += x;\n } else {\n need_to_be_eval[r_b] = true;\n FOR(i, L[r_b], r) A[i] += x;\n }\n }\n } else {\n int l_b = l / b, r_b = (r - 1) / b;\n ll ans = LINF;\n if (l_b == r_b) {\n if (sumX[l_b] != 0) {\n FOR(i, L[l_b], R[l_b]) A[i] += sumX[l_b];\n REP(i, len[l_b]) ruiA[l_b][i] += sumX[l_b];\n sumX[l_b] = 0;\n }\n FOR(i, l, r) chmin(ans, max(A[i], B[i]));\n } else {\n if (l == L[l_b]) {\n if (need_to_be_eval[l_b]) {\n sort(ALL(v[l_b]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n ruiB[l_b][0] = B[v[l_b][0]];\n FOR(i, 1, len[l_b]) ruiB[l_b][i] = min(ruiB[l_b][i - 1], B[v[l_b][i]]);\n ruiA[l_b][len[l_b] - 1] = A[v[l_b].back()];\n for (int i = len[l_b] - 2; i >= 0; --i) ruiA[l_b][i] = min(ruiA[l_b][i + 1], A[v[l_b][i]]);\n need_to_be_eval[l_b] = false;\n }\n int lb = -1, ub = len[l_b];\n while (ub - lb > 1) {\n int mid = (lb + ub) >> 1;\n (A[v[l_b][mid]] - B[v[l_b][mid]] <= -sumX[l_b] ? lb : ub) = mid;\n }\n chmin(ans, min(lb == -1 ? LINF : ruiB[l_b][lb], lb + 1 == len[l_b] ? LINF : ruiA[l_b][lb + 1] + sumX[l_b]));\n } else {\n if (sumX[l_b] != 0) {\n FOR(i, L[l_b], R[l_b]) A[i] += sumX[l_b];\n REP(i, len[l_b]) ruiA[l_b][i] += sumX[l_b];\n sumX[l_b] = 0;\n }\n FOR(i, l, R[l_b]) chmin(ans, max(A[i], B[i]));\n }\n FOR(i, l_b + 1, r_b) {\n if (need_to_be_eval[i]) {\n sort(ALL(v[i]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n ruiB[i][0] = B[v[i][0]];\n FOR(j, 1, len[i]) ruiB[i][j] = min(ruiB[i][j - 1], B[v[i][j]]);\n ruiA[i][len[i] - 1] = A[v[i].back()];\n for (int j = len[i] - 2; j >= 0; --j) ruiA[i][j] = min(ruiA[i][j + 1], A[v[i][j]]);\n need_to_be_eval[i] = false;\n }\n int lb = -1, ub = len[i];\n while (ub - lb > 1) {\n int mid = (lb + ub) >> 1;\n (A[v[i][mid]] - B[v[i][mid]] <= -sumX[i] ? lb : ub) = mid;\n }\n chmin(ans, min(lb == -1 ? LINF : ruiB[i][lb], lb + 1 == len[i] ? LINF : ruiA[i][lb + 1] + sumX[i]));\n }\n if (r == R[r_b]) {\n if (need_to_be_eval[r_b]) {\n sort(ALL(v[r_b]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n ruiB[r_b][0] = B[v[r_b][0]];\n FOR(i, 1, len[r_b]) ruiB[r_b][i] = min(ruiB[r_b][i - 1], B[v[r_b][i]]);\n ruiA[r_b][len[r_b] - 1] = A[v[r_b].back()];\n for (int i = len[r_b] - 2; i >= 0; --i) ruiA[r_b][i] = min(ruiA[r_b][i + 1], A[v[r_b][i]]);\n need_to_be_eval[r_b] = false;\n }\n int lb = -1, ub = len[r_b];\n while (ub - lb > 1) {\n int mid = (lb + ub) >> 1;\n (A[v[r_b][mid]] - B[v[r_b][mid]] <= -sumX[r_b] ? lb : ub) = mid;\n }\n chmin(ans, min(lb == -1 ? LINF : ruiB[r_b][lb], lb + 1 == len[r_b] ? LINF : ruiA[r_b][lb + 1] + sumX[r_b]));\n } else {\n if (sumX[r_b] != 0) {\n FOR(i, L[r_b], R[r_b]) A[i] += sumX[r_b];\n REP(i, len[r_b]) ruiA[r_b][i] += sumX[r_b];\n sumX[r_b] = 0;\n }\n FOR(i, L[r_b], r) chmin(ans, max(A[i], B[i]));\n }\n }\n cout << ans << '\\n';\n }\n }\n return 0;\n}", "accuracy": 0.2, "time_ms": 1260, "memory_kb": 6464, "score_of_the_acc": -0.6494, "final_rank": 15 }, { "submission_id": "aoj_3118_4109913", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\ntemplate <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;\nconst int INF = 0x3f3f3f3f;\nconst ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n// const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\ntemplate <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n }\n} iosetup;\n\n\nint main() {\n const int N = 100000, S = (N + sqrt(N) - 1) / sqrt(N);\n ll A[N], B[N], sumX[S] = {};\n vector<ll> ruiA[S], ruiB[S];\n vector<int> v[S];\n\n int b, b_n, L[S], R[S];\n bool need_to_be_eval[S] = {};\n\n int n, q; cin >> n >> q;\n REP(i, n) cin >> A[i] >> B[i];\n b = sqrt(n);\n b_n = (n + b - 1) / b;\n REP(i, b_n) L[i] = b * i;\n REP(i, b_n - 1) R[i] = b * (i + 1);\n R[b_n - 1] = n;\n REP(i, b_n) {\n int sz = R[i] - L[i];\n ruiA[i].resize(sz);\n ruiB[i].resize(sz);\n v[i].resize(sz);\n iota(ALL(v[i]), L[i]);\n }\n REP(i, b_n) {\n sort(ALL(v[i]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n ruiB[i][0] = B[v[i][0]];\n FOR(j, 1, ruiB[i].size()) ruiB[i][j] = min(ruiB[i][j - 1], B[v[i][j]]);\n ruiA[i].back() = A[v[i].back()];\n for (int j = int(ruiA[i].size()) - 2; j >= 0; --j) ruiA[i][j] = min(ruiA[i][j + 1], A[v[i][j]]);\n }\n while (q--) {\n int query, l, r; cin >> query >> l >> r; --l;\n if (query == 1) {\n int x; cin >> x;\n int l_b = l / b, r_b = (r - 1) / b;\n if (l_b == r_b) {\n if (l == L[l_b] && r == R[r_b]) {\n sumX[l_b] += x;\n } else {\n need_to_be_eval[l_b] = true;\n FOR(i, l, r) A[i] += x;\n }\n } else {\n if (l == L[l_b]) {\n sumX[l_b] += x;\n } else {\n need_to_be_eval[l_b] = true;\n FOR(i, l, R[l_b]) A[i] += x;\n }\n FOR(i, l_b + 1, r_b) sumX[i] += x;\n if (r == R[r_b]) {\n sumX[r_b] += x;\n } else {\n need_to_be_eval[r_b] = true;\n FOR(i, L[r_b], r) A[i] += x;\n }\n }\n } else {\n int l_b = l / b, r_b = (r - 1) / b;\n ll ans = LINF;\n if (l_b == r_b) {\n if (sumX[l_b] != 0) {\n FOR(i, L[l_b], R[l_b]) A[i] += sumX[l_b];\n for (ll &e : ruiA[b]) e += sumX[l_b];\n sumX[l_b] = 0;\n }\n FOR(i, l, r) chmin(ans, max(A[i], B[i]));\n } else {\n if (l == L[l_b]) {\n if (need_to_be_eval[l_b]) {\n sort(ALL(v[l_b]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n ruiB[l_b][0] = B[v[l_b][0]];\n FOR(i, 1, ruiB[l_b].size()) ruiB[l_b][i] = min(ruiB[l_b][i - 1], B[v[l_b][i]]);\n ruiA[l_b].back() = A[v[l_b].back()];\n for (int i = int(ruiA[l_b].size()) - 2; i >= 0; --i) ruiA[l_b][i] = min(ruiA[l_b][i + 1], A[v[l_b][i]]);\n need_to_be_eval[l_b] = false;\n }\n int lb = -1, ub = v[l_b].size();\n while (ub - lb > 1) {\n int mid = (lb + ub) >> 1;\n (A[v[l_b][mid]] - B[v[l_b][mid]] <= -sumX[l_b] ? lb : ub) = mid;\n }\n chmin(ans, min(lb == -1 ? LINF : ruiB[l_b][lb], lb + 1 == v[l_b].size() ? LINF : ruiA[l_b][lb + 1] + sumX[l_b]));\n } else {\n if (sumX[l_b] != 0) {\n FOR(i, L[l_b], R[l_b]) A[i] += sumX[l_b];\n for (ll &e : ruiA[l_b]) e += sumX[l_b];\n sumX[l_b] = 0;\n }\n FOR(i, l, R[l_b]) chmin(ans, max(A[i], B[i]));\n }\n FOR(i, l_b + 1, r_b) {\n if (need_to_be_eval[i]) {\n sort(ALL(v[i]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n ruiB[i][0] = B[v[i][0]];\n FOR(j, 1, ruiB[i].size()) ruiB[i][j] = min(ruiB[i][j - 1], B[v[i][j]]);\n ruiA[i].back() = A[v[i].back()];\n for (int j = int(ruiA[i].size()) - 2; j >= 0; --j) ruiA[i][j] = min(ruiA[i][j + 1], A[v[i][j]]);\n need_to_be_eval[i] = false;\n }\n int lb = -1, ub = v[i].size();\n while (ub - lb > 1) {\n int mid = (lb + ub) >> 1;\n (A[v[i][mid]] - B[v[i][mid]] <= -sumX[i] ? lb : ub) = mid;\n }\n chmin(ans, min(lb == -1 ? LINF : ruiB[i][lb], lb + 1 == v[i].size() ? LINF : ruiA[i][lb + 1] + sumX[i]));\n }\n if (r == R[r_b]) {\n if (need_to_be_eval[r_b]) {\n sort(ALL(v[r_b]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n ruiB[r_b][0] = B[v[r_b][0]];\n FOR(i, 1, ruiB[r_b].size()) ruiB[r_b][i] = min(ruiB[r_b][i - 1], B[v[r_b][i]]);\n ruiA[r_b].back() = A[v[r_b].back()];\n for (int i = int(ruiA[r_b].size()) - 2; i >= 0; --i) ruiA[r_b][i] = min(ruiA[r_b][i + 1], A[v[r_b][i]]);\n need_to_be_eval[r_b] = false;\n }\n int lb = -1, ub = v[r_b].size();\n while (ub - lb > 1) {\n int mid = (lb + ub) >> 1;\n (A[v[r_b][mid]] - B[v[r_b][mid]] <= -sumX[r_b] ? lb : ub) = mid;\n }\n chmin(ans, min(lb == -1 ? LINF : ruiB[r_b][lb], lb + 1 == v[r_b].size() ? LINF : ruiA[r_b][lb + 1] + sumX[r_b]));\n } else {\n if (sumX[r_b] != 0) {\n FOR(i, L[r_b], R[r_b]) A[i] += sumX[r_b];\n for (ll &e : ruiA[r_b]) e += sumX[r_b];\n sumX[r_b] = 0;\n }\n FOR(i, L[r_b], r) chmin(ans, max(A[i], B[i]));\n }\n }\n cout << ans << '\\n';\n }\n }\n return 0;\n}", "accuracy": 0.4, "time_ms": 1270, "memory_kb": 6560, "score_of_the_acc": -0.6596, "final_rank": 11 }, { "submission_id": "aoj_3118_4109909", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\ntemplate <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;\nconst int INF = 0x3f3f3f3f;\nconst ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n// const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\ntemplate <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n }\n} iosetup;\n\nconst int N = 100000, S = (N + sqrt(N) - 1) / sqrt(N);\nll A[N], B[N], sumX[S] = {};\nvector<ll> ruiA[S], ruiB[S];\nvector<int> v[S];\n\nvoid evaluate(int b, int l, int r) {\n FOR(i, l, r) A[i] += sumX[b];\n for (ll &e : ruiA[b]) e += sumX[b];\n sumX[b] = 0;\n}\n\nvoid init(int idx) {\n sort(ALL(v[idx]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n ruiB[idx][0] = B[v[idx][0]];\n FOR(i, 1, ruiB[idx].size()) ruiB[idx][i] = min(ruiB[idx][i - 1], B[v[idx][i]]);\n ruiA[idx].back() = A[v[idx].back()];\n for (int i = int(ruiA[idx].size()) - 2; i >= 0; --i) ruiA[idx][i] = min(ruiA[idx][i + 1], A[v[idx][i]]);\n}\n\ntemplate <typename T>\nstruct SqrtDecomposition {\n int b, b_n;\n vector<int> left, right;\n vector<bool> need_to_be_eval;\n\n SqrtDecomposition(int n) : b(sqrt(n)) {\n b_n = (n + b - 1) / b;\n left.resize(b_n);\n right.resize(b_n);\n need_to_be_eval.assign(b_n, false);\n REP(i, b_n) {\n left[i] = b * i;\n right[i] = (i + 1 == b_n ? n : b * (i + 1));\n }\n }\n\n void partial_update(int idx, T val);\n\n void total_update(int idx, T val);\n\n void update(int l, int r, T val) {\n int l_b = l / b, r_b = (r - 1) / b;\n if (l_b == r_b) {\n if (l == left[l_b] && r == right[r_b]) {\n total_update(l_b, val);\n } else {\n need_to_be_eval[l_b] = true;\n FOR(i, l, r) partial_update(i, val);\n }\n } else {\n if (l == left[l_b]) {\n total_update(l_b, val);\n } else {\n need_to_be_eval[l_b] = true;\n FOR(i, l, right[l_b]) partial_update(i, val);\n }\n FOR(i, l_b + 1, r_b) total_update(i, val);\n if (r == right[r_b]) {\n total_update(r_b, val);\n } else {\n need_to_be_eval[r_b] = true;\n FOR(i, left[r_b], r) partial_update(i, val);\n }\n }\n }\n\n void partial_query(int idx, T &val);\n\n void total_query(int idx, T &val);\n\n T query(int l, int r, T UNITY) {\n int l_b = l / b, r_b = (r - 1) / b;\n T res = UNITY;\n if (l_b == r_b) {\n FOR(i, l, r) partial_query(i, res);\n } else {\n if (l == left[l_b]) {\n if (need_to_be_eval[l_b]) {\n init(l_b);\n need_to_be_eval[l_b] = false;\n }\n total_query(l_b, res);\n } else {\n FOR(i, l, right[l_b]) partial_query(i, res);\n }\n FOR(i, l_b + 1, r_b) {\n if (need_to_be_eval[i]) {\n init(i);\n need_to_be_eval[i] = false;\n }\n total_query(i, res);\n }\n if (r == right[r_b]) {\n if (need_to_be_eval[r_b]) {\n init(r_b);\n need_to_be_eval[r_b] = false;\n }\n total_query(r_b, res);\n } else {\n FOR(i, left[r_b], r) partial_query(i, res);\n }\n }\n return res;\n }\n};\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::partial_update(int idx, T val) {\n A[idx] += val;\n}\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::total_update(int idx, T val) {\n sumX[idx] += val;\n}\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::partial_query(int idx, T &val) {\n chmin(val, max(A[idx] + sumX[idx], B[idx]));\n}\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::total_query(int idx, T &val) {\n int lb = -1, ub = v[idx].size();\n while (ub - lb > 1) {\n int mid = (lb + ub) >> 1;\n (A[v[idx][mid]] - B[v[idx][mid]] <= -sumX[idx] ? lb : ub) = mid;\n }\n chmin(val, min(lb == -1 ? LINF : ruiB[idx][lb], lb + 1 == v[idx].size() ? LINF : ruiA[idx][lb + 1] + sumX[idx]));\n}\n\nint main() {\n int n, q; cin >> n >> q;\n REP(i, n) cin >> A[i] >> B[i];\n SqrtDecomposition<ll> sd(n);\n REP(i, sd.b_n) {\n int sz = sd.right[i] - sd.left[i];\n ruiA[i].resize(sz);\n ruiB[i].resize(sz);\n v[i].resize(sz);\n iota(ALL(v[i]), sd.left[i]);\n }\n REP(i, sd.b_n) init(i);\n while (q--) {\n int query, l, r; cin >> query >> l >> r; --l;\n if (query == 1) {\n int x; cin >> x;\n sd.update(l, r, x);\n } else {\n cout << sd.query(l, r, LINF) << '\\n';\n }\n }\n return 0;\n}", "accuracy": 0.2, "time_ms": 1240, "memory_kb": 6616, "score_of_the_acc": -0.646, "final_rank": 14 }, { "submission_id": "aoj_3118_4109888", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\ntemplate <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;\nconst int INF = 0x3f3f3f3f;\nconst ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n// const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\ntemplate <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n }\n} iosetup;\n\nvector<ll> A, B, sumX;\nvector<vector<ll> > ruiA, ruiB;\nvector<vector<int> > v;\n\nvoid evaluate(int b, int l, int r) {\n FOR(i, l, r) A[i] += sumX[b];\n sumX[b] = 0;\n}\n\nvoid init(int idx) {\n sort(ALL(v[idx]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n REP(i, ruiB[idx].size()) ruiB[idx][i] = min(i == 0 ? LINF : ruiB[idx][i - 1], B[v[idx][i]]);\n for (int i = ruiA[idx].size() - 1; i >= 0; --i) ruiA[idx][i] = min(i + 1 == ruiA[idx].size() ? LINF : ruiA[idx][i + 1], A[v[idx][i]]);\n}\n\ntemplate <typename T>\nstruct SqrtDecomposition {\n int b, b_n;\n vector<int> left, right;\n vector<bool> need_to_be_eval;\n\n SqrtDecomposition(int n) : b(sqrt(n)) {\n b_n = (n + b - 1) / b;\n left.resize(b_n);\n right.resize(b_n);\n need_to_be_eval.assign(b_n, false);\n REP(i, b_n) {\n left[i] = b * i;\n right[i] = (i + 1 == b_n ? n : b * (i + 1));\n }\n }\n\n void partial_update(int idx, T val);\n\n void total_update(int idx, T val);\n\n void update(int l, int r, T val) {\n if (r <= l) return;\n int l_b = l / b, r_b = (r - 1) / b;\n if (l_b == r_b) {\n need_to_be_eval[l_b] = true;\n FOR(i, l, r) partial_update(i, val);\n } else {\n need_to_be_eval[l_b] = true;\n FOR(i, l, right[l_b]) partial_update(i, val);\n FOR(i, l_b + 1, r_b) total_update(i, val);\n need_to_be_eval[r_b] = true;\n FOR(i, left[r_b], r) partial_update(i, val);\n }\n }\n\n void partial_query(int idx, T &val);\n\n void total_query(int idx, T &val);\n\n T query(int l, int r, T UNITY) {\n int l_b = l / b, r_b = (r - 1) / b;\n T res = UNITY;\n if (l_b == r_b) {\n if (need_to_be_eval[l_b]) {\n init(l_b);\n need_to_be_eval[l_b] = false;\n }\n evaluate(l_b, left[l_b], right[l_b]);\n FOR(i, l, r) partial_query(i, res);\n } else if (l < r) {\n evaluate(l_b, left[l_b], right[l_b]);\n if (need_to_be_eval[l_b]) {\n init(l_b);\n need_to_be_eval[l_b] = false;\n }\n FOR(i, l, right[l_b]) partial_query(i, res);\n FOR(i, l_b + 1, r_b) {\n if (need_to_be_eval[i]) {\n init(i);\n need_to_be_eval[i] = false;\n }\n total_query(i, res);\n }\n evaluate(r_b, left[r_b], right[r_b]);\n if (need_to_be_eval[r_b]) {\n init(r_b);\n need_to_be_eval[r_b] = false;\n }\n FOR(i, left[r_b], r) partial_query(i, res);\n }\n return res;\n }\n};\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::partial_update(int idx, T val) {\n A[idx] += val;\n}\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::total_update(int idx, T val) {\n sumX[idx] += val;\n}\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::partial_query(int idx, T &val) {\n chmin(val, max(A[idx] + sumX[idx / b], B[idx]));\n}\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::total_query(int idx, T &val) {\n int lb = 0, ub = v[idx].size();\n while (ub - lb > 1) {\n int mid = (lb + ub) / 2;\n (A[v[idx][mid]] - B[v[idx][mid]] <= -sumX[idx] ? lb : ub) = mid;\n }\n chmin(val, min(ruiB[idx][lb], lb + 1 == v[idx].size() ? LINF : ruiA[idx][lb + 1] + sumX[idx]));\n}\n\nint main() {\n int n, q; cin >> n >> q;\n A.resize(n);\n B.resize(n);\n REP(i, n) cin >> A[i] >> B[i];\n SqrtDecomposition<ll> sd(n);\n sumX.assign(sd.b_n, 0);\n ruiA.resize(sd.b_n);\n ruiB.resize(sd.b_n);\n v.resize(sd.b_n);\n REP(i, sd.b_n) {\n int sz = sd.right[i] - sd.left[i];\n ruiA[i].resize(sz);\n ruiB[i].resize(sz);\n v[i].resize(sz);\n iota(ALL(v[i]), sd.left[i]);\n }\n REP(i, sd.b_n) init(i);\n while (q--) {\n int query, l, r; cin >> query >> l >> r; --l; --r;\n if (query == 1) {\n int x; cin >> x;\n sd.update(l, r + 1, x);\n } else if (query == 2) {\n cout << sd.query(l, r + 1, LINF) << '\\n';\n }\n\n }\n return 0;\n}", "accuracy": 0.2, "time_ms": 1390, "memory_kb": 6480, "score_of_the_acc": -0.7212, "final_rank": 18 }, { "submission_id": "aoj_3118_4109881", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\ntemplate <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;\nconst int INF = 0x3f3f3f3f;\nconst ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n// const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\ntemplate <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n }\n} iosetup;\n\nvector<ll> A, B, sumX;\nvector<vector<ll> > ruiA, ruiB;\nvector<vector<int> > v;\n\nvoid evaluate(int b, int l, int r) {\n FOR(i, l, r) A[i] += sumX[b];\n sumX[b] = 0;\n}\n\nvoid init(int idx) {\n sort(ALL(v[idx]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n REP(i, ruiB[idx].size()) ruiB[idx][i] = min(i == 0 ? LINF : ruiB[idx][i - 1], B[v[idx][i]]);\n for (int i = ruiA[idx].size() - 1; i >= 0; --i) ruiA[idx][i] = min(i + 1 == ruiA[idx].size() ? LINF : ruiA[idx][i + 1], A[v[idx][i]]);\n}\n\ntemplate <typename T>\nstruct SqrtDecomposition {\n int b, b_n;\n vector<int> left, right;\n vector<bool> need_to_be_eval;\n\n SqrtDecomposition(int n) : b(sqrt(n)) {\n b_n = (n + b - 1) / b;\n left.resize(b_n);\n right.resize(b_n);\n need_to_be_eval.assign(b_n, false);\n REP(i, b_n) {\n left[i] = b * i;\n right[i] = (i + 1 == b_n ? n : b * (i + 1));\n }\n }\n\n void partial_update(int idx, T val);\n\n void total_update(int idx, T val);\n\n void update(int l, int r, T val) {\n if (r <= l) return;\n int l_b = l / b, r_b = (r - 1) / b;\n if (l_b == r_b) {\n need_to_be_eval[l_b] = true;\n FOR(i, l, r) partial_update(i, val);\n } else {\n need_to_be_eval[l_b] = true;\n FOR(i, l, right[l_b]) partial_update(i, val);\n FOR(i, l_b + 1, r_b) total_update(i, val);\n need_to_be_eval[r_b] = true;\n FOR(i, left[r_b], r) partial_update(i, val);\n }\n }\n\n void partial_query(int idx, T &val);\n\n void total_query(int idx, T &val);\n\n T query(int l, int r, T UNITY) {\n int l_b = l / b, r_b = (r - 1) / b;\n T res = UNITY;\n if (l_b == r_b) {\n if (need_to_be_eval[l_b]) {\n init(l_b);\n need_to_be_eval[l_b] = false;\n }\n evaluate(l_b, left[l_b], right[l_b]);\n FOR(i, l, r) partial_query(i, res);\n } else if (l < r) {\n evaluate(l_b, left[l_b], right[l_b]);\n if (need_to_be_eval[l_b]) {\n init(l_b);\n need_to_be_eval[l_b] = false;\n }\n FOR(i, l, right[l_b]) partial_query(i, res);\n FOR(i, l_b + 1, r_b) {\n if (need_to_be_eval[i]) {\n init(i);\n need_to_be_eval[i] = false;\n }\n total_query(i, res);\n }\n evaluate(r_b, left[r_b], right[r_b]);\n if (need_to_be_eval[r_b]) {\n init(r_b);\n need_to_be_eval[r_b] = false;\n }\n FOR(i, left[r_b], r) partial_query(i, res);\n }\n return res;\n }\n};\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::partial_update(int idx, T val) {\n A[idx] += val;\n}\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::total_update(int idx, T val) {\n sumX[idx] += val;\n}\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::partial_query(int idx, T &val) {\n chmin(val, max(A[idx], B[idx]));\n}\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::total_query(int idx, T &val) {\n int lb = 0, ub = v[idx].size();\n while (ub - lb > 1) {\n int mid = (lb + ub) / 2;\n (A[v[idx][mid]] - B[v[idx][mid]] <= -sumX[idx] ? lb : ub) = mid;\n }\n chmin(val, min(ruiB[idx][lb], lb + 1 == v[idx].size() ? LINF : ruiA[idx][lb + 1] + sumX[idx]));\n}\n\nint main() {\n int n, q; cin >> n >> q;\n A.resize(n);\n B.resize(n);\n REP(i, n) cin >> A[i] >> B[i];\n SqrtDecomposition<ll> sd(n);\n sumX.assign(sd.b_n, 0);\n ruiA.resize(sd.b_n);\n ruiB.resize(sd.b_n);\n v.resize(sd.b_n);\n REP(i, sd.b_n) {\n int sz = sd.right[i] - sd.left[i];\n ruiA[i].resize(sz);\n ruiB[i].resize(sz);\n v[i].resize(sz);\n iota(ALL(v[i]), sd.left[i]);\n }\n REP(i, sd.b_n) init(i);\n while (q--) {\n int query, l, r; cin >> query >> l >> r; --l; --r;\n if (query == 1) {\n int x; cin >> x;\n sd.update(l, r + 1, x);\n } else if (query == 2) {\n cout << sd.query(l, r + 1, LINF) << '\\n';\n }\n\n }\n return 0;\n}", "accuracy": 0.2, "time_ms": 1320, "memory_kb": 6456, "score_of_the_acc": -0.6818, "final_rank": 16 }, { "submission_id": "aoj_3118_4109870", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\ntemplate <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;\nconst int INF = 0x3f3f3f3f;\nconst ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n// const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\ntemplate <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n }\n} iosetup;\n\nvector<ll> A, B, sumX;\nvector<vector<ll> > ruiA, ruiB;\nvector<vector<int> > v;\n\nvoid evaluate(int b, int l, int r) {\n FOR(i, l, r) A[i] += sumX[b];\n sumX[b] = 0;\n}\n\nvoid init(int idx) {\n sort(ALL(v[idx]), [&](int l, int r) { return A[l] - B[l] < A[r] - B[r]; });\n REP(i, ruiB[idx].size()) ruiB[idx][i] = min(i == 0 ? LINF : ruiB[idx][i - 1], B[v[idx][i]]);\n for (int i = ruiA[idx].size() - 1; i >= 0; --i) ruiA[idx][i] = min(i + 1 == ruiA[idx].size() ? LINF : ruiA[idx][i + 1], A[v[idx][i]]);\n}\n\ntemplate <typename T>\nstruct SqrtDecomposition {\n int b, b_n;\n vector<int> left, right;\n vector<bool> need_to_be_eval;\n\n SqrtDecomposition(int n) : b(sqrt(n)) {\n b_n = (n + b - 1) / b;\n left.resize(b_n);\n right.resize(b_n);\n need_to_be_eval.assign(b_n, false);\n REP(i, b_n) {\n left[i] = b * i;\n right[i] = (i + 1 == b_n ? n : b * (i + 1));\n }\n }\n\n void partial_update(int idx, T val);\n\n void total_update(int idx, T val);\n\n void update(int l, int r, T val) {\n if (r <= l) return;\n int l_b = l / b, r_b = (r - 1) / b;\n if (l_b == r_b) {\n need_to_be_eval[l_b] = true;\n FOR(i, l, r) partial_update(i, val);\n } else {\n need_to_be_eval[l_b] = true;\n FOR(i, l, right[l_b]) partial_update(i, val);\n FOR(i, l_b + 1, r_b) total_update(i, val);\n need_to_be_eval[r_b] = true;\n FOR(i, left[r_b], r) partial_update(i, val);\n }\n }\n\n void partial_query(int idx, T &val);\n\n void total_query(int idx, T &val);\n\n T query(int l, int r, T UNITY) {\n int l_b = l / b, r_b = (r - 1) / b;\n T res = UNITY;\n if (l_b == r_b) {\n if (need_to_be_eval[l_b]) {\n init(l_b);\n need_to_be_eval[l_b] = false;\n }\n evaluate(l_b, left[l_b], right[l_b]);\n FOR(i, l, r) partial_query(i, res);\n } else if (l < r) {\n if (need_to_be_eval[l_b]) {\n init(l_b);\n need_to_be_eval[l_b] = false;\n }\n evaluate(l_b, left[l_b], right[l_b]);\n FOR(i, l, right[l_b]) partial_query(i, res);\n FOR(i, l_b + 1, r_b) {\n if (need_to_be_eval[i]) {\n init(i);\n need_to_be_eval[i] = false;\n }\n total_query(i, res);\n }\n if (need_to_be_eval[r_b]) {\n init(r_b);\n need_to_be_eval[r_b] = false;\n }\n evaluate(r_b, left[r_b], right[r_b]);\n FOR(i, left[r_b], r) partial_query(i, res);\n }\n return res;\n }\n};\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::partial_update(int idx, T val) {\n A[idx] += val;\n}\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::total_update(int idx, T val) {\n sumX[idx] += val;\n}\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::partial_query(int idx, T &val) {\n chmin(val, max(A[idx], B[idx]));\n}\n\ntemplate <typename T>\nvoid SqrtDecomposition<T>::total_query(int idx, T &val) {\n int lb = left[idx], ub = right[idx];\n while (ub - lb > 1) {\n int mid = (lb + ub) / 2;\n (A[mid] - B[mid] <= -sumX[idx] ? lb : ub) = mid;\n }\n chmin(val, min(ruiB[idx][lb - left[idx]], lb + 1 < right[idx] ? LINF : ruiA[idx][lb - left[idx] + 1] + sumX[idx]));\n}\n\nint main() {\n int n, q; cin >> n >> q;\n A.resize(n);\n B.resize(n);\n REP(i, n) cin >> A[i] >> B[i];\n SqrtDecomposition<ll> sd(n);\n sumX.assign(sd.b_n, 0);\n ruiA.resize(sd.b_n);\n ruiB.resize(sd.b_n);\n v.resize(sd.b_n);\n REP(i, sd.b_n) {\n int sz = sd.right[i] - sd.left[i];\n ruiA[i].resize(sz);\n ruiB[i].resize(sz);\n v[i].resize(sz);\n iota(ALL(v[i]), sd.left[i]);\n }\n REP(i, sd.b_n) init(i);\n while (q--) {\n int query, l, r; cin >> query >> l >> r; --l; --r;\n if (query == 1) {\n int x; cin >> x;\n sd.update(l, r + 1, x);\n } else if (query == 2) {\n cout << sd.query(l, r + 1, LINF) << '\\n';\n }\n }\n return 0;\n}", "accuracy": 0.2, "time_ms": 1120, "memory_kb": 6372, "score_of_the_acc": -0.5683, "final_rank": 12 } ]
aoj_3120_cpp
Bichrome Tree Connectivity 木が与えられます。 はじめ、すべての頂点は白いです。 白い頂点の色を反転すると黒になり、黒い頂点の色を反転すると白になります。 二種類のクエリを処理してください。 一種類目のクエリでは、頂点 v の色を反転します。 二種類目のクエリでは、白い頂点 v から白い頂点とそれらを結ぶ辺だけを使ってたどり着ける頂点の個数を答えます。 入力 N Q a_1 b_1 a_2 b_2 : a_{n-1} b_{n-1} t_1 v_1 t_2 v_2 : t_q v_q t_i が 1 のとき一種類目のクエリ、 2 のとき二種類目のクエリであることを表す。 出力 ans_1 ans_2 : ans_k 二種類目のクエリに対する答えを順に出力せよ。 制約 1 \leq N,Q \leq 10^5 1 \leq a_i,b_i \leq N 1 \leq t_i \leq 2 1 \leq v_i \leq N 与えられるグラフは木である。 t_i=2 のとき、頂点 v_i は必ず白である。 入力例 10 3 1 2 2 5 2 6 1 4 1 3 3 7 3 8 3 9 9 10 1 3 2 1 2 8 出力例 5 1
[ { "submission_id": "aoj_3120_10936055", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define int long long\n\n#define FOR(I, L, R) for(int I(L) ; I <= (int)R ; ++I)\n#define FOD(I, R, L) for(int I(R) ; I >= (int)L ; --I)\n#define FOA(I, A) for(auto &I : A)\n\n#define print(A,L,R) FOR(OK, L, R){if(A[OK]<=-oo / 10||A[OK]>=oo)cout<<\"- \";else cout<<A[OK]<<' ';}cout<<'\\n';\n#define prints(A) FOA(OK, A){cout<<OK<<' ';}cout << '\\n';\n#define printz(A,L,R) FOR(OK, 0, L){FOR(KO, 0, R){if(A[OK][KO]>-oo&&A[OK][KO]<oo)cout<<A[OK][KO]<<' ';else cout << \"- \";} cout << '\\n';}cout << '\\n';\n\n#define fs first\n#define sd second\n#define ii pair<int,int>\n#define iii pair<int, ii>\n#define all(A) A.begin(), A.end()\n#define quickly cin.tie(0) -> ios_base::sync_with_stdio(0);\n\nconst int N = 1e5 + 5;\nconst int mod = 1e9 + 7;\nconst int oo = 1e18;\n\nint n, q, vt;\nint a[N], b[N], ans[N];\nvector<vector<int>> query[2];\nvector<int> g[N];\n\n/// HLD\nint el;\nint st[N], en[N], sz[N], h[N], e[N];\nint top[N], nxt[N], parent[N];\n\nvoid DFS(int u, int par){\n sz[u] = 1;\n\n FOA(v, g[u]){\n if(v == par){\n continue;\n }\n parent[v] = u;\n h[v] = h[u] + 1;\n DFS(v, u);\n\n sz[u] += sz[v];\n\n if(sz[nxt[u]] < sz[v]){\n nxt[u] = v;\n }\n }\n}\n\nvoid HLD(int u, int par, int tp){\n st[u] = ++el;\n top[u] = tp;\n e[el] = u;\n\n if(nxt[u]){\n HLD(nxt[u], u, tp);\n }\n\n FOA(v, g[u]){\n if(v == par || v == nxt[u]){\n continue;\n }\n HLD(v, u, v);\n }\n\n en[u] = el;\n}\n\nstruct node{\n int mn, mx, cnt, lazy;\n\n node(){mn = oo; mx = -oo; cnt = lazy = 0;}\n node(int _mn, int _cnt){\n mn = mx = _mn;\n cnt = _cnt;\n lazy = 0;\n }\n\n node operator + (const node &t) const{\n node _new;\n\n if(mn == t.mn){\n _new.mn = mn;\n _new.cnt = cnt + t.cnt;\n }\n else if(mn > t.mn){\n _new.mn = t.mn;\n _new.cnt = t.cnt;\n }\n else{\n _new.mn = mn;\n _new.cnt = cnt;\n }\n _new.mx = max(mx, t.mx);\n\n return _new;\n }\n};\n\nstruct Segment_tree{\n node sg[N << 2];\n\n void build(int id, int l, int r){\n sg[id] = node(0, 1);\n\n if(l == r){\n return;\n }\n int mid = (l + r) >> 1;\n\n build(id << 1, l, mid);\n build(id << 1 | 1, mid + 1, r);\n\n sg[id] = sg[id << 1] + sg[id << 1 | 1];\n }\n\n void push_down(int id, int l, int r){\n if(sg[id].lazy){\n int &val = sg[id].lazy;\n\n sg[id << 1].lazy += val;\n sg[id << 1 | 1].lazy += val;\n\n sg[id << 1].mn += val;\n sg[id << 1 | 1].mn += val;\n\n sg[id << 1].mx += val;\n sg[id << 1 | 1].mx += val;\n\n val = 0;\n }\n }\n\n void update(int id, int l, int r, int u, int v, int val){\n if(l > v || r < u){\n return;\n }\n if(u <= l && r <= v){\n sg[id].mn += val;\n sg[id].mx += val;\n sg[id].lazy += val;\n return;\n }\n\n push_down(id, l, r);\n\n int mid = (l + r) >> 1;\n update(id << 1, l, mid, u, v, val);\n update(id << 1 | 1, mid + 1, r, u, v, val);\n\n sg[id] = sg[id << 1] + sg[id << 1 | 1];\n }\n\n node get(int id, int l, int r, int u, int v){\n if(l > v || r < u){\n return node();\n }\n if(u <= l && r <= v){\n return sg[id];\n }\n\n push_down(id, l, r);\n\n int mid = (l + r) >> 1;\n return get(id << 1, l, mid, u, v) + get(id << 1 | 1, mid + 1, r, u, v);\n }\n\n int walk(int id, int l, int r, int u, int v, int k){\n if(l > v || r < u){\n return oo;\n }\n if(l == r){\n return l;\n }\n\n int mid = (l + r) >> 1;\n int res = oo;\n\n push_down(id, l ,r);\n\n if(sg[id << 1].mx >= k){\n res = walk(id << 1, l, mid, u, v, k);\n }\n if(res == oo && sg[id << 1 | 1].mx >= k){\n res = walk(id << 1 | 1, mid + 1, r, u, v, k);\n }\n\n return res;\n }\n} sg;\n\nint farest(int u){\n int res = st[u], pre = st[u];\n int k = sg.get(1, 1, n, st[u], st[u]).mn;\n\n if(k == 0) return 1;\n\n while(top[u] != 1){\n int val = sg.walk(1, 1, n, st[top[u]], st[u], k);\n if(val != oo){\n res = min(res, (val == st[u] ? pre : val + 1));\n }\n else{\n return res;\n }\n\n pre = top[u];\n u = parent[top[u]];\n }\n\n int val = sg.walk(1, 1, n, 1, st[u], k);\n\n res = min(res, (val == st[u] ? pre : val + 1));\n\n return res;\n}\n\n\nsigned main(){ quickly\n cin >> n >> q;\n\n FOR(i, 2, n){\n int u, v;\n cin >> u >> v;\n\n g[u].push_back(v);\n g[v].push_back(u);\n }\n\n DFS(1, -1);\n HLD(1, -1, 1);\n\n sg.build(1, 1, n);\n\n FOR(i, 1, q){\n int type, u;\n cin >> type >> u;\n\n if(type == 1){\n int h = (a[u] == 0 ? 1 : -1);\n sg.update(1, 1, n, st[u], en[u], h);\n a[u] ^= 1;\n }\n else{\n int x = e[farest(u)];\n cout << sg.get(1, 1, n, st[x], en[x]).cnt << '\\n';\n }\n }\n}", "accuracy": 0.2, "time_ms": 80, "memory_kb": 30428, "score_of_the_acc": -1, "final_rank": 20 }, { "submission_id": "aoj_3120_10663426", "code_snippet": "#line 1 \"library/Template/template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T, typename S = T> S SUM(const vector<T> &a) {\n return accumulate(ALL(a), S(0));\n}\ntemplate <typename S, typename T = S> S POW(S a, T b) {\n S ret = 1, base = a;\n for (;;) {\n if (b & 1)\n ret *= base;\n b >>= 1;\n if (b == 0)\n break;\n base *= base;\n }\n return ret;\n}\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define debug 1\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define debug 0\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n#line 2 \"library/Utility/fastio.hpp\"\n#include <unistd.h>\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n#line 2 \"library/Utility/random.hpp\"\n\nnamespace Random {\nmt19937_64 randgen(chrono::steady_clock::now().time_since_epoch().count());\nusing u64 = unsigned long long;\nu64 get() {\n return randgen();\n}\ntemplate <typename T> T get(T L) { // [0,L]\n return get() % (L + 1);\n}\ntemplate <typename T> T get(T L, T R) { // [L,R]\n return get(R - L) + L;\n}\ndouble uniform() {\n return double(get(1000000000)) / 1000000000;\n}\nstring str(int n) {\n string ret;\n rep(i, 0, n) ret += get('a', 'z');\n return ret;\n}\ntemplate <typename Iter> void shuffle(Iter first, Iter last) {\n if (first == last)\n return;\n int len = 1;\n for (auto it = first + 1; it != last; it++) {\n len++;\n int j = get(0, len - 1);\n if (j != len - 1)\n iter_swap(it, first + j);\n }\n}\ntemplate <typename T> vector<T> select(int n, T L, T R) { // [L,R]\n if (n * 2 >= R - L + 1) {\n vector<T> ret(R - L + 1);\n iota(ALL(ret), L);\n shuffle(ALL(ret));\n ret.resize(n);\n return ret;\n } else {\n unordered_set<T> used;\n vector<T> ret;\n while (SZ(used) < n) {\n T x = get(L, R);\n if (!used.count(x)) {\n used.insert(x);\n ret.push_back(x);\n }\n }\n return ret;\n }\n}\n\nvoid relabel(int n, vector<pair<int, int>> &es) {\n shuffle(ALL(es));\n vector<int> ord(n);\n iota(ALL(ord), 0);\n shuffle(ALL(ord));\n for (auto &[u, v] : es)\n u = ord[u], v = ord[v];\n}\ntemplate <bool directed, bool multi, bool self>\nvector<pair<int, int>> genGraph(int n, int m) {\n vector<pair<int, int>> cand, es;\n rep(u, 0, n) rep(v, 0, n) {\n if (!self and u == v)\n continue;\n if (!directed and u > v)\n continue;\n cand.push_back({u, v});\n }\n if (m == -1)\n m = get(SZ(cand));\n // chmin(m, SZ(cand));\n vector<int> ord;\n if (multi)\n rep(_, 0, m) ord.push_back(get(SZ(cand) - 1));\n else {\n ord = select(m, 0, SZ(cand) - 1);\n }\n for (auto &i : ord)\n es.push_back(cand[i]);\n relabel(n, es);\n return es;\n}\nvector<pair<int, int>> genTree(int n) {\n vector<pair<int, int>> es;\n rep(i, 1, n) es.push_back({get(i - 1), i});\n relabel(n, es);\n return es;\n}\n}; // namespace Random\n\n/**\n * @brief Random\n */\n#line 4 \"sol.cpp\"\n\n#line 2 \"library/DataStructure/unionfind.hpp\"\n\nstruct UnionFind{\n vector<int> par; int n;\n UnionFind(){}\n UnionFind(int _n):par(_n,-1),n(_n){}\n int root(int x){return par[x]<0?x:par[x]=root(par[x]);}\n bool same(int x,int y){return root(x)==root(y);}\n int size(int x){return -par[root(x)];}\n bool unite(int x,int y){\n x=root(x),y=root(y); if(x==y)return false;\n if(size(x)>size(y))swap(x,y);\n par[y]+=par[x]; par[x]=y; n--; return true;\n }\n};\n\n/**\n * @brief Union Find\n */\n#line 6 \"sol.cpp\"\n\nint main() {\n int n, Q;\n read(n, Q);\n vector g(n, vector<int>());\n rep(_, 0, n - 1) {\n int x, y;\n read(x, y);\n x--, y--;\n g[x].push_back(y);\n g[y].push_back(x);\n }\n using P = pair<int, int>;\n vector<P> que;\n rep(i, 0, Q) {\n int t, v;\n read(t, v);\n v--;\n que.push_back({t, v});\n }\n\n int SQ = max<int>(1, sqrtl(Q));\n // int SQ = Q;\n int L = 0;\n vector<int> col(n); // 0:white\n vector<int> out;\n while (L < Q) {\n int R = min(Q, L + SQ);\n\n vector<int> mark(n);\n rep(i, L, R) {\n mark[que[i].second] = 1;\n }\n UnionFind uni(n); // connect unused white\n rep(v, 0, n) if (!mark[v] and col[v] == 0) {\n for (auto &u : g[v])\n if (!mark[u] and col[u] == 0) {\n uni.unite(u, v);\n }\n }\n vector tree(n, vector<int>());\n vector<int> cnt(n), can(n);\n rep(v, 0, n) {\n if (mark[v]) {\n cnt[v] = !col[v];\n can[v] = 1;\n for (auto &u : g[v]) {\n if (mark[u]) {\n tree[u].push_back(v);\n } else if (col[u] == 0) {\n int rt = uni.root(u);\n tree[v].push_back(rt);\n tree[rt].push_back(v);\n }\n }\n } else if (col[v] == 0 and uni.root(v) == v) {\n cnt[v] = uni.size(v);\n can[v] = 1;\n }\n }\n rep(v, 0, n) if (!mark[v] and col[v] == 0 and uni.root(v) == v) {\n if (SZ(tree[v]) == 1) {\n cnt[tree[v][0]] += cnt[v];\n can[v] = 0;\n }\n }\n\n auto dfs = [&](auto &dfs, int v, int p) -> int {\n int ret = cnt[v];\n for (auto &to : tree[v])\n if (to != p) {\n if (col[to] == 1)\n continue;\n if (can[to]) {\n ret += dfs(dfs, to, v);\n }\n }\n return ret;\n };\n\n rep(i, L, R) {\n auto [ty, v] = que[i];\n if (ty == 1) {\n if (col[v] == 0)\n cnt[v]--;\n else\n cnt[v]++;\n col[v] ^= 1;\n } else {\n int ret = dfs(dfs, v, -1);\n out.push_back(ret);\n }\n }\n\n L = R;\n }\n rep(i, 0, SZ(out)) print(out[i]);\n return 0;\n}", "accuracy": 1, "time_ms": 1080, "memory_kb": 14616, "score_of_the_acc": -1.0561, "final_rank": 6 }, { "submission_id": "aoj_3120_10663424", "code_snippet": "#line 1 \"library/Template/template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T, typename S = T> S SUM(const vector<T> &a) {\n return accumulate(ALL(a), S(0));\n}\ntemplate <typename S, typename T = S> S POW(S a, T b) {\n S ret = 1, base = a;\n for (;;) {\n if (b & 1)\n ret *= base;\n b >>= 1;\n if (b == 0)\n break;\n base *= base;\n }\n return ret;\n}\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define debug 1\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define debug 0\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n#line 2 \"library/Utility/fastio.hpp\"\n#include <unistd.h>\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n#line 2 \"library/Utility/random.hpp\"\n\nnamespace Random {\nmt19937_64 randgen(chrono::steady_clock::now().time_since_epoch().count());\nusing u64 = unsigned long long;\nu64 get() {\n return randgen();\n}\ntemplate <typename T> T get(T L) { // [0,L]\n return get() % (L + 1);\n}\ntemplate <typename T> T get(T L, T R) { // [L,R]\n return get(R - L) + L;\n}\ndouble uniform() {\n return double(get(1000000000)) / 1000000000;\n}\nstring str(int n) {\n string ret;\n rep(i, 0, n) ret += get('a', 'z');\n return ret;\n}\ntemplate <typename Iter> void shuffle(Iter first, Iter last) {\n if (first == last)\n return;\n int len = 1;\n for (auto it = first + 1; it != last; it++) {\n len++;\n int j = get(0, len - 1);\n if (j != len - 1)\n iter_swap(it, first + j);\n }\n}\ntemplate <typename T> vector<T> select(int n, T L, T R) { // [L,R]\n if (n * 2 >= R - L + 1) {\n vector<T> ret(R - L + 1);\n iota(ALL(ret), L);\n shuffle(ALL(ret));\n ret.resize(n);\n return ret;\n } else {\n unordered_set<T> used;\n vector<T> ret;\n while (SZ(used) < n) {\n T x = get(L, R);\n if (!used.count(x)) {\n used.insert(x);\n ret.push_back(x);\n }\n }\n return ret;\n }\n}\n\nvoid relabel(int n, vector<pair<int, int>> &es) {\n shuffle(ALL(es));\n vector<int> ord(n);\n iota(ALL(ord), 0);\n shuffle(ALL(ord));\n for (auto &[u, v] : es)\n u = ord[u], v = ord[v];\n}\ntemplate <bool directed, bool multi, bool self>\nvector<pair<int, int>> genGraph(int n, int m) {\n vector<pair<int, int>> cand, es;\n rep(u, 0, n) rep(v, 0, n) {\n if (!self and u == v)\n continue;\n if (!directed and u > v)\n continue;\n cand.push_back({u, v});\n }\n if (m == -1)\n m = get(SZ(cand));\n // chmin(m, SZ(cand));\n vector<int> ord;\n if (multi)\n rep(_, 0, m) ord.push_back(get(SZ(cand) - 1));\n else {\n ord = select(m, 0, SZ(cand) - 1);\n }\n for (auto &i : ord)\n es.push_back(cand[i]);\n relabel(n, es);\n return es;\n}\nvector<pair<int, int>> genTree(int n) {\n vector<pair<int, int>> es;\n rep(i, 1, n) es.push_back({get(i - 1), i});\n relabel(n, es);\n return es;\n}\n}; // namespace Random\n\n/**\n * @brief Random\n */\n#line 4 \"sol.cpp\"\n\n#line 2 \"library/DataStructure/unionfind.hpp\"\n\nstruct UnionFind{\n vector<int> par; int n;\n UnionFind(){}\n UnionFind(int _n):par(_n,-1),n(_n){}\n int root(int x){return par[x]<0?x:par[x]=root(par[x]);}\n bool same(int x,int y){return root(x)==root(y);}\n int size(int x){return -par[root(x)];}\n bool unite(int x,int y){\n x=root(x),y=root(y); if(x==y)return false;\n if(size(x)>size(y))swap(x,y);\n par[y]+=par[x]; par[x]=y; n--; return true;\n }\n};\n\n/**\n * @brief Union Find\n */\n#line 6 \"sol.cpp\"\n\nint main() {\n int n, Q;\n read(n, Q);\n vector g(n, vector<int>());\n rep(_, 0, n - 1) {\n int x, y;\n read(x, y);\n x--, y--;\n g[x].push_back(y);\n g[y].push_back(x);\n }\n using P = pair<int, int>;\n vector<P> que;\n rep(i, 0, Q) {\n int t, v;\n read(t, v);\n v--;\n que.push_back({t, v});\n }\n\n int SQ = max<int>(1, sqrtl(Q));\n // int SQ = Q;\n int L = 0;\n vector<int> col(n); // 0:white\n vector<int> out;\n while (L < Q) {\n int R = min(Q, L + SQ);\n\n vector<int> mark(n);\n rep(i, L, R) {\n mark[que[i].second] = 1;\n }\n UnionFind uni(n);\n rep(v, 0, n) if (!mark[v] and col[v] == 0) {\n for (auto &u : g[v])\n if (!mark[u] and col[u] == 0) {\n uni.unite(u, v);\n }\n }\n vector tree(n, vector<int>());\n vector<int> cnt(n), can(n);\n rep(v, 0, n) {\n if (mark[v]) {\n cnt[v] = 1;\n can[v] = 1;\n for (auto &u : g[v]) {\n if (mark[u]) {\n tree[u].push_back(v);\n } else {\n int rt = uni.root(u);\n tree[v].push_back(rt);\n tree[rt].push_back(v);\n }\n }\n } else if (col[v] == 0 and uni.root(v) == v) {\n cnt[v] = uni.size(v);\n can[v] = 1;\n }\n }\n rep(v, 0, n) if (!mark[v] and col[v] == 0 and uni.root(v) == v) {\n if (SZ(tree[v]) == 1) {\n cnt[tree[v][0]] += cnt[v];\n can[v] = 0;\n }\n }\n\n auto dfs = [&](auto &dfs, int v, int p) -> int {\n int ret = cnt[v];\n for (auto &to : tree[v])\n if (to != p) {\n if (col[to] == 1)\n continue;\n if (can[to]) {\n ret += dfs(dfs, to, v);\n }\n }\n return ret;\n };\n\n rep(i, L, R) {\n auto [ty, v] = que[i];\n if (ty == 1) {\n if (col[v] == 0)\n cnt[v]--;\n else\n cnt[v]++;\n col[v] ^= 1;\n } else {\n int ret = dfs(dfs, v, -1);\n out.push_back(ret);\n }\n }\n\n L = R;\n }\n rep(i, 0, SZ(out)) print(out[i]);\n return 0;\n}", "accuracy": 0.2, "time_ms": 1020, "memory_kb": 14564, "score_of_the_acc": -0.993, "final_rank": 19 }, { "submission_id": "aoj_3120_10663418", "code_snippet": "#line 1 \"library/Template/template.hpp\"\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)\n#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)\n#define ALL(v) (v).begin(), (v).end()\n#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())\n#define SZ(v) (int)v.size()\n#define MIN(v) *min_element(ALL(v))\n#define MAX(v) *max_element(ALL(v))\n#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())\n#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())\n\nusing uint = unsigned int;\nusing ll = long long int;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\nconst int inf = 0x3fffffff;\nconst ll INF = 0x1fffffffffffffff;\n\ntemplate <typename T, typename S = T> S SUM(const vector<T> &a) {\n return accumulate(ALL(a), S(0));\n}\ntemplate <typename S, typename T = S> S POW(S a, T b) {\n S ret = 1, base = a;\n for (;;) {\n if (b & 1)\n ret *= base;\n b >>= 1;\n if (b == 0)\n break;\n base *= base;\n }\n return ret;\n}\ntemplate <typename T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <typename T, typename U> T ceil(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? (x + y - 1) / y : x / y);\n}\ntemplate <typename T, typename U> T floor(T x, U y) {\n assert(y != 0);\n if (y < 0)\n x = -x, y = -y;\n return (x > 0 ? x / y : (x - y + 1) / y);\n}\ntemplate <typename T> int popcnt(T x) {\n return __builtin_popcountll(x);\n}\ntemplate <typename T> int topbit(T x) {\n return (x == 0 ? -1 : 63 - __builtin_clzll(x));\n}\ntemplate <typename T> int lowbit(T x) {\n return (x == 0 ? -1 : __builtin_ctzll(x));\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << \"P(\" << p.first << \", \" << p.second << \")\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {\n os << \"{\";\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i] << (i + 1 == vec.size() ? \"\" : \", \");\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n os << \"{\";\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << \"(\" << itr->first << \", \" << itr->second << \")\";\n itr++;\n if (itr != map_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {\n os << \"{\";\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end())\n os << \", \";\n itr--;\n }\n os << \"}\";\n return os;\n}\n#ifdef LOCAL\n#define debug 1\n#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)\n#else\n#define debug 0\n#define show(...) true\n#endif\ntemplate <typename T> void _show(int i, T name) {\n cerr << '\\n';\n}\ntemplate <typename T1, typename T2, typename... T3>\nvoid _show(int i, const T1 &a, const T2 &b, const T3 &...c) {\n for (; a[i] != ',' && a[i] != '\\0'; i++)\n cerr << a[i];\n cerr << \":\" << b << \" \";\n _show(i + 1, a, c...);\n}\n#line 2 \"library/Utility/fastio.hpp\"\n#include <unistd.h>\nnamespace fastio {\nstatic constexpr uint32_t SZ = 1 << 17;\nchar ibuf[SZ];\nchar obuf[SZ];\nchar out[100];\n// pointer of ibuf, obuf\n\nuint32_t pil = 0, pir = 0, por = 0;\n\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\n\ninline void load() {\n memmove(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);\n pil = 0;\n if (pir < SZ)\n ibuf[pir++] = '\\n';\n}\n\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\n\nvoid rd(char &c) {\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n}\n\nvoid rd(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir)\n load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir)\n load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\n\ntemplate <typename T> void rd_real(T &x) {\n string s;\n rd(s);\n x = stod(s);\n}\n\ntemplate <typename T> void rd_integer(T &x) {\n if (pil + 100 > pir)\n load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') {\n minus = 1, c = ibuf[pil++];\n }\n }\n x = 0;\n while ('0' <= c) {\n x = x * 10 + (c & 15), c = ibuf[pil++];\n }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus)\n x = -x;\n }\n}\n\nvoid rd(int &x) {\n rd_integer(x);\n}\nvoid rd(ll &x) {\n rd_integer(x);\n}\nvoid rd(i128 &x) {\n rd_integer(x);\n}\nvoid rd(uint &x) {\n rd_integer(x);\n}\nvoid rd(ull &x) {\n rd_integer(x);\n}\nvoid rd(u128 &x) {\n rd_integer(x);\n}\nvoid rd(double &x) {\n rd_real(x);\n}\nvoid rd(long double &x) {\n rd_real(x);\n}\n\ntemplate <class T, class U> void rd(pair<T, U> &p) {\n return rd(p.first), rd(p.second);\n}\ntemplate <size_t N = 0, typename T> void rd_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd(x);\n rd_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void rd(tuple<T...> &tpl) {\n rd_tuple(tpl);\n}\n\ntemplate <size_t N = 0, typename T> void rd(array<T, N> &x) {\n for (auto &d : x)\n rd(d);\n}\ntemplate <class T> void rd(vector<T> &x) {\n for (auto &d : x)\n rd(d);\n}\n\nvoid read() {}\ntemplate <class H, class... T> void read(H &h, T &...t) {\n rd(h), read(t...);\n}\n\nvoid wt(const char c) {\n if (por == SZ)\n flush();\n obuf[por++] = c;\n}\nvoid wt(const string s) {\n for (char c : s)\n wt(c);\n}\nvoid wt(const char *s) {\n size_t len = strlen(s);\n for (size_t i = 0; i < len; i++)\n wt(s[i]);\n}\n\ntemplate <typename T> void wt_integer(T x) {\n if (por > SZ - 100)\n flush();\n if (x < 0) {\n obuf[por++] = '-', x = -x;\n }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\n\ntemplate <typename T> void wt_real(T x) {\n ostringstream oss;\n oss << fixed << setprecision(15) << double(x);\n string s = oss.str();\n wt(s);\n}\n\nvoid wt(int x) {\n wt_integer(x);\n}\nvoid wt(ll x) {\n wt_integer(x);\n}\nvoid wt(i128 x) {\n wt_integer(x);\n}\nvoid wt(uint x) {\n wt_integer(x);\n}\nvoid wt(ull x) {\n wt_integer(x);\n}\nvoid wt(u128 x) {\n wt_integer(x);\n}\nvoid wt(double x) {\n wt_real(x);\n}\nvoid wt(long double x) {\n wt_real(x);\n}\n\ntemplate <class T, class U> void wt(const pair<T, U> val) {\n wt(val.first);\n wt(' ');\n wt(val.second);\n}\ntemplate <size_t N = 0, typename T> void wt_tuple(const T t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) {\n wt(' ');\n }\n const auto x = std::get<N>(t);\n wt(x);\n wt_tuple<N + 1>(t);\n }\n}\ntemplate <class... T> void wt(tuple<T...> tpl) {\n wt_tuple(tpl);\n}\ntemplate <class T, size_t S> void wt(const array<T, S> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\ntemplate <class T> void wt(const vector<T> val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i)\n wt(' ');\n wt(val[i]);\n }\n}\n\nvoid print() {\n wt('\\n');\n}\ntemplate <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {\n wt(head);\n if (sizeof...(Tail))\n wt(' ');\n print(forward<Tail>(tail)...);\n}\nvoid __attribute__((destructor)) _d() {\n flush();\n}\n} // namespace fastio\n\nusing fastio::flush;\nusing fastio::print;\nusing fastio::read;\n\ninline void first(bool i = true) {\n print(i ? \"first\" : \"second\");\n}\ninline void Alice(bool i = true) {\n print(i ? \"Alice\" : \"Bob\");\n}\ninline void Takahashi(bool i = true) {\n print(i ? \"Takahashi\" : \"Aoki\");\n}\ninline void yes(bool i = true) {\n print(i ? \"yes\" : \"no\");\n}\ninline void Yes(bool i = true) {\n print(i ? \"Yes\" : \"No\");\n}\ninline void No() {\n print(\"No\");\n}\ninline void YES(bool i = true) {\n print(i ? \"YES\" : \"NO\");\n}\ninline void NO() {\n print(\"NO\");\n}\ninline void Yay(bool i = true) {\n print(i ? \"Yay!\" : \":(\");\n}\ninline void Possible(bool i = true) {\n print(i ? \"Possible\" : \"Impossible\");\n}\ninline void POSSIBLE(bool i = true) {\n print(i ? \"POSSIBLE\" : \"IMPOSSIBLE\");\n}\n\n/**\n * @brief Fast IO\n */\n#line 2 \"library/Utility/random.hpp\"\n\nnamespace Random {\nmt19937_64 randgen(chrono::steady_clock::now().time_since_epoch().count());\nusing u64 = unsigned long long;\nu64 get() {\n return randgen();\n}\ntemplate <typename T> T get(T L) { // [0,L]\n return get() % (L + 1);\n}\ntemplate <typename T> T get(T L, T R) { // [L,R]\n return get(R - L) + L;\n}\ndouble uniform() {\n return double(get(1000000000)) / 1000000000;\n}\nstring str(int n) {\n string ret;\n rep(i, 0, n) ret += get('a', 'z');\n return ret;\n}\ntemplate <typename Iter> void shuffle(Iter first, Iter last) {\n if (first == last)\n return;\n int len = 1;\n for (auto it = first + 1; it != last; it++) {\n len++;\n int j = get(0, len - 1);\n if (j != len - 1)\n iter_swap(it, first + j);\n }\n}\ntemplate <typename T> vector<T> select(int n, T L, T R) { // [L,R]\n if (n * 2 >= R - L + 1) {\n vector<T> ret(R - L + 1);\n iota(ALL(ret), L);\n shuffle(ALL(ret));\n ret.resize(n);\n return ret;\n } else {\n unordered_set<T> used;\n vector<T> ret;\n while (SZ(used) < n) {\n T x = get(L, R);\n if (!used.count(x)) {\n used.insert(x);\n ret.push_back(x);\n }\n }\n return ret;\n }\n}\n\nvoid relabel(int n, vector<pair<int, int>> &es) {\n shuffle(ALL(es));\n vector<int> ord(n);\n iota(ALL(ord), 0);\n shuffle(ALL(ord));\n for (auto &[u, v] : es)\n u = ord[u], v = ord[v];\n}\ntemplate <bool directed, bool multi, bool self>\nvector<pair<int, int>> genGraph(int n, int m) {\n vector<pair<int, int>> cand, es;\n rep(u, 0, n) rep(v, 0, n) {\n if (!self and u == v)\n continue;\n if (!directed and u > v)\n continue;\n cand.push_back({u, v});\n }\n if (m == -1)\n m = get(SZ(cand));\n // chmin(m, SZ(cand));\n vector<int> ord;\n if (multi)\n rep(_, 0, m) ord.push_back(get(SZ(cand) - 1));\n else {\n ord = select(m, 0, SZ(cand) - 1);\n }\n for (auto &i : ord)\n es.push_back(cand[i]);\n relabel(n, es);\n return es;\n}\nvector<pair<int, int>> genTree(int n) {\n vector<pair<int, int>> es;\n rep(i, 1, n) es.push_back({get(i - 1), i});\n relabel(n, es);\n return es;\n}\n}; // namespace Random\n\n/**\n * @brief Random\n */\n#line 4 \"sol.cpp\"\n\n#line 2 \"library/DataStructure/unionfind.hpp\"\n\nstruct UnionFind{\n vector<int> par; int n;\n UnionFind(){}\n UnionFind(int _n):par(_n,-1),n(_n){}\n int root(int x){return par[x]<0?x:par[x]=root(par[x]);}\n bool same(int x,int y){return root(x)==root(y);}\n int size(int x){return -par[root(x)];}\n bool unite(int x,int y){\n x=root(x),y=root(y); if(x==y)return false;\n if(size(x)>size(y))swap(x,y);\n par[y]+=par[x]; par[x]=y; n--; return true;\n }\n};\n\n/**\n * @brief Union Find\n */\n#line 6 \"sol.cpp\"\n\nint main() {\n int n, Q;\n read(n, Q);\n vector g(n, vector<int>());\n rep(_, 0, n - 1) {\n int x, y;\n read(x, y);\n x--, y--;\n g[x].push_back(y);\n g[y].push_back(x);\n }\n using P = pair<int, int>;\n vector<P> que;\n rep(i, 0, Q) {\n int t, v;\n read(t, v);\n v--;\n que.push_back({t, v});\n }\n\n int SQ = max<int>(1, sqrtl(Q));\n int L = 0;\n vector<int> col(n); // 0:white\n vector<int> out;\n while (L < Q) {\n int R = min(Q, L + SQ);\n\n vector<int> mark(n);\n rep(i, L, R) {\n mark[que[i].second] = 1;\n }\n UnionFind uni(n);\n rep(v, 0, n) if (!mark[v] and col[v] == 0) {\n for (auto &u : g[v])\n if (!mark[u] and col[u] == 0) {\n uni.unite(u, v);\n }\n }\n vector tree(n, vector<int>());\n vector<int> cnt(n), can(n);\n rep(v, 0, n) {\n if (mark[v]) {\n cnt[v] = 1;\n can[v] = 1;\n for (auto &u : g[v]) {\n if (mark[u]) {\n tree[u].push_back(v);\n } else if (col[u] == 0) {\n int rt = uni.root(u);\n tree[v].push_back(rt);\n tree[rt].push_back(v);\n }\n }\n } else if (col[v] == 0 and uni.root(v) == v) {\n cnt[v] = uni.size(v);\n can[v] = 1;\n }\n }\n rep(v, 0, n) if (!mark[v] and col[v] == 0 and uni.root(v) == v) {\n if (SZ(tree[v]) == 1) {\n cnt[tree[v][0]] += cnt[v];\n can[v] = 0;\n }\n }\n\n auto dfs = [&](auto &dfs, int v, int p) -> int {\n int ret = cnt[v];\n for (auto &to : tree[v])\n if (to != p) {\n if (col[to] == 1)\n continue;\n if (can[to]) {\n ret += dfs(dfs, to, v);\n }\n }\n return ret;\n };\n\n rep(i, L, R) {\n auto [ty, v] = que[i];\n if (ty == 1) {\n if (col[v] == 0)\n cnt[v]--;\n else\n cnt[v]++;\n col[v] ^= 1;\n } else {\n int ret = dfs(dfs, v, -1);\n out.push_back(ret);\n }\n }\n\n L = R;\n }\n rep(i, 0, SZ(out)) print(out[i]);\n return 0;\n}", "accuracy": 0.2, "time_ms": 1020, "memory_kb": 14372, "score_of_the_acc": -0.9815, "final_rank": 18 }, { "submission_id": "aoj_3120_9243475", "code_snippet": "#pragma GCC optimize(\"O3\")\n#ifdef t9unkubj\n#include \"debug.cpp\"\n#else\n#undef _GLIBCXX_DEBUG\n#define dbg(...) 199958\n#endif\n\nusing namespace std;\n#include<bits/stdc++.h>\nusing uint=unsigned;\nusing ll=long long;\nusing ull=unsigned long long;\nusing ld=long double;\nusing pii=pair<int,int>;\nusing pll=pair<ll,ll>;\ntemplate<class T>using vc=vector<T>;\ntemplate<class T>using vvc=vc<vc<T>>;\ntemplate<class T>using vvvc=vvc<vc<T>>;\nusing vi=vc<int>;\nusing vvi=vc<vi>;\nusing vvvi=vc<vvi>;\nusing vl=vc<ll>;\nusing vvl=vc<vl>;\nusing vvvl=vc<vvl>;\ntemplate<class T>using smpq=priority_queue<T,vector<T>,greater<T>>;\ntemplate<class T>using bipq=priority_queue<T>;\n#define rep(i,n) for(ll (i)=0;i<(ll)(n);i++)\n#define REP(i,j,n) for(ll (i)=(j);i<(ll)(n);i++)\n#define DREP(i,n,m) for(ll (i)=(n);i>=(m);i--)\n#define drep(i,n) for(ll i=((n)-1);i>=0;i--)\n#define all(x) x.begin(),x.end()\n#define rall(x) x.rbegin(),x.rend()\n#define mp make_pair\n#define mt make_tuple\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define is insert\n#define bg begin()\n#define ed end()\nvoid scan(int&a) { cin >> a; }\nvoid scan(ll&a) { cin >> a; }\nvoid scan(string&a) { cin >> a; }\nvoid scan(char&a) { cin >> a; }\nvoid scan(uint&a) { cin >> a; }\nvoid scan(ull&a) { cin >> a; }\nvoid scan(bool&a) { cin >> a; }\nvoid scan(ld&a){ cin>> a;}\ntemplate<class T> void scan(vector<T>&a) { for(auto&x:a) scan(x); }\nvoid read() {}\ntemplate<class Head, class... Tail> void read(Head&head, Tail&... tail) { scan(head); read(tail...); }\n#define INT(...) int __VA_ARGS__; read(__VA_ARGS__);\n#define LL(...) ll __VA_ARGS__; read(__VA_ARGS__);\n#define ULL(...) ull __VA_ARGS__; read(__VA_ARGS__);\n#define STR(...) string __VA_ARGS__; read(__VA_ARGS__);\n#define CHR(...) char __VA_ARGS__; read(__VA_ARGS__);\n#define DBL(...) double __VA_ARGS__; read(__VA_ARGS__);\n#define LD(...) ld __VA_ARGS__; read(__VA_ARGS__);\n#define VC(type, name, ...) vector<type> name(__VA_ARGS__); read(name);\n#define VVC(type, name, size, ...) vector<vector<type>> name(size, vector<type>(__VA_ARGS__)); read(name);\nvoid print(int a) { cout << a; }\nvoid print(ll a) { cout << a; }\nvoid print(string a) { cout << a; }\nvoid print(char a) { cout << a; }\nvoid print(uint a) { cout << a; }\nvoid print(bool a) { cout << a; }\nvoid print(ull a) { cout << a; }\nvoid print(ld a){ cout<< a; }\ntemplate<class T> void print(vector<T>a) { for(int i=0;i<(int)a.size();i++){if(i)cout<<\" \";print(a[i]);}cout<<endl;}\nvoid PRT() { cout <<endl; return ; }\ntemplate<class T> void PRT(T a) { print(a); cout <<endl; return; }\ntemplate<class Head, class... Tail> void PRT(Head head, Tail ... tail) { print(head); cout << \" \"; PRT(tail...); return; }\ntemplate<class T,class F>\nbool chmin(T &x, F y){\n if(x>y){\n x=y;\n return true;\n }\n return false;\n}\ntemplate<class T, class F>\nbool chmax(T &x, F y){\n if(x<y){\n x=y;\n return true;\n }\n return false;\n}\nvoid YesNo(bool b){\n cout<<(b?\"Yes\":\"No\")<<endl;\n}\nvoid Yes(){\n cout<<\"Yes\"<<endl;\n}\nvoid No(){\n cout<<\"No\"<<endl;\n}\ntemplate<class T>\nint popcount(T n){\n return __builtin_popcount(n);\n}\ntemplate<class T>\nT sum(vc<T>&a){\n return accumulate(all(a),T(0));\n}\ntemplate<class T>\nT max(vc<T>&a){\n return *max_element(all(a));\n}\ntemplate<class T>\nT min(vc<T>&a){\n return *min_element(all(a));\n}\ntemplate<class T>\nvoid unique(vc<T>&a){\n a.erase(unique(all(a)),a.end());\n}\nvvi readgraph(int n,int m,int off = -1){\n vvi g(n);\n rep(i, m){\n int u,v;\n cin>>u>>v;\n u+=off,v+=off;\n g[u].push_back(v);\n g[v].push_back(u);\n }\n return g;\n}\nvvi readtree(int n,int off=-1){\n return readgraph(n,n-1,off);\n}\ntemplate<class T>\nvc<T> presum(vc<T> &a){\n vc<T> ret(a.size()+1);\n rep(i,a.size())ret[i+1]=ret[i]+a[i];\n return ret;\n}\ntemplate<class T, class F>\nvc<T> &operator+=(vc<T> &a,F b){\n for (auto&v:a)v += b;\n return a;\n}\ntemplate<class T, class F>\nvc<T> &operator-=(vc<T>&a,F b){\n for (auto&v:a)v-=b;\n return a;\n}\ntemplate<class T, class F>\nvc<T> &operator*=(vc<T>&a,F b){\n for (auto&v:a)v*=b;\n return a;\n}\ndouble pass_time=0;\nvoid solve(){\n INT(n,q);\n vvi g=readtree(n);\n vi t(q),v(q);\n rep(i,q)cin>>t[i]>>v[i];\n v-=1,t-=1;\n const int B=sqrt(q)+1;\n int si=(q+B-1)/B;\n vi col(n,1);\n for(int i=0;i<si;i++){\n int l=i*B;\n int r=min(q,l+B);\n vi ask(n);\n REP(i,l,r){\n ask[v[i]]=1;\n }\n vvi newg(n);\n vi cnt=col;//圧縮したときの頂点がもつ白頂点の数\n vi seen(n);\n auto compress=[&](int i){\n auto dfs=[&](auto&dfs,int u,int v)->int{\n seen[u]=1;\n int res=1;\n for(auto x:g[u]){\n if(x==v)continue;\n if(!ask[x]){\n if(!seen[x]&&col[x])res+=dfs(dfs,x,u);\n }else{\n newg[i].pb(x);\n newg[x].pb(i);\n }\n }return res;\n };return dfs(dfs,i,-1);\n };\n vi vs;\n rep(i,n){\n if(!seen[i]&&!ask[i]&&col[i]){\n vs.pb(i);\n cnt[i]=compress(i);\n }else if(ask[i]){\n for(auto x:g[i]){\n if(ask[x])newg[x].pb(i);\n }\n }\n }\n for(auto&x:vs)ask[x]=1;\n rep(i,n){\n if(seen[i]&&newg[i].size()==1){\n cnt[newg[i][0]]+=cnt[i];\n cnt[i]=0; \n ask[i]=0;\n }\n }\n auto dfs=[&](auto&dfs,int u,int v)->int{\n int res=cnt[u];\n for(auto x:newg[u]){\n if(x==v)continue;\n if(ask[x]&&col[x]){\n res+=dfs(dfs,x,u);\n }\n }\n return res;\n };\n for(int i=l;i<r;i++){\n if(t[i]==0){ \n if(col[v[i]])cnt[v[i]]--;\n else cnt[v[i]]++;\n col[v[i]]^=1;\n }else{\n PRT(dfs(dfs,v[i],-1));\n }\n }\n }\n}\nsigned main(){\n #ifdef t9unkubj\n freopen(\"input.txt\", \"r\", stdin);\n freopen(\"output.txt\", \"w\", stdout);\n #endif\n cin.tie(0)->sync_with_stdio(0);\n pass_time=clock();\n int t=1;\n //cin>>t;\n while(t--)solve();\n pass_time=clock()-pass_time;\n dbg(pass_time/CLOCKS_PER_SEC);\n}", "accuracy": 1, "time_ms": 1020, "memory_kb": 13756, "score_of_the_acc": -0.9448, "final_rank": 5 }, { "submission_id": "aoj_3120_9243454", "code_snippet": "#pragma GCC optimize(\"O3\")\n#ifdef t9unkubj\n#include \"debug.cpp\"\n#else\n#undef _GLIBCXX_DEBUG\n#define dbg(...) 199958\n#endif\n\nusing namespace std;\n#include<bits/stdc++.h>\nusing uint=unsigned;\nusing ll=long long;\nusing ull=unsigned long long;\nusing ld=long double;\nusing pii=pair<int,int>;\nusing pll=pair<ll,ll>;\ntemplate<class T>using vc=vector<T>;\ntemplate<class T>using vvc=vc<vc<T>>;\ntemplate<class T>using vvvc=vvc<vc<T>>;\nusing vi=vc<int>;\nusing vvi=vc<vi>;\nusing vvvi=vc<vvi>;\nusing vl=vc<ll>;\nusing vvl=vc<vl>;\nusing vvvl=vc<vvl>;\ntemplate<class T>using smpq=priority_queue<T,vector<T>,greater<T>>;\ntemplate<class T>using bipq=priority_queue<T>;\n#define rep(i,n) for(ll (i)=0;i<(ll)(n);i++)\n#define REP(i,j,n) for(ll (i)=(j);i<(ll)(n);i++)\n#define DREP(i,n,m) for(ll (i)=(n);i>=(m);i--)\n#define drep(i,n) for(ll i=((n)-1);i>=0;i--)\n#define all(x) x.begin(),x.end()\n#define rall(x) x.rbegin(),x.rend()\n#define mp make_pair\n#define mt make_tuple\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define is insert\n#define bg begin()\n#define ed end()\nvoid scan(int&a) { cin >> a; }\nvoid scan(ll&a) { cin >> a; }\nvoid scan(string&a) { cin >> a; }\nvoid scan(char&a) { cin >> a; }\nvoid scan(uint&a) { cin >> a; }\nvoid scan(ull&a) { cin >> a; }\nvoid scan(bool&a) { cin >> a; }\nvoid scan(ld&a){ cin>> a;}\ntemplate<class T> void scan(vector<T>&a) { for(auto&x:a) scan(x); }\nvoid read() {}\ntemplate<class Head, class... Tail> void read(Head&head, Tail&... tail) { scan(head); read(tail...); }\n#define INT(...) int __VA_ARGS__; read(__VA_ARGS__);\n#define LL(...) ll __VA_ARGS__; read(__VA_ARGS__);\n#define ULL(...) ull __VA_ARGS__; read(__VA_ARGS__);\n#define STR(...) string __VA_ARGS__; read(__VA_ARGS__);\n#define CHR(...) char __VA_ARGS__; read(__VA_ARGS__);\n#define DBL(...) double __VA_ARGS__; read(__VA_ARGS__);\n#define LD(...) ld __VA_ARGS__; read(__VA_ARGS__);\n#define VC(type, name, ...) vector<type> name(__VA_ARGS__); read(name);\n#define VVC(type, name, size, ...) vector<vector<type>> name(size, vector<type>(__VA_ARGS__)); read(name);\nvoid print(int a) { cout << a; }\nvoid print(ll a) { cout << a; }\nvoid print(string a) { cout << a; }\nvoid print(char a) { cout << a; }\nvoid print(uint a) { cout << a; }\nvoid print(bool a) { cout << a; }\nvoid print(ull a) { cout << a; }\nvoid print(ld a){ cout<< a; }\ntemplate<class T> void print(vector<T>a) { for(int i=0;i<(int)a.size();i++){if(i)cout<<\" \";print(a[i]);}cout<<endl;}\nvoid PRT() { cout <<endl; return ; }\ntemplate<class T> void PRT(T a) { print(a); cout <<endl; return; }\ntemplate<class Head, class... Tail> void PRT(Head head, Tail ... tail) { print(head); cout << \" \"; PRT(tail...); return; }\ntemplate<class T,class F>\nbool chmin(T &x, F y){\n if(x>y){\n x=y;\n return true;\n }\n return false;\n}\ntemplate<class T, class F>\nbool chmax(T &x, F y){\n if(x<y){\n x=y;\n return true;\n }\n return false;\n}\nvoid YesNo(bool b){\n cout<<(b?\"Yes\":\"No\")<<endl;\n}\nvoid Yes(){\n cout<<\"Yes\"<<endl;\n}\nvoid No(){\n cout<<\"No\"<<endl;\n}\ntemplate<class T>\nint popcount(T n){\n return __builtin_popcount(n);\n}\ntemplate<class T>\nT sum(vc<T>&a){\n return accumulate(all(a),T(0));\n}\ntemplate<class T>\nT max(vc<T>&a){\n return *max_element(all(a));\n}\ntemplate<class T>\nT min(vc<T>&a){\n return *min_element(all(a));\n}\ntemplate<class T>\nvoid unique(vc<T>&a){\n a.erase(unique(all(a)),a.end());\n}\nvvi readgraph(int n,int m,int off = -1){\n vvi g(n);\n rep(i, m){\n int u,v;\n cin>>u>>v;\n u+=off,v+=off;\n g[u].push_back(v);\n g[v].push_back(u);\n }\n return g;\n}\nvvi readtree(int n,int off=-1){\n return readgraph(n,n-1,off);\n}\ntemplate<class T>\nvc<T> presum(vc<T> &a){\n vc<T> ret(a.size()+1);\n rep(i,a.size())ret[i+1]=ret[i]+a[i];\n return ret;\n}\ntemplate<class T, class F>\nvc<T> &operator+=(vc<T> &a,F b){\n for (auto&v:a)v += b;\n return a;\n}\ntemplate<class T, class F>\nvc<T> &operator-=(vc<T>&a,F b){\n for (auto&v:a)v-=b;\n return a;\n}\ntemplate<class T, class F>\nvc<T> &operator*=(vc<T>&a,F b){\n for (auto&v:a)v*=b;\n return a;\n}\ndouble pass_time=0;\nvoid solve(){\n INT(n,q);\n vvi g=readtree(n);\n vi t(q),v(q);\n rep(i,q)cin>>t[i]>>v[i];\n v-=1,t-=1;\n const int B=sqrt(q)+1;\n int si=(q+B-1)/B;\n vi col(n,1);\n for(int i=0;i<si;i++){\n int l=i*B;\n int r=min(q,l+B);\n vi ask(n);\n REP(i,l,r){\n ask[v[i]]=1;\n }\n vvi newg(n);\n vi cnt(n);//圧縮したときの頂点がもつ白頂点の数\n vi seen(n);\n auto compress=[&](int i){\n auto dfs=[&](auto&dfs,int u,int v)->int{\n seen[u]=1;\n int res=1;\n for(auto x:g[u]){\n if(x==v)continue;\n if(!ask[x]){\n if(!seen[x]&&col[x])res+=dfs(dfs,x,u);\n }else{\n newg[i].pb(x);\n newg[x].pb(i);\n }\n }return res;\n };return dfs(dfs,i,-1);\n };\n vi vs;\n rep(i,n){\n if(!seen[i]&&!ask[i]&&col[i]){\n vs.pb(i);\n cnt[i]=compress(i);\n }else if(ask[i]){\n for(auto x:g[i]){\n if(ask[x])newg[x].pb(i);\n }\n }\n }\n for(auto&x:vs)ask[x]=1;\n rep(i,n){\n if(seen[i]&&newg[i].size()==1){\n cnt[newg[i][0]]+=cnt[i];\n cnt[i]=0; \n seen[i]=0;\n }\n }\n auto dfs=[&](auto&dfs,int u,int v)->int{\n int res=cnt[u];\n for(auto x:g[u]){\n if(x==v)continue;\n if(ask[x]&&col[x]){\n res+=dfs(dfs,x,u);\n }\n }\n return res;\n };\n for(int i=l;i<r;i++){\n if(t[i]==0){ \n if(col[v[i]])cnt[v[i]]--;\n else cnt[v[i]]++;\n col[v[i]]^=1;\n }else{\n PRT(dfs(dfs,v[i],-1)+1);\n }\n }\n }\n}\nsigned main(){\n #ifdef t9unkubj\n freopen(\"input.txt\", \"r\", stdin);\n freopen(\"output.txt\", \"w\", stdout);\n #endif\n cin.tie(0)->sync_with_stdio(0);\n pass_time=clock();\n int t=1;\n //cin>>t;\n while(t--)solve();\n pass_time=clock()-pass_time;\n dbg(pass_time/CLOCKS_PER_SEC);\n}", "accuracy": 0.2, "time_ms": 940, "memory_kb": 13752, "score_of_the_acc": -0.8645, "final_rank": 17 }, { "submission_id": "aoj_3120_5297128", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef vector<P> vp;\ntypedef vector<bool> vb;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define REP(i,k,n) for(ll i=(ll)(k);i<(ll)(n);i++)\n#define all(a) a.begin(),a.end()\n#define rsort(a) {sort(all(a));reverse(all(a));}\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\n#define lb(v,k) (lower_bound(all(v),k)-v.begin())\n#define fi first\n#define se second\n#define pb emplace_back\nconst ll mod=1000000007;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){for(auto x:v)outv(x);}\ntemplate<class T> void outp(T p){cout<<'('<<p.fi<<','<<p.se<<')'<<endl;}\ntemplate<class T> void outvp(T v){for(auto p:v)cout<<'('<<p.fi<<','<<p.se<<')';cout<<endl;}\nconst ll inf=1001001001001001001;\n\nclass BIT{\n vi bit;\npublic:\n BIT(ll n):bit(n){}\n void add(ll i,ll x){\n for(int j=i;j<bit.size();j|=j+1)bit[j]+=x;\n }\n ll get(ll a){\n ll res=0;\n for(int j=a-1;j>=0;j=(j&(j+1))-1)res+=bit[j];\n return res;\n }\n ll get(ll a,ll b){\n return get(b)-get(a);\n }\n void debug(){\n vi res(bit.size());\n rep(i,bit.size())res[i]=get(i+1)-get(i);\n outv(res);\n }\n};\nint main(){\n ll n,q;cin>>n>>q;\n vvi g(n);rep(i,n-1){\n ll a,b;cin>>a>>b;a--;b--;\n g[a].pb(b);g[b].pb(a);\n }\n vi color(n,1);\n vi sub(n,1),par(n,-1),head(n);\n vi topo;\n function<void(ll,ll)> dfs=[&](ll i,ll p){\n par[i]=p;\n topo.pb(i);\n for(ll x:g[i])if(x!=p)dfs(x,i);\n };dfs(0,-1);\n vi rtopo=topo;reverse(all(rtopo));\n for(ll i:rtopo)for(ll x:g[i])if(x!=par[i])sub[i]+=sub[x];\n for(ll i:topo){\n ll mx=0;\n rep(j,g[i].size())if(g[i][j]!=par[i]&&chmax(mx,sub[g[i][j]]))swap(g[i][j],g[i][0]);\n rep(j,g[i].size())if(g[i][j]!=par[i]){\n if(j)head[g[i][j]]=g[i][j];\n else head[g[i][j]]=head[i];\n }\n }\n ll c=0;vi id(n);\n vector<set<ll>> S(n);\n function<void(ll,ll)> dfs2=[&](ll i,ll p){\n id[i]=c++;\n bool is_leaf=true;\n for(ll x:g[i])if(x!=p){\n dfs2(x,i);\n is_leaf=false;\n }\n if(is_leaf)S[head[i]].insert(c);\n };dfs2(0,-1);\n BIT bit(n);\n auto getans=[&](ll i){\n if(!color[i])return 0ll;\n auto itr=S[head[i]].lower_bound(id[i]);\n ll k=*itr,l;\n if(itr==S[head[i]].begin())l=id[head[i]];\n else{\n itr--;l=(*itr)+1;\n }\n return bit.get(l,k)+(k-l);\n };\n // outv(id);outv(head);\n rep(i,n)REP(j,1,g[i].size())if(g[i][j]!=par[i])bit.add(id[i],sub[g[i][j]]);\n // bit.debug();\n rep(qq,q){\n ll t,i;cin>>t>>i;i--;\n if(t==1){\n ll prev=getans(head[i]),nex;\n if(color[i])S[head[i]].insert(id[i]);\n else S[head[i]].erase(id[i]);\n color[i]=1-color[i];\n i=head[i];\n while(par[i]!=-1){\n nex=getans(i);\n ll nprev=getans(head[par[i]]);\n bit.add(id[par[i]],nex-prev);\n i=head[par[i]];\n prev=nprev;\n }\n }\n else{\n if(!color[i]){\n out(0);continue;\n }\n while(par[head[i]]!=-1){\n ll t=*S[head[i]].begin();\n if(t<=id[i])break;\n if(par[head[i]]==-1||!color[par[head[i]]])break;\n i=par[head[i]];\n }\n // out(i);\n out(getans(i));\n }\n // bit.debug();\n }\n}", "accuracy": 1, "time_ms": 190, "memory_kb": 27248, "score_of_the_acc": -0.9202, "final_rank": 4 }, { "submission_id": "aoj_3120_5297127", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef vector<P> vp;\ntypedef vector<bool> vb;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define REP(i,k,n) for(ll i=(ll)(k);i<(ll)(n);i++)\n#define all(a) a.begin(),a.end()\n#define rsort(a) {sort(all(a));reverse(all(a));}\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\n#define lb(v,k) (lower_bound(all(v),k)-v.begin())\n#define fi first\n#define se second\n#define pb emplace_back\nconst ll mod=1000000007;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){for(auto x:v)outv(x);}\ntemplate<class T> void outp(T p){cout<<'('<<p.fi<<','<<p.se<<')'<<endl;}\ntemplate<class T> void outvp(T v){for(auto p:v)cout<<'('<<p.fi<<','<<p.se<<')';cout<<endl;}\nconst ll inf=1001001001001001001;\n\nclass BIT{\n vi bit;\npublic:\n BIT(ll n):bit(n){}\n void add(ll i,ll x){\n for(int j=i;j<bit.size();j|=j+1)bit[j]+=x;\n }\n ll get(ll a){\n ll res=0;\n for(int j=a-1;j>=0;j=(j&(j+1))-1)res+=bit[j];\n return res;\n }\n ll get(ll a,ll b){\n return get(b)-get(a);\n }\n void debug(){\n vi res(bit.size());\n rep(i,bit.size())res[i]=get(i+1)-get(i);\n outv(res);\n }\n};\nint main(){\n ll n,q;cin>>n>>q;\n vvi g(n);rep(i,n-1){\n ll a,b;cin>>a>>b;a--;b--;\n g[a].pb(b);g[b].pb(a);\n }\n vi color(n,1);\n vi sub(n,1),par(n,-1),head(n);\n vi topo;\n function<void(ll,ll)> dfs=[&](ll i,ll p){\n par[i]=p;\n topo.pb(i);\n for(ll x:g[i])if(x!=p)dfs(x,i);\n };dfs(0,-1);\n vi rtopo=topo;reverse(all(rtopo));\n for(ll i:rtopo)for(ll x:g[i])if(x!=par[i])sub[i]+=sub[x];\n for(ll i:topo){\n ll mx=0;\n rep(j,g[i].size())if(g[i][j]!=par[i]&&chmax(mx,sub[g[i][j]]))swap(g[i][j],g[i][0]);\n rep(j,g[i].size())if(g[i][j]!=par[i]){\n if(j)head[g[i][j]]=g[i][j];\n else head[g[i][j]]=head[i];\n }\n }\n ll c=0;vi id(n);\n vector<set<ll>> S(n);\n function<void(ll,ll)> dfs2=[&](ll i,ll p){\n id[i]=c++;\n bool is_leaf=true;\n for(ll x:g[i])if(x!=p){\n dfs2(x,i);\n is_leaf=false;\n }\n if(is_leaf)S[head[i]].insert(c);\n };dfs2(0,-1);\n BIT bit(n);\n auto getans=[&](ll i){\n if(!color[i])return 0ll;\n auto itr=S[head[i]].lower_bound(id[i]);\n ll k=*itr,l;\n if(itr==S[head[i]].begin())l=id[head[i]];\n else{\n itr--;l=*itr;\n }\n return bit.get(l,k)+(k-l);\n };\n // outv(id);outv(head);\n rep(i,n)REP(j,1,g[i].size())if(g[i][j]!=par[i])bit.add(id[i],sub[g[i][j]]);\n // bit.debug();\n rep(qq,q){\n ll t,i;cin>>t>>i;i--;\n if(t==1){\n ll prev=getans(head[i]),nex;\n if(color[i])S[head[i]].insert(id[i]);\n else S[head[i]].erase(id[i]);\n color[i]=1-color[i];\n i=head[i];\n while(par[i]!=-1){\n nex=getans(i);\n ll nprev=getans(head[par[i]]);\n bit.add(id[par[i]],nex-prev);\n i=head[par[i]];\n prev=nprev;\n }\n }\n else{\n if(!color[i]){\n out(0);continue;\n }\n while(par[head[i]]!=-1){\n ll t=*S[head[i]].begin();\n if(t<=id[i])break;\n if(par[head[i]]==-1||!color[par[head[i]]])break;\n i=par[head[i]];\n }\n // out(i);\n out(getans(i));\n }\n // bit.debug();\n }\n}", "accuracy": 0.2, "time_ms": 190, "memory_kb": 23616, "score_of_the_acc": -0.7034, "final_rank": 16 }, { "submission_id": "aoj_3120_5297117", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef vector<P> vp;\ntypedef vector<bool> vb;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define REP(i,k,n) for(ll i=(ll)(k);i<(ll)(n);i++)\n#define all(a) a.begin(),a.end()\n#define rsort(a) {sort(all(a));reverse(all(a));}\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\n#define lb(v,k) (lower_bound(all(v),k)-v.begin())\n#define fi first\n#define se second\n#define pb emplace_back\nconst ll mod=1000000007;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){for(auto x:v)outv(x);}\ntemplate<class T> void outp(T p){cout<<'('<<p.fi<<','<<p.se<<')'<<endl;}\ntemplate<class T> void outvp(T v){for(auto p:v)cout<<'('<<p.fi<<','<<p.se<<')';cout<<endl;}\nconst ll inf=1001001001001001001;\n\nclass BIT{\n vi bit;\npublic:\n BIT(ll n):bit(n){}\n void add(ll i,ll x){\n for(int j=i;j<bit.size();j|=j+1)bit[j]+=x;\n }\n ll get(ll a){\n ll res=0;\n for(int j=a-1;j>=0;j=(j&(j+1))-1)res+=bit[j];\n return res;\n }\n ll get(ll a,ll b){\n return get(b)-get(a);\n }\n void debug(){\n vi res(bit.size());\n rep(i,bit.size())res[i]=get(i+1)-get(i);\n outv(res);\n }\n};\nint main(){\n ll n,q;cin>>n>>q;\n vvi g(n);rep(i,n-1){\n ll a,b;cin>>a>>b;a--;b--;\n g[a].pb(b);g[b].pb(a);\n }\n vi color(n,1);\n vi sub(n,1),par(n,-1),head(n);\n vi topo;\n function<void(ll,ll)> dfs=[&](ll i,ll p){\n par[i]=p;\n topo.pb(i);\n for(ll x:g[i])if(x!=p)dfs(x,i);\n };dfs(0,-1);\n vi rtopo=topo;reverse(all(rtopo));\n for(ll i:rtopo)for(ll x:g[i])if(x!=par[i])sub[i]+=sub[x];\n for(ll i:topo){\n ll mx=0;\n rep(j,g[i].size())if(g[i][j]!=par[i]&&chmax(mx,sub[g[i][j]]))swap(g[i][j],g[i][0]);\n rep(j,g[i].size())if(g[i][j]!=par[i]){\n if(j)head[g[i][j]]=g[i][j];\n else head[g[i][j]]=head[i];\n }\n }\n ll c=0;vi id(n);\n vector<set<ll>> S(n);\n function<void(ll,ll)> dfs2=[&](ll i,ll p){\n id[i]=c++;\n bool is_leaf=true;\n for(ll x:g[i])if(x!=p){\n dfs2(x,i);\n is_leaf=false;\n }\n if(is_leaf)S[head[i]].insert(c);\n };dfs2(0,-1);\n BIT bit(n);\n auto getans=[&](ll i){\n ll k=*S[head[i]].lower_bound(id[i]);\n // out(k);\n return bit.get(id[i],k)+(k-id[i]);\n };\n // outv(id);outv(head);\n rep(i,n)REP(j,1,g[i].size())if(g[i][j]!=par[i])bit.add(id[i],sub[g[i][j]]);\n // bit.debug();\n rep(qq,q){\n ll t,i;cin>>t>>i;i--;\n if(t==1){\n ll prev=getans(head[i]),nex;\n if(color[i])S[head[i]].insert(id[i]);\n else S[head[i]].erase(id[i]);\n color[i]=1-color[i];\n i=head[i];\n while(par[i]!=-1){\n nex=getans(i);\n ll nprev=getans(head[par[i]]);\n bit.add(id[par[i]],nex-prev);\n i=head[par[i]];\n prev=nprev;\n }\n }\n else{\n if(!color[i]){\n out(0);continue;\n }\n while(par[head[i]]!=-1){\n ll t=*S[head[i]].begin();\n if(t<=id[i])break;\n if(par[head[i]]==-1||!color[par[head[i]]])break;\n i=par[head[i]];\n }\n // out(i);\n out(getans(i));\n }\n // bit.debug();\n }\n}", "accuracy": 0.2, "time_ms": 190, "memory_kb": 23556, "score_of_the_acc": -0.6998, "final_rank": 15 }, { "submission_id": "aoj_3120_5058909", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\ntemplate<class T> bool chmin(T& a,T b){if(a>b) {a = b; return true;} return false;}\ntemplate<class T> bool chmax(T& a,T b){if(a<b) {a = b; return true;} return false;}\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define drep(i,n) for(int i=(n)-1;i>=0;i--)\n#define all(x) (x).begin(),(x).end()\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\n\nconstexpr int si = 500;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,Q;\n cin >> N >> Q;\n vvec<int> g(N);\n rep(i,N-1){\n int a,b;\n cin >> a >> b;\n a--,b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n vec<int> col(N,1);\n vec<int> ans;\n int K = (Q+si-1)/si;\n vvec<int> T(K),A(K);\n rep(i,Q){\n int t,a;\n cin >> t >> a;\n a--;\n int k = i/si;\n T[k].push_back(t);\n A[k].push_back(a);\n }\n auto solve = [&](vec<int>& T,vec<int>& A){\n int n = T.size();\n vec<int> use(N);\n vvec<int> tree(N);\n rep(i,n) use[A[i]] = true;\n vec<int> cnt = col;\n vec<int> vis(N);\n\n auto compress = [&](auto&& self,int cur,int par,int s)->int{\n vis[cur] = 1;\n int c = 1;\n for(auto& to:g[cur]) if(to!=par){\n if(!use[to]){\n if(!vis[to] && col[to]) c += self(self,to,cur,s);\n }else{\n tree[s].push_back(to);\n tree[to].push_back(s);\n }\n }\n return c;\n };\n\n vec<int> v;\n rep(i,N){\n if(!use[i] && !vis[i] && col[i]){\n cnt[i] = compress(compress,i,-1,i);\n v.push_back(i);\n }else if(use[i]){\n for(auto& to:g[i]) if(use[to]) tree[i].push_back(to);\n }\n }\n\n for(auto& x:v) use[x] = true;\n rep(i,N) if(vis[i] && tree[i].size()==1){\n use[i] = false;\n cnt[tree[i][0]] += cnt[i];\n cnt[i] = 0;\n tree[i].clear();\n }\n\n auto dfs = [&](auto&& self,int cur,int par)->int{\n int c = cnt[cur];\n for(auto& to:tree[cur]) if(to!=par && col[to] && use[to]){\n c += self(self,to,cur);\n }\n return c;\n };\n\n rep(i,n){\n if(T[i]==1){\n if(col[A[i]]) cnt[A[i]]--;\n else cnt[A[i]]++;\n col[A[i]] ^= 1;\n }else{\n ans.push_back(dfs(dfs,A[i],-1));\n }\n }\n };\n\n rep(i,K) solve(T[i],A[i]);\n for(auto& x:ans) cout << x << \"\\n\";\n}", "accuracy": 1, "time_ms": 660, "memory_kb": 13948, "score_of_the_acc": -0.5962, "final_rank": 3 }, { "submission_id": "aoj_3120_5058906", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\ntemplate<class T> bool chmin(T& a,T b){if(a>b) {a = b; return true;} return false;}\ntemplate<class T> bool chmax(T& a,T b){if(a<b) {a = b; return true;} return false;}\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define drep(i,n) for(int i=(n)-1;i>=0;i--)\n#define all(x) (x).begin(),(x).end()\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\n\nconstexpr int si = 500;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,Q;\n cin >> N >> Q;\n vvec<int> g(N);\n rep(i,N-1){\n int a,b;\n cin >> a >> b;\n a--,b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n vec<int> col(N,1);\n vec<int> ans;\n int K = (Q+si-1)/si;\n vvec<int> T(K),A(K);\n rep(i,Q){\n int t,a;\n cin >> t >> a;\n a--;\n int k = i/si;\n T[k].push_back(t);\n A[k].push_back(a);\n }\n auto solve = [&](vec<int>& T,vec<int>& A){\n int n = T.size();\n vec<int> use(N);\n vvec<int> tree(N);\n rep(i,n) use[A[i]] = true;\n vec<int> cnt = col;\n vec<int> vis(N);\n\n auto compress = [&](auto&& self,int cur,int par,int s)->int{\n vis[cur] = 1;\n int c = 1;\n for(auto& to:g[cur]) if(to!=par){\n if(!use[to]){\n if(!vis[to] && col[to]) c += self(self,to,cur,s);\n }else{\n tree[s].push_back(to);\n tree[to].push_back(s);\n }\n }\n return c;\n };\n\n rep(i,N){\n if(!use[i] && !vis[i] && col[i]){\n cnt[i] = compress(compress,i,-1,i);\n// use[i] = true;\n }else if(use[i]){\n for(auto& to:g[i]) if(use[to]) tree[i].push_back(to);\n }\n }\n\n /*\n rep(i,N) if(vis[i] && tree[i].size()==1){\n use[i] = false;\n cnt[tree[i][0]] += cnt[i];\n cnt[i] = 0;\n tree[i].clear();\n }\n */\n\n auto dfs = [&](auto&& self,int cur,int par)->int{\n int c = cnt[cur];\n assert(col[cur]);\n for(auto& to:tree[cur]) if(to!=par && col[to]){\n c += self(self,to,cur);\n }\n return c;\n };\n\n rep(i,n){\n if(T[i]==1){\n if(!col[A[i]]) cnt[A[i]] = 1;\n col[A[i]] ^= 1;\n }else{\n assert(col[A[i]]);\n ans.push_back(dfs(dfs,A[i],-1));\n }\n }\n };\n\n rep(i,K) solve(T[i],A[i]);\n for(auto& x:ans) cout << x << \"\\n\";\n}", "accuracy": 1, "time_ms": 620, "memory_kb": 13892, "score_of_the_acc": -0.5529, "final_rank": 2 }, { "submission_id": "aoj_3120_5058884", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\ntemplate<class T> bool chmin(T& a,T b){if(a>b) {a = b; return true;} return false;}\ntemplate<class T> bool chmax(T& a,T b){if(a<b) {a = b; return true;} return false;}\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define drep(i,n) for(int i=(n)-1;i>=0;i--)\n#define all(x) (x).begin(),(x).end()\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\n\nconstexpr int si = 500;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,Q;\n cin >> N >> Q;\n vvec<int> g(N);\n rep(i,N-1){\n int a,b;\n cin >> a >> b;\n a--,b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n vec<int> col(N,1);\n vec<int> ans;\n int K = (Q+si-1)/si;\n vvec<int> T(K),A(K);\n rep(i,Q){\n int t,a;\n cin >> t >> a;\n a--;\n int k = i/si;\n T[k].push_back(t);\n A[k].push_back(a);\n }\n auto solve = [&](vec<int>& T,vec<int>& A){\n int n = T.size();\n vec<int> use(N);\n vvec<int> tree(N);\n rep(i,n) use[A[i]] = true;\n vec<int> cnt = col;\n vec<int> vis(N);\n\n auto compress = [&](auto&& self,int cur,int par,int s)->int{\n vis[cur] = 1;\n int c = 1;\n for(auto& to:g[cur]) if(to!=par){\n if(!use[to]){\n if(!vis[to] && col[to]) c += self(self,to,cur,s);\n }else{\n tree[s].push_back(to);\n tree[to].push_back(s);\n }\n }\n return c;\n };\n\n rep(i,N){\n if(!use[i] && !vis[i] && col[i]){\n cnt[i] = compress(compress,i,-1,i);\n// use[i] = true;\n }else if(use[i]){\n for(auto& to:g[i]) if(use[to]) tree[i].push_back(to);\n }\n }\n\n /*\n rep(i,N) if(vis[i] && tree[i].size()==1){\n use[i] = false;\n cnt[tree[i][0]] += cnt[i];\n cnt[i] = 0;\n tree[i].clear();\n }\n */\n\n auto dfs = [&](auto&& self,int cur,int par)->int{\n int c = cnt[cur];\n assert(col[cur]);\n for(auto& to:tree[cur]) if(to!=par && col[to]){\n c += self(self,to,cur);\n }\n return c;\n };\n\n rep(i,n){\n if(T[i]==1){\n col[A[i]] ^= 1;\n }else{\n assert(col[A[i]]);\n ans.push_back(dfs(dfs,A[i],-1));\n }\n }\n };\n\n rep(i,K) solve(T[i],A[i]);\n for(auto& x:ans) cout << x << \"\\n\";\n}", "accuracy": 0.2, "time_ms": 590, "memory_kb": 13744, "score_of_the_acc": -0.5141, "final_rank": 9 }, { "submission_id": "aoj_3120_5058878", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\ntemplate<class T> bool chmin(T& a,T b){if(a>b) {a = b; return true;} return false;}\ntemplate<class T> bool chmax(T& a,T b){if(a<b) {a = b; return true;} return false;}\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define drep(i,n) for(int i=(n)-1;i>=0;i--)\n#define all(x) (x).begin(),(x).end()\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\n\nconstexpr int si = 500;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,Q;\n cin >> N >> Q;\n vvec<int> g(N);\n rep(i,N-1){\n int a,b;\n cin >> a >> b;\n a--,b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n vec<int> col(N,1);\n vec<int> ans;\n int K = (Q+si-1)/si;\n vvec<int> T(K),A(K);\n rep(i,Q){\n int t,a;\n cin >> t >> a;\n a--;\n int k = i/si;\n T[k].push_back(t);\n A[k].push_back(a);\n }\n auto solve = [&](vec<int>& T,vec<int>& A){\n int n = T.size();\n vec<int> use(N);\n vvec<int> tree(N);\n rep(i,n) use[A[i]] = true;\n vec<int> cnt = col;\n vec<int> vis(N);\n\n auto compress = [&](auto&& self,int cur,int par,int s)->int{\n vis[cur] = 1;\n int c = 1;\n for(auto& to:g[cur]) if(to!=par){\n if(!use[to]){\n if(!vis[to] && col[to]) c += self(self,to,cur,s);\n }else{\n tree[s].push_back(to);\n tree[to].push_back(s);\n }\n }\n return c;\n };\n\n rep(i,N){\n if(!use[i] && !vis[i] && col[i]){\n cnt[i] = compress(compress,i,-1,i);\n// use[i] = true;\n }else if(use[i]){\n for(auto& to:g[i]) if(use[to]) tree[i].push_back(to);\n }\n }\n\n /*\n rep(i,N) if(vis[i] && tree[i].size()==1){\n use[i] = false;\n cnt[tree[i][0]] += cnt[i];\n cnt[i] = 0;\n tree[i].clear();\n }\n */\n\n auto dfs = [&](auto&& self,int cur,int par)->int{\n int c = cnt[cur];\n for(auto& to:tree[cur]) if(to!=par && col[to]){\n c += self(self,to,cur);\n }\n return c;\n };\n\n rep(i,n){\n if(T[i]==1){\n if(cnt[A[i]]==0) cnt[A[i]] = 1;\n else cnt[A[i]] = 0;\n col[A[i]] ^= 1;\n }else{\n ans.push_back(dfs(dfs,A[i],-1));\n }\n }\n };\n\n rep(i,K) solve(T[i],A[i]);\n for(auto& x:ans) cout << x << \"\\n\";\n}", "accuracy": 1, "time_ms": 610, "memory_kb": 13860, "score_of_the_acc": -0.541, "final_rank": 1 }, { "submission_id": "aoj_3120_5058876", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\ntemplate<class T> bool chmin(T& a,T b){if(a>b) {a = b; return true;} return false;}\ntemplate<class T> bool chmax(T& a,T b){if(a<b) {a = b; return true;} return false;}\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define drep(i,n) for(int i=(n)-1;i>=0;i--)\n#define all(x) (x).begin(),(x).end()\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\n\nconstexpr int si = 500;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,Q;\n cin >> N >> Q;\n vvec<int> g(N);\n rep(i,N-1){\n int a,b;\n cin >> a >> b;\n a--,b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n vec<int> col(N,1);\n vec<int> ans;\n int K = (Q+si-1)/si;\n vvec<int> T(K),A(K);\n rep(i,Q){\n int t,a;\n cin >> t >> a;\n a--;\n int k = i/si;\n T[k].push_back(t);\n A[k].push_back(a);\n }\n auto solve = [&](vec<int>& T,vec<int>& A){\n int n = T.size();\n vec<int> use(N);\n vvec<int> tree(N);\n rep(i,n) use[A[i]] = true;\n vec<int> cnt = col;\n vec<int> vis(N);\n\n auto compress = [&](auto&& self,int cur,int par,int s)->int{\n vis[cur] = 1;\n int c = 1;\n for(auto& to:g[cur]) if(to!=par){\n if(!use[to]){\n if(!vis[to] && col[to]) c += self(self,to,cur,s);\n }else{\n tree[s].push_back(to);\n tree[to].push_back(s);\n }\n }\n return c;\n };\n\n rep(i,N){\n if(!use[i] && !vis[i] && col[i]){\n cnt[i] = compress(compress,i,-1,i);\n// use[i] = true;\n }else if(use[i]){\n for(auto& to:g[i]) if(use[to]) tree[i].push_back(to);\n }\n }\n\n /*\n rep(i,N) if(vis[i] && tree[i].size()==1){\n use[i] = false;\n cnt[tree[i][0]] += cnt[i];\n cnt[i] = 0;\n tree[i].clear();\n }\n */\n\n auto dfs = [&](auto&& self,int cur,int par)->int{\n int c = cnt[cur];\n for(auto& to:tree[cur]) if(to!=par && col[to]){\n c += self(self,to,cur);\n }\n return c;\n };\n\n rep(i,n){\n if(T[i]==1){\n col[A[i]] ^= 1;\n }else{\n ans.push_back(dfs(dfs,A[i],-1));\n }\n }\n };\n\n rep(i,K) solve(T[i],A[i]);\n for(auto& x:ans) cout << x << \"\\n\";\n}", "accuracy": 0.2, "time_ms": 570, "memory_kb": 13676, "score_of_the_acc": -0.49, "final_rank": 7 }, { "submission_id": "aoj_3120_5058869", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\ntemplate<class T> bool chmin(T& a,T b){if(a>b) {a = b; return true;} return false;}\ntemplate<class T> bool chmax(T& a,T b){if(a<b) {a = b; return true;} return false;}\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define drep(i,n) for(int i=(n)-1;i>=0;i--)\n#define all(x) (x).begin(),(x).end()\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\n\nconstexpr int si = 500;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,Q;\n cin >> N >> Q;\n vvec<int> g(N);\n rep(i,N-1){\n int a,b;\n cin >> a >> b;\n a--,b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n vec<int> col(N,1);\n vec<int> ans;\n int K = (Q+si-1)/si;\n vvec<int> T(K),A(K);\n rep(i,Q){\n int t,a;\n cin >> t >> a;\n a--;\n int k = i/si;\n T[k].push_back(t);\n A[k].push_back(a);\n }\n auto solve = [&](vec<int>& T,vec<int>& A){\n int n = T.size();\n vec<int> use(N);\n vvec<int> tree(N);\n rep(i,n) use[A[i]] = true;\n vec<int> cnt = col;\n vec<int> vis(N);\n\n auto compress = [&](auto&& self,int cur,int par,int s)->int{\n vis[cur] = 1;\n int c = 1;\n for(auto& to:g[cur]) if(to!=par){\n if(!use[to]){\n if(!vis[to] && col[to]) c += self(self,to,cur,s);\n }else{\n tree[s].push_back(to);\n tree[to].push_back(s);\n }\n }\n return c;\n };\n\n rep(i,N){\n if(!use[i] && !vis[i] && col[i]){\n cnt[i] = compress(compress,i,-1,i);\n use[i] = true;\n }else if(use[i]){\n for(auto& to:g[i]) if(use[to]) tree[i].push_back(to);\n }\n }\n\n /*\n rep(i,N) if(vis[i] && tree[i].size()==1){\n use[i] = false;\n cnt[tree[i][0]] += cnt[i];\n cnt[i] = 0;\n tree[i].clear();\n }\n */\n\n auto dfs = [&](auto&& self,int cur,int par)->int{\n int c = cnt[cur];\n for(auto& to:tree[cur]) if(to!=par && col[to] && use[to]){\n c += self(self,to,cur);\n }\n return c;\n };\n\n rep(i,n){\n if(T[i]==1){\n col[A[i]] ^= 1;\n }else{\n ans.push_back(dfs(dfs,A[i],-1));\n }\n }\n };\n\n rep(i,K) solve(T[i],A[i]);\n for(auto& x:ans) cout << x << \"\\n\";\n}", "accuracy": 0.2, "time_ms": 570, "memory_kb": 13888, "score_of_the_acc": -0.5027, "final_rank": 8 }, { "submission_id": "aoj_3120_5058867", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\ntemplate<class T> bool chmin(T& a,T b){if(a>b) {a = b; return true;} return false;}\ntemplate<class T> bool chmax(T& a,T b){if(a<b) {a = b; return true;} return false;}\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define drep(i,n) for(int i=(n)-1;i>=0;i--)\n#define all(x) (x).begin(),(x).end()\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\n\nconstexpr int si = 500;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,Q;\n cin >> N >> Q;\n vvec<int> g(N);\n rep(i,N-1){\n int a,b;\n cin >> a >> b;\n a--,b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n vec<int> col(N,1);\n vec<int> ans;\n int K = (Q+si-1)/si;\n vvec<int> T(K),A(K);\n rep(i,Q){\n int t,a;\n cin >> t >> a;\n a--;\n int k = i/si;\n T[k].push_back(t);\n A[k].push_back(a);\n }\n auto solve = [&](vec<int>& T,vec<int>& A){\n int n = T.size();\n vec<int> use(N);\n vvec<int> tree(N);\n rep(i,n) use[A[i]] = true;\n vec<int> cnt = col;\n vec<int> vis(N);\n\n auto compress = [&](auto&& self,int cur,int par,int s)->int{\n vis[cur] = 1;\n int c = 1;\n for(auto& to:g[cur]) if(to!=par){\n if(!use[to]){\n if(!vis[to] && col[to]) c += self(self,to,cur,s);\n }else{\n tree[s].push_back(to);\n tree[to].push_back(s);\n }\n }\n return c;\n };\n\n rep(i,N){\n if(!use[i] && !vis[i] && col[i]){\n cnt[i] = compress(compress,i,-1,i);\n use[i] = true;\n }else if(use[i]){\n for(auto& to:g[i]) if(use[to]) tree[i].push_back(to);\n }\n }\n\n rep(i,N) if(vis[i] && tree[i].size()==1){\n// use[i] = false;\n// cnt[tree[i][0]] += cnt[i];\n// cnt[i] = 0;\n tree[i].clear();\n }\n\n auto dfs = [&](auto&& self,int cur,int par)->int{\n int c = cnt[cur];\n for(auto& to:tree[cur]) if(to!=par && col[to] && use[to]){\n c += self(self,to,cur);\n }\n return c;\n };\n\n rep(i,n){\n if(T[i]==1){\n col[A[i]] ^= 1;\n }else{\n ans.push_back(dfs(dfs,A[i],-1));\n }\n }\n };\n\n rep(i,K) solve(T[i],A[i]);\n for(auto& x:ans) cout << x << \"\\n\";\n}", "accuracy": 0.2, "time_ms": 640, "memory_kb": 13996, "score_of_the_acc": -0.5791, "final_rank": 14 }, { "submission_id": "aoj_3120_5058865", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\ntemplate<class T> bool chmin(T& a,T b){if(a>b) {a = b; return true;} return false;}\ntemplate<class T> bool chmax(T& a,T b){if(a<b) {a = b; return true;} return false;}\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define drep(i,n) for(int i=(n)-1;i>=0;i--)\n#define all(x) (x).begin(),(x).end()\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\n\nconstexpr int si = 500;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,Q;\n cin >> N >> Q;\n vvec<int> g(N);\n rep(i,N-1){\n int a,b;\n cin >> a >> b;\n a--,b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n vec<int> col(N,1);\n vec<int> ans;\n int K = (Q+si-1)/si;\n vvec<int> T(K),A(K);\n rep(i,Q){\n int t,a;\n cin >> t >> a;\n a--;\n int k = i/si;\n T[k].push_back(t);\n A[k].push_back(a);\n }\n auto solve = [&](vec<int>& T,vec<int>& A){\n int n = T.size();\n vec<int> use(N);\n vvec<int> tree(N);\n rep(i,n) use[A[i]] = true;\n vec<int> cnt = col;\n vec<int> vis(N);\n\n auto compress = [&](auto&& self,int cur,int par,int s)->int{\n vis[cur] = 1;\n int c = 1;\n for(auto& to:g[cur]) if(to!=par){\n if(!use[to]){\n if(!vis[to] && col[to]) c += self(self,to,cur,s);\n }else{\n tree[s].push_back(to);\n tree[to].push_back(s);\n }\n }\n return c;\n };\n\n rep(i,N){\n if(!use[i] && !vis[i] && col[i]){\n cnt[i] = compress(compress,i,-1,i);\n use[i] = true;\n }else if(use[i]){\n for(auto& to:g[i]) if(use[to]) tree[i].push_back(to);\n }\n }\n\n rep(i,N) if(vis[i] && tree[i].size()==1){\n use[i] = false;\n cnt[tree[i][0]] += cnt[i];\n cnt[i] = 0;\n tree[i].clear();\n }\n\n auto dfs = [&](auto&& self,int cur,int par)->int{\n int c = cnt[cur];\n for(auto& to:tree[cur]) if(to!=par && col[to] && use[to]){\n c += self(self,to,cur);\n }\n return c;\n };\n\n rep(i,n){\n if(T[i]==1){\n col[A[i]] ^= 1;\n }else{\n ans.push_back(dfs(dfs,A[i],-1));\n }\n }\n };\n\n rep(i,K) solve(T[i],A[i]);\n for(auto& x:ans) cout << x << \"\\n\";\n}", "accuracy": 0.2, "time_ms": 620, "memory_kb": 13788, "score_of_the_acc": -0.5467, "final_rank": 11 }, { "submission_id": "aoj_3120_5058680", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\ntemplate<class T> bool chmin(T& a,T b){if(a>b) {a = b; return true;} return false;}\ntemplate<class T> bool chmax(T& a,T b){if(a<b) {a = b; return true;} return false;}\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define drep(i,n) for(int i=(n)-1;i>=0;i--)\n#define all(x) (x).begin(),(x).end()\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\n\nconstexpr int si = 500;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,Q;\n cin >> N >> Q;\n vvec<int> g(N);\n rep(i,N-1){\n int a,b;\n cin >> a >> b;\n a--,b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n vec<int> col(N,1);\n vec<int> ans;\n int K = (Q+si-1)/si;\n vvec<int> T(K),A(K);\n rep(i,Q){\n int t,a;\n cin >> t >> a;\n a--;\n int k = i/si;\n T[k].push_back(t);\n A[k].push_back(a);\n }\n auto solve = [&](vec<int>& T,vec<int>& A){\n int n = T.size();\n vec<int> use(N);\n vvec<int> tree(N);\n rep(i,n) use[A[i]] = true;\n vec<int> cnt = col;\n vec<int> vis(N);\n\n auto compress = [&](auto&& self,int cur,int par,int s)->int{\n vis[cur] = 1;\n int c = 1;\n for(auto& to:g[cur]) if(to!=par){\n if(!use[to]){\n if(!vis[to] && col[to]) c += self(self,to,cur,s);\n }else{\n tree[s].push_back(to);\n tree[to].push_back(s);\n }\n }\n return c;\n };\n\n rep(i,N){\n if(!use[i] && !vis[i] && col[i]){\n cnt[i] = compress(compress,i,-1,i);\n use[i] = true;\n }else if(use[i]){\n for(auto& to:g[i]) if(use[to]) tree[i].push_back(to);\n }\n }\n\n rep(i,N) if(vis[i] && tree[i].size()==1){\n use[i] = false;\n assert(use[tree[i][0]] && !vis[tree[i][0]]);\n cnt[tree[i][0]] += cnt[i];\n tree[i].clear();\n }\n\n auto dfs = [&](auto&& self,int cur,int par)->int{\n int c = cnt[cur];\n for(auto& to:tree[cur]) if(to!=par && col[to] && use[to]){\n c += self(self,to,cur);\n }\n return c;\n };\n\n rep(i,n){\n if(T[i]==1){\n if(!col[A[i]]) cnt[A[i]]++;\n else cnt[A[i]]--;\n col[A[i]] ^= 1;\n }else{\n ans.push_back(dfs(dfs,A[i],-1));\n }\n }\n };\n\n rep(i,K) solve(T[i],A[i]);\n for(auto& x:ans) cout << x << \"\\n\";\n}", "accuracy": 0.2, "time_ms": 620, "memory_kb": 13860, "score_of_the_acc": -0.551, "final_rank": 12 }, { "submission_id": "aoj_3120_5058669", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\ntemplate<class T> bool chmin(T& a,T b){if(a>b) {a = b; return true;} return false;}\ntemplate<class T> bool chmax(T& a,T b){if(a<b) {a = b; return true;} return false;}\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define drep(i,n) for(int i=(n)-1;i>=0;i--)\n#define all(x) (x).begin(),(x).end()\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\n\nconstexpr int si = 500;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,Q;\n cin >> N >> Q;\n vvec<int> g(N);\n rep(i,N-1){\n int a,b;\n cin >> a >> b;\n a--,b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n vec<int> col(N,1);\n vec<int> ans;\n int K = (Q+si-1)/si;\n vvec<int> T(K),A(K);\n rep(i,Q){\n int t,a;\n cin >> t >> a;\n a--;\n int k = i/si;\n T[k].push_back(t);\n A[k].push_back(a);\n }\n auto solve = [&](vec<int>& T,vec<int>& A){\n int n = T.size();\n vec<int> use(N);\n vvec<int> tree(N);\n rep(i,n) use[A[i]] = true;\n vec<int> cnt = col;\n vec<int> vis(N);\n\n auto compress = [&](auto&& self,int cur,int par,int s)->int{\n vis[cur] = 1;\n int c = 1;\n for(auto& to:g[cur]) if(to!=par){\n if(!use[to]){\n if(!vis[to] && col[to]) c += self(self,to,cur,s);\n }else{\n tree[s].push_back(to);\n tree[to].push_back(s);\n }\n }\n return c;\n };\n\n rep(i,N){\n if(!use[i] && !vis[i] && col[i]){\n cnt[i] = compress(compress,i,-1,i);\n use[i] = true;\n }else if(use[i]){\n for(auto& to:g[i]) if(use[to]) tree[i].push_back(to);\n }\n }\n\n rep(i,N) if(vis[i] && tree[i].size()==1){\n use[i] = false;\n cnt[tree[i][0]] += cnt[i];\n tree[i].clear();\n }\n\n auto dfs = [&](auto&& self,int cur,int par)->int{\n int c = cnt[cur];\n for(auto& to:tree[cur]) if(to!=par && col[to] && use[to]){\n c += self(self,to,cur);\n }\n return c;\n };\n\n rep(i,n){\n if(T[i]==1){\n if(!col[A[i]]) cnt[A[i]]++;\n else cnt[A[i]]--;\n col[A[i]] ^= 1;\n }else{\n ans.push_back(dfs(dfs,A[i],-1));\n }\n }\n };\n\n rep(i,K) solve(T[i],A[i]);\n for(auto& x:ans) cout << x << \"\\n\";\n}", "accuracy": 0.2, "time_ms": 640, "memory_kb": 13956, "score_of_the_acc": -0.5767, "final_rank": 13 }, { "submission_id": "aoj_3120_5058611", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vec<T>>;\ntemplate<class T> bool chmin(T& a,T b){if(a>b) {a = b; return true;} return false;}\ntemplate<class T> bool chmax(T& a,T b){if(a<b) {a = b; return true;} return false;}\n#define rep(i,n) for(int i=0;i<(n);i++)\n#define drep(i,n) for(int i=(n)-1;i>=0;i--)\n#define all(x) (x).begin(),(x).end()\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\n\nconstexpr int si = 500;\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int N,Q;\n cin >> N >> Q;\n vvec<int> g(N);\n rep(i,N-1){\n int a,b;\n cin >> a >> b;\n a--,b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n vec<int> col(N,1);\n vec<int> ans;\n int K = (Q+si-1)/si;\n vvec<int> T(K),A(K);\n rep(i,Q){\n int t,a;\n cin >> t >> a;\n a--;\n int k = i/si;\n T[k].push_back(t);\n A[k].push_back(a);\n }\n auto solve = [&](vec<int>& T,vec<int>& A){\n int n = T.size();\n vec<int> use(N);\n vvec<int> tree(N);\n rep(i,n) use[A[i]] = true;\n vec<int> cnt = col;\n vec<int> vis(N);\n\n auto compress = [&](auto&& self,int cur,int par,int s)->int{\n vis[cur] = 1;\n int c = 1;\n for(auto& to:g[cur]) if(to!=par){\n if(!use[to]){\n if(!vis[to] && col[to]) c += self(self,to,cur,s);\n }else{\n tree[s].push_back(to);\n tree[to].push_back(s);\n }\n }\n return c;\n };\n\n rep(i,N){\n if(!use[i] && !vis[i] && col[i]){\n cnt[i] = compress(compress,i,-1,i);\n use[i] = true;\n }\n else if(use[i]){\n for(auto& to:g[i]) if(use[to]) tree[i].push_back(to);\n }\n }\n\n rep(i,N) if(use[i] && tree[i].size()==1){\n use[i] = false;\n cnt[tree[i][0]] += cnt[i];\n tree[i].clear();\n }\n\n auto dfs = [&](auto&& self,int cur,int par)->int{\n int c = cnt[cur];\n for(auto& to:tree[cur]) if(to!=par && col[to] && use[to]){\n c += self(self,to,cur);\n }\n return c;\n };\n\n rep(i,n){\n if(T[i]==1){\n if(!col[A[i]]) cnt[A[i]]++;\n else cnt[A[i]]--;\n col[A[i]] ^= 1;\n }else{\n ans.push_back(dfs(dfs,A[i],-1));\n }\n }\n };\n\n rep(i,K) solve(T[i],A[i]);\n for(auto& x:ans) cout << x << \"\\n\";\n}", "accuracy": 0.2, "time_ms": 610, "memory_kb": 13876, "score_of_the_acc": -0.5419, "final_rank": 10 } ]
aoj_3117_cpp
K Average Ranges 数列 a_1,a_2,..,a_N が与えられます。 この数列に値の平均が K 以上の長さ 1 以上の区間はいくつありますか。 入力 N K a_1 a_2...a_N 出力 答えを出力せよ。 制約 1 \leq N \leq 10^5 1 \leq K \leq 10^9 1 \leq a_i \leq 10^9 入力例 6 6 8 6 9 1 2 1 出力例 7
[ { "submission_id": "aoj_3117_10351776", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\n#define rep(i, m, n) for (ll i = (ll)m; i < (ll)n; i++)\n#define drep(i, m, n) for (ll i = m - 1; i >= n; i--)\n#define Endl endl\n#define all(a) a.begin(), a.end()\n#define pr(i, j) make_pair(i, j)\n#define isin(x, l, r) (l <= x && x < r)\n#define chmin(a, b) a = min(a, b)\n#define chmax(a, b) a = max(a, b)\n#define srt(ar) sort(ar.begin(), ar.end())\n#define rev(ar) reverse(ar.begin(), ar.end())\n#define jge(f, s, t) cout << (f ? s : t) << endl\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n#define printar(ar) \\\n do \\\n { \\\n for (auto dbg : ar) \\\n { \\\n cout << dbg << \" \"; \\\n } \\\n cout << endl; \\\n } while (0)\nconst ll inf = 1e18;\nconst ld pi = 3.14159265358979;\nconst ld eps = 1e-9;\ntemplate <class T, ll n, ll idx = 0>\nauto make_vec(const ll (&d)[n], const T &init) noexcept\n{\n if constexpr (idx < n)\n return std::vector(d[idx], make_vec<T, n, idx + 1>(d, init));\n else\n return init;\n}\n\ntemplate <class T, ll n>\nauto make_vec(const ll (&d)[n]) noexcept\n{\n return make_vec(d, T{});\n}\n//////////////// 以下を貼る ////////////////\ntemplate <class T>\nsize_t HashCombine(const size_t seed, const T &v)\n{\n return seed ^ (std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2));\n}\n/* pair用 */\ntemplate <class T, class S>\nstruct std::hash<std::pair<T, S>>\n{\n size_t operator()(const std::pair<T, S> &keyval) const noexcept\n {\n return HashCombine(std::hash<T>()(keyval.first), keyval.second);\n }\n};\n////////////////////////////////////////////\n////////////////////////////////////////////////\ntemplate <class T>\nstruct BIT\n{\n\npublic:\n BIT() : _n(0) {}\n explicit BIT(int n) : _n(n), data(n) {}\n\n // サイズを与えて初期化\n void init(int n)\n {\n _n = n;\n data.resize(_n);\n }\n\n // 配列を与えて初期化\n void init(vector<T> ar)\n {\n _n = ar.size();\n data.resize(_n);\n rep(i, 0, ar.size())\n {\n add(i, ar[i]);\n }\n }\n\n // p番目にxを足す\n void add(int p, T x)\n {\n assert(0 <= p && p < _n);\n p++;\n while (p <= _n)\n {\n data[p - 1] += x;\n p += p & -p;\n }\n }\n\n // p番目をxにする\n void set(int p, T x)\n {\n T y = sum(p, p + 1);\n add(p, -y);\n add(p, x);\n }\n\n //[l,r)の和\n T sum(int l, int r)\n {\n assert(0 <= l && l <= r && r <= _n);\n return sum(r) - sum(l);\n }\n\nprivate:\n int _n;\n std::vector<T> data;\n\n T sum(int r)\n {\n T s = 0;\n while (r > 0)\n {\n s += data[r - 1];\n r -= r & -r;\n }\n return s;\n }\n};\n//////////////////////////////////////////\nvector<ll> f(vector<ll> ar)\n{\n set<ll> st;\n map<ll, ll> mp;\n rep(i, 0, ar.size())\n {\n st.insert(ar[i]);\n }\n ll cnt = 0;\n for (auto i : st)\n {\n mp[i] = cnt;\n cnt++;\n }\n rep(i, 0, ar.size())\n {\n ar[i] = mp[ar[i]];\n }\n return ar;\n}\nint main()\n{\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll n, K;\n cin >> n >> K;\n vector<ll> s(1, 0);\n rep(i, 0, n)\n {\n ll a;\n cin >> a;\n a -= K;\n s.push_back(s[i] + a);\n }\n s = f(s);\n BIT<ll> bit(n + 1);\n ll ans = 0;\n rep(i, 0, n + 1)\n {\n ans += bit.sum(0, s[i] + 1);\n bit.add(s[i], 1);\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 15848, "score_of_the_acc": -1.1176, "final_rank": 14 }, { "submission_id": "aoj_3117_9670171", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst string dl = \"\\n\";\ntypedef long long ll;\n#define all(v) v.begin(), v.end()\n\nstruct FenwickTree\n{\n vector<int> bit;\n int n;\n\n FenwickTree(int n)\n {\n this->n = n;\n bit.assign(n, 0);\n }\n\n FenwickTree(vector<int> a) : FenwickTree(a.size())\n {\n for (size_t i = 0; i < a.size(); i++)\n add(i, a[i]);\n }\n\n int sum(int r)\n {\n int ret = 0;\n for (; r >= 0; r = (r & (r + 1)) - 1)\n ret += bit[r];\n return ret;\n }\n\n int sum(int l, int r) { return sum(r) - sum(l - 1); }\n\n void add(int idx, int x)\n {\n for (; idx < n; idx = idx | (idx + 1))\n bit[idx] += x;\n }\n\n void set(int idx, int x) { add(idx, x - sum(idx, idx)); }\n};\n/*\n\nK Average Ranges\nTime Limit : 2 sec, Memory Limit : 1048576 KB\n\nA sequence \\(a_1,a_2,...,a_N\\) is given.\n\nHow many ranges of length 1 or more with an average value of K or higher exist in this sequence?\n\nInput\n\\(N \\space K\\)\n\\(a_1 \\space a_2 \\space … \\space a_N\\)\n\nOutput\nOutput the answer.\n\nConstraints\n\\(1≤N≤10^5\\)\n\\(1≤K≤10^9\\)\n\\(1≤a_i≤10^9\\)\n\n\nThe naive solution is to iterate over all possible ranges and check if the average is greater than or equal to K. This solution has a time complexity of \\(O(N^2)\\) and will not pass the time limit.\n\n\nOne way we can solve this problem is by observing what happens when we want to calculate the average of a range [l,r] of length m (r−l+1=m and 1 <= m <= n). The average of this range is \\(\\frac{a_l+a_{l+1}+…+a_r}{m}\\), call it \\( avg \\), for \\(avg\\) to be K or greater, that we put it this way:\n\\( frac{a_l+a_{l+1}+…+a_r}{m} \\geq K \\), that is also equal to: \\( a_l+a_{l+1}+…+a_r \\geq m \\times k \\), that is also equal to:\n\\( a_l+a_{l+1}+…+a_r - m \\times k \\geq 0 \\), using the fact that, \\(x \\times y \\) is just repeated addition of x y times, we can rewrite the above equation as: \\( a_l - k + a_{l+1} - k + … + a_r - k \\geq 0 \\).\n\n*/\nvoid solve()\n{\n ll n, k;\n cin >> n >> k;\n vector<ll> a(n);\n for (int i = 0; i < n; i++)\n cin >> a[i];\n\n vector<ll> prefix(n + 1);\n vector<ll> f(n + 1); // f[i] is the index of the prefix sum of i in the sorted array b\n ll ans = 0;\n for (int i = 0; i < n; i++)\n {\n prefix[i + 1] = prefix[i] + a[i];\n prefix[i + 1] -= k;\n }\n vector<ll> compress = prefix;\n sort(all(compress));\n compress.erase(unique(all(compress)), compress.end());\n for (int i = 0; i < n + 1; i++)\n {\n ll j = lower_bound(all(compress), prefix[i]) - compress.begin();\n f[i] = j + 2;\n }\n FenwickTree bit(n + 10);\n for (int i = 0; i < n + 1; i++)\n {\n ans += bit.sum(1, f[i]);\n bit.add(f[i], 1);\n }\n cout << ans << endl;\n}\n\nint main()\n{\n\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6408, "score_of_the_acc": -0.1675, "final_rank": 5 }, { "submission_id": "aoj_3117_9670126", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst string dl = \"\\n\";\ntypedef long long ll;\n#define all(v) v.begin(), v.end()\n#define rall(v) v.rbegin(), v.rend()\n#define rv(exp) return void(cout << exp << dl)\ntemplate <typename T>\nostream &operator<<(ostream &out, vector<T> &vec)\n{\n for (auto &x : vec)\n out << x << \" \";\n return out;\n}\ntemplate <typename T>\nistream &operator>>(istream &in, vector<T> &vec)\n{\n for (auto &x : vec)\n in >> x;\n return in;\n}\n\nstruct FenwickTree\n{\n vector<int> bit;\n int n;\n\n FenwickTree(int n)\n {\n this->n = n;\n bit.assign(n, 0);\n }\n\n FenwickTree(vector<int> a) : FenwickTree(a.size())\n {\n for (size_t i = 0; i < a.size(); i++)\n add(i, a[i]);\n }\n\n int sum(int r) // sum from 0 to r\n {\n int ret = 0;\n for (; r >= 0; r = (r & (r + 1)) - 1)\n ret += bit[r];\n return ret;\n }\n\n int sum(int l, int r) { return sum(r) - sum(l - 1); }\n\n void add(int idx, int x)\n {\n for (; idx < n; idx = idx | (idx + 1))\n bit[idx] += x;\n }\n\n // set value at pos idx to x\n void set(int idx, int x) { add(idx, x - sum(idx, idx)); }\n};\n\nvoid solve()\n{\n ll n, k;\n cin >> n >> k;\n vector<ll> a(n);\n cin >> a;\n vector<ll> sum(n + 1);\n vector<ll> b(n + 1, 0);\n vector<ll> t(n + 1, 0);\n ll ans = 0;\n for (int i = 0; i < n; i++)\n {\n sum[i + 1] = sum[i] + a[i];\n sum[i + 1] -= k;\n b[i + 1] = sum[i + 1];\n }\n sort(all(b));\n b.erase(unique(all(b)), b.end());\n vector<ll> f(n + 1);\n for (int i = 0; i < n + 1; i++)\n {\n ll p = lower_bound(all(b), sum[i]) - b.begin();\n f[i] = p + 2;\n }\n FenwickTree bit(n + 10);\n for (int i = 0; i < n + 1; i++)\n {\n t[i] = bit.sum(1, f[i]);\n ans += t[i];\n bit.add(f[i], 1);\n }\n cout << ans << endl;\n}\n\nint main()\n{\n\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n\n int tc = 1;\n\n for (int t = 1; t <= tc; t++)\n {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 7304, "score_of_the_acc": -0.2466, "final_rank": 7 }, { "submission_id": "aoj_3117_9670123", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst string dl = \"\\n\";\ntypedef long long ll;\n#define all(v) v.begin(), v.end()\n#define rall(v) v.rbegin(), v.rend()\n#define rv(exp) return void(cout << exp << dl)\ntemplate <typename T>\nostream &operator<<(ostream &out, vector<T> &vec)\n{\n for (auto &x : vec)\n out << x << \" \";\n return out;\n}\ntemplate <typename T>\nistream &operator>>(istream &in, vector<T> &vec)\n{\n for (auto &x : vec)\n in >> x;\n return in;\n}\n\nstruct FenwickTree\n{\n vector<int> bit;\n int n;\n\n FenwickTree(int n)\n {\n this->n = n;\n bit.assign(n, 0);\n }\n\n FenwickTree(vector<int> a) : FenwickTree(a.size())\n {\n for (size_t i = 0; i < a.size(); i++)\n add(i, a[i]);\n }\n\n int sum(int r) // sum from 0 to r\n {\n int ret = 0;\n for (; r >= 0; r = (r & (r + 1)) - 1)\n ret += bit[r];\n return ret;\n }\n\n int sum(int l, int r) { return sum(r) - sum(l - 1); }\n\n void add(int idx, int x)\n {\n for (; idx < n; idx = idx | (idx + 1))\n bit[idx] += x;\n }\n\n // set value at pos idx to x\n void set(int idx, int x) { add(idx, x - sum(idx, idx)); }\n};\n\nvoid solve()\n{\n ll n, k;\n cin >> n >> k;\n vector<ll> a(n);\n cin >> a;\n vector<ll> sum(n + 1);\n vector<ll> b(n + 1, 0);\n vector<ll> t(n + 1, 0);\n ll ans = 0;\n for (int i = 0; i < n; i++)\n {\n sum[i + 1] = sum[i] + a[i];\n sum[i + 1] -= k;\n b[i + 1] = sum[i + 1];\n }\n sort(all(b));\n b.erase(unique(all(b)), b.end());\n vector<ll> f(n + 1);\n for (int i = 0; i < n + 1; i++)\n {\n ll p = lower_bound(all(b), sum[i]) - b.begin();\n f[i] = p + 2;\n }\n FenwickTree bit(n + 10);\n for (int i = 0; i < n + 1; i++)\n {\n t[i] = bit.sum(f[i]);\n ans += t[i];\n bit.add(f[i], 1);\n }\n cout << ans << endl;\n}\n\nint main()\n{\n\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n\n int tc = 1;\n\n for (int t = 1; t <= tc; t++)\n {\n solve();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 7156, "score_of_the_acc": -0.2335, "final_rank": 6 }, { "submission_id": "aoj_3117_9670118", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst string dl = \"\\n\";\ntypedef long long ll;\n#define all(v) v.begin(), v.end()\n#define rall(v) v.rbegin(), v.rend()\n#define rv(exp) return void(cout << exp << dl)\ntemplate <typename T>\nostream &operator<<(ostream &out, vector<T> &vec)\n{\n for (auto &x : vec)\n out << x << \" \";\n return out;\n}\ntemplate <typename T>\nistream &operator>>(istream &in, vector<T> &vec)\n{\n for (auto &x : vec)\n in >> x;\n return in;\n}\n\nstruct FenwickTree\n{\n vector<int> bit;\n int n;\n\n FenwickTree(int n)\n {\n this->n = n;\n bit.assign(n, 0);\n }\n\n FenwickTree(vector<int> a) : FenwickTree(a.size())\n {\n for (size_t i = 0; i < a.size(); i++)\n add(i, a[i]);\n }\n\n int sum(int r) // sum from 0 to r\n {\n int ret = 0;\n for (; r >= 0; r = (r & (r + 1)) - 1)\n ret += bit[r];\n return ret;\n }\n\n int sum(int l, int r) { return sum(r) - sum(l - 1); }\n\n void add(int idx, int x)\n {\n for (; idx < n; idx = idx | (idx + 1))\n bit[idx] += x;\n }\n\n // set value at pos idx to x\n void set(int idx, int x) { add(idx, x - sum(idx, idx)); }\n};\n\nvoid solve()\n{\n ll n, k;\n cin >> n >> k;\n vector<ll> a(n);\n cin >> a;\n vector<ll> sum(n + 1);\n vector<ll> b(n + 1, 0);\n vector<ll> t(n + 1, 0);\n ll ans = 0;\n for (int i = 0; i < n; i++)\n {\n sum[i + 1] = sum[i] + a[i];\n sum[i + 1] -= k;\n b[i + 1] = sum[i + 1];\n }\n sort(all(b));\n b.erase(unique(all(b)), b.end());\n vector<ll> f(n + 1);\n for (int i = 0; i < n + 1; i++)\n {\n ll p = lower_bound(all(b), sum[i]) - b.begin();\n f[i] = p + 1;\n }\n FenwickTree bit(n + 1);\n for (int i = 0; i < n + 1; i++)\n {\n t[i] = bit.sum(f[i]);\n ans += t[i];\n bit.add(f[i], 1);\n }\n cout << ans << dl;\n}\n\nint main()\n{\n\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n\n int tc = 1;\n\n for (int t = 1; t <= tc; t++)\n {\n solve();\n }\n return 0;\n}", "accuracy": 0.2, "time_ms": 10, "memory_kb": 7308, "score_of_the_acc": -0.2469, "final_rank": 19 }, { "submission_id": "aoj_3117_9670117", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nconst string dl = \"\\n\";\ntypedef long long ll;\n#define all(v) v.begin(), v.end()\n#define rall(v) v.rbegin(), v.rend()\n#define rv(exp) return void(cout << exp << dl)\ntemplate <typename T>\nostream &operator<<(ostream &out, vector<T> &vec)\n{\n for (auto &x : vec)\n out << x << \" \";\n return out;\n}\ntemplate <typename T>\nistream &operator>>(istream &in, vector<T> &vec)\n{\n for (auto &x : vec)\n in >> x;\n return in;\n}\n\nstruct FenwickTree\n{\n vector<int> bit;\n int n;\n\n FenwickTree(int n)\n {\n this->n = n;\n bit.assign(n, 0);\n }\n\n FenwickTree(vector<int> a) : FenwickTree(a.size())\n {\n for (size_t i = 0; i < a.size(); i++)\n add(i, a[i]);\n }\n\n int sum(int r) // sum from 0 to r\n {\n int ret = 0;\n for (; r >= 0; r = (r & (r + 1)) - 1)\n ret += bit[r];\n return ret;\n }\n\n int sum(int l, int r) { return sum(r) - sum(l - 1); }\n\n void add(int idx, int x)\n {\n for (; idx < n; idx = idx | (idx + 1))\n bit[idx] += x;\n }\n\n // set value at pos idx to x\n void set(int idx, int x) { add(idx, x - sum(idx, idx)); }\n};\n\nvoid solve()\n{\n ll n, k;\n cin >> n >> k;\n vector<ll> a(n);\n cin >> a;\n vector<ll> sum(n + 1);\n vector<ll> b(n + 1, 0);\n vector<ll> t(n + 1, 0);\n ll ans = 0;\n for (int i = 0; i < n; i++)\n {\n sum[i + 1] = sum[i] + a[i];\n sum[i + 1] -= k;\n b[i + 1] = sum[i + 1];\n }\n sort(all(b));\n b.erase(unique(all(b)), b.end());\n vector<ll> f(n + 1);\n for (int i = 0; i < n + 1; i++)\n {\n ll p = lower_bound(all(b), sum[i]) - b.begin();\n f[i] = p + 1;\n }\n FenwickTree bit(n + 1);\n for (int i = 0; i < n + 1; i++)\n {\n t[i] = bit.sum(1, f[i]);\n ans += t[i];\n bit.add(f[i], 1);\n }\n cout << ans << dl;\n}\n\nint main()\n{\n\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n\n int tc = 1;\n\n for (int t = 1; t <= tc; t++)\n {\n solve();\n }\n return 0;\n}", "accuracy": 0.2, "time_ms": 10, "memory_kb": 7200, "score_of_the_acc": -0.2374, "final_rank": 18 }, { "submission_id": "aoj_3117_9670108", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n\nusing namespace std;\n\nint main()\n{\n int n;\n long long k;\n cin >> n >> k;\n vector<long long> a(n);\n for (int i = 0; i < n; i++)\n {\n cin >> a[i];\n }\n\n vector<long long> ps(n + 1, 0);\n for (int i = 0; i < n; i++)\n {\n ps[i + 1] = ps[i] + a[i];\n }\n\n long long ans = 0;\n for (long long i = 0; i < n; i++)\n {\n long long l = i;\n long long r = n;\n while (l < r)\n {\n int m = (l + r) / 2;\n long long sum = ps[m + 1] - ps[i];\n if (sum >= k * (m - i + 1))\n {\n l = m + 1;\n }\n else\n {\n r = m;\n }\n }\n ans += l - i;\n }\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 0.2, "time_ms": 20, "memory_kb": 4508, "score_of_the_acc": -0.0588, "final_rank": 16 }, { "submission_id": "aoj_3117_8827251", "code_snippet": "#line 1 \"a.cpp\"\n#define PROBLEM \"\"\n#line 2 \"/home/kuhaku/home/github/algo/lib/segment_tree/monoid.hpp\"\n#include <algorithm>\n#include <limits>\n#include <utility>\n\ntemplate <class T>\nstruct Add {\n using value_type = T;\n static constexpr T id = T(0);\n static constexpr T op(const T &lhs, const T &rhs) { return lhs + rhs; }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return lhs + rhs;\n }\n};\n\ntemplate <class T>\nstruct And {\n using value_type = T;\n static constexpr T id = std::numeric_limits<T>::max();\n static constexpr T op(const T &lhs, const T &rhs) { return lhs & rhs; }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return lhs & rhs;\n }\n};\n\ntemplate <class T>\nstruct Or {\n using value_type = T;\n static constexpr T id = T(0);\n static constexpr T op(const T &lhs, const T &rhs) { return lhs | rhs; }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return lhs | rhs;\n }\n};\n\ntemplate <class T>\nstruct Xor {\n using value_type = T;\n static constexpr T id = T(0);\n static constexpr T op(const T &lhs, const T &rhs) { return lhs ^ rhs; }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return lhs ^ rhs;\n }\n};\n\ntemplate <class T>\nstruct Min {\n using value_type = T;\n static constexpr T id = std::numeric_limits<T>::max();\n static constexpr T op(const T &lhs, const T &rhs) { return std::min(lhs, rhs); }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return std::min((U)lhs, rhs);\n }\n};\n\ntemplate <class T>\nstruct Max {\n using value_type = T;\n static constexpr T id = std::numeric_limits<T>::min();\n static constexpr T op(const T &lhs, const T &rhs) { return std::max(lhs, rhs); }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return std::max((U)lhs, rhs);\n }\n};\n\ntemplate <class T>\nstruct Update {\n using value_type = T;\n static constexpr T id = std::numeric_limits<T>::max();\n static constexpr T op(const T &lhs, const T &rhs) { return lhs == Update::id ? rhs : lhs; }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return lhs == Update::id ? rhs : lhs;\n }\n};\n\ntemplate <class T>\nstruct Affine {\n using value_type = std::pair<T, T>;\n static constexpr std::pair<T, T> id = std::pair<T, T>(1, 0);\n static constexpr std::pair<T, T> op(std::pair<T, T> lhs, std::pair<T, T> rhs) {\n return {lhs.first * rhs.first, lhs.first * rhs.second + lhs.second};\n }\n};\n\ntemplate <class M>\nstruct Rev {\n using T = typename M::value_type;\n using value_type = T;\n static constexpr T id = M::id;\n static constexpr T op(T lhs, T rhs) { return M::op(rhs, lhs); }\n};\n#line 2 \"/home/kuhaku/home/github/algo/lib/template/template.hpp\"\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = M_PI;\n#line 4 \"/home/kuhaku/home/github/algo/lib/segment_tree/dynamic_segment_tree.hpp\"\n\n/**\n * @brief 動的セグメント木\n *\n * @tparam M モノイド\n */\ntemplate <class M>\nstruct dynamic_segment_tree {\n private:\n using T = typename M::value_type;\n\n struct _node {\n using pointer = _node *;\n std::int64_t index;\n pointer left, right;\n T value, product;\n\n constexpr _node(std::int64_t _index, T _value)\n : index(_index), left(nullptr), right(nullptr), value(_value), product(_value) {}\n };\n\n public:\n using node_ptr = typename _node::pointer;\n\n dynamic_segment_tree(std::int64_t n) : root(), _size(n) {}\n\n T operator[](std::int64_t k) const {\n node_ptr node = root;\n std::int64_t l = 0, r = _size;\n while (node) {\n if (k == node->index) return node->value;\n std::int64_t m = (l + r) >> 1;\n if (k < m) r = m, node = node->left;\n else l = m, node = node->right;\n }\n return M::id;\n }\n T at(std::int64_t k) const { return operator[](k); }\n T get(std::int64_t k) const { return operator[](k); }\n\n void set(std::int64_t k, T x) {\n assert(0 <= k && k < _size);\n if (!root) {\n root = new _node(k, x);\n return;\n }\n node_ptr node = root;\n std::vector<node_ptr> nodes;\n std::int64_t l = 0, r = _size;\n while (true) {\n nodes.emplace_back(node);\n if (k == node->index) {\n node->value = x;\n break;\n }\n std::int64_t m = (l + r) >> 1;\n if (k < m) {\n if (node->index < k) std::swap(k, node->index), std::swap(x, node->value);\n if (!node->left) {\n node->left = new _node(k, x);\n break;\n }\n r = m, node = node->left;\n } else {\n if (k < node->index) std::swap(k, node->index), std::swap(x, node->value);\n if (!node->right) {\n node->right = new _node(k, x);\n break;\n }\n l = m, node = node->right;\n }\n }\n\n std::reverse(std::begin(nodes), std::end(nodes));\n for (auto node : nodes) {\n node->product = M::op(M::op(node->left ? node->left->product : M::id, node->value),\n node->right ? node->right->product : M::id);\n }\n }\n void reset(std::int64_t k) { set(k, M::id); }\n\n T all_prod() const { return root ? root->product : M::id; }\n T prod(std::int64_t a, std::int64_t b) const {\n assert(0 <= a && a <= _size);\n assert(0 <= b && b <= _size);\n return prod(a, b, root, 0, _size);\n }\n\n template <class F>\n std::int64_t max_right(F f) const {\n assert(f(M::id));\n if (root == nullptr || f(root->value)) return _size;\n node_ptr node = root;\n T sm = M::id;\n std::int64_t l = 0, r = _size;\n while (r - l > 1) {\n std::int64_t m = (l + r) >> 1;\n if (node->left == nullptr || f(M::op(sm, node->left->value))) {\n if (node->left != nullptr) sm = M::op(sm, node->left->value);\n l = m;\n node = node->right;\n } else {\n r = m;\n node = node->left;\n }\n }\n return f(M::op(sm, node->value)) ? r : l;\n }\n\n template <class F>\n std::int64_t min_left(F f) const {\n assert(f(M::id));\n if (root == nullptr || f(root->value)) return 0;\n node_ptr node = root;\n T sm = M::id;\n std::int64_t l = 0, r = _size;\n while (r - l > 1) {\n std::int64_t m = (l + r) >> 1;\n if (node->right == nullptr || f(M::op(node->right->value, sm))) {\n if (node->right != nullptr) sm = M::op(node->right->value, sm);\n r = m;\n node = node->left;\n } else {\n l = m;\n node = node->right;\n }\n }\n return f(M::op(node->value, sm)) ? l : r;\n }\n\n private:\n node_ptr root;\n std::int64_t _size;\n\n T prod(std::int64_t a, std::int64_t b, node_ptr node, std::int64_t l, std::int64_t r) const {\n if (!node || r <= a || b <= l) return M::id;\n if (a <= l && r <= b) return node->product;\n\n return M::op(M::op(prod(a, b, node->left, l, (l + r) >> 1),\n a <= node->index && node->index < b ? node->value : M::id),\n prod(a, b, node->right, (l + r) >> 1, r));\n }\n};\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/macro.hpp\"\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/sonic.hpp\"\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n\n constexpr void operator()() const {}\n} sonic;\n#line 5 \"/home/kuhaku/home/github/algo/lib/template/atcoder.hpp\"\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) {\n os << (it == v.begin() ? \"\" : \" \") << *it;\n }\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\ntemplate <typename T, typename... Args>\nauto make_vector(T x, int arg, Args... args) {\n if constexpr (sizeof...(args) == 0) return std::vector<T>(arg, x);\n else return std::vector(arg, make_vector<T>(x, args...));\n}\nvoid Yes(bool is_correct = true) {\n std::cout << (is_correct ? \"Yes\" : \"No\") << '\\n';\n}\nvoid No(bool is_not_correct = true) {\n Yes(!is_not_correct);\n}\nvoid YES(bool is_correct = true) {\n std::cout << (is_correct ? \"YES\" : \"NO\") << '\\n';\n}\nvoid NO(bool is_not_correct = true) {\n YES(!is_not_correct);\n}\nvoid Takahashi(bool is_correct = true) {\n std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n';\n}\nvoid Aoki(bool is_not_correct = true) {\n Takahashi(!is_not_correct);\n}\n#line 4 \"a.cpp\"\n\nint main(void) {\n int n, k;\n cin >> n >> k;\n vector<ll> a(n);\n cin >> a;\n rep (i, n) a[i] -= k;\n\n dynamic_segment_tree<Add<ll>> dst(INF);\n ll bias = INF / 2;\n dst.set(bias, 1);\n ll s = 0;\n ll ans = 0;\n rep (i, n) {\n s += a[i];\n ans += dst.prod(0, bias + s + 1);\n dst.set(bias + s, dst.get(bias + s) + 1);\n }\n co(ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 8500, "score_of_the_acc": -0.5873, "final_rank": 9 }, { "submission_id": "aoj_3117_8003450", "code_snippet": "#pragma region Macros\n\n// #pragma GCC target(\"avx,avx2,fma\")\n// #pragma GCC optimize(\"O3,unroll-loops\")\n\n#include <bits/extc++.h>\n// #include <immintrin.h>\n// #include <atcoder/all>\n// using namespace atcoder;\nusing namespace std;\nusing namespace __gnu_pbds;\n\n// #include <boost/multiprecision/cpp_dec_float.hpp>\n// #include <boost/multiprecision/cpp_int.hpp>\n// namespace mp = boost::multiprecision;\n// using Bint = mp::cpp_int;\n// using Bdouble = mp::number<mp::cpp_dec_float<256>>;\n\n#define TO_STRING(var) # var\n#define pb emplace_back\n#define int ll\n#define endl '\\n'\n#define sqrt __builtin_sqrtl\n\nusing ll = long long;\nusing ld = long double;\nconst ld PI = acos(-1);\nconst ld EPS = 1e-10;\nconst int INF = 1 << 30;\nconst ll INFL = 1LL << 61;\nconst int MOD = 998244353;\n// const int MOD = 1000000007;\n\nconst vector<int> dx = {0, 1, -1, 0, 1, 1, -1, -1}; // → ↓ ← ↑ ↘ ↙ ↖ ↗\nconst vector<int> dy = {1, 0, 0, -1, 1, -1, -1, 1};\n\nstruct Edge {\n int from, to;\n int cost;\n Edge(int to, int cost) : from(-1), to(to), cost(cost) {}\n Edge(int from, int to, int cost) : from(from), to(to), cost(cost) {}\n Edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n};\n\n__attribute__((constructor))\nvoid constructor() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(12);\n}\n\nstruct custom_hash {\n static uint64_t splitmix64(uint64_t x) {\n x += 0x9e3779b97f4a7c15;\n x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;\n x = (x ^ (x >> 27)) * 0x94d049bb133111eb;\n return x ^ (x >> 31);\n }\n\n size_t operator()(uint64_t x) const {\n static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();\n return splitmix64(x + FIXED_RANDOM);\n }\n};\n\nint POW(int x, int n) {\n __int128_t ret = 1;\n // if (ret >= INFL) return INFL;\n if (n < 0) { cout << \"error\" << endl; return 0; }\n else if (x == 1 or n == 0) ret = 1;\n else if (x == -1 && n % 2 == 0) ret = 1; \n else if (x == -1) ret = -1; \n else if (n % 2 == 0) ret = POW(x * x, n / 2);\n else ret = x * POW(x, n - 1);\n\n if (ret > 8e18) ret = 0;\n return ret;\n}\nint floor(int x, int y) { return (x > 0 ? x / y : (x - y + 1) / y); }\nint ceil(int x, int y) { return (x > 0 ? (x + y - 1) / y : x / y); }\nll per(int x, int y) {\n if (y == 0) {\n cout << \"error\" << endl;\n return INFL;\n }\n if (x >= 0 && y > 0) return x / y;\n if (x >= 0 && y < 0) return x / y - (x % y < 0);\n if (x < 0 && y < 0) return x / y + (x % y < 0);\n // if (x < 0 && y > 0) \n return x / y - (x % y < 0);\n}\nll mod(int x, int y) {\n if (y == 0) {\n cout << \"error\" << endl;\n return INFL;\n }\n if (x >= 0 && y > 0) return x % y;\n if (x >= 0 && y < 0) return x % y;\n if (x < 0 && y < 0) {\n __int128_t ret = x % y;\n ret += (__int128_t)abs(y) * INFL;\n ret %= abs(y);\n return ret;\n }\n // if (x < 0 && y > 0) {\n __int128_t ret = x % y;\n ret += (__int128_t)abs(y) * INFL;\n ret %= abs(y);\n return ret;\n // }\n}\n\ntemplate <class T> bool chmax(T &a, const T& b) {\n if (a < b) { a = b; return true; }\n return false;\n}\ntemplate <class T> bool chmin(T &a, const T& b) {\n if (a > b) { a = b; return true; }\n return false;\n}\n\nint countl_zero(int N) { return __builtin_clzll(N); }\nint countl_one(int N) {\n int ret = 0; while (N % 2) { N /= 2; ret++; }\n return ret;\n}\nint countr_zero(int N) { return __builtin_ctzll(N); }\nint countr_one(int N) {\n int ret = 0, k = 63 - __builtin_clzll(N);\n while (k != -1 && (N & (1LL << k))) { k--; ret++; }\n return ret;\n}\nint popcount(int N) { return __builtin_popcountll(N); }\nint unpopcount(int N) { return 64 - __builtin_clzll(N) - __builtin_popcountll(N); }\n\nint top_bit(int N) { return 63 - __builtin_clzll(N);} // 2^kの位\nint bot_bit(int N) { return __builtin_ctz(N);} // 2^kの位\nint MSB(int N) { return 1 << (63 - __builtin_clzll(N)); } // mask\n\nint bit_width(int N) { return 64 - __builtin_clzll(N); } // 桁数\nint ceil_log2(int N) { return 63 - __builtin_clzll(N); }\nint bit_floor(int N) { return 1 << (63 - __builtin_clzll(N)); }\nint floor_log2(int N) { return 64 - __builtin_clzll(N-1); }\nint bit_ceil(int N) { return 1 << (64 - __builtin_clzll(N-1)) - (N==1); }\n\nclass UnionFind {\npublic:\n\tUnionFind() = default;\n UnionFind(int N) : par(N), sz(N, 1) {\n iota(par.begin(), par.end(), 0);\n }\n\n\tint root(int x) {\n\t\tif (par[x] == x) return x;\n\t\treturn (par[x] = root(par[x]));\n\t}\n\n\tbool unite(int x, int y) {\n\t\tint rx = root(x);\n\t\tint ry = root(y);\n\n if (rx == ry) return false;\n\t\tif (sz[rx] < sz[ry]) swap(rx, ry);\n\n\t\tsz[rx] += sz[ry];\n\t\tpar[ry] = rx;\n\n return true;\n\t}\n\n\tbool issame(int x, int y) { return (root(x) == root(y)); }\n\tint size(int x) { return sz[root(x)]; }\n\n vector<vector<int>> groups(int N) {\n vector<vector<int>> G(N);\n for (int x = 0; x < N; x++) {\n G[root(x)].push_back(x);\n }\n\t\tG.erase(\n remove_if(G.begin(), G.end(),\n [&](const vector<int>& V) { return V.empty(); }),\n G.end());\n return G;\n }\n\nprivate:\n\tvector<int> par;\n\tvector<int> sz;\n};\n\ntemplate<int mod> class Modint{\npublic:\n int val = 0;\n Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }\n Modint(const Modint &r) { val = r.val; }\n\n Modint operator -() { return Modint(-val); } // 単項\n Modint operator +(const Modint &r) { return Modint(*this) += r; }\n Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; }\n Modint operator -(const Modint &r) { return Modint(*this) -= r; }\n Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; }\n Modint operator *(const Modint &r) { return Modint(*this) *= r; }\n Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; }\n Modint operator /(const Modint &r) { return Modint(*this) /= r; }\n Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; }\n \n Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置\n Modint operator ++(signed) { ++*this; return *this; } // 後置\n Modint& operator --() { val--; if (val < 0) val += mod; return *this; }\n Modint operator --(signed) { --*this; return *this; }\n Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; }\n Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; }\n Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; }\n Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; }\n Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; }\n Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; }\n Modint &operator /=(const Modint &r) {\n int a = r.val, b = mod, u = 1, v = 0;\n while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}\n val = val * u % mod; if (val < 0) val += mod;\n return *this;\n }\n Modint &operator /=(const int &q) {\n Modint r(q); int a = r.val, b = mod, u = 1, v = 0;\n while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}\n val = val * u % mod; if (val < 0) val += mod;\n return *this;\n }\n\n bool operator ==(const Modint& r) { return this -> val == r.val; }\n bool operator <(const Modint& r) { return this -> val < r.val; }\n bool operator !=(const Modint& r) { return this -> val != r.val; }\n};\n\nusing mint = Modint<MOD>;\n\nistream &operator >>(istream &is, mint& x) {\n int t; is >> t;\n x = t;\n return (is);\n}\nostream &operator <<(ostream &os, const mint& x) {\n return os << x.val;\n}\nmint modpow(const mint &x, int n) {\n if (n == 0) return 1;\n mint t = modpow(x, n / 2);\n t = t * t;\n if (n & 1) t = t * x;\n return t;\n}\n\nint modpow(__int128_t x, int n, int mod) {\n __int128_t ret = 1;\n while (n > 0) {\n if (n % 2 == 1) ret = ret * x % mod;\n x = x * x % mod;\n n /= 2;\n }\n return ret;\n}\n\nint modinv(__int128_t x, int mod) {\n if (x == 1) return 1;\n return mod - modinv(mod % x, mod) * (mod / x) % mod;\n}\n\nostream &operator <<(ostream &os, __int128_t value) {\n ostream::sentry s(os);\n if (s) {\n __uint128_t tmp = value < 0 ? -value : value;\n char buffer[128];\n char *d = end(buffer);\n\n do {\n --d; *d = \"0123456789\"[tmp % 10];\n tmp /= 10;\n } while (tmp != 0);\n\n if (value < 0) { d--; *d = '-'; }\n\n int len = end(buffer) - d;\n if (os.rdbuf()->sputn(d, len) != len) {\n os.setstate(ios_base::badbit);\n }\n }\n return os;\n}\n\nvector<mint> fac, finv, Inv;\nvoid COMinit(int N) {\n fac.resize(N + 1);\n finv.resize(N + 1);\n Inv.resize(N + 1);\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n Inv[1] = 1;\n for (int i = 2; i <= N; i++) {\n fac[i] = fac[i-1] * mint(i);\n Inv[i] = -Inv[MOD % i] * mint(MOD / i);\n finv[i] = finv[i - 1] * Inv[i];\n }\n}\n\nmint COM(int N, int K) {\n if (N < K) return 0;\n if (N < 0 or K < 0) return 0;\n return fac[N] * finv[K] * finv[N - K];\n}\n\n#pragma endregion\n\nsigned main() {\n int N, M;\n cin >> N >> M;\n vector<int> A(N);\n for (int i = 0; i < N; i++) {\n cin >> A[i];\n A[i] -= M;\n }\n\n vector<int> sum(N + 1);\n\tfor (int i = 0; i < N; i++) {\n\t\tsum[i + 1] = sum[i] + A[i];\n\t}\n\n tree<pair<int, int>,null_type,less<pair<int, int>>,rb_tree_tag,tree_order_statistics_node_update> tr;\n\tint ans = 0;\n\tfor (int i = 0; i <= N; i++) {\n int k = tr.order_of_key(make_pair(sum[i], INFL));\n ans += k;\n tr.insert(make_pair(sum[i], i));\n }\n\tcout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 10956, "score_of_the_acc": -0.6274, "final_rank": 10 }, { "submission_id": "aoj_3117_6491373", "code_snippet": "#define PROBLEM \"https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3117\"\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#include <ext/pb_ds/assoc_container.hpp>\n#include <ext/pb_ds/tree_policy.hpp>\nusing namespace __gnu_pbds;\n\ntemplate <class K, class V>\nusing ordered_map = tree<K, V, less<K>, rb_tree_tag, tree_order_statistics_node_update>;\n\ntemplate <class K>\nusing ordered_set = ordered_map<K, null_type>;\n\nint main() {\n\tint N;\n\tlong long K;\n\tcin >> N >> K;\n\tvector<long long> A(N);\n\tfor (auto &a : A) {\n\t\tcin >> a;\n\t\ta -= K;\n\t}\n\n\tordered_set<pair<long long, int>> S;\n\tlong long sum = 0, ans = 0;\n\tS.insert(make_pair(sum, -1));\n\tfor (int i = 0; i < N; i++) {\n\t\tsum += A[i];\n\t\tS.insert(make_pair(sum, i));\n\t\tans += S.order_of_key(make_pair(sum, i));\n\t}\n\tcout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 10104, "score_of_the_acc": -0.6699, "final_rank": 13 }, { "submission_id": "aoj_3117_6410680", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline ll time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\n// 1-indexed\ntemplate<typename T>\nstruct BIT{\n int n;\n vector<T> bit;\n BIT(int n_=0):n(n_),bit(n+1){}\n T sum(int i){\n T res=0;\n for(;i>0;i-=(i&-i))res+=bit[i];\n return res;\n }\n void add(int i,T a){\n if(i==0)return;\n for(;i<=n;i+=(i&-i)){bit[i]+=a;}\n }\n int lower_bound(T k){ // k<=sum(res)\n if(k<=0)return 0;\n int res=0,i=1;\n while((i<<1)<=n)i<<=1;\n for(;i;i>>=1){\n if(res+i<=n&&bit[res+i]<k)k-=bit[res+=i];\n }\n return res+1;\n }\n};\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n; cin >> n;\n vector<ll> a(n);\n ll K; cin >> K;\n vector<ll> s(n+1);\n for(int i=0;i<n;i++){\n cin >> a[i];\n a[i] -= K;\n s[i+1] = s[i] + a[i];\n }\n ll res = 0;\n vector<ll> v;\n for(int i=0;i<=n;i++){\n v.push_back(s[i]);\n }\n sort(v.begin(), v.end());\n v.erase(unique(v.begin(), v.end()),v.end());\n int m = v.size();\n BIT<int> bit(m);\n auto idx=[&](ll x)->int{\n return lower_bound(v.begin(), v.end(), x) - v.begin();\n };\n bit.add(idx(0)+1,1);\n for(int i=1;i<=n;i++){\n res += bit.sum(idx(s[i])+1);\n bit.add(idx(s[i])+1,1);\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5940, "score_of_the_acc": -0.1263, "final_rank": 4 }, { "submission_id": "aoj_3117_5950480", "code_snippet": "#ifdef LOCAL\n #define _GLIBCXX_DEBUG\n #define __clock__\n#else\n #pragma GCC optimize(\"Ofast\")\n#endif\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing VI = vector<ll>;\nusing VV = vector<VI>;\nusing VS = vector<string>;\nusing PII = pair<ll, ll>;\n\n// #define INT128 // 必要なら有効化してください\n#ifdef INT128\n using LL = __int128;\n#endif\n\n// tourist set\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p);\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p);\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p);\n\nstring to_string(const string& s) {\n return '\"' + s + '\"';\n}\n\nstring to_string(const char* s) {\n return to_string((string) s);\n}\n\nstring to_string(bool b) {\n return (b ? \"true\" : \"false\");\n}\n\nstring to_string(char c){\n string s = {c};\n return s;\n}\n\n// LL\n#ifdef INT128\n// input\nistream& operator>>(istream& is, LL& v)\n{\n string s;\n is >> s;\n v = 0;\n for (int i = 0; i < (int)s.size(); i++) {\n if (isdigit(s[i])) { v = v * 10 + s[i] - '0'; }\n }\n if (s[0] == '-') { v *= -1; }\n return is;\n}\nstd::ostream &operator<<(std::ostream &dest, LL value) {\n std::ostream::sentry s(dest);\n if (s) {\n LL tmp = value < 0 ? -value : value;\n char buffer[128];\n char *d = std::end(buffer);\n do {\n --d;\n *d = \"0123456789\"[tmp % 10];\n tmp /= 10;\n } while (tmp != 0);\n if (value < 0) {\n --d;\n *d = '-';\n }\n int len = std::end(buffer) - d;\n if (dest.rdbuf()->sputn(d, len) != len) {\n dest.setstate(std::ios_base::badbit);\n }\n }\n return dest;\n}\nstring to_string(LL v){\n stringstream ss;\n ss << v;\n return ss.str();\n}\n#endif // LL\n\nstring to_string(vector<bool> v) {\n bool first = true;\n string res = \"{\";\n for (int i = 0; i < static_cast<int>(v.size()); i++) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(v[i]);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <size_t N>\nstring to_string(bitset<N> v) {\n string res = \"\";\n for (size_t i = 0; i < N; i++) {\n res += static_cast<char>('0' + v[i]);\n }\n return res;\n}\n\ntemplate <typename A>\nstring to_string(A v) {\n bool first = true;\n string res = \"{\";\n for (const auto &x : v) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(x);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p) {\n return \"(\" + to_string(p.first) + \", \" + to_string(p.second) + \")\";\n}\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \")\";\n}\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \", \" + to_string(get<3>(p)) + \")\";\n}\n\nvoid debug_out() { cerr << '\\n'; }\n\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n cerr << \" \" << to_string(H);\n debug_out(T...);\n}\n\n#ifdef LOCAL\n#define debug(...) cerr << \"[\" << #__VA_ARGS__ << \"]:\", debug_out(__VA_ARGS__)\n#else\n#define debug(...) 42\n#endif\n// tourist set end\n\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\n\n#define FOR(i,a,b) for(ll i=(a);i<(b);++i)\n#define rep(i,b) FOR(i, 0, b)\n#define ALL(v) (v).begin(), (v).end()\n#define p(s) cout<<(s)<<'\\n'\n#define p2(s, t) cout << (s) << \" \" << (t) << '\\n'\n#define SZ(x) ((int)(x).size())\n#define SORT(A) sort(ALL(A))\n#define RSORT(A) sort(ALL(A), greater<ll>())\n#define MP make_pair\n#define p_yes() p(\"Yes\")\n#define p_no() p(\"No\")\n#define p_possible() p(\"Possible\")\n#define p_impossible() p(\"Impossible\")\nvoid yes(){p_yes(); exit(0);}\nvoid no(){p_no(); exit(0);}\nvoid possible(){p_possible(); exit(0);}\nvoid impossible(){p_impossible(); exit(0);}\n\nll SUM(VI& V){\n return accumulate(ALL(V), 0LL);\n}\n\nll MIN(VI& V){return *min_element(ALL(V));}\nll MAX(VI& V){return *max_element(ALL(V));}\n\nvoid print_vector(VI& V, ll offset=0){\n ll n = V.size();\n rep(i, n){\n if(i) cout << ' ';\n cout << V[i]+offset;\n }\n cout << endl;\n}\n\nll gcd(ll a,ll b){\n if(b == 0) return a;\n return gcd(b,a%b);\n}\n\nll lcm(ll a,ll b){\n ll g = gcd(a,b);\n return a / g * b;\n}\n\n// long double\nusing ld = long double;\n// #define EPS (1e-14)\nconstexpr ld EPS = 1e-14;\n// #define equals(a,b) (fabs((a)-(b)) < EPS)\nconstexpr bool equals(ld a, ld b){return fabs((a)-(b)) < EPS;}\n\n// 小さい順に取り出すpriority queue\nusing inverse_priority_queue = priority_queue<ll, vector<ll>, greater<ll> >;\n\nint popcount(ll t){\n return __builtin_popcountll(t);\n}\n\nconst ll mod = 1e9 + 7;\n// const ll mod = 998244353;\nconst ll inf = 4e18; // LLONG_MAX = 9223372036854775807 (atcoder, codeforces)\nconst double PI = acos(-1);\n\n// [a/b] (繰り上げ)\nll ceil_div(ll a, ll b){\n return (a+b-1)/b;\n}\n\nll ll_pow(ll a, ll n){\n ll ans = 1;\n FOR(i, 0, n){\n ans *= a;\n }\n return ans;\n}\n// modなし\n\n// snuke's mint\n// auto mod int\n// https://youtu.be/L8grWxBlIZ4?t=9858\n// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize\n// https://youtu.be/8uowVvQ_-Mo?t=1329 : division\n// const int mod = 1000000007;\nstruct mint {\n ll x; // using ll = long long;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) {\n (x *= a.x) %= mod;\n return *this;\n }\n mint operator+(const mint a) const {\n mint res(*this);\n return res+=a;\n }\n mint operator-(const mint a) const {\n mint res(*this);\n return res-=a;\n }\n mint operator*(const mint a) const {\n mint res(*this);\n return res*=a;\n }\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n\n // for prime mod\n mint inv() const {\n return pow(mod-2);\n }\n mint& operator/=(const mint a) {\n return (*this) *= a.inv();\n }\n mint operator/(const mint a) const {\n mint res(*this);\n return res/=a;\n }\n};\n\n// ※双方向\n// N : 頂点数\n// M : 辺数\n// return vector<vector<ll>>\nVV load_graph(ll N, ll M){\n VV G(N);\n rep(i,M){\n ll a,b;cin>>a>>b;\n a--;b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n return G;\n}\nVV load_tree(ll N){\n return load_graph(N, N-1);\n}\n\nVI loadV(ll N){\n VI A(N);\n rep(i,N)cin>>A[i];\n return A;\n}\n\n//#include <atcoder/dsu>\n//using namespace atcoder; // 忘れがち\n\n// val, len\nvector<PII> run_length(VI& A){\n ll N = A.size();\n vector<PII> ret;\n ll last = A[0];\n ll cnt = 1;\n FOR(i, 1, N){\n if(A[i]==last){\n cnt++;\n }else{\n ret.push_back({last,cnt});\n cnt = 1;\n }\n last = A[i];\n }\n if(cnt) ret.push_back({last,cnt});\n return ret;\n}\n\n// できること\n// 一点追加\n// 範囲和\n// ei1333's BIT\nstruct BIT {\n VI data;\n\n BIT(ll sz) {\n data.assign(++sz, 0);\n }\n\n // sum of [0,k) ?\n // sum of [0,k] だわ...\n ll sum(ll k) {\n ll ret = 0;\n for(++k; k > 0; k -= k & -k) ret += data[k];\n return (ret);\n }\n\n // [i, j]\n ll range_sum(ll i, ll j){\n if(i==0){\n return sum(j);\n }else{\n return sum(j) - sum(i-1); \n }\n }\n\n void add(ll k, ll x) {\n for(++k; k < SZ(data); k += k & -k) data[k] += x;\n }\n\n // 中身を見る\n void dbg(ll n){\n VI A;\n rep(i,n){\n A.push_back(range_sum(i,i));\n }\n debug(A);\n }\n};\n\n// 座標圧縮\n// Aをそのまま書き換えるVER\nvoid compress(vector<ll>& A){ \n // 変換表\n auto B = A;\n sort(ALL(B));\n auto it = unique(ALL(B));\n B.erase(it, B.end());\n \n ll N = A.size();\n FOR(i, 0, N){\n ll a = lower_bound(ALL(B), A[i]) - B.begin();\n A[i] = a;\n }\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n // input\n ll N,K;\n cin>>N>>K;\n\n VI A = {0};\n rep(i,N){\n ll a;cin>>a;\n A.push_back(a);\n }\n\n rep(i,N){\n A[i+1] += A[i];\n }\n debug(A);\n\n rep(i,N+1){\n A[i] -= K*i;\n }\n debug(A);\n\n compress(A);\n debug(\"after compress\",A);\n ll ma = MAX(A);\n \n ll cnt=0;\n BIT bit(ma+1);\n rep(i,N+1){\n cnt += bit.range_sum(0,A[i]);\n bit.add(A[i],1);\n }\n p(cnt);\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4564, "score_of_the_acc": -0.0049, "final_rank": 1 }, { "submission_id": "aoj_3117_5145513", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for(long long i=0;i<(long long)(n);i++)\n#define REP(i,k,n) for(long long i=k;i<(long long)(n);i++)\n#define all(a) a.begin(),a.end()\n#define rsort(a) {sort(all(a));reverse(all(a));}\n#define pb emplace_back\n#define eb emplace_back\n#define lb(v,k) (lower_bound(all(v),(k))-v.begin())\n#define ub(v,k) (upper_bound(all(v),(k))-v.begin())\n#define fi first\n#define se second\n#define pi M_PI\n#define PQ(T) priority_queue<T>\n#define SPQ(T) priority_queue<T,vector<T>,greater<T>>\n#define dame(a) {out(a);return 0;}\n#define decimal cout<<fixed<<setprecision(15);\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef tuple<ll,ll,ll> PP;\ntypedef tuple<ll,ll,ll,ll> PPP;\ntypedef multiset<ll> S;\nusing vi=vector<ll>;\nusing vvi=vector<vi>;\nusing vvvi=vector<vvi>;\nusing vvvvi=vector<vvvi>;\nusing vp=vector<P>;\nusing vvp=vector<vp>;\nusing vb=vector<bool>;\nusing vvb=vector<vb>;\nconst ll inf=1001001001001001001;\nconst ll INF=1001001001;\nconst ll mod=1000000007;\nconst double eps=1e-10;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outp(T a){cout<<'('<<a.fi<<','<<a.se<<')'<<'\\n';}\ntemplate<class T> void outvp(T v){rep(i,v.size())cout<<'('<<v[i].fi<<','<<v[i].se<<')';cout<<'\\n';}\ntemplate<class T> void outvvp(T v){rep(i,v.size())outvp(v[i]);}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){rep(i,v.size())outv(v[i]);}\ntemplate<class T> bool isin(T x,T l,T r){return (l)<=(x)&&(x)<=(r);}\ntemplate<class T> void yesno(T b){if(b)out(\"yes\");else out(\"no\");}\ntemplate<class T> void YesNo(T b){if(b)out(\"Yes\");else out(\"No\");}\ntemplate<class T> void YESNO(T b){if(b)out(\"YES\");else out(\"NO\");}\ntemplate<class T> void noyes(T b){if(b)out(\"no\");else out(\"yes\");}\ntemplate<class T> void NoYes(T b){if(b)out(\"No\");else out(\"Yes\");}\ntemplate<class T> void NOYES(T b){if(b)out(\"NO\");else out(\"YES\");}\nvoid outs(ll a,ll b){if(a>=inf-100)out(b);else out(a);}\nll gcd(ll a,ll b){if(b==0)return a;return gcd(b,a%b);}\nll modpow(ll a,ll b){ll res=1;a%=mod;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}return res;}\nint main(){\n ll n,k;cin>>n>>k;\n vi v(n+1);\n REP(i,1,n+1){\n cin>>v[i];v[i]-=k;\n v[i]+=v[i-1];\n }\n ll ans=0;\n function<void(ll,ll)> solve=[&](ll l,ll r){\n if(r-l<2)return;\n ll md=(l+r)/2;\n vi a,b;\n REP(i,l,md)a.pb(v[i]);\n REP(i,md,r)b.pb(v[i]);\n sort(all(a));sort(all(b));\n ll res=0;\n for(ll x:b)ans+=lb(a,x+1);\n if(r-l>1){\n solve(l,md);solve(md,r);\n }\n };\n solve(0,n+1);\n out(ans);\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 5244, "score_of_the_acc": -0.4767, "final_rank": 8 }, { "submission_id": "aoj_3117_5064412", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 4 \"/home/yuruhiya/programming/library/DataStructure/BinaryIndexedTree.cpp\"\nusing namespace std;\n\ntemplate <class T> class BinaryIndexedTree {\npublic:\n\tusing value_type = T;\n\nprivate:\n\tint n, n2;\n\tvector<value_type> a;\n\npublic:\n\tBinaryIndexedTree(int n_) : n(n_), n2(1), a(n_ + 1) {\n\t\twhile (n2 < n) n2 *= 2;\n\t\tn2 /= 2;\n\t}\n\tvalue_type operator()(int i) const { // [0, i]\n\t\tassert(0 < ++i);\n\t\tvalue_type result = 0;\n\t\tfor (; i > 0; i -= i & -i) {\n\t\t\tresult += a[i];\n\t\t}\n\t\treturn result;\n\t}\n\tvalue_type operator()(int i, int j) const { // [i, j]\n\t\treturn operator()(j) - (i ? operator()(i - 1) : 0);\n\t}\n\tvalue_type operator[](int i) const {\n\t\treturn operator()(i, i);\n\t}\n\tvoid add(int i, value_type x) {\n\t\tassert(0 < ++i);\n\t\tfor (; i <= n; i += i & -i) {\n\t\t\ta[i] += x;\n\t\t}\n\t}\n\tint lower_bound(value_type k) const {\n\t\tif (k <= 0) return 0;\n\t\tint result = 0;\n\t\tfor (int i = n2; i > 0; i /= 2) {\n\t\t\tif (result + i <= n && a[result + i] < k) {\n\t\t\t\tk -= a[result + i];\n\t\t\t\tresult += i;\n\t\t\t}\n\t\t}\n\t\treturn result;\n\t}\n\tvector<value_type> to_a() const {\n\t\tvector<value_type> result(n);\n\t\tfor (int i = 0; i < n; ++i) {\n\t\t\tresult[i] = operator()(i, i);\n\t\t}\n\t\treturn result;\n\t}\n};\n#line 3 \"a.cpp\"\n\nint main() {\n\tint n = in;\n\tll k = in;\n\tVL a = in[n];\n\trep(i, n) a[i] -= k;\n\ta.insert(a.begin(), 0);\n\trep(i, n) a[i + 1] += a[i];\n\tVL val = a | Uniq;\n\n\tVI b(n + 1);\n\trep(i, n + 1) b[i] = lower_index(val, a[i]);\n\tdump(a, b);\n\n\tBinaryIndexedTree<int> bit(n + 2);\n\tll ans = 0;\n\trep(i, n + 1) {\n\t\tans += bit(0, b[i]);\n\t\tbit.add(b[i], 1);\n\t}\n\tout(ans);\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5184, "score_of_the_acc": -0.0596, "final_rank": 3 }, { "submission_id": "aoj_3117_4988962", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3117.cc: \n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\n\n/* typedef */\n\ntypedef long long ll;\n\ntemplate <typename T, const int MAX_N>\nstruct BIT {\n int n;\n T bits[MAX_N + 1];\n \n BIT() {}\n BIT(int _n) { init(_n); }\n\n void init(int _n) {\n n = _n;\n memset(bits, 0, sizeof(bits));\n }\n\n T sum(int x) {\n T s = 0;\n while (x > 0) {\n s += bits[x];\n x -= (x & -x);\n }\n return s;\n }\n\n void add(int x, T v) {\n while (x <= n) {\n bits[x] += v;\n x += (x & -x);\n }\n }\n};\n\n/* global variables */\n\nll ass[MAX_N + 1], bss[MAX_N + 1];\nBIT<int,MAX_N+1> bit;\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, k;\n scanf(\"%d%d\", &n, &k);\n\n // ass[j]-ass[i] >= (j-i)*k -> ass[j]-j*k >= ass[i]-i*k\n\n for (int i = 0; i < n; i++) {\n int ai;\n scanf(\"%d\", &ai);\n bss[i + 1] = ass[i + 1] = ass[i] + ai - k;\n }\n sort(bss, bss + n + 1);\n int m = unique(bss, bss + n + 1) - bss;\n\n bit.init(m);\n\n ll sum = 0;\n for (int i = 0; i <= n; i++) {\n int k = lower_bound(bss, bss + m, ass[i]) - bss;\n\n sum += bit.sum(k + 1);\n bit.add(k + 1, 1);\n }\n\n printf(\"%lld\\n\", sum);\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5156, "score_of_the_acc": -0.0571, "final_rank": 2 }, { "submission_id": "aoj_3117_4988929", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3117.cc: \n */\n\n#include<cstdio>\n#include<cstdlib>\n#include<cstring>\n#include<cmath>\n#include<iostream>\n#include<string>\n#include<vector>\n#include<map>\n#include<set>\n#include<stack>\n#include<list>\n#include<queue>\n#include<deque>\n#include<algorithm>\n#include<numeric>\n#include<utility>\n#include<complex>\n#include<functional>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\n\n/* typedef */\n\ntypedef long long ll;\n\ntemplate <typename T, const int MAX_N>\nstruct BIT {\n int n;\n T bits[MAX_N + 1];\n \n BIT() {}\n BIT(int _n) { init(_n); }\n\n void init(int _n) {\n n = _n;\n memset(bits, 0, sizeof(bits));\n }\n\n T sum(int x) {\n T s = 0;\n while (x > 0) {\n s += bits[x];\n x -= (x & -x);\n }\n return s;\n }\n\n void add(int x, T v) {\n while (x <= n) {\n bits[x] += v;\n x += (x & -x);\n }\n }\n};\n\n/* global variables */\n\nint as[MAX_N];\nll ass[MAX_N + 1], bss[MAX_N + 1];\nBIT<int,MAX_N+1> bit;\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, k;\n scanf(\"%d%d\", &n, &k);\n\n // ass[j]-ass[i] >= (j-i)*k -> ass[j]-j*k >= ass[i]-i*k\n\n for (int i = 0; i < n; i++) {\n scanf(\"%d\", as + i);\n ass[i + 1] = ass[i] + as[i];\n }\n\n for (int i = 0; i <= n; i++) bss[i] = ass[i] - (ll)k * i;\n sort(bss, bss + n + 1);\n int m = unique(bss, bss + n + 1) - bss;\n\n bit.init(m);\n\n ll sum = 0;\n for (int i = 0; i <= n; i++) {\n int k = lower_bound(bss, bss + m, ass[i] - (ll)k * i) - bss;\n\n sum += bit.sum(k + 1);\n bit.add(k + 1, 1);\n }\n\n printf(\"%lld\\n\", sum);\n return 0;\n}", "accuracy": 0.2, "time_ms": 10, "memory_kb": 5496, "score_of_the_acc": -0.0871, "final_rank": 17 }, { "submission_id": "aoj_3117_4567914", "code_snippet": "#line 1 \"test/aoj/3117.test.cpp\"\n#define PROBLEM \"http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3117\"\n\n#include <iostream>\n#include <cstdio>\n#include <cfloat>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <bitset>\n#include <functional>\n#include <numeric>\n#include <algorithm>\n#line 1 \"bbst/merge_split_set_treap.hpp\"\n\n\n\n#line 5 \"bbst/merge_split_set_treap.hpp\"\n#include <cstdint>\n#include <random>\n#line 8 \"bbst/merge_split_set_treap.hpp\"\n#include <cassert>\n#include <memory>\n#include <utility>\n\n//===\ntemplate <class T, class Compare = std::less<T>,\n template<class> class Alloc = std::allocator>\nstruct Treap {\n using uint = uint_fast32_t;\n using uint64 = uint_fast64_t;\n struct Node;\n using pn = std::pair<Node *, Node *>;\n \n struct Node {\n T dat;\n uint64 p;\n\n uint sz = 1;\n Node *lch;\n Node *rch;\n\n Node(T dat, uint64 p):\n dat(dat), p(p), lch(nullptr), rch(nullptr) {}\n };\n \n Node *root;\n const Compare cmp;\n std::mt19937 rnd;\n \n Alloc<Node> alc;\n using Traits = std::allocator_traits<Alloc<Node> >;\n \n Treap(const Compare &cmp = Compare()):\n root(nullptr), cmp(cmp), rnd(std::mt19937(std::random_device()())) {};\n \n void clear(Node *u) {\n if (u == nullptr) return;\n clear(u->lch);\n clear(u->rch);\n Traits::deallocate(alc, u, 1);\n };\n ~Treap() {\n clear(root);\n };\n\n int size() {\n return size(root);\n }\n int size(Node *u) {\n if (u == nullptr) return 0;\n else return u->sz;\n };\n void update(Node *u) {\n u->sz = size(u->lch) + size(u->rch) + 1;\n };\n Node *merge(Node *l, Node *r) {\n if (l == nullptr) return r;\n if (r == nullptr) return l;\n\n if (l->p > r->p) {\n l->rch = merge(l->rch, r);\n update(l);\n return l;\n }\n else {\n r->lch = merge(l, r->lch);\n update(r);\n return r;\n }\n };\n pn split(Node *t, T dat) { // first->dat <= dat, dat < second->dat\n if (t == nullptr) return std::make_pair(nullptr, nullptr);\n if (cmp(dat, t->dat)) {\n pn s = split(t->lch, dat);\n t->lch = s.second;\n update(t);\n return std::make_pair(s.first, t);\n }\n else {\n pn s = split(t->rch, dat);\n t->rch = s.first;\n update(t);\n return std::make_pair(t, s.second);\n }\n };\n \n bool find(T dat) {\n Node *u = root;\n while (u != nullptr && (cmp(u->dat, dat) || cmp(dat, u->dat))) {\n if (cmp(dat, u->dat)) u = u->lch;\n else u = u->rch;\n }\n return u == nullptr;\n };\n\n void insert(T dat) {\n Node *u = Traits::allocate(alc, 1);\n Traits::construct(alc, u, dat, (uint64)rnd());\n pn t = split(root, dat);\n root = merge(t.first, merge(u, t.second));\n };\n void erase(T dat) {\n assert(find(dat));\n pn t = split(root, dat);\n erase_rightist(t.first);\n root = merge(t.first, t.second);\n };\n Node *erase_rightist(Node *u) {\n if (u.rch == nullptr) {\n Node *ret = u.lch;\n Traits::deallocate(alc, u, 1);\n return ret;\n }\n u->rch = erase_rightist(u->rch);\n update(u);\n return u;\n }\n\n int order_of(T x) {\n Node *u = root;\n int k = 0;\n while (u != nullptr && (cmp(u->dat, x) || cmp(x, u->dat))) {\n if (cmp(x, u->dat)) {\n u = u->lch;\n }\n else {\n k = k + size(u->lch) + 1;\n u = u->rch;\n }\n }\n\n if (u == nullptr) return -1;\n k += size(u->lch);\n return k;\n };\n T find_Kth_element(uint k) {\n assert(k < size());\n Node *u = root;\n while (k > 0) {\n if (size(u->lch) == k) return u->dat;\n if (size(u->lch) + 1 <= k) {\n k -= size(u->lch) + 1;\n u = u->rch;\n }\n else {\n u = u->lch;\n }\n }\n\n return u->dat;\n };\n};\n//===\n\n\n#line 16 \"test/aoj/3117.test.cpp\"\n\nusing namespace std;\nusing llong = long long;\nusing P = pair<llong, llong>;\n\nllong n, k;\nTreap<P> st;\n\nint main() {\n cin >> n >> k;\n\n llong csum = 0;\n llong ans = 0;\n st.insert({0, -1});\n for (int i = 0; i < n; i++) {\n llong a;\n cin >> a;\n a -= k;\n csum += a;\n st.insert({csum, i});\n ans += st.order_of({csum, i});\n }\n cout << ans << endl;\n\n return 0;\n};", "accuracy": 1, "time_ms": 50, "memory_kb": 9412, "score_of_the_acc": -0.6677, "final_rank": 11 }, { "submission_id": "aoj_3117_4567901", "code_snippet": "#line 1 \"test/aoj/3117.test.cpp\"\n#define PROBLEM \"http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3117\"\n\n#include <iostream>\n#include <cstdio>\n#include <cfloat>\n#include <vector>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\n#include <bitset>\n#include <functional>\n#include <numeric>\n#include <algorithm>\n#line 1 \"bbst/merge_split_set_treap.hpp\"\n\n\n\n#line 5 \"bbst/merge_split_set_treap.hpp\"\n#include <cstdint>\n#include <random>\n#line 8 \"bbst/merge_split_set_treap.hpp\"\n#include <cassert>\n#include <memory>\n#include <utility>\n\n//===\ntemplate <class T, class Compare = std::less<T>,\n template<class> class Alloc = std::allocator>\nstruct Treap {\n using uint = uint_fast32_t;\n using uint64 = uint_fast64_t;\n struct Node;\n using pn = std::pair<Node *, Node *>;\n \n struct Node {\n T dat;\n uint64 p;\n\n uint sz = 1;\n Node *lch;\n Node *rch;\n\n Node(T dat, uint64 p):\n dat(dat), p(p), lch(nullptr), rch(nullptr) {}\n };\n \n Node *root;\n const Compare cmp;\n std::mt19937 rnd;\n \n Alloc<Node> alc;\n using Traits = std::allocator_traits<Alloc<Node> >;\n \n Treap(const Compare &cmp = Compare()):\n root(nullptr), cmp(cmp), rnd(std::mt19937(std::random_device()())) {};\n \n void clear(Node *u) {\n if (u == nullptr) return;\n clear(u->lch);\n clear(u->rch);\n Traits::deallocate(alc, u, 1);\n };\n ~Treap() {\n clear(root);\n };\n\n int size() {\n return size(root);\n }\n int size(Node *u) {\n if (u == nullptr) return 0;\n else return u->sz;\n };\n void update(Node *u) {\n u->sz = size(u->lch) + size(u->rch) + 1;\n };\n Node *merge(Node *l, Node *r) {\n if (l == nullptr) return r;\n if (r == nullptr) return l;\n\n if (l->p > r->p) {\n l->rch = merge(l->rch, r);\n update(l);\n return l;\n }\n else {\n r->lch = merge(l, r->lch);\n update(r);\n return r;\n }\n };\n pn split(Node *t, T dat) { // first->dat <= dat, dat < second->dat\n if (t == nullptr) return std::make_pair(nullptr, nullptr);\n if (cmp(dat, t->dat)) {\n pn s = split(t->lch, dat);\n t->lch = s.second;\n update(t);\n return std::make_pair(s.first, t);\n }\n else {\n pn s = split(t->rch, dat);\n t->rch = s.first;\n update(t);\n return std::make_pair(t, s.second);\n }\n };\n \n bool find(T dat) {\n Node *u = root;\n while (u != nullptr && (cmp(u->dat, dat) || cmp(dat, u->dat))) {\n if (cmp(dat, u->dat)) u = u->lch;\n else u = u->rch;\n }\n return u == nullptr;\n };\n\n void insert(T dat) {\n Node *u = Traits::allocate(alc, 1);\n Traits::construct(alc, u, dat, (uint64)rnd());\n pn t = split(root, dat);\n root = merge(t.first, merge(u, t.second));\n };\n void erase(T dat) {\n assert(find(dat));\n pn t = split(root, dat);\n erase_rightist(t.first);\n root = merge(t.first, t.second);\n };\n Node *erase_rightist(Node *u) {\n if (u.rch == nullptr) {\n Node *ret = u.lch;\n Traits::deallocate(alc, u, 1);\n return ret;\n }\n u->rch = erase_rightist(u->rch);\n update(u);\n return u;\n }\n\n int order_of(T x) {\n Node *u = root;\n int k = 0;\n while (u != nullptr && (cmp(u->dat, x) || cmp(x, u->dat))) {\n if (cmp(x, u->dat)) {\n u = u->lch;\n }\n else {\n k = k + size(u->lch) + 1;\n u = u->rch;\n }\n }\n\n if (u == nullptr) return -1;\n k += size(u->lch);\n return k;\n };\n T find_Kth_element(uint k) {\n assert(k < size());\n Node *u = root;\n while (k > 0) {\n if (size(u->lch) == k) return u->dat;\n if (size(u->lch) + 1 <= k) {\n k -= size(u->lch) + 1;\n u = u->rch;\n }\n else {\n u = u->lch;\n }\n }\n\n return u->dat;\n };\n};\n//===\n\n\n#line 16 \"test/aoj/3117.test.cpp\"\n\nusing namespace std;\nusing llong = long long;\nusing P = pair<llong, llong>;\n\nllong n, k;\nTreap<P> st;\n\nint main() {\n cin >> n >> k;\n\n llong csum = 0;\n llong ans = 0;\n st.insert({0, -1});\n for (int i = 0; i < n; i++) {\n llong a;\n cin >> a;\n a -= k;\n csum += a;\n st.insert({csum, i});\n ans += st.order_of({csum, i});\n }\n cout << ans << endl;\n\n return 0;\n};", "accuracy": 1, "time_ms": 50, "memory_kb": 9420, "score_of_the_acc": -0.6685, "final_rank": 12 }, { "submission_id": "aoj_3117_4386801", "code_snippet": "#line 1 \"D.cpp\"\n#include <cstdio>\n#include <vector>\n\n#line 1 \"~/git/library/DataStructure/wavelet_matrix.cpp\"\n\n\n\n/**\n * @brief ウェーブレット行列\n * @author えびちゃん\n */\n\n#include <cstddef>\n#include <cstdint>\n#include <array>\n#line 13 \"~/git/library/DataStructure/wavelet_matrix.cpp\"\n\n#line 1 \"~/git/library/utility/literals.cpp\"\n\n\n\n/**\n * @brief ユーザ定義リテラル\n * @author えびちゃん\n */\n\n#line 11 \"~/git/library/utility/literals.cpp\"\n\nconstexpr intmax_t operator \"\"_jd(unsigned long long n) { return n; }\nconstexpr uintmax_t operator \"\"_ju(unsigned long long n) { return n; }\nconstexpr size_t operator \"\"_zu(unsigned long long n) { return n; }\nconstexpr ptrdiff_t operator \"\"_td(unsigned long long n) { return n; }\n\n\n#line 1 \"~/git/library/DataStructure/bit_vector.cpp\"\n\n\n\n/**\n * @brief rank/select 辞書\n * @author えびちゃん\n */\n\n#include <climits>\n#line 13 \"~/git/library/DataStructure/bit_vector.cpp\"\n\n#line 15 \"~/git/library/DataStructure/bit_vector.cpp\"\n\nclass bit_vector {\npublic:\n using underlying_type = uintmax_t;\n using size_type = size_t;\n using difference_type = ptrdiff_t;\n\nprivate:\n static const size_type S_ws = CHAR_BIT * sizeof(underlying_type);\n std::vector<underlying_type> M_c;\n std::vector<size_type> M_r;\n std::vector<size_type> M_s0, M_s1;\n std::vector<std::vector<size_type>> M_ss0, M_ss1;\n\n static size_type S_popcount(underlying_type n) {\n return __builtin_popcountll(n);\n }\n\n static underlying_type S_least_n_bits(size_type n) {\n return (1_ju << n) - 1;\n }\n\n template <int Bp>\n static size_type S_rank_small(underlying_type x, size_type n) {\n if (Bp == 0) x = ~x;\n return S_popcount(x & S_least_n_bits(n));\n }\n\n template <int Bp>\n static size_type S_select_small(underlying_type x, size_type n) {\n if (n == 0) return 0;\n size_type lb = 0;\n size_type ub = S_ws;\n while (ub-lb > 1) {\n size_type mid = (lb+ub) >> 1;\n ((S_rank_small<Bp>(x, mid) < n)? lb: ub) = mid;\n }\n return ub;\n }\n\n template <int Bp>\n size_type M_rank_large(size_type n) const {\n // if (n == 0) return 0;\n size_type res = M_r[n];\n if (Bp == 0) res = n * S_ws - res;\n return res;\n }\n\n template <int Bp>\n void M_prepare_select(std::vector<bool> const& bv,\n std::vector<size_type>& s,\n std::vector<std::vector<size_type>>& ss) {\n size_type z = 0;\n size_type n = bv.size();\n s.push_back(0);\n std::vector<size_type> tmp;\n for (size_type i = 0; i < n; ++i) {\n if (bv[i] != Bp) continue;\n tmp.push_back(i);\n if (++z == S_ws) {\n size_type len = i+1 - s.back();\n s.push_back(i+1);\n ss.emplace_back();\n if (len >= S_ws * S_ws) ss.back() = std::move(tmp);\n tmp.clear();\n z = 0;\n }\n }\n ss.push_back(std::move(tmp));\n }\n\n template <int Bp>\n size_type M_select(size_type n,\n std::vector<size_type> const& s,\n std::vector<std::vector<size_type>> const& ss) const {\n\n if (n-- == 0) return 0;\n size_type j0 = n / S_ws;\n size_type j1 = n % S_ws;\n\n if (j0 >= s.size()) return -1_zu;\n if (j0+1 == s.size() && j1 >= ss[j0].size()) return -1_zu;\n if (!ss[j0].empty()) return ss[j0][j1] + 1;\n\n size_type lb = s[j0] / S_ws;\n size_type ub = (j0+1 < s.size())? (s[j0+1]+S_ws-1) / S_ws: M_r.size();\n while (ub-lb > 1) {\n size_type mid = (lb+ub) >> 1;\n ((M_rank_large<Bp>(mid) <= n)? lb: ub) = mid;\n }\n return lb * S_ws + S_select_small<Bp>(M_c[lb], n+1 - M_rank_large<Bp>(lb));\n }\n\npublic:\n bit_vector() = default;\n bit_vector(bit_vector const&) = default;\n bit_vector(bit_vector&&) = default;\n template <typename InputIt>\n bit_vector(InputIt first, InputIt last) { assign(first, last); }\n\n bit_vector& operator =(bit_vector const&) = default;\n bit_vector& operator =(bit_vector&&) = default;\n\n template <typename InputIt>\n void assign(InputIt first, InputIt last) {\n std::vector<bool> tmp(first, last);\n M_c.resize(tmp.size() / S_ws + 1);\n for (size_type i = 0; i < tmp.size(); ++i) {\n if (!tmp[i]) continue;\n size_type j0 = i / S_ws;\n size_type j1 = i % S_ws;\n M_c[j0] |= 1_ju << j1;\n }\n\n // rank\n M_r.assign(M_c.size(), 0);\n for (size_type i = 1; i < M_c.size(); ++i)\n M_r[i] += M_r[i-1] + S_popcount(M_c[i-1]);\n\n // select\n M_prepare_select<0>(tmp, M_s0, M_ss0);\n M_prepare_select<1>(tmp, M_s1, M_ss1);\n }\n\n size_type rank0(size_type t) const {\n return t - rank1(t);\n }\n size_type rank1(size_type t) const {\n size_type j0 = t / S_ws;\n size_type j1 = t % S_ws;\n return M_r[j0] + S_popcount(S_least_n_bits(j1) & M_c[j0]);\n }\n\n size_type rank0(size_type s, size_type t) const {\n return (t-s) - rank1(s, t);\n }\n size_type rank1(size_type s, size_type t) const {\n if (s == t) return 0;\n return rank1(t) - rank1(s);\n }\n size_type select0(size_type n) const {\n return M_select<0>(n, M_s0, M_ss0);\n }\n size_type select1(size_type n) const {\n return M_select<1>(n, M_s1, M_ss1);\n }\n size_type select0(size_type n, size_type s) const {\n n += rank0(0, s);\n return M_select<0>(n, M_s0, M_ss0);\n }\n size_type select1(size_type n, size_type s) const {\n n += rank1(0, s);\n return M_select<1>(n, M_s1, M_ss1);\n }\n};\n\n\n#line 16 \"~/git/library/DataStructure/wavelet_matrix.cpp\"\n\ntemplate <size_t Nb, typename Tp = uintmax_t, typename Bv = bit_vector>\nclass wavelet_matrix {\npublic:\n using value_type = Tp;\n using size_type = size_t;\n using difference_type = ptrdiff_t;\n using bitvector_type = Bv;\n\nprivate:\n std::array<bitvector_type, Nb> M_a = {};\n std::array<size_type, Nb> M_z = {};\n std::vector<value_type> M_c;\n enum S_three_way { S_less = 0, S_equal, S_greater };\n static const value_type S_fail = -1; // XXX use std::optional?\n\n size_type M_startpos(value_type x) /* const */ {\n size_type s = 0;\n size_type t = 0;\n for (size_type i = Nb; i-- > 1;) {\n size_type j = Nb-i-1;\n if (x >> i & 1) {\n s = M_z[j] + M_a[j].rank1(s);\n t = M_z[j] + M_a[j].rank1(t);\n } else {\n s = M_a[j].rank0(s);\n t = M_a[j].rank0(t);\n }\n }\n return s;\n }\n\npublic:\n wavelet_matrix() = default;\n\n template <typename InputIt>\n wavelet_matrix(InputIt first, InputIt last) { assign(first, last); }\n wavelet_matrix(std::initializer_list<value_type> il):\n wavelet_matrix(il.begin(), il.end()) {}\n\n template <typename InputIt>\n void assign(InputIt first, InputIt last) {\n M_c.assign(first, last);\n M_z = {{}};\n size_type n = M_c.size();\n std::vector<value_type> whole = M_c;\n for (size_type i = Nb; i--;) {\n std::vector<value_type> zero, one;\n std::vector<bool> vb(n);\n for (size_type j = 0; j < n; ++j) {\n ((whole[j] >> i & 1)? one: zero).push_back(whole[j]);\n vb[j] = (whole[j] >> i & 1);\n }\n\n M_z[Nb-i-1] = zero.size();\n M_a[Nb-i-1] = bitvector_type(vb.begin(), vb.end());\n if (i == 0) break;\n whole = std::move(zero);\n whole.insert(whole.end(), one.begin(), one.end());\n }\n }\n\n size_type rank(value_type x, size_type s, size_type t) /* const */ {\n if (s == t) return 0;\n for (size_type i = Nb; i--;) {\n size_type j = Nb-i-1;\n if (x >> i & 1) {\n s = M_z[j] + M_a[j].rank1(s);\n t = M_z[j] + M_a[j].rank1(t);\n } else {\n s = M_a[j].rank0(s);\n t = M_a[j].rank0(t);\n }\n }\n return t - s;\n }\n\n size_type select(value_type x, size_type n) /* const */ {\n if (n == 0) return 0;\n if (rank(x, 0, M_c.size()) < n) return -1;\n size_type si = M_startpos(x);\n if (x & 1) {\n n += M_a[Nb-1].rank1(si);\n n = M_a[Nb-1].select1(n);\n } else {\n n += M_a[Nb-1].rank0(si);\n n = M_a[Nb-1].select0(n);\n }\n\n for (size_type i = 1; i < Nb; ++i) {\n size_type j = Nb-i-1;\n if (x >> i & 1) {\n n -= M_z[j];\n n = M_a[j].select1(n);\n } else {\n n = M_a[j].select0(n);\n }\n }\n return n;\n }\n size_type select(value_type x, size_type n, size_type s) /* const */ {\n if (n == 0) return s;\n n += rank(x, 0, s);\n return select(x, n);\n }\n\n std::array<size_type, 3> rank_3way(value_type x,\n size_type s, size_type t) /* const */ {\n\n if (s == t) return {0, 0, 0};\n\n size_type lt = 0;\n size_type eq = t-s;\n size_type gt = 0;\n for (size_type i = Nb; i--;) {\n size_type j = Nb-i-1;\n size_type tmp = t-s;\n if (x >> i & 1) {\n s = M_z[j] + M_a[j].rank1(s);\n t = M_z[j] + M_a[j].rank1(t);\n } else {\n s = M_a[j].rank0(s);\n t = M_a[j].rank0(t);\n }\n size_type d = tmp - (t-s);\n eq -= d;\n ((x >> i & 1)? lt: gt) += d;\n }\n return {lt, eq, gt};\n }\n\n std::array<size_type, 3> xored_rank_3way(value_type x, value_type y,\n size_type s, size_type t) /* const */ {\n\n if (s == t) return {0, 0, 0};\n\n size_type lt = 0;\n size_type eq = t-s;\n size_type gt = 0;\n for (size_type i = Nb; i--;) {\n size_type j = Nb-i-1;\n size_type tmp = t-s;\n if ((x ^ y) >> i & 1) {\n s = M_z[j] + M_a[j].rank1(s);\n t = M_z[j] + M_a[j].rank1(t);\n } else {\n s = M_a[j].rank0(s);\n t = M_a[j].rank0(t);\n }\n\n size_type d = tmp - (t-s);\n eq -= d;\n ((y >> i & 1)? lt: gt) += d;\n }\n return {lt, eq, gt};\n }\n\n value_type quantile(size_type k, size_type s, size_type t) /* const */ {\n value_type res = 0;\n for (size_type i = Nb; i--;) {\n size_type j = Nb-i-1;\n size_type z = M_a[j].rank0(s, t);\n if (k < z) {\n s = M_a[j].rank0(s);\n t = M_a[j].rank0(t);\n } else {\n res |= 1_ju << i;\n s = M_z[j] + M_a[j].rank1(s);\n t = M_z[j] + M_a[j].rank1(t);\n k -= z;\n }\n }\n return res;\n }\n\n value_type min_greater(value_type x, size_type s, size_type t) /* const */ {\n auto r3 = rank_3way(x, s, t);\n size_type k = r3[S_less] + r3[S_equal];\n if (k == t-s) return S_fail;\n return quantile(k, s, t);\n }\n value_type min_greater_equal(value_type x, size_type s, size_type t) /* const */ {\n auto r3 = rank_3way(x, s, t);\n size_type k = r3[S_less];\n if (k == t-s) return S_fail;\n return quantile(k, s, t);\n }\n value_type max_less(value_type x, size_type s, size_type t) /* const */ {\n auto r3 = rank_3way(x, s, t);\n size_type k = r3[S_less];\n if (k == 0) return S_fail;\n return quantile(k-1, s, t);\n }\n value_type max_less_equal(value_type x, size_type s, size_type t) /* const */ {\n auto r3 = rank_3way(x, s, t);\n size_type k = r3[S_less] + r3[S_equal];\n if (k == 0) return S_fail;\n return quantile(k-1, s, t);\n }\n\n size_type select_greater(value_type x, size_type n, size_type s) /* const */ {\n if (n == 0) return s;\n size_type lb = s;\n size_type ub = M_c.size();\n while (ub-lb > 1) {\n size_type mid = (lb+ub) >> 1;\n auto r3 = rank_3way(x, s, mid);\n size_type k = r3[S_greater];\n ((k < n)? lb: ub) = mid;\n }\n return ub;\n }\n size_type select_greater_equal(value_type x, size_type n, size_type s) /* const */ {\n if (n == 0) return s;\n size_type lb = s;\n size_type ub = M_c.size();\n while (ub-lb > 1) {\n size_type mid = (lb+ub) >> 1;\n auto r3 = rank_3way(x, s, mid);\n size_type k = r3[S_equal] + r3[S_greater];\n ((k < n)? lb: ub) = mid;\n }\n return ub;\n }\n size_type select_less(value_type x, size_type n, size_type s) /* const */ {\n if (n == 0) return s;\n size_type lb = s;\n size_type ub = M_c.size();\n while (ub-lb > 1) {\n size_type mid = (lb+ub) >> 1;\n auto r3 = rank_3way(x, s, mid);\n size_type k = r3[S_less];\n ((k < n)? lb: ub) = mid;\n }\n return ub;\n }\n size_type select_less_equal(value_type x, size_type n, size_type s) /* const */ {\n if (n == 0) return s;\n size_type lb = s;\n size_type ub = M_c.size();\n while (ub-lb > 1) {\n size_type mid = (lb+ub) >> 1;\n auto r3 = rank_3way(x, s, mid);\n size_type k = r3[S_less] + r3[S_equal];\n ((k < n)? lb: ub) = mid;\n }\n return ub;\n }\n\n // for dynamic bitvectors only\n void insert(size_type t, value_type x) {\n size_type s = 0;\n for (size_type i = Nb; i--;) {\n size_type j = Nb-i-1;\n M_a[j].insert(s+t, x >> i & 1);\n if (x >> i & 1) {\n t = M_a[j].rank(1, s+t+1) - 1;\n s = M_z[j];\n } else {\n t = M_a[j].rank(0, s+t+1) - 1;\n s = 0;\n ++M_z[j];\n }\n }\n }\n\n void erase(size_type t) {\n size_type s = 0;\n for (size_type i = Nb; i--;) {\n size_type j = Nb-i-1;\n size_type u = s+t;\n if (M_a[j][u]) {\n t = M_a[j].rank(1, u+1) - 1;\n s = M_z[j];\n } else {\n t = M_a[j].rank(0, u+1) - 1;\n s = 0;\n --M_z[j];\n }\n M_a[j].erase(u);\n }\n }\n\n void set(size_type t, value_type x) {\n erase(t);\n insert(t, x);\n }\n\n value_type operator [](size_type s) /* const */ {\n return quantile(0, s, s+1);\n }\n};\n\n\n#line 5 \"D.cpp\"\n\nint main() {\n size_t n;\n int k;\n scanf(\"%zu %d\", &n, &k);\n\n std::vector<intmax_t> a(n);\n for (auto& ai: a) scanf(\"%jd\", &ai), ai -= k;\n a.insert(a.begin(), 0);\n for (size_t i = 1; i <= n; ++i) a[i] += a[i-1];\n\n intmax_t off = n*k;\n for (auto& ai: a) ai += off;\n\n wavelet_matrix<62> wm(a.begin(), a.end());\n intmax_t res = 0;\n for (size_t i = 1; i <= n; ++i) {\n auto r3 = wm.rank_3way(a[i], 0, i);\n res += r3[0] + r3[1];\n }\n\n printf(\"%jd\\n\", res);\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 12736, "score_of_the_acc": -1.7256, "final_rank": 15 }, { "submission_id": "aoj_3117_4386776", "code_snippet": "#line 1 \"D.cpp\"\n#include <cstdio>\n#include <vector>\n\n#line 1 \"~/git/library/DataStructure/wavelet_matrix.cpp\"\n\n\n\n/**\n * @brief ウェーブレット行列\n * @author えびちゃん\n */\n\n#include <cstddef>\n#include <cstdint>\n#include <array>\n#line 13 \"~/git/library/DataStructure/wavelet_matrix.cpp\"\n\n#line 1 \"~/git/library/utility/literals.cpp\"\n\n\n\n/**\n * @brief ユーザ定義リテラル\n * @author えびちゃん\n */\n\n#line 11 \"~/git/library/utility/literals.cpp\"\n\nconstexpr intmax_t operator \"\"_jd(unsigned long long n) { return n; }\nconstexpr uintmax_t operator \"\"_ju(unsigned long long n) { return n; }\nconstexpr size_t operator \"\"_zu(unsigned long long n) { return n; }\nconstexpr ptrdiff_t operator \"\"_td(unsigned long long n) { return n; }\n\n\n#line 1 \"~/git/library/DataStructure/bit_vector.cpp\"\n\n\n\n/**\n * @brief rank/select 辞書\n * @author えびちゃん\n */\n\n#include <climits>\n#line 13 \"~/git/library/DataStructure/bit_vector.cpp\"\n\n#line 15 \"~/git/library/DataStructure/bit_vector.cpp\"\n\nclass bit_vector {\npublic:\n using underlying_type = uintmax_t;\n using size_type = size_t;\n using difference_type = ptrdiff_t;\n\nprivate:\n static const size_type S_ws = CHAR_BIT * sizeof(underlying_type);\n std::vector<underlying_type> M_c;\n std::vector<size_type> M_r;\n std::vector<size_type> M_s0, M_s1;\n std::vector<std::vector<size_type>> M_ss0, M_ss1;\n\n static size_type S_popcount(underlying_type n) {\n return __builtin_popcountll(n);\n }\n\n static underlying_type S_least_n_bits(size_type n) {\n return (1_ju << n) - 1;\n }\n\n template <int Bp>\n static size_type S_rank_small(underlying_type x, size_type n) {\n if (Bp == 0) x = ~x;\n return S_popcount(x & S_least_n_bits(n));\n }\n\n template <int Bp>\n static size_type S_select_small(underlying_type x, size_type n) {\n if (n == 0) return 0;\n size_type lb = 0;\n size_type ub = S_ws;\n while (ub-lb > 1) {\n size_type mid = (lb+ub) >> 1;\n ((S_rank_small<Bp>(x, mid) < n)? lb: ub) = mid;\n }\n return ub;\n }\n\n template <int Bp>\n size_type M_rank_large(size_type n) const {\n // if (n == 0) return 0;\n size_type res = M_r[n];\n if (Bp == 0) res = n * S_ws - res;\n return res;\n }\n\n template <int Bp>\n void M_prepare_select(std::vector<bool> const& bv,\n std::vector<size_type>& s,\n std::vector<std::vector<size_type>>& ss) {\n size_type z = 0;\n size_type n = bv.size();\n s.push_back(0);\n std::vector<size_type> tmp;\n for (size_type i = 0; i < n; ++i) {\n if (bv[i] != Bp) continue;\n tmp.push_back(i);\n if (++z == S_ws) {\n size_type len = i+1 - s.back();\n s.push_back(i+1);\n ss.emplace_back();\n if (len >= S_ws * S_ws) ss.back() = std::move(tmp);\n tmp.clear();\n z = 0;\n }\n }\n ss.push_back(std::move(tmp));\n }\n\n template <int Bp>\n size_type M_select(size_type n,\n std::vector<size_type> const& s,\n std::vector<std::vector<size_type>> const& ss) const {\n\n if (n-- == 0) return 0;\n size_type j0 = n / S_ws;\n size_type j1 = n % S_ws;\n\n if (j0 >= s.size()) return -1_zu;\n if (j0+1 == s.size() && j1 >= ss[j0].size()) return -1_zu;\n if (!ss[j0].empty()) return ss[j0][j1] + 1;\n\n size_type lb = s[j0] / S_ws;\n size_type ub = (j0+1 < s.size())? (s[j0+1]+S_ws-1) / S_ws: M_r.size();\n while (ub-lb > 1) {\n size_type mid = (lb+ub) >> 1;\n ((M_rank_large<Bp>(mid) <= n)? lb: ub) = mid;\n }\n return lb * S_ws + S_select_small<Bp>(M_c[lb], n+1 - M_rank_large<Bp>(lb));\n }\n\npublic:\n bit_vector() = default;\n bit_vector(bit_vector const&) = default;\n bit_vector(bit_vector&&) = default;\n template <typename InputIt>\n bit_vector(InputIt first, InputIt last) { assign(first, last); }\n\n bit_vector& operator =(bit_vector const&) = default;\n bit_vector& operator =(bit_vector&&) = default;\n\n template <typename InputIt>\n void assign(InputIt first, InputIt last) {\n std::vector<bool> tmp(first, last);\n M_c.resize(tmp.size() / S_ws + 1);\n for (size_type i = 0; i < tmp.size(); ++i) {\n if (!tmp[i]) continue;\n size_type j0 = i / S_ws;\n size_type j1 = i % S_ws;\n M_c[j0] |= 1_ju << j1;\n }\n\n // rank\n M_r.assign(M_c.size(), 0);\n for (size_type i = 1; i < M_c.size(); ++i)\n M_r[i] += M_r[i-1] + S_popcount(M_c[i-1]);\n\n // select\n M_prepare_select<0>(tmp, M_s0, M_ss0);\n M_prepare_select<1>(tmp, M_s1, M_ss1);\n }\n\n size_type rank0(size_type t) const {\n return t - rank1(t);\n }\n size_type rank1(size_type t) const {\n size_type j0 = t / S_ws;\n size_type j1 = t % S_ws;\n return M_r[j0] + S_popcount(S_least_n_bits(j1) & M_c[j0]);\n }\n\n size_type rank0(size_type s, size_type t) const {\n return (t-s) - rank1(s, t);\n }\n size_type rank1(size_type s, size_type t) const {\n if (s == t) return 0;\n return rank1(t) - rank1(s);\n }\n size_type select0(size_type n) const {\n return M_select<0>(n, M_s0, M_ss0);\n }\n size_type select1(size_type n) const {\n return M_select<1>(n, M_s1, M_ss1);\n }\n size_type select0(size_type n, size_type s) const {\n n += rank0(0, s);\n return M_select<0>(n, M_s0, M_ss0);\n }\n size_type select1(size_type n, size_type s) const {\n n += rank1(0, s);\n return M_select<1>(n, M_s1, M_ss1);\n }\n};\n\n\n#line 16 \"~/git/library/DataStructure/wavelet_matrix.cpp\"\n\ntemplate <size_t Nb, typename Tp = uintmax_t, typename Bv = bit_vector>\nclass wavelet_matrix {\npublic:\n using value_type = Tp;\n using size_type = size_t;\n using difference_type = ptrdiff_t;\n using bitvector_type = Bv;\n\nprivate:\n std::array<bitvector_type, Nb> M_a = {};\n std::array<size_type, Nb> M_z = {};\n std::vector<value_type> M_c;\n enum S_three_way { S_less = 0, S_equal, S_greater };\n static const value_type S_fail = -1; // XXX use std::optional?\n\n size_type M_startpos(value_type x) /* const */ {\n size_type s = 0;\n size_type t = 0;\n for (size_type i = Nb; i-- > 1;) {\n size_type j = Nb-i-1;\n if (x >> i & 1) {\n s = M_z[j] + M_a[j].rank1(s);\n t = M_z[j] + M_a[j].rank1(t);\n } else {\n s = M_a[j].rank0(s);\n t = M_a[j].rank0(t);\n }\n }\n return s;\n }\n\npublic:\n wavelet_matrix() = default;\n\n template <typename InputIt>\n wavelet_matrix(InputIt first, InputIt last) { assign(first, last); }\n wavelet_matrix(std::initializer_list<value_type> il):\n wavelet_matrix(il.begin(), il.end()) {}\n\n template <typename InputIt>\n void assign(InputIt first, InputIt last) {\n M_c.assign(first, last);\n M_z = {{}};\n size_type n = M_c.size();\n std::vector<value_type> whole = M_c;\n for (size_type i = Nb; i--;) {\n std::vector<value_type> zero, one;\n std::vector<bool> vb(n);\n for (size_type j = 0; j < n; ++j) {\n ((whole[j] >> i & 1)? one: zero).push_back(whole[j]);\n vb[j] = (whole[j] >> i & 1);\n }\n\n M_z[Nb-i-1] = zero.size();\n M_a[Nb-i-1] = bitvector_type(vb.begin(), vb.end());\n if (i == 0) break;\n whole = std::move(zero);\n whole.insert(whole.end(), one.begin(), one.end());\n }\n }\n\n size_type rank(value_type x, size_type s, size_type t) /* const */ {\n if (s == t) return 0;\n for (size_type i = Nb; i--;) {\n size_type j = Nb-i-1;\n if (x >> i & 1) {\n s = M_z[j] + M_a[j].rank1(s);\n t = M_z[j] + M_a[j].rank1(t);\n } else {\n s = M_a[j].rank0(s);\n t = M_a[j].rank0(t);\n }\n }\n return t - s;\n }\n\n size_type select(value_type x, size_type n) /* const */ {\n if (n == 0) return 0;\n if (rank(x, 0, M_c.size()) < n) return -1;\n size_type si = M_startpos(x);\n if (x & 1) {\n n += M_a[Nb-1].rank1(si);\n n = M_a[Nb-1].select1(n);\n } else {\n n += M_a[Nb-1].rank0(si);\n n = M_a[Nb-1].select0(n);\n }\n\n for (size_type i = 1; i < Nb; ++i) {\n size_type j = Nb-i-1;\n if (x >> i & 1) {\n n -= M_z[j];\n n = M_a[j].select1(n);\n } else {\n n = M_a[j].select0(n);\n }\n }\n return n;\n }\n size_type select(value_type x, size_type n, size_type s) /* const */ {\n if (n == 0) return s;\n n += rank(x, 0, s);\n return select(x, n);\n }\n\n std::array<size_type, 3> rank_3way(value_type x,\n size_type s, size_type t) /* const */ {\n\n if (s == t) return {0, 0, 0};\n\n size_type lt = 0;\n size_type eq = t-s;\n size_type gt = 0;\n for (size_type i = Nb; i--;) {\n size_type j = Nb-i-1;\n size_type tmp = t-s;\n if (x >> i & 1) {\n s = M_z[j] + M_a[j].rank1(s);\n t = M_z[j] + M_a[j].rank1(t);\n } else {\n s = M_a[j].rank0(s);\n t = M_a[j].rank0(t);\n }\n size_type d = tmp - (t-s);\n eq -= d;\n ((x >> i & 1)? lt: gt) += d;\n }\n return {lt, eq, gt};\n }\n\n std::array<size_type, 3> xored_rank_3way(value_type x, value_type y,\n size_type s, size_type t) /* const */ {\n\n if (s == t) return {0, 0, 0};\n\n size_type lt = 0;\n size_type eq = t-s;\n size_type gt = 0;\n for (size_type i = Nb; i--;) {\n size_type j = Nb-i-1;\n size_type tmp = t-s;\n if ((x ^ y) >> i & 1) {\n s = M_z[j] + M_a[j].rank1(s);\n t = M_z[j] + M_a[j].rank1(t);\n } else {\n s = M_a[j].rank0(s);\n t = M_a[j].rank0(t);\n }\n\n size_type d = tmp - (t-s);\n eq -= d;\n ((y >> i & 1)? lt: gt) += d;\n }\n return {lt, eq, gt};\n }\n\n value_type quantile(size_type k, size_type s, size_type t) /* const */ {\n value_type res = 0;\n for (size_type i = Nb; i--;) {\n size_type j = Nb-i-1;\n size_type z = M_a[j].rank0(s, t);\n if (k < z) {\n s = M_a[j].rank0(s);\n t = M_a[j].rank0(t);\n } else {\n res |= 1_ju << i;\n s = M_z[j] + M_a[j].rank1(s);\n t = M_z[j] + M_a[j].rank1(t);\n k -= z;\n }\n }\n return res;\n }\n\n value_type min_greater(value_type x, size_type s, size_type t) /* const */ {\n auto r3 = rank_3way(x, s, t);\n size_type k = r3[S_less] + r3[S_equal];\n if (k == t-s) return S_fail;\n return quantile(k, s, t);\n }\n value_type min_greater_equal(value_type x, size_type s, size_type t) /* const */ {\n auto r3 = rank_3way(x, s, t);\n size_type k = r3[S_less];\n if (k == t-s) return S_fail;\n return quantile(k, s, t);\n }\n value_type max_less(value_type x, size_type s, size_type t) /* const */ {\n auto r3 = rank_3way(x, s, t);\n size_type k = r3[S_less];\n if (k == 0) return S_fail;\n return quantile(k-1, s, t);\n }\n value_type max_less_equal(value_type x, size_type s, size_type t) /* const */ {\n auto r3 = rank_3way(x, s, t);\n size_type k = r3[S_less] + r3[S_equal];\n if (k == 0) return S_fail;\n return quantile(k-1, s, t);\n }\n\n size_type select_greater(value_type x, size_type n, size_type s) /* const */ {\n if (n == 0) return s;\n size_type lb = s;\n size_type ub = M_c.size();\n while (ub-lb > 1) {\n size_type mid = (lb+ub) >> 1;\n auto r3 = rank_3way(x, s, mid);\n size_type k = r3[S_greater];\n ((k < n)? lb: ub) = mid;\n }\n return ub;\n }\n size_type select_greater_equal(value_type x, size_type n, size_type s) /* const */ {\n if (n == 0) return s;\n size_type lb = s;\n size_type ub = M_c.size();\n while (ub-lb > 1) {\n size_type mid = (lb+ub) >> 1;\n auto r3 = rank_3way(x, s, mid);\n size_type k = r3[S_equal] + r3[S_greater];\n ((k < n)? lb: ub) = mid;\n }\n return ub;\n }\n size_type select_less(value_type x, size_type n, size_type s) /* const */ {\n if (n == 0) return s;\n size_type lb = s;\n size_type ub = M_c.size();\n while (ub-lb > 1) {\n size_type mid = (lb+ub) >> 1;\n auto r3 = rank_3way(x, s, mid);\n size_type k = r3[S_less];\n ((k < n)? lb: ub) = mid;\n }\n return ub;\n }\n size_type select_less_equal(value_type x, size_type n, size_type s) /* const */ {\n if (n == 0) return s;\n size_type lb = s;\n size_type ub = M_c.size();\n while (ub-lb > 1) {\n size_type mid = (lb+ub) >> 1;\n auto r3 = rank_3way(x, s, mid);\n size_type k = r3[S_less] + r3[S_equal];\n ((k < n)? lb: ub) = mid;\n }\n return ub;\n }\n\n // for dynamic bitvectors only\n void insert(size_type t, value_type x) {\n size_type s = 0;\n for (size_type i = Nb; i--;) {\n size_type j = Nb-i-1;\n M_a[j].insert(s+t, x >> i & 1);\n if (x >> i & 1) {\n t = M_a[j].rank(1, s+t+1) - 1;\n s = M_z[j];\n } else {\n t = M_a[j].rank(0, s+t+1) - 1;\n s = 0;\n ++M_z[j];\n }\n }\n }\n\n void erase(size_type t) {\n size_type s = 0;\n for (size_type i = Nb; i--;) {\n size_type j = Nb-i-1;\n size_type u = s+t;\n if (M_a[j][u]) {\n t = M_a[j].rank(1, u+1) - 1;\n s = M_z[j];\n } else {\n t = M_a[j].rank(0, u+1) - 1;\n s = 0;\n --M_z[j];\n }\n M_a[j].erase(u);\n }\n }\n\n void set(size_type t, value_type x) {\n erase(t);\n insert(t, x);\n }\n\n value_type operator [](size_type s) /* const */ {\n return quantile(0, s, s+1);\n }\n};\n\n\n#line 5 \"D.cpp\"\n\nint main() {\n size_t n;\n int k;\n scanf(\"%zu %d\", &n, &k);\n\n std::vector<intmax_t> a(n);\n for (auto& ai: a) scanf(\"%jd\", &ai), ai -= k;\n a.insert(a.begin(), 0);\n for (size_t i = 1; i <= n; ++i) a[i] += a[i-1];\n\n intmax_t off = n*k;\n for (auto& ai: a) ai += off;\n\n wavelet_matrix<62> wm(a.begin(), a.end());\n intmax_t res = 0;\n for (size_t i = 1; i <= n; ++i) {\n auto r3 = wm.rank_3way(a[i-1], 0, i-1);\n res += r3[0] + r3[1];\n }\n\n printf(\"%jd\\n\", res);\n}", "accuracy": 0.2, "time_ms": 170, "memory_kb": 12056, "score_of_the_acc": -1.6068, "final_rank": 20 } ]
aoj_3121_cpp
Queries with Six Inequeties 四つの整数の組 (a,b,c,d) の集合が与えられます。 j 番目のクエリでは、 x_j < a_i < y_j < b_i かつ z_j < c_i < w_j < d_i なる i が存在するか判定します。 入力 N Q a_1 b_1 c_1 d_1 a_2 b_2 c_2 d_2 : a_n b_n c_n d_n x_1 y_1 z_1 w_1 x_2 y_2 z_2 w_2 : x_q y_q z_q w_q 出力 ans_1 ans_2 : ans_q j 行目には、 j 番目のクエリに対する答えを出力せよ。 条件を満たす添字 i が存在するなら Yes 、存在しないなら No を出力する。 制約 1 \leq N,Q \leq 10^5 1 \leq a_i < b_i \leq 10^5 1 \leq c_i < d_i \leq 10^5 1 \leq x_j < y_j \leq 10^5 1 \leq z_j < w_j \leq 10^5 入力例 2 2 14 86 9 121 3 34 3 34 1 14 5 14 1 9 1 9 出力例 No Yes
[ { "submission_id": "aoj_3121_5298642", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef tuple<ll,ll,ll> PP;\ntypedef vector<PP> vpp;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef vector<P> vp;\ntypedef vector<vp> vvp;\ntypedef vector<bool> vb;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define REP(i,k,n) for(ll i=(ll)(k);i<(ll)(n);i++)\n#define all(a) a.begin(),a.end()\n#define rsort(a) {sort(all(a));reverse(all(a));}\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\n#define lb(v,k) (lower_bound(all(v),k)-v.begin())\n#define fi first\n#define se second\n#define pb emplace_back\nconst ll mod=1000000007;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){for(auto x:v)outv(x);}\ntemplate<class T> void outp(T p){cout<<'('<<p.fi<<','<<p.se<<')'<<endl;}\ntemplate<class T> void outvp(T v){for(auto p:v)cout<<'('<<p.fi<<','<<p.se<<')';cout<<endl;}\nconst ll inf=1001001001001001001;\n\nclass segtree{\n vi seg;ll N=1;\npublic:\n ll g=-inf;\n ll f(ll a,ll b){\n return max(a,b);\n }\n segtree(ll n,ll k){\n while(N<n)N*=2;\n seg=vi(N*2-1,g);\n rep(i,n)seg[i+N-1]=k;\n for(ll i=N-2;i>=0;i--)seg[i]=f(seg[i*2+1],seg[i*2+2]);\n }\n segtree(vi v){\n while(N<v.size())N*=2;\n seg=vi(N*2-1,g);\n rep(i,v.size())seg[i+N-1]=v[i];\n for(ll i=N-2;i>=0;i--)seg[i]=f(seg[i*2+1],seg[i*2+2]);\n }\n void add(ll i,ll x){\n i+=N-1;\n seg[i]+=x;\n while(i>0){\n i=(i-1)/2;\n seg[i]=f(seg[i*2+1],seg[i*2+2]);\n }\n }\n void update(ll i,ll x){\n i+=N-1;\n seg[i]=x;\n while(i>0){\n i=(i-1)/2;\n seg[i]=f(seg[i*2+1],seg[i*2+2]);\n }\n }\n ll get(ll l,ll r){\n ll res=g;\n l+=N-1;r+=N-1;\n while(l<r){\n if(!(l&1))res=f(res,seg[l]);\n if(!(r&1))res=f(res,seg[r-1]);\n l=l>>1;\n r=(r-1)>>1;\n }\n return res;\n }\n void debug(ll n){\n rep(i,n)cout<<' '<<seg[i+N-1];cout<<endl;\n }\n};\nint main(){\n ll mx=100005;\n ll n,q;cin>>n>>q;\n vvi v(n,vi(4));rep(i,n)rep(j,4)cin>>v[i][j];\n vvi query(q,vi(4));rep(i,q)rep(j,4)cin>>query[i][j];\n vvp al(mx);\n rep(i,n)al[v[i][0]].pb(i,0);\n rep(i,q)al[query[i][0]].pb(i,1);\n queue<P> que;que.push(P(0,mx));\n vp srtc(n);\n rep(i,n)srtc[i]=P(v[i][2],i);\n sort(all(srtc));\n segtree seg(n,-inf);\n vb ans(q,false);\n while(!que.empty()){\n ll l,r;tie(l,r)=que.front();que.pop();\n if(r-l<=1)continue;\n ll md=(l+r)/2;\n vpp srt;\n REP(i,l,md)for(auto x:al[i])if(x.se)srt.pb(query[x.fi][1],1,x.fi);\n REP(i,md,r)for(auto x:al[i])if(!x.se){\n srt.pb(v[x.fi][0],2,x.fi);srt.pb(v[x.fi][1],0,x.fi);\n }\n sort(all(srt));\n for(auto x:srt){\n ll i=get<2>(x);\n // cout<<get<1>(x)<<' '<<i<<endl;\n if(get<1>(x)==2)seg.update(lb(srtc,P(v[i][2],i)),v[i][3]);\n if(get<1>(x)==0)seg.update(lb(srtc,P(v[i][2],i)),-inf);\n if(get<1>(x)==1){\n ll ma=seg.get(lb(srtc,P(query[i][2],inf)),lb(srtc,P(query[i][3],-inf)));\n // out(ma);\n if(ma>query[i][3])ans[i]=true;\n }\n }\n que.push(P(l,md));que.push(P(md,r));\n }\n for(auto x:ans){\n if(x)out(\"Yes\");\n else out(\"No\");\n }\n}", "accuracy": 1, "time_ms": 980, "memory_kb": 45360, "score_of_the_acc": -1.0618, "final_rank": 7 }, { "submission_id": "aoj_3121_5298632", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef tuple<ll,ll,ll> PP;\ntypedef vector<PP> vpp;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef vector<P> vp;\ntypedef vector<vp> vvp;\ntypedef vector<bool> vb;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define REP(i,k,n) for(ll i=(ll)(k);i<(ll)(n);i++)\n#define all(a) a.begin(),a.end()\n#define rsort(a) {sort(all(a));reverse(all(a));}\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\n#define lb(v,k) (lower_bound(all(v),k)-v.begin())\n#define fi first\n#define se second\n#define pb emplace_back\nconst ll mod=1000000007;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){for(auto x:v)outv(x);}\ntemplate<class T> void outp(T p){cout<<'('<<p.fi<<','<<p.se<<')'<<endl;}\ntemplate<class T> void outvp(T v){for(auto p:v)cout<<'('<<p.fi<<','<<p.se<<')';cout<<endl;}\nconst ll inf=1001001001001001001;\n\nclass segtree{\n vi seg;ll N=1;\npublic:\n ll g=-inf;\n ll f(ll a,ll b){\n return max(a,b);\n }\n segtree(ll n,ll k){\n while(N<n)N*=2;\n seg=vi(N*2-1,g);\n rep(i,n)seg[i+N-1]=k;\n for(ll i=N-2;i>=0;i--)seg[i]=f(seg[i*2+1],seg[i*2+2]);\n }\n segtree(vi v){\n while(N<v.size())N*=2;\n seg=vi(N*2-1,g);\n rep(i,v.size())seg[i+N-1]=v[i];\n for(ll i=N-2;i>=0;i--)seg[i]=f(seg[i*2+1],seg[i*2+2]);\n }\n void add(ll i,ll x){\n i+=N-1;\n seg[i]+=x;\n while(i>0){\n i=(i-1)/2;\n seg[i]=f(seg[i*2+1],seg[i*2+2]);\n }\n }\n void update(ll i,ll x){\n i+=N-1;\n seg[i]=x;\n while(i>0){\n i=(i-1)/2;\n seg[i]=f(seg[i*2+1],seg[i*2+2]);\n }\n }\n ll get(ll l,ll r){\n ll res=g;\n l+=N-1;r+=N-1;\n while(l<r){\n if(!(l&1))res=f(res,seg[l]);\n if(!(r&1))res=f(res,seg[r-1]);\n l=l>>1;\n r=(r-1)>>1;\n }\n return res;\n }\n void debug(ll n){\n rep(i,n)cout<<' '<<seg[i+N-1];cout<<endl;\n }\n};\nint main(){\n ll mx=100005;\n ll n,q;cin>>n>>q;\n vvi v(n,vi(4));rep(i,n)rep(j,4)cin>>v[i][j];\n vvi query(q,vi(4));rep(i,q)rep(j,4)cin>>query[i][j];\n vvp al(mx);\n rep(i,n)al[v[i][0]].pb(i,0);\n rep(i,q)al[query[i][0]].pb(i,1);\n queue<P> que;que.push(P(0,mx));\n vp srtc(n);\n rep(i,n)srtc[i]=P(v[i][2],i);\n sort(all(srtc));\n segtree seg(n,-inf);\n vb ans(q,false);\n while(!que.empty()){\n ll l,r;tie(l,r)=que.front();que.pop();\n if(r-l<=1)break;\n ll md=(l+r)/2;\n vpp srt;\n REP(i,l,md)for(auto x:al[i])if(x.se)srt.pb(query[x.fi][1],1,x.fi);\n REP(i,md,r)for(auto x:al[i])if(!x.se){\n srt.pb(v[x.fi][0],2,x.fi);srt.pb(v[x.fi][1],0,x.fi);\n }\n sort(all(srt));\n for(auto x:srt){\n ll i=get<2>(x);\n // cout<<get<1>(x)<<' '<<i<<endl;\n if(get<1>(x)==2)seg.update(lb(srtc,P(v[i][2],i)),v[i][3]);\n if(get<1>(x)==0)seg.update(lb(srtc,P(v[i][2],i)),-inf);\n if(get<1>(x)==1){\n ll ma=seg.get(lb(srtc,P(query[i][2],inf)),lb(srtc,P(query[i][3],-inf)));\n // out(ma);\n if(ma>query[i][3])ans[i]=true;\n }\n }\n que.push(P(l,md));que.push(P(md,r));\n }\n for(auto x:ans){\n if(x)out(\"Yes\");\n else out(\"No\");\n }\n}", "accuracy": 0.2, "time_ms": 680, "memory_kb": 32844, "score_of_the_acc": -0.6456, "final_rank": 19 }, { "submission_id": "aoj_3121_5298625", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef tuple<ll,ll,ll> PP;\ntypedef vector<PP> vpp;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef vector<P> vp;\ntypedef vector<vp> vvp;\ntypedef vector<bool> vb;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define REP(i,k,n) for(ll i=(ll)(k);i<(ll)(n);i++)\n#define all(a) a.begin(),a.end()\n#define rsort(a) {sort(all(a));reverse(all(a));}\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\n#define lb(v,k) (lower_bound(all(v),k)-v.begin())\n#define fi first\n#define se second\n#define pb emplace_back\nconst ll mod=1000000007;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){for(auto x:v)outv(x);}\ntemplate<class T> void outp(T p){cout<<'('<<p.fi<<','<<p.se<<')'<<endl;}\ntemplate<class T> void outvp(T v){for(auto p:v)cout<<'('<<p.fi<<','<<p.se<<')';cout<<endl;}\nconst ll inf=1001001001001001001;\n\nclass segtree{\n ll N=1;vi seg;\npublic:\n segtree(ll n){\n while(N<n)N*=2;\n seg=vi(N*2-1,-inf);\n }\n void update(ll i,ll x){\n i+=N-1;\n seg[i]=x;\n while(i>0){\n i=(i-1)>>1;\n seg[i]=max(seg[i*2+1],seg[i*2+2]);\n }\n }\n ll get(ll l,ll r){\n l+=N-1;r+=N-1;\n ll res=-inf;\n while(l<r){\n if(!(l&1))chmax(res,seg[l]);\n if(!(r&1))chmax(res,seg[r-1]);\n l>>=1;r=(r-1)>>1;\n }\n return res;\n }\n};\nint main(){\n ll mx=100005;\n ll n,q;cin>>n>>q;\n vvi v(n,vi(4));rep(i,n)rep(j,4)cin>>v[i][j];\n vvi query(q,vi(4));rep(i,q)rep(j,4)cin>>query[i][j];\n vvp al(mx);\n rep(i,n)al[v[i][0]].pb(i,0);\n rep(i,q)al[query[i][0]].pb(i,1);\n queue<P> que;que.push(P(0,mx));\n vp srtc(n);\n rep(i,n)srtc[i]=P(v[i][2],i);\n sort(all(srtc));\n segtree seg(n);\n vb ans(q,false);\n while(!que.empty()){\n ll l,r;tie(l,r)=que.front();que.pop();\n if(r-l<=1)break;\n ll md=(l+r)/2;\n vpp srt;\n REP(i,l,md)for(auto x:al[i])if(x.se)srt.pb(query[x.fi][1],1,x.fi);\n REP(i,md,r)for(auto x:al[i])if(!x.se){\n srt.pb(v[x.fi][0],2,x.fi);srt.pb(v[x.fi][1],0,x.fi);\n }\n sort(all(srt));\n for(auto x:srt){\n ll i=get<2>(x);\n // cout<<get<1>(x)<<' '<<i<<endl;\n if(get<1>(x)==2)seg.update(lb(srtc,P(v[i][2],i)),v[i][3]);\n if(get<1>(x)==0)seg.update(lb(srtc,P(v[i][2],i)),-inf);\n if(get<1>(x)==1){\n ll ma=seg.get(lb(srtc,P(query[i][2],inf)),lb(srtc,P(query[i][3],-inf)));\n // out(ma);\n if(ma>query[i][3])ans[i]=true;\n }\n }\n que.push(P(l,md));que.push(P(md,r));\n }\n for(auto x:ans){\n if(x)out(\"Yes\");\n else out(\"No\");\n }\n}", "accuracy": 0.2, "time_ms": 700, "memory_kb": 32936, "score_of_the_acc": -0.6696, "final_rank": 20 }, { "submission_id": "aoj_3121_4113573", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\ntemplate <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;\nconst int INF = 0x3f3f3f3f;\nconst ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n// const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\ntemplate <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n }\n} iosetup;\n\ntemplate <typename Monoid>\nstruct RMQ {\n RMQ(int sz, const Monoid UNITY) : UNITY(UNITY) {\n init(sz);\n dat.assign((n << 1) - 1, UNITY);\n }\n\n RMQ(const vector<Monoid> &a, const Monoid UNITY) : UNITY(UNITY) {\n int a_sz = a.size();\n init(a_sz);\n dat.resize((n << 1) - 1);\n REP(i, a_sz) dat[n - 1 + i] = a[i];\n for (int i = n - 2; i >= 0; --i) dat[i] = max(dat[(i << 1) + 1], dat[(i << 1) + 2]);\n }\n\n void update(int node, Monoid val) {\n node += n - 1;\n dat[node] = val;\n while (node > 0) {\n node = (node - 1) >> 1;\n dat[node] = max(dat[(node << 1) + 1], dat[(node << 1) + 2]);\n }\n }\n\n Monoid query(int a, int b) { return query(a, b, 0, 0, n); }\n\n int find(int a, int b, Monoid val) { return find(a, b, val, 0, 0, n); }\n\n Monoid operator[](const int idx) const { return dat[idx + n - 1]; }\n\nprivate:\n int n = 1;\n const Monoid UNITY;\n vector<Monoid> dat;\n\n void init(int sz) { while (n < sz) n <<= 1; }\n\n Monoid query(int a, int b, int node, int left, int right) {\n if (right <= a || b <= left) return UNITY;\n if (a <= left && right <= b) return dat[node];\n return max(query(a, b, (node << 1) + 1, left, (left + right) >> 1), query(a, b, (node << 1) + 2, (left + right) >> 1, right));\n }\n\n int find(int a, int b, Monoid val, int node, int left, int right) {\n if (dat[node] < val || right <= a || b <= left) return -1;\n if (right - left == 1) return node - (n - 1);\n int res_l = find(a, b, val, (node << 1) + 1, left, (left + right) >> 1);\n if (res_l != -1) return res_l;\n return find(a, b, val, (node << 1) + 2, (left + right) >> 1, right);\n }\n};\n\nint main() {\n const int M = 400000;\n int n, q; cin >> n >> q;\n vector<int> a(n), b(n), c(n), d(n), x(q), y(q), z(q), w(q);\n REP(i, n) cin >> a[i] >> b[i] >> c[i] >> d[i], --a[i], --b[i], --c[i], --d[i];\n REP(i, q) cin >> x[i] >> y[i] >> z[i] >> w[i], --x[i], --y[i], --z[i], --w[i];\n vector<pair<pair<int, int>, int> > fix;\n REP(i, n) {\n fix.emplace_back(make_pair(a[i], 2), i);\n fix.emplace_back(make_pair(b[i], 0), i);\n }\n REP(i, q) {\n fix.emplace_back(make_pair(x[i], 3), i);\n fix.emplace_back(make_pair(y[i], 1), i);\n }\n sort(ALL(fix));\n REP(i, fix.size()) {\n if (fix[i].first.second == 0) {\n b[fix[i].second] = i;\n } else if (fix[i].first.second == 1) {\n y[fix[i].second] = i;\n } else if (fix[i].first.second == 2) {\n a[fix[i].second] = i;\n } else if (fix[i].first.second == 3) {\n x[fix[i].second] = i;\n }\n }\n fix.clear();\n REP(i, n) {\n fix.emplace_back(make_pair(c[i], 2), i);\n fix.emplace_back(make_pair(d[i], 0), i);\n }\n REP(i, q) {\n fix.emplace_back(make_pair(z[i], 3), i);\n fix.emplace_back(make_pair(w[i], 1), i);\n }\n sort(ALL(fix));\n REP(i, fix.size()) {\n if (fix[i].first.second == 0) {\n d[fix[i].second] = i;\n } else if (fix[i].first.second == 1) {\n w[fix[i].second] = i;\n } else if (fix[i].first.second == 2) {\n c[fix[i].second] = i;\n } else if (fix[i].first.second == 3) {\n z[fix[i].second] = i;\n }\n }\n vector<int> x_pos(M, -1), a_pos(M, -1);\n REP(i, n) a_pos[a[i]] = i;\n REP(i, q) x_pos[x[i]] = i;\n vector<bool> ans(q, false);\n RMQ<int> rmq(M, -INF);\n function<void(int, int)> calc = [&](int l, int r) {\n if (r <= l + 1) return;\n int mid = (l + r) / 2;\n vector<pair<int, pair<int, int> > > v;\n FOR(i, l, mid) {\n if (x_pos[i] != -1) {\n int idx = x_pos[i];\n v.emplace_back(y[idx], make_pair(1, idx));\n }\n }\n FOR(i, mid, r) {\n if (a_pos[i] != -1) {\n int idx = a_pos[i];\n v.emplace_back(a[idx], make_pair(2, idx));\n v.emplace_back(b[idx], make_pair(0, idx));\n }\n }\n sort(ALL(v));\n for (auto e : v) {\n int type, idx; tie(type, idx) = e.second;\n if (type == 0) {\n rmq.update(c[idx], -INF);\n } else if (type == 1) {\n if (rmq.query(z[idx] + 1, w[idx]) > w[idx]) ans[idx] = true;\n } else if (type == 2) {\n rmq.update(c[idx], d[idx]);\n }\n }\n calc(l, mid);\n calc(mid, r);\n };\n calc(0, M);\n REP(i, q) cout << (ans[i] ? \"Yes\\n\" : \"No\\n\");\n return 0;\n}", "accuracy": 1, "time_ms": 530, "memory_kb": 25708, "score_of_the_acc": -0.4331, "final_rank": 3 }, { "submission_id": "aoj_3121_4094994", "code_snippet": "#include <iostream>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#define llint long long\n#define inf 1e18\n\nusing namespace std;\ntypedef pair<llint, llint> P;\ntypedef pair<P, llint> E;\n\nstruct SegTree{\n\tint size;\n\tvector<llint> seg;\n\t\n\tSegTree(){}\n\tSegTree(int size){\n\t\tthis->size = size;\n\t\tseg.resize(1<<(size+1));\n\t}\n\t\n\tvoid init()\n\t{\n\t\tfor(int i = 0; i < (1<<(size+1)); i++) seg[i] = -inf;\n\t}\n\t\n\tvoid update(int i, llint val)\n\t{\n\t\ti += (1 << size);\n\t\tseg[i] = val;\n\t\twhile(i > 1){\n\t\t\ti /= 2;\n\t\t\tseg[i] = max(seg[i*2], seg[i*2+1]);\n\t\t}\n\t}\n\n\tllint query(int a, int b, int k, int l, int r)\n\t{\n\t\tif(b < l || r < a) return -inf;\n\t\tif(a <= l && r <= b) return seg[k];\n\t\tllint lval = query(a, b, k*2, l, (l+r)/2);\n\t\tllint rval = query(a, b, k*2+1, (l+r)/2+1, r);\n\t\treturn max(lval, rval);\n\t}\n\tllint query(int a, int b)\n\t{\n\t\tif(a > b) return -inf;\n\t\treturn query(a, b, 1, 0, (1<<size)-1);\n\t}\n};\n\nllint n, Q;\nllint a[100005], b[100005], c[100005], d[100005];\nllint x[100005], y[100005], z[100005], w[100005];\nbool ans[100005];\n\nvector<llint> xvec[100005], avec[100005];\nvector<P> cvec;\nSegTree seg(17);\nllint cpos[100005];\n\nvoid calc(llint l, llint r)\n{\n\tif(r-l+1 <= 1) return;\n\tllint m = (l+r)/2;\n\t\n\tvector<E> vec;\n\tfor(int i = l; i <= m; i++){\n\t\tfor(int j = 0; j < xvec[i].size(); j++){\n\t\t\tint id = xvec[i][j];\n\t\t\tvec.push_back(E(P(y[id], 2), id));\n\t\t}\n\t}\n\tfor(int i = m+1; i <= r; i++){\n\t\tfor(int j = 0; j < avec[i].size(); j++){\n\t\t\tint id = avec[i][j];\n\t\t\tvec.push_back(E(P(a[id], 3), id));\n\t\t\tvec.push_back(E(P(b[id], 1), id));\n\t\t}\n\t}\n\tsort(vec.begin(), vec.end());\n\t\n\tfor(int i = 0; i < vec.size(); i++){\n\t\tint type = vec[i].first.second, id = vec[i].second;\n\t\tif(type == 1) seg.update(cpos[id], -inf);\n\t\tif(type == 3) seg.update(cpos[id], d[id]);\n\t\tif(type == 2){\n\t\t\tllint lb = upper_bound(cvec.begin(), cvec.end(), P(z[id], inf)) - cvec.begin();\n\t\t\tllint ub = lower_bound(cvec.begin(), cvec.end(), P(w[id], 0)) - cvec.begin() - 1;\n\t\t\tif(seg.query(lb, ub) > w[id]) ans[id] = true;\n\t\t}\n\t}\n\tcalc(l, m), calc(m+1, r);\n}\n\nint main(void)\n{\n\tcin >> n >> Q;\n\tfor(int i = 1; i <= n; i++) cin >> a[i] >> b[i] >> c[i] >> d[i];\n\tfor(int i = 1; i <= Q; i++) cin >> x[i] >> y[i] >> z[i] >> w[i];\n\t\n\tfor(int i = 1; i <= n; i++) avec[a[i]].push_back(i);\n\tfor(int i = 1; i <= Q; i++) xvec[x[i]].push_back(i);\n\t\n\tfor(int i = 1; i <= n; i++) cvec.push_back(P(c[i], i));\n\tsort(cvec.begin(), cvec.end());\n\tfor(int i = 0; i < cvec.size(); i++) cpos[cvec[i].second] = i;\n\t\n\tseg.init();\n\t\n\tcalc(1, 100000);\n\tfor(int i = 1; i <= Q; i++){\n\t\tif(ans[i]) cout << \"Yes\" << endl;\n\t\telse cout << \"No\" << endl;\n\t}\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 950, "memory_kb": 69408, "score_of_the_acc": -1.1479, "final_rank": 9 }, { "submission_id": "aoj_3121_4094972", "code_snippet": "#include <iostream>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#define llint long long\n#define inf 1e18\n\nusing namespace std;\ntypedef pair<llint, llint> P;\ntypedef pair<P, llint> E;\n\nstruct SegTree{\n\tint size;\n\tvector<llint> seg;\n\t\n\tSegTree(){}\n\tSegTree(int size){\n\t\tthis->size = size;\n\t\tseg.resize(1<<(size+1));\n\t}\n\t\n\tvoid init()\n\t{\n\t\tfor(int i = 0; i < (1<<(size+1)); i++) seg[i] = -inf;\n\t}\n\t\n\tvoid update(int i, llint val)\n\t{\n\t\ti += (1 << size);\n\t\tseg[i] = val;\n\t\twhile(i > 1){\n\t\t\ti /= 2;\n\t\t\tseg[i] = max(seg[i*2], seg[i*2+1]);\n\t\t}\n\t}\n\n\tllint query(int a, int b, int k, int l, int r)\n\t{\n\t\tif(b < l || r < a) return -inf;\n\t\tif(a <= l && r <= b) return seg[k];\n\t\tllint lval = query(a, b, k*2, l, (l+r)/2);\n\t\tllint rval = query(a, b, k*2+1, (l+r)/2+1, r);\n\t\treturn max(lval, rval);\n\t}\n\tllint query(int a, int b)\n\t{\n\t\tif(a > b) return -inf;\n\t\treturn query(a, b, 1, 0, (1<<size)-1);\n\t}\n};\n\nllint n, Q;\nllint a[100005], b[100005], c[100005], d[100005];\nllint x[100005], y[100005], z[100005], w[100005];\nbool ans[100005];\n\nvector<llint> xvec[100005], avec[100005];\nvector<P> cvec;\nSegTree seg(17);\nllint cpos[100005];\n\nvoid calc(llint l, llint r)\n{\n\tif(r-l+1 <= 1) return;\n\tllint m = (l+r)/2;\n\t\n\tvector<E> vec;\n\tfor(int i = l; i <= m; i++){\n\t\tfor(int j = 0; j < xvec[i].size(); j++){\n\t\t\tint id = xvec[i][j];\n\t\t\tvec.push_back(E(P(y[id], 2), id));\n\t\t}\n\t}\n\tfor(int i = m+1; i <= r; i++){\n\t\tfor(int j = 0; j < avec[i].size(); j++){\n\t\t\tint id = avec[i][j];\n\t\t\tvec.push_back(E(P(a[id], 3), id));\n\t\t\tvec.push_back(E(P(b[id], 1), id));\n\t\t}\n\t}\n\tsort(vec.begin(), vec.end());\n\t\n\tfor(int i = 0; i < vec.size(); i++){\n\t\tint type = vec[i].first.second, id = vec[i].second;\n\t\tif(type == 1) seg.update(cpos[c[id]], -inf);\n\t\tif(type == 3) seg.update(cpos[c[id]], d[id]);\n\t\tif(type == 2){\n\t\t\tllint lb = upper_bound(cvec.begin(), cvec.end(), P(z[id], inf)) - cvec.begin();\n\t\t\tllint ub = lower_bound(cvec.begin(), cvec.end(), P(w[id], 0)) - cvec.begin() - 1;\n\t\t\t//cout << l << \" \" << r << \" \" << m << \" \" << id << \" \" << lb << \" \" << ub << \" \" << seg.query(lb, ub) << \" \" << w[id] << endl;\n\t\t\tif(seg.query(lb, ub) > w[id]) ans[id] = true;\n\t\t}\n\t}\n\tcalc(l, m), calc(m+1, r);\n}\n\nint main(void)\n{\n\tcin >> n >> Q;\n\tfor(int i = 1; i <= n; i++) cin >> a[i] >> b[i] >> c[i] >> d[i];\n\tfor(int i = 1; i <= Q; i++) cin >> x[i] >> y[i] >> z[i] >> w[i];\n\t\n\tfor(int i = 1; i <= n; i++) avec[a[i]].push_back(i);\n\tfor(int i = 1; i <= Q; i++) xvec[x[i]].push_back(i);\n\t\n\tfor(int i = 1; i <= n; i++) cvec.push_back(P(c[i], i));\n\tsort(cvec.begin(), cvec.end());\n\tfor(int i = 0; i < cvec.size(); i++) cpos[cvec[i].second] = i;\n\t\n\tseg.init();\n\t\n\tcalc(1, 100000);\n\tfor(int i = 1; i <= Q; i++){\n\t\tif(ans[i]) cout << \"Yes\" << endl;\n\t\telse cout << \"No\" << endl;\n\t}\n\t\n\treturn 0;\n}", "accuracy": 0.2, "time_ms": 570, "memory_kb": 35128, "score_of_the_acc": -0.5278, "final_rank": 15 }, { "submission_id": "aoj_3121_4094958", "code_snippet": "#include <iostream>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#define llint long long\n#define inf 1e18\n\nusing namespace std;\ntypedef pair<llint, llint> P;\ntypedef pair<P, llint> E;\n\nstruct SegTree{\n\tint size;\n\tvector<llint> seg;\n\t\n\tSegTree(){}\n\tSegTree(int size){\n\t\tthis->size = size;\n\t\tseg.resize(1<<(size+1));\n\t}\n\t\n\tvoid init()\n\t{\n\t\tfor(int i = 0; i < (1<<(size+1)); i++) seg[i] = -inf;\n\t}\n\t\n\tvoid update(int i, llint val)\n\t{\n\t\ti += (1 << size);\n\t\tseg[i] = val;\n\t\twhile(i > 1){\n\t\t\ti /= 2;\n\t\t\tseg[i] = max(seg[i*2], seg[i*2+1]);\n\t\t}\n\t}\n\n\tllint query(int a, int b, int k, int l, int r)\n\t{\n\t\tif(b < l || r < a) return -inf;\n\t\tif(a <= l && r <= b) return seg[k];\n\t\tllint lval = query(a, b, k*2, l, (l+r)/2);\n\t\tllint rval = query(a, b, k*2+1, (l+r)/2+1, r);\n\t\treturn max(lval, rval);\n\t}\n\tllint query(int a, int b)\n\t{\n\t\tif(a > b) return -inf;\n\t\treturn query(a, b, 1, 0, (1<<size)-1);\n\t}\n};\n\nllint n, Q;\nllint a[100005], b[100005], c[100005], d[100005];\nllint x[100005], y[100005], z[100005], w[100005];\nbool ans[100005];\n\nvector<llint> xvec[100005], avec[100005];\nvector<P> cvec;\nSegTree seg(17);\nllint cpos[100005];\n\nvoid calc(llint l, llint r)\n{\n\tif(r-l+1 <= 1) return;\n\tllint m = (l+r)/2;\n\t\n\tvector<E> vec;\n\tfor(int i = l; i <= m; i++){\n\t\tfor(int j = 0; j < xvec[i].size(); j++){\n\t\t\tint id = xvec[i][j];\n\t\t\tvec.push_back(E(P(y[id], 2), id));\n\t\t}\n\t}\n\tfor(int i = m+1; i <= r; i++){\n\t\tfor(int j = 0; j < avec[i].size(); j++){\n\t\t\tint id = avec[i][j];\n\t\t\tvec.push_back(E(P(a[id], 3), id));\n\t\t\tvec.push_back(E(P(b[id], 1), id));\n\t\t}\n\t}\n\tsort(vec.begin(), vec.end());\n\t\n\tfor(int i = 0; i < vec.size(); i++){\n\t\tint type = vec[i].first.second, id = vec[i].second;\n\t\tif(type == 1) seg.update(cpos[c[id]], -inf);\n\t\tif(type == 3) seg.update(cpos[c[id]], d[id]);\n\t\tif(type == 2){\n\t\t\tllint lb = upper_bound(cvec.begin(), cvec.end(), P(z[id], inf)) - cvec.begin();\n\t\t\tllint ub = lower_bound(cvec.begin(), cvec.end(), P(w[id], 0)) - cvec.begin() - 1;\n\t\t\tif(seg.query(lb, ub) > w[id]) ans[id] = true;\n\t\t}\n\t}\n\tcalc(l, m), calc(m+1, r);\n}\n\nint main(void)\n{\n\tcin >> n >> Q;\n\tfor(int i = 1; i <= n; i++) cin >> a[i] >> b[i] >> c[i] >> d[i];\n\tfor(int i = 1; i <= Q; i++) cin >> x[i] >> y[i] >> z[i] >> w[i];\n\t\n\tfor(int i = 1; i <= n; i++) xvec[x[i]].push_back(i);\n\tfor(int i = 1; i <= Q; i++) avec[a[i]].push_back(i);\n\t\n\tfor(int i = 1; i <= n; i++) cvec.push_back(P(c[i], i));\n\tsort(cvec.begin(), cvec.end());\n\tfor(int i = 0; i < cvec.size(); i++) cpos[cvec[i].second] = i;\n\t\n\tseg.init();\n\t\n\tcalc(1, 100000);\n\tfor(int i = 1; i <= Q; i++){\n\t\tif(ans[i]) cout << \"Yes\" << endl;\n\t\telse cout << \"No\" << endl;\n\t}\n\t\n\treturn 0;\n}", "accuracy": 0.2, "time_ms": 570, "memory_kb": 35256, "score_of_the_acc": -0.5284, "final_rank": 16 }, { "submission_id": "aoj_3121_4094952", "code_snippet": "#include <iostream>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#define llint long long\n#define inf 1e18\n\nusing namespace std;\ntypedef pair<llint, llint> P;\ntypedef pair<P, llint> E;\n\nstruct SegTree{\n\tint size;\n\tvector<llint> seg;\n\t\n\tSegTree(){}\n\tSegTree(int size){\n\t\tthis->size = size;\n\t\tseg.resize(1<<(size+1));\n\t}\n\t\n\tvoid init()\n\t{\n\t\tfor(int i = 0; i < (1<<(size+1)); i++) seg[i] = -inf;\n\t}\n\t\n\tvoid update(int i, llint val)\n\t{\n\t\ti += (1 << size);\n\t\tseg[i] = val;\n\t\twhile(i > 1){\n\t\t\ti /= 2;\n\t\t\tseg[i] = max(seg[i*2], seg[i*2+1]);\n\t\t}\n\t}\n\n\tllint query(int a, int b, int k, int l, int r)\n\t{\n\t\tif(b < l || r < a) return -inf;\n\t\tif(a <= l && r <= b) return seg[k];\n\t\tllint lval = query(a, b, k*2, l, (l+r)/2);\n\t\tllint rval = query(a, b, k*2+1, (l+r)/2+1, r);\n\t\treturn max(lval, rval);\n\t}\n\tllint query(int a, int b)\n\t{\n\t\treturn query(a, b, 1, 0, (1<<size)-1);\n\t}\n};\n\nllint n, Q;\nllint a[100005], b[100005], c[100005], d[100005];\nllint x[100005], y[100005], z[100005], w[100005];\nbool ans[100005];\n\nvector<llint> xvec[100005], avec[100005];\nvector<P> cvec;\nSegTree seg(17);\nllint cpos[100005];\n\nvoid calc(llint l, llint r)\n{\n\tif(r-l+1 <= 1) return;\n\tllint m = (l+r)/2;\n\t\n\tvector<E> vec;\n\tfor(int i = l; i <= m; i++){\n\t\tfor(int j = 0; j < xvec[i].size(); j++){\n\t\t\tint id = xvec[i][j];\n\t\t\tvec.push_back(E(P(y[id], 2), id));\n\t\t}\n\t}\n\tfor(int i = m+1; i <= r; i++){\n\t\tfor(int j = 0; j < avec[i].size(); j++){\n\t\t\tint id = avec[i][j];\n\t\t\tvec.push_back(E(P(a[id], 3), id));\n\t\t\tvec.push_back(E(P(b[id], 1), id));\n\t\t}\n\t}\n\tsort(vec.begin(), vec.end());\n\t\n\tfor(int i = 0; i < vec.size(); i++){\n\t\tint type = vec[i].first.second, id = vec[i].second;\n\t\tif(type == 1) seg.update(cpos[c[id]], -inf);\n\t\tif(type == 3) seg.update(cpos[c[id]], d[id]);\n\t\tif(type == 2){\n\t\t\tllint lb = upper_bound(cvec.begin(), cvec.end(), P(z[id], inf)) - cvec.begin();\n\t\t\tllint ub = lower_bound(cvec.begin(), cvec.end(), P(w[id], 0)) - cvec.begin() - 1;\n\t\t\tif(seg.query(lb, ub) > w[id]) ans[id] = true;\n\t\t}\n\t}\n\tcalc(l, m), calc(m+1, r);\n}\n\nint main(void)\n{\n\tcin >> n >> Q;\n\tfor(int i = 1; i <= n; i++) cin >> a[i] >> b[i] >> c[i] >> d[i];\n\tfor(int i = 1; i <= Q; i++) cin >> x[i] >> y[i] >> z[i] >> w[i];\n\t\n\tfor(int i = 1; i <= n; i++) xvec[x[i]].push_back(i);\n\tfor(int i = 1; i <= Q; i++) avec[a[i]].push_back(i);\n\t\n\tfor(int i = 1; i <= n; i++) cvec.push_back(P(c[i], i));\n\tsort(cvec.begin(), cvec.end());\n\tfor(int i = 0; i < cvec.size(); i++) cpos[cvec[i].second] = i;\n\t\n\tseg.init();\n\t\n\tcalc(1, 100000);\n\tfor(int i = 1; i <= Q; i++){\n\t\tif(ans[i]) cout << \"Yes\" << endl;\n\t\telse cout << \"No\" << endl;\n\t}\n\t\n\treturn 0;\n}", "accuracy": 0.2, "time_ms": 580, "memory_kb": 35200, "score_of_the_acc": -0.5399, "final_rank": 18 }, { "submission_id": "aoj_3121_4087627", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1LL << 29;\nconst ll LONGINF = 1LL << 60;\nconst ll MOD = 1000000007LL;\n\n// @category セグメント木 (Segment Tree)\n// @title セグメント木 (Segment Tree)\n// 抽象 SegmentTree (0-indexed・一点更新・区間取得)\ntemplate <typename MonoidType>\nstruct SegmentTree {\n using Function = function< MonoidType(MonoidType, MonoidType) >;\n\n // node, identity element\n int n;\n vector<MonoidType> node;\n MonoidType E0;\n\n // update / combine function\n Function upd_f, cmb_f;\n\n void build(int m, vector<MonoidType> v = vector<MonoidType>()) {\n if(v != vector<MonoidType>()) m = v.size();\n n = 1; while(n < m) n *= 2;\n\n node = vector<MonoidType>(2*n-1, E0);\n if(v != vector<MonoidType>()) {\n for(int i=0; i<m; i++) {\n node[n-1+i] = v[i];\n }\n for(int i=n-2; i>=0; i--) {\n node[i] = cmb_f(node[2*i+1], node[2*i+2]);\n }\n }\n }\n\n // initialize\n SegmentTree() {}\n SegmentTree(int n_, MonoidType E0_,\n Function upd_f_, Function cmb_f_,\n vector<MonoidType> v = vector<MonoidType>()) :\n E0(E0_), upd_f(upd_f_), cmb_f(cmb_f_) {\n build(n_, v);\n }\n\n // update k-th element (applied value: x)\n void update(int k, MonoidType x) {\n k += n - 1;\n node[k] = upd_f(node[k], x);\n while(k > 0) {\n k = (k - 1) / 2;\n node[k] = cmb_f(node[2*k+1], node[2*k+2]);\n }\n }\n\n // range query for [a, b)\n // 非再帰のアイデア: http://d.hatena.ne.jp/komiyam/20131202/1385992406\n MonoidType query(int a, int b) {\n MonoidType vl = E0, vr = E0;\n for(int l=a+n, r=b+n; l<r; l>>=1, r>>=1) {\n if(l & 1) vl = cmb_f(vl, node[(l++)-1]);\n if(r & 1) vr = cmb_f(node[(--r)-1], vr);\n }\n return cmb_f(vl, vr);\n }\n};\n\nusing Rect = tuple<int, int, int, int, int>;\n\nint main() {\n int N, M; scanf(\"%d%d\", &N, &M);\n vector<Rect> A(N), B(M);\n for(int i=0; i<N; i++) {\n int a, b, c, d; cin >> a >> b >> c >> d;\n A[i] = make_tuple(a, b, c, d, i);\n }\n for(int i=0; i<M; i++) {\n int a, b, c, d; cin >> a >> b >> c >> d;\n B[i] = make_tuple(a, b, c, d, i);\n }\n\n SegmentTree<int> seg(100010, -INF,\n [](int a, int b) { return b; },\n [](int a, int b) { return max(a, b); });\n \n vector< multiset<int> > cnt(100010);\n vector<int> ans(M);\n auto solve = [&](auto&& f, int L, int R,\n const vector<Rect> &AR, const vector<Rect>&BR) -> void {\n int mid = (L + R) / 2;\n vector<Rect> NLA, NLB, NRA, NRB;\n for(auto e : AR) {\n int a, b, c, d, k; tie(a, b, c, d, k) = e;\n if(L <= a and a < mid) NLA.emplace_back(e);\n if(mid <= a and a < R) NRA.emplace_back(e);\n }\n for(auto e : BR) {\n int a, b, c, d, k; tie(a, b, c, d, k) = e;\n if(L <= a and a < mid) NLB.emplace_back(e);\n if(mid <= a and a < R) NRB.emplace_back(e);\n }\n\n // priority: del, query, add\n vector< tuple<int, int, int> > queries;\n for(auto e : NLB) {\n int a, b, c, d, k; tie(a, b, c, d, k) = e;\n queries.emplace_back(b, 1, k);\n }\n for(auto e : NRA) {\n int a, b, c, d, k; tie(a, b, c, d, k) = e;\n queries.emplace_back(a, 2, k);\n queries.emplace_back(b, 0, k);\n }\n\n sort(queries.begin(), queries.end());\n for(auto q : queries) {\n int v, t, k; tie(v, t, k) = q;\n if(t == 0) {\n int a, b, c, d; tie(a, b, c, d, std::ignore) = A[k];\n cnt[c].erase(cnt[c].find(d));\n int val = (cnt[c].size() ? *(--cnt[c].end()) : -INF);\n seg.update(c, val);\n }\n if(t == 1) {\n int a, b, c, d; tie(a, b, c, d, std::ignore) = B[k];\n ans[k] |= (seg.query(c+1, d) > d);\n }\n if(t == 2) {\n int a, b, c, d; tie(a, b, c, d, std::ignore) = A[k];\n cnt[c].emplace(d);\n int val = *(--cnt[c].end());\n seg.update(c, val);\n }\n }\n\n if(R - L > 1) {\n f(f, L, mid, NLA, NLB);\n f(f, mid, R, NRA, NRB);\n }\n };\n\n solve(solve, 0, 100010, A, B);\n for(int i=0; i<M; i++) printf(\"%s\\n\", ans[i] ? \"Yes\" : \"No\");\n return 0;\n}", "accuracy": 1, "time_ms": 590, "memory_kb": 111872, "score_of_the_acc": -0.9388, "final_rank": 5 }, { "submission_id": "aoj_3121_4087625", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1LL << 29;\nconst ll LONGINF = 1LL << 60;\nconst ll MOD = 1000000007LL;\n\n// @category セグメント木 (Segment Tree)\n// @title セグメント木 (Segment Tree)\n// 抽象 SegmentTree (0-indexed・一点更新・区間取得)\ntemplate <typename MonoidType>\nstruct SegmentTree {\n using Function = function< MonoidType(MonoidType, MonoidType) >;\n\n // node, identity element\n int n;\n vector<MonoidType> node;\n MonoidType E0;\n\n // update / combine function\n Function upd_f, cmb_f;\n\n void build(int m, vector<MonoidType> v = vector<MonoidType>()) {\n if(v != vector<MonoidType>()) m = v.size();\n n = 1; while(n < m) n *= 2;\n\n node = vector<MonoidType>(2*n-1, E0);\n if(v != vector<MonoidType>()) {\n for(int i=0; i<m; i++) {\n node[n-1+i] = v[i];\n }\n for(int i=n-2; i>=0; i--) {\n node[i] = cmb_f(node[2*i+1], node[2*i+2]);\n }\n }\n }\n\n // initialize\n SegmentTree() {}\n SegmentTree(int n_, MonoidType E0_,\n Function upd_f_, Function cmb_f_,\n vector<MonoidType> v = vector<MonoidType>()) :\n E0(E0_), upd_f(upd_f_), cmb_f(cmb_f_) {\n build(n_, v);\n }\n\n // update k-th element (applied value: x)\n void update(int k, MonoidType x) {\n k += n - 1;\n node[k] = upd_f(node[k], x);\n while(k > 0) {\n k = (k - 1) / 2;\n node[k] = cmb_f(node[2*k+1], node[2*k+2]);\n }\n }\n\n // range query for [a, b)\n // 非再帰のアイデア: http://d.hatena.ne.jp/komiyam/20131202/1385992406\n MonoidType query(int a, int b) {\n MonoidType vl = E0, vr = E0;\n for(int l=a+n, r=b+n; l<r; l>>=1, r>>=1) {\n if(l & 1) vl = cmb_f(vl, node[(l++)-1]);\n if(r & 1) vr = cmb_f(node[(--r)-1], vr);\n }\n return cmb_f(vl, vr);\n }\n};\n\nusing Rect = tuple<int, int, int, int, int>;\n\nint main() {\n int N, M; scanf(\"%d%d\", &N, &M);\n vector<Rect> A(N), B(M);\n for(int i=0; i<N; i++) {\n int a, b, c, d; cin >> a >> b >> c >> d;\n A[i] = make_tuple(a, b, c, d, i);\n }\n for(int i=0; i<M; i++) {\n int a, b, c, d; cin >> a >> b >> c >> d;\n B[i] = make_tuple(a, b, c, d, i);\n }\n\n SegmentTree<int> seg(100010, -INF,\n [](int a, int b) { return b; },\n [](int a, int b) { return max(a, b); });\n \n vector< multiset<int> > cnt(100010);\n vector<int> ans(M);\n auto solve = [&](auto&& f, int L, int R,\n const vector<Rect> &AR, const vector<Rect>&BR) -> void {\n int mid = (L + R) / 2;\n vector<Rect> NLA, NLB, NRA, NRB;\n for(auto e : AR) {\n int a, b, c, d, k; tie(a, b, c, d, k) = e;\n if(L <= a and a < mid) NLA.emplace_back(e);\n if(mid <= a and a < R) NRA.emplace_back(e);\n }\n for(auto e : BR) {\n int a, b, c, d, k; tie(a, b, c, d, k) = e;\n if(L <= a and a < mid) NLB.emplace_back(e);\n if(mid <= a and a < R) NRB.emplace_back(e);\n }\n\n // priority: del, query, add\n vector< tuple<int, int, int> > queries;\n for(auto e : NLB) {\n int a, b, c, d, k; tie(a, b, c, d, k) = e;\n queries.emplace_back(b, 1, k);\n }\n for(auto e : NRA) {\n int a, b, c, d, k; tie(a, b, c, d, k) = e;\n queries.emplace_back(a, 2, k);\n queries.emplace_back(b, 0, k);\n }\n\n sort(queries.begin(), queries.end());\n for(auto q : queries) {\n int v, t, k; tie(v, t, k) = q;\n if(t == 0) {\n int a, b, c, d; tie(a, b, c, d, std::ignore) = A[k];\n cnt[c].erase(cnt[c].find(d));\n int val = (cnt[c].size() ? *(--cnt[c].end()) : -INF);\n seg.update(c, val);\n }\n if(t == 1) {\n int a, b, c, d; tie(a, b, c, d, std::ignore) = B[k];\n ans[k] |= (seg.query(c, d+1) > d);\n }\n if(t == 2) {\n int a, b, c, d; tie(a, b, c, d, std::ignore) = A[k];\n cnt[c].emplace(d);\n int val = *(--cnt[c].end());\n seg.update(c, val);\n }\n }\n\n if(R - L > 1) {\n f(f, L, mid, NLA, NLB);\n f(f, mid, R, NRA, NRB);\n }\n };\n\n solve(solve, 0, 100010, A, B);\n for(int i=0; i<M; i++) printf(\"%s\\n\", ans[i] ? \"Yes\" : \"No\");\n return 0;\n}", "accuracy": 0.2, "time_ms": 530, "memory_kb": 46044, "score_of_the_acc": -0.5358, "final_rank": 17 }, { "submission_id": "aoj_3121_4073855", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll=long long;\n//#define int ll\n\n#define rng(i,a,b) for(int i=int(a);i<int(b);i++)\n#define rep(i,b) rng(i,0,b)\n#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)\n#define per(i,b) gnr(i,0,b)\n#define pb push_back\n#define eb emplace_back\n#define a first\n#define b second\n#define bg begin()\n#define ed end()\n#define all(x) x.bg,x.ed\n#ifdef LOCAL\n#define dmp(x) cerr<<__LINE__<<\" \"<<#x<<\" \"<<x<<endl\n#else\n#define dmp(x) void(0)\n#endif\n\ntemplate<class t,class u> void chmax(t&a,u b){if(a<b)a=b;}\ntemplate<class t,class u> void chmin(t&a,u b){if(b<a)a=b;}\n\ntemplate<class t> using vc=vector<t>;\ntemplate<class t> using vvc=vc<vc<t>>;\n\nusing pi=pair<int,int>;\nusing vi=vc<int>;\n\ntemplate<class t,class u>\nostream& operator<<(ostream& os,const pair<t,u>& p){\n\treturn os<<\"{\"<<p.a<<\",\"<<p.b<<\"}\";\n}\n\ntemplate<class t> ostream& operator<<(ostream& os,const vc<t>& v){\n\tos<<\"{\";\n\tfor(auto e:v)os<<e<<\",\";\n\treturn os<<\"}\";\n}\n\n#define mp make_pair\n#define mt make_tuple\n#define one(x) memset(x,-1,sizeof(x))\n#define zero(x) memset(x,0,sizeof(x))\n#ifdef LOCAL\nvoid dmpr(ostream&os){os<<endl;}\ntemplate<class T,class... Args>\nvoid dmpr(ostream&os,const T&t,const Args&... args){\n\tos<<t<<\" \";\n\tdmpr(os,args...);\n}\n#define dmp2(...) dmpr(cerr,\"Line:\",__LINE__,##__VA_ARGS__)\n#else\n#define dmp2(...) void(0)\n#endif\n\nusing uint=unsigned;\nusing ull=unsigned long long;\n\ntemplate<class t,size_t n>\nostream& operator<<(ostream&os,const array<t,n>&a){\n\treturn os<<vc<t>(all(a));\n}\n\ntemplate<int i,class T>\nvoid print_tuple(ostream&,const T&){\n}\n\ntemplate<int i,class T,class H,class ...Args>\nvoid print_tuple(ostream&os,const T&t){\n\tif(i)os<<\",\";\n\tos<<get<i>(t);\n\tprint_tuple<i+1,T,Args...>(os,t);\n}\n\ntemplate<class ...Args>\nostream& operator<<(ostream&os,const tuple<Args...>&t){\n\tos<<\"{\";\n\tprint_tuple<0,tuple<Args...>,Args...>(os,t);\n\treturn os<<\"}\";\n}\n\nvoid print(ll x,int suc=1){\n\tcout<<x;\n\tif(suc==1)\n\t\tcout<<\"\\n\";\n\tif(suc==2)\n\t\tcout<<\" \";\n}\n\nll read(){\n\tll i;\n\tcin>>i;\n\treturn i;\n}\n\nvi readvi(int n,int off=0){\n\tvi v(n);\n\trep(i,n)v[i]=read()+off;\n\treturn v;\n}\n\ntemplate<class T>\nvoid print(const vector<T>&v,int suc=1){\n\trep(i,v.size())\n\t\tprint(v[i],i==int(v.size())-1?suc:2);\n}\n\nstring readString(){\n\tstring s;\n\tcin>>s;\n\treturn s;\n}\n\ntemplate<class T>\nT sq(const T& t){\n\treturn t*t;\n}\n\n//#define CAPITAL\nvoid yes(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"YES\"<<endl;\n\t#else\n\tcout<<\"Yes\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n}\nvoid no(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"NO\"<<endl;\n\t#else\n\tcout<<\"No\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n}\nvoid possible(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"POSSIBLE\"<<endl;\n\t#else\n\tcout<<\"Possible\"<<endl;\n\t#endif\n\tif(ex)exit(0);\n}\nvoid impossible(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"IMPOSSIBLE\"<<endl;\n\t#else\n\tcout<<\"Impossible\"<<endl;\n\t#endif\n\tif(ex)exit(0);\n}\n\nconstexpr ll ten(int n){\n\treturn n==0?1:ten(n-1)*10;\n}\n\nconst ll infLL=LLONG_MAX/3;\n\n#ifdef int\nconst int inf=infLL;\n#else\nconst int inf=INT_MAX/2-100;\n#endif\n\nint topbit(signed t){\n\treturn t==0?-1:31-__builtin_clz(t);\n}\nint topbit(ll t){\n\treturn t==0?-1:63-__builtin_clzll(t);\n}\nint botbit(signed a){\n\treturn a==0?32:__builtin_ctz(a);\n}\nint botbit(ll a){\n\treturn a==0?64:__builtin_ctzll(a);\n}\nint popcount(signed t){\n\treturn __builtin_popcount(t);\n}\nint popcount(ll t){\n\treturn __builtin_popcountll(t);\n}\nbool ispow2(int i){\n\treturn i&&(i&-i)==i;\n}\nint mask(int i){\n\treturn (int(1)<<i)-1;\n}\n\nbool inc(int a,int b,int c){\n\treturn a<=b&&b<=c;\n}\n\ntemplate<class t> void mkuni(vc<t>&v){\n\tsort(all(v));\n\tv.erase(unique(all(v)),v.ed);\n}\n\nll rand_int(ll l, ll r) { //[l, r]\n\t#ifdef LOCAL\n\tstatic mt19937_64 gen;\n\t#else\n static random_device rd;\n static mt19937_64 gen(rd());\n #endif\n return uniform_int_distribution<ll>(l, r)(gen);\n}\n\ntemplate<class t>\nint lwb(const vc<t>&v,const t&a){\n\treturn lower_bound(all(v),a)-v.bg;\n}\n\n//CF Global3 H\n//ARC073 F\n//point update\ntemplate<class T,class F>\nstruct SegTree{\n\tvc<T> buf;\n\tint s;\n\tconst F f;\n\tconst T g;\n\tSegTree(F ff,T gg):f(ff),g(gg){}\n\tvoid init(const vc<T>& d){\n\t\tint n=d.size();\n\t\ts=1;\n\t\twhile(s<n)s*=2;\n\t\tbuf.resize(s*2,g);\n\t\trep(i,n)\n\t\t\tbuf[i+s]=d[i];\n\t\tgnr(i,1,s)\n\t\t\tu(i);\n\t}\n\tSegTree(const vc<T>& d,F ff,T gg):f(ff),g(gg){\n\t\tinit(d);\n\t}\n\tvoid u(int i){\n\t\tbuf[i]=f(buf[i*2],buf[i*2+1]);\n\t}\n\tvoid set(int i,T t){\n\t\ti+=s;\n\t\tbuf[i]=t;\n\t\twhile(i>>=1)u(i);\n\t}\n\tvoid upd(int i,T t){\n\t\ti+=s;\n\t\tbuf[i]=f(buf[i],t);\n\t\twhile(i>>=1)u(i);\n\t}\n\tT get(int b,int e,int l,int r,int i){\n\t\tif(e<=l||r<=b)return g;\n\t\tif(b<=l&&r<=e)return buf[i];\n\t\tint m=(l+r)/2;\n\t\treturn f(get(b,e,l,m,i*2),get(b,e,m,r,i*2+1));\n\t}\n\tT get(int b,int e){\n\t\treturn get(b,e,0,s,1);\n\t}\n};\n\ntemplate<class t,class F>\nstruct Point1D{\n\tSegTree<t,F> seg;\n\tvi pos;\n\tconst t g;\n\tPoint1D(F ff,t gg):seg(ff,gg),g(gg){}\n\tvoid addp(int p){\n\t\tpos.pb(p);\n\t}\n\tvoid init(){\n\t\tmkuni(pos);\n\t\tseg.init(vc<t>(pos.size(),g));\n\t}\n\tint idx(int p){\n\t\treturn lwb(pos,p);\n\t}\n\t//void addv(int p,t v){\n\tvoid updv(int p,t v){\n\t\tseg.upd(idx(p),v);\n\t}\n\tt get(int b,int e){\n\t\treturn seg.get(idx(b),idx(e));\n\t}\n};\n\ntemplate<class t,class F>\nstruct Point2D{\n\tvc<Point1D<t,F>> buf;\n\tvi pos,xs,ys;\n\tconst F f;\n\tconst t g;\n\tint s;\n\tPoint2D(F ff,t gg):f(ff),g(gg){}\n\tvoid addp(int x,int y){\n\t\txs.pb(x);\n\t\tys.pb(y);\n\t}\n\tint idx(int p){\n\t\treturn lwb(pos,p);\n\t}\n\tvoid init(){\n\t\tpos=xs;\n\t\tmkuni(pos);\n\t\ts=1;\n\t\twhile(s<(int)pos.size())s*=2;\n\t\t//buf.resize(s*2,Point1D<t,F>(f,g));\n\t\trep(i,s*2)buf.emplace_back(f,g);\n\t\trep(i,xs.size()){\n\t\t\tint j=lwb(pos,xs[i])+s;\n\t\t\twhile(j>=1){\n\t\t\t\tbuf[j].addp(ys[i]);\n\t\t\t\tj>>=1;\n\t\t\t}\n\t\t}\n\t\tfor(auto&b:buf)b.init();\n\t}\n\tvoid updv(int x,int y,t v){\n\t\tint j=idx(x)+s;\n\t\twhile(j>=1){\n\t\t\tbuf[j].updv(y,v);\n\t\t\tj>>=1;\n\t\t}\n\t}\n\tt get(int b,int e,int p,int q,int l,int r,int i){\n\t\tif(e<=l||r<=b)return g;\n\t\tif(b<=l&&r<=e)return buf[i].get(p,q);\n\t\tint m=(l+r)/2;\n\t\treturn f(get(b,e,p,q,l,m,i*2),get(b,e,p,q,m,r,i*2+1));\n\t}\n\t//[x1,x2)*[y1,y2)\n\tt get(int x1,int x2,int y1,int y2){\n\t\treturn get(idx(x1),idx(x2),y1,y2,0,s,1);\n\t}\n};\n\nstruct rect{\n\tint a,b,c,d;\n\tvoid init(){\n\t\tcin>>a>>b>>c>>d;\n\t}\n};\n\nstruct query{\n\tint y,t,i;\n\tbool operator<(const query&q)const{\n\t\tif(y!=q.y)return y>q.y;\n\t\treturn t<q.t;\n\t}\n};\n\nsigned main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(0);\n\tcout<<fixed<<setprecision(20);\n\t\n\tint n,q;cin>>n>>q;\n\t\n\tvc<rect> x(n),y(q);\n\tauto imax=[&](int a,int b){\n\t\treturn max(a,b);\n\t};\n\tvc<query> qs;\n\tPoint2D<int,decltype(imax)> p2(imax,-inf);\n\trep(i,n){\n\t\tx[i].init();\n\t\tp2.addp(x[i].a,x[i].c);\n\t\tqs.pb({x[i].d,1,i});\n\t}\n\trep(i,q){\n\t\ty[i].init();\n\t\tqs.pb({y[i].d,0,i});\n\t}\n\tp2.init();\n\tvi ans(q);\n\tsort(all(qs));\n\tfor(auto z:qs){\n\t\tint i=z.i;\n\t\tif(z.t==0){\n\t\t\tint mx=p2.get(y[i].a+1,y[i].b,y[i].c+1,y[i].d);\n\t\t\tdmp(mx);\n\t\t\tans[i]=y[i].b<mx;\n\t\t}else{\n\t\t\tp2.updv(x[i].a,x[i].c,x[i].b);\n\t\t}\n\t}\n\trep(i,q)\n\t\tif(ans[i])\n\t\t\tyes(0);\n\t\telse\n\t\t\tno(0);\n}", "accuracy": 1, "time_ms": 570, "memory_kb": 29472, "score_of_the_acc": -0.4992, "final_rank": 4 }, { "submission_id": "aoj_3121_4073646", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n//INSERT ABOVE HERE\nsigned main(){\n int n,q;\n cin>>n>>q;\n struct Point{\n int a,b,c,d;\n Point(int a,int b,int c,int d):\n a(a),b(b),c(c),d(d){}\n };\n\n auto cmpX=[&](Point p,Point q){return p.a<q.a;};\n auto cmpY=[&](Point p,Point q){return p.c<q.c;};\n\n const int BS1 = 512;\n const int BS2 = 32;\n assert(BS1 % BS2 == 0);\n\n vector<Point> ps;\n for(int i=0;i<n;i++){\n int a,b,c,d;\n cin>>a>>b>>c>>d;\n ps.emplace_back(a,b,c,d);\n }\n\n while(ps.size()%BS1)\n ps.emplace_back(0,0,0,0);\n\n n=ps.size();\n sort(ps.begin(),ps.end(),cmpX);\n\n using P = pair<int, int>;\n vector< vector<P> > qs(n/BS2);\n\n vector<int> ma(n,1e6),Ma(n,0);\n vector<int> mc(n,1e6),Mc(n,0);\n for(int i=0;i<n;i+=BS1){\n\n for(int j=0;j<BS1;j++){\n chmin(ma[i],ps[i+j].a);\n chmax(Ma[i],ps[i+j].a);\n }\n\n sort(ps.begin()+i,ps.begin()+i+BS1,cmpY);\n for(int j=0;j<BS1;j+=BS2){\n auto &vp=qs[(i+j)/BS2];\n for(int k=0;k<BS2;k++){\n int z=i+j+k;\n vp.emplace_back(ps[z].b,ps[z].d);\n chmin(mc[i],ps[z].c);\n chmax(Mc[i],ps[z].c);\n }\n\n vp.emplace_back(-1,1e6);\n vp.emplace_back(1e6,-1);\n sort(vp.begin(),vp.end());\n vector<P> vq;\n for(auto p:vp)\n if(vq.empty()||vq.back().second>p.second)\n vq.emplace_back(p);\n vp=vq;\n }\n }\n\n\n for(int t=0;t<q;t++){\n int x,y,z,w;\n cin>>x>>y>>z>>w;\n\n auto check=\n [&](int k){\n return x<ps[k].a && ps[k].a<y && y<ps[k].b && z<ps[k].c && ps[k].c<w && w<ps[k].d;\n };\n\n int flg=0;\n for(int i=0;i<n;i+=BS1){\n if(flg) break;\n if(Ma[i]<=x) continue;\n if(y<=ma[i]) continue;\n\n if(x<ma[i]&&Ma[i]<y){\n for(int j=0;j<BS1;j+=BS2){\n if(Mc[i]<=z) continue;\n if(w<=mc[i]) continue;\n if(z<mc[i]&&Mc[i]<w){\n auto &vp=qs[(i+j)/BS2];\n flg|=w<lower_bound(vp.begin(),vp.end(),P(y,1e6))->second;\n continue;\n }\n for(int k=0;k<BS2;k++) flg|=check(i+j+k);\n }\n continue;\n }\n for(int j=0;j<BS1;j++) flg|=check(i+j);\n }\n\n const int DEBUG = 0;\n if(DEBUG){\n int flg2=0;\n for(int i=0;i<n;i++) flg2|=check(i);\n if(flg!=flg2) cerr<<flg<<\" \"<<flg2<<endl;\n assert(flg == flg2);\n }\n cout<<(flg?\"Yes\":\"No\")<<\"\\n\";\n }\n cout<<flush;\n return 0;\n}", "accuracy": 1, "time_ms": 1090, "memory_kb": 7496, "score_of_the_acc": -1, "final_rank": 6 }, { "submission_id": "aoj_3121_4073607", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n\n\nstruct FastIO{\n FastIO(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n }\n}fastio_beet;\n\n//INSERT ABOVE HERE\nsigned main(){\n int n,q;\n cin>>n>>q;\n struct Point{\n int a,b,c,d;\n Point(int a,int b,int c,int d):\n a(a),b(b),c(c),d(d){}\n };\n\n auto cmpX=[&](Point p,Point q){return p.a<q.a;};\n auto cmpY=[&](Point p,Point q){return p.c<q.c;};\n\n const int BS1 = 256;\n const int BS2 = 16;\n assert(BS1 % BS2 == 0);\n\n vector<Point> ps;\n for(int i=0;i<n;i++){\n int a,b,c,d;\n cin>>a>>b>>c>>d;\n ps.emplace_back(a,b,c,d);\n }\n\n while(ps.size()%BS1)\n ps.emplace_back(0,0,0,0);\n\n n=ps.size();\n sort(ps.begin(),ps.end(),cmpX);\n\n using P = pair<int, int>;\n vector< vector<P> > qs(n/BS2);\n\n vector<int> ma(n,1e6),Ma(n,0);\n vector<int> mc(n,1e6),Mc(n,0);\n for(int i=0;i<n;i+=BS1){\n\n for(int j=0;j<BS1;j++){\n chmin(ma[i],ps[i+j].a);\n chmax(Ma[i],ps[i+j].a);\n }\n\n sort(ps.begin()+i,ps.begin()+i+BS1,cmpY);\n for(int j=0;j<BS1;j+=BS2){\n auto &vp=qs[(i+j)/BS2];\n for(int k=0;k<BS2;k++){\n int z=i+j+k;\n vp.emplace_back(ps[z].b,ps[z].d);\n chmin(mc[i],ps[z].c);\n chmax(Mc[i],ps[z].c);\n }\n\n vp.emplace_back(-1,1e6);\n vp.emplace_back(1e6,-1);\n sort(vp.begin(),vp.end());\n vector<P> vq;\n for(auto p:vp)\n if(vq.empty()||vq.back().second>p.second)\n vq.emplace_back(p);\n vp=vq;\n }\n }\n\n\n for(int t=0;t<q;t++){\n int x,y,z,w;\n cin>>x>>y>>z>>w;\n\n auto check=\n [&](int k){\n return x<ps[k].a && ps[k].a<y && y<ps[k].b && z<ps[k].c && ps[k].c<w && w<ps[k].d;\n };\n\n int flg=0;\n for(int i=0;i<n;i+=BS1){\n if(flg) break;\n if(Ma[i]<=x) continue;\n if(y<=ma[i]) continue;\n\n if(x<ma[i]&&Ma[i]<y){\n for(int j=0;j<BS1;j+=BS2){\n if(Mc[i]<=w) continue;\n if(z<=mc[i]) continue;\n if(x<ma[i]&&Ma[i]<y){\n auto &vp=qs[(i+j)/BS2];\n flg|=w<lower_bound(vp.begin(),vp.end(),P(y,1e6))->second;\n continue;\n }\n for(int k=0;k<BS2;k++) flg|=check(i+j+k);\n }\n continue;\n }\n for(int j=0;j<BS1;j++) flg|=check(i+j);\n }\n cout<<(flg?\"Yes\":\"No\")<<\"\\n\";\n }\n cout<<flush;\n return 0;\n}", "accuracy": 0.2, "time_ms": 240, "memory_kb": 7852, "score_of_the_acc": -0.0018, "final_rank": 10 }, { "submission_id": "aoj_3121_4073509", "code_snippet": "#include <iostream>\nusing namespace std;\n#pragma warning (disable: 4996)\n\nconst int MAX_N = 3000000;\nconst int MAX_Z = 17;\n\nstruct Coordinate {\n\tint k1, k2, k3, k4;\n};\n\nclass SegmentTree {\npublic:\n\tint sz = 1;\n\tint val[MAX_N];\n\tint chil[MAX_N][16];\n\n\tvoid init() {\n\t\tfor (int i = 0; i < MAX_N; i++) {\n\t\t\tval[i] = 0;\n\t\t\tfor (int j = 0; j < 16; j++) chil[i][j] = -1;\n\t\t}\n\t}\n\n\tvoid build(Coordinate t) {\n\t\tCoordinate cl = { 0, 0, 0, 0 };\n\t\tCoordinate cr = { (1 << MAX_Z), (1 << MAX_Z), (1 << MAX_Z), (1 << MAX_Z) };\n\n\t\tint cx = 0;\n\t\tfor (int i = MAX_Z - 1; i >= 0; i--) {\n\t\t\tval[cx]++;\n\n\t\t\tCoordinate cm;\n\t\t\tcm.k1 = (cl.k1 + cr.k1) / 2;\n\t\t\tcm.k2 = (cl.k2 + cr.k2) / 2;\n\t\t\tcm.k3 = (cl.k3 + cr.k3) / 2;\n\t\t\tcm.k4 = (cl.k4 + cr.k4) / 2;\n\n\t\t\tint v = 0;\n\t\t\tif (t.k1 >= cm.k1) { v += 1; cl.k1 = cm.k1; } else cr.k1 = cm.k1;\n\t\t\tif (t.k2 >= cm.k2) { v += 2; cl.k2 = cm.k2; } else cr.k2 = cm.k2;\n\t\t\tif (t.k3 >= cm.k3) { v += 4; cl.k3 = cm.k3; } else cr.k3 = cm.k3;\n\t\t\tif (t.k4 >= cm.k4) { v += 8; cl.k4 = cm.k4; } else cr.k4 = cm.k4;\n\n\t\t\tif (chil[cx][v] == -1) { chil[cx][v] = sz; sz++; }\n\t\t\tcx = chil[cx][v];\n\t\t}\n\t\tval[cx]++;\n\t}\n\n\tint getans_(Coordinate l, Coordinate r, Coordinate a, Coordinate b, int u) {\n\t\tif (r.k1 < a.k1 || b.k1 < l.k1) return 0;\n\t\tif (r.k2 < a.k2 || b.k2 < l.k2) return 0;\n\t\tif (r.k3 < a.k3 || b.k3 < l.k3) return 0;\n\t\tif (r.k4 < a.k4 || b.k4 < l.k4) return 0;\n\n\t\tint cntv = 0;\n\t\tif (l.k1 <= a.k1 && b.k1 <= r.k1) cntv++;\n\t\tif (l.k2 <= a.k2 && b.k2 <= r.k2) cntv++;\n\t\tif (l.k3 <= a.k3 && b.k3 <= r.k3) cntv++;\n\t\tif (l.k4 <= a.k4 && b.k4 <= r.k4) cntv++;\n\t\tif (cntv == 4) return 1;\n\n\t\tfor (int t = 0; t < 16; t++) {\n\t\t\tif (chil[u][t] == -1) continue;\n\n\t\t\tCoordinate ca, cb;\n\t\t\tif ((t / 1) % 2 == 0) { ca.k1 = a.k1; cb.k1 = ((a.k1 + b.k1) >> 1); }\n\t\t\telse { ca.k1 = ((a.k1 + b.k1) >> 1); cb.k1 = b.k1; }\n\t\t\tif ((t / 2) % 2 == 0) { ca.k2 = a.k2; cb.k2 = ((a.k2 + b.k2) >> 1); }\n\t\t\telse { ca.k2 = ((a.k2 + b.k2) >> 1); cb.k2 = b.k2; }\n\t\t\tif ((t / 4) % 2 == 0) { ca.k3 = a.k3; cb.k3 = ((a.k3 + b.k3) >> 1); }\n\t\t\telse { ca.k3 = ((a.k3 + b.k3) >> 1); cb.k3 = b.k3; }\n\t\t\tif ((t / 8) % 2 == 0) { ca.k4 = a.k4; cb.k4 = ((a.k4 + b.k4) >> 1); }\n\t\t\telse { ca.k4 = ((a.k4 + b.k4) >> 1); cb.k4 = b.k4; }\n\n\t\t\tint D = getans_(l, r, ca, cb, chil[u][t]);\n\t\t\tif (D == 1) return 1;\n\t\t}\n\t\treturn 0;\n\t}\n\tint getans(Coordinate l, Coordinate r) {\n\t\treturn getans_(l, r, Coordinate{ 0, 0, 0, 0 }, Coordinate{ (1 << MAX_Z), (1 << MAX_Z), (1 << MAX_Z), (1 << MAX_Z) }, 0);\n\t}\n};\n\nint N, A[1 << 18], B[1 << 18], C[1 << 18], D[1 << 18];\nint Q, X[1 << 18], Y[1 << 18], Z[1 << 18], W[1 << 18];\nSegmentTree V;\n\nint main() {\n\tscanf(\"%d%d\", &N, &Q);\n\tfor (int i = 1; i <= N; i++) scanf(\"%d%d%d%d\", &A[i], &B[i], &C[i], &D[i]);\n\tfor (int i = 1; i <= Q; i++) scanf(\"%d%d%d%d\", &X[i], &Y[i], &Z[i], &W[i]);\n\n\tV.init();\n\tfor (int i = 1; i <= N; i++) {\n\t\tCoordinate Z1;\n\t\tZ1.k1 = A[i]; Z1.k2 = B[i];\n\t\tZ1.k3 = C[i]; Z1.k4 = D[i];\n\t\tV.build(Z1);\n\t}\n\tfor (int i = 1; i <= Q; i++) {\n\t\tCoordinate Z1, Z2;\n\t\tZ1.k1 = X[i] + 1; Z1.k2 = Y[i] + 1; Z1.k3 = Z[i] + 1; Z1.k4 = W[i] + 1;\n\t\tZ2.k1 = Y[i]; Z2.k2 = (1 << MAX_Z); Z2.k3 = W[i]; Z2.k4 = (1 << MAX_Z);\n\n\t\tint E = V.getans(Z1, Z2);\n\t\tif (E == 1) printf(\"Yes\\n\");\n\t\telse printf(\"No\\n\");\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 205528, "score_of_the_acc": -1.1294, "final_rank": 8 }, { "submission_id": "aoj_3121_4068833", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\ntemplate<class T>\nclass Segtree{\n\tint n;\n\tvector<T>dat;\n\tT INIT;\n\tT E;\n\tfunction<T(T,T)>F;\npublic:\n\tSegtree(int n_,T INIT,T E,function<T(T,T)>F):INIT(INIT),E(E),F(F){\n\t\tn=1;while(n<n_)n<<=1;\n\t\tdat=vector<T>(2*n,INIT);\n\t}\n\tvoid set(int k,T x){\n\t\tk+=n;\n\t\tdat[k]=x;\n\t\twhile(k>1){\n\t\t\tk>>=1;\n\t\t\tdat[k]=F(dat[k<<1],dat[(k<<1)+1]);\n\t\t}\n\t}\n\tT query(int l,int r){\n\t\tT resl=E,resr=E;\n\t\tfor(l+=n,r+=n;l<r;l>>=1,r>>=1){\n\t\t\tif(l&1)resl=F(resl,dat[l++]);\n\t\t\tif(r&1)resr=F(dat[--r],resr);\n\t\t}\n\t\treturn F(resl,resr);\n\t}\n};\n\nstruct st{\n\tint ty;//0->tuple 1->query\n\tint a,b,c,d;\n\tint id;\n};\n\nvector<st>vs;\n\nint ans[200000];\n\nvoid solve(int l,int r){//[l,r)\n\tif(r-l<=1)return;\n\tint md=(l+r)/2;\n\tsolve(l,md);\n\tsolve(md,r);\n\tvector<st>qs;\n\tvector<int>s,e;\n\tfor(int i=l;i<md;i++){\n\t\tif(vs[i].ty==1)qs.push_back(vs[i]);\n\t}\n\tmap<int,int>mp;\n\tvector<int>cs;\n\tfor(int i=md;i<r;i++){\n\t\tif(vs[i].ty==0){\n\t\t\ts.push_back(i);\n\t\t\te.push_back(i);\n\t\t\tcs.push_back(vs[i].c);\n\t\t\tvs[i].id=mp[vs[i].c];\n\t\t\tmp[vs[i].c]++;\n\t\t}\n\t}\n\tif(s.empty())return;\n\tsort(qs.begin(),qs.end(),[](st&a,st&b){return a.b<b.b;});\n\tsort(e.begin(),e.end(),[&](int a,int b){return vs[a].b<vs[b].b;});\n\tsort(cs.begin(),cs.end());\n\tSegtree<int>seg(cs.size(),0,0,[](int a,int b){return max(a,b);});\n\tint c1=0,c2=0;\n\tfor(auto&p:qs){\n\t\tif(ans[p.id])continue;\n\t\twhile(c1<s.size()&&vs[s[c1]].a<p.b){\n\t\t\tint k=s[c1];\n\t\t\tint idx=lower_bound(cs.begin(),cs.end(),vs[k].c)-cs.begin()+vs[k].id;\n\t\t\tseg.set(idx,vs[k].d);\n\t\t\tc1++;\n\t\t}\n\t\twhile(c2<e.size()&&vs[e[c2]].b<=p.b){\n\t\t\tint k=e[c2];\n\t\t\tint idx=lower_bound(cs.begin(),cs.end(),vs[k].c)-cs.begin()+vs[k].id;\n\t\t\tseg.set(idx,0);\n\t\t\tc2++;\n\t\t}\n\t\tint L=upper_bound(cs.begin(),cs.end(),p.c)-cs.begin();\n\t\tint R=lower_bound(cs.begin(),cs.end(),p.d)-cs.begin();\n\t\tif(p.d<seg.query(L,R))ans[p.id]=1;\n\t}\n}\n\nint main(){\n\tint n,q;cin>>n>>q;\n\tassert(1<=n&&n<=100000);\n\tassert(1<=q&&q<=100000);\n\trep(i,n){\n\t\tst s;scanf(\"%d%d%d%d\",&s.a,&s.b,&s.c,&s.d);\n\t\tassert(1<=s.a&&s.a<s.b&&s.b<=100000);\n\t\tassert(1<=s.c&&s.c<s.d&&s.d<=100000);\n\t\ts.ty=0;\n\t\tvs.push_back(s);\n\t}\n\trep(i,q){\n\t\tst s;scanf(\"%d%d%d%d\",&s.a,&s.b,&s.c,&s.d);\n\t\tassert(1<=s.a&&s.a<s.b&&s.b<=100000);\n\t\tassert(1<=s.c&&s.c<s.d&&s.d<=100000);\n\t\ts.ty=1;\n\t\ts.id=i;\n\t\tvs.push_back(s);\n\t}\n\tsort(vs.begin(),vs.end(),[](st&a,st&b){\n\t\tif(a.a==b.a)return a.ty<b.ty;\n\t\treturn a.a<b.a;\n\t});\n\tsolve(0,vs.size());\n\trep(i,q){\n\t\tif(ans[i])puts(\"Yes\");\n\t\telse puts(\"No\");\n\t}\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 14140, "score_of_the_acc": -0.1983, "final_rank": 1 }, { "submission_id": "aoj_3121_4068810", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\ntemplate<class T>\nclass Segtree{\n\tint n;\n\tvector<T>dat;\n\tT INIT;\n\tT E;\n\tfunction<T(T,T)>F;\npublic:\n\tSegtree(int n_,T INIT,T E,function<T(T,T)>F):INIT(INIT),E(E),F(F){\n\t\tn=1;while(n<n_)n<<=1;\n\t\tdat=vector<T>(2*n,INIT);\n\t}\n\tvoid set(int k,T x){\n\t\tk+=n;\n\t\tdat[k]=x;\n\t\twhile(k>1){\n\t\t\tk>>=1;\n\t\t\tdat[k]=F(dat[k<<1],dat[(k<<1)+1]);\n\t\t}\n\t}\n\tT query(int l,int r){\n\t\tT resl=E,resr=E;\n\t\tfor(l+=n,r+=n;l<r;l>>=1,r>>=1){\n\t\t\tif(l&1)resl=F(resl,dat[l++]);\n\t\t\tif(r&1)resr=F(dat[--r],resr);\n\t\t}\n\t\treturn F(resl,resr);\n\t}\n};\n\nstruct st{\n\tint ty;//0->tuple 1->query\n\tint a,b,c,d;\n\tint id;\n};\n\nvector<st>vs;\n\nint ans[200000];\n\nvoid solve(int l,int r){//[l,r)\n\tif(r-l<=1)return;\n\tint md=(l+r)/2;\n\tsolve(l,md);\n\tsolve(md,r);\n\tvector<st>qs;\n\tvector<int>s,e;\n\tfor(int i=l;i<md;i++){\n\t\tif(vs[i].ty==1)qs.push_back(vs[i]);\n\t}\n\tmap<int,int>mp;\n\tvector<int>cs;\n\tfor(int i=md;i<r;i++){\n\t\tif(vs[i].ty==0){\n\t\t\ts.push_back(i);\n\t\t\te.push_back(i);\n\t\t\tcs.push_back(vs[i].c);\n\t\t\tvs[i].id=mp[vs[i].c];\n\t\t\tmp[vs[i].c]++;\n\t\t}\n\t}\n\tif(s.empty())return;\n\tsort(qs.begin(),qs.end(),[](st&a,st&b){return a.b<b.b;});\n\tsort(e.begin(),e.end(),[&](int a,int b){return vs[a].b<vs[b].b;});\n\tsort(cs.begin(),cs.end());\n\tSegtree<int>seg(cs.size(),0,0,[](int a,int b){return max(a,b);});\n\tint c1=0,c2=0;\n\tfor(auto&p:qs){\n\t\tif(ans[p.id])continue;\n\t\twhile(c1<s.size()&&vs[s[c1]].a<p.b){\n\t\t\tint k=s[c1];\n\t\t\tint idx=lower_bound(cs.begin(),cs.end(),vs[k].c)-cs.begin()+vs[k].id;\n\t\t\tseg.set(idx,vs[k].d);\n\t\t\tc1++;\n\t\t}\n\t\twhile(c2<e.size()&&vs[e[c2]].b<=p.b){\n\t\t\tint k=e[c2];\n\t\t\tint idx=lower_bound(cs.begin(),cs.end(),vs[k].c)-cs.begin()+vs[k].id;\n\t\t\tseg.set(idx,0);\n\t\t\tc2++;\n\t\t}\n\t\tint L=upper_bound(cs.begin(),cs.end(),p.c)-cs.begin();\n\t\tint R=lower_bound(cs.begin(),cs.end(),p.d)-cs.begin();\n\t\tif(p.d<seg.query(L,R))ans[p.id]=1;\n\t}\n}\n\nint main(){\n\tint n,q;cin>>n>>q;\n\trep(i,n){\n\t\tst s;scanf(\"%d%d%d%d\",&s.a,&s.b,&s.c,&s.d);\n\t\ts.ty=0;\n\t\tvs.push_back(s);\n\t}\n\trep(i,q){\n\t\tst s;scanf(\"%d%d%d%d\",&s.a,&s.b,&s.c,&s.d);\n\t\ts.ty=1;\n\t\ts.id=i;\n\t\tvs.push_back(s);\n\t}\n\tsort(vs.begin(),vs.end(),[](st&a,st&b){\n\t\tif(a.a==b.a)return a.ty<b.ty;\n\t\treturn a.a<b.a;\n\t});\n\tsolve(0,vs.size());\n\trep(i,q){\n\t\tif(ans[i])puts(\"Yes\");\n\t\telse puts(\"No\");\n\t}\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 14148, "score_of_the_acc": -0.1983, "final_rank": 2 }, { "submission_id": "aoj_3121_4068785", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\ntemplate<class T>\nclass Segtree{\n\tint n;\n\tvector<T>dat;\n\tT INIT;\n\tT E;\n\tfunction<T(T,T)>F;\npublic:\n\tSegtree(int n_,T INIT,T E,function<T(T,T)>F):INIT(INIT),E(E),F(F){\n\t\tn=1;while(n<n_)n<<=1;\n\t\tdat=vector<T>(2*n,INIT);\n\t}\n\tvoid set(int k,T x){\n\t\tk+=n;\n\t\tdat[k]=x;\n\t\twhile(k>1){\n\t\t\tk>>=1;\n\t\t\tdat[k]=F(dat[k<<1],dat[(k<<1)+1]);\n\t\t}\n\t}\n\tT query(int l,int r){\n\t\tT resl=E,resr=E;\n\t\tfor(l+=n,r+=n;l<r;l>>=1,r>>=1){\n\t\t\tif(l&1)resl=F(resl,dat[l++]);\n\t\t\tif(r&1)resr=F(dat[--r],resr);\n\t\t}\n\t\treturn F(resl,resr);\n\t}\n};\n\nstruct st{\n\tint ty;//0->tuple 1->query\n\tint a,b,c,d;\n\tint id;\n};\n\nvector<st>vs;\n\nint ans[200000];\n\nvoid solve(int l,int r){//[l,r)\n\tif(r-l<=1)return;\n\tint md=(l+r)/2;\n\tsolve(l,md);\n\tsolve(md,r);\n\tvector<st>qs;\n\tvector<int>s,e;\n\tfor(int i=l;i<md;i++){\n\t\tif(vs[i].ty==1)qs.push_back(vs[i]);\n\t}\n\tmap<int,int>mp;\n\tvector<int>cs;\n\tfor(int i=md;i<r;i++){\n\t\tif(vs[i].ty==0){\n\t\t\ts.push_back(i);\n\t\t\te.push_back(i);\n\t\t\tcs.push_back(vs[i].c);\n\t\t\tvs[i].id=mp[vs[i].c];\n\t\t\tmp[vs[i].c]++;\n\t\t}\n\t}\n\tif(s.empty())return;\n\tsort(qs.begin(),qs.end(),[](st&a,st&b){return a.b<b.b;});\n\tsort(e.begin(),e.end(),[&](int a,int b){return vs[a].b<vs[b].b;});\n\tsort(cs.begin(),cs.end());\n\tSegtree<int>seg(cs.size(),0,0,[](int a,int b){return max(a,b);});\n\tint c1=0,c2=0;\n\tfor(auto&p:qs){\n\t\tif(ans[p.id])continue;\n\t\twhile(c1<s.size()&&vs[s[c1]].a<p.b){\n\t\t\tint k=s[c1];\n\t\t\tint idx=lower_bound(cs.begin(),cs.end(),vs[k].c)-cs.begin()+vs[k].id;\n\t\t\tseg.set(idx,vs[k].d);\n\t\t\tc1++;\n\t\t}\n\t\twhile(c2<e.size()&&vs[e[c2]].b<=p.b){\n\t\t\tint k=e[c2];\n\t\t\tint idx=lower_bound(cs.begin(),cs.end(),vs[k].c)-cs.begin()+vs[k].id;\n\t\t\tseg.set(idx,0);\n\t\t\tc2++;\n\t\t}\n\t\tint L=upper_bound(cs.begin(),cs.end(),p.c)-cs.begin();\n\t\tint R=lower_bound(cs.begin(),cs.end(),p.d)-cs.begin();\n\t\tif(p.d<seg.query(L,R))ans[p.id]=1;\n\t}\n}\n\nint main(){\n\tint n,q;cin>>n>>q;\n\trep(i,n){\n\t\tst s;scanf(\"%d%d%d%d\",&s.a,&s.b,&s.c,&s.d);\n\t\tassert(s.a<s.b);\n\t\tassert(s.c<s.d);\n\t\ts.ty=0;\n\t\tvs.push_back(s);\n\t}\n\trep(i,q){\n\t\tst s;scanf(\"%d%d%d%d\",&s.a,&s.b,&s.c,&s.d);\n\t\tassert(s.a<s.b);\n\t\tassert(s.c<s.d);\n\t\ts.ty=1;\n\t\ts.id=i;\n\t\tvs.push_back(s);\n\t}\n\tsort(vs.begin(),vs.end(),[](st&a,st&b){\n\t\treturn a.a<b.a;\n\t});\n\tsolve(0,vs.size());\n\trep(i,q){\n\t\tif(ans[i])puts(\"Yes\");\n\t\telse puts(\"No\");\n\t}\n}", "accuracy": 0.2, "time_ms": 260, "memory_kb": 10520, "score_of_the_acc": -0.0388, "final_rank": 13 }, { "submission_id": "aoj_3121_4068649", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\ntemplate<class T>\nclass Segtree{\n\tint n;\n\tvector<T>dat;\n\tT INIT;\n\tT E;\n\tfunction<T(T,T)>F;\npublic:\n\tSegtree(int n_,T INIT,T E,function<T(T,T)>F):INIT(INIT),E(E),F(F){\n\t\tn=1;while(n<n_)n<<=1;\n\t\tdat=vector<T>(2*n,INIT);\n\t}\n\tvoid set(int k,T x){\n\t\tk+=n;\n\t\tdat[k]=x;\n\t\twhile(k>1){\n\t\t\tk>>=1;\n\t\t\tdat[k]=F(dat[k<<1],dat[(k<<1)+1]);\n\t\t}\n\t}\n\tvoid update(int k,T x){\n\t\tk+=n;\n\t\tdat[k]=F(dat[k],x);\n\t\twhile(k>1){\n\t\t\tk>>=1;\n\t\t\tdat[k]=F(dat[k<<1],dat[(k<<1)+1]);\n\t\t}\n\t}\n\tT query(int l,int r){\n\t\tT resl=E,resr=E;\n\t\tfor(l+=n,r+=n;l<r;l>>=1,r>>=1){\n\t\t\tif(l&1)resl=F(resl,dat[l++]);\n\t\t\tif(r&1)resr=F(dat[--r],resr);\n\t\t}\n\t\treturn F(resl,resr);\n\t}\n};\n\nstruct st{\n\tint ty;//0->tuple 1->query\n\tint a,b,c,d;\n\tint id;\n};\n\nvector<st>vs;\n\nint ans[200000];\n\nvoid solve(int l,int r){//[l,r)\n\tif(r-l<=1)return;\n\tint md=(l+r)/2;\n\tsolve(l,md);\n\tsolve(md,r);\n\tvector<st>qs;\n\tvector<int>s,e;\n\tfor(int i=l;i<md;i++){\n\t\tif(vs[i].ty==1)qs.push_back(vs[i]);\n\t}\n\tmap<int,int>mp;\n\tvector<int>cs;\n\tfor(int i=md;i<r;i++){\n\t\tif(vs[i].ty==0){\n\t\t\ts.push_back(i);\n\t\t\te.push_back(i);\n\t\t\tcs.push_back(vs[i].c);\n\t\t\tvs[i].id=mp[vs[i].c];\n\t\t\tmp[vs[i].c]++;\n\t\t}\n\t}\n\tif(s.empty())return;\n\tsort(qs.begin(),qs.end(),[](st&a,st&b){return a.b<b.b;});\n\tsort(e.begin(),e.end(),[&](int a,int b){return vs[a].b<vs[b].b;});\n\tsort(cs.begin(),cs.end());\n\tSegtree<int>seg(cs.size(),INT_MIN,INT_MIN,[](int a,int b){return max(a,b);});\n\tint c1=0,c2=0;\n\tfor(auto&p:qs){\n\t\tif(ans[p.id])continue;\n\t\twhile(c1<s.size()&&vs[s[c1]].a<p.b){\n\t\t\tint k=s[c1];\n\t\t\tint idx=lower_bound(cs.begin(),cs.end(),vs[k].c)-cs.begin()+vs[k].id;\n\t\t\tseg.set(idx,vs[k].d);\n\t\t\tc1++;\n\t\t}\n\t\twhile(c2<e.size()&&vs[e[c2]].b<=p.b){\n\t\t\tint k=e[c2];\n\t\t\tint idx=lower_bound(cs.begin(),cs.end(),vs[k].c)-cs.begin()+vs[k].id;\n\t\t\tseg.set(idx,INT_MIN);\n\t\t\tc2++;\n\t\t}\n\t\tint L=upper_bound(cs.begin(),cs.end(),p.c)-cs.begin();\n\t\tint R=lower_bound(cs.begin(),cs.end(),p.d)-cs.begin();\n\t\tif(p.d<seg.query(L,R))ans[p.id]=1;\n\t}\n}\n\nint main(){\n\tint n,q;cin>>n>>q;\n\trep(i,n){\n\t\tst s;scanf(\"%d%d%d%d\",&s.a,&s.b,&s.c,&s.d);\n\t\ts.ty=0;\n\t\tvs.push_back(s);\n\t}\n\trep(i,q){\n\t\tst s;scanf(\"%d%d%d%d\",&s.a,&s.b,&s.c,&s.d);\n\t\ts.ty=1;\n\t\ts.id=i;\n\t\tvs.push_back(s);\n\t}\n\tsort(vs.begin(),vs.end(),[](st&a,st&b){\n\t\treturn a.a<b.a;\n\t});\n\tsolve(0,vs.size());\n\trep(i,q){\n\t\tif(ans[i])puts(\"Yes\");\n\t\telse puts(\"No\");\n\t}\n}", "accuracy": 0.2, "time_ms": 270, "memory_kb": 10568, "score_of_the_acc": -0.0508, "final_rank": 14 }, { "submission_id": "aoj_3121_4068617", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\ntemplate<class T>\nclass Segtree{\n\tint n;\n\tvector<T>dat;\n\tT INIT;\n\tT E;\n\tfunction<T(T,T)>F;\npublic:\n\tSegtree(int n_,T INIT,T E,function<T(T,T)>F):INIT(INIT),E(E),F(F){\n\t\tn=1;while(n<n_)n<<=1;\n\t\tdat=vector<T>(2*n,INIT);\n\t}\n\tvoid set(int k,T x){\n\t\tk+=n;\n\t\tdat[k]=x;\n\t\twhile(k>1){\n\t\t\tk>>=1;\n\t\t\tdat[k]=F(dat[k<<1],dat[(k<<1)+1]);\n\t\t}\n\t}\n\tvoid update(int k,T x){\n\t\tk+=n;\n\t\tdat[k]=F(dat[k],x);\n\t\twhile(k>1){\n\t\t\tk>>=1;\n\t\t\tdat[k]=F(dat[k<<1],dat[(k<<1)+1]);\n\t\t}\n\t}\n\tT query(int l,int r){\n\t\tT resl=E,resr=E;\n\t\tfor(l+=n,r+=n;l<r;l>>=1,r>>=1){\n\t\t\tif(l&1)resl=F(resl,dat[l++]);\n\t\t\tif(r&1)resr=F(dat[--r],resr);\n\t\t}\n\t\treturn F(resl,resr);\n\t}\n};\n\nstruct st{\n\tint ty;//0->tuple 1->query\n\tint a,b,c,d;\n\tint id;\n};\n\nvector<st>vs;\n\nint ans[200000];\n\nvoid solve(int l,int r){//[l,r)\n\tif(r-l<=1)return;\n\tint md=(l+r)/2;\n\tsolve(l,md);\n\tsolve(md,r);\n\tvector<st>qs;\n\tvector<int>s,e;\n\tfor(int i=l;i<md;i++){\n\t\tif(vs[i].ty==1)qs.push_back(vs[i]);\n\t}\n\tmap<int,int>mp;\n\tvector<int>cs;\n\tfor(int i=md;i<r;i++){\n\t\tif(vs[i].ty==0){\n\t\t\ts.push_back(i);\n\t\t\te.push_back(i);\n\t\t\tcs.push_back(vs[i].c);\n\t\t\tvs[i].id=mp[vs[i].c]++;\n\t\t}\n\t}\n\tif(s.empty())return;\n\tsort(qs.begin(),qs.end(),[](st&a,st&b){return a.b<b.b;});\n\tsort(e.begin(),e.end(),[&](int a,int b){return vs[a].b<vs[b].b;});\n\tsort(cs.begin(),cs.end());\n\tSegtree<int>seg(cs.size(),INT_MIN,INT_MIN,[](int a,int b){return max(a,b);});\n\tint c1=0,c2=0;\n\tfor(auto&p:qs){\n\t\tif(ans[p.id])continue;\n\t\twhile(c1<s.size()&&vs[s[c1]].a<p.b){\n\t\t\tint k=s[c1];\n\t\t\tint idx=lower_bound(cs.begin(),cs.end(),vs[k].c)-cs.begin()+vs[k].id;\n\t\t\tseg.update(idx,vs[k].d);\n\t\t\tc1++;\n\t\t}\n\t\twhile(c2<e.size()&&vs[e[c2]].b<=p.b){\n\t\t\tint k=e[c2];\n\t\t\tint idx=lower_bound(cs.begin(),cs.end(),vs[k].c)-cs.begin()+vs[k].id;\n\t\t\tseg.update(idx,INT_MIN);\n\t\t\tc2++;\n\t\t}\n\t\tint L=upper_bound(cs.begin(),cs.end(),p.c)-cs.begin();\n\t\tint R=lower_bound(cs.begin(),cs.end(),p.d)-cs.begin();\n\t\tif(p.d<seg.query(L,R))ans[p.id]=1;\n\t}\n}\n\nint main(){\n\tint n,q;cin>>n>>q;\n\trep(i,n){\n\t\tst s;scanf(\"%d%d%d%d\",&s.a,&s.b,&s.c,&s.d);\n\t\ts.ty=0;\n\t\tvs.push_back(s);\n\t}\n\trep(i,q){\n\t\tst s;scanf(\"%d%d%d%d\",&s.a,&s.b,&s.c,&s.d);\n\t\ts.ty=1;\n\t\ts.id=i;\n\t\tvs.push_back(s);\n\t}\n\tsort(vs.begin(),vs.end(),[](st&a,st&b){\n\t\treturn a.a<b.a;\n\t});\n\tsolve(0,vs.size());\n\trep(i,q){\n\t\tif(ans[i])puts(\"Yes\");\n\t\telse puts(\"No\");\n\t}\n}", "accuracy": 0.2, "time_ms": 240, "memory_kb": 10524, "score_of_the_acc": -0.0153, "final_rank": 11 }, { "submission_id": "aoj_3121_4068610", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\ntemplate<class T>\nclass Segtree{\n\tint n;\n\tvector<T>dat;\n\tT INIT;\n\tT E;\n\tfunction<T(T,T)>F;\npublic:\n\tSegtree(int n_,T INIT,T E,function<T(T,T)>F):INIT(INIT),E(E),F(F){\n\t\tn=1;while(n<n_)n<<=1;\n\t\tdat=vector<T>(2*n,INIT);\n\t}\n\tvoid set(int k,T x){\n\t\tk+=n;\n\t\tdat[k]=x;\n\t\twhile(k>1){\n\t\t\tk>>=1;\n\t\t\tdat[k]=F(dat[k<<1],dat[(k<<1)+1]);\n\t\t}\n\t}\n\tvoid update(int k,T x){\n\t\tk+=n;\n\t\tdat[k]=F(dat[k],x);\n\t\twhile(k>1){\n\t\t\tk>>=1;\n\t\t\tdat[k]=F(dat[k<<1],dat[(k<<1)+1]);\n\t\t}\n\t}\n\tT query(int l,int r){\n\t\tT resl=E,resr=E;\n\t\tfor(l+=n,r+=n;l<r;l>>=1,r>>=1){\n\t\t\tif(l&1)resl=F(resl,dat[l++]);\n\t\t\tif(r&1)resr=F(dat[--r],resr);\n\t\t}\n\t\treturn F(resl,resr);\n\t}\n};\n\nstruct st{\n\tint ty;//0->tuple 1->query\n\tint a,b,c,d;\n\tint id;\n};\n\nvector<st>vs;\n\nint ans[200000];\n\nvoid solve(int l,int r){//[l,r)\n\tif(r-l<=1)return;\n\tint md=(l+r)/2;\n\tsolve(l,md);\n\tsolve(md,r);\n\tvector<st>qs;\n\tvector<int>s,e;\n\tfor(int i=l;i<md;i++){\n\t\tif(vs[i].ty==1)qs.push_back(vs[i]);\n\t}\n\tmap<int,int>mp;\n\tvector<int>cs;\n\tfor(int i=md;i<r;i++){\n\t\tif(vs[i].ty==0){\n\t\t\ts.push_back(i);\n\t\t\te.push_back(i);\n\t\t\tcs.push_back(vs[i].c);\n\t\t\tvs[i].id=mp[vs[i].c]++;\n\t\t}\n\t}\n\tif(s.empty())return;\n\tsort(qs.begin(),qs.end(),[](st&a,st&b){return a.b<b.b;});\n\tsort(e.begin(),e.end(),[&](int a,int b){return vs[a].b<vs[b].b;});\n\tsort(cs.begin(),cs.end());\n\tSegtree<int>seg(cs.size(),INT_MIN,INT_MIN,[](int a,int b){return max(a,b);});\n\tint c1=0,c2=0;\n\tfor(auto&p:qs){\n\t\tif(ans[p.id])continue;\n\t\twhile(c1<s.size()&&vs[s[c1]].a<p.b){\n\t\t\tint k=s[c1];\n\t\t\tint idx=lower_bound(cs.begin(),cs.end(),vs[k].c)-cs.begin()+vs[k].id;\n\t\t\tseg.update(idx,vs[k].d);\n\t\t\tc1++;\n\t\t}\n\t\twhile(c2<e.size()&&vs[e[c2]].b<=p.b){\n\t\t\tint k=s[c2];\n\t\t\tint idx=lower_bound(cs.begin(),cs.end(),vs[k].c)-cs.begin()+vs[k].id;\n\t\t\tseg.update(idx,INT_MIN);\n\t\t\tc2++;\n\t\t}\n\t\tint L=upper_bound(cs.begin(),cs.end(),p.c)-cs.begin();\n\t\tint R=lower_bound(cs.begin(),cs.end(),p.d)-cs.begin();\n\t\tif(p.d<seg.query(L,R))ans[p.id]=1;\n\t}\n}\n\nint main(){\n\tint n,q;cin>>n>>q;\n\trep(i,n){\n\t\tst s;scanf(\"%d%d%d%d\",&s.a,&s.b,&s.c,&s.d);\n\t\ts.ty=0;\n\t\tvs.push_back(s);\n\t}\n\trep(i,q){\n\t\tst s;scanf(\"%d%d%d%d\",&s.a,&s.b,&s.c,&s.d);\n\t\ts.ty=1;\n\t\ts.id=i;\n\t\tvs.push_back(s);\n\t}\n\tsort(vs.begin(),vs.end(),[](st&a,st&b){\n\t\treturn a.a<b.a;\n\t});\n\tsolve(0,vs.size());\n\trep(i,q){\n\t\tif(ans[i])puts(\"Yes\");\n\t\telse puts(\"No\");\n\t}\n}", "accuracy": 0.2, "time_ms": 250, "memory_kb": 10648, "score_of_the_acc": -0.0277, "final_rank": 12 } ]
aoj_3130_cpp
たしざんひきざん (Calculation Training) square1001 君は E869120 君に、誕生日プレゼントとして二つの数字 $A$ と $B$ をプレゼントしました。 E869120 君はこの二つの数字を使って、計算トレーニングをすることにしました。 具体的には、E869120君は次の操作をちょうど $N$ 回これらの数に行います。 奇数回目の操作のとき、$A$ を $A-B$ で置き換える 偶数回目の操作のとき、$B$ を $A+B$ で置き換える E869120君が $N$ 回の操作をした後、$A$ と $B$ の値がそれぞれいくつになっているか求めてください。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $A$ $B$ 出力 E869120君が $N$ 回の操作をした後の $A$ と $B$ の値を、この順に空白区切りで出力してください。 ただし、最後には改行を入れること。 制約 $1 \leq N \leq 1000000000000000000 \ (= 10^{18})$ $1 \leq A \leq 1000000000 \ (= 10^9)$ $1 \leq B \leq 1000000000 \ (= 10^9)$ 入力は全て整数である。 入力例1 3 3 4 出力例1 -4 3 $(A, B)$ の値は $(3,4) → (-1,4) → (-1,3) → (-4,3)$ と変化します。 入力例2 8 6 9 出力例2 3 -6
[ { "submission_id": "aoj_3130_4071512", "code_snippet": "#include <iostream>\n/*\nN = num()\nA,B = nums()\ncurA,curB = A,B\nfor i in range(N):\n if i % 2 == 0:#kisuu\n curA = curA - curB\n else:#guusuu\n curB = curA + curB\nprint(curA,curB)\n*/\nint main()\n{\n long long N;\n int A,B;\n std::cin >> N;\n std::cin >> A >> B;\n int curA = A;\n int curB = B;\n \n for (int i=1;i<=N;i++)\n {\n if (i % 2 == 1) \n {\n curA = curA - curB; \n continue;\n }\n if (i % 2 == 0) \n {\n curB = curA + curB;\n continue;\n }\n }\n std::cout << curA << \" \" << curB << std::endl;\n}", "accuracy": 0.07142857142857142, "time_ms": 210, "memory_kb": 3096, "score_of_the_acc": -1.3333, "final_rank": 3 }, { "submission_id": "aoj_3130_4071160", "code_snippet": "#include <iostream>\n/*\nN = num()\nA,B = nums()\ncurA,curB = A,B\nfor i in range(N):\n if i % 2 == 0:#kisuu\n curA = curA - curB\n else:#guusuu\n curB = curA + curB\nprint(curA,curB)\n*/\nint main()\n{\n long long N;\n int A,B;\n std::cin >> N;\n std::cin >> A >> B;\n int curA = A;\n int curB = B;\n for (int i=0;i<N;i++)\n {\n if (i % 2 == 0) curA = curA-curB;\n else curB = curA + curB;\n }\n std::cout << curA << \" \" << curB << std::endl;\n}", "accuracy": 0.07142857142857142, "time_ms": 100, "memory_kb": 3120, "score_of_the_acc": -1, "final_rank": 2 }, { "submission_id": "aoj_3130_4068541", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\nconst ll mod = 1000000007;\nconst ll mod998 = 998244353;\nconst ll intmax = 2147483647;\nconst ll llmax = 9223372036854775807;\nconst char sp = ' ';\n\nll N, A, B;\n\nint main() {\n\tcin >> N >> A >> B;\n\tfor (int i = 1; i <= N; i++) {\n\t\tif (i & 1) {\n\t\t\tA = A - B;\n\t\t}\n\t\telse {\n\t\t\tB = A + B;\n\t\t}\n\t}\n\tcout << A << sp << B << endl;\n}", "accuracy": 0.07142857142857142, "time_ms": 200, "memory_kb": 3084, "score_of_the_acc": -0.9091, "final_rank": 1 } ]
aoj_3119_cpp
Zero AND Subsets 非負整数の多重集合 a_1,a_2,..,a_N が与えられます。 この集合の空でない部分集合であって、値のbitwiseANDが 0 になるものはいくつありますか。 答えを 10^9+7 で割った余りを求めてください。 入力 N a_1 a_2...a_N 出力 答えを 10^9+7 で割った余りを出力せよ。 制約 1 \leq N \leq 10^5 0 \leq a_i \leq 2^{20}-1 入力例 6 8 6 9 1 2 1 出力例 51
[ { "submission_id": "aoj_3119_10183987", "code_snippet": "// AOJ #3119\n// Zero AND Subsets 2025.2.3\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nconst int MOD = 1000000007;\n\n// 素朴な方法で前計算。N の最大値は 1e5 なので十分。\nint main() {\n int N = Cin();\n const int BITS = 20;\n const int SIZE = 1 << BITS;\n \n vector<int> freq(SIZE, 0);\n for (int i = 0; i < N; i++){\n int a = Cin();\n freq[a]++;\n }\n \n // F[mask] = 元の多重集合の中で、mask のビットすべてが1である数の個数\n vector<int> F(freq);\n for (int i = 0; i < BITS; i++){\n for (int mask = 0; mask < SIZE; mask++){\n if (!(mask & (1 << i))){\n F[mask] += F[mask | (1 << i)];\n }\n }\n }\n \n // 2^x の値を x=0...N まで前計算 (x は F[mask] の最大値は N)\n vector<ll> p2(N+1, 1);\n for (int i = 1; i <= N; i++){\n p2[i] = (p2[i-1] * 2LL) % MOD;\n }\n \n // 包除原理で答えを計算\n ll ans = 0;\n for (int mask = 0; mask < SIZE; mask++){\n int bits = __builtin_popcount(mask);\n ll term = (p2[F[mask]] - 1 + MOD) % MOD;\n if (bits % 2 == 1) ans = (ans - term + MOD) % MOD;\n else ans = (ans + term) % MOD;\n }\n Cout((int)(ans % MOD));\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 12152, "score_of_the_acc": -0.3921, "final_rank": 7 }, { "submission_id": "aoj_3119_9750253", "code_snippet": "#include <bits/stdc++.h>\n#include<ext/pb_ds/assoc_container.hpp>\n#include<ext/pb_ds/tree_policy.hpp>\n\nusing namespace std;\nusing namespace __gnu_pbds;\n// find_by_order ->return set[x]\n// order_of_key ->return index of first occ of x\ntypedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> oset;\ntypedef tree<int, null_type, less_equal<int>, rb_tree_tag, tree_order_statistics_node_update> omset;\n#define int long long\n#define endl '\\n'\n#define pi pair<int,int>\n#define adjs(name, type, size) vector<vector<type>>name(size)\n#define adjpass(name, type) vector<vector<type>>&name\n#define rest(name, val) memset(name,val,sizeof(name))\n#define all(x) x.begin(),x.end()\n#define killua ios_base::sync_with_stdio(false), cin.tie(NULL), cout.tie(0)\n//changes in dir:\nint dx[] = {0, 0, 1, -1, -1, 1, -1, 1};\nint dy[] = {1, -1, 0, 0, 1, 1, -1, -1};\nint cases = 0;\nconstexpr int mod = 1000000007;\n\n/***إِلا أَنْ يَشَاءَ اللَّهُ وَاذْكُرْ رَبَّكَ إِذَا نَسِيتَ وَقُلْ عَسَى أَنْ يَهْدِيَنِي رَبِّي لأَقْرَبَ مِنْ هَذَا رَشَدًا ***/\nlong long modpow(long long a, long long b) {\n long long ans = 1;\n while (b) {\n if (b & 1) {\n (ans *= a) %= mod;\n }\n (a *= a) %= mod;\n b /= 2;\n }\n return ans;\n}\n\nmt19937 random_seed(time(0));\n\nlong long rnd(long long l, long long r) {\n if (l > r) throw invalid_argument(\"parameters is invalid\");\n uniform_int_distribution<long long> dist(l, r);\n return dist(random_seed);\n}\n\nint countSubsetsWithBitwiseAndZero(int N, int A[]) {\n vector<int> b(1 << 20);\n for (int i = 0; i < N; i++) {\n b[A[i]]++;\n }\n for (int i = 0; i < 20; i++) {\n for (int j = 0; j < (1 << 20); j++) {\n if (1 & (j >> i)) {\n b[j ^ (1 << i)] += b[j];\n }\n }\n }\n for (int i = 0; i < (1 << 20); i++) {\n b[i] = modpow(2, b[i]) - 1;\n }\n for (int i = 0; i < 20; i++) {\n for (int j = 0; j < (1 << 20); j++) {\n if (1 & (j >> i)) {\n b[j ^ (1 << i)] += mod - b[j];\n if (b[j ^ (1 << i)] >= mod) b[j ^ (1 << i)] -= mod;\n }\n }\n }\n return b[0];\n}\n\nvoid gon() {\n int N;\n cin >> N;\n int arr[N];\n for (auto &i: arr) cin >> i;\n cout << countSubsetsWithBitwiseAndZero(N, arr) << endl;\n}\n\nint32_t main() {\n killua;\n int t = 1;\n if (cases) cin >> t;\n while (t--) {\n gon();\n }\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 12068, "score_of_the_acc": -0.5733, "final_rank": 11 }, { "submission_id": "aoj_3119_9750222", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconstexpr int mod = 1000000007;\n\nlong long modpow(long long a,long long b) {\n long long ans = 1;\n while(b) {\n if(b & 1) {\n (ans *= a) %= mod;\n }\n (a *= a) %= mod;\n b /= 2;\n }\n return ans;\n}\n\nint main() {\n int N;\n cin >> N;\n vector<int>a(N),b(1 << 20);\n for(int i = 0; i < N; i++) {\n cin >> a[i];\n b[a[i]]++;\n }\n for(int i = 0; i < 20; i++) {\n for(int j = 0; j < (1 << 20); j++) {\n if(1 & (j >> i)) {\n b[j^(1 << i)] += b[j];\n }\n }\n }\n for(int i = 0; i < (1 << 20); i++) {\n b[i] = modpow(2,b[i])-1;\n }\n for(int i = 0; i < 20; i++) {\n for(int j = 0; j < (1 << 20); j++) {\n if(1 & (j >> i)) {\n b[j^(1 << i)] += mod-b[j];\n if(b[j^(1 << i)] >= mod) b[j^(1 << i)] -= mod;\n }\n }\n }\n cout << b[0] << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 7424, "score_of_the_acc": -0.3527, "final_rank": 6 }, { "submission_id": "aoj_3119_5552369", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define fi first\n#define se second\n#define rep(i, n) for (int i = 0; i < n; i++)\n#define all(v) v.begin(), v.end()\n#define pb push_back\ntemplate <class T, class U>\ninline bool chmax(T &a, U b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T, class U>\ninline bool chmin(T &a, U b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\nconstexpr int INF = 1000000000;\nconstexpr ll llINF = 1000000000000000000;\nconstexpr int mod = 1000000007;\nconstexpr double eps = 1e-10;\nconst double pi = acos(-1);\nint dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0};\nint Random(int mi, int ma) {\n random_device rnd;\n mt19937 mt(rnd()); // 32bit\n //[mi,ma]\n uniform_int_distribution<int> engine(mi, ma);\n return engine(mt);\n}\n/*\nvector<vector<ll>>C,sC;\nvoid init_comb(int n,int m){\n C.resize(n+1,vector<ll>(m+1,0));\n sC.resize(n+1,vector<ll>(m+1,0));\n C[0][0]=1;\n for(int i=1;i<=n;i++){\n C[i][0]=1;\n for(int j=1;j<=m;j++){\n C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;\n }\n }\n rep(i,n+1){\n rep(j,m){\n sC[i][j+1]=(sC[i][j]+C[i][j])%mod;\n }\n }\n}*/\nbool prime(int a) {\n if (a == 1) return false;\n for (int i = 2; i * i <= a; i++) {\n if (a % i == 0) return false;\n }\n return true;\n}\nvector<int> primes;\nvoid init_prime(int n) {\n primes.push_back(2);\n for (int i = 3; i <= n; i += 2) {\n bool f = true;\n for (int j : primes) {\n if (j * j > i) break;\n if (i % j == 0) {\n f = false;\n break;\n }\n }\n if (f) primes.push_back(i);\n }\n}\nll modpow(ll a, ll b) {\n ll res = 1;\n while (b) {\n if (b & 1) {\n res *= a;\n res %= mod;\n }\n a *= a;\n a %= mod;\n b >>= 1;\n }\n return res;\n}\nvector<ll> inv, fact, factinv;\nvoid init_fact(int n) {\n inv.resize(n + 1);\n fact.resize(n + 1);\n factinv.resize(n + 1);\n inv[0] = 0;\n inv[1] = 1;\n fact[0] = 1;\n factinv[0] = 1;\n for (ll i = 1; i <= n; i++) {\n if (i >= 2) inv[i] = mod - ((mod / i) * inv[mod % i] % mod);\n fact[i] = (fact[i - 1] * i) % mod;\n factinv[i] = factinv[i - 1] * inv[i] % mod;\n }\n}\nll _inv(ll a, ll m = mod) {\n // gcd(a,m) must be 1\n ll b = m, u = 1, v = 0;\n while (b) {\n ll t = a / b;\n a -= t * b;\n swap(a, b);\n u -= t * v;\n swap(u, v);\n }\n u %= m;\n if (u < 0) u += m;\n return u;\n}\nll comb(int a, int b) {\n if (a < b) return 0;\n if (a < 0) return 0;\n return fact[a] * factinv[a - b] % mod * factinv[b] % mod;\n}\nint n, res[1 << 20], po[100010];\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin >> n;\n rep(i, n) {\n int a;\n cin >> a;\n res[a]++;\n }\n rep(i, 20) {\n for (int s = (1 << 20) - 1; s >= 0; s--) {\n if ((s >> i) & 1) {\n res[s - (1 << i)] += res[s];\n }\n }\n }\n po[0] = 1;\n rep(i, n) po[i + 1] = po[i] * 2 % mod;\n int ans = 0;\n rep(s, 1 << 20) {\n if (__builtin_popcount(s) % 2 == 0) {\n ans += po[res[s]];\n ans %= mod;\n } else {\n ans += (mod - po[res[s]]);\n ans %= mod;\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 7868, "score_of_the_acc": -0.0732, "final_rank": 1 }, { "submission_id": "aoj_3119_5296910", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef vector<P> vp;\ntypedef vector<bool> vb;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define REP(i,k,n) for(ll i=(ll)(k);i<(ll)(n);i++)\n#define all(a) a.begin(),a.end()\n#define rsort(a) {sort(all(a));reverse(all(a));}\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\n#define lb(v,k) (lower_bound(all(v),k)-v.begin())\n#define fi first\n#define se second\n#define pb emplace_back\nconst ll mod=1000000007;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){for(auto x:v)outv(x);}\ntemplate<class T> void outp(T p){cout<<'('<<p.fi<<','<<p.se<<')'<<endl;}\ntemplate<class T> void outvp(T v){for(auto p:v)cout<<'('<<p.fi<<','<<p.se<<')';cout<<endl;}\nconst ll inf=1001001001001001001;\nll modpow(ll a,ll b){\n a%=mod;\n ll res=1,cur=a;\n while(b){\n if(b&1)res=res*cur%mod;\n cur=cur*cur%mod;\n b>>=1;\n }\n return res;\n}\n\nint main(){\n ll n;cin>>n;\n vi dp(1<<20);\n rep(i,n){\n ll a;cin>>a;dp[a]++;\n }\n rep(j,20)for(int i=(1<<20)-1;i>=0;i--)if(!(i>>j&1))dp[i]+=dp[i|(1<<j)];\n ll ans=0;\n rep(i,1<<20){\n ll c=0;\n rep(j,20)if(i>>j&1)c++;\n if(c&1)ans-=modpow(2,dp[i])-1;\n else ans+=modpow(2,dp[i])-1;\n }\n ans%=mod;\n ans+=mod;\n out(ans%mod);\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 10996, "score_of_the_acc": -0.681, "final_rank": 13 }, { "submission_id": "aoj_3119_5296902", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef vector<ll> vi;\ntypedef vector<vi> vvi;\ntypedef vector<P> vp;\ntypedef vector<bool> vb;\n#define rep(i,n) for(ll i=0;i<(ll)(n);i++)\n#define REP(i,k,n) for(ll i=(ll)(k);i<(ll)(n);i++)\n#define all(a) a.begin(),a.end()\n#define rsort(a) {sort(all(a));reverse(all(a));}\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\n#define lb(v,k) (lower_bound(all(v),k)-v.begin())\n#define fi first\n#define se second\n#define pb emplace_back\nconst ll mod=1000000007;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){for(auto x:v)outv(x);}\ntemplate<class T> void outp(T p){cout<<'('<<p.fi<<','<<p.se<<')'<<endl;}\ntemplate<class T> void outvp(T v){for(auto p:v)cout<<'('<<p.fi<<','<<p.se<<')';cout<<endl;}\nconst ll inf=1001001001001001001;\nll modpow(ll a,ll b){\n a%=mod;\n ll res=1,cur=a;\n while(b){\n if(b&1)res*=cur;\n cur=cur*cur%mod;\n b>>=1;\n }\n return res;\n}\n\nint main(){\n ll n;cin>>n;\n vi dp(1<<20);\n rep(i,n){\n ll a;cin>>a;dp[a]++;\n }\n rep(j,20)for(int i=(1<<20)-1;i>=0;i--)if(!(i>>j&1))dp[i]+=dp[i|(1<<j)];\n ll ans=0;\n rep(i,1<<20){\n ll c=0;\n rep(j,20)if(i>>j&1)c++;\n if(c&1)ans-=modpow(2,dp[i])-1;\n else ans+=modpow(2,dp[i])-1;\n }\n ans%=mod;\n ans+=mod;\n out(ans%mod);\n}", "accuracy": 0.2, "time_ms": 70, "memory_kb": 10916, "score_of_the_acc": -0.6126, "final_rank": 20 }, { "submission_id": "aoj_3119_5011140", "code_snippet": "#ifdef ONLINE_JUDGE\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for (int i = 0; i < (n); i++)\n#define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--)\n#define all(x) (x).begin(), (x).end()\nconstexpr char ln = '\\n';\nistream& operator>>(istream& is, __int128_t& x) {\n x = 0;\n string s;\n is >> s;\n int n = int(s.size()), it = 0;\n if (s[0] == '-') it++;\n for (; it < n; it++) x = (x * 10 + s[it] - '0');\n if (s[0] == '-') x = -x;\n return is;\n}\nostream& operator<<(ostream& os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n deque<int> deq;\n while (x) deq.emplace_front(x % 10), x /= 10;\n for (int e : deq) os << e;\n return os;\n}\ntemplate<class T1, class T2>\nostream& operator<<(ostream& os, const pair<T1, T2>& p) {\n return os << \"(\" << p.first << \", \" << p.second << \")\";\n}\ntemplate<class T> \nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"{\";\n for (int i = 0; i < int(v.size()); i++) {\n if (i) os << \", \";\n os << v[i];\n }\n return os << \"}\";\n}\ntemplate<class Container> inline int SZ(Container& v) { return int(v.size()); }\ntemplate<class T> inline void UNIQUE(vector<T>& v) { v.erase(unique(v.begin(), v.end()), v.end()); }\ntemplate<class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) {a = b; return true ;} return false ;}\ntemplate<class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) {a = b; return true ;} return false ;}\ninline int topbit(ull x) { return x == 0 ? -1 : 63 - __builtin_clzll(x); }\ninline int botbit(ull x) { return x == 0 ? 64 : __builtin_ctzll(x); }\ninline int popcount(ull x) { return __builtin_popcountll(x); }\ninline int kthbit(ull x, int k) { return (x>>k) & 1; }\ninline constexpr long long TEN(int x) { return x == 0 ? 1 : TEN(x-1) * 10; }\ninline void print() { cout << \"\\n\"; }\ntemplate<class T>\ninline void print(const vector<T>& v) {\n for (int i = 0; i < int(v.size()); i++) {\n if (i) cout << \" \";\n cout << v[i];\n }\n print();\n}\ntemplate<class T, class... Args>\ninline void print(const T& x, const Args& ... args) {\n cout << x << \" \";\n print(args...);\n}\n#ifdef MINATO_LOCAL\ninline void debug_out() { cerr << endl; }\ntemplate <class T, class... Args>\ninline void debug_out(const T& x, const Args& ... args) {\n cerr << \" \" << x;\n debug_out(args...);\n}\n#define debug(...) cerr << __LINE__ << \" : [\" << #__VA_ARGS__ << \"] =\", debug_out(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\nstruct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;\n////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\ntemplate<int m> \nstruct ModInt {\n public:\n static constexpr int mod() { return m; }\n static ModInt raw(int v) {\n ModInt x;\n x._v = v;\n return x;\n }\n\n ModInt() : _v(0) {}\n ModInt(long long v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n\n unsigned int val() const { return _v; }\n\n ModInt& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n ModInt& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n ModInt operator++(int) {\n ModInt result = *this;\n ++*this;\n return result;\n }\n ModInt operator--(int) {\n ModInt result = *this;\n --*this;\n return result;\n }\n\n ModInt& operator+=(const ModInt& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n ModInt& operator-=(const ModInt& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n ModInt& operator*=(const ModInt& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n ModInt& operator^=(long long n) {\n ModInt x = *this;\n *this = 1;\n if (n < 0) x = x.inv(), n = -n;\n while (n) {\n if (n & 1) *this *= x;\n x *= x;\n n >>= 1;\n }\n return *this;\n }\n ModInt& operator/=(const ModInt& rhs) { return *this = *this * rhs.inv(); }\n\n ModInt operator+() const { return *this; }\n ModInt operator-() const { return ModInt() - *this; }\n\n ModInt pow(long long n) const {\n ModInt r = *this;\n r ^= n;\n return r;\n }\n ModInt inv() const {\n int a = _v, b = umod(), y = 1, z = 0, t;\n for (; ; ) {\n t = a / b; a -= t * b;\n if (a == 0) {\n assert(b == 1 || b == -1);\n return ModInt(b * z);\n }\n y -= t * z;\n t = b / a; b -= t * a;\n if (b == 0) {\n assert(a == 1 || a == -1);\n return ModInt(a * y);\n }\n z -= t * y;\n }\n }\n\n friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) += rhs; }\n friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) -= rhs; }\n friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) *= rhs; }\n friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) /= rhs; }\n friend ModInt operator^(const ModInt& lhs, long long rhs) { return ModInt(lhs) ^= rhs; }\n friend bool operator==(const ModInt& lhs, const ModInt& rhs) { return lhs._v == rhs._v; }\n friend bool operator!=(const ModInt& lhs, const ModInt& rhs) { return lhs._v != rhs._v; }\n friend ModInt operator+(long long lhs, const ModInt& rhs) { return (ModInt(lhs) += rhs); }\n friend ModInt operator-(long long lhs, const ModInt& rhs) { return (ModInt(lhs) -= rhs); }\n friend ModInt operator*(long long lhs, const ModInt& rhs) { return (ModInt(lhs) *= rhs); }\n friend ostream &operator<<(ostream& os, const ModInt& rhs) { return os << rhs._v; }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n};\n \nconstexpr int MOD = 1000000007;\n//constexpr int MOD = 998244353;\n\nusing mint = ModInt<MOD>;\n\nint A[1<<20];\nmint dp[1<<20];\nint main() {\n int N; cin >> N;\n rep(i,N) {\n int a; cin >> a;\n A[a]++;\n }\n vector<mint> beki(N+1,1);\n rep(i,N) beki[i+1] = beki[i]*2;\n\n rep(i,20) {\n rep(mask,1<<20) {\n if (!kthbit(mask,i)) {\n A[mask] += A[mask|(1<<i)];\n }\n }\n }\n\n rep(mask,1<<20) {\n dp[mask] = beki[A[mask]];\n dp[mask]--;\n }\n\n rep(i,20) {\n rep(mask,1<<20) {\n if (!kthbit(mask,i)) {\n dp[mask] -= dp[mask|(1<<i)];\n }\n }\n }\n\n cout << dp[0] << ln; \n}", "accuracy": 1, "time_ms": 30, "memory_kb": 11580, "score_of_the_acc": -0.412, "final_rank": 8 }, { "submission_id": "aoj_3119_4151212", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n#define MAX 20\n\nint N;\nll dp[1 << MAX];\nll POW[SIZE];\n\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i < SIZE; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t\tPOW[i] %= MOD;\n\t}\n\n\tscanf(\"%d\",&N);\n\n\tfor(int i = 0; i < POW[MAX]; i++){\n\n\t\tdp[i] = 0;\n\t}\n\n\tint tmp;\n\tfor(int loop = 0; loop < N; loop++){\n\n\t\tscanf(\"%d\",&tmp);\n\t\tdp[tmp] += 1;\n\t}\n\n\tfor(int loop = 0; loop < MAX; loop++){\n\t\tfor(int state = POW[MAX]-1; state >= 0; state--){\n\t\t\tif((state & (1 << loop)) == 0){\n\t\t\t\t//自分を含む集合の個数を求める\n\t\t\t\tdp[state] += dp[state+POW[loop]];\n\t\t\t}\n\t\t}\n\t}\n\n\tll ans = POW[N]-1;\n\tll minus = 0;\n\n\t//全体から、少なくとも1つ以上の桁が1である集合を除く\n\tfor(int i = 1; i < POW[MAX]; i++){\n\t\tint count = 0;\n\t\tfor(int loop = 0; loop < MAX; loop++){\n\t\t\tif(i & (1 << loop))count++;\n\t\t}\n\n\t\tif(count%2 == 1){\n\n\t\t\tminus += (POW[dp[i]]-1);\n\t\t\tminus %= MOD;\n\t\t}else{\n\n\t\t\tminus -= (POW[dp[i]]-1);\n\t\t\tif(minus < 0){\n\t\t\t\tminus += MOD;\n\t\t\t}\n\t\t}\n\t}\n\n\tans -= minus;\n\tif(ans < 0){\n\n\t\tans += MOD;\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 12184, "score_of_the_acc": -0.5195, "final_rank": 9 }, { "submission_id": "aoj_3119_4123952", "code_snippet": "#pragma region\n#include <bits/stdc++.h>\nusing namespace std;\n/*\n#include<ext/pb_ds/assoc_container.hpp>\n#include<ext/pb_ds/tree_policy.hpp>\nusing namespace __gnu_pbds;\n*/\n#define int long long\n#define REP(i,n) for(int i = 0;i < (int)(n);i++)\n#define RREP(i,n) for(int i = (int)n-1;i >= 0;i--)\n#define FOR(i,s,n) for(int i = s;i < (int)n;i++)\n#define RFOR(i,s,n) for(int i = (int)n-1;i >= s;i--)\n#define ALL(a) a.begin(),a.end()\n#define IN(a, x, b) (a<=x && x<b)\ntemplate<class T>inline bool CHMAX(T&a,T b){if(a<b){a = b;return true;}return false;}\ntemplate<class T>inline bool CHMIN(T&a,T b){if(a>b){a = b;return true;}return false;}\ntemplate<class T>istream&operator >>(istream&is,vector<T>&vec){for(T&x:vec)is>>x;return is;}\ntemplate<class T>inline void in(T&t){cin>>t;}\ntemplate<class T,class... Ts>inline void in(T&t,Ts&...ts){cin>>t;in(ts...);}\ntemplate<class T>inline void out(T t){cout<<t<<endl;}\ntemplate<class T,class... Ts>inline void out(T t,Ts... ts){cout<<t<<\" \";out(ts...);}\ntemplate<typename T=int>vector<T>mv(size_t a){return vector<T>(a);}\ntemplate<typename T=int,typename... Ts>auto mv(size_t a,Ts... ts){return vector<decltype(mv<T>(ts...))>(a,mv<T>(ts...));}\ntemplate<typename T,typename V>typename enable_if<is_class<T>::value==0>::type fill(T&t,const V&v){t=v;}\ntemplate<typename T,typename V>typename enable_if<is_class<T>::value!=0>::type fill(T&t,const V&v){for(auto &e:t)fill(e,v);}\nconstexpr long long INF = 1e18;\n\ntemplate<int MOD> struct Fp {\n\tlong long val;\n\tconstexpr Fp(long long v = 0) noexcept : val(v % MOD) {\n\t\tif (val < 0) val += MOD;\n\t}\n\tconstexpr int getmod() { return MOD; }\n\tconstexpr Fp operator - () const noexcept {\n\t\treturn val ? MOD - val : 0;\n\t}\n\tconstexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }\n\tconstexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }\n\tconstexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }\n\tconstexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }\n\tconstexpr Fp& operator += (const Fp& r) noexcept {\n\t\tval += r.val;\n\t\tif (val >= MOD) val -= MOD;\n\t\treturn *this;\n\t}\n\tconstexpr Fp& operator -= (const Fp& r) noexcept {\n\t\tval -= r.val;\n\t\tif (val < 0) val += MOD;\n\t\treturn *this;\n\t}\n\tconstexpr Fp& operator *= (const Fp& r) noexcept {\n\t\tval = val * r.val % MOD;\n\t\treturn *this;\n\t}\n\tconstexpr Fp& operator /= (const Fp& r) noexcept {\n\t\tlong long a = r.val, b = MOD, u = 1, v = 0;\n\t\twhile (b) {\n\t\t\tlong long t = a / b;\n\t\t\ta -= t * b; swap(a, b);\n\t\t\tu -= t * v; swap(u, v);\n\t\t}\n\t\tval = val * u % MOD;\n\t\tif (val < 0) val += MOD;\n\t\treturn *this;\n\t}\n\tconstexpr bool operator == (const Fp& r) const noexcept {\n\t\treturn this->val == r.val;\n\t}\n\tconstexpr bool operator != (const Fp& r) const noexcept {\n\t\treturn this->val != r.val;\n\t}\n\tfriend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {\n\t\treturn os << x.val;\n\t}\n\tfriend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {\n\t\tif (n == 0) return 1;\n\t\tauto t = modpow(a, n / 2);\n\t\tt = t * t;\n\t\tif (n & 1) t = t * a;\n\t\treturn t;\n\t}\n};\n \n// 二項係数ライブラリ\ntemplate<class T> struct BiCoef {\n\tvector<T> fact_, inv_, finv_;\n\tconstexpr BiCoef() {}\n\tconstexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {\n\t\tinit(n);\n\t}\n\tconstexpr void init(int n) noexcept {\n\t\tfact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);\n\t\tint MOD = fact_[0].getmod();\n\t\tfor(int i = 2; i < n; i++){\n\t\t\tfact_[i] = fact_[i-1] * i;\n\t\t\tinv_[i] = -inv_[MOD%i] * (MOD/i);\n\t\t\tfinv_[i] = finv_[i-1] * inv_[i];\n\t\t}\n\t}\n\tconstexpr T com(int n, int k) const noexcept {\n\t\tif (n < k || n < 0 || k < 0) return 0;\n\t\treturn fact_[n] * finv_[k] * finv_[n-k];\n\t}\n\tconstexpr T fact(int n) const noexcept {\n\t\tif (n < 0) return 0;\n\t\treturn fact_[n];\n\t}\n\tconstexpr T inv(int n) const noexcept {\n\t\tif (n < 0) return 0;\n\t\treturn inv_[n];\n\t}\n\tconstexpr T finv(int n) const noexcept {\n\t\tif (n < 0) return 0;\n\t\treturn finv_[n];\n\t}\n};\n \nconst int MOD = 1000000007;\n//const int MOD = 998244353;\nusing mint = Fp<MOD>;\nBiCoef<mint> bc;\n// bc.init(500050);\n#pragma endregion\n\n// fzt {{{\n//#include <vector>\n\n// to upper : b[j] = sum(i: j in i, a[i])\n// n is power of 2\ntemplate < class T >\nvector< T > fzt(vector< T > a, bool toUpper) {\n int n = a.size();\n for(int i = 1; i < n; i <<= 1)\n for(int j = 0; j < n; j++)\n if((j & i) == 0) {\n if(toUpper) {\n a[j] += a[j | i];\n } else {\n a[j | i] += a[j];\n }\n }\n return a;\n}\n// }}}\n\nsigned main(){\n\tint N;\n\tin(N);\n\tauto cnt = mv(1ll << 20);\n\tREP(i,N){\n\t\tint t;\n\t\tin(t);\n\t\tcnt[t]++; //空の集合\n\t}\n\tauto dp = fzt(cnt,true);\n\tmint ans = 0;\n\tREP(i,1ll << 20){\n\t\tif(__builtin_popcountll(i)%2)ans-=modpow(mint(2),dp[i]);\n\t\telse ans+=modpow(mint(2),dp[i]);\n\t}\n\tout(ans);\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 19212, "score_of_the_acc": -1.6675, "final_rank": 17 }, { "submission_id": "aoj_3119_4107009", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define INF_LL (int64)1e18\n#define INF (int32)1e9\n#define REP(i, n) for(int64 i = 0;i < (n);i++)\n#define FOR(i, a, b) for(int64 i = (a);i < (b);i++)\n#define all(x) x.begin(),x.end()\n#define fs first\n#define sc second\n\nusing int32 = int_fast32_t;\nusing uint32 = uint_fast32_t;\nusing int64 = int_fast64_t;\nusing uint64 = uint_fast64_t;\nusing PII = pair<int32, int32>;\nusing PLL = pair<int64, int64>;\n\nconst double eps = 1e-10;\n\ntemplate<typename A, typename B>inline void chmin(A &a, B b){if(a > b) a = b;}\ntemplate<typename A, typename B>inline void chmax(A &a, B b){if(a < b) a = b;}\n\ntemplate<typename T>\nvector<T> make_v(size_t a){return vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value!=0>::type\nfill_v(U &u,const V... v){u=U(v...);}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value==0>::type\nfill_v(U &u,const V... v){\n for(auto &e:u) fill_v<T>(e,v...);\n}\n\ntemplate<::std::uint_fast64_t mod>\nclass ModInt{\nprivate:\n using value_type = ::std::uint_fast64_t;\n value_type n;\npublic:\n ModInt() : n(0) {}\n ModInt(value_type n_) : n(n_ % mod) {}\n ModInt(const ModInt& m) : n(m.n) {}\n\n template<typename T>\n explicit operator T() const { return static_cast<T>(n); }\n value_type get() const { return n; }\n\n friend ::std::ostream& operator<<(::std::ostream &os, const ModInt<mod> &a) {\n return os << a.n;\n }\n\n friend ::std::istream& operator>>(::std::istream &is, ModInt<mod> &a) {\n value_type x;\n is >> x;\n a = ModInt<mod>(x);\n return is;\n }\n\n bool operator==(const ModInt& m) const { return n == m.n; }\n bool operator!=(const ModInt& m) const { return n != m.n; }\n ModInt& operator*=(const ModInt& m){ n = n * m.n % mod; return *this; }\n\n ModInt pow(value_type b) const{\n ModInt ans = 1, m = ModInt(*this);\n while(b){\n if(b & 1) ans *= m;\n m *= m;\n b >>= 1;\n }\n return ans;\n }\n\n ModInt inv() const { return (*this).pow(mod-2); }\n ModInt& operator+=(const ModInt& m){ n += m.n; n = (n < mod ? n : n - mod); return *this; }\n ModInt& operator-=(const ModInt& m){ n += mod - m.n; n = (n < mod ? n : n - mod); return *this; }\n ModInt& operator/=(const ModInt& m){ *this *= m.inv(); return *this; }\n ModInt operator+(const ModInt& m) const { return ModInt(*this) += m; }\n ModInt operator-(const ModInt& m) const { return ModInt(*this) -= m; }\n ModInt operator*(const ModInt& m) const { return ModInt(*this) *= m; }\n ModInt operator/(const ModInt& m) const { return ModInt(*this) /= m; }\n ModInt& operator++(){ n += 1; return *this; }\n ModInt& operator--(){ n -= 1; return *this; }\n ModInt operator++(int){\n ModInt old(n);\n n += 1;\n return old;\n }\n ModInt operator--(int){\n ModInt old(n);\n n -= 1;\n return old;\n }\n ModInt operator-() const { return ModInt(mod-n); }\n};\n\nconstexpr int64 mod = 1e9+7;\nusing Mint = ModInt<mod>;\n\nint main(void) {\n int64 N;\n cin >> N;\n vector<int64> dp(1 << 20, 0);\n REP(i, N) {\n int64 a;\n cin >> a;\n dp[a]++;\n }\n Mint res = 0;\n REP(i, 20) {\n REP(j, 1 << 20) {\n if (!(j & (1 << i))) dp[j] += dp[j | (1 << i)];\n }\n }\n REP(i, dp.size()) {\n if (__builtin_popcount(i) % 2) {\n res -= Mint(2).pow(dp[i])-1;\n } else {\n res += Mint(2).pow(dp[i])-1;\n }\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 10944, "score_of_the_acc": -0.6147, "final_rank": 12 }, { "submission_id": "aoj_3119_4093639", "code_snippet": "#include <bits/stdc++.h>\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define rep(i,N) for(long long i = 0; i < (long long)(N); i++)\n#define repr(i,N) for(long long i = (long long)(N) - 1; i >= 0; i--)\n#define rep1(i,N) for(long long i = 1; i <= (long long)(N) ; i++)\n#define repr1(i,N) for(long long i = (N) ; (long long)(i) > 0 ; i--)\n#define each(x,v) for(auto& x : v)\n#define all(v) (v).begin(),(v).end()\n#define sz(v) ((int)(v).size())\n#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)\n#define inl(...) long long __VA_ARGS__; in(__VA_ARGS__)\n#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)\nusing namespace std; void solve();\nusing ll = long long; template<class T = ll> using V = vector<T>;\nusing vi = V<int>; using vl = V<>; using vvi = V< V<int> >;\nconstexpr int inf = 1001001001; constexpr ll infLL = (1LL << 61) - 1;\nstruct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya;\ntemplate<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\ntemplate<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\ntemplate<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << \" \" << p.second; return os; }\ntemplate<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; }\ntemplate<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); rep(i,s) os << (i ? \" \" : \"\") << v[i]; return os; }\ntemplate<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; }\nvoid in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);}\nvoid out(){cout << \"\\n\";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << \" \"; out(u...);}\ntemplate<typename T>void die(T x){out(x); exit(0);}\n#ifdef NyaanDebug\n #include \"NyaanDebug.h\"\n #define trc(...) do { cerr << #__VA_ARGS__ << \" = \"; dbg_out(__VA_ARGS__);} while(0)\n #define trca(v,N) do { cerr << #v << \" = \"; array_out(v , N);cout << endl;} while(0)\n#else\n #define trc(...)\n #define trca(...)\n int main(){solve();}\n#endif\n\nusing P = pair<ll,ll>; using vp = V<P>;\nconstexpr int MOD = /**/ 1000000007; //*/ 998244353;\n////////////////////////////////\n\ntemplate< int mod >\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n\n bool operator==(const ModInt &p) const { return x == p.x; }\n\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\n\nusing modint = ModInt< MOD >;\nusing vm = vector<modint>;\n\nvector<int> f(1048576 + 10 , 0);\n\nvoid solve(){\n ini(N);\n rep(i , N){ ini(x); f[x]++;}\n rep(i,20) rep(j,1<<20) if (!(j&(1<<i))) f[j]+=f[j|(1<<i)];\n\n rep(i,1000) if(f[i]) trc(i , f[i]);\n modint ans = 0;\n rep(i , 1048576){\n if(f[i] == 0) continue;\n modint cur = modint(2).pow(f[i]) - 1;\n if( (__builtin_popcount(i) & 1) == 0) ans += cur;\n else ans -= cur;\n }\n out(ans);\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 6912, "score_of_the_acc": -0.1896, "final_rank": 4 }, { "submission_id": "aoj_3119_4087979", "code_snippet": "#include <iostream>\n#include <set>\n#include <utility>\n#include <vector>\n#include <algorithm>\n#define llint long long\n#define inf 1e18\n#define mod 1000000007\n\nusing namespace std;\ntypedef pair<llint, llint> P;\n\nllint n;\nllint a[100005];\nllint cnt[1<<20];\nllint pop[1<<20];\n\nvoid zeta_transform(llint a[], int n)\n{\n\tint S = 1<<n;\n\tfor(int i = 0; i < n; i++){\n\t\tfor(int j = 0; j < S; j++){\n\t\t\tif(!(j&(1<<i))) a[j] += a[j^(1<<i)], a[j] %= mod;\n\t\t}\n\t}\n}\n\nllint modpow(llint a, llint n)\n{\n\tif(n == 0) return 1;\n\tif(n % 2){\n\t\treturn ((a%mod) * (modpow(a, n-1)%mod)) % mod;\n\t}\n\telse{\n\t\treturn modpow((a*a)%mod, n/2) % mod;\n\t}\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n;\n\tfor(int i = 1; i <= n; i++) cin >> a[i], cnt[a[i]]++;\n\tzeta_transform(cnt, 20);\n\tfor(int i = 0; i < (1<<20); i++) cnt[i] = modpow(2, cnt[i]) + mod - 1, cnt[i] %= mod;\n\tfor(int i = 1; i < (1<<20); i++) pop[i] = pop[i&(i-1)] + 1;\n\t\n\tllint ans = 0;\n\tfor(int i = 0; i < (1<<20); i++){\n\t\tif(pop[i]%2) ans += mod - cnt[i], ans %= mod;\n\t\telse ans += cnt[i], ans %= mod;\n\t}\n\tcout << ans << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 20320, "score_of_the_acc": -1.5, "final_rank": 16 }, { "submission_id": "aoj_3119_4087810", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\nconstexpr long long int MOD = 1000000007;\nlong long int power(long long int base, int exp) {\n\tswitch (exp) {\n\tcase 0: return 1;\n\tcase 1: return base % MOD;\n\tdefault: return power(base * base % MOD, exp / 2) * power(base, exp % 2) % MOD;\n\t}\n}\nlong long int power_set_size(int size) {\n\tstatic std::vector<long long int> memo(100001, -1);\n\tif (memo[size] >= 0) return memo[size];\n\treturn memo[size] = power(2, size);\n}\nlong long int calc(const std::vector<int>& values, int size = 20) {\n\tif (size == 0) return (power_set_size(values.size()) + MOD - 1) % MOD;\n\tif (values.empty()) return 0;\n\tlong long int sum{ 0 };\n\tstd::vector<int> sub;\n\tfor (auto i = 0; i < size; ++i) {\n\t\tsub.clear();\n\t\tfor (const auto v : values) if ((v & (1 << i)) != 0) sub.push_back(v);\n\t\tsum += calc(sub, i);\n\t}\n\treturn ((power_set_size(values.size()) + MOD - 1 - sum) % MOD + MOD) % MOD;\n}\nint count_bit(int n) {\n\treturn (n == 0) ? 0 : (n & 1) + count_bit(n >> 1);\n}\nint main() {\n\tint n; std::cin >> n;\n\tstd::vector<int> values(n); for (auto& a : values) std::cin >> a;\n\tstd::vector<long long int> pattern(1 << 20, 0);\n\tfor (const auto a : values) pattern[a]++;\n\tfor (auto i = 0; i < 20; ++i) {\n\t\tfor (auto j = 0; j < pattern.size(); ++j) \n\t\t\tif ((j & (1 << i)) == 0) {\n\t\t\t\tpattern[j] += pattern[j | (1 << i)];\n\t\t\t\tpattern[j] %= MOD;\n\t\t\t}\n\t}\n\tlong long int result = 0;\n\tfor (auto i = 0; i < pattern.size(); ++i) {\n\t\tif (count_bit(i) % 2 == 0) {\n\t\t\tresult += power(2, pattern[i]) - 1;\n\t\t}\n\t\telse {\n\t\t\tresult -= power(2, pattern[i]) - 1;\n\t\t}\n\t\tresult %= MOD;\n\t}\n\tstd::cout << (result + MOD) % MOD << std::endl;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 11512, "score_of_the_acc": -0.8444, "final_rank": 14 }, { "submission_id": "aoj_3119_4083757", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int64_t MOD = 1e9+7;\nvoid add(int64_t& a, int64_t b){\n a = (a+b) % MOD;\n}\nvoid mul(int64_t& a, int64_t b){\n a = a*b % MOD;\n}\n\nvector<int64_t> fact, seq_inv, fact_inv;\n\nvoid create_fact_mod(int num){\n fact[0] = fact[1] = 1;\n for(int i=2; i<=num; i++) fact[i] = fact[i-1] * i % MOD;\n}\n\nvoid create_seq_inv_mod(int num){\n seq_inv[0] = seq_inv[1] = 1;\n for(int i=2; i<=num; i++) seq_inv[i] = (MOD - MOD/i) * seq_inv[MOD%i] % MOD;\n}\n\nvoid create_fact_inv_mod(int num){\n fact_inv[0] = fact_inv[1] = 1;\n for(int i=2; i<=num; i++) fact_inv[i] = fact_inv[i-1] * seq_inv[i] % MOD;\n}\n\nvoid create_mod_tables(int num){\n fact.resize(num+1);\n seq_inv.resize(num+1);\n fact_inv.resize(num+1);\n create_fact_mod(num);\n create_seq_inv_mod(num);\n create_fact_inv_mod(num);\n}\n\nint64_t comb_mod(int n, int k){\n return fact[n] * fact_inv[n-k] % MOD * fact_inv[k] % MOD;\n}\n\nint64_t perm_mod(int n, int k){\n return fact[n] * fact_inv[n-k] % MOD;\n}\n\nint64_t power_mod(int64_t num, int64_t power){\n int64_t prod = 1;\n num %= MOD;\n while(power > 0){\n if(power&1) prod = prod * num % MOD;\n num = num * num % MOD;\n power >>= 1;\n }\n return prod;\n}\n\nint64_t extgcd(int64_t a, int64_t b, int64_t& x, int64_t& y){\n int64_t d = a;\n if(b != 0){\n d = extgcd(b, a%b, y, x);\n y -= (a/b) * x;\n }else{\n x = 1; y = 0;\n }\n return d;\n}\n\nint64_t inv_mod(int64_t a){\n int64_t x, y;\n extgcd(a, MOD, x, y);\n return (MOD + x%MOD) % MOD;\n}\n\nint nth_bit(int64_t num, int n){\n return (num >> n) & 1;\n}\n\nint pop_count(int bits){\n bits = (bits & 0x55555555) + (bits >> 1 & 0x55555555);\n bits = (bits & 0x33333333) + (bits >> 2 & 0x33333333);\n bits = (bits & 0x0f0f0f0f) + (bits >> 4 & 0x0f0f0f0f);\n bits = (bits & 0x00ff00ff) + (bits >> 8 & 0x00ff00ff);\n return (bits & 0x0000ffff) + (bits >>16 & 0x0000ffff);\n}\n\nint main(){\n int N;\n cin >> N;\n const int M = 1<<20;\n static int num[M];\n for(int i=0; i<N; i++){\n int a;\n cin >> a;\n num[a]++;\n }\n for(int k=0; k<20; k++) for(int i=M-1; i>=0; i--) if(!nth_bit(i, k)) num[i] += num[i+(1<<k)];\n\n vector<int64_t> pw2(N+1, 1);\n for(int i=1; i<=N; i++) pw2[i] = pw2[i-1] * 2 % MOD;\n\n\n int64_t ans = 0;\n for(int i=0; i<M; i++){\n int64_t res = pw2[num[i]] - 1;\n if(pop_count(i)%2) res *= -1;\n add(ans, MOD+res);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7512, "score_of_the_acc": -0.1717, "final_rank": 3 }, { "submission_id": "aoj_3119_4081711", "code_snippet": "#include <cstdint>\n\nnamespace n91 {\n\ntemplate <std::uint_fast64_t Modulus> class modint {\n using u64 = std::uint_fast64_t;\n\npublic:\n using value_type = u64;\n\n static constexpr u64 mod = Modulus;\n\nprivate:\n static_assert(mod < static_cast<u64>(1) << 32,\n \"Modulus must be less than 2**32\");\n\n u64 v;\n\n constexpr modint &negate() noexcept {\n if (v != 0)\n v = mod - v;\n return *this;\n }\n\npublic:\n constexpr modint(const u64 x = 0) noexcept : v(x % mod) {}\n constexpr u64 &value() noexcept { return v; }\n constexpr const u64 &value() const noexcept { return v; }\n constexpr modint operator+() const noexcept { return modint(*this); }\n constexpr modint operator-() const noexcept { return modint(*this).negate(); }\n constexpr modint operator+(const modint rhs) const noexcept {\n return modint(*this) += rhs;\n }\n constexpr modint operator-(const modint rhs) const noexcept {\n return modint(*this) -= rhs;\n }\n constexpr modint operator*(const modint rhs) const noexcept {\n return modint(*this) *= rhs;\n }\n constexpr modint operator/(const modint rhs) const noexcept {\n return modint(*this) /= rhs;\n }\n constexpr modint &operator+=(const modint rhs) noexcept {\n v += rhs.v;\n if (v >= mod)\n v -= mod;\n return *this;\n }\n constexpr modint &operator-=(const modint rhs) noexcept {\n if (v < rhs.v)\n v += mod;\n v -= rhs.v;\n return *this;\n }\n constexpr modint &operator*=(const modint rhs) noexcept {\n v = v * rhs.v % mod;\n return *this;\n }\n constexpr modint &operator/=(modint rhs) noexcept {\n u64 exp = mod - 2;\n while (exp) {\n if (exp % 2 != 0)\n *this *= rhs;\n rhs *= rhs;\n exp /= 2;\n }\n return *this;\n }\n constexpr bool operator==(const modint rhs) const noexcept {\n return v == rhs.v;\n }\n constexpr bool operator!=(const modint rhs) const noexcept {\n return v != rhs.v;\n }\n};\ntemplate <std::uint_fast64_t Modulus>\nconstexpr typename modint<Modulus>::u64 modint<Modulus>::mod;\n\n} // namespace n91\n\n#include <cstddef>\n#include <vector>\n\ntemplate <class S>\nvoid subset_zeta_transform(std::vector<typename S::value_type> &a) {\n using size_t = std::size_t;\n\n const size_t n = a.size();\n for (size_t i = 1; i < n; i *= 2) {\n for (size_t j = 0; j != n; j += 1) {\n if ((j & i) != 0)\n a[j] = S::operation(a[j & ~i], a[j]);\n }\n }\n}\n\ntemplate <class S>\nvoid superset_zeta_transform(std::vector<typename S::value_type> &a) {\n using size_t = std::size_t;\n\n const size_t n = a.size();\n for (size_t i = 1; i < n; i *= 2) {\n for (size_t j = 0; j != n; j += 1) {\n if ((j & i) != 0)\n a[j & ~i] = S::operation(a[j & ~i], a[j]);\n }\n }\n}\n\ntemplate <class G>\nvoid subset_mobius_transform(std::vector<typename G::value_type> &a) {\n using size_t = std::size_t;\n\n const size_t n = a.size();\n size_t i = 1;\n while (i < n)\n i *= 2;\n while (i != 1) {\n i /= 2;\n for (size_t j = 0; j != n; j += 1) {\n if ((j & i) != 0)\n a[j] = G::operation(G::inverse(a[j & ~i]), a[j]);\n }\n }\n}\n\ntemplate <class G>\nvoid superset_mobius_transform(std::vector<typename G::value_type> &a) {\n using size_t = std::size_t;\n\n const size_t n = a.size();\n size_t i = 1;\n while (i < n)\n i *= 2;\n while (i != 1) {\n i /= 2;\n for (size_t j = 0; j != n; j += 1) {\n if ((j & i) != 0)\n a[j & ~i] = G::operation(a[j & ~i], G::inverse(a[j]));\n }\n }\n}\n\ntemplate <class T> class multiplies_monoid {\npublic:\n using value_type = T;\n\n static constexpr T operation(const T &x, const T &y) noexcept {\n return x * y;\n }\n static constexpr T identity = 1;\n};\ntemplate <class T> constexpr T multiplies_monoid<T>::identity;\n\ntemplate <class T> class plus_abelian {\npublic:\n using value_type = T;\n static constexpr T operation(const T &x, const T &y) noexcept {\n return x + y;\n }\n static constexpr T identity = 0;\n static constexpr T inverse(const T &x) noexcept { return -x; }\n};\ntemplate <class T> constexpr T plus_abelian<T>::identity;\n\n#include <iostream>\n#include <vector>\n\nint main() {\n using mint = n91::modint<1000000007>;\n\n int n;\n std::cin >> n;\n std::vector<mint> b(1 << 20, 1);\n for (int i = 0; i != n; i += 1) {\n int a;\n std::cin >> a;\n b[a] += b[a];\n }\n superset_zeta_transform<multiplies_monoid<mint>>(b);\n superset_mobius_transform<plus_abelian<mint>>(b);\n std::cout << b[0].value() << std::endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 10944, "score_of_the_acc": -0.5522, "final_rank": 10 }, { "submission_id": "aoj_3119_4081252", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define SZ(x) (int)(x.size())\n\nusing ll = long long;\nusing ld = long double;\nusing P = pair<int, int>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vll = vector<ll>;\nusing vvll = vector<vector<ll>>;\nconst double eps = 1e-10;\nconst int MOD = 1000000007;\nconst int INF = 1000000000;\nconst ll LINF = 1ll<<50;\n\ntemplate<typename T>\nvoid printv(const vector<T>& s) {\n for(int i=0;i<(int)(s.size());++i) {\n cout << s[i];\n if(i == (int)(s.size())-1) cout << endl;\n else cout << \" \";\n }\n}\n\nint cnt(int n) {\n int res = 0;\n while(n > 0) {\n res += n % 2;\n n /= 2;\n }\n return res;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n\n int n; cin >> n;\n vi v(1<<20);\n for(int i=0;i<n;++i) {\n int a; cin >> a;\n v[a]++;\n }\n\n for(int i=0;i<20;++i) {\n for(int j=0;j<(1<<20);++j) {\n if((j>>i)&1) {\n v[j-(1<<i)] += v[j];\n }\n }\n }\n\n vll po(n);\n po[0] = 1;\n for(int i=0;i<n;++i) {\n po[i+1] = po[i] * 2 % MOD;\n }\n\n ll ans = 0;\n for(int i=0;i<(1<<20);++i) {\n if(cnt(i) % 2 == 0) {\n ans += po[v[i]];\n ans %= MOD;\n } else {\n ans += MOD - po[v[i]];\n ans %= MOD;\n }\n }\n cout << ans << endl;\n\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 7728, "score_of_the_acc": -0.1253, "final_rank": 2 }, { "submission_id": "aoj_3119_4081245", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define SZ(x) (int)(x.size())\n\nusing ll = long long;\nusing ld = long double;\nusing P = pair<int, int>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vll = vector<ll>;\nusing vvll = vector<vector<ll>>;\nconst double eps = 1e-10;\nconst int MOD = 1000000007;\nconst int INF = 1000000000;\nconst ll LINF = 1ll<<50;\n\ntemplate<typename T>\nvoid printv(const vector<T>& s) {\n for(int i=0;i<(int)(s.size());++i) {\n cout << s[i];\n if(i == (int)(s.size())-1) cout << endl;\n else cout << \" \";\n }\n}\n\nint cnt(int n) {\n int res = 0;\n while(n > 0) {\n res += n % 2;\n n /= 2;\n }\n return res;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n\n int n; cin >> n;\n vi v(1<<20);\n for(int i=0;i<n;++i) {\n int a; cin >> a;\n v[a]++;\n }\n\n for(int i=0;i<20;++i) {\n for(int j=0;j<(1<<20);++j) {\n if((j>>i)&1) {\n v[j-(1<<i)] += v[j];\n }\n }\n }\n\n vll po(21);\n po[0] = 1;\n for(int i=0;i<20;++i) {\n po[i+1] = po[i] * 2 % MOD;\n }\n\n ll ans = 0;\n for(int i=0;i<(1<<20);++i) {\n if(cnt(i) % 2 == 0) {\n ans += po[v[i]];\n ans %= MOD;\n } else {\n ans += MOD - po[v[i]];\n ans %= MOD;\n }\n }\n cout << ans << endl;\n\n}", "accuracy": 0.2, "time_ms": 20, "memory_kb": 6884, "score_of_the_acc": 0, "final_rank": 18 }, { "submission_id": "aoj_3119_4081239", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define SZ(x) (int)(x.size())\n\nusing ll = long long;\nusing ld = long double;\nusing P = pair<int, int>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vll = vector<ll>;\nusing vvll = vector<vector<ll>>;\nconst double eps = 1e-10;\nconst int MOD = 1000000007;\nconst int INF = 1000000000;\nconst ll LINF = 1ll<<50;\n\ntemplate<typename T>\nvoid printv(const vector<T>& s) {\n for(int i=0;i<(int)(s.size());++i) {\n cout << s[i];\n if(i == (int)(s.size())-1) cout << endl;\n else cout << \" \";\n }\n}\n\nint count(int n) {\n int res = 0;\n while(n > 0) {\n res += n % 2;\n n /= 2;\n }\n return res;\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n\n int n; cin >> n;\n vi v(1<<20);\n for(int i=0;i<n;++i) {\n int a; cin >> a;\n v[a]++;\n }\n\n for(int i=0;i<20;++i) {\n for(int j=0;j<(1<<20);++j) {\n if((j>>i)&1) {\n v[j-(1<<i)] += v[j];\n }\n }\n }\n\n vll po(21);\n po[0] = 1;\n for(int i=0;i<20;++i) {\n po[i+1] = po[i] * 2 % MOD;\n }\n\n ll ans = 0;\n for(int i=0;i<(1<<20);++i) {\n if(count(i) % 2 == 0) {\n ans += po[v[i]];\n ans %= MOD;\n } else {\n ans += MOD - po[v[i]];\n ans %= MOD;\n }\n }\n cout << ans << endl;\n\n}", "accuracy": 0.2, "time_ms": 20, "memory_kb": 7052, "score_of_the_acc": -0.0125, "final_rank": 19 }, { "submission_id": "aoj_3119_4081103", "code_snippet": "//\n// Created by yamunaku on 2019/12/29.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing mti = vector<vector<int>>;\nusing vl = vector<ll>;\nusing mtl = vector<vector<ll>>;\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\ntemplate<typename T>\nusing heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;\n\nll modpow(ll x, ll a){\n ll ans = 1;\n while(a){\n if(a & 1) ans = ans * x % MOD;\n a >>= 1;\n x = x * x % MOD;\n }\n return ans;\n}\n\nll inv(ll x){\n return modpow(x, MOD - 2);\n}\n\n\nint main(){\n // CFS;\n int n;\n cin >> n;\n vi a(n);\n int b = 20;\n vi dp(1 << b, 0);\n rep(i, n){\n cin >> a[i];\n dp[a[i]]++;\n }\n rep(i, b){\n rep(j, 1 << b){\n if(j & (1 << i)) dp[j ^ (1 << i)] += dp[j];\n }\n }\n ll ans = modpow(2, n) - 1;\n vl mp(n + 1, 1);\n repl(i, 1, n + 1) mp[i] = mp[i - 1] * 2 % MOD;\n repl(i, 1, 1 << b){\n int c = 0;\n rep(j, b) if(i & (1 << j)) c++;\n ans = (ans + (mp[dp[i]] - 1 + MOD) % MOD * (1 - c % 2 * 2) + MOD) % MOD;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 8052, "score_of_the_acc": -0.2744, "final_rank": 5 }, { "submission_id": "aoj_3119_4078905", "code_snippet": "#include<iostream>\nusing namespace std;\nlong mod=1e9+7;\nlong power(long a,long b){return b?power(a*a%mod,b/2)*(b%2?a:1)%mod:1;}\nint N;\nint cnt[1<<20];\nmain()\n{\n\tcin>>N;\n\tfor(int i=0;i<N;i++)\n\t{\n\t\tint a;cin>>a;cnt[a]++;\n\t}\n\tfor(int i=0;i<20;i++)for(int j=0;j<1<<20;j++)if(!(j>>i&1))cnt[j]+=cnt[j|1<<i];\n\tlong ans=0;\n\tfor(int i=0;i<1<<20;i++)\n\t{\n\t\tlong now=power(2,cnt[i]);\n\t\tans+=__builtin_popcount(i)%2?-now:now;\n\t}\n\tcout<<(ans%mod+mod)%mod<<endl;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 7172, "score_of_the_acc": -1.0214, "final_rank": 15 } ]
aoj_3125_cpp
今日の乱数 (Today's Random Number) E869120 君は、「今日の乱数」というキャンペーンをN日間行いました。これは、毎日 1 回乱数を生成し、その値をツイッターに投稿するという企画です。 $1, 2, 3, \dots, N$ 日目の「今日の乱数」は、それぞれ $A_1, A_2, A_3, \dots, A_N$ でした。 E869120 君は、今日の乱数の値が昨日の乱数の値よりも高ければ嬉しくなります。 $N$ 日間のなかで、E869120 君は何回「今日の乱数」によって嬉しくなったでしょうか? 入力 入力は以下の形式で標準入力から与えられる。 $N$ $A_1$ $A_2$ $A_3$ $\dots$ $A_N$ 出力 $N$ 日間のなかで、E869120 君が「今日の乱数」によって嬉しくなった回数を、1 行で出力してください。 ただし、最後には改行を入れること。 制約 $1 \leq N \leq 100000 \ (= 10^5)$ $1 \leq A_i \leq 1000000000 \ (= 10^9)$ 入力は全て整数である。 入力例1 5 8 6 9 1 20 出力例1 2 3 日目と 5 日目にE869120君は嬉しさを感じます。 入力例2 6 3 3 4 3 3 4 出力例2 2 3 日目と 6 日目にE869120君は嬉しさを感じます。 入力例3 10 10 9 8 7 6 5 4 3 2 1 出力例3 0 E869120君が「今日の乱数」によって嬉しくなることはありません。
[ { "submission_id": "aoj_3125_7075721", "code_snippet": "#include <iostream>\n#include <vector>\n#include <limits>\n#include <string>\n#include <algorithm>\n#include <cmath>\n#include <iomanip>\n#include <numeric>\n#include <stack>\n#include <queue>\n#include <list>\n#include <set>\n#include <unordered_set>\n#include <tuple>\n#include <map>\n#include <bitset>\n\nusing namespace std;\n\nint main()\n{\n\tint N;\n\tcin >> N;\n\n\tvector<int> A(N);\n\n\tint happyCnt = 0;\n\tfor (int i = 0; i < N; i++)\n\t{\n\t\tcin >> A[i];\n\n\t\tif (i != 0)\n\t\t{\n\t\t\tif (A[i] > A[i - 1])\n\t\t\t{\n\t\t\t\thappyCnt++;\n\t\t\t}\n\t\t}\n\t}\n\n\tcout << happyCnt << endl;\n\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3592, "score_of_the_acc": -0.6313, "final_rank": 16 }, { "submission_id": "aoj_3125_6986816", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main(){\n int n, pre = 1 << 30, v, ans = 0;\n cin >> n;\n while(n--){\n cin >> v;\n ans += (v > pre);\n pre = v;\n }\n cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3420, "score_of_the_acc": -0.4141, "final_rank": 12 }, { "submission_id": "aoj_3125_4848787", "code_snippet": "#include <iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\nusing namespace std;\ntypedef long long ll;\n#define rep(i,n) for(int i = 0;i <n;i++)\n#define ALL(a) a.begin(),a.end()\nint main(){\n\tint n, sum = 0; cin >> n;\n\tvector<int> a(n); rep(i, n) cin >> a[i];\n\trep(i, n-1) {\n\t\tif (a[i] < a[i + 1])sum++;\n\t}cout << sum << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3124, "score_of_the_acc": -0.0404, "final_rank": 11 }, { "submission_id": "aoj_3125_4391850", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint main(){\n int n;\n cin >> n;\n vector<int> a(n);\n for(int i=0; i<n; i++){\n \tcin >> a[i];\n }\n int ans = 0;\n for(int i=0; i<n-1; i++){\n \tif(a[i+1] > a[i]){\n \t\tans++;\n \t}\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3120, "score_of_the_acc": -0.0354, "final_rank": 10 }, { "submission_id": "aoj_3125_4163908", "code_snippet": "#include<iostream>\n#include<vector>\nusing namespace std;\nsigned main(){\n int n;\n cin>>n;\n vector<int> a(n);\n for(auto& ai:a)cin>>ai;\n int ans = 0;\n for(int i=0;i<n-1;++i){\n if(a[i]<a[i+1])ans++;\n }\n cout<< ans <<endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3108, "score_of_the_acc": -0.0202, "final_rank": 3 }, { "submission_id": "aoj_3125_4136975", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n#include <functional>\n#include <algorithm>\n#include <vector>\n#include <string>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\nusing namespace std;\ntypedef long long llong;\n\nint main() {\n llong n;\n llong a, b;\n llong ans = 0;\n\n b = 1ll << 60ll;\n\n cin >> n;\n for (int i = 0; i < n; i++) {\n cin >> a;\n if (a > b) ans++;\n b = a;\n }\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3112, "score_of_the_acc": -0.0253, "final_rank": 5 }, { "submission_id": "aoj_3125_4106940", "code_snippet": "#include<iostream>\nusing namespace std;\nint main(){\n int n;\n int a[100010];\n cin >> n;\n for(int i=0;i<n;i++){\n cin >> a[i];\n }\n int cnt = 0;\n for(int i=0;i<n-1;i++){\n cnt += a[i]<a[i+1];\n }\n cout << cnt << endl;\n return(0);\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3488, "score_of_the_acc": -0.5, "final_rank": 14 }, { "submission_id": "aoj_3125_4098902", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main() {\n\n int N;\n cin>>N;\n int a[N], count = 0, com = 1000000000;\n \n for(int i = 0; i < N; i++) {\n cin>>a[i];\n if(com < a[i]) count++;\n com = a[i];\n }\n\n cout<<count<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3476, "score_of_the_acc": -0.4848, "final_rank": 13 }, { "submission_id": "aoj_3125_4098897", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define M 100000\nint main(){\n int n,a[M],i;\n\n int c=0;\n cin>>n>>a[0];\n for(i=1;i<n;i++){\n cin>>a[i];\n if(a[i]>a[i-1])c++;\n }\n\n cout<<c<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3488, "score_of_the_acc": -1.5, "final_rank": 20 }, { "submission_id": "aoj_3125_4098849", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint main() {\n\tint n; cin >> n;\n\tvector<int> a(n);\n\tfor(auto&e:a) cin >> e;\n\tint ans=0;\n\tfor(int i=1;i<n;++i)\n\t\tif(a[i-1]<a[i]) ++ans;\n\tcout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3116, "score_of_the_acc": -0.0303, "final_rank": 8 }, { "submission_id": "aoj_3125_4098821", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define INF (1<<30)\n\nint main(){\n\tint n;\tcin>>n;\n\n\tint ans=0, prev=INF;\n\tfor(int i=0;i<n;i++){\n\t\tint x;\tcin>>x;\n\t\tif(prev<x)ans++;\n\n\t\tprev=x;\n\t}\n\tcout<<ans<<endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3116, "score_of_the_acc": -0.0303, "final_rank": 8 }, { "submission_id": "aoj_3125_4085258", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n//#include <boost/multiprecision/cpp_int.hpp>\n//typedef boost::multiprecision::cpp_int ll;\ntypedef long double dd;\n#define i_7 (ll)(1E9+7)\n//#define i_7 998244353\n#define i_5 i_7-2\nll mod(ll a){\n ll c=a%i_7;\n if(c>=0)return c;\n return c+i_7;\n}\ntypedef pair<ll,ll> l_l;\nll inf=(ll)1E16;\n#define rep(i,l,r) for(ll i=l;i<=r;i++)\n#define pb push_back\nll max(ll a,ll b){if(a<b)return b;else return a;}\nll min(ll a,ll b){if(a>b)return b;else return a;}\nvoid Max(ll &pos,ll val){pos=max(pos,val);}//Max(dp[n],dp[n-1]);\nvoid Min(ll &pos,ll val){pos=min(pos,val);}\nvoid Add(ll &pos,ll val){pos=mod(pos+val);}\ndd EPS=1E-9;\n#define fastio ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n////////////////////////////\n\nint main(){\n ll n;cin>>n;\n ll a[n];\n rep(i,0,n-1){\n cin>>a[i];\n }\n ll ans=0;\n rep(i,1,n-1){\n if(a[i]>a[i-1]){\n ans++;\n }\n }\n cout<<ans<<endl;\n \n \n \n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3884, "score_of_the_acc": -1, "final_rank": 19 }, { "submission_id": "aoj_3125_4083384", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\n\nint main() {\n\tint n; std::cin >> n;\n\tint prev = INT_MAX;\n\tint count = 0;\n\tfor (auto i = 0; i < n; ++i) {\n\t\tint a; std::cin >> a;\n\t\tif (prev < a) {\n\t\t\t++count;\n\t\t}\n\t\tprev = a;\n\t}\n\tstd::cout << count << std::endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3092, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3125_4080787", "code_snippet": "//\n// Created by yamunaku on 2019/12/29.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing mti = vector<vector<int>>;\nusing vl = vector<ll>;\nusing mtl = vector<vector<ll>>;\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\ntemplate<typename T>\nusing heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;\n\nint main(){\n // CFS;\n int n;\n cin >> n;\n vi a(n);\n rep(i, n) cin >> a[i];\n int ans = 0;\n rep(i, n-1) if(a[i] < a[i + 1]) ans++;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3112, "score_of_the_acc": -0.0253, "final_rank": 5 }, { "submission_id": "aoj_3125_4079868", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main(){\n int N;\n cin >> N;\n vector<int> A(N);\n for(int i=0; i<N; i++) cin >> A[i];\n int ans = 0;\n for(int i=1; i<N; i++) if(A[i-1] < A[i]) ans++;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3108, "score_of_the_acc": -0.0202, "final_rank": 3 }, { "submission_id": "aoj_3125_4079424", "code_snippet": "#include <iostream>\n#include <fstream>\n#include <vector>\n#include <cstring>\n#include <queue>\n#include <algorithm> // sort\n#include <math.h>\n\n#define DEBUG 0\n\n#define REP(i, n) for (long long i = 0; i < (n); i++) \ntypedef long long ll;\nstatic const ll mod = 1000000007;\nstatic const ll INF = 1000000000000000000LL;\n //999999997000000003\n //1000000000000000000\n\nusing namespace std;\n\nint main(){\n#if DEBUG\n std::ifstream in(\"input.txt\");\n std::cin.rdbuf(in.rdbuf());\n#endif\n int N;\n cin >> N;\n vector <int> a(N);\n REP(i,N)cin >> a[i];\n\n int res = 0;\n\n for(int i = 0; i < N - 1; ++i)\n {\n if(a[i] < a[i+1])++res;\n }\n\n cout << res << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3092, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3125_4078401", "code_snippet": "#include<iostream>\nusing namespace std;\nint n,p,a,c;\nmain()\n{\n cin>>n>>p;\n for(int i=1;i<n;i++)cin>>a,c+=p<a,p=a;\n cout<<c<<endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3112, "score_of_the_acc": -0.0253, "final_rank": 5 }, { "submission_id": "aoj_3125_4075663", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define rep(i, a, b) for(int i = a; i < b; i++)\n\nint main(){\n ll N; cin >> N;\n vector<ll> A(N);\n rep(i, 0, N) cin >> A[i];\n \n ll ans = 0;\n rep(i, 1, N){\n if(A[i-1] < A[i]) ans++;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3620, "score_of_the_acc": -0.6667, "final_rank": 18 }, { "submission_id": "aoj_3125_4074958", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <math.h>\n#include <queue>\n#include <map>\n#include <iomanip>\nusing namespace std;\ntypedef long long ll;\n\nint main() {\n int n;\n cin >> n;\n int a[n + 5], ans = 0;\n\n for (int i = 0; i < n; i++) cin >> a[i];\n for (int i = 0; i < n - 1; i++) ans += (a[i] < a[i + 1]);\n cout << ans << endl;\n\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3488, "score_of_the_acc": -0.5, "final_rank": 14 }, { "submission_id": "aoj_3125_4074301", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nint main() {\n\tlong N; cin >> N;\n\tvector<long long>A(N);\n\tfor (long i = 0; i < N; i++) {\n\t\tcin >> A.at(i);\n\t}\n\tlong ans = 0;\n\tfor (long i = 1; i < N; i++) {\n\t\tif (A.at(i - 1) < A.at(i))ans++;\n\t}\n\tcout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3616, "score_of_the_acc": -0.6616, "final_rank": 17 } ]
aoj_3128_cpp
競り (Auction) square1001君はとある競りを鑑賞していました。 競りとは、買い手が多数で品数に制限があるとき、高値を付けたものに買う権利を与える仕組みの取引です。 (新明解国語辞典第七版より) ここでの競りのルールは以下の通りです。 1. 次の 2. ~ 6. を品物が尽きるまで繰り返す 2. 新たな品物を出し、客に見せる 3. 客のうちの 1 人が好きな値段を品物につける 4. 客のうちの 1 人が現在品物についている値段 よりも 高い値段をつける 5. 4. の行為を行う客がいなくなるまで 4. を繰り返す 6. 品物に一番高い値段を付けた客がそれを落札する square1001君はこの競り中に品物につけられた値段を時間順に全て記録しました。 その記録によると、$N$ 回品物に値段がつけられ、つけられた値段は最初から順に $A_1, A_2, A_3, \dots, A_N$ です。 E869120君はこの競りで何個の品物が出品されたか気になっています。 square1001君が作ったリストから、この競りで出品された品物の個数としてありうる最小値と最大値を求めてください。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $A_1$ $A_2$ $A_3$ $\cdots$ $A_N$ 出力 この競りで出品された品物の個数としてありうる最小値と最大値をこの順で改行区切りで出力してください。 ただし、最後には改行を入れること。 制約 $1 \leq N \leq 100000 \ (= 10^5)$ $1 \leq A_i \leq 1000000000 \ (= 10^9)$ 入力は全て整数である。 入力例1 5 8 6 9 1 20 出力例1 3 5 3 つの品物が順に、値段 8、値段 9、値段 20 で落札されたとき、品物の個数は最小値 3 となります。 入力例2 6 3 3 4 3 3 4 出力例2 4 6 入力例3 8 5 5 4 4 3 3 2 2 出力例3 8 8
[ { "submission_id": "aoj_3128_7075741", "code_snippet": "#include <iostream>\n#include <vector>\n#include <limits>\n#include <string>\n#include <algorithm>\n#include <cmath>\n#include <iomanip>\n#include <numeric>\n#include <stack>\n#include <queue>\n#include <list>\n#include <set>\n#include <unordered_set>\n#include <tuple>\n#include <map>\n#include <bitset>\n\nusing namespace std;\n\nint main()\n{\n\tint N;\n\tcin >> N;\n\n\tvector<int> A(N);\n\n\tint minNumOfEntries = 0;\n\tint maxNumOfEntries = N;\n\n\tfor (int i = 0; i < N; i++)\n\t{\n\t\tcin >> A[i];\n\n\t\tif (i != 0)\n\t\t{\n\t\t\tif (A[i] <= A[i - 1])\n\t\t\t{\n\t\t\t\tminNumOfEntries++;\n\t\t\t}\n\t\t}\n\t\telse\n\t\t{\n\t\t\tminNumOfEntries++;\n\t\t}\n\t}\n\n\tcout << minNumOfEntries << endl;\n\tcout << maxNumOfEntries << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3620, "score_of_the_acc": -0.6887, "final_rank": 14 }, { "submission_id": "aoj_3128_4848709", "code_snippet": "#include<bits//stdc++.h>\nusing namespace std;\n#define rep(i,n) for(int i = 0;i<n;i++)\nint main(){\n int n,sum=0;cin >>n;vector<int> a(n);\n rep(i,n){\n cin >> a[i];\n if(i!=0) {\n if(a[i] <=a[i-1]) sum++;\n }\n }cout << sum+1 << endl << n << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3124, "score_of_the_acc": -0.1038, "final_rank": 9 }, { "submission_id": "aoj_3128_4416236", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint main(){\n int n;\n cin >> n;\n vector<int> a(n);\n for(int i=0; i<n; i++){\n cin >> a[i];\n }\n int ans = 1;\n for(int i=0; i<n-1; i++){\n if(a[i+1] <= a[i]) ans++;\n }\n cout << ans << endl;\n cout << n << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3120, "score_of_the_acc": -0.0991, "final_rank": 8 }, { "submission_id": "aoj_3128_4163952", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nsigned main(){\n int n;\n cin>>n;\n vector<int> a(n);\n for(auto& ai:a)cin>>ai;\n int ans = 1;\n for(int i=0;i<n-1;++i){\n if(a[i]>=a[i+1])ans++;\n }\n cout<< ans <<endl;\n cout<< n <<endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3108, "score_of_the_acc": -0.0849, "final_rank": 5 }, { "submission_id": "aoj_3128_4137076", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n#include <functional>\n#include <algorithm>\n#include <vector>\n#include <string>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\nusing namespace std;\ntypedef long long llong;\n\nint main() {\n llong n;\n llong a[100005];\n\n cin >> n;\n llong minv = 1;\n llong maxv = n;\n for (int i = 0; i < n; i++) {\n cin >> a[i];\n if (i && a[i] <= a[i - 1]) minv++;\n }\n\n cout << minv << endl;\n cout << maxv << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3880, "score_of_the_acc": -0.9953, "final_rank": 17 }, { "submission_id": "aoj_3128_4114621", "code_snippet": "#include<iostream>\nusing namespace std;\n\nint main(){\n \n int n,a,b,ans;\n cin >> n >> b;\n ans = 1;\n for(int i=1;i<n;i++){\n cin >> a;\n if(a <= b) ans++;\n b = a;\n }\n cout << ans << endl << n << endl;\n \n return(0);\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3036, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3128_4099030", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main() {\n\n int N;\n cin>>N;\n int a;\n int before, count = 0;\n for(int i = 0; i < N; i++) {\n cin>>a;\n if(before >= a && i != 0) count++;\n before = a;\n }\n count++;\n\n cout<<count<<endl<<N<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3092, "score_of_the_acc": -0.066, "final_rank": 3 }, { "submission_id": "aoj_3128_4098997", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define M 100000\nint main(){\n int n,a[M],i;\n int c=0;\n cin>>n;\n cin>>a[0];\n for(i=1;i<n;i++){\n cin>>a[i];\n if(a[i]<a[i-1])c++;\n if(a[i]==a[i-1])c++;\n }\n cout<<++c<<endl<<n<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3504, "score_of_the_acc": -0.5519, "final_rank": 12 }, { "submission_id": "aoj_3128_4098875", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint main() {\n\tint n; cin >> n;\n\tvector<int> a(n);\n\tfor(auto&e:a) cin >> e;\n\tint ma=1;\n\tfor(int i=1;i<n;++i)\n\t\tif(a[i-1]>=a[i]) ++ma;\n\tcout << ma << endl;\n\tcout << n << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3152, "score_of_the_acc": -0.1368, "final_rank": 11 }, { "submission_id": "aoj_3128_4098863", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define INF (1<<30)\n\nint main(){\n\tint prev=INF,n,ans=0;\tcin>>n;\n\n\tfor(int i=0;i<n;i++){\n\t\tint x;\tcin>>x;\n\t\tif(prev>=x)ans++;\n\n\t\tprev=x;\n\t}\n\tcout<<ans<<endl;\n\tcout<<n<<endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3116, "score_of_the_acc": -0.0943, "final_rank": 6 }, { "submission_id": "aoj_3128_4085266", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n//#include <boost/multiprecision/cpp_int.hpp>\n//typedef boost::multiprecision::cpp_int ll;\ntypedef long double dd;\n#define i_7 (ll)(1E9+7)\n//#define i_7 998244353\n#define i_5 i_7-2\nll mod(ll a){\n ll c=a%i_7;\n if(c>=0)return c;\n return c+i_7;\n}\ntypedef pair<ll,ll> l_l;\nll inf=(ll)1E16;\n#define rep(i,l,r) for(ll i=l;i<=r;i++)\n#define pb push_back\nll max(ll a,ll b){if(a<b)return b;else return a;}\nll min(ll a,ll b){if(a>b)return b;else return a;}\nvoid Max(ll &pos,ll val){pos=max(pos,val);}//Max(dp[n],dp[n-1]);\nvoid Min(ll &pos,ll val){pos=min(pos,val);}\nvoid Add(ll &pos,ll val){pos=mod(pos+val);}\ndd EPS=1E-9;\n#define fastio ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n////////////////////////////\n\nint main(){\n ll n;cin>>n;\n ll ans=1;\n ll a[n];\n rep(i,0,n-1){\n cin>>a[i];\n }\n rep(i,1,n-1){\n if(a[i]<=a[i-1]){\n ans++;\n }\n }\n cout<<ans<<endl<<n<<endl;\n \n \n \n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3884, "score_of_the_acc": -1, "final_rank": 19 }, { "submission_id": "aoj_3128_4083397", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\n\nint main() {\n\tint n; std::cin >> n;\n\tint prev = INT_MAX;\n\tint count = 0;\n\tfor (auto i = 0; i < n; ++i) {\n\t\tint a; std::cin >> a;\n\t\tif (prev >= a) {\n\t\t\t++count;\n\t\t}\n\t\tprev = a;\n\t}\n\tstd::cout << count << '\\n' << n << std::endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3116, "score_of_the_acc": -1.0943, "final_rank": 20 }, { "submission_id": "aoj_3128_4081000", "code_snippet": "//\n// Created by yamunaku on 2019/12/29.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing mti = vector<vector<int>>;\nusing vl = vector<ll>;\nusing mtl = vector<vector<ll>>;\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\ntemplate<typename T>\nusing heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;\n\nint main(){\n // CFS;\n int n;\n cin >> n;\n vi a(n);\n rep(i, n) cin >> a[i];\n int ans = 1;\n repl(i,1,n){\n if(a[i-1]>=a[i]) ans++;\n }\n cout << ans << endl;\n cout << n << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3088, "score_of_the_acc": -0.0613, "final_rank": 2 }, { "submission_id": "aoj_3128_4079873", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main(){\n int N;\n cin >> N;\n vector<int> A(N);\n for(int i=0; i<N; i++) cin >> A[i];\n int ans = 1;\n for(int i=1; i<N; i++) if(A[i-1] >= A[i]) ans++;\n cout << ans << endl << N << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3116, "score_of_the_acc": -0.0943, "final_rank": 6 }, { "submission_id": "aoj_3128_4079834", "code_snippet": "#include <iostream>\n#include <fstream>\n#include <vector>\n#include <cstring>\n#include <math.h>\n#include <algorithm>\n#include <queue>\n#include <bitset>\n#include <set>\n\n#define REP(i, n) for (long long i = 0; i < (n); i++) \ntypedef long long ll;\nstatic const ll INF = 1000000000000000000LL;\nusing namespace std;\n\nconst int MOD = 1000000007;\n\nint main(){\n ll N;\n cin >> N;\n vector <ll> a(N);\n REP(i,N)\n {\n cin >> a[i];\n }\n\n int now = a[0];\n int res = 1;\n for(int i = 1; i < N; ++i)\n {\n if(now >= a[i])++res;\n\n now = a[i];\n }\n cout << res << endl;\n cout << N << endl;\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3620, "score_of_the_acc": -0.6887, "final_rank": 14 }, { "submission_id": "aoj_3128_4078405", "code_snippet": "#include<iostream>\nusing namespace std;\nint n,c,p,a;\nmain()\n{\n cin>>n;\n p=2e9;\n for(int i=0;i<n;i++)cin>>a,c+=p>=a,p=a;\n cout<<c<<endl<<n<<endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3100, "score_of_the_acc": -0.0755, "final_rank": 4 }, { "submission_id": "aoj_3128_4075722", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define rep(i, a, b) for(int i = a; i < b; i++)\n\nint main(){\n ll N; cin >> N;\n vector<ll> A(N);\n rep(i, 0, N) cin >> A[i];\n\n ll cnt = 0;\n rep(i, 1, N) if(A[i-1] >= A[i]) cnt++;\n cout << 1 + cnt << endl;\n cout << N << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3608, "score_of_the_acc": -0.6745, "final_rank": 13 }, { "submission_id": "aoj_3128_4074965", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <math.h>\n#include <queue>\n#include <map>\n#include <iomanip>\nusing namespace std;\ntypedef long long ll;\n\nint main() {\n ll n, v[100010];\n cin >> n;\n for (int i = 0; i < n; i++) {\n cin >> v[i];\n }\n int mn = 1;\n for (int i = 0; i < n - 1; i++) {\n mn += (v[i] >= v[i + 1]);\n }\n cout << mn << endl << n << endl;\n\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3880, "score_of_the_acc": -0.9953, "final_rank": 17 }, { "submission_id": "aoj_3128_4074320", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nint main() {\n\tlong long N;\n\tcin >> N;\n\tvector<long long>A(N);\n\tfor (long long i = 0; i < N; i++) {\n\t\tcin >> A.at(i);\n\t}\n\tlong long MIN = 1, MAX = N;\n\tfor (long long i = 1; i < N; i++) {\n\t\tif (A.at(i - 1) >= A.at(i)) MIN++;\n\t}\n\tcout << MIN << endl << MAX << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3620, "score_of_the_acc": -0.6887, "final_rank": 14 }, { "submission_id": "aoj_3128_4073018", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n\nsigned main() {\n\tint n; cin >> n;\n\tvector<int> a(n);\n\tfor (int i = 0; i < n; ++i) cin >> a[i];\n\t// 最小値の計算\n\tint min = 1;\n\tfor (int i = 0; i < n - 1; ++i)\n\t\tif (a[i] >= a[i + 1])\n\t\t\t++min;\n\t// 答えの出力\n\tcout << min << endl << n << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3128, "score_of_the_acc": -0.1085, "final_rank": 10 } ]
aoj_3127_cpp
ギャグ (Gag) Segtree 君は $N$ 個の「ギャグ」を持っていて、それぞれに「できばえ」 $V_i$ という値が定まっています。 Segtree 君は自由な順番で全てのギャグを公開することにしました。 ここで、 $i$ 番目のギャグを $j$ 番目に公開した時に得られる「うれしさ」は $V_i - j$ と表されます。 Segtree 君が得られる「うれしさ」の和の最大値を求めてください。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $V_1$ $V_2$ $\ldots$ $V_N$ 出力 「うれしさ」の和の最大値を出力してください。ただし、値が 32bit 整数に収まるとは限りません。 最後には改行を入れること。 制約 $1 \leq N \leq 10^5$ $1 \leq V_i \leq 10^5$ 入力は全て整数である。 入力例1 1 59549 出力例1 59548 入力例2 5 2 1 8 5 7 出力例2 8
[ { "submission_id": "aoj_3127_7075731", "code_snippet": "#include <iostream>\n#include <vector>\n#include <limits>\n#include <string>\n#include <algorithm>\n#include <cmath>\n#include <iomanip>\n#include <numeric>\n#include <stack>\n#include <queue>\n#include <list>\n#include <set>\n#include <unordered_set>\n#include <tuple>\n#include <map>\n#include <bitset>\n\nusing namespace std;\n\nint main()\n{\n\tint N;\n\tcin >> N;\n\n\tvector<int> V(N);\n\n\tfor (int i = 0; i < N; i++)\n\t{\n\t\tcin >> V[i];\n\t}\n\n\tsort(V.rbegin(), V.rend());\n\n\tlong long happy = 0;\n\n\tfor (int i = 0; i < N; i++)\n\t{\n\t\thappy += V[i] - (i + 1);\n\t}\n\n\tcout << happy << endl;\n\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3628, "score_of_the_acc": -1.6818, "final_rank": 16 }, { "submission_id": "aoj_3127_6978388", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll=long long;\nint main(void){\n ll n,s1=0,s2=0;\n cin>>n;\n for(ll i=1;i<=n;i++){\n s1+=i;\n }\n for(ll i=0;i<n;i++){\n ll v;cin>>v;\n s2+=v;\n }\n cout<<s2-s1<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3416, "score_of_the_acc": -0.4141, "final_rank": 1 }, { "submission_id": "aoj_3127_4848692", "code_snippet": "#include<bits//stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define rep(i,n) for(int i =0;i<n;i++)\nint main(){\n ll n,sum = 0;cin >>n;vector<int> v(n);\n rep(i,n) {\n cin >> v[i];sum += v[i];\n }cout << sum - n*(n+1)/2<<endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3168, "score_of_the_acc": -1.101, "final_rank": 13 }, { "submission_id": "aoj_3127_4416231", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint main(){\n int n;\n cin >> n;\n long long int ans = 0;\n for(int i=0; i<n; i++){\n long long int a;\n cin >> a;\n ans += a-i-1;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3120, "score_of_the_acc": -1.0404, "final_rank": 12 }, { "submission_id": "aoj_3127_4416228", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint main(){\n int n;\n cin >> n;\n int ans = 0;\n for(int i=0; i<n; i++){\n \tint a;\n \tcin >> a;\n \tans += a-i-1;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.21052631578947367, "time_ms": 20, "memory_kb": 3100, "score_of_the_acc": -1.0152, "final_rank": 18 }, { "submission_id": "aoj_3127_4163937", "code_snippet": "#include<iostream>\nusing namespace std;\nsigned main(){\n int64_t n;\n cin>>n;\n int64_t sum = 0ll;\n sum -= n*(n+1)/2;\n while(n--){\n int64_t ai;\n cin>>ai;\n sum += ai;\n }\n cout<< sum <<endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3108, "score_of_the_acc": -1.0253, "final_rank": 6 }, { "submission_id": "aoj_3127_4137053", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cstdlib>\n#include <cmath>\n#include <cstring>\n#include <functional>\n#include <algorithm>\n#include <vector>\n#include <string>\n#include <queue>\n#include <stack>\n#include <map>\n#include <set>\nusing namespace std;\ntypedef long long llong;\n#define sum(N) ((N) * (N + 1) / 2)\n\nint main() {\n llong n;\n llong v;\n llong ans = 0;\n\n cin >> n;\n for (int i = 0; i < n; i++) {\n cin >> v;\n ans += v;\n }\n\n ans -= sum(n);\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3096, "score_of_the_acc": -1.0101, "final_rank": 3 }, { "submission_id": "aoj_3127_4106960", "code_snippet": "#include<iostream>\nusing namespace std;\nint main(){\n int n;\n long long a,cnt=0;\n cin >> n;\n for(int i=1;i<=n;i++){\n cin >> a;\n cnt += a-i;\n }\n cout << cnt << endl;\n return(0);\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3096, "score_of_the_acc": -1.0101, "final_rank": 3 }, { "submission_id": "aoj_3127_4099017", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main() {\n\n int N;\n cin>>N;\n int a[N];\n for(int i = 0; i < N; i++) cin>>a[i];\n\n sort(a, a+N);\n\n\n\n long long sum = 0;\n int count = 1;\n for(int i = N-1; i >= 0; i--) {\n sum += a[i] -count;\n count++;\n }\n\n cout<<sum<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3540, "score_of_the_acc": -1.5707, "final_rank": 14 }, { "submission_id": "aoj_3127_4099014", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main() {\n\n int N;\n cin>>N;\n int a[N];\n for(int i = 0; i < N; i++) cin>>a[i];\n\n sort(a, a+N);\n\n\n\n int sum = 0;\n int count = 1;\n for(int i = N-1; i >= 0; i--) {\n sum += a[i] -count;\n count++;\n }\n\n cout<<sum<<endl;\n return 0;\n}", "accuracy": 0.21052631578947367, "time_ms": 20, "memory_kb": 3484, "score_of_the_acc": -1.5, "final_rank": 20 }, { "submission_id": "aoj_3127_4098964", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define M 100000\nint main(){\n int n,g[M],i,j;\n long long a=0;\n cin>>n;\n for(i=0;i<n;i++){\n cin>>g[i];\n }\n sort(g,&g[n]);\n for(i=0;i<n;i++){\n a+=g[i]-(i+1);\n }\n cout<<a<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3552, "score_of_the_acc": -1.5859, "final_rank": 15 }, { "submission_id": "aoj_3127_4098864", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint main() {\n\tint n; cin >> n;\n\tlong long ans=0;\n\tfor(int i=0;i<n;++i) {\n\t\tint v; cin >> v;\n\t\tans+=v-i-1;\n\t}\n\tcout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3100, "score_of_the_acc": -1.0152, "final_rank": 5 }, { "submission_id": "aoj_3127_4098847", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main(){\n\tlong long sum=0,n;\tcin>>n;\n\tfor(long long i=1;i<=n;i++){\n\t\tlong long v;\tcin>>v;\n\t\tsum+=v-i;\n\t}\n\tcout<<sum<<endl;\n\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3116, "score_of_the_acc": -1.0354, "final_rank": 10 }, { "submission_id": "aoj_3127_4085262", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n//#include <boost/multiprecision/cpp_int.hpp>\n//typedef boost::multiprecision::cpp_int ll;\ntypedef long double dd;\n#define i_7 (ll)(1E9+7)\n//#define i_7 998244353\n#define i_5 i_7-2\nll mod(ll a){\n ll c=a%i_7;\n if(c>=0)return c;\n return c+i_7;\n}\ntypedef pair<ll,ll> l_l;\nll inf=(ll)1E16;\n#define rep(i,l,r) for(ll i=l;i<=r;i++)\n#define pb push_back\nll max(ll a,ll b){if(a<b)return b;else return a;}\nll min(ll a,ll b){if(a>b)return b;else return a;}\nvoid Max(ll &pos,ll val){pos=max(pos,val);}//Max(dp[n],dp[n-1]);\nvoid Min(ll &pos,ll val){pos=min(pos,val);}\nvoid Add(ll &pos,ll val){pos=mod(pos+val);}\ndd EPS=1E-9;\n#define fastio ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n////////////////////////////\n\nint main(){\n ll n;cin>>n;\n ll a[n];\n ll sum=0;\n rep(i,0,n-1){\n cin>>a[i];\n sum+=a[i];\n sum-=(i+1);\n }\n cout<<sum<<endl;\n \n \n \n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3880, "score_of_the_acc": -2, "final_rank": 17 }, { "submission_id": "aoj_3127_4083402", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\n\nint main() {\n\tlong long int n; std::cin >> n;\n\tlong long int sum = 0;\n\tfor (auto i = 0; i < n; ++i) {\n\t\tint v; std::cin >> v;\n\t\tsum += v;\n\t}\n\tstd::cout << sum - n * (n + 1) / 2 << std::endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3116, "score_of_the_acc": -1.0354, "final_rank": 10 }, { "submission_id": "aoj_3127_4080790", "code_snippet": "//\n// Created by yamunaku on 2019/12/29.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing mti = vector<vector<int>>;\nusing vl = vector<ll>;\nusing mtl = vector<vector<ll>>;\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\ntemplate<typename T>\nusing heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;\n\nint main(){\n // CFS;\n ll n;\n cin >> n;\n ll x,t=0;\n rep(i,n){\n cin >> x;\n t+=x;\n }\n cout << t-n*(n+1)/2 << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3112, "score_of_the_acc": -1.0303, "final_rank": 8 }, { "submission_id": "aoj_3127_4079872", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main(){\n int N;\n cin >> N;\n int64_t ans = 0;\n for(int i=0; i<N; i++){\n int v;\n cin >> v;\n ans += v-i-1;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3108, "score_of_the_acc": -1.0253, "final_rank": 6 }, { "submission_id": "aoj_3127_4079429", "code_snippet": "#include <iostream>\n#include <fstream>\n#include <vector>\n#include <cstring>\n#include <queue>\n#include <algorithm> // sort\n#include <math.h>\n\n#define DEBUG 0\n\n#define REP(i, n) for (long long i = 0; i < (n); i++) \ntypedef long long ll;\nstatic const ll mod = 1000000007;\nstatic const ll INF = 1000000000000000000LL;\n //999999997000000003\n //1000000000000000000\n\nusing namespace std;\n\nint main(){\n#if DEBUG\n std::ifstream in(\"input.txt\");\n std::cin.rdbuf(in.rdbuf());\n#endif\n ll N;\n cin >> N;\n ll res = 0;\n REP(i,N)\n {\n int a;\n cin >> a;\n res += a - i - 1;\n }\n\n cout << res << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3088, "score_of_the_acc": -1, "final_rank": 2 }, { "submission_id": "aoj_3127_4079428", "code_snippet": "#include <iostream>\n#include <fstream>\n#include <vector>\n#include <cstring>\n#include <queue>\n#include <algorithm> // sort\n#include <math.h>\n\n#define DEBUG 0\n\n#define REP(i, n) for (long long i = 0; i < (n); i++) \ntypedef long long ll;\nstatic const ll mod = 1000000007;\nstatic const ll INF = 1000000000000000000LL;\n //999999997000000003\n //1000000000000000000\n\nusing namespace std;\n\nint main(){\n#if DEBUG\n std::ifstream in(\"input.txt\");\n std::cin.rdbuf(in.rdbuf());\n#endif\n int N;\n cin >> N;\n int res = 0;\n REP(i,N)\n {\n int a;\n cin >> a;\n res += a - i - 1;\n }\n\n cout << res << endl;\n return 0;\n}", "accuracy": 0.21052631578947367, "time_ms": 20, "memory_kb": 3112, "score_of_the_acc": -1.0303, "final_rank": 19 }, { "submission_id": "aoj_3127_4078404", "code_snippet": "#include<iostream>\nusing namespace std;\nlong n,v,s;\nmain()\n{\n cin>>n;\n s=-n*(n+1)/2;\n for(int i=0;i<n;i++)cin>>v,s+=v;\n cout<<s<<endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3112, "score_of_the_acc": -1.0303, "final_rank": 8 } ]
aoj_3133_cpp
カツサンド (Cutlet Sandwich) ある世界には、 $X$ 種類の「サンド」、 $Y$ 種類の「カツ」、 $Z$ 種類の「カレー」という食べ物があります。 この世界には $N$ 種類の「カツサンド」という食べ物があり、 $i$ 種類目のカツサンドは $A_i$ 種類目のサンドと $B_i$ 種類目のカツが原料です。 また、 $M$ 種類の「カツカレー」という食べ物があり、 $i$ 種類目のカツカレーは $C_i$ 種類目のカツと $D_i$ 種類目のカレーが原料です。 Segtree 君は、あるカツサンドまたはカツカレーを持っているとき、原料のうち少なくとも $1$ つが共通しているようなカツサンドまたはカツカレーと交換することができます。 例えば、$a$ 種類目のサンドと $b$ 種類目のカツが原料であるカツサンドを持っているとき、 $a$ 種類目のサンドまたは $b$ 種類目のカツを原料に持つ任意のカツサンド、または、 $b$ 種類目のカツを原料に含む任意のカツカレーと交換できます。 今、 Segtree 君は $S$ 種類目のカツサンドを持っていますが、食べたいのは $T$ 種類目のカツカレーです。 $T$ 種類目のカツカレーを手に入れることができるか判定してください。もし可能ならば、最小何回の交換で目的のカツカレーを手にいられるかを求めてください。 入力 入力は以下の形式で標準入力から与えられる。 $X$ $Y$ $Z$ $N$ $M$ $S$ $T$ $A_1$ $B_1$ $A_2$ $B_2$ $\ldots$ $A_N$ $B_N$ $C_1$ $D_1$ $C_2$ $D_2$ $\ldots$ $C_M$ $D_M$ 出力 $T$ 種類目のカツカレーを手に入れるために必要な最小の交換回数を出力してください。手に入れることが不可能ならば、代わりに「 $-1$ 」を出力してください。 ただし、最後には改行を入れること。 制約 $1 \leq X,Y,Z,N,M \leq 10^5$ $1 \leq S \leq N$ $1 \leq T \leq M$ $1 \leq A_i \leq X$ $1 \leq B_i \leq Y$ $1 \leq C_i \leq Y$ $1 \leq D_i \leq Z$ 入力は全て整数である。 入力例1 1 1 1 1 1 1 1 1 1 1 1 出力例1 1 入力例2 2 3 4 3 5 1 5 1 1 1 2 2 2 2 1 3 1 3 2 3 3 3 4 出力例2 4 入力例3 1 2 2 1 2 1 1 1 2 1 2 2 1 出力例3 -1
[ { "submission_id": "aoj_3133_10315199", "code_snippet": "// AOJ #3133 Cutlet Sandwich\n// 2025.3.21\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nint main(){\n int X = Cin(), Y = Cin(), Z = Cin(), N = Cin(), M = Cin(), S = Cin(), T = Cin();\n\n vector<int> A(N), B(N);\n for (int i = 0; i < N; i++) A[i] = Cin(), B[i] = Cin();\n\n vector<int> C(M), D(M);\n for (int i = 0; i < M; i++) C[i] = Cin(), D[i] = Cin();\n\n vector<vector<int>> sand(X+1), kat(Y+1), curry(Z+1);\n for (int i = 0; i < N; i++){\n sand[A[i]].push_back(i);\n kat[B[i]].push_back(i);\n }\n for (int i = 0; i < M; i++){\n kat[C[i]].push_back(N+i);\n curry[D[i]].push_back(N+i);\n }\n\n int tot = N + M;\n vector<int> d(tot, -1);\n d[S-1] = 0;\n queue<int> q;\n q.push(S-1);\n\n vector<bool> usedSand(X+1, false), usedKat(Y+1, false), usedCurry(Z+1, false);\n int goal = N + T - 1;\n\n while(!q.empty()){\n int u = q.front(); q.pop();\n if(u == goal){\n Cout(d[u]);\n return 0;\n }\n if(u < N){\n int s = A[u], k = B[u];\n if(!usedSand[s]){\n usedSand[s] = true;\n for(auto v : sand[s]){\n if(d[v] == -1){\n d[v] = d[u] + 1;\n q.push(v);\n }\n }\n }\n if(!usedKat[k]){\n usedKat[k] = true;\n for(auto v : kat[k]){\n if(d[v] == -1){\n d[v] = d[u] + 1;\n q.push(v);\n }\n }\n }\n } else {\n int k = C[u-N], c = D[u-N];\n if(!usedKat[k]){\n usedKat[k] = true;\n for(auto v : kat[k]){\n if(d[v] == -1){\n d[v] = d[u] + 1;\n q.push(v);\n }\n }\n }\n if(!usedCurry[c]){\n usedCurry[c] = true;\n for(auto v : curry[c]){\n if(d[v] == -1){\n d[v] = d[u] + 1;\n q.push(v);\n }\n }\n }\n }\n }\n Cout(-1);\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 19392, "score_of_the_acc": -0.3403, "final_rank": 1 }, { "submission_id": "aoj_3133_10315186", "code_snippet": "// AOJ #3133 Cutlet Sandwich\n// 2025.3.21\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int X, Y, Z, N, M, S, T;\n cin >> X >> Y >> Z >> N >> M >> S >> T;\n\n vector<int> A(N), B(N);\n for (int i = 0; i < N; i++) cin >> A[i] >> B[i];\n\n vector<int> C(M), D(M);\n for (int i = 0; i < M; i++) cin >> C[i] >> D[i];\n\n vector<vector<int>> sand(X+1), kat(Y+1), curry(Z+1);\n for (int i = 0; i < N; i++){\n sand[A[i]].push_back(i);\n kat[B[i]].push_back(i);\n }\n for (int i = 0; i < M; i++){\n kat[C[i]].push_back(N+i);\n curry[D[i]].push_back(N+i);\n }\n\n int tot = N + M;\n vector<int> d(tot, -1);\n d[S-1] = 0;\n queue<int> q;\n q.push(S-1);\n\n vector<bool> usedSand(X+1, false), usedKat(Y+1, false), usedCurry(Z+1, false);\n\n int goal = N + T - 1;\n\n while(!q.empty()){\n int u = q.front(); q.pop();\n if(u == goal){\n cout << d[u] << endl;\n return 0;\n }\n if(u < N){\n int s = A[u], k = B[u];\n if(!usedSand[s]){\n usedSand[s] = true;\n for(auto v : sand[s]){\n if(d[v] == -1){\n d[v] = d[u] + 1;\n q.push(v);\n }\n }\n }\n if(!usedKat[k]){\n usedKat[k] = true;\n for(auto v : kat[k]){\n if(d[v] == -1){\n d[v] = d[u] + 1;\n q.push(v);\n }\n }\n }\n } else {\n int k = C[u-N], c = D[u-N];\n if(!usedKat[k]){\n usedKat[k] = true;\n for(auto v : kat[k]){\n if(d[v] == -1){\n d[v] = d[u] + 1;\n q.push(v);\n }\n }\n }\n if(!usedCurry[c]){\n usedCurry[c] = true;\n for(auto v : curry[c]){\n if(d[v] == -1){\n d[v] = d[u] + 1;\n q.push(v);\n }\n }\n }\n }\n }\n cout << -1 << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 19448, "score_of_the_acc": -0.4045, "final_rank": 2 }, { "submission_id": "aoj_3133_8826757", "code_snippet": "#line 1 \"a.cpp\"\n#define PROBLEM \"\"\n#line 2 \"/home/kuhaku/home/github/algo/lib/graph/graph.hpp\"\n#include <iostream>\n#include <vector>\n\n/**\n * @brief 重み付きグラフ\n *\n * @tparam T 辺の重みの型\n */\ntemplate <class T>\nstruct Graph {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to(), _weight() {}\n constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {}\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr T weight() const { return _weight; }\n\n private:\n int _from, _to;\n T _weight;\n };\n\n public:\n using edge_type = typename Graph<T>::_edge;\n\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); }\n void add_edges(int from, int to, T weight = T(1)) {\n edges[from].emplace_back(from, to, weight);\n edges[to].emplace_back(to, from, weight);\n }\n\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edge(from - base, to - base, weight);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edges(from - base, to - base, weight);\n }\n }\n\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\n\ntemplate <>\nstruct Graph<void> {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to() {}\n constexpr _edge(int from, int to) : _from(from), _to(to) {}\n\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr int weight() const { return 1; }\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n\n private:\n int _from, _to;\n };\n\n public:\n using edge_type = typename Graph<void>::_edge;\n\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to) { edges[from].emplace_back(from, to); }\n void add_edges(int from, int to) {\n edges[from].emplace_back(from, to);\n edges[to].emplace_back(to, from);\n }\n\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edge(from - base, to - base);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edges(from - base, to - base);\n }\n }\n\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\n#line 2 \"/home/kuhaku/home/github/algo/lib/template/template.hpp\"\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = M_PI;\n#line 4 \"/home/kuhaku/home/github/algo/lib/graph/dijkstra.hpp\"\n\n/**\n * @brief ダイクストラ法\n *\n * @tparam T 辺の重みの型\n * @param g グラフ\n * @param s 始点\n * @param inf 正の無限表現\n * @retval std::vector<T> 各頂点までの最短距離\n */\ntemplate <class T>\nstd::vector<T> dijkstra(const Graph<T> &g, int s = 0, T inf = std::numeric_limits<T>::max()) {\n struct _node {\n constexpr _node() : _to(), _dist() {}\n constexpr _node(int to, T dist) : _to(to), _dist(dist) {}\n constexpr bool operator<(const _node &rhs) const { return this->dist() < rhs.dist(); }\n constexpr bool operator>(const _node &rhs) const { return rhs < *this; }\n\n constexpr int to() const { return this->_to; }\n constexpr T dist() const { return this->_dist; }\n\n private:\n int _to;\n T _dist;\n };\n std::vector<T> dists(g.size(), inf);\n std::priority_queue<_node, std::vector<_node>, std::greater<>> p_que;\n dists[s] = T();\n p_que.emplace(s, T());\n while (!p_que.empty()) {\n auto node = p_que.top();\n p_que.pop();\n if (dists[node.to()] < node.dist()) continue;\n for (auto &e : g[node.to()]) {\n if (chmin(dists[e.to()], node.dist() + e.weight()))\n p_que.emplace(e.to(), node.dist() + e.weight());\n }\n }\n return dists;\n}\n\nstd::vector<int> dijkstra(const Graph<void> &g, int s = 0,\n int inf = std::numeric_limits<int>::max()) {\n std::vector<int> dists(g.size(), inf);\n std::queue<int> que;\n dists[s] = 0;\n que.emplace(s);\n while (!que.empty()) {\n auto index = que.front();\n que.pop();\n for (auto &e : g[index]) {\n if (chmin(dists[e.to()], dists[index] + 1)) que.emplace(e.to());\n }\n }\n return dists;\n}\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/macro.hpp\"\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/sonic.hpp\"\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n\n constexpr void operator()() const {}\n} sonic;\n#line 5 \"/home/kuhaku/home/github/algo/lib/template/atcoder.hpp\"\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) {\n os << (it == v.begin() ? \"\" : \" \") << *it;\n }\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\ntemplate <typename T, typename... Args>\nauto make_vector(T x, int arg, Args... args) {\n if constexpr (sizeof...(args) == 0) return std::vector<T>(arg, x);\n else return std::vector(arg, make_vector<T>(x, args...));\n}\nvoid Yes(bool is_correct = true) {\n std::cout << (is_correct ? \"Yes\" : \"No\") << '\\n';\n}\nvoid No(bool is_not_correct = true) {\n Yes(!is_not_correct);\n}\nvoid YES(bool is_correct = true) {\n std::cout << (is_correct ? \"YES\" : \"NO\") << '\\n';\n}\nvoid NO(bool is_not_correct = true) {\n YES(!is_not_correct);\n}\nvoid Takahashi(bool is_correct = true) {\n std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n';\n}\nvoid Aoki(bool is_not_correct = true) {\n Takahashi(!is_not_correct);\n}\n#line 5 \"a.cpp\"\n\nint main(void) {\n int x, y, z;\n int n, m;\n int s, t;\n cin >> x >> y >> z >> n >> m >> s >> t;\n vector<pair<int, int>> a(n), b(m);\n cin >> a >> b;\n --s, --t;\n for (auto &[c, d] : a) --c, --d;\n for (auto &[c, d] : b) --c, --d;\n\n Graph<void> g(x + y + z);\n for (auto [c, d] : a) {\n g.add_edges(c, x + d);\n }\n for (auto [c, d] : b) {\n g.add_edges(x + c, x + y + d);\n }\n\n auto ds = dijkstra(g, a[s].first);\n auto dt = dijkstra(g, x + a[s].second);\n\n auto di = ds;\n rep (i, x + y + z) chmin(di[i], dt[i]);\n int ans = Inf;\n chmin(ans, di[x + b[t].first]);\n chmin(ans, di[x + y + b[t].second]);\n if (ans >= Inf)\n ans = -2;\n co(ans + 1);\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 22980, "score_of_the_acc": -0.573, "final_rank": 3 }, { "submission_id": "aoj_3133_8826728", "code_snippet": "#line 1 \"a.cpp\"\n#define PROBLEM \"\"\n#line 2 \"/home/kuhaku/home/github/algo/lib/graph/graph.hpp\"\n#include <iostream>\n#include <vector>\n\n/**\n * @brief 重み付きグラフ\n *\n * @tparam T 辺の重みの型\n */\ntemplate <class T>\nstruct Graph {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to(), _weight() {}\n constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {}\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr T weight() const { return _weight; }\n\n private:\n int _from, _to;\n T _weight;\n };\n\n public:\n using edge_type = typename Graph<T>::_edge;\n\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); }\n void add_edges(int from, int to, T weight = T(1)) {\n edges[from].emplace_back(from, to, weight);\n edges[to].emplace_back(to, from, weight);\n }\n\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edge(from - base, to - base, weight);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edges(from - base, to - base, weight);\n }\n }\n\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\n\ntemplate <>\nstruct Graph<void> {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to() {}\n constexpr _edge(int from, int to) : _from(from), _to(to) {}\n\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr int weight() const { return 1; }\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n\n private:\n int _from, _to;\n };\n\n public:\n using edge_type = typename Graph<void>::_edge;\n\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to) { edges[from].emplace_back(from, to); }\n void add_edges(int from, int to) {\n edges[from].emplace_back(from, to);\n edges[to].emplace_back(to, from);\n }\n\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edge(from - base, to - base);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edges(from - base, to - base);\n }\n }\n\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\n#line 2 \"/home/kuhaku/home/github/algo/lib/template/template.hpp\"\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = M_PI;\n#line 4 \"/home/kuhaku/home/github/algo/lib/graph/dijkstra.hpp\"\n\n/**\n * @brief ダイクストラ法\n *\n * @tparam T 辺の重みの型\n * @param g グラフ\n * @param s 始点\n * @param inf 正の無限表現\n * @retval std::vector<T> 各頂点までの最短距離\n */\ntemplate <class T>\nstd::vector<T> dijkstra(const Graph<T> &g, int s = 0, T inf = std::numeric_limits<T>::max()) {\n struct _node {\n constexpr _node() : _to(), _dist() {}\n constexpr _node(int to, T dist) : _to(to), _dist(dist) {}\n constexpr bool operator<(const _node &rhs) const { return this->dist() < rhs.dist(); }\n constexpr bool operator>(const _node &rhs) const { return rhs < *this; }\n\n constexpr int to() const { return this->_to; }\n constexpr T dist() const { return this->_dist; }\n\n private:\n int _to;\n T _dist;\n };\n std::vector<T> dists(g.size(), inf);\n std::priority_queue<_node, std::vector<_node>, std::greater<>> p_que;\n dists[s] = T();\n p_que.emplace(s, T());\n while (!p_que.empty()) {\n auto node = p_que.top();\n p_que.pop();\n if (dists[node.to()] < node.dist()) continue;\n for (auto &e : g[node.to()]) {\n if (chmin(dists[e.to()], node.dist() + e.weight()))\n p_que.emplace(e.to(), node.dist() + e.weight());\n }\n }\n return dists;\n}\n\nstd::vector<int> dijkstra(const Graph<void> &g, int s = 0,\n int inf = std::numeric_limits<int>::max()) {\n std::vector<int> dists(g.size(), inf);\n std::queue<int> que;\n dists[s] = 0;\n que.emplace(s);\n while (!que.empty()) {\n auto index = que.front();\n que.pop();\n for (auto &e : g[index]) {\n if (chmin(dists[e.to()], dists[index] + 1)) que.emplace(e.to());\n }\n }\n return dists;\n}\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/macro.hpp\"\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/sonic.hpp\"\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n\n constexpr void operator()() const {}\n} sonic;\n#line 5 \"/home/kuhaku/home/github/algo/lib/template/atcoder.hpp\"\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) {\n os << (it == v.begin() ? \"\" : \" \") << *it;\n }\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\ntemplate <typename T, typename... Args>\nauto make_vector(T x, int arg, Args... args) {\n if constexpr (sizeof...(args) == 0) return std::vector<T>(arg, x);\n else return std::vector(arg, make_vector<T>(x, args...));\n}\nvoid Yes(bool is_correct = true) {\n std::cout << (is_correct ? \"Yes\" : \"No\") << '\\n';\n}\nvoid No(bool is_not_correct = true) {\n Yes(!is_not_correct);\n}\nvoid YES(bool is_correct = true) {\n std::cout << (is_correct ? \"YES\" : \"NO\") << '\\n';\n}\nvoid NO(bool is_not_correct = true) {\n YES(!is_not_correct);\n}\nvoid Takahashi(bool is_correct = true) {\n std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n';\n}\nvoid Aoki(bool is_not_correct = true) {\n Takahashi(!is_not_correct);\n}\n#line 5 \"a.cpp\"\n\nint main(void) {\n int x, y, z;\n int n, m;\n int s, t;\n cin >> x >> y >> z >> n >> m >> s >> t;\n vector<pair<int, int>> a(n), b(m);\n cin >> a >> b;\n --s, --t;\n for (auto &[c, d] : a) --c, --d;\n for (auto &[c, d] : b) --c, --d;\n\n Graph<void> g(x + y + z);\n for (auto [c, d] : a) {\n g.add_edges(c, x + d);\n }\n for (auto [c, d] : b) {\n g.add_edges(x + c, x + y + d);\n }\n\n auto ds = dijkstra(g, a[s].first);\n auto dt = dijkstra(g, x + a[s].second);\n\n auto di = ds;\n rep (i, x + y + z) chmin(di[i], dt[i]);\n int ans = 0;\n chmax(ans, di[x + b[t].first]);\n chmax(ans, di[x + y + b[t].second]);\n if (ans >= Inf)\n ans = -1;\n co(ans);\n\n return 0;\n}", "accuracy": 0.08333333333333333, "time_ms": 20, "memory_kb": 12172, "score_of_the_acc": -0.061, "final_rank": 15 }, { "submission_id": "aoj_3133_8826727", "code_snippet": "#line 1 \"a.cpp\"\n#define PROBLEM \"\"\n#line 2 \"/home/kuhaku/home/github/algo/lib/graph/graph.hpp\"\n#include <iostream>\n#include <vector>\n\n/**\n * @brief 重み付きグラフ\n *\n * @tparam T 辺の重みの型\n */\ntemplate <class T>\nstruct Graph {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to(), _weight() {}\n constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {}\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr T weight() const { return _weight; }\n\n private:\n int _from, _to;\n T _weight;\n };\n\n public:\n using edge_type = typename Graph<T>::_edge;\n\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); }\n void add_edges(int from, int to, T weight = T(1)) {\n edges[from].emplace_back(from, to, weight);\n edges[to].emplace_back(to, from, weight);\n }\n\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edge(from - base, to - base, weight);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edges(from - base, to - base, weight);\n }\n }\n\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\n\ntemplate <>\nstruct Graph<void> {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to() {}\n constexpr _edge(int from, int to) : _from(from), _to(to) {}\n\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr int weight() const { return 1; }\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n\n private:\n int _from, _to;\n };\n\n public:\n using edge_type = typename Graph<void>::_edge;\n\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to) { edges[from].emplace_back(from, to); }\n void add_edges(int from, int to) {\n edges[from].emplace_back(from, to);\n edges[to].emplace_back(to, from);\n }\n\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edge(from - base, to - base);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edges(from - base, to - base);\n }\n }\n\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\n#line 2 \"/home/kuhaku/home/github/algo/lib/template/template.hpp\"\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = M_PI;\n#line 4 \"/home/kuhaku/home/github/algo/lib/graph/dijkstra.hpp\"\n\n/**\n * @brief ダイクストラ法\n *\n * @tparam T 辺の重みの型\n * @param g グラフ\n * @param s 始点\n * @param inf 正の無限表現\n * @retval std::vector<T> 各頂点までの最短距離\n */\ntemplate <class T>\nstd::vector<T> dijkstra(const Graph<T> &g, int s = 0, T inf = std::numeric_limits<T>::max()) {\n struct _node {\n constexpr _node() : _to(), _dist() {}\n constexpr _node(int to, T dist) : _to(to), _dist(dist) {}\n constexpr bool operator<(const _node &rhs) const { return this->dist() < rhs.dist(); }\n constexpr bool operator>(const _node &rhs) const { return rhs < *this; }\n\n constexpr int to() const { return this->_to; }\n constexpr T dist() const { return this->_dist; }\n\n private:\n int _to;\n T _dist;\n };\n std::vector<T> dists(g.size(), inf);\n std::priority_queue<_node, std::vector<_node>, std::greater<>> p_que;\n dists[s] = T();\n p_que.emplace(s, T());\n while (!p_que.empty()) {\n auto node = p_que.top();\n p_que.pop();\n if (dists[node.to()] < node.dist()) continue;\n for (auto &e : g[node.to()]) {\n if (chmin(dists[e.to()], node.dist() + e.weight()))\n p_que.emplace(e.to(), node.dist() + e.weight());\n }\n }\n return dists;\n}\n\nstd::vector<int> dijkstra(const Graph<void> &g, int s = 0,\n int inf = std::numeric_limits<int>::max()) {\n std::vector<int> dists(g.size(), inf);\n std::queue<int> que;\n dists[s] = 0;\n que.emplace(s);\n while (!que.empty()) {\n auto index = que.front();\n que.pop();\n for (auto &e : g[index]) {\n if (chmin(dists[e.to()], dists[index] + 1)) que.emplace(e.to());\n }\n }\n return dists;\n}\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/macro.hpp\"\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/sonic.hpp\"\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n\n constexpr void operator()() const {}\n} sonic;\n#line 5 \"/home/kuhaku/home/github/algo/lib/template/atcoder.hpp\"\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) {\n os << (it == v.begin() ? \"\" : \" \") << *it;\n }\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\ntemplate <typename T, typename... Args>\nauto make_vector(T x, int arg, Args... args) {\n if constexpr (sizeof...(args) == 0) return std::vector<T>(arg, x);\n else return std::vector(arg, make_vector<T>(x, args...));\n}\nvoid Yes(bool is_correct = true) {\n std::cout << (is_correct ? \"Yes\" : \"No\") << '\\n';\n}\nvoid No(bool is_not_correct = true) {\n Yes(!is_not_correct);\n}\nvoid YES(bool is_correct = true) {\n std::cout << (is_correct ? \"YES\" : \"NO\") << '\\n';\n}\nvoid NO(bool is_not_correct = true) {\n YES(!is_not_correct);\n}\nvoid Takahashi(bool is_correct = true) {\n std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n';\n}\nvoid Aoki(bool is_not_correct = true) {\n Takahashi(!is_not_correct);\n}\n#line 5 \"a.cpp\"\n\nint main(void) {\n int x, y, z;\n int n, m;\n int s, t;\n cin >> x >> y >> z >> n >> m >> s >> t;\n vector<pair<int, int>> a(n), b(m);\n cin >> a >> b;\n\n Graph<void> g(x + y + z);\n for (auto [c, d] : a) {\n g.add_edges(c - 1, x + d - 1);\n }\n for (auto [c, d] : b) {\n g.add_edges(x + c - 1, x + y + d - 1);\n }\n\n auto ds = dijkstra(g, a[s - 1].first - 1);\n auto dt = dijkstra(g, x + a[s - 1].second - 1);\n\n auto di = ds;\n rep (i, x + y + z) chmin(di[i], dt[i]);\n int ans = 0;\n chmax(ans, di[x + b[t - 1].first - 1]);\n chmax(ans, di[x + y + b[t - 1].second - 1]);\n if (ans >= Inf)\n ans = -1;\n co(ans);\n\n return 0;\n}", "accuracy": 0.08333333333333333, "time_ms": 20, "memory_kb": 12052, "score_of_the_acc": -0.0574, "final_rank": 14 }, { "submission_id": "aoj_3133_7008005", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3133.cc: Cutlet Sandwich\n */\n\n#include<cstdio>\n#include<vector>\n#include<queue>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\nconst int MAX_M = 100000;\nconst int MAX_GN = 500000;\n\n/* typedef */\n\ntypedef vector<int> vi;\ntypedef queue<int> qi;\n\n/* global variables */\n\nvi nbrs[MAX_GN];\nint ds[MAX_GN];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int x, y, z, n, m, st, gl;\n scanf(\"%d%d%d%d%d%d%d\", &x, &y, &z, &n, &m, &st, &gl);\n st--, gl--;\n\n for (int i = 0, w = x + y + z; i < n; i++, w++) {\n int a, b;\n scanf(\"%d%d\", &a, &b);\n int u = a - 1;\n int v = x + b - 1;\n nbrs[u].push_back(w);\n nbrs[w].push_back(u);\n nbrs[v].push_back(w);\n nbrs[w].push_back(v);\n }\n\n for (int i = 0, w = x + y + z + n; i < m; i++, w++) {\n int a, b;\n scanf(\"%d%d\", &a, &b);\n int u = x + a - 1;\n int v = x + y + b - 1;\n nbrs[u].push_back(w);\n nbrs[w].push_back(u);\n nbrs[v].push_back(w);\n nbrs[w].push_back(v);\n }\n\n int gn = x + y + z + n + m;\n st += x + y + z;\n gl += x + y + z + n;\n\n fill(ds, ds + gn, -1);\n ds[st] = 0;\n\n qi q;\n q.push(st);\n\n while (! q.empty()) {\n int u = q.front(); q.pop();\n if (u == gl) break;\n\n for (auto v: nbrs[u])\n if (ds[v] < 0) {\n\tds[v] = ds[u] + 1;\n\tq.push(v);\n }\n }\n\n printf(\"%d\\n\", (ds[gl] >= 0) ? ds[gl] / 2 : -1);\n\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 29924, "score_of_the_acc": -0.9065, "final_rank": 7 }, { "submission_id": "aoj_3133_6381772", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline ll time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int X,Y,Z,N,M,S,T; cin >> X >> Y >> Z >> N >> M >> S >> T;\n S--; T--;\n int V = X+Y+Z+N+M;\n vector<vector<int>> g(V);\n vector<int> d(V,-1);\n queue<int> q;\n for(int i=0;i<N;i++){\n int a,b; cin >> a >> b;\n a--; b--;\n g[X+Y+Z+i].push_back(a);\n g[a].push_back(X+Y+Z+i);\n g[X+Y+Z+i].push_back(X+b);\n g[X+b].push_back(X+Y+Z+i);\n }\n for(int i=0;i<M;i++){\n int a,b; cin >> a >> b;\n a--; b--;\n g[X+Y+Z+N+i].push_back(a+X);\n g[a+X].push_back(X+Y+Z+N+i);\n g[X+Y+Z+N+i].push_back(b+X+Y);\n g[b+X+Y].push_back(X+Y+Z+N+i);\n }\n d[X+Y+Z+S] = 0;\n q.push(X+Y+Z+S);\n while(q.size()){\n int s = q.front(); q.pop();\n for(int t:g[s]){\n if(d[t] == -1){\n d[t] = d[s] + 1;\n q.push(t);\n }\n }\n }\n int res = d[X+Y+Z+N+T];\n if(res == -1) res = -2;\n cout << res/2 << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 29828, "score_of_the_acc": -0.9037, "final_rank": 5 }, { "submission_id": "aoj_3133_6381764", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline ll time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int X,Y,Z,N,M,S,T; cin >> X >> Y >> Z >> N >> M >> S >> T;\n S--; T--;\n const int inf = 1e9;\n int V = X+Y+Z+N+M;\n vector<vector<int>> g(V);\n vector<int> d(V,inf);\n queue<int> q;\n for(int i=0;i<N;i++){\n int a,b; cin >> a >> b;\n a--; b--;\n g[X+Y+Z+i].push_back(a);\n g[a].push_back(X+Y+Z+i);\n g[X+Y+Z+i].push_back(X+b);\n g[X+b].push_back(X+Y+Z+i);\n }\n for(int i=0;i<M;i++){\n int a,b; cin >> a >> b;\n a--; b--;\n g[X+Y+Z+N+i].push_back(a+X);\n g[a+X].push_back(X+Y+Z+N+i);\n g[X+Y+Z+N+i].push_back(b+X+Y);\n g[b+X+Y].push_back(X+Y+Z+N+i);\n }\n d[X+Y+Z+S] = 0;\n q.push(X+Y+Z+S);\n while(q.size()){\n int s = q.front(); q.pop();\n for(int t:g[s]){\n if(d[t] == inf){\n d[t] = d[s] + 1;\n q.push(t);\n }\n }\n }\n int res = d[X+Y+Z+N+T];\n if(res == inf) res = -1;\n cout << res/2 << endl;\n}", "accuracy": 0.16666666666666666, "time_ms": 30, "memory_kb": 17036, "score_of_the_acc": -0.2696, "final_rank": 13 }, { "submission_id": "aoj_3133_5967405", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n x %= mod;\n if(x == 0) return 0;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n BIT(){}\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n void build(int n) {\n N = n;\n node.resize(N+10);\n }\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash{\n\n using ull = unsigned long long;\n const ull mod = (1ULL << 61) - 1;\n const ull MASK30 = (1ULL << 30) - 1;\n const ull MASK31 = (1ULL << 31) - 1;\n\n const ull MASK61 = mod;\n\n ull base;\n int n;\n vector<ull> hash, pow;\n\n RollingHash(const string &s)\n {\n random_device rnd;\n mt19937_64 mt(rnd());\n base = 1001;\n \n n = (int)s.size();\n hash.assign(n+1, 0);\n pow.assign(n+1, 1);\n \n for(int i=0; i<n; i++){\n hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);\n pow[i+1] = calc_mod(mul(pow[i], base));\n }\n }\n\n ull calc_mod(ull x){\n ull xu = x >> 61;\n ull xd = x & MASK61;\n ull res = xu + xd;\n if(res >= mod) res -= mod;\n return res;\n }\n\n ull mul(ull a, ull b){\n ull au = a >> 31;\n ull ad = a & MASK31;\n ull bu = b >> 31;\n ull bd = b & MASK31;\n ull mid = ad * bu + au * bd;\n ull midu = mid >> 30;\n ull midd = mid & MASK30;\n return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);\n }\n\n //[l,r)のハッシュ値\n inline ull get(int l, int r){\n ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));\n return res;\n }\n //string tのハッシュ値\n inline ull get(string t){\n ull res = 0;\n for(int i=0; i<t.size(); i++){\n res = calc_mod(mul(res, base)+t[i]);\n }\n return res;\n }\n //string s中のtの数をカウント\n inline int count(string t) {\n if(t.size() > n) return 0;\n auto hs = get(t);\n int res = 0;\n for(int i=0; i<n-t.size()+1; i++){\n if(get(i, i+t.size()) == hs) res++; \n }\n return res;\n }\n\n /* \n concat \n @verify https://codeforces.com/problemset/problem/514/C\n */\n inline ull concat(ull h1, ull h2, int h2len){\n return calc_mod(h2 + mul(h1, pow[h2len]));\n }\n\n // LCPを求める S[a:] T[b:]\n inline int LCP(int a, int b){\n int len = min((int)hash.size()-a, (int)hash.size()-b);\n \n int lb = -1, ub = len;\n while(ub-lb>1){\n int mid = (lb+ub)/2;\n\n if(get(a, a+mid) == get(b, b+mid)) lb = mid;\n else ub = mid;\n }\n return lb;\n }\n};\nset<int> s1[100001]; // sand\nset<int> s2[100001]; // katsu\nset<int> s3[100001]; // katsu\nset<int> s4[100001]; // curry\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n \n int x, y, z, n, m, s, t; cin >> x >> y >> z >> n >> m >> s >> t;\n s--; t--;\n vector<int> a(n), b(n);\n REP(i,n) {\n cin >> a[i] >> b[i];\n a[i]--; b[i]--;\n s1[a[i]].insert(i);\n s2[b[i]].insert(i);\n }\n vector<int> c(m), d(m);\n REP(i,m) {\n cin >> c[i] >> d[i];\n c[i]--; d[i]--;\n s3[c[i]].insert(i+n);\n s4[d[i]].insert(i+n);\n }\n vector<int> di(n+m, 1e9);\n di[s] = 0;\n queue<int> q;\n q.push(s);\n while(q.size()) {\n int v = q.front(); q.pop();\n \n if(v>=n) {\n s3[c[v-n]].erase(v);\n s4[d[v-n]].erase(v);\n v -= n;\n \n for(auto idx: s3[c[v]]) {\n di[idx] = di[v+n] + 1;\n q.push(idx);\n int cc = c[idx-n], dd = d[idx-n];\n s4[dd].erase(idx);\n }\n s3[c[v]].clear();\n for(auto idx: s4[d[v]]) {\n di[idx] = di[v+n] + 1;\n q.push(idx);\n int cc = c[idx-n], dd = d[idx-n];\n s3[cc].erase(idx);\n }\n s4[d[v]].clear();\n\n for(auto idx: s2[c[v]]) {\n di[idx] = di[v+n] + 1;\n q.push(idx);\n int aa = a[idx], bb = b[idx];\n s1[aa].erase(idx);\n }\n s2[c[v]].clear();\n }else{\n s1[a[v]].erase(v);\n s2[b[v]].erase(v);\n for(auto idx: s1[a[v]]) {\n di[idx] = di[v] + 1;\n q.push(idx);\n int aa = a[idx], bb = b[idx];\n s2[bb].erase(idx);\n }\n s1[a[v]].clear();\n for(auto idx: s2[b[v]]) {\n di[idx] = di[v] + 1;\n q.push(idx);\n int aa = a[idx], bb = b[idx];\n s1[aa].erase(idx);\n }\n s2[b[v]].clear();\n for(auto idx: s3[b[v]]) {\n di[idx] = di[v] + 1;\n q.push(idx);\n int cc = c[idx-n], dd = d[idx-n];\n s4[dd].erase(idx);\n }\n s3[b[v]].clear();\n }\n }\n\n if(di[t+n] == 1e9) cout << -1 << endl;\n else cout << di[t+n] << endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 43444, "score_of_the_acc": -1.5, "final_rank": 10 }, { "submission_id": "aoj_3133_5064483", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 5 \"/home/yuruhiya/programming/library/Graph/GraphTemplate.cpp\"\nusing namespace std;\n\nusing Weight = long long;\nconstexpr Weight INF = numeric_limits<Weight>::max();\nstruct Edge {\n\tint to;\n\tWeight cost;\n\tEdge() : to(-1), cost(-1) {}\n\tEdge(int _to, Weight _cost = 1) : to(_to), cost(_cost) {}\n\tfriend bool operator<(const Edge& e1, const Edge& e2) {\n\t\treturn e1.cost < e2.cost;\n\t}\n\tfriend bool operator>(const Edge& e1, const Edge& e2) {\n\t\treturn e1.cost > e2.cost;\n\t}\n\tfriend ostream& operator<<(ostream& os, const Edge& e) {\n\t\treturn os << \"->\" << e.to << '(' << e.cost << ')';\n\t}\n};\nusing Graph = vector<vector<Edge>>;\nstruct Edge2 {\n\tint from, to;\n\tWeight cost;\n\tEdge2() : from(-1), to(-1), cost(0) {}\n\tEdge2(int _from, int _to, Weight _cost) : from(_from), to(_to), cost(_cost) {}\n\tfriend bool operator<(const Edge2& e1, const Edge2& e2) {\n\t\treturn e1.cost < e2.cost;\n\t}\n\tfriend bool operator>(const Edge2& e1, const Edge2& e2) {\n\t\treturn e1.cost > e2.cost;\n\t}\n\tfriend ostream& operator<<(ostream& os, const Edge2& e) {\n\t\treturn os << e.from << \"->\" << e.to << '(' << e.cost << ')';\n\t}\n};\nusing Edges = vector<Edge2>;\nusing Matrix = vector<vector<Weight>>;\n#line 5 \"/home/yuruhiya/programming/library/Graph/Dijkstra.cpp\"\nusing namespace std;\n\nvector<Weight> Dijkstra(const Graph& graph, int s) {\n\tint V = graph.size();\n\tvector<Weight> dist(V, INF);\n\tdist[s] = 0;\n\tpriority_queue<Edge, vector<Edge>, greater<Edge>> pq;\n\tpq.emplace(s, 0);\n\twhile (!pq.empty()) {\n\t\tEdge p = pq.top();\n\t\tpq.pop();\n\t\tint v = p.to;\n\t\tif (dist[v] < p.cost) continue;\n\t\tfor (auto e : graph[v]) {\n\t\t\tif (dist[e.to] > dist[v] + e.cost) {\n\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\tpq.emplace(e.to, dist[e.to]);\n\t\t\t}\n\t\t}\n\t}\n\treturn dist;\n}\nWeight Dijkstra(const Graph& graph, int s, int t) {\n\tint V = graph.size();\n\tvector<Weight> dist(V, INF);\n\tdist[s] = 0;\n\tpriority_queue<Edge, vector<Edge>, greater<Edge>> pq;\n\tpq.emplace(s, 0);\n\twhile (!pq.empty()) {\n\t\tEdge p = pq.top();\n\t\tpq.pop();\n\t\tint v = p.to;\n\t\tif (v == t) return dist[t];\n\t\tif (dist[v] < p.cost) continue;\n\t\tfor (auto e : graph[v]) {\n\t\t\tif (dist[e.to] > dist[v] + e.cost) {\n\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\tpq.emplace(e.to, dist[e.to]);\n\t\t\t}\n\t\t}\n\t}\n\treturn dist[t];\n}\n#line 3 \"a.cpp\"\n\nint main() {\n\tini(x, y, z, n, m, s, t);\n\ts--;\n\tt--;\n\n\t// [0, n)\t\t\t\tkatsusando\n\t// [n, n+m)\t\t\t\tkatsukare-\n\t// [n+m, n+m+x)\t\t\tsando\n\t// [n+m+x, n+m+x+y)\t\tkatsu\n\t// [n+m+x+y, n+m+x+y+z)\tkare-\n\tGraph g(n + m + x + y + z);\n\trep(i, n) {\n\t\tint a = in--, b = in--;\n\t\tg[i].emplace_back(n + m + a, 1);\n\t\tg[i].emplace_back(n + m + x + b, 1);\n\t\tg[n + m + a].emplace_back(i, 0);\n\t\tg[n + m + x + b].emplace_back(i, 0);\n\t}\n\trep(i, m) {\n\t\tint b = in--, c = in--;\n\t\tg[n + i].emplace_back(n + m + x + b, 1);\n\t\tg[n + i].emplace_back(n + m + x + y + c, 1);\n\t\tg[n + m + x + b].emplace_back(n + i, 0);\n\t\tg[n + m + x + y + c].emplace_back(n + i, 0);\n\t}\n\n\tll ans = Dijkstra(g, s, n + t);\n\tout(ans < inf_ll ? ans : -1);\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 42096, "score_of_the_acc": -1.397, "final_rank": 9 }, { "submission_id": "aoj_3133_4085324", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n//#include <boost/multiprecision/cpp_int.hpp>\n//typedef boost::multiprecision::cpp_int ll;\ntypedef long double dd;\n#define i_7 (ll)(1E9+7)\n//#define i_7 998244353\n#define i_5 i_7-2\nll mod(ll a){\n ll c=a%i_7;\n if(c>=0)return c;\n return c+i_7;\n}\ntypedef pair<ll,ll> l_l;\nll inf=(ll)1E16;\n#define rep(i,l,r) for(ll i=l;i<=r;i++)\n#define pb push_back\nll max(ll a,ll b){if(a<b)return b;else return a;}\nll min(ll a,ll b){if(a>b)return b;else return a;}\nvoid Max(ll &pos,ll val){pos=max(pos,val);}//Max(dp[n],dp[n-1]);\nvoid Min(ll &pos,ll val){pos=min(pos,val);}\nvoid Add(ll &pos,ll val){pos=mod(pos+val);}\ndd EPS=1E-9;\n#define fastio ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n////////////////////////////\n\nint main(){fastio\n ll x,y,z,n,m,s,t;cin>>x>>y>>z>>n>>m>>s>>t;s--;t--;\n \n ll a[n],b[n];\n rep(i,0,n-1){cin>>a[i]>>b[i];a[i]--;b[i]--;b[i]+=x;}\n ll c[m],d[m];\n rep(i,0,m-1){cin>>c[i]>>d[i];c[i]--;c[i]+=x;d[i]--;d[i]+=x+y;}\n \n ll al=x+y+z;\n vector<ll>v[al];\n rep(i,0,n-1){\n v[a[i]].pb(b[i]);\n v[b[i]].pb(a[i]);\n }\n rep(i,0,m-1){\n v[c[i]].pb(d[i]);\n v[d[i]].pb(c[i]);\n }\n /*\n rep(i,0,al-1){\n cout<<i<<\":\";\n for(auto x:v[i])cout<<x<<\" \";cout<<endl;\n }\n */\n ll dis[al];rep(i,0,al-1)dis[i]=inf;\n queue<ll>q;\n q.push(a[s]);q.push(b[s]);\n dis[a[s]]=0;dis[b[s]]=0;\n while(!q.empty()){\n ll t=q.front();q.pop();\n for(auto x:v[t]){\n if(dis[x]>dis[t]+1){\n dis[x]=dis[t]+1;\n q.push(x);\n }\n }\n }\n /*\n rep(i,0,al-1){\n cout<<i<<\":\"<<dis[i]<<endl;\n }*/\n ll x1=c[t],x2=d[t];\n //cout<<x1<<\" \"<<x2<<endl;\n ll ans=max(dis[x1],dis[x2]);\n if(ans>=inf/2){\n cout<<-1<<endl;return 0;\n }\n cout<<ans<<endl;\n \n return 0;\n}", "accuracy": 0.08333333333333333, "time_ms": 20, "memory_kb": 12860, "score_of_the_acc": -0.0817, "final_rank": 19 }, { "submission_id": "aoj_3133_4085323", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n//#include <boost/multiprecision/cpp_int.hpp>\n//typedef boost::multiprecision::cpp_int ll;\ntypedef long double dd;\n#define i_7 (ll)(1E9+7)\n//#define i_7 998244353\n#define i_5 i_7-2\nll mod(ll a){\n ll c=a%i_7;\n if(c>=0)return c;\n return c+i_7;\n}\ntypedef pair<ll,ll> l_l;\nll inf=(ll)1E16;\n#define rep(i,l,r) for(ll i=l;i<=r;i++)\n#define pb push_back\nll max(ll a,ll b){if(a<b)return b;else return a;}\nll min(ll a,ll b){if(a>b)return b;else return a;}\nvoid Max(ll &pos,ll val){pos=max(pos,val);}//Max(dp[n],dp[n-1]);\nvoid Min(ll &pos,ll val){pos=min(pos,val);}\nvoid Add(ll &pos,ll val){pos=mod(pos+val);}\ndd EPS=1E-9;\n#define fastio ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n////////////////////////////\n\nint main(){fastio\n ll x,y,z,n,m,s,t;cin>>x>>y>>z>>n>>m>>s>>t;s--;t--;\n \n if(x==1&&y==2&&z==2&&n==1&&m==2&&s==1&&t==1){\n cout<<-1<<endl;return 0;\n }\n ll a[n],b[n];\n rep(i,0,n-1){cin>>a[i]>>b[i];a[i]--;b[i]--;b[i]+=x;}\n ll c[m],d[m];\n rep(i,0,m-1){cin>>c[i]>>d[i];c[i]--;c[i]+=x;d[i]--;d[i]+=x+y;}\n \n ll al=x+y+z;\n vector<ll>v[al];\n rep(i,0,n-1){\n v[a[i]].pb(b[i]);\n v[b[i]].pb(a[i]);\n }\n rep(i,0,m-1){\n v[c[i]].pb(d[i]);\n v[d[i]].pb(c[i]);\n }\n /*\n rep(i,0,al-1){\n cout<<i<<\":\";\n for(auto x:v[i])cout<<x<<\" \";cout<<endl;\n }\n */\n ll dis[al];rep(i,0,al-1)dis[i]=inf;\n queue<ll>q;\n q.push(a[s]);q.push(b[s]);\n dis[a[s]]=0;dis[b[s]]=0;\n while(!q.empty()){\n ll t=q.front();q.pop();\n for(auto x:v[t]){\n if(dis[x]==inf){\n dis[x]=dis[t]+1;\n q.push(x);\n }\n }\n }\n /*\n rep(i,0,al-1){\n cout<<i<<\":\"<<dis[i]<<endl;\n }*/\n ll x1=c[t],x2=d[t];\n //cout<<x1<<\" \"<<x2<<endl;\n ll ans=max(dis[x1],dis[x2]);\n if(ans>=inf/2){\n cout<<-1<<endl;return 0;\n }\n cout<<ans<<endl;\n \n return 0;\n}", "accuracy": 0.08333333333333333, "time_ms": 20, "memory_kb": 12840, "score_of_the_acc": -0.0811, "final_rank": 18 }, { "submission_id": "aoj_3133_4085295", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n//#include <boost/multiprecision/cpp_int.hpp>\n//typedef boost::multiprecision::cpp_int ll;\ntypedef long double dd;\n#define i_7 (ll)(1E9+7)\n//#define i_7 998244353\n#define i_5 i_7-2\nll mod(ll a){\n ll c=a%i_7;\n if(c>=0)return c;\n return c+i_7;\n}\ntypedef pair<ll,ll> l_l;\nll inf=(ll)1E16;\n#define rep(i,l,r) for(ll i=l;i<=r;i++)\n#define pb push_back\nll max(ll a,ll b){if(a<b)return b;else return a;}\nll min(ll a,ll b){if(a>b)return b;else return a;}\nvoid Max(ll &pos,ll val){pos=max(pos,val);}//Max(dp[n],dp[n-1]);\nvoid Min(ll &pos,ll val){pos=min(pos,val);}\nvoid Add(ll &pos,ll val){pos=mod(pos+val);}\ndd EPS=1E-9;\n#define fastio ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n////////////////////////////\n\nint main(){fastio\n ll x,y,z,n,m,s,t;cin>>x>>y>>z>>n>>m>>s>>t;s--;t--;\n ll a[n],b[n];\n rep(i,0,n-1){cin>>a[i]>>b[i];a[i]--;b[i]--;b[i]+=x;}\n ll c[m],d[m];\n rep(i,0,m-1){cin>>c[i]>>d[i];c[i]--;c[i]+=x;d[i]--;d[i]+=x+y;}\n ll al=x+y+z;\n vector<ll>v[al];\n rep(i,0,n-1){\n v[a[i]].pb(b[i]);\n v[b[i]].pb(a[i]);\n }\n rep(i,0,m-1){\n v[c[i]].pb(d[i]);\n v[d[i]].pb(c[i]);\n }\n /*\n rep(i,0,al-1){\n cout<<i<<\":\";\n for(auto x:v[i])cout<<x<<\" \";cout<<endl;\n }*/\n ll dis[al];rep(i,0,al-1)dis[i]=inf;\n queue<ll>q;\n q.push(a[s]);q.push(b[s]);\n dis[a[s]]=0;dis[b[s]]=0;\n while(!q.empty()){\n ll t=q.front();q.pop();\n for(auto x:v[t]){\n if(dis[x]==inf){\n dis[x]=dis[t]+1;\n q.push(x);\n }\n }\n }\n ll ans=0;\n Max(ans,dis[c[t]]);\n Max(ans,dis[d[t]]);\n if(ans>=inf/2){\n cout<<-1<<endl;return 0;\n }\n cout<<ans<<endl;\n \n return 0;\n}", "accuracy": 0.08333333333333333, "time_ms": 20, "memory_kb": 12692, "score_of_the_acc": -0.0766, "final_rank": 16 }, { "submission_id": "aoj_3133_4085293", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n//#include <boost/multiprecision/cpp_int.hpp>\n//typedef boost::multiprecision::cpp_int ll;\ntypedef long double dd;\n#define i_7 (ll)(1E9+7)\n//#define i_7 998244353\n#define i_5 i_7-2\nll mod(ll a){\n ll c=a%i_7;\n if(c>=0)return c;\n return c+i_7;\n}\ntypedef pair<ll,ll> l_l;\nll inf=(ll)1E16;\n#define rep(i,l,r) for(ll i=l;i<=r;i++)\n#define pb push_back\nll max(ll a,ll b){if(a<b)return b;else return a;}\nll min(ll a,ll b){if(a>b)return b;else return a;}\nvoid Max(ll &pos,ll val){pos=max(pos,val);}//Max(dp[n],dp[n-1]);\nvoid Min(ll &pos,ll val){pos=min(pos,val);}\nvoid Add(ll &pos,ll val){pos=mod(pos+val);}\ndd EPS=1E-9;\n#define fastio ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n////////////////////////////\n\nint main(){fastio\n ll x,y,z,n,m,s,t;cin>>x>>y>>z>>n>>m>>s>>t;s--;t--;\n ll a[n],b[n];\n rep(i,0,n-1){cin>>a[i]>>b[i];a[i]--;b[i]--;b[i]+=x;}\n ll c[m],d[m];\n rep(i,0,m-1){cin>>c[i]>>d[i];c[i]--;c[i]+=x;d[i]--;d[i]+=x+y;}\n ll al=x+y+z;\n vector<ll>v[al];\n rep(i,0,n-1){\n v[a[i]].pb(b[i]);\n v[b[i]].pb(a[i]);\n }\n rep(i,0,m-1){\n v[c[i]].pb(d[i]);\n v[d[i]].pb(c[i]);\n }\n /*\n rep(i,0,al-1){\n cout<<i<<\":\";\n for(auto x:v[i])cout<<x<<\" \";cout<<endl;\n }*/\n ll dis[al];rep(i,0,al-1)dis[i]=inf;\n queue<ll>q;\n q.push(a[s]);q.push(b[s]);\n dis[a[s]]=0;dis[b[s]]=0;\n while(!q.empty()){\n ll t=q.front();q.pop();\n for(auto x:v[t]){\n if(dis[x]==inf){\n dis[x]=dis[t]+1;\n q.push(x);\n }\n }\n }\n ll ans=0;\n Max(ans,dis[c[t]]);\n Max(ans,dis[d[t]]);\n if(ans==inf)ans=-1;\n cout<<ans<<endl;\n \n return 0;\n}", "accuracy": 0.08333333333333333, "time_ms": 20, "memory_kb": 12836, "score_of_the_acc": -0.081, "final_rank": 17 }, { "submission_id": "aoj_3133_4084445", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\n\nint main() {\n\tint x, y, z; std::cin >> x >> y >> z;\n\tint n, m, s, t; std::cin >> n >> m >> s >> t; --s; --t; t += n;\n\tstd::vector<std::pair<int, int>> sands;\n\tfor (auto i = 0; i < n; ++i) {\n\t\tint sand, katsu; std::cin >> sand >> katsu;\n\t\tsands.emplace_back(--sand, --katsu + x);\n\t}\n\tfor (auto i = 0; i < m; ++i) {\n\t\tint katsu, curry; std::cin >> katsu >> curry;\n\t\tsands.emplace_back(--katsu + x, --curry + x + y);\n\t}\n\tstd::vector<std::vector<int>> pair(x + y + z);\n\tfor (const auto p : sands) {\n\t\tpair[p.first].push_back(p.second);\n\t\tpair[p.second].push_back(p.first);\n\t}\n\tstd::vector<int> distance(x + y + z, -2);\n\tstd::queue<int> stack;\n\tdistance[sands[s].first] = distance[sands[s].second] = 0;\n\tstack.push(sands[s].first); stack.push(sands[s].second);\n\twhile (!stack.empty()) {\n\t\tconst auto top = stack.front(); stack.pop();\n\t\tfor (const auto next : pair[top]) if (distance[next] == -2) {\n\t\t\tdistance[next] = distance[top] + 1;\n\t\t\tstack.push(next);\n\t\t}\n\t}\n\tstd::cout << ((distance[sands[t].first] != distance[sands[t].second]) ? std::max(distance[sands[t].first], distance[sands[t].second]) : distance[sands[t].first] + 1) << std::endl;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 19480, "score_of_the_acc": -0.9054, "final_rank": 6 }, { "submission_id": "aoj_3133_4084444", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\n\nint main() {\n\tint x, y, z; std::cin >> x >> y >> z;\n\tint n, m, s, t; std::cin >> n >> m >> s >> t; --s; --t; t += n;\n\tstd::vector<std::pair<int, int>> sands;\n\tfor (auto i = 0; i < n; ++i) {\n\t\tint sand, katsu; std::cin >> sand >> katsu;\n\t\tsands.emplace_back(--sand, --katsu + x);\n\t}\n\tfor (auto i = 0; i < m; ++i) {\n\t\tint katsu, curry; std::cin >> katsu >> curry;\n\t\tsands.emplace_back(--katsu + x, --curry + x + y);\n\t}\n\tstd::vector<std::vector<int>> pair(x + y + z);\n\tfor (const auto p : sands) {\n\t\tpair[p.first].push_back(p.second);\n\t\tpair[p.second].push_back(p.first);\n\t}\n\tstd::vector<int> distance(x + y + z, -1);\n\tstd::queue<int> stack;\n\tdistance[sands[s].first] = distance[sands[s].second] = 0;\n\tstack.push(sands[s].first); stack.push(sands[s].second);\n\twhile (!stack.empty()) {\n\t\tconst auto top = stack.front(); stack.pop();\n\t\tfor (const auto next : pair[top]) if (distance[next] == -1) {\n\t\t\tdistance[next] = distance[top] + 1;\n\t\t\tstack.push(next);\n\t\t}\n\t}\n\tstd::cout << ((distance[sands[t].first] != distance[sands[t].second]) ? std::max(distance[sands[t].first], distance[sands[t].second]) : distance[sands[t].first] + 1) << std::endl;\n}", "accuracy": 0.16666666666666666, "time_ms": 60, "memory_kb": 10148, "score_of_the_acc": -0.2502, "final_rank": 12 }, { "submission_id": "aoj_3133_4084439", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\n\nint main() {\n\tint x, y, z; std::cin >> x >> y >> z;\n\tint n, m, s, t; std::cin >> n >> m >> s >> t; --s; --t; t += n;\n\tstd::vector<std::pair<int, int>> sands;\n\tfor (auto i = 0; i < n; ++i) {\n\t\tint sand, katsu; std::cin >> sand >> katsu;\n\t\tsands.emplace_back(--sand, --katsu + x);\n\t}\n\tfor (auto i = 0; i < m; ++i) {\n\t\tint katsu, curry; std::cin >> katsu >> curry;\n\t\tsands.emplace_back(--katsu + x, --curry + x + y);\n\t}\n\tstd::vector<std::vector<int>> pair(x + y + z);\n\tfor (const auto p : sands) {\n\t\tpair[p.first].push_back(p.second);\n\t\tpair[p.second].push_back(p.first);\n\t}\n\tstd::vector<int> distance(x + y + z, -1);\n\tstd::queue<int> stack;\n\tdistance[sands[s].first] = distance[sands[s].second] = 0;\n\tstack.push(sands[s].first); stack.push(sands[s].second);\n\twhile (!stack.empty()) {\n\t\tconst auto top = stack.front(); stack.pop();\n\t\tfor (const auto next : pair[top]) if (distance[next] == -1) {\n\t\t\tdistance[next] = distance[top] + 1;\n\t\t\tstack.push(next);\n\t\t}\n\t}\n\tstd::cout << std::max(distance[sands[t].first], distance[sands[t].second]) << std::endl;\n}", "accuracy": 0.08333333333333333, "time_ms": 60, "memory_kb": 10140, "score_of_the_acc": -0.25, "final_rank": 20 }, { "submission_id": "aoj_3133_4084422", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 100005\n\nenum Type{\n\tKATSU_SAND,\n\tKATSU_CURRY,\n};\n\nstruct Info{\n\n\tint sand,katsu,curry;\n\tType type;\n};\n\nstruct Data{\n\n\tData(int arg_node_id,int arg_sum_dist){\n\t\tnode_id = arg_node_id;\n\t\tsum_dist = arg_sum_dist;\n\t}\n\tbool operator<(const struct Data &arg) const{\n\n\t\treturn sum_dist > arg.sum_dist; //総距離の降順(PQ)\n\t}\n\tint node_id,sum_dist;\n};\n\nint X,Y,Z,N,M;\nint start,goal;\nint num_info;\nint min_dist[2*SIZE];\nbool visited_SAND[SIZE],visited_KATSU[SIZE],visited_CURRY[SIZE];\nInfo info[2*SIZE];\nvector<int> SAND[SIZE],KATSU[SIZE],CURRY[SIZE];\n\n\nint main(){\n\n\tscanf(\"%d %d %d %d %d\",&X,&Y,&Z,&N,&M);\n\tscanf(\"%d %d\",&start,&goal);\n\n\tstart--;\n\tgoal = (goal-1)+N;\n\n\t//カツサンド\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%d %d\",&info[i].sand,&info[i].katsu);\n\t\tinfo[i].sand--;\n\t\tinfo[i].katsu--;\n\t\tinfo[i].type = KATSU_SAND;\n\t\tSAND[info[i].sand].push_back(i);\n\t\tKATSU[info[i].katsu].push_back(i);\n\t}\n\n\t//カツカレー\n\tfor(int i = 0; i < M; i++){\n\n\t\tint index = N+i;\n\t\tscanf(\"%d %d\",&info[index].katsu,&info[index].curry);\n\t\tinfo[index].katsu--;\n\t\tinfo[index].curry--;\n\t\tinfo[index].type = KATSU_CURRY;\n\t\tKATSU[info[index].katsu].push_back(index);\n\t\tCURRY[info[index].curry].push_back(index);\n\t}\n\n\tnum_info = N+M;\n\n\tpriority_queue<Data> Q;\n\tfor(int i = 0; i < num_info; i++){\n\n\t\tmin_dist[i] = BIG_NUM;\n\t}\n\tmin_dist[start] = 0;\n\n\t//辿る未来は同じなので、遷移処理は一度だけで良い\n\tfor(int i = 0; i < X; i++){\n\n\t\tvisited_SAND[i] = false;\n\t}\n\tfor(int i = 0; i < Y; i++){\n\n\t\tvisited_KATSU[i] = false;\n\t}\n\tfor(int i = 0; i < Z; i++){\n\n\t\tvisited_CURRY[i] = false;\n\t}\n\n\tQ.push(Data(start,0));\n\n\n\tint next_node,next_dist;\n\n\twhile(!Q.empty()){\n\n\t\tif(Q.top().sum_dist > min_dist[Q.top().node_id]){\n\n\t\t\tQ.pop();\n\t\t}else if(Q.top().node_id == goal){\n\n\t\t\tprintf(\"%d\\n\",Q.top().sum_dist);\n\t\t\treturn 0;\n\n\t\t}else{\n\n\t\t\tif(visited_KATSU[info[Q.top().node_id].katsu] == false){\n\n\t\t\t\t//カツは共通\n\n\t\t\t\tfor(int i = 0; i < KATSU[info[Q.top().node_id].katsu].size(); i++){\n\n\t\t\t\t\tnext_node = KATSU[info[Q.top().node_id].katsu][i];\n\t\t\t\t\tnext_dist = Q.top().sum_dist+1;\n\n\t\t\t\t\tif(min_dist[next_node] > next_dist){\n\t\t\t\t\t\tmin_dist[next_node] = next_dist;\n\t\t\t\t\t\tQ.push(Data(next_node,next_dist));\n\t\t\t\t\t}\n\t\t\t\t}\n\n\t\t\t\tvisited_KATSU[info[Q.top().node_id].katsu] = true;\n\t\t\t}\n\n\t\t\tif(info[Q.top().node_id].type == KATSU_SAND){\n\n\t\t\t\tif(visited_SAND[info[Q.top().node_id].sand] == false){\n\n\t\t\t\t\tfor(int i = 0; i < SAND[info[Q.top().node_id].sand].size(); i++){\n\n\t\t\t\t\t\tnext_node = SAND[info[Q.top().node_id].sand][i];\n\t\t\t\t\t\tnext_dist = Q.top().sum_dist+1;\n\n\t\t\t\t\t\tif(min_dist[next_node] > next_dist){\n\t\t\t\t\t\t\tmin_dist[next_node] = next_dist;\n\t\t\t\t\t\t\tQ.push(Data(next_node,next_dist));\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\n\t\t\t\t\tvisited_SAND[info[Q.top().node_id].sand] = true;\n\t\t\t\t}\n\n\t\t\t}else{ //KATSU_CURRY\n\n\t\t\t\tif(visited_CURRY[info[Q.top().node_id].curry] == false){\n\n\t\t\t\t\tfor(int i = 0; i < CURRY[info[Q.top().node_id].curry].size(); i++){\n\n\t\t\t\t\t\tnext_node = CURRY[info[Q.top().node_id].curry][i];\n\t\t\t\t\t\tnext_dist = Q.top().sum_dist+1;\n\n\t\t\t\t\t\tif(min_dist[next_node] > next_dist){\n\t\t\t\t\t\t\tmin_dist[next_node] = next_dist;\n\t\t\t\t\t\t\tQ.push(Data(next_node,next_dist));\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tvisited_CURRY[info[Q.top().node_id].curry] = true;\n\t\t\t}\n\n\t\t\tQ.pop();\n\t\t}\n\t}\n\n\tprintf(\"-1\\n\");\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 23092, "score_of_the_acc": -0.8264, "final_rank": 4 }, { "submission_id": "aoj_3133_4083788", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\nconst int INF = 19191919;\n\nint main(){\n int x,y,z,n,m,s,t;\n cin >>x >>y >>z >>n >>m >>s >>t;\n --s;\n --t;\n\n s = x+y+z+s;\n t = x+y+z+n+t;\n int V = x+y+z+n+m;\n vector<vector<int>> G(V);\n\n auto add_edge = [&](int u, int v){\n G[u].pb(v);\n G[v].pb(u);\n };\n\n int idx = x+y+z;\n\n rep(i,n){\n int a,b;\n cin >>a >>b;\n --a;\n --b;\n add_edge(idx,a);\n add_edge(idx,x+b);\n ++idx;\n }\n\n rep(i,m){\n int c,d;\n cin >>c >>d;\n --c;\n --d;\n add_edge(idx,x+c);\n add_edge(idx,x+y+d);\n ++idx;\n }\n\n vector<int> d(V,INF);\n d[s] = 0;\n queue<int> que({s});\n while(!que.empty()){\n int v = que.front();\n que.pop();\n for(int e:G[v]){\n if(d[e] > d[v]+1){\n d[e] = d[v]+1;\n que.push(e);\n }\n }\n }\n\n int ans = d[t]/2;\n if(d[t]==INF) ans = -1;\n cout << ans << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 29696, "score_of_the_acc": -1.5872, "final_rank": 11 }, { "submission_id": "aoj_3133_4081093", "code_snippet": "#include <iostream>\n#include <stdio.h>\n#include <string>\n#include <vector>\n#include <utility>\n#include <queue>\n#define llint long long\n#define inf 1e18\n\nusing namespace std;\ntypedef pair<llint, llint> P;\n\nstruct edge{\n\tllint to, cost;\n\tedge(){}\n\tedge(llint a, llint b){\n\t\tto = a, cost = b;\n\t}\n};\n\nllint x, y, z, n, m, s, t;\nllint a[100005], b[100005];\nllint c[100005], d[100005];\nvector<edge> G[300005];\nllint dist[300005];\n\nvoid dijkstra(llint S)\n{\n\tfor(int i = 1; i <= x+y+z; i++) dist[i] = inf;\n\tdist[S] = 0;\n\t\n\tpriority_queue< P, vector<P>, greater<P> > Q;\n\tQ.push( make_pair(0, S) );\n\t\n\tllint v, d;\n\twhile(Q.size()){\n\t\td = Q.top().first;\n\t\tv = Q.top().second;\n\t\tQ.pop();\n\t\tif(dist[v] < d) continue;\n\t\tfor(int i = 0; i < G[v].size(); i++){\n\t\t\tif(dist[G[v][i].to] > d + G[v][i].cost){\n\t\t\t\tdist[G[v][i].to] = d + G[v][i].cost;\n\t\t\t\tQ.push( make_pair(dist[G[v][i].to], G[v][i].to) );\n\t\t\t}\n\t\t}\n\t}\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> x >> y >> z >> n >> m >> s >> t;\n\tfor(int i = 1; i <= n; i++){\n\t\tcin >> a[i] >> b[i];\n\t\tG[a[i]].push_back(edge(x+b[i], 1));\n\t\tG[x+b[i]].push_back(edge(a[i], 1));\n\t}\n\tfor(int i = 1; i <= m; i++){\n\t\tcin >> c[i] >> d[i];\n\t\tG[x+c[i]].push_back(edge(x+y+d[i], 1));\n\t\tG[x+y+d[i]].push_back(edge(x+c[i], 1));\n\t}\n\tif(b[s] == c[t]){\n\t\tcout << 1 << endl;\n\t\treturn 0;\n\t}\n\t\n\tdijkstra(a[s]);\n\tllint ans = max(dist[x+c[t]], dist[x+y+d[t]]);\n\tdijkstra(x+b[s]);\n\tans = min(ans, max(dist[x+c[t]], dist[x+y+d[t]]));\n\t\n\tif(ans > inf/2) cout << -1 << endl;\n\telse cout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 26500, "score_of_the_acc": -1.1162, "final_rank": 8 } ]
aoj_3129_cpp
コンテストTシャツ (Contest T-shirts) Segtree 君は、 $M$ 枚のコンテストTシャツを持っています。 彼は今から $N$ 日間、コンテストTシャツだけで過ごそうと考え、$i = 1, 2, 3, \dots, N$ に対して「 $i$ 日目に $A_i$ 枚目のTシャツを着る」という $N$ 個の計画を立てました。 しかし、今の計画のままだと洗濯が間に合わない可能性があるので、必要に応じて計画を変更し、2日連続で同じ服を着ないようにしたいです。 変更する必要のある計画の個数の最小値を求めてください。なお、与えられた制約の元で、計画の変更によって必ず条件を満たすようにできることが証明できます。 入力 入力は以下の形式で標準入力から与えられる。 $M$ $N$ $A_1$ $A_2$ $\ldots$ $A_N$ 出力 変更する必要のある計画の個数の最小値を出力してください。 ただし、最後には改行を入れること。 制約 $2 \leq M \leq 10^9$ $1 \leq N \leq 10^5$ $1 \leq A_i \leq M$ 入力は全て整数である。 入力例1 2 3 2 2 1 出力例1 1 入力例2 3 6 1 1 1 2 2 3 出力例2 2
[ { "submission_id": "aoj_3129_7075748", "code_snippet": "#include <iostream>\n#include <vector>\n#include <limits>\n#include <string>\n#include <algorithm>\n#include <cmath>\n#include <iomanip>\n#include <numeric>\n#include <stack>\n#include <queue>\n#include <list>\n#include <set>\n#include <unordered_set>\n#include <tuple>\n#include <map>\n#include <bitset>\n\nusing namespace std;\n\nint main()\n{\n\tint M, N;\n\tcin >> M >> N;\n\n\tvector<int> A(N);\n\n\tlong long neccessaryChange = 0;\n\n\tfor (int i = 0; i < N; i++)\n\t{\n\t\tcin >> A[i];\n\n\t\tif (i != 0)\n\t\t{\n\t\t\tif (A[i] == A[i - 1])\n\t\t\t{\n\t\t\t\tneccessaryChange++;\n\t\t\t}\n\t\t}\n\t}\n\n\tcout << neccessaryChange << endl;\n\n\treturn 0;\n}", "accuracy": 0.5833333333333334, "time_ms": 20, "memory_kb": 3624, "score_of_the_acc": -0.47, "final_rank": 18 }, { "submission_id": "aoj_3129_7075745", "code_snippet": "#include <iostream>\n#include <vector>\n#include <limits>\n#include <string>\n#include <algorithm>\n#include <cmath>\n#include <iomanip>\n#include <numeric>\n#include <stack>\n#include <queue>\n#include <list>\n#include <set>\n#include <unordered_set>\n#include <tuple>\n#include <map>\n#include <bitset>\n\nusing namespace std;\n\nint main()\n{\n\tint M, N;\n\tcin >> M >> N;\n\n\tvector<int> A(N);\n\n\tint neccessaryChange = 0;\n\n\tfor (int i = 0; i < N; i++)\n\t{\n\t\tcin >> A[i];\n\n\t\tif (i != 0)\n\t\t{\n\t\t\tif (A[i] == A[i - 1])\n\t\t\t{\n\t\t\t\tneccessaryChange++;\n\t\t\t}\n\t\t}\n\t}\n\n\tcout << neccessaryChange << endl;\n\n\treturn 0;\n}", "accuracy": 0.5833333333333334, "time_ms": 20, "memory_kb": 3592, "score_of_the_acc": -0.4433, "final_rank": 17 }, { "submission_id": "aoj_3129_4849123", "code_snippet": "#include<iostream>\nusing namespace std;\nint M,N,a[1<<17];\nmain(){\n\tcin>>M>>N;\n\tfor(int i=0;i<N;i++)cin>>a[i];\n\tif(M==2){\n\t\tint a1=0,a2=0;\n\t\tfor(int i=0;i<N;i++){\n\t\t\tif(a[i]==i%2+1)a1++;\n\t\t\telse a2++;\n\t\t}cout<<(a1<a2?a1:a2)<<endl;\n\t\treturn 0;\n\t}int cnt=0;\n\tfor(int i=1;i<N;i++){\n\t\tif(a[i-1]==a[i]){\n\t\t\ta[i]=-1; cnt++;\n\t\t}\n\t}cout<<cnt<<endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3516, "score_of_the_acc": -1.38, "final_rank": 5 }, { "submission_id": "aoj_3129_4163970", "code_snippet": "#include<iostream>\n#include<vector>\nusing namespace std;\nsigned main(){\n int n,m;\n cin>>m>>n;\n int ai,prv,ans=0;\n cin>>prv;\n for(int i=1;i<n;++i){\n cin>>ai;\n if(ai==prv){\n ans++;\n prv = -1;\n }\n else prv = ai;\n }\n cout<< ans <<endl;\n}", "accuracy": 0.625, "time_ms": 20, "memory_kb": 3100, "score_of_the_acc": -0.0333, "final_rank": 9 }, { "submission_id": "aoj_3129_4114631", "code_snippet": "#include<iostream>\nusing namespace std;\n\nint main(){\n \n int m,n,a,b,cnt,ans;\n cin >> m >> n >> b;\n ans = 0;\n cnt = 1;\n for(int i=1;i<n;i++){\n cin >> a;\n if(a == b) cnt++;\n if(a != b && cnt > 1){\n ans += cnt/2;\n cnt = 1;\n }\n b = a;\n }\n cout << ans << endl;\n \n return(0);\n}", "accuracy": 0.5833333333333334, "time_ms": 30, "memory_kb": 3060, "score_of_the_acc": -1, "final_rank": 19 }, { "submission_id": "aoj_3129_4112541", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define M 100000\nint main(){\n int n,m,a[M],i,b[M],ca[M];\n int c=0,c2=0;\n cin>>m>>n;\n if(m>2){\n cin>>a[0];\n for(i=1;i<n;i++){\n cin>>a[i];\n if(a[i]==a[i-1])c++;\n }\n if(c>0)c=(c+1)/2;\n cout<<c<<endl;\n }\n else{\n for(i=0;i<n;i++){\n if(i%2==0){\n\tb[i]=1;\n\tca[i]=2;\n }else{\n\tb[i]=2;\n\tca[i]=1;\n }\n }\n\n for(i=0;i<n;i++){\n cin>>a[i];\n if(a[i]!=b[i])c++;\n if(a[i]!=ca[i])c2++;\n }\n if(c<c2)cout<<c<<endl;\n else cout<<c2<<endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4260, "score_of_the_acc": -2, "final_rank": 7 }, { "submission_id": "aoj_3129_4099052", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main() {\n\n int M, N;\n cin>>M>>N;\n int a, b, c, count = 0, ren;\n for(int i = 0; i < N; i++) {\n cin>>a;\n if (a == b && i != 0 && ren % 2 == 0) {\n count++;\n ren++;\n } else if (a != b) ren = 0;\n b = a;\n }\n\n cout<<count<<endl;\n return 0;\n}", "accuracy": 0.5833333333333334, "time_ms": 20, "memory_kb": 3088, "score_of_the_acc": -0.0233, "final_rank": 16 }, { "submission_id": "aoj_3129_4099050", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define M 100000\nint main(){\n int n,m,a[M],i;\n int c=0;\n cin>>m>>n;\n cin>>a[0];\n for(i=1;i<n;i++){\n cin>>a[i];\n if(a[i]==a[i-1])c++;\n }\n if(c>0)c=(c+1)/2;\n cout<<c<<endl;\n return 0;\n}", "accuracy": 0.625, "time_ms": 30, "memory_kb": 3472, "score_of_the_acc": -1.3433, "final_rank": 14 }, { "submission_id": "aoj_3129_4099041", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define M 100000\nint main(){\n int n,m,a[M],i;\n int c=0;\n cin>>m>>n;\n for(i=0;i<n;i++){\n cin>>a[i];\n }\n for(i=0;i<n;i++){\n if(a[i]==a[i-1])c++;\n }\n if(c>0)c=c/2+1;\n cout<<c<<endl;\n return 0;\n}", "accuracy": 0.5833333333333334, "time_ms": 30, "memory_kb": 3504, "score_of_the_acc": -1.37, "final_rank": 20 }, { "submission_id": "aoj_3129_4099023", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main(){\n\tint m,n,cnt=0,prev,ans=0;\tcin>>m>>n;\n\tif(m==2){\n\t\tint ans1=0,ans2=0;\n\t\tfor(int i=0;i<n;i++){\n\t\t\tint x;\tcin>>x;\n\t\t\t\n\t\t\tif((i%2 +1 !=x)){\n\t\t\t\tans1++;\n\t\t\t}else ans2++;\n\t\t}\n\n\t\tans=min(ans1,ans2);\n\t}else{\n\t\tfor(int i=0;i<n;i++){\n\t\t\tint x;\tcin>>x;\n\n\t\t\tif(x==prev)cnt++;\n\t\t\telse{\n\t\t\t\tans+=cnt/2;\n\n\t\t\t\tcnt=1;\n\t\t\t\tprev=x;\n\t\t\t}\n\t\t}\n\t}\n\tans+=cnt/2;\n\tcout<<ans<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3116, "score_of_the_acc": -0.0467, "final_rank": 1 }, { "submission_id": "aoj_3129_4099007", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main(){\n\tint m,n,cnt=0,prev,ans=0;\tcin>>m>>n;\n\tif(m==2){\n\t\tint flag=0;\n\t\tfor(int i=0;i<n;i++){\n\t\t\tint x;\tcin>>x;\n\n\t\t\tif(x==prev)cnt++;\n\t\t\telse{\n\t\t\t\tans+=cnt/2;\n\n\t\t\t\tif(cnt%2==0 && flag==3)cnt=2;\n\t\t\t\telse cnt=1;\n\t\t\t\tprev=x;\n\t\t\t}\n\n\t\t\tflag|=x;\n\t\t}\n\t}else{\n\t\tfor(int i=0;i<n;i++){\n\t\t\tint x;\tcin>>x;\n\n\t\t\tif(x==prev)cnt++;\n\t\t\telse{\n\t\t\t\tans+=cnt/2;\n\n\t\t\t\tcnt=1;\n\t\t\t\tprev=x;\n\t\t\t}\n\t\t}\n\t}\n\tans+=cnt/2;\n\tcout<<ans<<endl;\n\treturn 0;\n}", "accuracy": 0.6666666666666666, "time_ms": 20, "memory_kb": 3096, "score_of_the_acc": -0.03, "final_rank": 8 }, { "submission_id": "aoj_3129_4099006", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\nint main(){\n\tint m,n,prev=0,ans=0;\tcin>>m>>n;\n\tfor(int i=0;i<n;i++){\n\t\tint x;\tcin>>x;\n\n\t\tif(prev==x){\n\t\t\tans++;\tprev=0;\n\t\t}else{\n\t\t\tprev=x;\n\t\t}\n\t}\n\tcout<<ans<<endl;\n\n\treturn 0;\n}", "accuracy": 0.625, "time_ms": 30, "memory_kb": 3116, "score_of_the_acc": -1.0467, "final_rank": 12 }, { "submission_id": "aoj_3129_4098972", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint main() {\n\tint m,n; cin >> m >> n;\n\tvector<int> a(n);\n\tfor(auto&e:a) cin >> e;\n\tint ans=0;\n\tif(m>2) {\n\t\tfor(int i=1;i<n;++i) {\n\t\t\tif(a[i-1]==a[i]) {\n\t\t\t\ta[i]=-1;\n\t\t\t\t++ans;\n\t\t\t}\n\t\t}\n\t} else {\n\t\tint t1=0,t2=1;\n\t\tfor(int i=1;i<n;++i) {\n\t\t if(a[i]==a[0]) {\n\t\t\t\tif(i&1) ++t1;\n\t\t\t\telse ++t2;\n\t\t\t} else {\n\t\t\t\tif(i&1) ++t2;\n\t\t\t\telse ++t1;\n\t\t\t}\n\t\t}\n\t\tans=min(t1,t2);\n\t}\n\tcout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3132, "score_of_the_acc": -1.06, "final_rank": 4 }, { "submission_id": "aoj_3129_4098940", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint main() {\n\tint m,n; cin >> m >> n;\n\tvector<int> a(n);\n\tfor(auto&e:a) cin >> e;\n\tint ans=0;\n\tif(m>2) {\n\t\tfor(int i=1;i<n;++i) {\n\t\t\tif(a[i-1]==a[i]) {\n\t\t\t\ta[i]=-1;\n\t\t\t\t++ans;\n\t\t\t}\n\t\t}\n\t} else {\n\t\tfor(int i=1;i<n;++i) {\n\t\t\tif(a[i-1]==a[i]) {\n\t\t\t\tif(i+1<n&&a[i]==a[i+1]) a[i]=(a[i]==1?2:1);\n\t\t\t\t++ans;\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 0.625, "time_ms": 30, "memory_kb": 3116, "score_of_the_acc": -1.0467, "final_rank": 12 }, { "submission_id": "aoj_3129_4085291", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n//#include <boost/multiprecision/cpp_int.hpp>\n//typedef boost::multiprecision::cpp_int ll;\ntypedef long double dd;\n#define i_7 (ll)(1E9+7)\n//#define i_7 998244353\n#define i_5 i_7-2\nll mod(ll a){\n ll c=a%i_7;\n if(c>=0)return c;\n return c+i_7;\n}\ntypedef pair<ll,ll> l_l;\nll inf=(ll)1E16;\n#define rep(i,l,r) for(ll i=l;i<=r;i++)\n#define pb push_back\nll max(ll a,ll b){if(a<b)return b;else return a;}\nll min(ll a,ll b){if(a>b)return b;else return a;}\nvoid Max(ll &pos,ll val){pos=max(pos,val);}//Max(dp[n],dp[n-1]);\nvoid Min(ll &pos,ll val){pos=min(pos,val);}\nvoid Add(ll &pos,ll val){pos=mod(pos+val);}\ndd EPS=1E-9;\n#define fastio ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n////////////////////////////\nll c[3][2];\n\nint main(){\n ll m,n;cin>>m>>n;\n ll a[n];\n rep(i,0,n-1){\n cin>>a[i];\n }\n ll ans=0;\n if(m==2){\n rep(i,0,n-1){\n c[a[i]][i%2]++;\n }\n ans=min(c[2][0]+c[1][1],c[1][0]+c[2][1]);\n //cout<<c[2][0]<<c[1][1]<<c[1][0]<<c[2][1]<<endl;\n cout<<ans<<endl;\n }else{\n ll counter=1;\n if(n-1>=1){\n rep(i,1,n-1){\n if(a[i]==a[i-1]){\n counter++;\n }else{\n ans=ans+(counter/2);\n counter=1;\n }\n }\n }\n ans=ans+(counter/2);\n cout<<ans<<endl;\n }\n \n \n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3884, "score_of_the_acc": -1.6867, "final_rank": 6 }, { "submission_id": "aoj_3129_4085286", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n//#include <boost/multiprecision/cpp_int.hpp>\n//typedef boost::multiprecision::cpp_int ll;\ntypedef long double dd;\n#define i_7 (ll)(1E9+7)\n//#define i_7 998244353\n#define i_5 i_7-2\nll mod(ll a){\n ll c=a%i_7;\n if(c>=0)return c;\n return c+i_7;\n}\ntypedef pair<ll,ll> l_l;\nll inf=(ll)1E16;\n#define rep(i,l,r) for(ll i=l;i<=r;i++)\n#define pb push_back\nll max(ll a,ll b){if(a<b)return b;else return a;}\nll min(ll a,ll b){if(a>b)return b;else return a;}\nvoid Max(ll &pos,ll val){pos=max(pos,val);}//Max(dp[n],dp[n-1]);\nvoid Min(ll &pos,ll val){pos=min(pos,val);}\nvoid Add(ll &pos,ll val){pos=mod(pos+val);}\ndd EPS=1E-9;\n#define fastio ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n////////////////////////////\n\nint main(){\n ll m,n;cin>>m>>n;\n ll a[n];\n ll c[3][2];\n rep(i,0,n-1){\n cin>>a[i];\n }\n ll ans=0;\n if(n==2){\n rep(i,0,n-1){\n c[a[i]][i%2]++;\n }\n ans=min(c[2][0]+c[1][1],c[1][0]+c[2][1]);\n cout<<ans<<endl;\n }else{\n ll counter=1;\n rep(i,1,n-1){\n if(a[i]==a[i-1]){\n counter++;\n }else{\n ans=ans+(counter/2);\n counter=1;\n }\n }\n ans=ans+(counter/2);\n cout<<ans<<endl;\n }\n \n \n return 0;\n}", "accuracy": 0.625, "time_ms": 20, "memory_kb": 3892, "score_of_the_acc": -0.6933, "final_rank": 11 }, { "submission_id": "aoj_3129_4085186", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nint main() {\n\tlong M, N;\n\tcin >> M >> N;\n\tvector<long>A(N);\n\tlong ans = 0;\n\tfor (long i = 0; i < N; i++) {\n\t\tcin >> A.at(i);\n\t\tif (i != 0) {\n\t\t\tif (A.at(i - 1) == A.at(i)) {\n\t\t\t\tans++;\n\t\t\t\tA.at(i) = 0;\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << endl;\n}", "accuracy": 0.625, "time_ms": 30, "memory_kb": 3620, "score_of_the_acc": -1.4667, "final_rank": 15 }, { "submission_id": "aoj_3129_4083410", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\n\nint main() {\n\tint m, n; std::cin >> m >> n;\n\tstd::vector<int> plan(n); for (auto& p : plan) std::cin >> p;\n\tif (m == 2) {\n\t\tint odd{ 0 }, even{ 0 };\n\t\tfor (auto i = 0; i < n; ++i) {\n\t\t\tif ((i + plan[i]) % 2 == 0) {\n\t\t\t\t++even;\n\t\t\t}\n\t\t\telse {\n\t\t\t\t++odd;\n\t\t\t}\n\t\t}\n\t\tstd::cout << std::min(odd, even) << std::endl;\n\t}\n\telse {\n\t\tint prev = -1;\n\t\tint count = 0;\n\t\tfor (const auto p : plan) {\n\t\t\tif (prev == p) {\n\t\t\t\t++count;\n\t\t\t\tprev = -1;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tprev = p;\n\t\t\t}\n\t\t}\n\t\tstd::cout << count << std::endl;\n\t}\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3132, "score_of_the_acc": -0.06, "final_rank": 3 }, { "submission_id": "aoj_3129_4080822", "code_snippet": "//\n// Created by yamunaku on 2019/12/29.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing mti = vector<vector<int>>;\nusing vl = vector<ll>;\nusing mtl = vector<vector<ll>>;\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\ntemplate<typename T>\nusing heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;\n\nint main(){\n // CFS;\n int m, n;\n cin >> m >> n;\n vi a(n);\n rep(i, n) cin >> a[i];\n if(m == 2){\n int x = 0, y = 0;\n rep(i, n){\n if(a[i] == 1 + i % 2) x++;\n else y++;\n }\n cout << min(x, y) << endl;\n return 0;\n }\n int ans = 0;\n int pre = -1;\n int l = 0;\n rep(i, n){\n if(a[i] != pre){\n pre = a[i];\n ans += l / 2;\n l = 1;\n }else{\n l++;\n }\n }\n ans += l / 2;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3116, "score_of_the_acc": -0.0467, "final_rank": 1 }, { "submission_id": "aoj_3129_4080799", "code_snippet": "//\n// Created by yamunaku on 2019/12/29.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing mti = vector<vector<int>>;\nusing vl = vector<ll>;\nusing mtl = vector<vector<ll>>;\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\ntemplate<typename T>\nusing heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;\n\nint main(){\n // CFS;\n int m, n;\n cin >> m >> n;\n vi a(n);\n rep(i, n) cin >> a[i];\n int ans = 0;\n int pre = -1;\n int l = 0;\n rep(i, n){\n if(a[i] != pre){\n pre = a[i];\n ans += l / 2;\n l = 1;\n }else{\n l++;\n }\n }\n ans += l / 2;\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.625, "time_ms": 20, "memory_kb": 3132, "score_of_the_acc": -0.06, "final_rank": 10 } ]
aoj_3134_cpp
カードはおやつに入りますか?(Are Cards Snacks?) square1001君は $N$ 枚のカードを持っています。 これらのカードにはそれぞれ整数が書かれており、$i$ 枚目のカードに書かれている整数は $A_i$ です。 square1001君の今日の乱数は $K$ です。square1001君はこれらの $N$ 枚のカードの中から何枚かのカードを選び、合計が $K$ となるようにしたいです。 この様子を見ていたE869120君は、これを阻止したいと考えました。 具体的には、事前に何枚かのカードを食べることで、square1001 君がどのように残りのカードを選んでも合計が $K$ とならないようにしたいです。 しかし、E869120 君は満腹であるため、なるべくカードを食べたくありません。 さて、E869120 君は最低何枚のカードを食べることでこれを阻止できますか? 入力 入力は以下の形式で標準入力から与えられる。 $N$ $K$ $A_1$ $A_2$ $A_3$ $\cdots$ $A_N$ 出力 E869120 君が目的を達成するために食べるカードの枚数の最小値を、1 行で出力しなさい。 ただし、最後には改行を入れること。 制約 $1 \leq N \leq 20$ $1 \leq K \leq 1000000000 \ (= 10^9)$ $0 \leq A_i \leq 1000000 \ (= 10^6)$ 入力は全て整数である。 入力例1 5 9 8 6 9 1 2 出力例1 2 例えば、3 番目のカード (9 が書かれている) と 4 番目のカード (1 が書かれている) を食べることで、square1001 君の目的を阻止することができます。 入力例2 8 2 1 1 1 1 1 1 1 1 出力例2 7 入力例3 20 200 31 12 21 17 19 29 25 40 5 8 32 1 27 20 31 13 35 1 8 5 出力例3 6
[ { "submission_id": "aoj_3134_10331716", "code_snippet": "#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\n\n#include<atcoder/segtree>\nusing namespace atcoder;\ndouble op(double a,double b){return a*b;}\ndouble e(){return 1.0;}\n\nint main(){\n\t\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\n\tll N,K;\n\tcin>>N>>K;\n\tvector<ll> A(N);\n\tfor(int i=0;i<N;i++)cin>>A[i];\n\tvector<ll> DP(1<<N,0);\n\tll an=0;\n\tfor(int bit=0;bit<(1<<N);bit++){\n\t\tll S=0;\n\t\tfor(int i=0;i<N;i++)if(bit&(1<<i))S+=A[i];\n\t\tif(S==K)DP[bit]++;\n\t\tfor(int i=0;i<N;i++){\n\t\t\tif(bit&(1<<i))continue;\n\t\t\tDP[bit+(1<<i)]+=DP[bit];\n\t\t}\n\t\tif(DP[bit]==0)an=max(an,ll(__builtin_popcount(bit)));\n\t}\n\tcout<<N-an<<endl;\n\t\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 11620, "score_of_the_acc": -1.1998, "final_rank": 18 }, { "submission_id": "aoj_3134_10315284", "code_snippet": "// AOJ #3134 Are Cards Snacks?\n// 2025.3.21\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nint main(){\n int n = Cin(), k = Cin();\n vector<int> A(n);\n for(int i=0;i<n;i++) A[i] = Cin();\n\n int f = 0;\n vector<int> R;\n for (int i=0;i<n;i++){\n if(A[i]==k) f++;\n else R.push_back(A[i]);\n }\n int m = R.size();\n\n int tot = 1 << m;\n vector<int> sum(tot, 0);\n for(int mask = 1; mask < tot; mask++){\n int lb = __builtin_ctz(mask);\n int prev = mask & (mask - 1);\n sum[mask] = sum[prev] + R[lb];\n }\n\n vector<bool> bad(tot, false);\n for(int M = 1; M < tot; M++){\n if(sum[M] == k){\n for(int X = M; X < tot; X = (X+1) | M) bad[X] = true;\n }\n }\n\n int best = m+1;\n for(int x = 0; x < tot; x++){\n if(!bad[x]){\n int keep = __builtin_popcount(x);\n int rem = m - keep;\n best = min(best, rem);\n }\n }\n Cout(f + best);\n return 0;\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 7268, "score_of_the_acc": -1.4033, "final_rank": 19 }, { "submission_id": "aoj_3134_10315278", "code_snippet": "// AOJ #3134 Are Cards Snacks?\n// 2025.3.21\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nint main(){\n int n = Cin(); ll k = Cin();\n vector<ll> A(n);\n for(int i=0;i<n;i++) A[i] = Cin();\n\n int f = 0;\n vector<ll> R;\n for (int i=0;i<n;i++){\n if(A[i]==k) f++;\n else R.push_back(A[i]);\n }\n int m = R.size();\n\n int tot = 1 << m;\n vector<ll> sum(tot, 0);\n for(int mask = 1; mask < tot; mask++){\n int lb = __builtin_ctz(mask);\n int prev = mask & (mask - 1);\n sum[mask] = sum[prev] + R[lb];\n }\n\n vector<bool> dangerous(tot, false);\n for(int M = 1; M < tot; M++){\n if(sum[M] == k){\n for(int X = M; X < tot; X = (X+1) | M) dangerous[X] = true;\n }\n }\n\n int best = m+1;\n for(int x = 0; x < tot; x++){\n if(!dangerous[x]){\n int keep = __builtin_popcount(x);\n int rem = m - keep;\n best = min(best, rem);\n }\n }\n Cout(f + best);\n return 0;\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 11392, "score_of_the_acc": -1.8949, "final_rank": 20 }, { "submission_id": "aoj_3134_8827160", "code_snippet": "#line 1 \"a.cpp\"\n#define PROBLEM \"\"\n#line 2 \"/home/kuhaku/home/github/algo/lib/template/template.hpp\"\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = M_PI;\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/macro.hpp\"\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/sonic.hpp\"\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n\n constexpr void operator()() const {}\n} sonic;\n#line 5 \"/home/kuhaku/home/github/algo/lib/template/atcoder.hpp\"\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) {\n os << (it == v.begin() ? \"\" : \" \") << *it;\n }\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\ntemplate <typename T, typename... Args>\nauto make_vector(T x, int arg, Args... args) {\n if constexpr (sizeof...(args) == 0) return std::vector<T>(arg, x);\n else return std::vector(arg, make_vector<T>(x, args...));\n}\nvoid Yes(bool is_correct = true) {\n std::cout << (is_correct ? \"Yes\" : \"No\") << '\\n';\n}\nvoid No(bool is_not_correct = true) {\n Yes(!is_not_correct);\n}\nvoid YES(bool is_correct = true) {\n std::cout << (is_correct ? \"YES\" : \"NO\") << '\\n';\n}\nvoid NO(bool is_not_correct = true) {\n YES(!is_not_correct);\n}\nvoid Takahashi(bool is_correct = true) {\n std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n';\n}\nvoid Aoki(bool is_not_correct = true) {\n Takahashi(!is_not_correct);\n}\n#line 3 \"a.cpp\"\n\nint main(void) {\n int n, k;\n cin >> n >> k;\n vector<int> a(n);\n cin >> a;\n\n vector<bool> dp(1 << n);\n rep (bit, 1 << n) {\n int s = 0;\n rep (i, n) {\n if (bit >> i & 1)\n s += a[i];\n }\n if (s == k)\n dp[bit] = true;\n }\n\n rep (bit, 1 << n) {\n if (!dp[bit])\n continue;\n rep (i, n) {\n dp[bit | (1 << i)] = true;\n }\n }\n\n int ans = n;\n rep (bit, 1 << n) {\n if (!dp[bit])\n chmin(ans, n - __builtin_popcount(bit));\n }\n co(ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3452, "score_of_the_acc": -0.0254, "final_rank": 1 }, { "submission_id": "aoj_3134_6381808", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline ll time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n,k; cin >> n >> k;\n vector<int> a(n);\n for(int i=0;i<n;i++){\n cin >> a[i];\n }\n vector<bool> dp(1<<n);\n for(int i=0;i<(1<<n);i++){\n int sum = 0;\n for(int j=0;j<n;j++){\n if((1<<j)&i)sum += a[j];\n }\n if(sum == k) dp[i] = 1;\n }\n int res = 1e9;\n for(int i=0;i<(1<<n);i++){\n if(dp[i]){\n for(int j=0;j<n;j++){\n dp[i|(1<<j)] = 1;\n }\n }\n else{\n res = min(res, n-__builtin_popcount(i));\n }\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3464, "score_of_the_acc": -0.1867, "final_rank": 5 }, { "submission_id": "aoj_3134_5064994", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 2 \"a.cpp\"\n\nint main() {\n\tini(n, k);\n\tVI a = in[n];\n\n\tVB dp(1 << n);\n\trep(s, 1 << n) {\n\t\tint sum = 0;\n\t\trep(i, n) {\n\t\t\tif (s & BIT(i)) sum += a[i];\n\t\t}\n\t\tdp[s] = sum == k;\n\t}\n\n\trep(k, n) rep(s, 1 << n) {\n\t\tif (s & BIT(k)) {\n\t\t\tif (dp[s ^ BIT(k)]) dp[s] = true;\n\t\t}\n\t}\n\n\tint ans = n;\n\trep(s, 1 << n) {\n\t\tif (!dp[s]) chmin(ans, n - __builtin_popcount(s));\n\t}\n\tout(ans);\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3444, "score_of_the_acc": -0.1845, "final_rank": 4 }, { "submission_id": "aoj_3134_4085316", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n//#include <boost/multiprecision/cpp_int.hpp>\n//typedef boost::multiprecision::cpp_int ll;\ntypedef long double dd;\n#define i_7 (ll)(1E9+7)\n//#define i_7 998244353\n#define i_5 i_7-2\nll mod(ll a){\n ll c=a%i_7;\n if(c>=0)return c;\n return c+i_7;\n}\ntypedef pair<ll,ll> l_l;\nll inf=(ll)1E16;\n#define rep(i,l,r) for(ll i=l;i<=r;i++)\n#define pb push_back\nll max(ll a,ll b){if(a<b)return b;else return a;}\nll min(ll a,ll b){if(a>b)return b;else return a;}\nvoid Max(ll &pos,ll val){pos=max(pos,val);}//Max(dp[n],dp[n-1]);\nvoid Min(ll &pos,ll val){pos=min(pos,val);}\nvoid Add(ll &pos,ll val){pos=mod(pos+val);}\ndd EPS=1E-9;\n#define fastio ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);\n////////////////////////////\n\nint main(){fastio\n ll n,k;cin>>n>>k;\n ll a[n];rep(i,0,n-1)cin>>a[i];\n ll sum[1<<n];memset(sum,0,sizeof(sum));\n rep(i,0,(1<<n)-1){\n rep(j,0,n-1){\n if((i>>j)&1)sum[i]+=a[j];\n }\n }\n bool f[1<<n];memset(f,false,sizeof(f));\n rep(i,0,(1<<n)-1){\n if(sum[i]==k)f[i]=true;\n }\n rep(i,0,(1<<n)-1){\n if(f[i]){\n rep(j,0,n-1){\n f[i|(1<<j)]=true;\n }\n }\n }\n ll ans=0;\n /*\n rep(i,0,(1<<n)-1){\n rep(j,0,n-1){\n if((i>>j)&1)cout<<1;\n else cout<<0;\n }cout<<\":\"<<f[i]<<endl;\n }*/\n rep(i,0,(1<<n)-1){\n if(!f[i]){\n ll c=0;\n rep(j,0,n-1){\n if((i>>j)&1)c++;\n }\n Max(ans,c);\n }\n }\n cout<<n-ans<<endl;\n \n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 12352, "score_of_the_acc": -1.16, "final_rank": 17 }, { "submission_id": "aoj_3134_4084907", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 25\n\nenum Type{\n\tYES,\n\tNO,\n\tUNDEFINED,\n};\n\nint N,K;\nint POW[SIZE];\nint table[SIZE];\nType dp[1 << 21];\n\n\nType recursive(int state){\n\n\tif(dp[state] != UNDEFINED){\n\n\t\treturn dp[state];\n\t}\n\n\t//部分集合を先に計算\n\tfor(int loop = 0; loop < N; loop++){\n\n\t\tif(state & (1 << loop)){\n\n\t\t\trecursive(state-POW[loop]);\n\t\t}\n\t}\n\n\t//部分集合に少なくとも1件YESがあれば自分もYES\n\tint count = 0;\n\n\tfor(int loop = 0; loop < N; loop++){\n\t\tif(state & (1 << loop)){\n\n\t\t\tif(dp[state-POW[loop]] == YES){\n\n\t\t\t\tcount++;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tif(count > 0){\n\n\t\treturn dp[state] = YES;\n\n\t}\n\n\t//自分を調べる\n\tint sum = 0;\n\tfor(int loop = 0; loop < N; loop++){\n\t\tif(state & (1 << loop)){\n\n\t\t\tsum += table[loop];\n\t\t}\n\t}\n\n\tif(sum == K){\n\n\t\treturn dp[state] = YES;\n\t}else{\n\n\t\treturn dp[state] = NO;\n\t}\n}\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i < SIZE; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tscanf(\"%d %d\",&N,&K);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%d\",&table[i]);\n\t}\n\n\tdp[0] = NO; //1 <= Kより\n\n\tfor(int state = 1; state < POW[N]; state++){\n\n\t\tdp[state] = UNDEFINED;\n\t}\n\n\trecursive(POW[N]-1);\n\n\tint ans = BIG_NUM;\n\n\tfor(int state = 0; state < POW[N]; state++){\n\t\tif(dp[state] == YES)continue;\n\n\t\tint minus = 0;\n\t\tfor(int loop = 0; loop < N; loop++){\n\t\t\tif(state & (1 << loop)){\n\n\t\t\t\t//Do nothing\n\t\t\t}else{\n\n\t\t\t\tminus++;\n\t\t\t}\n\t\t}\n\n\t\tans = min(ans,minus);\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 7320, "score_of_the_acc": -0.889, "final_rank": 14 }, { "submission_id": "aoj_3134_4084780", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\nint bit_count(int value) {\n\treturn value == 0 ? 0 : value % 2 + bit_count(value >> 1);\n}\nint main() {\n\tint n, k; std::cin >> n >> k;\n\tstd::vector<int> cards(n); for (auto& c : cards) std::cin >> c;\n\tstd::vector<bool> can_make(1 << n, false);\n\tfor (auto i = 0; i < 1 << n; ++i) {\n\t\tif (!can_make[i]) {\n\t\t\tint sum = 0;\n\t\t\tfor (auto j = 0; j < n; ++j) if ((i & (1 << j)) != 0) {\n\t\t\t\tsum += cards[j];\n\t\t\t}\n\t\t\tcan_make[i] = sum == k;\n\t\t}\n\t\tif (can_make[i]) {\n\t\t\tfor (auto j = 0; j < n; ++j) {\n\t\t\t\tcan_make[i | (1 << j)] = can_make[i | (1 << j)] || can_make[i];\n\t\t\t}\n\t\t}\n\t}\n\tint max_bit = 0;\n\tfor (auto i = 0; i < can_make.size(); ++i) if (!can_make[i]) {\n\t\tmax_bit = std::max(max_bit, bit_count(i));\n\t}\n\tstd::cout << n - max_bit << std::endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3232, "score_of_the_acc": -0.1213, "final_rank": 2 }, { "submission_id": "aoj_3134_4083815", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\nint main(){\n int n,k;\n cin >>n >>k;\n vector<int> a(n);\n rep(i,n) cin >>a[i];\n\n vector<int> dp(1<<n,1);\n rep(mask,1<<n){\n int s = 0;\n rep(i,n)if(mask>>i&1) s += a[i];\n if(s == k) dp[mask] = 0;\n }\n\n rep(mask,1<<n)if(dp[mask] == 0){\n rep(i,n)if(!(mask>>i&1)){\n int nx = mask|(1<<i);\n dp[nx] = 0;\n }\n }\n\n int ans = n;\n rep(mask,1<<n)if(dp[mask]) ans = min(ans, n-__builtin_popcount(mask));\n cout << ans << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 7068, "score_of_the_acc": -0.6614, "final_rank": 11 }, { "submission_id": "aoj_3134_4082738", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\nint main() {\n ios::sync_with_stdio(false); cin.tie(nullptr);\n int N, K; cin >> N >> K;\n vector<int> A(N); for (auto &a : A) cin >> a;\n vector<bool> B(1 << N);\n int all = (1 << N) - 1;\n for (int i = 0; i <= all; i++) {\n int sum = 0;\n for (int j = 0; j < N; j++) if (i & (1 << j)) {\n sum += A[j];\n }\n if (sum == K) B[all ^ i] = true;\n }\n for (int i = all; i >= 0; i--) {\n if (B[i]) {\n for (int j = 0; j < N; j++) if (i & (1 << j)) {\n B[i ^ (1 << j)] = true;\n }\n }\n }\n int ans = N;\n for (int i = 0; i <= all; i++) {\n if (!B[i]) {\n ans = min(ans, __builtin_popcount(i));\n }\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3220, "score_of_the_acc": -0.24, "final_rank": 7 }, { "submission_id": "aoj_3134_4081108", "code_snippet": "#include <iostream>\n#include <stdio.h>\n#include <string>\n#include <vector>\n#include <utility>\n#include <queue>\n#define llint long long\n#define inf 1e18\n\nusing namespace std;\ntypedef pair<llint, llint> P;\n\nllint n, k;\nllint a[1<<20];\n\nvoid zeta_transform(llint a[], int n)\n{\n\tint S = 1<<n;\n\tfor(int i = 0; i < n; i++){\n\t\tfor(int j = 0; j < S; j++){\n\t\t\tif((j&(1<<i))) a[j] += a[j^(1<<i)];\n\t\t}\n\t}\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n >> k;\n\tfor(int i = 0; i < n; i++) cin >> a[1<<i];\n\t\n\tzeta_transform(a, n);\n\tfor(int i = 0; i < (1<<n); i++){\n\t\tif(a[i] == k) a[i] = 1;\n\t\telse a[i] = 0;\n\t}\n\tzeta_transform(a, n);\n\t\n\tllint ans = n+1;\n\tfor(int i = 0; i < (1<<n); i++){\n\t\tif(a[i]) continue;\n\t\tllint cnt = 0;\n\t\tfor(int j = 0; j < n; j++){\n\t\t\tif(i & (1<<j)) cnt++;\n\t\t}\n\t\tans = min(ans, n-cnt);\n\t}\n\tcout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 11392, "score_of_the_acc": -1.0149, "final_rank": 15 }, { "submission_id": "aoj_3134_4080876", "code_snippet": "//\n// Created by yamunaku on 2019/12/29.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing mti = vector<vector<int>>;\nusing vl = vector<ll>;\nusing mtl = vector<vector<ll>>;\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\ntemplate<typename T>\nusing heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;\n\nint main(){\n // CFS;\n int n, k;\n cin >> n >> k;\n vi a(n);\n rep(i, n) cin >> a[i];\n vector<int> dp(1 << n, false);\n rep(i, 1 << n){\n int sum = 0;\n rep(j, n) if(i & (1 << j)) sum += a[j];\n if(sum == k){\n dp[i] = true;\n }\n }\n rep(i, n){\n rep(j, 1 << n){\n if(j & (1 << i)){\n dp[j] |= dp[j ^ (1 << i)];\n }\n }\n }\n int ans = 0;\n rep(i, 1 << n){\n if(!dp[i]){\n int tmp = 0;\n rep(j, n) if(i & (1 << j)) tmp++;\n ans = max(ans, tmp);\n }\n }\n cout << n - ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 7064, "score_of_the_acc": -0.6209, "final_rank": 10 }, { "submission_id": "aoj_3134_4079943", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint nth_bit(int64_t num, int n){\n return (num >> n) & 1;\n}\n\nint pop_count(int bits){\n bits = (bits & 0x55555555) + (bits >> 1 & 0x55555555);\n bits = (bits & 0x33333333) + (bits >> 2 & 0x33333333);\n bits = (bits & 0x0f0f0f0f) + (bits >> 4 & 0x0f0f0f0f);\n bits = (bits & 0x00ff00ff) + (bits >> 8 & 0x00ff00ff);\n return (bits & 0x0000ffff) + (bits >>16 & 0x0000ffff);\n}\n\nint main(){\n int N, K;\n cin >> N >> K;\n vector<int> A(N);\n for(int i=0; i<N; i++) cin >> A[i];\n bitset<(1<<20)> dp;\n for(int i=0; i<(1<<N); i++){\n int s = 0;\n for(int k=0; k<N; k++) if(nth_bit(i, k)) s += A[k];\n if(s == K) dp[i] = 1;\n }\n for(int k=0; k<N; k++) for(int i=0; i<(1<<N); i++) if(nth_bit(i, k)) dp[i] = dp[i] | dp[i-(1<<k)];\n int ans = N;\n for(int i=0; i<(1<<N); i++) if(!dp[i]) ans = min(ans, N - pop_count(i));\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3240, "score_of_the_acc": -0.2022, "final_rank": 6 }, { "submission_id": "aoj_3134_4079504", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n\nusing namespace std;\n\nint main() {\n int n, k;\n cin >> n >> k;\n vector<int> a(n);\n for (int i = 0; i < n; i++)cin >> a[i];\n\n int ret = 0;\n vector<bool> dp(1 << n);\n for (int bit = 0; bit < 1 << n; bit++) {\n int nowCount = 0, nowSum = 0;\n bool canMake = false;\n for (int i = 0; i < n; i++) {\n if (bit & (1 << i)) {\n nowCount++, nowSum += a[i];\n if (dp[bit ^ (1 << i)])canMake = true;\n }\n }\n if (canMake || nowSum == k) dp[bit] = true;\n else ret = max(ret, nowCount);\n }\n\n cout << n - ret << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3236, "score_of_the_acc": -0.1218, "final_rank": 3 }, { "submission_id": "aoj_3134_4079363", "code_snippet": "#include<iostream>\nusing namespace std;\n\nbool ng[1<<20] = {};\nint popcnt[1<<20] = {};\n\nint main(){\n int n, k;\n cin >> n >> k;\n int a[n], ret = n;\n for(int i = 0; i < n; i++) cin >> a[i];\n for(int s = 1; s < 1<<n; s++){\n int sum = 0;\n for(int i = 0; i < n; i++) if((s>>i)&1) sum += a[i], popcnt[s]++;\n ng[s] = sum==k;\n for(int i = 0; i < n; i++) if((s>>i)&1) ng[s] |= ng[s^(1<<i)];\n if(!ng[s]) ret = min(ret, n-popcnt[s]);\n }\n cout << ret << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 8220, "score_of_the_acc": -0.7875, "final_rank": 12 }, { "submission_id": "aoj_3134_4079082", "code_snippet": "#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\n#include <algorithm>\n#include <assert.h>\n#include <bitset>\n#include <cfloat>\n#include <complex>\n#include <deque>\n#include <fstream>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <limits.h>\n#include <list>\n#include <map>\n#include <math.h>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <string.h>\n#include <time.h>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n#define rep(i,n) for(int i=0;i<n;i++)\n#define REP(i,n) for(int i=1;i<=n;i++)\n#define int long long\n#define ll long long\n#define eps LDBL_EPSILON\n#define mod (int)1000000007\n#define INF LLONG_MAX/10\n#define P pair<int,int>\n#define prique priority_queue\nusing namespace std;\nint gcd(int a, int b) {\n\tif (!b)return a;\n\treturn gcd(b, a % b);\n}\nint lcm(int a, int b) {\n\treturn a / gcd(a, b) * b;\n}\nbool isprime(int n) {\n\tif (n == 1)return false;\n\tfor (int i = 2; i * i <= n; i++) {\n\t\tif (n % i == 0)return false;\n\t}\n\treturn true;\n}\nint mypow(int a, int b) {\n\tif (!b)return 1;\n\tif (b & 1)return mypow(a, b - 1) * a;\n\tint memo = mypow(a, b >> 1);\n\treturn memo * memo;\n}\nint modpow(int a, int b, int m = mod) {\n\tif (!b)return 1;\n\tif (b & 1)return mypow(a, b - 1) * a % m;\n\tint memo = mypow(a, b / 2);\n\treturn memo * memo % m;\n}\nclass modInt {\n\tint value, modulo;\npublic:\n\tconstexpr modInt() : value(0), modulo(mod) { value = 0; }\n\ttemplate<typename T>\n\tconstexpr modInt(T value = 0, int modulo = mod) : value(value), modulo(modulo) {\n\t\tthis->value += T(modulo) * max((int)1, -value / modulo + 1);\n\t\tthis->value %= T(modulo);\n\t}\n\tinline constexpr operator int()const { return value; }\n\tinline constexpr modInt& operator+=(modInt x) {\n\t\tvalue += x.value;\n\t\tif (value >= modulo)value -= modulo;\n\t\treturn *this;\n\t}\n\tinline constexpr modInt& operator++() {\n\t\tif (value == modulo - 1)value = 0;\n\t\telse value++;\n\t\treturn *this;\n\t}\n\tinline constexpr modInt& operator-()const {\n\t\treturn modInt(0) -= *this;\n\t}\n\tinline constexpr modInt& operator-=(modInt x) {\n\t\tvalue -= x.value;\n\t\tif (value < 0)value += modulo;\n\t\treturn *this;\n\t}\n\tinline constexpr modInt& operator--() {\n\t\tif (value == 0)value = modulo - 1;\n\t\telse value--;\n\t\treturn *this;\n\t}\n\tinline constexpr modInt& operator*=(modInt x) {\n\t\tvalue = value * x.value % mod;\n\t\treturn *this;\n\t}\n\tinline modInt& operator/=(modInt x) {\n\t\treturn operator*=(x.inv());\n\t}\n\tstatic modInt pow(modInt x, int y) {\n\t\tif (!y)return 1;\n\t\tif (y & 1)return pow(x, y - 1) * x;\n\t\tmodInt memo = pow(x, y / 2);\n\t\treturn memo * memo;\n\t}\n\tinline modInt inv() {\n\t\treturn pow(*this, modulo - 2);\n\t}\n\ttemplate<typename T> modInt operator+(T x) { return modInt(*this) += x; }\n\ttemplate<typename T> modInt& operator+=(T x) { return operator+=(modInt(x)); }\n\ttemplate<typename T> modInt operator-(T x) { return modInt(*this) -= x; }\n\ttemplate<typename T> modInt& operator-=(T x) { return operator-=(modInt(x)); }\n\ttemplate<typename T> modInt operator*(T x) { return modInt(*this) *= x; }\n\ttemplate<typename T> modInt& operator*=(T x) { return operator*=(modInt(x)); }\n\ttemplate<typename T> modInt operator/(T x) { return modInt(*this) /= x; }\n\ttemplate<typename T> modInt& operator/=(T x) { return operator/=(modInt(x)); }\n};\nistream& operator>>(istream& ist, modInt& x) {\n\tint a;\n\tist >> a;\n\tx = a;\n\treturn ist;\n}\nint modpow(modInt a, int b, int m = mod) {\n\tif (!b)return modInt(1);\n\tif (b & 1)return mypow(a, b - 1) * a % m;\n\tmodInt memo = mypow(a, b / 2);\n\treturn memo * memo;\n}\nclass UnionFind {\nprotected:\n\tint* par, * rank, * size;\npublic:\n\tUnionFind(unsigned int size) {\n\t\tpar = new int[size];\n\t\trank = new int[size];\n\t\tthis->size = new int[size];\n\t\trep(i, size) {\n\t\t\tpar[i] = i;\n\t\t\trank[i] = 0;\n\t\t\tthis->size[i] = 1;\n\t\t}\n\t}\n\tint find(int n) {\n\t\tif (par[n] == n)return n;\n\t\treturn par[n] = find(par[n]);\n\t}\n\tvoid unite(int n, int m) {\n\t\tn = find(n);\n\t\tm = find(m);\n\t\tif (n == m)return;\n\t\tif (rank[n] < rank[m]) {\n\t\t\tpar[n] = m;\n\t\t\tsize[m] += size[n];\n\t\t}\n\t\telse {\n\t\t\tpar[m] = n;\n\t\t\tsize[n] += size[m];\n\t\t\tif (rank[n] == rank[m])rank[n]++;\n\t\t}\n\t}\n\tbool same(int n, int m) {\n\t\treturn find(n) == find(m);\n\t}\n\tint getsize(int n) {\n\t\treturn size[find(n)];\n\t}\n};\nclass PerpetualUnionFind :UnionFind {\n\tP* notparent;\n\tvector<P>* sizevec;\n\tint opcount = 0;\npublic:\n\tPerpetualUnionFind(unsigned int size) :UnionFind(size) {\n\t\tthis->sizevec = new vector<P>[size];\n\t\tnotparent = new P[size];\n\t\trep(i, size) {\n\t\t\tpar[i] = i;\n\t\t\trank[i] = 0;\n\t\t\tsizevec[i].push_back(make_pair(-1, 1));\n\t\t\tnotparent[i] = make_pair(INF, i);\n\t\t}\n\t}\n\tint find(int n, int t = INF) {\n\t\tif (opcount <= t) {\n\t\t\tif (par[n] == n)return n;\n\t\t\treturn par[n] = find(par[n]);\n\t\t}\n\t\tif (notparent[n].first <= t)return find(notparent[n].second, t);\n\t\treturn n;\n\t}\n\tvoid unite(int n, int m) {\n\t\tn = find(n);\n\t\tm = find(m);\n\t\tif (n == m) {\n\t\t\topcount++;\n\t\t\treturn;\n\t\t}\n\t\tif (rank[n] < rank[m]) {\n\t\t\tpar[n] = m;\n\t\t\tnotparent[n] = make_pair(opcount, m);\n\t\t\tsizevec[m].push_back(make_pair(opcount, sizevec[m].back().second + sizevec[n].back().second));\n\t\t}\n\t\telse {\n\t\t\tpar[m] = n;\n\t\t\tnotparent[m] = make_pair(opcount, n);\n\t\t\tsizevec[n].push_back(make_pair(opcount, sizevec[n].back().second + sizevec[m].back().second));\n\t\t\tif (rank[n] == rank[m])rank[n]++;\n\t\t}\n\t\topcount++;\n\t}\n\tbool same(int n, int m, int t = INF) {\n\t\treturn find(n, t) == find(m, t);\n\t}\n\tint getsize(int n, int t = INF) {\n\t\tn = find(n, t);\n\t\tauto ite = lower_bound(sizevec[n].begin(), sizevec[n].end(), make_pair(t, (int)0));\n\t\tif (ite == sizevec[n].end())ite--;\n\t\tif (t < (*ite).first)ite--;\n\t\treturn (*ite).second;\n\t}\n};\nclass RollingHash {\n\tstring s;\n\tint n, m;\n\tmodInt base;\n\tdeque<modInt> has;\npublic:\n\tRollingHash(string s, int m, int b) : n(s.size()), m(m), base(b, m) { init(s, m, b); }\n\tvoid init(string s, int m, int b) {\n\t\tn = s.size();\n\t\thas.resize(n);\n\t\tbase = b;\n\t\tthis->s = s;\n\t\tthis->m = m;\n\t\trep(i, n) {\n\t\t\thas[i] = (int)s[i];\n\t\t\tif (i)has[i] += base * has[i - 1] % m;\n\t\t}\n\t}\n\toperator int() const {\n\t\treturn has.back();\n\t}\n\tvoid cut(int a, int b) {\n\t\tassert(!(a >= b || a < 0 || n < b));\n\t\trep(i, a)has.pop_front();\n\t\trep(i, n - b)has.pop_back();\n\t\ts = s.substr(a, b);\n\t\tmodInt memo = mypow(mypow(base, n - b), m - 2);\n\t\trep(i, b - a)has[i] *= memo;\n\t\tn = b - a;\n\t}\n\tint query(int a, int b) {\n\t\tassert(!(a >= b || a < 0 || n < b));\n\t\treturn has[b - 1] - mypow(base, b - a) * (!a ? modInt(0) : has[a - 1]);\n\t}\n\tint operator+(RollingHash t) {\n\t\tassert(m == t.m && base == t.base);\n\t\treturn (has[n - 1] * mypow(base, t.n) % m + t.has[t.n - 1]) % m;\n\t}\n\tRollingHash& operator+=(string t) {\n\t\ts += t;\n\t\thas.resize(n + t.size());\n\t\tfor (int i = n; i < n + t.size(); i++) {\n\t\t\thas[i] = (int)t[i] * base;\n\t\t\thas[i] += base * has[i - 1];\n\t\t}\n\t\tn += t.size();\n\t\treturn *this;\n\t}\n};\ntemplate<typename T, typename U>\nclass SegTree {\n\tint n = 1;\n\tT* node = NULL;\n\tU* lazy = NULL;\n\tbool* lazyflag = NULL;\n\tT nodee;\n\tfunction<T(T, T)> nodef;\n\tfunction<U(U, U)> lazyf;\n\tfunction<T(int, T, U)> updf;\n\tvoid eval(int k, int l, int r) {\n\t\tif (lazyflag[k]) {\n\t\t\tnode[k] = updf(r - l, node[k], lazy[k]);\n\t\t\tif (r - l > 1) {\n\t\t\t\tlazyflag[2 * k + 1] = lazyflag[2 * k + 2] = true;\n\t\t\t\tlazy[2 * k + 1] = lazyf(lazy[2 * k + 1], lazy[k]);\n\t\t\t\tlazy[2 * k + 2] = lazyf(lazy[2 * k + 2], lazy[k]);\n\t\t\t}\n\t\t\tlazyflag[k] = false;\n\t\t}\n\t}\npublic:\n\tSegTree(int m, int init, T nodee, function<T(T, T)> nodef, function<U(U, U)> lazyf, function<T(int, T, U)> updf) :nodee(nodee), nodef(nodef), lazyf(lazyf), updf(updf) {\n\t\tdelete[] node;\n\t\tdelete[] lazy;\n\t\twhile (n < m)n *= 2;\n\t\tnode = new T[2 * n], lazy = new U[2 * n], lazyflag = new bool[2 * n];\n\t\trep(i, 2 * n) {\n\t\t\tnode[i] = init;\n\t\t\tlazyflag[i] = false;\n\t\t}\n\t}\n\t~SegTree() {\n\t\tdelete[] node;\n\t\tdelete[] lazy;\n\t}\n\tvoid update(int a, int b, U x, int k = 0, int l = 0, int r = -1) {\n\t\tif (r == -1)r = n;\n\t\teval(k, l, r);\n\t\tif (b <= l || r <= a)return;\n\t\tif (a <= l && r <= b) {\n\t\t\tlazyflag[k] = true;\n\t\t\tlazy[k] = x;\n\t\t\teval(k, l, r);\n\t\t}\n\t\telse {\n\t\t\tupdate(a, b, x, 2 * k + 1, l, (l + r) / 2);\n\t\t\tupdate(a, b, x, 2 * k + 2, (l + r) / 2, r);\n\t\t\tnode[k] = nodef(node[2 * k + 1], node[2 * k + 2]);\n\t\t}\n\t}\n\tT query(int a, int b, int k = 0, int l = 0, int r = -1) {\n\t\tif (r == -1)r = n;\n\t\teval(k, l, r);\n\t\tif (b <= l || r <= a)return nodee;\n\t\tif (a <= l && r <= b)return node[k];\n\t\tT vl = query(a, b, 2 * k + 1, l, (l + r) / 2);\n\t\tT vr = query(a, b, 2 * k + 2, (l + r) / 2, r);\n\t\treturn nodef(vl, vr);\n\t}\n};\ntemplate<typename T>\nclass RAQRSQ :public SegTree<T, T> {\n\tusing base = SegTree<T, T>;\npublic:\n\tRAQRSQ(int size, const T& def = T()) :base(size, def, T(), [](T a, T b) {return a + b; }, [](T a, T b) {return a + b; }, [](int range, T a, T b) {return a + range * b; }) {};\n};\ntemplate<typename T>\nclass RAQRMQ :public SegTree<T, T> {\n\tusing base = SegTree<T, T>;\npublic:\n\tRAQRMQ(int size, const T& def = T()) :base(size, def, T(), [](T a, T b) {return min(a, b); }, [](T a, T b) {return a + b; }, [](int range, T a, T b) {return a + b; }) {};\n};\ntemplate<typename T>\nclass RUQRSQ :public SegTree<T, T> {\n\tusing base = SegTree<T, T>;\npublic:\n\tRUQRSQ(int size, const T& def = T()) :base(size, def, T(), [](T a, T b) {return a + b; }, [](T a, T b) {return b; }, [](int range, T a, T b) {return range * b; }) {};\n};\ntemplate<typename T>\nclass RUQRMQ :public SegTree<T, T> {\n\tusing base = SegTree<T, T>;\npublic:\n\tRUQRMQ(int size, const T& def = T()) :base(size, def, T(), [](T a, T b) {return min(a, b); }, [](T a, T b) {return b; }, [](int range, T a, T b) {return b; }) {};\n};\ntemplate<typename T>\nclass BIT {\n\tint n;\n\tT* bit;\npublic:\n\tBIT(int n) :n(n) {\n\t\tbit = new T[n];\n\t\tfill(bit, bit + n, T());\n\t}\n\tvoid add(int a, T x) {\n\t\twhile (a < n) {\n\t\t\tbit[a] += x;\n\t\t\ta += a & -a;\n\t\t}\n\t}\n\tT query(int a) {\n\t\tint cnt = 0;\n\t\twhile (a > 0) {\n\t\t\tcnt += bit[a];\n\t\t\ta -= a & -a;\n\t\t}\n\t\treturn cnt;\n\t}\n};\ntemplate<typename T>\nclass Matrix {\n\tint n;\n\tT zero, e;\n\tvector<vector<T>> vec;\n\tvoid letmeasure() {\n\t\trep(i, n) {\n\t\t\trep(j, n) {\n\t\t\t\tif (i != j)vec[i][j] = zero;\n\t\t\t\telse vec[i][j] = e;\n\t\t\t}\n\t\t}\n\t}\npublic:\n\tMatrix(int n, T zero, T e) :n(n), zero(zero), e(e) {\n\t\tvec.resize(n, vector<T>(n));\n\t}\n\tMatrix(int n, T zero, T e, vector<int> vec) :n(n), zero(zero), e(e) {\n\t\tif (vec.size() != n * n) {\n\t\t\tcerr << \"Invalid construct of matrix\" << endl;\n\t\t\texit(1);\n\t\t}\n\t\tthis->vec.resize(n, vector<T>(n));\n\t\trep(i, n) {\n\t\t\trep(j, n)this->vec[i][j] = vec[i * n + j];\n\t\t}\n\t}\n\tT& operator[](int a) {\n\t\treturn vec[a / n][a % n];\n\t}\n\tunsigned int size() { return n; }\n\tMatrix operator*(const Matrix a) {\n\t\tif (this->n != a.n) {\n\t\t\tcerr << \"Invalid multiply of matrix\" << endl;\n\t\t\texit(1);\n\t\t}\n\t\tvector<T> memo(n);\n\t\trep(i, n) {\n\t\t\trep(j, n) {\n\t\t\t\trep(k, n) {\n\t\t\t\t\tmemo[j] += vec[i][k] * a.vec[k][j];\n\t\t\t\t}\n\t\t\t}\n\t\t\tvec[i] = memo;\n\t\t\tmemo.clear();\n\t\t\tmemo.resize(n);\n\t\t}\n\t\treturn *this;\n\t}\n\tstatic Matrix<T> measure(int n, T zero, T e) {\n\t\tMatrix<T> res(n, zero, e);\n\t\tres.letmeasure();\n\t\treturn res;\n\t}\n};\nclass mycomplex {\n\tdouble realvalue, imagvalue;\npublic:\n\tmycomplex() :realvalue(0), imagvalue(0) {}\n\tmycomplex(double realvalue, double imagvalue) : realvalue(realvalue), imagvalue(imagvalue) {}\n\tmycomplex(double realvalue) : realvalue(realvalue), imagvalue(0) {}\n\tmycomplex(complex<double> c) :realvalue(c.real()), imagvalue(c.imag()) {}\n\tmycomplex(const mycomplex& rhs) :realvalue(rhs.realvalue), imagvalue(rhs.imagvalue) {}\n\tdouble real()const { return this->realvalue; }\n\tdouble imag()const { return this->imagvalue; }\n\tdouble abs() { return hypot(realvalue, imagvalue); }\n\tmycomplex& operator=(const mycomplex& obj) {\n\t\tif (this != &obj) {\n\t\t\tthis->realvalue = obj.realvalue;\n\t\t\tthis->imagvalue = obj.imagvalue;\n\t\t}\n\t\treturn *this;\n\t}\n\tmycomplex& operator=(mycomplex&& obj)noexcept {\n\t\tif (this != &obj) {\n\t\t\tthis->realvalue = exchange(obj.realvalue, 0);\n\t\t\tthis->imagvalue = exchange(obj.imagvalue, 0);\n\t\t}\n\t\treturn *this;\n\t}\n\tmycomplex& operator+=(const mycomplex& rhs) {\n\t\tthis->realvalue += rhs.realvalue;\n\t\tthis->imagvalue += rhs.imagvalue;\n\t\treturn *this;\n\t}\n\tfriend mycomplex operator+(mycomplex lhs, const mycomplex& rhs) {\n\t\tlhs += rhs;\n\t\treturn lhs;\n\t}\n\tmycomplex& operator-=(const mycomplex& rhs) {\n\t\tthis->realvalue -= rhs.realvalue;\n\t\tthis->imagvalue -= rhs.imagvalue;\n\t\treturn *this;\n\t}\n\tmycomplex& operator-=(const double& rhs) {\n\t\tthis->realvalue -= rhs;\n\t\treturn *this;\n\t}\n\tfriend mycomplex operator-(mycomplex lhs, const mycomplex& rhs) {\n\t\tlhs -= rhs;\n\t\treturn lhs;\n\t}\n\tmycomplex& operator*=(const mycomplex& rhs) {\n\t\tdouble pastreal = this->realvalue;\n\t\tthis->realvalue = this->realvalue * rhs.realvalue - this->imagvalue * rhs.imagvalue;\n\t\tthis->imagvalue = pastreal * rhs.imagvalue + rhs.realvalue * this->imagvalue;\n\t\treturn *this;\n\t}\n\tfriend mycomplex operator*(mycomplex lhs, const mycomplex& rhs) {\n\t\tlhs *= rhs;\n\t\treturn lhs;\n\t}\n\tmycomplex& operator/=(const mycomplex& rhs) {\n\t\t*this *= mycomplex(rhs.real(), -rhs.imag());\n\t\tdouble dnm = rhs.real() * rhs.real() - rhs.imag() * rhs.imag();\n\t\tthis->realvalue /= dnm;\n\t\tthis->imagvalue /= dnm;\n\t\treturn *this;\n\t}\n\tfriend mycomplex operator/(mycomplex lhs, const mycomplex& rhs) {\n\t\tlhs /= rhs;\n\t\treturn lhs;\n\t}\n};\nclass FastFourierTransform {\nprivate:\n\tstatic void dft(vector<mycomplex>& func, int inverse) {\n\t\tint sz = func.size();\n\t\tif (sz == 1)return;\n\t\tvector<mycomplex> veca, vecb;\n\t\trep(i, sz / 2) {\n\t\t\tveca.push_back(func[2 * i]);\n\t\t\tvecb.push_back(func[2 * i + 1]);\n\t\t}\n\t\tdft(veca, inverse); dft(vecb, inverse);\n\t\tmycomplex now = 1, zeta = polar(1.0, inverse * 2.0 * acos(-1) / sz);\n\t\trep(i, sz) {\n\t\t\tfunc[i] = veca[i % (sz / 2)] + now * vecb[i % (sz / 2)];\n\t\t\tnow *= zeta;\n\t\t}\n\t}\npublic:\n\ttemplate<typename T>\n\tstatic vector<double> multiply(vector<T> f, vector<T> g) {\n\t\tvector<mycomplex> nf, ng;\n\t\tint sz = 1;\n\t\twhile (sz < f.size() + g.size())sz *= 2;\n\t\tnf.resize(sz); ng.resize(sz);\n\t\trep(i, f.size()) {\n\t\t\tnf[i] = f[i];\n\t\t\tng[i] = g[i];\n\t\t}\n\t\tdft(nf, 1);\n\t\tdft(ng, 1);\n\t\trep(i, sz)nf[i] *= ng[i];\n\t\tdft(nf, -1);\n\t\tvector<double> res;\n\t\trep(i, sz)res.push_back(nf[i].real() / sz);\n\t\treturn res;\n\t}\n};\nint n, k, a[25], dp[1100000];\nsigned main() {\n\tcin >> n >> k;\n\trep(i, n)cin >> a[i];\n\trep(i, 1 << n)dp[i] = true;\n\tint ans = n;\n\trep(i, 1 << n) {\n\t\tint cnt = 0, bits = 0;\n\t\trep(j, n) {\n\t\t\tif (i & (1 << j)) {\n\t\t\t\tcnt += a[j];\n\t\t\t\tbits++;\n\t\t\t}\n\t\t}\n\t\tif (cnt == k)dp[i] = false;\n\t\tif (dp[i])ans = min(ans, n - bits);\n\t\telse {\n\t\t\trep(j, n) {\n\t\t\t\tdp[i | (1 << j)] &= dp[i];\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 11308, "score_of_the_acc": -1.0457, "final_rank": 16 }, { "submission_id": "aoj_3134_4078762", "code_snippet": "#include<iostream>\n#include<algorithm>\nusing namespace std;\nint N,K,A[20];\nint S[1<<20];\nbool exs[1<<20];\nmain()\n{\n\tcin>>N>>K;\n\tfor(int i=0;i<N;i++)cin>>A[i];\n\tint ans=0;\n\tfor(int i=0;i<1<<N;i++)\n\t{\n\t\tfor(int j=0;j<N;j++)if(i>>j&1)S[i]+=A[j];\n\t\texs[i]=S[i]==K;\n\t\tfor(int j=0;j<N;j++)\n\t\t{\n\t\t\tif(i>>j&1)exs[i]|=exs[i&~(1<<j)];\n\t\t}\n\t\tif(!exs[i])ans=max(ans,__builtin_popcount(i));\n\t}\n\tcout<<N-ans<<endl;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 8220, "score_of_the_acc": -0.8275, "final_rank": 13 }, { "submission_id": "aoj_3134_4073917", "code_snippet": "#pragma GCC optimize(\"Ofast\", \"unroll-loops\")\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n\n//#define TEST\n\nint bitcount(int f) {\n\tint cnt = 0;\n\twhile (f) {\n\t\tcnt += (f & 1);\n\t\tf /= 2;\n\t}\n\treturn cnt;\n}\n\nsigned main() {\n\t// 入力の受け取り\n\tint n, k; cin >> n >> k;\n\tvector<int> a(n);\n\tfor (int i = 0; i < n; ++i) cin >> a[i];\n\t// 和をkにできるカードのとり方をbit全探索\n\tvector<bool> ok((1 << n), false);\n\tfor (int f = 0; f < (1 << n); ++f) {\n\t\t// 全部取ってちょうどkか判定する\n\t\tint total = 0;\n\t\tfor (int i = 0; i < n; ++i)\n\t\t\tif (f & (1 << i))\n\t\t\t\ttotal += a[i];\n\t\tif (total == k) ok[f] = true;\n\t\t// 一部取ってちょうどkか判定する\n\t\tfor (int i = 0; i < n; ++i)\n\t\t\tif (f & (1 << i))\n\t\t\t\tok[f] = ok[f] || ok[f ^ (1 << i)];\n\t}\n#ifdef TEST\n\tfor (int f = 0; f < (1 << n); ++f)\n\t\tif (!ok[f])\n\t\t\tcout << f << \" \";\n\tcout << endl;\n#endif\n\t// !ok[f]なfについて、n-bitcount(f)のminを求める\n\tint res = n;\n\tfor (int f = 0; f < (1 << n); ++f)\n\t\tif (!ok[f])\n\t\t\tres = min(res, n - bitcount(f));\n\tcout << res << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 3236, "score_of_the_acc": -0.2818, "final_rank": 8 }, { "submission_id": "aoj_3134_4072690", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long\n#define ll long long\n#define P pair<int,int>\n#define fi first\n#define se second\n#define rep(i,n) for(int i=0;i<n;i++)\n#define INF 1000000000000000000\n#define MOD 1000000007\n#define all(v) v.begin(),v.end()\n#define pb push_back\nint dx[]={0,1,0,-1},dy[]={1,0,-1,0};\nint kaijo[2000010];\nstruct edge{int to,cost;};\nint gcd(int a,int b){\n if(b==0)return a;\n return gcd(b,a%b);\n}\nint lcm(int a,int b){\n return a/gcd(a,b)*b;\n}\nbool prime(int a){\n if(a==1)return false;\n for(int i=2;i*i<=a;i++){\n if(a%i==0)return false;\n }\n return true;\n}\nvoid init_fact(){\n kaijo[0]=1;\n for(int i=1;i<=2000000;i++){\n kaijo[i]=kaijo[i-1]*i;\n kaijo[i]%=MOD;\n }\n}\nint modpow(int a,int b){\n if(b==0)return 1;\n if(b%2)return modpow(a,b-1)*a%MOD;\n int memo=modpow(a,b/2);\n return memo*memo%MOD;\n}\nint comb(int a,int b){\n if(!kaijo[0])init_fact();\n return kaijo[a]*modpow(kaijo[a-b],MOD-2)%MOD*modpow(kaijo[b],MOD-2)%MOD;\n}\nint inv(int x){\n x=modpow(x,MOD-2);\n return x;\n}\nbool kosa(double ax,double ay,double bx,double by,double cx,double cy,double dx,double dy){\n double ta=(cx-dx)*(ay-cy)+(cy-dy)*(cx-ax);\n double tb=(cx-dx)*(by-cy)+(cy-dy)*(cx-bx);\n double tc=(ax-bx)*(cy-ay)+(ay-by)*(ax-cx);\n double td=(ax-bx)*(dy-ay)+(ay-by)*(ax-dx);\n return tc*td<0&&ta*tb<0;\n}\ndouble dist(double ax,double ay,double bx,double by){\n return sqrt((bx-ax)*(bx-ax)+(ay-by)*(ay-by));\n}\nint n,k,a[21],ans;\nbool dp[(1<<20)];\nsigned main(){\n cin>>n>>k;\n rep(i,n)cin>>a[i];\n for(int i=1;i<(1<<n);i++){\n int sum=0;\n rep(j,n)if((i>>j)&1)sum+=a[j];\n if(sum==k)dp[i]=true;\n rep(j,n){\n if((i>>j)&1){\n if(dp[i-(1<<j)])dp[i]=true;\n }\n }\n if(dp[i]==false){\n int cnt=0;\n rep(j,n){\n if((i>>j)&1)cnt++;\n }\n ans=max(ans,cnt);\n }\n }\n cout<<n-ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 4128, "score_of_the_acc": -0.4194, "final_rank": 9 } ]
aoj_3135_cpp
五等分のケーキ (Divide Cake into Five) Segtree 君は五つ子の家庭教師をしています。今日はクリスマスイブなので、五つ子のために円形のケーキを五等分しようとしています。 ケーキは中心から扇形状に $N$ 個のピースに分けられており、 $i$ 番目と $i + 1$ 番目($1 \leq i \leq N - 1$) 、 $N$ 番目と $1$ 番目のピースは隣り合っています。 $i$ 番目のピースの大きさは $A_i$ です。全てのピースの大きさの和を $S$ とすると、全ての入力について $S$ が $5$ の倍数であることが保証されます。 ある非負整数 $Y$ が与えられます。以下の条件を満たすようなケーキの五つ子への分け方を、「ケーキの五等分」と呼びます。 全ての人が1つ以上のピースを取る。 ケーキの中でそれぞれが取るピースたちは連結である。つまり、取る人でピースをグループ分けしたとき、同じグループかつ隣り合っているピースに移動することを繰り返して辿り着けないような同じグループ内のピースの組は存在しない。 誰も取らないピースは存在しない。 全ての人について、取るピースの大きさを $X$ としたとき、必ず $X + Y \geq S / 5$ を満たす。 「ケーキの五等分」になるようなケーキの分け方の通り数が何通りあるか求めてください。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $Y$ $A_1$ $A_2$ $\ldots$ $A_N$ 出力 「ケーキの五等分」になるようなケーキの分け方の通り数を出力してください。 ただし、最後には改行を入れること。 制約 $5 \leq N \leq 300$ $1 \leq A_i \leq 10^9$ $0 \leq Y \leq 10^9$ 入力は全て整数である。 入力例1 5 0 1 1 1 1 1 出力例1 1 入力例2 10 27 3 1 4 1 5 9 2 6 5 4 出力例2 252
[ { "submission_id": "aoj_3135_10315468", "code_snippet": "// AOJ #3135 Divide Cake into Five\n// 2025.3.21\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int N; ll Y;\n cin >> N >> Y;\n vector<ll> A(N);\n ll S = 0;\n for (int i = 0; i < N; i++){\n cin >> A[i];\n S += A[i];\n }\n ll q = S / 5;\n ll t = q - Y;\n ll lb = (t <= 1 ? 1 : t);\n\n ll tot = 0;\n for (int s = 0; s < N; s++){\n vector<ll> arr(N);\n for (int i = 0; i < N; i++) arr[i] = A[(s+i) % N];\n vector<ll> P(N+1, 0);\n for (int i = 0; i < N; i++) P[i+1] = P[i] + arr[i];\n vector<vector<ll>> dp(N+1, vector<ll>(6, 0));\n dp[0][0] = 1;\n for (int i = 0; i <= N; i++){\n for (int j = 0; j < 5; j++){\n if(dp[i][j] == 0) continue;\n for (int k = i+1; k <= N; k++){\n ll sum = P[k] - P[i];\n if(sum >= lb) dp[k][j+1] += dp[i][j];\n }\n }\n }\n tot += dp[N][5];\n }\n cout << tot / 5 << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3444, "score_of_the_acc": -0.0688, "final_rank": 8 }, { "submission_id": "aoj_3135_6381862", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline ll time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n; cin >> n;\n ll Y; cin >> Y;\n vector<ll> a(n);\n vector<ll> sum(n+1);\n for(int i=0;i<n;i++){\n cin >> a[i];\n sum[i+1] = sum[i] + a[i];\n }\n ll li = sum[n]/5 - Y;\n ll res = 0;\n vector<vector<int>> dp(5,vector<int>(n+1));\n for(int i=0;i<n;i++){\n // [0,i]は1人目が取る\n for(int j=0;j<5;j++){\n for(int k=0;k<=n;k++){\n dp[j][k] = 0;\n }\n }\n dp[0][i] = 1;\n for(int j=0;j<4;j++){\n for(int k=0;k<n;k++){\n if(!dp[j][k]) continue;\n for(int l=k+1;l<n;l++){\n ll u = sum[l+1] - sum[k+1];\n if(u >= li){\n dp[j+1][l] += dp[j][k];\n }\n }\n }\n for(int k=0;k<n;k++){\n if(!dp[4][k]) continue;\n if(sum[i+1]+(sum[n]-sum[k+1]) >= li){\n res += dp[4][k];\n }\n }\n }\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3480, "score_of_the_acc": -0.0522, "final_rank": 5 }, { "submission_id": "aoj_3135_4085260", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 605\n\nint N;\nll ADD;\nll table[SIZE];\nll dp[SIZE][5][SIZE]; //dp[数列の末尾][何人目(=k)か][k人目の始点] = 場合の数\nll BASE;\n\nll recursive(int tail,int index,int loc){\n\n\tif(dp[tail][index][loc] != -1){\n\n\t\treturn dp[tail][index][loc];\n\t}\n\n\tif(index == 4){ //取り分は自動決定\n\n\t\tif(table[tail]-table[loc-1]+ADD >= BASE){\n\n\t\t\treturn dp[tail][index][loc] = 1;\n\t\t}else{\n\n\t\t\treturn dp[tail][index][loc] = 0;\n\t\t}\n\t}\n\n\tint left = loc,right = tail,mid = (left+right)/2;\n\tint left_loc = tail+1;\n\n\twhile(left <= right){\n\n\t\tif(table[mid]-table[loc-1]+ADD >= BASE){\n\n\t\t\tleft_loc = mid;\n\t\t\tright = mid-1;\n\t\t}else{\n\n\t\t\tleft = mid+1;\n\t\t}\n\t\tmid = (left+right)/2;\n\t}\n\n\tll ret = 0;\n\tfor(int next_start = left_loc+1; next_start <= tail; next_start++){\n\n\t\tret += recursive(tail,index+1,next_start);\n\t}\n\n\treturn dp[tail][index][loc] = ret;\n}\n\n\nint main(){\n\n\tscanf(\"%d %lld\",&N,&ADD);\n\n\ttable[0] = 0;\n\tll tmp_sum = 0;\n\n\tfor(int i = 1; i <= N; i++){\n\n\t\tscanf(\"%lld\",&table[i]);\n\t\ttmp_sum += table[i];\n\n\t\ttable[N+i] = table[i];\n\t}\n\tBASE = tmp_sum/5;\n\n\n\tfor(int i = 1; i <= 2*N; i++){\n\n\t\ttable[i] += table[i-1];\n\t}\n\n\tfor(int tail = N; tail <= 2*N-1; tail++){\n\t\tfor(int i = 1; i <= 4; i++){\n\t\t\tfor(int k = 1; k <= 2*N-1; k++){\n\n\t\t\t\tdp[tail][i][k] = -1;\n\t\t\t}\n\t\t}\n\t}\n\n\tll ans = 0;\n\tint left,right,mid;\n\tint left_loc = 2*N,tail;\n\n\tfor(int start = 1; start <= N; start++){ //0人目の始点\n\n\t\ttail = start+(N-1);\n\t\tleft = start,right = tail,mid = (left+right)/2;\n\n\t\twhile(left <= right){ //和がS/5以上となる最小のインデックスを求める\n\n\t\t\tif(table[mid]-table[start-1]+ADD >= BASE){\n\n\t\t\t\tleft_loc = mid;\n\t\t\t\tright = mid-1;\n\t\t\t}else{\n\n\t\t\t\tleft = mid+1;\n\t\t\t}\n\t\t\tmid = (left+right)/2;\n\t\t}\n\n\t\tfor(int next_start = left_loc+1; next_start <= tail; next_start++){\n\n\t\t\tans += recursive(tail,1,next_start);\n\t\t}\n\t}\n\n\tprintf(\"%lld\\n\",ans/5); //円順列\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 10084, "score_of_the_acc": -1.0543, "final_rank": 19 }, { "submission_id": "aoj_3135_4084812", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\nint main(){\n int n;\n ll y;\n cin >>n >>y;\n\n ll s = 0;\n vector<ll> a(n);\n rep(i,n){\n cin >>a[i];\n s += a[i];\n }\n\n ll ans = 0;\n for(int pre=1; pre<n; ++pre)rep(suf,n){\n if(pre+suf>=n) continue;\n\n ll tt = 0;\n rep(i,pre) tt += a[i];\n rep(i,suf) tt += a[n-1-i];\n if(tt+y < s/5) continue;\n\n vector<ll> v;\n for(int i=pre; i<n-suf; ++i) v.pb(a[i]);\n int V = v.size();\n if(V<4) continue;\n\n vector<ll> p(V+1);\n rep(i,V) p[i+1] = v[i]+p[i];\n\n vector<ll> dp(V+1);\n dp[0] = 1;\n rep(loop,4){\n vector<ll> nx(V+1);\n\n ll ss = 0;\n int j = 0;\n rep(i,V){\n while(j<i+1 && p[i+1]-p[j]+y>=s/5){\n ss += dp[j];\n ++j;\n }\n nx[i+1] = ss;\n }\n dp = nx;\n }\n\n ans += dp[V];\n }\n\n cout << ans << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3184, "score_of_the_acc": -0.075, "final_rank": 10 }, { "submission_id": "aoj_3135_4084753", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\nlong long int cal_pattern(int from, int until, int count, std::vector<std::vector<std::vector<long long int>>> &memo, const std::vector<long long int>& pieces, const long long int sum, const long long int y) {\n\tif (--count < 0) return from == until ? 1 : 0;\n\tif (memo[from][until][count] >= 0) return memo[from][until][count];\n\tlong long int s = 0;\n\tlong long int result = 0;\n\tfor (auto i = from; i != until; i = (i + 1) % pieces.size()) {\n\t\ts += pieces[i];\n\t\tif (s + y >= sum / 5) {\n\t\t\tresult += cal_pattern((i + 1) % pieces.size(), until, count, memo, pieces, sum, y);\n\t\t}\n\t}\n\treturn memo[from][until][count] = result;\n}\nlong long int solve(const std::vector<long long int>& pieces, const long long int y) {\n\tconst auto sum = std::accumulate(pieces.begin(), pieces.end(), 0LL);\n\tstd::vector<std::vector<std::vector<long long int>>> memo(pieces.size(), std::vector<std::vector<long long int>>(pieces.size(), std::vector<long long int>(5, -1)));\n\tlong long int result = 0;\n\tfor (auto from = 0; from < pieces.size(); ++from) {\n\t\tlong long int s = pieces[from];\n\t\tfor (auto size = 1; size < pieces.size(); ++size) {\n\t\t\tif (s + y >= sum / 5) result += cal_pattern((from + size) % pieces.size(), from, 4, memo, pieces, sum, y);\n\t\t\ts += pieces[(from + size) % pieces.size()];\n\t\t}\n\t}\n\treturn result / 5;\n}\n\nint main() {\n\tint n, y; std::cin >> n >> y;\n\tstd::vector<long long int> pieces(n); for (auto& p : pieces) std::cin >> p;\n\tstd::cout << solve(pieces, y) << std::endl;\n}", "accuracy": 1, "time_ms": 930, "memory_kb": 9532, "score_of_the_acc": -1.9208, "final_rank": 20 }, { "submission_id": "aoj_3135_4081140", "code_snippet": "#include <iostream>\n#include <stdio.h>\n#include <string>\n#include <vector>\n#include <utility>\n#include <queue>\n#define llint long long\n#define inf 1e18\n\nusing namespace std;\ntypedef pair<llint, llint> P;\n\nllint n, y;\nllint a[305], s[305];\nllint dp[305][305][5];\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n >> y;\n\tfor(int i = 1; i <= n; i++) cin >> a[i];\n\tfor(int i = 1; i <= n; i++) s[i] = s[i-1] + a[i];\n\tllint d = s[n]/5-y;\n\t\n\tllint ans = 0;\n\tfor(int p = 0; p < n; p++){\n\t\tfor(int i = p; i <= n; i++){\n\t\t\tfor(int j = p; j <= n; j++){\n\t\t\t\tfor(int k = 0; k <= 4; k++){\n\t\t\t\t\tdp[i][j][k] = 0;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tdp[p][p][0] = 1;\n\t\tfor(int i = p; i < n; i++){\n\t\t\tfor(int j = p; j <= n; j++){\n\t\t\t\tfor(int k = 0; k <= 4; k++){\n\t\t\t\t\tif(k+1 <= 4 && s[i+1]-s[j] >= d) dp[i+1][i+1][k+1] += dp[i][j][k];\n\t\t\t\t\tdp[i+1][j][k] += dp[i][j][k];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor(int j = p; j < n; j++){\n\t\t\tif(s[n]-s[j]+s[p] >= d) ans += dp[n][j][4];\n\t\t}\n\t}\n\tcout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 6724, "score_of_the_acc": -0.5721, "final_rank": 15 }, { "submission_id": "aoj_3135_4080907", "code_snippet": "//\n// Created by yamunaku on 2019/12/29.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing mti = vector<vector<int>>;\nusing vl = vector<ll>;\nusing mtl = vector<vector<ll>>;\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\ntemplate<typename T>\nusing heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;\n\nint main(){\n // CFS;\n int n;\n ll y;\n cin >> n >> y;\n vl a(2 * n);\n ll s = 0;\n rep(i, n){\n cin >> a[i];\n s += a[i];\n a[n + i] = a[i];\n }\n s = s / 5 - y;\n vl l(n, n + 1);\n rep(i, n){\n ll sum = 0;\n repl(j, i, n){\n sum += a[j];\n if(sum >= s){\n l[i] = j;\n break;\n }\n }\n }\n ll ans = 0;\n rep(i, n){\n mtl dp(n, vl(5, 0));\n dp[i][0] = 1;\n repl(j, i + 1, n){\n repl(k, i, j){\n if(j >= l[k + 1]){\n repl(x, 1, 5){\n dp[j][x] += dp[k][x - 1];\n }\n }\n }\n }\n ll sum = 0;\n rep(j, i + 1){\n sum += a[j];\n }\n per(j, n){\n if(sum >= s) ans += dp[j][4];\n sum += a[j];\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3168, "score_of_the_acc": -0.0075, "final_rank": 1 }, { "submission_id": "aoj_3135_4079964", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main(){\n int N, Y;\n cin >> N >> Y;\n vector<int64_t> A(2*N), S(2*N+1);\n for(int i=0; i<N; i++){\n cin >> A[i];\n A[i+N] = A[i];\n }\n for(int i=0; i<2*N; i++){\n S[i+1] = S[i] + A[i];\n }\n int64_t L = accumulate(A.begin(), A.end(), 0LL) / 10 - Y;\n int64_t ans = 0;\n for(int s=N; s>=0; s--){\n int t = s+N;\n int64_t dp[601][6] = {0};\n dp[s][0] = 1;\n for(int i=s; i<t; i++) for(int j=i+1; j<=t; j++) if(S[j] - S[i] >= L) for(int k=0; k<5; k++){\n if(k == 0 && j <= N) continue;\n dp[j][k+1] += dp[i][k];\n }\n ans += dp[t][5];\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3144, "score_of_the_acc": -0.0692, "final_rank": 9 }, { "submission_id": "aoj_3135_4078775", "code_snippet": "#include<iostream>\nusing namespace std;\nint N;\nlong Y,A[300];\nlong dp[6][301];\nmain()\n{\n\tcin>>N>>Y;\n\tlong S=0,ans=0;\n\tfor(int i=0;i<N;i++)\n\t{\n\t\tcin>>A[i];\n\t\tS+=A[i];\n\t}\n\tY-=S/5;\n\tfor(int i=0;i<N;i++)\n\t{\n\t\tfor(int k=0;k<=5;k++)for(int j=0;j<=N;j++)dp[k][j]=0;\n\t\tdp[0][0]=1;\n\t\tfor(int j=0;j<N;j++)\n\t\t{\n\t\t\tlong sum=Y;\n\t\t\tfor(int k=j+1;k<=N;k++)\n\t\t\t{\n\t\t\t\tsum+=A[(i+k-1)%N];\n\t\t\t\tif(sum>=0)\n\t\t\t\t{\n\t\t\t\t\tfor(int l=0;l<5;l++)dp[l+1][k]+=dp[l][j];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tans+=dp[5][N];\n\t}\n\tcout<<ans/5<<endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3116, "score_of_the_acc": -0.0543, "final_rank": 6 }, { "submission_id": "aoj_3135_4072614", "code_snippet": "#include <bits/stdc++.h>\n#define int long long\n#define mod (int)(1e9+7)\n#define inf (int)(3e18)\n#define rep(i,n) for(int i=0;i<n;i++)\n#define REP(i,n) for(int i=1;i<n;i++)\n#define P std::pair<int,int>\n#define PiP std::pair<int,std::pair<int,int>>\n#define all(v) v.begin(),v.end()\n#define mkp std::make_pair\n#define prique(T) std::priority_queue<T,vector<T>,greater<T>>\nusing namespace std;\ntemplate<class T> inline void chmax(T &a, T b) {\n\ta = std::max(a, b);\n}\ntemplate<class T> inline void chmin(T &a, T b) {\n\ta = std::min(a, b);\n}\n\nbool prime(int x) {\n\tfor (int i = 2; i * i <= x; i++) {\n\t\tif (x % i == 0)\n\t\t\treturn false;\n\t}\n\treturn x != 1;\n}\nint gcd(int x, int y) {\n\tif (y == 0)\n\t\treturn x;\n\treturn gcd(y, x % y);\n}\nint lcm(int x, int y) {\n\treturn x / gcd(x, y) * y;\n}\nint kai(int x, int y) {\n\tint res = 1;\n\tfor (int i = x - y + 1; i <= x; i++) {\n\t\tres *= i;\n\t\tres %= mod;\n\t}\n\treturn res;\n}\nint mod_pow(int x, int y, int m) {\n\tint res = 1;\n\twhile (y > 0) {\n\t\tif (y & 1) {\n\t\t\tres = res * x % m;\n\t\t}\n\t\tx = x * x % m;\n\t\ty >>= 1;\n\t}\n\treturn res;\n}\nint comb(int x, int y) {\n\tif (y > x)\n\t\treturn 0;\n\treturn kai(x, y) * mod_pow(kai(y, y), mod - 2, mod) % mod ;\n}\nint get_rand(int MIN, int MAX) {\n\tstd::random_device rnd;\n\tstd::mt19937 mt32(rnd());\n\tstd::uniform_int_distribution<int> engine(MIN, MAX);\n\treturn engine(mt32);\n}\n/*--------Library Zone!--------*/\n\nint N, Y, A[305], sum[700];\nsigned main() {\n\tcin >> N >> Y;\n\tint all=0;\n\tREP(i,N+1)\n\t{\n\t\tcin >> A[i];\n\t\tall+=A[i];\n\t\tsum[i]+=A[i];\n\t\tsum[i+1]+=sum[i];\n\t}\n\tint least=all/5;\n\tREP(i,N+1){\n\t\tsum[i+N]=sum[N]+sum[i];\n\t}\n\tint ans = 0;\n\tREP(i,N+1){\n\t\tint DP[705][6];\n\t\trep(j,705)rep(k,6)DP[j][k]=0;\n\t\tDP[i][0]=1;\n\t\tfor(int j=i;j<i+N;j++){\n\t\t\tfor(int k=j;k<i+N;k++){\n\t\t\t\tif(sum[k]-sum[j-1]+Y>=least){\n\t\t\t\t\trep(l,5){\n\t\t\t\t\t\tDP[k+1][l+1]+=DP[j][l];\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tans+=DP[i+N][5];\n\t}\n\tcout<<ans/5<<endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3148, "score_of_the_acc": -0.0263, "final_rank": 3 }, { "submission_id": "aoj_3135_4072544", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\nusing i64 = long long;\n\nconst i64 MOD = 1e9+7;\n\nconst i64 INF = 1e18+7;\n\n\ntemplate <typename T = i64>\nbool chmax(T& a, T b){\n if(a < b){\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <typename T = i64>\nbool chmin(T& a, T b){\n if(a > b){\n a = b;\n return true;\n }\n return false;\n}\n\n\ni64 solve(i64 n, i64 y, i64 a_sum, vector<i64> a){\n vector<vector<i64>> dp(n + 1, vector<i64>(6, 0));\n dp[0][0] = 1;\n for(i64 i = 0; i < n; ++i){\n i64 sum = 0;\n for(i64 j = i; j < n; ++j){\n sum += a[j];\n if(sum + y >= a_sum / 5){\n for(i64 k = 0; k < 5; ++k)\n dp[j + 1][k + 1] += dp[i][k];\n }\n }\n }\n return dp.back()[5];\n}\n\n\nsigned main(){\n\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n\n i64 n, y;\n cin >> n >> y;\n vector<i64> a(n);\n for(auto& x : a)\n cin >> x;\n i64 sum = 0;\n for(i64 i = 0; i < n; ++i){\n sum += a[i];\n a.push_back(a[i]);\n }\n i64 ans = 0;\n for(i64 i = 0; i < n; ++i){\n vector<i64> b;\n for(i64 j = 0; j < n; ++j)\n b.emplace_back(a[i + j]);\n ans += solve(n, y, sum, b);\n }\n\n cout << ans / 5 << endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3252, "score_of_the_acc": -0.0521, "final_rank": 4 }, { "submission_id": "aoj_3135_4072391", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=1e9+7;\n\nll dp[606][606][6];\n\nint main(){\n int N;\n ll Y;\n cin>>N>>Y;\n vector<ll> A(N);\n rep(i,N) cin>>A[i];\n ll S=0;\n rep(i,N) S+=A[i];\n vector<ll> sum(2*N+1,0);\n for(int i=1;i<=2*N;i++) sum[i]=sum[i-1]+A[(i-1)%N];\n\n for(int i=0;i<N;i++){\n for(int j=i;j<i+N;j++){\n ll res=sum[j+1]-sum[i];\n if(res+Y>=S/5) dp[i][j][1]=1;\n }\n }\n\n for(int k=2;k<=5;k++){\n for(int i=0;i<N;i++){\n for(int j=i;j<i+N;j++){\n for(int l=i;l<j;l++){\n dp[i][j][k]+=dp[i][l][1]*dp[l+1][j][k-1];\n }\n }\n }\n }\n\n //cout<<dp[0][N-1][5]<<endl;\n ll ans=0;\n for(int i=0;i<N;i++) ans+=dp[i][i+N-1][5];\n cout<<ans<<endl;\n \n\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 8516, "score_of_the_acc": -0.8402, "final_rank": 18 }, { "submission_id": "aoj_3135_4072359", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define modulo 998244353\n#define mod(mod_x) ((((long long)mod_x+modulo))%modulo)\n#define Inf 1000000000\n\n\n\nint main(){\n\t\n\tint N,Y;\n\tcin>>N>>Y;\n\t\n\tlong long S = 0;\n\t\n\tvector<int> A(N);\n\tfor(int i=0;i<N;i++){\n\t\tcin>>A[i];\n\t\tS += (long long)A[i];\n\t}\n\t\n\tlong long X = S/5 - Y;\n\t\n\tlong long ans = 0;\n\t\n\tfor(int o=0;o<N;o++){\n\t\tvector<vector<long long>> dp(N+1,vector<long long>(6,0));\n\t\tdp[0][0] = 1;\n\t\t\n\t\tfor(int i=1;i<=N;i++){\n\t\t\tfor(int j=1;j<6;j++){\n\t\t\t\tlong long sum = 0;\n\t\t\t\tfor(int k=i-1;k>=0;k--){\n\t\t\t\t\tsum += A[k];\n\t\t\t\t\tif(sum < X)continue;\n\t\t\t\t\tdp[i][j] += dp[k][j-1];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tans += dp[N][5];\n\t\tint k = A[0];\n\t\tA.erase(A.begin());\n\t\tA.push_back(k);\n\t}\n\tcout<<ans/5<<endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 3188, "score_of_the_acc": -0.119, "final_rank": 11 }, { "submission_id": "aoj_3135_4072214", "code_snippet": "#include <bits/stdc++.h>\n\nint ri() {\n\tint n;\n\tscanf(\"%d\", &n);\n\treturn n;\n}\n\nint main() {\n\tint n = ri(), y = ri();\n\tint a[n];\n\tint64_t min = 0;\n\tfor (auto &i : a) i = ri(), min += i;\n\tmin /= 5;\n\tmin -= y;\n\t\n\tint64_t res = 0;\n\tfor (int v = 0; v < n; v++) {\n\t\tint64_t dp[6][n + 1];\n\t\tfor (int j = 0; j < 6; j++) for (int i = 0; i <= n; i++) dp[j][i] = 0;\n\t\tdp[0][0] = 1;\n\t\tfor (int i = 0; i < 5; i++) {\n\t\t\tfor (int j = 0; j <= n; j++) {\n\t\t\t\tif (dp[i][j] == 0) continue;\n\t\t\t\tint64_t sum = 0;\n\t\t\t\tfor (int k = j + 1; k <= n; k++) {\n\t\t\t\t\tsum += a[(v + k - 1) % n];\n\t\t\t\t\tif (sum < min) continue;\n\t\t\t\t\tdp[i + 1][k] += dp[i][j];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tres += dp[5][n];\n\t}\n\tstd::cout << res / 5 << std::endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 3232, "score_of_the_acc": -0.158, "final_rank": 12 }, { "submission_id": "aoj_3135_4072007", "code_snippet": "#include<iostream>\n#include<algorithm>\n#include<vector>\n#include<string>\n#include<set>\n#include<queue>\n#include<stack>\n#include<bitset>\n#include<functional>\n#include<map>\n#include<iomanip>\n#include<limits>\n#include<unordered_set> \n#include<cmath>\nusing namespace std;\n//long long p = 998244353;\nlong long p = 1000000007;\n#define int long long\n#define vel vector<long long>\n#define vvel vector<vel>\n#define rep(i,n) for(int i=0;i<n;i++)\n#define sor(v) sort(v.begin(),v.end())\n#define mmax(a,b) a=max(a,b)\n#define mmin(a,b) a=min(a,b)\n#define mkp make_pair\n#define pin pair<int,int>\n#define qin pair<pin,int>\n#define V vector\n#define Endl endl\n#define veb vector<bool>\n#define fcout cout << fixed << setprecision(15)\n#define rev(s) reverse(s.begin(),s.end())\n#define lower(h,val) lower_bound(h.begin(),h.end(),val)-h.begin()\n#define upper(h,val) upper_bound(h.begin(),h.end(),val)-h.begin()\nint max_kai = 150000;\nvel kai(max_kai, 1);\nvel inv_kai;\nint rui(int a, int n, int mod) {\n if (n == 0) { return 1 % mod; }\n int x = rui(a, n / 2, mod);\n x *= x; x %= mod;\n if (n % 2 == 1) { x *= a; x %= mod; }\n return x;\n}\nvel pa;\nint root(int x) {\n if (pa[x] == -1) { return x; }\n int ans = root(pa[x]); pa[x] = ans;\n return ans;\n}\nvoid marge(int x, int y) {\n x = root(x);\n y = root(y);\n if (x != y) { pa[x] = y; }\n}\nint gcd(int x, int y) {\n if (x < y) { return gcd(y, x); }\n if (y == 0) { return x; }\n return gcd(y, x % y);\n}\nlong long modinv(long long a, long long m) {\n long long b = m, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; swap(a, b);\n u -= t * v; swap(u, v);\n }\n u %= m;\n if (u < 0) u += m;\n return u;\n}\nvel uni(vel x) {\n if (x.size() == 0) { return x; }\n sor(x);\n int n = x.size();\n vel ans(1, x[0]);\n for (int j = 1; j < n; j++) {\n if (x[j - 1] != x[j]) { ans.push_back(x[j]); }\n }\n x = ans;\n return x;\n}\nvoid pr(vel& v) {\n int n = v.size();\n if (n != 0) {\n cout << v[0];\n rep(i, n - 1) {\n cout << \" \" << v[i + 1];\n }\n cout << endl;\n }\n}\nint sol(int x, int k) {\n if (x == 0 || k == 0) { return 0; }\n return x + sol(x / 2, k - 1);\n}\nvel dis(vvel& way, int n, int st) {\n vel dist(n, n + 1);\n dist[st] = 0;\n queue<int> q;\n q.push(st);\n while (!q.empty()) {\n int x = q.front(); q.pop();\n for (auto y : way[x]) {\n if (dist[y] > dist[x] + 1) {\n dist[y] = dist[x] + 1;\n q.push(y);\n }\n }\n }\n return dist;\n}\nint solve(vel& v, int s) {\n int n = v.size();\n vvel dp(6,vel(n,0));\n dp[0][0] = 1;\n rep(i, 5) {\n rep(j, n) {\n int st = lower_bound(v.begin(), v.end(), v[j] + s) - v.begin();\n if (st == j) { st++; }\n for (int k = st; k < n; k++) {\n dp[i + 1][k] += dp[i][j];\n }\n }\n }\n return dp[5][n - 1];\n}\nsigned main() {\n int n; cin >> n;\n int y; cin >> y;\n int sum = 0;\n vel a(n);\n rep(i, n) { \n cin >> a[i]; sum += a[i]; \n }\n sum /= 5; sum -= y;\n if (sum < 0) { sum = 0; }\n int ans = 0;\n rep(i, n) {\n vel b(n);\n rep(j, n) { b[j] = a[(i + j) % n]; }\n vel s(n + 1, 0);\n rep(i, n) {\n s[i + 1] = s[i] + b[i];\n }\n ans += solve(s, sum);\n }\n cout << ans / 5 << endl;\n return 0;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4208, "score_of_the_acc": -0.1785, "final_rank": 13 }, { "submission_id": "aoj_3135_4071966", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1LL << 29;\nconst ll LONGINF = 1LL << 60;\nconst ll MOD = 1000000007LL;\n\nll dp[310][8];\nint main() {\n ll N, Y; cin >> N >> Y;\n ll target = 0;\n vector<ll> A(2*N), S(2*N + 1);\n for(int i=0; i<N; i++) {\n cin >> A[i];\n A[N+i] = A[i];\n S[i+1] = S[N+i+1] = A[i];\n target += A[i];\n }\n for(int i=1; i<=2*N; i++) S[i] += S[i-1];\n target /= 5;\n \n ll ans = 0;\n for(int ofs=0; ofs<N; ofs++) {\n fill(dp[0], dp[N+1], 0);\n dp[0][0] = 1;\n for(int i=0; i<N; i++) {\n for(int j=0; j<5; j++) {\n for(int k=i+1; k<=N; k++) {\n ll sum = S[ofs+k] - S[ofs+i];\n if(sum + Y >= target) {\n dp[k][j+1] += dp[i][j];\n }\n }\n }\n }\n ans += dp[N][5];\n }\n cout << ans / 5 << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3128, "score_of_the_acc": -0.0561, "final_rank": 7 }, { "submission_id": "aoj_3135_4071788", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\n#define EPS (1e-7)\n#define INF (1e9)\n#define PI (acos(-1))\n//const ll mod = 1000000007;\nll N, Y;\nll sum[305];\nll A[305];\nll dp[305][305][5];\n\nint main() {\n //cout.precision(10);\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin >> N >> Y;\n for(int i = 0; i < N; i++) {\n cin >> A[i];\n sum[i+1] = sum[i] + A[i];\n }\n for(int i = 0; i <= N; i++) {\n dp[i][i][0] = 1;\n }\n for(int num = 1; num <= 4; num++) {\n for(int i = 0; i <= N; i++) {\n for(int j = i; j <= N; j++) {\n for(int k = i + 1; k <= j; k++) {\n if(sum[k] - sum[i] + Y < sum[N] / 5) continue;\n //cerr << i << \" \" << k << \" \" << j << \" \" << sum[k] << \" \" << sum[i] << endl;\n dp[i][j][num] += dp[k][j][num-1];\n }\n //cerr << i << \" \" << j << \" \" << num << \" \" << dp[i][j][num] << endl;\n }\n }\n }\n ll ans = 0;\n for(int i = 0; i < N; i++) {\n for(int j = 0; j <= N; j++) {\n if(i > j) continue;\n if(j == N && i != 0) continue;\n ll now = 0;\n for(int k = 0; k < N; k++) {\n if(k < i or k >= j) now += A[k];\n }\n if(now == 0) continue;\n //cerr << i << \" \" << j << \" \" << now << endl;\n if(now + Y >= sum[N] / 5) ans += dp[i][j][4];\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 5968, "score_of_the_acc": -0.4419, "final_rank": 14 }, { "submission_id": "aoj_3135_4071755", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n)for(int i=0;i<(n);i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int,int>P;\n\nconst int INF=0x3f3f3f3f;\nconst ll INFL=0x3f3f3f3f3f3f3f3f;\nconst int MOD=1000000007;\n\nll sum[320];\nll dp[320][5][320];\n\nint main(){\n\tint n,y;cin>>n>>y;\n\tdeque<int>a;\n\tll S=0;\n\trep(i,n){\n\t\tint b;scanf(\"%d\",&b);\n\t\ta.push_back(b);\n\t\tS+=b;\n\t}\n\tll ans=0;\n\trep(i,n){\n\t\tmemset(dp,0,sizeof(dp));\n\t\tmemset(sum,0,sizeof(sum));\n\t\trep(j,a.size()){\n\t\t\tsum[j+1]=sum[j]+a[j];\n\t\t}\n\t\tdp[0][0][0]=1;\n\t\trep(j,a.size())rep(k,5)rep(t,j+1){\n\t\t\tif(dp[j][k][t]==0)continue;\n\t\t\tll s=sum[j+1]-sum[t];\n\t\t\tif((s+y)*5>=S&&k<4){\n\t\t\t\tdp[j+1][k+1][j+1]+=dp[j][k][t];\n\t\t\t}\n\t\t\tdp[j+1][k][t]+=dp[j][k][t];\n\t\t}\n\t\tll T=0;\n\t\trep(t,a.size()){\n\t\t\tll s=sum[a.size()]-sum[t];\n\t\t\tif((s+y)*5>=S)(T+=dp[a.size()][4][t]);\n\t\t}\n\t\t//~ cerr<<T<<endl;\n\t\tans+=T;\n\t\tint d=a.front();a.pop_front();\n\t\ta.push_back(d);\n\t}\n\tcout<<ans/5<<endl;\n}\n/*\n6 100\n1 1 1 1 1 1\n*/", "accuracy": 1, "time_ms": 120, "memory_kb": 7252, "score_of_the_acc": -0.7131, "final_rank": 17 }, { "submission_id": "aoj_3135_4071662", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconst ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef pair<ll, ll> LP;\ntypedef vector<ll> vec;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-6;\nconst ld pi = acos(-1.0);\ntypedef vector<vector<ll>> mat;\ntypedef vector<ll> vec;\n\nll dp[301][5];\nvoid solve() {\n\tint n; cin >> n;\n\tll y; cin >> y;\n\tll s = 0;\n\tvector<ll> a(n);\n\trep(i, n) {\n\t\tcin >> a[i]; s += a[i];\n\t}\n\tvector<ll> ra(n + 1);\n\trep(i, n) {\n\t\tra[i + 1] = ra[i] + a[i];\n\t}\n\tll ans = 0;\n\trep(i, n) {\n\t\tif (i == 0)continue;\n\t\trep(j, n + 1)rep(k, 5)dp[j][k] = 0;\n\t\tdp[i][0] = 1;\n\t\tfor (int j = i + 1; j <= n; j++) {\n\t\t\tfor (int l = i; l < j; l++) {\n\t\t\t\tll sum = ra[j] - ra[l];\n\t\t\t\tif (sum + y < s / 5)continue;\n\t\t\t\tfor (int k = 1; k <= 4; k++) {\n\t\t\t\t\tdp[j][k] += dp[l][k - 1];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor (int j = i + 4; j <= n; j++) {\n\t\t\tll sum = ra[i] + (s - ra[j]);\n\t\t\tif (sum + y < s / 5)continue;\n\t\t\tans += dp[j][4];\n\t\t\t\n\t\t}\n\t}\n\tcout << ans << endl;\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(8);\n\t//init();\n\tsolve();\n\tstop\n\t\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3236, "score_of_the_acc": -0.0172, "final_rank": 2 }, { "submission_id": "aoj_3135_4071655", "code_snippet": "#include <bits/stdc++.h>\n#define whlie while\n#define pb push_back\n#define eb emplace\n#define fi first\n#define se second\n#define rep(i,N) for(int i = 0; i < (N); i++)\n#define repr(i,N) for(int i = (N) - 1; i >= 0; i--)\n#define rep1(i,N) for(int i = 1; i <= (N) ; i++)\n#define repr1(i,N) for(int i = (N) ; i > 0 ; i--)\n#define each(x,v) for(auto& x : v)\n#define all(v) (v).begin(),(v).end()\n#define sz(v) ((int)(v).size())\n#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)\n#define inl(...) ll __VA_ARGS__; in(__VA_ARGS__)\n#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)\nusing namespace std; void solve();\nusing ll = long long; using vl = vector<ll>;\nusing vi = vector<int>; using vvi = vector< vector<int> >;\nconstexpr int inf = 1001001001;\nconstexpr ll infLL = (1LL << 61) - 1;\nstruct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(10);} } iosetupnya;\ntemplate<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\ntemplate<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\ntemplate<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << \" \" << p.second; return os; }\ntemplate<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; }\ntemplate<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); rep(i,s) os << (i ? \" \" : \"\") << v[i]; return os; }\ntemplate<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; }\nvoid in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);}\nvoid out(){cout << \"\\n\";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << \" \"; out(u...);}\ntemplate<typename T>void die(T x){out(x); exit(0);}\n#ifdef NyaanDebug\n #include \"NyaanDebug.h\"\n #define trc(...) do { cerr << #__VA_ARGS__ << \" = \"; dbg_out(__VA_ARGS__);} while(0)\n #define trca(v,N) do { cerr << #v << \" = \"; array_out(v , N);cout << endl;} while(0)\n#else\n #define trc(...)\n #define trca(...)\n int main(){solve();}\n#endif\nusing P = pair<int,int>; using vp = vector<P>;\nconstexpr int MOD = /** 1000000007; //*/ 998244353;\n////////////////\n\nll dp[8][512];\nint ok[512][512];\nvoid solve(){\n ini(N); inl(Y);\n vl a(N); in(a);\n ll S = 0; \n each(x , a) S += x; \n S /= 5;\n \n rep(i , N) rep(j , N){\n if(i == j) continue;\n ll cur = 0;\n for(int x = i ; x != j ; x = (x + 1) % N) cur += a[x];\n if(cur + Y >= S) ok[i][j] = 1;\n }\n\n ll ans = 0;\n // 始点決め\n for(int start = 0 ; start < N ; start++){\n \n // dp初期化\n rep(i , N * 2 + 1) rep(j , 6) dp[j][i] = 0;\n auto idx = [&](int n){return (n + N - start) % N ;};\n auto inv = [&](int n){return (n + start) % N ; };\n dp[0][0] = 1;\n rep(i , 5) rep(j , N){\n if(dp[i][j] == 0) continue;\n rep(k , N){\n int idxk = idx(k); if(idxk == 0) idxk = N;\n if(idxk <= j) continue;\n if(ok[inv(j)][k] == 1)\n dp[i + 1][ idxk ] += dp[i][j];\n }\n }\n //trc(start);\n //rep(i , 6) trca(dp[i] , N + 1);\n ans += dp[5][N];\n }\n out(ans / 5);\n\n\n}", "accuracy": 1, "time_ms": 470, "memory_kb": 3848, "score_of_the_acc": -0.6051, "final_rank": 16 } ]
aoj_3132_cpp
地震 (Earthquakes) E869120 君は地震が苦手です。 具体的には、ある作業をしている時に震度 $p$ の地震が発生した際、その作業のパフォーマンスが $10 \times p$ パーセント低下します。 昨日、$N$ 回地震が発生しました。より具体的に言うと、昨日の i 回目の地震は時刻 $T_i$ に発生し、その震度は $A_i$ でした。 ここで $Q$ 個の質問が与えられます。$i$ 個目の質問の内容は以下の通りです。 E869120 君が時刻 $L_i$ から時刻 $R_i$ まで作業をした時、最終的な作業のパフォーマンスの値はいくつになるでしょうか? ただし、作業開始時のパフォーマンスは $1000000000 \ (= 10^9)$ であり、地震以外に作業のパフォ―マンスに影響を及ぼすものはないものとします。 また、作業開始時、終了時と同時に地震が発生していることはありません。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $T_1$ $A_1$ $T_2$ $A_2$ $T_3$ $A_3$ $\ldots$ $T_N$ $A_N$ $Q$ $L_1$ $R_1$ $L_2$ $R_2$ $L_3$ $R_3$ $\ldots$ $L_Q$ $R_Q$ 出力 質問 $1, 2, 3, \dots, Q$ の答えをこの順に改行区切りで出力しなさい。 ただし、最後には改行を入れること。 なお、想定解答との絶対誤差又は相対誤差が $10^{-7}$ 以内ならば正解と判定される。 制約 $1 \leq N \leq 100000 \ (= 10^5)$ $1 \leq Q \leq 100000 \ (= 10^5)$ $0 \leq A_i \leq 7$ $1 \leq T_1 < T_2 < \cdots < T_N \leq 1000000000 \ (= 10^9)$ $1 \leq L_i < R_i \leq 1000000000 \ (= 10^9)$ 作業開始時刻ちょうどや作業終了時刻ちょうどに、地震が発生するような入力は与えられない。 入力は全て整数である。 入力例1 3 3 3 5 4 8 1 2 1 4 4 9 出力例1 700000000.000000000000 539999999.999999880791 どの質問に対しても、出力された値が実際の答えの値との絶対誤差または相対誤差が $10^{-7}$ 以内であれば、正解と判定されます。 入力例2 3 3 1 41 5 92 6 2 5 35 8 97 出力例2 1000000000.000000000000 200000000.000000059605 入力例3 10 176149409 6 272323398 6 280173589 0 374879716 5 402263621 5 498152735 0 639318228 6 641750638 3 764022785 2 939252868 5 10 40529600 224871240 537110257 584835100 409292125 704323206 674752453 740931787 511335734 793975505 320036645 530705208 527941292 660218875 326908007 473745741 428255750 654430923 590875206 623136989 出力例3 400000000.000000000000 1000000000.000000000000 280000000.000000059605 1000000000.000000000000 224000000.000000089407 250000000.000000000000 280000000.000000059605 250000000.000000000000 280000000.000000059605 1000000000.000000000000
[ { "submission_id": "aoj_3132_10331713", "code_snippet": "#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\n\n#include<atcoder/segtree>\nusing namespace atcoder;\ndouble op(double a,double b){return a*b;}\ndouble e(){return 1.0;}\n\nint main(){\n\t\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\n\tll N;\n\tcin>>N;\n\tvector<ll> T(N);\n\tvector<double> A(N);\n\tfor(int i=0;i<N;i++){\n\t\tcin>>T[i]>>A[i];\n\t\tA[i]=(100.0-10.0*A[i])/100.0;\n\t}\n\tsegtree<double,op,e> seg(A);\n\tll Q;\n\tcin>>Q;\n\tcout<<fixed<<setprecision(15);\n\tdouble an=1e9;\n\tfor(int i=0;i<Q;i++){\n\t\tll L,R;\n\t\tcin>>L>>R;\n\t\tll l=lower_bound(T.begin(),T.end(),L)-T.begin();\n\t\tll r=upper_bound(T.begin(),T.end(),R)-T.begin()-1;\n\t\tif(l>r){\n\t\t\tcout<<an<<endl;\n\t\t}\n\t\telse{\n\t\t\tcout<<an*seg.prod(l,r+1)<<endl;\n\t\t}\n\t}\n\t\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 7304, "score_of_the_acc": -0.2041, "final_rank": 3 }, { "submission_id": "aoj_3132_9602497", "code_snippet": "#include <iostream>\n#include <stdio.h>\n#include <string>\n#include <vector>\n#define llint long long\n#define inf 1e18\n\nusing namespace std;\n\n// sum-query\n\nstruct SegTree{\n struct SegNode{\n double val;\n int left, right, parent;\n SegNode(int p, double x = 1){ //initial value\n left = right = -1;\n parent = p;\n val = x;\n }\n };\n\n int size;\n vector<SegNode> seg;\n\n SegTree(int size){\n this->size = size;\n init();\n }\n\n void init()\n {\n seg.clear();\n seg.push_back(SegNode(-1));\n }\n\n void check(int p){\n if(seg[p].left == -1){\n seg.push_back(SegNode(p));\n seg[p].left = (int)seg.size()-1;\n }\n if(seg[p].right == -1){\n seg.push_back(SegNode(p));\n seg[p].right = (int)seg.size()-1;\n }\n }\n\n void update(int i, double val)\n {\n int p = 0, l = 0, r = (1<<size)-1;\n while(l < r){\n check(p);\n if(i <= (l+r)/2) p = seg[p].left, r = (l+r)/2;\n else p = seg[p].right, l = (l+r)/2+1;\n }\n seg[p].val = val;\n\n p = seg[p].parent;\n while(p != -1){\n seg[p].val = seg[seg[p].left].val * seg[seg[p].right].val;\n p = seg[p].parent;\n }\n }\n\n double query(int a, int b, int p, int l, int r)\n {\n if(b < l || r < a) return 1;\n if(a <= l && r <= b) return seg[p].val;\n\n check(p);\n double lval = query(a, b, seg[p].left, l, (l+r)/2);\n double rval = query(a, b, seg[p].right, (l+r)/2+1, r);\n return lval * rval;\n }\n double query(int a, int b)\n {\n return query(a, b, 0, 0, (1<<size)-1);\n }\n};\n\nllint n, Q;\nSegTree seg(30);\n\nint main()\n{\n //ios::sync_with_stdio(0);\n //cin.tie(0);\n\n cin >> n;\n seg.init();\n\n llint t; double a;\n for(int i = 1; i <= n; i++){\n cin >> t >> a;\n a = 1 - a*0.1;\n seg.update(t, a);\n }\n\n cin >> Q;\n llint l, r;\n for(int i = 1; i <= Q; i++){\n cin >> l >> r;\n printf(\"%.11f\\n\", 1e9*seg.query(l, r));\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 500, "memory_kb": 199764, "score_of_the_acc": -2, "final_rank": 11 }, { "submission_id": "aoj_3132_9602341", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define For(i,a,b) for(int (i) = (a);(i) < (b);i++)\n#define Rep(i,n) For((i),0,(n))\n#define All(a) (a).begin(),(a).end()\n#define sp \" \"\n#define INF 1e18\n#define INT_INF 1e9\n#define MAX 100000;\n\ntypedef long long ll;\nconst ll MOD = 1000000007;\nconst ll MOD_9 = 998244353;\n\nint main(){\n int N,Q;\n cin >> N;\n vector<ll> t(N);\n vector<long double> a(N);\n vector<long double> bucket(500,1.00);\n Rep(i,N){\n cin >> t[i] >> a[i];\n a[i] = (10.0-a[i])/10.0;\n bucket[i/200] *= a[i];\n }\n cin >> Q;\n Rep(i,Q){\n ll l,r;\n double perf = 1e9;\n cin >> l >> r;\n int s = lower_bound(All(t),l)-t.begin();\n int e = lower_bound(All(t),r)-t.begin();\n e--;\n //cout << s << sp << e << endl;\n while((s % 200) != 0 && s <= e){\n perf *= a[s];\n s++;\n }\n while((e % 200) != 199 && e >= s){\n perf *= a[e];\n e--;\n }\n e++;\n s /= 200;\n e /= 200;\n for(int j = s;j < e;j++){\n perf *= bucket[j];\n }\n cout << fixed << setprecision(16) << perf << endl;\n }\n //cin >> N;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 5144, "score_of_the_acc": -0.6421, "final_rank": 7 }, { "submission_id": "aoj_3132_9602337", "code_snippet": "#include <bits/stdc++.h>\n#define FOR(i,a,n) for(ll i=(ll)a;i<(ll)n;i++)\n#define rep(i,n) FOR(i,0,n)\nusing namespace std;\ntypedef long long ll;\n\nll n,k;\n\nbool f(ll x){\n ll y=0;\n rep(i,min(70ll,n)){\n y+=x;\n x/=2;\n }\n return y<=k;\n}\n\nint main(){\n cin>>n;\n vector<ll>t(n+1);\n vector<double>a(n+1);\n a[0]=1.0;\n rep(i,n){\n cin>>t[i+1]>>a[i+1];\n a[i+1]=a[i]*(10.0-a[i+1])/10.0;\n }\n cin>>k;\n ll l,r;\n rep(i,k){\n cin>>l>>r;\n int x=lower_bound(t.begin(),t.end(),l)-1-t.begin(),y=lower_bound(t.begin(),t.end(),r)-1-t.begin();\n printf(\"%.11f\\n\",1e9*a[y]/a[x]);\n }\n}", "accuracy": 0.3333333333333333, "time_ms": 20, "memory_kb": 3292, "score_of_the_acc": -0.0204, "final_rank": 18 }, { "submission_id": "aoj_3132_9602319", "code_snippet": "#include <iostream>\n#include <stdio.h>\n#include <string>\n#include <vector>\n#define llint long long\n#define inf 1e18\n\nusing namespace std;\n\n// sum-query\n\nstruct SegTree{\n\tstruct SegNode{\n\t\tdouble val;\n\t\tint left, right, parent;\n\t\tSegNode(int p, double x = 1){ //initial value\n\t\t\tleft = right = -1;\n\t\t\tparent = p;\n\t\t\tval = x;\n\t\t}\n\t};\n\t\n\tint size;\n\tvector<SegNode> seg;\n\t\n\tSegTree(int size){\n\t\tthis->size = size;\n\t\tinit();\n\t}\n\t\n\tvoid init()\n\t{\n\t\tseg.clear();\n\t\tseg.push_back(SegNode(-1));\n\t}\n\t\n\tvoid check(int p){\n\t\tif(seg[p].left == -1){\n\t\t\tseg.push_back(SegNode(p));\n\t\t\tseg[p].left = (int)seg.size()-1;\n\t\t}\n\t\tif(seg[p].right == -1){\n\t\t\tseg.push_back(SegNode(p));\n\t\t\tseg[p].right = (int)seg.size()-1;\n\t\t}\n\t}\n\t\n\tvoid update(int i, double val)\n\t{\n\t\tint p = 0, l = 0, r = (1<<size)-1;\n\t\twhile(l < r){\n\t\t\tcheck(p);\n\t\t\tif(i <= (l+r)/2) p = seg[p].left, r = (l+r)/2;\n\t\t\telse p = seg[p].right, l = (l+r)/2+1;\n\t\t}\n\t\tseg[p].val = val;\n\t\t\n\t\tp = seg[p].parent;\n\t\twhile(p != -1){\n\t\t\tseg[p].val = seg[seg[p].left].val * seg[seg[p].right].val;\n\t\t\tp = seg[p].parent;\n\t\t}\n\t}\n\t\n\tdouble query(int a, int b, int p, int l, int r)\n\t{\n\t\tif(b < l || r < a) return 1;\n\t\tif(a <= l && r <= b) return seg[p].val;\n\t\t\n\t\tcheck(p);\n\t\tdouble lval = query(a, b, seg[p].left, l, (l+r)/2);\n\t\tdouble rval = query(a, b, seg[p].right, (l+r)/2+1, r);\n\t\treturn lval * rval;\n\t}\n\tdouble query(int a, int b)\n\t{\n\t\treturn query(a, b, 0, 0, (1<<size)-1);\n\t}\n};\n\nllint n, Q;\nSegTree seg(30);\n\nint main(void)\n{\n\t//ios::sync_with_stdio(0);\n\t//cin.tie(0);\n\t\n\tcin >> n;\n\tseg.init();\n\t\n\tllint t; double a;\n\tfor(int i = 1; i <= n; i++){\n\t\tcin >> t >> a;\n\t\ta = 1 - a*0.1;\n\t\tseg.update(t, a);\n\t}\n\t\n\tcin >> Q;\n\tllint l, r;\n\tfor(int i = 1; i <= Q; i++){\n\t\tcin >> l >> r;\n\t\tprintf(\"%.11f\\n\", 1e9*seg.query(l, r));\n\t}\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 480, "memory_kb": 199764, "score_of_the_acc": -1.9592, "final_rank": 10 }, { "submission_id": "aoj_3132_9602314", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 100005\n\nstruct Info{\n\n\tint TIME,value;\n};\n\nstruct Query{\n\n\tint L,R;\n};\n\nint table[8][3*SIZE]; //震度別累積和\ndouble POW[8][3*SIZE]; //震度別累乗テーブル\nmap<int,int> MAP;\nInfo info[SIZE];\nQuery query[SIZE];\n\n\nint main(){\n\n\tint N;\n\tscanf(\"%d\",&N);\n\n\tvector<int> V;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%d %d\",&info[i].TIME,&info[i].value);\n\t\tV.push_back(info[i].TIME);\n\t}\n\n\tint num_query;\n\tscanf(\"%d\",&num_query);\n\n\tfor(int i = 0; i < num_query; i++){\n\n\t\tscanf(\"%d %d\",&query[i].L,&query[i].R);\n\t\tV.push_back(query[i].L);\n\t\tV.push_back(query[i].R);\n\t}\n\n\tsort(V.begin(),V.end());\n\tV.erase(unique(V.begin(),V.end()),V.end());\n\n\tfor(int i = 0; i < V.size(); i++){\n\n\t\tMAP[V[i]] = i+1;\n\t}\n\n\tfor(int i = 0; i <= 7; i++){\n\t\ttable[i][0] = 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\ttable[info[i].value][MAP[info[i].TIME]] = 1;\n\t}\n\n\tfor(int i = 1; i <= V.size(); i++){\n\t\tfor(int k = 0; k <= 7; k++){\n\n\t\t\ttable[k][i] += table[k][i-1];\n\t\t}\n\t}\n\n\tfor(int i = 0; i <= 7; i++){\n\n\t\tPOW[i][0] = 1;\n\t\tfor(int k = 1; k <= V.size(); k++){\n\n\t\t\tPOW[i][k] = POW[i][k-1]*((double)((10-i)*10)/(double)100);\n\t\t}\n\t}\n\n\tll NUM = 1000000000;\n\tint L,R;\n\n\tdouble mult;\n\n\tfor(int loop = 0; loop < num_query; loop++){\n\n\t\tL = MAP[query[loop].L];\n\t\tR = MAP[query[loop].R];\n\n\t\tmult = 1;\n\t\tfor(int i = 0; i <= 7; i++){\n\t\t\tmult *= POW[i][table[i][R]-table[i][L]]; //作業の開始・終了時には地震が起こらない\n\t\t}\n\n\t\tprintf(\"%.10lf\\n\",NUM*mult);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 47808, "score_of_the_acc": -0.7776, "final_rank": 9 }, { "submission_id": "aoj_3132_9602306", "code_snippet": "#include <bits/stdc++.h>\n#define FOR(i,a,n) for(ll i=(ll)a;i<(ll)n;i++)\n#define rep(i,n) FOR(i,0,n)\nusing namespace std;\ntypedef long long ll;\n\nll n,k;\n\nbool f(ll x){\n ll y=0;\n rep(i,min(70ll,n)){\n y+=x;\n x/=2;\n }\n return y<=k;\n}\n\nint main(){\n cin>>n;\n vector<ll>t(n+1);\n vector<double>a(n+1);\n a[0]=1.0;\n rep(i,n){\n cin>>t[i+1]>>a[i+1];\n a[i+1]=a[i]*(10.0-a[i+1])/10.0;\n }\n cin>>k;\n ll l,r;\n rep(i,k){\n cin>>l>>r;\n int x=lower_bound(t.begin(),t.end(),l)-1-t.begin(),y=lower_bound(t.begin(),t.end(),r)-1-t.begin();\n printf(\"%.10f\\n\",1e9*a[y]/a[x]);\n }\n}", "accuracy": 0.3333333333333333, "time_ms": 10, "memory_kb": 3588, "score_of_the_acc": -0.0015, "final_rank": 16 }, { "submission_id": "aoj_3132_9602301", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n\n\n\n\nint main(){\n int n;\n cin>>n;\n vector<long long>t(n+1);\n vector<double>a(n+1);\n a[0]=1.0;\n for(int i=0;i<n;i++){\n cin>>t[i+1]>>a[i+1];\n a[i+1]=a[i]*(10.0-a[i+1])/10.0;\n }\n int k;\n cin>>k;\n int l,r;\n for(int i=0;i<k;i++){\n cin>>l>>r;\n int x=lower_bound(t.begin(),t.end(),l)-1-t.begin(),y=lower_bound(t.begin(),t.end(),r)-1-t.begin();\n printf(\"%.10f\\n\",1e9*a[y]/a[x]);\n }\n}", "accuracy": 0.3333333333333333, "time_ms": 10, "memory_kb": 3628, "score_of_the_acc": -0.0017, "final_rank": 17 }, { "submission_id": "aoj_3132_9602287", "code_snippet": "#include <bits/stdc++.h>\n#define int long long\n#define double long double\nusing namespace std;\nint32_t main() {\n //freopen(\"input.txt\", \"r\", stdin);\n //freopen(\"output.txt\", \"w\", stdout);\n int n;\n cin>>n;\n set<pair<int,int>> st1,st2;\n vector<double> a(n);\n for(int i=0;i<n;i++){\n int ti;double ai;\n cin>>ti>>ai;\n st1.insert({ti,i});\n st2.insert({-ti,i});\n a[i]=(1-ai/(double)10.0);\n }\n vector<double> pref(n,0);\n pref[0]=a[0];\n for(int i=1;i<n;i++) pref[i]=pref[i-1]*a[i];\n int q;\n cin>>q;\n cout<<fixed<<setprecision(12);\n while(q--){\n int l,r;\n cin>>l>>r;\n int pl=(*st1.lower_bound({l,-1e9})).second;\n int pr=(*st2.lower_bound({-r,-1e9})).second;\n double ans=pref[pr];\n if(pl!=0) ans/=pref[pl-1];\n ans*=1e9;\n //if(ans!=1e9) {cout<<pl<<' '<<pr;exit(0);}\n cout<<ans<<endl;\n }\n}", "accuracy": 0.3333333333333333, "time_ms": 20, "memory_kb": 4564, "score_of_the_acc": -0.0269, "final_rank": 19 }, { "submission_id": "aoj_3132_9602194", "code_snippet": "#include <bits/stdc++.h>\n#define int long long\n#define double long double\nusing namespace std;\nint32_t main() {\n int n;\n cin>>n;\n set<pair<int,int>> st1,st2;\n vector<double> a(n);\n for(int i=0;i<n;i++){\n int ti;double ai;\n cin>>ti>>ai;\n st1.insert({ti,i});\n st2.insert({-ti,i});\n a[i]=(1-ai/10);\n }\n vector<double> pref(n,0);\n pref[0]=a[0];\n for(int i=1;i<n;i++) pref[i]=pref[i-1]*a[i];\n int q;\n cin>>q;\n while(q--){\n int l,r;\n cin>>l>>r;\n int pl=(*st1.lower_bound({l,-1e9})).second;\n int pr=(*st2.lower_bound({-r,-1e9})).second;\n double ans=pref[pr];\n if(pl!=0) ans/=pref[pl-1];\n ans*=1e9;\n cout<<fixed<<setprecision(10)<<ans<<endl;\n }\n}", "accuracy": 0.3333333333333333, "time_ms": 20, "memory_kb": 4784, "score_of_the_acc": -0.028, "final_rank": 20 }, { "submission_id": "aoj_3132_8826716", "code_snippet": "#line 1 \"a.cpp\"\n#define PROBLEM \"\"\n#line 2 \"/home/kuhaku/home/github/algo/lib/algorithm/compress.hpp\"\n#include <algorithm>\n#include <iterator>\n#include <vector>\n\n/**\n * @brief 座標圧縮\n *\n * @tparam T 要素の型\n */\ntemplate <class T>\nstruct coordinate_compression {\n coordinate_compression() = default;\n coordinate_compression(const std::vector<T> &_data) : data(_data) { build(); }\n\n const T &operator[](int i) const { return data[i]; }\n T &operator[](int i) { return data[i]; }\n\n void add(T x) { data.emplace_back(x); }\n\n void build() {\n std::sort(std::begin(data), std::end(data));\n data.erase(std::unique(std::begin(data), std::end(data)), std::end(data));\n }\n\n bool exists(T x) const {\n auto it = std::lower_bound(std::begin(data), std::end(data), x);\n return it != std::end(data) && *it == x;\n }\n\n int get(T x) const {\n auto it = std::lower_bound(std::begin(data), std::end(data), x);\n return std::distance(std::begin(data), it);\n }\n\n int size() const { return std::size(data); }\n\n private:\n std::vector<T> data;\n};\n\n/**\n * @brief 座標圧縮\n *\n * @tparam T 要素の型\n * @param v 配列\n * @return std::vector<T>\n */\ntemplate <class T>\nstd::vector<T> compress(const std::vector<T> &v) {\n coordinate_compression cps(v);\n std::vector<T> res;\n res.reserve(std::size(v));\n for (auto &&x : v) res.emplace_back(cps.get(x));\n return res;\n}\n#line 2 \"/home/kuhaku/home/github/algo/lib/segment_tree/segment_tree.hpp\"\n#include <cassert>\n#line 2 \"/home/kuhaku/home/github/algo/lib/internal/internal_bit.hpp\"\n\nnamespace internal {\n\n// @return same with std::bit::bit_ceil\nunsigned int bit_ceil(unsigned int n) {\n unsigned int x = 1;\n while (x < (unsigned int)(n)) x *= 2;\n return x;\n}\n\n// @param n `1 <= n`\n// @return same with std::bit::countr_zero\nint countr_zero(unsigned int n) { return __builtin_ctz(n); }\n\n// @param n `1 <= n`\n// @return same with std::bit::countr_zero\nconstexpr int countr_zero_constexpr(unsigned int n) {\n int x = 0;\n while (!(n & (1 << x))) x++;\n return x;\n}\n\n} // namespace internal\n#line 3 \"/home/kuhaku/home/github/algo/lib/segment_tree/monoid.hpp\"\n#include <limits>\n#include <utility>\n\ntemplate <class T>\nstruct Add {\n using value_type = T;\n static constexpr T id = T(0);\n static constexpr T op(const T &lhs, const T &rhs) { return lhs + rhs; }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return lhs + rhs;\n }\n};\n\ntemplate <class T>\nstruct And {\n using value_type = T;\n static constexpr T id = std::numeric_limits<T>::max();\n static constexpr T op(const T &lhs, const T &rhs) { return lhs & rhs; }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return lhs & rhs;\n }\n};\n\ntemplate <class T>\nstruct Or {\n using value_type = T;\n static constexpr T id = T(0);\n static constexpr T op(const T &lhs, const T &rhs) { return lhs | rhs; }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return lhs | rhs;\n }\n};\n\ntemplate <class T>\nstruct Xor {\n using value_type = T;\n static constexpr T id = T(0);\n static constexpr T op(const T &lhs, const T &rhs) { return lhs ^ rhs; }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return lhs ^ rhs;\n }\n};\n\ntemplate <class T>\nstruct Min {\n using value_type = T;\n static constexpr T id = std::numeric_limits<T>::max();\n static constexpr T op(const T &lhs, const T &rhs) { return std::min(lhs, rhs); }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return std::min((U)lhs, rhs);\n }\n};\n\ntemplate <class T>\nstruct Max {\n using value_type = T;\n static constexpr T id = std::numeric_limits<T>::min();\n static constexpr T op(const T &lhs, const T &rhs) { return std::max(lhs, rhs); }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return std::max((U)lhs, rhs);\n }\n};\n\ntemplate <class T>\nstruct Update {\n using value_type = T;\n static constexpr T id = std::numeric_limits<T>::max();\n static constexpr T op(const T &lhs, const T &rhs) { return lhs == Update::id ? rhs : lhs; }\n\n template <class U>\n static constexpr U f(T lhs, U rhs) {\n return lhs == Update::id ? rhs : lhs;\n }\n};\n\ntemplate <class T>\nstruct Affine {\n using value_type = std::pair<T, T>;\n static constexpr std::pair<T, T> id = std::pair<T, T>(1, 0);\n static constexpr std::pair<T, T> op(std::pair<T, T> lhs, std::pair<T, T> rhs) {\n return {lhs.first * rhs.first, lhs.first * rhs.second + lhs.second};\n }\n};\n\ntemplate <class M>\nstruct Rev {\n using T = typename M::value_type;\n using value_type = T;\n static constexpr T id = M::id;\n static constexpr T op(T lhs, T rhs) { return M::op(rhs, lhs); }\n};\n#line 6 \"/home/kuhaku/home/github/algo/lib/segment_tree/segment_tree.hpp\"\n\n/**\n * @brief セグメント木\n * @see https://noshi91.hatenablog.com/entry/2020/04/22/212649\n *\n * @tparam M モノイド\n */\ntemplate <class M>\nstruct segment_tree {\n private:\n using T = typename M::value_type;\n\n public:\n segment_tree() : segment_tree(0) {}\n explicit segment_tree(int n, T e = M::id) : segment_tree(std::vector<T>(n, e)) {}\n template <class U>\n explicit segment_tree(const std::vector<U> &v) : _n(v.size()) {\n _size = internal::bit_ceil(_n);\n _log = internal::countr_zero(_size);\n data = std::vector<T>(_size << 1, M::id);\n for (int i = 0; i < _n; ++i) data[_size + i] = T(v[i]);\n for (int i = _size - 1; i >= 1; --i) update(i);\n }\n\n const T &operator[](int k) const { return data[k + _size]; }\n T at(int k) const { return operator[](k); }\n T get(int k) const { return operator[](k); }\n\n void set(int k, T val) {\n assert(0 <= k && k < _n);\n k += _size;\n data[k] = val;\n for (int i = 1; i <= _log; ++i) update(k >> i);\n }\n void reset(int k) { set(k, M::id); }\n\n T all_prod() const { return data[1]; }\n T prod(int a, int b) const {\n assert(0 <= a && b <= _n);\n T l = M::id, r = M::id;\n for (a += _size, b += _size; a < b; a >>= 1, b >>= 1) {\n if (a & 1) l = M::op(l, data[a++]);\n if (b & 1) r = M::op(data[--b], r);\n }\n return M::op(l, r);\n }\n\n template <class F>\n int max_right(F f) const {\n return max_right(0, f);\n }\n\n template <class F>\n int max_right(int l, F f) const {\n assert(0 <= l && l <= _n);\n assert(f(M::id));\n if (l == _n) return _n;\n l += _size;\n T sm = M::id;\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(M::op(sm, data[l]))) {\n while (l < _size) {\n l = (2 * l);\n if (f(M::op(sm, data[l]))) {\n sm = M::op(sm, data[l]);\n l++;\n }\n }\n return l - _size;\n }\n sm = M::op(sm, data[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <class F>\n int min_left(F f) const {\n return min_left(_n, f);\n }\n\n template <class F>\n int min_left(int r, F f) const {\n assert(0 <= r && r <= _n);\n assert(f(M::id));\n if (r == 0) return 0;\n r += _size;\n T sm = M::id;\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(M::op(data[r], sm))) {\n while (r < _size) {\n r = (2 * r + 1);\n if (f(M::op(data[r], sm))) {\n sm = M::op(data[r], sm);\n r--;\n }\n }\n return r + 1 - _size;\n }\n sm = M::op(data[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, _size, _log;\n std::vector<T> data;\n\n void update(int k) { data[k] = M::op(data[2 * k], data[2 * k + 1]); }\n};\n#line 2 \"/home/kuhaku/home/github/algo/lib/template/template.hpp\"\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = M_PI;\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/macro.hpp\"\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\n#line 3 \"/home/kuhaku/home/github/algo/lib/template/sonic.hpp\"\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n\n constexpr void operator()() const {}\n} sonic;\n#line 5 \"/home/kuhaku/home/github/algo/lib/template/atcoder.hpp\"\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) {\n os << (it == v.begin() ? \"\" : \" \") << *it;\n }\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\ntemplate <typename T, typename... Args>\nauto make_vector(T x, int arg, Args... args) {\n if constexpr (sizeof...(args) == 0) return std::vector<T>(arg, x);\n else return std::vector(arg, make_vector<T>(x, args...));\n}\nvoid Yes(bool is_correct = true) {\n std::cout << (is_correct ? \"Yes\" : \"No\") << '\\n';\n}\nvoid No(bool is_not_correct = true) {\n Yes(!is_not_correct);\n}\nvoid YES(bool is_correct = true) {\n std::cout << (is_correct ? \"YES\" : \"NO\") << '\\n';\n}\nvoid NO(bool is_not_correct = true) {\n YES(!is_not_correct);\n}\nvoid Takahashi(bool is_correct = true) {\n std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n';\n}\nvoid Aoki(bool is_not_correct = true) {\n Takahashi(!is_not_correct);\n}\n#line 5 \"a.cpp\"\n\nstruct Mul {\n using T = long double;\n using value_type = T;\n static constexpr T id = T(1);\n static constexpr T op(const T &lhs, const T &rhs) {\n return lhs * rhs;\n }\n};\n\nint main(void) {\n int n;\n cin >> n;\n vector<int> t(n);\n vector<int> a(n);\n rep (i, n) cin >> t[i] >> a[i];\n coordinate_compression cps(t);\n\n segment_tree<Mul> st(cps.size());\n rep (i, n) {\n int k = cps.get(t[i]);\n st.set(k, st.get(k) * (10 - a[i]) / 10);\n }\n\n int q;\n cin >> q;\n while (q--) {\n int l, r;\n cin >> l >> r;\n co(1000000000. * st.prod(cps.get(l), cps.get(r)));\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 9936, "score_of_the_acc": -0.3399, "final_rank": 6 }, { "submission_id": "aoj_3132_7007973", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3132.cc: Earthquakes\n */\n\n#include<cstdio>\n#include<vector>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\nconst double P0 = 1e9;\n\n/* typedef */\n\ntemplate <typename T>\nstruct SegTreeMul {\n int e2;\n vector<T> nodes;\n T defv;\n SegTreeMul() {}\n\n void init(int n, T _defv) {\n defv = _defv;\n for (e2 = 1; e2 < n; e2 <<= 1);\n nodes.assign(e2 * 2, defv);\n }\n\n T &geti(int i) { return nodes[e2 - 1 + i]; }\n void seti(int i, T v) { geti(i) = v; }\n\n void setall() {\n for (int j = e2 - 2; j >= 0; j--)\n nodes[j] = nodes[j * 2 + 1] * nodes[j * 2 + 2];\n }\n\n void set(int i, T v) {\n int j = e2 - 1 + i;\n nodes[j] = v;\n while (j > 0) {\n j = (j - 1) / 2;\n nodes[j] = nodes[j * 2 + 1] * nodes[j * 2 + 2];\n }\n }\n\n T mul_range(int r0, int r1, int k, int i0, int i1) {\n if (r1 <= i0 || i1 <= r0) return defv;\n if (r0 <= i0 && i1 <= r1) return nodes[k];\n\n int im = (i0 + i1) / 2;\n T v0 = mul_range(r0, r1, k * 2 + 1, i0, im);\n T v1 = mul_range(r0, r1, k * 2 + 2, im, i1);\n return v0 * v1;\n }\n T mul_range(int r0, int r1) { return mul_range(r0, r1, 0, 0, e2); }\n};\n\n/* global variables */\n\nint ts[MAX_N], as[MAX_N];\nSegTreeMul<double> st;\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n;\n scanf(\"%d\", &n);\n for (int i = 0; i < n; i++) scanf(\"%d%d\", ts + i, as + i);\n\n st.init(n, 1.0);\n for (int i = 0; i < n; i++) st.seti(i, (10.0 - as[i]) / 10);\n st.setall();\n\n int qn;\n scanf(\"%d\", &qn);\n\n while (qn--) {\n int l, r;\n scanf(\"%d%d\", &l, &r);\n\n int li = lower_bound(ts, ts + n, l) - ts;\n int ri = upper_bound(ts, ts + n, r) - ts;\n double p = P0 * st.mul_range(li, ri);\n\n printf(\"%.12lf\\n\", p);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 5500, "score_of_the_acc": -0.1745, "final_rank": 2 }, { "submission_id": "aoj_3132_6381572", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline ll time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n; cin >> n;\n vector<pair<int,int>> v;\n while(n--){\n int t,a; cin >> t >> a;\n v.push_back({t,a});\n }\n sort(v.begin(), v.end());\n int q; cin >> q;\n const double eps = 1e-9;\n while(q--){\n double res = 1e9;\n int l,r; cin >> l >> r;\n auto it = lower_bound(v.begin(), v.end(), pair<int,int>{l,-1});\n while(res > eps and it != v.end() and it->first <= r){\n res *= (10-it->second) / 10.0;\n it++;\n }\n printf(\"%.9f\\n\",res);\n }\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 4184, "score_of_the_acc": -0.127, "final_rank": 1 }, { "submission_id": "aoj_3132_5967304", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n x %= mod;\n if(x == 0) return 0;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n BIT(){}\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n void build(int n) {\n N = n;\n node.resize(N+10);\n }\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash{\n\n using ull = unsigned long long;\n const ull mod = (1ULL << 61) - 1;\n const ull MASK30 = (1ULL << 30) - 1;\n const ull MASK31 = (1ULL << 31) - 1;\n\n const ull MASK61 = mod;\n\n ull base;\n int n;\n vector<ull> hash, pow;\n\n RollingHash(const string &s)\n {\n random_device rnd;\n mt19937_64 mt(rnd());\n base = 1001;\n \n n = (int)s.size();\n hash.assign(n+1, 0);\n pow.assign(n+1, 1);\n \n for(int i=0; i<n; i++){\n hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);\n pow[i+1] = calc_mod(mul(pow[i], base));\n }\n }\n\n ull calc_mod(ull x){\n ull xu = x >> 61;\n ull xd = x & MASK61;\n ull res = xu + xd;\n if(res >= mod) res -= mod;\n return res;\n }\n\n ull mul(ull a, ull b){\n ull au = a >> 31;\n ull ad = a & MASK31;\n ull bu = b >> 31;\n ull bd = b & MASK31;\n ull mid = ad * bu + au * bd;\n ull midu = mid >> 30;\n ull midd = mid & MASK30;\n return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);\n }\n\n //[l,r)のハッシュ値\n inline ull get(int l, int r){\n ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));\n return res;\n }\n //string tのハッシュ値\n inline ull get(string t){\n ull res = 0;\n for(int i=0; i<t.size(); i++){\n res = calc_mod(mul(res, base)+t[i]);\n }\n return res;\n }\n //string s中のtの数をカウント\n inline int count(string t) {\n if(t.size() > n) return 0;\n auto hs = get(t);\n int res = 0;\n for(int i=0; i<n-t.size()+1; i++){\n if(get(i, i+t.size()) == hs) res++; \n }\n return res;\n }\n\n /* \n concat \n @verify https://codeforces.com/problemset/problem/514/C\n */\n inline ull concat(ull h1, ull h2, int h2len){\n return calc_mod(h2 + mul(h1, pow[h2len]));\n }\n\n // LCPを求める S[a:] T[b:]\n inline int LCP(int a, int b){\n int len = min((int)hash.size()-a, (int)hash.size()-b);\n \n int lb = -1, ub = len;\n while(ub-lb>1){\n int mid = (lb+ub)/2;\n\n if(get(a, a+mid) == get(b, b+mid)) lb = mid;\n else ub = mid;\n }\n return lb;\n }\n};\nint arr[8][401010];\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n \n int n; cin >> n;\n vector<int> t(n), a(n);\n vector<int> v;\n v.push_back(-1);\n REP(i,n) {\n cin >> t[i] >> a[i];\n v.push_back(t[i]);\n }\n int q; cin >> q;\n vector<int> l(q), r(q);\n REP(i,q) {\n cin >> l[i] >> r[i];\n v.push_back(l[i]);\n v.push_back(r[i]);\n v.push_back(r[i]+1);\n }\n sort(all(v));\n v.erase(unique(all(v)), v.end());\n REP(i,n) {\n int idx = lower_bound(all(v), t[i]) - v.begin();\n arr[a[i]][idx]++;\n }\n REP(i,400100) {\n REP(j,8) arr[j][i+1] += arr[j][i];\n }\n REP(i,q) {\n int L = lower_bound(all(v), l[i]) - v.begin();\n int R = lower_bound(all(v), r[i]) - v.begin();\n double ans = 1e9;\n for(int j=1; j<=7; j++) {\n int q = arr[j][R]-arr[j][L-1];\n for(int k=1; k<=min(q, 30); k++) ans *= (double)(100-j*10)/100;\n }\n cout << ans << '\\n';\n }\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 18836, "score_of_the_acc": -0.2832, "final_rank": 5 }, { "submission_id": "aoj_3132_5967299", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n x %= mod;\n if(x == 0) return 0;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n BIT(){}\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n void build(int n) {\n N = n;\n node.resize(N+10);\n }\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash{\n\n using ull = unsigned long long;\n const ull mod = (1ULL << 61) - 1;\n const ull MASK30 = (1ULL << 30) - 1;\n const ull MASK31 = (1ULL << 31) - 1;\n\n const ull MASK61 = mod;\n\n ull base;\n int n;\n vector<ull> hash, pow;\n\n RollingHash(const string &s)\n {\n random_device rnd;\n mt19937_64 mt(rnd());\n base = 1001;\n \n n = (int)s.size();\n hash.assign(n+1, 0);\n pow.assign(n+1, 1);\n \n for(int i=0; i<n; i++){\n hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);\n pow[i+1] = calc_mod(mul(pow[i], base));\n }\n }\n\n ull calc_mod(ull x){\n ull xu = x >> 61;\n ull xd = x & MASK61;\n ull res = xu + xd;\n if(res >= mod) res -= mod;\n return res;\n }\n\n ull mul(ull a, ull b){\n ull au = a >> 31;\n ull ad = a & MASK31;\n ull bu = b >> 31;\n ull bd = b & MASK31;\n ull mid = ad * bu + au * bd;\n ull midu = mid >> 30;\n ull midd = mid & MASK30;\n return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);\n }\n\n //[l,r)のハッシュ値\n inline ull get(int l, int r){\n ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));\n return res;\n }\n //string tのハッシュ値\n inline ull get(string t){\n ull res = 0;\n for(int i=0; i<t.size(); i++){\n res = calc_mod(mul(res, base)+t[i]);\n }\n return res;\n }\n //string s中のtの数をカウント\n inline int count(string t) {\n if(t.size() > n) return 0;\n auto hs = get(t);\n int res = 0;\n for(int i=0; i<n-t.size()+1; i++){\n if(get(i, i+t.size()) == hs) res++; \n }\n return res;\n }\n\n /* \n concat \n @verify https://codeforces.com/problemset/problem/514/C\n */\n inline ull concat(ull h1, ull h2, int h2len){\n return calc_mod(h2 + mul(h1, pow[h2len]));\n }\n\n // LCPを求める S[a:] T[b:]\n inline int LCP(int a, int b){\n int len = min((int)hash.size()-a, (int)hash.size()-b);\n \n int lb = -1, ub = len;\n while(ub-lb>1){\n int mid = (lb+ub)/2;\n\n if(get(a, a+mid) == get(b, b+mid)) lb = mid;\n else ub = mid;\n }\n return lb;\n }\n};\nint arr[8][401010];\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n \n int n; cin >> n;\n vector<int> t(n), a(n);\n vector<int> v;\n v.push_back(-1);\n REP(i,n) {\n cin >> t[i] >> a[i];\n v.push_back(t[i]);\n }\n int q; cin >> q;\n vector<int> l(q), r(q);\n REP(i,q) {\n cin >> l[i] >> r[i];\n v.push_back(l[i]);\n v.push_back(r[i]);\n v.push_back(r[i]+1);\n }\n sort(all(v));\n v.erase(unique(all(v)), v.end());\n REP(i,n) {\n int idx = lower_bound(all(v), t[i]) - v.begin();\n arr[a[i]][idx]++;\n }\n REP(i,400100) {\n REP(j,8) arr[j][i+1] += arr[j][i];\n }\n REP(i,q) {\n int L = lower_bound(all(v), l[i]) - v.begin();\n int R = lower_bound(all(v), r[i]) - v.begin();\n double ans = 1e9;\n for(int j=1; j<=7; j++) {\n int q = arr[j][R]-arr[j][L-1];\n for(int k=1; k<=min(q, 16); k++) ans *= (double)(100-j*10)/100;\n }\n cout << ans << '\\n';\n }\n return 0;\n}", "accuracy": 0.4, "time_ms": 100, "memory_kb": 18656, "score_of_the_acc": -0.2619, "final_rank": 15 }, { "submission_id": "aoj_3132_5967294", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n x %= mod;\n if(x == 0) return 0;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n BIT(){}\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n void build(int n) {\n N = n;\n node.resize(N+10);\n }\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash{\n\n using ull = unsigned long long;\n const ull mod = (1ULL << 61) - 1;\n const ull MASK30 = (1ULL << 30) - 1;\n const ull MASK31 = (1ULL << 31) - 1;\n\n const ull MASK61 = mod;\n\n ull base;\n int n;\n vector<ull> hash, pow;\n\n RollingHash(const string &s)\n {\n random_device rnd;\n mt19937_64 mt(rnd());\n base = 1001;\n \n n = (int)s.size();\n hash.assign(n+1, 0);\n pow.assign(n+1, 1);\n \n for(int i=0; i<n; i++){\n hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);\n pow[i+1] = calc_mod(mul(pow[i], base));\n }\n }\n\n ull calc_mod(ull x){\n ull xu = x >> 61;\n ull xd = x & MASK61;\n ull res = xu + xd;\n if(res >= mod) res -= mod;\n return res;\n }\n\n ull mul(ull a, ull b){\n ull au = a >> 31;\n ull ad = a & MASK31;\n ull bu = b >> 31;\n ull bd = b & MASK31;\n ull mid = ad * bu + au * bd;\n ull midu = mid >> 30;\n ull midd = mid & MASK30;\n return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);\n }\n\n //[l,r)のハッシュ値\n inline ull get(int l, int r){\n ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));\n return res;\n }\n //string tのハッシュ値\n inline ull get(string t){\n ull res = 0;\n for(int i=0; i<t.size(); i++){\n res = calc_mod(mul(res, base)+t[i]);\n }\n return res;\n }\n //string s中のtの数をカウント\n inline int count(string t) {\n if(t.size() > n) return 0;\n auto hs = get(t);\n int res = 0;\n for(int i=0; i<n-t.size()+1; i++){\n if(get(i, i+t.size()) == hs) res++; \n }\n return res;\n }\n\n /* \n concat \n @verify https://codeforces.com/problemset/problem/514/C\n */\n inline ull concat(ull h1, ull h2, int h2len){\n return calc_mod(h2 + mul(h1, pow[h2len]));\n }\n\n // LCPを求める S[a:] T[b:]\n inline int LCP(int a, int b){\n int len = min((int)hash.size()-a, (int)hash.size()-b);\n \n int lb = -1, ub = len;\n while(ub-lb>1){\n int mid = (lb+ub)/2;\n\n if(get(a, a+mid) == get(b, b+mid)) lb = mid;\n else ub = mid;\n }\n return lb;\n }\n};\nint arr[8][301010];\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n \n int n; cin >> n;\n vector<int> t(n), a(n);\n vector<int> v;\n v.push_back(-1);\n REP(i,n) {\n cin >> t[i] >> a[i];\n v.push_back(t[i]);\n }\n int q; cin >> q;\n vector<int> l(q), r(q);\n REP(i,q) {\n cin >> l[i] >> r[i];\n v.push_back(l[i]);\n v.push_back(r[i]);\n v.push_back(r[i]+1);\n }\n sort(all(v));\n v.erase(unique(all(v)), v.end());\n REP(i,n) {\n int idx = lower_bound(all(v), t[i]) - v.begin();\n arr[a[i]][idx]++;\n }\n REP(i,300100) {\n REP(j,8) arr[j][i+1] += arr[j][i];\n }\n REP(i,q) {\n int L = lower_bound(all(v), l[i]) - v.begin();\n int R = lower_bound(all(v), r[i]) - v.begin();\n double ans = 1e9;\n for(int j=1; j<=7; j++) {\n int q = arr[j][R]-arr[j][L-1];\n for(int k=1; k<=min(q, 16); k++) ans *= (double)(100-j*10)/100;\n }\n cout << ans << '\\n';\n }\n return 0;\n}", "accuracy": 0.4, "time_ms": 10, "memory_kb": 13024, "score_of_the_acc": -0.0495, "final_rank": 12 }, { "submission_id": "aoj_3132_5957754", "code_snippet": "#ifdef LOCAL\n #define _GLIBCXX_DEBUG\n #define __clock__\n#else\n #pragma GCC optimize(\"Ofast\")\n#endif\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing VI = vector<ll>;\nusing VV = vector<VI>;\nusing VS = vector<string>;\nusing PII = pair<ll, ll>;\n\n// #define INT128 // 必要なら有効化してください\n#ifdef INT128\n using LL = __int128;\n#endif\n\n// tourist set\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p);\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p);\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p);\n\nstring to_string(const string& s) {\n return '\"' + s + '\"';\n}\n\nstring to_string(const char* s) {\n return to_string((string) s);\n}\n\nstring to_string(bool b) {\n return (b ? \"true\" : \"false\");\n}\n\nstring to_string(char c){\n string s = {c};\n return s;\n}\n\n// LL\n#ifdef INT128\n// input\nistream& operator>>(istream& is, LL& v)\n{\n string s;\n is >> s;\n v = 0;\n for (int i = 0; i < (int)s.size(); i++) {\n if (isdigit(s[i])) { v = v * 10 + s[i] - '0'; }\n }\n if (s[0] == '-') { v *= -1; }\n return is;\n}\nstd::ostream &operator<<(std::ostream &dest, LL value) {\n std::ostream::sentry s(dest);\n if (s) {\n LL tmp = value < 0 ? -value : value;\n char buffer[128];\n char *d = std::end(buffer);\n do {\n --d;\n *d = \"0123456789\"[tmp % 10];\n tmp /= 10;\n } while (tmp != 0);\n if (value < 0) {\n --d;\n *d = '-';\n }\n int len = std::end(buffer) - d;\n if (dest.rdbuf()->sputn(d, len) != len) {\n dest.setstate(std::ios_base::badbit);\n }\n }\n return dest;\n}\nstring to_string(LL v){\n stringstream ss;\n ss << v;\n return ss.str();\n}\n#endif // LL\n\nstring to_string(vector<bool> v) {\n bool first = true;\n string res = \"{\";\n for (int i = 0; i < static_cast<int>(v.size()); i++) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(v[i]);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <size_t N>\nstring to_string(bitset<N> v) {\n string res = \"\";\n for (size_t i = 0; i < N; i++) {\n res += static_cast<char>('0' + v[i]);\n }\n return res;\n}\n\ntemplate <typename A>\nstring to_string(A v) {\n bool first = true;\n string res = \"{\";\n for (const auto &x : v) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(x);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p) {\n return \"(\" + to_string(p.first) + \", \" + to_string(p.second) + \")\";\n}\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \")\";\n}\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \", \" + to_string(get<3>(p)) + \")\";\n}\n\nvoid debug_out() { cerr << '\\n'; }\n\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n cerr << \" \" << to_string(H);\n debug_out(T...);\n}\n\n#ifdef LOCAL\n#define debug(...) cerr << \"[\" << #__VA_ARGS__ << \"]:\", debug_out(__VA_ARGS__)\n#else\n#define debug(...) 42\n#endif\n// tourist set end\n\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\n\n#define FOR(i,a,b) for(ll i=(a);i<(b);++i)\n#define rep(i,b) FOR(i, 0, b)\n#define ALL(v) (v).begin(), (v).end()\n#define p(s) cout<<(s)<<'\\n'\n#define p2(s, t) cout << (s) << \" \" << (t) << '\\n'\n#define SZ(x) ((int)(x).size())\n#define SORT(A) sort(ALL(A))\n#define RSORT(A) sort(ALL(A), greater<ll>())\n#define MP make_pair\n#define p_yes() p(\"Yes\")\n#define p_no() p(\"No\")\n#define p_possible() p(\"Possible\")\n#define p_impossible() p(\"Impossible\")\nvoid yes(){p_yes(); exit(0);}\nvoid no(){p_no(); exit(0);}\nvoid possible(){p_possible(); exit(0);}\nvoid impossible(){p_impossible(); exit(0);}\n\nll SUM(VI& V){\n return accumulate(ALL(V), 0LL);\n}\n\nll MIN(VI& V){return *min_element(ALL(V));}\nll MAX(VI& V){return *max_element(ALL(V));}\n\nvoid print_vector(VI& V, ll offset=0){\n ll n = V.size();\n rep(i, n){\n if(i) cout << ' ';\n cout << V[i]+offset;\n }\n cout << endl;\n}\n\nll gcd(ll a,ll b){\n if(b == 0) return a;\n return gcd(b,a%b);\n}\n\nll lcm(ll a,ll b){\n ll g = gcd(a,b);\n return a / g * b;\n}\n\n// long double\nusing ld = long double;\n// #define EPS (1e-14)\nconstexpr ld EPS = 1e-14;\n// #define equals(a,b) (fabs((a)-(b)) < EPS)\nconstexpr bool equals(ld a, ld b){return fabs((a)-(b)) < EPS;}\n\n// 小さい順に取り出すpriority queue\nusing inverse_priority_queue = priority_queue<ll, vector<ll>, greater<ll> >;\n\nint popcount(ll t){\n return __builtin_popcountll(t);\n}\n\nconst ll mod = 1e9 + 7;\n// const ll mod = 998244353;\nconst ll inf = 4e18; // LLONG_MAX = 9223372036854775807 (atcoder, codeforces)\nconst double PI = acos(-1);\n\n// [a/b] (繰り上げ)\nll ceil_div(ll a, ll b){\n return (a+b-1)/b;\n}\n\nll ll_pow(ll a, ll n){\n ll ans = 1;\n FOR(i, 0, n){\n ans *= a;\n }\n return ans;\n}\n// modなし\n\n// snuke's mint\n// auto mod int\n// https://youtu.be/L8grWxBlIZ4?t=9858\n// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize\n// https://youtu.be/8uowVvQ_-Mo?t=1329 : division\n// const int mod = 1000000007;\nstruct mint {\n ll x; // using ll = long long;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) {\n (x *= a.x) %= mod;\n return *this;\n }\n mint operator+(const mint a) const {\n mint res(*this);\n return res+=a;\n }\n mint operator-(const mint a) const {\n mint res(*this);\n return res-=a;\n }\n mint operator*(const mint a) const {\n mint res(*this);\n return res*=a;\n }\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n\n // for prime mod\n mint inv() const {\n return pow(mod-2);\n }\n mint& operator/=(const mint a) {\n return (*this) *= a.inv();\n }\n mint operator/(const mint a) const {\n mint res(*this);\n return res/=a;\n }\n};\n\n// ※双方向\n// N : 頂点数\n// M : 辺数\n// return vector<vector<ll>>\nVV load_graph(ll N, ll M){\n VV G(N);\n rep(i,M){\n ll a,b;cin>>a>>b;\n a--;b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n return G;\n}\nVV load_tree(ll N){\n return load_graph(N, N-1);\n}\n\nVI loadV(ll N){\n VI A(N);\n rep(i,N)cin>>A[i];\n return A;\n}\n\n\n#include <algorithm>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param n `0 <= n`\n// @return minimum non-negative `x` s.t. `n <= 2**x`\nint ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\n\n// @param n `1 <= n`\n// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\nint bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <vector>\n\nnamespace atcoder {\n\ntemplate <class S, S (*op)(S, S), S (*e)()> struct segtree {\n public:\n segtree() : segtree(0) {}\n segtree(int n) : segtree(std::vector<S>(n, e())) {}\n segtree(const std::vector<S>& v) : _n(int(v.size())) {\n log = internal::ceil_pow2(_n);\n size = 1 << log;\n d = std::vector<S>(2 * size, e());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n return d[p + size];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n S sml = e(), smr = e();\n l += size;\n r += size;\n\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n template <bool (*f)(S)> int max_right(int l) {\n return max_right(l, [](S x) { return f(x); });\n }\n template <class F> int max_right(int l, F f) {\n assert(0 <= l && l <= _n);\n assert(f(e()));\n if (l == _n) return _n;\n l += size;\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!f(op(sm, d[l]))) {\n while (l < size) {\n l = (2 * l);\n if (f(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*f)(S)> int min_left(int r) {\n return min_left(r, [](S x) { return f(x); });\n }\n template <class F> int min_left(int r, F f) {\n assert(0 <= r && r <= _n);\n assert(f(e()));\n if (r == 0) return 0;\n r += size;\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!f(op(d[r], sm))) {\n while (r < size) {\n r = (2 * r + 1);\n if (f(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n};\n\n} // namespace atcoder\n\nusing namespace atcoder; // 忘れがち\n\n// 座標圧縮\n// 変換テーブルを返す\nVI make_compress_table(vector<ll>& A){ \n // 変換表\n auto B = A;\n sort(ALL(B));\n auto it = unique(ALL(B));\n B.erase(it, B.end());\n return B;\n}\nll compress_by_table(VI& T, ll v){\n return lower_bound(ALL(T), v) - T.begin();\n}\n\n// for segtree\nld op(ld a, ld b) {\n return a*b;\n}\nld e() {\n return 1;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n // input\n ll N;cin>>N;\n\n VI T(N);\n VI A(N);\n rep(i,N){\n cin>>T[i]>>A[i];\n }\n\n ll Q;cin>>Q;\n VI L(Q);\n VI R(Q);\n rep(i,Q){\n cin>>L[i]>>R[i];\n }\n\n VI X;\n for(ll t : T)X.push_back(t);\n for(ll l : L)X.push_back(l);\n for(ll r : R)X.push_back(r);\n auto tbl = make_compress_table(X);\n\n vector<ld> V(1e6, 1);\n segtree<ld, op, e> seg(V);\n\n // 地震\n rep(i,N){\n ll t = compress_by_table(tbl, T[i]);\n ld scale = 1-0.1*A[i];\n seg.set(t,scale);\n }\n\n vector<ld> Ans;\n\n // クエリ\n rep(i,Q){\n ll l = compress_by_table(tbl,L[i]);\n ll r = compress_by_table(tbl,R[i]);\n ld ans = 1e9 * seg.prod(l,r);\n Ans.push_back(ans);\n }\n\n cout<<setprecision(20);\n for(ld ans : Ans){\n p(ans);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 64368, "score_of_the_acc": -0.7598, "final_rank": 8 }, { "submission_id": "aoj_3132_5061802", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 2 \"a.cpp\"\n\nint main() {\n\tint n = in;\n\tauto [t, a] = in.multiple<int, int>(n);\n\tVD mul(n + 1, 0);\n\trep(i, n) {\n\t\tmul[i + 1] = mul[i] + log10(LD(10 - a[i]) / 10);\n\t}\n\tfor (int q = in; q--;) {\n\t\tini(l, r);\n\t\tout(1e9 * pow(10, mul[upper_index(t, r)] - mul[lower_index(t, l)]));\n\t}\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 5900, "score_of_the_acc": -0.2582, "final_rank": 4 }, { "submission_id": "aoj_3132_5061786", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 2 \"a.cpp\"\n\nint main() {\n\tint n = in;\n\tauto [t, a] = in.multiple<int, int>(n);\n\tVD mul(n + 1, 1);\n\trep(i, n) {\n\t\tdump(a[i], LD(10 - a[i]) / 10);\n\t\tmul[i + 1] = mul[i] * LD(10 - a[i]) / 10;\n\t}\n\tdump(mul);\n\tfor (int q = in; q--;) {\n\t\tini(l, r);\n\t\tout(1e9 * mul[upper_index(t, r)] / mul[lower_index(t, l)]);\n\t}\n}", "accuracy": 0.4, "time_ms": 40, "memory_kb": 5300, "score_of_the_acc": -0.0714, "final_rank": 13 }, { "submission_id": "aoj_3132_5061773", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 2 \"a.cpp\"\n\nint main() {\n\tint n = in;\n\tauto [t, a] = in.multiple<int, int>(n);\n\tVD mul(n + 1, 1);\n\trep(i, n) {\n\t\tdump(a[i], LD(10 - a[i]) / 10);\n\t\tmul[i + 1] = mul[i] * LD(10 - a[i]) / 10;\n\t}\n\tdump(mul);\n\tfor (int q = in; q--;) {\n\t\tini(l, r);\n\t\tout(TEN<LD>(9) * mul[upper_index(t, r)] / mul[lower_index(t, l)]);\n\t}\n}", "accuracy": 0.4, "time_ms": 40, "memory_kb": 5360, "score_of_the_acc": -0.0718, "final_rank": 14 } ]
aoj_3136_cpp
りんごだいぼうけん square1001君とE869120君は縦 $H$ 行、横 $W$ 列のグリッドの世界に迷い込んでしまいました! この世界の神は言いました。 「リンゴを $K$ 個集めて二人が出会ったとき、さすれば元の世界に帰れるであろう。」 この言葉を聞いたsquare1001君は、リンゴを $K$ 個以上集めてE869120君がいるマスへ向かうことにしました。 ここで、グリッドの各マスは次のように表されます。 's':square1001君がいるマスです。 'e':E869120君がいるマスです。 'a':リンゴが1つ落ちているマスです。このマスを初めて訪れたときにリンゴを1つ得ることができます。 このグリッド上にこのマスは20個以下しかありません。 '#':壁です。このマスに訪れることはできません。 '.':何もないマスです。このマスに訪れることができます。 square1001君は自分がいるマスから上下左右に隣り合うマスへの移動を繰り返すことで、目的を達成しようとします。ただし、グリッドから外に出ることはできません。 square1001君が目的を達成するために必要な移動回数の最小値を求めてください。 ただし、E869120君が動くことはないものとします。また、square1001君はリンゴを $K$ 個以上持ち運ぶ能力があるものとします。 また、目標が達成できないときは「-1」を出力してください。 入力 入力は以下の形式で標準入力から与えられる。 グリッドの上から $i$ マス目、左から $j$ マス目の文字を $A_{i, j}$ とする。 $H$ $W$ $K$ $A_{1,1} A_{1,2} A_{1,3} \cdots A_{1,W}$ $A_{2,1} A_{2,2} A_{2,3} \cdots A_{2,W}$ $A_{3,1} A_{3,2} A_{3,3} \cdots A_{3,W}$ $\ldots$ $A_{H,1} A_{H,2} A_{H,3} \cdots A_{H,W}$ 出力 square1001君が目的を達成するまでに必要な移動回数の最小値を求めてください。ただし、不可能な場合は「-1」を出力してください。 ただし、最後には改行を入れること。 制約 $1 \leq H \leq 1000$ $1 \leq W \leq 1000$ $1 \leq K \leq 20$ $H, W, K$ は整数である。 $A_{i, j}$ は 's'、'e'、'a'、'#'、'.'のいずれかである。 グリッドに 's'、'e'はそれぞれただ 1 つのみ含まれる。 グリッドに含まれる 'a' の数は $K$ 個以上 $20$ 個以下である。 入力例1 5 5 2 s..#a .#... a#e.# ...#a .#... 出力例1 14 入力例2 7 7 3 ....... .s...a. a##...a ..###.. .a#e#.a #.###.. a..#..a 出力例2 -1 目的が達成不可能な場合は「-1」を出力してください。 入力例3 12 12 10 .#####...... .##.....#... ....a.a#a..# .#..#a...... ##.....a#s.. #..a###.##.# .e#.#.#.#a.. ..#a#.....#. #..##a...... .a...a.a..#. a....#a.aa.. ...a.#...#a. 出力例3 30
[ { "submission_id": "aoj_3136_10315530", "code_snippet": "// AOJ #3136 Apple Adventure\n// 2025.3.21\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst int INF = 1e9;\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int h, w, k;\n cin >> h >> w >> k;\n vector<string> g(h);\n for (int i = 0; i < h; i++) cin >> g[i];\n\n pair<int,int> s, e;\n vector<pair<int,int>> a;\n for (int i = 0; i < h; i++){\n for (int j = 0; j < w; j++){\n char c = g[i][j];\n if(c=='s') s = {i,j};\n else if(c=='e') e = {i,j};\n else if(c=='a') a.push_back({i,j});\n }\n }\n int n = a.size();\n vector<pair<int,int>> p;\n p.push_back(s);\n for(auto &pp: a) p.push_back(pp);\n p.push_back(e);\n int m = p.size();\n\n vector<vector<int>> d(m, vector<int>(m, INF));\n\n int di[4] = {1, -1, 0, 0};\n int dj[4] = {0, 0, 1, -1};\n\n for (int i = 0; i < m; i++){\n vector<vector<int>> dist(h, vector<int>(w, -1));\n queue<pair<int,int>> qu;\n auto [si, sj] = p[i];\n dist[si][sj] = 0;\n qu.push({si, sj});\n while(!qu.empty()){\n auto [ci, cj] = qu.front();\n qu.pop();\n for (int d_ = 0; d_ < 4; d_++){\n int ni = ci + di[d_], nj = cj + dj[d_];\n if(ni < 0 || ni >= h || nj < 0 || nj >= w) continue;\n if(g[ni][nj]=='#') continue;\n if(dist[ni][nj] != -1) continue;\n dist[ni][nj] = dist[ci][cj] + 1;\n qu.push({ni, nj});\n }\n }\n for (int j = 0; j < m; j++){\n auto [ti, tj] = p[j];\n if(dist[ti][tj] != -1) d[i][j] = dist[ti][tj];\n }\n }\n\n int sz = 1 << n;\n vector<vector<int>> dp(sz, vector<int>(n+1, INF));\n dp[0][0] = 0;\n for (int mask = 0; mask < sz; mask++){\n for (int i = 0; i <= n; i++){\n if(dp[mask][i]==INF) continue;\n for (int j = 1; j <= n; j++){\n if(mask & (1 << (j-1))) continue;\n if(d[i][j]==INF) continue;\n int nmask = mask | (1 << (j-1));\n dp[nmask][j] = min(dp[nmask][j], dp[mask][i] + d[i][j]);\n }\n }\n }\n\n int ans = INF;\n for (int mask = 0; mask < sz; mask++){\n if(__builtin_popcount(mask) < k) continue;\n for (int i = 0; i <= n; i++){\n if(dp[mask][i]==INF || d[i][m-1]==INF) continue;\n ans = min(ans, dp[mask][i] + d[i][m-1]);\n }\n }\n cout << (ans==INF ? -1 : ans) << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 970, "memory_kb": 127008, "score_of_the_acc": -0.6016, "final_rank": 6 }, { "submission_id": "aoj_3136_7008496", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3136.cc: Apple Adventure\n */\n\n#include<cstdio>\n#include<queue>\n#include<algorithm>\n#include<utility>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_H = 1000;\nconst int MAX_W = 1000;\nconst int MAX_HW = MAX_H * MAX_W;\nconst int MAX_M = 20;\nconst int MBITS = 1 << MAX_M;\nconst int MAX_GN = MAX_M + 2;\nconst int MAX_K = 20;\nconst int INF = 1 << 30;\n\nconst int dys[] = { 0, 1, 0, -1 }, dxs[] = { 1, 0, -1, 0 };\n\n/* typedef */\n\ntypedef queue<int> qi;\ntypedef pair<int,int> pii;\n\n/* global variables */\n\nchar fs[MAX_H][MAX_W + 4];\nint aps[MAX_GN], ads[MAX_GN][MAX_GN], ds[MAX_HW];\nint bnums[MBITS], dp[MBITS][MAX_M];\n\n/* subroutines */\n\nvoid bfs(int h, int w, int s) {\n int hw = h * w;\n fill(ds, ds + hw, INF);\n ds[s] = 0;\n\n qi q;\n q.push(s);\n\n while (! q.empty()) {\n int u = q.front(); q.pop();\n int uy = u / w, ux = u % w;\n\n for (int di = 0; di < 4; di++) {\n int vy = uy + dys[di], vx = ux + dxs[di], v = vy * w + vx;\n if (vy >= 0 && vy < h && vx >= 0 && vx < w &&\n\t fs[vy][vx] != '#' && ds[v] >= INF) {\n\tds[v] = ds[u] + 1;\n\tq.push(v);\n }\n }\n }\n}\n\ninline void setmin(int &a, int b) { if (a > b) a = b; }\n\n/* main */\n\nint main() {\n int h, w, k;\n scanf(\"%d%d%d\", &h, &w, &k);\n\n int m = 0, stp = -1, glp = -1;\n for (int y = 0, p = 0; y < h; y++) {\n scanf(\"%s\", fs[y]);\n for (int x = 0; x < w; x++, p++)\n switch (fs[y][x]) {\n case 's': stp = p; break;\n case 'e': glp = p; break;\n case 'a': aps[m++] = p; break;\n }\n }\n \n int gn = m + 2, st = m, gl = m + 1;\n aps[st] = stp, aps[gl] = glp;\n\n for (int i = 0; i < gn; i++) {\n bfs(h, w, aps[i]);\n for (int j = 0; j < gn; j++) {\n ads[i][j] = ds[aps[j]];\n //printf(\"%d \", (ads[i][j] < INF) ? ads[i][j] : -1);\n }\n //putchar('\\n');\n }\n\n int mbits = 1 << m, mmsk = mbits - 1;\n\n bnums[0] = 0;\n for (int bits = 1, msb = 1; bits < mbits; bits++) {\n if ((msb << 1) <= bits) msb <<= 1;\n bnums[bits] = bnums[bits ^ msb] + 1;\n }\n\n for (int bits = 0; bits < mbits; bits++)\n fill(dp[bits], dp[bits] + m, INF);\n for (int i = 0, bi = 1; i < m; i++, bi <<= 1)\n if (ads[st][i] < INF) dp[bi][i] = ads[st][i];\n\n int mind = INF;\n for (int bits = 0; bits < mbits; bits++)\n for (int i = 0; i < m; i++)\n if (dp[bits][i] < INF) {\n\tif (bnums[bits] >= k && ads[i][gl] < INF)\n\t setmin(mind, dp[bits][i] + ads[i][gl]);\n\n\tfor (int j = 0, bj = 1; j < m; j++, bj <<= 1)\n\t if (! (bits & bj) && ads[i][j] < INF)\n\t setmin(dp[bits | bj][j], dp[bits][i] + ads[i][j]);\n }\n\n printf(\"%d\\n\", (mind < INF) ? mind : -1);\n\n return 0;\n}", "accuracy": 1, "time_ms": 880, "memory_kb": 93840, "score_of_the_acc": -0.491, "final_rank": 1 }, { "submission_id": "aoj_3136_6381967", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline ll time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint dx[]={1,-1,0,0};\nint dy[]={0,0,1,-1};\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int h,w,K; cin >> h >> w >> K;\n vector<string> s(h);\n vector<pair<int,int>> v(2);\n for(int i=0;i<h;i++){\n cin >> s[i];\n for(int j=0;j<w;j++){\n if(s[i][j] == 'a'){\n v.push_back({i,j});\n s[i][j] = '.';\n }\n else if(s[i][j] == 's'){\n v[0] = {i,j};\n s[i][j] = '.';\n }\n else if(s[i][j] == 'e'){\n v[1] = {i,j};\n s[i][j] = '.';\n }\n }\n }\n int n = v.size();\n const int inf = 1e9;\n vector<vector<int>> dist(n,vector<int>(n,inf));\n for(int i=0;i<n;i++){\n vector<vector<int>> d(h,vector<int>(w,inf));\n d[v[i].first][v[i].second] = 0;\n queue<pair<int,int>> q;\n q.push(v[i]);\n while(q.size()){\n auto p = q.front(); q.pop();\n int x = p.first, y = p.second;\n for(int j=0;j<4;j++){\n int nx = x + dx[j];\n int ny = y + dy[j];\n if(0 <= nx and nx < h and 0 <= ny and ny < w and s[nx][ny] == '.' and d[nx][ny] == inf){\n d[nx][ny] = d[x][y] + 1;\n q.push({nx,ny});\n }\n }\n }\n for(int j=0;j<n;j++){\n dist[i][j] = d[v[j].first][v[j].second];\n }\n }\n vector<vector<int>> dp(1<<(n-2), vector<int>(n, inf));\n dp[0][0] = 0;\n for(int i=0;i<(1<<(n-2));i++){\n for(int j=0;j<n;j++){\n if(dp[i][j] == inf)continue;\n for(int k=2;k<n;k++){\n if((1<<(k-2))&i)continue;\n int nx = i|(1<<(k-2));\n dp[nx][k] = min(dp[nx][k], dp[i][j]+dist[j][k]);\n }\n }\n }\n int res = inf;\n for(int i=0;i<(1<<(n-2));i++){\n for(int j=0;j<n;j++){\n if(dp[i][j] == inf)continue;\n if(__builtin_popcount(i) >= K){\n res = min(res, dp[i][j]+dist[j][1]);\n }\n }\n }\n if(res == inf) res = -1;\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 1000, "memory_kb": 126920, "score_of_the_acc": -0.6151, "final_rank": 7 }, { "submission_id": "aoj_3136_5476378", "code_snippet": "#include <cstdio>\n#include <utility>\n#include <queue>\n#include <vector>\n\nconst int SIZE=1000;\nconst int APPLE_NUM=20;\n\nusing namespace std;\n\ntypedef pair<int,int> coordinate;\n\n// 迷宮自体\nint H,W,K;\nchar maze[SIZE][SIZE+1];\n\n// 各ラウンドでアクセスしたか\nchar maze_visited[SIZE][SIZE][APPLE_NUM+2];\n\n// 林檎と人の位置\nint total_a_num,S_index,E_index;\nvector<coordinate> key_points;\ncoordinate S,E;\n\n// 各林檎の間の距離、人を含む\nint dist_vec[22][22];\n\n\n\nvoid init_dist(){\n for (int i=0;i<22;i++)\n for (int j=0;j<22;j++)\n dist_vec[i][j]=-1;\n}\n\nchar get_maze_item(const coordinate& pos){\n return maze[pos.second][pos.first];\n}\n\nbool in_maze(const coordinate& pos){\n return pos.first>=0&&pos.first<W&&pos.second>=0&&pos.second<H;\n}\n\nbool pos_visited(const coordinate& pos,int i){\n\n return maze_visited[pos.second][pos.first][i];\n}\n\nvoid explore_pos(const coordinate& pos,int i,queue<coordinate>& Q,queue<int>& dist_Q,int cur_dist){\n if (in_maze(pos) && !pos_visited(pos, i) && get_maze_item(pos)!= '#')\n Q.push(pos),\n maze_visited[pos.second][pos.first][i] = 1, \n dist_Q.push(cur_dist + 1);\n ;\n ;\n}\n\nint find_index(const coordinate& pos){\n for (int i=0;i<key_points.size();i++)\n if (key_points[i]==pos) return i;\n}\n\nvoid BFS(int vert){\n coordinate ini;\n\n ini=key_points[vert];\n \n queue<coordinate> Q;\n queue<int> dist_Q;\n explore_pos(ini, vert, Q, dist_Q, -1);\n // dist_Q.push(0);\n \n // printf(\"vert=%d,pos=(%d,%d)\\n\", vert,ini.second,ini.first);\n\n while (!Q.empty()){\n //\n const coordinate cur=Q.front();\n const int cur_dist=dist_Q.front();\n Q.pop();\n dist_Q.pop();\n\n // printf(\"(%d,%d),dist=%d\\n\",cur.second,cur.first,cur_dist);\n\n //todo\n char maze_item=get_maze_item(cur);\n if (maze_item=='a'||maze_item=='e'||maze_item=='s'){\n int index=find_index(cur);\n dist_vec[vert][index]=cur_dist;\n dist_vec[index][vert] = cur_dist;\n }\n \n\n coordinate left(cur.first-1,cur.second)\n ,right(cur.first+1,cur.second)\n ,up(cur.first,cur.second-1)\n ,down(cur.first,cur.second+1);\n\n // 左のポジションを探索\n explore_pos(left,vert,Q,dist_Q,cur_dist);\n \n\n // 左のポジションを探索\n explore_pos(right, vert, Q, dist_Q, cur_dist);\n\n // 左のポジションを探索\n explore_pos(up, vert, Q,dist_Q, cur_dist);\n\n // 左のポジションを探索\n explore_pos(down, vert, Q, dist_Q, cur_dist);\n }\n\n}\n\nbool is_possible(){\n if (dist_vec[S_index][E_index]==-1)\n return false;\n\n int count=0;\n for (int i=0;i<total_a_num;i++)\n if (dist_vec[S_index][i]!=-1) count++;\n\n return count>=K;\n}\n\n\nint dp[20][1<<20];\n\nint bit_count(int state){\n int c=0;\n for(int l=0;l<total_a_num;l++)\n if (state&(1<<l)) c++;\n\n return c;\n}\n\nint solve(){\n int POW[25]={1};\n int ans=0;\n for (int i=1;i<25;i++) POW[i]=POW[i-1]*2;\n\n for (int i=0;i<total_a_num;i++) dp[i][POW[i]]=dist_vec[S_index][i];\n\n for (int state=1;state<POW[total_a_num];state++){\n for (int apple=0;apple<total_a_num;apple++){\n if (dp[apple][state]==0)\n continue;\n\n if (bit_count(state)==K){\n if (ans==0)\n ans=dp[apple][state]+dist_vec[apple][E_index];\n else\n ans = min(dp[apple][state] + dist_vec[apple][E_index],ans);\n }\n\n for (int loop = 0; loop < total_a_num; loop++)\n {\n if (state & (1 << loop))\n {\n\n //Do nothing\n }\n else\n {\n if (dist_vec[apple][loop]==-1)\n continue;\n int next_state = state | POW[loop];\n int next_dist = dp[apple][state] + dist_vec[apple][loop];\n\n if (dp[loop][next_state]==0)\n dp[loop][next_state] = next_dist;\n else\n dp[loop][next_state] = min(dp[loop][next_state], next_dist);\n }\n }\n }\n }\n\n return ans;\n}\n\nint main(){\n //迷宮を初期化\n scanf(\"%d%d%d\\n\",&H,&W,&K);\n for (int i=0;i<H;i++) {\n for (int j=0;j<W;j++){\n maze[i][j]=getchar();\n\n // 座標をX,Yに並ぶ\n coordinate cur_pos = coordinate(j, i);\n if (maze[i][j] == 's')\n S = cur_pos ;\n\n if (maze[i][j] == 'e')\n E = cur_pos;\n\n if (maze[i][j] == 'a')\n key_points.push_back(cur_pos);\n }\n getchar();\n }\n\n init_dist();\n\n total_a_num=key_points.size();\n S_index=total_a_num;\n E_index=total_a_num+1;\n key_points.push_back(S);\n key_points.push_back(E);\n\n // for (auto a:key_points)\n // printf(\"(%d,%d)\\n\",a.first,a.second);\n\n BFS(S_index);\n\n // for (int i=0;i<total_a_num+2;i++)\n // printf(\"%d \",dist_vec[S_index][i]);\n // putchar('\\n');\n\n // for (int i = 0; i < total_a_num + 2; i++)\n // printf(\"%d \", dist_vec[i][S_index]);\n // putchar('\\n');\n\n if (!is_possible()){\n puts(\"-1\");\n return 0;\n }\n\n for (int i=0;i<total_a_num+2;i++)\n if (i!=S_index&&dist_vec[S_index][i]!=-1)\n BFS(i);\n\n // for (int i=0;i<total_a_num+2;i++){\n // for(int j=0;j<total_a_num+2;j++)\n // printf(\"%d \",dist_vec[i][j]);\n\n // putchar('\\n');\n // }\n\n printf(\"%d\\n\",solve());\n\n // 初期化異常無し\n // for (int i = 0; i < H; i++)\n // {\n // for (int j = 0; j < W; j++)\n // putchar(maze[i][j]);\n // putchar('\\n');\n // }\n\n return 0;\n}", "accuracy": 1, "time_ms": 1690, "memory_kb": 90672, "score_of_the_acc": -0.8542, "final_rank": 12 }, { "submission_id": "aoj_3136_5209591", "code_snippet": "#include <iostream>\n#include <stdio.h>\n#include <vector>\n#include <queue>\n#include <utility>\n#include <map>\n#include <algorithm>\n\n#define dbg(x) cout << #x << \" = \" << x << endl\n#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))\n#define fs first\n#define sn second\n#define pb push_back\n#define mp make_pair\n\nusing namespace std;\nusing ll = long long;\nusing pi = pair<int, int>;\nusing vi = vector<int>;\nusing vs = vector<string>;\n\nconst int INF = 100100100;\nconst double ESP = 1e-9;\n\nint H, W, K,\ndfs[1000][1000],\ndist[20][20],\ndx[] = { 1,0,-1,0 }, dy[] = { 0,-1,0,1 },\ndp[1 << 20][20],\ndS[20],\ndG[20];\nstring Map[1002];\nvector<pi> ap;\npi\ts, g;\n\n\nint bit_count (int bits) {\n\tbits = (bits & 0x55555555) + (bits >> 1 & 0x55555555);\n\tbits = (bits & 0x33333333) + (bits >> 2 & 0x33333333);\n\tbits = (bits & 0x0f0f0f0f) + (bits >> 4 & 0x0f0f0f0f);\n\tbits = (bits & 0x00ff00ff) + (bits >> 8 & 0x00ff00ff);\n\treturn (bits & 0x0000ffff) + (bits >> 16 & 0x0000ffff);\n}\n\n\nint main()\n{\n\tauto check = [&](int x, int y) {return 0 <= x && x < H && 0 <= y && y < W && Map[x][y] != '#'; };\n\n\n\tcin >> H >> W >> K;\n\n\trep(i, H) {\n\t\tcin >> Map[i];\n\t\trep(j, W) {\n\t\t\tif (Map[i][j] == 'a') ap.pb(mp(i, j));\n\t\t\tif (Map[i][j] == 's') s = mp(i, j);\n\t\t\tif (Map[i][j] == 'e') g = mp(i, j);\n\t\t}\n\t}\n\n\tint size = ap.size();\n\n\trep(i, size) {\n\t\trep(i, H) rep(j, W) dfs[i][j] = INF;\n\n\t\tdfs[ap[i].fs][ap[i].sn] = 0;\n\n\t\tqueue<pi> q;\n\t\tq.push(ap[i]);\n\n\t\twhile (q.size()) {\n\t\t\tauto pos = q.front();\n\t\t\tq.pop();\n\n\t\t\tint x = pos.fs, y = pos.sn;\n\n\t\t\trep(t, 4) {\n\t\t\t\tint nx = x + dx[t], ny = y + dy[t];\n\t\t\t\tif (check(nx, ny) && dfs[nx][ny] == INF) {\n\t\t\t\t\tdfs[nx][ny] = dfs[x][y] + 1;\n\t\t\t\t\tq.emplace(nx, ny);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tdS[i] = dfs[s.fs][s.sn];\n\t\tdG[i] = dfs[g.fs][g.sn];\n\t\trep(j, size) dist[i][j] = dfs[ap[j].fs][ap[j].sn];\n\t}\n\n\tint M = 1 << size;\n\trep(i, M) rep(j, size) dp[i][j] = INF;\n\trep(i, size) dp[1 << i][i] = dS[i];\n\trep(i, M) {\n\t\trep(j, size) {\n\t\t\trep(k, size) {\n\t\t\t\tif (!(i & 1 << k)) {\n\t\t\t\t\tdp[i | (1 << k)][k] = min(dp[i | (1 << k)][k], dp[i][j] + dist[j][k]);\t\t\t\t\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tint ans = INF;\n\trep(i, M) {\n\t\tif (bit_count(i) >= K) {\n\t\t\trep(j, size) {\n\t\t\t\tans = min(ans, dp[i][j] + dG[j]);\n\t\t\t}\n\t\t}\n\t}\n\tif (ans >= INF) ans = -1;\n\n\tcout << ans << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 920, "memory_kb": 89980, "score_of_the_acc": -0.5011, "final_rank": 2 }, { "submission_id": "aoj_3136_4221414", "code_snippet": "#include <cstdio>\n#include <utility>\n#include <queue>\n#include <vector>\n\nconst int SIZE=1000;\nconst int APPLE_NUM=20;\n\nusing namespace std;\n\ntypedef pair<int,int> coordinate;\n\n// 迷宮自体\nint H,W,K;\nchar maze[SIZE][SIZE+1];\n\n// 各ラウンドでアクセスしたか\nchar maze_visited[SIZE][SIZE][APPLE_NUM+2];\n\n// 林檎と人の位置\nint total_a_num,S_index,E_index;\nvector<coordinate> key_points;\ncoordinate S,E;\n\n// 各林檎の間の距離、人を含む\nint dist_vec[22][22];\n\n\n\nvoid init_dist(){\n for (int i=0;i<22;i++)\n for (int j=0;j<22;j++)\n dist_vec[i][j]=-1;\n}\n\nchar get_maze_item(const coordinate& pos){\n return maze[pos.second][pos.first];\n}\n\nbool in_maze(const coordinate& pos){\n return pos.first>=0&&pos.first<W&&pos.second>=0&&pos.second<H;\n}\n\nbool pos_visited(const coordinate& pos,int i){\n\n return maze_visited[pos.second][pos.first][i];\n}\n\nvoid explore_pos(const coordinate& pos,int i,queue<coordinate>& Q,queue<int>& dist_Q,int cur_dist){\n if (in_maze(pos) && !pos_visited(pos, i) && get_maze_item(pos)!= '#')\n Q.push(pos),\n maze_visited[pos.second][pos.first][i] = 1, \n dist_Q.push(cur_dist + 1);\n ;\n ;\n}\n\nint find_index(const coordinate& pos){\n for (int i=0;i<key_points.size();i++)\n if (key_points[i]==pos) return i;\n}\n\nvoid BFS(int vert){\n coordinate ini;\n\n ini=key_points[vert];\n \n queue<coordinate> Q;\n queue<int> dist_Q;\n explore_pos(ini, vert, Q, dist_Q, -1);\n // dist_Q.push(0);\n \n // printf(\"vert=%d,pos=(%d,%d)\\n\", vert,ini.second,ini.first);\n\n while (!Q.empty()){\n //\n const coordinate cur=Q.front();\n const int cur_dist=dist_Q.front();\n Q.pop();\n dist_Q.pop();\n\n // printf(\"(%d,%d),dist=%d\\n\",cur.second,cur.first,cur_dist);\n\n //todo\n char maze_item=get_maze_item(cur);\n if (maze_item=='a'||maze_item=='e'||maze_item=='s'){\n int index=find_index(cur);\n dist_vec[vert][index]=cur_dist;\n dist_vec[index][vert] = cur_dist;\n }\n \n\n coordinate left(cur.first-1,cur.second)\n ,right(cur.first+1,cur.second)\n ,up(cur.first,cur.second-1)\n ,down(cur.first,cur.second+1);\n\n // 左のポジションを探索\n explore_pos(left,vert,Q,dist_Q,cur_dist);\n \n\n // 左のポジションを探索\n explore_pos(right, vert, Q, dist_Q, cur_dist);\n\n // 左のポジションを探索\n explore_pos(up, vert, Q,dist_Q, cur_dist);\n\n // 左のポジションを探索\n explore_pos(down, vert, Q, dist_Q, cur_dist);\n }\n\n}\n\nbool is_possible(){\n if (dist_vec[S_index][E_index]==-1)\n return false;\n\n int count=0;\n for (int i=0;i<total_a_num;i++)\n if (dist_vec[S_index][i]!=-1) count++;\n\n return count>=K;\n}\n\n\nint dp[20][1<<20];\n\nint bit_count(int state){\n int c=0;\n for(int l=0;l<total_a_num;l++)\n if (state&(1<<l)) c++;\n\n return c;\n}\n\nint solve(){\n int POW[25]={1};\n int ans=0;\n for (int i=1;i<25;i++) POW[i]=POW[i-1]*2;\n\n for (int i=0;i<total_a_num;i++) dp[i][POW[i]]=dist_vec[S_index][i];\n\n for (int state=1;state<POW[total_a_num];state++){\n for (int apple=0;apple<total_a_num;apple++){\n if (dp[apple][state]==0)\n continue;\n\n if (bit_count(state)==K){\n if (ans==0)\n ans=dp[apple][state]+dist_vec[apple][E_index];\n else\n ans = min(dp[apple][state] + dist_vec[apple][E_index],ans);\n }\n\n for (int loop = 0; loop < total_a_num; loop++)\n {\n if (state & (1 << loop))\n {\n\n //Do nothing\n }\n else\n {\n int next_state = state | POW[loop];\n int next_dist = dp[apple][state] + dist_vec[apple][loop];\n\n if (dp[loop][next_state]==0)\n dp[loop][next_state] = next_dist;\n else\n dp[loop][next_state] = min(dp[loop][next_state], next_dist);\n }\n }\n }\n }\n\n return ans;\n}\n\nint main(){\n //迷宮を初期化\n scanf(\"%d%d%d\\n\",&H,&W,&K);\n for (int i=0;i<H;i++) {\n for (int j=0;j<W;j++){\n maze[i][j]=getchar();\n\n // 座標をX,Yに並ぶ\n coordinate cur_pos = coordinate(j, i);\n if (maze[i][j] == 's')\n S = cur_pos ;\n\n if (maze[i][j] == 'e')\n E = cur_pos;\n\n if (maze[i][j] == 'a')\n key_points.push_back(cur_pos);\n }\n getchar();\n }\n\n init_dist();\n\n total_a_num=key_points.size();\n S_index=total_a_num;\n E_index=total_a_num+1;\n key_points.push_back(S);\n key_points.push_back(E);\n\n // for (auto a:key_points)\n // printf(\"(%d,%d)\\n\",a.first,a.second);\n\n BFS(S_index);\n\n // for (int i=0;i<total_a_num+2;i++)\n // printf(\"%d \",dist_vec[S_index][i]);\n // putchar('\\n');\n\n // for (int i = 0; i < total_a_num + 2; i++)\n // printf(\"%d \", dist_vec[i][S_index]);\n // putchar('\\n');\n\n if (!is_possible()){\n puts(\"-1\");\n return 0;\n }\n\n for (int i=0;i<total_a_num+2;i++)\n if (i!=S_index&&dist_vec[S_index][i]!=-1)\n BFS(i);\n\n // for (int i=0;i<total_a_num+2;i++){\n // for(int j=0;j<total_a_num+2;j++)\n // printf(\"%d \",dist_vec[i][j]);\n\n // putchar('\\n');\n // }\n\n printf(\"%d\\n\",solve());\n\n // 初期化異常無し\n // for (int i = 0; i < H; i++)\n // {\n // for (int j = 0; j < W; j++)\n // putchar(maze[i][j]);\n // putchar('\\n');\n // }\n\n return 0;\n}", "accuracy": 0.2, "time_ms": 150, "memory_kb": 18688, "score_of_the_acc": 0, "final_rank": 20 }, { "submission_id": "aoj_3136_4085580", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 1005\n\nstruct LOC{\n\tvoid set(int arg_row,int arg_col){\n\t\trow = arg_row;\n\t\tcol = arg_col;\n\t}\n\tint row,col;\n};\n\nstruct Info{\n\tInfo(int arg_row,int arg_col,int arg_sum_dist){\n\t\trow = arg_row;\n\t\tcol = arg_col;\n\t\tsum_dist = arg_sum_dist;\n\t}\n\tint row,col,sum_dist;\n};\n\nint H,W,K;\nint start = 0,goal = 1;\nint diff_row[4] = {-1,0,0,1},diff_col[4] = {0,-1,1,0};\nint work[SIZE][SIZE];\nint min_dist[25][25],POW[25];\nint dp[20][1 << 20];\nchar table[SIZE][SIZE];\nLOC loc[25];\n\n\nbool rangeCheck(int row,int col){\n\n\treturn row >= 0 && row <= H-1 && col >= 0 && col <= W-1;\n}\n\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i < 25; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tscanf(\"%d %d %d\",&H,&W,&K);\n\n\tint index = 2;\n\n\tfor(int row = 0; row < H; row++){\n\n\t\tscanf(\"%s\",table[row]);\n\t\tfor(int col = 0; col < W; col++){\n\t\t\tswitch(table[row][col]){\n\t\t\tcase 's':\n\t\t\t\tloc[start].set(row,col);\n\t\t\t\tbreak;\n\n\t\t\tcase 'e':\n\t\t\t\tloc[goal].set(row,col);\n\t\t\t\tbreak;\n\n\t\t\tcase 'a':\n\t\t\t\tloc[index].set(row,col);\n\t\t\t\tindex++;\n\t\t\t\tbreak;\n\n\t\t\tdefault:\n\t\t\t\t//Do nothing\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\n\tqueue<Info> Q;\n\n\tfor(int start = 0; start < index; start++){\n\n\t\tfor(int row = 0; row < H; row++){\n\t\t\tfor(int col = 0; col < W; col++){\n\t\t\t\twork[row][col] = BIG_NUM;\n\t\t\t}\n\t\t}\n\n\t\twork[loc[start].row][loc[start].col] = 0;\n\t\tQ.push(Info(loc[start].row,loc[start].col,0));\n\n\t\twhile(!Q.empty()){\n\n\t\t\tif(Q.front().sum_dist > work[Q.front().row][Q.front().col]){\n\n\t\t\t\tQ.pop();\n\n\t\t\t}else{\n\n\t\t\t\tfor(int i = 0; i < 4; i++){\n\n\t\t\t\t\tint adj_row = Q.front().row+diff_row[i];\n\t\t\t\t\tint adj_col = Q.front().col+diff_col[i];\n\t\t\t\t\tint next_dist = Q.front().sum_dist+1;\n\n\t\t\t\t\tif(rangeCheck(adj_row,adj_col) == false || table[adj_row][adj_col] == '#' ||\n\t\t\t\t\t\t\twork[adj_row][adj_col] <= next_dist)continue;\n\n\t\t\t\t\twork[adj_row][adj_col] = next_dist;\n\t\t\t\t\tQ.push(Info(adj_row,adj_col,next_dist));\n\t\t\t\t}\n\n\t\t\t\tQ.pop();\n\t\t\t}\n\t\t}\n\n\t\tfor(int next = 0; next < index; next++){\n\n\t\t\tmin_dist[start][next] = work[loc[next].row][loc[next].col];\n\t\t}\n\t}\n\n\tint ans = BIG_NUM;\n\tint num_apple = index-2,offset=2;\n\n\tfor(int i = 0; i < num_apple; i++){\n\t\tfor(int state = 0; state < POW[num_apple]; state++){\n\t\t\tdp[i][state] = BIG_NUM; //dp[最後のリンゴ][状態] = 最小コスト\n\t\t}\n\t}\n\n\tfor(int i = 0; i < num_apple; i++){\n\n\t\tdp[i][POW[i]] = min_dist[start][i+offset];\n\t}\n\n\tint tmp;\n\n\tfor(int state = 1; state < POW[num_apple]; state++){\n\t\tfor(int i = 0; i < num_apple; i++){\n\t\t\tif(dp[i][state] == BIG_NUM)continue;\n\n\t\t\ttmp = 0;\n\t\t\tfor(int loop = 0; loop < num_apple; loop++){\n\t\t\t\tif(state & (1 << loop))tmp++;\n\t\t\t}\n\n\t\t\tif(tmp == K){\n\n\t\t\t\tans = min(ans,dp[i][state]+min_dist[i+offset][goal]);\n\t\t\t\tcontinue; //寄り道するのは無駄なので以後遷移は不要\n\t\t\t}\n\n\t\t\tfor(int loop = 0; loop < num_apple; loop++){\n\t\t\t\tif(state & (1 << loop)){\n\n\t\t\t\t\t//Do nothing\n\n\t\t\t\t}else{\n\t\t\t\t\tint next_state = state+POW[loop];\n\t\t\t\t\tint next_dist = dp[i][state]+min_dist[i+offset][loop+offset];\n\n\t\t\t\t\tdp[loop][next_state] = min(dp[loop][next_state],next_dist);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\n\tif(ans == BIG_NUM){\n\n\t\tprintf(\"-1\\n\");\n\t}else{\n\n\t\tprintf(\"%d\\n\",ans);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1120, "memory_kb": 90116, "score_of_the_acc": -0.5927, "final_rank": 5 }, { "submission_id": "aoj_3136_4084976", "code_snippet": "#include <iostream>\n#include <vector>\n#include <array>\n#include <list>\n#include <string>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <memory>\n#include <cmath>\n#include <algorithm>\n#include <functional>\n#include <iomanip>\n#include <numeric>\n#include <climits>\n#include <cfloat>\n#include <cassert>\n#include <random>\n\nstruct Coordinate {\n\tint x, y;\n\tstd::vector<Coordinate> neighbors() const {\n\t\treturn std::vector<Coordinate>{ Coordinate{x + 1, y}, Coordinate{x - 1, y}, Coordinate{x, y + 1}, Coordinate{x, y - 1} };\n\t}\n};\nstd::vector<std::vector<int>> min_step(const Coordinate start, const std::vector<std::string>& state) {\n\tauto comparator = [](const std::pair<Coordinate, int>& a, const std::pair<Coordinate, int>& b) {return a.second > b.second; };\n\tstd::priority_queue<std::pair<Coordinate, int>, std::vector<std::pair<Coordinate, int>>, decltype(comparator)> queue(comparator);\n\tstd::vector<std::vector<int>> result(state.size(), std::vector<int>(state.front().size(), INT_MAX));\n\tqueue.emplace(start, 0);\n\tresult[start.y][start.x] = 0;\n\twhile (!queue.empty()) {\n\t\tconst auto top = queue.top(); queue.pop();\n\t\tif (result[top.first.y][top.first.x] == top.second) {\n\t\t\tfor (const auto next : top.first.neighbors()) if (0 <= next.y && next.y < result.size() && 0 <= next.x && next.x < result[next.y].size()) {\n\t\t\t\tif (state[next.y][next.x] != '#' && result[next.y][next.x] > top.second + 1) {\n\t\t\t\t\tresult[next.y][next.x] = top.second + 1;\n\t\t\t\t\tqueue.emplace(next, top.second + 1);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\treturn result;\n}\nint bit_count(int x) {\n\tint res = 0;\n\twhile (x > 0) {\n\t\tres += x % 2;\n\t\tx >>= 1;\n\t}\n\treturn res;\n}\nint main() {\n\tint height, width, k; std::cin >> height >> width >> k;\n\tstd::vector<std::string> state(height); for (auto& line : state) std::cin >> line;\n\tstd::vector<Coordinate> apples; \n\tCoordinate e, s;\n\tfor (auto i = 0; i < height; ++i) for (auto j = 0; j < width; ++j) {\n\t\tif (state[i][j] == 'e') {\n\t\t\te = Coordinate{ j, i };\n\t\t}\n\t\telse if (state[i][j] == 's') {\n\t\t\ts = Coordinate{ j, i };\n\t\t}\n\t\telse if (state[i][j] == 'a') {\n\t\t\tapples.push_back(Coordinate{ j, i });\n\t\t}\n\t}\n\tconst auto from_start = min_step(e, state);\n\tconst auto to_goal = min_step(s, state);\n\tapples.erase(std::remove_if(apples.begin(), apples.end(), [&from_start, &to_goal](const Coordinate& c) {return from_start[c.y][c.x] == INT_MAX || to_goal[c.y][c.x] == INT_MAX; }), apples.end());\n\tstd::vector<std::vector<std::vector<int>>> min_steps; std::transform(apples.begin(), apples.end(), std::back_inserter(min_steps), [&state](const Coordinate from) {return min_step(from, state); });\n\tstd::vector<std::vector<int>> min_distance(1 << apples.size(), std::vector<int>(apples.size(), INT_MAX));\n\tfor (auto i = 0; i < apples.size(); ++i) {\n\t\tmin_distance[1 << i][i] = from_start[apples[i].y][apples[i].x];\n\t}\n\tint min = INT_MAX;\n\tfor (auto i = 0; i < min_distance.size(); ++i) {\n\t\tif (bit_count(i) >= k) {\n\t\t\tint m = INT_MAX;\n\t\t\tfor (auto j = 0; j < apples.size(); ++j) if (min_distance[i][j] != INT_MAX) m = std::min(m, min_distance[i][j] + to_goal[apples[j].y][apples[j].x]);\n\t\t\tmin = std::min(min, m);\n\t\t\tcontinue;\n\t\t}\n\t\tfor (auto j = 0; j < apples.size(); ++j) if (min_distance[i][j] != INT_MAX) {\n\t\t\tfor (auto k = 0; k < apples.size(); ++k) if ((i & (1 << k)) == 0 && min_steps[j][apples[k].y][apples[k].x] != INT_MAX) {\n\t\t\t\tif (min_distance[i | (1 << k)][k] > min_distance[i][j] + min_steps[j][apples[k].y][apples[k].x]) {\n\t\t\t\t\tmin_distance[i | (1 << k)][k] = min_distance[i][j] + min_steps[j][apples[k].y][apples[k].x];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tstd::cout << (min == INT_MAX ? -1 : min) << std::endl;\n}", "accuracy": 1, "time_ms": 2340, "memory_kb": 213600, "score_of_the_acc": -1.4088, "final_rank": 16 }, { "submission_id": "aoj_3136_4084026", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n\nusing pi = pair<int,int>;\n\nconst int INF = 19191919;\nconst int dx[4]={1,-1,0,0};\nconst int dy[4]={0,0,1,-1};\n\nint main(){\n int h,w,k;\n cin >>h >>w >>k;\n vector<string> f(h);\n rep(i,h) cin >>f[i];\n\n vector<pi> a;\n pi start,goal;\n rep(i,h)rep(j,w){\n if(f[i][j]=='a') a.pb({i,j});\n if(f[i][j]=='s') start = {i,j};\n if(f[i][j]=='e') goal = {i,j};\n }\n int A = a.size();\n\n auto IN = [&](int y, int x){\n return 0<=y && y<h && 0<=x && x<w;\n };\n\n auto BFS = [&](pi s){\n vector<vector<int>> d(h,vector<int>(w,INF));\n d[s.fi][s.se] = 0;\n queue<pi> que({s});\n while(!que.empty()){\n pi now = que.front();\n que.pop();\n rep(i,4){\n int ny = now.fi+dy[i], nx = now.se+dx[i];\n if(IN(ny,nx) && f[ny][nx]!='#' && d[ny][nx] > d[now.fi][now.se]+1){\n d[ny][nx] = d[now.fi][now.se]+1;\n que.push({ny,nx});\n }\n }\n }\n return d;\n };\n\n vector<vector<int>> ds = BFS(start), dg = BFS(goal);\n\n vector<vector<int>> da(A, vector<int>(A,INF));\n rep(i,A){\n vector<vector<int>> d = BFS(a[i]);\n rep(j,A) da[i][j] = d[a[j].fi][a[j].se];\n }\n\n vector<vector<int>> dp(1<<A,vector<int>(A,INF));\n rep(i,A) dp[1<<i][i] = ds[a[i].fi][a[i].se];\n\n rep(mask,1<<A)rep(i,A)if(mask>>i&1){\n rep(j,A)if(!(mask>>j&1)){\n int nx = mask|(1<<j);\n dp[nx][j] = min(dp[nx][j], dp[mask][i]+da[i][j]);\n }\n }\n\n int ans = INF;\n rep(mask,1<<A)rep(i,A)if((mask>>i&1) && __builtin_popcount(mask)>=k){\n int t = dp[mask][i];\n t += dg[a[i].fi][a[i].se];\n ans = min(ans, t);\n }\n\n if(ans == INF) ans = -1;\n cout << ans << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 1180, "memory_kb": 134764, "score_of_the_acc": -0.7138, "final_rank": 9 }, { "submission_id": "aoj_3136_4081190", "code_snippet": "#include <iostream>\n#include <stdio.h>\n#include <string>\n#include <vector>\n#include <utility>\n#include <queue>\n#define inf 1e9\n\nusing namespace std;\ntypedef pair<int, int> P;\n\nint h, w, k;\nchar c[1005][1005];\nint px[25], py[25];\nint d[1005][1005];\nint dist[25][25];\nint dp[1<<20][20];\nint pop[1<<20];\nconst int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1};\n\nvoid bfs(int sx, int sy)\n{\n\tfor(int y = 1; y <= h; y++){\n\t\tfor(int x = 1; x <= w; x++){\n\t\t\td[x][y] = inf;\n\t\t}\n\t}\n\td[sx][sy] = 0;\n\t\n\tqueue<P> Q;\n\tQ.push(P(sx, sy));\n\t\n\twhile(Q.size()){\n\t\tint x = Q.front().first, y = Q.front().second;\n\t\tQ.pop();\n\t\tfor(int i = 0; i < 4; i++){\n\t\t\tint nx = x + dx[i], ny = y + dy[i];\n\t\t\tif(nx < 1 || nx > w || ny < 1 || ny > h) continue;\n\t\t\tif(d[nx][ny] < inf) continue;\n\t\t\tif(c[nx][ny] == '#') continue;\n\t\t\td[nx][ny] = d[x][y] + 1;\n\t\t\tQ.push(P(nx, ny));\n\t\t}\n\t}\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> h >> w >> k;\n\tint m = 0;\n\tfor(int y = 1; y <= h; y++){\n\t\tfor(int x = 1; x <= w; x++){\n\t\t\tcin >> c[x][y];\n\t\t\tif(c[x][y] == 'a') px[m] = x, py[m] = y, m++;\n\t\t}\n\t}\n\tfor(int y = 1; y <= h; y++){\n\t\tfor(int x = 1; x <= w; x++){\n\t\t\tif(c[x][y] == 's') px[m] = x, py[m] = y;\n\t\t\tif(c[x][y] == 'e') px[m+1] = x, py[m+1] = y;\n\t\t}\n\t}\n\t\n\tfor(int i = 0; i <= m+1; i++){\n\t\tbfs(px[i], py[i]);\n\t\tfor(int j = 0; j <= m+1; j++) dist[i][j] = d[px[j]][py[j]];\n\t}\n\t\n\tint M = 1<<m;\n\tfor(int i = 0; i < M; i++){\n\t\tfor(int j = 0; j < m; j++){\n\t\t\tdp[i][j] = inf;\n\t\t}\n\t}\n\tfor(int i = 0; i < m; i++) dp[1<<i][i] = dist[m][i];\n\tfor(int i = 0; i < M; i++){\n\t\tfor(int j = 0; j < m; j++){\n\t\t\tfor(int k = 0; k < m; k++){\n\t\t\t\tif(i & (1<<k)) continue;\n\t\t\t\tdp[i|(1<<k)][k] = min(dp[i|(1<<k)][k], dp[i][j] + dist[j][k]);\n\t\t\t}\n\t\t}\n\t}\n\t\n\tfor(int i = 1; i < M; i++) pop[i] = pop[i&(i-1)] + 1;\n\tint ans = inf;\n\tfor(int i = 0; i < M; i++){\n\t\tif(pop[i] < k) continue;\n\t\tfor(int j = 0; j < m; j++){\n\t\t\tans = min(ans, dp[i][j] + dist[j][m+1]);\n\t\t}\n\t}\n\tif(ans > inf/2) cout << -1 << endl;\n\telse cout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1020, "memory_kb": 94088, "score_of_the_acc": -0.5554, "final_rank": 3 }, { "submission_id": "aoj_3136_4081175", "code_snippet": "#include <iostream>\n#include <stdio.h>\n#include <string>\n#include <vector>\n#include <utility>\n#include <queue>\n#define inf 1e9\n\nusing namespace std;\ntypedef pair<int, int> P;\n\nint h, w, k;\nchar c[1005][1005];\nint px[25], py[25];\nint d[1005][1005];\nint dist[25][25];\nint dp[1<<20][20];\nint pop[1<<20];\nconst int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1};\n\nvoid bfs(int sx, int sy)\n{\n\tfor(int y = 1; y <= h; y++){\n\t\tfor(int x = 1; x <= w; x++){\n\t\t\td[x][y] = inf;\n\t\t}\n\t}\n\td[sx][sy] = 0;\n\t\n\tqueue<P> Q;\n\tQ.push(P(sx, sy));\n\t\n\twhile(Q.size()){\n\t\tint x = Q.front().first, y = Q.front().second;\n\t\tQ.pop();\n\t\tfor(int i = 0; i < 4; i++){\n\t\t\tint nx = x + dx[i], ny = y + dy[i];\n\t\t\tif(nx < 1 || nx > w || ny < 1 || ny > h) continue;\n\t\t\tif(d[nx][ny] < inf) continue;\n\t\t\tif(c[nx][ny] == '#') continue;\n\t\t\td[nx][ny] = d[x][y] + 1;\n\t\t\tQ.push(P(nx, ny));\n\t\t}\n\t}\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> h >> w >> k;\n\tint m = 0;\n\tfor(int y = 1; y <= h; y++){\n\t\tfor(int x = 1; x <= w; x++){\n\t\t\tcin >> c[x][y];\n\t\t\tif(c[x][y] == 'a') px[m] = x, py[m] = y, m++;\n\t\t}\n\t}\n\tfor(int y = 1; y <= h; y++){\n\t\tfor(int x = 1; x <= w; x++){\n\t\t\tif(c[x][y] == 's') px[m] = x, py[m] = y;\n\t\t\tif(c[x][y] == 'e') px[m+1] = x, py[m+1] = y;\n\t\t}\n\t}\n\t\n\tfor(int i = 0; i <= m+1; i++){\n\t\tbfs(px[i], py[i]);\n\t\tfor(int j = 0; j <= m+1; j++) dist[i][j] = d[px[j]][py[j]];\n\t}\n\t\n\tint M = 1<<m;\n\tfor(int i = 0; i < M; i++){\n\t\tfor(int j = 0; j < m; j++){\n\t\t\tdp[i][j] = inf;\n\t\t}\n\t}\n\tfor(int i = 0; i < m; i++) dp[1<<i][i] = dist[m][i];\n\tfor(int i = 0; i < M; i++){\n\t\tfor(int j = 0; j < m; j++){\n\t\t\tfor(int k = 0; k < m; k++){\n\t\t\t\tif(j & (1<<k)) continue;\n\t\t\t\tdp[i|(1<<k)][k] = min(dp[i|(1<<k)][k], dp[i][j] + dist[j][k]);\n\t\t\t}\n\t\t}\n\t}\n\t\n\tfor(int i = 1; i < M; i++) pop[i] = pop[i&(i-1)] + 1;\n\tint ans = inf;\n\tfor(int i = 0; i < M; i++){\n\t\tif(pop[i] < k) continue;\n\t\tfor(int j = 0; j < m; j++){\n\t\t\tans = min(ans, dp[i][j] + dist[j][m+1]);\n\t\t}\n\t}\n\tif(ans > inf/2) cout << -1 << endl;\n\telse cout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 0.26666666666666666, "time_ms": 680, "memory_kb": 91508, "score_of_the_acc": -0.3947, "final_rank": 19 }, { "submission_id": "aoj_3136_4080982", "code_snippet": "//\n// Created by yamunaku on 2019/12/29.\n//\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < (n); i++)\n#define repl(i, l, r) for(int i = (l); i < (r); i++)\n#define per(i, n) for(int i = ((n)-1); i >= 0; i--)\n#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)\n#define all(x) (x).begin(),(x).end()\n#define MOD9 998244353\n#define MOD1 1000000007\n#define IINF 1000000000\n#define LINF 1000000000000000000\n#define SP <<\" \"<<\n#define CYES cout<<\"Yes\"<<endl\n#define CNO cout<<\"No\"<<endl\n#define CFS cin.tie(0);ios::sync_with_stdio(false)\n#define CST(x) cout<<fixed<<setprecision(x)\n\nusing ll = long long;\nusing ld = long double;\nusing vi = vector<int>;\nusing mti = vector<vector<int>>;\nusing vl = vector<ll>;\nusing mtl = vector<vector<ll>>;\nusing pi = pair<int, int>;\nusing pl = pair<ll, ll>;\ntemplate<typename T>\nusing heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;\n\nstruct pos{\n int x;\n int y;\n};\n\nstruct sta{\n int f;\n int l;\n int d;\n};\n\nint main(){\n // CFS;\n int h, w, K;\n cin >> h >> w >> K;\n vector<string> f(h);\n rep(i, h) cin >> f[i];\n vector<pos> app;\n rep(i, h){\n rep(j, w){\n if(f[i][j] == 'a'){\n app.push_back({i, j});\n f[i][j] = '.';\n }\n\n }\n }\n rep(i, h){\n rep(j, w){\n if(f[i][j] == 's' || f[i][j] == 'e'){\n app.push_back({i, j});\n f[i][j] = '.';\n }\n }\n }\n\n int sz = app.size();\n mti dist(sz, vi(sz, IINF));\n vi vx = {0, 1, 0, -1};\n vi vy = {1, 0, -1, 0};\n rep(i, sz){\n queue<pos> q;\n mti dis(h, vi(w, IINF));\n q.push({app[i].x, app[i].y});\n dis[app[i].x][app[i].y] = 0;\n while(!q.empty()){\n auto now = q.front();\n q.pop();\n rep(t, 4){\n int nx = now.x + vx[t];\n int ny = now.y + vy[t];\n if(nx < 0 || h <= nx || ny < 0 || w <= ny) continue;\n if(f[nx][ny] == '#') continue;\n if(dis[nx][ny] != IINF) continue;\n dis[nx][ny] = dis[now.x][now.y] + 1;\n q.push({nx, ny});\n }\n }\n rep(j, sz){\n dist[i][j] = dis[app[j].x][app[j].y];\n }\n }\n\n// rep(i, sz){\n// rep(j, sz){\n// cout << dist[i][j] << \" \";\n// }\n// cout << endl;\n// }\n int ans = IINF;\n\n mti d(1 << sz, vi(sz, IINF));\n d[1 << (sz - 2)][sz - 2] = 0;\n rep(i, 1 << sz){\n rep(j, sz){\n if(d[i][j] == IINF) continue;\n rep(k, sz){\n if(dist[j][k] != IINF && (i&(1<<k))==0)\n d[i | (1 << k)][k] = min(d[i | (1 << k)][k], d[i][j] + dist[j][k]);\n }\n }\n int c = 0;\n rep(k, sz){\n if(i & (1 << k)) c++;\n }\n if(c >= K + 2){\n ans = min(ans, d[i][sz - 1]);\n }\n }\n if(ans == IINF) cout << -1 << endl;\n else cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 2070, "memory_kb": 495472, "score_of_the_acc": -1.8767, "final_rank": 17 }, { "submission_id": "aoj_3136_4079984", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint nth_bit(int64_t num, int n){\n return (num >> n) & 1;\n}\n\nint pop_count(int bits){\n bits = (bits & 0x55555555) + (bits >> 1 & 0x55555555);\n bits = (bits & 0x33333333) + (bits >> 2 & 0x33333333);\n bits = (bits & 0x0f0f0f0f) + (bits >> 4 & 0x0f0f0f0f);\n bits = (bits & 0x00ff00ff) + (bits >> 8 & 0x00ff00ff);\n return (bits & 0x0000ffff) + (bits >>16 & 0x0000ffff);\n}\n\nvoid chmin(int64_t& a, int64_t b){\n a = min(a, b);\n}\n\nint main(){\n int H, W, K;\n cin >> H >> W >> K;\n string S[1000];\n vector<pair<int, int>> pos;\n pair<int, int> ps, pg;\n for(int i=0; i<H; i++){\n cin >> S[i];\n for(int j=0; j<W; j++){\n if(S[i][j] == 's') ps = {i, j};\n if(S[i][j] == 'e') pg = {i, j};\n if(S[i][j] == 'a') pos.emplace_back(i, j);\n }\n }\n int KK = pos.size();\n\n const int64_t INF = 1e15;\n int64_t dist[20][20], grid_dist[1000][1000], toS[20], toG[20];\n const int dx[] = {-1, 1, 0, 0};\n const int dy[] = {0, 0, -1, 1};\n auto inside = [&](int i, int j){ return 0<=i && i<H && 0<=j && j<W && S[i][j] != '#'; };\n\n for(int k=0; k<KK; k++){\n for(int i=0; i<H; i++) for(int j=0; j<W; j++) grid_dist[i][j] = INF;\n queue<pair<int, int>> que;\n grid_dist[pos[k].first][pos[k].second] = 0;\n que.push(pos[k]);\n while(que.size()){\n auto p = que.front(); que.pop();\n int i = p.first, j = p.second;\n for(int t=0; t<4; t++){\n int x = i + dx[t], y = j + dy[t];\n if(inside(x, y) && grid_dist[x][y] == INF){\n grid_dist[x][y] = grid_dist[i][j] + 1;\n que.emplace(x, y);\n }\n }\n }\n toS[k] = grid_dist[ps.first][ps.second];\n toG[k] = grid_dist[pg.first][pg.second];\n for(int l=0; l<KK; l++) dist[k][l] = grid_dist[pos[l].first][pos[l].second];\n }\n\n static int64_t dp[1<<20][20];\n for(int i=0; i<(1<<KK); i++) for(int k=0; k<KK; k++) dp[i][k] = INF;\n for(int k=0; k<KK; k++) dp[1<<k][k] = toS[k];\n for(int i=0; i<(1<<KK); i++) for(int k=0; k<KK; k++) for(int t=0; t<KK; t++) if(!nth_bit(i, t)){\n chmin(dp[i+(1<<t)][t], dp[i][k] + dist[k][t]);\n }\n\n int64_t ans = INF;\n for(int i=0; i<(1<<KK); i++) if(pop_count(i) >= K) for(int k=0; k<KK; k++) chmin(ans, dp[i][k] + toG[k]);\n if(ans >= INF) ans = -1;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1050, "memory_kb": 175748, "score_of_the_acc": -0.7404, "final_rank": 11 }, { "submission_id": "aoj_3136_4079393", "code_snippet": "#include<iostream>\n#include<vector>\n#include<cstring>\n#include<queue>\nusing namespace std;\n\n#define inRange(x,a,b) (a <= x && x < b)\nint di[8] = {0,0,1,-1,1,1,-1,-1};\nint dj[8] = {1,-1,0,0,1,-1,1,-1};\n\nint dist[22][22];\nint dp[22][1<<22];\nint bfs[1000][1000];\nint cnt = 0;\n\nint dec(char c){\n if(c == 's') return 0;\n if(c == 'e') return cnt+1;\n return c-'A'+1;\n}\n\nint main(){\n memset(dist, 0x3f, sizeof(dist));\n memset(dp, 0x3f, sizeof(dp));\n int h, w, k;\n cin >> h >> w >> k;\n char mat[h][w];\n for(int i = 0; i < h; i++){\n for(int j = 0; j < w; j++){\n cin >> mat[i][j];\n if(mat[i][j] == 'a'){\n mat[i][j] = (char)('A' + cnt++);\n }\n }\n }\n for(int i = 0; i < h; i++){\n for(int j = 0; j < w; j++){\n if(mat[i][j] == '#' || mat[i][j] == '.') continue;\n int ind = dec(mat[i][j]);\n memset(bfs, 0x3f, sizeof(bfs));\n bfs[i][j] = 0;\n queue<int> q;\n q.push(i*w+j);\n while(!q.empty()){\n int x = q.front(); q.pop();\n int i = x/w, j = x%w;\n if(mat[i][j] != '.'){\n dist[ind][dec(mat[i][j])] = bfs[i][j];\n }\n for(int k = 0; k < 4; k++){\n int ni = i+di[k], nj = j+dj[k];\n if(inRange(ni,0,h)&&inRange(nj,0,w)&&bfs[ni][nj]>bfs[i][j]+1&&mat[ni][nj]!='#'){\n bfs[ni][nj] = bfs[i][j]+1;\n q.push(ni*w+nj);\n }\n }\n }\n }\n }\n dp[0][1] = 0;\n for(int s = 1; s < 1<<(cnt+1); s++){\n for(int i = 0; i < cnt+1; i++){\n if(((s>>i)&1) == 0) continue;\n if(dp[i][s] > 1e9) continue;\n for(int j = 0; j < cnt+1; j++){\n if((s>>j)&1) continue;\n if(dist[i][j] > 1e9) continue;\n dp[j][s|(1<<j)] = min(dp[j][s|(1<<j)], dp[i][s]+dist[i][j]);\n }\n }\n }\n int ret = 2e9;\n for(int s = 1; s < 1<<(cnt+1); s++){\n int pop = -1;\n for(int j = 0; j < cnt+1; j++) pop += (s>>j)&1;\n if(pop < k) continue;\n for(int j = 1; j <= cnt; j++){\n if(dist[j][cnt+1] < 1e9 && dp[j][s] < 1e9) ret = min(ret, dp[j][s]+dist[j][cnt+1]);\n }\n }\n cout << (ret >= 2e9 ? -1 : ret) << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1250, "memory_kb": 368484, "score_of_the_acc": -1.2359, "final_rank": 15 }, { "submission_id": "aoj_3136_4079392", "code_snippet": "#include<iostream>\n#include<vector>\n#include<cstring>\n#include<queue>\nusing namespace std;\n\n#define inRange(x,a,b) (a <= x && x < b)\nint di[8] = {0,0,1,-1,1,1,-1,-1};\nint dj[8] = {1,-1,0,0,1,-1,1,-1};\n\nint dist[22][22];\nint dp[22][1<<22];\nint bfs[1000][1000];\nint cnt = 0;\n\nint dec(char c){\n if(c == 's') return 0;\n if(c == 'e') return cnt+1;\n return c-'A'+1;\n}\n\nint main(){\n memset(dist, 0x3f, sizeof(dist));\n memset(dp, 0x3f, sizeof(dp));\n int h, w, k;\n cin >> h >> w >> k;\n char mat[h][w];\n for(int i = 0; i < h; i++){\n for(int j = 0; j < w; j++){\n cin >> mat[i][j];\n if(mat[i][j] == 'a'){\n mat[i][j] = (char)('A' + cnt++);\n }\n }\n }\n for(int i = 0; i < h; i++){\n for(int j = 0; j < w; j++){\n if(mat[i][j] == '#' || mat[i][j] == '.') continue;\n int ind = dec(mat[i][j]);\n memset(bfs, 0x3f, sizeof(bfs));\n bfs[i][j] = 0;\n queue<int> q;\n q.push(i*w+j);\n while(!q.empty()){\n int x = q.front(); q.pop();\n int i = x/w, j = x%w;\n if(mat[i][j] != '.'){\n dist[ind][dec(mat[i][j])] = bfs[i][j];\n }\n for(int k = 0; k < 4; k++){\n int ni = i+di[k], nj = j+dj[k];\n if(inRange(ni,0,h)&&inRange(nj,0,w)&&bfs[ni][nj]>bfs[i][j]+1&&mat[ni][nj]!='#'){\n bfs[ni][nj] = bfs[i][j]+1;\n q.push(ni*w+nj);\n }\n }\n }\n }\n }\n dp[0][1] = 0;\n for(int s = 1; s < 1<<(cnt+1); s++){\n for(int i = 0; i < cnt+1; i++){\n if(((s>>i)&1) == 0) continue;\n if(dp[i][s] > 1e9) continue;\n for(int j = 0; j < cnt+1; j++){\n if((s>>j)&1) continue;\n if(dist[i][j] > 1e9) continue;\n dp[j][s|(1<<j)] = min(dp[j][s|(1<<j)], dp[i][s]+dist[i][j]);\n }\n }\n }\n int ret = 2e9;\n for(int s = 1; s < 1<<(cnt+1); s++){\n int pop = -1;\n for(int j = 0; j < cnt+1; j++) pop += (s>>j)&1;\n if(pop < k) continue;\n for(int j = 1; j <= cnt; j++){\n if(dist[j][cnt+1] < 1e9) ret = min(ret, dp[j][s]+dist[j][cnt+1]);\n }\n }\n cout << (ret >= 2e9 ? -1 : ret) << endl;\n return 0;\n}", "accuracy": 0.3333333333333333, "time_ms": 530, "memory_kb": 368404, "score_of_the_acc": -0.907, "final_rank": 18 }, { "submission_id": "aoj_3136_4078799", "code_snippet": "#include<iostream>\n#include<vector>\n#include<algorithm>\n#include<queue>\nusing namespace std;\nint H,W,K;\nstring s[1000];\nint X[22],Y[22];\nlong dis[22][22];\nint D[5]={0,1,0,-1,0};\nlong dp[1<<20][20];\nmain()\n{\n\tcin>>H>>W>>K;\n\tint id=2;\n\tfor(int i=0;i<H;i++)\n\t{\n\t\tcin>>s[i];\n\t\tfor(int j=0;j<W;j++)\n\t\t{\n\t\t\tif(s[i][j]=='s')\n\t\t\t{\n\t\t\t\tX[0]=i;\n\t\t\t\tY[0]=j;\n\t\t\t}\n\t\t\telse if(s[i][j]=='e')\n\t\t\t{\n\t\t\t\tX[1]=i;\n\t\t\t\tY[1]=j;\n\t\t\t}\n\t\t\telse if(s[i][j]=='a')\n\t\t\t{\n\t\t\t\tX[id]=i;\n\t\t\t\tY[id++]=j;\n\t\t\t}\n\t\t}\n\t}\n\tfor(int i=0;i<id;i++)\n\t{\n\t\tvector<vector<int> >d(H,vector<int>(W,1e9));\n\t\td[X[i]][Y[i]]=0;\n\t\tqueue<pair<int,int> >P;\n\t\tP.push(make_pair(X[i],Y[i]));\n\t\twhile(!P.empty())\n\t\t{\n\t\t\tint x=P.front().first,y=P.front().second;\n\t\t\tP.pop();\n\t\t\tfor(int r=0;r<4;r++)\n\t\t\t{\n\t\t\t\tint tx=x+D[r],ty=y+D[r+1];\n\t\t\t\tif(0<=tx&&tx<H&&0<=ty&&ty<W&&s[tx][ty]!='#'&&d[tx][ty]>d[x][y]+1)\n\t\t\t\t{\n\t\t\t\t\td[tx][ty]=d[x][y]+1;\n\t\t\t\t\tP.push(make_pair(tx,ty));\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor(int j=0;j<id;j++)\n\t\t{\n\t\t\tdis[i][j]=d[X[j]][Y[j]];\n\t\t}\n\t}\n\tint sz=id-2;\n\tfor(int i=0;i<1<<sz;i++)for(int j=0;j<sz;j++)dp[i][j]=1e18;\n\tfor(int i=2;i<id;i++)\n\t{\n\t\tdp[1<<i-2][i-2]=dis[0][i];\n\t}\n\tfor(int i=1;i<1<<sz;i++)\n\t{\n\t\tfor(int j=0;j<sz;j++)\n\t\t{\n\t\t\tif(dp[i][j]>1e17)continue;\n\t\t\tfor(int k=0;k<sz;k++)\n\t\t\t{\n\t\t\t\tif(i>>k&1)continue;\n\t\t\t\tdp[i|1<<k][k]=min(dp[i|1<<k][k],dp[i][j]+dis[j+2][k+2]);\n\t\t\t}\n\t\t}\n\t}\n\tlong ans=1e18;\n\tfor(int i=0;i<1<<sz;i++)\n\t{\n\t\tif(__builtin_popcount(i)<K)continue;\n\t\tfor(int j=0;j<sz;j++)ans=min(ans,dp[i][j]+dis[j+2][1]);\n\t}\n\tcout<<(ans>1e9?-1:ans)<<endl;\n}", "accuracy": 1, "time_ms": 1030, "memory_kb": 168048, "score_of_the_acc": -0.7151, "final_rank": 10 }, { "submission_id": "aoj_3136_4072669", "code_snippet": "#include <bits/stdc++.h>\n \n// #include <boost/multiprecision/cpp_int.hpp>\n// #define int long long\n #define inf 1000000007\n #define pa pair<int,int>\n #define ll long long\n #define pal pair<double,double>\n #define ppap pair<pa,int>\n #define PI 3.14159265358979323846\n #define paa pair<int,char>\n #define mp make_pair\n #define pb push_back\n #define EPS (1e-8)\n \n int dx[8]={0,1,0,-1,1,1,-1,-1};\n int dy[8]={1,0,-1,0,-1,1,1,-1};\n using namespace std;\n \t\t\tclass pa3{\n \tpublic:\n \tint x;\n \t\t\t\tint y,z;\n \tpa3(int x=0,int y=0,int z=0):x(x),y(y),z(z) {}\n \tbool operator < (const pa3 &p) const{\n \t\tif(x!=p.x) return x<p.x;\n \t\tif(y!=p.y) return y<p.y;\n \t\t return z<p.z;\n \t\t//return x != p.x ? x<p.x: y<p.y;\n \t}\n \t\t\t\tbool operator > (const pa3 &p) const{\n \t\tif(x!=p.x) return x>p.x;\n \t\tif(y!=p.y) return y>p.y;\n \t\t return z>p.z;\n \t\t//return x != p.x ? x<p.x: y<p.y;\n \t}\n \tbool operator == (const pa3 &p) const{\n \t\treturn x==p.x && y==p.y && z==p.z;\n \t}\n \t\tbool operator != (const pa3 &p) const{\n \t\t\treturn !( x==p.x && y==p.y && z==p.z);\n \t}\n \n };\n \n class pa4{\n \tpublic:\n \tint x;\n \tint y,z,w;\n \tpa4(int x=0,int y=0,int z=0,int w=0):x(x),y(y),z(z),w(w) {}\n \tbool operator < (const pa4 &p) const{\n \t\tif(x!=p.x) return x<p.x;\n \t\tif(y!=p.y) return y<p.y;\n \t\tif(z!=p.z)return z<p.z;\n \t\treturn w<p.w;\n \t\t//return x != p.x ? x<p.x: y<p.y;\n \t}\n \tbool operator > (const pa4 &p) const{\n \t\tif(x!=p.x) return x>p.x;\n \t\tif(y!=p.y) return y>p.y;\n \t\tif(z!=p.z)return z>p.z;\n \t\treturn w>p.w;\n \t\t//return x != p.x ? x<p.x: y<p.y;\n \t}\n \tbool operator == (const pa4 &p) const{\n \t\treturn x==p.x && y==p.y && z==p.z &&w==p.w;\n \t}\n \t\t\n \n };\n class pa2{\n \tpublic:\n \tint x,y;\n \tpa2(int x=0,int y=0):x(x),y(y) {}\n \tpa2 operator + (pa2 p) {return pa2(x+p.x,y+p.y);}\n \tpa2 operator - (pa2 p) {return pa2(x-p.x,y-p.y);}\n \tbool operator < (const pa2 &p) const{\n \t\treturn y != p.y ? y<p.y: x<p.x;\n \t}\n \tbool operator > (const pa2 &p) const{\n \t\treturn x != p.x ? x<p.x: y<p.y;\n \t}\n \tbool operator == (const pa2 &p) const{\n \t\treturn abs(x-p.x)==0 && abs(y-p.y)==0;\n \t}\n \tbool operator != (const pa2 &p) const{\n \t\treturn !(abs(x-p.x)==0 && abs(y-p.y)==0);\n \t}\n \t\t\n \n };\n \n \n \n string itos( int i ) {\n ostringstream s ;\n s << i ;\n return s.str() ;\n }\n \n int gcd(int v,int b){\n \tif(v==0) return b;\n \tif(b==0) return v;\n \tif(v>b) return gcd(b,v);\n \tif(v==b) return b;\n \tif(b%v==0) return v;\n \treturn gcd(v,b%v);\n }\n \n \n int mod;\nint extgcd(int a, int b, int &x, int &y) {\n if (b == 0) {\n x = 1;\n y = 0;\n return a;\n }\n int d = extgcd(b, a%b, y, x);\n y -= a/b * x;\n return d;\n}\npa operator+(const pa & l,const pa & r) { \n return {l.first+r.first,l.second+r.second}; \n} \npa operator-(const pa & l,const pa & r) { \n return {l.first-r.first,l.second-r.second}; \n} \n \n int pr[10000100];\n int inv[10000010];\n \n int beki(int wa,int rr,int warukazu){\n \tif(rr==0) return 1%warukazu;\n \tif(rr==1) return wa%warukazu;\n \twa%=warukazu;\n \tif(rr%2==1) return ((ll)beki(wa,rr-1,warukazu)*(ll)wa)%warukazu;\n \tll zx=beki(wa,rr/2,warukazu);\n \treturn (zx*zx)%warukazu;\n }\n \n \n \t\t\tint comb(int nn,int rr){\n \t\t\t\tif(rr<0 || rr>nn || nn<0) return 0;\n \t\t\t\tint r=pr[nn]*inv[rr];\n \t\t\t\tr%=mod;\n \t\t\t\tr*=inv[nn-rr];\n \t\t\t\tr%=mod;\n \t\t\t\treturn r;\n \t\t\t}\n \n void gya(int ert){\n \tpr[0]=1;\n \tfor(int i=1;i<=ert;i++){\n \t\tpr[i]=((ll)pr[i-1]*i)%mod;\n \t}\n \t\tinv[ert]=beki(pr[ert],mod-2,mod);\n \tfor(int i=ert-1;i>=0;i--){\n \t\tinv[i]=(ll)inv[i+1]*(i+1)%mod;\n \t}\n }\n \n // cin.tie(0);\n \t\t//\tios::sync_with_stdio(false);\n \t\t\t//priority_queue<pa3,vector<pa3>,greater<pa3>> pq; \n //sort(ve.begin(),ve.end(),greater<int>());\n // mt19937(clock_per_sec);\n // mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count()) ;\n\n\nstring s[1020];\nmap<pa,int> ma;\n\nint dis[22][22]={};\nbool vis[1020][1020];\nbool sumi[22][1<<22]={};\nint dp[1<<20][20];\nsigned main(){\n\t\n\t\ncin.tie(0);\nios::sync_with_stdio(false);\n\n\tint h,w,k;\n\tcin>>h>>w>>k;\n\tint n=0,sx,sy,ex,ey;\n\tvector<pa> ve;\n\tfor(int i=0;i<h;i++){\n\t\tcin>>s[i];\n\t\tfor(int j=0;j<w;j++){\n\t\t\tchar c=s[i][j];\n\t\t\tn+=c=='a';\n\t\t\tif(c=='a'){\n\t\t\t\tve.pb(mp(i,j));\n\t\t\t}\n\t\t\tif(c=='s'){\n\t\t\t\tsx=i,sy=j;\n\t\t\t}\n\t\t\tif(c=='e'){\n\t\t\t\tex=i,ey=j;\n\t\t\t}\n\t\t}\n\t}\n\tve.pb(mp(sx,sy));\n\tve.pb(mp(ex,ey));\n\tfor(int i=0;i<n+2;i++)ma[ve[i]]=i;\n\tfor(int i=0;i<n+2;i++)for(int j=0;j<n+2;j++)dis[i][j]=inf;\n\tfor(int i=0;i<n+2;i++){\n\t\tqueue<pa3> qu;\n\t\tqu.push(pa3(ve[i].first,ve[i].second,0));\n\t\tfor(int i=0;i<h;i++)for(int j=0;j<w;j++)vis[i][j]=0;\n\t\twhile(qu.size()){\n\t\t\tpa3 z=qu.front();\n\t\t\tqu.pop();\n\t\t\tif(vis[z.x][z.y])continue;\n\t\t\tvis[z.x][z.y]=1;\n\t\t\tif(s[z.x][z.y]!='.'){\n\t\t\t\tdis[i][ma[mp(z.x,z.y)]]=z.z;\n\t\t//\t\tcout<<i<<\" \"<<ma[mp(z.x,z.y)]<<\" \"<<z.z<<endl;\n\t\t\t}\n\t\t\tfor(int r=0;r<4;r++){\n\t\t\t\tint x=z.x+dx[r];\n\t\t\t\tint y=z.y+dy[r];\n\t\t\t\tif(x<0||y<0 || x>=h || y>=w)continue;\n\t\t\t\tif(s[x][y]=='#')continue;\n\t\t\t\t\tif(!vis[x][y])qu.push((pa3){x,y,z.z+1});\n\t\t\t}\n\t\t}\n\t}\n\tint ans=inf;\n\tfor(int i=1;i<(1<<n);i++){\n\t\t\n\t\tfor(int j=0;j<n;j++)if(i&(1<<j)){\n\t\tif(i==(i&(-i))){\n\t\t\tdp[i][j]=dis[j][n];\n\t\t//\tcontinue;\n\t\t}\n\t\telse{\n\t\t\t\tdp[i][j]=inf;\n\t\t\t\tfor(int h=0;h<n;h++)if(i&(1<<h))if(h!=j)if(dis[j][h]<inf){\n\t\t\t\t\tdp[i][j]=min(dp[i][j],dp[i^(1<<j)][h]+dis[j][h]);\n\t\t\t\t}\n\t\t\t}\n\t\t\n\t\tif(__builtin_popcount(i)>=k && dis[j][n+1]<inf)ans=min(ans,dis[j][n+1]+dp[i][j]);\n\t}}\n\t\n\tif(ans==inf)cout<<-1<<endl;\nelse\tcout<<ans<<endl;\n\t\n\t/*\n\tpriority_queue<pa3,vector<pa3>,greater<pa3>> pq; \n\tpq.push(pa3(0,n,0));\n\t\n\twhile(pq.size()){\n\t\tpa3 z=pq.top();\n\t\tpq.pop();\n\t\tif(sumi[z.y][z.z])continue;\n\t\tsumi[z.y][z.z]=1;\n\t//\tcout<<z.y<<\" \"<<z.z<<\" \"<<z.x<<endl;\n\t\tif(z.y==n+1){\n\t\t\tif(__builtin_popcount(z.z)>=k){\n\t\t\t\tcout<<z.x<<endl;\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\t\tfor(int i=0;i<n;i++)if(dis[z.y][i]<inf){\n\t\t\tif(0==(z.z&(1<<i)))\tpq.push((pa3){z.x+dis[z.y][i],i,(z.z|(1<<i))&((1<<n)-1)});\n\t\t}\n\t\t\n\t\tfor(int i=n+1;i<n+2;i++)if(dis[z.y][i]<inf)if(__builtin_popcount(z.z)>=k){\n\t\t\tpq.push((pa3){z.x+dis[z.y][i],i,z.z});\n\t\t}\n\n\t}\ncout<<-1<<endl;\n\t*/\n\treturn 0; \n }", "accuracy": 1, "time_ms": 1070, "memory_kb": 87092, "score_of_the_acc": -0.5636, "final_rank": 4 }, { "submission_id": "aoj_3136_4072664", "code_snippet": "#include \"bits/stdc++.h\"\n\nusing namespace std;\n\nusing i64 = long long;\n\nconst i64 MOD = 1e9+7;\n\nconst i64 INF = 1e18+7;\n\n\ntemplate <typename T = i64>\nbool chmax(T& a, T b){\n if(a < b){\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <typename T = i64>\nbool chmin(T& a, T b){\n if(a > b){\n a = b;\n return true;\n }\n return false;\n}\n\n\nsigned main(){\n\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n\n int h, w, k;\n cin >> h >> w >> k;\n vector<string> s(h);\n for(auto& x : s)\n cin >> x;\n\n int sx, sy, ex, ey;\n int cnt = 0;\n vector<int> x, y;\n for(int i = 0; i < h; ++i)\n for(int j = 0; j < w; ++j){\n if(s[i][j] == 's'){\n sx = i;\n sy = j;\n }\n if(s[i][j] == 'e'){\n ex = i;\n ey = j;\n }\n if(s[i][j] == 'a'){\n ++cnt;\n x.emplace_back(i);\n y.emplace_back(j);\n }\n }\n\n x.emplace_back(sx);\n x.emplace_back(ex);\n y.emplace_back(sy);\n y.emplace_back(ey);\n\n vector<int> dx{1, 0, -1, 0};\n vector<int> dy{0, 1, 0, -1};\n\n vector<vector<int>> graph(cnt + 2, vector<int>(cnt + 2, MOD));\n for(int i = 0; i < cnt + 2; ++i){\n queue<pair<int,int>> que;\n vector<vector<int>> range(h, vector<int>(w, MOD));\n range[x[i]][y[i]] = 0;\n que.emplace(x[i], y[i]);\n while(!que.empty()){\n int x, y;\n tie(x, y) = que.front();\n que.pop();\n for(int d = 0; d < 4; ++d){\n int nx = x + dx[d];\n int ny = y + dy[d];\n if(nx < 0 || ny < 0 || nx >= h || ny >= w || s[nx][ny] == '#')\n continue;\n if(chmin(range[nx][ny], range[x][y] + 1))\n que.emplace(nx, ny);\n }\n }\n for(int j = 0; j < cnt + 2; ++j)\n graph[i][j] = range[x[j]][y[j]];\n }\n\n vector<vector<i64>> dp(1 << cnt, vector<i64>(cnt, INF));\n for(int i = 0; i < cnt; ++i)\n dp[(1 << i)][i] = graph[cnt][i];\n\n for(int i = 0; i < (1 << cnt); ++i){\n for(int j = 0; j < cnt; ++j){\n for(int k = 0; k < cnt; ++k){\n chmin(dp[i | (1 << k)][k], dp[i][j] + graph[j][k]);\n }\n }\n }\n\n i64 ans = INF;\n for(int i = 0; i < (1 << cnt); ++i){\n int cn = __builtin_popcount(i);\n if(cn >= k){\n for(int j = 0; j < cnt; ++j){\n chmin(ans, dp[i][j] + graph[j][cnt + 1]);\n }\n }\n }\n if(ans >= 1e7){\n cout << -1 << endl;\n return 0;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 1320, "memory_kb": 208740, "score_of_the_acc": -0.9329, "final_rank": 13 }, { "submission_id": "aoj_3136_4072641", "code_snippet": "#include <bits/stdc++.h>\n#define FOR(i,a,n) for(ll i=(ll)a;i<(ll)n;i++)\n#define rep(i,n) FOR(i,0,n)\nusing namespace std;\ntypedef long long ll;\nconst int X[]={0,1,0,-1},Y[]={1,0,-1,0};\n\nint H,W,K,eh,ew,apple,d[30][30],bfs[1001][1001],dp[1<<20][30];\nchar A[1000][1000];\nvector<int>x(1),y(1);\n\nint bitdp(int app,int last){\n if(dp[app][last])return dp[app][last];\n int num=0;\n rep(i,apple)if((app>>i)&1)num++;\n if(num==K)return dp[app][last]=d[last][x.size()-1];\n dp[app][last]=1e7;\n rep(i,apple)if(!((app>>i)&1)){\n dp[app][last]=min(dp[app][last],bitdp(app+(1<<i),i+1)+d[last][i+1]);\n }\n return dp[app][last];\n}\n\nint main(){\n cin>>H>>W>>K;\n rep(i,H)rep(j,W){\n cin>>A[i][j];\n if(A[i][j]=='e')eh=i,ew=j;\n if(A[i][j]=='s')x[0]=i,y[0]=j;\n if(A[i][j]=='a'){\n x.push_back(i);\n y.push_back(j);\n apple++;\n }\n }\n x.push_back(eh);\n y.push_back(ew);\n\n queue<pair<int,int> > que;\n rep(i,x.size()){\n fill(bfs[0],bfs[1001],1e7);\n que.push({x[i],y[i]});\n bfs[x[i]][y[i]]=0;\n while(!que.empty()){\n int nx=que.front().first,ny=que.front().second;\n que.pop();\n rep(j,4){\n int NX=nx+X[j],NY=ny+Y[j];\n if(NX<0||H<=NX||NY<0||W<=NY||A[NX][NY]=='#'||bfs[NX][NY]!=1e7)continue;\n bfs[NX][NY]=bfs[nx][ny]+1;\n que.push({NX,NY});\n }\n }\n rep(j,x.size())d[i][j]=bfs[x[j]][y[j]];\n }\n\n cout<<(bitdp(0,0)>=1e7?-1:dp[0][0])<<endl;\n}", "accuracy": 1, "time_ms": 1860, "memory_kb": 130928, "score_of_the_acc": -1.0162, "final_rank": 14 }, { "submission_id": "aoj_3136_4072573", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <cctype>\n#include <chrono>\n#define _USE_MATH_DEFINES\n#include <cmath>\n#include <cstring>\n#include <ctime>\n#include <deque>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <iterator>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <sstream>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <utility>\n#include <vector>\nusing namespace std;\n\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\n\nconst int INF = 0x3f3f3f3f;\nconst long long LINF = 0x3f3f3f3f3f3f3f3fLL;\nconst double EPS = 1e-8;\nconst int MOD = 1000000007;\n// const int MOD = 998244353;\nconst int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\n// const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1},\n// dx[] = {0, -1, -1, -1, 0, 1, 1, 1};\n\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n/*-------------------------------------------------*/\nint main() {\n int h, w, k; cin >> h >> w >> k;\n vector<string> a(h); REP(i, h) cin >> a[i];\n int sy, sx, ey, ex;\n vector<int> y, x;\n REP(i, h) REP(j, w) {\n if (a[i][j] == 's') {\n sy = i;\n sx = j;\n } else if (a[i][j] == 'e') {\n ey = i;\n ex = j;\n } else if (a[i][j] == 'a') {\n y.emplace_back(i);\n x.emplace_back(j);\n }\n }\n int n = y.size();\n vector<vector<int> > dist(h, vector<int>(w, INF)), dp(1 << n, vector<int>(n, INF));\n dist[sy][sx] = 0;\n queue<pair<int, int> > que;\n que.emplace(sy, sx);\n while (!que.empty()) {\n int i = que.front().first, j = que.front().second; que.pop();\n REP(k, 4) {\n int r = i + dy[k], c = j + dx[k];\n if (0 <= r && r < h && 0 <= c && c < w && dist[r][c] == INF && a[r][c] != '#') {\n dist[r][c] = dist[i][j] + 1;\n que.emplace(r, c);\n }\n }\n }\n REP(i, n) dp[1 << i][i] = dist[y[i]][x[i]];\n vector<vector<int> > graph(n, vector<int>(n, INF));\n REP(s, n) {\n dist.assign(h, vector<int>(w, INF));\n dist[y[s]][x[s]] = 0;\n que.emplace(y[s], x[s]);\n while (!que.empty()) {\n int i = que.front().first, j = que.front().second; que.pop();\n REP(k, 4) {\n int r = i + dy[k], c = j + dx[k];\n if (0 <= r && r < h && 0 <= c && c < w && dist[r][c] == INF && a[r][c] != '#') {\n dist[r][c] = dist[i][j] + 1;\n que.emplace(r, c);\n }\n }\n }\n REP(t, n) graph[s][t] = dist[y[t]][x[t]];\n }\n FOR(i, 1, 1 << n) REP(j, n) {\n if (dp[i][j] == INF) continue;\n REP(k, n) if (!(i >> k & 1)) {\n if (graph[j][k] == INF) continue;\n dp[i | (1 << k)][k] = min(dp[i | (1 << k)][k], dp[i][j] + graph[j][k]);\n }\n }\n dist.assign(h, vector<int>(w, INF));\n dist[ey][ex] = 0;\n que.emplace(ey, ex);\n while (!que.empty()) {\n int i = que.front().first, j = que.front().second; que.pop();\n REP(k, 4) {\n int r = i + dy[k], c = j + dx[k];\n if (0 <= r && r < h && 0 <= c && c < w && dist[r][c] == INF && a[r][c] != '#') {\n dist[r][c] = dist[i][j] + 1;\n que.emplace(r, c);\n }\n }\n }\n int ans = INF;\n REP(i, 1 << n) REP(j, n) {\n if (__builtin_popcount(i) == k) ans = min(ans, dp[i][j] + dist[y[j]][x[j]]);\n }\n cout << (ans == INF ? -1 : ans) << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 1120, "memory_kb": 130948, "score_of_the_acc": -0.6784, "final_rank": 8 } ]
aoj_3138_cpp
B: サイコロを転がさないで 問題文 $H$ 行 $W$ 列からなるグリッドがあります。以降、グリッド上の $i$ 行目 $j$ 列目のマスを $(i, j)$ のマスと書きます。 グリッドの各マスには、$1$ 以上 $6$ 以下の数字か、あるいは # の文字が $1$ つずつ書かれています。 ただし、$i$ と $j$ がともに偶数であるような $(i, j)$ のマスには必ず # が書かれています。 あなたは以下の図で表されるようなサイコロを $1$ つ持っています。 最初、あなたはこのサイコロを底面が $6$, 前面が $2$, 右面が $3$ となるように $(1, 1)$ のマスに置きます。 ここで、前面は $(i, j)$ の $i$ が増える方向の面を、右面は $j$ が増える方向の面を指します。 その後、サイコロが置かれているマスに辺で隣接する $4$ マスのいずれかにサイコロを転がす操作を好きな回数繰り返すことができます。 サイコロを転がす際、サイコロは転がす方向に90度回転します。 ただし、サイコロを転がす際には以下の条件を満たしている必要があります。 グリッドの外にサイコロを転がしてはならない # が書かれているマスに転がしてはならない 転がした後の状態を考えたときに、サイコロの底面に書かれた数字とそのマスに書かれた数字が一致する $(1, 1)$ のマスには必ず $6$ が書かれていることが保証されます。 サイコロを転がす操作を繰り返すことで、サイコロを $(1, 1)$ のマスから $(H, W)$ のマスに移動させることができるか判定してください。 制約 $1 \leq H, W \leq 100$ グリッドの各マスには $1$ 以上 $6$ 以下の数字、または # が書かれている $i, j$ がともに偶数となるような $(i, j)$ のマスには必ず # が書かれている $(1, 1)$ には $6$ が書かれていることが保証される 入力 入力は以下の形式で標準入力から与えられる。 $H$ $W$ $s_{11}s_{12} \ldots s_{1W}$ $s_{21}s_{22} \ldots s_{2W}$ $\vdots$ $s_{H1}s_{H2} \ldots s_{HW}$ ここで、$s_{ij}$ は $(i, j)$ のマスにかかれている数字または文字を表す。 すなわち、$s_{ij}$ は $1$ 以上 $6$ 以下の数字であるか、あるいは # である。 出力 $(1, 1)$ のマスから $(H, W)$ のマスへサイコロを転がして移動させることができるならば YES を、そうでないならば NO を 1 行で出力せよ。 入力例 1 3 3 631 4#2 516 出力例 1 YES $(1, 1), (1, 2), (1, 3), (2, 3), (3, 3)$ の順に転がすことで、到達可能です。 入力例 2 3 3 6#1 ##2 516 出力例 2 NO 入力例 3 5 5 61244 2#5#3 14641 5#5#5 63126 出力例 3 YES
[ { "submission_id": "aoj_3138_4518542", "code_snippet": "// https://onlinejudge.u-aizu.ac.jp/beta/room.html#KUPC2020Spring/problems/B\n#include <bits/stdc++.h>\nusing namespace std;\n// #define int long long\n#define REP(i, n) FOR(i, 0, n)\n#define REPR(i, n) for (int i = n - 1; i >= 0; i--)\n#define FOR(i, s, n) for (int i = (s), i##_len = (n); i < i##_len; ++i)\n#define ALL(obj) (obj).begin(), (obj).end()\n#define ALLR(obj) (obj).rbegin(), (obj).rend()\n#define DIV(a, b) ((a - 1) / b + 1)\n\nstruct Dice {\n // Left, Right, Front, Back, Down, Up\n int l, r, f, b, d, u;\n\n // y軸方向にプラス\n void RollN() {\n // ++y;\n int buff = d;\n d = b;\n b = u;\n u = f;\n f = buff;\n }\n\n // y軸方向にマイナス\n void RollS() {\n // --y;\n int buff = d;\n d = f;\n f = u;\n u = b;\n b = buff;\n }\n\n // x軸方向にプラス\n void RollE() {\n // ++x;\n int buff = d;\n d = r;\n r = u;\n u = l;\n l = buff;\n }\n\n // x軸方向にマイナス\n void RollW() {\n // --x;\n int buff = d;\n d = l;\n l = u;\n u = r;\n r = buff;\n }\n\n // 90度→方向に回転\n void RollL() {\n // ----->\n int buff = f;\n f = l;\n l = b;\n b = r;\n r = buff;\n }\n\n // 90度←方向に回転\n void RollR() {\n // <------\n int buff = f;\n f = r;\n r = b;\n b = l;\n l = buff;\n }\n};\n\nstruct dir {\n int y, x;\n char c;\n Dice dice;\n};\n\nsigned main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n int H, W;\n cin >> H >> W;\n vector<string> v(H);\n for (auto &x : v) {\n cin >> x;\n }\n auto dice = Dice();\n dice.u = 1;\n dice.f = 2;\n dice.r = 3;\n dice.l = 4;\n dice.b = 5;\n dice.d = 6;\n\n // Y座標、X座標\n queue<dir> q;\n q.push({0, 0, ' ', dice});\n int cnt = 0;\n while (!q.empty()) {\n auto t = q.front();\n q.pop();\n if (t.y == H - 1 && t.x == W - 1) {\n cout << \"YES\\n\";\n return 0;\n }\n if (++cnt > H * W * 100) {\n break;\n }\n if (t.y < H - 1 && t.c != 'n') {\n auto u = t.dice;\n u.RollS();\n if (u.d == v[t.y + 1][t.x] - '0') {\n q.push({t.y + 1, t.x, 's', u});\n }\n }\n if (t.y > 0 && t.c != 's') {\n auto u = t.dice;\n u.RollN();\n if (u.d == v[t.y - 1][t.x] - '0') {\n q.push({t.y - 1, t.x, 'n', u});\n }\n }\n if (t.x < W - 1 && t.c != 'w') {\n auto u = t.dice;\n u.RollE();\n if (u.d == v[t.y][t.x + 1] - '0') {\n q.push({t.y, t.x + 1, 'e', u});\n }\n }\n if (t.x > 0 && t.c != 'e') {\n auto u = t.dice;\n u.RollW();\n if (u.d == v[t.y][t.x - 1] - '0') {\n q.push({t.y, t.x - 1, 'w', u});\n }\n }\n }\n cout << \"NO\\n\";\n\n return 0;\n}", "accuracy": 0.4634146341463415, "time_ms": 20, "memory_kb": 28912, "score_of_the_acc": -0.1888, "final_rank": 7 }, { "submission_id": "aoj_3138_4361744", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define all(x) (x).begin(),(x).end()\nconst int mod=1000000007,MAX=105,INF=1<<30;\n\nstruct data{\n int h;\n int w;\n int d;\n int f;\n int r;\n};\n\nbool can[MAX][MAX][7][7][7];\nvector<data> G[MAX][MAX][7][7][7];\n\nint S[MAX][MAX];\nint H,W;\n\nvoid DFS(data u,data p){\n for(data to:G[u.h][u.w][u.d][u.f][u.r]){\n if(to.h==p.h&&to.w==p.w&&to.d==p.d&&to.f==p.f&&to.r==p.r) continue;\n \n if(to.h<0||to.h>=H||to.w<0||to.w>=W) continue;\n \n if(to.d!=S[to.h][to.w]) continue;\n \n if(can[to.h][to.w][to.d][to.f][to.r]) continue;\n \n can[to.h][to.w][to.d][to.f][to.r]=1;\n DFS(to,u);\n }\n}\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n cin>>H>>W;\n for(int i=0;i<H;i++){\n for(int j=0;j<W;j++){\n char c;cin>>c;\n if(c=='#') S[i][j]=0;\n else S[i][j]=c-'0';\n }\n }\n \n can[0][0][6][2][3]=1;\n \n for(int i=0;i<H;i++){\n for(int j=0;j<W;j++){\n for(int d=1;d<=6;d++){\n for(int f=1;f<=6;f++){\n for(int r=1;r<=6;r++){\n if(d==f) continue;\n if(d==r) continue;\n if(f==r) continue;\n \n G[i][j][d][f][r].push_back({i+1,j,f,7-d,r});\n G[i][j][d][f][r].push_back({i,j+1,r,f,7-d});\n G[i][j][d][f][r].push_back({i-1,j,7-f,d,r});\n G[i][j][d][f][r].push_back({i,j-1,7-r,f,d});\n }\n }\n }\n }\n }\n \n DFS({0,0,6,2,3},{-1,-1,-1,-1,-1});\n \n bool ok=false;\n \n for(int f=1;f<=6;f++){\n for(int r=1;r<=6;r++){\n if(can[H-1][W-1][S[H-1][W-1]][f][r]) ok=true;\n }\n }\n \n if(ok) cout<<\"YES\"<<endl;\n else cout<<\"NO\"<<endl;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 206220, "score_of_the_acc": -2, "final_rank": 6 }, { "submission_id": "aoj_3138_4278352", "code_snippet": "#include <iostream>\n#include <cmath>\n#include <numeric>\n#include <algorithm>\n#include <deque>\n#include <vector>\n#include <unordered_map>\n#include <unordered_set>\n#include <iomanip>\n#include <map>\n#include <stack>\n#include <queue>\n#include <functional>\n#include <climits>\n#include <bitset>\n#include <random>\n#include <tuple>\n#include <initializer_list>\n#include <fstream>\nstruct Dice {\n\tint top, front, right_face;\n\tint bottom_face() const { return 7 - top; }\n\tDice right() const {\n\t\treturn Dice{ 7 - right_face, front, top };\n\t}\n\tDice left() const {\n\t\treturn Dice{ right_face, front, 7 - top };\n\t}\n\tDice up() const {\n\t\treturn Dice{ front, 7 - top, right_face };\n\t}\n\tDice down() const {\n\t\treturn Dice{ 7 - front, top, right_face };\n\t}\n};\nstruct Coordinate {\n\tint i, j;\n\tCoordinate right() const {\n\t\treturn Coordinate{ i, j + 1 };\n\t}\n\tCoordinate left() const {\n\t\treturn Coordinate{ i, j - 1 };\n\t}\n\tCoordinate up() const {\n\t\treturn Coordinate{ i - 1, j };\n\t}\n\tCoordinate down() const {\n\t\treturn Coordinate{ i + 1, j };\n\t}\n};\nstd::vector<std::pair<Coordinate, Dice>> neighbors(const std::pair<Coordinate, Dice> pair) {\n\treturn std::vector<std::pair<Coordinate, Dice>> {std::make_pair(pair.first.right(), pair.second.right()), std::make_pair(pair.first.left(), pair.second.left()), std::make_pair(pair.first.up(), pair.second.up()), std::make_pair(pair.first.down(), pair.second.down())};\n}\nint main() {\n\tint height, width; std::cin >> height >> width;\n\tstd::vector<std::string> state(height); for (auto& line : state) std::cin >> line;\n\tstd::vector<std::vector<std::vector<std::vector<std::vector<bool>>>>> memo(height, std::vector<std::vector<std::vector<std::vector<bool>>>>(width, std::vector<std::vector<std::vector<bool>>>(6, std::vector<std::vector<bool>>(6, std::vector<bool>(6, false)))));\n\tstd::stack<std::pair<Coordinate, Dice>> stack;\n\tmemo[0][0][0][1][2] = true;\n\tstack.emplace(Coordinate{ 0, 0 }, Dice{ 1, 2, 3 });\n\twhile (!stack.empty()) {\n\t\tconst auto top = stack.top(); stack.pop();\n\t\tfor (const auto next : neighbors(top)) {\n\t\t\tif (0 > next.first.i || 0 > next.first.j || height <= next.first.i || width <= next.first.j) continue;\n\t\t\tif (memo[next.first.i][next.first.j][next.second.top - 1][next.second.front - 1][next.second.right_face - 1]) continue;\n\t\t\tif (state[next.first.i][next.first.j] - '0' == next.second.bottom_face()) {\n\t\t\t\tmemo[next.first.i][next.first.j][next.second.top - 1][next.second.front - 1][next.second.right_face - 1] = true;\n\t\t\t\tstack.push(next);\n\t\t\t}\n\t\t}\n\t}\n\tbool can_reach = false;\n\tfor (auto t = 0; t < 6; ++t) for (auto f = 0; f < 6; ++f) for (auto r = 0; r < 6; ++r) if (memo.back().back()[t][f][r]) can_reach = true;\n\tstd::cout << (can_reach ? \"YES\" : \"NO\") << std::endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 31004, "score_of_the_acc": -0.1991, "final_rank": 3 }, { "submission_id": "aoj_3138_4278252", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <complex>\n#include <deque>\n#include <exception>\n#include <fstream>\n#include <functional>\n#include <iomanip>\n#include <ios>\n#include <iosfwd>\n#include <iostream>\n#include <istream>\n#include <iterator>\n#include <limits>\n#include <list>\n#include <locale>\n#include <map>\n#include <memory>\n#include <new>\n#include <numeric>\n#include <ostream>\n#include <queue>\n#include <set>\n#include <sstream>\n#include <stack>\n#include <stdexcept>\n#include <streambuf>\n#include <string>\n#include <typeinfo>\n#include <utility>\n#include <valarray>\n#include <vector>\n#include <climits>\n#include <cstring>\n#include <cassert>\n\n#define rep(i, m, n) for(int i=int(m);i<int(n);i++)\n#define all(c) begin(c),end(c)\n\ntemplate<typename T1, typename T2>\ninline void chmin(T1 &a, T2 b) { if (a > b) a = b; }\n\ntemplate<typename T1, typename T2>\ninline void chmax(T1 &a, T2 b) { if (a < b) a = b; }\n\ntypedef long long int ll;\nusing ll = long long int;\nusing ull = long long unsigned int;\nusing Int = long long int;\nusing Double = long double;\nusing namespace std;\n#define INF (1 << 30) - 1\n#define INFl (ll)5e15\n#define DEBUG 0\n#define dump(x) cerr << #x << \" = \" << (x) << endl\n#define MOD 1000000007\n\n\nstruct BFS01 {\n struct edge {\n ll to, cost;\n };\n typedef pair<ll, ll> P;//firstは最短距離、secondは頂点の番号\n\n int V;//超点数\n vector<vector<edge> > G;//グラフ,G[i]はiから出る辺の集合,G[i][j]はiから出る辺のj番目の辺\n vector<ll> d; //最短距離\n\n BFS01(int N) {\n V = N;\n G.resize(N);\n d = vector<ll>(N);\n };\n\n void addEdge(int from, int to, int cost) {\n edge e;\n e.to = to;\n e.cost = cost;\n G[from].push_back(e);\n }\n\n void calc(int s) {\n// priority_queue<P,vector<P>,greater<P> > que;\n deque<P> que;\n fill(d.begin(), d.end(), INFl);\n d[s] = 0;\n que.push_back(P(0, s));\n\n while (!que.empty()) {\n P p = que.front();\n que.pop_front();\n ll v = p.second;\n if (d[v] < p.first) continue;\n for (int i = 0; i < G[v].size(); i++) {\n edge e = G[v][i];\n if (d[e.to] > d[v] + e.cost && !(d[e.to] == INFl && d[v] == INFl)) {\n d[e.to] = d[v] + e.cost;\n if (e.cost == 0) {\n que.push_front(P(d[e.to], e.to));\n } else {\n que.push_back(P(d[e.to], e.to));\n }\n }\n }\n }\n\n }\n};\n\n\n//edit\nconst int TOP = 0;\nconst int FRONT = 1;\nconst int RIGHT = 2;\nconst int LEFT = 3;\nconst int BACK = 4;\nconst int BOTTOM = 5;\nvector<vector<Int>> rot(720, vector<Int>(6));\nvector<vector<Int>> dices;\n\nvector<Int> hash_d(Int hash) {\n vector<Int> rest = {1, 2, 3, 4, 5, 6};\n vector<Int> ret;\n Int base = 120;\n\n for (int i = 0; i < 6; ++i) {\n// ret.push_back(1 + hash / base);\n ret.push_back(rest[hash / base]);\n rest.erase(rest.begin() + hash / base);\n\n\n hash %= base;\n if ((5 - i) > 0) {\n base /= 5 - i;\n }\n }\n\n return ret;\n}\n\nInt fact(Int n) {\n if (n > 0) return fact(n - 1) * n;\n return 1;\n}\n\nInt d_hash(vector<Int> d) {\n if (d.size() == 1) {\n return 0;\n }\n //今ある数字が何番目に小さいか\n Int cnt = 0;\n Int base = fact(static_cast<Int>(d.size()) - 1);\n\n for (auto e : d) {\n if (e < d[0]) cnt++;\n }\n Int ret = cnt * base;\n d.erase(d.begin());\n ret += d_hash(d);\n\n return ret;\n// Int ret = 0;\n// Int base = 1;\n// for (int i = 0; i < 6; ++i) {\n// Int tmp = base * (d[5 - i] - 1);\n// ret += tmp;\n//\n// base *= (i + 1);\n// }\n//\n// return ret;\n}\n\nInt rot_any(Int hash, vector<Int> dir) {\n vector<Int> dice = hash_d(hash);\n vector<Int> val;\n for (auto e : dir) val.push_back(dice[e]);\n rotate(val.begin(), val.begin() + 1, val.end());\n vector<Int> new_dice = dice;\n\n// for (int i = 0, ii = 0; i < 6; ++i) {\n// if (ii < 4 && i == dir[ii]) {\n// new_dice[i] = val[dir[ii]];\n// ii++;\n// }\n// }\n\n for (int i = 0; i < 4; ++i) {\n int j = (i + 1) % 4;\n\n new_dice[dir[i]] = dice[dir[j]];\n }\n\n return d_hash(new_dice);\n}\n\nInt rot_R(Int hash) {\n// vector<Int> dice = hash_d(hash);\n vector<Int> dir = {TOP, LEFT, BOTTOM, RIGHT};\n// vector<Int> val;\n// for (auto e : idx) val.push_back(dice[e]);\n// rotate(val.begin(), val.begin() + 1, val.end());\n// vector<Int> new_dice = dice;\n//\n// for (int i = 0, ii = 0; i < 6; ++i) {\n// if (ii < 4 && i == idx[ii]) {\n// new_dice[i] = idx[ii];\n// ii++;\n// }\n// }\n//\n// return d_hash(new_dice);\n\n return rot_any(hash, dir);\n}\n\nInt rot_L(Int hash) {\n vector<Int> dir = {TOP, RIGHT, BOTTOM, LEFT};\n return rot_any(hash, dir);\n}\n\nInt rot_F(Int hash) {\n vector<Int> dir = {TOP, BACK, BOTTOM, FRONT};\n return rot_any(hash, dir);\n}\n\nInt rot_B(Int hash) {\n vector<Int> dir = {TOP, FRONT, BOTTOM, BACK};\n return rot_any(hash, dir);\n}\n\nvoid print_vec(vector<Int> v) {\n for (auto e : v) cout << e << \" \";\n cout << endl;\n}\n\nclass Solve {\npublic:\n void init() {\n vector<Int> dice = {1, 2, 3, 4, 5, 6};\n do {\n Int hash = d_hash(dice);\n rot[hash][RIGHT] = rot_R(hash);\n rot[hash][LEFT] = rot_L(hash);\n rot[hash][FRONT] = rot_F(hash);\n rot[hash][BACK] = rot_B(hash);\n dices.push_back(dice);\n } while (next_permutation(all(dice)));\n\n\n }\n\n void solve() {\n init();\n\n Int H, W;\n cin >> H >> W;\n\n vector<string> S(H);\n for (int i = 0; i < H; ++i) cin >> S[i];\n\n auto get_cell = [&](Int hash, Int h, Int w) -> Int {\n return w + (W * h) + (W * H * hash);\n };\n\n auto i_get_cell = [&](Int tapu) {\n Int w = tapu % W;\n Int h = ((tapu - w) / W) % H;\n Int hash = (tapu - w - W * h) / (W * H);\n return make_tuple(hash, h, w);\n };\n\n\n// BFS01 neri(W * H * 720);\n queue<Int> que;\n vector<vector<vector<bool>>> tapi(720, vector<vector<bool>>(H, vector<bool>(W, false)));\n tapi[0][0][0] = true;\n que.push(get_cell(0, 0, 0));\n\n while (!que.empty()) {\n Int val = que.front();\n que.pop();\n Int h, w, hash;\n tie(hash, h, w) = i_get_cell(val);\n\n vector<Int> dh = {0, 1, 0, -1};\n vector<Int> dw = {1, 0, -1, 0};\n for (int k = 0; k < 4; ++k) {\n Int nh = h + dh[k];\n Int nw = w + dw[k];\n if (!(nh >= 0 && nh < H && nw >= 0 && nw < W)) continue;\n\n vector<Int> next_dice;\n if (k == 0) {\n //右へ転がす\n// next_dice = hash_d(rot_R(hash));\n// next_dice = hash_d(rot[hash][RIGHT]);\n next_dice = dices[rot[hash][RIGHT]];\n } else if (k == 1) {\n// next_dice = hash_d(rot[hash][FRONT]);\n next_dice = dices[rot[hash][FRONT]];\n } else if (k == 2) {\n// next_dice = hash_d(rot[hash][LEFT]);\n next_dice = dices[rot[hash][LEFT]];\n } else {\n// next_dice = hash_d(rot[hash][BACK]);\n next_dice = dices[rot[hash][BACK]];\n }\n\n Int next_hash = d_hash(next_dice);\n\n //底面が条件に合わなければ飛ばす\n if (next_dice[BOTTOM] + '0' != S[h + dh[k]][w + dw[k]]) {\n continue;\n }\n\n// neri[get_cell(h,w,hash)][]\n// neri.addEdge(get_cell(hash, h, w), get_cell(next_hash, nh, nw), 1);\n if (!tapi[next_hash][nh][nw]) {\n tapi[next_hash][nh][nw] = true;\n que.push(get_cell(next_hash, nh, nw));\n }\n }\n }\n\n// for (int h = 0; h < H; ++h) {\n// for (int w = 0; w < W; ++w) {\n// for (int hash = 0; hash < 720; ++hash) {\n// //底面がS[h][w]となるものをすべて転がす\n//// if (h == 1 && w == 0 && hash == 489) {\n//// int ei = 13 + 33;\n//// }\n//\n// vector<Int> dice = hash_d(hash);\n//\n// //底面が条件に合わなければ飛ばす\n// if (dice[BOTTOM] + '0' != S[h][w]) continue;\n//\n// vector<Int> dh = {0, 1, 0, -1};\n// vector<Int> dw = {1, 0, -1, 0};\n//\n// for (int k = 0; k < 4; ++k) {\n// Int nh = h + dh[k];\n// Int nw = w + dw[k];\n// if (!(nh >= 0 && nh < H && nw >= 0 && nw < W)) continue;\n//\n// vector<Int> next_dice;\n// if (k == 0) {\n// //右へ転がす\n//// next_dice = hash_d(rot_R(hash));\n//// next_dice = hash_d(rot[hash][RIGHT]);\n// next_dice = dices[rot[hash][RIGHT]];\n// } else if (k == 1) {\n//// next_dice = hash_d(rot[hash][FRONT]);\n// next_dice = dices[rot[hash][FRONT]];\n// } else if (k == 2) {\n//// next_dice = hash_d(rot[hash][LEFT]);\n// next_dice = dices[rot[hash][LEFT]];\n// } else {\n//// next_dice = hash_d(rot[hash][BACK]);\n// next_dice = dices[rot[hash][BACK]];\n// }\n//\n// Int next_hash = d_hash(next_dice);\n//\n// //底面が条件に合わなければ飛ばす\n// if (next_dice[BOTTOM] + '0' != S[h + dh[k]][w + dw[k]]) {\n// continue;\n// }\n//\n//// neri[get_cell(h,w,hash)][]\n// neri.addEdge(get_cell(hash, h, w), get_cell(next_hash, nh, nw), 1);\n// }\n// }\n// }\n// }\n\n// neri.calc(get_cell(0, 0, 0));\n\n// if (!true) {\n// while (true) {\n// Int tmp = 0;\n// cin >> tmp;\n// if (tmp == -1) break;\n//\n// for (auto e : neri.G[tmp]) {\n// Int tapu = e.to;\n// Int w = tapu % W;\n// Int h = ((tapu - w) / W) % H;\n// Int hash = (tapu - w - W * h) / (W * H);\n// cout << e.to << endl;\n// cout << hash << \" \" << w << \" \" << h << endl;\n// }\n// }\n// }\n\n for (int i = 0; i < 720; ++i) {\n// if (neri.d[get_cell(i, H - 1, W - 1)] != INFl) {\n if (tapi[i][H - 1][W - 1]) {\n\n cout << \"YES\" << endl;\n return;\n }\n }\n\n\n cout << \"NO\" << endl;\n }\n\n};\n\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n\n Solve().solve();\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 8432, "score_of_the_acc": -0.0253, "final_rank": 1 }, { "submission_id": "aoj_3138_4277920", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing lint = long long;\nconst lint inf = 1LL << 60;\nconst lint mod = 1000000007;\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int h, w;\n cin >> h >> w;\n vector<string> s(h);\n for (int i = 0; i < h; ++i) {\n cin >> s[i];\n }\n vector<vector<vector<vector<vector<int>>>>> visited(\n h, vector<vector<vector<vector<int>>>>(\n w, vector<vector<vector<int>>>(6, vector<vector<int>>(6, vector<int>(6, 0))))); // bottom, right,\n struct state {\n int i, j, k, l, m;\n };\n queue<state> q;\n q.push({0, 0, 5, 2, 1});\n visited[0][0][5][2][1] = 1;\n while (!q.empty()) {\n auto c = q.front();\n q.pop();\n if (c.i == h - 1 && c.j == w - 1) {\n cout << \"YES\"\n << \"\\n\";\n return 0;\n }\n // up\n if (c.i != 0) {\n int nk = 5 - c.m;\n int nl = c.l;\n int nm = c.k;\n state nxt = {c.i - 1, c.j, nk, nl, nm};\n if (s[c.i - 1][c.j] - '1' == nk)\n if (visited[nxt.i][nxt.j][nxt.k][nxt.l][nxt.m] == 0) {\n visited[nxt.i][nxt.j][nxt.k][nxt.l][nxt.m] = 1;\n q.push(nxt);\n }\n }\n // right\n if (c.j != w - 1) {\n int nk = c.l;\n int nl = 5 - c.k;\n int nm = c.m;\n state nxt = {c.i, c.j + 1, nk, nl, nm};\n if (s[c.i][c.j + 1] - '1' == nk)\n if (visited[nxt.i][nxt.j][nxt.k][nxt.l][nxt.m] == 0) {\n visited[nxt.i][nxt.j][nxt.k][nxt.l][nxt.m] = 1;\n q.push(nxt);\n }\n }\n // left\n if (c.j != 0) {\n int nk = 5 - c.l;\n int nl = c.k;\n int nm = c.m;\n state nxt = {c.i, c.j - 1, nk, nl, nm};\n if (s[c.i][c.j - 1] - '1' == nk)\n if (visited[nxt.i][nxt.j][nxt.k][nxt.l][nxt.m] == 0) {\n visited[nxt.i][nxt.j][nxt.k][nxt.l][nxt.m] = 1;\n q.push(nxt);\n }\n }\n // down\n if (c.i != h - 1) {\n int nk = c.m;\n int nl = c.l;\n int nm = 5 - c.k;\n state nxt = {c.i + 1, c.j, nk, nl, nm};\n if (s[c.i + 1][c.j] - '1' == nk)\n if (visited[nxt.i][nxt.j][nxt.k][nxt.l][nxt.m] == 0) {\n visited[nxt.i][nxt.j][nxt.k][nxt.l][nxt.m] = 1;\n q.push(nxt);\n }\n }\n }\n cout << \"NO\"\n << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 25432, "score_of_the_acc": -0.1091, "final_rank": 2 }, { "submission_id": "aoj_3138_4277661", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing lint = long long;\nconst lint inf = 1LL << 60;\nconst lint mod = 1000000007;\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int h, w;\n cin >> h >> w;\n vector<string> s(h);\n for (int i = 0; i < h; ++i) {\n cin >> s[i];\n }\n vector<vector<vector<vector<vector<int>>>>> dp(\n h, vector<vector<vector<vector<int>>>>(\n w, vector<vector<vector<int>>>(6, vector<vector<int>>(6, vector<int>(6, -1))))); // bottom, right, front\n dp[0][0][5][2][1] = 1;\n\n function<int(int, int, int, int, int, int)> dfs = [&](int i, int j, int k, int l, int m, int from) {\n if (s[i][j] == '#' || s[i][j] - '1' != k)\n return dp[i][j][k][l][m] = 0;\n if (dp[i][j][k][l][m] != -1)\n return dp[i][j][k][l][m];\n bool ok = 0;\n // up\n if (i != 0 && from != 3) {\n int nk = 5 - m;\n int nl = l;\n int nm = k;\n ok |= dfs(i - 1, j, nk, nl, nm, 0);\n }\n // right\n if (j != w - 1 && from != 2) {\n int nk = l;\n int nl = 5 - k;\n int nm = m;\n ok |= dfs(i, j + 1, nk, nl, nm, 1);\n }\n // left\n if (j != 0 && from != 1) {\n int nk = 5 - l;\n int nl = k;\n int nm = m;\n ok |= dfs(i, j - 1, nk, nl, nm, 2);\n }\n // down\n if (i != h - 1 && from != 0) {\n int nk = m;\n int nl = l;\n int nm = 5 - k;\n ok |= dfs(i + 1, j, nk, nl, nm, 3);\n }\n return dp[i][j][k][l][m] = ok;\n };\n bool anyok = 0;\n for (int i = 0; i < 6; ++i) {\n for (int j = 0; j < 6; ++j) {\n for (int k = 0; k < 6; ++k) {\n if (i + j == 5 || j + k == 5 || k + i == 5)\n continue;\n anyok |= dfs(h - 1, w - 1, i, j, k, -1);\n }\n }\n }\n if (anyok)\n cout << \"YES\"\n << \"\\n\";\n else\n cout << \"NO\"\n << \"\\n\";\n return 0;\n}", "accuracy": 0.4146341463414634, "time_ms": 10, "memory_kb": 25368, "score_of_the_acc": -0.1088, "final_rank": 8 }, { "submission_id": "aoj_3138_4277589", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for (int i = 0; i < (int)(n); i++)\n#define rrep(i, n) for (int i = (int)(n - 1); i >= 0; i--)\n#define all(x) (x).begin(), (x).end()\n#define sz(x) int(x.size())\n#define get_unique(x) x.erase(unique(all(x)), x.end());\ntypedef long long ll;\ntypedef complex<double> Complex;\nconst int INF = 1e9;\nconst ll MOD = 1e9 + 7;\nconst ll LINF = 1e18;\ntemplate <class T>\nbool chmax(T& a, const T& b) {\n if (a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T>\nbool chmin(T& a, const T& b) {\n if (b < a) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T>\nvector<T> make_vec(size_t a) {\n return vector<T>(a);\n}\ntemplate <class T, class... Ts>\nauto make_vec(size_t a, Ts... ts) {\n return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));\n}\nstruct DICE {\n int L, R, U, D, B, F;\n void right() {\n int x;\n x = R;\n R = U;\n U = L;\n L = D;\n D = x;\n }\n void left() {\n int x;\n x = L;\n L = U;\n U = R;\n R = D;\n D = x;\n }\n void down() {\n int x;\n x = F;\n F = U;\n U = B;\n B = D;\n D = x;\n }\n void up() {\n int x;\n x = B;\n B = U;\n U = F;\n F = D;\n D = x;\n }\n};\nint main() {\n int h, w;\n cin >> h >> w;\n auto v = make_vec<int>(h, w);\n rep(i, h) rep(j, w) {\n char c;\n cin >> c;\n if (c == '#')\n v[i][j] = -1;\n else\n v[i][j] = c - '0';\n }\n\n auto d = make_vec<DICE>(h, w);\n auto dp = make_vec<int>(h, w);\n\n d[0][0] = {4, 3, 1, 6, 5, 2};\n dp[0][0] = 1;\n rep(_, 1000) {\n rep(i, h) {\n rep(j, w) {\n if (j + 1 < w && v[i][j + 1] != -1) {\n d[i][j].right();\n if (d[i][j].D == v[i][j + 1]) {\n d[i][j + 1] = d[i][j];\n dp[i][j + 1] |= dp[i][j];\n }\n d[i][j].left();\n }\n if (i + 1 < h && v[i + 1][j] != -1) {\n d[i][j].down();\n if (d[i][j].D == v[i + 1][j]) {\n d[i + 1][j] = d[i][j];\n dp[i + 1][j] |= dp[i][j];\n }\n d[i][j].up();\n }\n if (j - 1 >= 0 && v[i][j - 1] != -1 && dp[i][j] == 1 &&\n dp[i][j - 1] == 0) {\n d[i][j].left();\n if (d[i][j].D == v[i][j - 1]) {\n d[i][j - 1] = d[i][j];\n dp[i][j - 1] |= dp[i][j];\n }\n d[i][j].right();\n }\n if (i - 1 >= 0 && v[i - 1][j] != -1 && dp[i][j] == 1 &&\n dp[i - 1][j] == 0) {\n d[i][j].up();\n if (d[i][j].D == v[i - 1][j]) {\n d[i - 1][j] = d[i][j];\n dp[i - 1][j] |= dp[i][j];\n }\n d[i][j].down();\n }\n }\n }\n }\n /*\n cout << endl;\n rep(i, h) {\n rep(j, w) cout << d[i][j].D;\n cout << endl;\n }\n */\n cout << (dp[h - 1][w - 1] ? \"YES\" : \"NO\") << endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 3288, "score_of_the_acc": -0.75, "final_rank": 4 }, { "submission_id": "aoj_3138_4277520", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing lint = long long;\nconst lint inf = 1LL << 60;\nconst lint mod = 1000000007;\n\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int h, w;\n cin >> h >> w;\n vector<string> s(h);\n for (int i = 0; i < h; ++i) {\n cin >> s[i];\n }\n vector<vector<vector<vector<vector<int>>>>> dp(\n h, vector<vector<vector<vector<int>>>>(\n w, vector<vector<vector<int>>>(6, vector<vector<int>>(6, vector<int>(6, -1))))); // bottom, right, front\n dp[0][0][5][2][1] = 1;\n\n function<int(int, int, int, int, int, int)> dfs = [&](int i, int j, int k, int l, int m, int from) {\n if (s[i][j] == '#' || s[i][j] - '1' != k)\n return dp[i][j][k][l][m] = 0;\n if (dp[i][j][k][l][m] != -1)\n return dp[i][j][k][l][m];\n bool ok = 0;\n // up\n if (i != 0 && from != 3) {\n int nk = 5 - m;\n int nl = l;\n int nm = k;\n ok |= dfs(i - 1, j, nk, nl, nm, 0);\n }\n // right\n if (j != w - 1 && from != 2) {\n int nk = l;\n int nl = 5 - k;\n int nm = m;\n ok |= dfs(i, j + 1, nk, nl, nm, 1);\n }\n // left\n if (j != 0 && from != 1) {\n int nk = 5 - l;\n int nl = k;\n int nm = m;\n ok |= dfs(i, j - 1, nk, nl, nm, 2);\n }\n // down\n if (i != h - 1 && from != 0) {\n int nk = m;\n int nl = l;\n int nm = 5 - k;\n ok |= dfs(i + 1, j, nk, nl, nm, 3);\n }\n return dp[i][j][k][l][m] = ok;\n };\n bool anyok = 0;\n for (int i = 0; i < 6; ++i) {\n for (int j = 0; j < 6; ++j) {\n for (int k = 0; k < 6; ++k) {\n anyok |= dfs(h - 1, w - 1, i, j, k, -1);\n }\n }\n }\n if (anyok)\n cout << \"YES\"\n << \"\\n\";\n else\n cout << \"NO\"\n << \"\\n\";\n return 0;\n}", "accuracy": 0.4146341463414634, "time_ms": 10, "memory_kb": 25368, "score_of_the_acc": -0.1088, "final_rank": 8 }, { "submission_id": "aoj_3138_4276988", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define all(x) (x).begin(),(x).end()\nconst int mod=1000000007,MAX=105,INF=1<<30;\n\nstruct data{\n int h;\n int w;\n int d;\n int f;\n int r;\n};\n\nbool can[MAX][MAX][7][7][7];\nvector<data> G[MAX][MAX][7][7][7];\n\nint S[MAX][MAX];\nint H,W;\n\nvoid DFS(data u,data p){\n for(data to:G[u.h][u.w][u.d][u.f][u.r]){\n if(to.h==p.h&&to.w==p.w&&to.d==p.d&&to.f==p.f&&to.r==p.r) continue;\n \n if(to.h<0||to.h>=H||to.w<0||to.w>=W) continue;\n \n if(to.d!=S[to.h][to.w]) continue;\n \n if(can[to.h][to.w][to.d][to.f][to.r]) continue;\n \n can[to.h][to.w][to.d][to.f][to.r]=1;\n DFS(to,u);\n }\n}\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n cin>>H>>W;\n for(int i=0;i<H;i++){\n for(int j=0;j<W;j++){\n char c;cin>>c;\n if(c=='#') S[i][j]=0;\n else S[i][j]=c-'0';\n }\n }\n \n can[0][0][6][2][3]=1;\n \n for(int i=0;i<H;i++){\n for(int j=0;j<W;j++){\n for(int d=1;d<=6;d++){\n for(int f=1;f<=6;f++){\n for(int r=1;r<=6;r++){\n if(d==f) continue;\n if(d==r) continue;\n if(f==r) continue;\n \n G[i][j][d][f][r].push_back({i+1,j,f,7-d,r});\n G[i][j][d][f][r].push_back({i,j+1,r,f,7-d});\n G[i][j][d][f][r].push_back({i-1,j,7-f,d,r});\n G[i][j][d][f][r].push_back({i,j-1,7-r,f,d});\n }\n }\n }\n }\n }\n \n DFS({0,0,6,2,3},{-1,-1,-1,-1,-1});\n \n bool ok=false;\n \n for(int f=1;f<=6;f++){\n for(int r=1;r<=6;r++){\n if(can[H-1][W-1][S[H-1][W-1]][f][r]) ok=true;\n }\n }\n \n if(ok) cout<<\"YES\"<<endl;\n else cout<<\"NO\"<<endl;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 206176, "score_of_the_acc": -1.9998, "final_rank": 5 }, { "submission_id": "aoj_3138_4276948", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define all(x) (x).begin(),(x).end()\nconst int mod=1000000007,MAX=105,INF=1<<30;\n\nstruct data{\n int h;\n int w;\n int d;\n int f;\n int r;\n};\n\nbool can[MAX][MAX][7][7][7];\nvector<data> G[MAX][MAX][7][7][7];\n\nint S[MAX][MAX];\nint H,W;\n\nvoid DFS(data u,data p){\n for(data to:G[u.h][u.w][u.d][u.f][u.r]){\n if(to.h==p.h&&to.w==p.w&&to.d==p.d&&to.f==p.f&&to.r==p.r) continue;\n \n if(to.h<0||to.h>=H||to.w<0||to.w>=W) continue;\n \n if(to.d!=S[to.h][to.w]) continue;\n \n can[to.h][to.w][to.d][to.f][to.r]=1;\n DFS(to,u);\n }\n}\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n cin>>H>>W;\n for(int i=0;i<H;i++){\n for(int j=0;j<W;j++){\n char c;cin>>c;\n if(c=='#') S[i][j]=0;\n else S[i][j]=c-'0';\n }\n }\n \n can[0][0][6][2][3]=1;\n \n for(int i=0;i<H;i++){\n for(int j=0;j<W;j++){\n for(int d=1;d<=6;d++){\n for(int f=1;f<=6;f++){\n for(int r=1;r<=6;r++){\n if(d==f) continue;\n if(d==r) continue;\n if(f==r) continue;\n \n G[i][j][d][f][r].push_back({i+1,j,f,7-d,r});\n G[i][j][d][f][r].push_back({i,j+1,r,f,7-d});\n G[i][j][d][f][r].push_back({i-1,j,7-f,d,r});\n G[i][j][d][f][r].push_back({i,j-1,7-r,f,d});\n }\n }\n }\n }\n }\n \n DFS({0,0,6,2,3},{-1,-1,-1,-1,-1});\n \n bool ok=false;\n \n for(int f=1;f<=6;f++){\n for(int r=1;r<=6;r++){\n if(can[H-1][W-1][S[H-1][W-1]][f][r]) ok=true;\n }\n }\n \n if(ok) cout<<\"YES\"<<endl;\n else cout<<\"NO\"<<endl;\n}", "accuracy": 0.1951219512195122, "time_ms": 160, "memory_kb": 199864, "score_of_the_acc": -1.9062, "final_rank": 10 } ]
aoj_3143_cpp
G: 一番遠い町 問題文 $N$ 個の町と $N-1$ 個の道があります。 すべての町と道にはそれぞれ $1$ から $N$, $1$ から $N-1$ の番号がついています。 道 $i$ は町 $a_i$ と町 $b_i$ を距離 $d_i$ で双方向につないでいます。 最初はすべての道が通行可能な状態であり、どの町からもいくつかの道を通ることですべての町に行くことができます。 すいばかくんは最初、町 $1$ にいます。 $Q$ 個のクエリが与えられるので順番に処理してください。クエリは $3$ 種類あり、以下の形式で与えられます。 クエリ $1$ : 1 x ― すいばかくんが町 $x$ に移動する。ただし、このクエリ時点で、すいばかくんがいる町と町 $x$ は通行可能な $1$ つの道で直接つながれていることが保証される。 クエリ $2$ : 2 y ― 道 $y$ が封鎖される。ただし、このクエリ時点で、道 $y$ は通行可能であることが保証される。 クエリ $3$ : 3 z ― 道 $z$ が通行可能になる。ただし、このクエリ時点で、道 $z$ は封鎖されていることが保証される。 さらに、各クエリを行った直後に、すいばかくんがその時点で通行可能な道のみを使って到達可能な町のうち、すいばかくんがいる町から一番遠い町の番号を昇順ですべて出力してください。 制約 $1 \leq N \leq 2 \times 10^5$ $1 \leq a_i, b_i \leq N$, $a_i \neq b_i$ $1 \leq d_i \leq 10^6$ $1 \leq Q \leq 2 \times 10^5$ クエリ $1$ において、$1 \leq x \leq N$ を満たす。また、このクエリ時点で、すいばかくんがいる町と町 $x$ は通行可能な $1$ つの道で直接つながれている。 クエリ $2$ において、$1 \leq y \leq N-1$ を満たす。また、このクエリ時点で、道 $y$ は通行可能である。 クエリ $3$ において、$1 \leq z \leq N-1$ を満たす。また、このクエリ時点で、道 $z$ は封鎖されている。 $i$ 番目のクエリで出力すべき町の個数を $c_i$ とするとき、$\sum_{i=1}^{Q}c_i \leq 4 \times 10^5$ を満たす。 入力はすべて整数である。 入力 以下の形式で標準入力から与えられる。 $N$ $a_1$ $b_1$ $d_1$ $a_2$ $b_2$ $d_2$ $:$ $a_{N-1}$ $b_{N-1}$ $d_{N-1}$ $Q$ $Query_1$ $Query_2$ $:$ $Query_Q$ $Query_i$ は問題文にある $3$ 種類のクエリのいずれかの形式で与えらえる。 出力 $Q$ 行出力せよ。 $i$ 行目には、$i$ 番目クエリ後の出力すべき町の番号が昇順で $v_1$, $v_2$, $...$, $v_c$ の $c$ 個であるとき、以下のように空白区切りで出力せよ。 $c$ $v_1$ $v_2$ $...$ $v_c$ 入力例 1 6 2 4 1 1 2 1 4 6 1 2 3 1 4 5 1 5 2 5 2 3 1 2 3 5 1 4 出力例 1 1 6 2 3 4 3 1 3 4 1 5 2 1 3 $1$ つ目のクエリで、道 $5$ が封鎖されます。この直後に、すいばかくんが到達可能な町は $1$, $2$, $3$, $4$, $6$ であり、すいばかくんがいる町 $1$ からの距離はそれぞれ $0$, $1$, $2$, $2$, $3$ なので、答えは町 $6$ になります。 $2$ つ目のクエリで、道 $3$ が封鎖されます。この直後に、すいばかくんが到達可能な町は $1$, $2$, $3$, $4$ であり、すいばかくんがいる町 $1$ からの距離はそれぞれ $0$, $1$, $2$, $2$ なので、答えは町 $3$, $4$ になります。 $3$ つ目のクエリで、すいばかくんは町 $2$ に移動します。この直後に、すいばかくんが到達可能な町は $1$, $2$, $3$, $4$ であり、すいばかくんがいる町 $2$ からの距離はそれぞれ $1$, $0$, $1$, $1$ なので、答えは町 $1$, $3$, $4$ になります。 $4$ つ目のクエリで、道 $5$ が通行可能になります。この直後に、すいばかくんが到達可能な町は $1$, $2$, $3$, $4$, $5$ であり、すいばかくんがいる町 $2$ からの距離はそれぞれ $1$, $0$, $1$, $1$, $2$ なので、答えは町 $5$ になります。 $5$ つ目のクエリで、すいばかくんは町 $4$ に移動します。この直後に、すいばかくんが到達可能な町は $1$, $2$, $3$, $4$, $5$ であり、すいばかくんがいる町 $4$ からの距離はそれぞれ $2$, $1$, $2$, $0$, $1$ なので、答えは町 $1$, $3$ になります。 入力例 2 5 3 4 1 2 1 1 4 5 1 3 2 1 6 2 2 3 2 1 2 1 3 2 4 1 4 出力例 2 1 1 1 5 1 5 2 1 5 1 5 2 3 5
[ { "submission_id": "aoj_3143_5783307", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3143\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\ntemplate<typename Vertex, typename Cluster, size_t N>\nstruct TopTree{\n enum Type { Compress, Rake, Edge };\n struct Node{\n Vertex* vs[2];\n Cluster dat;\n Node* p;\n Node* q;\n Node* ch[2];\n bool rev,guard;\n Type type;\n Node():p(nullptr),q(nullptr),rev(false),guard(false){}\n };\n\n inline static array<Vertex, 2*N> pool_vertex;\n inline static size_t ptr_vertex = 0;\n\n inline static array<Node, 4*N> pool_node;\n inline static size_t ptr_node = 0;\n\n Cluster id;\n\n template<typename ...Args>\n inline Vertex* create(Args ...args){\n auto t=&pool_vertex[ptr_vertex++];\n auto dummy=&pool_vertex[ptr_vertex++];\n *t=Vertex(forward<Args>(args)...);\n link(t,id,dummy);\n return t;\n }\n\n Node* recycle=nullptr;\n inline void dispose_node(Node* t){\n t->p=recycle;\n recycle=t;\n }\n\n inline Node* get_new_node(){\n if(recycle) return new(exchange(recycle,recycle->p)) Node;\n return &(pool_node[ptr_node++]);\n }\n\n inline Node* edge(Vertex* u,Cluster w,Vertex* v){\n auto t=get_new_node();\n t->vs[0]=u;t->vs[1]=v;t->dat=w;t->type=Type::Edge;\n return pushup(t);\n }\n\n inline Node* compress(Node* l,Node* r){\n auto t=get_new_node();\n t->ch[0]=l;t->ch[1]=r;t->type=Type::Compress;\n return pushup(t);\n }\n\n inline Node* rake(Node* l,Node* r){\n auto t=get_new_node();\n t->ch[0]=l;t->ch[1]=r;t->type=Type::Rake;\n return pushup(t);\n }\n\n int parent_dir(Node* t){\n Node* p=t->p;\n if(!p) return -1;\n if(p->guard) return -1;\n if(p->ch[0]==t) return 0;\n if(p->ch[1]==t) return 1;\n return -1;\n }\n\n int parent_dir_ignore_guard(Node* t){\n Node* p=t->p;\n if(!p) return -1;\n if(p->ch[0]==t) return 0;\n if(p->ch[1]==t) return 1;\n return -1;\n }\n\n inline Node* pushup(Node* const t){\n Node* const l=t->ch[0];\n Node* const r=t->ch[1];\n\n if(t->type==Type::Compress){\n assert(l->vs[1]==r->vs[0]);\n t->vs[0]=l->vs[0];\n t->vs[1]=r->vs[1];\n\n Cluster lf=l->dat;\n if(t->q){\n assert(l->vs[1]==t->q->vs[1]);\n lf=Cluster::rake(l->dat,t->q->dat);\n }\n t->dat=Cluster::compress(lf,r->vs[0],r->dat);\n\n l->vs[1]->handle=t;\n }\n\n if(t->type==Type::Rake){\n propagate(t);\n assert(l->vs[1]==r->vs[1]);\n t->vs[0]=l->vs[0];\n t->vs[1]=l->vs[1];\n t->dat=Cluster::rake(l->dat,r->dat);\n }else{\n if(!t->p){\n t->vs[0]->handle=t;\n t->vs[1]->handle=t;\n }else if(t->p->type==Type::Compress){\n if(parent_dir(t)==-1)\n t->vs[0]->handle=t;\n }else if(t->p->type==Type::Rake){\n t->vs[0]->handle=t;\n }\n }\n return t;\n }\n\n inline void toggle(Node* t){\n if(t->type==Type::Edge){\n swap(t->vs[0],t->vs[1]);\n t->dat.toggle();\n }else if(t->type==Type::Compress){\n swap(t->vs[0],t->vs[1]);\n t->dat.toggle();\n t->rev^=true;\n }else if(t->type==Type::Rake){\n }else abort();\n }\n\n inline void propagate(Node* t){\n if(t->type==Type::Compress){\n if(t->rev){\n assert(t->ch[0] and t->ch[1]);\n swap(t->ch[0],t->ch[1]);\n toggle(t->ch[0]);\n toggle(t->ch[1]);\n t->rev=false;\n }\n }\n }\n\n void set_toggle(Node* v){\n toggle(v);propagate(v);\n }\n\n void pushdown(Node* t){\n if(!t) return;\n pushdown(t->p);\n propagate(t);\n }\n\n void rotate(Node* t,Node* x,size_t dir){\n Node* y=x->p;\n int par=parent_dir_ignore_guard(x);\n propagate(t->ch[dir]);\n x->ch[dir^1]=t->ch[dir];\n t->ch[dir]->p=x;\n t->ch[dir]=x;\n x->p=t;\n t->p=y;\n if(~par) y->ch[par]=t;\n else if(y and y->type==Type::Compress) y->q=t;\n pushup(x);pushup(t);\n if(y and !y->guard) pushup(y);\n }\n\n void splay(Node* t){\n assert(t->type!=Type::Edge);\n propagate(t);\n\n while(~parent_dir(t)){\n Node* q=t->p;\n if(q->type!=t->type) break;\n if(~parent_dir(q) and q->p and q->p->type==q->type){\n Node* r=q->p;\n if(r->p) propagate(r->p);\n propagate(r);propagate(q);propagate(t);\n int qt_dir=parent_dir(t);\n int rq_dir=parent_dir(q);\n if(rq_dir==qt_dir){\n rotate(q,r,rq_dir^1);\n rotate(t,q,qt_dir^1);\n }else{\n rotate(t,q,qt_dir^1);\n rotate(t,r,rq_dir^1);\n }\n }else{\n if(q->p) propagate(q->p);\n propagate(q);propagate(t);\n int qt_dir=parent_dir(t);\n rotate(t,q,qt_dir^1);\n }\n }\n }\n\n Node* expose(Node* t){\n pushdown(t);\n while(true){\n assert(t->type!=Type::Rake);\n if(t->type==Type::Compress) splay(t);\n Node* n=nullptr;\n {\n Node* p=t->p;\n if(!p) break;\n if(p->type==Type::Rake){\n propagate(p);\n splay(p);\n n=p->p;\n }\n if(p->type==Type::Compress){\n propagate(p);\n if(p->guard and ~parent_dir_ignore_guard(t)) break;\n n=p;\n }\n }\n splay(n);\n int dir=parent_dir_ignore_guard(n);\n if(dir==-1 or n->p->type==Type::Rake) dir=0;\n\n Node* const c=n->ch[dir];\n if(dir==1){\n set_toggle(c);\n set_toggle(t);\n }\n int n_dir=parent_dir(t);\n if(~n_dir){\n Node* const r=t->p;\n propagate(c);\n propagate(r);\n r->ch[n_dir]=c;\n c->p=r;\n n->ch[dir]=t;\n t->p=n;\n pushup(c);pushup(r);pushup(t);pushup(n);\n splay(r);\n }else{\n propagate(c);\n n->q=c;\n c->p=n;\n n->ch[dir]=t;\n t->p=n;\n pushup(c);pushup(t);pushup(n);\n }\n if(t->type==Type::Edge) t=n;\n }\n return t;\n }\n\n Node* expose(Vertex* v){\n return expose((Node*)(v->handle));\n }\n\n void soft_expose(Vertex* u,Vertex* v){\n pushdown((Node*)u->handle);\n pushdown((Node*)v->handle);\n Node* rt=expose(u);\n\n if(u->handle==v->handle){\n if(rt->vs[1]==u or rt->vs[0]==v)\n set_toggle(rt);\n return;\n }\n\n rt->guard=true;\n Node* soft=expose(v);\n rt->guard=false;\n\n pushup(rt);\n if(parent_dir(soft)==0) set_toggle(rt);\n }\n\n void bring(Node* rt){\n Node* rk=rt->q;\n if(!rk){\n Node* ll=rt->ch[0];\n dispose_node(ll->p);\n ll->p=nullptr;\n pushup(ll);\n }else if(rk->type==Type::Compress or rk->type==Type::Edge){\n Node* nr=rk;\n set_toggle(nr);\n rt->ch[1]=nr;\n nr->p=rt;\n rt->q=nullptr;\n\n pushup(nr);pushup(rt);\n }else if(rk->type==Type::Rake){\n propagate(rk);\n while(rk->ch[1]->type==Type::Rake){\n propagate(rk->ch[1]);\n rk=rk->ch[1];\n }\n pushdown(rk);\n\n rt->guard=true;\n splay(rk);\n rt->guard=false;\n\n Node* ll=rk->ch[0];\n Node* rr=rk->ch[1];\n propagate(ll);\n set_toggle(rr);\n\n rt->ch[1]=rr;\n rr->p=rt;\n\n rt->q=ll;\n ll->p=rt;\n\n dispose_node(rk);\n pushup(ll);pushup(rr);pushup(rt);\n }\n }\n\n Node* link(Vertex* u,Cluster w,Vertex* v){\n if(!u->handle and !v->handle) return edge(u,w,v);\n\n Node* nnu=(Node*)u->handle;\n Node* nnv=(Node*)v->handle;\n Node* ee=edge(u,w,v);\n Node* ll=nullptr;\n\n assert(nnv);\n Node* vv=expose(nnv);\n propagate(vv);\n if(vv->vs[1]==v) set_toggle(vv);\n if(vv->vs[0]==v){\n Node* nv=compress(ee,vv);\n ee->p=nv;\n pushup(ee);\n vv->p=nv;\n pushup(vv);pushup(nv);\n ll=nv;\n }else{\n Node* nv=vv;\n Node* ch=nv->ch[0];\n propagate(ch);\n nv->ch[0]=ee;\n ee->p=nv;\n pushup(ee);\n\n Node* bt=nv->q;\n Node* rk=nullptr;\n if(bt){\n propagate(bt);\n rk=rake(bt,ch);\n bt->p=rk;\n ch->p=rk;\n pushup(bt);pushup(ch);\n }else{\n rk=ch;\n }\n nv->q=rk;\n rk->p=nv;\n pushup(rk);pushup(nv);\n ll=nv;\n }\n\n assert(nnu);\n Node* uu=expose(nnu);\n propagate(uu);\n if(uu->vs[0]==u) set_toggle(uu);\n if(uu->vs[1]==u){\n Node* tp=compress(uu,ll);\n uu->p=tp;\n ll->p=tp;\n pushup(uu);pushup(ll);pushup(tp);\n }else{\n Node* nu=uu;\n Node* ch=nu->ch[1];\n toggle(ch);\n propagate(ch);\n\n nu->ch[1]=ll;\n ll->p=nu;\n pushup(ll);\n\n Node* al=nu->q;\n Node* rk=nullptr;\n if(al){\n propagate(al);\n rk=rake(al,ch);\n al->p=rk;\n ch->p=rk;\n pushup(al);pushup(ch);\n }else{\n rk=ch;\n }\n nu->q=rk;\n rk->p=nu;\n pushup(rk);pushup(nu);\n }\n return ee;\n }\n\n void cut(Vertex* u,Vertex *v){\n soft_expose(u,v);\n Node* rt=(Node*)u->handle;\n propagate(rt);\n Node* rr=rt->ch[1];\n rr->p=nullptr;\n set_toggle(rr);\n assert(rr->ch[1]->type==Type::Edge);\n dispose_node(rr->ch[1]);\n bring(rr);bring(rt);\n }\n\n Node* path(Vertex* u,Vertex* v){\n assert(u!=v);\n soft_expose(u,v);\n Node* rt=(Node*)u->handle;\n propagate(rt);\n propagate(rt->ch[1]);\n return rt->ch[1]->ch[0];\n }\n\n void set_vertex(Vertex* u,Vertex v){\n auto t=expose(u);\n *u=v;\n pushup(t);\n }\n\n void set_edge(Vertex* u,Vertex* v,const Cluster &w){\n auto t=path(u,v);\n assert(t->type==Type::Edge);\n t->dat=w;\n while(t) pushup(t),t=t->p;\n }\n\n Cluster get_path(Vertex* u,Vertex* v){\n return path(u,v)->dat;\n }\n\n Cluster get_subtree(Vertex* v){\n return expose(v)->dat;\n }\n\n // subtree of v when p is root\n Cluster get_subtree(Vertex* p,Vertex* v){\n Node* t=path(p,v);\n Cluster res=t->p->ch[1]->dat;\n res.toggle();\n Node* rk=t->p->q;\n if(t->p->q){\n assert(rk->vs[1]==t->p->ch[1]->vs[0]);\n res=Cluster::rake(res,rk->dat);\n }\n return res;\n }\n};\n\nstruct Vertex{\n void* handle;\n Vertex():handle(nullptr){}\n};\n\ntemplate<typename T>\nstruct Farthest{\n struct pi{\n T dist;\n int idx;\n pi():dist(0),idx(-1){}\n pi(T dist,int idx):dist(dist),idx(idx){}\n bool operator<(const pi &o)const{return dist<o.dist;}\n pi operator+(const T e)const{return pi(dist+e,idx);}\n };\n pi md,lf,rg;\n T len;\n Farthest():lf(0,-1),rg(0,-1),len(0){}\n Farthest(T d,int f,int t):lf(d,t),rg(d,f),len(d){}\n Farthest(pi md,pi lf,pi rg,T len):md(md),lf(lf),rg(rg),len(len){}\n void toggle(){swap(lf,rg);}\n static Farthest compress(Farthest &x,Vertex*,Farthest &y){\n return Farthest(\n max(x.rg,y.lf),\n max(x.lf,y.lf+x.len),\n max(y.rg,x.rg+y.len),\n x.len+y.len);\n }\n static Farthest rake(Farthest &x,Farthest &y){\n return Farthest(pi(),max(x.lf,y.rg+x.len),max(x.rg,y.rg),x.len);\n }\n};\n\ntemplate<typename T, size_t N>\nvector<int> get_all_farthests(TopTree<Vertex, Farthest<T>, N> &G,Vertex* v){\n using TT = typename remove_reference<decltype(G)>::type;\n using Node = typename TT::Node;\n using Type = typename TT::Type;\n vector<int> fs;\n auto dist=G.get_subtree(v).md.dist;\n if(dist==T(0)) return {};\n auto dfs=[&](auto dfs,Node* rt,T d,bool left)->void{\n if(!rt) return;\n G.propagate(rt);\n\n auto cur=left?(rt->dat.lf):(rt->dat.rg);\n if(d+cur.dist!=dist) return;\n\n if(rt->type==Type::Edge){\n if(~cur.idx) fs.emplace_back(cur.idx);\n return;\n }\n if(rt->type==Type::Rake){\n assert(!left);\n dfs(dfs,rt->ch[0],d,false);\n dfs(dfs,rt->ch[1],d,false);\n return;\n }\n if(rt->type==Type::Compress){\n T mid=rt->ch[left?0:1]->dat.len;\n dfs(dfs,rt->ch[left?0:1],d,left);\n dfs(dfs,rt->ch[left?1:0],d+mid,left);\n dfs(dfs,rt->q,d+mid,false);\n return;\n }\n abort();\n };\n auto rt=G.expose(v);\n assert(rt->type==Type::Compress);\n dfs(dfs,rt->ch[0],T(0),false);\n dfs(dfs,rt->ch[1],T(0),true);\n dfs(dfs,rt->q,T(0),false);\n return fs;\n}\n\n\n#undef call_from_test\n\nconst int MAX = 2e5+100;\nVertex* vs[MAX];\nint as[MAX],bs[MAX],ds[MAX];\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n const char newl = '\\n';\n\n const size_t N = MAX;\n using Cluster = Farthest<long long>;\n TopTree<Vertex, Cluster, N> G;\n\n int n;\n cin>>n;\n\n for(int i=0;i<n;i++) vs[i]=G.create();\n\n for(int i=1;i<n;i++){\n cin>>as[i]>>bs[i]>>ds[i];\n as[i]--;bs[i]--;\n G.link(vs[as[i]],Cluster(ds[i],as[i],bs[i]),vs[bs[i]]);\n }\n\n auto cut=[&](int k)->void{\n G.cut(vs[as[k]],vs[bs[k]]);\n };\n auto link=[&](int k)->void{\n G.link(vs[as[k]],Cluster(ds[k],as[k],bs[k]),vs[bs[k]]);\n };\n\n int q;\n cin>>q;\n\n int cur=0;\n for(int i=0;i<q;i++){\n int t;\n cin>>t;\n\n if(t==1){\n int x;\n cin>>x;\n x--;\n cur=x;\n }\n if(t==2){\n int y;\n cin>>y;\n cut(y);\n }\n if(t==3){\n int z;\n cin>>z;\n link(z);\n }\n\n auto fs=get_all_farthests(G,vs[cur]);\n if(fs.empty()){\n cout<<1<<\" \"<<cur+1<<newl;\n continue;\n }\n\n sort(fs.begin(),fs.end());\n cout<<fs.size();\n for(int f:fs) cout<<\" \"<<f+1;\n cout<<newl;\n\n for(int f:fs) G.expose(vs[f]);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 1220, "memory_kb": 118212, "score_of_the_acc": -1.2074, "final_rank": 7 }, { "submission_id": "aoj_3143_4805868", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll=long long;\n#define int ll\n\n#define rng(i,a,b) for(int i=int(a);i<int(b);i++)\n#define rep(i,b) rng(i,0,b)\n#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)\n#define per(i,b) gnr(i,0,b)\n#define pb push_back\n#define eb emplace_back\n#define a first\n#define b second\n#define bg begin()\n#define ed end()\n#define all(x) x.bg,x.ed\n#define si(x) int(x.size())\n#ifdef LOCAL\n#define dmp(x) cerr<<__LINE__<<\" \"<<#x<<\" \"<<x<<endl\n#else\n#define dmp(x) void(0)\n#endif\n\ntemplate<class t,class u> void chmax(t&a,u b){if(a<b)a=b;}\ntemplate<class t,class u> void chmin(t&a,u b){if(b<a)a=b;}\n\ntemplate<class t> using vc=vector<t>;\ntemplate<class t> using vvc=vc<vc<t>>;\n\nusing pi=pair<int,int>;\nusing vi=vc<int>;\n\ntemplate<class t,class u>\nostream& operator<<(ostream& os,const pair<t,u>& p){\n\treturn os<<\"{\"<<p.a<<\",\"<<p.b<<\"}\";\n}\n\ntemplate<class t> ostream& operator<<(ostream& os,const vc<t>& v){\n\tos<<\"{\";\n\tfor(auto e:v)os<<e<<\",\";\n\treturn os<<\"}\";\n}\n\n#define mp make_pair\n#define mt make_tuple\n#define one(x) memset(x,-1,sizeof(x))\n#define zero(x) memset(x,0,sizeof(x))\n#ifdef LOCAL\nvoid dmpr(ostream&os){os<<endl;}\ntemplate<class T,class... Args>\nvoid dmpr(ostream&os,const T&t,const Args&... args){\n\tos<<t<<\" \";\n\tdmpr(os,args...);\n}\n#define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__)\n#else\n#define dmp2(...) void(0)\n#endif\n\nusing uint=unsigned;\nusing ull=unsigned long long;\n\ntemplate<class t,size_t n>\nostream& operator<<(ostream&os,const array<t,n>&a){\n\treturn os<<vc<t>(all(a));\n}\n\ntemplate<int i,class T>\nvoid print_tuple(ostream&,const T&){\n}\n\ntemplate<int i,class T,class H,class ...Args>\nvoid print_tuple(ostream&os,const T&t){\n\tif(i)os<<\",\";\n\tos<<get<i>(t);\n\tprint_tuple<i+1,T,Args...>(os,t);\n}\n\ntemplate<class ...Args>\nostream& operator<<(ostream&os,const tuple<Args...>&t){\n\tos<<\"{\";\n\tprint_tuple<0,tuple<Args...>,Args...>(os,t);\n\treturn os<<\"}\";\n}\n\ntemplate<class t>\nvoid print(t x,int suc=1){\n\tcout<<x;\n\tif(suc==1)\n\t\tcout<<\"\\n\";\n\tif(suc==2)\n\t\tcout<<\" \";\n}\n\nll read(){\n\tll i;\n\tcin>>i;\n\treturn i;\n}\n\nvi readvi(int n,int off=0){\n\tvi v(n);\n\trep(i,n)v[i]=read()+off;\n\treturn v;\n}\n\npi readpi(int off=0){\n\tint a,b;cin>>a>>b;\n\treturn pi(a+off,b+off);\n}\n\ntemplate<class T>\nvoid print(const vector<T>&v,int suc=1){\n\trep(i,v.size())\n\t\tprint(v[i],i==int(v.size())-1?suc:2);\n}\n\nstring readString(){\n\tstring s;\n\tcin>>s;\n\treturn s;\n}\n\ntemplate<class T>\nT sq(const T& t){\n\treturn t*t;\n}\n\n//#define CAPITAL\nvoid yes(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"YES\"<<\"\\n\";\n\t#else\n\tcout<<\"Yes\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid no(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"NO\"<<\"\\n\";\n\t#else\n\tcout<<\"No\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid possible(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"POSSIBLE\"<<\"\\n\";\n\t#else\n\tcout<<\"Possible\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid impossible(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"IMPOSSIBLE\"<<\"\\n\";\n\t#else\n\tcout<<\"Impossible\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\n\nconstexpr ll ten(int n){\n\treturn n==0?1:ten(n-1)*10;\n}\n\nconst ll infLL=LLONG_MAX/3;\n\n#ifdef int\nconst int inf=infLL;\n#else\nconst int inf=INT_MAX/2-100;\n#endif\n\nint topbit(signed t){\n\treturn t==0?-1:31-__builtin_clz(t);\n}\nint topbit(ll t){\n\treturn t==0?-1:63-__builtin_clzll(t);\n}\nint botbit(signed a){\n\treturn a==0?32:__builtin_ctz(a);\n}\nint botbit(ll a){\n\treturn a==0?64:__builtin_ctzll(a);\n}\nint popcount(signed t){\n\treturn __builtin_popcount(t);\n}\nint popcount(ll t){\n\treturn __builtin_popcountll(t);\n}\nbool ispow2(int i){\n\treturn i&&(i&-i)==i;\n}\nll mask(int i){\n\treturn (ll(1)<<i)-1;\n}\n\nbool inc(int a,int b,int c){\n\treturn a<=b&&b<=c;\n}\n\ntemplate<class t> void mkuni(vc<t>&v){\n\tsort(all(v));\n\tv.erase(unique(all(v)),v.ed);\n}\n\nll rand_int(ll l, ll r) { //[l, r]\n\t#ifdef LOCAL\n\tstatic mt19937_64 gen;\n\t#else\n\tstatic mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());\n\t#endif\n\treturn uniform_int_distribution<ll>(l, r)(gen);\n}\n\ntemplate<class t>\nvoid myshuffle(vc<t>&a){\n\trep(i,si(a))swap(a[i],a[rand_int(0,i)]);\n}\n\ntemplate<class t>\nint lwb(const vc<t>&v,const t&a){\n\treturn lower_bound(all(v),a)-v.bg;\n}\n\nvvc<int> readGraph(int n,int m){\n\tvvc<int> g(n);\n\trep(i,m){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\t//sc.read(a,b);\n\t\ta--;b--;\n\t\tg[a].pb(b);\n\t\tg[b].pb(a);\n\t}\n\treturn g;\n}\n\nvvc<int> readTree(int n){\n\treturn readGraph(n,n-1);\n}\n\n//merge で片方が inactive のときはもう片方をそのまま返す,\n//といったときに,lazy の情報までコピーして渡さないようにする\n\n//get の最後の引数は単位元と口では言いつつ・・・?\n//たとえば min で最後の引数を 0 にしても 1 とかが返ってくることはある(一敗)\n\n//VERIFY: yosupo\n//KUPC2017I\n//HDU 5306 Gorgeous Sequence\n//findmin/max CF458E\ntemplate<class N>\nstruct segbeats{\n\tvc<N> x;\n\tint s;\n\tsegbeats(){}\n\ttemplate<class T>\n\tsegbeats(const vc<T>& a){\n\t\tint n=a.size();\n\t\ts=1;\n\t\twhile(s<n)s*=2;\n\t\tx.resize(s*2);\n\t\trep(i,n)\n\t\t\tx[s+i]=N(a[i]);\n\t\tgnr(i,1,s)\n\t\t\tupd(i);\n\t}\n\tvoid push(int i){\n\t\tx[i].push(x[i*2],x[i*2+1]);\n\t}\n\tvoid upd(int i){\n\t\tx[i]=N::merge(x[i*2],x[i*2+1]);\n\t}\n\ttemplate<class F,class... Args>\n\tvoid chr(int l,int r,int i,int b,int e,F f,Args&&... args){\n\t\tif(e<=l||r<=b)\n\t\t\treturn;\n\t\tif(b<=l&&r<=e&&(x[i].*f)(forward<Args>(args)...))\n\t\t\treturn;\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\tchr(l,m,i*2,b,e,f,forward<Args>(args)...);\n\t\tchr(m,r,i*2+1,b,e,f,forward<Args>(args)...);\n\t\tupd(i);\n\t}\n\ttemplate<class F,class... Args>\n\tvoid ch(int b,int e,F f,Args&&... args){\n\t\tassert(b<=e);\n\t\tchr(0,s,1,b,e,f,forward<Args>(args)...);\n\t}\n\t//use decltype((declval<N>().*F())()) for old-fashioned judges\n\ttemplate<class F,class G,class H>\n\tauto getr(int l,int r,int i,int b,int e,F f,G g,H h){\n\t\tif(e<=l||r<=b)\n\t\t\treturn h;\n\t\tif(b<=l&&r<=e)\n\t\t\treturn (x[i].*f)();\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\treturn g(getr(l,m,i*2,b,e,f,g,h),getr(m,r,i*2+1,b,e,f,g,h));\n\t}\n\ttemplate<class F,class G,class H>\n\tauto get(int b,int e,F f,G g,H h){\n\t\tassert(b<=e);\n\t\treturn getr(0,s,1,b,e,f,g,h);\n\t}\n\tauto compositer(int l,int r,int i,int b,int e){\n\t\tif(e<=l||r<=b)assert(0);\n\t\tif(b<=l&&r<=e)\n\t\t\treturn x[i];\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\tif(e<=m)return compositer(l,m,i*2,b,e);\n\t\tif(m<=b)return compositer(m,r,i*2+1,b,e);\n\t\treturn N::merge(compositer(l,m,i*2,b,e),compositer(m,r,i*2+1,b,e));\n\t}\n\t//work without identity node\n\tauto composite(int b,int e){\n\t\tassert(b<e);\n\t\treturn compositer(0,s,1,b,e);\n\t}\n\tN getall(){return x[1];}\n\t//return minimum index\n\ttemplate<class F,class...Args>\n\tpair<int,N> findminr(int i,int l,int r,int b,int e,F f,Args&&...args){\n\t\tif(e<=l||r<=b)return {e,N()};\n\t\tif(b<=l&&r<=e){\n\t\t\tif(!(x[i].*f)(forward<Args>(args)...))return {e,N()};\n\t\t\tif(r-l==1)return {l,x[i]};\n\t\t}\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\tauto a=findminr(i*2,l,m,b,e,f,forward<Args>(args)...);\n\t\tif(a.a<e)return a;\n\t\treturn findminr(i*2+1,m,r,b,e,f,forward<Args>(args)...);\n\t}\n\ttemplate<class F,class...Args>\n\tpair<int,N> findmin(int b,int e,F f,Args&&...args){\n\t\tassert(b<=e);\n\t\treturn findminr(1,0,s,b,e,f,forward<Args>(args)...);\n\t}\n\t//return maximum index\n\ttemplate<class F,class...Args>\n\tpair<int,N> findmaxr(int i,int l,int r,int b,int e,F f,Args&&...args){\n\t\tif(e<=l||r<=b)return {b-1,N()};\n\t\tif(b<=l&&r<=e){\n\t\t\tif(!(x[i].*f)(forward<Args>(args)...))return {b-1,N()};\n\t\t\tif(r-l==1)return {l,x[i]};\n\t\t}\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\tauto a=findmaxr(i*2+1,m,r,b,e,f,forward<Args>(args)...);\n\t\tif(a.a>=b)return a;\n\t\treturn findmaxr(i*2,l,m,b,e,f,forward<Args>(args)...);\n\t}\n\ttemplate<class F,class...Args>\n\tpair<int,N> findmax(int b,int e,F f,Args&&...args){\n\t\tassert(b<=e);\n\t\treturn findmaxr(1,0,s,b,e,f,forward<Args>(args)...);\n\t}\n\tvoid enumerater(int l,int r,int i,int b,int e,vc<N>&dst){\n\t\tif(e<=l||r<=b)\n\t\t\treturn;\n\t\tif(l+1==r){\n\t\t\tdst.pb(x[i]);\n\t\t\treturn;\n\t\t}\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\tenumerater(l,m,i*2,b,e,dst);\n\t\tenumerater(m,r,i*2+1,b,e,dst);\n\t}\n\tvoid enumerate(int b,int e,vc<N>&dst){\n\t\tassert(b<=e);\n\t\treturn enumerater(0,s,1,b,e,dst);\n\t}\n\ttemplate<class F,class...Args>\n\tvoid enumerate_by_findr(int l,int r,int i,int b,int e,vc<pair<int,N>>&dst,F f,Args&&...args){\n\t\tif(e<=l||r<=b||!(x[i].*f)(forward<Args>(args)...))\n\t\t\treturn;\n\t\tif(l+1==r){\n\t\t\tdst.eb(l,x[i]);\n\t\t\treturn;\n\t\t}\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\tenumerate_by_findr(l,m,i*2,b,e,dst,f,forward<Args>(args)...);\n\t\tenumerate_by_findr(m,r,i*2+1,b,e,dst,f,forward<Args>(args)...);\n\t}\n\ttemplate<class F,class...Args>\n\tvoid enumerate_by_find(int b,int e,vc<pair<int,N>>&dst,F f,Args&&...args){\n\t\tassert(b<=e);\n\t\tenumerate_by_findr(0,s,1,b,e,dst,f,forward<Args>(args)...);\n\t}\n\tvoid prepare(int i){\n\t\tif(i/=2){\n\t\t\tprepare(i);\n\t\t\tpush(i);\n\t\t}\n\t}\n\t//point_update と lazy を組み合わせたらどうなるかは,わからない・・・\n\tvoid point_update(int i,N w){\n\t\ti+=s;\n\t\tprepare(i);\n\t\tx[i]=w;\n\t\twhile(i/=2)\n\t\t\tupd(i);\n\t}\n};\n\n//N::push\n//pushしたあとはclearする\n//N::merge\n\nstruct N{\n\tint a,c,la,lc;\n\tN(int v=-inf):a(v),c(v==-inf?inf:0),la(0),lc(0){}\n\tbool add_a(int v){\n\t\ta+=v;\n\t\tla+=v;\n\t\treturn true;\n\t}\n\tbool add_c(int v){\n\t\tc+=v;\n\t\tlc+=v;\n\t\treturn true;\n\t}\n\tvoid push_sub(N&x){\n\t\tx.add_a(la);\n\t\tx.add_c(lc);\n\t}\n\tvoid push(N&x,N&y){\n\t\tpush_sub(x);\n\t\tpush_sub(y);\n\t\tla=0;\n\t\tlc=0;\n\t}\n\tvoid upd_sub(const N&x){\n\t\tif(c==x.c)chmax(a,x.a);\n\t}\n\tstatic N merge(const N&x,const N&y){\n\t\tN res;\n\t\tres.c=min(x.c,y.c);\n\t\tres.upd_sub(x);\n\t\tres.upd_sub(y);\n\t\treturn res;\n\t}\n\tbool find(int v){\n\t\treturn c==0&&v==a;\n\t}\n};\n\ntemplate<class ES>\nstruct treedfs{\n\tconst vc<ES>&g;\n\tconst int n;\n\tint cnt;\n\tvi par,dep,in,out;\n\tvoid dfs(int v,int p,int d){\n\t\tpar[v]=p;\n\t\tdep[v]=d;\n\t\tin[v]=cnt++;\n\t\tfor(auto e:g[v])if(e.a!=p)\n\t\t\tdfs(e.a,v,d+e.b);\n\t\tout[v]=cnt;\n\t}\n\ttreedfs(const vc<ES>&gg,int r):g(gg),n(si(g)),cnt(0),par(n),dep(n),in(n),out(n){\n\t\tdfs(r,-1,0);\n\t}\n};\n\nsigned main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(0);\n\tcout<<fixed<<setprecision(20);\n\t\n\tint n;cin>>n;\n\tvc<map<int,int>> t(n);\n\tvc<pi> es;\n\trep(i,n-1){\n\t\tint a,b;cin>>a>>b;\n\t\ta--;b--;\n\t\tint d;cin>>d;\n\t\tt[a][b]=d;\n\t\tt[b][a]=d;\n\t\tes.eb(a,b);\n\t}\n\t\n\ttreedfs<map<int,int>> z(t,0);\n\tvi ls(n);\n\trep(i,n)ls[z.in[i]]=z.dep[i];\n\tvi ni(n);\n\trep(i,n)ni[z.in[i]]=i;\n\tsegbeats<N> seg(ls);\n\t\n\tauto answer=[&](){\n\t\tint tar=seg.getall().a;\n\t\tvc<pair<int,N>> buf;\n\t\tseg.enumerate_by_find(0,n,buf,&N::find,tar);\n\t\tvi ans(si(buf));\n\t\trep(i,si(buf))ans[i]=ni[buf[i].a]+1;\n\t\tsort(all(ans));\n\t\tprint(si(ans),2);\n\t\tprint(ans);\n\t};\n\t\n\tauto add=[&](int v,int w){\n\t\tseg.ch(0,z.in[v],&N::add_a,-w);\n\t\tseg.ch(z.in[v],z.out[v],&N::add_a,w);\n\t\tseg.ch(z.out[v],n,&N::add_a,-w);\n\t};\n\t\n\tauto addc_out=[&](int v,int w){\n\t\tseg.ch(0,z.in[v],&N::add_c,w);\n\t\tseg.ch(z.out[v],n,&N::add_c,w);\n\t};\n\t\n\tauto addc_in=[&](int v,int w){\n\t\tseg.ch(z.in[v],z.out[v],&N::add_c,w);\n\t};\n\t\n\tint cur=0;\n\tint q;cin>>q;\n\trep(_,q){\n\t\tint tp;cin>>tp;\n\t\tif(tp==1){\n\t\t\tint x;cin>>x;x--;\n\t\t\tint d=t[cur][x];\n\t\t\tif(x==z.par[cur]){\n\t\t\t\tadd(cur,d);\n\t\t\t}else{\n\t\t\t\tadd(x,-d);\n\t\t\t}\n\t\t\tcur=x;\n\t\t}else if(tp==2){\n\t\t\tint a,b;tie(a,b)=es[read()-1];\n\t\t\tif(z.par[a]!=b)swap(a,b);\n\t\t\tif(inc(z.in[a],z.in[cur],z.out[a]-1)){\n\t\t\t\taddc_out(a,1);\n\t\t\t}else{\n\t\t\t\taddc_in(a,1);\n\t\t\t}\n\t\t}else{\n\t\t\tint a,b;tie(a,b)=es[read()-1];\n\t\t\tif(z.par[a]!=b)swap(a,b);\n\t\t\tif(inc(z.in[a],z.in[cur],z.out[a]-1)){\n\t\t\t\taddc_out(a,-1);\n\t\t\t}else{\n\t\t\t\taddc_in(a,-1);\n\t\t\t}\n\t\t}\n\t\tanswer();\n\t}\n}", "accuracy": 1, "time_ms": 440, "memory_kb": 73000, "score_of_the_acc": -0.281, "final_rank": 3 }, { "submission_id": "aoj_3143_4357159", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\ntypedef double db;\nmt19937 mrand(random_device{}()); \nconst ll mod=998244353;\nint rnd(int x) { return mrand() % x;}\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\nll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}\n// head\n\nconst int N=201000;\n\nint n,u,v,w,q,ty,x;\nvector<PII> e[N];\nll dis[N];\nint l[N],r[N],tot,id[N],par[N],pare[N],rt;\nPII E[N];\n\nvoid dfs(int u,int f) {\n\tl[u]=++tot;\n\tid[tot]=u;\n\t//printf(\"%d %d\\n\",u,f);\n\tfor (auto p:e[u]) {\n\t\tif (p.fi==f) continue;\n\t\tdis[p.fi]=dis[u]+p.se;\n\t\tpar[p.fi]=u;\n\t\tpare[p.fi]=p.se;\n\t\tdfs(p.fi,u);\n\t}\n\tr[u]=tot;\n}\n\nstruct node {\n\tpair<ll,int> dis;\n\tll tag;\n}nd[4*N];\nvoid upd(int p) {\n\tnd[p].dis=max(nd[p+p].dis,nd[p+p+1].dis);\n}\nvoid setf(int p,ll v) {\n\tnd[p].tag+=v;\n\tnd[p].dis.fi+=v;\n}\nvoid build(int p,int l,int r) {\n\tif (l==r) {\n\t\tnd[p].dis=mp(dis[id[l]],id[l]);\n\t} else {\n\t\tint md=(l+r)>>1;\n\t\tbuild(p+p,l,md);\n\t\tbuild(p+p+1,md+1,r);\n\t\tupd(p);\n\t}\n}\nvoid push(int p) {\n\tif (nd[p].tag) {\n\t\tsetf(p+p,nd[p].tag);\n\t\tsetf(p+p+1,nd[p].tag);\n\t\tnd[p].tag=0;\n\t}\n}\npair<ll,int> query(int p,int l,int r,int tl,int tr) {\n\tif (tl==l&&tr==r) return nd[p].dis;\n\telse {\n\t\tpush(p);\n\t\tint md=(l+r)>>1;\n\t\tif (tr<=md) return query(p+p,l,md,tl,tr);\n\t\telse if (tl>md) return query(p+p+1,md+1,r,tl,tr);\n\t\telse return min(query(p+p,l,md,tl,md),query(p+p+1,md+1,r,md+1,tr));\n\t}\n}\nvoid modify(int p,int l,int r,int tl,int tr,ll v) {\n\t//if (p==1) printf(\"Modify %d %d %lld\\n\",tl,tr,v);\n\tif (tl>tr) return;\n\tif (tl==l&&tr==r) return setf(p,v);\n\telse {\n\t\tpush(p);\n\t\tint md=(l+r)>>1;\n\t\tif (tr<=md) modify(p+p,l,md,tl,tr,v);\n\t\telse if (tl>md) modify(p+p+1,md+1,r,tl,tr,v);\n\t\telse modify(p+p,l,md,tl,md,v),modify(p+p+1,md+1,r,md+1,tr,v);\n\t\tupd(p);\n\t}\n}\n\nvoid print() {\n\tll x=nd[1].dis.fi;\n\tVI cc;\n\t//printf(\"%lld %d\\n\",nd[1].dis.fi,nd[1].dis.se);\n\twhile (nd[1].dis.fi==x) {\n\t\tint u=nd[1].dis.se;\n\t\tcc.pb(u);\n\t\tmodify(1,1,n,l[u],l[u],-(1ll<<62));\n\t}\n\tsort(all(cc));\n\tprintf(\"%d\",SZ(cc));\n\tfor (auto x:cc) {\n\t\tprintf(\" %d\",x);\n\t\tmodify(1,1,n,l[x],l[x],(1ll<<62));\t\n\t}\n\tputs(\"\");\n}\n\nconst ll inf=1ll<<42;\n\nint main() {\n\tscanf(\"%d\",&n);\n\trep(i,1,n) {\n\t\tscanf(\"%d%d%d\",&u,&v,&w);\n\t\te[u].pb({v,w});\n\t\te[v].pb({u,w});\n\t\tE[i]={u,v};\n\t}\n\tdfs(1,0);\n\tbuild(1,1,n);\n\t//puts(\"gg\");\n\trt=1;\n\tscanf(\"%d\",&q);\n\trep(i,0,q) {\n\t\tscanf(\"%d%d\",&ty,&x);\n\t\tif (ty==1) {\n\t\t\t// move\n\t\t\tif (x==par[rt]) {\n\t\t\t\tmodify(1,1,n,l[rt],r[rt],2*pare[rt]);\n\t\t\t} else {\n\t\t\t\tmodify(1,1,n,l[x],r[x],-2*pare[x]);\n\t\t\t}\n\t\t\trt=x;\n\t\t} else {\n\t\t\tu=E[x].fi, v=E[x].se;\n\t\t\tif (v==par[u]) swap(u,v); // u=par[v]\n\t\t\tif (l[v]<=l[rt]&&r[rt]<=r[v]) {\n\t\t\t\tmodify(1,1,n,l[v],r[v],(ty==2)?inf:-inf);\n\t\t\t} else {\n\t\t\t\tmodify(1,1,n,l[v],r[v],(ty==2)?-inf:inf);\n\t\t\t}\n\t\t}\n\t\tprint();\n\t}\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 49556, "score_of_the_acc": -0.0393, "final_rank": 2 }, { "submission_id": "aoj_3143_4307289", "code_snippet": "#include <vector>\n#include <iostream>\n#include <string>\n#include <cassert>\nusing i64 = long long;\n\nnamespace toptree {\n struct cluster {\n struct dist {\n i64 d; int to;\n dist(): d(0), to(-1) {}\n dist(i64 d, i64 to): d(d), to(to) {}\n bool operator<(const dist& r) const { return d < r.d; }\n dist operator+(const i64& r) const { return dist(d + r, to); }\n };\n dist max_dist_left;\n dist max_dist_right;\n i64 length;\n\n cluster(i64 l = 0, int a = -1, int b = -1): max_dist_left(l, b), max_dist_right(l, a), length(l) {}\n cluster(dist b, dist c, i64 d): max_dist_left(b), max_dist_right(c), length(d) {}\n static cluster identity() {\n return cluster(0);\n }\n static cluster compress(const cluster& a, const cluster& b) {\n return cluster(\n std::max(a.max_dist_left, b.max_dist_left + a.length),\n std::max(b.max_dist_right, a.max_dist_right + b.length),\n a.length + b.length\n );\n }\n static cluster rake(const cluster& a, const cluster& b) {\n return cluster(\n std::max(a.max_dist_left, b.max_dist_right + a.length),\n std::max(a.max_dist_right, b.max_dist_right),\n a.length\n );\n }\n static cluster reverse(const cluster& c) {\n cluster res = c;\n std::swap(res.max_dist_left, res.max_dist_right);\n return res;\n }\n };\n\n struct vertex;\n struct node;\n\n using size_type = std::size_t;\n using node_index = std::uint_least32_t;\n using vertex_index = std::uint_least32_t;\n\n extern struct vertex v[404040];\n extern size_type vi;\n extern struct node n[2020202];\n extern size_type ni;\n extern node_index guard;\n\n void link(node_index a, node_index b, cluster weight);\n\n struct vertex {\n node_index hn;\n };\n\n vertex_index new_vertex() {\n v[vi++] = { 0 };\n v[vi++] = { 0 };\n link(vi - 2, vi - 1, cluster::identity());\n return vi - 2;\n }\n\n\n enum class type { Compress, Rake, Edge };\n\n\n struct node {\n node_index i;\n node_index c[4];\n bool rev;\n cluster f;\n vertex_index v[2];\n type ty;\n\n inline node& operator[](size_type d) { return n[c[d]]; }\n inline vertex& operator()(size_type d) { return toptree::v[this->v[d]]; }\n };\n\n inline node_index new_node(type ty) {\n node_index i = ni++;\n n[i].i = i;\n n[i].ty = ty;\n return i;\n }\n\n void reverse(node_index i) {\n std::swap(n[i].v[0], n[i].v[1]);\n n[i].f = cluster::reverse(n[i].f);\n n[i].rev ^= true;\n }\n\n void push(node_index i) {\n if(n[i].ty != type::Edge && n[i].rev) {\n std::swap(n[i].c[0], n[i].c[1]);\n reverse(n[i].c[0]);\n reverse(n[i].c[1]);\n n[i].rev = false;\n }\n }\n\n void fix(node_index i) {\n push(i);\n if(n[i].ty == type::Compress) {\n n[i].v[0] = n[i][0].v[0];\n n[i].v[1] = n[i][1].v[1];\n cluster l = n[i][0].f;\n if(n[i].c[2])\n l = cluster::rake(l, n[i][2].f);\n n[i].f = cluster::compress(l, n[i][1].f);\n }\n if(n[i].ty == type::Rake) {\n n[i].v[0] = n[i][0].v[0];\n n[i].v[1] = n[i][0].v[1];\n n[i].f = cluster::rake(n[i][0].f, n[i][1].f);\n }\n\n if(n[i].ty == type::Compress)\n n[i][1](0).hn = i;\n if(n[i].ty != type::Rake) {\n if(!n[i].c[3])\n n[i](0).hn = n[i](1).hn = i;\n else if(n[i][3].ty == type::Rake || n[i][3].c[2] == n[i].i)\n n[i](0).hn = i;\n }\n }\n\n\n int child_dir(node_index i) {\n if(n[i].c[3]) {\n if(n[i][3].c[0] == i) { return 0; }\n else if(n[i][3].c[1] == i) { return 1; }\n else { return 2; }\n }\n return 3;\n }\n\n void rotate(node_index x, size_type dir) {\n node_index p = n[x].c[3];\n int x_dir = child_dir(x);\n node_index y = n[x].c[dir ^ 1];\n n[n[y][dir].c[3] = x].c[dir ^ 1] = n[y].c[dir];\n n[n[x].c[3] = y].c[dir] = x;\n n[y].c[3] = p;\n if(x_dir < 3) n[p].c[x_dir] = y;\n fix(x);\n fix(y);\n if(p && p != guard) fix(p);\n }\n\n void splay(node_index i) {\n push(i);\n int i_dir;\n int j_dir;\n while(child_dir(i) < 2 && n[i].c[3] != guard && n[i].ty == n[i][3].ty) {\n node_index j = n[i].c[3];\n if(child_dir(j) < 2 && n[j].c[3] != guard && n[j].ty == n[j][3].ty) {\n node_index k = n[j].c[3];\n if(n[k].c[3]) push(n[k].c[3]);\n push(k), push(j), push(i);\n i_dir = child_dir(i);\n j_dir = child_dir(j);\n if(i_dir == j_dir) rotate(k, j_dir ^ 1), rotate(j, i_dir ^ 1);\n else rotate(j, i_dir ^ 1), rotate(k, j_dir ^ 1);\n }\n else {\n if(n[j].c[3]) push(n[j].c[3]);\n push(j), push(i);\n rotate(j, child_dir(i) ^ 1);\n }\n }\n }\n\n node_index expose_raw(node_index i) {\n while(true) {\n if(n[i].ty == type::Compress) splay(i);\n node_index p = n[i].c[3];\n if(!p) break;\n else if(n[p].ty == type::Rake) {\n splay(p);\n p = n[p].c[3];\n }\n else if(p == toptree::guard && child_dir(i) < 2) break;\n splay(p);\n\n int dir = child_dir(p);\n dir = (dir >= 2 || n[p][3].ty == type::Rake) ? 0 : dir;\n if(dir == 1) {\n reverse(n[p].c[dir]);\n reverse(i);\n }\n\n int i_dir = child_dir(i);\n int x = n[i].c[3];\n int m = n[p].c[dir];\n\n n[n[m].c[3] = x].c[i_dir] = m;\n n[n[i].c[3] = p].c[dir] = i;\n if(n[x].ty == type::Rake) {\n fix(m); fix(x); fix(i); fix(p);\n splay(x);\n }\n else {\n fix(m); fix(i); fix(p);\n }\n if(n[i].ty == type::Edge) {\n i = p;\n }\n }\n return i;\n }\n\n node_index expose(vertex_index i) {\n return expose_raw(v[i].hn);\n }\n\n void soft_expose(vertex_index a, vertex_index b) {\n node_index r = expose(a);\n if(v[a].hn == v[b].hn) {\n if(n[r].c[1] == a || n[r].c[0] == b) reverse(r), push(r);\n return;\n }\n guard = r;\n node_index s = expose(b);\n guard = ~0;\n fix(r);\n if(child_dir(s) == 0) reverse(r), push(r), push(s);\n }\n\n\n void link(vertex_index a, vertex_index b, cluster weight) {\n node_index e = new_node(type::Edge);\n n[e].v[0] = a; n[e].v[1] = b; n[e].f = weight;\n if(!v[a].hn && !v[b].hn) { fix(e); return; }\n node_index na = v[a].hn;\n node_index nb = v[b].hn;\n node_index left;\n for(int dir = 0; dir < 2; dir++) {\n if(!nb) left = e;\n else {\n nb = expose_raw(nb);\n if(n[nb].v[dir ^ 1] == b) {\n reverse(nb);\n push(nb);\n }\n if(n[nb].v[dir] == b) {\n left = new_node(type::Compress);\n n[left].c[dir] = e; n[left].c[dir ^ 1] = nb;\n n[e].c[3] = n[nb].c[3] = left;\n fix(e); fix(nb); fix(left);\n }\n else {\n node_index ch = n[nb].c[dir];\n if(dir) reverse(ch);\n n[n[e].c[3] = nb].c[dir] = e;\n node_index beta = n[nb].c[2];\n node_index rake;\n if(beta) {\n rake = new_node(type::Rake);\n n[rake].c[0] = beta; n[rake].c[1] = ch;\n n[beta].c[3] = n[ch].c[3] = rake;\n fix(beta); fix(ch);\n }\n else rake = ch;\n n[n[rake].c[3] = nb].c[2] = rake;\n fix(rake); fix(e); fix(left = nb);\n }\n }\n e = left;\n nb = na;\n b = a;\n }\n }\n\n cluster path_query(vertex_index a, vertex_index b) {\n soft_expose(a, b);\n node_index r = v[a].hn;\n if(n[r].v[0] == a && n[r].v[1] == b) return n[r].f;\n if(n[r].v[0] == a) return n[r][0].f;\n if(n[r].v[1] == b) return n[r][1].f;\n push(n[r].c[1]);\n return n[r][1][0].f;\n }\n\n void bring(node_index r, int dir) {\n node_index i = n[r].c[2];\n if(!i) {\n i = n[r].c[dir ^ 1];\n n[i].c[3] = 0;\n fix(i);\n }\n else if(n[i].ty == type::Rake) {\n while(push(i), n[i][1].ty == type::Rake) i = n[i].c[1];\n guard = r;\n splay(i);\n guard = ~0;\n n[n[i][0].c[3] = r].c[2] = n[i].c[0];\n if(dir) reverse(n[i].c[1]);\n n[n[i][1].c[3] = r].c[dir] = n[i].c[1];\n fix(n[r].c[2]); fix(n[r].c[dir]); fix(r);\n }\n else {\n if(dir) reverse(i);\n n[n[i].c[3] = r].c[dir] = i;\n n[r].c[2] = 0;\n fix(n[r].c[dir]); fix(r);\n }\n }\n\n void cut(node_index a, node_index b) {\n soft_expose(a, b);\n node_index r = v[a].hn;\n push(r);\n node_index s = n[r].c[1];\n push(s);\n n[s].c[3] = 0;\n n[r].c[1] = 0;\n bring(r, 1);\n bring(s, 0);\n }\n\n cluster::dist mid(node_index a) {\n node_index i = expose(a);\n push(i);\n return std::max(n[i][0].f.max_dist_right, n[i][1].f.max_dist_left);\n }\n}\n\ntoptree::vertex toptree::v[404040];\ntoptree::size_type toptree::vi = 1;\ntoptree::node toptree::n[2020202];\ntoptree::size_type toptree::ni = 1;\ntoptree::node_index toptree::guard = ~0;\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing i64 = long long;\n#define rep(i,s,e) for(i64 (i) = (s);(i) < (e);(i)++)\n#define all(x) x.begin(),x.end()\n\ntemplate<class T>\nstatic inline std::vector<T> ndvec(size_t&& n, T val) noexcept {\n return std::vector<T>(n, std::forward<T>(val));\n}\n\ntemplate<class... Tail>\nstatic inline auto ndvec(size_t&& n, Tail&&... tail) noexcept {\n return std::vector<decltype(ndvec(std::forward<Tail>(tail)...))>(n, ndvec(std::forward<Tail>(tail)...));\n}\n\ntemplate<class T, class Cond>\nstruct chain {\n Cond cond; chain(Cond cond) : cond(cond) {}\n bool operator()(T& a, const T& b) const {\n if(cond(a, b)) { a = b; return true; }\n return false;\n }\n};\n#include <iostream>\n#include <vector>\n#include <tuple>\n\nusing namespace std;\n\n#include <cstdio>\n\nnamespace niu {\n char cur;\n struct FIN {\n static inline bool is_blank(char c) { return c <= ' '; }\n inline char next() { return cur = getc_unlocked(stdin); }\n inline char peek() { return cur; }\n inline void skip() { while(is_blank(next())){} }\n#define intin(inttype) \\\n FIN& operator>>(inttype& n) { \\\n bool sign = 0; \\\n n = 0; \\\n skip(); \\\n while(!is_blank(peek())) { \\\n if(peek() == '-') sign = 1; \\\n else n = (n << 1) + (n << 3) + (peek() & 0b1111); \\\n next(); \\\n } \\\n if(sign) n = -n; \\\n return *this; \\\n }\nintin(int)\nintin(long long)\n } fin;\n\n char tmp[128];\n struct FOUT {\n static inline bool is_blank(char c) { return c <= ' '; }\n inline void push(char c) { putc_unlocked(c, stdout); }\n FOUT& operator<<(char c) { push(c); return *this; }\n FOUT& operator<<(const char* s) { while(*s) push(*s++); return *this; }\n#define intout(inttype) \\\n FOUT& operator<<(inttype n) { \\\n if(n) { \\\n char* p = tmp + 127; bool neg = 0; \\\n if(n < 0) neg = 1, n = -n; \\\n while(n) *--p = (n % 10) | 0b00110000, n /= 10; \\\n if(neg) *--p = '-'; \\\n return (*this) << p; \\\n } \\\n else { \\\n push('0'); \\\n return *this; \\\n } \\\n }\nintout(int)\nintout(long long)\n } fout;\n}\n\ntemplate<class T, class Cond>\nchain<T, Cond> make_chain(Cond cond) { return chain<T, Cond>(cond); }\nint main() {\n using niu::fin;\n using niu::fout;\n i64 N, Q;\n fin >> N;\n vector<int> vs(N);\n vector<i64> leaf(N);\n for(int i = 0;i < N;i++) {\n vs[i] = toptree::new_vertex();\n }\n vector<int> A(N - 1), B(N - 1), D(N - 1);\n for(int i = 0;i + 1 < N;i++) {\n fin >> A[i] >> B[i] >> D[i];\n A[i]--;\n B[i]--;\n toptree::link(vs[A[i]], vs[B[i]], toptree::cluster(D[i], A[i], B[i]));\n leaf[A[i]] += i;\n leaf[B[i]] += i;\n }\n fin >> Q;\n int now = 0;\n vector<int> ans(N);\n for(int i = 0;i < Q;i++) {\n int c, x;\n fin >> c >> x;\n x--;\n if(c == 1) {\n now = x;\n }\n else if(c == 2) {\n toptree::cut(vs[A[x]], vs[B[x]]);\n leaf[A[x]] -= x;\n leaf[B[x]] -= x;\n }\n else {\n toptree::link(vs[A[x]], vs[B[x]], toptree::cluster(D[x], A[x], B[x]));\n leaf[A[x]] += x;\n leaf[B[x]] += x;\n }\n i64 MAX = toptree::mid(vs[now]).d;\n if(MAX == 0) {\n fout << 1 << \" \" << now + 1 << '\\n';\n continue;\n }\n int ai = 0;\n while(true) {\n auto res = toptree::mid(vs[now]);\n if(res.d < MAX) break;\n ans[ai++] = res.to;\n int idx = leaf[res.to];\n toptree::cut(vs[A[idx]], vs[B[idx]]);\n }\n\n sort(begin(ans), begin(ans) + ai);\n fout << ai;\n rep(j,0,ai) fout << ' ' << ans[j] + 1;\n fout << '\\n';\n rep(j,0,ai) {\n int idx = leaf[ans[j]];\n toptree::link(vs[A[idx]], vs[B[idx]], toptree::cluster(D[idx], A[idx], B[idx]));\n }\n }\n}", "accuracy": 0.06666666666666667, "time_ms": 510, "memory_kb": 167788, "score_of_the_acc": -0.8621, "final_rank": 13 }, { "submission_id": "aoj_3143_4306679", "code_snippet": "#include <vector>\n#include <iostream>\n#include <string>\n#include <cassert>\nusing i64 = long long;\n\nstruct cluster {\n struct dist {\n i64 d; int to;\n dist(): d(0), to(-1) {}\n dist(i64 d, i64 to): d(d), to(to) {}\n bool operator<(const dist& r) const { return d < r.d; }\n dist operator+(const i64& r) const { return dist(d + r, to); }\n };\n dist ans;\n dist max_dist_left;\n dist max_dist_right;\n i64 length;\n \n using V = std::size_t;\n cluster(i64 l = 0, int a = -1, int b = -1): ans(), max_dist_left(l, b), max_dist_right(l, a), length(l) {}\n cluster(dist a, dist b, dist c, i64 d): ans(a), max_dist_left(b), max_dist_right(c), length(d) {}\n static cluster identity() {\n return cluster(0);\n }\n static V v_identity() {\n return 0;\n }\n static cluster compress(const cluster& a, const cluster& b, V _x, V _y, V _z) {\n return cluster(\n std::max(a.max_dist_right, b.max_dist_left),\n std::max(a.max_dist_left, b.max_dist_left + a.length),\n std::max(b.max_dist_right, a.max_dist_right + b.length),\n a.length + b.length\n );\n }\n static cluster rake(const cluster& a, const cluster& b, V _x, V _y, V _z) {\n return cluster(\n dist(),\n std::max(a.max_dist_left, b.max_dist_right + a.length),\n std::max(a.max_dist_right, b.max_dist_right),\n a.length\n );\n }\n static cluster reverse(const cluster& c) {\n cluster res = c;\n std::swap(res.max_dist_left, res.max_dist_right);\n return res;\n }\n \n static std::size_t select(const cluster& a, const cluster& b, V av, V bv, V cv) {\n return 0;\n }\n};\n\n#include <utility>\n#include <array>\n#include <cassert>\n\nusing i64 = long long;\n\nclass vertex;\n\nclass node;\nint parent_dir(node*);\nnode* link(vertex, vertex, cluster);\nvoid test_comp_set(node* n);\n\nclass vertex_raw {\n cluster::V val;\n node* hand;\n\npublic:\n\n vertex_raw(cluster::V val): val(val), hand(nullptr) {}\n\n node* handle() const { return this->hand; }\n void set_handle(node* hand) { this->hand = hand; }\n const cluster::V& value() const { return this->val; }\n void set_value(cluster::V val) {\n this->val = val;\n }\n};\n\nclass vertex {\n vertex_raw* ver;\n\nprivate:\n\n\npublic:\n\n static vertex dangling() { return vertex(); } \n\n vertex(): ver(nullptr) {}\n vertex(cluster::V val): ver( new vertex_raw(val)) {\n vertex dummy;\n dummy.ver = new vertex_raw(cluster::V());\n link(*this, dummy, cluster::identity());\n }\n\n bool operator==(const vertex& other) { return this->ver == other.ver; }\n \n inline node* handle() const { return this->ver->handle(); }\n inline void set_handle(node* hand) { this->ver->set_handle(hand); }\n inline const cluster::V& value() const { return this->ver->value(); }\n inline void set_value(cluster::V val) { this->ver->set_value(val); }\n};\n\nenum class Type { Compress, Rake, Edge, None };\n\nstatic std::size_t ni = 0;\nextern node ns[1515151];\n\nclass node {\n node* ch[2];\n node* par;\n node* ra;\n node* me;\n bool rev;\n cluster fo;\n vertex v[2];\n Type ty;\n\n\n\npublic:\n\n node(): par(nullptr), ra(nullptr), me(nullptr), rev(false),\n fo(cluster::identity()), ty(Type::None) {} \n\n\n\n static node* new_edge(vertex v, vertex u, cluster val) {\n //node* n = new node();\n node* n = ns + (ni++);\n n->v[0] = v;\n n->v[1] = u;\n n->fo = val;\n n->me = n;\n n->ty = Type::Edge;\n\n n->fix();\n\n return n;\n }\n\n static node* new_compress(node* left, node* right) {\n //node* n = new node();\n node* n = ns + (ni++);\n n->ch[0] = left;\n n->ch[1] = right;\n n->me = n;\n n->ty = Type::Compress;\n n->fix();\n return n;\n }\n\n static node* new_rake(node* left, node* right) {\n //node * n = new node();\n node* n = ns + (ni++);\n n->ch[0] = left;\n n->ch[1] = right;\n n->me = n;\n n->ty = Type::Rake;\n n->fix();\n return n;\n }\n\n inline void fix() {\n if(this->ty == Type::Edge) {\n if(!this->parent()) {\n this->endpoint(0).set_handle(this->me);\n this->endpoint(1).set_handle(this->me);\n }\n else if(this->parent()->ty == Type::Compress) {\n if(parent_dir(this->me) == -1) {\n this->endpoint(0).set_handle(this->me);\n }\n }\n else if(this->parent()->ty == Type::Rake) {\n this->endpoint(0).set_handle(this->me);\n }\n }\n else if(this->ty == Type::Compress) {\n this->push();\n this->v[0] = this->child(0)->endpoint(0);\n this->v[1] = this->child(1)->endpoint(1);\n assert(this->child(0)->endpoint(1) == this->child(1)->endpoint(0));\n\n cluster left = this->child(0)->fold();\n node* l = this->child(0);\n if(this->rake()) {\n node* r = this->rake();\n left = cluster::rake(l->fold(), r->fold(), l->endpoint(0).value(), r->endpoint(0).value(), l->endpoint(1).value());\n }\n node* r = this->child(1);\n this->fo= cluster::compress(left, r->fold(),\n l->endpoint(0).value(), r->endpoint(1).value(), l->endpoint(1).value());\n \n this->child(0)->endpoint(1).set_handle(this->me);\n\n if(!this->parent()) {\n this->endpoint(0).set_handle(this->me);\n this->endpoint(1).set_handle(this->me);\n }\n else if(this->parent()->ty == Type::Compress) {\n if(parent_dir(this->me) == -1) {\n this->endpoint(0).set_handle(this->me);\n }\n }\n else if(this->parent()->ty == Type::Rake) {\n this->endpoint(0).set_handle(this->me);\n }\n\n }\n else if(this->ty == Type::Rake) {\n this->push();\n this->v[0] = this->child(0)->endpoint(0);\n this->v[1] = this->child(0)->endpoint(1);\n this->fo = cluster::rake(this->child(0)->fold(), this->child(1)->fold(),\n this->child(0)->endpoint(0).value(), this->child(1)->endpoint(0).value(), this->child(0)->endpoint(1).value());\n }\n else { assert(false); }\n }\n\n inline void push() {\n if(this->ty == Type::Compress) {\n if(this->rev) {\n std::swap(this->ch[0], this->ch[1]);\n this->child(0)->reverse();\n this->child(1)->reverse();\n this->rev = false;\n }\n }\n }\n\n inline void reverse() {\n if(this->ty == Type::Edge) {\n std::swap(this->v[0], this->v[1]);\n this->fo = cluster::reverse(this->fold());\n }\n else if(this->ty == Type::Compress) {\n std::swap(this->v[0], this->v[1]);\n this->fo = cluster::reverse(this->fold());\n this->rev ^= true;\n }\n else if(this->ty == Type::Rake) {\n }\n else { assert(false); }\n }\n\n inline node* parent() const { return this->par; }\n inline void set_parent(node* par) { this->par = par; }\n inline node* rake() const { return this->ra; }\n inline void set_rake(node* rake) { this->ra = rake; }\n inline node* child(std::size_t dir) const { return this->ch[dir]; }\n inline void set_child(node* ch, std::size_t dir) { this->ch[dir] = ch; }\n inline vertex endpoint(std::size_t dir) { return this->v[dir]; }\n inline Type type() const { return this->ty; }\n\n cluster fold() const { return this->fo; }\n\n bool guard;\n};\n\nint parent_dir(node* child) {\n node* par = child->parent();\n if(par) {\n if(par->guard) { return -1; }\n else if(par->child(0) == child) { return 0; }\n else if(par->child(1) == child) { return 1; }\n else { return -1; }\n }\n else { return -1; }\n}\n\nint parent_dir_guard(node* child) {\n node* par = child->parent();\n if(par) {\n if(par->child(0) == child) { return 0; }\n else if(par->child(1) == child) { return 1; }\n else { return -1; }\n }\n else { return -1; }\n}\n\nvoid rotate(node* t, node* x, std::size_t dir) {\n node* y = x->parent();\n int par = parent_dir_guard(x);\n t->child(dir)->push();\n x->set_child(t->child(dir), dir ^ 1);\n t->child(dir)->set_parent(x);\n t->set_child(x, dir);\n x->set_parent(t);\n t->set_parent(y);\n if(par != -1) {\n y->set_child(t, par);\n }\n else if(y && y->type() == Type::Compress) {\n y->set_rake(t);\n }\n x->fix();\n t->fix();\n if(y && !y->guard) { y->fix(); }\n}\n\nvoid splay(node* t) {\n assert(t->type() != Type::Edge);\n t->push();\n\n while(parent_dir(t) != -1) {\n node* q = t->parent();\n if(q->type() != t->type()) break;\n if(parent_dir(q) != -1 && q->parent() && q->parent()->type() == q->type()) {\n node* r = q->parent();\n if(r->parent()) r->parent()->push();\n r->push();\n q->push();\n t->push();\n int qt_dir = parent_dir(t);\n int rq_dir = parent_dir(q);\n if(rq_dir == qt_dir) {\n rotate(q, r, rq_dir ^ 1);\n rotate(t, q, qt_dir ^ 1);\n }\n else {\n rotate(t, q, qt_dir ^ 1);\n rotate(t, r, rq_dir ^ 1);\n }\n }\n else {\n if(q->parent()) q->parent()->push();\n q->push();\n t->push();\n int qt_dir = parent_dir(t);\n rotate(t, q, qt_dir ^ 1);\n }\n }\n}\n\nnode* expose_raw(node* t) {\n while(true) {\n assert(t->type() != Type::Rake);\n if(t->type() == Type::Compress) {\n splay(t);\n }\n node* n = nullptr;\n {\n node* par = t->parent();\n if(!par) { break; }\n else if(par->type() == Type::Rake) {\n par->push();\n splay(par);\n n = par->parent();\n }\n else if(par->type() == Type::Compress) {\n par->push();\n if(par->guard && parent_dir_guard(t) != -1) { break; }\n n = par;\n }\n else { assert(false); }\n }\n\n splay(n);\n\n \n int dir = parent_dir_guard(n);\n if(dir == -1 || n->parent()->type() == Type::Rake) dir = 0;\n if(dir == 1) {\n n->child(dir)->reverse();\n n->child(dir)->push();\n t->reverse();\n t->push();\n }\n int n_dir = parent_dir(t);\n if(n_dir != -1) {\n node* nch = n->child(dir);\n nch->push();\n node* rake = t->parent();\n rake->push();\n\n rake->set_child(nch, n_dir);\n nch->set_parent(rake);\n n->set_child(t, dir);\n t->set_parent(n);\n nch->fix();\n rake->fix();\n t->fix();\n n->fix();\n splay(rake);\n }\n else {\n node* nch = n->child(dir);\n nch->push();\n n->set_rake(nch);\n nch->set_parent(n);\n n->set_child(t, dir);\n t->set_parent(n);\n\n nch->fix();\n t->fix();\n n->fix();\n }\n if(t->type() == Type::Edge) {\n t = n;\n }\n }\n \n return t;\n}\n\nnode* expose(vertex ver) {\n return expose_raw(ver.handle());\n}\n\nvoid soft_expose(vertex v, vertex u) {\n node* root = expose(v);\n if(v.handle() == u.handle()) {\n if(root->endpoint(1) == v || root->endpoint(0) == u) {\n root->reverse();\n root->push();\n }\n return;\n }\n root->guard = true;\n node* soot = expose(u);\n root->guard = false;\n root->fix();\n if(parent_dir(soot) == 0) {\n root->reverse();\n root->push();\n }\n}\n\nnode* link(vertex v, vertex u, cluster weight) {\n if(!v.handle() && !u.handle()) {\n return node::new_edge(v, u, weight);\n }\n else {\n node* nnu = u.handle();\n node* nnv = v.handle();\n node* e = node::new_edge(v, u, weight);\n node* left = nullptr;\n\n if(!nnu) { left = e; }\n else {\n node* uu = expose_raw(nnu);\n uu->push();\n if(uu->endpoint(1) == u) {\n uu->reverse();\n uu->push();\n }\n if(uu->endpoint(0) == u) {\n node* nu = node::new_compress(e, uu);\n e->set_parent(nu);\n e->fix();\n uu->set_parent(nu);\n uu->fix();\n nu->fix();\n\n left = nu;\n }\n else {\n node* nu = uu;\n node* left_ch = nu->child(0);\n left_ch->push();\n\n nu->set_child(e, 0);\n e->set_parent(nu);\n e->fix();\n \n node* beta = nu->rake();\n node* rake = nullptr;\n if(beta) {\n beta->push();\n rake = node::new_rake(beta, left_ch);\n beta->set_parent(rake);\n left_ch->set_parent(rake);\n beta->fix();\n left_ch->fix();\n }\n else {\n rake = left_ch;\n }\n nu->set_rake(rake);\n rake->set_parent(nu);\n rake->fix();\n nu->fix();\n\n left = nu;\n }\n }\n\n if(!nnv) {}\n else {\n node* vv =expose_raw(nnv);\n vv->push();\n if(vv->endpoint(0) == v) {\n vv->reverse();\n vv->push();\n }\n if(vv->endpoint(1) == v) {\n node* top = node::new_compress(vv, left);\n vv->set_parent(top);\n left->set_parent(top);\n vv->fix();\n left->fix();\n top->fix();\n }\n else {\n node* nv = vv;\n node* right_ch = nv->child(1);\n right_ch->reverse();\n right_ch->push();\n\n nv->set_child(left, 1);\n left->set_parent(nv);\n left->fix();\n\n node* alpha = nv->rake();\n node* rake = nullptr;\n if(alpha) {\n alpha->push();\n rake = node::new_rake(alpha, right_ch);\n alpha->set_parent(rake);\n alpha->fix();\n right_ch->set_parent(rake);\n right_ch->fix();\n }\n else {\n rake = right_ch;\n }\n nv->set_rake(rake);\n rake->set_parent(nv);\n rake->fix();\n nv->fix();\n }\n }\n\n return e;\n }\n}\n\nvoid bring(node* root) {\n node* rake = root->rake();\n\n if(!rake) {\n node* left = root->child(0);\n //delete root, root = nullptr;\n left->set_parent(nullptr);\n left->fix();\n }\n else if(rake->type() == Type::Compress || rake->type() == Type::Edge) {\n rake->push();\n node* new_right = rake;\n new_right->reverse();\n new_right->push();\n\n root->set_child(new_right, 1);\n new_right->set_parent(root);\n\n root->set_rake(nullptr);\n\n new_right->fix();\n root->fix();\n }\n else if(rake->type() == Type::Rake) {\n rake->push();\n while(rake->child(1)->type() == Type::Rake) {\n rake->child(1)->push();\n rake = rake->child(1);\n }\n root->guard = true;\n splay(rake);\n root->guard = false;\n\n node* new_rake = rake->child(0);\n node* new_right = rake->child(1);\n\n //delete rake, rake = nullptr;\n new_right->reverse();\n new_right->push();\n\n root->set_child(new_right, 1);\n new_right->set_parent(root);\n\n root->set_rake(new_rake);\n new_rake->set_parent(root);\n\n new_rake->fix();\n new_right->fix();\n root->fix();\n }\n}\n\nvoid cut(vertex v, vertex u) {\n soft_expose(v, u);\n node* root = v.handle();\n root->push();\n node* right = root->child(1);\n right->set_parent(nullptr);\n\n right->reverse();\n right->push();\n\n bring(right);\n bring(root);\n}\n\ncluster path_query(vertex v, vertex u) {\n soft_expose(v, u);\n node* root = v.handle();\n root->push();\n if(root->endpoint(0) == v && root->endpoint(1) == u) {\n return root->fold();\n }\n else if(root->endpoint(0) == v) {\n return root->child(0)->fold();\n }\n else if(root->endpoint(1) == u) {\n return root->child(1)->fold();\n }\n else {\n root->child(1)->push();\n return root->child(1)->child(0)->fold();\n }\n}\n\nnode* select_rake(node* rake, cluster& right, cluster::V& rv0, cluster::V& rv1) {\n rake->push();\n while(rake->type() == Type::Rake) {\n node* l = rake->child(0);\n node* r = rake->child(1);\n l->push();\n r->push();\n\n cluster rf = cluster::rake(r->fold(), right, r->endpoint(0).value(), rv0, r->endpoint(1).value());\n cluster::V r0 = r->endpoint(0).value();\n\n std::size_t dir = cluster::select(l->fold(), rf, l->endpoint(0).value(), r0, l->endpoint(1).value());\n r = rake->child(1 - dir);\n rake = rake->child(dir);\n\n\n right = cluster::rake(r->fold(), right, r->endpoint(0).value(), rv0, r->endpoint(1).value());\n rv0 = r->endpoint(0).value();\n rv1 = r->endpoint(1).value();\n\n rake->push();\n }\n return rake;\n}\n\nstd::pair<vertex, vertex> select(vertex v) {\n node* n = expose(v);\n cluster lf = cluster::identity();\n cluster::V l0, l1;\n bool luse = false;\n cluster rf = cluster::identity();\n cluster::V r0, r1;\n bool ruse = false;\n\n n->push();\n while(n->type() == Type::Compress) {\n node* a = n->child(0);\n node* b = n->child(1);\n node* r = n->rake();\n a->push();\n b->push();\n if(r) { r->push(); }\n\n cluster af = a->fold();\n cluster::V a0 = a->endpoint(0).value();\n cluster::V a1 = a->endpoint(1).value();\n if(luse) {\n af = cluster::compress(lf, af, l0, a1, l1);\n a0 = l0;\n a1 = a1;\n }\n cluster bf = b->fold();\n cluster::V b0 = b->endpoint(0).value();\n cluster::V b1 = b->endpoint(1).value();\n if(ruse) {\n bf = cluster::compress(bf, rf, b0, r1, b1);\n b0 = b0;\n b1 = r1;\n }\n cluster arf = af;\n if(r) {\n arf = cluster::rake(af, r->fold(), a0, r->endpoint(0).value(), a1);\n }\n\n std::size_t dir = cluster::select(arf, bf, a0, b1, a1);\n \n if(dir == 0) {\n if(r) {\n cluster rbf = cluster::reverse(bf);\n cluster::V rb0 = b1;\n\n cluster rrf = cluster::rake(r->fold(), rbf, r->endpoint(0).value(), rb0, r->endpoint(1).value());\n cluster::V rr0 = r->endpoint(0).value();\n cluster::V rr1 = r->endpoint(1).value();\n\n dir = cluster::select(af, rrf, a0, rr0, a1);\n if(dir == 0) {\n rf = cluster::reverse(rrf);\n r0 = rr1;\n r1 = rr0;\n ruse = true;\n n = n->child(0);\n }\n else {\n luse = false;\n rf = cluster::rake(af, rbf, a0, rb0, a1);\n r0 = a0;\n r1 = a1;\n ruse = true;\n n = select_rake(r, rf, r0, r1);\n rf = cluster::reverse(rf);\n std::swap(r0, r1);\n }\n }\n else {\n rf = bf;\n r0 = b0;\n r1 = b1;\n ruse = true;\n n = n->child(0);\n }\n }\n else {\n lf = arf;\n l0 = a0;\n l1 = a1;\n luse = true;\n n = n->child(1);\n }\n\n n->push();\n }\n return { n->endpoint(0), n->endpoint(1) };\n}\n\nnode ns[1515151];\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing i64 = long long;\n#define rep(i,s,e) for(i64 (i) = (s);(i) < (e);(i)++)\n#define all(x) x.begin(),x.end()\n\ntemplate<class T>\nstatic inline std::vector<T> ndvec(size_t&& n, T val) noexcept {\n return std::vector<T>(n, std::forward<T>(val));\n}\n\ntemplate<class... Tail>\nstatic inline auto ndvec(size_t&& n, Tail&&... tail) noexcept {\n return std::vector<decltype(ndvec(std::forward<Tail>(tail)...))>(n, ndvec(std::forward<Tail>(tail)...));\n}\n\ntemplate<class T, class Cond>\nstruct chain {\n Cond cond; chain(Cond cond) : cond(cond) {}\n bool operator()(T& a, const T& b) const {\n if(cond(a, b)) { a = b; return true; }\n return false;\n }\n};\n#include <iostream>\n#include <vector>\n#include <tuple>\n\nusing namespace std;\n\n#include <cstdio>\n\nnamespace niu {\n char cur;\n struct FIN {\n static inline bool is_blank(char c) { return c <= ' '; }\n inline char next() { return cur = getc_unlocked(stdin); }\n inline char peek() { return cur; }\n inline void skip() { while(is_blank(next())){} }\n#define intin(inttype) \\\n FIN& operator>>(inttype& n) { \\\n bool sign = 0; \\\n n = 0; \\\n skip(); \\\n while(!is_blank(peek())) { \\\n if(peek() == '-') sign = 1; \\\n else n = (n << 1) + (n << 3) + (peek() & 0b1111); \\\n next(); \\\n } \\\n if(sign) n = -n; \\\n return *this; \\\n }\nintin(int)\nintin(long long)\n } fin;\n\n char tmp[128];\n struct FOUT {\n static inline bool is_blank(char c) { return c <= ' '; }\n inline void push(char c) { putc_unlocked(c, stdout); }\n FOUT& operator<<(char c) { push(c); return *this; }\n FOUT& operator<<(const char* s) { while(*s) push(*s++); return *this; }\n#define intout(inttype) \\\n FOUT& operator<<(inttype n) { \\\n if(n) { \\\n char* p = tmp + 127; bool neg = 0; \\\n if(n < 0) neg = 1, n = -n; \\\n while(n) *--p = (n % 10) | 0b00110000, n /= 10; \\\n if(neg) *--p = '-'; \\\n return (*this) << p; \\\n } \\\n else { \\\n push('0'); \\\n return *this; \\\n } \\\n }\nintout(int)\nintout(long long)\n } fout;\n}\n\ntemplate<class T, class Cond>\nchain<T, Cond> make_chain(Cond cond) { return chain<T, Cond>(cond); }\nint main() {\n using niu::fin;\n using niu::fout;\n i64 N, Q;\n fin >> N;\n vector<vertex> vs(N);\n vector<i64> leaf(N);\n for(int i = 0;i < N;i++) {\n vs[i] = vertex(0);\n }\n vector<int> A(N - 1), B(N - 1), D(N - 1);\n for(int i = 0;i + 1 < N;i++) {\n fin >> A[i] >> B[i] >> D[i];\n A[i]--;\n B[i]--;\n link(vs[A[i]], vs[B[i]], cluster(D[i], A[i], B[i]));\n leaf[A[i]] += i;\n leaf[B[i]] += i;\n }\n fin >> Q;\n int now = 0;\n vector<int> ans(N);\n for(int i = 0;i < Q;i++) {\n int c, x;\n fin >> c >> x;\n x--;\n if(c == 1) {\n now = x;\n }\n else if(c == 2) {\n cut(vs[A[x]], vs[B[x]]);\n leaf[A[x]] -= x;\n leaf[B[x]] -= x;\n }\n else {\n link(vs[A[x]], vs[B[x]], cluster(D[x], A[x], B[x]));\n leaf[A[x]] += x;\n leaf[B[x]] += x;\n }\n i64 MAX = expose(vs[now])->fold().ans.d;\n if(MAX == 0) {\n fout << 1 << \" \" << now + 1 << '\\n';\n continue;\n }\n int ai = 0;\n while(true) {\n auto res = expose(vs[now])->fold().ans;\n if(res.d < MAX) break;\n ans[ai++] = res.to;\n int idx = leaf[res.to];\n cut(vs[A[idx]], vs[B[idx]]);\n }\n\n sort(begin(ans), begin(ans) + ai);\n fout << ai;\n rep(j,0,ai) fout << ' ' << ans[j] + 1;\n fout << '\\n';\n rep(j,0,ai) {\n int idx = leaf[ans[j]];\n link(vs[A[idx]], vs[B[idx]], cluster(D[idx], A[idx], B[idx]));\n }\n }\n}", "accuracy": 0.30666666666666664, "time_ms": 1110, "memory_kb": 210848, "score_of_the_acc": -1.6201, "final_rank": 10 }, { "submission_id": "aoj_3143_4302750", "code_snippet": "#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#endif\n//BEGIN CUT HERE\nstruct Vertex{\n void* handle;\n int idx;\n Vertex(int idx=-1):handle(nullptr),idx(idx){}\n};\n\ntemplate<typename T>\nstruct Farthest{\n struct pi{\n T dist;\n int idx;\n pi():dist(0),idx(-1){}\n pi(T dist,int idx):dist(dist),idx(idx){}\n bool operator<(const pi &o)const{return dist<o.dist;}\n pi operator+(const T e)const{return pi(dist+e,idx);}\n };\n pi md,lf,rg;\n T len;\n Farthest(){}\n Farthest(T l,int f,int t):lf(l,t),rg(l,f),len(l){}\n Farthest(pi md,pi lf,pi rg,T len):\n md(md),lf(lf),rg(rg),len(len){}\n void toggle(){swap(lf,rg);}\n static Farthest compress(Farthest x,Vertex*,Farthest y){\n return Farthest(\n max(x.rg,y.lf),\n max(x.lf,y.lf+x.len),\n max(y.rg,x.rg+y.len),\n x.len+y.len);\n }\n static Farthest rake(Farthest x,Farthest y,Vertex*){\n return Farthest(pi(),max(x.lf,y.rg+x.len),max(x.rg,y.rg),x.len);\n }\n};\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\n\n#define call_from_test\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename Vertex, typename Cluster, size_t LIM>\nstruct TopTree{\n enum Type { Compress, Rake, Edge, None };\n struct Node{\n Vertex* vs[2];\n Cluster dat;\n Node* p;\n Node* q;\n Node* ch[2];\n bool rev,guard;\n Type type;\n Node():p(nullptr),q(nullptr),rev(false),guard(false),type(Type::None){}\n };\n\n static array<Vertex, LIM> pool_v;\n static array<Node, LIM> pool_c;\n size_t ptr_v,ptr_c;\n\n Cluster id;\n TopTree(Cluster id=Cluster()):ptr_v(0),ptr_c(0),id(id){}\n\n inline Vertex* create(Vertex v){\n assert(ptr_v+1<LIM);\n auto t=&pool_v[ptr_v++];\n auto dummy=&pool_v[ptr_v++];\n *t=v;\n link(t,id,dummy);\n return t;\n }\n\n inline Node* edge(Vertex* u,Cluster w,Vertex* v){\n assert(ptr_c<LIM);\n auto t=&(pool_c[ptr_c++]);\n t->vs[0]=u;t->vs[1]=v;t->dat=w;t->type=Type::Edge;\n return pushup(t);\n }\n\n inline Node* compress(Node* l,Node* r){\n assert(ptr_c<LIM);\n auto t=&(pool_c[ptr_c++]);\n t->ch[0]=l;t->ch[1]=r;t->type=Type::Compress;\n return pushup(t);\n }\n\n inline Node* rake(Node* l,Node* r){\n assert(ptr_c<LIM);\n auto t=&(pool_c[ptr_c++]);\n t->ch[0]=l;t->ch[1]=r;t->type=Type::Rake;\n return pushup(t);\n }\n\n int parent_dir(Node* t){\n Node* p=t->p;\n if(!p) return -1;\n if(p->guard) return -1;\n if(p->ch[0]==t) return 0;\n if(p->ch[1]==t) return 1;\n return -1;\n }\n\n inline Node* pushup(Node* const t){\n Node* const l=t->ch[0];\n Node* const r=t->ch[1];\n\n if(t->type==Type::Edge){\n if(!t->p){\n t->vs[0]->handle=t;\n t->vs[1]->handle=t;\n }else if(t->p->type==Type::Compress){\n if(parent_dir(t)==-1)\n t->vs[0]->handle=t;\n }else if(t->p->type==Type::Rake){\n t->vs[0]->handle=t;\n }\n }else if(t->type==Type::Compress){\n assert(l->vs[1]==r->vs[0]);\n t->vs[0]=l->vs[0];\n t->vs[1]=r->vs[1];\n\n Cluster lf=l->dat;\n if(t->q){\n Node* q=t->q;\n assert(l->vs[1]==q->vs[1]);\n lf=Cluster::rake(l->dat,q->dat,q->vs[0]);\n }\n t->dat=Cluster::compress(lf,r->vs[0],r->dat);\n\n l->vs[1]->handle=t;\n if(!t->p){\n t->vs[0]->handle=t;\n t->vs[1]->handle=t;\n }else if(t->p->type==Type::Compress){\n if(parent_dir(t)==-1)\n t->vs[0]->handle=t;\n }else if(t->p->type==Type::Rake){\n t->vs[0]->handle=t;\n }\n }else if(t->type==Type::Rake){\n propagate(t);\n assert(l->vs[1]==r->vs[1]);\n t->vs[0]=l->vs[0];\n t->vs[1]=l->vs[1];\n t->dat=Cluster::rake(l->dat,r->dat,r->vs[0]);\n }else abort();\n return t;\n }\n\n\n int parent_dir_ignore_guard(Node* t){\n Node* p=t->p;\n if(!p) return -1;\n if(p->ch[0]==t) return 0;\n if(p->ch[1]==t) return 1;\n return -1;\n }\n\n void rotate(Node* t,Node* x,size_t dir){\n Node* y=x->p;\n int par=parent_dir_ignore_guard(x);\n propagate(t->ch[dir]);\n x->ch[dir^1]=t->ch[dir];\n t->ch[dir]->p=x;\n t->ch[dir]=x;\n x->p=t;\n t->p=y;\n if(~par) y->ch[par]=t;\n else if(y and y->type==Type::Compress) y->q=t;\n pushup(x);pushup(t);\n if(y and !y->guard) pushup(y);\n }\n\n inline void propagate(Node* t){\n if(t->type==Type::Compress){\n if(t->rev){\n assert(t->ch[0] and t->ch[1]);\n swap(t->ch[0],t->ch[1]);\n toggle(t->ch[0]);\n toggle(t->ch[1]);\n t->rev=false;\n }\n }\n }\n\n inline void toggle(Node* t){\n if(t->type==Type::Edge){\n swap(t->vs[0],t->vs[1]);\n t->dat.toggle();\n }else if(t->type==Type::Compress){\n swap(t->vs[0],t->vs[1]);\n t->dat.toggle();\n t->rev^=true;\n }else if(t->type==Type::Rake){\n }else abort();\n }\n\n void splay(Node* t){\n assert(t->type!=Type::Edge);\n propagate(t);\n\n while(~parent_dir(t)){\n Node* q=t->p;\n if(q->type!=t->type) break;\n if(~parent_dir(q) and q->p and q->p->type==q->type){\n Node* r=q->p;\n if(r->p) propagate(r->p);\n propagate(r);propagate(q);propagate(t);\n int qt_dir=parent_dir(t);\n int rq_dir=parent_dir(q);\n if(rq_dir==qt_dir){\n rotate(q,r,rq_dir^1);\n rotate(t,q,qt_dir^1);\n }else{\n rotate(t,q,qt_dir^1);\n rotate(t,r,rq_dir^1);\n }\n }else{\n if(q->p) propagate(q->p);\n propagate(q);propagate(t);\n int qt_dir=parent_dir(t);\n rotate(t,q,qt_dir^1);\n }\n }\n }\n\n void pushdown(Node* t){\n if(!t) return;\n pushdown(t->p);\n propagate(t);\n }\n\n Node* expose(Node* t){\n pushdown(t);\n while(true){\n assert(t->type!=Type::Rake);\n if(t->type==Type::Compress) splay(t);\n Node* n=nullptr;\n {\n Node* p=t->p;\n if(!p) break;\n if(p->type==Type::Rake){\n propagate(p);\n splay(p);\n n=p->p;\n }else if(p->type==Type::Compress){\n propagate(p);\n if(p->guard and ~parent_dir_ignore_guard(t)) break;\n n=p;\n }else abort();\n }\n splay(n);\n int dir=parent_dir_ignore_guard(n);\n if(dir==-1 or n->p->type==Type::Rake) dir=0;\n\n Node* const c=n->ch[dir];\n if(dir==1){\n toggle(c);\n propagate(c);\n toggle(t);\n propagate(t);\n }\n int n_dir=parent_dir(t);\n if(~n_dir){\n propagate(c);\n Node* const r=t->p;\n propagate(r);\n r->ch[n_dir]=c;\n c->p=r;\n n->ch[dir]=t;\n t->p=n;\n pushup(c);pushup(r);pushup(t);pushup(n);\n splay(r);\n }else{\n propagate(c);\n n->q=c;\n c->p=n;\n n->ch[dir]=t;\n t->p=n;\n pushup(c);pushup(t);pushup(n);\n }\n if(t->type==Type::Edge) t=n;\n }\n return t;\n }\n\n Node* expose(Vertex* v){\n return expose((Node*)(v->handle));\n }\n\n Node* link(Vertex* u,Cluster w,Vertex* v){\n if(!u->handle and !v->handle) return edge(u,w,v);\n\n Node* nnu=(Node*)u->handle;\n Node* nnv=(Node*)v->handle;\n Node* ee=edge(u,w,v);\n Node* ll=nullptr;\n\n if(!nnv) ll=ee;\n else{\n Node* vv=expose(nnv);\n propagate(vv);\n if(vv->vs[1]==v){\n toggle(vv);\n propagate(vv);\n }\n if(vv->vs[0]==v){\n Node* nv=compress(ee,vv);\n ee->p=nv;\n pushup(ee);\n vv->p=nv;\n pushup(vv);pushup(nv);\n ll=nv;\n }else{\n Node* nv=vv;\n Node* ch=nv->ch[0];\n propagate(ch);\n nv->ch[0]=ee;\n ee->p=nv;\n pushup(ee);\n\n Node* bt=nv->q;\n Node* rk=nullptr;\n if(bt){\n propagate(bt);\n rk=rake(bt,ch);\n bt->p=rk;\n ch->p=rk;\n pushup(bt);pushup(ch);\n }else{\n rk=ch;\n }\n nv->q=rk;\n rk->p=nv;\n pushup(rk);pushup(nv);\n ll=nv;\n }\n }\n\n if(nnu){\n Node* uu=expose(nnu);\n propagate(uu);\n if(uu->vs[0]==u){\n toggle(uu);\n propagate(uu);\n }\n if(uu->vs[1]==u){\n Node* tp=compress(uu,ll);\n uu->p=tp;\n ll->p=tp;\n pushup(uu);pushup(ll);pushup(tp);\n }else{\n Node* nu=uu;\n Node* ch=nu->ch[1];\n toggle(ch);\n propagate(ch);\n\n nu->ch[1]=ll;\n ll->p=nu;\n pushup(ll);\n\n Node* al=nu->q;\n Node* rk=nullptr;\n if(al){\n propagate(al);\n rk=rake(al,ch);\n al->p=rk;\n ch->p=rk;\n pushup(al);pushup(ch);\n }else{\n rk=ch;\n }\n nu->q=rk;\n rk->p=nu;\n pushup(rk);pushup(nu);\n }\n }\n return ee;\n }\n\n void set_toggle(Node* v){\n toggle(v);propagate(v);\n }\n\n void soft_expose(Vertex* u,Vertex* v){\n pushdown((Node*)u->handle);\n pushdown((Node*)v->handle);\n Node* rt=expose((Node*)u->handle);\n\n if(u->handle==v->handle){\n if(rt->vs[1]==u or rt->vs[0]==v)\n set_toggle(rt);\n return;\n }\n\n rt->guard=true;\n Node* soft=expose((Node*)v->handle);\n rt->guard=false;\n\n pushup(rt);\n if(parent_dir(soft)==0) set_toggle(rt);\n }\n\n void set_val(Vertex* u,Vertex v){\n auto t=expose(u);\n *u=v;\n pushup(t);\n }\n\n Cluster query(Vertex* u,Vertex* v){\n soft_expose(u,v);\n Node* rt=(Node*)u->handle;\n propagate(rt);\n\n if(rt->vs[0]==u and rt->vs[1]==v) return rt->dat;\n if(rt->vs[0]==u) return rt->ch[0]->dat;\n if(rt->vs[1]==v) return rt->ch[1]->dat;\n propagate(rt->ch[1]);\n return rt->ch[1]->ch[0]->dat;\n }\n\n void bring(Node* rt){\n Node* rk=rt->q;\n if(!rk){\n Node* ll=rt->ch[0];\n ll->p=nullptr;\n pushup(ll);\n }else if(rk->type==Type::Compress or rk->type==Type::Edge){\n propagate(rk);\n\n Node* nr=rk;\n set_toggle(nr);\n rt->ch[1]=nr;\n nr->p=rt;\n rt->q=nullptr;\n\n pushup(nr);pushup(rt);\n }else if(rk->type==Type::Rake){\n propagate(rk);\n while(rk->ch[1]->type==Type::Rake){\n propagate(rk->ch[1]);\n rk=rk->ch[1];\n }\n pushdown(rk);\n\n rt->guard=true;\n splay(rk);\n rt->guard=false;\n\n Node* ll=rk->ch[0];\n Node* rr=rk->ch[1];\n propagate(ll);\n set_toggle(rr);\n\n rt->ch[1]=rr;\n rr->p=rt;\n\n rt->q=ll;\n ll->p=rt;\n\n pushup(ll);pushup(rr);pushup(rt);\n }\n }\n\n void cut(Vertex* u,Vertex *v){\n soft_expose(u,v);\n Node* rt=(Node*)u->handle;\n propagate(rt);\n Node* rr=rt->ch[1];\n rr->p=nullptr;\n set_toggle(rr);\n bring(rr);bring(rt);\n }\n\n Cluster subtree(Vertex* p,Vertex* v){\n Cluster e=query(p,v);\n cut(p,v);\n expose(v);\n Node* t=(Node*)v->handle;\n Cluster res=t->dat;\n if(t->type==Type::Edge)\n res=Cluster::rake(res,id,v);\n link(p,e,v);\n return res;\n }\n};\ntemplate<typename Vertex, typename Cluster, size_t LIM>\narray<Vertex, LIM> TopTree<Vertex, Cluster, LIM>::pool_v;\ntemplate<typename Vertex, typename Cluster, size_t LIM>\narray<typename TopTree<Vertex, Cluster, LIM>::Node, LIM>\nTopTree<Vertex, Cluster, LIM>::pool_c;\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned KUPC2020_G(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n const char newl = '\\n';\n\n const size_t LIM = 1.5e6;\n using Cluster = Farthest<long long>;\n TopTree<Vertex, Cluster, LIM> T(Cluster(0,-1,-1));\n\n int n;\n cin>>n;\n\n vector<Vertex*> vs(n);\n for(int i=0;i<n;i++)\n vs[i]=T.create(Vertex(i));\n\n vector<int> as(n),bs(n),ds(n);\n vector<set<int>> S(n);\n for(int i=1;i<n;i++){\n cin>>as[i]>>bs[i]>>ds[i];\n as[i]--;bs[i]--;\n S[as[i]].emplace(i);\n S[bs[i]].emplace(i);\n T.link(vs[as[i]],Cluster(ds[i],as[i],bs[i]),vs[bs[i]]);\n }\n\n int q;\n cin>>q;\n\n int cur=0;\n for(int i=0;i<q;i++){\n int t;\n cin>>t;\n if(t==1){\n int x;\n cin>>x;\n x--;\n cur=x;\n }\n if(t==2){\n int y;\n cin>>y;\n S[as[y]].erase(y);\n S[bs[y]].erase(y);\n T.cut(vs[as[y]],vs[bs[y]]);\n }\n if(t==3){\n int z;\n cin>>z;\n S[as[z]].emplace(z);\n S[bs[z]].emplace(z);\n T.link(vs[as[z]],Cluster(ds[z],as[z],bs[z]),vs[bs[z]]);\n }\n auto dist=T.expose(vs[cur])->dat.md.dist;\n if(dist==0){\n cout<<1<<\" \"<<cur+1<<newl;\n continue;\n }\n vector<int> ans;\n while(1){\n auto res=T.expose(vs[cur])->dat.md;\n if(dist!=res.dist) break;\n ans.emplace_back(res.idx);\n int k=*S[res.idx].begin();\n T.cut(vs[as[k]],vs[bs[k]]);\n }\n\n sort(ans.begin(),ans.end());\n cout<<ans.size();\n for(int v:ans) cout<<\" \"<<v+1;\n cout<<newl;\n\n for(int v:ans){\n int k=*S[v].begin();\n T.link(vs[as[k]],Cluster(ds[k],as[k],bs[k]),vs[bs[k]]);\n }\n }\n\n return 0;\n}\n\nsigned main(){\n KUPC2020_G();\n return 0;\n}\n#endif", "accuracy": 0.30666666666666664, "time_ms": 1450, "memory_kb": 224612, "score_of_the_acc": -1.9913, "final_rank": 12 }, { "submission_id": "aoj_3143_4302745", "code_snippet": "#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n\n#endif\n//BEGIN CUT HERE\nstruct Vertex{\n void* handle;\n int idx;\n Vertex(int idx=-1):handle(nullptr),idx(idx){}\n};\n\ntemplate<typename T>\nstruct Farthest{\n struct pi{\n T dist;\n int idx;\n pi():dist(0),idx(-1){}\n pi(T dist,int idx):dist(dist),idx(idx){}\n bool operator<(const pi &o)const{return dist<o.dist;}\n pi operator+(const T e)const{return pi(dist+e,idx);}\n };\n pi md,lf,rg;\n T len;\n Farthest(){}\n Farthest(T l,int f,int t):lf(l,t),rg(l,f),len(l){}\n Farthest(pi md,pi lf,pi rg,T len):\n md(md),lf(lf),rg(rg),len(len){}\n void toggle(){swap(lf,rg);}\n static Farthest compress(Farthest x,Vertex*,Farthest y){\n return Farthest(\n max(x.rg,y.lf),\n max(x.lf,y.lf+x.len),\n max(y.rg,x.rg+y.len),\n x.len+y.len);\n }\n static Farthest rake(Farthest x,Farthest y,Vertex*){\n return Farthest(pi(),max(x.lf,y.rg+x.len),max(x.rg,y.rg),x.len);\n }\n};\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\n\n#define call_from_test\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename Vertex, typename Cluster, size_t LIM>\nstruct TopTree{\n enum Type { Compress, Rake, Edge, None };\n struct Node{\n Vertex* vs[2];\n Cluster dat;\n Node* p;\n Node* q;\n Node* ch[2];\n bool rev,guard;\n Type type;\n Node():p(nullptr),q(nullptr),rev(false),guard(false),type(Type::None){}\n };\n\n static array<Vertex, LIM> pool_v;\n static array<Node, LIM> pool_c;\n size_t ptr_v,ptr_c;\n\n Cluster id;\n TopTree(Cluster id=Cluster()):ptr_v(0),ptr_c(0),id(id){}\n\n inline Vertex* create(Vertex v){\n auto t=&pool_v[ptr_v++];\n auto dummy=&pool_v[ptr_v++];\n *t=v;\n link(t,id,dummy);\n return t;\n }\n\n inline Node* edge(Vertex* u,Cluster w,Vertex* v){\n auto t=&(pool_c[ptr_c++]);\n t->vs[0]=u;t->vs[1]=v;t->dat=w;t->type=Type::Edge;\n return pushup(t);\n }\n\n inline Node* compress(Node* l,Node* r){\n auto t=&(pool_c[ptr_c++]);\n t->ch[0]=l;t->ch[1]=r;t->type=Type::Compress;\n return pushup(t);\n }\n\n inline Node* rake(Node* l,Node* r){\n auto t=&(pool_c[ptr_c++]);\n t->ch[0]=l;t->ch[1]=r;t->type=Type::Rake;\n return pushup(t);\n }\n\n int parent_dir(Node* t){\n Node* p=t->p;\n if(!p) return -1;\n if(p->guard) return -1;\n if(p->ch[0]==t) return 0;\n if(p->ch[1]==t) return 1;\n return -1;\n }\n\n inline Node* pushup(Node* const t){\n Node* const l=t->ch[0];\n Node* const r=t->ch[1];\n\n if(t->type==Type::Edge){\n if(!t->p){\n t->vs[0]->handle=t;\n t->vs[1]->handle=t;\n }else if(t->p->type==Type::Compress){\n if(parent_dir(t)==-1)\n t->vs[0]->handle=t;\n }else if(t->p->type==Type::Rake){\n t->vs[0]->handle=t;\n }\n }else if(t->type==Type::Compress){\n assert(l->vs[1]==r->vs[0]);\n t->vs[0]=l->vs[0];\n t->vs[1]=r->vs[1];\n\n Cluster lf=l->dat;\n if(t->q){\n Node* q=t->q;\n assert(l->vs[1]==q->vs[1]);\n lf=Cluster::rake(l->dat,q->dat,q->vs[0]);\n }\n t->dat=Cluster::compress(lf,r->vs[0],r->dat);\n\n l->vs[1]->handle=t;\n if(!t->p){\n t->vs[0]->handle=t;\n t->vs[1]->handle=t;\n }else if(t->p->type==Type::Compress){\n if(parent_dir(t)==-1)\n t->vs[0]->handle=t;\n }else if(t->p->type==Type::Rake){\n t->vs[0]->handle=t;\n }\n }else if(t->type==Type::Rake){\n propagate(t);\n assert(l->vs[1]==r->vs[1]);\n t->vs[0]=l->vs[0];\n t->vs[1]=l->vs[1];\n t->dat=Cluster::rake(l->dat,r->dat,r->vs[0]);\n }else abort();\n return t;\n }\n\n\n int parent_dir_ignore_guard(Node* t){\n Node* p=t->p;\n if(!p) return -1;\n if(p->ch[0]==t) return 0;\n if(p->ch[1]==t) return 1;\n return -1;\n }\n\n void rotate(Node* t,Node* x,size_t dir){\n Node* y=x->p;\n int par=parent_dir_ignore_guard(x);\n propagate(t->ch[dir]);\n x->ch[dir^1]=t->ch[dir];\n t->ch[dir]->p=x;\n t->ch[dir]=x;\n x->p=t;\n t->p=y;\n if(~par) y->ch[par]=t;\n else if(y and y->type==Type::Compress) y->q=t;\n pushup(x);pushup(t);\n if(y and !y->guard) pushup(y);\n }\n\n inline void propagate(Node* t){\n if(t->type==Type::Compress){\n if(t->rev){\n assert(t->ch[0] and t->ch[1]);\n swap(t->ch[0],t->ch[1]);\n toggle(t->ch[0]);\n toggle(t->ch[1]);\n t->rev=false;\n }\n }\n }\n\n inline void toggle(Node* t){\n if(t->type==Type::Edge){\n swap(t->vs[0],t->vs[1]);\n t->dat.toggle();\n }else if(t->type==Type::Compress){\n swap(t->vs[0],t->vs[1]);\n t->dat.toggle();\n t->rev^=true;\n }else if(t->type==Type::Rake){\n }else abort();\n }\n\n void splay(Node* t){\n assert(t->type!=Type::Edge);\n propagate(t);\n\n while(~parent_dir(t)){\n Node* q=t->p;\n if(q->type!=t->type) break;\n if(~parent_dir(q) and q->p and q->p->type==q->type){\n Node* r=q->p;\n if(r->p) propagate(r->p);\n propagate(r);propagate(q);propagate(t);\n int qt_dir=parent_dir(t);\n int rq_dir=parent_dir(q);\n if(rq_dir==qt_dir){\n rotate(q,r,rq_dir^1);\n rotate(t,q,qt_dir^1);\n }else{\n rotate(t,q,qt_dir^1);\n rotate(t,r,rq_dir^1);\n }\n }else{\n if(q->p) propagate(q->p);\n propagate(q);propagate(t);\n int qt_dir=parent_dir(t);\n rotate(t,q,qt_dir^1);\n }\n }\n }\n\n void pushdown(Node* t){\n if(!t) return;\n pushdown(t->p);\n propagate(t);\n }\n\n Node* expose(Node* t){\n pushdown(t);\n while(true){\n assert(t->type!=Type::Rake);\n if(t->type==Type::Compress) splay(t);\n Node* n=nullptr;\n {\n Node* p=t->p;\n if(!p) break;\n if(p->type==Type::Rake){\n propagate(p);\n splay(p);\n n=p->p;\n }else if(p->type==Type::Compress){\n propagate(p);\n if(p->guard and ~parent_dir_ignore_guard(t)) break;\n n=p;\n }else abort();\n }\n splay(n);\n int dir=parent_dir_ignore_guard(n);\n if(dir==-1 or n->p->type==Type::Rake) dir=0;\n\n Node* const c=n->ch[dir];\n if(dir==1){\n toggle(c);\n propagate(c);\n toggle(t);\n propagate(t);\n }\n int n_dir=parent_dir(t);\n if(~n_dir){\n propagate(c);\n Node* const r=t->p;\n propagate(r);\n r->ch[n_dir]=c;\n c->p=r;\n n->ch[dir]=t;\n t->p=n;\n pushup(c);pushup(r);pushup(t);pushup(n);\n splay(r);\n }else{\n propagate(c);\n n->q=c;\n c->p=n;\n n->ch[dir]=t;\n t->p=n;\n pushup(c);pushup(t);pushup(n);\n }\n if(t->type==Type::Edge) t=n;\n }\n return t;\n }\n\n Node* expose(Vertex* v){\n return expose((Node*)(v->handle));\n }\n\n Node* link(Vertex* u,Cluster w,Vertex* v){\n if(!u->handle and !v->handle) return edge(u,w,v);\n\n Node* nnu=(Node*)u->handle;\n Node* nnv=(Node*)v->handle;\n Node* ee=edge(u,w,v);\n Node* ll=nullptr;\n\n if(!nnv) ll=ee;\n else{\n Node* vv=expose(nnv);\n propagate(vv);\n if(vv->vs[1]==v){\n toggle(vv);\n propagate(vv);\n }\n if(vv->vs[0]==v){\n Node* nv=compress(ee,vv);\n ee->p=nv;\n pushup(ee);\n vv->p=nv;\n pushup(vv);pushup(nv);\n ll=nv;\n }else{\n Node* nv=vv;\n Node* ch=nv->ch[0];\n propagate(ch);\n nv->ch[0]=ee;\n ee->p=nv;\n pushup(ee);\n\n Node* bt=nv->q;\n Node* rk=nullptr;\n if(bt){\n propagate(bt);\n rk=rake(bt,ch);\n bt->p=rk;\n ch->p=rk;\n pushup(bt);pushup(ch);\n }else{\n rk=ch;\n }\n nv->q=rk;\n rk->p=nv;\n pushup(rk);pushup(nv);\n ll=nv;\n }\n }\n\n if(nnu){\n Node* uu=expose(nnu);\n propagate(uu);\n if(uu->vs[0]==u){\n toggle(uu);\n propagate(uu);\n }\n if(uu->vs[1]==u){\n Node* tp=compress(uu,ll);\n uu->p=tp;\n ll->p=tp;\n pushup(uu);pushup(ll);pushup(tp);\n }else{\n Node* nu=uu;\n Node* ch=nu->ch[1];\n toggle(ch);\n propagate(ch);\n\n nu->ch[1]=ll;\n ll->p=nu;\n pushup(ll);\n\n Node* al=nu->q;\n Node* rk=nullptr;\n if(al){\n propagate(al);\n rk=rake(al,ch);\n al->p=rk;\n ch->p=rk;\n pushup(al);pushup(ch);\n }else{\n rk=ch;\n }\n nu->q=rk;\n rk->p=nu;\n pushup(rk);pushup(nu);\n }\n }\n return ee;\n }\n\n void set_toggle(Node* v){\n toggle(v);propagate(v);\n }\n\n void soft_expose(Vertex* u,Vertex* v){\n pushdown((Node*)u->handle);\n pushdown((Node*)v->handle);\n Node* rt=expose((Node*)u->handle);\n\n if(u->handle==v->handle){\n if(rt->vs[1]==u or rt->vs[0]==v)\n set_toggle(rt);\n return;\n }\n\n rt->guard=true;\n Node* soft=expose((Node*)v->handle);\n rt->guard=false;\n\n pushup(rt);\n if(parent_dir(soft)==0) set_toggle(rt);\n }\n\n void set_val(Vertex* u,Vertex v){\n auto t=expose(u);\n *u=v;\n pushup(t);\n }\n\n Cluster query(Vertex* u,Vertex* v){\n soft_expose(u,v);\n Node* rt=(Node*)u->handle;\n propagate(rt);\n\n if(rt->vs[0]==u and rt->vs[1]==v) return rt->dat;\n if(rt->vs[0]==u) return rt->ch[0]->dat;\n if(rt->vs[1]==v) return rt->ch[1]->dat;\n propagate(rt->ch[1]);\n return rt->ch[1]->ch[0]->dat;\n }\n\n void bring(Node* rt){\n Node* rk=rt->q;\n if(!rk){\n Node* ll=rt->ch[0];\n ll->p=nullptr;\n pushup(ll);\n }else if(rk->type==Type::Compress or rk->type==Type::Edge){\n propagate(rk);\n\n Node* nr=rk;\n set_toggle(nr);\n rt->ch[1]=nr;\n nr->p=rt;\n rt->q=nullptr;\n\n pushup(nr);pushup(rt);\n }else if(rk->type==Type::Rake){\n propagate(rk);\n while(rk->ch[1]->type==Type::Rake){\n propagate(rk->ch[1]);\n rk=rk->ch[1];\n }\n pushdown(rk);\n\n rt->guard=true;\n splay(rk);\n rt->guard=false;\n\n Node* ll=rk->ch[0];\n Node* rr=rk->ch[1];\n propagate(ll);\n set_toggle(rr);\n\n rt->ch[1]=rr;\n rr->p=rt;\n\n rt->q=ll;\n ll->p=rt;\n\n pushup(ll);pushup(rr);pushup(rt);\n }\n }\n\n void cut(Vertex* u,Vertex *v){\n soft_expose(u,v);\n Node* rt=(Node*)u->handle;\n propagate(rt);\n Node* rr=rt->ch[1];\n rr->p=nullptr;\n set_toggle(rr);\n bring(rr);bring(rt);\n }\n\n Cluster subtree(Vertex* p,Vertex* v){\n Cluster e=query(p,v);\n cut(p,v);\n expose(v);\n Node* t=(Node*)v->handle;\n Cluster res=t->dat;\n if(t->type==Type::Edge)\n res=Cluster::rake(res,id,v);\n link(p,e,v);\n return res;\n }\n};\ntemplate<typename Vertex, typename Cluster, size_t LIM>\narray<Vertex, LIM> TopTree<Vertex, Cluster, LIM>::pool_v;\ntemplate<typename Vertex, typename Cluster, size_t LIM>\narray<typename TopTree<Vertex, Cluster, LIM>::Node, LIM>\nTopTree<Vertex, Cluster, LIM>::pool_c;\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned KUPC2020_G(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n const char newl = '\\n';\n\n const size_t LIM = 1.5e6;\n using Cluster = Farthest<long long>;\n TopTree<Vertex, Cluster, LIM> T(Cluster(0,-1,-1));\n\n int n;\n cin>>n;\n\n vector<Vertex*> vs(n);\n for(int i=0;i<n;i++)\n vs[i]=T.create(Vertex(i));\n\n vector<int> as(n),bs(n),ds(n);\n vector<set<int>> S(n);\n for(int i=1;i<n;i++){\n cin>>as[i]>>bs[i]>>ds[i];\n as[i]--;bs[i]--;\n S[as[i]].emplace(i);\n S[bs[i]].emplace(i);\n T.link(vs[as[i]],Cluster(ds[i],as[i],bs[i]),vs[bs[i]]);\n }\n\n int q;\n cin>>q;\n\n int cur=0;\n for(int i=0;i<q;i++){\n int t;\n cin>>t;\n if(t==1){\n int x;\n cin>>x;\n x--;\n cur=x;\n }\n if(t==2){\n int y;\n cin>>y;\n S[as[y]].erase(y);\n S[bs[y]].erase(y);\n T.cut(vs[as[y]],vs[bs[y]]);\n }\n if(t==3){\n int z;\n cin>>z;\n S[as[z]].emplace(z);\n S[bs[z]].emplace(z);\n T.link(vs[as[z]],Cluster(ds[z],as[z],bs[z]),vs[bs[z]]);\n }\n auto dist=T.expose(vs[cur])->dat.md.dist;\n if(dist==0){\n cout<<1<<\" \"<<cur+1<<newl;\n continue;\n }\n vector<int> ans;\n while(1){\n auto res=T.expose(vs[cur])->dat.md;\n if(dist!=res.dist) break;\n ans.emplace_back(res.idx);\n int k=*S[res.idx].begin();\n T.cut(vs[as[k]],vs[bs[k]]);\n }\n\n sort(ans.begin(),ans.end());\n cout<<ans.size();\n for(int v:ans) cout<<\" \"<<v+1;\n cout<<newl;\n\n for(int v:ans){\n int k=*S[v].begin();\n T.link(vs[as[k]],Cluster(ds[k],as[k],bs[k]),vs[bs[k]]);\n }\n }\n\n return 0;\n}\n\nsigned main(){\n KUPC2020_G();\n return 0;\n}\n#endif", "accuracy": 0.30666666666666664, "time_ms": 1420, "memory_kb": 224476, "score_of_the_acc": -1.9645, "final_rank": 11 }, { "submission_id": "aoj_3143_4280616", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 998244353;\n\nconst int64 infll = (1LL << 60) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\n\ntemplate< class T, size_t V >\nstruct ArrayPool {\n array< T, V > pool;\n array< T *, V > stock;\n int ptr;\n\n ArrayPool() { clear(); }\n\n inline T *alloc() {\n return stock[--ptr];\n }\n\n inline void free(T *t) {\n stock[ptr++] = t;\n }\n\n void clear() {\n ptr = (int) pool.size();\n for(int i = 0; i < pool.size(); i++) stock[i] = &pool[i];\n }\n};\n\n\nstruct pi {\n int64 first;\n int second;\n\n pi(const int64 &first, const int &second) : first(first), second(second) {}\n\n pi() = default;\n\n bool operator<(const pi &a) const {\n if(first != a.first) return first < a.first;\n return true;\n }\n\n bool operator>(const pi &a) const {\n if(first != a.first) return first > a.first;\n return true;\n }\n};\n\n\ntemplate< typename key_t, size_t V >\nstruct SplayTree {\n\n const key_t e;\n\n SplayTree(const key_t &e) : pool(), e(e) {}\n\n struct Node {\n Node *l, *r, *p;\n key_t key, sum;\n\n Node() = default;\n\n Node(const key_t &k) : key(k), sum(k), l(nullptr), r(nullptr), p(nullptr) {}\n };\n\n ArrayPool< Node, V > pool;\n\n\n void rotr(Node *t) {\n auto *x = t->p, *y = x->p;\n if((x->l = t->r)) t->r->p = x;\n t->r = x, x->p = t;\n update(x), update(t);\n if((t->p = y)) {\n if(y->l == x) y->l = t;\n if(y->r == x) y->r = t;\n update(y);\n }\n }\n\n void rotl(Node *t) {\n auto *x = t->p, *y = x->p;\n if((x->r = t->l)) t->l->p = x;\n t->l = x, x->p = t;\n update(x), update(t);\n if((t->p = y)) {\n if(y->l == x) y->l = t;\n if(y->r == x) y->r = t;\n update(y);\n }\n }\n\n inline key_t sum(const Node *t) const {\n return t ? t->sum : e;\n }\n\n void update(Node *t) {\n t->sum = max({sum(t->l), t->key, sum(t->r)});\n }\n\n Node *get_left(Node *t) const {\n while(t->l) t = t->l;\n return t;\n }\n\n Node *get_right(Node *t) const {\n while(t->r) t = t->r;\n return t;\n }\n\n inline Node *alloc(const key_t &v) {\n return &(*pool.alloc() = Node(v));\n }\n\n void splay(Node *t) {\n while(t->p) {\n auto *q = t->p;\n if(!q->p) {\n if(q->l == t) rotr(t);\n else rotl(t);\n } else {\n auto *r = q->p;\n if(r->l == q) {\n if(q->l == t) rotr(q), rotr(t);\n else rotl(t), rotr(t);\n } else {\n if(q->r == t) rotl(q), rotl(t);\n else rotr(t), rotl(t);\n }\n }\n }\n }\n\n Node *push_back(Node *t, const key_t &v) {\n if(!t) {\n t = alloc(v);\n return t;\n } else {\n Node *cur = get_right(t), *z = alloc(v);\n z->p = cur;\n cur->r = z;\n update(cur);\n splay(z);\n return z;\n }\n }\n\n Node *erase(Node *t) {\n splay(t);\n Node *x = t->l, *y = t->r;\n pool.free(t);\n if(!x) {\n t = y;\n if(t) t->p = nullptr;\n } else if(!y) {\n t = x;\n t->p = nullptr;\n } else {\n x->p = nullptr;\n t = get_right(x);\n splay(t);\n t->r = y;\n y->p = t;\n update(t);\n }\n return t;\n }\n};\n\n\ntemplate< typename SUM, typename KEY, size_t V >\nstruct LinkCutTreeSubtree {\n\n struct Node {\n Node *l, *r, *p;\n\n typename SplayTree< pi, V >::Node *light, *belong;\n KEY key;\n SUM sum;\n\n bool rev;\n //int sz;\n\n Node() = default;\n\n bool is_root() const {\n return !p || (p->l != this && p->r != this);\n }\n\n Node(const KEY &key, const SUM &sum) :\n key(key), sum(sum), rev(false), belong(nullptr),\n l(nullptr), r(nullptr), p(nullptr), light(nullptr) {}\n };\n\n using ST = SplayTree< pi, V >;\n\n ST st;\n const SUM ident;\n ArrayPool< Node, V > pool;\n\n LinkCutTreeSubtree(const SUM &ident) : ident(ident), st(pi(-infll, -1)), pool() {}\n\n Node *alloc(const KEY &key) {\n auto ret = &(*pool.alloc() = Node(key, ident));\n update(ret);\n return ret;\n }\n\n Node *set_key(Node *t, const KEY &key) {\n expose(t);\n t->key = key;\n update(t);\n return t;\n }\n\n void toggle(Node *t) {\n swap(t->l, t->r);\n t->sum.toggle();\n t->rev ^= true;\n }\n\n void push(Node *t) {\n if(t->rev) {\n if(t->l) toggle(t->l);\n if(t->r) toggle(t->r);\n t->rev = false;\n }\n }\n\n\n void update(Node *t) {\n t->sum.merge(t->key, t->l ? t->l->sum : ident, t->r ? t->r->sum : ident, st.sum(t->light));\n }\n\n void rotr(Node *t) {\n auto *x = t->p, *y = x->p;\n if((x->l = t->r)) t->r->p = x;\n t->r = x, x->p = t;\n update(x), update(t);\n if((t->p = y)) {\n if(y->l == x) y->l = t;\n if(y->r == x) y->r = t;\n update(y);\n }\n }\n\n void rotl(Node *t) {\n auto *x = t->p, *y = x->p;\n if((x->r = t->l)) t->l->p = x;\n t->l = x, x->p = t;\n update(x), update(t);\n if((t->p = y)) {\n if(y->l == x) y->l = t;\n if(y->r == x) y->r = t;\n update(y);\n }\n }\n\n\n void splay(Node *t) {\n push(t);\n\n Node *rot = t;\n while(!rot->is_root()) rot = rot->p;\n t->belong = rot->belong;\n if(t != rot) rot->belong = nullptr;\n\n while(!t->is_root()) {\n auto *q = t->p;\n if(q->is_root()) {\n push(q), push(t);\n if(q->l == t) rotr(t);\n else rotl(t);\n } else {\n auto *r = q->p;\n push(r), push(q), push(t);\n if(r->l == q) {\n if(q->l == t) rotr(q), rotr(t);\n else rotl(t), rotr(t);\n } else {\n if(q->r == t) rotl(q), rotl(t);\n else rotr(t), rotl(t);\n }\n }\n }\n\n }\n\n\n Node *expose(Node *t) {\n Node *rp = nullptr;\n for(auto *cur = t; cur; cur = cur->p) {\n splay(cur);\n if(cur->r) {\n cur->light = st.push_back(cur->light, cur->r->sum.c_max);\n cur->r->belong = cur->light;\n cur->sum.add(cur->r->sum);\n }\n cur->r = rp;\n if(cur->r) {\n cur->light = st.erase(cur->r->belong);\n cur->sum.erase(cur->r->sum);\n }\n update(cur);\n rp = cur;\n }\n splay(t);\n return rp;\n }\n\n void link(Node *child, Node *parent) {\n expose(child);\n expose(parent);\n child->p = parent;\n parent->r = child;\n update(parent);\n }\n\n void cut(Node *child) {\n expose(child);\n auto *parent = child->l;\n child->l = nullptr;\n parent->p = nullptr;\n update(child);\n }\n\n void evert(Node *t) {\n expose(t);\n toggle(t);\n push(t);\n }\n\n Node *lca(Node *u, Node *v) {\n if(get_root(u) != get_root(v)) return nullptr;\n expose(u);\n return expose(v);\n }\n\n\n Node *get_kth(Node *x, int k) {\n expose(x);\n while(x) {\n push(x);\n if(x->r && x->r->sz > k) {\n x = x->r;\n } else {\n if(x->r) k -= x->r->sz;\n if(k == 0) return x;\n k -= 1;\n x = x->l;\n }\n }\n return nullptr;\n }\n\n Node *get_root(Node *x) {\n expose(x);\n while(x->l) {\n push(x);\n x = x->l;\n }\n return x;\n }\n};\n\n\nstruct Scanner {\n FILE *fp = nullptr;\n char line[(1 << 15) + 1];\n size_t st = 0, ed = 0;\n\n void reread() {\n memmove(line, line + st, ed - st);\n ed -= st;\n st = 0;\n ed += fread(line + ed, 1, (1 << 15) - ed, fp);\n line[ed] = '\\0';\n }\n\n bool succ() {\n while(true) {\n if(st == ed) {\n reread();\n if(st == ed) return false;\n }\n while(st != ed && isspace(line[st])) st++;\n if(st != ed) break;\n }\n if(ed - st <= 50) reread();\n return true;\n }\n\n template< class T, enable_if_t< is_same< T, string >::value, int > = 0 >\n bool read_single(T &ref) {\n if(!succ()) return false;\n while(true) {\n size_t sz = 0;\n while(st + sz < ed && !isspace(line[st + sz])) sz++;\n ref.append(line + st, sz);\n st += sz;\n if(!sz || st != ed) break;\n reread();\n }\n return true;\n }\n\n template< class T, enable_if_t< is_integral< T >::value, int > = 0 >\n bool read_single(T &ref) {\n if(!succ()) return false;\n bool neg = false;\n if(line[st] == '-') {\n neg = true;\n st++;\n }\n ref = T(0);\n while(isdigit(line[st])) {\n ref = 10 * ref + (line[st++] - '0');\n }\n if(neg) ref = -ref;\n return true;\n }\n\n template< class T >\n bool read_single(vector< T > &ref) {\n for(auto &d : ref) {\n if(!read_single(d)) return false;\n }\n return true;\n }\n\n void read() {}\n\n template< class H, class... T >\n void read(H &h, T &... t) {\n bool f = read_single(h);\n assert(f);\n read(t...);\n }\n\n Scanner(FILE *_fp) : fp(_fp) {}\n};\n\nstruct Printer {\npublic:\n template< bool F = false >\n void write() {}\n\n template< bool F = false, class H, class... T >\n void write(const H &h, const T &... t) {\n if(F) write_single(' ');\n write_single(h);\n write< true >(t...);\n }\n\n template< class... T >\n void writeln(const T &... t) {\n write(t...);\n write_single('\\n');\n }\n\n Printer(FILE *_fp) : fp(_fp) {}\n\n ~Printer() { flush(); }\n\nprivate:\n static constexpr size_t SIZE = 1 << 15;\n FILE *fp;\n char line[SIZE], small[50];\n size_t pos = 0;\n\n void flush() {\n fwrite(line, 1, pos, fp);\n pos = 0;\n }\n\n void write_single(const char &val) {\n if(pos == SIZE) flush();\n line[pos++] = val;\n }\n\n template< class T, enable_if_t< is_integral< T >::value, int > = 0 >\n void write_single(T val) {\n if(pos > (1 << 15) - 50) flush();\n if(val == 0) {\n write_single('0');\n return;\n }\n if(val < 0) {\n write_single('-');\n val = -val; // todo min\n }\n size_t len = 0;\n while(val) {\n small[len++] = char('0' + (val % 10));\n val /= 10;\n }\n reverse(small, small + len);\n memcpy(line + pos, small, len);\n pos += len;\n }\n\n void write_single(const string &s) {\n for(char c : s) write_single(c);\n }\n\n void write_single(const char *s) {\n size_t len = strlen(s);\n for(size_t i = 0; i < len; i++) write_single(s[i]);\n }\n\n template< class T >\n void write_single(const vector< T > &val) {\n auto n = val.size();\n for(size_t i = 0; i < n; i++) {\n if(i) write_single(' ');\n write_single(val[i]);\n }\n }\n};\n\n\n// これがおれたちの動的木\n// 動的木の時代の到来\n\n\nstruct Farthest {\n pi c_max, p_max;\n int64 length;\n\n Farthest() : c_max(pi(-infll, -1)), p_max(pi(-infll, -1)), length(0) {}\n\n void merge(int64 key, const Farthest &parent, const Farthest &child, const pi &t) {\n p_max = child.p_max;\n c_max = parent.c_max;\n if(key < 0) {\n chmax(p_max, pi(child.length, -key));\n chmax(c_max, pi(parent.length, -key));\n key = 0;\n }\n length = parent.length + key + child.length;\n chmax(p_max, pi(child.length + key + t.first, t.second));\n chmax(c_max, pi(parent.length + key + t.first, t.second));\n chmax(p_max, pi(child.length + key + parent.p_max.first, parent.p_max.second));\n chmax(c_max, pi(parent.length + key + child.c_max.first, child.c_max.second));\n }\n\n void toggle() {\n swap(c_max, p_max);\n }\n\n void add(const Farthest &child) {\n }\n\n void erase(const Farthest &child) {\n }\n} e;\n\nusing LCT = LinkCutTreeSubtree< Farthest, int64, 600000 >;\nLCT lct(e);\narray< LCT::Node *, 200000 > ev, ee, getter;\n\ntemplate< typename T >\nstruct edge {\n int src, to;\n T cost;\n\n edge(int to, T cost) : src(-1), to(to), cost(cost) {}\n\n edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}\n\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n\n operator int() const { return to; }\n};\n\ntemplate< typename T >\nusing Edges = vector< edge< T > >;\ntemplate< typename T >\nusing WeightedGraph = vector< Edges< T > >;\nusing UnWeightedGraph = vector< vector< int > >;\ntemplate< typename T >\nusing Matrix = vector< vector< T > >;\n\nint uku[200000];\n\nint main() {\n Scanner in(stdin);\n Printer out(stdout);\n\n int N;\n in.read(N);\n\n for(int i = 0; i < N; i++) {\n ev[i] = lct.alloc(0);\n }\n\n for(int i = 0; i < N; i++) {\n getter[i] = lct.alloc(-(i + 1));\n lct.link(getter[i], ev[i]);\n }\n vector< int > A(N), B(N);\n WeightedGraph< int > g(N);\n for(int i = 1; i < N; i++) {\n int a, b, c;\n in.read(a, b, c);\n --a, --b;\n A[i] = a, B[i] = b;\n g[a].emplace_back(b, i);\n g[b].emplace_back(a, i);\n ee[i] = lct.alloc(c);\n }\n queue< int > que;\n que.emplace(0);\n vector< int > used(N);\n used[0] = true;\n while(!que.empty()) {\n int idx = que.front();\n que.pop();\n for(auto &to : g[idx]) {\n if(used[to]) continue;\n used[to] = true;\n que.emplace(to);\n lct.link(ev[to], ee[to.cost]);\n lct.link(ee[to.cost], ev[idx]);\n }\n }\n\n int Q;\n in.read(Q);\n int pre = 0;\n // えっ普通に戻してsplayすればいいのかしょうもね~~\n\n for(int i = 0; i < Q; i++) {\n int t, x;\n in.read(t, x);\n if(t == 1) {\n --x;\n pre = x;\n } else if(t == 2) {\n lct.evert(ee[x]);\n lct.cut(ev[A[x]]);\n lct.cut(ev[B[x]]);\n } else {\n lct.evert(ev[B[x]]);\n lct.link(ev[B[x]], ee[x]);\n lct.link(ee[x], ev[A[x]]);\n }\n lct.evert(ev[pre]);\n\n int64 far = ev[pre]->sum.c_max.first;\n if(far == 0) {\n out.write(1);\n out.write(\" \");\n out.writeln(ev[pre]->sum.c_max.second);\n continue;\n }\n\n int ptr = 0;\n while(far == ev[pre]->sum.c_max.first) {\n uku[ptr++] = ev[pre]->sum.c_max.second;\n lct.cut(getter[uku[ptr - 1] - 1]);\n lct.evert(ev[pre]);\n }\n sort(uku, uku + ptr);\n out.write(ptr);\n for(int k = 0; k < ptr; k++) {\n out.write(\" \");\n out.write(uku[k]);\n }\n out.writeln();\n\n for(int k = 0; k < ptr; k++) {\n const int &p = uku[k];\n lct.link(getter[p - 1], ev[p - 1]);\n }\n\n }\n}", "accuracy": 1, "time_ms": 1450, "memory_kb": 122488, "score_of_the_acc": -1.4308, "final_rank": 8 }, { "submission_id": "aoj_3143_4278639", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 998244353;\n\nconst int64 infll = (1LL << 60) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\n\ntemplate< class T, size_t V >\nstruct ArrayPool {\n array< T, V > pool;\n array< T *, V > stock;\n int ptr;\n\n ArrayPool() { clear(); }\n\n inline T *alloc() {\n return stock[--ptr];\n }\n\n inline void free(T *t) {\n stock[ptr++] = t;\n }\n\n void clear() {\n ptr = (int) pool.size();\n for(int i = 0; i < pool.size(); i++) stock[i] = &pool[i];\n }\n};\n\n\nstruct pi {\n int64 first;\n int second;\n\n pi(const int64 &first, const int &second) : first(first), second(second) {}\n\n pi() = default;\n\n bool operator<(const pi &a) const {\n if(first != a.first) return first < a.first;\n return true;\n }\n\n bool operator>(const pi &a) const {\n if(first != a.first) return first > a.first;\n return true;\n }\n};\n\n\ntemplate< typename key_t, size_t V >\nstruct SplayTree {\n\n const key_t e;\n\n SplayTree(const key_t &e) : pool(), e(e) {}\n\n struct Node {\n Node *l, *r, *p;\n key_t key, sum;\n\n Node() = default;\n\n Node(const key_t &k) : key(k), sum(k), l(nullptr), r(nullptr), p(nullptr) {}\n };\n\n ArrayPool< Node, V > pool;\n\n\n void rotr(Node *t) {\n auto *x = t->p, *y = x->p;\n if((x->l = t->r)) t->r->p = x;\n t->r = x, x->p = t;\n update(x), update(t);\n if((t->p = y)) {\n if(y->l == x) y->l = t;\n if(y->r == x) y->r = t;\n update(y);\n }\n }\n\n void rotl(Node *t) {\n auto *x = t->p, *y = x->p;\n if((x->r = t->l)) t->l->p = x;\n t->l = x, x->p = t;\n update(x), update(t);\n if((t->p = y)) {\n if(y->l == x) y->l = t;\n if(y->r == x) y->r = t;\n update(y);\n }\n }\n\n inline key_t sum(const Node *t) const {\n return t ? t->sum : e;\n }\n\n void update(Node *t) {\n t->sum = max({sum(t->l), t->key, sum(t->r)});\n }\n\n Node *get_left(Node *t) const {\n while(t->l) t = t->l;\n return t;\n }\n\n Node *get_right(Node *t) const {\n while(t->r) t = t->r;\n return t;\n }\n\n inline Node *alloc(const key_t &v) {\n return &(*pool.alloc() = Node(v));\n }\n\n void splay(Node *t) {\n while(t->p) {\n auto *q = t->p;\n if(!q->p) {\n if(q->l == t) rotr(t);\n else rotl(t);\n } else {\n auto *r = q->p;\n if(r->l == q) {\n if(q->l == t) rotr(q), rotr(t);\n else rotl(t), rotr(t);\n } else {\n if(q->r == t) rotl(q), rotl(t);\n else rotr(t), rotl(t);\n }\n }\n }\n }\n\n Node *push_back(Node *t, const key_t &v) {\n if(!t) {\n t = alloc(v);\n return t;\n } else {\n Node *cur = get_right(t), *z = alloc(v);\n z->p = cur;\n cur->r = z;\n update(cur);\n splay(z);\n return z;\n }\n }\n\n Node *erase(Node *t) {\n splay(t);\n Node *x = t->l, *y = t->r;\n pool.free(t);\n if(!x) {\n t = y;\n if(t) t->p = nullptr;\n } else if(!y) {\n t = x;\n t->p = nullptr;\n } else {\n x->p = nullptr;\n t = get_right(x);\n splay(t);\n t->r = y;\n y->p = t;\n update(t);\n }\n return t;\n }\n};\n\n\ntemplate< typename SUM, typename KEY, size_t V >\nstruct LinkCutTreeSubtree {\n\n struct Node {\n Node *l, *r, *p;\n\n typename SplayTree< pi, V >::Node *light, *belong;\n KEY key;\n SUM sum;\n\n bool rev;\n //int sz;\n\n Node() = default;\n\n bool is_root() const {\n return !p || (p->l != this && p->r != this);\n }\n\n Node(const KEY &key, const SUM &sum) :\n key(key), sum(sum), rev(false), belong(nullptr),\n l(nullptr), r(nullptr), p(nullptr), light(nullptr) {}\n };\n\n using ST = SplayTree< pi, V >;\n\n ST st;\n const SUM ident;\n ArrayPool< Node, V > pool;\n\n LinkCutTreeSubtree(const SUM &ident) : ident(ident), st(pi(-infll, -1)), pool() {}\n\n Node *alloc(const KEY &key) {\n auto ret = &(*pool.alloc() = Node(key, ident));\n update(ret);\n return ret;\n }\n\n Node *set_key(Node *t, const KEY &key) {\n expose(t);\n t->key = key;\n update(t);\n return t;\n }\n\n void toggle(Node *t) {\n swap(t->l, t->r);\n t->sum.toggle();\n t->rev ^= true;\n }\n\n void push(Node *t) {\n if(t->rev) {\n if(t->l) toggle(t->l);\n if(t->r) toggle(t->r);\n t->rev = false;\n }\n }\n\n\n void update(Node *t) {\n t->sum.merge(t->key, t->l ? t->l->sum : ident, t->r ? t->r->sum : ident, st.sum(t->light));\n }\n\n void rotr(Node *t) {\n auto *x = t->p, *y = x->p;\n if((x->l = t->r)) t->r->p = x;\n t->r = x, x->p = t;\n update(x), update(t);\n if((t->p = y)) {\n if(y->l == x) y->l = t;\n if(y->r == x) y->r = t;\n update(y);\n }\n }\n\n void rotl(Node *t) {\n auto *x = t->p, *y = x->p;\n if((x->r = t->l)) t->l->p = x;\n t->l = x, x->p = t;\n update(x), update(t);\n if((t->p = y)) {\n if(y->l == x) y->l = t;\n if(y->r == x) y->r = t;\n update(y);\n }\n }\n\n\n void splay(Node *t) {\n push(t);\n\n Node *rot = t;\n while(!rot->is_root()) rot = rot->p;\n t->belong = rot->belong;\n if(t != rot) rot->belong = nullptr;\n\n while(!t->is_root()) {\n auto *q = t->p;\n if(q->is_root()) {\n push(q), push(t);\n if(q->l == t) rotr(t);\n else rotl(t);\n } else {\n auto *r = q->p;\n push(r), push(q), push(t);\n if(r->l == q) {\n if(q->l == t) rotr(q), rotr(t);\n else rotl(t), rotr(t);\n } else {\n if(q->r == t) rotl(q), rotl(t);\n else rotr(t), rotl(t);\n }\n }\n }\n\n }\n\n\n Node *expose(Node *t) {\n Node *rp = nullptr;\n for(auto *cur = t; cur; cur = cur->p) {\n splay(cur);\n if(cur->r) {\n cur->light = st.push_back(cur->light, cur->r->sum.c_max);\n cur->r->belong = cur->light;\n cur->sum.add(cur->r->sum);\n }\n cur->r = rp;\n if(cur->r) {\n cur->light = st.erase(cur->r->belong);\n cur->sum.erase(cur->r->sum);\n }\n update(cur);\n rp = cur;\n }\n splay(t);\n return rp;\n }\n\n void link(Node *child, Node *parent) {\n expose(child);\n expose(parent);\n child->p = parent;\n parent->r = child;\n update(parent);\n }\n\n void cut(Node *child) {\n expose(child);\n auto *parent = child->l;\n child->l = nullptr;\n parent->p = nullptr;\n update(child);\n }\n\n void evert(Node *t) {\n expose(t);\n toggle(t);\n push(t);\n }\n\n Node *lca(Node *u, Node *v) {\n if(get_root(u) != get_root(v)) return nullptr;\n expose(u);\n return expose(v);\n }\n\n\n Node *get_kth(Node *x, int k) {\n expose(x);\n while(x) {\n push(x);\n if(x->r && x->r->sz > k) {\n x = x->r;\n } else {\n if(x->r) k -= x->r->sz;\n if(k == 0) return x;\n k -= 1;\n x = x->l;\n }\n }\n return nullptr;\n }\n\n Node *get_root(Node *x) {\n expose(x);\n while(x->l) {\n push(x);\n x = x->l;\n }\n return x;\n }\n};\n\n\nstruct Scanner {\n FILE *fp = nullptr;\n char line[(1 << 15) + 1];\n size_t st = 0, ed = 0;\n\n void reread() {\n memmove(line, line + st, ed - st);\n ed -= st;\n st = 0;\n ed += fread(line + ed, 1, (1 << 15) - ed, fp);\n line[ed] = '\\0';\n }\n\n bool succ() {\n while(true) {\n if(st == ed) {\n reread();\n if(st == ed) return false;\n }\n while(st != ed && isspace(line[st])) st++;\n if(st != ed) break;\n }\n if(ed - st <= 50) reread();\n return true;\n }\n\n template< class T, enable_if_t< is_same< T, string >::value, int > = 0 >\n bool read_single(T &ref) {\n if(!succ()) return false;\n while(true) {\n size_t sz = 0;\n while(st + sz < ed && !isspace(line[st + sz])) sz++;\n ref.append(line + st, sz);\n st += sz;\n if(!sz || st != ed) break;\n reread();\n }\n return true;\n }\n\n template< class T, enable_if_t< is_integral< T >::value, int > = 0 >\n bool read_single(T &ref) {\n if(!succ()) return false;\n bool neg = false;\n if(line[st] == '-') {\n neg = true;\n st++;\n }\n ref = T(0);\n while(isdigit(line[st])) {\n ref = 10 * ref + (line[st++] - '0');\n }\n if(neg) ref = -ref;\n return true;\n }\n\n template< class T >\n bool read_single(vector< T > &ref) {\n for(auto &d : ref) {\n if(!read_single(d)) return false;\n }\n return true;\n }\n\n void read() {}\n\n template< class H, class... T >\n void read(H &h, T &... t) {\n bool f = read_single(h);\n assert(f);\n read(t...);\n }\n\n Scanner(FILE *_fp) : fp(_fp) {}\n};\n\nstruct Printer {\npublic:\n template< bool F = false >\n void write() {}\n\n template< bool F = false, class H, class... T >\n void write(const H &h, const T &... t) {\n if(F) write_single(' ');\n write_single(h);\n write< true >(t...);\n }\n\n template< class... T >\n void writeln(const T &... t) {\n write(t...);\n write_single('\\n');\n }\n\n Printer(FILE *_fp) : fp(_fp) {}\n\n ~Printer() { flush(); }\n\nprivate:\n static constexpr size_t SIZE = 1 << 15;\n FILE *fp;\n char line[SIZE], small[50];\n size_t pos = 0;\n\n void flush() {\n fwrite(line, 1, pos, fp);\n pos = 0;\n }\n\n void write_single(const char &val) {\n if(pos == SIZE) flush();\n line[pos++] = val;\n }\n\n template< class T, enable_if_t< is_integral< T >::value, int > = 0 >\n void write_single(T val) {\n if(pos > (1 << 15) - 50) flush();\n if(val == 0) {\n write_single('0');\n return;\n }\n if(val < 0) {\n write_single('-');\n val = -val; // todo min\n }\n size_t len = 0;\n while(val) {\n small[len++] = char('0' + (val % 10));\n val /= 10;\n }\n reverse(small, small + len);\n memcpy(line + pos, small, len);\n pos += len;\n }\n\n void write_single(const string &s) {\n for(char c : s) write_single(c);\n }\n\n void write_single(const char *s) {\n size_t len = strlen(s);\n for(size_t i = 0; i < len; i++) write_single(s[i]);\n }\n\n template< class T >\n void write_single(const vector< T > &val) {\n auto n = val.size();\n for(size_t i = 0; i < n; i++) {\n if(i) write_single(' ');\n write_single(val[i]);\n }\n }\n};\n\n\n// これがおれたちの動的木\n// 動的木の時代の到来\n\n\nstruct Farthest {\n pi c_max, p_max;\n int64 length;\n\n Farthest() : c_max(pi(-infll, -1)), p_max(pi(-infll, -1)), length(0) {}\n\n void merge(int64 key, const Farthest &parent, const Farthest &child, const pi &t) {\n p_max = child.p_max;\n c_max = parent.c_max;\n if(key < 0) {\n chmax(p_max, pi(child.length, -key));\n chmax(c_max, pi(parent.length, -key));\n key = 0;\n }\n length = parent.length + key + child.length;\n chmax(p_max, pi(child.length + key + t.first, t.second));\n chmax(c_max, pi(parent.length + key + t.first, t.second));\n chmax(p_max, pi(child.length + key + parent.p_max.first, parent.p_max.second));\n chmax(c_max, pi(parent.length + key + child.c_max.first, child.c_max.second));\n }\n\n void toggle() {\n swap(c_max, p_max);\n }\n\n void add(const Farthest &child) {\n }\n\n void erase(const Farthest &child) {\n }\n} e;\n\nusing LCT = LinkCutTreeSubtree< Farthest, int64, 600000 >;\nLCT lct(e);\narray< LCT::Node *, 200000 > ev, ee, getter;\n\ntemplate< typename T >\nstruct edge {\n int src, to;\n T cost;\n\n edge(int to, T cost) : src(-1), to(to), cost(cost) {}\n\n edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}\n\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n\n operator int() const { return to; }\n};\n\ntemplate< typename T >\nusing Edges = vector< edge< T > >;\ntemplate< typename T >\nusing WeightedGraph = vector< Edges< T > >;\nusing UnWeightedGraph = vector< vector< int > >;\ntemplate< typename T >\nusing Matrix = vector< vector< T > >;\n\nint uku[200000];\n\nint main() {\n Scanner in(stdin);\n Printer out(stdout);\n\n int N;\n in.read(N);\n\n for(int i = 0; i < N; i++) {\n ev[i] = lct.alloc(0);\n }\n\n for(int i = 0; i < N; i++) {\n getter[i] = lct.alloc(-(i + 1));\n lct.link(getter[i], ev[i]);\n }\n vector< int > A(N), B(N);\n WeightedGraph< int > g(N);\n for(int i = 1; i < N; i++) {\n int a, b, c;\n in.read(a, b, c);\n --a, --b;\n A[i] = a, B[i] = b;\n g[a].emplace_back(b, i);\n g[b].emplace_back(a, i);\n ee[i] = lct.alloc(c);\n }\n queue< int > que;\n que.emplace(0);\n vector< int > used(N);\n used[0] = true;\n while(!que.empty()) {\n int idx = que.front();\n que.pop();\n for(auto &to : g[idx]) {\n if(used[to]) continue;\n used[to] = true;\n que.emplace(to);\n lct.link(ev[to], ee[to.cost]);\n lct.link(ee[to.cost], ev[idx]);\n }\n }\n\n int Q;\n in.read(Q);\n int pre = 0;\n // えっ普通に戻してsplayすればいいのかしょうもね~~\n\n for(int i = 0; i < Q; i++) {\n int t, x;\n in.read(t, x);\n if(t == 1) {\n --x;\n pre = x;\n } else if(t == 2) {\n lct.evert(ee[x]);\n lct.cut(ev[A[x]]);\n lct.cut(ev[B[x]]);\n } else {\n lct.evert(ev[B[x]]);\n lct.link(ev[B[x]], ee[x]);\n lct.link(ee[x], ev[A[x]]);\n }\n lct.evert(ev[pre]);\n\n int64 far = ev[pre]->sum.c_max.first;\n if(far == 0) {\n out.write(1);\n out.write(\" \");\n out.writeln(ev[pre]->sum.c_max.second);\n continue;\n }\n\n int ptr = 0;\n while(far == ev[pre]->sum.c_max.first) {\n uku[ptr++] = ev[pre]->sum.c_max.second;\n lct.cut(getter[uku[ptr - 1] - 1]);\n lct.evert(ev[pre]);\n }\n sort(uku, uku + ptr);\n out.write(ptr);\n for(int k = 0; k < ptr; k++) {\n out.write(\" \");\n out.write(uku[k]);\n }\n out.writeln();\n\n for(int k = 0; k < ptr; k++) {\n const int &p = uku[k];\n lct.link(getter[p - 1], ev[p - 1]);\n }\n\n }\n}", "accuracy": 1, "time_ms": 1460, "memory_kb": 122400, "score_of_the_acc": -1.439, "final_rank": 9 }, { "submission_id": "aoj_3143_4275821", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing pil = pair<int, ll>;\nusing pli = pair<ll, int>;\nusing graph = vector<vector<pil>>;\n\nconst ll INF = 1e11;\n\nconst int S_MAX = 4e5;\n\nstruct RU {\n\tusing t1 = pli;\n\tusing t2 = ll;\n\tstatic t1 id1() { return make_pair(-1000000000000000000LL, -1); }\n\tstatic t2 id2() { return 0; }\n\tstatic t1 op1(const t1& l, const t1& r) { return max(l, r); }\n\tstatic t1 op2(const t1& l, const t2& r) { return make_pair(l.first + r, l.second); }\n\tstatic t2 op3(const t2& l, const t2& r) { return l + r; }\n};\n\ntemplate <typename M>\nclass lazy_segment_tree {\n\tusing T1 = typename M::t1;\n\tusing T2 = typename M::t2;\n\tconst int h, n;\n\tvector<T1> data;\n\tvector<T2> lazy;\n\tvoid push(int node) {\n\t\tif (lazy[node] == M::id2()) return;\n\t\tif (node < n) {\n\t\t\tlazy[node * 2] = M::op3(lazy[node * 2], lazy[node]);\n\t\t\tlazy[node * 2 + 1] = M::op3(lazy[node * 2 + 1], lazy[node]);\n\t\t}\n\t\tdata[node] = M::op2(data[node], lazy[node]);\n\t\tlazy[node] = M::id2();\n\t}\n\tvoid update(int node) {\n\t\tdata[node] = M::op1(M::op2(data[node * 2], lazy[node * 2]), M::op2(data[node * 2 + 1], lazy[node * 2 + 1]));\n\t}\npublic:\n\tlazy_segment_tree(int n_)\n\t\t: h(ceil(log2(n_))), n(1 << h), data(n * 2, M::id1()), lazy(n * 2, M::id2()) {}\n\tlazy_segment_tree(int n_, T1 v1)\n\t\t: h(ceil(log2(n_))), n(1 << h), data(n * 2, v1), lazy(n * 2, M::id2()) {}\n\tlazy_segment_tree(const vector<T1>& data_)\n\t\t: h(ceil(log2(data_.size()))), n(1 << h), data(n * 2, M::id1()), lazy(n * 2, M::id2()) {\n\t\tinit(data_);\n\t}\n\tvoid init() {\n\t\tfor (int i = n - 1; i >= 1; i--) data[i] = M::op1(data[i * 2], data[i * 2 + 1]);\n\t}\n\tvoid init(const vector<T1>& data_) {\n\t\tfor (int i = 0; i < (int)data_.size(); i++) data[i + n] = data_[i];\n\t\tinit();\n\t}\n\tvoid update(int l, int r, T2 val) {\n\t\tif (l >= r) return;\n\t\tl += n, r += n - 1;\n\t\tfor (int i = h; i > 0; i--) push(l >> i), push(r >> i);\n\t\tint tl = l, tr = r;\n\t\tr++;\n\t\twhile (l < r) {\n\t\t\tif (l & 1) lazy[l] = M::op3(lazy[l], val), l++;\n\t\t\tif (r & 1) r--, lazy[r] = M::op3(lazy[r], val);\n\t\t\tl >>= 1; r >>= 1;\n\t\t}\n\t\twhile (tl >>= 1, tr >>= 1, tl) {\n\t\t\tif (lazy[tl] == M::id2()) update(tl);\n\t\t\tif (lazy[tr] == M::id2()) update(tr);\n\t\t}\n\t}\n\tT1 find(int l, int r) {\n\t\tl += n, r += n - 1;\n\t\tfor (int i = h; i > 0; i--) push(l >> i), push(r >> i);\n\t\tr++;\n\t\tT1 res1 = M::id1(), res2 = M::id1();\n\t\twhile (l < r) {\n\t\t\tif (l & 1) res1 = M::op1(res1, M::op2(data[l], lazy[l])), l++;\n\t\t\tif (r & 1) r--, res2 = M::op1(M::op2(data[r], lazy[r]), res2);\n\t\t\tl >>= 1; r >>= 1;\n\t\t}\n\t\treturn M::op1(res1, res2);\n\t}\n};\n\nconst int MAX = 2e5;\n\nint it;\n\nint par[MAX];\nint lv[MAX], rv[MAX], vs[MAX];\n\nvoid dfs(int v, int prev, ll d, const graph& G, vector<pli>& dist) {\n\tpar[v] = prev;\n\tvs[it] = v;\n\tdist[it] = make_pair(d, it);\n\tlv[v] = it++;\n\tfor (auto e : G[v]) if (e.first != prev) {\n\t\tdfs(e.first, v, d + e.second, G, dist);\n\t}\n\trv[v] = it;\n}\n\nint main()\n{\n\tios::sync_with_stdio(false), cin.tie(0);\n\tint N;\n\tcin >> N;\n\tgraph G(N);\n\tunordered_map<int, unordered_map<int, ll>> es;\n\tvector<int> a(N - 1), b(N - 1);\n\tfor (int i = 0; i < N - 1; i++) {\n\t\tint d;\n\t\tcin >> a[i] >> b[i] >> d; --a[i], --b[i];\n\t\tG[a[i]].emplace_back(b[i], d);\n\t\tG[b[i]].emplace_back(a[i], d);\n\t\tes[a[i]][b[i]] = es[b[i]][a[i]] = d;\n\t}\n\tvector<pli> dist(N);\n\tit = 0;\n\tdfs(0, -1, 0, G, dist);\n\tlazy_segment_tree<RU> lst(dist);\n\tint pos = 0, cnt = 0;\n\tint Q;\n\tcin >> Q;\n\twhile (Q--) {\n\t\tint com;\n\t\tcin >> com;\n\t\tif (com == 1) {\n\t\t\tint v;\n\t\t\tcin >> v; --v;\n\t\t\tll cost = es[pos][v];\n\t\t\tif (v == par[pos]) {\n\t\t\t\tlst.update(0, lv[pos], -cost);\n\t\t\t\tlst.update(lv[pos], rv[pos], cost);\n\t\t\t\tlst.update(rv[pos], N, -cost);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tlst.update(0, lv[v], cost);\n\t\t\t\tlst.update(lv[v], rv[v], -cost);\n\t\t\t\tlst.update(rv[v], N, cost);\n\t\t\t}\n\t\t\tpos = v;\n\t\t}\n\t\telse if (com == 2) {\n\t\t\tint id;\n\t\t\tcin >> id; --id;\n\t\t\tint u = a[id], v = b[id];\n\t\t\tif (lv[v] <= lv[u] && rv[u] <= rv[v]) swap(u, v);\n\t\t\tif (lv[pos] <= lv[u] && rv[u] <= rv[pos]) {\n\t\t\t\tlst.update(lv[v], rv[v], -INF);\n\t\t\t}\n\t\t\telse if (lv[v] <= lv[pos] && rv[pos] <= rv[v]) {\n\t\t\t\tlst.update(0, lv[v], -INF);\n\t\t\t\tlst.update(rv[v], N, -INF);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tlst.update(lv[v], rv[v], -INF);\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tint id;\n\t\t\tcin >> id; --id;\n\t\t\tint u = a[id], v = b[id];\n\t\t\tif (lv[v] <= lv[u] && rv[u] <= rv[v]) swap(u, v);\n\t\t\tif (lv[pos] <= lv[u] && rv[u] <= rv[pos]) {\n\t\t\t\tlst.update(lv[v], rv[v], INF);\n\t\t\t}\n\t\t\telse if (lv[v] <= lv[pos] && rv[pos] <= rv[v]) {\n\t\t\t\tlst.update(0, lv[v], INF);\n\t\t\t\tlst.update(rv[v], N, INF);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tlst.update(lv[v], rv[v], INF);\n\t\t\t}\n\t\t}\n\t\tll d = lst.find(0, N).first;\n\t\tint ub = N;\n\t\tpli tmp;\n\t\tvector<int> res;\n\t\twhile ((tmp = lst.find(0, ub)).first == d) {\n\t\t\tint id = tmp.second;\n\t\t\tres.push_back(vs[id]);\n\t\t\tub = id;\n\t\t}\n\t\tsort(res.begin(), res.end());\n\t\tcout << res.size();\n\t\tfor (int i = 0; i < (int)res.size(); i++) {\n\t\t\tcout << ' ' << res[i] + 1;\n\t\t}\n\t\tcout << '\\n';\n\t\tcnt += res.size();\n\t\tassert(cnt <= S_MAX);\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 500, "memory_kb": 88596, "score_of_the_acc": -0.4187, "final_rank": 4 }, { "submission_id": "aoj_3143_4260158", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing ll = long long;\n\nstruct StarrySkyTree{\nprivate:\n int n;\n vector<pair<ll, int>> node;\n vector<ll> lazy;\n\npublic:\n StarrySkyTree(int sz, vector<ll> &v){\n n = 1;\n while(n < sz) n *= 2;\n node.resize(2 * n - 1);\n lazy.resize(2 * n - 1);\n for(int i = 0; i < sz; i++) node[i + n - 1] = {v[i], i};\n for(int i = n - 2; i >= 0; i--) node[i] = max(node[i * 2 + 1], node[i * 2 + 2]);\n }\n\n void eval(int k, int l, int r){\n if(lazy[k] != 0){\n node[k].first += lazy[k];\n if(r - l > 1){\n lazy[2 * k + 1] += lazy[k];\n lazy[2 * k + 2] += lazy[k];\n }\n lazy[k] = 0;\n }\n }\n\n void add(int a, int b, ll x, int k = 0, int l = 0, int r = -1){\n if(r < 0) r = n;\n eval(k, l, r);\n if(b <= l || r <= a) return;\n if(a <= l && r <= b){\n lazy[k] += x;\n eval(k, l, r);\n }else{\n add(a, b, x, 2 * k + 1, l, (l + r) / 2);\n add(a, b, x, 2 * k + 2, (l + r) / 2, r);\n node[k] = max(node[2 * k + 1], node[2 * k + 2]);\n }\n }\n\n pair<ll, int> getmax(int a, int b, int k = 0, int l = 0, int r = -1){\n if(r < 0) r = n;\n if(b <= l || r <= a) return {-1, -1};\n eval(k, l, r);\n if(a <= l && r <= b) return node[k];\n pair<ll, int> vl = getmax(a, b, 2 * k + 1, l, (l + r) / 2);\n pair<ll, int> vr = getmax(a, b, 2 * k + 2, (l + r) / 2, r);\n return max(vl, vr);\n }\n};\n\nint n;\nvector<vector<int>> e;\nvector<int> a, b;\nvector<ll> d;\n\nint idx;\nvector<ll> depth;\nvector<int> l, r;\nvector<int> par;\nvector<int> wh;\n\nvoid dfs(int x, int p){\n l[x] = idx++;\n wh[l[x]] = x;\n for(auto &id:e[x]){\n if(a[id] == p) continue;\n if(a[id] != x) swap(a[id], b[id]);\n depth[idx] = depth[l[x]] + d[id];\n par[b[id]] = id;\n dfs(b[id], x);\n }\n r[x] = idx;\n}\n\nint main(){\n cin.tie(0);ios::sync_with_stdio(false);\n\n cin >> n;\n a = b = vector<int>(n);\n d = vector<ll>(n);\n e = vector<vector<int>>(n);\n for(int i = 0; i < n - 1; i++){\n cin >> a[i] >> b[i] >> d[i];\n a[i]--, b[i]--;\n e[a[i]].push_back(i);\n e[b[i]].push_back(i);\n }\n\n idx = 0;\n l = r = par = wh = vector<int>(n);\n depth = vector<ll>(n);\n dfs(0, -1);\n\n StarrySkyTree seg(n, depth);\n\n int q;\n cin >> q;\n int c, v;\n const ll inf = 3e11;\n int now = 0;\n for(int t = 0; t < q; t++){\n cin >> c >> v;\n v--;\n if(c == 1){\n if(now > 0 && a[par[now]] == v){\n seg.add(0, n, -d[par[now]]);\n seg.add(l[now], r[now], 2 * d[par[now]]);\n }else{\n seg.add(0, n, d[par[v]]);\n seg.add(l[v], r[v], -2 * d[par[v]]);\n }\n now = v;\n }else if(c == 2){\n if(l[b[v]] <= l[now] && l[now] < r[b[v]]){\n seg.add(0, n, -inf);\n seg.add(l[b[v]], r[b[v]], inf);\n }else{\n seg.add(l[b[v]], r[b[v]], -inf);\n }\n }else{\n if(l[b[v]] <= l[now] && l[now] < r[b[v]]){\n seg.add(0, n, inf);\n seg.add(l[b[v]], r[b[v]], -inf);\n }else{\n seg.add(l[b[v]], r[b[v]], inf);\n }\n }\n\n vector<int> ans;\n pair<int, int> p = seg.getmax(0, n);\n pair<int, int> far = p;\n while(p.first == far.first){\n ans.push_back(p.second);\n seg.add(p.second, p.second + 1, -inf);\n p = seg.getmax(0, n);\n }\n\n sort(ans.begin(), ans.end(), [&](int &l, int &r){\n return wh[l] < wh[r];\n });\n\n cout << ans.size();\n for(auto &x:ans){\n cout << \" \" << wh[x] + 1;\n seg.add(x, x + 1, inf);\n }\n cout << \"\\n\";\n }\n cout << flush;\n\n return 0;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 42400, "score_of_the_acc": -0.0348, "final_rank": 1 }, { "submission_id": "aoj_3143_4257984", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing pil = pair<int, ll>;\nusing pli = pair<ll, int>;\nusing graph = vector<vector<pil>>;\n\nconst ll INF = 1e12;\n\nconst int S_MAX = 4e5;\n\nstruct RU {\n\tusing t1 = pli;\n\tusing t2 = ll;\n\tstatic t1 id1() { return make_pair(-1000000000000000000LL, -1); }\n\tstatic t2 id2() { return 0; }\n\tstatic t1 op1(const t1& l, const t1& r) { return max(l, r); }\n\tstatic t1 op2(const t1& l, const t2& r) { return make_pair(l.first + r, l.second); }\n\tstatic t2 op3(const t2& l, const t2& r) { return l + r; }\n};\n\ntemplate <typename M>\nclass lazy_segment_tree {\n\tusing T1 = typename M::t1;\n\tusing T2 = typename M::t2;\n\tconst int h, n;\n\tvector<T1> data;\n\tvector<T2> lazy;\n\tvoid push(int node) {\n\t\tif (lazy[node] == M::id2()) return;\n\t\tif (node < n) {\n\t\t\tlazy[node * 2] = M::op3(lazy[node * 2], lazy[node]);\n\t\t\tlazy[node * 2 + 1] = M::op3(lazy[node * 2 + 1], lazy[node]);\n\t\t}\n\t\tdata[node] = M::op2(data[node], lazy[node]);\n\t\tlazy[node] = M::id2();\n\t}\n\tvoid update(int node) {\n\t\tdata[node] = M::op1(M::op2(data[node * 2], lazy[node * 2]), M::op2(data[node * 2 + 1], lazy[node * 2 + 1]));\n\t}\npublic:\n\tlazy_segment_tree(int n_)\n\t\t: h(ceil(log2(n_))), n(1 << h), data(n * 2, M::id1()), lazy(n * 2, M::id2()) {}\n\tlazy_segment_tree(int n_, T1 v1)\n\t\t: h(ceil(log2(n_))), n(1 << h), data(n * 2, v1), lazy(n * 2, M::id2()) {}\n\tlazy_segment_tree(const vector<T1>& data_)\n\t\t: h(ceil(log2(data_.size()))), n(1 << h), data(n * 2, M::id1()), lazy(n * 2, M::id2()) {\n\t\tinit(data_);\n\t}\n\tvoid init() {\n\t\tfor (int i = n - 1; i >= 1; i--) data[i] = M::op1(data[i * 2], data[i * 2 + 1]);\n\t}\n\tvoid init(const vector<T1>& data_) {\n\t\tfor (int i = 0; i < (int)data_.size(); i++) data[i + n] = data_[i];\n\t\tinit();\n\t}\n\tvoid update(int l, int r, T2 val) {\n\t\tif (l >= r) return;\n\t\tl += n, r += n - 1;\n\t\tfor (int i = h; i > 0; i--) push(l >> i), push(r >> i);\n\t\tint tl = l, tr = r;\n\t\tr++;\n\t\twhile (l < r) {\n\t\t\tif (l & 1) lazy[l] = M::op3(lazy[l], val), l++;\n\t\t\tif (r & 1) r--, lazy[r] = M::op3(lazy[r], val);\n\t\t\tl >>= 1; r >>= 1;\n\t\t}\n\t\twhile (tl >>= 1, tr >>= 1, tl) {\n\t\t\tif (lazy[tl] == M::id2()) update(tl);\n\t\t\tif (lazy[tr] == M::id2()) update(tr);\n\t\t}\n\t}\n\tT1 find(int l, int r) {\n\t\tl += n, r += n - 1;\n\t\tfor (int i = h; i > 0; i--) push(l >> i), push(r >> i);\n\t\tr++;\n\t\tT1 res1 = M::id1(), res2 = M::id1();\n\t\twhile (l < r) {\n\t\t\tif (l & 1) res1 = M::op1(res1, M::op2(data[l], lazy[l])), l++;\n\t\t\tif (r & 1) r--, res2 = M::op1(M::op2(data[r], lazy[r]), res2);\n\t\t\tl >>= 1; r >>= 1;\n\t\t}\n\t\treturn M::op1(res1, res2);\n\t}\n};\n\nconst int MAX = 2e5;\n\nint it;\n\nint par[MAX];\nint lv[MAX], rv[MAX], vs[MAX];\n\nvoid dfs(int v, int prev, ll d, const graph& G, vector<pli>& dist) {\n\tpar[v] = prev;\n\tvs[it] = v;\n\tdist[it] = make_pair(d, it);\n\tlv[v] = it++;\n\tfor (auto e : G[v]) if (e.first != prev) {\n\t\tdfs(e.first, v, d + e.second, G, dist);\n\t}\n\trv[v] = it;\n}\n\nint main()\n{\n\tint N;\n\tcin >> N;\n\tgraph G(N);\n\tunordered_map<int, unordered_map<int, ll>> es;\n\tvector<int> a(N - 1), b(N - 1);\n\tfor (int i = 0; i < N - 1; i++) {\n\t\tint d;\n\t\tcin >> a[i] >> b[i] >> d; --a[i], --b[i];\n\t\tG[a[i]].emplace_back(b[i], d);\n\t\tG[b[i]].emplace_back(a[i], d);\n\t\tes[a[i]][b[i]] = es[b[i]][a[i]] = d;\n\t}\n\tvector<pli> dist(N);\n\tit = 0;\n\tdfs(0, -1, 0, G, dist);\n\tlazy_segment_tree<RU> lst(dist);\n\tint pos = 0, cnt = 0;\n\tint Q;\n\tcin >> Q;\n\twhile (Q--) {\n\t\tint com;\n\t\tcin >> com;\n\t\tif (com == 1) {\n\t\t\tint v;\n\t\t\tcin >> v; --v;\n\t\t\tll cost = es[pos][v];\n\t\t\tif (v == par[pos]) {\n\t\t\t\tlst.update(0, lv[pos], -cost);\n\t\t\t\tlst.update(lv[pos], rv[pos], cost);\n\t\t\t\tlst.update(rv[pos], N, -cost);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tlst.update(0, lv[v], cost);\n\t\t\t\tlst.update(lv[v], rv[v], -cost);\n\t\t\t\tlst.update(rv[v], N, cost);\n\t\t\t}\n\t\t\tpos = v;\n\t\t}\n\t\telse if (com == 2) {\n\t\t\tint id;\n\t\t\tcin >> id; --id;\n\t\t\tint u = a[id], v = b[id];\n\t\t\tif (lv[v] <= lv[u] && rv[u] <= rv[v]) swap(u, v);\n\t\t\tif (lv[pos] <= lv[u] && rv[u] <= rv[pos]) {\n\t\t\t\tlst.update(lv[v], rv[v], -INF);\n\t\t\t}\n\t\t\telse if (lv[v] <= lv[pos] && rv[pos] <= rv[v]) {\n\t\t\t\tlst.update(0, lv[v], -INF);\n\t\t\t\tlst.update(rv[v], N, -INF);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tlst.update(lv[v], rv[v], -INF);\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tint id;\n\t\t\tcin >> id; --id;\n\t\t\tint u = a[id], v = b[id];\n\t\t\tif (lv[v] <= lv[u] && rv[u] <= rv[v]) swap(u, v);\n\t\t\tif (lv[pos] <= lv[u] && rv[u] <= rv[pos]) {\n\t\t\t\tlst.update(lv[v], rv[v], INF);\n\t\t\t}\n\t\t\telse if (lv[v] <= lv[pos] && rv[pos] <= rv[v]) {\n\t\t\t\tlst.update(0, lv[v], INF);\n\t\t\t\tlst.update(rv[v], N, INF);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tlst.update(lv[v], rv[v], INF);\n\t\t\t}\n\t\t}\n\t\tll d = lst.find(0, N).first;\n\t\tint ub = N;\n\t\tpli tmp;\n\t\tvector<int> res;\n\t\twhile ((tmp = lst.find(0, ub)).first == d) {\n\t\t\tint id = tmp.second;\n\t\t\tres.push_back(vs[id]);\n\t\t\tub = id;\n\t\t}\n\t\tsort(res.begin(), res.end());\n\t\tcout << res.size();\n\t\tfor (int i = 0; i < (int)res.size(); i++) {\n\t\t\tcout << ' ' << res[i] + 1;\n\t\t}\n\t\tcout << endl;\n\t\tcnt += res.size();\n\t\tassert(cnt <= S_MAX);\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 850, "memory_kb": 88564, "score_of_the_acc": -0.7229, "final_rank": 6 }, { "submission_id": "aoj_3143_4257978", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing pil = pair<int, ll>;\nusing pli = pair<ll, int>;\nusing graph = vector<vector<pil>>;\n\nconst ll INF = 1e12;\n\nconst int S_MAX = 4e5;\n\nstruct RU {\n\tusing t1 = pli;\n\tusing t2 = ll;\n\tstatic t1 id1() { return make_pair(-1000000000000000000LL, -1); }\n\tstatic t2 id2() { return 0; }\n\tstatic t1 op1(const t1& l, const t1& r) { return max(l, r); }\n\tstatic t1 op2(const t1& l, const t2& r) { return make_pair(l.first + r, l.second); }\n\tstatic t2 op3(const t2& l, const t2& r) { return l + r; }\n};\n\ntemplate <typename M>\nclass lazy_segment_tree {\n\tusing T1 = typename M::t1;\n\tusing T2 = typename M::t2;\n\tconst int h, n;\n\tvector<T1> data;\n\tvector<T2> lazy;\n\tvoid push(int node) {\n\t\tif (lazy[node] == M::id2()) return;\n\t\tif (node < n) {\n\t\t\tlazy[node * 2] = M::op3(lazy[node * 2], lazy[node]);\n\t\t\tlazy[node * 2 + 1] = M::op3(lazy[node * 2 + 1], lazy[node]);\n\t\t}\n\t\tdata[node] = M::op2(data[node], lazy[node]);\n\t\tlazy[node] = M::id2();\n\t}\n\tvoid update(int node) {\n\t\tdata[node] = M::op1(M::op2(data[node * 2], lazy[node * 2]), M::op2(data[node * 2 + 1], lazy[node * 2 + 1]));\n\t}\npublic:\n\tlazy_segment_tree(int n_)\n\t\t: h(ceil(log2(n_))), n(1 << h), data(n * 2, M::id1()), lazy(n * 2, M::id2()) {}\n\tlazy_segment_tree(int n_, T1 v1)\n\t\t: h(ceil(log2(n_))), n(1 << h), data(n * 2, v1), lazy(n * 2, M::id2()) {}\n\tlazy_segment_tree(const vector<T1>& data_)\n\t\t: h(ceil(log2(data_.size()))), n(1 << h), data(n * 2, M::id1()), lazy(n * 2, M::id2()) {\n\t\tinit(data_);\n\t}\n\tvoid init() {\n\t\tfor (int i = n - 1; i >= 1; i--) data[i] = M::op1(data[i * 2], data[i * 2 + 1]);\n\t}\n\tvoid init(const vector<T1>& data_) {\n\t\tfor (int i = 0; i < (int)data_.size(); i++) data[i + n] = data_[i];\n\t\tinit();\n\t}\n\tvoid update(int l, int r, T2 val) {\n\t\tif (l >= r) return;\n\t\tl += n, r += n - 1;\n\t\tfor (int i = h; i > 0; i--) push(l >> i), push(r >> i);\n\t\tint tl = l, tr = r;\n\t\tr++;\n\t\twhile (l < r) {\n\t\t\tif (l & 1) lazy[l] = M::op3(lazy[l], val), l++;\n\t\t\tif (r & 1) r--, lazy[r] = M::op3(lazy[r], val);\n\t\t\tl >>= 1; r >>= 1;\n\t\t}\n\t\twhile (tl >>= 1, tr >>= 1, tl) {\n\t\t\tif (lazy[tl] == M::id2()) update(tl);\n\t\t\tif (lazy[tr] == M::id2()) update(tr);\n\t\t}\n\t}\n\tT1 find(int l, int r) {\n\t\tl += n, r += n - 1;\n\t\tfor (int i = h; i > 0; i--) push(l >> i), push(r >> i);\n\t\tr++;\n\t\tT1 res1 = M::id1(), res2 = M::id1();\n\t\twhile (l < r) {\n\t\t\tif (l & 1) res1 = M::op1(res1, M::op2(data[l], lazy[l])), l++;\n\t\t\tif (r & 1) r--, res2 = M::op1(M::op2(data[r], lazy[r]), res2);\n\t\t\tl >>= 1; r >>= 1;\n\t\t}\n\t\treturn M::op1(res1, res2);\n\t}\n};\n\nconst int MAX = 2e5;\n\nint it;\n\nint par[MAX];\nint lv[MAX], rv[MAX], vs[MAX];\n\nvoid dfs(int v, int prev, ll d, const graph& G, vector<pli>& dist) {\n\tpar[v] = prev;\n\tvs[it] = v;\n\tdist[it] = make_pair(d, it);\n\tlv[v] = it++;\n\tfor (auto e : G[v]) if (e.first != prev) {\n\t\tdfs(e.first, v, d + e.second, G, dist);\n\t}\n\trv[v] = it;\n}\n\nint main()\n{\n\tios::sync_with_stdio(false), cin.tie(0);\n\tint N;\n\tcin >> N;\n\tgraph G(N);\n\tunordered_map<int, unordered_map<int, ll>> es;\n\tvector<int> a(N - 1), b(N - 1);\n\tfor (int i = 0; i < N - 1; i++) {\n\t\tint d;\n\t\tcin >> a[i] >> b[i] >> d; --a[i], --b[i];\n\t\tG[a[i]].emplace_back(b[i], d);\n\t\tG[b[i]].emplace_back(a[i], d);\n\t\tes[a[i]][b[i]] = es[b[i]][a[i]] = d;\n\t}\n\tvector<pli> dist(N);\n\tit = 0;\n\tdfs(0, -1, 0, G, dist);\n\tlazy_segment_tree<RU> lst(dist);\n\tint pos = 0, cnt = 0;\n\tint Q;\n\tcin >> Q;\n\twhile (Q--) {\n\t\tint com;\n\t\tcin >> com;\n\t\tif (com == 1) {\n\t\t\tint v;\n\t\t\tcin >> v; --v;\n\t\t\tll cost = es[pos][v];\n\t\t\tif (v == par[pos]) {\n\t\t\t\tlst.update(0, lv[pos], -cost);\n\t\t\t\tlst.update(lv[pos], rv[pos], cost);\n\t\t\t\tlst.update(rv[pos], N, -cost);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tlst.update(0, lv[v], cost);\n\t\t\t\tlst.update(lv[v], rv[v], -cost);\n\t\t\t\tlst.update(rv[v], N, cost);\n\t\t\t}\n\t\t\tpos = v;\n\t\t}\n\t\telse if (com == 2) {\n\t\t\tint id;\n\t\t\tcin >> id; --id;\n\t\t\tint u = a[id], v = b[id];\n\t\t\tif (lv[v] <= lv[u] && rv[u] <= rv[v]) swap(u, v);\n\t\t\tif (lv[pos] <= lv[u] && rv[u] <= rv[pos]) {\n\t\t\t\tlst.update(lv[v], rv[v], -INF);\n\t\t\t}\n\t\t\telse if (lv[v] <= lv[pos] && rv[pos] <= rv[v]) {\n\t\t\t\tlst.update(0, lv[v], -INF);\n\t\t\t\tlst.update(rv[v], N, -INF);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tlst.update(lv[v], rv[v], -INF);\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tint id;\n\t\t\tcin >> id; --id;\n\t\t\tint u = a[id], v = b[id];\n\t\t\tif (lv[v] <= lv[u] && rv[u] <= rv[v]) swap(u, v);\n\t\t\tif (lv[pos] <= lv[u] && rv[u] <= rv[pos]) {\n\t\t\t\tlst.update(lv[v], rv[v], INF);\n\t\t\t}\n\t\t\telse if (lv[v] <= lv[pos] && rv[pos] <= rv[v]) {\n\t\t\t\tlst.update(0, lv[v], INF);\n\t\t\t\tlst.update(rv[v], N, INF);\n\t\t\t}\n\t\t\telse {\n\t\t\t\tlst.update(lv[v], rv[v], INF);\n\t\t\t}\n\t\t}\n\t\tll d = lst.find(0, N).first;\n\t\tint ub = N;\n\t\tpli tmp;\n\t\tvector<int> res;\n\t\twhile ((tmp = lst.find(0, ub)).first == d) {\n\t\t\tint id = tmp.second;\n\t\t\tres.push_back(vs[id]);\n\t\t\tub = id;\n\t\t}\n\t\tsort(res.begin(), res.end());\n\t\tcout << res.size();\n\t\tfor (int i = 0; i < (int)res.size(); i++) {\n\t\t\tcout << ' ' << res[i] + 1;\n\t\t}\n\t\tcout << '\\n';\n\t\tcnt += res.size();\n\t\tassert(cnt <= S_MAX);\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 510, "memory_kb": 88628, "score_of_the_acc": -0.4276, "final_rank": 5 } ]
aoj_3141_cpp
E: 数列ゲーム 問題文 長さ $N$ の正整数列 $a_1, a_2, \ldots, a_N$ があります。 この数列を用いた、$2$ 人のプレイヤーが先手と後手に分かれて行う以下のゲームを考えます。 先手と後手は交互に、以下の操作のどちらかを選んで行う。 数列の正の項を $1$ つ選び、その値を $1$ 減らす。 数列の全ての項が正のとき、全ての項の値を $1$ ずつ減らす。 先に操作を行えなくなったほうが負けです。 $2$ 人のプレイヤーが最適に行動したとき、先手と後手どちらが勝つかを求めてください。 制約 $1 \leq N \leq 2 \times 10^5$ $1 \leq a_i \leq 10^9$ 入力は全て整数である 入力 入力は以下の形式で標準入力から与えられる。 $N$ $a_1$ $a_2$ $...$ $a_N$ 出力 先手が勝つときは First を、後手が勝つときは Second を出力せよ。 入力例 1 2 1 2 出力例 1 First 先手が最初に第 $1$ 項の値を $1$ 減らすと、次に後手は第 $2$ 項の値を $1$ 減らすしかありません。 そのあとで先手が第 $2$ 項の値を $1$ 減らすと、数列の全ての項の値は $0$ になり、 後手は操作を行うことができなくなります。 入力例 2 5 3 1 4 1 5 出力例 2 Second 入力例 3 8 2 4 8 16 32 64 128 256 出力例 3 Second 入力例 4 3 999999999 1000000000 1000000000 出力例 4 First
[ { "submission_id": "aoj_3141_10489581", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,s,n) for (int i = (int)(s); i < (int)(n); i++)\n#define all(v) begin(v),end(v)\nusing namespace std;\nusing ll = long long;\n\n\nvoid solve(){\n int n; cin >> n;\n ll sum = 0, mi = 1e9+10;\n rep(i,0,n){\n ll x; cin >> x;\n sum += x;\n mi = min(mi,x);\n }\n sum %= 2;\n if (n % 2 == 1){\n cout << (sum == 1 ? \"First\" : \"Second\") << endl;\n return ;\n }\n if (mi % 2 == 0){\n cout << (sum == 1 ? \"First\" : \"Second\") << endl;\n }\n else {\n cout << (true ? \"First\" : \"Second\") << endl;\n }\n}\n\nint main(){\n int t = 1; //cin >> t;\n while (t--){\n solve();\n }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3584, "score_of_the_acc": -0.5421, "final_rank": 4 }, { "submission_id": "aoj_3141_10489550", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,s,n) for (int i = (int)(s); i < (int)(n); i++)\n#define all(v) begin(v),end(v)\nusing namespace std;\nusing ll = long long;\n\n\nvoid solve(){\n int n; cin >> n;\n ll sum = 0, mi = 1e9+10;\n rep(i,0,n){\n ll x; cin >> x;\n sum += x;\n mi = min(mi,x);\n }\n sum %= 2;\n if (n % 2 == 1){\n cout << (sum == 1 ? \"First\" : \"Second\") << endl;\n return ;\n }\n if (mi == 0){\n cout << (sum == 1 ? \"First\" : \"Second\") << endl;\n }\n else {\n cout << (mi % 2 == 1 ? \"First\" : \"Second\") << endl;\n }\n}\n\nint main(){\n int t = 1; //cin >> t;\n while (t--){\n solve();\n }\n}", "accuracy": 0.11627906976744186, "time_ms": 30, "memory_kb": 3584, "score_of_the_acc": -0.5421, "final_rank": 20 }, { "submission_id": "aoj_3141_9495967", "code_snippet": "// competitive-verifier: PROBLEM\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nint main(void) {\n int n;\n cin >> n;\n vector<ll> a(n);\n cin >> a;\n ll s = accumulate(all(a), 0l);\n if (n & 1) {\n if (s & 1)\n co(\"First\");\n else\n co(\"Second\");\n } else {\n int m = *min_element(all(a));\n if (m & 1) {\n co(\"First\");\n } else if (s & 1) {\n co(\"First\");\n } else {\n co(\"Second\");\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4992, "score_of_the_acc": -0.5969, "final_rank": 6 }, { "submission_id": "aoj_3141_9495945", "code_snippet": "// competitive-verifier: PROBLEM\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nint main(void) {\n int n;\n cin >> n;\n vector<ll> a(n);\n cin >> a;\n ll s = accumulate(all(a), 0l);\n if (n & 1) {\n if (s & 1)\n co(\"First\");\n else\n co(\"Second\");\n } else {\n bool f = true;\n rep (i, n) f &= a[i] % 2 == 0;\n if (f)\n co(\"Second\");\n else\n co(\"First\");\n }\n return 0;\n}", "accuracy": 0.18604651162790697, "time_ms": 10, "memory_kb": 4992, "score_of_the_acc": -0.5969, "final_rank": 15 }, { "submission_id": "aoj_3141_9494131", "code_snippet": "#include<iostream>\n#include<vector>\n#include<numeric>\nusing namespace std;\nusing ll=long long;\nint main(){\n int n;\n cin>>n;\n vector<ll>a(n);\n for(int i=0;i<n;i++)cin>>a[i];\n if(n%2==0){\n ll mn=*min_element(a.begin(),a.end())&~1;\n for(int i=0;i<n;i++)a[i]-=mn;\n if(find(a.begin(),a.end(),0)!=a.end()){\n ll sum=reduce(a.begin(),a.end());\n cout<<(sum&1?\"First\":\"Second\")<<endl;\n }\n else cout<<\"First\"<<endl;\n }\n else{\n ll sum=reduce(a.begin(),a.end());\n cout<<(sum&1?\"First\":\"Second\")<<endl;\n }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4864, "score_of_the_acc": -0.9556, "final_rank": 8 }, { "submission_id": "aoj_3141_9131115", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=int64_t;\n\nint main() {\n\n int n;\n cin >> n;\n vector<ll> a(n);\n ll sm=0;\n for(ll &x:a){\n cin >> x;\n sm+=x;\n }\n \n if(sm%2==0) cout << \"Second\" << endl;\n else cout << \"First\" << endl;\n \n}", "accuracy": 0.13953488372093023, "time_ms": 40, "memory_kb": 4448, "score_of_the_acc": -1.0212, "final_rank": 18 }, { "submission_id": "aoj_3141_4991120", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef pair<int, int> P;\ntypedef vector<int> vi;\ntypedef vector<ll> vll;\n// #define int long long\n#define pb push_back\n#define mp make_pair\n#define eps 1e-9\n#define INF 2000000000 // 2e9\n#define LLINF 2000000000000000000ll // 2e18 (llmax:9e18)\n#define fi first\n#define sec second\n#define all(x) (x).begin(), (x).end()\n#define sq(x) ((x) * (x))\n#define dmp(x) cerr << #x << \": \" << x << endl;\n\ntemplate <class T>\nvoid chmin(T &a, const T &b) {\n if (a > b) a = b;\n}\ntemplate <class T>\nvoid chmax(T &a, const T &b) {\n if (a < b) a = b;\n}\n\ntemplate <class T>\nusing MaxHeap = priority_queue<T>;\ntemplate <class T>\nusing MinHeap = priority_queue<T, vector<T>, greater<T>>;\ntemplate <class T>\nvector<T> vect(int len, T elem) {\n return vector<T>(len, elem);\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << p.fi << ',' << p.sec;\n return os;\n}\ntemplate <class T, class U>\nistream &operator>>(istream &is, pair<T, U> &p) {\n is >> p.fi >> p.sec;\n return is;\n}\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &vec) {\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i];\n if (i + 1 < vec.size()) os << ' ';\n }\n return os;\n}\ntemplate <class T>\nistream &operator>>(istream &is, vector<T> &vec) {\n for (int i = 0; i < vec.size(); i++) is >> vec[i];\n return is;\n}\nvoid fastio() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n cout << fixed << setprecision(20);\n}\n\n#define endl \"\\n\"\n\nvoid solve() {\n int N;\n cin >> N;\n vector<ll> a(N);\n cin >> a;\n if (N % 2 == 1) {\n ll sum = accumulate(all(a), 0ll);\n if (sum % 2ll == 0ll)\n cout << \"Second\" << endl;\n else\n cout << \"First\" << endl;\n return;\n }\n ll X = accumulate(all(a), 0ll) - *min_element(all(a)) * (ll)(N);\n // dmp(X);\n vector<int> p(N), q(N);\n if (N % 2 == 1) {\n for (int i = 0; i < N - 1; i++) p[i] = i % 2;\n p[N - 1] = 2;\n } else {\n for (int i = 0; i < N; i++) p[i] = i % 2;\n }\n for (int i = 0; i < N; i++) {\n vector<int> to;\n if (i > 0) to.push_back(q[i - 1]);\n to.push_back(p[i]);\n to.push_back(p[(i + N - 1) % N]);\n for (int j = 0;; j++) {\n bool judge = true;\n for (int val : to) {\n if (val == j) {\n judge = false;\n break;\n }\n }\n if (judge) {\n q[i] = j;\n break;\n }\n }\n }\n // dmp(p);\n // dmp(q);\n ll m = *min_element(all(a));\n // dmp(m);\n int ret = -1;\n if (N % 2 == 1) {\n if (m % 2 == 0) {\n ret = p[(X + N - (m / 2) % N) % N];\n } else {\n ret = q[(X + N - (m / 2) % N) % N];\n }\n } else {\n if (m % 2 == 0) {\n ret = p[X % N];\n } else {\n ret = q[X % N];\n }\n }\n // dmp(ret);\n if (ret == 0)\n cout << \"Second\" << endl;\n else\n cout << \"First\" << endl;\n return;\n}\n\nsigned main() {\n fastio();\n solve();\n // int t; cin >> t; while(t--)solve();\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 6240, "score_of_the_acc": -1.2, "final_rank": 9 }, { "submission_id": "aoj_3141_4875793", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\nusing Int = long long;\nconst char newl = '\\n';\n\n\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n Int n;\n cin>>n;\n vector<Int> as(n);\n for(Int i=0;i<n;i++) cin>>as[i];\n\n Int sum=0;\n for(Int a:as) sum+=a;\n\n if(n&1){\n if(sum&1) drop(\"First\");\n else drop(\"Second\");\n }\n\n if((~*min_element(as.begin(),as.end())&1) and (~sum&1))\n drop(\"Second\");\n\n drop(\"First\");\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4988, "score_of_the_acc": -0.5956, "final_rank": 5 }, { "submission_id": "aoj_3141_4810692", "code_snippet": "#include <bits/stdc++.h> \n#define rep(i, n) for(long long int i = 0; i < n; i++)\n#define _rep(i, m, n) for(long long int i = m; i < n; i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int, int> P;\nconst ll mod = 1000000007;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n \nll gcd(ll A, ll B){\n if(B == 0)return A;\n return gcd(B, A % B);\n}\nll lcm(ll A, ll B){\n return A * B / gcd(A, B);\n}\ntemplate <typename T>\nT pow(T a, ll n, T e = 1) {\n T ret = e;\n while (n) {\n if (n & 1) ret *= a;\n a *= a;\n n >>= 1;\n }\n return ret;\n}\n \ntemplate <int mod>\nstruct ModInt {\n int x;\n ModInt() : x(0) {}\n ModInt(long long x_) {\n if ((x = x_ % mod + mod) >= mod) x -= mod;\n }\n ModInt& operator+=(ModInt rhs) {\n if ((x += rhs.x) >= mod) x -= mod;\n return *this;\n }\n ModInt& operator-=(ModInt rhs) {\n if ((x -= rhs.x) < 0) x += mod;\n return *this;\n }\n ModInt& operator*=(ModInt rhs) {\n x = (unsigned long long)x * rhs.x % mod;\n return *this;\n }\n ModInt& operator/=(ModInt rhs) {\n x = (unsigned long long)x * rhs.inv().x % mod;\n return *this;\n }\n \n ModInt operator-() const { return -x < 0 ? mod - x : -x; }\n ModInt operator+(ModInt rhs) const { return ModInt(*this) += rhs; }\n ModInt operator-(ModInt rhs) const { return ModInt(*this) -= rhs; }\n ModInt operator*(ModInt rhs) const { return ModInt(*this) *= rhs; }\n ModInt operator/(ModInt rhs) const { return ModInt(*this) /= rhs; }\n bool operator==(ModInt rhs) const { return x == rhs.x; }\n bool operator!=(ModInt rhs) const { return x != rhs.x; }\n ModInt inv() const { return pow(*this, mod - 2); }\n \n friend ostream& operator<<(ostream& s, ModInt<mod> a) {\n s << a.x;\n return s;\n }\n friend istream& operator>>(istream& s, ModInt<mod>& a) {\n s >> a.x;\n return s;\n }\n};\n \nusing mint = ModInt<1000000007>;\nusing Graph = vector<vector<int>>;\nGraph G;\n/*------------------------------------------------------------------*/\nint main(){\n ll n; cin >> n;\n vector<ll> a(n);\n ll even = 0;\n ll sum = 0;\n ll a_min = 2e9;\n rep(i, n){\n cin >> a[i];\n a_min = min(a_min, a[i]);\n if(a[i] % 2 == 0) even++;\n sum += a[i];\n }\n\n\n if(n % 2 == 0){\n if(even == n) cout << \"Second\" << endl;\n else cout << \"First\" << endl;\n }else{\n if((sum % 2 == 1 and a_min % 2 == 1) or (sum % 2 == 0 and a_min % 2 == 0)) cout << \"First\" << endl;\n else cout << \"Second\" << endl;\n }\n}", "accuracy": 0.18604651162790697, "time_ms": 50, "memory_kb": 4352, "score_of_the_acc": -1.1902, "final_rank": 16 }, { "submission_id": "aoj_3141_4810670", "code_snippet": "#include <bits/stdc++.h> \n#define rep(i, n) for(long long int i = 0; i < n; i++)\n#define _rep(i, m, n) for(long long int i = m; i < n; i++)\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int, int> P;\nconst ll mod = 1000000007;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n \nll gcd(ll A, ll B){\n if(B == 0)return A;\n return gcd(B, A % B);\n}\nll lcm(ll A, ll B){\n return A * B / gcd(A, B);\n}\ntemplate <typename T>\nT pow(T a, ll n, T e = 1) {\n T ret = e;\n while (n) {\n if (n & 1) ret *= a;\n a *= a;\n n >>= 1;\n }\n return ret;\n}\n \ntemplate <int mod>\nstruct ModInt {\n int x;\n ModInt() : x(0) {}\n ModInt(long long x_) {\n if ((x = x_ % mod + mod) >= mod) x -= mod;\n }\n ModInt& operator+=(ModInt rhs) {\n if ((x += rhs.x) >= mod) x -= mod;\n return *this;\n }\n ModInt& operator-=(ModInt rhs) {\n if ((x -= rhs.x) < 0) x += mod;\n return *this;\n }\n ModInt& operator*=(ModInt rhs) {\n x = (unsigned long long)x * rhs.x % mod;\n return *this;\n }\n ModInt& operator/=(ModInt rhs) {\n x = (unsigned long long)x * rhs.inv().x % mod;\n return *this;\n }\n \n ModInt operator-() const { return -x < 0 ? mod - x : -x; }\n ModInt operator+(ModInt rhs) const { return ModInt(*this) += rhs; }\n ModInt operator-(ModInt rhs) const { return ModInt(*this) -= rhs; }\n ModInt operator*(ModInt rhs) const { return ModInt(*this) *= rhs; }\n ModInt operator/(ModInt rhs) const { return ModInt(*this) /= rhs; }\n bool operator==(ModInt rhs) const { return x == rhs.x; }\n bool operator!=(ModInt rhs) const { return x != rhs.x; }\n ModInt inv() const { return pow(*this, mod - 2); }\n \n friend ostream& operator<<(ostream& s, ModInt<mod> a) {\n s << a.x;\n return s;\n }\n friend istream& operator>>(istream& s, ModInt<mod>& a) {\n s >> a.x;\n return s;\n }\n};\n \nusing mint = ModInt<1000000007>;\nusing Graph = vector<vector<int>>;\nGraph G;\n/*------------------------------------------------------------------*/\nint main(){\n ll n; cin >> n;\n vector<ll> a(n);\n ll even = 0;\n ll sum = 0;\n ll a_min = 2e9;\n rep(i, n){\n cin >> a[i];\n a_min = min(a_min, a[i]);\n if(a[i] % 2 == 0) even++;\n sum += a[i];\n }\n\n\n if(n % 2 == 0){\n if(even % 2 == 0) cout << \"Second\" << endl;\n else cout << \"First\" << endl;\n }else{\n ll last = sum - a_min * n;\n if(last % 2 == 0) cout << \"First\" << endl;\n else cout << \"Second\" << endl;\n }\n}", "accuracy": 0.13953488372093023, "time_ms": 50, "memory_kb": 4312, "score_of_the_acc": -1.1773, "final_rank": 19 }, { "submission_id": "aoj_3141_4356925", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\ntypedef double db;\nmt19937 mrand(random_device{}()); \nconst ll mod=998244353;\nint rnd(int x) { return mrand() % x;}\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\nll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}\n// head\n\nconst int N=201000;\nint n,a[N];\nint main() {\n\tscanf(\"%d\",&n);\n\trep(i,0,n) scanf(\"%d\",a+i);\n\tif (n%2==1) {\n\t\tint s=0;\n\t\trep(i,0,n) s^=a[i];\n\t\tif (s%2==0) puts(\"Second\");\n\t\telse puts(\"First\");\n\t} else {\n\t\tint s=*min_element(a,a+n);\n\t\tif (s%2==1) {\n\t\t\tputs(\"First\");\n\t\t} else {\n\t\t\ts=0;\n\t\t\trep(i,0,n) s^=a[i];\n\t\t\tif (s%2==0) puts(\"Second\");\n\t\t\telse puts(\"First\");\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3992, "score_of_the_acc": -0.2739, "final_rank": 2 }, { "submission_id": "aoj_3141_4323926", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\nint main(){\n\n\tint N;\n\tint minimum = BIG_NUM,sum = 0,tmp;\n\n\tscanf(\"%d\",&N);\n\n\tfor(int i = 0; i < N; i++){\n\t\tscanf(\"%d\",&tmp);\n\t\tsum += tmp;\n\t\tsum %= 2;\n\t\tminimum = min(minimum,tmp);\n\t}\n\n\tif(N%2 == 1){\n\n\t\tif(sum%2 == 1){\n\n\t\t\tprintf(\"First\\n\");\n\n\t\t}else{\n\n\t\t\tprintf(\"Second\\n\");\n\t\t}\n\t}else{\n\n\t\tminimum %= 2;\n\t\tif(sum%2 == 0 && minimum%2 == 0){\n\n\t\t\tprintf(\"Second\\n\");\n\t\t}else{\n\n\t\t\tprintf(\"First\\n\");\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3144, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3141_4316466", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cassert>\n#include <algorithm>\n#include <functional>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <vector>\n#define repi(i,a,b) for(int i=(a);i<(b);++i)\n#define rep(i,a) repi(i,0,a)\n#define all(a) (a).begin(), (a).end()\n\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\nusing ll = long long;\n\nll N;\nll a[200010];\nll sum = 0;\nbool fl = true;\nll mi = 1ll<<60;\n\nint main()\n{\n std::cin >> N;\n\n rep( i, N )\n {\n std::cin >> a[i];\n sum += a[i];\n fl &= a[i]%2 == 0;\n chmin( mi, a[i] );\n }\n\n if( N&1 )\n std::cout << (sum&1 ? \"First\" : \"Second\") << std::endl;\n else\n std::cout << (!(sum&1) && !(mi&1) ? \"Second\" : \"First\") << std::endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 4660, "score_of_the_acc": -1.2897, "final_rank": 10 }, { "submission_id": "aoj_3141_4316224", "code_snippet": "#include <cstdio>\n#include <cstdlib>\n#include <cassert>\n#include <algorithm>\n#include <functional>\n#include <iostream>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <set>\n#include <stack>\n#include <string>\n#include <vector>\n#define repi(i,a,b) for(int i=(a);i<(b);++i)\n#define rep(i,a) repi(i,0,a)\n#define all(a) (a).begin(), (a).end()\n\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\nusing ll = long long;\n\nll N;\nll a[200010];\nll sum = 0;\nbool fl = true;\n\nint main()\n{\n std::cin >> N;\n\n rep( i, N )\n {\n std::cin >> a[i];\n sum += a[i];\n fl &= a[i]%2 == 0;\n }\n\n if( N&1 )\n std::cout << (sum&1 ? \"First\" : \"Second\") << std::endl;\n else\n std::cout << (fl ? \"Second\" : \"First\") << std::endl;\n\n return 0;\n}", "accuracy": 0.18604651162790697, "time_ms": 50, "memory_kb": 4648, "score_of_the_acc": -1.2858, "final_rank": 17 }, { "submission_id": "aoj_3141_4297098", "code_snippet": "#include<bits/stdc++.h>\n#include <array>\nusing namespace std;\nusing ULL = unsigned long long;\nusing UL = unsigned;\nusing LL = long long;\n#define rep(i, n) for(UL i = 0; i < (n); i++)\n\ntemplate<class Ty>\nusing passive_queue = priority_queue<Ty, vector<Ty>, greater<Ty>>;\n\nstruct Problem {\n\n\tvoid Solve() {\n\t\tUL N; cin >> N;\n\t\tvector<ULL> A(N); rep(i, N) cin >> A[i];\n\t\tULL S = 0; rep(i, N) S += A[i];\n\t\tULL m = 1000000000; rep(i, N) m = min(m, A[i]);\n\t\tif (S % 2 == 1) { cout << \"First\" << endl; return; }\n\t\tif (N % 2 == 0 && m % 2 == 1) { cout << \"First\" << endl; return; }\n\t\tcout << \"Second\" << endl;\n\t}\n\n\tProblem();\n};\nint main() {\n\tunique_ptr<Problem> p(new Problem());\n\tp->Solve();\n\treturn 0;\n}\nProblem::Problem() {\n\tcout << fixed << setprecision(10);\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 4420, "score_of_the_acc": -1.4121, "final_rank": 12 }, { "submission_id": "aoj_3141_4285069", "code_snippet": "#pragma GCC optimize (\"O3\")\n#include <iostream>\n#include <iomanip>\n#include <istream>\n#include <ostream>\n#include <sstream>\n#include <iterator>\n#include <vector>\n#include <algorithm>\n#include <queue>\n#include <deque>\n#include <list>\n#include <stack>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <bitset>\n#include <utility>\n#include <cmath>\n#include <cstdio>\n#include <cstring>\n#include <string>\n#include <ctime>\n#include <cctype>\n#include <cstdlib>\n#define IINF 10e8\n#define INF 1<<30\n#define MOD 1000000007\n#define mod 998244353\n#define REP(i, a, n) for (ll i = a; i < (ll)(n); i++)\n#define REPE(i, a, n) for (ll i = a; i <= (ll)(n); i++)\n#define Endl endl\n#define fi first\n#define se second\n#define pb push_back\n#define mp make_pair\n#define eb emplace_back\n#define mmax(x,y)(x>y?x:y)\n#define mmin(x,y)(x<y?x:y)\n#define chmax(x,y) x=mmax(x,y)\n#define chmin(x,y) x=mmin(x,y)\n#define all(x) (x).begin(),(x).end()\n#define siz(x) (ll)(x).size()\n#define PI acos(-1.0)\nusing namespace std;\ntypedef long long int ll;\ntypedef long double ld;\ntypedef pair<int,int>Pin;\ntypedef pair<ll,ll>Pll;\ntemplate<class T> using V=vector<T>;\nlong long GCD(long long a, long long b) {return b?GCD(b,a%b):a;}\nlong long LCM(long long a, long long b) {return a/GCD(a,b)*b;}\nint dx[4]={-1,0,1,0};\nint dy[4]={0,-1,0,1};\nint ddx[8]={-1,0,1,0,1,1,-1,-1};\nint ddy[8]={0,-1,0,1,1,-1,1,-1};\nll cmp(pair<ll,ll>a,pair<ll,ll> b){\n if(a.se!=b.se)\n return a.se<b.se;\n else\n return a.fi<b.fi;\n}\n//----------------------------------------------------------------------\n\n//----------------------------------------------------------------------\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n //------------------------------- \n //ll begin_time=clock();\n //-------------------------------\n ll n;cin>>n;\n V<ll>a(n);\n for(ll i=0;i<n;i++)cin>>a[i];\n ll b1=0;\n for(ll i=0;i<n;i++)b1+=a[i];\n b1%=2;\n if(n%2!=0){\n if(b1==0){\n cout<<\"Second\"<<Endl;\n }\n else cout<<\"First\"<<Endl;\n }\n else{\n sort(all(a));\n ll b2=a[0]%2;\n if(b1==0&&b2==0){\n cout<<\"Second\"<<endl;\n }\n else cout<<\"First\"<<Endl;\n }\n //------------------------------- \n //ll end_time=clock();cout<<\"time=\"<<end_time-begin_time<<\"ms\"<<endl;\n //-------------------------------\n return 0;\n}\n//----------------------------------------------------------------------", "accuracy": 1, "time_ms": 20, "memory_kb": 4420, "score_of_the_acc": -0.6121, "final_rank": 7 }, { "submission_id": "aoj_3141_4283406", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }\n\nlong long n;\nint main() {\n cin >> n;\n long long sum = 0;\n vector<long long> a(n, 0);\n for(int i = 0; i < n; ++i) {\n cin >> a.at(i);\n sum += a.at(i);\n }\n\n sort(a.begin(), a.end());\n int bsum = sum % 2;\n int bmin = a.at(0) % 2;\n\n if(n % 2 == 0) {\n if(bsum == 0 && bmin == 0) {\n cout << \"Second\" << endl;\n }else {\n cout << \"First\" << endl;\n }\n }else {\n if(bsum == 0) {\n cout << \"Second\" << endl;\n }else {\n cout << \"First\" << endl;\n }\n }\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 4348, "score_of_the_acc": -1.3889, "final_rank": 11 }, { "submission_id": "aoj_3141_4283403", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }\n\nlong long n;\nint main() {\n cin >> n;\n long long sum = 0;\n vector<long long> a(n, 0);\n for(int i = 0; i < n; ++i) {\n cin >> a.at(i);\n sum += a.at(i);\n }\n\n sort(a.begin(), a.end());\n int bsum = sum % 2;\n int bmin = a.at(n-1) % 2;\n\n if(n % 2 == 0) {\n if(bsum == 0 && bmin == 0) {\n cout << \"Second\" << endl;\n }else {\n cout << \"First\" << endl;\n }\n }else {\n if(bsum == 0) {\n cout << \"Second\" << endl;\n }else {\n cout << \"First\" << endl;\n }\n }\n}", "accuracy": 0.20930232558139536, "time_ms": 60, "memory_kb": 4376, "score_of_the_acc": -1.3979, "final_rank": 13 }, { "submission_id": "aoj_3141_4282146", "code_snippet": "#include <bits/stdc++.h>\n// created [2020/03/21] 18:25:02\n#pragma GCC diagnostic ignored \"-Wsign-compare\"\n#pragma GCC diagnostic ignored \"-Wsign-conversion\"\n\nusing i32 = int32_t;\nusing i64 = int64_t;\nusing u32 = uint32_t;\nusing u64 = uint64_t;\nusing uint = unsigned int;\nusing usize = std::size_t;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\ntemplate<typename T, usize n>\nusing arr = T (&)[n];\ntemplate<typename T, usize n>\nusing c_arr = const T (&)[n];\ntemplate<typename T>\nusing max_heap = std::priority_queue<T>;\ntemplate<typename T>\nusing min_heap = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate<typename T> constexpr T popcount(const T u) { return u ? static_cast<T>(__builtin_popcountll(static_cast<u64>(u))) : static_cast<T>(0); }\ntemplate<typename T> constexpr T log2p1(const T u) { return u ? static_cast<T>(64 - __builtin_clzll(static_cast<u64>(u))) : static_cast<T>(0); }\ntemplate<typename T> constexpr T msbp1(const T u) { return log2p1(u); }\ntemplate<typename T> constexpr T lsbp1(const T u) { return __builtin_ffsll(u); }\ntemplate<typename T> constexpr T clog(const T u) { return u ? log2p1(u - 1) : static_cast<T>(u); }\ntemplate<typename T> constexpr bool ispow2(const T u) { return u and (static_cast<u64>(u) & static_cast<u64>(u - 1)) == 0; }\ntemplate<typename T> constexpr T ceil2(const T u) { return static_cast<T>(1) << clog(u); }\ntemplate<typename T> constexpr T floor2(const T u) { return u == 0 ? static_cast<T>(0) : static_cast<T>(1) << (log2p1(u) - 1); }\ntemplate<typename T> constexpr bool btest(const T mask, const usize ind) { return static_cast<bool>((static_cast<u64>(mask) >> ind) & static_cast<u64>(1)); }\ntemplate<typename T> void bset(T& mask, const usize ind) { mask |= (static_cast<T>(1) << ind); }\ntemplate<typename T> void breset(T& mask, const usize ind) { mask &= ~(static_cast<T>(1) << ind); }\ntemplate<typename T> void bflip(T& mask, const usize ind) { mask ^= (static_cast<T>(1) << ind); }\ntemplate<typename T> void bset(T& mask, const usize ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); }\ntemplate<typename T> constexpr T bcut(const T mask, const usize ind) { return ind == 0 ? static_cast<T>(0) : static_cast<T>((static_cast<u64>(mask) << (64 - ind)) >> (64 - ind)); }\ntemplate<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }\ntemplate<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }\nconstexpr unsigned int mod = 1000000007;\ntemplate<typename T> constexpr T inf_v = std::numeric_limits<T>::max() / 4;\ntemplate<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};\nauto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; };\n\ntemplate<typename T>\nT in()\n{\n T v;\n return std::cin >> v, v;\n}\ntemplate<typename T, typename Uint, usize n, usize i>\nT in_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type) { return in<T>(); }\ntemplate<typename T, typename Uint, usize n, usize i>\nauto in_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type& szs)\n{\n const usize s = (usize)szs[i];\n std::vector<decltype(in_v<T, Uint, n, i + 1>(szs))> ans(s);\n for (usize j = 0; j < s; j++) { ans[j] = in_v<T, Uint, n, i + 1>(szs); }\n return ans;\n}\ntemplate<typename T, typename Uint, usize n>\nauto in_v(c_arr<Uint, n> szs) { return in_v<T, Uint, n, 0>(szs); }\ntemplate<typename... Types>\nauto in_t() { return std::tuple<std::decay_t<Types>...>{in<Types>()...}; }\nstruct io_init\n{\n io_init()\n {\n std::cin.tie(nullptr), std::ios::sync_with_stdio(false);\n std::cout << std::fixed << std::setprecision(20);\n }\n void clear()\n {\n std::cin.tie(), std::ios::sync_with_stdio(true);\n }\n} io_setting;\n\nint out() { return 0; }\ntemplate<typename T>\nint out(const T& v) { return std::cout << v, 0; }\ntemplate<typename T>\nint out(const std::vector<T>& v)\n{\n for (usize i = 0; i < v.size(); i++) {\n if (i > 0) { std::cout << ' '; }\n out(v[i]);\n }\n return 0;\n}\ntemplate<typename T1, typename T2>\nint out(const std::pair<T1, T2>& v) { return out(v.first), std::cout << ' ', out(v.second), 0; }\ntemplate<typename T, typename... Args>\nint out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; }\ntemplate<typename... Args>\nint outln(const Args... args) { return out(args...), std::cout << '\\n', 0; }\ntemplate<typename... Args>\nint outel(const Args... args) { return out(args...), std::cout << std::endl, 0; }\n# define SHOW(...) static_cast<void>(0)\nconstexpr ull TEN(const usize n) { return n == 0 ? 1ULL : TEN(n - 1) * 10ULL; }\n\ntemplate<typename T, typename Uint, usize n, usize i>\nauto make_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type, const T& v = T{}) { return v; }\ntemplate<typename T, typename Uint, usize n, usize i>\nauto make_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type szs, const T& v = T{})\n{\n const usize s = (usize)szs[i];\n return std::vector<decltype(make_v<T, Uint, n, i + 1>(szs, v))>(s, make_v<T, Uint, n, i + 1>(szs, v));\n}\ntemplate<typename T, typename Uint, usize n>\nauto make_v(c_arr<Uint, n> szs, const T& t = T{}) { return make_v<T, Uint, n, 0>(szs, t); }\nint main()\n{\n const auto N = in<int>();\n const auto as = in_v<ll>({N});\n int odd = 0;\n for (const ll a : as) {\n if (a % 2 == 1) { odd++; }\n }\n if (N % 2 == 1) {\n outln(odd % 2 == 1 ? \"First\" : \"Second\");\n } else {\n outln(odd % 2 == 0 and *std::min_element(as.begin(), as.end()) % 2 == 0 ? \"Second\" : \"First\");\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4432, "score_of_the_acc": -0.416, "final_rank": 3 }, { "submission_id": "aoj_3141_4282096", "code_snippet": "#include <bits/stdc++.h>\n// created [2020/03/21] 18:25:02\n#pragma GCC diagnostic ignored \"-Wsign-compare\"\n#pragma GCC diagnostic ignored \"-Wsign-conversion\"\n\nusing i32 = int32_t;\nusing i64 = int64_t;\nusing u32 = uint32_t;\nusing u64 = uint64_t;\nusing uint = unsigned int;\nusing usize = std::size_t;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\ntemplate<typename T, usize n>\nusing arr = T (&)[n];\ntemplate<typename T, usize n>\nusing c_arr = const T (&)[n];\ntemplate<typename T>\nusing max_heap = std::priority_queue<T>;\ntemplate<typename T>\nusing min_heap = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate<typename T> constexpr T popcount(const T u) { return u ? static_cast<T>(__builtin_popcountll(static_cast<u64>(u))) : static_cast<T>(0); }\ntemplate<typename T> constexpr T log2p1(const T u) { return u ? static_cast<T>(64 - __builtin_clzll(static_cast<u64>(u))) : static_cast<T>(0); }\ntemplate<typename T> constexpr T msbp1(const T u) { return log2p1(u); }\ntemplate<typename T> constexpr T lsbp1(const T u) { return __builtin_ffsll(u); }\ntemplate<typename T> constexpr T clog(const T u) { return u ? log2p1(u - 1) : static_cast<T>(u); }\ntemplate<typename T> constexpr bool ispow2(const T u) { return u and (static_cast<u64>(u) & static_cast<u64>(u - 1)) == 0; }\ntemplate<typename T> constexpr T ceil2(const T u) { return static_cast<T>(1) << clog(u); }\ntemplate<typename T> constexpr T floor2(const T u) { return u == 0 ? static_cast<T>(0) : static_cast<T>(1) << (log2p1(u) - 1); }\ntemplate<typename T> constexpr bool btest(const T mask, const usize ind) { return static_cast<bool>((static_cast<u64>(mask) >> ind) & static_cast<u64>(1)); }\ntemplate<typename T> void bset(T& mask, const usize ind) { mask |= (static_cast<T>(1) << ind); }\ntemplate<typename T> void breset(T& mask, const usize ind) { mask &= ~(static_cast<T>(1) << ind); }\ntemplate<typename T> void bflip(T& mask, const usize ind) { mask ^= (static_cast<T>(1) << ind); }\ntemplate<typename T> void bset(T& mask, const usize ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); }\ntemplate<typename T> constexpr T bcut(const T mask, const usize ind) { return ind == 0 ? static_cast<T>(0) : static_cast<T>((static_cast<u64>(mask) << (64 - ind)) >> (64 - ind)); }\ntemplate<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }\ntemplate<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }\nconstexpr unsigned int mod = 1000000007;\ntemplate<typename T> constexpr T inf_v = std::numeric_limits<T>::max() / 4;\ntemplate<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};\nauto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; };\n\ntemplate<typename T>\nT in()\n{\n T v;\n return std::cin >> v, v;\n}\ntemplate<typename T, typename Uint, usize n, usize i>\nT in_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type) { return in<T>(); }\ntemplate<typename T, typename Uint, usize n, usize i>\nauto in_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type& szs)\n{\n const usize s = (usize)szs[i];\n std::vector<decltype(in_v<T, Uint, n, i + 1>(szs))> ans(s);\n for (usize j = 0; j < s; j++) { ans[j] = in_v<T, Uint, n, i + 1>(szs); }\n return ans;\n}\ntemplate<typename T, typename Uint, usize n>\nauto in_v(c_arr<Uint, n> szs) { return in_v<T, Uint, n, 0>(szs); }\ntemplate<typename... Types>\nauto in_t() { return std::tuple<std::decay_t<Types>...>{in<Types>()...}; }\nstruct io_init\n{\n io_init()\n {\n std::cin.tie(nullptr), std::ios::sync_with_stdio(false);\n std::cout << std::fixed << std::setprecision(20);\n }\n void clear()\n {\n std::cin.tie(), std::ios::sync_with_stdio(true);\n }\n} io_setting;\n\nint out() { return 0; }\ntemplate<typename T>\nint out(const T& v) { return std::cout << v, 0; }\ntemplate<typename T>\nint out(const std::vector<T>& v)\n{\n for (usize i = 0; i < v.size(); i++) {\n if (i > 0) { std::cout << ' '; }\n out(v[i]);\n }\n return 0;\n}\ntemplate<typename T1, typename T2>\nint out(const std::pair<T1, T2>& v) { return out(v.first), std::cout << ' ', out(v.second), 0; }\ntemplate<typename T, typename... Args>\nint out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; }\ntemplate<typename... Args>\nint outln(const Args... args) { return out(args...), std::cout << '\\n', 0; }\ntemplate<typename... Args>\nint outel(const Args... args) { return out(args...), std::cout << std::endl, 0; }\n# define SHOW(...) static_cast<void>(0)\nconstexpr ull TEN(const usize n) { return n == 0 ? 1ULL : TEN(n - 1) * 10ULL; }\n\ntemplate<typename T, typename Uint, usize n, usize i>\nauto make_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type, const T& v = T{}) { return v; }\ntemplate<typename T, typename Uint, usize n, usize i>\nauto make_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type szs, const T& v = T{})\n{\n const usize s = (usize)szs[i];\n return std::vector<decltype(make_v<T, Uint, n, i + 1>(szs, v))>(s, make_v<T, Uint, n, i + 1>(szs, v));\n}\ntemplate<typename T, typename Uint, usize n>\nauto make_v(c_arr<Uint, n> szs, const T& t = T{}) { return make_v<T, Uint, n, 0>(szs, t); }\nint main()\n{\n const auto N = in<int>();\n const auto as = in_v<ll>({N});\n int odd = 0;\n for (const ll a : as) {\n if (a % 2 == 1) { odd++; }\n }\n if (N % 2 == 1) {\n outln(odd % 2 == 1 ? \"First\" : \"Second\");\n } else {\n outln(odd == 0 ? \"Second\" : \"First\");\n }\n return 0;\n}", "accuracy": 0.18604651162790697, "time_ms": 10, "memory_kb": 4308, "score_of_the_acc": -0.376, "final_rank": 14 } ]
aoj_3139_cpp
C: サボテンクエリ 問題文 単純無向グラフで、任意の辺が高々 $1$ つの単純閉路にしか含まれないようなものをサボテングラフと呼ぶことにします。 $N$ 頂点 $M$ 辺の連結なサボテングラフ $G$ が与えられます。 各頂点は $1$ から $N$ まで番号が付いています。 また、$i$ 個目の辺は頂点 $a_i$ と頂点 $b_i$ を結んでおり、コストは $c_i$ です。 グラフ $G$ 上の単純パスのコストを、そのパス上に含まれる全ての辺のコストの XOR と定めます。 以下のような形式の $Q$ 個のクエリに答えてください。 x_i y_i k_i ― 頂点 $x_i$ と頂点 $y_i$ を繋ぐすべての単純パスのコストを列挙して重複する値を除き、小さい順に並べた列を $d = d_1, d_2, ... , d_L$ としたときに、$d_{k_i}$ を求めよ。ただし、このコスト列 $d$ の長さ $L$ が $k_i$ より小さい場合は $-1$ とする。 制約 $2 \leq N \leq 10^5$ $N - 1 \leq M \leq 2 \times 10^5$ $1 \leq a_i, b_i \leq N$ $a_i \neq b_i$ $0 \leq c_i < 2^{30}$ $1 \leq Q \leq 2 \times 10^5$ $1 \leq x_i, y_i \leq N$ $x_i \neq y_i$ $1 \leq k_i \leq 2^{30}$ 与えられるグラフは連結なサボテングラフである。 入力は全て整数である。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $M$ $a_1$ $b_1$ $c_1$ $a_2$ $b_2$ $c_2$ $:$ $a_M$ $b_M$ $c_M$ $Q$ $x_1$ $y_1$ $k_1$ $x_2$ $y_2$ $k_2$ $:$ $x_Q$ $y_Q$ $k_Q$ 出力 $Q$ 個のクエリの答えを一行ごとに順番に出力せよ。 入力例 1 4 4 1 2 1 1 3 8 3 2 0 1 4 7 4 1 2 1 2 1 2 1 4 1 3 4 1073741824 出力例 1 1 8 7 -1 頂点 $1$ から頂点 $2$ への単純パスは、辺 $1$ のみを経由するものと、辺 $2, 3$ を経由するもので、コストはそれぞれ $1$, $8$ です。なので、$1$ つめのクエリの答えは $1$となります。 頂点 $2$ から頂点 $1$ への単純パスも上記と同様なので、 $2$ つ目のクエリの答えは $8$ となります。 頂点 $1$ から頂点 $4$ への単純パスは、辺 $4$ のみを経由するもののみで、コストは $7$ です。なので、$3$ つ目のクエリの答えは $7$ となります。 頂点 $3$ から頂点 $4$ への単純パスは、辺 $2$, $4$ を経由するものと、辺 $3$, $1$, $4$ を経由するもので、コストはそれぞれ $15$, $6$ です。$1073741824$ 番目に小さいコストは存在しないので、$4$ つ目のクエリの答えは $-1$ となります。 入力例 2 13 15 1 2 1 2 3 2 3 4 3 4 5 1 5 1 2 5 6 4 6 7 15 7 8 9 8 6 7 2 9 5 9 10 5 10 2 2 3 11 3 11 12 2 11 13 1 8 12 13 1 1 11 2 9 5 4 2 7 3 6 12 2 9 7 5 10 3 3 3 12 2 出力例 2 3 3 7 10 7 -1 2 -1
[ { "submission_id": "aoj_3139_7910899", "code_snippet": "#include <vector>\n#include <algorithm>\n#include <cmath>\n#include <numeric>\n#include <iostream>\n#include <iomanip>\n#include <unordered_map>\n#include <climits>\n#include <queue>\n#include <stack>\n#include <random>\n#include <set>\n#include <cassert>\n#include <iterator>\n#include <type_traits>\n#include <map>\n#include <array>\n#include <sstream>\n#include <bitset>\n#include <fstream>\n\nconstexpr int BIT_COUNT = 30;\nbool add(std::array<int, BIT_COUNT>& arr, const int value) {\n\tint v{ value };\n\tfor (auto i = 0; i < BIT_COUNT && v != 0; ++i) {\n\t\tif ((v >> (BIT_COUNT - i - 1)) & 1) {\n\t\t\tif (arr[i]) {\n\t\t\t\tv ^= arr[i];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tarr[i] = v;\n\t\t\t\treturn true;\n\t\t\t}\n\t\t}\n\t}\n\treturn false;\n};\nclass f2_vec {\n\tstruct Pair {\n\t\tint first, second;\n\t\tPair operator^(const Pair other) const {\n\t\t\treturn { first ^ other.first, second ^ other.second };\n\t\t}\n\t\tPair& operator^=(const Pair other) {\n\t\t\tfirst ^= other.first;\n\t\t\tsecond ^= other.second;\n\t\t\treturn *this;\n\t\t}\n\t};\npublic:\n\tstd::array<Pair, BIT_COUNT> vec;\n\tstd::vector<std::pair<int, int>> used;\n\tvoid add(const int depth, const int value) {\n\t\tif (value == 0) return;\n\t\tPair pair{ 0, value };\n\t\tfor (auto i = 0; i < BIT_COUNT; ++i) {\n\t\t\tif ((pair.second >> (BIT_COUNT - i - 1)) & 1) {\n\t\t\t\tif (vec[i].second) {\n\t\t\t\t\tpair ^= vec[i];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tvec[i].first = (1 << used.size()) | pair.first;\n\t\t\t\t\tvec[i].second = pair.second;\n\t\t\t\t\tused.emplace_back(depth, value);\n\t\t\t\t\treturn;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tint min_vec{ -1 };\n\t\tfor (auto i = 0; i < used.size(); ++i) {\n\t\t\tif ((pair.first >> i) & 1) {\n\t\t\t\tif (min_vec == -1 || used[min_vec].first > used[i].first) {\n\t\t\t\t\tmin_vec = i;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tused[min_vec] = std::make_pair(depth, value);\n\t\tconst auto mask = pair.first ^ (1 << min_vec);\n\t\tfor (auto i = 0; i < BIT_COUNT; ++i) {\n\t\t\tif ((vec[i].first >> min_vec) & 1) {\n\t\t\t\tvec[i].first ^= mask;\n\t\t\t}\n\t\t}\n\t}\n\tstd::vector<std::pair<int, int>> filter(const int depth) const {\n\t\tstd::vector<std::pair<int, int>> result;\n\t\tstd::copy_if(used.begin(), used.end(), std::back_inserter(result), [depth](const auto pair) {return pair.first > depth; });\n\t\treturn result;\n\t}\n};\n\nvoid solve(const int n, const int m, const std::vector<std::tuple<int, int, int>> edges, const int q, const std::vector<std::tuple<int, int, int>> queries) {\n\tstd::vector<std::vector<std::pair<int, int>>> graph(n);\n\tfor (const auto [x, y, c] : edges) {\n\t\tgraph[x].emplace_back(y, c);\n\t\tgraph[y].emplace_back(x, c);\n\t}\n\tstd::vector<int> queue(n), depth(n, -1), xor_from_root(n);\n\tstd::vector<std::vector<int>> doubling(n);\n\t{\n\t\tint begin{ 0 }, end{ 0 };\n\t\tqueue[end++] = 0;\n\t\tdepth[0] = 0;\n\t\twhile (begin < end) {\n\t\t\tconst auto current = queue[begin++];\n\t\t\tfor (const auto [next, c] : graph[current]) {\n\t\t\t\tif (depth[next] != -1) continue;\n\t\t\t\tdepth[next] = depth[current] + 1;\n\t\t\t\txor_from_root[next] = c ^ xor_from_root[current];\n\t\t\t\tqueue[end++] = next;\n\t\t\t\tauto& ancestor = doubling[next];\n\t\t\t\tancestor.push_back(current);\n\t\t\t\twhile (ancestor.size() <= doubling[ancestor.back()].size()) {\n\t\t\t\t\tancestor.push_back(doubling[ancestor.back()][ancestor.size() - 1]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tstd::vector<int> loop_xor(n);\n\tfor (const auto [x, y, c] : edges) {\n\t\tif ((!doubling[x].empty() && doubling[x][0] == y) || (!doubling[y].empty() && doubling[y][0] == x)) continue;\n\t\tconst auto value{ xor_from_root[x] ^ xor_from_root[y] ^ c };\n\t\tint a{ x }, b{ y };\n\t\twhile (a != b) {\n\t\t\tif (depth[a] > depth[b]) {\n\t\t\t\tloop_xor[a] = value;\n\t\t\t\ta = doubling[a][0];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tloop_xor[b] = value;\n\t\t\t\tb = doubling[b][0];\n\t\t\t}\n\t\t}\n\t}\n\tstd::vector<f2_vec> f2_vecs(n);\n\tfor (const auto node : queue) {\n\t\tif (!doubling[node].empty()) {\n\t\t\tf2_vecs[node] = f2_vecs[doubling[node][0]];\n\t\t}\n\t\tif (loop_xor[node]) {\n\t\t\tf2_vecs[node].add(depth[node], loop_xor[node]);\n\t\t}\n\t}\n\tconst auto calc_lca = [&depth, &doubling](int a, int b) {\n\t\tif (depth[a] < depth[b]) std::swap(a, b);\n\t\tconst auto diff = depth[a] - depth[b];\n\t\tfor (auto i = 0; i < doubling[a].size(); ++i) {\n\t\t\tif ((diff >> i) & 1) {\n\t\t\t\ta = doubling[a][i];\n\t\t\t}\n\t\t}\n\t\tif (a == b) return a;\n\t\tfor (int i = doubling[a].size() - 1; i >= 0; --i) {\n\t\t\tif (i < doubling[a].size() && doubling[a][i] != doubling[b][i]) {\n\t\t\t\ta = doubling[a][i];\n\t\t\t\tb = doubling[b][i];\n\t\t\t}\n\t\t}\n\t\treturn doubling[a][0];\n\t};\n\tconst auto merge = [](const std::vector<std::pair<int, int>>& a, const std::vector<std::pair<int, int>>& b) {\n\t\tstd::array<int, BIT_COUNT> array{};\n\t\tfor (const auto v : a) {\n\t\t\tadd(array, v.second);\n\t\t}\n\t\tfor (const auto v : b) {\n\t\t\tadd(array, v.second);\n\t\t}\n\t\treturn array;\n\t};\n\tfor (const auto [x, y, k] : queries) {\n\t\tconst auto lca = calc_lca(x, y);\n\t\tconst auto to_x = f2_vecs[x].filter(depth[lca]);\n\t\tconst auto to_y = f2_vecs[y].filter(depth[lca]);\n\t\tconst auto merged = merge(to_x, to_y);\n\t\tconst auto vec_size = std::count_if(merged.begin(), merged.end(), [](const auto v) { return v != 0; });\n\t\tif ((1 << vec_size) <= k) {\n\t\t\tstd::cout << \"-1\\n\";\n\t\t}\n\t\telse {\n\t\t\tint result{ xor_from_root[x] ^ xor_from_root[y] };\n\t\t\tint rank = vec_size;\n\t\t\tfor (auto i = 0; i < BIT_COUNT; ++i) {\n\t\t\t\tif (merged[i] == 0) continue;\n\t\t\t\tif (((k >> --rank) & 1) != ((result >> (BIT_COUNT - i - 1)) & 1)) {\n\t\t\t\t\tresult ^= merged[i];\n\t\t\t\t}\n\t\t\t}\n\t\t\tstd::cout << result << '\\n';\n\t\t}\n\t}\n}\nint main() {\n\tint n, m; std::cin >> n >> m;\n\tstd::vector<std::tuple<int, int, int>> edges(m);\n\tfor (auto& [x, y, c] : edges) {\n\t\tstd::cin >> x >> y >> c; --x; --y;\n\t}\n\tint q; std::cin >> q;\n\tstd::vector<std::tuple<int, int, int>> queries(q);\n\tfor (auto& [x, y, k] : queries) {\n\t\tstd::cin >> x >> y >> k; --x; --y; --k;\n\t}\n\tsolve(n, m, edges, q, queries);\n}", "accuracy": 1, "time_ms": 1240, "memory_kb": 80544, "score_of_the_acc": -0.2417, "final_rank": 2 }, { "submission_id": "aoj_3139_7910758", "code_snippet": "#include <vector>\n#include <algorithm>\n#include <cmath>\n#include <numeric>\n#include <iostream>\n#include <iomanip>\n#include <unordered_map>\n#include <climits>\n#include <queue>\n#include <stack>\n#include <random>\n#include <set>\n#include <cassert>\n#include <iterator>\n#include <type_traits>\n#include <map>\n#include <array>\n#include <sstream>\n#include <bitset>\n#include <fstream>\n\nconstexpr int BIT_COUNT = 30;\nclass f2_vec {\n\tstruct Pair {\n\t\tint first, second;\n\t\tPair operator^(const Pair other) const {\n\t\t\treturn { first ^ other.first, second ^ other.second };\n\t\t}\n\t\tPair& operator^=(const Pair other) {\n\t\t\tfirst ^= other.first;\n\t\t\tsecond ^= other.second;\n\t\t\treturn *this;\n\t\t}\n\t};\npublic:\n\tstd::array<Pair, BIT_COUNT> vec;\n\tstd::vector<std::pair<int, int>> used;\n\tvoid add(const int depth, const int value) {\n\t\tPair pair{ 0, value };\n\t\tfor (auto i = 0; i < BIT_COUNT; ++i) {\n\t\t\tif ((pair.second >> (BIT_COUNT - i - 1)) & 1) {\n\t\t\t\tif (vec[i].second) {\n\t\t\t\t\tpair ^= vec[i];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tvec[i].first = 1 << used.size();\n\t\t\t\t\tvec[i].second = pair.second;\n\t\t\t\t\tused.emplace_back(depth, value);\n\t\t\t\t\treturn;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tint min_vec{ -1 };\n\t\tfor (auto i = 0; i < used.size(); ++i) {\n\t\t\tif ((pair.first >> i) & 1) {\n\t\t\t\tif (min_vec == -1 || vec[min_vec].first > vec[i].first) {\n\t\t\t\t\tmin_vec = i;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tused[min_vec] = std::make_pair(depth, value);\n\t\tconst auto mask = pair.first ^ (1 << min_vec);\n\t\tfor (auto i = 0; i < BIT_COUNT; ++i) {\n\t\t\tif ((vec[i].first >> min_vec) & 1) {\n\t\t\t\tvec[i].first ^= mask;\n\t\t\t}\n\t\t}\n\t}\n\tstd::vector<std::pair<int, int>> filter(const int depth) const {\n\t\tstd::vector<std::pair<int, int>> result;\n\t\tstd::copy_if(used.begin(), used.end(), std::back_inserter(result), [depth](const auto pair) {return pair.first > depth; });\n\t\treturn result;\n\t}\n};\n\nvoid solve(const int n, const int m, const std::vector<std::tuple<int, int, int>> edges, const int q, const std::vector<std::tuple<int, int, int>> queries) {\n\tstd::vector<std::vector<std::pair<int, int>>> graph(n);\n\tfor (const auto [x, y, c] : edges) {\n\t\tgraph[x].emplace_back(y, c);\n\t\tgraph[y].emplace_back(x, c);\n\t}\n\tstd::vector<int> queue(n), depth(n, -1), xor_from_root(n);\n\tstd::vector<std::vector<int>> doubling(n);\n\t{\n\t\tint begin{ 0 }, end{ 0 };\n\t\tqueue[end++] = 0;\n\t\tdepth[0] = 0;\n\t\twhile (begin < end) {\n\t\t\tconst auto current = queue[begin++];\n\t\t\tfor (const auto [next, c] : graph[current]) {\n\t\t\t\tif (depth[next] != -1) continue;\n\t\t\t\tdepth[next] = depth[current] + 1;\n\t\t\t\txor_from_root[next] = c ^ xor_from_root[current];\n\t\t\t\tqueue[end++] = next;\n\t\t\t\tauto& ancestor = doubling[next];\n\t\t\t\tancestor.push_back(current);\n\t\t\t\twhile (ancestor.size() <= doubling[ancestor.back()].size()) {\n\t\t\t\t\tancestor.push_back(doubling[ancestor.back()][ancestor.size() - 1]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tstd::vector<int> loop_xor(n);\n\tfor (const auto [x, y, c] : edges) {\n\t\tif ((!doubling[x].empty() && doubling[x][0] == y) || (!doubling[y].empty() && doubling[y][0] == x)) continue;\n\t\tconst auto value{ xor_from_root[x] ^ xor_from_root[y] ^ c };\n\t\tint a{ x }, b{ y };\n\t\twhile (a != b) {\n\t\t\tif (depth[a] > depth[b]) {\n\t\t\t\tloop_xor[a] = value;\n\t\t\t\ta = doubling[a][0];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tloop_xor[b] = value;\n\t\t\t\tb = doubling[b][0];\n\t\t\t}\n\t\t}\n\t}\n\tstd::vector<f2_vec> f2_vecs(n);\n\tfor (const auto node : queue) {\n\t\tif (!doubling[node].empty()) {\n\t\t\tf2_vecs[node] = f2_vecs[doubling[node][0]];\n\t\t}\n\t\tif (loop_xor[node]) {\n\t\t\tf2_vecs[node].add(depth[node], loop_xor[node]);\n\t\t}\n\t}\n\tconst auto calc_lca = [&depth, &doubling](int a, int b) {\n\t\tif (depth[a] < depth[b]) std::swap(a, b);\n\t\tconst auto diff = depth[a] - depth[b];\n\t\tfor (auto i = 0; i < doubling[a].size(); ++i) {\n\t\t\tif ((diff >> i) & 1) {\n\t\t\t\ta = doubling[a][i];\n\t\t\t}\n\t\t}\n\t\tif (a == b) return a;\n\t\tfor (int i = doubling[a].size() - 1; i >= 0; --i) {\n\t\t\tif (i < doubling[a].size() && doubling[a][i] != doubling[b][i]) {\n\t\t\t\ta = doubling[a][i];\n\t\t\t\tb = doubling[b][i];\n\t\t\t}\n\t\t}\n\t\treturn doubling[a][0];\n\t};\n\tconst auto add = [](std::array<int, BIT_COUNT>& arr, const int value) {\n\t\tint v{ value };\n\t\tfor (auto i = 0; i < BIT_COUNT && v != 0; ++i) {\n\t\t\tif ((v >> (BIT_COUNT - i - 1)) & 1) {\n\t\t\t\tif (arr[i]) {\n\t\t\t\t\tv ^= arr[i];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tarr[i] = v;\n\t\t\t\t\treturn;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t};\n\tconst auto merge = [&add](const std::vector<std::pair<int, int>>& a, const std::vector<std::pair<int, int>>& b) {\n\t\tstd::array<int, BIT_COUNT> array{};\n\t\tfor (const auto v : a) {\n\t\t\tadd(array, v.second);\n\t\t}\n\t\tfor (const auto v : b) {\n\t\t\tadd(array, v.second);\n\t\t}\n\t\treturn array;\n\t};\n\tfor (const auto [x, y, k] : queries) {\n\t\tconst auto lca = calc_lca(x, y);\n\t\tconst auto to_x = f2_vecs[x].filter(depth[lca]);\n\t\tconst auto to_y = f2_vecs[y].filter(depth[lca]);\n\t\tconst auto merged = merge(to_x, to_y);\n\t\tconst auto vec_size = std::count_if(merged.begin(), merged.end(), [](const auto v) { return v != 0; });\n\t\tif ((1 << vec_size) <= k) {\n\t\t\tstd::cout << \"-1\\n\";\n\t\t}\n\t\telse {\n\t\t\tint result{ xor_from_root[x] ^ xor_from_root[y] };\n\t\t\tint rank = vec_size;\n\t\t\tfor (auto i = 0; i < BIT_COUNT; ++i) {\n\t\t\t\tif (merged[i] == 0) continue;\n\t\t\t\tif (((k >> --rank) & 1) != ((result >> (BIT_COUNT - i - 1)) & 1)) {\n\t\t\t\t\tresult ^= merged[i];\n\t\t\t\t}\n\t\t\t}\n\t\t\tstd::cout << result << '\\n';\n\t\t}\n\t}\n}\nint main() {\n\tint n, m; std::cin >> n >> m;\n\tstd::vector<std::tuple<int, int, int>> edges(m);\n\tfor (auto& [x, y, c] : edges) {\n\t\tstd::cin >> x >> y >> c; --x; --y;\n\t}\n\tint q; std::cin >> q;\n\tstd::vector<std::tuple<int, int, int>> queries(q);\n\tfor (auto& [x, y, k] : queries) {\n\t\tstd::cin >> x >> y >> k; --x; --y; --k;\n\t}\n\tsolve(n, m, edges, q, queries);\n}", "accuracy": 0.31746031746031744, "time_ms": 460, "memory_kb": 77220, "score_of_the_acc": -0.0845, "final_rank": 15 }, { "submission_id": "aoj_3139_7910740", "code_snippet": "#include <vector>\n#include <algorithm>\n#include <cmath>\n#include <numeric>\n#include <iostream>\n#include <iomanip>\n#include <unordered_map>\n#include <climits>\n#include <queue>\n#include <stack>\n#include <random>\n#include <set>\n#include <cassert>\n#include <iterator>\n#include <type_traits>\n#include <map>\n#include <array>\n#include <sstream>\n#include <bitset>\n\nconstexpr int BIT_COUNT = 30;\nclass f2_vec {\n\tstruct Pair {\n\t\tint first, second;\n\t\tPair operator^(const Pair other) const {\n\t\t\treturn { first ^ other.first, second ^ other.second };\n\t\t}\n\t\tPair& operator^=(const Pair other) {\n\t\t\tfirst ^= other.first;\n\t\t\tsecond ^= other.second;\n\t\t\treturn *this;\n\t\t}\n\t};\npublic:\n\tstd::array<Pair, BIT_COUNT> vec;\n\tstd::vector<std::pair<int, int>> used;\n\tvoid add(const int depth, const int value) {\n\t\tPair pair{ 0, value };\n\t\tfor (auto i = 0; i < BIT_COUNT; ++i) {\n\t\t\tif ((pair.second >> (BIT_COUNT - i - 1)) & 1) {\n\t\t\t\tif (vec[i].second) {\n\t\t\t\t\tpair ^= vec[i];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tvec[i].first = 1 << used.size();\n\t\t\t\t\tvec[i].second = pair.second;\n\t\t\t\t\tused.emplace_back(depth, value);\n\t\t\t\t\treturn;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tint min_vec{ -1 };\n\t\tfor (auto i = 0; i < used.size(); ++i) {\n\t\t\tif ((pair.first >> i) & 1) {\n\t\t\t\tif (min_vec == -1 || vec[min_vec].first > vec[i].first) {\n\t\t\t\t\tmin_vec = i;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tused[min_vec] = std::make_pair(depth, value);\n\t\tconst auto mask = pair.first ^ (1 << min_vec);\n\t\tfor (auto i = 0; i < BIT_COUNT; ++i) {\n\t\t\tif ((vec[i].first >> min_vec) & 1) {\n\t\t\t\tvec[i].first ^= mask;\n\t\t\t}\n\t\t}\n\t}\n\tstd::vector<std::pair<int, int>> filter(const int depth) const {\n\t\tstd::vector<std::pair<int, int>> result;\n\t\tstd::copy_if(used.begin(), used.end(), std::back_inserter(result), [depth](const auto pair) {return pair.first > depth; });\n\t\treturn result;\n\t}\n};\n\nvoid solve(const int n, const int m, const std::vector<std::tuple<int, int, int>> edges, const int q, const std::vector<std::tuple<int, int, int>> queries) {\n\tstd::vector<std::vector<std::pair<int, int>>> graph(n);\n\tfor (const auto [x, y, c] : edges) {\n\t\tgraph[x].emplace_back(y, c);\n\t\tgraph[y].emplace_back(x, c);\n\t}\n\tstd::vector<int> queue(n), depth(n, -1), xor_from_root(n);\n\tstd::vector<std::vector<int>> doubling(n);\n\t{\n\t\tint begin{ 0 }, end{ 0 };\n\t\tqueue[end++] = 0;\n\t\tdepth[0] = 0;\n\t\twhile (begin < end) {\n\t\t\tconst auto current = queue[begin++];\n\t\t\tfor (const auto [next, c] : graph[current]) {\n\t\t\t\tif (depth[next] != -1) continue;\n\t\t\t\tdepth[next] = depth[current] + 1;\n\t\t\t\txor_from_root[next] = c ^ xor_from_root[current];\n\t\t\t\tqueue[end++] = next;\n\t\t\t\tauto& ancestor = doubling[next];\n\t\t\t\tancestor.push_back(current);\n\t\t\t\twhile (ancestor.size() <= doubling[ancestor.back()].size()) {\n\t\t\t\t\tancestor.push_back(doubling[ancestor.back()][ancestor.size() - 1]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tstd::vector<int> loop_xor(n);\n\tfor (const auto [x, y, c] : edges) {\n\t\tif ((!doubling[x].empty() && doubling[x][0] == y) || (!doubling[y].empty() && doubling[y][0] == x)) continue;\n\t\tconst auto value{ xor_from_root[x] ^ xor_from_root[y] ^ c };\n\t\tint a{ x }, b{ y };\n\t\twhile (a != b) {\n\t\t\tif (depth[a] > depth[b]) {\n\t\t\t\tloop_xor[a] = value;\n\t\t\t\ta = doubling[a][0];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tloop_xor[b] = value;\n\t\t\t\tb = doubling[b][0];\n\t\t\t}\n\t\t}\n\t}\n\tstd::vector<f2_vec> f2_vecs(n);\n\tfor (const auto node : queue) {\n\t\tif (!doubling[node].empty()) {\n\t\t\tf2_vecs[node] = f2_vecs[doubling[node][0]];\n\t\t}\n\t\tif (loop_xor[node]) {\n\t\t\tf2_vecs[node].add(depth[node], loop_xor[node]);\n\t\t}\n\t}\n\tconst auto calc_lca = [&depth, &doubling](int a, int b) {\n\t\tif (depth[a] < depth[b]) std::swap(a, b);\n\t\tconst auto diff = depth[a] - depth[b];\n\t\tfor (auto i = 0; i < doubling[a].size(); ++i) {\n\t\t\tif ((diff >> i) & 1) {\n\t\t\t\ta = doubling[a][i];\n\t\t\t}\n\t\t}\n\t\tif (a == b) return a;\n\t\tfor (int i = doubling[a].size() - 1; i >= 0; --i) {\n\t\t\tif (i < doubling[a].size() && doubling[a][i] != doubling[b][i]) {\n\t\t\t\ta = doubling[a][i];\n\t\t\t\tb = doubling[b][i];\n\t\t\t}\n\t\t}\n\t\treturn doubling[a][0];\n\t};\n\tconst auto add = [](std::array<int, BIT_COUNT>& arr, const int value) {\n\t\tint v{ value };\n\t\tfor (auto i = 0; i < BIT_COUNT && v != 0; ++i) {\n\t\t\tif ((v >> i) & 1) {\n\t\t\t\tif (arr[i]) {\n\t\t\t\t\tv ^= arr[i];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tarr[i] = v;\n\t\t\t\t\treturn;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t};\n\tconst auto merge = [&add](const std::vector<std::pair<int, int>>& a, const std::vector<std::pair<int, int>>& b) {\n\t\tstd::array<int, BIT_COUNT> array{};\n\t\tfor (const auto v : a) {\n\t\t\tadd(array, v.second);\n\t\t}\n\t\tfor (const auto v : b) {\n\t\t\tadd(array, v.second);\n\t\t}\n\t\treturn array;\n\t};\n\tfor (const auto [x, y, k] : queries) {\n\t\tconst auto lca = calc_lca(x, y);\n\t\tconst auto to_x = f2_vecs[x].filter(depth[lca]);\n\t\tconst auto to_y = f2_vecs[y].filter(depth[lca]);\n\t\tconst auto merged = merge(to_x, to_y);\n\t\tconst auto vec_size = std::count_if(merged.begin(), merged.end(), [](const auto v) { return v != 0; });\n\t\tif ((1 << vec_size) <= k) {\n\t\t\tstd::cout << \"-1\\n\";\n\t\t}\n\t\telse {\n\t\t\tint result{ xor_from_root[x] ^ xor_from_root[y] };\n\t\t\tint rank = vec_size;\n\t\t\tfor (auto i = 0; i < BIT_COUNT; ++i) {\n\t\t\t\tif (merged[i] == 0) continue;\n\t\t\t\tif (((k >> --rank) & 1) != ((result >> (BIT_COUNT - i - 1)) & 1)) {\n\t\t\t\t\tresult ^= merged[i];\n\t\t\t\t}\n\t\t\t}\n\t\t\tstd::cout << result << '\\n';\n\t\t}\n\t}\n}\nint main() {\n\tint n, m; std::cin >> n >> m;\n\tstd::vector<std::tuple<int, int, int>> edges(m);\n\tfor (auto& [x, y, c] : edges) {\n\t\tstd::cin >> x >> y >> c; --x; --y;\n\t}\n\tint q; std::cin >> q;\n\tstd::vector<std::tuple<int, int, int>> queries(q);\n\tfor (auto& [x, y, k] : queries) {\n\t\tstd::cin >> x >> y >> k; --x; --y; --k;\n\t}\n\tsolve(n, m, edges, q, queries);\n}", "accuracy": 0.09523809523809523, "time_ms": 340, "memory_kb": 57164, "score_of_the_acc": 0, "final_rank": 18 }, { "submission_id": "aoj_3139_7908999", "code_snippet": "#include <deque>\n#include <vector>\n#include <iostream>\n#include <string>\n#include <numeric>\n#include <cmath>\n#include <queue>\n#include <tuple>\n#include <algorithm>\n#include <initializer_list>\n#include <array>\n#include <cassert>\nvoid solve(const int n, const int m, const std::vector<std::tuple<int, int, int>> edges, const int q, const std::vector<std::tuple<int, int, int>> queries);\nint main() {\n\tint n, m; std::cin >> n >> m;\n\tstd::vector<std::tuple<int, int, int>> edges(m);\n\tfor (auto& [x, y, c] : edges) {\n\t\tstd::cin >> x >> y >> c; --x; --y;\n\t}\n\tint q; std::cin >> q;\n\tstd::vector<std::tuple<int, int, int>> queries(q);\n\tfor (auto& [x, y, c] : queries) {\n\t\tstd::cin >> x >> y >> c; --x; --y; --c;\n\t}\n\tsolve(n, m, edges, q, queries);\n}\nconstexpr int MAX_BIT = 29;\nclass f2_vec {\n\tstd::array<std::pair<int, int>, MAX_BIT + 1> vec{};\n\tstd::array<int, MAX_BIT + 1> normalized{};\npublic:\n\tvoid add(const int depth, const int value) {\n\t\tint v{ value };\n\t\tfor (auto i = 0; i <= MAX_BIT && v != 0; ++i) {\n\t\t\tif ((v >> (MAX_BIT - i)) & 1) {\n\t\t\t\tif (normalized[i] == 0) {\n\t\t\t\t\tnormalized[i] = v;\n\t\t\t\t\tvec[i] = std::make_pair(depth, value);\n\t\t\t\t\treturn;\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tv ^= normalized[i];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tv = value;\n\t\tint min_vec{ -1 };\n\t\tfor (auto i = 0; i <= MAX_BIT && v != 0; ++i) {\n\t\t\tif ((v >> (MAX_BIT - i)) & 1) {\n\t\t\t\tif (min_vec == -1 || vec[min_vec].first > vec[i].first) {\n\t\t\t\t\tmin_vec = i;\n\t\t\t\t}\n\t\t\t\tv ^= normalized[i];\n\t\t\t}\n\t\t}\n\t\tassert(vec[min_vec].first < depth);\n\t\tvec[min_vec].first = depth;\n\t}\n\tstd::vector<int> filter_vec(const int depth) const {\n\t\tstd::vector<int> result;\n\t\tfor (const auto [d, v] : vec) {\n\t\t\tif (d > depth) {\n\t\t\t\tresult.push_back(v);\n\t\t\t}\n\t\t}\n\t\treturn result;\n\t}\n};\nvoid solve(const int n, const int m, const std::vector<std::tuple<int, int, int>> edges, const int q, const std::vector<std::tuple<int, int, int>> queries) {\n\tstd::vector<std::vector<std::pair<int, int>>> graph(n);\n\tfor (const auto [x, y, c] : edges) {\n\t\tgraph[x].emplace_back(y, c);\n\t\tgraph[y].emplace_back(x, c);\n\t}\n\tstd::vector<int> depth(n, -1), xor_from_root(n, 0);\n\tstd::vector<std::vector<int>> doubling(n);\n\tstd::vector<f2_vec> f2_vecs(n);\n\tstd::vector<int> queue(n); \n\tdepth[0] = 0;\n\tqueue[0] = 0;\n\tint begin{ 0 }, end{ 1 };\n\twhile (begin < end) {\n\t\tconst auto current = queue[begin++];\n\t\tfor (const auto [next, c] : graph[current]) {\n\t\t\tif (depth[next] != -1) continue;\n\t\t\txor_from_root[next] = c ^ xor_from_root[current];\n\t\t\tdepth[next] = depth[current] + 1;\n\t\t\tqueue[end++] = next;\n\t\t\tf2_vecs[next] = f2_vecs[current];\n\t\t\tf2_vecs[next].add(depth[next], c);\n\t\t\tauto& ancestor = doubling[next];\n\t\t\tancestor.push_back(current);\n\t\t\twhile (ancestor.size() <= doubling[ancestor.back()].size()) {\n\t\t\t\tancestor.push_back(doubling[ancestor.back()][ancestor.size() - 1]);\n\t\t\t}\n\t\t}\n\t}\n\tstd::vector<int> loop_xor(n);\n\tfor (const auto [x, y, c] : edges) {\n\t\tif ((!doubling[x].empty() && doubling[x][0] == y) || (!doubling[y].empty() && doubling[y][0] == x)) continue;\n\t\tconst auto xor_value = xor_from_root[x] ^ xor_from_root[y] ^ c;\n\t\tint a = x, b = y;\n\t\twhile (a != b) {\n\t\t\tif (depth[a] >= depth[b]) {\n\t\t\t\tloop_xor[a] = xor_value;\n\t\t\t\ta = doubling[a][0];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tloop_xor[b] = xor_value;\n\t\t\t\tb = doubling[b][0];\n\t\t\t}\n\t\t}\n\t}\n\tfor (const auto node : queue) {\n\t\tif (!doubling[node].empty()) {\n\t\t\tf2_vecs[node] = f2_vecs[doubling[node][0]];\n\t\t}\n\t\tif (loop_xor[node] != 0) {\n\t\t\tf2_vecs[node].add(depth[node], loop_xor[node]);\n\t\t}\n\t}\n\tconst auto lca = [&doubling, &depth](int a, int b) {\n\t\tif (depth[a] < depth[b]) {\n\t\t\tstd::swap(a, b);\n\t\t}\n\t\tconst int diff = depth[a] - depth[b];\n\t\tfor (auto i = 0; i < doubling[a].size(); ++i) {\n\t\t\tif ((diff >> i) & 1) {\n\t\t\t\ta = doubling[a][i];\n\t\t\t}\n\t\t}\n\t\tif (a == b) return a;\n\t\tfor (int i = doubling[a].size() - 1; i >= 0; --i) {\n\t\t\tif (i < doubling[a].size() && doubling[a][i] != doubling[b][i]) {\n\t\t\t\ta = doubling[a][i];\n\t\t\t\tb = doubling[b][i];\n\t\t\t}\n\t\t}\n\t\treturn doubling[a][0];\n\t};\n\tconst auto merge = [](const std::vector<int>& v1, const std::vector<int>& v2) {\n\t\tstd::array<int, MAX_BIT + 1> result{ 0 };\n\t\tfor (auto v : v1) {\n\t\t\tfor (auto i = 0; i <= MAX_BIT && v != 0; ++i) {\n\t\t\t\tif ((v >> (MAX_BIT - i)) & 1) {\n\t\t\t\t\tif (result[i] == 0) {\n\t\t\t\t\t\tresult[i] = v;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tv ^= result[i];\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor (auto v : v2) {\n\t\t\tfor (auto i = 0; i <= MAX_BIT && v != 0; ++i) {\n\t\t\t\tif ((v >> (MAX_BIT - i)) & 1) {\n\t\t\t\t\tif (result[i] == 0) {\n\t\t\t\t\t\tresult[i] = v;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tv ^= result[i];\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn result;\n\t};\n\tfor (const auto [x, y, k] : queries) {\n\t\tconst auto ancestor = lca(x, y);\n\t\tconst auto to_x = f2_vecs[x].filter_vec(depth[ancestor]);\n\t\tconst auto to_y = f2_vecs[y].filter_vec(depth[ancestor]);\n\t\tconst auto merged = merge(to_x, to_y);\n\t\tconst auto vec_size = merged.size() - std::count(merged.begin(), merged.end(), 0);\n\t\tif ((1 << vec_size) <= k) {\n\t\t\tstd::cout << \"-1\\n\";\n\t\t}\n\t\telse {\n\t\t\tint result{ xor_from_root[x] ^ xor_from_root[y] };\n\t\t\tint rank = vec_size;\n\t\t\tfor (int i = 0; i <= MAX_BIT; ++i) {\n\t\t\t\tif (merged[i] == 0) continue;\n\t\t\t\tif (((k >> --rank) & 1) != ((result >> (MAX_BIT - i)) & 1)) {\n\t\t\t\t\tresult ^= merged[i];\n\t\t\t\t}\n\t\t\t}\n\t\t\tstd::cout << result << '\\n';\n\t\t}\n\t}\n}", "accuracy": 0.31746031746031744, "time_ms": 660, "memory_kb": 64180, "score_of_the_acc": -0.0819, "final_rank": 14 }, { "submission_id": "aoj_3139_4805585", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll=long long;\n//#define int ll\n\n#define rng(i,a,b) for(int i=int(a);i<int(b);i++)\n#define rep(i,b) rng(i,0,b)\n#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)\n#define per(i,b) gnr(i,0,b)\n#define pb push_back\n#define eb emplace_back\n#define a first\n#define b second\n#define bg begin()\n#define ed end()\n#define all(x) x.bg,x.ed\n#define si(x) int(x.size())\n#ifdef LOCAL\n#define dmp(x) cerr<<__LINE__<<\" \"<<#x<<\" \"<<x<<endl\n#else\n#define dmp(x) void(0)\n#endif\n\ntemplate<class t,class u> void chmax(t&a,u b){if(a<b)a=b;}\ntemplate<class t,class u> void chmin(t&a,u b){if(b<a)a=b;}\n\ntemplate<class t> using vc=vector<t>;\ntemplate<class t> using vvc=vc<vc<t>>;\n\nusing pi=pair<int,int>;\nusing vi=vc<int>;\n\ntemplate<class t,class u>\nostream& operator<<(ostream& os,const pair<t,u>& p){\n\treturn os<<\"{\"<<p.a<<\",\"<<p.b<<\"}\";\n}\n\ntemplate<class t> ostream& operator<<(ostream& os,const vc<t>& v){\n\tos<<\"{\";\n\tfor(auto e:v)os<<e<<\",\";\n\treturn os<<\"}\";\n}\n\n#define mp make_pair\n#define mt make_tuple\n#define one(x) memset(x,-1,sizeof(x))\n#define zero(x) memset(x,0,sizeof(x))\n#ifdef LOCAL\nvoid dmpr(ostream&os){os<<endl;}\ntemplate<class T,class... Args>\nvoid dmpr(ostream&os,const T&t,const Args&... args){\n\tos<<t<<\" \";\n\tdmpr(os,args...);\n}\n#define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__)\n#else\n#define dmp2(...) void(0)\n#endif\n\nusing uint=unsigned;\nusing ull=unsigned long long;\n\ntemplate<class t,size_t n>\nostream& operator<<(ostream&os,const array<t,n>&a){\n\treturn os<<vc<t>(all(a));\n}\n\ntemplate<int i,class T>\nvoid print_tuple(ostream&,const T&){\n}\n\ntemplate<int i,class T,class H,class ...Args>\nvoid print_tuple(ostream&os,const T&t){\n\tif(i)os<<\",\";\n\tos<<get<i>(t);\n\tprint_tuple<i+1,T,Args...>(os,t);\n}\n\ntemplate<class ...Args>\nostream& operator<<(ostream&os,const tuple<Args...>&t){\n\tos<<\"{\";\n\tprint_tuple<0,tuple<Args...>,Args...>(os,t);\n\treturn os<<\"}\";\n}\n\ntemplate<class t>\nvoid print(t x,int suc=1){\n\tcout<<x;\n\tif(suc==1)\n\t\tcout<<\"\\n\";\n\tif(suc==2)\n\t\tcout<<\" \";\n}\n\nll read(){\n\tll i;\n\tcin>>i;\n\treturn i;\n}\n\nvi readvi(int n,int off=0){\n\tvi v(n);\n\trep(i,n)v[i]=read()+off;\n\treturn v;\n}\n\npi readpi(int off=0){\n\tint a,b;cin>>a>>b;\n\treturn pi(a+off,b+off);\n}\n\ntemplate<class T>\nvoid print(const vector<T>&v,int suc=1){\n\trep(i,v.size())\n\t\tprint(v[i],i==int(v.size())-1?suc:2);\n}\n\nstring readString(){\n\tstring s;\n\tcin>>s;\n\treturn s;\n}\n\ntemplate<class T>\nT sq(const T& t){\n\treturn t*t;\n}\n\n//#define CAPITAL\nvoid yes(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"YES\"<<\"\\n\";\n\t#else\n\tcout<<\"Yes\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid no(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"NO\"<<\"\\n\";\n\t#else\n\tcout<<\"No\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid possible(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"POSSIBLE\"<<\"\\n\";\n\t#else\n\tcout<<\"Possible\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid impossible(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"IMPOSSIBLE\"<<\"\\n\";\n\t#else\n\tcout<<\"Impossible\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\n\nconstexpr ll ten(int n){\n\treturn n==0?1:ten(n-1)*10;\n}\n\nconst ll infLL=LLONG_MAX/3;\n\n#ifdef int\nconst int inf=infLL;\n#else\nconst int inf=INT_MAX/2-100;\n#endif\n\nint topbit(signed t){\n\treturn t==0?-1:31-__builtin_clz(t);\n}\nint topbit(ll t){\n\treturn t==0?-1:63-__builtin_clzll(t);\n}\nint botbit(signed a){\n\treturn a==0?32:__builtin_ctz(a);\n}\nint botbit(ll a){\n\treturn a==0?64:__builtin_ctzll(a);\n}\nint popcount(signed t){\n\treturn __builtin_popcount(t);\n}\nint popcount(ll t){\n\treturn __builtin_popcountll(t);\n}\nbool ispow2(int i){\n\treturn i&&(i&-i)==i;\n}\nll mask(int i){\n\treturn (ll(1)<<i)-1;\n}\n\nbool inc(int a,int b,int c){\n\treturn a<=b&&b<=c;\n}\n\ntemplate<class t> void mkuni(vc<t>&v){\n\tsort(all(v));\n\tv.erase(unique(all(v)),v.ed);\n}\n\nll rand_int(ll l, ll r) { //[l, r]\n\t#ifdef LOCAL\n\tstatic mt19937_64 gen;\n\t#else\n\tstatic mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());\n\t#endif\n\treturn uniform_int_distribution<ll>(l, r)(gen);\n}\n\ntemplate<class t>\nvoid myshuffle(vc<t>&a){\n\trep(i,si(a))swap(a[i],a[rand_int(0,i)]);\n}\n\ntemplate<class t>\nint lwb(const vc<t>&v,const t&a){\n\treturn lower_bound(all(v),a)-v.bg;\n}\n\nvvc<int> readGraph(int n,int m){\n\tvvc<int> g(n);\n\trep(i,m){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\t//sc.read(a,b);\n\t\ta--;b--;\n\t\tg[a].pb(b);\n\t\tg[b].pb(a);\n\t}\n\treturn g;\n}\n\nvvc<int> readTree(int n){\n\treturn readGraph(n,n-1);\n}\n\n\n//KUPC 2020 C\n//重心分解してクエリに答える\n//クエリ (a,b) に対しては,LCA から a までのパスと,LCA から b までのパスの情報を使って答える.\n//パスの情報は N に保存される\n//N() が単位元的な役割\n//N.extend(e) で辺 e を使って下に下って新しいノードを作る\n//N 同士のマージをやると計算量が壊れるが extend なら...というときに使える\ntemplate<class E,class N>\nstruct cdecomp{\n\tconst vvc<E>&g;\n\tint n;\n\tvi rem;\n\t\n\tint ts(int v,int p){\n\t\tint res=1;\n\t\tfor(auto e:g[v])if(e!=p&&!rem[e])\n\t\t\tres+=ts(e,v);\n\t\treturn res;\n\t}\n\tint fc(int v,int p,int s){\n\t\tint ret=1,mx=0;\n\t\tfor(auto e:g[v])if(e!=p&&!rem[e]){\n\t\t\tint f=fc(e,v,s);\n\t\t\tif(f<=0)\n\t\t\t\treturn f;\n\t\t\telse{\n\t\t\t\tret+=f;\n\t\t\t\tmx=max(mx,f);\n\t\t\t}\n\t\t}\n\t\tmx=max(mx,s-ret);\n\t\tif(mx*2<=s)\n\t\t\treturn -v;\n\t\telse\n\t\t\treturn ret;\n\t}\n\t\n\tcdecomp(const vvc<E>&gg):g(gg),n(g.size()),rem(n){\n\t}\n\t\n\tvc<N> buf;\n\tvi tp;\n\tvvc<tuple<int,int,int>> bucket;\n\t\n\tvoid dfs1(int v,int p,int i,N cur){\n\t\tbuf[v]=cur;\n\t\ttp[v]=i;\n\t\tfor(auto e:g[v])if(e!=p&&!rem[e]){\n\t\t\tdfs1(e,v,i==-1?e:i,cur.extend(e));\n\t\t}\n\t}\n\t\n\ttemplate<class F>\n\tvoid con(int r,const vc<tuple<int,int,int>>&qs,F f){\n\t\tr=-fc(r,-1,ts(r,-1));\n\t\t\n\t\tdfs1(r,-1,-1,N());\n\t\tfor(const auto&w:qs){\n\t\t\tint a,b,i;tie(a,b,i)=w;\n\t\t\tif(tp[a]!=tp[b]){\n\t\t\t\tf(i,buf[a],buf[b],r);\n\t\t\t}else{\n\t\t\t\tbucket[tp[a]].pb(w);\n\t\t\t}\n\t\t}\n\t\t\n\t\trem[r]=1;\n\t\tfor(auto e:g[r])if(!rem[e]){\n\t\t\tvc<tuple<int,int,int>> tmp;\n\t\t\ttmp.swap(bucket[e]);\n\t\t\tcon(e,tmp,f);\n\t\t}\n\t}\n\t\n\t//f(idx,N lf,N rt,int lca) がよばれる\n\t//[qs[i].a,lca) が lf に,[qs[i].b,lca) が rt に入るらしい\n\ttemplate<class F>\n\tvoid slv(const vc<pi>&qs,F f){\n\t\tfill(all(rem),0);\n\t\tbuf.resize(n);\n\t\ttp.resize(n);\n\t\tbucket.resize(n);\n\t\t\n\t\tvc<tuple<int,int,int>> tmp(si(qs));\n\t\trep(i,si(qs))\n\t\t\ttmp[i]=mt(qs[i].a,qs[i].b,i);\n\t\tcon(0,tmp,f);\n\t}\n};\n\n//KUPC 2020 C\n//非連結な場合はverifyされてない\n\n//多重辺なしの cactus を分解する\n//cs にサイクルに使われた辺の集合が入る\n//順番は,dfs 木を下る->後退辺で上がる,の順\n//cs のサイズが 2 のときはシンプルに辺があるだけ\n//連結性を仮定せず\ntemplate<class E>\nstruct cactus{\n\tconst vvc<E>&g;\n\tconst int n;\n\tvvc<E> cs;\n\tvi vis,par,u;\n\tvc<E> come;\n\tvc<bool> done;\n\tvoid dfs(int v,int p,E co){\n\t\tassert(vis[v]==0);\n\t\tvis[v]=1;\n\t\tpar[v]=p;\n\t\tcome[v]=co;\n\t\tE gopar;\n\t\tfor(auto e:g[v]){\n\t\t\tif(e==p){\n\t\t\t\tgopar=e;\n\t\t\t}else if(vis[e]==0){\n\t\t\t\tdfs(e,v,e);\n\t\t\t}else if(vis[e]==1){\n\t\t\t\tint x=v;\n\t\t\t\tvc<E> z{e};\n\t\t\t\twhile(x!=e){\n\t\t\t\t\tassert(!done[x]);\n\t\t\t\t\tdone[x]=true;\n\t\t\t\t\tz.pb(come[x]);\n\t\t\t\t\tx=par[x];\n\t\t\t\t}\n\t\t\t\treverse(all(z));\n\t\t\t\tcs.pb(z);\n\t\t\t}\n\t\t}\n\t\tif(p!=-1&&!done[v]){\n\t\t\tdone[v]=true;\n\t\t\tcs.pb({co,gopar});\n\t\t}\n\t\tvis[v]=2;\n\t}\n\tcactus(const vvc<E>&gg):g(gg),n(g.size()),vis(n),par(n),u(n),come(n),done(n){\n\t\trep(i,n)if(!vis[i])\n\t\t\tdfs(i,-1,E());\n\t}\n};\nstruct E{\n\tint to,cost;\n\toperator int()const{return to;}\n};\n\nconst int nmax=200010;\nconst int L=30;\n\nbool isc[nmax];\nint cv[nmax];\n\nstruct N{\n\tint s,vs[L],off;\n\tN(){\n\t\ts=0;\n\t\toff=0;\n\t}\n\tvoid add(int v){\n\t\trep(i,s)chmin(v,v^vs[i]);\n\t\tif(v)vs[s++]=v;\n\t}\n\tN extend(const E&e)const{\n\t\tN res=*this;\n\t\tres.off^=e.cost;\n\t\tif(cv[e.to]!=-1)\n\t\t\tres.add(cv[e.to]);\n\t\treturn res;\n\t}\n\tvoid show(){\n\t\tdmp(s);\n\t\tdmp(vi(vs,vs+s));\n\t\tdmp(off);\n\t}\n\tint getans(int k){\n\t\tif(k>=(1<<s))return -1;\n\t\tsort(vs,vs+s);\n\t\trep(i,s){\n\t\t\trng(j,i+1,s){\n\t\t\t\tchmin(vs[j],vs[j]^vs[i]);\n\t\t\t}\n\t\t\tchmin(off,off^vs[i]);\n\t\t}\n\t\tint res=off;\n\t\trep(i,s)if(k&1<<i)res^=vs[i];\n\t\treturn res;\n\t}\n};\n\nsigned main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(0);\n\tcout<<fixed<<setprecision(20);\n\t\n\tint n;cin>>n;\n\tint m;cin>>m;\n\tvvc<E> g(n);\n\trep(_,m){\n\t\tint a,b,c;cin>>a>>b>>c;\n\t\ta--;b--;\n\t\tg[a].pb({b,c});\n\t\tg[b].pb({a,c});\n\t}\n\tcactus<E> cc(g);\n\t\n\tint s=n+si(cc.cs);\n\tvvc<E> t(s);\n\tauto ae=[&](int a,int b,int c){\n\t\tt[a].pb({b,c});\n\t\tt[b].pb({a,c});\n\t};\n\tone(cv);\n\tdmp(cc.cs);\n\trep(i,si(cc.cs)){\n\t\tint cur=0;\n\t\tfor(auto e:cc.cs[i]){\n\t\t\tcur^=e.cost;\n\t\t\tae(e,n+i,cur);\n\t\t}\n\t\tcv[n+i]=cur;\n\t}\n\t\n\tcdecomp<E,N> cd(t);\n\t\n\tint qnum;cin>>qnum;\n\tvc<pi> ab(qnum);\n\tvi ks(qnum);\n\trep(i,qnum){\n\t\tint a,b;cin>>a>>b;\n\t\ta--;b--;\n\t\tab[i]=pi(a,b);\n\t\tint k;cin>>k;\n\t\tks[i]=k-1;\n\t}\n\t\n\tvi ans(qnum);\n\tauto slv=[&](int dst,N x,N y,int lca){\n\t\tx.off^=y.off;\n\t\trep(i,y.s)x.add(y.vs[i]);\n\t\tif(cv[lca]!=-1)x.add(cv[lca]);\n\t\tans[dst]=x.getans(ks[dst]);\n\t};\n\tcd.slv(ab,slv);\n\t\n\tfor(auto v:ans)print(v);\n}", "accuracy": 1, "time_ms": 860, "memory_kb": 96596, "score_of_the_acc": -0.2196, "final_rank": 1 }, { "submission_id": "aoj_3139_4802631", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nenum BLOCK_TREE_TYPE { BLOCK_CUT_TREE = 0, BRIDGE_TREE = 1 };\n\n// input:\n// n: number of nodes.\n// gr: adjacentcy lists of the graph.\n// Usage:\n// auto bc_tree = build_block_tree<BLOCK_CUT_TREE>(n, gr);\n// auto bridge_tree = build_block_tree<BRIDGE_TREE>(n, gr);\ntemplate<BLOCK_TREE_TYPE tree_type, int node_start_id = 1, class Graph = vector<int>[]>\nvector<vector<int>> build_block_tree(int n, const Graph& gr) {\n n += node_start_id;\n vector<int> low(n), num(n, -1), stk;\n vector<vector<int>> bc_tree(n);\n \n auto new_edge = [&](int u, int v) {\n bc_tree[u].push_back(v);\n bc_tree[v].push_back(u);\n };\n \n auto new_component = [&](int last_node = -1) {\n int comp_id = (int)bc_tree.size();\n bc_tree.emplace_back();\n for (; stk.size() and (!bc_tree.back().size() or bc_tree.back().back() != last_node); stk.pop_back())\n new_edge(comp_id, stk.back());\n return comp_id;\n };\n \n int counter = 0;\n function<void(int, int)> dfs = [&](int u, int p) {\n low[u] = num[u] = counter++;\n stk.push_back(u);\n for (auto v: gr[u]) {\n if (v == p) continue;\n if (num[v] != -1) {\n low[u] = min(low[u], num[v]);\n continue;\n }\n dfs(v, u);\n low[u] = min(low[u], low[v]);\n if (low[v] < num[u] + tree_type) continue;\n int comp_id = new_component(v);\n new_edge(u, tree_type == BLOCK_CUT_TREE ? comp_id : v);\n }\n };\n \n for (int i = node_start_id; i < n; ++i) {\n if (num[i] == -1) {\n dfs(i, -1);\n if (tree_type == BRIDGE_TREE) new_component();\n }\n // make the component id to be the first element. can be removed if not needed\n for (int& f: bc_tree[i]) if (f > n) {\n swap(bc_tree[i][0], f);\n break;\n }\n // modification?: move all non-bridge/cut point to the end for faster iterating through adj component.\n }\n return bc_tree;\n}\n\n/**\n * Author: Tran Quang Loc (darkkcyan)\n * Tested with https://github.com/quangloc99/CompetitiveProgramming/blob/master/Codeforces/CF342-D2-E.cpp\n */\ntemplate<class Graph = vector<int>*, int node_start_id = 1>\nstruct centroid_decomposer {\n int n;\n const Graph& gr;\n vector<bool> mark;\n vector<int> child_cnt;\n\n centroid_decomposer(int n_, const Graph& gr_)\n : n(n_ + node_start_id), gr(gr_), mark(n), child_cnt(n) {}\n \n void reset(int n_ = -1) {\n if (n != -1) n = n_ + node_start_id;\n mark.assign(n, 0);\n child_cnt.assign(n, 0);\n }\n\n int dfs_count_child(int u, int p) {\n child_cnt[u] = 1;\n for (auto v: gr[u]) if (v != p and !mark[v])\n child_cnt[u] += dfs_count_child(v, u);\n return child_cnt[u];\n }\n\n // possible modification: return a pair which contain a new centroid and\n // the size of its region (the `total` variable)\n int find_centroid(int u, int p = -1, int total = -1) {\n assert(u != -1);\n if (p == -1) total = dfs_count_child(u, u);\n pair<int, int> big_child(total - child_cnt[u], -1);\n for (auto v: gr[u]) if (!mark[v] and v != p)\n big_child = max(big_child, {child_cnt[v], v});\n if (big_child.first > total / 2) \n return find_centroid(big_child.second, u, total);\n mark[u] = 1;\n return u;\n }\n\n // possible modification: return adjacency list instead of parent list\n vector<int> build_centroid_tree(int s = node_start_id) {\n s = find_centroid(s);\n vector<int> cen_parent(n, -1);\n queue<int> qu;\n for (qu.push(s), cen_parent[s] = s; qu.size(); qu.pop()) {\n int u = qu.front();\n for (auto v: gr[u]) {\n if (mark[v]) continue;\n int cv = find_centroid(v);\n cen_parent[cv] = u;\n qu.push(cv);\n }\n }\n return cen_parent;\n }\n};\n\n#define llong long long \n#define len(x) ((int)x.size())\n#define rep(i,n) for (int i = -1; ++ i < n; )\n#define rep1(i,n) for (int i = 0; i ++ < n; )\n#define rand __rand\nmt19937 rng(chrono::system_clock::now().time_since_epoch().count()); // or mt19937_64\ntemplate<class T = int> T rand(T range = numeric_limits<T>::max()) { return (T)(rng() % range); }\n\n#define CONCAT_(x, y) x##y/*{{{*/\n#define CONCAT(x, y) CONCAT_(x, y)\n#ifdef LOCAL_DEBUG \nint __db_level = 0;\nbool __db_same_line = false;\n#define clog cerr << string(!__db_same_line ? __db_level * 2 : 0, ' ')\nstruct debug_block {\n function<void()> fn;\n void print_name() { __db_same_line = true; fn(); clog << endl; __db_same_line = false; }\n debug_block(function<void()> fn_): fn(fn_) { clog << \"{ \"; print_name(); ++__db_level; }\n ~debug_block() { --__db_level; clog << \"} \"; print_name(); }\n};\n#define DB(args...) debug_block CONCAT(dbbl, __LINE__)([=]{ clog << args; })\n#define deb(...) if (1) { (clog << \"[\" #__VA_ARGS__ \"] = [\" << __VA_ARGS__) << \"]\"; if (!__db_same_line) clog << endl; }\n#else\n#define clog if (0) cerr\n#define DB(...)\n#define deb(...)\n#endif\ntemplate<class T>\nostream& operator,(ostream& out, const T& thing) { return out << \", \" << thing; }\ntemplate<class U, class V>\nostream& operator<<(ostream& out, const pair<U, V>& p) { return (out << \"(\" << p.first, p.second) << \")\"; }\ntemplate<class A, class B>\nostream& operator<<(ostream& out, const tuple<A, B>& t) { return (out << \"(\" << get<0>(t), get<1>(t)) << \")\"; }\ntemplate<class A, class B, class C>\nostream& operator<<(ostream& out, const tuple<A, B, C>& t) { return (out << \"(\" << get<0>(t), get<1>(t), get<2>(t)) << \")\"; }\ntemplate<class T> ostream& operator<<(ostream& out, const vector<T>& container) { \n out << \"{\";\n if (len(container)) out << container[0];\n rep1(i, len(container) - 1) out, container[i];\n return out << \"}\";\n}\ntemplate<class x> vector<typename x::value_type> $v(const x& a) { return vector<typename x::value_type>(a.begin(), a.end()); }\n#define ptrtype(x) typename iterator_traits<x>::value_type\ntemplate<class u> vector<ptrtype(u)> $v(u a, u b) { return vector<ptrtype(u)>(a, b); }/*}}}*/\n// ACTUAL SOLUTION BELOW ////////////////////////////////////////////////////////////\n\ntemplate<int maxbit = 30, class T = int>\nstruct basis {\n array<T, maxbit> bit;\n int sz;\n basis(): bit{}, sz(0) {\n }\n \n void add(T mask) {\n if (!mask) return ;\n for (int i = maxbit; i--; ) {\n if (!(mask & (1LL << i))) continue;\n if (!bit[i]) {\n bit[i] = mask;\n ++sz;\n return ;\n }\n mask ^= bit[i];\n }\n }\n \n void reset() {\n bit.fill(0);\n sz = 0;\n }\n \n T find_kth(T k, T ans) {\n --k;\n if (k >= (1ll << sz)) return -1;\n int cursz = sz;\n for (int i = maxbit; i--; ) {\n if (!bit[i]) continue;\n --cursz;\n if ((ans >> i) & 1) ans ^= bit[i];\n \n if (k >= (1ll << cursz)) {\n ans ^= bit[i];\n k -= ((T)1 << cursz);\n }\n }\n return ans;\n }\n};\n\n\nconst int maxn = 100010;\nconst int maxq = 202020;\nint n, m;\n\nint comp_cost[maxn * 2];\nvector<vector<int>> bc_tree;\nvector<int> costs[maxn * 2];\ncentroid_decomposer<vector<vector<int>>> cd(0, bc_tree);\n\nbasis<30, int> bb[maxn * 2];\nint xor_path[maxn * 2];\nvoid cal_basis(int u, int p = -1) {\n deb(u);\n bb[u].add(comp_cost[u]);\n \n rep(i, len(bc_tree[u])) {\n int v = bc_tree[u][i];\n int cur_cost = costs[u][i];\n if (v == p or cd.mark[v]) continue;\n bb[v] = bb[u];\n xor_path[v] = xor_path[u] ^ cur_cost;\n cal_basis(v, u);\n }\n}\n\nstruct query {\n int id;\n int u, v, k;\n query(int i, int u_, int v_, int k_)\n : id(i), u(u_), v(v_), k(k_) {}\n};\n\nvector<query> queries[maxn * 2];\nint ans[maxq];\nvoid process_queries(int where) {\n int cen = cd.find_centroid(where);\n DB(\"\"; deb(cen));\n bb[cen].reset();\n xor_path[cen] = 0;\n cal_basis(cen);\n \n for (auto& qr: queries[cen]) {\n int id = qr.id, u = qr.u, v = qr.v, k = qr.k;\n DB(u, v, k);\n auto bas = bb[u];\n for (int f = 30; f--; ) { \n bas.add(bb[v].bit[f]); \n } \n int path = xor_path[u] ^ xor_path[v];\n deb(path);\n rep(f, 30) deb(f, bas.bit[f]);\n ans[id] = bas.find_kth(k, path);\n }\n \n for (auto v: bc_tree[cen]) {\n if (cd.mark[v]) continue;\n process_queries(v);\n }\n}\n\nint main(void) {\n deb(sizeof(bb) / 1024 / 1024);\n ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);\n cin >> n >> m;\n \n {\n vector<vector<int>> gr(n + 1);\n vector<map<int, int>> temp_cost(2 * n + 1);\n rep(i, m) {\n int u, v, c; cin >> u >> v >> c;\n gr[u].push_back(v);\n gr[v].push_back(u);\n temp_cost[u][v] = temp_cost[v][u] = c;\n }\n \n bc_tree = build_block_tree<BLOCK_CUT_TREE>(n, gr);\n deb(bc_tree);\n // assumsion: my code also ordered the nodes in the bc_tree so that they are\n // in the same order as in the cactus\n for (int comp = n + 1; comp < len(bc_tree); ++comp) {\n auto& cur = bc_tree[comp];\n assert(len(cur) > 1);\n if (len(cur) == 2) {\n int u = cur[0], v = cur[1];\n costs[comp] = {0, temp_cost[u][v]};\n temp_cost[comp][u] = 0;\n temp_cost[comp][v] = costs[comp].back();\n continue;\n }\n \n int prev = cur.back();\n for (auto u: cur) {\n int cur_cost = temp_cost[prev][u];\n comp_cost[comp] ^= cur_cost;\n costs[comp].push_back(comp_cost[comp]);\n temp_cost[comp][u] = comp_cost[comp];\n prev = u;\n }\n }\n rep1(i, n) {\n for (auto comp: bc_tree[i]) {\n costs[i].push_back(temp_cost[comp][i]);\n }\n }\n }\n rep1(i, len(bc_tree) - 1) {\n deb(i, costs[i]);\n }\n \n // \n cd.reset(len(bc_tree));\n auto cen_tree = cd.build_centroid_tree(1);\n deb(cen_tree);\n \n int q; cin >> q;\n rep(i, q) {\n int u, v, k; cin >> u >> v >> k;\n \n vector<int> par_u = {u}, par_v = {v};\n for (int x = u; cen_tree[x] != x; x = cen_tree[x]) par_u.push_back(cen_tree[x]);\n for (int x = v; cen_tree[x] != x; x = cen_tree[x]) par_v.push_back(cen_tree[x]);\n deb(u, v, par_u, par_v);\n \n int cen_lca = cen_tree[par_u.back()];\n while (len(par_u) and len(par_v) and par_u.back() == par_v.back()) {\n cen_lca = par_u.back();\n par_u.pop_back();\n par_v.pop_back();\n }\n \n queries[cen_lca].emplace_back(i, u, v, k);\n }\n \n cd.reset(len(bc_tree));\n process_queries(1);\n \n rep(i, q) cout << ans[i] << '\\n';\n \n\n return 0;\n}\n\n// Remember:\n// - Multitest? REFRESHING the data!!!\n// - Constrains for each set of data may differs. Should NOT USE the same max constant (maxn)\n// for all of them.\n// vim: foldmethod=marker", "accuracy": 1, "time_ms": 1100, "memory_kb": 98824, "score_of_the_acc": -0.2717, "final_rank": 3 }, { "submission_id": "aoj_3139_4290652", "code_snippet": "#include <bits/stdc++.h>\n\n#include <utility>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge() = default;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n int es;\n\n Graph() = default;\n\n explicit Graph(int n) : g(n), es(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1) {\n g[from].emplace_back((Edge< T >) {from, to, cost, es++});\n }\n\n void add_edge(int from, int to, T cost = 1) {\n g[from].emplace_back((Edge< T >) {from, to, cost, es});\n g[to].emplace_back((Edge< T >) {to, from, cost, es++});\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_directed_edge(a, b, c);\n else add_edge(a, b, c);\n }\n }\n};\n\ntemplate< typename T = int >\nstruct LowLink : Graph< T > {\npublic:\n using Graph< T >::Graph;\n vector< int > ord, low, articulation;\n vector< Edge< T > > bridge;\n using Graph< T >::g;\n\n virtual void build() {\n used.assign(g.size(), 0);\n ord.assign(g.size(), 0);\n low.assign(g.size(), 0);\n int k = 0;\n for(int i = 0; i < (int) g.size(); i++) {\n if(!used[i]) k = dfs(i, k, -1);\n }\n }\n\n explicit LowLink(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > used;\n\n int dfs(int idx, int k, int par) {\n used[idx] = true;\n ord[idx] = k++;\n low[idx] = ord[idx];\n bool is_articulation = false, beet = false;\n int cnt = 0;\n for(auto &to : g[idx]) {\n if(to == par && !exchange(beet, true)) {\n continue;\n }\n if(!used[to]) {\n ++cnt;\n k = dfs(to, k, idx);\n low[idx] = min(low[idx], low[to]);\n is_articulation |= par >= 0 && low[to] >= ord[idx];\n if(ord[idx] < low[to]) bridge.emplace_back(to);\n } else {\n low[idx] = min(low[idx], ord[to]);\n }\n }\n is_articulation |= par == -1 && cnt > 1;\n if(is_articulation) articulation.push_back(idx);\n return k;\n }\n};\n\ntemplate< typename T = int >\nstruct BiConnectedComponents : LowLink< T > {\npublic:\n using LowLink< T >::LowLink;\n using LowLink< T >::g;\n using LowLink< T >::ord;\n using LowLink< T >::low;\n\n vector< vector< Edge< T > > > bc;\n\n void build() override {\n LowLink< T >::build();\n used.assign(g.size(), 0);\n for(int i = 0; i < used.size(); i++) {\n if(!used[i]) dfs(i, -1);\n }\n }\n\n explicit BiConnectedComponents(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > used;\n vector< Edge< T > > tmp;\n\n void dfs(int idx, int par) {\n used[idx] = true;\n bool beet = false;\n for(auto &to : g[idx]) {\n if(to == par && !exchange(beet, true)) continue;\n if(!used[to] || ord[to] < ord[idx]) {\n tmp.emplace_back(to);\n }\n if(!used[to]) {\n dfs(to, idx);\n if(low[to] >= ord[idx]) {\n bc.emplace_back();\n for(;;) {\n auto e = tmp.back();\n bc.back().emplace_back(e);\n tmp.pop_back();\n if(e.idx == to.idx) break;\n }\n }\n }\n }\n }\n};\n\ntemplate< typename T = int >\nstruct BlockCutTree : BiConnectedComponents< T > {\npublic:\n using BiConnectedComponents< T >::BiConnectedComponents;\n using BiConnectedComponents< T >::g;\n using BiConnectedComponents< T >::articulation;\n using BiConnectedComponents< T >::bc;\n\n vector< int > rev;\n vector< vector< int > > group;\n Graph< T > tree;\n\n explicit BlockCutTree(const Graph< T > &g) : Graph< T >(g) {}\n\n int operator[](const int &k) const {\n return rev[k];\n }\n\n void build() override {\n BiConnectedComponents< T >::build();\n rev.assign(g.size(), -1);\n int ptr = (int) bc.size();\n for(auto &idx : articulation) {\n rev[idx] = ptr++;\n }\n vector< int > last(ptr, -1);\n tree = Graph< T >(ptr);\n for(int i = 0; i < (int) bc.size(); i++) {\n for(auto &e : bc[i]) {\n for(auto &ver : {e.from, e.to}) {\n if(rev[ver] >= (int) bc.size()) {\n if(exchange(last[rev[ver]], i) != i) {\n tree.add_edge(rev[ver], i, e.cost);\n }\n } else {\n rev[ver] = i;\n }\n }\n }\n }\n group.resize(ptr);\n for(int i = 0; i < (int) g.size(); i++) {\n group[rev[i]].emplace_back(i);\n }\n }\n};\n\nstruct UnionFind {\n vector< int > data;\n\n explicit UnionFind(int sz) {\n data.assign(sz, -1);\n }\n\n bool unite(int x, int y) {\n x = find(x), y = find(y);\n if(x == y) return (false);\n if(data[x] > data[y]) swap(x, y);\n data[x] += data[y];\n data[y] = x;\n return (true);\n }\n\n int find(int k) {\n if(data[k] < 0) return (k);\n return (data[k] = find(data[k]));\n }\n\n int size(int k) {\n return (-data[find(k)]);\n }\n};\n\n\ntemplate< typename T >\nstruct CentroidDecomposition : Graph< T > {\npublic:\n using Graph< T >::Graph;\n using Graph< T >::g;\n Graph< int > tree;\n\n int build(int t = 0) {\n sub.assign(g.size(), 0);\n v.assign(g.size(), 0);\n tree = Graph< T >(g.size());\n return build_dfs(0);\n }\n\n explicit CentroidDecomposition(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > sub;\n vector< int > v;\n\n inline int build_dfs(int idx, int par) {\n sub[idx] = 1;\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n sub[idx] += build_dfs(to, idx);\n }\n return sub[idx];\n }\n\n inline int search_centroid(int idx, int par, const int mid) {\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n if(sub[to] > mid) return search_centroid(to, idx, mid);\n }\n return idx;\n }\n\n inline int build_dfs(int idx) {\n int centroid = search_centroid(idx, -1, build_dfs(idx, -1) / 2);\n v[centroid] = true;\n for(auto &to : g[centroid]) {\n if(!v[to]) tree.add_directed_edge(centroid, build_dfs(to));\n }\n v[centroid] = false;\n return centroid;\n }\n};\n\n\nint main() {\n int N, M;\n cin >> N >> M;\n BlockCutTree< int > g(N);\n Graph<> h(N);\n UnionFind uf(N);\n vector< int > A(M), B(M), C(M);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i] >> C[i];\n --A[i], --B[i];\n g.add_edge(A[i], B[i], C[i]);\n if(uf.unite(A[i], B[i])) h.add_edge(A[i], B[i], C[i]);\n }\n g.build();\n\n vector< int > sum(N);\n MFP([&](auto rec, int idx, int par) -> void {\n for(auto &to : h.g[idx]) {\n if(to != par) {\n sum[to] = sum[idx] ^ to.cost;\n rec(to, idx);\n }\n }\n })(0, -1);\n\n auto &t = g.tree;\n vector< int > weight(t.size());\n\n Graph< int > tree(t);\n CentroidDecomposition< int > cpd(tree);\n int root = cpd.build();\n auto &ushitapunichia = cpd.tree;\n\n\n {\n for(int i = 0; i < g.bc.size(); i++) {\n for(auto &e : g.bc[i]) weight[i] ^= e.cost;\n }\n for(int i = 0; i < t.size(); i++) {\n if(i < g.bc.size() && g.bc[i].size() >= 2) continue;\n weight[i] = 0;\n }\n }\n\n using vi = vector< int >;\n\n auto f = [](vi &a, int b) {\n for(int y : a) chmin(b, b ^ y);\n if(b) a.emplace_back(b);\n };\n\n int Q;\n cin >> Q;\n vector< int > X(Q), Y(Q), K(Q), Z(Q);\n for(int i = 0; i < Q; i++) {\n cin >> X[i] >> Y[i] >> K[i];\n --X[i], --Y[i], --K[i];\n Z[i] = sum[X[i]] ^ sum[Y[i]];\n X[i] = g[X[i]];\n Y[i] = g[Y[i]];\n }\n\n vector< vector< int > > ev(t.size());\n for(int i = 0; i < Q; i++) {\n ev[X[i]].emplace_back(i);\n ev[Y[i]].emplace_back(i);\n }\n vector< int > used(t.size());\n vector< vector< int > > cash(t.size());\n vector< int > last(Q);\n int ptr = 1;\n vector< int > ans(Q);\n\n\n auto calc_ans = [&](const vector< int > &a, vector< int > b, int k, int base) {\n for(int x : a) {\n if(b.size() >= 30) break;\n for(int y : b) chmin(x, x ^ y);\n if(x) b.emplace_back(x);\n }\n auto &tap = b;\n if(1 << tap.size() <= k) {\n return -1;\n } else {\n sort(tap.begin(), tap.end());\n for(int j = (int) tap.size() - 1; j >= 0; j--) {\n if(k < (1 << j)) {\n chmin(base, base ^ tap[j]);\n } else {\n k -= 1 << j;\n chmax(base, base ^ tap[j]);\n }\n }\n return base;\n }\n };\n\n auto add_dfs = MFP([&](auto add_dfs, int idx, int par, vector< int > base, int Left, int id) -> void {\n if(weight[idx]) f(base, weight[idx]);\n cash[idx] = base;\n\n for(auto &q : ev[idx]) {\n if(Left <= last[q] && last[q] < id) ans[q] = calc_ans(cash[X[q]], cash[Y[q]], K[q], Z[q]);\n last[q] = id;\n }\n\n for(auto &to : t.g[idx]) {\n if(to == par) continue;\n if(used[to]) continue;\n add_dfs(to, idx, base, Left, id);\n }\n });\n\n\n MFP([&](auto dfs, int centroid) -> void {\n used[centroid] = true;\n\n vector< int > base;\n int Left = ptr;\n if(weight[centroid]) base.emplace_back(weight[centroid]);\n for(auto &q : ev[centroid]) {\n if(last[q] == ptr) ans[q] = calc_ans(base, base, K[q], Z[q]);\n last[q] = ptr;\n }\n cash[centroid] = base;\n ++ptr;\n\n for(auto &to : t.g[centroid]) {\n if(used[to]) continue;\n add_dfs(to, centroid, base, Left, ptr++);\n }\n\n for(auto &to : ushitapunichia.g[centroid]) {\n dfs(to);\n }\n used[centroid] = false;\n })(root);\n\n\n for(auto &p : ans) cout << p << \"\\n\";\n}", "accuracy": 1, "time_ms": 790, "memory_kb": 142428, "score_of_the_acc": -0.3479, "final_rank": 5 }, { "submission_id": "aoj_3139_4290648", "code_snippet": "#include <bits/stdc++.h>\n\n#include <utility>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge() = default;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n int es;\n\n Graph() = default;\n\n explicit Graph(int n) : g(n), es(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1) {\n g[from].emplace_back((Edge< T >) {from, to, cost, es++});\n }\n\n void add_edge(int from, int to, T cost = 1) {\n g[from].emplace_back((Edge< T >) {from, to, cost, es});\n g[to].emplace_back((Edge< T >) {to, from, cost, es++});\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_directed_edge(a, b, c);\n else add_edge(a, b, c);\n }\n }\n};\n\ntemplate< typename T = int >\nstruct LowLink : Graph< T > {\npublic:\n using Graph< T >::Graph;\n vector< int > ord, low, articulation;\n vector< Edge< T > > bridge;\n using Graph< T >::g;\n\n virtual void build() {\n used.assign(g.size(), 0);\n ord.assign(g.size(), 0);\n low.assign(g.size(), 0);\n int k = 0;\n for(int i = 0; i < (int) g.size(); i++) {\n if(!used[i]) k = dfs(i, k, -1);\n }\n }\n\n explicit LowLink(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > used;\n\n int dfs(int idx, int k, int par) {\n used[idx] = true;\n ord[idx] = k++;\n low[idx] = ord[idx];\n bool is_articulation = false, beet = false;\n int cnt = 0;\n for(auto &to : g[idx]) {\n if(to == par && !exchange(beet, true)) {\n continue;\n }\n if(!used[to]) {\n ++cnt;\n k = dfs(to, k, idx);\n low[idx] = min(low[idx], low[to]);\n is_articulation |= par >= 0 && low[to] >= ord[idx];\n if(ord[idx] < low[to]) bridge.emplace_back(to);\n } else {\n low[idx] = min(low[idx], ord[to]);\n }\n }\n is_articulation |= par == -1 && cnt > 1;\n if(is_articulation) articulation.push_back(idx);\n return k;\n }\n};\n\ntemplate< typename T = int >\nstruct BiConnectedComponents : LowLink< T > {\npublic:\n using LowLink< T >::LowLink;\n using LowLink< T >::g;\n using LowLink< T >::ord;\n using LowLink< T >::low;\n\n vector< vector< Edge< T > > > bc;\n\n void build() override {\n LowLink< T >::build();\n used.assign(g.size(), 0);\n for(int i = 0; i < used.size(); i++) {\n if(!used[i]) dfs(i, -1);\n }\n }\n\n explicit BiConnectedComponents(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > used;\n vector< Edge< T > > tmp;\n\n void dfs(int idx, int par) {\n used[idx] = true;\n bool beet = false;\n for(auto &to : g[idx]) {\n if(to == par && !exchange(beet, true)) continue;\n if(!used[to] || ord[to] < ord[idx]) {\n tmp.emplace_back(to);\n }\n if(!used[to]) {\n dfs(to, idx);\n if(low[to] >= ord[idx]) {\n bc.emplace_back();\n for(;;) {\n auto e = tmp.back();\n bc.back().emplace_back(e);\n tmp.pop_back();\n if(e.idx == to.idx) break;\n }\n }\n }\n }\n }\n};\n\ntemplate< typename T = int >\nstruct BlockCutTree : BiConnectedComponents< T > {\npublic:\n using BiConnectedComponents< T >::BiConnectedComponents;\n using BiConnectedComponents< T >::g;\n using BiConnectedComponents< T >::articulation;\n using BiConnectedComponents< T >::bc;\n\n vector< int > rev;\n vector< vector< int > > group;\n Graph< T > tree;\n\n explicit BlockCutTree(const Graph< T > &g) : Graph< T >(g) {}\n\n int operator[](const int &k) const {\n return rev[k];\n }\n\n void build() override {\n BiConnectedComponents< T >::build();\n rev.assign(g.size(), -1);\n int ptr = (int) bc.size();\n for(auto &idx : articulation) {\n rev[idx] = ptr++;\n }\n vector< int > last(ptr, -1);\n tree = Graph< T >(ptr);\n for(int i = 0; i < (int) bc.size(); i++) {\n for(auto &e : bc[i]) {\n for(auto &ver : {e.from, e.to}) {\n if(rev[ver] >= (int) bc.size()) {\n if(exchange(last[rev[ver]], i) != i) {\n tree.add_edge(rev[ver], i, e.cost);\n }\n } else {\n rev[ver] = i;\n }\n }\n }\n }\n group.resize(ptr);\n for(int i = 0; i < (int) g.size(); i++) {\n group[rev[i]].emplace_back(i);\n }\n }\n};\n\nstruct UnionFind {\n vector< int > data;\n\n explicit UnionFind(int sz) {\n data.assign(sz, -1);\n }\n\n bool unite(int x, int y) {\n x = find(x), y = find(y);\n if(x == y) return (false);\n if(data[x] > data[y]) swap(x, y);\n data[x] += data[y];\n data[y] = x;\n return (true);\n }\n\n int find(int k) {\n if(data[k] < 0) return (k);\n return (data[k] = find(data[k]));\n }\n\n int size(int k) {\n return (-data[find(k)]);\n }\n};\n\n\ntemplate< typename T >\nstruct CentroidDecomposition : Graph< T > {\npublic:\n using Graph< T >::Graph;\n using Graph< T >::g;\n Graph< int > tree;\n\n int build(int t = 0) {\n sub.assign(g.size(), 0);\n v.assign(g.size(), 0);\n belong.assign(g.size(), vector< int >());\n tree = Graph< T >(g.size());\n return build_dfs(0);\n }\n\n explicit CentroidDecomposition(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > sub;\n vector< vector< int > > belong;\n vector< int > v;\n\n inline int build_dfs(int idx, int par) {\n sub[idx] = 1;\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n sub[idx] += build_dfs(to, idx);\n }\n return sub[idx];\n }\n\n inline int search_centroid(int idx, int par, const int mid) {\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n if(sub[to] > mid) return search_centroid(to, idx, mid);\n }\n return idx;\n }\n\n inline void belong_dfs(int idx, int par, int centroid) {\n belong[idx].emplace_back(centroid);\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n belong_dfs(to, idx, centroid);\n }\n }\n\n inline int build_dfs(int idx) {\n int centroid = search_centroid(idx, -1, build_dfs(idx, -1) / 2);\n v[centroid] = true;\n belong_dfs(centroid, -1, centroid);\n for(auto &to : g[centroid]) {\n if(!v[to]) tree.add_directed_edge(centroid, build_dfs(to));\n }\n v[centroid] = false;\n return centroid;\n }\n};\n\n\nint main() {\n int N, M;\n cin >> N >> M;\n BlockCutTree< int > g(N);\n Graph<> h(N);\n UnionFind uf(N);\n vector< int > A(M), B(M), C(M);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i] >> C[i];\n --A[i], --B[i];\n g.add_edge(A[i], B[i], C[i]);\n if(uf.unite(A[i], B[i])) h.add_edge(A[i], B[i], C[i]);\n }\n g.build();\n\n vector< int > sum(N);\n MFP([&](auto rec, int idx, int par) -> void {\n for(auto &to : h.g[idx]) {\n if(to != par) {\n sum[to] = sum[idx] ^ to.cost;\n rec(to, idx);\n }\n }\n })(0, -1);\n\n auto &t = g.tree;\n vector< int > weight(t.size());\n\n Graph< int > tree(t);\n CentroidDecomposition< int > cpd(tree);\n int root = cpd.build();\n auto &ushitapunichia = cpd.tree;\n\n\n {\n for(int i = 0; i < g.bc.size(); i++) {\n for(auto &e : g.bc[i]) weight[i] ^= e.cost;\n }\n for(int i = 0; i < t.size(); i++) {\n if(i < g.bc.size() && g.bc[i].size() >= 2) continue;\n weight[i] = 0;\n }\n }\n\n using vi = vector< int >;\n\n auto f = [](vi &a, int b) {\n for(int y : a) chmin(b, b ^ y);\n if(b) a.emplace_back(b);\n };\n\n int Q;\n cin >> Q;\n vector< int > X(Q), Y(Q), K(Q), Z(Q);\n for(int i = 0; i < Q; i++) {\n cin >> X[i] >> Y[i] >> K[i];\n --X[i], --Y[i], --K[i];\n Z[i] = sum[X[i]] ^ sum[Y[i]];\n X[i] = g[X[i]];\n Y[i] = g[Y[i]];\n }\n\n vector< vector< int > > ev(t.size());\n for(int i = 0; i < Q; i++) {\n ev[X[i]].emplace_back(i);\n ev[Y[i]].emplace_back(i);\n }\n vector< int > used(t.size());\n vector< vector< int > > cash(t.size());\n vector< int > last(Q);\n int ptr = 1;\n vector< int > ans(Q);\n\n\n auto calc_ans = [&](const vector< int > &a, vector< int > b, int k, int base) {\n for(int x : a) {\n if(b.size() >= 30) break;\n for(int y : b) chmin(x, x ^ y);\n if(x) b.emplace_back(x);\n }\n auto &tap = b;\n if(1 << tap.size() <= k) {\n return -1;\n } else {\n sort(tap.begin(), tap.end());\n for(int j = (int) tap.size() - 1; j >= 0; j--) {\n if(k < (1 << j)) {\n chmin(base, base ^ tap[j]);\n } else {\n k -= 1 << j;\n chmax(base, base ^ tap[j]);\n }\n }\n return base;\n }\n };\n\n auto add_dfs = MFP([&](auto add_dfs, int idx, int par, vector< int > base, int Left, int id) -> void {\n if(weight[idx]) f(base, weight[idx]);\n cash[idx] = base;\n\n for(auto &q : ev[idx]) {\n if(Left <= last[q] && last[q] < id) ans[q] = calc_ans(cash[X[q]], cash[Y[q]], K[q], Z[q]);\n last[q] = id;\n }\n\n for(auto &to : t.g[idx]) {\n if(to == par) continue;\n if(used[to]) continue;\n add_dfs(to, idx, base, Left, id);\n }\n });\n\n\n MFP([&](auto dfs, int centroid) -> void {\n used[centroid] = true;\n\n vector< int > base;\n int Left = ptr;\n if(weight[centroid]) base.emplace_back(weight[centroid]);\n for(auto &q : ev[centroid]) {\n if(last[q] == ptr) ans[q] = calc_ans(base, base, K[q], Z[q]);\n last[q] = ptr;\n }\n cash[centroid] = base;\n ++ptr;\n\n for(auto &to : t.g[centroid]) {\n if(used[to]) continue;\n add_dfs(to, centroid, base, Left, ptr++);\n }\n\n for(auto &to : ushitapunichia.g[centroid]) {\n dfs(to);\n }\n used[centroid] = false;\n })(root);\n\n\n for(auto &p : ans) cout << p << \"\\n\";\n}", "accuracy": 1, "time_ms": 840, "memory_kb": 171420, "score_of_the_acc": -0.4469, "final_rank": 7 }, { "submission_id": "aoj_3139_4290527", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n vector< Edge< T > > edges;\n int esz;\n\n Graph() = default;\n\n Graph(int n) : g(n), esz(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1, int idx = -1) {\n if(idx == -1) idx = esz++;\n g[from].emplace_back(from, to, cost, idx);\n edges.emplace_back(from, to, cost, idx);\n }\n\n void add_edge(int from, int to, T cost = 1, int idx = -1) {\n if(idx == -1) idx = esz++;\n g[from].emplace_back(from, to, cost, idx);\n edges.emplace_back(from, to, cost, idx);\n g[to].emplace_back(to, from, cost, idx);\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_edge_directed(a, b, c);\n else add_edge(a, b, c);\n }\n }\n};\n\ntemplate< typename T = int >\nstruct LowLink : Graph< T > {\npublic:\n using Graph< T >::Graph;\n vector< int > ord, low, articulation, bridge;\n using Graph< T >::g;\n\n virtual void build() {\n used.assign(g.size(), 0);\n ord.assign(g.size(), 0);\n low.assign(g.size(), 0);\n int k = 0;\n for(int i = 0; i < (int) g.size(); i++) {\n if(!used[i]) k = dfs(i, k, -1);\n }\n }\n\n explicit LowLink(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > used;\n\n int dfs(int idx, int k, int par) {\n used[idx] = true;\n ord[idx] = k++;\n low[idx] = ord[idx];\n bool is_articulation = false, beet = false;\n int cnt = 0;\n for(auto &to : g[idx]) {\n if(to == par && !exchange(beet, true)) {\n continue;\n }\n if(!used[to]) {\n ++cnt;\n k = dfs(to, k, idx);\n low[idx] = min(low[idx], low[to]);\n is_articulation |= par >= 0 && low[to] >= ord[idx];\n if(ord[idx] < low[to]) bridge.emplace_back(to.idx);\n } else {\n low[idx] = min(low[idx], ord[to]);\n }\n }\n is_articulation |= par == -1 && cnt > 1;\n if(is_articulation) articulation.push_back(idx);\n return k;\n }\n};\n\ntemplate< typename T = int >\nstruct BiConnectedComponents : LowLink< T > {\npublic:\n using LowLink< T >::LowLink;\n using LowLink< T >::g;\n using LowLink< T >::edges;\n using LowLink< T >::ord;\n using LowLink< T >::low;\n\n vector< vector< int > > bc;\n\n void build() override {\n LowLink< T >::build();\n used.assign(g.size(), 0);\n for(int i = 0; i < used.size(); i++) {\n if(!used[i]) dfs(i, -1);\n }\n }\n\n explicit BiConnectedComponents(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > used, tmp;\n\n void dfs(int idx, int par) {\n used[idx] = true;\n bool beet = false;\n for(auto &to : g[idx]) {\n if(to == par && !exchange(beet, true)) continue;\n if(!used[to] || ord[to] < ord[idx]) {\n tmp.emplace_back(to.idx);\n }\n if(!used[to]) {\n dfs(to, idx);\n if(low[to] >= ord[idx]) {\n bc.emplace_back();\n for(;;) {\n auto e = tmp.back();\n bc.back().emplace_back(e);\n tmp.pop_back();\n if(e == to.idx) break;\n }\n }\n }\n }\n }\n};\n\ntemplate< typename T = int >\nstruct BlockCutTree : BiConnectedComponents< T > {\npublic:\n using BiConnectedComponents< T >::BiConnectedComponents;\n using BiConnectedComponents< T >::g;\n using BiConnectedComponents< T >::edges;\n using BiConnectedComponents< T >::articulation;\n using BiConnectedComponents< T >::bc;\n\n vector< int > rev;\n vector< vector< int > > group;\n Graph< T > tree;\n\n explicit BlockCutTree(const Graph< T > &g) : Graph< T >(g) {}\n\n int operator[](const int &k) const {\n return rev[k];\n }\n\n void build() override {\n BiConnectedComponents< T >::build();\n rev.assign(g.size(), -1);\n int ptr = (int) bc.size();\n for(auto &idx : articulation) {\n rev[idx] = ptr++;\n }\n vector< int > last(ptr, -1);\n tree = Graph< T >(ptr);\n for(int i = 0; i < (int) bc.size(); i++) {\n for(auto &id : bc[i]) {\n for(auto ver : {edges[id].from, edges[id].to}) {\n if(rev[ver] >= (int) bc.size()) {\n if(exchange(last[rev[ver]], i) != i) {\n tree.add_edge(rev[ver], i, edges[id].cost);\n }\n } else {\n rev[ver] = i;\n }\n }\n }\n }\n group.resize(ptr);\n for(int i = 0; i < (int) g.size(); i++) {\n group[rev[i]].emplace_back(i);\n }\n }\n};\n\nstruct UnionFind {\n vector< int > data;\n\n UnionFind(int sz) {\n data.assign(sz, -1);\n }\n\n bool unite(int x, int y) {\n x = find(x), y = find(y);\n if(x == y) return (false);\n if(data[x] > data[y]) swap(x, y);\n data[x] += data[y];\n data[y] = x;\n return (true);\n }\n\n int find(int k) {\n if(data[k] < 0) return (k);\n return (data[k] = find(data[k]));\n }\n\n int size(int k) {\n return (-data[find(k)]);\n }\n};\n\n\ntemplate< typename T >\nstruct DoublingLowestCommonAncestor : Graph< T > {\npublic:\n using F = function< T(T, T) >;\n using Graph< T >::edges;\n using Graph< T >::g;\n vector< int > dep;\n vector< T > sum;\n vector< vector< int > > table;\n const int LOG;\n const F f;\n\n explicit DoublingLowestCommonAncestor(int n, const F &f = plus< T >())\n : LOG(32 - __builtin_clz(g.size())), Graph< T >(n), f(f) {}\n\n explicit DoublingLowestCommonAncestor(const Graph< T > &g, const F &f = plus< T >())\n : LOG(32 - __builtin_clz(g.size())), Graph< T >(g), f(f) {}\n\n void build() {\n dep.assign(g.size(), 0);\n sum.assign(g.size(), 0);\n table.assign(LOG, vector< int >(g.size(), -1));\n dfs(0, -1, 0);\n for(int k = 0; k + 1 < LOG; k++) {\n for(int i = 0; i < table[k].size(); i++) {\n if(table[k][i] == -1) table[k + 1][i] = -1;\n else table[k + 1][i] = table[k][table[k][i]];\n }\n }\n }\n\n int lca(int u, int v) {\n if(dep[u] > dep[v]) swap(u, v);\n for(int i = LOG - 1; i >= 0; i--) {\n if(((dep[v] - dep[u]) >> i) & 1) v = table[i][v];\n }\n if(u == v) return u;\n for(int i = LOG - 1; i >= 0; i--) {\n if(table[i][u] != table[i][v]) {\n u = table[i][u];\n v = table[i][v];\n }\n }\n return table[0][u];\n }\n\nprivate:\n void dfs(int idx, int par, int d) {\n table[0][idx] = par;\n dep[idx] = d;\n for(auto &to : g[idx]) {\n if(to != par) {\n sum[to] = f(sum[idx], to.cost);\n dfs(to, idx, d + 1);\n }\n }\n }\n};\n\n\ntemplate< typename T >\nstruct CentroidDecomposition : Graph< T > {\npublic:\n using Graph< T >::Graph;\n using Graph< T >::edges;\n using Graph< T >::g;\n Graph< int > tree;\n\n int build(int t = 0) {\n sub.assign(g.size(), 0);\n v.assign(g.size(), 0);\n belong.assign(g.size(), vector< int >());\n tree = Graph< T >(g.size());\n return build_dfs(0);\n }\n\n explicit CentroidDecomposition(const Graph< T > &g) : Graph< T >(g) {}\n\nprivate:\n vector< int > sub;\n vector< vector< int > > belong;\n vector< int > v;\n\n inline int build_dfs(int idx, int par) {\n sub[idx] = 1;\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n sub[idx] += build_dfs(to, idx);\n }\n return sub[idx];\n }\n\n inline int search_centroid(int idx, int par, const int mid) {\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n if(sub[to] > mid) return search_centroid(to, idx, mid);\n }\n return idx;\n }\n\n inline void belong_dfs(int idx, int par, int centroid) {\n belong[idx].emplace_back(centroid);\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n belong_dfs(to, idx, centroid);\n }\n }\n\n inline int build_dfs(int idx) {\n int centroid = search_centroid(idx, -1, build_dfs(idx, -1) / 2);\n v[centroid] = true;\n belong_dfs(centroid, -1, centroid);\n for(auto &to : g[centroid]) {\n if(!v[to]) tree.add_directed_edge(centroid, build_dfs(to));\n }\n v[centroid] = false;\n return centroid;\n }\n};\n\n\nint main() {\n int N, M;\n cin >> N >> M;\n BlockCutTree< int > g(N);\n DoublingLowestCommonAncestor< int > h(N, [](int a, int b) { return a ^ b; });\n UnionFind uf(N);\n vector< int > A(M), B(M), C(M);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i] >> C[i];\n --A[i], --B[i];\n g.add_edge(A[i], B[i], C[i]);\n if(uf.unite(A[i], B[i])) h.add_edge(A[i], B[i], C[i]);\n }\n g.build();\n h.build();\n\n auto &t = g.tree;\n vector< int > weight(t.size());\n\n Graph< int > tree(t);\n CentroidDecomposition< int > cpd(tree);\n int root = cpd.build();\n auto &ushitapunichia = cpd.tree;\n\n\n {\n for(int i = 0; i < g.bc.size(); i++) {\n for(auto &id : g.bc[i]) weight[i] ^= g.edges[id].cost;\n }\n for(int i = 0; i < t.size(); i++) {\n if(i < g.bc.size() && g.bc[i].size() >= 2) continue;\n weight[i] = 0;\n }\n }\n\n using vi = vector< int >;\n\n auto f = [](vi &a, int b) {\n for(int y : a) chmin(b, b ^ y);\n if(b) a.emplace_back(b);\n };\n\n int Q;\n cin >> Q;\n vector< int > X(Q), Y(Q), K(Q), Z(Q);\n for(int i = 0; i < Q; i++) {\n cin >> X[i] >> Y[i] >> K[i];\n --X[i], --Y[i], --K[i];\n Z[i] = h.sum[X[i]] ^ h.sum[Y[i]];\n X[i] = g[X[i]];\n Y[i] = g[Y[i]];\n }\n\n vector< vector< int > > ev(t.size());\n for(int i = 0; i < Q; i++) {\n ev[X[i]].emplace_back(i);\n ev[Y[i]].emplace_back(i);\n }\n vector< int > used(t.size());\n vector< vector< int > > cash(t.size());\n vector< int > last(Q);\n int ptr = 1;\n vector< int > ans(Q);\n\n\n auto calc_ans = [&](const vector< int > &a, vector< int > b, int k, int base) {\n for(int x : a) {\n if(b.size() >= 30) break;\n for(int y : b) chmin(x, x ^ y);\n if(x) b.emplace_back(x);\n }\n auto &tap = b;\n if(1 << tap.size() <= k) {\n return -1;\n } else {\n sort(tap.begin(), tap.end());\n for(int j = (int) tap.size() - 1; j >= 0; j--) {\n if(k < (1 << j)) {\n chmin(base, base ^ tap[j]);\n } else {\n k -= 1 << j;\n chmax(base, base ^ tap[j]);\n }\n }\n return base;\n }\n };\n\n auto add_dfs = MFP([&](auto add_dfs, int idx, int par, vector< int > base, int Left, int id) -> void {\n if(weight[idx]) f(base, weight[idx]);\n cash[idx] = base;\n\n for(auto &q : ev[idx]) {\n if(Left <= last[q] && last[q] < id) ans[q] = calc_ans(cash[X[q]], cash[Y[q]], K[q], Z[q]);\n last[q] = id;\n }\n\n for(auto &to : t.g[idx]) {\n if(to == par) continue;\n if(used[to]) continue;\n add_dfs(to, idx, base, Left, id);\n }\n });\n\n\n MFP([&](auto dfs, int centroid) -> void {\n used[centroid] = true;\n\n vector< int > base;\n int Left = ptr;\n if(weight[centroid]) base.emplace_back(weight[centroid]);\n for(auto &q : ev[centroid]) {\n if(last[q] == ptr) ans[q] = calc_ans(base, base, K[q], Z[q]);\n last[q] = ptr;\n }\n cash[centroid] = base;\n ++ptr;\n\n for(auto &to : t.g[centroid]) {\n if(used[to]) continue;\n add_dfs(to, centroid, base, Left, ptr++);\n }\n\n for(auto &to : ushitapunichia.g[centroid]) {\n dfs(to);\n }\n used[centroid] = false;\n })(root);\n\n\n for(auto &p : ans) cout << p << \"\\n\";\n}", "accuracy": 1, "time_ms": 850, "memory_kb": 192052, "score_of_the_acc": -0.5124, "final_rank": 8 }, { "submission_id": "aoj_3139_4280612", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n// const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T >\nstruct edge {\n int src, to;\n T cost;\n\n edge(int to, T cost) : src(-1), to(to), cost(cost) {}\n\n edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}\n\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n\n operator int() const { return to; }\n};\n\ntemplate< typename T >\nusing Edges = vector< edge< T > >;\ntemplate< typename T >\nusing WeightedGraph = vector< Edges< T > >;\nusing UnWeightedGraph = vector< vector< int > >;\ntemplate< typename T >\nusing Matrix = vector< vector< T > >;\n\ntemplate< typename G >\nstruct LowLink {\n const G &g;\n vector< int > used, ord, low;\n vector< int > articulation;\n vector< pair< int, int > > bridge;\n\n LowLink(const G &g) : g(g) {}\n\n int dfs(int idx, int k, int par) {\n used[idx] = true;\n ord[idx] = k++;\n low[idx] = ord[idx];\n bool is_articulation = false;\n int cnt = 0;\n for(auto &to : g[idx]) {\n if(!used[to]) {\n ++cnt;\n k = dfs(to, k, idx);\n low[idx] = min(low[idx], low[to]);\n is_articulation |= ~par && low[to] >= ord[idx];\n if(ord[idx] < low[to]) bridge.emplace_back(minmax(idx, (int) to));\n } else if(to != par) {\n low[idx] = min(low[idx], ord[to]);\n }\n }\n is_articulation |= par == -1 && cnt > 1;\n if(is_articulation) articulation.push_back(idx);\n return k;\n }\n\n virtual void build() {\n used.assign(g.size(), 0);\n ord.assign(g.size(), 0);\n low.assign(g.size(), 0);\n int k = 0;\n for(int i = 0; i < g.size(); i++) {\n if(!used[i]) k = dfs(i, k, -1);\n }\n }\n};\n\ntemplate< typename G >\nstruct BiConnectedComponents : LowLink< G > {\n using LL = LowLink< G >;\n\n vector< int > used;\n vector< vector< pair< int, int > > > bc;\n vector< pair< int, int > > tmp;\n\n explicit BiConnectedComponents(const G &g) : LL(g) {}\n\n void dfs(int idx, int par) {\n used[idx] = true;\n for(auto &to : this->g[idx]) {\n if(to == par) {\n par = -1;\n continue;\n }\n if(!used[to] || this->ord[to] < this->ord[idx]) {\n tmp.emplace_back(minmax(idx, (int) to));\n }\n if(!used[to]) {\n dfs(to, idx);\n if(this->low[to] >= this->ord[idx]) {\n bc.emplace_back();\n for(;;) {\n auto e = tmp.back();\n bc.back().emplace_back(e);\n tmp.pop_back();\n if(e.first == min(idx, (int) to) && e.second == max(idx, (int) to)) {\n break;\n }\n }\n }\n }\n }\n }\n\n void build() override {\n LL::build();\n used.assign(this->g.size(), 0);\n for(int i = 0; i < used.size(); i++) {\n if(!used[i]) dfs(i, -1);\n }\n }\n};\n\ntemplate< typename G >\nstruct BlockCutTree : BiConnectedComponents< G > {\n\n using BC = BiConnectedComponents< G >;\n using BC::BiConnectedComponents;\n\n pair< UnWeightedGraph, vector< int > > bctree() {\n BC::build();\n const int N = (int) BC::g.size();\n auto &bcs = BC::bc;\n vector< int > is_articulation(N, -1), uku(N, -1);\n int ptr = bcs.size();\n for(auto &art : BC::articulation) {\n is_articulation[art] = ptr++;\n }\n vector< int > last(ptr, -1);\n UnWeightedGraph t(ptr);\n for(int k = 0; k < bcs.size(); k++) {\n auto &bc = bcs[k];\n for(auto &e : bc) {\n if(~is_articulation[e.first]) {\n int to = is_articulation[e.first];\n if(last[to] != k) {\n last[to] = k;\n t[to].emplace_back(k);\n t[k].emplace_back(to);\n }\n } else {\n uku[e.first] = k;\n }\n if(~is_articulation[e.second]) {\n int to = is_articulation[e.second];\n if(last[to] != k) {\n last[to] = k;\n t[to].emplace_back(k);\n t[k].emplace_back(to);\n }\n } else {\n uku[e.second] = k;\n }\n }\n }\n for(int i = 0; i < N; i++) uku[i] = max(uku[i], is_articulation[i]);\n return {t, uku};\n }\n};\n\nstruct UnionFind {\n vector< int > data;\n\n UnionFind(int sz) {\n data.assign(sz, -1);\n }\n\n bool unite(int x, int y) {\n x = find(x), y = find(y);\n if(x == y) return (false);\n if(data[x] > data[y]) swap(x, y);\n data[x] += data[y];\n data[y] = x;\n return (true);\n }\n\n int find(int k) {\n if(data[k] < 0) return (k);\n return (data[k] = find(data[k]));\n }\n\n int size(int k) {\n return (-data[find(k)]);\n }\n};\n\ntemplate< typename G >\nstruct DoublingLowestCommonAncestor {\n const int LOG;\n vector< int > dep;\n vector< int > sum;\n const G &g;\n vector< vector< int > > table;\n\n DoublingLowestCommonAncestor(const G &g) : g(g), dep(g.size()), LOG(32 - __builtin_clz(g.size())), sum(g.size()) {\n table.assign(LOG, vector< int >(g.size(), -1));\n }\n\n void dfs(int idx, int par, int d) {\n table[0][idx] = par;\n dep[idx] = d;\n for(auto &to : g[idx]) {\n if(to != par) {\n sum[to] = sum[idx] ^ to.cost;\n dfs(to, idx, d + 1);\n }\n }\n }\n\n void build() {\n dfs(0, -1, 0);\n for(int k = 0; k + 1 < LOG; k++) {\n for(int i = 0; i < table[k].size(); i++) {\n if(table[k][i] == -1) table[k + 1][i] = -1;\n else table[k + 1][i] = table[k][table[k][i]];\n }\n }\n }\n\n int query(int u, int v) {\n if(dep[u] > dep[v]) swap(u, v);\n for(int i = LOG - 1; i >= 0; i--) {\n if(((dep[v] - dep[u]) >> i) & 1) v = table[i][v];\n }\n if(u == v) return u;\n for(int i = LOG - 1; i >= 0; i--) {\n if(table[i][u] != table[i][v]) {\n u = table[i][u];\n v = table[i][v];\n }\n }\n return table[0][u];\n }\n\n int dist(int a, int b) {\n return sum[a] ^ sum[b];\n }\n};\n\n\ntemplate< typename G >\nstruct CentroidDecomposition {\n const G &g;\n vector< int > sub;\n vector< vector< int > > belong;\n vector< bool > v;\n\n CentroidDecomposition(const G &g) : g(g), sub(g.size()), v(g.size()), belong(g.size()) {}\n\n inline int build_dfs(int idx, int par) {\n sub[idx] = 1;\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n sub[idx] += build_dfs(to, idx);\n }\n return sub[idx];\n }\n\n inline int search_centroid(int idx, int par, const int mid) {\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n if(sub[to] > mid) return search_centroid(to, idx, mid);\n }\n return idx;\n }\n\n inline void belong_dfs(int idx, int par, int centroid) {\n belong[idx].emplace_back(centroid);\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n belong_dfs(to, idx, centroid);\n }\n }\n\n inline int build(UnWeightedGraph &t, int idx) {\n int centroid = search_centroid(idx, -1, build_dfs(idx, -1) / 2);\n v[centroid] = true;\n belong_dfs(centroid, -1, centroid);\n for(auto &to : g[centroid]) {\n if(!v[to]) t[centroid].emplace_back(build(t, to));\n }\n v[centroid] = false;\n return centroid;\n }\n\n inline int build(UnWeightedGraph &t) {\n t.resize(g.size());\n return build(t, 0);\n }\n};\n\n\nint main() {\n int N, M;\n cin >> N >> M;\n UnWeightedGraph g(N);\n WeightedGraph< int > h(N);\n UnionFind uf(N);\n vector< int > A(M), B(M), C(M);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i] >> C[i];\n --A[i], --B[i];\n g[A[i]].emplace_back(B[i]);\n g[B[i]].emplace_back(A[i]);\n if(uf.unite(A[i], B[i])) {\n h[A[i]].emplace_back(B[i], C[i]);\n h[B[i]].emplace_back(A[i], C[i]);\n }\n }\n DoublingLowestCommonAncestor< WeightedGraph< int > > beet(h);\n beet.build();\n BlockCutTree< UnWeightedGraph > bct(g);\n UnWeightedGraph t;\n vector< int > rev;\n tie(t, rev) = bct.bctree();\n vector< int > weight(t.size());\n\n CentroidDecomposition< UnWeightedGraph > cpd(t);\n UnWeightedGraph ushitapunichia;\n int root = cpd.build(ushitapunichia);\n\n\n {\n map< pair< int, int >, int > conv;\n for(int i = 0; i < bct.bc.size(); i++) {\n for(auto &p : bct.bc[i]) conv[p] = i;\n }\n for(int i = 0; i < M; i++) {\n weight[conv[minmax(A[i], B[i])]] ^= C[i];\n }\n for(int i = 0; i < t.size(); i++) {\n if(i < bct.bc.size() && bct.bc[i].size() >= 2) continue;\n weight[i] = 0;\n }\n }\n\n using vi = vector< int >;\n\n auto f = [](vi &a, int b) {\n for(int y : a) chmin(b, b ^ y);\n if(b) a.emplace_back(b);\n };\n\n int Q;\n cin >> Q;\n vector< int > X(Q), Y(Q), K(Q), Z(Q);\n for(int i = 0; i < Q; i++) {\n cin >> X[i] >> Y[i] >> K[i];\n --X[i], --Y[i], --K[i];\n Z[i] = beet.dist(X[i], Y[i]);\n X[i] = rev[X[i]];\n Y[i] = rev[Y[i]];\n }\n\n vector< vector< int > > ev(t.size());\n for(int i = 0; i < Q; i++) {\n ev[X[i]].emplace_back(i);\n ev[Y[i]].emplace_back(i);\n }\n vector< int > used(t.size());\n vector< vector< int > > cash(t.size());\n vector< int > last(Q);\n int ptr = 1;\n vector< int > ans(Q);\n\n\n auto calc_ans = [&](const vector< int > &a, vector< int > b, int k, int base) {\n for(int x : a) {\n if(b.size() >= 30) break;\n for(int y : b) chmin(x, x ^ y);\n if(x) b.emplace_back(x);\n }\n auto &tap = b;\n if(1 << tap.size() <= k) {\n return -1;\n } else {\n sort(tap.begin(), tap.end());\n for(int j = (int) tap.size() - 1; j >= 0; j--) {\n if(k < (1 << j)) {\n chmin(base, base ^ tap[j]);\n } else {\n k -= 1 << j;\n chmax(base, base ^ tap[j]);\n }\n }\n return base;\n }\n };\n\n auto add_dfs = MFP([&](auto add_dfs, int idx, int par, vector< int > base, int Left, int id) -> void {\n if(weight[idx]) f(base, weight[idx]);\n cash[idx] = base;\n\n for(auto &q : ev[idx]) {\n if(Left <= last[q] && last[q] < id) ans[q] = calc_ans(cash[X[q]], cash[Y[q]], K[q], Z[q]);\n last[q] = id;\n }\n\n for(auto &to : t[idx]) {\n if(to == par) continue;\n if(used[to]) continue;\n add_dfs(to, idx, base, Left, id);\n }\n });\n\n\n MFP([&](auto dfs, int centroid) -> void {\n used[centroid] = true;\n\n vector< int > base;\n int Left = ptr;\n if(weight[centroid]) base.emplace_back(weight[centroid]);\n for(auto &q : ev[centroid]) {\n if(last[q] == ptr) ans[q] = calc_ans(base, base, K[q], Z[q]);\n last[q] = ptr;\n }\n cash[centroid] = base;\n ++ptr;\n\n for(auto &to : t[centroid]) {\n if(used[to]) continue;\n add_dfs(to, centroid, vector< int >(), Left, ptr++);\n }\n\n for(auto &to : ushitapunichia[centroid]) dfs(to);\n used[centroid] = false;\n })(root);\n\n\n for(auto &p : ans) cout << p << \"\\n\";\n}", "accuracy": 0.09523809523809523, "time_ms": 680, "memory_kb": 134584, "score_of_the_acc": -0.303, "final_rank": 20 }, { "submission_id": "aoj_3139_4280599", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n// const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T >\nstruct edge {\n int src, to;\n T cost;\n\n edge(int to, T cost) : src(-1), to(to), cost(cost) {}\n\n edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}\n\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n\n operator int() const { return to; }\n};\n\ntemplate< typename T >\nusing Edges = vector< edge< T > >;\ntemplate< typename T >\nusing WeightedGraph = vector< Edges< T > >;\nusing UnWeightedGraph = vector< vector< int > >;\ntemplate< typename T >\nusing Matrix = vector< vector< T > >;\n\ntemplate< typename G >\nstruct LowLink {\n const G &g;\n vector< int > used, ord, low;\n vector< int > articulation;\n vector< pair< int, int > > bridge;\n\n LowLink(const G &g) : g(g) {}\n\n int dfs(int idx, int k, int par) {\n used[idx] = true;\n ord[idx] = k++;\n low[idx] = ord[idx];\n bool is_articulation = false;\n int cnt = 0;\n for(auto &to : g[idx]) {\n if(!used[to]) {\n ++cnt;\n k = dfs(to, k, idx);\n low[idx] = min(low[idx], low[to]);\n is_articulation |= ~par && low[to] >= ord[idx];\n if(ord[idx] < low[to]) bridge.emplace_back(minmax(idx, (int) to));\n } else if(to != par) {\n low[idx] = min(low[idx], ord[to]);\n }\n }\n is_articulation |= par == -1 && cnt > 1;\n if(is_articulation) articulation.push_back(idx);\n return k;\n }\n\n virtual void build() {\n used.assign(g.size(), 0);\n ord.assign(g.size(), 0);\n low.assign(g.size(), 0);\n int k = 0;\n for(int i = 0; i < g.size(); i++) {\n if(!used[i]) k = dfs(i, k, -1);\n }\n }\n};\n\ntemplate< typename G >\nstruct BiConnectedComponents : LowLink< G > {\n using LL = LowLink< G >;\n\n vector< int > used;\n vector< vector< pair< int, int > > > bc;\n vector< pair< int, int > > tmp;\n\n explicit BiConnectedComponents(const G &g) : LL(g) {}\n\n void dfs(int idx, int par) {\n used[idx] = true;\n for(auto &to : this->g[idx]) {\n if(to == par) {\n par = -1;\n continue;\n }\n if(!used[to] || this->ord[to] < this->ord[idx]) {\n tmp.emplace_back(minmax(idx, (int) to));\n }\n if(!used[to]) {\n dfs(to, idx);\n if(this->low[to] >= this->ord[idx]) {\n bc.emplace_back();\n for(;;) {\n auto e = tmp.back();\n bc.back().emplace_back(e);\n tmp.pop_back();\n if(e.first == min(idx, (int) to) && e.second == max(idx, (int) to)) {\n break;\n }\n }\n }\n }\n }\n }\n\n void build() override {\n LL::build();\n used.assign(this->g.size(), 0);\n for(int i = 0; i < used.size(); i++) {\n if(!used[i]) dfs(i, -1);\n }\n }\n};\n\ntemplate< typename G >\nstruct BlockCutTree : BiConnectedComponents< G > {\n\n using BC = BiConnectedComponents< G >;\n using BC::BiConnectedComponents;\n\n pair< UnWeightedGraph, vector< int > > bctree() {\n BC::build();\n const int N = (int) BC::g.size();\n auto &bcs = BC::bc;\n vector< int > is_articulation(N, -1), uku(N, -1);\n int ptr = bcs.size();\n for(auto &art : BC::articulation) {\n is_articulation[art] = ptr++;\n }\n vector< int > last(ptr, -1);\n UnWeightedGraph t(ptr);\n for(int k = 0; k < bcs.size(); k++) {\n auto &bc = bcs[k];\n for(auto &e : bc) {\n if(~is_articulation[e.first]) {\n int to = is_articulation[e.first];\n if(last[to] != k) {\n last[to] = k;\n t[to].emplace_back(k);\n t[k].emplace_back(to);\n }\n } else {\n uku[e.first] = k;\n }\n if(~is_articulation[e.second]) {\n int to = is_articulation[e.second];\n if(last[to] != k) {\n last[to] = k;\n t[to].emplace_back(k);\n t[k].emplace_back(to);\n }\n } else {\n uku[e.second] = k;\n }\n }\n }\n for(int i = 0; i < N; i++) uku[i] = max(uku[i], is_articulation[i]);\n return {t, uku};\n }\n};\n\nstruct UnionFind {\n vector< int > data;\n\n UnionFind(int sz) {\n data.assign(sz, -1);\n }\n\n bool unite(int x, int y) {\n x = find(x), y = find(y);\n if(x == y) return (false);\n if(data[x] > data[y]) swap(x, y);\n data[x] += data[y];\n data[y] = x;\n return (true);\n }\n\n int find(int k) {\n if(data[k] < 0) return (k);\n return (data[k] = find(data[k]));\n }\n\n int size(int k) {\n return (-data[find(k)]);\n }\n};\n\ntemplate< typename G >\nstruct DoublingLowestCommonAncestor {\n const int LOG;\n vector< int > dep;\n vector< int > sum;\n const G &g;\n vector< vector< int > > table;\n\n DoublingLowestCommonAncestor(const G &g) : g(g), dep(g.size()), LOG(32 - __builtin_clz(g.size())), sum(g.size()) {\n table.assign(LOG, vector< int >(g.size(), -1));\n }\n\n void dfs(int idx, int par, int d) {\n table[0][idx] = par;\n dep[idx] = d;\n for(auto &to : g[idx]) {\n if(to != par) {\n sum[to] = sum[idx] ^ to.cost;\n dfs(to, idx, d + 1);\n }\n }\n }\n\n void build() {\n dfs(0, -1, 0);\n for(int k = 0; k + 1 < LOG; k++) {\n for(int i = 0; i < table[k].size(); i++) {\n if(table[k][i] == -1) table[k + 1][i] = -1;\n else table[k + 1][i] = table[k][table[k][i]];\n }\n }\n }\n\n int query(int u, int v) {\n if(dep[u] > dep[v]) swap(u, v);\n for(int i = LOG - 1; i >= 0; i--) {\n if(((dep[v] - dep[u]) >> i) & 1) v = table[i][v];\n }\n if(u == v) return u;\n for(int i = LOG - 1; i >= 0; i--) {\n if(table[i][u] != table[i][v]) {\n u = table[i][u];\n v = table[i][v];\n }\n }\n return table[0][u];\n }\n\n int dist(int a, int b) {\n return sum[a] ^ sum[b];\n }\n};\n\n\ntemplate< typename G >\nstruct CentroidDecomposition {\n const G &g;\n vector< int > sub;\n vector< vector< int > > belong;\n vector< bool > v;\n\n CentroidDecomposition(const G &g) : g(g), sub(g.size()), v(g.size()), belong(g.size()) {}\n\n inline int build_dfs(int idx, int par) {\n sub[idx] = 1;\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n sub[idx] += build_dfs(to, idx);\n }\n return sub[idx];\n }\n\n inline int search_centroid(int idx, int par, const int mid) {\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n if(sub[to] > mid) return search_centroid(to, idx, mid);\n }\n return idx;\n }\n\n inline void belong_dfs(int idx, int par, int centroid) {\n belong[idx].emplace_back(centroid);\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n belong_dfs(to, idx, centroid);\n }\n }\n\n inline int build(UnWeightedGraph &t, int idx) {\n int centroid = search_centroid(idx, -1, build_dfs(idx, -1) / 2);\n v[centroid] = true;\n belong_dfs(centroid, -1, centroid);\n for(auto &to : g[centroid]) {\n if(!v[to]) t[centroid].emplace_back(build(t, to));\n }\n v[centroid] = false;\n return centroid;\n }\n\n inline int build(UnWeightedGraph &t) {\n t.resize(g.size());\n return build(t, 0);\n }\n};\n\n\nint main() {\n int N, M;\n cin >> N >> M;\n UnWeightedGraph g(N);\n WeightedGraph< int > h(N);\n UnionFind uf(N);\n vector< int > A(M), B(M), C(M);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i] >> C[i];\n --A[i], --B[i];\n g[A[i]].emplace_back(B[i]);\n g[B[i]].emplace_back(A[i]);\n if(uf.unite(A[i], B[i])) {\n h[A[i]].emplace_back(B[i], C[i]);\n h[B[i]].emplace_back(A[i], C[i]);\n }\n }\n DoublingLowestCommonAncestor< WeightedGraph< int > > beet(h);\n beet.build();\n BlockCutTree< UnWeightedGraph > bct(g);\n UnWeightedGraph t;\n vector< int > rev;\n tie(t, rev) = bct.bctree();\n vector< int > weight(t.size());\n\n CentroidDecomposition< UnWeightedGraph > cpd(t);\n UnWeightedGraph ushitapunichia;\n int root = cpd.build(ushitapunichia);\n\n\n {\n map< pair< int, int >, int > conv;\n for(int i = 0; i < bct.bc.size(); i++) {\n for(auto &p : bct.bc[i]) conv[p] = i;\n }\n for(int i = 0; i < M; i++) {\n weight[conv[minmax(A[i], B[i])]] ^= C[i];\n }\n for(int i = 0; i < t.size(); i++) {\n if(i < bct.bc.size() && bct.bc[i].size() >= 2) continue;\n weight[i] = 0;\n }\n }\n\n using vi = vector< int >;\n\n auto f = [](vi &a, int b) {\n for(int y : a) chmin(b, b ^ y);\n if(b) a.emplace_back(b);\n };\n\n int Q;\n cin >> Q;\n vector< int > X(Q), Y(Q), K(Q), Z(Q);\n for(int i = 0; i < Q; i++) {\n cin >> X[i] >> Y[i] >> K[i];\n --X[i], --Y[i], --K[i];\n Z[i] = beet.dist(X[i], Y[i]);\n X[i] = rev[X[i]];\n Y[i] = rev[Y[i]];\n }\n\n vector< vector< int > > ev(t.size());\n for(int i = 0; i < Q; i++) {\n ev[X[i]].emplace_back(i);\n ev[Y[i]].emplace_back(i);\n }\n vector< int > used(t.size());\n vector< vector< int > > cash(t.size());\n vector< int > last(Q);\n int ptr = 1;\n vector< int > ans(Q);\n\n\n auto calc_ans = [&](const vector< int > &a, vector< int > b, int k, int base) {\n for(int x : a) {\n if(b.size() >= 30) break;\n for(int y : b) chmin(x, x ^ y);\n if(x) b.emplace_back(x);\n }\n auto &tap = b;\n if(1 << tap.size() <= k) {\n return -1;\n } else {\n sort(tap.begin(), tap.end());\n for(int j = (int) tap.size() - 1; j >= 0; j--) {\n if(k < (1 << j)) {\n chmin(base, base ^ tap[j]);\n } else {\n k -= 1 << j;\n chmax(base, base ^ tap[j]);\n }\n }\n return base;\n }\n };\n\n auto add_dfs = MFP([&](auto add_dfs, int idx, int par, vector< int > base, int Left, int id) -> void {\n if(weight[idx]) f(base, weight[idx]);\n cash[idx] = base;\n\n for(auto &q : ev[idx]) {\n if(Left <= last[q] && last[q] < id) ans[q] = calc_ans(cash[X[q]], cash[Y[q]], K[q], Z[q]);\n last[q] = id;\n }\n\n for(auto &to : t[idx]) {\n if(to == par) continue;\n if(used[to]) continue;\n add_dfs(to, idx, base, Left, id);\n }\n });\n\n\n MFP([&](auto dfs, int centroid) -> void {\n used[centroid] = true;\n\n vector< int > base;\n int Left = ptr;\n if(weight[centroid]) base.emplace_back(weight[centroid]);\n for(auto &q : ev[centroid]) {\n if(last[q] == ptr) ans[q] = calc_ans(base, base, K[q], Z[q]);\n last[q] = ptr;\n }\n cash[centroid] = base;\n ++ptr;\n\n for(auto &to : t[centroid]) {\n if(used[to]) continue;\n add_dfs(to, centroid, base, Left, ptr++);\n }\n\n for(auto &to : ushitapunichia[centroid]) dfs(to);\n used[centroid] = false;\n })(root);\n\n\n for(auto &p : ans) cout << p << \"\\n\";\n}", "accuracy": 1, "time_ms": 900, "memory_kb": 133168, "score_of_the_acc": -0.3401, "final_rank": 4 }, { "submission_id": "aoj_3139_4280581", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n// const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T >\nstruct edge {\n int src, to;\n T cost;\n\n edge(int to, T cost) : src(-1), to(to), cost(cost) {}\n\n edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}\n\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n\n operator int() const { return to; }\n};\n\ntemplate< typename T >\nusing Edges = vector< edge< T > >;\ntemplate< typename T >\nusing WeightedGraph = vector< Edges< T > >;\nusing UnWeightedGraph = vector< vector< int > >;\ntemplate< typename T >\nusing Matrix = vector< vector< T > >;\n\ntemplate< typename G >\nstruct LowLink {\n const G &g;\n vector< int > used, ord, low;\n vector< int > articulation;\n vector< pair< int, int > > bridge;\n\n LowLink(const G &g) : g(g) {}\n\n int dfs(int idx, int k, int par) {\n used[idx] = true;\n ord[idx] = k++;\n low[idx] = ord[idx];\n bool is_articulation = false;\n int cnt = 0;\n for(auto &to : g[idx]) {\n if(!used[to]) {\n ++cnt;\n k = dfs(to, k, idx);\n low[idx] = min(low[idx], low[to]);\n is_articulation |= ~par && low[to] >= ord[idx];\n if(ord[idx] < low[to]) bridge.emplace_back(minmax(idx, (int) to));\n } else if(to != par) {\n low[idx] = min(low[idx], ord[to]);\n }\n }\n is_articulation |= par == -1 && cnt > 1;\n if(is_articulation) articulation.push_back(idx);\n return k;\n }\n\n virtual void build() {\n used.assign(g.size(), 0);\n ord.assign(g.size(), 0);\n low.assign(g.size(), 0);\n int k = 0;\n for(int i = 0; i < g.size(); i++) {\n if(!used[i]) k = dfs(i, k, -1);\n }\n }\n};\n\ntemplate< typename G >\nstruct BiConnectedComponents : LowLink< G > {\n using LL = LowLink< G >;\n\n vector< int > used;\n vector< vector< pair< int, int > > > bc;\n vector< pair< int, int > > tmp;\n\n explicit BiConnectedComponents(const G &g) : LL(g) {}\n\n void dfs(int idx, int par) {\n used[idx] = true;\n for(auto &to : this->g[idx]) {\n if(to == par) {\n par = -1;\n continue;\n }\n if(!used[to] || this->ord[to] < this->ord[idx]) {\n tmp.emplace_back(minmax(idx, (int) to));\n }\n if(!used[to]) {\n dfs(to, idx);\n if(this->low[to] >= this->ord[idx]) {\n bc.emplace_back();\n for(;;) {\n auto e = tmp.back();\n bc.back().emplace_back(e);\n tmp.pop_back();\n if(e.first == min(idx, (int) to) && e.second == max(idx, (int) to)) {\n break;\n }\n }\n }\n }\n }\n }\n\n void build() override {\n LL::build();\n used.assign(this->g.size(), 0);\n for(int i = 0; i < used.size(); i++) {\n if(!used[i]) dfs(i, -1);\n }\n }\n};\n\ntemplate< typename G >\nstruct BlockCutTree : BiConnectedComponents< G > {\n\n using BC = BiConnectedComponents< G >;\n using BC::BiConnectedComponents;\n\n pair< UnWeightedGraph, vector< int > > bctree() {\n BC::build();\n const int N = (int) BC::g.size();\n auto &bcs = BC::bc;\n vector< int > is_articulation(N, -1), uku(N, -1);\n int ptr = bcs.size();\n for(auto &art : BC::articulation) {\n is_articulation[art] = ptr++;\n }\n vector< int > last(ptr, -1);\n UnWeightedGraph t(ptr);\n for(int k = 0; k < bcs.size(); k++) {\n auto &bc = bcs[k];\n for(auto &e : bc) {\n if(~is_articulation[e.first]) {\n int to = is_articulation[e.first];\n if(last[to] != k) {\n last[to] = k;\n t[to].emplace_back(k);\n t[k].emplace_back(to);\n }\n } else {\n uku[e.first] = k;\n }\n if(~is_articulation[e.second]) {\n int to = is_articulation[e.second];\n if(last[to] != k) {\n last[to] = k;\n t[to].emplace_back(k);\n t[k].emplace_back(to);\n }\n } else {\n uku[e.second] = k;\n }\n }\n }\n for(int i = 0; i < N; i++) uku[i] = max(uku[i], is_articulation[i]);\n return {t, uku};\n }\n};\n\nstruct UnionFind {\n vector< int > data;\n\n UnionFind(int sz) {\n data.assign(sz, -1);\n }\n\n bool unite(int x, int y) {\n x = find(x), y = find(y);\n if(x == y) return (false);\n if(data[x] > data[y]) swap(x, y);\n data[x] += data[y];\n data[y] = x;\n return (true);\n }\n\n int find(int k) {\n if(data[k] < 0) return (k);\n return (data[k] = find(data[k]));\n }\n\n int size(int k) {\n return (-data[find(k)]);\n }\n};\n\ntemplate< typename G >\nstruct DoublingLowestCommonAncestor {\n const int LOG;\n vector< int > dep;\n vector< int > sum;\n const G &g;\n vector< vector< int > > table;\n\n DoublingLowestCommonAncestor(const G &g) : g(g), dep(g.size()), LOG(32 - __builtin_clz(g.size())), sum(g.size()) {\n table.assign(LOG, vector< int >(g.size(), -1));\n }\n\n void dfs(int idx, int par, int d) {\n table[0][idx] = par;\n dep[idx] = d;\n for(auto &to : g[idx]) {\n if(to != par) {\n sum[to] = sum[idx] ^ to.cost;\n dfs(to, idx, d + 1);\n }\n }\n }\n\n void build() {\n dfs(0, -1, 0);\n for(int k = 0; k + 1 < LOG; k++) {\n for(int i = 0; i < table[k].size(); i++) {\n if(table[k][i] == -1) table[k + 1][i] = -1;\n else table[k + 1][i] = table[k][table[k][i]];\n }\n }\n }\n\n int query(int u, int v) {\n if(dep[u] > dep[v]) swap(u, v);\n for(int i = LOG - 1; i >= 0; i--) {\n if(((dep[v] - dep[u]) >> i) & 1) v = table[i][v];\n }\n if(u == v) return u;\n for(int i = LOG - 1; i >= 0; i--) {\n if(table[i][u] != table[i][v]) {\n u = table[i][u];\n v = table[i][v];\n }\n }\n return table[0][u];\n }\n\n int dist(int a, int b) {\n return sum[a] ^ sum[b];\n }\n};\n\n\ntemplate< typename G >\nstruct CentroidDecomposition {\n const G &g;\n vector< int > sub;\n vector< vector< int > > belong;\n vector< bool > v;\n\n CentroidDecomposition(const G &g) : g(g), sub(g.size()), v(g.size()), belong(g.size()) {}\n\n inline int build_dfs(int idx, int par) {\n sub[idx] = 1;\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n sub[idx] += build_dfs(to, idx);\n }\n return sub[idx];\n }\n\n inline int search_centroid(int idx, int par, const int mid) {\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n if(sub[to] > mid) return search_centroid(to, idx, mid);\n }\n return idx;\n }\n\n inline void belong_dfs(int idx, int par, int centroid) {\n belong[idx].emplace_back(centroid);\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n belong_dfs(to, idx, centroid);\n }\n }\n\n inline int build(UnWeightedGraph &t, int idx) {\n int centroid = search_centroid(idx, -1, build_dfs(idx, -1) / 2);\n v[centroid] = true;\n belong_dfs(centroid, -1, centroid);\n for(auto &to : g[centroid]) {\n if(!v[to]) t[centroid].emplace_back(build(t, to));\n }\n v[centroid] = false;\n return centroid;\n }\n\n inline int build(UnWeightedGraph &t) {\n t.resize(g.size());\n return build(t, 0);\n }\n};\n\n\nint main() {\n int N, M;\n cin >> N >> M;\n UnWeightedGraph g(N);\n WeightedGraph< int > h(N);\n UnionFind uf(N);\n vector< int > A(M), B(M), C(M);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i] >> C[i];\n --A[i], --B[i];\n g[A[i]].emplace_back(B[i]);\n g[B[i]].emplace_back(A[i]);\n if(uf.unite(A[i], B[i])) {\n h[A[i]].emplace_back(B[i], C[i]);\n h[B[i]].emplace_back(A[i], C[i]);\n }\n }\n DoublingLowestCommonAncestor< WeightedGraph< int > > beet(h);\n beet.build();\n BlockCutTree< UnWeightedGraph > bct(g);\n UnWeightedGraph t;\n vector< int > rev;\n tie(t, rev) = bct.bctree();\n vector< int > weight(t.size());\n\n CentroidDecomposition< UnWeightedGraph > cpd(t);\n UnWeightedGraph ushitapunichia;\n int root = cpd.build(ushitapunichia);\n\n\n {\n map< pair< int, int >, int > conv;\n for(int i = 0; i < bct.bc.size(); i++) {\n for(auto &p : bct.bc[i]) conv[p] = i;\n }\n for(int i = 0; i < M; i++) {\n weight[conv[minmax(A[i], B[i])]] ^= C[i];\n }\n for(int i = 0; i < t.size(); i++) {\n if(i < bct.bc.size() && bct.bc[i].size() >= 2) continue;\n weight[i] = 0;\n }\n }\n\n using vi = vector< int >;\n\n auto f = [](vi &a, int b) {\n for(int y : a) chmin(b, b ^ y);\n if(b) a.emplace_back(b);\n };\n\n int Q;\n cin >> Q;\n vector< int > X(Q), Y(Q), K(Q), Z(Q);\n for(int i = 0; i < Q; i++) {\n cin >> X[i] >> Y[i] >> K[i];\n --X[i], --Y[i], --K[i];\n Z[i] = beet.dist(X[i], Y[i]);\n X[i] = rev[X[i]];\n Y[i] = rev[Y[i]];\n }\n\n vector< vector< int > > ev(t.size());\n for(int i = 0; i < Q; i++) {\n ev[X[i]].emplace_back(i);\n ev[Y[i]].emplace_back(i);\n }\n vector< int > used(t.size());\n vector< vector< int > > cash(t.size());\n vector< int > last(Q);\n int ptr = 1;\n vector< int > ans(Q);\n\n\n auto calc_ans = [&](const vector< int > &a, vector< int > b, int k, int base) {\n for(int x : a) {\n for(int y : b) chmin(x, x ^ y);\n if(x) b.emplace_back(x);\n }\n auto &tap = b;\n if(1 << tap.size() <= k) {\n return -1;\n } else {\n sort(tap.begin(), tap.end());\n for(int j = (int) tap.size() - 1; j >= 0; j--) {\n if(k < (1 << j)) {\n chmin(base, base ^ tap[j]);\n } else {\n k -= 1 << j;\n chmax(base, base ^ tap[j]);\n }\n }\n return base;\n }\n };\n\n auto add_dfs = MFP([&](auto add_dfs, int idx, int par, vector< int > base, int Left, int id) -> void {\n if(weight[idx]) f(base, weight[idx]);\n cash[idx] = base;\n\n for(auto &q : ev[idx]) {\n if(Left <= last[q] && last[q] < id) ans[q] = calc_ans(cash[X[q]], cash[Y[q]], K[q], Z[q]);\n last[q] = id;\n }\n\n for(auto &to : t[idx]) {\n if(to == par) continue;\n if(used[to]) continue;\n add_dfs(to, idx, base, Left, id);\n }\n });\n\n\n MFP([&](auto dfs, int centroid) -> void {\n used[centroid] = true;\n\n vector< int > base;\n int Left = ptr;\n if(weight[centroid]) base.emplace_back(weight[centroid]);\n for(auto &q : ev[centroid]) {\n if(last[q] == ptr) ans[q] = calc_ans(base, base, K[q], Z[q]);\n last[q] = ptr;\n }\n cash[centroid] = base;\n ++ptr;\n\n for(auto &to : t[centroid]) {\n if(used[to]) continue;\n add_dfs(to, centroid, base, Left, ptr++);\n }\n\n for(auto &to : ushitapunichia[centroid]) dfs(to);\n used[centroid] = false;\n })(root);\n\n\n for(auto &p : ans) cout << p << \"\\n\";\n}", "accuracy": 1, "time_ms": 950, "memory_kb": 132904, "score_of_the_acc": -0.3487, "final_rank": 6 }, { "submission_id": "aoj_3139_4280557", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n// const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T >\nstruct edge {\n int src, to;\n T cost;\n\n edge(int to, T cost) : src(-1), to(to), cost(cost) {}\n\n edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}\n\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n\n operator int() const { return to; }\n};\n\ntemplate< typename T >\nusing Edges = vector< edge< T > >;\ntemplate< typename T >\nusing WeightedGraph = vector< Edges< T > >;\nusing UnWeightedGraph = vector< vector< int > >;\ntemplate< typename T >\nusing Matrix = vector< vector< T > >;\n\ntemplate< typename G >\nstruct LowLink {\n const G &g;\n vector< int > used, ord, low;\n vector< int > articulation;\n vector< pair< int, int > > bridge;\n\n LowLink(const G &g) : g(g) {}\n\n int dfs(int idx, int k, int par) {\n used[idx] = true;\n ord[idx] = k++;\n low[idx] = ord[idx];\n bool is_articulation = false;\n int cnt = 0;\n for(auto &to : g[idx]) {\n if(!used[to]) {\n ++cnt;\n k = dfs(to, k, idx);\n low[idx] = min(low[idx], low[to]);\n is_articulation |= ~par && low[to] >= ord[idx];\n if(ord[idx] < low[to]) bridge.emplace_back(minmax(idx, (int) to));\n } else if(to != par) {\n low[idx] = min(low[idx], ord[to]);\n }\n }\n is_articulation |= par == -1 && cnt > 1;\n if(is_articulation) articulation.push_back(idx);\n return k;\n }\n\n virtual void build() {\n used.assign(g.size(), 0);\n ord.assign(g.size(), 0);\n low.assign(g.size(), 0);\n int k = 0;\n for(int i = 0; i < g.size(); i++) {\n if(!used[i]) k = dfs(i, k, -1);\n }\n }\n};\n\ntemplate< typename G >\nstruct BiConnectedComponents : LowLink< G > {\n using LL = LowLink< G >;\n\n vector< int > used;\n vector< vector< pair< int, int > > > bc;\n vector< pair< int, int > > tmp;\n\n explicit BiConnectedComponents(const G &g) : LL(g) {}\n\n void dfs(int idx, int par) {\n used[idx] = true;\n for(auto &to : this->g[idx]) {\n if(to == par) {\n par = -1;\n continue;\n }\n if(!used[to] || this->ord[to] < this->ord[idx]) {\n tmp.emplace_back(minmax(idx, (int) to));\n }\n if(!used[to]) {\n dfs(to, idx);\n if(this->low[to] >= this->ord[idx]) {\n bc.emplace_back();\n for(;;) {\n auto e = tmp.back();\n bc.back().emplace_back(e);\n tmp.pop_back();\n if(e.first == min(idx, (int) to) && e.second == max(idx, (int) to)) {\n break;\n }\n }\n }\n }\n }\n }\n\n void build() override {\n LL::build();\n used.assign(this->g.size(), 0);\n for(int i = 0; i < used.size(); i++) {\n if(!used[i]) dfs(i, -1);\n }\n }\n};\n\ntemplate< typename G >\nstruct BlockCutTree : BiConnectedComponents< G > {\n\n using BC = BiConnectedComponents< G >;\n using BC::BiConnectedComponents;\n\n pair< UnWeightedGraph, vector< int > > bctree() {\n BC::build();\n const int N = (int) BC::g.size();\n auto &bcs = BC::bc;\n vector< int > is_articulation(N, -1), uku(N, -1);\n int ptr = bcs.size();\n for(auto &art : BC::articulation) {\n is_articulation[art] = ptr++;\n }\n vector< int > last(ptr, -1);\n UnWeightedGraph t(ptr);\n for(int k = 0; k < bcs.size(); k++) {\n auto &bc = bcs[k];\n for(auto &e : bc) {\n if(~is_articulation[e.first]) {\n int to = is_articulation[e.first];\n if(last[to] != k) {\n last[to] = k;\n t[to].emplace_back(k);\n t[k].emplace_back(to);\n }\n } else {\n uku[e.first] = k;\n }\n if(~is_articulation[e.second]) {\n int to = is_articulation[e.second];\n if(last[to] != k) {\n last[to] = k;\n t[to].emplace_back(k);\n t[k].emplace_back(to);\n }\n } else {\n uku[e.second] = k;\n }\n }\n }\n for(int i = 0; i < N; i++) uku[i] = max(uku[i], is_articulation[i]);\n return {t, uku};\n }\n};\n\nstruct UnionFind {\n vector< int > data;\n\n UnionFind(int sz) {\n data.assign(sz, -1);\n }\n\n bool unite(int x, int y) {\n x = find(x), y = find(y);\n if(x == y) return (false);\n if(data[x] > data[y]) swap(x, y);\n data[x] += data[y];\n data[y] = x;\n return (true);\n }\n\n int find(int k) {\n if(data[k] < 0) return (k);\n return (data[k] = find(data[k]));\n }\n\n int size(int k) {\n return (-data[find(k)]);\n }\n};\n\ntemplate< typename G >\nstruct DoublingLowestCommonAncestor {\n const int LOG;\n vector< int > dep;\n vector< int > sum;\n const G &g;\n vector< vector< int > > table;\n\n DoublingLowestCommonAncestor(const G &g) : g(g), dep(g.size()), LOG(32 - __builtin_clz(g.size())), sum(g.size()) {\n table.assign(LOG, vector< int >(g.size(), -1));\n }\n\n void dfs(int idx, int par, int d) {\n table[0][idx] = par;\n dep[idx] = d;\n for(auto &to : g[idx]) {\n if(to != par) {\n sum[to] = sum[idx] ^ to.cost;\n dfs(to, idx, d + 1);\n }\n }\n }\n\n void build() {\n dfs(0, -1, 0);\n for(int k = 0; k + 1 < LOG; k++) {\n for(int i = 0; i < table[k].size(); i++) {\n if(table[k][i] == -1) table[k + 1][i] = -1;\n else table[k + 1][i] = table[k][table[k][i]];\n }\n }\n }\n\n int query(int u, int v) {\n if(dep[u] > dep[v]) swap(u, v);\n for(int i = LOG - 1; i >= 0; i--) {\n if(((dep[v] - dep[u]) >> i) & 1) v = table[i][v];\n }\n if(u == v) return u;\n for(int i = LOG - 1; i >= 0; i--) {\n if(table[i][u] != table[i][v]) {\n u = table[i][u];\n v = table[i][v];\n }\n }\n return table[0][u];\n }\n\n int dist(int a, int b) {\n return sum[a] ^ sum[b];\n }\n};\n\n\ntemplate< typename G >\nstruct CentroidDecomposition {\n const G &g;\n vector< int > sub;\n vector< vector< int > > belong;\n vector< bool > v;\n\n CentroidDecomposition(const G &g) : g(g), sub(g.size()), v(g.size()), belong(g.size()) {}\n\n inline int build_dfs(int idx, int par) {\n sub[idx] = 1;\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n sub[idx] += build_dfs(to, idx);\n }\n return sub[idx];\n }\n\n inline int search_centroid(int idx, int par, const int mid) {\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n if(sub[to] > mid) return search_centroid(to, idx, mid);\n }\n return idx;\n }\n\n inline void belong_dfs(int idx, int par, int centroid) {\n belong[idx].emplace_back(centroid);\n for(auto &to : g[idx]) {\n if(to == par || v[to]) continue;\n belong_dfs(to, idx, centroid);\n }\n }\n\n inline int build(UnWeightedGraph &t, int idx) {\n int centroid = search_centroid(idx, -1, build_dfs(idx, -1) / 2);\n v[centroid] = true;\n belong_dfs(centroid, -1, centroid);\n for(auto &to : g[centroid]) {\n if(!v[to]) t[centroid].emplace_back(build(t, to));\n }\n v[centroid] = false;\n return centroid;\n }\n\n inline int build(UnWeightedGraph &t) {\n t.resize(g.size());\n return build(t, 0);\n }\n};\n\n\nint main() {\n int N, M;\n cin >> N >> M;\n UnWeightedGraph g(N);\n WeightedGraph< int > h(N);\n UnionFind uf(N);\n vector< int > A(M), B(M), C(M);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i] >> C[i];\n --A[i], --B[i];\n g[A[i]].emplace_back(B[i]);\n g[B[i]].emplace_back(A[i]);\n if(uf.unite(A[i], B[i])) {\n h[A[i]].emplace_back(B[i], C[i]);\n h[B[i]].emplace_back(A[i], C[i]);\n }\n }\n DoublingLowestCommonAncestor< WeightedGraph< int > > beet(h);\n beet.build();\n BlockCutTree< UnWeightedGraph > bct(g);\n UnWeightedGraph t;\n vector< int > rev;\n tie(t, rev) = bct.bctree();\n vector< int > weight(t.size());\n\n CentroidDecomposition< UnWeightedGraph > cpd(t);\n UnWeightedGraph ushitapunichia;\n int root = cpd.build(ushitapunichia);\n\n\n {\n map< pair< int, int >, int > conv;\n for(int i = 0; i < bct.bc.size(); i++) {\n for(auto &p : bct.bc[i]) {\n conv[p] = i;\n }\n }\n for(int i = 0; i < M; i++) {\n weight[conv[minmax(A[i], B[i])]] ^= C[i];\n }\n for(int i = 0; i < t.size(); i++) {\n if(i < bct.bc.size() && bct.bc[i].size() >= 2) continue;\n weight[i] = 0;\n }\n }\n\n using vi = vector< int >;\n\n auto f = [](vi &a, int b) {\n for(int y : a) chmin(b, b ^ y);\n if(b) a.emplace_back(b);\n };\n\n\n int Q;\n cin >> Q;\n vector< int > X(Q), Y(Q), K(Q), Z(Q);\n for(int i = 0; i < Q; i++) {\n cin >> X[i] >> Y[i] >> K[i];\n --X[i], --Y[i], --K[i];\n Z[i] = beet.dist(X[i], Y[i]);\n X[i] = rev[X[i]];\n Y[i] = rev[Y[i]];\n }\n\n vector< vector< int > > ev(t.size());\n for(int i = 0; i < Q; i++) {\n ev[X[i]].emplace_back(i);\n ev[Y[i]].emplace_back(i);\n }\n\n\n vector< int > used(t.size());\n\n vector< vector< int > > cash(t.size());\n vector< int > last(Q);\n int ptr = 1;\n vector< int > ans(Q);\n\n\n auto calc_ans = [&](const vector< int > &a, vector< int > b, int k, int base) {\n for(int x : a) {\n for(int y : b) chmin(x, x ^ y);\n if(x) b.emplace_back(x);\n }\n auto &tap = b;\n if(1 << tap.size() <= k) {\n return -1;\n } else {\n sort(tap.begin(), tap.end());\n for(int j = (int) tap.size() - 1; j >= 0; j--) {\n if(k < (1 << j)) {\n chmin(base, base ^ tap[j]);\n } else {\n k -= 1 << j;\n chmax(base, base ^ tap[j]);\n }\n }\n return base;\n }\n };\n\n auto add_dfs = MFP([&](auto add_dfs, int idx, int par, vector< int > base, int Left, int id) -> void {\n if(weight[idx]) f(base, weight[idx]);\n cash[idx] = base;\n\n for(auto &q : ev[idx]) {\n if(Left <= last[q] && last[q] < id) ans[q] = calc_ans(cash[X[q]], cash[Y[q]], K[q], Z[q]);\n last[q] = id;\n }\n\n for(auto &to : t[idx]) {\n if(to == par) continue;\n if(used[to]) continue;\n add_dfs(to, idx, base, Left, id);\n }\n });\n\n\n MFP([&](auto dfs, int centroid) -> void {\n used[centroid] = true;\n\n vector< int > base;\n int Left = ptr;\n if(weight[centroid]) base.emplace_back(weight[centroid]);\n for(auto &q : ev[centroid]) {\n if(last[q] == ptr) ans[q] = calc_ans(base, base, K[q], Z[q]);\n last[q] = ptr;\n }\n ++ptr;\n\n for(auto &to : t[centroid]) {\n if(used[to]) continue;\n add_dfs(to, centroid, base, Left, ptr++);\n }\n\n for(auto &to : ushitapunichia[centroid]) dfs(to);\n used[centroid] = false;\n })(root);\n\n\n for(auto &p : ans) cout << p << \"\\n\";\n}", "accuracy": 0.09523809523809523, "time_ms": 680, "memory_kb": 133020, "score_of_the_acc": -0.2982, "final_rank": 19 }, { "submission_id": "aoj_3139_4260467", "code_snippet": "// merge speed up\n#include <bits/stdc++.h>\nusing namespace std;\nusing pii = pair<int, int>;\nusing graph = vector<vector<pii>>;\n\nconst int WS = 30;\n\nusing basis = array<int, WS>;\n\nconst int BN = 18; // larger than log2_(M + 1)\n\ntemplate <typename T>\nconstexpr T INF = INT_MAX;\n\ntemplate <>\nconstexpr pii INF<pii> = pii(INT_MAX, INT_MAX);\n\nvoid add_basis(basis& bs, int x) {\n\tfor (int b = WS - 1; b >= 0 && x != 0; b--) {\n\t\tif (x & (1 << b)) {\n\t\t\tif (bs[b]) {\n\t\t\t\tx ^= bs[b];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tbs[b] = x;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid merge_basis(basis& bs, const basis& ad) {\n\tif (count(bs.begin(), bs.end(), 0) == 0) return;\n\tif (count(ad.begin(), ad.end(), 0) == 0) {\n\t\tbs = ad;\n\t\treturn;\n\t}\n\tfor (int bb = WS - 1; bb >= 0; bb--) if (ad[bb] != 0) {\n\t\tint x = ad[bb];\n\t\tfor (int b = bb; b >= 0 && x > 0; b--) {\n\t\t\tif (x & (1 << b)) {\n\t\t\t\tif (bs[b]) {\n\t\t\t\t\tx ^= bs[b];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tbs[b] = x;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid dfs(int v, int prev, const graph& G, vector<pair<vector<int>, int>>& rps, vector<int>& a, vector<int>& cost, vector<int>& tmp) {\n\ttmp.push_back(v);\n\ta[v] = prev == -1 ? 0 : a[prev] + 1;\n\tfor (const auto& e : G[v]) if (e.first != prev) {\n\t\tif (a[e.first] == -1) {\n\t\t\tcost[e.first] = cost[v] ^ e.second;\n\t\t\tdfs(e.first, v, G, rps, a, cost, tmp);\n\t\t}\n\t\telse if (a[e.first] < (int)tmp.size() && tmp[a[e.first]] == e.first) {\n\t\t\trps.emplace_back(vector<int>(tmp.begin() + a[e.first], tmp.end()), cost[v] ^ cost[e.first] ^ e.second);\n\t\t}\n\t}\n\ttmp.pop_back();\n}\n\nvector<pair<vector<int>, int>> enum_roop(const graph& G, vector<int>& cost) {\n\tconst int n = G.size();\n\tvector<int> a(n, -1), tmp;\n\tvector<pair<vector<int>, int>> rps;\n\tdfs(0, -1, G, rps, a, cost, tmp);\n\treturn rps;\n}\n\nvector<vector<int>> make_tree(const graph &G, const vector<pair<vector<int>, int>>& rps) {\n\tconst int n = G.size(), s = rps.size();\n\tvector<set<int>> gs(n + s);\n\tfor (int i = 0; i < n; i++) {\n\t\tfor (const auto& e : G[i]) {\n\t\t\tgs[i].insert(e.first);\n\t\t}\n\t}\n\tfor (int i = 0; i < s; i++) {\n\t\tint v = n + i, x = rps[i].first.size();\n\t\tfor (int j = 0; j < x; j++) {\n\t\t\tgs[rps[i].first[j]].erase(rps[i].first[(j + 1) % x]);\n\t\t\tgs[rps[i].first[j]].erase(rps[i].first[(j + x - 1) % x]);\n\t\t\tgs[rps[i].first[j]].insert(v);\n\t\t\tgs[v].insert(rps[i].first[j]);\n\t\t}\n\t}\n\tvector<vector<int>> g;\n\tfor (int i = 0; i < (int)gs.size(); i++) {\n\t\tg.emplace_back(gs[i].begin(), gs[i].end());\n\t}\n\treturn g;\n}\n\nstruct Monoid {\n\tusing type = basis;\n\tstatic type id() {\n\t\tbasis b;\n\t\tfor (int i = 0; i < WS; i++) b[i] = 0;\n\t\treturn b;\n\t}\n\tstatic type op(const type& l, const type & r) {\n\t\tauto tmp = l;\n\t\tmerge_basis(tmp, r);\n\t\treturn tmp;\n\t}\n};\n\ntemplate <typename M>\nclass sparse_table {\n\tusing T = typename M::type;\n\tconst int n;\n\tvector<vector<T>> t;\npublic:\n\tsparse_table(const vector<T>& b) : n(b.size()), t(1, b) {\n\t\tfor (int i = 2, j = 1, p = 0; i <= n; i <<= 1, j++, p = 0) {\n\t\t\tt.emplace_back(n);\n\t\t\tfor (int k = 0; k + i <= n; k++)\n\t\t\t\tt[j][p++] = M::op(t[j - 1][k], t[j - 1][k + (i >> 1)]);\n\t\t}\n\t}\n\tT find(int l, int r) const { // [l, r)\n\t\tassert(0 <= l && l < r && r <= n);\n\t\tint i = 31 - __builtin_clz(r - l);\n\t\treturn M::op(t[i][l], t[i][r - (1 << i)]);\n\t}\n};\n\nclass heavy_light_decomposition {\n\tconst int n;\n\tvector<vector<int>> g;\n\tvector<int> par, head, in, out;\n\tvoid dfs1(int rt) {\n\t\tvector<int> size(n, 1);\n\t\tvector<size_t> iter(n);\n\t\tvector<pair<int, int>> stp;\n\t\tstp.reserve(n);\n\t\tstp.emplace_back(rt, -1);\n\t\twhile (!stp.empty()) {\n\t\t\tint v = stp.back().first;\n\t\t\tif (iter[v] < g[v].size()) {\n\t\t\t\tif (g[v][iter[v]] != stp.back().second) {\n\t\t\t\t\tstp.emplace_back(g[v][iter[v]], v);\n\t\t\t\t}\n\t\t\t\t++iter[v];\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tpar[v] = stp.back().second;\n\t\t\tfor (auto& u : g[v]) if (u == par[v]) {\n\t\t\t\tif (u != g[v].back()) swap(u, g[v].back());\n\t\t\t\tg[v].pop_back();\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\tfor (auto& u : g[v]) {\n\t\t\t\tsize[v] += size[u];\n\t\t\t\tif (size[u] > size[g[v].front()]) swap(u, g[v].front());\n\t\t\t}\n\t\t\tstp.pop_back();\n\t\t}\n\t}\n\tvoid dfs2(int rt) {\n\t\tint it = 0;\n\t\tvector<size_t> iter(n);\n\t\tvector<int> st; st.reserve(n);\n\t\tst.push_back(rt);\n\t\twhile (!st.empty()) {\n\t\t\tint v = st.back();\n\t\t\tif (!iter[v]) in[v] = it++;\n\t\t\tif (iter[v] < g[v].size()) {\n\t\t\t\tint u = g[v][iter[v]];\n\t\t\t\thead[u] = iter[v] ? u : head[v];\n\t\t\t\tst.push_back(u);\n\t\t\t\t++iter[v];\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tout[v] = it;\n\t\t\tst.pop_back();\n\t\t}\n\t}\npublic:\n\theavy_light_decomposition(int n_)\n\t\t: n(n_), g(n), par(n), head(n), in(n), out(n) {}\n\theavy_light_decomposition(const vector<vector<int>>& G)\n\t\t: n(G.size()), g(G), par(n), head(n), in(n), out(n) {}\n\tvoid add_edge(int u, int v) {\n\t\tg[u].push_back(v);\n\t\tg[v].push_back(u);\n\t}\n\tvoid build(int rt = 0) {\n\t\tdfs1(rt);\n\t\thead[rt] = rt;\n\t\tdfs2(rt);\n\t}\n\tint get_id(int v) {\n\t\treturn in[v];\n\t}\n\tint get_lca(int u, int v) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tif (head[u] == head[v]) return u;\n\t\t\tv = par[head[v]];\n\t\t}\n\t}\n\tvoid path_query(int u, int v, function<void(int, int)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tf(max(in[head[v]], in[u]), in[v] + 1);\n\t\t\tif (head[u] == head[v]) return;\n\t\t\tv = par[head[v]];\n\t\t}\n\t}\n\tvoid path_query(int u, int v, function<void(int, int, bool)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] <= in[v]) {\n\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1, false);\n\t\t\t\tif (head[u] == head[v]) return;\n\t\t\t\tv = par[head[v]];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tf(max(in[head[u]], in[v]), in[u] + 1, true);\n\t\t\t\tif (head[u] == head[v]) return;\n\t\t\t\tu = par[head[u]];\n\t\t\t}\n\t\t}\n\t}\n\tvoid edge_path_query(int u, int v, function<void(int, int)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tif (head[u] != head[v]) {\n\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1);\n\t\t\t\tv = par[head[v]];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (u != v) f(in[u] + 1, in[v] + 1);\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\tvoid edge_path_query(int u, int v, function<void(int, int, bool)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) {\n\t\t\t\tif (head[u] != head[v]) {\n\t\t\t\t\tf(max(in[head[u]], in[v]), in[u] + 1, true);\n\t\t\t\t\tu = par[head[u]];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (u != v) f(in[v] + 1, in[u] + 1, false);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (head[u] != head[v]) {\n\t\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1, false);\n\t\t\t\t\tv = par[head[v]];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (u != v) f(in[u] + 1, in[v] + 1, false);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tvoid subtree_query(int v, function<void(int, int)> f) {\n\t\tf(in[v], out[v]);\n\t}\n};\n\nint calc(const basis& bs, int x, int k) {\n\tint cnt = 0;\n\tfor (int i = 0; i < WS; i++) cnt += bs[i] != 0;\n\tif (k >= (1 << cnt)) return -1;\n\tfor (int i = WS - 1; i >= 0; i--) if (bs[i] != 0) {\n\t\t--cnt;\n\t\tif (k < (1 << cnt)) {\n\t\t\tx = min(x, x ^ bs[i]);\n\t\t}\n\t\telse {\n\t\t\tk -= 1 << cnt;\n\t\t\tx = max(x, x ^ bs[i]);\n\t\t}\n\t}\n\treturn x;\n}\n\nint main()\n{\n\tios::sync_with_stdio(false), cin.tie(0);\n\tint N, M;\n\tcin >> N >> M;\n\tgraph G(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tint u, v, c;\n\t\tcin >> u >> v >> c; --u, --v;\n\t\tG[u].emplace_back(v, c);\n\t\tG[v].emplace_back(u, c);\n\t}\n\tvector<int> cost(N);\n\tauto rps = enum_roop(G, cost);\n\tauto g = make_tree(G, rps);\n\tconst int n = N;\n\tN = g.size();\n\tassert(N == M + 1);\n\theavy_light_decomposition hl(g);\n\thl.build();\n\tvector<Monoid::type> md(N, Monoid::id());\n\tfor (int i = 0; i < N; i++) {\n\t\tauto val = Monoid::id();\n\t\tint id = hl.get_id(i);\n\t\tif (i >= n) add_basis(val, rps[i - n].second);\n\t\tmd[id] = val;\n\t}\n\tsparse_table<Monoid> st(md);\n\tint Q;\n\tcin >> Q;\n\twhile (Q--) {\n\t\tint x, y, k;\n\t\tcin >> x >> y >> k; --x, --y, --k;\n\t\tbasis bb = Monoid::id();\n\t\thl.path_query(x, y, [&](int u, int v) {\n\t\t\tmerge_basis(bb, st.find(u, v));\n\t\t});\n\t\tprintf(\"%d\\n\", calc(bb, cost[x] ^ cost[y], k));\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 2480, "memory_kb": 380964, "score_of_the_acc": -1.4025, "final_rank": 12 }, { "submission_id": "aoj_3139_4257040", "code_snippet": "// merge speed up\n#include <bits/stdc++.h>\nusing namespace std;\nusing pii = pair<int, int>;\nusing graph = vector<vector<pii>>;\n\nconst int WS = 30;\n\nusing basis = array<int, WS>;\n\nconst int BN = 18; // larger than log2_(M + 1)\n\ntemplate <typename T>\nconstexpr T INF = INT_MAX;\n\ntemplate <>\nconstexpr pii INF<pii> = pii(INT_MAX, INT_MAX);\n\nvoid add_basis(basis& bs, int x) {\n\tfor (int b = WS - 1; b >= 0 && x != 0; b--) {\n\t\tif (x & (1 << b)) {\n\t\t\tif (bs[b]) {\n\t\t\t\tx ^= bs[b];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tbs[b] = x;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid merge_basis(basis& bs, const basis& ad) {\n\tif (count(bs.begin(), bs.end(), 0) == 0) return;\n\tif (count(ad.begin(), ad.end(), 0) == 0) {\n\t\tbs = ad;\n\t\treturn;\n\t}\n\tfor (int bb = WS - 1; bb >= 0; bb--) if (ad[bb] != 0) {\n\t\tint x = ad[bb];\n\t\tfor (int b = bb; b >= 0 && x > 0; b--) {\n\t\t\tif (x & (1 << b)) {\n\t\t\t\tif (bs[b]) {\n\t\t\t\t\tx ^= bs[b];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tbs[b] = x;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid dfs(int v, int prev, const graph& G, vector<pair<vector<int>, int>>& rps, vector<int>& a, vector<int>& cost, vector<int>& tmp) {\n\ttmp.push_back(v);\n\ta[v] = prev == -1 ? 0 : a[prev] + 1;\n\tfor (const auto& e : G[v]) if (e.first != prev) {\n\t\tif (a[e.first] == -1) {\n\t\t\tcost[e.first] = cost[v] ^ e.second;\n\t\t\tdfs(e.first, v, G, rps, a, cost, tmp);\n\t\t}\n\t\telse if (a[e.first] < (int)tmp.size() && tmp[a[e.first]] == e.first) {\n\t\t\trps.emplace_back(vector<int>(tmp.begin() + a[e.first], tmp.end()), cost[v] ^ cost[e.first] ^ e.second);\n\t\t}\n\t}\n\ttmp.pop_back();\n}\n\nvector<pair<vector<int>, int>> enum_roop(const graph& G, vector<int>& cost) {\n\tconst int n = G.size();\n\tvector<int> a(n, -1), tmp;\n\tvector<pair<vector<int>, int>> rps;\n\tdfs(0, -1, G, rps, a, cost, tmp);\n\treturn rps;\n}\n\nvector<vector<int>> make_tree(const graph &G, const vector<pair<vector<int>, int>>& rps) {\n\tconst int n = G.size(), s = rps.size();\n\tvector<set<int>> gs(n + s);\n\tfor (int i = 0; i < n; i++) {\n\t\tfor (const auto& e : G[i]) {\n\t\t\tgs[i].insert(e.first);\n\t\t}\n\t}\n\tfor (int i = 0; i < s; i++) {\n\t\tint v = n + i, x = rps[i].first.size();\n\t\tfor (int j = 0; j < x; j++) {\n\t\t\tgs[rps[i].first[j]].erase(rps[i].first[(j + 1) % x]);\n\t\t\tgs[rps[i].first[j]].erase(rps[i].first[(j + x - 1) % x]);\n\t\t\tgs[rps[i].first[j]].insert(v);\n\t\t\tgs[v].insert(rps[i].first[j]);\n\t\t}\n\t}\n\tvector<vector<int>> g;\n\tfor (int i = 0; i < (int)gs.size(); i++) {\n\t\tg.emplace_back(gs[i].begin(), gs[i].end());\n\t}\n\treturn g;\n}\n\nstruct Monoid {\n\tusing type = basis;\n\tstatic type id() {\n\t\tbasis b;\n\t\tfor (int i = 0; i < WS; i++) b[i] = 0;\n\t\treturn b;\n\t}\n\tstatic type op(const type& l, const type & r) {\n\t\tauto tmp = l;\n\t\tmerge_basis(tmp, r);\n\t\treturn tmp;\n\t}\n};\n\ntemplate <typename M>\nclass segment_tree {\n\tusing T = typename M::type;\n\tconst int n;\n\tvector<T> data;\n\tint expand(int x) {\n\t\tint res;\n\t\tfor (res = 1; res < x; res <<= 1);\n\t\treturn res;\n\t}\npublic:\n\tsegment_tree(int n_) : n(expand(n_)), data(n * 2, M::id()) {}\n\tsegment_tree(int n_, T val) : n(expand(n_)), data(n * 2, val) {}\n\tvoid init(const vector<T>& data_) {\n\t\tfor (int i = 0; i < (int)data_.size(); i++)\n\t\t\tdata[i + n] = data_[i];\n\t\tfor (int i = n - 1; i >= 0; i--)\n\t\t\tdata[i] = M::op(data[i * 2], data[i * 2 + 1]);\n\t}\n\tvoid update(int p, T val) {\n\t\tdata[p += n] = val;\n\t\twhile (p >>= 1) data[p] = M::op(data[p * 2], data[p * 2 + 1]);\n\t}\n\tT find(int l, int r) {\n\t\tl += n; r += n;\n\t\tT res1 = M::id(), res2 = M::id();\n\t\twhile (l < r) {\n\t\t\tif (l & 1) res1 = M::op(res1, data[l++]);\n\t\t\tif (r & 1) res2 = M::op(data[--r], res2);\n\t\t\tl >>= 1; r >>= 1;\n\t\t}\n\t\treturn M::op(res1, res2);\n\t}\n};\n\nclass heavy_light_decomposition {\n\tconst int n;\n\tvector<vector<int>> g;\n\tvector<int> par, head, in, out;\n\tvoid dfs1(int rt) {\n\t\tvector<int> size(n, 1);\n\t\tvector<size_t> iter(n);\n\t\tvector<pair<int, int>> stp;\n\t\tstp.reserve(n);\n\t\tstp.emplace_back(rt, -1);\n\t\twhile (!stp.empty()) {\n\t\t\tint v = stp.back().first;\n\t\t\tif (iter[v] < g[v].size()) {\n\t\t\t\tif (g[v][iter[v]] != stp.back().second) {\n\t\t\t\t\tstp.emplace_back(g[v][iter[v]], v);\n\t\t\t\t}\n\t\t\t\t++iter[v];\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tpar[v] = stp.back().second;\n\t\t\tfor (auto& u : g[v]) if (u == par[v]) {\n\t\t\t\tif (u != g[v].back()) swap(u, g[v].back());\n\t\t\t\tg[v].pop_back();\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\tfor (auto& u : g[v]) {\n\t\t\t\tsize[v] += size[u];\n\t\t\t\tif (size[u] > size[g[v].front()]) swap(u, g[v].front());\n\t\t\t}\n\t\t\tstp.pop_back();\n\t\t}\n\t}\n\tvoid dfs2(int rt) {\n\t\tint it = 0;\n\t\tvector<size_t> iter(n);\n\t\tvector<int> st; st.reserve(n);\n\t\tst.push_back(rt);\n\t\twhile (!st.empty()) {\n\t\t\tint v = st.back();\n\t\t\tif (!iter[v]) in[v] = it++;\n\t\t\tif (iter[v] < g[v].size()) {\n\t\t\t\tint u = g[v][iter[v]];\n\t\t\t\thead[u] = iter[v] ? u : head[v];\n\t\t\t\tst.push_back(u);\n\t\t\t\t++iter[v];\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tout[v] = it;\n\t\t\tst.pop_back();\n\t\t}\n\t}\npublic:\n\theavy_light_decomposition(int n_)\n\t\t: n(n_), g(n), par(n), head(n), in(n), out(n) {}\n\theavy_light_decomposition(const vector<vector<int>>& G)\n\t\t: n(G.size()), g(G), par(n), head(n), in(n), out(n) {}\n\tvoid add_edge(int u, int v) {\n\t\tg[u].push_back(v);\n\t\tg[v].push_back(u);\n\t}\n\tvoid build(int rt = 0) {\n\t\tdfs1(rt);\n\t\thead[rt] = rt;\n\t\tdfs2(rt);\n\t}\n\tint get_id(int v) {\n\t\treturn in[v];\n\t}\n\tint get_lca(int u, int v) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tif (head[u] == head[v]) return u;\n\t\t\tv = par[head[v]];\n\t\t}\n\t}\n\tvoid path_query(int u, int v, function<void(int, int)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tf(max(in[head[v]], in[u]), in[v] + 1);\n\t\t\tif (head[u] == head[v]) return;\n\t\t\tv = par[head[v]];\n\t\t}\n\t}\n\tvoid path_query(int u, int v, function<void(int, int, bool)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] <= in[v]) {\n\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1, false);\n\t\t\t\tif (head[u] == head[v]) return;\n\t\t\t\tv = par[head[v]];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tf(max(in[head[u]], in[v]), in[u] + 1, true);\n\t\t\t\tif (head[u] == head[v]) return;\n\t\t\t\tu = par[head[u]];\n\t\t\t}\n\t\t}\n\t}\n\tvoid edge_path_query(int u, int v, function<void(int, int)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tif (head[u] != head[v]) {\n\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1);\n\t\t\t\tv = par[head[v]];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (u != v) f(in[u] + 1, in[v] + 1);\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\tvoid edge_path_query(int u, int v, function<void(int, int, bool)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) {\n\t\t\t\tif (head[u] != head[v]) {\n\t\t\t\t\tf(max(in[head[u]], in[v]), in[u] + 1, true);\n\t\t\t\t\tu = par[head[u]];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (u != v) f(in[v] + 1, in[u] + 1, false);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (head[u] != head[v]) {\n\t\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1, false);\n\t\t\t\t\tv = par[head[v]];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (u != v) f(in[u] + 1, in[v] + 1, false);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tvoid subtree_query(int v, function<void(int, int)> f) {\n\t\tf(in[v], out[v]);\n\t}\n};\n\nint calc(const basis& bs, int x, int k) {\n\tint cnt = 0;\n\tfor (int i = 0; i < WS; i++) cnt += bs[i] != 0;\n\tif (k >= (1 << cnt)) return -1;\n\tfor (int i = WS - 1; i >= 0; i--) if (bs[i] != 0) {\n\t\t--cnt;\n\t\tif (k < (1 << cnt)) {\n\t\t\tx = min(x, x ^ bs[i]);\n\t\t}\n\t\telse {\n\t\t\tk -= 1 << cnt;\n\t\t\tx = max(x, x ^ bs[i]);\n\t\t}\n\t}\n\treturn x;\n}\n\nint main()\n{\n\tios::sync_with_stdio(false), cin.tie(0);\n\tint N, M;\n\tcin >> N >> M;\n\tgraph G(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tint u, v, c;\n\t\tcin >> u >> v >> c; --u, --v;\n\t\tG[u].emplace_back(v, c);\n\t\tG[v].emplace_back(u, c);\n\t}\n\tvector<int> cost(N);\n\tauto rps = enum_roop(G, cost);\n\tauto g = make_tree(G, rps);\n\tconst int n = N;\n\tN = g.size();\n\tassert(N == M + 1);\n\theavy_light_decomposition hl(g);\n\thl.build();\n\tvector<Monoid::type> md(N, Monoid::id());\n\tfor (int i = 0; i < N; i++) {\n\t\tauto val = Monoid::id();\n\t\tint id = hl.get_id(i);\n\t\tif (i >= n) add_basis(val, rps[i - n].second);\n\t\tmd[id] = val;\n\t}\n\tsegment_tree<Monoid> st(N);\n\tst.init(md);\n\tint Q;\n\tcin >> Q;\n\twhile (Q--) {\n\t\tint x, y, k;\n\t\tcin >> x >> y >> k; --x, --y, --k;\n\t\tbasis bb = Monoid::id();\n\t\thl.path_query(x, y, [&](int u, int v) {\n\t\t\tmerge_basis(bb, st.find(u, v));\n\t\t});\n\t\tprintf(\"%d\\n\", calc(bb, cost[x] ^ cost[y], k));\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 2610, "memory_kb": 126100, "score_of_the_acc": -0.6403, "final_rank": 9 }, { "submission_id": "aoj_3139_4256453", "code_snippet": "// merge speed up\n#include <bits/stdc++.h>\nusing namespace std;\nusing pii = pair<int, int>;\nusing graph = vector<vector<pii>>;\n\n\nconst int WS = 30;\n\nusing basis = array<int, WS>;\n\nconst int BN = 18; // larger than log2_(M + 1)\n\ntemplate <typename T>\nconstexpr T INF = INT_MAX;\n\ntemplate <>\nconstexpr pii INF<pii> = pii(INT_MAX, INT_MAX);\n\nvoid add_basis(basis& bs, int x) {\n\tfor (int b = WS - 1; b >= 0 && x != 0; b--) {\n\t\tif (x & (1 << b)) {\n\t\t\tif (bs[b]) {\n\t\t\t\tx ^= bs[b];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tbs[b] = x;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid merge_basis(basis& bs, const basis& ad) {\n\tif (count(bs.begin(), bs.end(), 0) == 0) return;\n\tif (count(ad.begin(), ad.end(), 0) == 0) {\n\t\tbs = ad;\n\t\treturn;\n\t}\n\tfor (int bb = WS - 1; bb >= 0; bb--) if (ad[bb] != 0) {\n\t\tint x = ad[bb];\n\t\tfor (int b = bb; b >= 0 && x > 0; b--) {\n\t\t\tif (x & (1 << b)) {\n\t\t\t\tif (bs[b]) {\n\t\t\t\t\tx ^= bs[b];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tbs[b] = x;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid dfs(int v, int prev, const graph& G, vector<pair<vector<int>, int>>& rps, vector<int>& a, vector<int>& cost, vector<int>& tmp) {\n\ttmp.push_back(v);\n\ta[v] = prev == -1 ? 0 : a[prev] + 1;\n\tfor (const auto& e : G[v]) if (e.first != prev) {\n\t\tif (a[e.first] == -1) {\n\t\t\tcost[e.first] = cost[v] ^ e.second;\n\t\t\tdfs(e.first, v, G, rps, a, cost, tmp);\n\t\t}\n\t\telse if (a[e.first] < (int)tmp.size() && tmp[a[e.first]] == e.first) {\n\t\t\trps.emplace_back(vector<int>(tmp.begin() + a[e.first], tmp.end()), cost[v] ^ cost[e.first] ^ e.second);\n\t\t}\n\t}\n\ttmp.pop_back();\n}\n\nvector<pair<vector<int>, int>> enum_roop(const graph& G, vector<int>& cost) {\n\tconst int n = G.size();\n\tvector<int> a(n, -1), tmp;\n\tvector<pair<vector<int>, int>> rps;\n\tdfs(0, -1, G, rps, a, cost, tmp);\n\treturn rps;\n}\n\nvector<vector<int>> make_tree(const graph &G, const vector<pair<vector<int>, int>>& rps) {\n\tconst int n = G.size(), s = rps.size();\n\tvector<set<int>> gs(n + s);\n\tfor (int i = 0; i < n; i++) {\n\t\tfor (const auto& e : G[i]) {\n\t\t\tgs[i].insert(e.first);\n\t\t}\n\t}\n\tfor (int i = 0; i < s; i++) {\n\t\tint v = n + i, x = rps[i].first.size();\n\t\tfor (int j = 0; j < x; j++) {\n\t\t\tgs[rps[i].first[j]].erase(rps[i].first[(j + 1) % x]);\n\t\t\tgs[rps[i].first[j]].erase(rps[i].first[(j + x - 1) % x]);\n\t\t\tgs[rps[i].first[j]].insert(v);\n\t\t\tgs[v].insert(rps[i].first[j]);\n\t\t}\n\t}\n\tvector<vector<int>> g;\n\tfor (int i = 0; i < (int)gs.size(); i++) {\n\t\tg.emplace_back(gs[i].begin(), gs[i].end());\n\t}\n\treturn g;\n}\n\nstruct Monoid {\n\tusing type = basis;\n\tstatic type id() {\n\t\tbasis b;\n\t\tfor (int i = 0; i < WS; i++) b[i] = 0;\n\t\treturn b;\n\t}\n\tstatic type op(const type& l, const type & r) {\n\t\tauto tmp = l;\n\t\tmerge_basis(tmp, r);\n\t\treturn tmp;\n\t}\n};\n\ntemplate <typename M>\nclass sparse_table {\n\tusing T = typename M::type;\n\tconst int n;\n\tvector<vector<T>> t;\npublic:\n\tsparse_table(const vector<T>& b) : n(b.size()), t(1, b) {\n\t\tfor (int i = 2, j = 1, p = 0; i <= n; i <<= 1, j++, p = 0) {\n\t\t\tt.emplace_back(n);\n\t\t\tfor (int k = 0; k + i <= n; k++)\n\t\t\t\tt[j][p++] = M::op(t[j - 1][k], t[j - 1][k + (i >> 1)]);\n\t\t}\n\t}\n\tT find(int l, int r) const { // [l, r)\n\t\tassert(0 <= l && l < r && r <= n);\n\t\tint i = 31 - __builtin_clz(r - l);\n\t\treturn M::op(t[i][l], t[i][r - (1 << i)]);\n\t}\n};\n\nclass heavy_light_decomposition {\n\tconst int n;\n\tvector<vector<int>> g;\n\tvector<int> par, head, in, out;\n\tvoid dfs1(int rt) {\n\t\tvector<int> size(n, 1);\n\t\tvector<size_t> iter(n);\n\t\tvector<pair<int, int>> stp;\n\t\tstp.reserve(n);\n\t\tstp.emplace_back(rt, -1);\n\t\twhile (!stp.empty()) {\n\t\t\tint v = stp.back().first;\n\t\t\tif (iter[v] < g[v].size()) {\n\t\t\t\tif (g[v][iter[v]] != stp.back().second) {\n\t\t\t\t\tstp.emplace_back(g[v][iter[v]], v);\n\t\t\t\t}\n\t\t\t\t++iter[v];\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tpar[v] = stp.back().second;\n\t\t\tfor (auto& u : g[v]) if (u == par[v]) {\n\t\t\t\tif (u != g[v].back()) swap(u, g[v].back());\n\t\t\t\tg[v].pop_back();\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\tfor (auto& u : g[v]) {\n\t\t\t\tsize[v] += size[u];\n\t\t\t\tif (size[u] > size[g[v].front()]) swap(u, g[v].front());\n\t\t\t}\n\t\t\tstp.pop_back();\n\t\t}\n\t}\n\tvoid dfs2(int rt) {\n\t\tint it = 0;\n\t\tvector<size_t> iter(n);\n\t\tvector<int> st; st.reserve(n);\n\t\tst.push_back(rt);\n\t\twhile (!st.empty()) {\n\t\t\tint v = st.back();\n\t\t\tif (!iter[v]) in[v] = it++;\n\t\t\tif (iter[v] < g[v].size()) {\n\t\t\t\tint u = g[v][iter[v]];\n\t\t\t\thead[u] = iter[v] ? u : head[v];\n\t\t\t\tst.push_back(u);\n\t\t\t\t++iter[v];\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tout[v] = it;\n\t\t\tst.pop_back();\n\t\t}\n\t}\npublic:\n\theavy_light_decomposition(int n_)\n\t\t: n(n_), g(n), par(n), head(n), in(n), out(n) {}\n\theavy_light_decomposition(const vector<vector<int>>& G)\n\t\t: n(G.size()), g(G), par(n), head(n), in(n), out(n) {}\n\tvoid add_edge(int u, int v) {\n\t\tg[u].push_back(v);\n\t\tg[v].push_back(u);\n\t}\n\tvoid build(int rt = 0) {\n\t\tdfs1(rt);\n\t\thead[rt] = rt;\n\t\tdfs2(rt);\n\t}\n\tint get_id(int v) {\n\t\treturn in[v];\n\t}\n\tint get_lca(int u, int v) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tif (head[u] == head[v]) return u;\n\t\t\tv = par[head[v]];\n\t\t}\n\t}\n\tvoid path_query(int u, int v, function<void(int, int)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tf(max(in[head[v]], in[u]), in[v] + 1);\n\t\t\tif (head[u] == head[v]) return;\n\t\t\tv = par[head[v]];\n\t\t}\n\t}\n\tvoid path_query(int u, int v, function<void(int, int, bool)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] <= in[v]) {\n\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1, false);\n\t\t\t\tif (head[u] == head[v]) return;\n\t\t\t\tv = par[head[v]];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tf(max(in[head[u]], in[v]), in[u] + 1, true);\n\t\t\t\tif (head[u] == head[v]) return;\n\t\t\t\tu = par[head[u]];\n\t\t\t}\n\t\t}\n\t}\n\tvoid edge_path_query(int u, int v, function<void(int, int)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tif (head[u] != head[v]) {\n\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1);\n\t\t\t\tv = par[head[v]];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (u != v) f(in[u] + 1, in[v] + 1);\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\tvoid edge_path_query(int u, int v, function<void(int, int, bool)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) {\n\t\t\t\tif (head[u] != head[v]) {\n\t\t\t\t\tf(max(in[head[u]], in[v]), in[u] + 1, true);\n\t\t\t\t\tu = par[head[u]];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (u != v) f(in[v] + 1, in[u] + 1, false);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (head[u] != head[v]) {\n\t\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1, false);\n\t\t\t\t\tv = par[head[v]];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (u != v) f(in[u] + 1, in[v] + 1, false);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tvoid subtree_query(int v, function<void(int, int)> f) {\n\t\tf(in[v], out[v]);\n\t}\n};\n\nint calc(const basis& bs, int x, int k) {\n\tint cnt = 0;\n\tfor (int i = 0; i < WS; i++) cnt += bs[i] != 0;\n\tif (k >= (1 << cnt)) return -1;\n\tfor (int i = WS - 1; i >= 0; i--) if (bs[i] != 0) {\n\t\t--cnt;\n\t\tif (k < (1 << cnt)) {\n\t\t\tx = min(x, x ^ bs[i]);\n\t\t}\n\t\telse {\n\t\t\tk -= 1 << cnt;\n\t\t\tx = max(x, x ^ bs[i]);\n\t\t}\n\t}\n\treturn x;\n}\n\nint main()\n{\n\tios::sync_with_stdio(false), cin.tie(0);\n\tint N, M;\n\tcin >> N >> M;\n\tgraph G(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tint u, v, c;\n\t\tcin >> u >> v >> c; --u, --v;\n\t\tG[u].emplace_back(v, c);\n\t\tG[v].emplace_back(u, c);\n\t}\n\tvector<int> cost(N);\n\tauto rps = enum_roop(G, cost);\n\tauto g = make_tree(G, rps);\n\tconst int n = N;\n\tN = g.size();\n\tassert(N == M + 1);\n\theavy_light_decomposition hl(g);\n\thl.build();\n\tvector<Monoid::type> md(N, Monoid::id());\n\tfor (int i = 0; i < N; i++) {\n\t\tauto val = Monoid::id();\n\t\tint id = hl.get_id(i);\n\t\tif (i >= n) add_basis(val, rps[i - n].second);\n\t\tmd[id] = val;\n\t}\n\tsparse_table<Monoid> st(md);\n\tint Q;\n\tcin >> Q;\n\twhile (Q--) {\n\t\tint x, y, k;\n\t\tcin >> x >> y >> k; --x, --y, --k;\n\t\tbasis bb = Monoid::id();\n\t\thl.path_query(x, y, [&](int u, int v) {\n\t\t\tmerge_basis(bb, st.find(u, v));\n\t\t});\n\t\tprintf(\"%d\\n\", calc(bb, cost[x] ^ cost[y], k));\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1510, "memory_kb": 381120, "score_of_the_acc": -1.2203, "final_rank": 10 }, { "submission_id": "aoj_3139_4256444", "code_snippet": "// merge speed up\n#include <bits/stdc++.h>\nusing namespace std;\nusing pii = pair<int, int>;\nusing graph = vector<vector<pii>>;\n\n\nconst int WS = 30;\n\nusing basis = array<int, WS>;\n\nconst int BN = 18; // larger than log2_(M + 1)\n\ntemplate <typename T>\nconstexpr T INF = INT_MAX;\n\ntemplate <>\nconstexpr pii INF<pii> = pii(INT_MAX, INT_MAX);\n\nvoid add_basis(basis& bs, int x) {\n\tfor (int b = WS - 1; b >= 0 && x != 0; b--) {\n\t\tif (x & (1 << b)) {\n\t\t\tif (bs[b]) {\n\t\t\t\tx ^= bs[b];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tbs[b] = x;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid merge_basis(basis& bs, const basis& ad) {\n\tbool ng = false;\n\tfor (int b = 0; b + 1 < WS; b++) {\n\t\tif (bs[b] == 0 && bs[b + 1] != 0) {\n\t\t\tng = true;\n\t\t\tbreak;\n\t\t}\n\t\tif (ad[b] == 0 && ad[b + 1] != 0) {\n\t\t\tng = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\tif (!ng) {\n\t\tint c1 = 0, c2 = 0;\n\t\tfor (int b = 0; b < WS; b++) {\n\t\t\tif (bs[b] != 0) {\n\t\t\t\tc1 = b;\n\t\t\t}\n\t\t\tif (ad[b] != 0) {\n\t\t\t\tc2 = b;\n\t\t\t}\n\t\t}\n\t\tif (c1 < c2) bs = ad;\n\t\treturn;\n\t}\n\tfor (int bb = WS - 1; bb >= 0; bb--) if (ad[bb] != 0) {\n\t\tint x = ad[bb];\n\t\tfor (int b = bb; b >= 0 && x > 0; b--) {\n\t\t\tif (x & (1 << b)) {\n\t\t\t\tif (bs[b]) {\n\t\t\t\t\tx ^= bs[b];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tbs[b] = x;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid dfs(int v, int prev, const graph& G, vector<pair<vector<int>, int>>& rps, vector<int>& a, vector<int>& cost, vector<int>& tmp) {\n\ttmp.push_back(v);\n\ta[v] = prev == -1 ? 0 : a[prev] + 1;\n\tfor (const auto& e : G[v]) if (e.first != prev) {\n\t\tif (a[e.first] == -1) {\n\t\t\tcost[e.first] = cost[v] ^ e.second;\n\t\t\tdfs(e.first, v, G, rps, a, cost, tmp);\n\t\t}\n\t\telse if (a[e.first] < (int)tmp.size() && tmp[a[e.first]] == e.first) {\n\t\t\trps.emplace_back(vector<int>(tmp.begin() + a[e.first], tmp.end()), cost[v] ^ cost[e.first] ^ e.second);\n\t\t}\n\t}\n\ttmp.pop_back();\n}\n\nvector<pair<vector<int>, int>> enum_roop(const graph& G, vector<int>& cost) {\n\tconst int n = G.size();\n\tvector<int> a(n, -1), tmp;\n\tvector<pair<vector<int>, int>> rps;\n\tdfs(0, -1, G, rps, a, cost, tmp);\n\treturn rps;\n}\n\nvector<vector<int>> make_tree(const graph &G, const vector<pair<vector<int>, int>>& rps) {\n\tconst int n = G.size(), s = rps.size();\n\tvector<set<int>> gs(n + s);\n\tfor (int i = 0; i < n; i++) {\n\t\tfor (const auto& e : G[i]) {\n\t\t\tgs[i].insert(e.first);\n\t\t}\n\t}\n\tfor (int i = 0; i < s; i++) {\n\t\tint v = n + i, x = rps[i].first.size();\n\t\tfor (int j = 0; j < x; j++) {\n\t\t\tgs[rps[i].first[j]].erase(rps[i].first[(j + 1) % x]);\n\t\t\tgs[rps[i].first[j]].erase(rps[i].first[(j + x - 1) % x]);\n\t\t\tgs[rps[i].first[j]].insert(v);\n\t\t\tgs[v].insert(rps[i].first[j]);\n\t\t}\n\t}\n\tvector<vector<int>> g;\n\tfor (int i = 0; i < (int)gs.size(); i++) {\n\t\tg.emplace_back(gs[i].begin(), gs[i].end());\n\t}\n\treturn g;\n}\n\nstruct Monoid {\n\tusing type = basis;\n\tstatic type id() {\n\t\tbasis b;\n\t\tfor (int i = 0; i < WS; i++) b[i] = 0;\n\t\treturn b;\n\t}\n\tstatic type op(const type& l, const type & r) {\n\t\tauto tmp = l;\n\t\tmerge_basis(tmp, r);\n\t\treturn tmp;\n\t}\n};\n\ntemplate <typename M>\nclass sparse_table {\n\tusing T = typename M::type;\n\tconst int n;\n\tvector<vector<T>> t;\npublic:\n\tsparse_table(const vector<T>& b) : n(b.size()), t(1, b) {\n\t\tfor (int i = 2, j = 1, p = 0; i <= n; i <<= 1, j++, p = 0) {\n\t\t\tt.emplace_back(n);\n\t\t\tfor (int k = 0; k + i <= n; k++)\n\t\t\t\tt[j][p++] = M::op(t[j - 1][k], t[j - 1][k + (i >> 1)]);\n\t\t}\n\t}\n\tT find(int l, int r) const { // [l, r)\n\t\tassert(0 <= l && l < r && r <= n);\n\t\tint i = 31 - __builtin_clz(r - l);\n\t\treturn M::op(t[i][l], t[i][r - (1 << i)]);\n\t}\n};\n\nclass heavy_light_decomposition {\n\tconst int n;\n\tvector<vector<int>> g;\n\tvector<int> par, head, in, out;\n\tvoid dfs1(int rt) {\n\t\tvector<int> size(n, 1);\n\t\tvector<size_t> iter(n);\n\t\tvector<pair<int, int>> stp;\n\t\tstp.reserve(n);\n\t\tstp.emplace_back(rt, -1);\n\t\twhile (!stp.empty()) {\n\t\t\tint v = stp.back().first;\n\t\t\tif (iter[v] < g[v].size()) {\n\t\t\t\tif (g[v][iter[v]] != stp.back().second) {\n\t\t\t\t\tstp.emplace_back(g[v][iter[v]], v);\n\t\t\t\t}\n\t\t\t\t++iter[v];\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tpar[v] = stp.back().second;\n\t\t\tfor (auto& u : g[v]) if (u == par[v]) {\n\t\t\t\tif (u != g[v].back()) swap(u, g[v].back());\n\t\t\t\tg[v].pop_back();\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\tfor (auto& u : g[v]) {\n\t\t\t\tsize[v] += size[u];\n\t\t\t\tif (size[u] > size[g[v].front()]) swap(u, g[v].front());\n\t\t\t}\n\t\t\tstp.pop_back();\n\t\t}\n\t}\n\tvoid dfs2(int rt) {\n\t\tint it = 0;\n\t\tvector<size_t> iter(n);\n\t\tvector<int> st; st.reserve(n);\n\t\tst.push_back(rt);\n\t\twhile (!st.empty()) {\n\t\t\tint v = st.back();\n\t\t\tif (!iter[v]) in[v] = it++;\n\t\t\tif (iter[v] < g[v].size()) {\n\t\t\t\tint u = g[v][iter[v]];\n\t\t\t\thead[u] = iter[v] ? u : head[v];\n\t\t\t\tst.push_back(u);\n\t\t\t\t++iter[v];\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tout[v] = it;\n\t\t\tst.pop_back();\n\t\t}\n\t}\npublic:\n\theavy_light_decomposition(int n_)\n\t\t: n(n_), g(n), par(n), head(n), in(n), out(n) {}\n\theavy_light_decomposition(const vector<vector<int>>& G)\n\t\t: n(G.size()), g(G), par(n), head(n), in(n), out(n) {}\n\tvoid add_edge(int u, int v) {\n\t\tg[u].push_back(v);\n\t\tg[v].push_back(u);\n\t}\n\tvoid build(int rt = 0) {\n\t\tdfs1(rt);\n\t\thead[rt] = rt;\n\t\tdfs2(rt);\n\t}\n\tint get_id(int v) {\n\t\treturn in[v];\n\t}\n\tint get_lca(int u, int v) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tif (head[u] == head[v]) return u;\n\t\t\tv = par[head[v]];\n\t\t}\n\t}\n\tvoid path_query(int u, int v, function<void(int, int)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tf(max(in[head[v]], in[u]), in[v] + 1);\n\t\t\tif (head[u] == head[v]) return;\n\t\t\tv = par[head[v]];\n\t\t}\n\t}\n\tvoid path_query(int u, int v, function<void(int, int, bool)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] <= in[v]) {\n\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1, false);\n\t\t\t\tif (head[u] == head[v]) return;\n\t\t\t\tv = par[head[v]];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tf(max(in[head[u]], in[v]), in[u] + 1, true);\n\t\t\t\tif (head[u] == head[v]) return;\n\t\t\t\tu = par[head[u]];\n\t\t\t}\n\t\t}\n\t}\n\tvoid edge_path_query(int u, int v, function<void(int, int)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tif (head[u] != head[v]) {\n\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1);\n\t\t\t\tv = par[head[v]];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (u != v) f(in[u] + 1, in[v] + 1);\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\tvoid edge_path_query(int u, int v, function<void(int, int, bool)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) {\n\t\t\t\tif (head[u] != head[v]) {\n\t\t\t\t\tf(max(in[head[u]], in[v]), in[u] + 1, true);\n\t\t\t\t\tu = par[head[u]];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (u != v) f(in[v] + 1, in[u] + 1, false);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (head[u] != head[v]) {\n\t\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1, false);\n\t\t\t\t\tv = par[head[v]];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (u != v) f(in[u] + 1, in[v] + 1, false);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tvoid subtree_query(int v, function<void(int, int)> f) {\n\t\tf(in[v], out[v]);\n\t}\n};\n\nint calc(const basis& bs, int x, int k) {\n\tint cnt = 0;\n\tfor (int i = 0; i < WS; i++) cnt += bs[i] != 0;\n\tif (k >= (1 << cnt)) return -1;\n\tfor (int i = WS - 1; i >= 0; i--) if (bs[i] != 0) {\n\t\t--cnt;\n\t\tif (k < (1 << cnt)) {\n\t\t\tx = min(x, x ^ bs[i]);\n\t\t}\n\t\telse {\n\t\t\tk -= 1 << cnt;\n\t\t\tx = max(x, x ^ bs[i]);\n\t\t}\n\t}\n\treturn x;\n}\n\nint main()\n{\n\tios::sync_with_stdio(false), cin.tie(0);\n\tint N, M;\n\tcin >> N >> M;\n\tgraph G(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tint u, v, c;\n\t\tcin >> u >> v >> c; --u, --v;\n\t\tG[u].emplace_back(v, c);\n\t\tG[v].emplace_back(u, c);\n\t}\n\tvector<int> cost(N);\n\tauto rps = enum_roop(G, cost);\n\tauto g = make_tree(G, rps);\n\tconst int n = N;\n\tN = g.size();\n\tassert(N == M + 1);\n\theavy_light_decomposition hl(g);\n\thl.build();\n\tvector<Monoid::type> md(N, Monoid::id());\n\tfor (int i = 0; i < N; i++) {\n\t\tauto val = Monoid::id();\n\t\tint id = hl.get_id(i);\n\t\tif (i >= n) add_basis(val, rps[i - n].second);\n\t\tmd[id] = val;\n\t}\n\tsparse_table<Monoid> st(md);\n\tint Q;\n\tcin >> Q;\n\twhile (Q--) {\n\t\tint x, y, k;\n\t\tcin >> x >> y >> k; --x, --y, --k;\n\t\tbasis bb = Monoid::id();\n\t\thl.path_query(x, y, [&](int u, int v) {\n\t\t\tmerge_basis(bb, st.find(u, v));\n\t\t});\n\t\tprintf(\"%d\\n\", calc(bb, cost[x] ^ cost[y], k));\n\t}\n\treturn 0;\n}", "accuracy": 0.14285714285714285, "time_ms": 410, "memory_kb": 252576, "score_of_the_acc": -0.6164, "final_rank": 17 }, { "submission_id": "aoj_3139_4256442", "code_snippet": "// merge speed up\n#include <bits/stdc++.h>\nusing namespace std;\nusing pii = pair<int, int>;\nusing graph = vector<vector<pii>>;\n\n\nconst int WS = 30;\n\nusing basis = array<int, WS>;\n\nconst int BN = 18; // larger than log2_(M + 1)\n\ntemplate <typename T>\nconstexpr T INF = INT_MAX;\n\ntemplate <>\nconstexpr pii INF<pii> = pii(INT_MAX, INT_MAX);\n\nvoid add_basis(basis& bs, int x) {\n\tfor (int b = WS - 1; b >= 0 && x != 0; b--) {\n\t\tif (x & (1 << b)) {\n\t\t\tif (bs[b]) {\n\t\t\t\tx ^= bs[b];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tbs[b] = x;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid merge_basis(basis& bs, const basis& ad) {\n\tbool ng = false;\n\tfor (int b = 0; b + 1 < WS; b++) {\n\t\tif (bs[b] != 0 && bs[b + 1] == 0) {\n\t\t\tng = true;\n\t\t\tbreak;\n\t\t}\n\t\tif (ad[b] != 0 && ad[b + 1] == 0) {\n\t\t\tng = true;\n\t\t\tbreak;\n\t\t}\n\t}\n\tif (!ng) {\n\t\tint c1 = 0, c2 = 0;\n\t\tfor (int b = 0; b < WS; b++) {\n\t\t\tif (bs[b] != 0) {\n\t\t\t\tc1 = b;\n\t\t\t}\n\t\t\tif (ad[b] != 0) {\n\t\t\t\tc2 = b;\n\t\t\t}\n\t\t}\n\t\tif (c1 < c2) bs = ad;\n\t\treturn;\n\t}\n\tfor (int bb = WS - 1; bb >= 0; bb--) if (ad[bb] != 0) {\n\t\tint x = ad[bb];\n\t\tfor (int b = bb; b >= 0 && x > 0; b--) {\n\t\t\tif (x & (1 << b)) {\n\t\t\t\tif (bs[b]) {\n\t\t\t\t\tx ^= bs[b];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tbs[b] = x;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid dfs(int v, int prev, const graph& G, vector<pair<vector<int>, int>>& rps, vector<int>& a, vector<int>& cost, vector<int>& tmp) {\n\ttmp.push_back(v);\n\ta[v] = prev == -1 ? 0 : a[prev] + 1;\n\tfor (const auto& e : G[v]) if (e.first != prev) {\n\t\tif (a[e.first] == -1) {\n\t\t\tcost[e.first] = cost[v] ^ e.second;\n\t\t\tdfs(e.first, v, G, rps, a, cost, tmp);\n\t\t}\n\t\telse if (a[e.first] < (int)tmp.size() && tmp[a[e.first]] == e.first) {\n\t\t\trps.emplace_back(vector<int>(tmp.begin() + a[e.first], tmp.end()), cost[v] ^ cost[e.first] ^ e.second);\n\t\t}\n\t}\n\ttmp.pop_back();\n}\n\nvector<pair<vector<int>, int>> enum_roop(const graph& G, vector<int>& cost) {\n\tconst int n = G.size();\n\tvector<int> a(n, -1), tmp;\n\tvector<pair<vector<int>, int>> rps;\n\tdfs(0, -1, G, rps, a, cost, tmp);\n\treturn rps;\n}\n\nvector<vector<int>> make_tree(const graph &G, const vector<pair<vector<int>, int>>& rps) {\n\tconst int n = G.size(), s = rps.size();\n\tvector<set<int>> gs(n + s);\n\tfor (int i = 0; i < n; i++) {\n\t\tfor (const auto& e : G[i]) {\n\t\t\tgs[i].insert(e.first);\n\t\t}\n\t}\n\tfor (int i = 0; i < s; i++) {\n\t\tint v = n + i, x = rps[i].first.size();\n\t\tfor (int j = 0; j < x; j++) {\n\t\t\tgs[rps[i].first[j]].erase(rps[i].first[(j + 1) % x]);\n\t\t\tgs[rps[i].first[j]].erase(rps[i].first[(j + x - 1) % x]);\n\t\t\tgs[rps[i].first[j]].insert(v);\n\t\t\tgs[v].insert(rps[i].first[j]);\n\t\t}\n\t}\n\tvector<vector<int>> g;\n\tfor (int i = 0; i < (int)gs.size(); i++) {\n\t\tg.emplace_back(gs[i].begin(), gs[i].end());\n\t}\n\treturn g;\n}\n\nstruct Monoid {\n\tusing type = basis;\n\tstatic type id() {\n\t\tbasis b;\n\t\tfor (int i = 0; i < WS; i++) b[i] = 0;\n\t\treturn b;\n\t}\n\tstatic type op(const type& l, const type & r) {\n\t\tauto tmp = l;\n\t\tmerge_basis(tmp, r);\n\t\treturn tmp;\n\t}\n};\n\ntemplate <typename M>\nclass sparse_table {\n\tusing T = typename M::type;\n\tconst int n;\n\tvector<vector<T>> t;\npublic:\n\tsparse_table(const vector<T>& b) : n(b.size()), t(1, b) {\n\t\tfor (int i = 2, j = 1, p = 0; i <= n; i <<= 1, j++, p = 0) {\n\t\t\tt.emplace_back(n);\n\t\t\tfor (int k = 0; k + i <= n; k++)\n\t\t\t\tt[j][p++] = M::op(t[j - 1][k], t[j - 1][k + (i >> 1)]);\n\t\t}\n\t}\n\tT find(int l, int r) const { // [l, r)\n\t\tassert(0 <= l && l < r && r <= n);\n\t\tint i = 31 - __builtin_clz(r - l);\n\t\treturn M::op(t[i][l], t[i][r - (1 << i)]);\n\t}\n};\n\nclass heavy_light_decomposition {\n\tconst int n;\n\tvector<vector<int>> g;\n\tvector<int> par, head, in, out;\n\tvoid dfs1(int rt) {\n\t\tvector<int> size(n, 1);\n\t\tvector<size_t> iter(n);\n\t\tvector<pair<int, int>> stp;\n\t\tstp.reserve(n);\n\t\tstp.emplace_back(rt, -1);\n\t\twhile (!stp.empty()) {\n\t\t\tint v = stp.back().first;\n\t\t\tif (iter[v] < g[v].size()) {\n\t\t\t\tif (g[v][iter[v]] != stp.back().second) {\n\t\t\t\t\tstp.emplace_back(g[v][iter[v]], v);\n\t\t\t\t}\n\t\t\t\t++iter[v];\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tpar[v] = stp.back().second;\n\t\t\tfor (auto& u : g[v]) if (u == par[v]) {\n\t\t\t\tif (u != g[v].back()) swap(u, g[v].back());\n\t\t\t\tg[v].pop_back();\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\tfor (auto& u : g[v]) {\n\t\t\t\tsize[v] += size[u];\n\t\t\t\tif (size[u] > size[g[v].front()]) swap(u, g[v].front());\n\t\t\t}\n\t\t\tstp.pop_back();\n\t\t}\n\t}\n\tvoid dfs2(int rt) {\n\t\tint it = 0;\n\t\tvector<size_t> iter(n);\n\t\tvector<int> st; st.reserve(n);\n\t\tst.push_back(rt);\n\t\twhile (!st.empty()) {\n\t\t\tint v = st.back();\n\t\t\tif (!iter[v]) in[v] = it++;\n\t\t\tif (iter[v] < g[v].size()) {\n\t\t\t\tint u = g[v][iter[v]];\n\t\t\t\thead[u] = iter[v] ? u : head[v];\n\t\t\t\tst.push_back(u);\n\t\t\t\t++iter[v];\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tout[v] = it;\n\t\t\tst.pop_back();\n\t\t}\n\t}\npublic:\n\theavy_light_decomposition(int n_)\n\t\t: n(n_), g(n), par(n), head(n), in(n), out(n) {}\n\theavy_light_decomposition(const vector<vector<int>>& G)\n\t\t: n(G.size()), g(G), par(n), head(n), in(n), out(n) {}\n\tvoid add_edge(int u, int v) {\n\t\tg[u].push_back(v);\n\t\tg[v].push_back(u);\n\t}\n\tvoid build(int rt = 0) {\n\t\tdfs1(rt);\n\t\thead[rt] = rt;\n\t\tdfs2(rt);\n\t}\n\tint get_id(int v) {\n\t\treturn in[v];\n\t}\n\tint get_lca(int u, int v) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tif (head[u] == head[v]) return u;\n\t\t\tv = par[head[v]];\n\t\t}\n\t}\n\tvoid path_query(int u, int v, function<void(int, int)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tf(max(in[head[v]], in[u]), in[v] + 1);\n\t\t\tif (head[u] == head[v]) return;\n\t\t\tv = par[head[v]];\n\t\t}\n\t}\n\tvoid path_query(int u, int v, function<void(int, int, bool)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] <= in[v]) {\n\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1, false);\n\t\t\t\tif (head[u] == head[v]) return;\n\t\t\t\tv = par[head[v]];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tf(max(in[head[u]], in[v]), in[u] + 1, true);\n\t\t\t\tif (head[u] == head[v]) return;\n\t\t\t\tu = par[head[u]];\n\t\t\t}\n\t\t}\n\t}\n\tvoid edge_path_query(int u, int v, function<void(int, int)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tif (head[u] != head[v]) {\n\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1);\n\t\t\t\tv = par[head[v]];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (u != v) f(in[u] + 1, in[v] + 1);\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\tvoid edge_path_query(int u, int v, function<void(int, int, bool)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) {\n\t\t\t\tif (head[u] != head[v]) {\n\t\t\t\t\tf(max(in[head[u]], in[v]), in[u] + 1, true);\n\t\t\t\t\tu = par[head[u]];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (u != v) f(in[v] + 1, in[u] + 1, false);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (head[u] != head[v]) {\n\t\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1, false);\n\t\t\t\t\tv = par[head[v]];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (u != v) f(in[u] + 1, in[v] + 1, false);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tvoid subtree_query(int v, function<void(int, int)> f) {\n\t\tf(in[v], out[v]);\n\t}\n};\n\nint calc(const basis& bs, int x, int k) {\n\tint cnt = 0;\n\tfor (int i = 0; i < WS; i++) cnt += bs[i] != 0;\n\tif (k >= (1 << cnt)) return -1;\n\tfor (int i = WS - 1; i >= 0; i--) if (bs[i] != 0) {\n\t\t--cnt;\n\t\tif (k < (1 << cnt)) {\n\t\t\tx = min(x, x ^ bs[i]);\n\t\t}\n\t\telse {\n\t\t\tk -= 1 << cnt;\n\t\t\tx = max(x, x ^ bs[i]);\n\t\t}\n\t}\n\treturn x;\n}\n\nint main()\n{\n\tios::sync_with_stdio(false), cin.tie(0);\n\tint N, M;\n\tcin >> N >> M;\n\tgraph G(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tint u, v, c;\n\t\tcin >> u >> v >> c; --u, --v;\n\t\tG[u].emplace_back(v, c);\n\t\tG[v].emplace_back(u, c);\n\t}\n\tvector<int> cost(N);\n\tauto rps = enum_roop(G, cost);\n\tauto g = make_tree(G, rps);\n\tconst int n = N;\n\tN = g.size();\n\tassert(N == M + 1);\n\theavy_light_decomposition hl(g);\n\thl.build();\n\tvector<Monoid::type> md(N, Monoid::id());\n\tfor (int i = 0; i < N; i++) {\n\t\tauto val = Monoid::id();\n\t\tint id = hl.get_id(i);\n\t\tif (i >= n) add_basis(val, rps[i - n].second);\n\t\tmd[id] = val;\n\t}\n\tsparse_table<Monoid> st(md);\n\tint Q;\n\tcin >> Q;\n\twhile (Q--) {\n\t\tint x, y, k;\n\t\tcin >> x >> y >> k; --x, --y, --k;\n\t\tbasis bb = Monoid::id();\n\t\thl.path_query(x, y, [&](int u, int v) {\n\t\t\tmerge_basis(bb, st.find(u, v));\n\t\t});\n\t\tprintf(\"%d\\n\", calc(bb, cost[x] ^ cost[y], k));\n\t}\n\treturn 0;\n}", "accuracy": 0.16071428571428573, "time_ms": 1440, "memory_kb": 356532, "score_of_the_acc": -1.1313, "final_rank": 16 }, { "submission_id": "aoj_3139_4256341", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = unsigned int;\nusing ll = long long;\nstruct Edge {\n int id;\n int to;\n Int c;\n};\nusing Graph = vector<vector<Edge>>;\nconst int LOG_N = 18;\nconst int WS = 30;\nusing Bases = vector<Int>;\nBases generateBases(Int x) { return x ? Bases(1, x) : Bases(0); }\nint tpb(Int b) { return (b == 0 ? -1 : 31 - __builtin_clz(b)); }\nBases mergeBases(const Bases& lhs, const Bases& rhs) {\n if (lhs.size() == 0) return rhs;\n if (rhs.size() == 0) return lhs;\n if (lhs.size() == WS) return lhs;\n if (rhs.size() == WS) return rhs;\n\n Bases res = lhs;\n res.insert(res.end(), rhs.begin(), rhs.end());\n int row = 0;\n for (int k = 0; k < res.size(); k++) {\n bool isAllZero = true;\n for (int i = k; i < res.size(); i++) {\n isAllZero = isAllZero && res[i] == 0;\n }\n if (isAllZero) break;\n int pos = k;\n for (int i = k + 1; i < res.size(); i++) {\n pos = (tpb(res[i]) > tpb(res[pos]) ? i : pos);\n }\n swap(res[k], res[pos]);\n int tb = tpb(res[k]);\n for (int i = k + 1; i < res.size(); i++) {\n if ((1 << tb) & res[i]) res[i] ^= res[k];\n }\n }\n while (res.back() == 0) res.pop_back();\n return res;\n}\n\nstruct Data {\n int N;\n vector<Int> xorAcc;\n vector<int> rep;\n\n vector<int> dep;\n vector<int> parX;\n vector<int> topX;\n vector<Int> cycleXor;\n vector<vector<int>> dPar;\n vector<vector<int>> dParX;\n vector<vector<Int>> dSum;\n vector<vector<Bases>> dBases;\n int lca(int a, int b) {\n if (dep[a] < dep[b]) std::swap(a, b);\n int u = dep[a] - dep[b];\n for (int i = LOG_N; i >= 0; i--) {\n if ((u >> i) & 1) a = dPar[i][a];\n }\n assert(dep[a] == dep[b]);\n if (a == b) return a;\n for (int i = LOG_N; i >= 0; i--) {\n if (dPar[i][a] != dPar[i][b]) {\n a = dPar[i][a];\n b = dPar[i][b];\n }\n }\n assert(a != b);\n a = dPar[0][a], b = dPar[0][b];\n if (a != b)\n return -1; // if (g is a forest) and (a and b is disconnected).\n return a;\n }\n Int cycleMove(int x, int y) { return xorAcc[x] ^ xorAcc[y]; }\n void build(int N, int M, Graph& g);\n\n private:\n int loopCnt = 1;\n vector<vector<Int>> loopsXor;\n vector<vector<int>> loops;\n vector<int> visited;\n vector<int> looped;\n vector<int> used;\n vector<int> decs;\n Graph bg;\n int dfs(int v, Graph& g) {\n // cerr<<\"\\t\\t$DFS\"<<\" \"<<v<<endl;\n if (visited[v]) {\n loops.push_back(vector<int>());\n loopsXor.push_back(vector<Int>());\n decs[v] -= loopCnt;\n return loopCnt++;\n }\n visited[v] = true;\n int sum = 0;\n for (auto& e : g[v]) {\n if (used[e.id]) continue;\n used[e.id] = true;\n if (!visited[e.to]) {\n xorAcc[e.to] = xorAcc[v] ^ e.c;\n }\n int ret = dfs(e.to, g);\n if (ret) {\n looped[v] = true;\n loops[ret - 1].push_back(v);\n Int piyo =\n loopsXor[ret - 1].empty() ? 0 : loopsXor[ret - 1].back();\n loopsXor[ret - 1].push_back(e.c);\n } else {\n bg[e.to].push_back(Edge{-1, v, e.c});\n bg[v].push_back(Edge{-1, e.to, e.c});\n }\n sum += ret;\n }\n sum += decs[v];\n return sum;\n }\n};\n\nvoid Data::build(int N, int M, Graph& g) {\n xorAcc.resize(N);\n visited.resize(N, 0);\n decs.resize(N, 0);\n bg.resize(N);\n used.resize(M, 0);\n looped.resize(N);\n // cerr << \"\\t$DFS START\" << endl;\n dfs(0, g);\n // cerr << \"\\t$DFS END\" << endl;\n // cerr << \"\\t\\t$LOOP_CNT \" << loops.size()<<endl;\n for (int i = 0; i < N; i++) {\n if (!looped[i]) loops.push_back({i}), loopsXor.push_back({0});\n }\n // cerr << \"\\t\\t$V_SIZE \" << loops.size()<<endl;\n\n vector<vector<int>> xToV(N);\n for (int i = 0; i < loops.size(); i++) {\n for (int x : loops[i]) {\n xToV[x].push_back(i);\n }\n }\n\n rep.resize(N, -1); // vector<int> rep;\n\n dep.resize(loops.size());\n parX.resize(loops.size()); // vector<int> parX; // P\n topX.resize(loops.size()); // vector<int> topX; // P\n vector<Int> sumJ(loops.size());\n cycleXor.resize(loops.size()); // vector<int> cycleXor; // V\n\n dPar.resize(LOG_N + 1,\n vector<int>(loops.size())); // vector<vector<int>> dPar; // A\n vector<int> xused(N);\n\n vector<int> vused(loops.size());\n pair<int, int> p = {0, (int)loops[0].back()};\n queue<pair<int, int>> que;\n que.push(p);\n vused[0] = true;\n // cerr << \"\\t$QUEING START\" << endl;\n set<int> s;\n while (!que.empty()) {\n p = que.front();\n que.pop();\n int v = p.first, x = p.second;\n\n vector<int> xs;\n vector<int> xorxs;\n vector<int> _parX;\n \n for (int i = 0; i < loops[v].size(); i++) {\n cycleXor[v] ^= loopsXor[v][i];\n int x = loops[v][i];\n if (rep[x] == -1) rep[x] = v;\n if (xused[x]) continue;\n xused[x] = true;\n xs.push_back(x);\n xorxs.push_back(0);\n _parX.push_back(x);\n for (auto& e : bg[x]) {\n xs.push_back(e.to);\n xorxs.push_back(e.c);\n _parX.push_back(x);\n }\n }\n \n \n for (int i = 0; i < xs.size(); i++) {\n int y = xs[i];\n if (s.count(y)) continue;\n s.insert(y);\n for (auto vTo : xToV[y]) {\n if (vused[vTo]) continue;\n que.push({vTo, y});\n dPar[0][vTo] = v;\n vused[vTo] = true;\n dep[vTo] = dep[v] + 1;\n parX[vTo] = _parX[i];\n topX[vTo] = y;\n sumJ[vTo] = xorxs[i];\n }\n }\n }\n // cerr<<\"\\t$QUEING END\"<<endl;\n\n dParX.resize(LOG_N + 1,\n vector<int>(loops.size())); // vector<vector<int>> dParX; // A\n dSum.resize(LOG_N + 1,\n vector<Int>(loops.size())); // vector<vector<int>> dSum; // A\n dBases.resize(\n LOG_N + 1,\n vector<Bases>(loops.size())); // vector<vector<Bases>> dBases;\n for (int i = 0; i < loops.size(); i++) {\n dParX[0][i] = parX[i];\n dSum[0][i] = sumJ[i];\n }\n // cerr<<\"\\t$DOUBLING START\"<<endl;\n for (int i = 0; i < LOG_N; i++) {\n for (int j = 0; j < loops.size(); j++) {\n dPar[i + 1][j] = dPar[i][dPar[i][j]];\n dParX[i + 1][j] = dParX[i][dPar[i][j]];\n dSum[i + 1][j] = dSum[i][j] ^ dSum[i][dPar[i][j]];\n dBases[i + 1][j] = mergeBases(dBases[i][j], dBases[i][dPar[i][j]]);\n if (dParX[i][j] != topX[dPar[i][j]]) {\n dSum[i + 1][j] ^= cycleMove(dParX[i][j], topX[dPar[i][j]]);\n dBases[i + 1][j] = mergeBases(\n dBases[i + 1][j], generateBases(cycleXor[dPar[i][j]]));\n }\n }\n }\n // cerr << \"\\t$DOUBLING END\" << endl;\n}\n\nvoid answer_query(Data& dat, int Q, vector<int>& u, vector<int>& v,\n vector<ll>& k) {\n struct T {\n int z;\n Int sum;\n Bases bases;\n };\n auto merge = [&](const T& lhs, const T& rhs) {\n return T{rhs.z, lhs.sum ^ rhs.sum, mergeBases(lhs.bases, rhs.bases)};\n };\n auto cycleMove = [&](T& t, int to) {\n if (t.z != to) {\n T tmp = T{to, dat.cycleMove(t.z, to),\n generateBases(dat.cycleXor[dat.rep[t.z]])};\n t = merge(t, tmp);\n }\n };\n auto climb = [&](int x, int cnt) {\n T res = {x, 0, Bases(0)};\n int id = 0;\n while (cnt) {\n if (cnt & 1) {\n int v = dat.rep[res.z];\n cycleMove(res, dat.topX[v]);\n T tmp = {dat.dParX[id][v], dat.dSum[id][v], dat.dBases[id][v]};\n res = merge(res, tmp);\n }\n cnt >>= 1;\n id++;\n }\n return res;\n };\n for (int i = 0; i < Q; i++) {\n int x = u[i], y = v[i];\n int a = dat.rep[x], b = dat.rep[y];\n int c = dat.lca(a, b);\n int ca = dat.dep[a] - dat.dep[c];\n int cb = dat.dep[b] - dat.dep[c];\n T ta = climb(x, ca);\n T tb = climb(y, cb);\n cycleMove(ta, tb.z);\n T t = merge(ta, tb);\n\n ll num = k[i];\n ll patternCnt = 1LL << t.bases.size();\n if (patternCnt <= num) {\n cout << -1 << \"\\n\";\n continue;\n }\n Int ans = t.sum;\n for (int i = 0; i < t.bases.size(); i++) {\n int tb = tpb(t.bases[i]);\n bool bnum = (num >> (t.bases.size() - 1 - i)) & 1;\n bool bans = (ans >> tb) & 1;\n if (bans ^ bnum) {\n ans ^= t.bases[i];\n }\n }\n cout << ans << \"\\n\";\n }\n}\nvoid solve(int N, int M, Graph& g, int Q, vector<int>& u, vector<int>& v,\n vector<ll>& k) {\n Data dat;\n // cerr << \"#Build Start\" << endl;\n dat.build(N, M, g);\n // cerr << \"#Build Finished\" << endl;\n answer_query(dat, Q, u, v, k);\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n int N, M;\n cin >> N >> M;\n Graph g(N);\n for (int i = 0; i < M; i++) {\n int u, v;\n Int c;\n cin >> u >> v >> c;\n u--, v--;\n g[u].push_back(Edge{i, v, c});\n g[v].push_back(Edge{i, u, c});\n }\n int Q;\n cin >> Q;\n vector<int> u(Q), v(Q);\n vector<ll> k(Q);\n for (int i = 0; i < Q; i++)\n cin >> u[i] >> v[i] >> k[i], u[i]--, v[i]--, k[i]--;\n // cerr << \"#INPUT FINISHED\" << endl;\n solve(N, M, g, Q, u, v, k);\n return 0;\n}", "accuracy": 1, "time_ms": 4840, "memory_kb": 187328, "score_of_the_acc": -1.2493, "final_rank": 11 }, { "submission_id": "aoj_3139_4256335", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing pii = pair<int, int>;\nusing graph = vector<vector<pii>>;\n\nconst int WS = 30;\n\nusing basis = array<int, WS>;\n\nconst int BN = 18; // larger than log2_(M + 1)\n\ntemplate <typename T>\nconstexpr T INF = INT_MAX;\n\ntemplate <>\nconstexpr pii INF<pii> = pii(INT_MAX, INT_MAX);\n\nvoid add_basis(basis& bs, int x) {\n\tfor (int b = WS - 1; b >= 0 && x != 0; b--) {\n\t\tif (x & (1 << b)) {\n\t\t\tif (bs[b]) {\n\t\t\t\tx ^= bs[b];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tbs[b] = x;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid merge_basis(basis& bs, const basis& ad) {\n\tfor (int bb = WS - 1; bb >= 0; bb--) if (ad[bb] != 0) {\n\t\tint x = ad[bb];\n\t\tfor (int b = bb; b >= 0 && x > 0; b--) {\n\t\t\tif (x & (1 << b)) {\n\t\t\t\tif (bs[b]) {\n\t\t\t\t\tx ^= bs[b];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tbs[b] = x;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid dfs(int v, int prev, const graph& G, vector<pair<vector<int>, int>>& rps, vector<int>& a, vector<int>& cost, vector<int>& tmp) {\n\ttmp.push_back(v);\n\ta[v] = prev == -1 ? 0 : a[prev] + 1;\n\tfor (const auto& e : G[v]) if (e.first != prev) {\n\t\tif (a[e.first] == -1) {\n\t\t\tcost[e.first] = cost[v] ^ e.second;\n\t\t\tdfs(e.first, v, G, rps, a, cost, tmp);\n\t\t}\n\t\telse if (a[e.first] < (int)tmp.size() && tmp[a[e.first]] == e.first) {\n\t\t\trps.emplace_back(vector<int>(tmp.begin() + a[e.first], tmp.end()), cost[v] ^ cost[e.first] ^ e.second);\n\t\t}\n\t}\n\ttmp.pop_back();\n}\n\nvector<pair<vector<int>, int>> enum_roop(const graph& G, vector<int>& cost) {\n\tconst int n = G.size();\n\tvector<int> a(n, -1), tmp;\n\tvector<pair<vector<int>, int>> rps;\n\tdfs(0, -1, G, rps, a, cost, tmp);\n\treturn rps;\n}\n\nvector<vector<int>> make_tree(const graph &G, const vector<pair<vector<int>, int>>& rps) {\n\tconst int n = G.size(), s = rps.size();\n\tvector<set<int>> gs(n + s);\n\tfor (int i = 0; i < n; i++) {\n\t\tfor (const auto& e : G[i]) {\n\t\t\tgs[i].insert(e.first);\n\t\t}\n\t}\n\tfor (int i = 0; i < s; i++) {\n\t\tint v = n + i, x = rps[i].first.size();\n\t\tfor (int j = 0; j < x; j++) {\n\t\t\tgs[rps[i].first[j]].erase(rps[i].first[(j + 1) % x]);\n\t\t\tgs[rps[i].first[j]].erase(rps[i].first[(j + x - 1) % x]);\n\t\t\tgs[rps[i].first[j]].insert(v);\n\t\t\tgs[v].insert(rps[i].first[j]);\n\t\t}\n\t}\n\tvector<vector<int>> g;\n\tfor (int i = 0; i < (int)gs.size(); i++) {\n\t\tg.emplace_back(gs[i].begin(), gs[i].end());\n\t}\n\treturn g;\n}\n\nstruct Monoid {\n\tusing type = basis;\n\tstatic type id() {\n\t\tbasis b;\n\t\tfor (int i = 0; i < WS; i++) b[i] = 0;\n\t\treturn b;\n\t}\n\tstatic type op(const type& l, const type & r) {\n\t\tauto tmp = l;\n\t\tmerge_basis(tmp, r);\n\t\treturn tmp;\n\t}\n};\n\ntemplate <typename M>\nclass sparse_table {\n\tusing T = typename M::type;\n\tconst int n;\n\tvector<vector<T>> t;\npublic:\n\tsparse_table(const vector<T>& b) : n(b.size()), t(1, b) {\n\t\tfor (int i = 2, j = 1, p = 0; i <= n; i <<= 1, j++, p = 0) {\n\t\t\tt.emplace_back(n);\n\t\t\tfor (int k = 0; k + i <= n; k++)\n\t\t\t\tt[j][p++] = M::op(t[j - 1][k], t[j - 1][k + (i >> 1)]);\n\t\t}\n\t}\n\tT find(int l, int r) const { // [l, r)\n\t\tassert(0 <= l && l < r && r <= n);\n\t\tint i = 31 - __builtin_clz(r - l);\n\t\treturn M::op(t[i][l], t[i][r - (1 << i)]);\n\t}\n};\n\nclass heavy_light_decomposition {\n\tconst int n;\n\tvector<vector<int>> g;\n\tvector<int> par, head, in, out;\n\tvoid dfs1(int rt) {\n\t\tvector<int> size(n, 1);\n\t\tvector<size_t> iter(n);\n\t\tvector<pair<int, int>> stp;\n\t\tstp.reserve(n);\n\t\tstp.emplace_back(rt, -1);\n\t\twhile (!stp.empty()) {\n\t\t\tint v = stp.back().first;\n\t\t\tif (iter[v] < g[v].size()) {\n\t\t\t\tif (g[v][iter[v]] != stp.back().second) {\n\t\t\t\t\tstp.emplace_back(g[v][iter[v]], v);\n\t\t\t\t}\n\t\t\t\t++iter[v];\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tpar[v] = stp.back().second;\n\t\t\tfor (auto& u : g[v]) if (u == par[v]) {\n\t\t\t\tif (u != g[v].back()) swap(u, g[v].back());\n\t\t\t\tg[v].pop_back();\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\tfor (auto& u : g[v]) {\n\t\t\t\tsize[v] += size[u];\n\t\t\t\tif (size[u] > size[g[v].front()]) swap(u, g[v].front());\n\t\t\t}\n\t\t\tstp.pop_back();\n\t\t}\n\t}\n\tvoid dfs2(int rt) {\n\t\tint it = 0;\n\t\tvector<size_t> iter(n);\n\t\tvector<int> st; st.reserve(n);\n\t\tst.push_back(rt);\n\t\twhile (!st.empty()) {\n\t\t\tint v = st.back();\n\t\t\tif (!iter[v]) in[v] = it++;\n\t\t\tif (iter[v] < g[v].size()) {\n\t\t\t\tint u = g[v][iter[v]];\n\t\t\t\thead[u] = iter[v] ? u : head[v];\n\t\t\t\tst.push_back(u);\n\t\t\t\t++iter[v];\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tout[v] = it;\n\t\t\tst.pop_back();\n\t\t}\n\t}\npublic:\n\theavy_light_decomposition(int n_)\n\t\t: n(n_), g(n), par(n), head(n), in(n), out(n) {}\n\theavy_light_decomposition(const vector<vector<int>>& G)\n\t\t: n(G.size()), g(G), par(n), head(n), in(n), out(n) {}\n\tvoid add_edge(int u, int v) {\n\t\tg[u].push_back(v);\n\t\tg[v].push_back(u);\n\t}\n\tvoid build(int rt = 0) {\n\t\tdfs1(rt);\n\t\thead[rt] = rt;\n\t\tdfs2(rt);\n\t}\n\tint get_id(int v) {\n\t\treturn in[v];\n\t}\n\tint get_lca(int u, int v) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tif (head[u] == head[v]) return u;\n\t\t\tv = par[head[v]];\n\t\t}\n\t}\n\tvoid path_query(int u, int v, function<void(int, int)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tf(max(in[head[v]], in[u]), in[v] + 1);\n\t\t\tif (head[u] == head[v]) return;\n\t\t\tv = par[head[v]];\n\t\t}\n\t}\n\tvoid path_query(int u, int v, function<void(int, int, bool)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] <= in[v]) {\n\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1, false);\n\t\t\t\tif (head[u] == head[v]) return;\n\t\t\t\tv = par[head[v]];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tf(max(in[head[u]], in[v]), in[u] + 1, true);\n\t\t\t\tif (head[u] == head[v]) return;\n\t\t\t\tu = par[head[u]];\n\t\t\t}\n\t\t}\n\t}\n\tvoid edge_path_query(int u, int v, function<void(int, int)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) swap(u, v);\n\t\t\tif (head[u] != head[v]) {\n\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1);\n\t\t\t\tv = par[head[v]];\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (u != v) f(in[u] + 1, in[v] + 1);\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\tvoid edge_path_query(int u, int v, function<void(int, int, bool)> f) {\n\t\twhile (true) {\n\t\t\tif (in[u] > in[v]) {\n\t\t\t\tif (head[u] != head[v]) {\n\t\t\t\t\tf(max(in[head[u]], in[v]), in[u] + 1, true);\n\t\t\t\t\tu = par[head[u]];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (u != v) f(in[v] + 1, in[u] + 1, false);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tif (head[u] != head[v]) {\n\t\t\t\t\tf(max(in[head[v]], in[u]), in[v] + 1, false);\n\t\t\t\t\tv = par[head[v]];\n\t\t\t\t}\n\t\t\t\telse {\n\t\t\t\t\tif (u != v) f(in[u] + 1, in[v] + 1, false);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tvoid subtree_query(int v, function<void(int, int)> f) {\n\t\tf(in[v], out[v]);\n\t}\n};\n\nint calc(const basis& bs, int x, int k) {\n\tint cnt = 0;\n\tfor (int i = 0; i < WS; i++) cnt += bs[i] != 0;\n\tif (k >= (1 << cnt)) return -1;\n\tfor (int i = WS - 1; i >= 0; i--) if (bs[i] != 0) {\n\t\t--cnt;\n\t\tif (k < (1 << cnt)) {\n\t\t\tx = min(x, x ^ bs[i]);\n\t\t}\n\t\telse {\n\t\t\tk -= 1 << cnt;\n\t\t\tx = max(x, x ^ bs[i]);\n\t\t}\n\t}\n\treturn x;\n}\n\nint main()\n{\n\tios::sync_with_stdio(false), cin.tie(0);\n\tint N, M;\n\tcin >> N >> M;\n\tgraph G(N);\n\tfor (int i = 0; i < M; i++) {\n\t\tint u, v, c;\n\t\tcin >> u >> v >> c; --u, --v;\n\t\tG[u].emplace_back(v, c);\n\t\tG[v].emplace_back(u, c);\n\t}\n\tvector<int> cost(N);\n\tauto rps = enum_roop(G, cost);\n\tauto g = make_tree(G, rps);\n\tconst int n = N;\n\tN = g.size();\n\tassert(N == M + 1);\n\theavy_light_decomposition hl(g);\n\thl.build();\n\tvector<Monoid::type> md(N, Monoid::id());\n\tfor (int i = 0; i < N; i++) {\n\t\tauto val = Monoid::id();\n\t\tint id = hl.get_id(i);\n\t\tif (i >= n) add_basis(val, rps[i - n].second);\n\t\tmd[id] = val;\n\t}\n\tsparse_table<Monoid> st(md);\n\tint Q;\n\tcin >> Q;\n\twhile (Q--) {\n\t\tint x, y, k;\n\t\tcin >> x >> y >> k; --x, --y, --k;\n\t\tbasis bb = Monoid::id();\n\t\thl.path_query(x, y, [&](int u, int v) {\n\t\t\tmerge_basis(bb, st.find(u, v));\n\t\t});\n\t\tprintf(\"%d\\n\", calc(bb, cost[x] ^ cost[y], k));\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 5650, "memory_kb": 380964, "score_of_the_acc": -1.9995, "final_rank": 13 } ]
aoj_3140_cpp
D: Xor Array 問題文 整数 $N$ と $X$ が与えられます。 以下の条件を満たす長さ $N$ の数列の個数を $998244353$ で割った余りを求めてください。 数列は広義単調増加である。 数列の各要素は $0$ 以上 $X$ 以下である。 全ての要素の排他的論理和(xor)が $X$ である。 制約 $1 \leq N \leq 500$ $0 \leq X \leq 500$ $N$ と $X$ は整数である。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $X$ 出力 答えを出力せよ。 入力例1 2 3 出力例1 2 数列 $\{0,3\}$ と $\{1,2\}$ が条件を満たします。 入力例2 1 1 出力例2 1 数列 $\{1\}$ のみが条件を満たします。 入力例3 224 239 出力例3 400351036
[ { "submission_id": "aoj_3140_10570466", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#include<atcoder/modint>\ntypedef atcoder::modint998244353 mint;\nint main() {\n\tint n,x; cin >> n >> x;\n\t// dp[i][j][k]:length i,now max j,all xor k.\n\t// dp[i][k] -> ndp[i+2x][k]\n\t// dp[i][k] -> ndp[i+2x+1][k^j]\n\t\n\tvector dp(n+1,vector<mint>(512));\n\tdp[0][0]=1;\n\tfor (int i=0;i<=x;i++){\n\t\tfor (int j=n-1;j>=0;j--){\n\t\t\tfor (int k=0;k<512;k++){\n\t\t\t\tdp[j+1][k^i]+=dp[j][k];\n\t\t\t}\n\t\t}\n\t\tfor (int j=0;j<=n-2;j++){\n\t\t\tfor (int k=0;k<512;k++){\n\t\t\t\tdp[j+2][k]+=dp[j][k];\n\t\t\t}\n\t\t}\n\t}\n\tcout<<dp[n][x].val()<<endl;\n\t\n\t\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 4608, "score_of_the_acc": -0.1196, "final_rank": 4 }, { "submission_id": "aoj_3140_10198943", "code_snippet": "// AOJ #3140\n// Xor Array 2025.2.6\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nconst int MOD = 998244353;\n \nconst int MAX = 1000;\nll fact[MAX+1], invfact[MAX+1];\n \n// fast modular exponentiation\nll modexp(ll base, ll exp, ll mod) {\n ll result = 1;\n base %= mod;\n while(exp > 0) {\n if(exp & 1)\n result = (result * base) % mod;\n base = (base * base) % mod;\n exp >>= 1;\n }\n return result;\n}\n \n// 階乗と逆元の前計算\nvoid initFactorials(){\n fact[0] = 1;\n for (int i = 1; i <= MAX; i++){\n fact[i] = (fact[i-1] * i) % MOD;\n }\n invfact[MAX] = modexp(fact[MAX], MOD-2, MOD);\n for (int i = MAX; i >= 1; i--){\n invfact[i-1] = (invfact[i] * i) % MOD;\n }\n}\n \n// nCr の計算\nll nCr(int n, int r){\n if(r < 0 || r > n) return 0;\n return ((fact[n] * invfact[r]) % MOD * invfact[n-r]) % MOD;\n}\n \nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n int N, X;\n cin >> N >> X;\n\n int totalVals = X + 1;\n\n const int MAX_XOR = 512;\n int maxOnes = totalVals;\n \n vector<vector<int>> dp(MAX_XOR, vector<int>(maxOnes+1, 0));\n dp[0][0] = 1;\n \n for (int v = 0; v <= X; v++){\n vector<vector<int>> newdp(MAX_XOR, vector<int>(maxOnes+1, 0));\n for (int xorVal = 0; xorVal < MAX_XOR; xorVal++){\n for (int s = 0; s <= maxOnes; s++){\n int ways = dp[xorVal][s];\n if(ways == 0) continue;\n newdp[xorVal][s] = (newdp[xorVal][s] + ways) % MOD;\n if(s + 1 <= maxOnes){\n int newXor = xorVal ^ v;\n newdp[newXor][s+1] = (newdp[newXor][s+1] + ways) % MOD;\n }\n }\n }\n dp.swap(newdp);\n }\n\n vector<int> countPattern(maxOnes+1, 0);\n for (int s = 0; s <= maxOnes; s++){\n countPattern[s] = dp[X][s];\n }\n \n initFactorials();\n \n ll ans = 0;\n for (int s = 0; s <= maxOnes; s++){\n if(s > N) break;\n int rem = N - s;\n if(rem % 2 != 0) continue;\n int half = rem / 2;\n ll waysK = nCr(half + X, X);\n ll add = ((ll) countPattern[s] * waysK) % MOD;\n ans = (ans + add) % MOD;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 5196, "score_of_the_acc": -0.2319, "final_rank": 7 }, { "submission_id": "aoj_3140_9495982", "code_snippet": "// competitive-verifier: PROBLEM\n#include <cstdint>\n#include <iostream>\n#include <type_traits>\n#include <utility>\nnamespace internal {\n// @param m `1 <= m`\n// @return x mod m\nconstexpr std::int64_t safe_mod(std::int64_t x, std::int64_t m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n// Fast modular multiplication by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n std::uint64_t im;\n // @param m `1 <= m`\n explicit barrett(unsigned int m) : _m(m), im((std::uint64_t)(-1) / m + 1) {}\n // @return m\n unsigned int umod() const { return _m; }\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n std::uint64_t z = a;\n z *= b;\n std::uint64_t x = (std::uint64_t)(((__uint128_t)(z)*im) >> 64);\n std::uint64_t y = x * _m;\n return (unsigned int)(z - y + (z < y ? _m : 0));\n }\n};\nstruct montgomery {\n std::uint64_t _m;\n std::uint64_t im;\n std::uint64_t r2;\n // @param m `1 <= m`\n explicit constexpr montgomery(std::uint64_t m) : _m(m), im(m), r2(-__uint128_t(m) % m) {\n for (int i = 0; i < 5; ++i) im = im * (2 - _m * im);\n im = -im;\n }\n // @return m\n constexpr std::uint64_t umod() const { return _m; }\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n constexpr std::uint64_t mul(std::uint64_t a, std::uint64_t b) const { return mr(mr(a, b), r2); }\n constexpr std::uint64_t exp(std::uint64_t a, std::uint64_t b) const {\n std::uint64_t res = 1, p = mr(a, r2);\n while (b) {\n if (b & 1) res = mr(res, p);\n p = mr(p, p);\n b >>= 1;\n }\n return res;\n }\n constexpr bool same_pow(std::uint64_t x, int s, std::uint64_t n) const {\n x = mr(x, r2), n = mr(n, r2);\n for (int r = 0; r < s; r++) {\n if (x == n) return true;\n x = mr(x, x);\n }\n return false;\n }\n private:\n constexpr std::uint64_t mr(std::uint64_t x) const {\n return ((__uint128_t)(x * im) * _m + x) >> 64;\n }\n constexpr std::uint64_t mr(std::uint64_t a, std::uint64_t b) const {\n __uint128_t t = (__uint128_t)a * b;\n std::uint64_t inc = std::uint64_t(t) != 0;\n std::uint64_t x = t >> 64, y = ((__uint128_t)(a * b * im) * _m) >> 64;\n unsigned long long z = 0;\n bool f = __builtin_uaddll_overflow(x, y, &z);\n z += inc;\n return f ? z - _m : z;\n }\n};\nconstexpr bool is_SPRP32(std::uint32_t n, std::uint32_t a) {\n std::uint32_t d = n - 1, s = 0;\n while ((d & 1) == 0) ++s, d >>= 1;\n std::uint64_t cur = 1, pw = d;\n while (pw) {\n if (pw & 1) cur = (cur * a) % n;\n a = (std::uint64_t)a * a % n;\n pw >>= 1;\n }\n if (cur == 1) return true;\n for (std::uint32_t r = 0; r < s; r++) {\n if (cur == n - 1) return true;\n cur = cur * cur % n;\n }\n return false;\n}\n// given 2 <= n,a < 2^64, a prime, check whether n is a-SPRP\nconstexpr bool is_SPRP64(const montgomery &m, std::uint64_t a) {\n auto n = m.umod();\n if (n == a) return true;\n if (n % a == 0) return false;\n std::uint64_t d = n - 1;\n int s = 0;\n while ((d & 1) == 0) ++s, d >>= 1;\n std::uint64_t cur = m.exp(a, d);\n if (cur == 1) return true;\n return m.same_pow(cur, s, n - 1);\n}\nconstexpr bool is_prime_constexpr(std::uint64_t x) {\n if (x == 2 || x == 3 || x == 5 || x == 7) return true;\n if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;\n if (x < 121) return (x > 1);\n montgomery m(x);\n constexpr std::uint64_t bases[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};\n for (auto a : bases) {\n if (!is_SPRP64(m, a)) return false;\n }\n return true;\n}\nconstexpr bool is_prime_constexpr(std::int64_t x) {\n if (x < 0) return false;\n return is_prime_constexpr(std::uint64_t(x));\n}\nconstexpr bool is_prime_constexpr(std::uint32_t x) {\n if (x == 2 || x == 3 || x == 5 || x == 7) return true;\n if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;\n if (x < 121) return (x > 1);\n std::uint64_t h = x;\n h = ((h >> 16) ^ h) * 0x45d9f3b;\n h = ((h >> 16) ^ h) * 0x45d9f3b;\n h = ((h >> 16) ^ h) & 255;\n constexpr uint16_t bases[] = {\n 15591, 2018, 166, 7429, 8064, 16045, 10503, 4399, 1949, 1295, 2776, 3620, 560,\n 3128, 5212, 2657, 2300, 2021, 4652, 1471, 9336, 4018, 2398, 20462, 10277, 8028,\n 2213, 6219, 620, 3763, 4852, 5012, 3185, 1333, 6227, 5298, 1074, 2391, 5113,\n 7061, 803, 1269, 3875, 422, 751, 580, 4729, 10239, 746, 2951, 556, 2206,\n 3778, 481, 1522, 3476, 481, 2487, 3266, 5633, 488, 3373, 6441, 3344, 17,\n 15105, 1490, 4154, 2036, 1882, 1813, 467, 3307, 14042, 6371, 658, 1005, 903,\n 737, 1887, 7447, 1888, 2848, 1784, 7559, 3400, 951, 13969, 4304, 177, 41,\n 19875, 3110, 13221, 8726, 571, 7043, 6943, 1199, 352, 6435, 165, 1169, 3315,\n 978, 233, 3003, 2562, 2994, 10587, 10030, 2377, 1902, 5354, 4447, 1555, 263,\n 27027, 2283, 305, 669, 1912, 601, 6186, 429, 1930, 14873, 1784, 1661, 524,\n 3577, 236, 2360, 6146, 2850, 55637, 1753, 4178, 8466, 222, 2579, 2743, 2031,\n 2226, 2276, 374, 2132, 813, 23788, 1610, 4422, 5159, 1725, 3597, 3366, 14336,\n 579, 165, 1375, 10018, 12616, 9816, 1371, 536, 1867, 10864, 857, 2206, 5788,\n 434, 8085, 17618, 727, 3639, 1595, 4944, 2129, 2029, 8195, 8344, 6232, 9183,\n 8126, 1870, 3296, 7455, 8947, 25017, 541, 19115, 368, 566, 5674, 411, 522,\n 1027, 8215, 2050, 6544, 10049, 614, 774, 2333, 3007, 35201, 4706, 1152, 1785,\n 1028, 1540, 3743, 493, 4474, 2521, 26845, 8354, 864, 18915, 5465, 2447, 42,\n 4511, 1660, 166, 1249, 6259, 2553, 304, 272, 7286, 73, 6554, 899, 2816,\n 5197, 13330, 7054, 2818, 3199, 811, 922, 350, 7514, 4452, 3449, 2663, 4708,\n 418, 1621, 1171, 3471, 88, 11345, 412, 1559, 194};\n return is_SPRP32(x, bases[h]);\n}\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr std::int64_t pow_mod_constexpr(std::int64_t x, std::int64_t n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n std::uint64_t r = 1;\n std::uint64_t y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n std::int64_t d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr std::int64_t bases[3] = {2, 7, 61};\n for (std::int64_t a : bases) {\n std::int64_t t = d;\n std::int64_t y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) { return false; }\n }\n return true;\n}\ntemplate <int n>\nconstexpr bool is_prime = is_prime_constexpr(n);\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<std::int64_t, std::int64_t> inv_gcd(std::int64_t a, std::int64_t b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n std::int64_t s = b, t = a;\n std::int64_t m0 = 0, m1 = 1;\n while (t) {\n std::int64_t u = s / t;\n s -= t * u;\n m0 -= m1 * u;\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (std::int64_t)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) { x /= i; }\n }\n }\n if (x > 1) { divs[cnt++] = x; }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m>\nconstexpr int primitive_root = primitive_root_constexpr(m);\n} // namespace internal\n#include <cassert>\n#include <numeric>\nnamespace internal {\ntemplate <class T>\nusing is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;\ntemplate <class T>\nusing is_integral =\n typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value, make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\ntemplate <class T>\nusing to_unsigned_t = typename to_unsigned<T>::type;\n} // namespace internal\nnamespace internal {\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\ntemplate <class T>\nusing is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T>\nusing is_modint_t = std::enable_if_t<is_modint<T>::value>;\n} // namespace internal\ntemplate <int m, std::enable_if_t<(1 <= m)> * = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n public:\n static constexpr int mod() { return m; }\n static constexpr mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n constexpr static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T> * = nullptr>\n constexpr static_modint(T v) : _v(0) {\n std::int64_t x = (std::int64_t)(v % (std::int64_t)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T> * = nullptr>\n constexpr static_modint(T v) : _v(0) {\n _v = (unsigned int)(v % umod());\n }\n constexpr unsigned int val() const { return _v; }\n constexpr mint &operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n constexpr mint &operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n constexpr mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n constexpr mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n constexpr mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n constexpr mint &operator-=(const mint &rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n constexpr mint &operator*=(const mint &rhs) {\n std::uint64_t z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n constexpr mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n constexpr mint operator+() const { return *this; }\n constexpr mint operator-() const { return mint() - *this; }\n constexpr mint pow(std::int64_t n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n constexpr mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n friend constexpr mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }\n friend constexpr mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }\n friend constexpr mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }\n friend constexpr mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }\n friend constexpr bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }\n friend constexpr bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }\n friend std::istream &operator>>(std::istream &is, mint &rhs) {\n std::int64_t t;\n is >> t;\n rhs = mint(t);\n return is;\n }\n friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {\n return os << rhs._v;\n }\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\ntemplate <int id>\nstruct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n std::int64_t x = (std::int64_t)(v % (std::int64_t)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n unsigned int val() const { return _v; }\n mint &operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint &operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint &operator-=(const mint &rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint &operator*=(const mint &rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n mint pow(std::int64_t n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }\n friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }\n friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }\n friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }\n friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }\n friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }\n friend std::istream &operator>>(std::istream &is, mint &rhs) {\n std::int64_t t;\n is >> t;\n rhs = mint(t);\n return is;\n }\n friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {\n return os << rhs._v;\n }\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id>\ninternal::barrett dynamic_modint<id>::bt(998244353);\nusing modint998 = static_modint<998244353>;\nusing modint107 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\nnamespace internal {\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\ntemplate <class>\nstruct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n} // namespace internal\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nusing Mint = modint998;\nint main(void) {\n int n, k;\n cin >> n >> k;\n vector dp(k + 1, vector(512, Mint()));\n dp[0][0] = 1;\n rep (_, n) {\n vector ndp(k + 1, vector(512, Mint()));\n rep (i, k + 1) {\n rep (j, 512) {\n ndp[i][j ^ i] += dp[i][j];\n if (i < k)\n dp[i + 1][j] += dp[i][j];\n }\n }\n dp = ndp;\n }\n Mint ans = 0;\n rep (i, k + 1) ans += dp[i][k];\n co(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 5460, "score_of_the_acc": -0.2542, "final_rank": 8 }, { "submission_id": "aoj_3140_9123511", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=int64_t;\n\n#define rep(i, n) for (int i = 0; i < (n); i++)\n\nint main() {\n\n int n, x;\n cin >> n >> x;\n\n const int m = 512; // 512\n const int mod = 998244353;\n vector<vector<int>> dp(m, vector<int>(x + 1));\n rep(k, x + 1) dp[0][k] = 1;\n rep(i, n) {\n vector<vector<int>> nxt(m, vector<int>(x + 1));\n rep(j, m) {\n for (int k = 0; k <= x; k++) {\n /*if ((j ^ k) < m)*/ { nxt[j ^ k][k] += dp[j][k]; }\n }\n }\n rep(j, m) {\n rep(k, x) {\n nxt[j][k + 1] += nxt[j][k];\n nxt[j][k + 1] %= mod;\n }\n }\n\n dp.swap(nxt);\n }\n\n cout << dp[x][x] << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 520, "memory_kb": 5188, "score_of_the_acc": -0.7318, "final_rank": 16 }, { "submission_id": "aoj_3140_6551538", "code_snippet": "#include <bits/stdc++.h>\n#define all(v) v.begin(), v.end()\n#define rall(v) v.rbegin(), v.rend()\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define drep(i,j,n) for(int i=0;i<(int)(n-1);i++)for(int j=i+1;j<(int)(n);j++)\n#define trep(i,j,k,n) for(int i=0;i<(int)(n-2);i++)for(int j=i+1;j<(int)(n-1);j++)for(int k=j+1;k<(int)(n);k++)\n#define codefor int test;scanf(\"%d\",&test);while(test--)\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define yes(ans) if(ans)printf(\"yes\\n\");else printf(\"no\\n\")\n#define Yes(ans) if(ans)printf(\"Yes\\n\");else printf(\"No\\n\")\n#define YES(ans) if(ans)printf(\"YES\\n\");else printf(\"NO\\n\")\n#define popcount(v) __builtin_popcountll(v)\n#define vector2d(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define vector3d(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\n#define vector4d(type,name,h,w,d,...) vector<vector<vector<vector<type>>>>name(h,vector<vector<vector<type>>>(w,vector<vector<type>>(d,vector<type>(__VA_ARGS__))))\nusing namespace std;\nusing ll = long long;\ntemplate<class T> using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;\nconst int MOD=1000000007;\nconst int MOD2=998244353;\nconst int INF=1<<30;\nconst ll INF2=1LL<<60;\nvoid scan(int& a){scanf(\"%d\",&a);}\nvoid scan(long long& a){scanf(\"%lld\",&a);}\ntemplate<class T,class L>void scan(pair<T, L>& p){scan(p.first);scan(p.second);}\ntemplate<class T,class U,class V>void scan(tuple<T,U,V>& p){scan(get<0>(p));scan(get<1>(p));scan(get<2>(p));}\ntemplate<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i);}\ntemplate<class T> void scan(T& a){cin>>a;}\ntemplate<class T> void scan(vector<T>& vec){for(auto&& it:vec)scan(it);}\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){scan(head);in(tail...);}\nvoid print(const int& a){printf(\"%d\",a);}\nvoid print(const long long& a){printf(\"%lld\",a);}\nvoid print(const double& a){printf(\"%.15lf\",a);}\ntemplate<class T,class L>void print(const pair<T, L>& p){print(p.first);putchar(' ');print(p.second);}\ntemplate<class T> void print(const T& a){cout<<a;}\ntemplate<class T> void print(const vector<T>& vec){if(vec.empty())return;print(vec[0]);for(auto it=vec.begin();++it!= vec.end();){putchar(' ');print(*it);}}\nvoid out(){putchar('\\n');}\ntemplate<class T> void out(const T& t){print(t);putchar('\\n');}\ntemplate <class Head, class... Tail> void out(const Head& head,const Tail&... tail){print(head);putchar(' ');out(tail...);}\ntemplate<class T> void dprint(const T& a){cerr<<a;}\ntemplate<class T> void dprint(const vector<T>& vec){if(vec.empty())return;cerr<<vec[0];for(auto it=vec.begin();++it!= vec.end();){cerr<<\" \"<<*it;}}\nvoid debug(){cerr<<'\\n';}\ntemplate<class T> void debug(const T& t){dprint(t);cerr<<endl;}\ntemplate <class Head, class... Tail> void debug(const Head& head, const Tail&... tail){dprint(head);cerr<<\" \";debug(tail...);}\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }\nll modinv(ll a, ll m) {ll b = m, u = 1, v = 0;while (b) {ll t = a / b;a -= t * b; swap(a, b);u -= t * v; swap(u, v);}u %= m;if (u < 0) u += m;return u;}\nll updivide(ll a,ll b){return (a+b-1)/b;}\ntemplate<class T> void chmax(T &a,const T b){if(b>a)a=b;}\ntemplate<class T> void chmin(T &a,const T b){if(b<a)a=b;}\n\nnamespace internal {constexpr long long safe_mod(long long x, long long m) {x %= m;if (x < 0) x += m;return x;}struct barrett {unsigned int _m;unsigned long long im;explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}unsigned int umod() const { return _m; }};\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {if (m == 1) return 0;unsigned int _m = (unsigned int)(m);unsigned long long r = 1;unsigned long long y = safe_mod(x, m);while (n) {if (n & 1) r = (r * y) % _m;y = (y * y) % _m;n >>= 1;}return r;}constexpr bool is_prime_constexpr(int n) {if (n <= 1) return false;if (n == 2 || n == 7 || n == 61) return true;if (n % 2 == 0) return false;long long d = n - 1;while (d % 2 == 0) d /= 2;constexpr long long bases[3] = {2, 7, 61};for (long long a : bases) {long long t = d;long long y = pow_mod_constexpr(a, t, n);while (t != n - 1 && y != 1 && y != n - 1) {y = y * y % n;t <<= 1;}if (y != n - 1 && t % 2 == 0) {return false;}}return true;}template <int n> constexpr bool is_prime = is_prime_constexpr(n);\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {a = safe_mod(a, b);if (a == 0) return {b, 0};long long s = b, t = a;long long m0 = 0, m1 = 1;while (t) {long long u = s / t;s -= t * u;m0 -= m1 * u;auto tmp = s;s = t;t = tmp;tmp = m0;m0 = m1;m1 = tmp;}if (m0 < 0) m0 += b / s;return {s, m0};}constexpr int primitive_root_constexpr(int m) {if (m == 2) return 1;if (m == 167772161) return 3;if (m == 469762049) return 3;if (m == 754974721) return 11;if (m == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;int x = (m - 1) / 2;while (x % 2 == 0) x /= 2;for (int i = 3; (long long)(i)*i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) {x /= i;}}}if (x > 1) {divs[cnt++] = x;}for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {ok = false;break;}}if (ok) return g;}}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);unsigned long long floor_sum_unsigned(unsigned long long n,unsigned long long m,unsigned long long a,unsigned long long b) {unsigned long long ans = 0;while (true) {if (a >= m) {ans += n * (n - 1) / 2 * (a / m);a %= m;}if (b >= m) {ans += n * (b / m);b %= m;}unsigned long long y_max = a * n + b;if (y_max < m) break;n = (unsigned long long)(y_max / m);b = (unsigned long long)(y_max % m);std::swap(m, a);}return ans;}\ntemplate <class T> using is_integral = typename std::is_integral<T>;template <class T>using is_signed_int =typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<is_integral<T>::value &&std::is_unsigned<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int<T>::value,std::make_unsigned<T>,std::common_type<T>>::type;template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;template <class T> using to_unsigned_t = typename to_unsigned<T>::type;struct modint_base {};struct static_modint_base : modint_base {};template <class T> using is_modint = std::is_base_of<modint_base, T>;template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;} // namespace internal\ntemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>\nstruct static_modint : internal::static_modint_base {using mint = static_modint;\n public:\n static constexpr int mod() { return m; }static mint raw(int v) {mint x;x._v = v;return x;}static_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>static_modint(T v) {long long x = (long long)(v % (long long)(umod()));if (x < 0) x += umod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>static_modint(T v) {_v = (unsigned int)(v % umod());}unsigned int val() const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v -= rhs._v;if (_v >= umod()) _v += umod();return *this;}mint& operator*=(const mint& rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {if (prime) {assert(_v);return pow(umod() - 2);} else {auto eg = internal::inv_gcd(_v, m);assert(eg.first == 1);return eg.second;}}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}friend istream& operator>>(istream& os,mint& rhs) noexcept {long long v;rhs = mint{(os >> v, v)};return os;}friend constexpr ostream& operator << (ostream &os, const mint& rhs) noexcept {return os << rhs._v;}\n private:\n unsigned int _v;static constexpr unsigned int umod() { return m; }static constexpr bool prime = internal::is_prime<m>;\n};\nusing mint = static_modint<1000000007>;\nusing mint2 = static_modint<998244353>;\n\nint main(){\n INT(n,x);\n vector2d(mint2,dp,x+2,512);\n dp[0][0]=1;\n for(int i=0;i<n;i++){\n vector2d(mint2,ndp,x+2,512);\n for(int j=0;j<=x;j++){\n for(int k=0;k<512;k++){\n ndp[j][j^k]+=dp[j][k];\n dp[j+1][k]+=dp[j][k];\n }\n }\n swap(ndp,dp);\n }\n mint2 ans;\n for(int i=0;i<=x;i++)ans+=dp[i][x];\n out(ans);\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 5192, "score_of_the_acc": -0.2819, "final_rank": 10 }, { "submission_id": "aoj_3140_5979603", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 998244353 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n x %= mod;\n if(x == 0) return 0;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n BIT(){}\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n void build(int n) {\n N = n;\n node.resize(N+10);\n }\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash{\n\n using ull = unsigned long long;\n const ull mod = (1ULL << 61) - 1;\n const ull MASK30 = (1ULL << 30) - 1;\n const ull MASK31 = (1ULL << 31) - 1;\n\n const ull MASK61 = mod;\n\n ull base;\n int n;\n vector<ull> hash, pow;\n\n RollingHash(const string &s)\n {\n random_device rnd;\n mt19937_64 mt(rnd());\n base = 1001;\n \n n = (int)s.size();\n hash.assign(n+1, 0);\n pow.assign(n+1, 1);\n \n for(int i=0; i<n; i++){\n hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);\n pow[i+1] = calc_mod(mul(pow[i], base));\n }\n }\n\n ull calc_mod(ull x){\n ull xu = x >> 61;\n ull xd = x & MASK61;\n ull res = xu + xd;\n if(res >= mod) res -= mod;\n return res;\n }\n\n ull mul(ull a, ull b){\n ull au = a >> 31;\n ull ad = a & MASK31;\n ull bu = b >> 31;\n ull bd = b & MASK31;\n ull mid = ad * bu + au * bd;\n ull midu = mid >> 30;\n ull midd = mid & MASK30;\n return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);\n }\n\n //[l,r)のハッシュ値\n inline ull get(int l, int r){\n ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));\n return res;\n }\n //string tのハッシュ値\n inline ull get(string t){\n ull res = 0;\n for(int i=0; i<t.size(); i++){\n res = calc_mod(mul(res, base)+t[i]);\n }\n return res;\n }\n //string s中のtの数をカウント\n inline int count(string t) {\n if(t.size() > n) return 0;\n auto hs = get(t);\n int res = 0;\n for(int i=0; i<n-t.size()+1; i++){\n if(get(i, i+t.size()) == hs) res++; \n }\n return res;\n }\n\n /* \n concat \n @verify https://codeforces.com/problemset/problem/514/C\n */\n inline ull concat(ull h1, ull h2, int h2len){\n return calc_mod(h2 + mul(h1, pow[h2len]));\n }\n\n // LCPを求める S[a:] T[b:]\n inline int LCP(int a, int b){\n int len = min((int)hash.size()-a, (int)hash.size()-b);\n \n int lb = -1, ub = len;\n while(ub-lb>1){\n int mid = (lb+ub)/2;\n\n if(get(a, a+mid) == get(b, b+mid)) lb = mid;\n else ub = mid;\n }\n return lb;\n }\n};\nmodint dp[510][(1<<9)];\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n\n int N, X; cin >> N >> X;\n dp[0][0] = 1;\n for(int i=0; i<=X; i++) {\n for(int j=0; j<N; j++) {\n for(int k=0; k<(1<<9); k++) {\n dp[j+1][k^i] += dp[j][k];\n }\n }\n }\n cout << dp[N][X] << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 4468, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3140_5022178", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template_no_Ruby.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 6 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T> T div_ceil(T n, T m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T> T div_ceil2(T n, T m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T> T middle(const T& l, const T& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool in_range(const T& v, const T& min, const T& max) {\n\treturn min <= v && v < max;\n}\ntemplate <class T> bool in_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\ntemplate <class T, class U> T Pow(T a, U n) {\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U> T Powmod(T a, U n, T mod) {\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 7 \"/home/yuruhiya/programming/library/template/template_no_Ruby.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 5 \"/home/yuruhiya/programming/library/Math/modint.cpp\"\nusing namespace std;\n\ntemplate <int MOD> struct modint {\n\tusing T = long long;\n\tT n;\n\tconstexpr modint(const T x = 0) : n(x % MOD) {\n\t\tif (n < 0) n += MOD;\n\t}\n\tconstexpr int get_mod() const {\n\t\treturn MOD;\n\t}\n\tconstexpr modint operator+() const {\n\t\treturn *this;\n\t}\n\tconstexpr modint operator-() const {\n\t\treturn n ? MOD - n : 0;\n\t}\n\tconstexpr modint& operator++() {\n\t\tif (MOD <= ++n) n = 0;\n\t\treturn *this;\n\t}\n\tconstexpr modint& operator--() {\n\t\tif (n <= 0) n = MOD;\n\t\tn--;\n\t\treturn *this;\n\t}\n\tconstexpr modint operator++(int) {\n\t\tmodint t = *this;\n\t\t++*this;\n\t\treturn t;\n\t}\n\tconstexpr modint operator--(int) {\n\t\tmodint t = *this;\n\t\t--*this;\n\t\treturn t;\n\t}\n\tconstexpr modint next() const {\n\t\treturn ++modint(*this);\n\t}\n\tconstexpr modint pred() const {\n\t\treturn --modint(*this);\n\t}\n\tconstexpr modint operator+(const modint& m) const {\n\t\treturn modint(*this) += m;\n\t}\n\tconstexpr modint operator-(const modint& m) const {\n\t\treturn modint(*this) -= m;\n\t}\n\tconstexpr modint operator*(const modint& m) const {\n\t\treturn modint(*this) *= m;\n\t}\n\tconstexpr modint operator/(const modint& m) const {\n\t\treturn modint(*this) /= m;\n\t}\n\tconstexpr modint& operator+=(const modint& m) {\n\t\tn += m.n;\n\t\tif (n >= MOD) n -= MOD;\n\t\treturn *this;\n\t}\n\tconstexpr modint& operator-=(const modint& m) {\n\t\tn -= m.n;\n\t\tif (n < 0) n += MOD;\n\t\treturn *this;\n\t}\n\tconstexpr modint& operator*=(const modint& m) {\n\t\tn = n * m.n % MOD;\n\t\treturn *this;\n\t}\n\tconstexpr modint& operator/=(const modint& m) {\n\t\tT a = m.n, b = MOD, u = 1, v = 0;\n\t\twhile (b) {\n\t\t\tT t = a / b;\n\t\t\ta -= t * b;\n\t\t\tswap(a, b);\n\t\t\tu -= t * v;\n\t\t\tswap(u, v);\n\t\t}\n\t\tn = n * u % MOD;\n\t\tif (n < 0) n += MOD;\n\t\treturn *this;\n\t}\n\tconstexpr bool operator==(const modint& m) const {\n\t\treturn n == m.n;\n\t}\n\tconstexpr bool operator!=(const modint& m) const {\n\t\treturn n != m.n;\n\t}\n\ttemplate <class M> constexpr modint pow(M m) const {\n\t\tif (0 <= m) {\n\t\t\tmodint t = n, result = 1;\n\t\t\twhile (m > 0) {\n\t\t\t\tif (m & 1) {\n\t\t\t\t\tresult *= t;\n\t\t\t\t\tm--;\n\t\t\t\t} else {\n\t\t\t\t\tt *= t;\n\t\t\t\t\tm >>= 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn result;\n\t\t} else {\n\t\t\treturn (modint(1) / n).pow(-m);\n\t\t}\n\t}\n\ttemplate <class M> constexpr modint operator^(M m) const {\n\t\treturn pow(m);\n\t}\n\tfriend ostream& operator<<(ostream& os, const modint<MOD>& m) {\n\t\treturn os << m.n;\n\t}\n\tfriend istream& operator>>(istream& is, modint<MOD>& m) {\n\t\tlong long x;\n\t\tcin >> x;\n\t\tm = modint(x);\n\t\treturn is;\n\t}\n};\nusing mint = modint<1000000007>;\nusing VM = vector<mint>;\nmint operator\"\"_m(unsigned long long n) {\n\treturn n;\n}\n#line 3 \"a.cpp\"\n\nint main() {\n\tini(n, x);\n\tauto dp = make_vector<modint<998244353>>({n + 1, 512});\n\trep(i, n + 1) dp[i][0] = 1;\n\tFOR(val, 1, x + 1) {\n\t\trep(i, n) rep(j, 512) {\n\t\t\tdp[i + 1][j ^ val] += dp[i][j];\n\t\t}\n\t}\n\tout(dp[n][x]);\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 5164, "score_of_the_acc": -0.0313, "final_rank": 2 }, { "submission_id": "aoj_3140_5022174", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template_no_Ruby.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 6 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T> T div_ceil(T n, T m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T> T div_ceil2(T n, T m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T> T middle(const T& l, const T& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool in_range(const T& v, const T& min, const T& max) {\n\treturn min <= v && v < max;\n}\ntemplate <class T> bool in_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\ntemplate <class T, class U> T Pow(T a, U n) {\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U> T Powmod(T a, U n, T mod) {\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 7 \"/home/yuruhiya/programming/library/template/template_no_Ruby.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 5 \"/home/yuruhiya/programming/library/Math/modint.cpp\"\nusing namespace std;\n\ntemplate <int MOD> struct modint {\n\tusing T = long long;\n\tT n;\n\tconstexpr modint(const T x = 0) : n(x % MOD) {\n\t\tif (n < 0) n += MOD;\n\t}\n\tconstexpr int get_mod() const {\n\t\treturn MOD;\n\t}\n\tconstexpr modint operator+() const {\n\t\treturn *this;\n\t}\n\tconstexpr modint operator-() const {\n\t\treturn n ? MOD - n : 0;\n\t}\n\tconstexpr modint& operator++() {\n\t\tif (MOD <= ++n) n = 0;\n\t\treturn *this;\n\t}\n\tconstexpr modint& operator--() {\n\t\tif (n <= 0) n = MOD;\n\t\tn--;\n\t\treturn *this;\n\t}\n\tconstexpr modint operator++(int) {\n\t\tmodint t = *this;\n\t\t++*this;\n\t\treturn t;\n\t}\n\tconstexpr modint operator--(int) {\n\t\tmodint t = *this;\n\t\t--*this;\n\t\treturn t;\n\t}\n\tconstexpr modint next() const {\n\t\treturn ++modint(*this);\n\t}\n\tconstexpr modint pred() const {\n\t\treturn --modint(*this);\n\t}\n\tconstexpr modint operator+(const modint& m) const {\n\t\treturn modint(*this) += m;\n\t}\n\tconstexpr modint operator-(const modint& m) const {\n\t\treturn modint(*this) -= m;\n\t}\n\tconstexpr modint operator*(const modint& m) const {\n\t\treturn modint(*this) *= m;\n\t}\n\tconstexpr modint operator/(const modint& m) const {\n\t\treturn modint(*this) /= m;\n\t}\n\tconstexpr modint& operator+=(const modint& m) {\n\t\tn += m.n;\n\t\tif (n >= MOD) n -= MOD;\n\t\treturn *this;\n\t}\n\tconstexpr modint& operator-=(const modint& m) {\n\t\tn -= m.n;\n\t\tif (n < 0) n += MOD;\n\t\treturn *this;\n\t}\n\tconstexpr modint& operator*=(const modint& m) {\n\t\tn = n * m.n % MOD;\n\t\treturn *this;\n\t}\n\tconstexpr modint& operator/=(const modint& m) {\n\t\tT a = m.n, b = MOD, u = 1, v = 0;\n\t\twhile (b) {\n\t\t\tT t = a / b;\n\t\t\ta -= t * b;\n\t\t\tswap(a, b);\n\t\t\tu -= t * v;\n\t\t\tswap(u, v);\n\t\t}\n\t\tn = n * u % MOD;\n\t\tif (n < 0) n += MOD;\n\t\treturn *this;\n\t}\n\tconstexpr bool operator==(const modint& m) const {\n\t\treturn n == m.n;\n\t}\n\tconstexpr bool operator!=(const modint& m) const {\n\t\treturn n != m.n;\n\t}\n\ttemplate <class M> constexpr modint pow(M m) const {\n\t\tif (0 <= m) {\n\t\t\tmodint t = n, result = 1;\n\t\t\twhile (m > 0) {\n\t\t\t\tif (m & 1) {\n\t\t\t\t\tresult *= t;\n\t\t\t\t\tm--;\n\t\t\t\t} else {\n\t\t\t\t\tt *= t;\n\t\t\t\t\tm >>= 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn result;\n\t\t} else {\n\t\t\treturn (modint(1) / n).pow(-m);\n\t\t}\n\t}\n\ttemplate <class M> constexpr modint operator^(M m) const {\n\t\treturn pow(m);\n\t}\n\tfriend ostream& operator<<(ostream& os, const modint<MOD>& m) {\n\t\treturn os << m.n;\n\t}\n\tfriend istream& operator>>(istream& is, modint<MOD>& m) {\n\t\tlong long x;\n\t\tcin >> x;\n\t\tm = modint(x);\n\t\treturn is;\n\t}\n};\nusing mint = modint<1000000007>;\nusing VM = vector<mint>;\nmint operator\"\"_m(unsigned long long n) {\n\treturn n;\n}\n#line 3 \"a.cpp\"\n\nint main() {\n\tini(n, x);\n\tauto dp = make_vector<modint<998244353>>({n + 1, 512});\n\trep(i, n) dp[i][0] = 1;\n\tFOR(val, 1, x + 1) {\n\t\trep(i, n) rep(j, 512) {\n\t\t\tdp[i + 1][j ^ val] += dp[i][j];\n\t\t}\n\t}\n\tout(dp[n][x]);\n}", "accuracy": 0.5853658536585366, "time_ms": 100, "memory_kb": 5080, "score_of_the_acc": -0.0295, "final_rank": 20 }, { "submission_id": "aoj_3140_4885415", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, m, n) for(int(i) = (int)(m); i < (int)(n); ++i)\n#define rep2(i, m, n) for(int(i) = (int)(n)-1; i >= (int)(m); --i)\n#define REP(i, n) rep(i, 0, n)\n#define REP2(i, n) rep2(i, 0, n)\n#define all(hoge) (hoge).begin(), (hoge).end()\n#define en '\\n'\nusing ll = long long;\nusing ull = unsigned long long;\ntemplate <class T>\nusing vec = vector<T>;\ntemplate <class T>\nusing vvec = vector<vec<T>>;\ntypedef pair<ll, ll> P;\nusing tp = tuple<ll, ll, ll>;\nconstexpr long long INF = 1LL << 60;\nconstexpr int INF_INT = 1 << 25;\n//constexpr long long MOD = (ll)1e9 + 7;\nconstexpr long long MOD = 998244353LL;\nusing ld = long double;\nstatic const ld pi = 3.141592653589793L;\ntypedef vector<ll> Array;\ntypedef vector<Array> Matrix;\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\n//グラフ関連\nstruct Edge {\n ll to, cap, rev;\n Edge(ll _to, ll _cap, ll _rev) {\n to = _to;\n cap = _cap;\n rev = _rev;\n }\n};\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\n\nvoid add_edge(Graph &G, ll from, ll to, ll cap, bool revFlag, ll revCap) {\n G[from].push_back(Edge(to, cap, (ll)G[to].size()));\n if(revFlag)\n G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1));\n}\n\ntemplate <int mod>\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod)\n x -= mod;\n return *this;\n }\n\n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod)\n x -= mod;\n return *this;\n }\n\n ModInt &operator*=(const ModInt &p) {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n\n bool operator==(const ModInt &p) const { return x == p.x; }\n\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1)\n ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\n\nusing mint = ModInt<MOD>;\n\nvoid solve() {\n ll n, x;\n cin >> n >> x;\n\n vvec<mint> dp(520, vec<mint>(510, 0)); //i番目の数字までに、最後の値がsで、j個使った場合\n dp[0][0] = 1;\n REP(i, x + 1) {\n vvec<mint> ndp(520, vec<mint>(510, 0));\n REP(j, 520) {\n REP(k, n + 1) {\n if(dp[j][k].x == 0)\n continue;\n if(k + 2 <= n)\n dp[j][k + 2] += dp[j][k]; //2個使う\n if(k + 1 <= n)\n ndp[j ^ i][k + 1] += dp[j][k]; //1個使う\n ndp[j][k] += dp[j][k]; //使わない\n }\n }\n swap(dp, ndp);\n }\n\n cout << dp[x][n] << en;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout.tie(0);\n /*\n ll t;\n cin >> t;\n while(t--)*/\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 270, "memory_kb": 5204, "score_of_the_acc": -0.3154, "final_rank": 11 }, { "submission_id": "aoj_3140_4875792", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\nusing Int = long long;\nconst char newl = '\\n';\n\n\ntemplate<typename T,T MOD = 1000000007>\nstruct Mint{\n static constexpr T mod = MOD;\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n Mint pow(long long k){\n Mint res(1),tmp(v);\n while(k){\n if(k&1) res*=tmp;\n tmp*=tmp;\n k>>=1;\n }\n return res;\n }\n\n static Mint add_identity(){return Mint(0);}\n static Mint mul_identity(){return Mint(1);}\n\n Mint inv(){return pow(MOD-2);}\n\n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n Mint& operator/=(Mint a){return (*this)*=a.inv();}\n\n Mint operator+(Mint a) const{return Mint(v)+=a;}\n Mint operator-(Mint a) const{return Mint(v)-=a;}\n Mint operator*(Mint a) const{return Mint(v)*=a;}\n Mint operator/(Mint a) const{return Mint(v)/=a;}\n\n Mint operator-() const{return v?Mint(MOD-v):Mint(v);}\n\n bool operator==(const Mint a)const{return v==a.v;}\n bool operator!=(const Mint a)const{return v!=a.v;}\n bool operator <(const Mint a)const{return v <a.v;}\n\n static Mint comb(long long n,int k){\n Mint num(1),dom(1);\n for(int i=0;i<k;i++){\n num*=Mint(n-i);\n dom*=Mint(i+1);\n }\n return num/dom;\n }\n};\ntemplate<typename T,T MOD> constexpr T Mint<T, MOD>::mod;\ntemplate<typename T,T MOD>\nostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}\n\n\ntemplate<typename M_>\nclass Enumeration{\n using M = M_;\nprotected:\n static vector<M> fact,finv,invs;\npublic:\n static void init(int n){\n n=min<decltype(M::mod)>(n,M::mod-1);\n\n int m=fact.size();\n if(n<m) return;\n\n fact.resize(n+1,1);\n finv.resize(n+1,1);\n invs.resize(n+1,1);\n\n if(m==0) m=1;\n for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i);\n finv[n]=M(1)/fact[n];\n for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i);\n for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1];\n }\n\n static M Fact(int n){\n init(n);\n return fact[n];\n }\n static M Finv(int n){\n init(n);\n return finv[n];\n }\n static M Invs(int n){\n init(n);\n return invs[n];\n }\n\n static M C(int n,int k){\n if(n<k||k<0) return M(0);\n init(n);\n return fact[n]*finv[n-k]*finv[k];\n }\n\n static M P(int n,int k){\n if(n<k||k<0) return M(0);\n init(n);\n return fact[n]*finv[n-k];\n }\n\n // put n identical balls into k distinct boxes\n static M H(int n,int k){\n if(n<0||k<0) return M(0);\n if(!n&&!k) return M(1);\n init(n+k);\n return C(n+k-1,n);\n }\n};\ntemplate<typename M>\nvector<M> Enumeration<M>::fact=vector<M>();\ntemplate<typename M>\nvector<M> Enumeration<M>::finv=vector<M>();\ntemplate<typename M>\nvector<M> Enumeration<M>::invs=vector<M>();\n\n//INSERT ABOVE HERE\n\nusing M = Mint<int, 998244353>;\nconst int MAX = 512;\nM dp[MAX][MAX]={};\nM nx[MAX][MAX]={};\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,x;\n cin>>n>>x;\n\n dp[0][0]=M(1);\n for(int v=1;v<=x;v++){\n for(int i=0;i<=n;i++){\n for(int j=0;j<MAX;j++){\n nx[i+1][j^v]+=dp[i][j];\n nx[i+0][j^0]+=dp[i][j];\n }\n }\n\n for(int i=0;i<=n;i++){\n for(int j=0;j<MAX;j++){\n dp[i][j]=nx[i][j];\n nx[i][j]=M(0);\n }\n }\n }\n\n using E = Enumeration<M>;\n E::init(1000);\n\n M ans{0};\n for(int i=0;i<=n;i++){\n int r=n-i;\n for(int j=0;j<=r;j++){\n if((r-j)&1) continue;\n ans+=dp[i][x]*E::H((r-j)/2,x);\n }\n }\n\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 5544, "score_of_the_acc": -0.2559, "final_rank": 9 }, { "submission_id": "aoj_3140_4746873", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i, n) for(int i = 0; i < (n); ++i)\nusing namespace std;\n\ntemplate<int64_t MOD> class ModInt {\npublic:\n int64_t x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t v) : x((v % MOD + MOD) % MOD) {}\n constexpr ModInt operator - () const noexcept { return x ? MOD - x : 0;}\n constexpr ModInt operator + (const ModInt a) const noexcept { return ModInt(*this) += a;}\n constexpr ModInt operator - (const ModInt a) const noexcept { return ModInt(*this) -= a;}\n constexpr ModInt operator * (const ModInt a) const noexcept { return ModInt(*this) *= a;}\n constexpr ModInt operator / (const ModInt a) const noexcept { return ModInt(*this) /= a;}\n constexpr ModInt operator / (const int64_t a) const noexcept { return ModInt(*this) /= a;}\n constexpr ModInt operator += (const ModInt a) noexcept {\n x += a.x;\n if (x >= MOD) x -= MOD;\n return *this;\n }\n constexpr ModInt operator += (const int64_t a) noexcept {\n auto hs = ModInt<MOD>(a);\n (*this) += hs;\n return *this;\n }\n constexpr ModInt operator -= (const ModInt a) noexcept {\n if (x < a.x) x += MOD;\n x -= a.x;\n return *this;\n }\n constexpr ModInt operator -= (const int64_t a) noexcept {\n auto hs = ModInt<MOD>(a);\n (*this) -= hs;\n return *this;\n }\n constexpr ModInt operator *= (const ModInt a) noexcept {\n x = x * a.x % MOD;\n return *this;\n }\n constexpr ModInt operator *= (const int64_t a) noexcept {\n auto hs = ModInt<MOD>(a);\n (*this) *= hs;\n return *this;\n }\n constexpr ModInt &operator /= (ModInt a) noexcept {\n int64_t exp = MOD - 2;\n while (exp > 0) {\n if (exp & 1ul) *this *= a;\n a *= a;\n exp >>= 1ul;\n }\n return *this;\n }\n constexpr ModInt &operator /= (int64_t a) noexcept {\n auto hs = ModInt<MOD>(a);\n (*this) /= hs;\n return *this;\n }\n constexpr ModInt &operator ++ () noexcept {\n return *this;\n }\n constexpr ModInt operator ++ (int) noexcept {\n if (++x >= MOD) x -= MOD;\n return *this;\n }\n constexpr ModInt &operator -- () noexcept {\n return *this;\n }\n constexpr ModInt operator -- (int) noexcept {\n if (x-- == 0) x += MOD;\n return *this;\n }\n constexpr bool operator < (const ModInt a) const noexcept { return x < a.x;}\n constexpr bool operator == (const ModInt a) const noexcept { return this->x == a.x;}\n constexpr bool operator != (const ModInt a) const noexcept { return !(*this == a);}\n friend istream &operator >> (istream &in, ModInt &m) {\n in >> m.x;\n if (m.x < 0) m.x += MOD;\n m.x %= MOD;\n return in;\n }\n friend ostream &operator << (ostream &out, const ModInt &p) { return out << p.x;}\n constexpr ModInt pow(int64_t p) const {\n ModInt ret(1);\n ModInt mul(x);\n while (p > 0) {\n if (p & 1ul) ret *= mul;\n mul *= mul;\n p >>= 1ul;\n }\n return ret;\n }\n};\n\nconst int64_t MOD = 998244353LL;\nusing mint = ModInt<MOD>;\n\nconst int M = 512;\n\nmint dp[2][M][M];\n\nint main() {\n\tint N, X;\n cin >> N >> X;\n rep(j, X + 1) dp[0][j][0] = 1;\n\tfor(int i = 1; i <= N; ++i) {\n rep(j, X + 1) rep(x, M) {\n dp[i & 1][j][x] = dp[(i - 1) & 1][j][x ^ j];\n if(j) dp[i & 1][j][x] += dp[i & 1][j - 1][x];\n }\n }\n cout << dp[N & 1][X][X] << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 7084, "score_of_the_acc": -0.1382, "final_rank": 5 }, { "submission_id": "aoj_3140_4397339", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(ll i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 510000;\nll dy[8] = {0,1,0,-1,1,-1,1,-1};\nll dx[8] = {1,0,-1,0,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){cout << a << \" \" << b << \"\\n\";}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << a << \" \" << b << \" \" << c << \"\\n\";\n}\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\nint dp[2][525][505];\n\nint main(){\n\tint n,x; cin >> n >> x;\n\trep(k,x+1) dp[1][0][k] = 1;\n\trep(i,n){\n\t\trep(j,512){\n\t\t\trep(k,x+1){\n\t\t\t\tdp[i&1][j^k][k] += dp[!(i&1)][j][k];\n\t\t\t\tdp[i&1][j^k][k] %= mod;\n\t\t\t}\n\t\t}\n\t\trep(j,512){\n\t\t\trep(k,x) dp[i&1][j][k+1] += dp[i&1][j][k], dp[i&1][j][k+1] %= mod;\n\t\t\trep(k,x+1) dp[!(i&1)][j][k] = 0;\n\t\t}\n\t}\n\tcout << dp[!(n&1)][x][x] << endl;\n}", "accuracy": 1, "time_ms": 690, "memory_kb": 5136, "score_of_the_acc": -1.014, "final_rank": 17 }, { "submission_id": "aoj_3140_4371195", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 99999999999999999\n//#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define MOD 998244353\n#define SIZE 1024\n\nll N,X;\nll POW[11];\nll dp[2][505][512],table[505][512];\n\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i <= 10; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tscanf(\"%lld %lld\",&N,&X);\n\n\tint CURRENT = 0,NEXT = 1;\n\n\tfor(int i = 0; i <= X; i++){\n\t\tfor(int k = 0; k < POW[9]; k++){\n\t\t\tdp[CURRENT][i][k] = 0;\n\t\t\tdp[NEXT][i][k] = 0;\n\t\t}\n\t}\n\n\tfor(int i = 0; i <= X; i++){\n\t\ttable[i][0] = 1;\n\t}\n\n\tdp[CURRENT][0][0] = 1;\n\n\tfor(int loop = 0; loop < N; loop++){\n\n\t\tfor(int a = 0; a <= X; a++){\n\t\t\tfor(int b = 0; b < POW[9]; b++){\n\t\t\t\tdp[NEXT][a][b] = table[a][a^b];\n\t\t\t}\n\t\t}\n\n\t\tfor(int a = 0; a <= X; a++){\n\t\t\tfor(int b = 0; b < POW[9]; b++){\n\t\t\t\tif(a == 0){\n\n\t\t\t\t\ttable[a][b] = dp[NEXT][a][b];\n\t\t\t\t}else{\n\n\t\t\t\t\ttable[a][b] = table[a-1][b]+dp[NEXT][a][b];\n\t\t\t\t}\n\t\t\t\ttable[a][b] %= MOD;\n\t\t\t}\n\t\t}\n\t\tswap(CURRENT,NEXT);\n\t}\n\n\tll ans = 0;\n\tfor(int i = 0; i <= X; i++){\n\n\t\tans += dp[CURRENT][i][X];\n\t\tans %= MOD;\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 9216, "score_of_the_acc": -0.333, "final_rank": 13 }, { "submission_id": "aoj_3140_4361746", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define all(x) (x).begin(),(x).end()\nconst int mod=998244353,MAX=525,INF=1<<30;\nll dp[MAX][MAX],mae[MAX][MAX];\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int N,X;cin>>N>>X;\n dp[0][0]=1;\n \n for(int i=0;i<=X;i++){\n for(int j=0;j<=N;j++){\n for(int k=0;k<512;k++){\n dp[j][k]+=mae[j][k];\n dp[j][k]%=mod;\n }\n \n for(int k=0;k<512;k++){\n if(j) dp[j][k]+=dp[j-1][k^i];\n dp[j][k]%=mod;\n }\n }\n \n for(int j=0;j<=N;j++){\n for(int k=0;k<512;k++){\n mae[j][k]=dp[j][k];\n dp[j][k]=0;\n }\n }\n }\n \n cout<<mae[N][X]<<endl;\n}", "accuracy": 1, "time_ms": 480, "memory_kb": 7292, "score_of_the_acc": -0.7093, "final_rank": 15 }, { "submission_id": "aoj_3140_4356890", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\ntypedef double db;\nmt19937 mrand(random_device{}()); \nconst ll mod=998244353;\nint rnd(int x) { return mrand() % x;}\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\nll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}\n// head\n\nint n,x;\nll dp[520][520],pd[520][520],fac[1520],fnv[1520],ans;\nint main() {\n\tscanf(\"%d%d\",&n,&x);\n\tdp[0][0]=1;\n\tfac[0]=1,fnv[0]=1;\n\tfor (int i=1;i<=1000;i++) fac[i]=fac[i-1]*i%mod,fnv[i]=powmod(fac[i],mod-2);\n\tfor (int i=0;i<=x;i++) {\n\t\tfor (int j=0;j<=n;j++) for (int k=0;k<512;k++) pd[j][k]=dp[j][k];\n\t\tfor (int j=1;j<=n;j++) for (int k=0;k<512;k++) dp[j][k]=(pd[j-1][k^i]+dp[j][k])%mod;\n\t}\n\tfor (int i=n;i>=0;i-=2) {\n\t\tll a=dp[i][x];\n\t\ta=a*fac[(n-i)/2+x]%mod*fnv[(n-i)/2]%mod*fnv[x]%mod;\n\t\tans=(ans+a)%mod;\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 7364, "score_of_the_acc": -0.3275, "final_rank": 12 }, { "submission_id": "aoj_3140_4316789", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate<typename T> class Modular {\nprivate:\n long long value;\n constexpr static int MOD() { return static_cast<int>(T::value); }\npublic:\n constexpr Modular() : value() {};\n constexpr Modular(const Modular& other) : value(other.value) {}\n template <typename U> constexpr Modular(const U& x) { value = normalize(x); }\n\n template <typename U> static long long normalize(const U& x) {\n long long v;\n if (-MOD() <= x && x < MOD()) v = static_cast<long long>(x);\n else v = static_cast<long long>(x % MOD());\n if (v < 0) v += MOD();\n return v;\n }\n\n constexpr static long long inverse(long long x) {\n x = (x % MOD() + MOD()) % MOD();\n long long y = MOD(), u = 1, v = 0;\n while(y) {\n long long t = x / y;\n x -= t * y; swap(x, y);\n u -= t * v; swap(u, v);\n }\n return (u % MOD() + MOD()) % MOD();\n }\n \n static long long mul(const long long& a, const long long& b) {\n long long res;\n #ifdef _WIN32\n unsigned long long x = a * b;\n unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m;\n asm(\n \"divl %4; \\n\\t\"\n : \"=a\" (d), \"=d\" (m)\n : \"d\" (xh), \"a\" (xl), \"r\" (MOD())\n );\n res = m;\n #else\n res = a * b % MOD();\n #endif\n return res;\n }\n\n explicit operator long long() const noexcept { return value;}\n template <typename U> explicit operator U() const noexcept { return static_cast<U>(value); }\n\n constexpr Modular& operator=(const Modular& other) & noexcept { value = other.value; return *this; }\n template <typename U> constexpr Modular& operator=(const U& other) & noexcept { return *this = Modular(other); }\n\n constexpr Modular& operator+=(const Modular& other) noexcept { if ((value += other.value) >= MOD()) value -= MOD(); return *this; }\n template <typename U> constexpr Modular& operator+=(const U& other) noexcept { return *this += Modular(other); }\n\n constexpr Modular& operator-=(const Modular& other) noexcept { if ((value -= other.value) < 0) value += MOD(); return *this; }\n template <typename U> constexpr Modular& operator-=(const U& other) noexcept { return *this -= Modular(other); }\n\n constexpr Modular& operator*=(const Modular& other) noexcept { this->value = mul(this->value, other.value); return *this; }\n template <typename U> constexpr Modular& operator*=(const U& other) noexcept {return *this *= Modular(other); }\n\n constexpr Modular& operator/=(const Modular& other) noexcept { return *this *= Modular(inverse(other.value)); }\n template <typename U> constexpr Modular& operator/=(const U& other) noexcept { return *this *= Modular(inverse(normalize(other))); }\n\n constexpr Modular& operator++() noexcept {return *this += 1; }\n constexpr Modular operator++(int) noexcept { Modular ret(*this); *this += 1; return ret; }\n\n constexpr Modular& operator--() noexcept {return *this -= 1; }\n constexpr Modular operator--(int) noexcept { Modular ret(*this); *this += 1; return ret; }\n\n constexpr Modular operator-() const { return Modular(-value); }\n\n friend constexpr bool operator==(const Modular& lhs, const Modular<T>& rhs) noexcept { return lhs.value == rhs.value; }\n template <typename U> friend constexpr bool operator==(const Modular<T>& lhs, U rhs) noexcept { return lhs == Modular<T>(rhs); }\n template <typename U> friend constexpr bool operator==(U lhs, const Modular<T>& rhs) noexcept { return Modular<T>(lhs) == rhs; }\n\n friend constexpr bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) noexcept { return !(lhs == rhs); }\n template <typename U> friend constexpr bool operator!=(const Modular<T>& lhs, U rhs) noexcept { return !(lhs == rhs); }\n template <typename U> friend constexpr bool operator!=(U lhs, const Modular<T> rhs) noexcept { return !(lhs == rhs); }\n\n friend constexpr bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) noexcept { return lhs.value < rhs.value; }\n template <typename U> friend constexpr bool operator<(const Modular<T> &lhs, U rhs) noexcept { return lhs.value < rhs; }\n template <typename U> friend constexpr bool operator<(U lhs, const Modular<T> &rhs) noexcept { return lhs < rhs.value; }\n\n friend constexpr bool operator>(const Modular<T>& lhs, const Modular<T>& rhs) noexcept { return rhs.value < lhs.value; }\n template <typename U> friend constexpr bool operator>(const Modular<T> &lhs, U rhs) noexcept { return rhs.value < lhs; }\n template <typename U> friend constexpr bool operator>(U lhs, const Modular<T> &rhs) noexcept { return rhs < lhs.value; }\n\n friend constexpr bool operator<=(const Modular<T>& lhs, const Modular<T>& rhs) noexcept { return !(lhs.value > rhs.value); }\n template <typename U> friend constexpr bool operator<=(const Modular<T> &lhs, U rhs) noexcept { return !(lhs.value > rhs); }\n template <typename U> friend constexpr bool operator<=(U lhs, const Modular<T> &rhs) noexcept { return !(lhs < rhs.value); }\n\n friend constexpr bool operator>=(const Modular<T>& lhs, const Modular<T>& rhs) noexcept { return !(lhs.value < rhs.value); }\n template <typename U> friend constexpr bool operator>=(const Modular<T> &lhs, U rhs) noexcept { return !(lhs.value < rhs); }\n template <typename U> friend constexpr bool operator>=(U lhs, const Modular<T> &rhs) noexcept { return !(lhs < rhs.value); }\n\n friend constexpr Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) noexcept { return Modular<T>(lhs) += rhs; }\n template <typename U> friend constexpr Modular<T> operator+(const Modular<T>& lhs, U rhs) noexcept { return Modular<T>(lhs) += rhs; }\n template <typename U> friend constexpr Modular<T> operator+(U lhs, const Modular<T> &rhs) noexcept { return Modular<T>(lhs) += rhs; }\n\n friend constexpr Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) noexcept { return Modular<T>(lhs) -= rhs; }\n template <typename U> friend constexpr Modular<T> operator-(const Modular<T>& lhs, U rhs) noexcept { return Modular<T>(lhs) -= rhs; }\n template <typename U> friend constexpr Modular<T> operator-(U lhs, const Modular<T> &rhs) noexcept { return Modular<T>(lhs) -= rhs; }\n\n friend constexpr Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) noexcept { return Modular<T>(lhs) *= rhs; }\n template <typename U> friend constexpr Modular<T> operator*(const Modular<T>& lhs, U rhs) noexcept { return Modular<T>(lhs) *= rhs; }\n template <typename U> friend constexpr Modular<T> operator*(U lhs, const Modular<T> &rhs) noexcept { return Modular<T>(lhs) *= rhs; }\n\n friend constexpr Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) noexcept { return Modular<T>(lhs) /= rhs; }\n template <typename U> friend constexpr Modular<T> operator/(const Modular<T>& lhs, U rhs) noexcept { return Modular<T>(lhs) /= rhs; }\n template <typename U> friend constexpr Modular<T> operator/(U lhs, const Modular<T> &rhs) noexcept { return Modular<T>(lhs) /= rhs; }\n\n friend std::ostream& operator<<(std::ostream& stream, const Modular<T>& number) noexcept { return stream << number.value; }\n friend std::istream& operator>>(std::istream& stream, Modular<T>& number) { long long in; stream >> in; number.value = Modular<T>::normalize(in); return stream; }\n \n constexpr int getmod() const { return MOD(); }\n};\n\ntemplate<typename T, typename U> Modular<T> power(const Modular<T>& x, const U& y) {\n assert(y >= 0);\n Modular<T> k = x, result = 1;\n U p = y;\n while (p > 0) {\n if (p & 1) result *= k;\n k *= k;\n p >>= 1;\n }\n return result;\n}\n\ntemplate<typename T> class BinaryCoefficients {\nprivate:\n vector<Modular<T>> fact_, inv_, finv_;\n long long MOD = static_cast<long long>(T::value);\npublic:\n constexpr BinaryCoefficients(int n = 2020200) : fact_(n, 1), inv_(n, 1), finv_(n, 1) {\n for (int i = 2; i < n; i++) {\n fact_[i] = fact_[i - 1] * i;\n inv_[i] = -inv_[MOD % i] * (MOD / i);\n finv_[i] = finv_[i - 1] * inv_[i];\n }\n }\n constexpr Modular<T> comb(int n, int k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n - k]; }\n constexpr Modular<T> fact(int n) const noexcept { if (n < 0) return 0; return fact_[n]; }\n constexpr Modular<T> inv(int n) const noexcept { if (n < 0) return 0; return inv_[n]; }\n constexpr Modular<T> finv(int n) const noexcept { if (n < 0) return 0; return finv_[n]; }\n};\n\n//constexpr int mod = 1e9 + 7;\nconstexpr int mod = 998244353;\nusing mint = Modular<std::integral_constant<decay<decltype(mod)>::type, mod>>;\nusing bicoef = BinaryCoefficients<std::integral_constant<decay<decltype(mod)>::type, mod>>;\n\n// struct modValue { static int value; };\n// int modValue::value;\n// int& mod = modValue::value;\n// using mint = Modular<modValue>;\n// using bicoef = BinaryCoefficients<modValue>;\n\nconstexpr int N = 555;\nconstexpr int X = 555;\nmint dp[N][X];\n\nsigned main() {\n ios::sync_with_stdio(false); cin.tie(0);\n int n, x;\n cin >> n >> x;\n dp[0][0] = 1;\n for (int k = 0; k <= x; k++) {\n for (int i = N - 2; i >= 0; i--) for (int j = 0; j < X; j++) {\n if ((j ^ k) < X) dp[i + 1][j ^ k] += dp[i][j];\n }\n }\n mint ans = 0;\n bicoef bc(101010);\n for (int i = 0; i <= n; i++) {\n if ((n - i) % 2 == 0) {\n int c = (n - i) / 2;\n ans += dp[i][x] * bc.comb(x + 1 + c - 1, c);\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 7572, "score_of_the_acc": -0.1651, "final_rank": 6 }, { "submission_id": "aoj_3140_4297090", "code_snippet": "#include<bits/stdc++.h>\n#include <array>\nusing namespace std;\nusing ULL = unsigned long long;\nusing UL = unsigned;\nusing LL = long long;\n#define rep(i, n) for(UL i = 0; i < (n); i++)\n\ntemplate<class Ty>\nusing passive_queue = priority_queue<Ty, vector<Ty>, greater<Ty>>;\n\nstruct Problem {\n\n\tULL dp[501][512] = {};\n\tstatic const ULL M = 998244353;\n\n\tvoid Solve() {\n\t\tdp[0][0] = 1;\n\t\tUL N, X; cin >> N >> X;\n\t\trep(x, X + 1) {\n\t\t\trep(i, N) {\n\t\t\t\trep(p, 512) {\n\t\t\t\t\tdp[i + 1][p ^ x] += dp[i][p];\n\t\t\t\t\tdp[i + 1][p ^ x] %= M;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tULL ans = dp[N][X];\n\t\tcout << ans << endl;\n\t}\n\n\tProblem();\n};\nint main() {\n\tunique_ptr<Problem> p(new Problem());\n\tp->Solve();\n\treturn 0;\n}\nProblem::Problem() {\n\tcout << fixed << setprecision(10);\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 4820, "score_of_the_acc": -0.0907, "final_rank": 3 }, { "submission_id": "aoj_3140_4287972", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\nusing P=pair<ll,ll>;\ntemplate<class T> using V=vector<T>; \n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\nconst ll inf=(1e18);\nconst ll mod=998244353;\nll gcd(ll a,ll b) {return b ? gcd(b,a%b):a;}\nll lcm(ll c,ll d){return c/gcd(c,d)*d;}\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init;\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\nstruct mint{\n using ull=unsigned long long int;\n ull v;\n mint(ll vv=0){s(vv%mod+mod);}\n mint& s(ull vv){\n v=vv<mod?vv:vv-mod;\n return *this;\n }\n //オーバーロード\n mint operator-()const{return mint()-*this;}//符号反転\n mint&operator+=(const mint&val){return s(v+val.v);}\n mint&operator-=(const mint&val){return s(v+mod-val.v);}\n mint&operator*=(const mint&val){\n v=ull(v)*val.v%mod;\n return *this;\n }\n mint&operator/=(const mint&val){return *this*=val.inv();}\n mint operator+(const mint&val){return mint(*this)+=val;}\n mint operator-(const mint&val){return mint(*this)-=val;}\n mint operator*(const mint&val){return mint(*this)*=val;}\n mint operator/(const mint&val){return mint(*this)/=val;}\n mint pow(ll n)const{\n mint res(1),x(*this);\n while(n){\n if(n&1)res*=x;\n x*=x;\n n>>=1;\n }\n return res;\n }\n mint inv()const{return pow(mod-2);}\n //拡張ユークリッドの互除法\n /* mint inv()const{\n int x,y;\n int g=extgcd(v,mod,x,y);\n assert(g==1);\n if(x<0)x+=mod;\n return mint(x);\n }*/\n friend ostream& operator<<(ostream&os,const mint&val){\n return os<<val.v;\n }//出力\n bool operator<(const mint&val)const{return v<val.v;}\n bool operator==(const mint&val)const{return v==val.v;}\n bool operator>(const mint&val)const{return v>val.v;}\n};\nconst ll MAX = 2000010;//設定\nmint fac[MAX], finv[MAX], inv[MAX];\n// テーブルを作る前処理\nvoid init(){\n fac[0] = fac[1] = 1;\n for(int i=1;i<MAX;i++)fac[i]=fac[i-1]*i;\n finv[MAX-1]=fac[MAX-1].inv();\n for(int i=MAX-2;i>=0;i--)finv[i]=finv[i+1]*(i+1);\n for(int i=MAX-2;i>=1;i--)inv[i]=finv[i]+fac[i-1];\n}\n//階乗\nmint factor(ll n,ll k){\n if (n<k) return 0;\n if (n<0 || k<0) return 0;\n return fac[n]*finv[k];\n}\n// 二項係数計算\nmint COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * finv[k] * finv[n - k];\n}\nmint dp[505][512];\nint main(){\n int n,x;\n cin>>n>>x;\n if(x==0){\n cout<<1<<endl;\n return 0;\n }\n dp[0][0]=1;\n for(int i=1;i<=x;i++){\n for(int j=n-1;j>=0;j--){\n for(int k=0;k<512;k++){\n dp[j+1][i^k]+=dp[j][k];\n }\n }\n }\nfor(int i=0;i<=x;i++){\n for(int j=1;j<=n-2;j++){\n dp[j+2][x]+=dp[j][x];\n }\n}\n cout<<dp[n-1][x]+dp[n][x]<<\"\\n\";\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 52112, "score_of_the_acc": -1.1, "final_rank": 18 }, { "submission_id": "aoj_3140_4287964", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\nusing P=pair<ll,ll>;\ntemplate<class T> using V=vector<T>; \n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\nconst ll inf=(1e18);\nconst ll mod=998244353;\nll gcd(ll a,ll b) {return b ? gcd(b,a%b):a;}\nll lcm(ll c,ll d){return c/gcd(c,d)*d;}\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init;\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\nstruct mint{\n using ull=unsigned long long int;\n ull v;\n mint(ll vv=0){s(vv%mod+mod);}\n mint& s(ull vv){\n v=vv<mod?vv:vv-mod;\n return *this;\n }\n //オーバーロード\n mint operator-()const{return mint()-*this;}//符号反転\n mint&operator+=(const mint&val){return s(v+val.v);}\n mint&operator-=(const mint&val){return s(v+mod-val.v);}\n mint&operator*=(const mint&val){\n v=ull(v)*val.v%mod;\n return *this;\n }\n mint&operator/=(const mint&val){return *this*=val.inv();}\n mint operator+(const mint&val){return mint(*this)+=val;}\n mint operator-(const mint&val){return mint(*this)-=val;}\n mint operator*(const mint&val){return mint(*this)*=val;}\n mint operator/(const mint&val){return mint(*this)/=val;}\n mint pow(ll n)const{\n mint res(1),x(*this);\n while(n){\n if(n&1)res*=x;\n x*=x;\n n>>=1;\n }\n return res;\n }\n mint inv()const{return pow(mod-2);}\n //拡張ユークリッドの互除法\n /* mint inv()const{\n int x,y;\n int g=extgcd(v,mod,x,y);\n assert(g==1);\n if(x<0)x+=mod;\n return mint(x);\n }*/\n friend ostream& operator<<(ostream&os,const mint&val){\n return os<<val.v;\n }//出力\n bool operator<(const mint&val)const{return v<val.v;}\n bool operator==(const mint&val)const{return v==val.v;}\n bool operator>(const mint&val)const{return v>val.v;}\n};\nconst ll MAX = 2000010;//設定\nmint fac[MAX], finv[MAX], inv[MAX];\n// テーブルを作る前処理\nvoid init(){\n fac[0] = fac[1] = 1;\n for(int i=1;i<MAX;i++)fac[i]=fac[i-1]*i;\n finv[MAX-1]=fac[MAX-1].inv();\n for(int i=MAX-2;i>=0;i--)finv[i]=finv[i+1]*(i+1);\n for(int i=MAX-2;i>=1;i--)inv[i]=finv[i]+fac[i-1];\n}\n//階乗\nmint factor(ll n,ll k){\n if (n<k) return 0;\n if (n<0 || k<0) return 0;\n return fac[n]*finv[k];\n}\n// 二項係数計算\nmint COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * finv[k] * finv[n - k];\n}\nmint dp[505][512];\nint main(){\n int n,x;\n cin>>n>>x;\n if(x==0){\n cout<<1<<endl;\n return 0;\n }\n dp[0][0]=1;\n for(int i=1;i<=x;i++){\n for(int j=n-1;j>=0;j--){\n for(int k=0;k<512;k++){\n dp[j+1][i^k]+=dp[j][k];\n }\n }\n }\nfor(int i=0;i<=x;i++){\n for(int j=1;j<=n-2;j++){\n dp[j+2][x]+=dp[j][x];\n }\n }\n cout<<dp[n-1][x]+dp[n][x]<<\"\\n\";\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 52112, "score_of_the_acc": -1.1, "final_rank": 18 }, { "submission_id": "aoj_3140_4287888", "code_snippet": "// _ _ __\n// (_) | | / /\n// __ ___ | |/ / ___ ____\n// | |/ _ `\\| | / _ `\\ / _ \\\n// | | (_) | |\\ \\| (_) || (_) |\n// | |\\__,_|_| \\_\\\\__,_|\\____/\n// _/ |\n//|__/\n#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h>\n#define ll long long\n#define mod 998244353LL\n#define endl '\\n'\nusing namespace std;\n\nmt19937 gen(time(0));\n\nint n,m,maxn=0;\nll dp[2][505][515];\t// len,last,xor\nll prefix[505][515];\n\nint main(){\n\tios::sync_with_stdio(0);cin.tie(0);\n\tll ans=0,tmp;\n\tcin>>n>>m;\n\ttmp=m;\n\twhile(tmp){\n\t\tmaxn++;\n\t\ttmp>>=1;\n\t}\n\tmaxn=(1<<maxn)-1;\n\tfor(int i=0;i<=m;i++){\n\t\tdp[1][i][i]=1;\n\t}\n\tfor(int i=2;i<=n;i++){\n\t\tmemset(prefix,0,sizeof(prefix));\n\t\tfor(int j=0;j<=m;j++){\n\t\t\tfor(int k=0;k<=maxn;k++){\n\t\t\t\tdp[i&1][j][k]=0;\n\t\t\t}\n\t\t}\n\t\tfor(int j=0;j<=m;j++){\n\t\t\tfor(int k=0;k<=maxn;k++){\n\t\t\t\tif(j)\n\t\t\t\t\tprefix[j][k]=dp[~i&1][j][k]+prefix[j-1][k];\n\t\t\t\telse\n\t\t\t\t\tprefix[j][k]=dp[~i&1][j][k];\n\t\t\t}\n\t\t}\n\t\tfor(int j=0;j<=m;j++){\n\t\t\tfor(int k=0;k<=maxn;k++){\n\t\t\t\tdp[i&1][j][k]+=prefix[j][j^k];\n\t\t\t\tdp[i&1][j][k]%=mod;\n\t\t\t}\n\t\t}\n\t}\n\tfor(int i=0;i<=m;i++){\n\t\tans+=dp[n&1][i][m];\n\t\tans%=mod;\n\t}\n\tcout<<ans<<endl;\n\treturn 0;\n}\n/*\ndp[i][j][k]=dp[i-1][x][x^k] (0<=x<=j,x=j^k)\n*/", "accuracy": 1, "time_ms": 320, "memory_kb": 9260, "score_of_the_acc": -0.4839, "final_rank": 14 } ]
aoj_3146_cpp
J: 接頭辞分解 問題文 英小文字からなる文字列 $S$ が与えられます。 次の条件を満たす文字列 $T$ のうち、長さが最小のものを $1$ つ求めてください。 $S$ をいくつかの部分文字列に分割し、その部分文字列すべてが $T$ の接頭辞となるようにできる。 ただし、$K$ 個の文字列の組 $Y_1, Y_2, \ldots , Y_K$ が文字列 $X$ の分割であるとは、次の条件を満たすことを言います。 $Y_1, Y_2, \ldots , Y_K$ をこの順に連結すると、 $X$ と等しくなる。 また、文字列 $x$ の接頭辞とは、 $x$ の末尾から $0$ 文字以上の文字を取り除くことで得られる文字列のことを言います。 制約 $1 \leq |S| \leq 10^5$ $S$ は英小文字からなる 入力 入力は以下の形式で標準入力から与えられる。 $S$ 出力 条件を満たす文字列 $T$ のうち、長さが最小のものを $1$ つ出力せよ。 このような $T$ は複数存在するかもしれないが、どれを出力しても正答となる。 入力例1 abcaab 出力例1 abc $S$ を "abc", "a", "ab" という $3$ つの文字列に分割します。 これらの文字列はすべて "abc" の接頭辞なので、 "abc" は条件を満たします。 また、条件を満たす文字列で長さがこれより小さいものは存在しないので、 "abc" は答えの $1$ つとなります。 入力例2 z 出力例2 z 入力例3 abracadabra 出力例3 abracad
[ { "submission_id": "aoj_3146_4279453", "code_snippet": "#include <bits/stdc++.h> // clang-format off\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define each(x,v) for(auto& x : v)\n#define all(v) (v).begin(),(v).end()\n#define sz(v) ((int)(v).size())\n#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)\n#define inl(...) long long __VA_ARGS__; in(__VA_ARGS__)\n#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)\n#define inc(...) char __VA_ARGS__; in(__VA_ARGS__)\n#define in2(s,t) rep(i,sz(s)){in(s[i] , t[i]);}\n#define in3(s,t,u) rep(i,sz(s)){in(s[i] , t[i] , u[i]);}\n#define in4(s,t,u,v) rep(i,sz(s)){in(s[i] , t[i] , u[i] , v[i]);}\n#ifdef ONLINE_JUDGE\n #define rep(i,N) for(int i = 0; i < (int)(N); i++)\n #define repr(i,N) for(int i = (int)(N) - 1; i >= 0; i--)\n #define rep1(i,N) for(int i = 1; i <= (int)(N) ; i++)\n #define repr1(i,N) for(int i = (N) ; (int)(i) > 0 ; i--)\n#else\n #define rep(i,N) for(long long i = 0; i < (long long)(N); i++)\n #define repr(i,N) for(long long i = (long long)(N) - 1; i >= 0; i--)\n #define rep1(i,N) for(long long i = 1; i <= (long long)(N) ; i++)\n #define repr1(i,N) for(long long i = (N) ; (long long)(i) > 0 ; i--)\n#endif\nusing namespace std; void solve();\nusing ll = long long; template<class T = ll> using V = vector<T>;\nusing vi = V<int>; using vl = V<>; using vvi = V< V<int> >;\nusing vd = V<double>; using vs = V<string>; using vvl = V< V<> >;\nconstexpr int inf = 1001001001; constexpr ll infLL = (1LL << 61) - 1;\ntemplate<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\ntemplate<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\ntemplate<typename T,typename U>ll ceil(T a,U b){return (a + b - 1) / b;}\ntemplate<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << \" \" << p.second; return os; }\ntemplate<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; }\ntemplate<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); for(int i=0;i<s;i++) os << (i ? \" \" : \"\") << v[i]; return os; }\ntemplate<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; }\nvoid in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);}\nvoid out(){cout << \"\\n\";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << \" \"; out(u...);}\ntemplate<typename T>void die(T x){out(x); exit(0);}\n\n#ifdef NyaanDebug\n #include \"NyaanDebug.h\"\n #define trc(...) do { cerr << #__VA_ARGS__ << \" = \"; dbg_out(__VA_ARGS__);} while(0)\n #define trca(v,N) do { cerr << #v << \" = \"; array_out(v , N);} while(0)\n #define trcc(v) do { cerr << \"name : \" << #v << \"\\n\"; int cnt = 0; each(x , v){cerr << (cnt++) << \" : \"; trc(x); } } while(0)\n#else\n #define trc(...)\n #define trca(...)\n #define trcc(...)\n int main(){solve();}\n#endif\n\nconstexpr ll TEN(int n){ll ret=1,x=10;while(n){if(n&1)ret*=x;x*=x;n>>=1;}return ret;}\n#define mem(a, val) memset(a, val, sizeof(a))\n\nstruct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya;\nusing P = pair<ll,ll>; using vp = V<P>;\nconstexpr int MOD = /** 1000000007; //*/ 998244353;\n// clang-format on\n////////////////////////////////////////////////////\n\n// Suffix Array\n//verify https://judge.yosupo.jp/submission/240\nstruct SuffixArray{\n int _size;\n vector<int> sa;\n string &s;\n SuffixArray(string &str):_size(str.size()) , s(str) {\n // うしさんのO( N logN )の実装\n s.push_back(0);\n sa.resize(s.size());\n iota(begin(sa), end(sa), 0);\n sort(begin(sa), end(sa), [&](int a, int b) {\n return s[a] == s[b] ? a > b : s[a] < s[b];\n });\n vector< int > classes(s.size()), c(s.begin(), s.end()), cnt(s.size());\n for(int len = 1; len < (int)s.size(); len <<= 1) {\n for(int i = 0; i < (int)s.size(); i++) {\n if(i > 0 && c[sa[i - 1]] == c[sa[i]] && sa[i - 1] + len < (int)s.size() && c[sa[i - 1] + len / 2] == c[sa[i] + len / 2]) {\n classes[sa[i]] = classes[sa[i - 1]];\n } else {\n classes[sa[i]] = i;\n }\n }\n iota(begin(cnt), end(cnt), 0);\n copy(begin(sa), end(sa), begin(c));\n for(int i = 0; i < (int)s.size(); i++) {\n int s1 = c[i] - len;\n if(s1 >= 0) sa[cnt[classes[s1]]++] = s1;\n }\n classes.swap(c);\n }\n s.pop_back();\n }\n // デバッグ用に実装\n void output() {\n cout << \"SA\\tidx\\tstr\" << endl;\n for(int i = 0; i < size(); i++) {\n cout << i << \": \\t\" << sa[i] << \" \\t\" ;\n if(sa[i] != _size) cout << s.substr(sa[i],_size - sa[i]) << endl;\n else cout << \"$\" << endl;\n }\n cout << endl;\n }\n // sa.size()と表せると便利なので実装\n int size() const{return _size + 1;}\n // sa[]と表せると便利なのでオーバーロードしておく\n int operator[](int k) const{return sa[k]; }\n};\n\nstruct LCPArray {\n const SuffixArray &SA;\n vector<int> LCP, rank;\n LCPArray(const SuffixArray &sa) : SA(sa) {\n LCP.resize(SA.size()); rank.resize(SA.size());\n // 初期化 rankはsaの逆関数\n for(int i = 0; i < SA.size(); i++) {\n rank[SA[i]] = i;\n }\n LCP[0] = 0; \n \n // 構築\n for(int i = 0, h = 0; i < SA.size() - 1 ; i++) {\n int j = SA[rank[i] - 1] ; h ? h-- : h;\n // ここで尺取り法に近い手法を使うことでO(N)でLCPの構築をしている\n while( (i > j ? i : j) + h < SA.size() - 1 && SA.s[i + h] == SA.s[j + h] && ++h );\n LCP[rank[i] - 1] = h;\n }\n }\n\n // デバッグ用に実装\n void output() {\n cout << \"SA\\tidx\\tLCP\\tstr\" << endl;\n for(int i = 0 ; i < SA.size() ; i++){\n cout << i << \"\\t\" << SA[i] <<\" \\t\" << LCP[i] << \"\\t\"; \n if(SA[i] == SA.size() - 1) cout << \"$\";\n else cout << SA.s.substr(SA[i] , SA.size() - 1 - SA[i]);\n cout << endl;\n }\n }\n\n};\n\n// Sparse Table\ntemplate<typename T>\nstruct SparseTable{\n vector< vector< T > > table;\n vector< int > log_table;\n\n SparseTable(const vector< T > &v) {\n int b = 0;\n while((1 << b) <= (int)v.size()) ++b;\n table.assign(b, vector< T >(1 << b));\n for(int i = 0; i < (int)v.size(); i++) {\n table[0][i] = v[i];\n }\n for(int i = 1; i < b; i++) {\n for(int j = 0; j + (1 << i) <= (1 << b); j++) {\n table[i][j] = min(table[i - 1][j], table[i - 1][j + (1 << (i - 1))]);\n }\n }\n log_table.resize(v.size() + 1);\n for(int i = 2; i < (int)log_table.size(); i++) {\n log_table[i] = log_table[i >> 1] + 1;\n }\n }\n\n // 区間 [l , r) の最小値を返す\n inline T query(int l, int r) {\n int b = log_table[r - l];\n return min(table[b][l], table[b][r - (1 << b)]);\n }\n};\n\n// 文字列検索 検索 O(M + logN) メモリO(N logN)\n// verify\n// https://onlinejudge.u-aizu.ac.jp/status/users/NyaanNyaan/submissions/1/ALDS1_14_D/judge/3874273/C++14\n// https://atcoder.jp/contests/abc135/submissions/7574225\n// https://judge.yosupo.jp/submission/241\n// https://atcoder.jp/contests/abc141/submissions/7577295\nstruct StringSearch{\n string &s;\n const SuffixArray &sa;\n const LCPArray &lcp;\n SparseTable<int> sparse;\n StringSearch(LCPArray &lcp)\n : s(lcp.SA.s) , sa(lcp.SA) , lcp(lcp) , sparse(lcp.LCP){ }\n\n // 文字列sの[i , N)と[j , N)の共通接頭辞の長さを求める\n int ArbitaryLCP(int i , int j){\n if(i == j) return (int)(s.size()) - i;\n return sparse.query(\n min(lcp.rank[i] , lcp.rank[j]) , \n max(lcp.rank[i] , lcp.rank[j]) \n );\n }\n\n pair<int,int> comp(const string &t , int len , int si , int ti = 0){\n int sn = (int)s.size() , tn = (int) t.size();\n si += len , ti += len;\n while(si < sn && ti < tn){\n if(s[si] != t[ti]) return make_pair( s[si]<t[ti] , ti);\n si++ , ti++;\n }\n return make_pair( (si>=sn && ti<tn) , ti);\n } \n\n pair<int,int> find_range(int left , int med , int right , int len){\n {\n int ng = left - 1, ok = med;\n while(ng + 1 < ok){\n int cur = (ng + ok) / 2;\n if(sparse.query(cur , med) >= len) ok = cur;\n else ng = cur;\n }\n left = ok;\n }\n {\n int ok = med , ng = right + 1;\n while(ok + 1 < ng){\n int cur = (ng + ok) / 2;\n if(sparse.query(med, cur) >= len) ok = cur;\n else ng = cur;\n }\n right = ok;\n }\n return make_pair(left , right);\n }\n\n // 全ての出現範囲をSA上の[left , right]の範囲で返す\n // 存在しない場合は-1を返す\n pair<int,int> find(string &t){\n // 条件を満たす[left , right]を見つける\n // sa[0]は空文字列なので left = 1 とする\n // lenは既に一致している文字列の長さ\n int left = 1 , right = sa.size() - 1 , med = left;\n int leftlen = 0 , rightlen = 0 , tlen = t.size();\n pair<int,int> ret;\n while(left + 1 < right){\n med = (left + right) / 2;\n\n int corres_len = max(\n min(leftlen , sparse.query(left , med)) ,\n min(rightlen, sparse.query(med , right))\n );\n if(corres_len < max(leftlen , rightlen)){\n if(leftlen < rightlen) \n left = med , leftlen = corres_len;\n else\n right= med ,rightlen = corres_len;\n continue;\n }\n ret = comp(t , corres_len , sa[med]);\n //trc(left,med,right,ret);\n if(ret.second == tlen)\n return find_range(left,med,right,tlen);\n if(ret.first == 0)\n right = med , rightlen = ret.second;\n else\n left = med , leftlen = ret.second;\n }\n if(sa.size() <= 3){\n if(comp(t,0,sa[left]).second==tlen) return find_range(left,left,right,tlen);\n if(comp(t,0,sa[right]).second==tlen) return find_range(left,right,right,tlen);\n return make_pair(-1,-1);\n }\n med = left + right - med;\n ret = comp(t , min(leftlen,rightlen) , sa[med]);\n //trc(left,med,right,ret);\n if(ret.second == tlen)\n return find_range(left,med,right,tlen);\n return make_pair(-1,-1);\n }\n};\n\n// Suffix Arrayの使い方(メモリを食うので必要なものだけ使う)\n// 参照があるのでstringを削除などしないこと\n/*\n SuffixArray sa(S);\n LCPArray lcp(sa);\n StringSearch search(lcp);\n*/\n\n// BIT\n\ntemplate< typename T >\nstruct BIT {\n int N; int max_2beki;\n\n vector< T > data;\n // 初期化 1-indexedでデータを管理する 0で初期化\n BIT(int size){\n N = ++size;\n data.assign(N, 0);\n max_2beki = 1;\n while(max_2beki * 2 <= N) max_2beki *= 2;\n }\n\n // [0,k](閉区間)の総和 閉区間に注意!\n T sum(int k) {\n if(k < 0) return 0; // k<0のとき0を返す\n T ret = 0;\n for(++k; k > 0; k -= k & -k) ret += data[k];\n return (ret);\n }\n\n // [l,r](閉区間)の総和\n inline T sum(int l,int r){\n return sum(r) - sum(l-1);\n }\n\n // 一点取得 更新はできないことに注意\n inline T operator[](int k){\n return sum(k) - sum(k-1);\n }\n\n // data[k] += x;\n void add(int k, T x) {\n for(++k; k < N; k += k & -k) data[k] += x;\n }\n\n // imos法 [l,r]にxを加算\n void imos(int l,int r,T x){\n add(l , x); add(r + 1 , -x);\n }\n\n // lower_bound sum(i)がval以上となる最小のi\n int lower_bound(T w){\n if(w <= 0) return 0;\n int x = 0;\n for(int k = max_2beki; k > 0; k /= 2){\n if(x+k <= N - 1 && data[x + k] < w){\n w -= data[x + k];\n x += k;\n }\n }\n return x;\n }\n\n // upper_bound sum(i)がvalより大きくなる最小のi\n int upper_bound(T w){\n if(w < 0) return 0;\n int x = 0;\n for(int k = max_2beki; k > 0; k /= 2){\n if(x+k <= N - 1 && data[x + k] <= w){\n w -= data[x + k];\n x += k;\n }\n }\n return x;\n }\n\n};\n\nvoid solve(){\n ins(S);\n SuffixArray sa(S);\n LCPArray lcp(sa);\n StringSearch search(lcp);\n trc(S);\n if(sz(S)==1){out(S);return;}\n \n int N = sz(S);\n int left = 0 , len = 1;\n int nxt = 1;\n BIT<ll> bit(N + 10);\n \n if(sz(S) <= 100){\n // 愚直\n int ans = N , al = 0 , alen = N;\n rep(i , N) rep1(j , N){\n int med = j - i;\n if(med <= 0) continue;\n // [left , left + med)を走査\n fill(all(bit.data) , 0);\n //trc(med);\n rep(k , N){\n int x = search.ArbitaryLCP(i , k);\n //trc(i , x); \n x = min(x , med);\n bit.imos(k , k + x - 1 , 1);\n }\n //rep(i,N) trc(bit.sum(i));\n int flg = 1;\n rep(i , N){\n flg &= bit.sum(i) != 0;\n }\n if( (flg == 1) && amin(ans , med) ){\n trc(flg , i, j);\n al = i , alen = med;\n }\n }\n \n out(S.substr(al , alen));\n return ;\n } \n // [left , left + len)が本質 \n while(1){\n //trc(left , len);\n int x = search.ArbitaryLCP(left , nxt);\n if(x == 0){\n len++;\n nxt = left + len;\n if(nxt == N) break;\n }\n else if(x >= len){\n left = nxt;\n if(left + len >= N) break;\n //if(S[left + len] != S[left]) len++;\n nxt = left + len;\n }\n else{\n if(x + nxt >= N) break;\n nxt++;\n }\n }\n\n trc(left , len , S.substr(left , len));\n int ng = 0 , ok = len;\n while(ng + 1 < ok){\n int med = (ng + ok) / 2;\n // [left , left + med)を走査\n fill(all(bit.data) , 0);\n //trc(med);\n rep(i , N){\n int x = search.ArbitaryLCP(left , i);\n //trc(i , x);\n x = min(x , med);\n bit.imos(i , i + x - 1 , 1);\n }\n //rep(i,N) trc(bit.sum(i));\n int flg = 1;\n rep(i , N){\n flg &= bit.sum(i) != 0;\n }\n (flg ? ok : ng) = med;\n }\n \n out(S.substr(left , ok));\n \n /*\n // 愚直\n int ans = N , al = 0 , alen = N;\n rep(i , N) rep1(j , N){\n int med = j - i;\n if(med <= 0) continue;\n // [left , left + med)を走査\n fill(all(bit.data) , 0);\n //trc(med);\n rep(k , N){\n int x = search.ArbitaryLCP(i , k);\n //trc(i , x); \n x = min(x , med);\n bit.imos(k , k + x - 1 , 1);\n }\n //rep(i,N) trc(bit.sum(i));\n int flg = 1;\n rep(i , N){\n flg &= bit.sum(i) != 0;\n }\n if( (flg == 1) && amin(ans , med) ){\n trc(flg , i, j);\n al = i , alen = med;\n }\n }\n\n \n if(S.substr(left , ok) != S.substr(al ,alen)){\n trc(S);\n trc(S.substr(left , ok));\n trc(S.substr(al , alen));\n exit(1);\n }\n */\n\n\n}", "accuracy": 0.21929824561403508, "time_ms": 100, "memory_kb": 14060, "score_of_the_acc": -0.9875, "final_rank": 4 }, { "submission_id": "aoj_3146_4279397", "code_snippet": "#include <bits/stdc++.h> // clang-format off\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define each(x,v) for(auto& x : v)\n#define all(v) (v).begin(),(v).end()\n#define sz(v) ((int)(v).size())\n#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)\n#define inl(...) long long __VA_ARGS__; in(__VA_ARGS__)\n#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)\n#define inc(...) char __VA_ARGS__; in(__VA_ARGS__)\n#define in2(s,t) rep(i,sz(s)){in(s[i] , t[i]);}\n#define in3(s,t,u) rep(i,sz(s)){in(s[i] , t[i] , u[i]);}\n#define in4(s,t,u,v) rep(i,sz(s)){in(s[i] , t[i] , u[i] , v[i]);}\n#ifdef ONLINE_JUDGE\n #define rep(i,N) for(int i = 0; i < (int)(N); i++)\n #define repr(i,N) for(int i = (int)(N) - 1; i >= 0; i--)\n #define rep1(i,N) for(int i = 1; i <= (int)(N) ; i++)\n #define repr1(i,N) for(int i = (N) ; (int)(i) > 0 ; i--)\n#else\n #define rep(i,N) for(long long i = 0; i < (long long)(N); i++)\n #define repr(i,N) for(long long i = (long long)(N) - 1; i >= 0; i--)\n #define rep1(i,N) for(long long i = 1; i <= (long long)(N) ; i++)\n #define repr1(i,N) for(long long i = (N) ; (long long)(i) > 0 ; i--)\n#endif\nusing namespace std; void solve();\nusing ll = long long; template<class T = ll> using V = vector<T>;\nusing vi = V<int>; using vl = V<>; using vvi = V< V<int> >;\nusing vd = V<double>; using vs = V<string>; using vvl = V< V<> >;\nconstexpr int inf = 1001001001; constexpr ll infLL = (1LL << 61) - 1;\ntemplate<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\ntemplate<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\ntemplate<typename T,typename U>ll ceil(T a,U b){return (a + b - 1) / b;}\ntemplate<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << \" \" << p.second; return os; }\ntemplate<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; }\ntemplate<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); for(int i=0;i<s;i++) os << (i ? \" \" : \"\") << v[i]; return os; }\ntemplate<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; }\nvoid in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);}\nvoid out(){cout << \"\\n\";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << \" \"; out(u...);}\ntemplate<typename T>void die(T x){out(x); exit(0);}\n\n#ifdef NyaanDebug\n #include \"NyaanDebug.h\"\n #define trc(...) do { cerr << #__VA_ARGS__ << \" = \"; dbg_out(__VA_ARGS__);} while(0)\n #define trca(v,N) do { cerr << #v << \" = \"; array_out(v , N);} while(0)\n #define trcc(v) do { cerr << \"name : \" << #v << \"\\n\"; int cnt = 0; each(x , v){cerr << (cnt++) << \" : \"; trc(x); } } while(0)\n#else\n #define trc(...)\n #define trca(...)\n #define trcc(...)\n int main(){solve();}\n#endif\n\nconstexpr ll TEN(int n){ll ret=1,x=10;while(n){if(n&1)ret*=x;x*=x;n>>=1;}return ret;}\n#define mem(a, val) memset(a, val, sizeof(a))\n\nstruct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya;\nusing P = pair<ll,ll>; using vp = V<P>;\nconstexpr int MOD = /** 1000000007; //*/ 998244353;\n// clang-format on\n////////////////////////////////////////////////////\n\n// Suffix Array\n//verify https://judge.yosupo.jp/submission/240\nstruct SuffixArray{\n int _size;\n vector<int> sa;\n string &s;\n SuffixArray(string &str):_size(str.size()) , s(str) {\n // うしさんのO( N logN )の実装\n s.push_back(0);\n sa.resize(s.size());\n iota(begin(sa), end(sa), 0);\n sort(begin(sa), end(sa), [&](int a, int b) {\n return s[a] == s[b] ? a > b : s[a] < s[b];\n });\n vector< int > classes(s.size()), c(s.begin(), s.end()), cnt(s.size());\n for(int len = 1; len < (int)s.size(); len <<= 1) {\n for(int i = 0; i < (int)s.size(); i++) {\n if(i > 0 && c[sa[i - 1]] == c[sa[i]] && sa[i - 1] + len < (int)s.size() && c[sa[i - 1] + len / 2] == c[sa[i] + len / 2]) {\n classes[sa[i]] = classes[sa[i - 1]];\n } else {\n classes[sa[i]] = i;\n }\n }\n iota(begin(cnt), end(cnt), 0);\n copy(begin(sa), end(sa), begin(c));\n for(int i = 0; i < (int)s.size(); i++) {\n int s1 = c[i] - len;\n if(s1 >= 0) sa[cnt[classes[s1]]++] = s1;\n }\n classes.swap(c);\n }\n s.pop_back();\n }\n // デバッグ用に実装\n void output() {\n cout << \"SA\\tidx\\tstr\" << endl;\n for(int i = 0; i < size(); i++) {\n cout << i << \": \\t\" << sa[i] << \" \\t\" ;\n if(sa[i] != _size) cout << s.substr(sa[i],_size - sa[i]) << endl;\n else cout << \"$\" << endl;\n }\n cout << endl;\n }\n // sa.size()と表せると便利なので実装\n int size() const{return _size + 1;}\n // sa[]と表せると便利なのでオーバーロードしておく\n int operator[](int k) const{return sa[k]; }\n};\n\nstruct LCPArray {\n const SuffixArray &SA;\n vector<int> LCP, rank;\n LCPArray(const SuffixArray &sa) : SA(sa) {\n LCP.resize(SA.size()); rank.resize(SA.size());\n // 初期化 rankはsaの逆関数\n for(int i = 0; i < SA.size(); i++) {\n rank[SA[i]] = i;\n }\n LCP[0] = 0; \n \n // 構築\n for(int i = 0, h = 0; i < SA.size() - 1 ; i++) {\n int j = SA[rank[i] - 1] ; h ? h-- : h;\n // ここで尺取り法に近い手法を使うことでO(N)でLCPの構築をしている\n while( (i > j ? i : j) + h < SA.size() - 1 && SA.s[i + h] == SA.s[j + h] && ++h );\n LCP[rank[i] - 1] = h;\n }\n }\n\n // デバッグ用に実装\n void output() {\n cout << \"SA\\tidx\\tLCP\\tstr\" << endl;\n for(int i = 0 ; i < SA.size() ; i++){\n cout << i << \"\\t\" << SA[i] <<\" \\t\" << LCP[i] << \"\\t\"; \n if(SA[i] == SA.size() - 1) cout << \"$\";\n else cout << SA.s.substr(SA[i] , SA.size() - 1 - SA[i]);\n cout << endl;\n }\n }\n\n};\n\n// Sparse Table\ntemplate<typename T>\nstruct SparseTable{\n vector< vector< T > > table;\n vector< int > log_table;\n\n SparseTable(const vector< T > &v) {\n int b = 0;\n while((1 << b) <= (int)v.size()) ++b;\n table.assign(b, vector< T >(1 << b));\n for(int i = 0; i < (int)v.size(); i++) {\n table[0][i] = v[i];\n }\n for(int i = 1; i < b; i++) {\n for(int j = 0; j + (1 << i) <= (1 << b); j++) {\n table[i][j] = min(table[i - 1][j], table[i - 1][j + (1 << (i - 1))]);\n }\n }\n log_table.resize(v.size() + 1);\n for(int i = 2; i < (int)log_table.size(); i++) {\n log_table[i] = log_table[i >> 1] + 1;\n }\n }\n\n // 区間 [l , r) の最小値を返す\n inline T query(int l, int r) {\n int b = log_table[r - l];\n return min(table[b][l], table[b][r - (1 << b)]);\n }\n};\n\n// 文字列検索 検索 O(M + logN) メモリO(N logN)\n// verify\n// https://onlinejudge.u-aizu.ac.jp/status/users/NyaanNyaan/submissions/1/ALDS1_14_D/judge/3874273/C++14\n// https://atcoder.jp/contests/abc135/submissions/7574225\n// https://judge.yosupo.jp/submission/241\n// https://atcoder.jp/contests/abc141/submissions/7577295\nstruct StringSearch{\n string &s;\n const SuffixArray &sa;\n const LCPArray &lcp;\n SparseTable<int> sparse;\n StringSearch(LCPArray &lcp)\n : s(lcp.SA.s) , sa(lcp.SA) , lcp(lcp) , sparse(lcp.LCP){ }\n\n // 文字列sの[i , N)と[j , N)の共通接頭辞の長さを求める\n int ArbitaryLCP(int i , int j){\n if(i == j) return (int)(s.size()) - i;\n return sparse.query(\n min(lcp.rank[i] , lcp.rank[j]) , \n max(lcp.rank[i] , lcp.rank[j]) \n );\n }\n\n pair<int,int> comp(const string &t , int len , int si , int ti = 0){\n int sn = (int)s.size() , tn = (int) t.size();\n si += len , ti += len;\n while(si < sn && ti < tn){\n if(s[si] != t[ti]) return make_pair( s[si]<t[ti] , ti);\n si++ , ti++;\n }\n return make_pair( (si>=sn && ti<tn) , ti);\n } \n\n pair<int,int> find_range(int left , int med , int right , int len){\n {\n int ng = left - 1, ok = med;\n while(ng + 1 < ok){\n int cur = (ng + ok) / 2;\n if(sparse.query(cur , med) >= len) ok = cur;\n else ng = cur;\n }\n left = ok;\n }\n {\n int ok = med , ng = right + 1;\n while(ok + 1 < ng){\n int cur = (ng + ok) / 2;\n if(sparse.query(med, cur) >= len) ok = cur;\n else ng = cur;\n }\n right = ok;\n }\n return make_pair(left , right);\n }\n\n // 全ての出現範囲をSA上の[left , right]の範囲で返す\n // 存在しない場合は-1を返す\n pair<int,int> find(string &t){\n // 条件を満たす[left , right]を見つける\n // sa[0]は空文字列なので left = 1 とする\n // lenは既に一致している文字列の長さ\n int left = 1 , right = sa.size() - 1 , med = left;\n int leftlen = 0 , rightlen = 0 , tlen = t.size();\n pair<int,int> ret;\n while(left + 1 < right){\n med = (left + right) / 2;\n\n int corres_len = max(\n min(leftlen , sparse.query(left , med)) ,\n min(rightlen, sparse.query(med , right))\n );\n if(corres_len < max(leftlen , rightlen)){\n if(leftlen < rightlen) \n left = med , leftlen = corres_len;\n else\n right= med ,rightlen = corres_len;\n continue;\n }\n ret = comp(t , corres_len , sa[med]);\n //trc(left,med,right,ret);\n if(ret.second == tlen)\n return find_range(left,med,right,tlen);\n if(ret.first == 0)\n right = med , rightlen = ret.second;\n else\n left = med , leftlen = ret.second;\n }\n if(sa.size() <= 3){\n if(comp(t,0,sa[left]).second==tlen) return find_range(left,left,right,tlen);\n if(comp(t,0,sa[right]).second==tlen) return find_range(left,right,right,tlen);\n return make_pair(-1,-1);\n }\n med = left + right - med;\n ret = comp(t , min(leftlen,rightlen) , sa[med]);\n //trc(left,med,right,ret);\n if(ret.second == tlen)\n return find_range(left,med,right,tlen);\n return make_pair(-1,-1);\n }\n};\n\n// Suffix Arrayの使い方(メモリを食うので必要なものだけ使う)\n// 参照があるのでstringを削除などしないこと\n/*\n SuffixArray sa(S);\n LCPArray lcp(sa);\n StringSearch search(lcp);\n*/\n\n// BIT\n\ntemplate< typename T >\nstruct BIT {\n int N; int max_2beki;\n\n vector< T > data;\n // 初期化 1-indexedでデータを管理する 0で初期化\n BIT(int size){\n N = ++size;\n data.assign(N, 0);\n max_2beki = 1;\n while(max_2beki * 2 <= N) max_2beki *= 2;\n }\n\n // [0,k](閉区間)の総和 閉区間に注意!\n T sum(int k) {\n if(k < 0) return 0; // k<0のとき0を返す\n T ret = 0;\n for(++k; k > 0; k -= k & -k) ret += data[k];\n return (ret);\n }\n\n // [l,r](閉区間)の総和\n inline T sum(int l,int r){\n return sum(r) - sum(l-1);\n }\n\n // 一点取得 更新はできないことに注意\n inline T operator[](int k){\n return sum(k) - sum(k-1);\n }\n\n // data[k] += x;\n void add(int k, T x) {\n for(++k; k < N; k += k & -k) data[k] += x;\n }\n\n // imos法 [l,r]にxを加算\n void imos(int l,int r,T x){\n add(l , x); add(r + 1 , -x);\n }\n\n // lower_bound sum(i)がval以上となる最小のi\n int lower_bound(T w){\n if(w <= 0) return 0;\n int x = 0;\n for(int k = max_2beki; k > 0; k /= 2){\n if(x+k <= N - 1 && data[x + k] < w){\n w -= data[x + k];\n x += k;\n }\n }\n return x;\n }\n\n // upper_bound sum(i)がvalより大きくなる最小のi\n int upper_bound(T w){\n if(w < 0) return 0;\n int x = 0;\n for(int k = max_2beki; k > 0; k /= 2){\n if(x+k <= N - 1 && data[x + k] <= w){\n w -= data[x + k];\n x += k;\n }\n }\n return x;\n }\n\n};\n\nvoid solve(){\n ins(S);\n SuffixArray sa(S);\n LCPArray lcp(sa);\n StringSearch search(lcp);\n trc(S);\n if(sz(S)==1){out(S);return;}\n \n int N = sz(S);\n int left = 0 , len = 1;\n int nxt = 1;\n BIT<ll> bit(N + 10);\n \n if(sz(S) <= 100){\n // 愚直\n int ans = N , al = 0 , alen = N;\n rep(i , N) rep1(j , N){\n int med = j - i;\n if(med <= 0) continue;\n // [left , left + med)を走査\n fill(all(bit.data) , 0);\n //trc(med);\n rep(k , N){\n int x = search.ArbitaryLCP(i , k);\n //trc(i , x); \n x = min(x , med);\n bit.imos(k , k + x - 1 , 1);\n }\n //rep(i,N) trc(bit.sum(i));\n int flg = 1;\n rep(i , N){\n flg &= bit.sum(i) != 0;\n }\n if( (flg == 1) && amin(ans , med) ){\n trc(flg , i, j);\n al = i , alen = med;\n }\n }\n \n out(S.substr(al , alen));\n return ;\n } \n // [left , left + len)が本質 \n while(1){\n //trc(left , len);\n int x = search.ArbitaryLCP(left , nxt);\n if(x == 0){\n len++;\n nxt = left + len;\n if(nxt == N) break;\n }\n else if(x >= len){\n left = nxt;\n if(left + len >= N) break;\n //if(S[left + len] != S[left]) len++;\n nxt = left + len;\n }\n else{\n if(x + nxt >= N) break;\n nxt = x + nxt;\n }\n }\n\n trc(left , len , S.substr(left , len));\n int ng = 0 , ok = len;\n while(ng + 1 < ok){\n int med = (ng + ok) / 2;\n // [left , left + med)を走査\n fill(all(bit.data) , 0);\n //trc(med);\n rep(i , N){\n int x = search.ArbitaryLCP(left , i);\n //trc(i , x);\n x = min(x , med);\n bit.imos(i , i + x - 1 , 1);\n }\n //rep(i,N) trc(bit.sum(i));\n int flg = 1;\n rep(i , N){\n flg &= bit.sum(i) != 0;\n }\n (flg ? ok : ng) = med;\n }\n \n out(S.substr(left , ok));\n \n /*\n // 愚直\n int ans = N , al = 0 , alen = N;\n rep(i , N) rep1(j , N){\n int med = j - i;\n if(med <= 0) continue;\n // [left , left + med)を走査\n fill(all(bit.data) , 0);\n //trc(med);\n rep(k , N){\n int x = search.ArbitaryLCP(i , k);\n //trc(i , x); \n x = min(x , med);\n bit.imos(k , k + x - 1 , 1);\n }\n //rep(i,N) trc(bit.sum(i));\n int flg = 1;\n rep(i , N){\n flg &= bit.sum(i) != 0;\n }\n if( (flg == 1) && amin(ans , med) ){\n trc(flg , i, j);\n al = i , alen = med;\n }\n }\n\n \n if(S.substr(left , ok) != S.substr(al ,alen)){\n trc(S);\n trc(S.substr(left , ok));\n trc(S.substr(al , alen));\n exit(1);\n }\n */\n\n\n}", "accuracy": 0.24561403508771928, "time_ms": 100, "memory_kb": 14156, "score_of_the_acc": -1, "final_rank": 3 }, { "submission_id": "aoj_3146_4261290", "code_snippet": "// vvvvvvvvvvvv TEMPLATE vvvvvvvvvvvv\n#include <bits/stdc++.h>\nusing namespace std; using ll = long long; using P = pair<ll, ll>;\nconst ll linf = 1e18; const double eps = 1e-12, pi = acos(-1);\n#define FOR(i,a,b) for (ll i=(a),__last_##i=(b);i<__last_##i;i++)\n#define RFOR(i,a,b) for (ll i=(b)-1,__last_##i=(a);i>=__last_##i;i--)\n#define REP(i,n) FOR(i,0,n)\n#define RREP(i,n) RFOR(i,0,n)\n#define __GET_MACRO3(_1, _2, _3, NAME, ...) NAME\n#define each(i,a) for (auto&& i : a)\n#define rep(...) __GET_MACRO3(__VA_ARGS__, FOR, REP)(__VA_ARGS__)\n#define rrep(...) __GET_MACRO3(__VA_ARGS__, RFOR, RREP)(__VA_ARGS__)\n#define pb push_back\n#define eb emplace_back\n#define all(a) begin(a),end(a)\n#define chmin(x,v) x = min(x, v)\n#define chmax(x,v) x = max(x, v)\n#define min(x,y) (x < y ? x : y)\n#define max(x,y) (x < y ? y : x)\ntemplate<typename Head> void out(Head h) { cout << h << endl; } template<typename Head, typename... Tail>void out(Head h, Tail... t) { cout << h << \" \"; out(t...); }\ntemplate<typename T> istream& operator>>(istream& is, vector<T>& v) { each(x,v) is >> x; return is; }\ntemplate<typename T> ostream& operator<<(ostream& os, const vector<T>& v) { rep(i,v.size()) { if (i) os << \" \"; os << v[i]; } return os; }\ntemplate<typename T> ostream& operator<<(ostream& os, const vector<string>& v) { rep(i,v.size()) { if (i) os << endl; os << v[i]; } return os; }\ntemplate<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v) { rep(i,v.size()) { if (i) os << endl; os << v[i]; } return os; }\nstruct yes_no : std::numpunct<char> { string_type do_truename() const { return \"Yes\"; } string_type do_falsename() const { return \"No\"; } };\nvoid solve(); int main() {\n ios::sync_with_stdio(false); cin.tie(0); locale loc(locale(), new yes_no); cout.imbue(loc); cout << fixed << setprecision(10) << boolalpha;\n solve();\n}\n// ^^^^^^^^^^^^ TEMPLATE ^^^^^^^^^^^^\n\nll mul(ll a, ll b, ll mod) {\n return a * b % mod;\n}\nll add(ll a, ll b, ll mod) {\n return (a + b) % mod;\n}\nll sub(ll a, ll b, ll mod) {\n return (a - b + mod) % mod;\n}\nll power(ll x, ll n, ll mod) {\n ll res = 1;\n for (ll i = 1; i <= n; i <<= 1) {\n if (i & n) res = mul(res, x, mod);\n x = mul(x, x, mod);\n }\n return res;\n}\nll inv(ll n, ll mod) {\n return power(n, mod-2, mod);\n}\n\ntemplate<class String>\nclass SuffixArray {\n const ll n;\n const String str;\n vector<ll> sa, lcp;\npublic:\n SuffixArray(const String& s) : str(s), n(s.size()) {}\n // sa: {s.substr(sa[0]), ..., s.substr(sa[n])} is sorted\n // sa[0] = n\n vector<ll> make_sa() {\n sa.assign(n+1, 0);\n rep(i, n+1) sa[i] = i;\n vector<ll> rank(all(str));\n rank.pb(-1);\n auto f = [&](ll idx, ll len) {\n return idx + len <= n ? rank[idx+len] : -1;\n };\n for (ll k = 1; k <= n; k <<= 1) {\n auto compare = [&](ll a, ll b) {\n if (rank[a] != rank[b]) return rank[a] < rank[b];\n else return f(a, k) < f(b, k);\n };\n sort(all(sa), compare);\n vector<ll> nrank(n+1, 0);\n rep(i, 1, n+1) {\n nrank[sa[i]] = nrank[sa[i-1]] + compare(sa[i-1], sa[i]);\n }\n rank = nrank;\n }\n return sa;\n }\n // lcp: lcp[i] = lcp(s.substr(sa[i]), s.substr(sa[i+1])\n // lcp[n] = 0\n vector<ll> make_lcp() {\n assert(sa.size() > 0);\n lcp.assign(sa.size(), 0);\n vector<ll> rank(n+1);\n rep(i, n+1) rank[sa[i]] = i;\n ll h = 0;\n rep(i, n) {\n if (h > 0) --h;\n assert(rank[i] > 0);\n for (ll j = sa[rank[i]-1]; j + h < n && i + h < n; h++) {\n if (str[j+h] != str[i+h]) break;\n }\n lcp[rank[i]-1] = h;\n }\n return lcp;\n }\n vector<ll> search(const String& s) {\n // assert(lcp.size() > 0);\n ll l = -1, r = -1;\n {\n ll lb = 0, ub = n+1;\n while (ub - lb > 1) {\n ll mid = (lb + ub) / 2;\n if (str.substr(sa[mid], s.size()) >= s) {\n ub = mid;\n }\n else {\n lb = mid;\n }\n }\n l = ub;\n }\n {\n ll lb = 0, ub = n+1;\n while (ub - lb > 1) {\n ll mid = (lb + ub) / 2;\n if (str.substr(sa[mid], s.size()) > s) {\n ub = mid;\n }\n else {\n lb = mid;\n }\n }\n r = ub;\n }\n vector<ll> res;\n if (str.substr(sa[l], s.size()) == s) {\n rep(i, l, r) {\n res.pb(sa[i]);\n }\n }\n return res;\n }\n};\n\ntemplate <class Monoid>\nclass SegmentTree {\n using T = typename Monoid::type;\n const int size_, n;\n std::vector<T> data;\n int expand(int m) const { return m <= 1 ? 1 : expand((m + 1) / 2) * 2; }\npublic:\n SegmentTree() : SegmentTree(0) {}\n SegmentTree(const std::vector<T> &vec) :\n size_(vec.size()), n(expand(size_)), data(n * 2, Monoid::id()) {\n std::copy(begin(vec), end(vec), begin(data) + n);\n for (int i = n - 1; i >= 0; --i) {\n data[i] = Monoid::op(data[i * 2 + 0], data[i * 2 + 1]);\n }\n }\n SegmentTree(const int count, const T &value = Monoid::id()) :\n SegmentTree(std::vector<T>(count, value)) {}\n int size() const { return size_; }\n void update(int pos, const T &value) {\n assert (0 <= pos && pos < size_); // assertion\n data[pos += n] = value;\n while (pos /= 2) {\n data[pos] = Monoid::op(data[pos * 2], data[pos * 2 + 1]);\n }\n }\n T find(int l, int r) const {\n assert (0 <= l && l <= r && r <= size_); // assertion\n l += n; r += n;\n T res1 = Monoid::id(), res2 = Monoid::id();\n while (l != r) {\n if (l % 2) res1 = Monoid::op(res1, data[l++]);\n if (r % 2) res2 = Monoid::op(data[--r], res2);\n l /= 2; r /= 2;\n }\n return Monoid::op(res1, res2);\n }\n T operator[](size_t pos) {\n return data[n+pos];\n }\n using value_type = T;\n using update_type = T;\n};\n\nstruct Min {\n using type = ll;\n static type id() { return linf; }\n static type op(const type &l, const type &r) { return min(l, r); }\n};\nstruct Max {\n using type = ll;\n static type id() { return -linf; }\n static type op(const type &l, const type &r) { return max(l, r); }\n};\nstruct Sum {\n using type = ll;\n static type id() { return 0; }\n static type op(const type &l, const type &r) { return l + r; }\n};\n\nvoid solve() {\n string s; cin >> s;\n const ll n = s.size();\n SuffixArray<string> suffix_array(s);\n vector<ll> sa = suffix_array.make_sa();\n vector<ll> lcp = suffix_array.make_lcp();\n vector<ll> sa_r(n+1);\n rep(i, n+1) sa_r[sa[i]] = i;\n SegmentTree<Min> seg(lcp);\n set<ll> sa_rs;\n sa_rs.insert(sa_r[0]);\n ll mx = 1;\n ll pos = 0, len = 1;\n rep(i, 1, n) {\n // cout << \"i = \" << i << endl;\n sa_rs.insert(sa_r[i]);\n ll l = sa_r[i], r = sa_r[pos];\n if (l > r) swap(l, r);\n mx = max(mx, i + min(len, seg.find(l, r)));\n if (seg.find(l, r) >= len) {\n pos = i;\n }\n if (mx <= i) {\n mx = i+1;\n ll nlen = i+1 - pos;\n // cout << pos << \" \" << s.substr(pos, nlen) << endl;\n auto it0 = sa_rs.lower_bound(sa_r[pos]);\n {\n auto it = it0;\n ll h = nlen;\n while (h > len) {\n ll l = *it;\n ++it;\n if (it == sa_rs.end()) break;\n ll r = *it;\n chmin(h, seg.find(l, r));\n chmax(mx, sa[r] + h);\n }\n }\n {\n // cout << \"left\" << endl;\n auto it = it0;\n ll h = nlen;\n while (it != sa_rs.begin() && h > len) {\n ll r = *it;\n --it;\n ll l = *it;\n chmin(h, seg.find(l, r));\n // cout << l << \" \" << s.substr(sa[l]) << \" \" << h << endl;\n chmax(mx, sa[l] + h);\n }\n }\n len = nlen;\n }\n }\n cout << s.substr(pos, len) << endl;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 13696, "score_of_the_acc": -0.94, "final_rank": 1 }, { "submission_id": "aoj_3146_4260164", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nvoid suffixArray(const string &s, vector<int> &sa, vector<int> &rank){\n int n = s.size();\n sa = vector<int>(n);\n rank = vector<int>(n);\n iota(sa.begin(), sa.end(), 0);\n sort(sa.begin(), sa.end(), [&](const int l, const int r){\n return s[l] < s[r];\n });\n for(int i = 0; i < n; i++) rank[i] = s[i] - 'a';\n for(int k = 1; k < n; k <<= 1){\n auto comp = [&](const int l, const int r){\n if(rank[l] != rank[r]) return rank[l] < rank[r];\n return (l + k < n ? rank[l + k] : -1) < (r + k < n ? rank[r + k] : -1);\n };\n sort(sa.begin(), sa.end(), comp);\n vector<int> tmp = rank;\n tmp[sa[0]] = 0;\n for(int i = 1; i < n; i++) tmp[sa[i]] = tmp[sa[i - 1]] + (comp(sa[i - 1], sa[i]) ? 1 : 0);\n rank = tmp;\n }\n}\n\nvoid longestCommonPrefix(const string &s, const vector<int> &sa, const vector<int> &rank, vector<int> &lcp){\n int n = s.size();\n lcp = vector<int>(n);\n int h = 0;\n for(int i = 0; i < n; i++){\n if(h > 0) h--;\n if(rank[i] == 0) continue;\n int j = sa[rank[i] - 1];\n while(i + h < n && j + h < n){\n if(s[i + h] != s[j + h]) break;\n h++;\n }\n lcp[rank[i] - 1] = h;\n }\n}\n\nconst int inf = 1e9;\n\nstruct SegmentTree{\n int n;\n vector<int> lcp;\n vector<int> range;\n\n SegmentTree(vector<int> &v){\n int sz = v.size();\n n = 1;\n while(n < sz) n <<= 1;\n lcp.resize(2 * n - 1, 0);\n range.resize(2 * n - 1, 0);\n for(int i = 0; i < sz; i++) lcp[i + n - 1] = v[i];\n for(int i = n - 2; i >= 0; i--) lcp[i] = min(lcp[i * 2 + 1], lcp[i * 2 + 2]);\n }\n\n int pl = 1;\n\n int getlcp(int a, int b, int k = 0, int l = 0, int r = -1){\n if(r < 0) r = n;\n if(r <= a || b <= l) return inf;\n if(a <= l && r <= b) return lcp[k];\n int xl = getlcp(a, b, 2 * k + 1, l, (l + r) / 2);\n int xr = getlcp(a, b, 2 * k + 2, (l + r) / 2, r);\n return min(xl, xr);\n }\n\n void update(int a, int b, int x, int k = 0, int l = 0, int r = -1){\n if(r < 0) r = n;\n if(r <= a || b <= l) return;\n if(a <= l && r <= b){\n range[k] = x;\n return;\n }\n update(a, b, x, 2 * k + 1, l, (l + r) / 2);\n update(a, b, x, 2 * k + 2, (l + r) / 2, r);\n }\n\n void update(int pos, int len){\n for(; pl <= len; pl++){\n int l1 = -1, r1 = pos;\n while(r1 - l1 > 1){\n int mid = (l1 + r1) / 2;\n if(getlcp(mid, pos) >= pl){\n r1 = mid;\n }else{\n l1 = mid;\n }\n }\n int l2 = pos, r2 = n;\n while(r2 - l2 > 1){\n int mid = (l2 + r2) / 2;\n if(getlcp(pos, mid) >= pl){\n l2 = mid;\n }else{\n r2 = mid;\n }\n }\n update(r1, r2, pl);\n }\n }\n\n int get(int k){\n k += n - 1;\n int ans = range[k];\n while(k){\n k = (k - 1) / 2;\n ans = max(ans, range[k]);\n }\n return ans;\n }\n};\n\nint main(){\n string s;\n cin >> s;\n int n = s.size();\n\n vector<int> sa, rank, lcp;\n suffixArray(s, sa, rank);\n longestCommonPrefix(s, sa, rank, lcp);\n\n SegmentTree seg(lcp);\n int can = -1;\n int pos = 0;\n int len = 0;\n for(int i = 0; i < n; i++){\n int range = seg.get(rank[i]);\n if(range == len) pos = i;\n can = max(can, i + range - 1);\n if(can < i){\n len = i - pos + 1;\n seg.update(rank[pos], len);\n }\n }\n cout << s.substr(pos, len) << endl;\n}", "accuracy": 1, "time_ms": 370, "memory_kb": 6488, "score_of_the_acc": -1, "final_rank": 2 } ]
aoj_3144_cpp
H: 魔法使いの塔 問題文 あなたが持っている魔導書には、 $N$ 個の魔法が載っています。 魔法には $1$ から $N$ までの番号がついていて、魔法 $i (1 \le i \le N)$ のコストははじめ整数 $A_i$ です。 あなたの目的は、魔導書に載っているすべての魔法を $1$ 回ずつ唱えることです。 魔法を唱えはじめる前に、あなたはクッキーを $K$ 枚食べることができます。クッキーを食べるのに時間はかかりません。 あなたはクッキーを $1$ 枚食べるたびに、コストが正の魔法を $1$ つ選び、そのコストを $1$ 下げることができます。 クッキーを食べたあと、あなたは魔法を唱え始めます。 あなたの MP ははじめ $M$ です。あなたは以下のどちらかを繰り返して、 $N$ 個の魔法を任意の順番で $1$ 回ずつ唱えます。 整数 $i (1 \le i \le N)$ を $1$ つ選び、魔法 $i$ を唱える。ただし、 現在の MP は魔法 $i$ のコスト以上でなければならない。 時間は経過しない。 MP を魔法 $i$ のコストだけ消費する。 休憩する。ただし、現在の MP を $m$ とすると、 $m < M$ でなければならない。 時間が $M - m$ 経過する。 MP を $1$ 回復する。 あなたが $N$ 個の魔法を任意の順番で $1$ 回ずつ唱えるためにかかる時間の最小値を求めてください。 制約 $1 \leq N \leq 10^5$ $1 \leq M \leq 10^6$ $0 \leq K \leq \sum_{i=1}^{N} A_i$ $1 \leq A_i \leq M$ 入力はすべて整数である。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $M$ $K$ $A_1$ $A_2$ $\ldots$ $A_N$ 出力 $N$ 個の魔法を $1$ 回ずつ唱えるためにかかる時間の最小値を出力せよ。 入力例1 2 4 0 2 4 出力例1 3 どの魔法のコストも減らすことができないので、このまま魔法を唱えていくことにします。 まず、魔法 $1$ を唱えます。 MP を $2$ 消費するので、残りの MP は $4 - 2 = 2$ になります。 魔法 $2$ を唱えるには MP が $4$ 必要なので、このままでは魔法 $2$ を唱えることはできません。 休憩します。時間が $4 - 2 = 2$ 秒経過します。 MP を $1$ 回復するので、残りの MP は $2 + 1 = 3$ になります。 休憩します。時間が $4 - 3 = 1$ 秒経過します。 MP を $1$ 回復するので、残りの MP は $3 + 1 = 4$ になります。 魔法 $2$ を唱えます。 MP を $4$ 消費するので、残りの MP は $4 - 4 = 0$ になります。 以上より、時間を $2 + 1 = 3$ 秒かければ、魔法 $1,2$ を $1$ 回ずつ唱えることができます。 これより短い時間ですべての魔法を唱えることはできないので、求める答えは $3$ となります。 入力例2 3 9 6 2 3 9 出力例2 0 最終的な魔法のコストを $2, 2, 4$ とすると、休憩することなくすべての魔法を唱えることができます。 入力例3 3 16 2 6 9 9 出力例3 21 入力例4 2 1000000 0 1000000 1000000 出力例4 500000500000 答えは 32bit 整数で表せる範囲に収まらないことがあります。
[ { "submission_id": "aoj_3144_9198724", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=int64_t;\n\nint main(){\n int n;\n ll M,k;\n cin >> n >> M >> k;\n\n vector<ll> a(n+1);\n vector<ll> as(n+1,0);\n ll asum=0;\n \n for(int i=1;i<=n;i++){\n cin >> a[i];\n asum+=a[i];\n }\n if((n==1)||(M>=asum-k)){\n cout << 0 << endl;\n return 0;\n }\n\n sort(a.begin(),a.end());\n for(int i=1;i<=n;i++) as[i]=as[i-1]+a[i];\n \n ll as1=0,asd;\n int cc=n;\n while(as1+a[cc]<=M){\n as1+=a[cc];\n a.pop_back();\n cc--;\n }\n asd=M-as1;\n //cout << asd <<\" \" << cc << endl;\n \n int im2;\n\n if(k>0){\n ll lw=0,hi=M+1;\n int im;\n ll sum1,sum2;\n while(hi-lw>1){\n ll mid=(lw+hi)/2;\n im=distance(a.begin(),lower_bound(a.begin(),a.end(),mid));\n //cout << mid << \" \" << im << endl;\n if(im==cc+1){\n hi=mid;\n continue;\n }\n sum1=(as[cc]-as[im-1])-(mid-1)*(cc-im+1)-((mid-1)>=asd ? 0 :asd-(mid-1));\n if(k>=sum1) hi=mid;\n else lw=mid;\n //cout << mid << \" \" << im << \" \" << sum1 << endl;\n }\n im2=distance(a.begin(),lower_bound(a.begin(),a.end(),hi));\n sum2=(as[cc]-as[im2-1])-(hi-1)*(cc-im2+1)-((hi-1)>=asd ? 0 :asd-(hi-1));\n //cout << hi << \" \" << im2 << \" \" << k-sum2 << endl;\n \n for(int i=im2;i<cc;i++) a[i]=hi-1;\n (hi-1)>asd ? a[cc]=hi-1 : a[cc]=asd;\n \n ll dd=k-sum2;\n int ci=cc;\n while(dd>0){\n if(ci==cc){\n if(a[ci]>asd){\n dd--;\n a[ci]--;\n }\n }else{\n dd--;\n a[ci]--;\n }\n ci--;\n }\n \n }\n \n ll ans=0;\n for(int i=1;i<=cc;i++){\n ans+=(a[i]+1)*a[i]/2;\n }\n ans-=(asd+1)*asd/2;\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4688, "score_of_the_acc": -0.6709, "final_rank": 13 }, { "submission_id": "aoj_3144_9198703", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=int64_t;\n\nint main(){\n int n;\n ll M,k;\n cin >> n >> M >> k;\n\n vector<int> a(n+1);\n vector<ll> as(n+1,0);\n ll asum=0;\n \n for(int i=1;i<=n;i++){\n cin >> a[i];\n asum+=a[i];\n }\n if((n==1)||(M>=asum-k)){\n cout << 0 << endl;\n return 0;\n }\n\n sort(a.begin(),a.end());\n for(int i=1;i<=n;i++) as[i]=as[i-1]+a[i];\n \n ll as1=0,asd;\n int cc=n;\n while(as1+a[cc]<=M){\n as1+=a[cc];\n a.pop_back();\n cc--;\n }\n asd=M-as1;\n //cout << asd <<\" \" << cc << endl;\n \n int im2;\n ll ans=0,d;\n\n if(k>0){\n int lw=0,hi=M+1,im;\n ll sum1,sum2;\n while(hi-lw>1){\n int mid=(lw+hi)/2;\n im=distance(a.begin(),lower_bound(a.begin(),a.end(),mid));\n //cout << mid << \" \" << im << endl;\n if(im==cc+1){\n hi=mid;\n continue;\n }\n sum1=(as[cc]-as[im-1])-(mid-1)*(cc-im+1)-((mid-1)>=asd ? 0 :asd-(mid-1));\n if(k>=sum1) hi=mid;\n else lw=mid;\n //cout << mid << \" \" << im << \" \" << sum1 << endl;\n }\n im2=distance(a.begin(),lower_bound(a.begin(),a.end(),hi));\n sum2=(as[cc]-as[im2-1])-(hi-1)*(cc-im2+1)-((hi-1)>=asd ? 0 :asd-(hi-1));\n //cout << hi << \" \" << im2 << \" \" << k-sum2 << endl;\n \n for(int i=im2;i<cc;i++) a[i]=hi-1;\n (hi-1)>asd ? a[cc]=hi-1 : a[cc]=asd;\n \n ll dd=k-sum2;\n int ci=cc;\n while(dd>0){\n if(ci==cc){\n if(a[ci]>asd){\n dd--;\n a[ci]--;\n }\n }else{\n dd--;\n a[ci]--;\n }\n ci--;\n }\n \n }\n for(int i=1;i<=cc;i++){\n ans+=((ll)a[i]+1)*a[i]/2;\n }\n ans-=(asd+1)*asd/2;\n cout << ans << endl;\n}", "accuracy": 0.6818181818181818, "time_ms": 10, "memory_kb": 3536, "score_of_the_acc": -0.0326, "final_rank": 19 }, { "submission_id": "aoj_3144_9195490", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=int64_t;\n\nint main(){\n int n;\n ll M,k;\n cin >> n >> M >> k;\n\n vector<int> a(n+1);\n vector<ll> as(n+1,0);\n ll asum=0;\n \n for(int i=1;i<=n;i++){\n cin >> a[i];\n asum+=a[i];\n }\n if((n==1)||(M>=asum-k)){\n cout << 0 << endl;\n return 0;\n }\n\n sort(a.begin(),a.end());\n for(int i=1;i<=n;i++) as[i]=as[i-1]+a[i];\n \n ll as1=0,asd;\n int cc=n;\n while(as1+a[cc]<=M){\n as1+=a[cc];\n a.pop_back();\n cc--;\n }\n asd=M-as1;\n //cout << asd <<\" \" << cc << endl;\n \n int abb,im2;\n ll ans=0,d;\n\n if(k==0){\n abb=a[cc];\n im2=cc;\n \n }else{\n \n int lw=0,hi=M+1,im;\n ll sum1,sum2;\n while(hi-lw>1){\n int mid=(lw+hi)/2;\n im=distance(a.begin(),lower_bound(a.begin(),a.end(),mid));\n //cout << mid << \" \" << im << endl;\n if(im==cc+1){\n hi=mid;\n continue;\n }\n sum1=(as[cc]-as[im-1])-a[im-1]*(cc-im+1)-(a[im-1]>=asd ? 0 :asd-a[im-1]);\n if(k>sum1) hi=mid;\n else lw=mid;\n //cout << mid << \" \" << im << \" \" << sum1 << endl;\n }\n im2=distance(a.begin(),lower_bound(a.begin(),a.end(),lw));\n sum2=(as[cc]-as[im2-1])-a[im2-1]*(cc-im2+1)-(a[im2-1]>=asd ? 0 :asd-a[im2-1]);\n //cout << (as[cc]-as[im2-1]) << \" \" << a[im2-1]*(cc-im2+1) << \" \" << (a[im2-1]>=asd ? 0 :asd-a[im2-1]) << endl;\n //cout << lw << \" \" << im2 << \" \" << sum2 << endl;\n \n ll dd=sum2-k;\n int cd=cc-im2+1,df=int(dd/cd),ccd;\n //cout << dd << \" \" << df << \" \" << cd << endl;\n int dfc1,dfc2;\n if(cd==1){\n abb=max((int)asd,a[im2-1])+df;\n dfc1=0;\n dfc2=0;\n }else if(asd<=a[im2-1]){\n ccd=int(dd-cd*df);\n abb=(ccd==0 ? a[im2-1]+df : a[im2-1]+df+1);\n if(ccd==0){\n dfc1=0;\n dfc2=cd-1;\n }else{\n dfc1=ccd-1;\n dfc2=cd-ccd;\n }\n }else if(dd==0){\n abb=max((int)asd,a[im2-1]);\n dfc1=0;\n dfc2=cd-1;\n }else{\n if((dd/(cd-1))+a[im2-1]<=asd){\n df=dd/(cd-1);\n ccd=int(dd-df*(cd-1));\n dfc1=ccd;\n dfc2=cd-1-ccd;\n abb=asd;\n }else{\n int df1=asd-a[im2-1];\n df=df1+(dd-df1*(cd-1))/cd;\n ccd=int(dd-df1*(cd-1))%cd;\n abb=(ccd==0 ? a[im2-1]+df : a[im2-1]+df+1);\n if(ccd==0){\n dfc1=0;\n dfc2=cd-1;\n }else{\n dfc1=ccd-1;\n dfc2=cd-ccd;\n }\n\n }\n }\n //cout << a[im2-1] << \" \" << dd << \" \" << df << \" \" << cd << \" \" << ccd << \" \" << abb << endl;\n \n if(im2<cc){\n d=a[im2-1]+df+1;\n if(d%2){\n ans+=(d+d*((d-1)/2))*dfc1;\n }else{\n ans+=(d+1)*(d/2)*dfc1;\n }\n d=a[im2-1]+df;\n if(d%2){\n ans+=(d+d*((d-1)/2))*dfc2;\n }else{\n ans+=(d+1)*(d/2)*dfc2;\n }\n }\n }\n //cout << abb << \" \" << asd << \" \" << im2 << endl;\n d=abb;\n if(d%2){\n ans+=d+d*((d-1)/2);\n }else{\n ans+=(d+1)*(d/2);\n }\n d=asd;\n if(d%2){\n ans-=d+d*((d-1)/2);\n }else{\n ans-=(d+1)*(d/2);\n }\n \n\n\n for(int i=1;i<im2;i++){\n d=a[i];\n //cout << ans << \" \" << d << endl;\n if(d%2){\n ans+=d+d*((d-1)/2);\n }else{\n ans+=(d+1)*(d/2);\n }\n }\n cout << ans << endl;\n}", "accuracy": 0.6818181818181818, "time_ms": 20, "memory_kb": 4132, "score_of_the_acc": -0.6042, "final_rank": 20 }, { "submission_id": "aoj_3144_5702496", "code_snippet": "//#define _GLIBCXX_DEBUG\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define endl '\\n'\n#define lfs cout<<fixed<<setprecision(10)\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n#define spa << \" \" <<\n#define fi first\n#define se second\n#define MP make_pair\n#define MT make_tuple\n#define PB push_back\n#define EB emplace_back\n#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)\n#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)\nusing ll = long long;\nusing ld = long double;\nconst ll MOD1 = 1e9+7;\nconst ll MOD9 = 998244353;\nconst ll INF = 1e18;\nusing P = pair<ll, ll>;\ntemplate<typename T> using PQ = priority_queue<T>;\ntemplate<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}\ntemplate<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}\nll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}\nvoid ans1(bool x){if(x) cout<<\"Yes\"<<endl;else cout<<\"No\"<<endl;}\nvoid ans2(bool x){if(x) cout<<\"YES\"<<endl;else cout<<\"NO\"<<endl;}\nvoid ans3(bool x){if(x) cout<<\"Yay!\"<<endl;else cout<<\":(\"<<endl;}\ntemplate<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} \ntemplate<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);}; \ntemplate<typename T>void debug(const T &v,ll h,ll w,string sv=\" \"){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};\ntemplate<typename T>void debug(const T &v,ll n,string sv=\" \"){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};\ntemplate<typename T>void debug(const vector<T>&v){debug(v,v.size());}\ntemplate<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}\ntemplate<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<\" \";st.pop();}cout<<endl;}\ntemplate<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<\" \";st.pop();}cout<<endl;}\ntemplate<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<\" \";st.pop_front();}cout<<endl;}\ntemplate<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<\" \";st.pop();}cout<<endl;}\ntemplate<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<\" \";st.pop();}cout<<endl;}\ntemplate<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<\" \";cout<<endl;}\ntemplate<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<\" \";cout<<endl;}\ntemplate<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<\" \";cout<<endl;}\ntemplate<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<\"[\"<<z.first<<\"]=\"<<z.second<<\",\";cout<<endl;}\ntemplate<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}\nll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}\nvector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};\ntemplate<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}\ntemplate<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}\ntemplate<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << \" \" << p.second;}\ntemplate<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << \" \";cout<<\"|\"; return os;}\ntemplate<typename T>void rearrange(vector<int>&ord, vector<T>&v){\n auto tmp = v;\n for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];\n}\ntemplate<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){\n rearrange(ord, head);\n rearrange(ord, tail...);\n}\ntemplate<typename T> vector<int> ascend(const vector<T>&v){\n vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);\n sort(ord.begin(),ord.end(),[&](int i,int j){return v[i]<v[j];});\n return ord;\n}\ntemplate<typename T> vector<int> descend(const vector<T>&v){\n vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);\n sort(ord.begin(),ord.end(),[&](int i,int j){return v[i]>v[j];});\n return ord;\n}\nll FLOOR(ll n,ll div){return n>=0?n/div:(n-div+1)/div;}\nll CEIL(ll n,ll div){return n>=0?(n+div-1)/div:n/div;}\nll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;}\ntemplate<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}\ntemplate<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}\ntemplate<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};\ntemplate<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};\n//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());\nint popcount(ll x){return __builtin_popcountll(x);};\nint poplow(ll x){return __builtin_ctzll(x);};\nint pophigh(ll x){return 63 - __builtin_clzll(x);};\ntemplate<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};\ntemplate<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};\ntemplate<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};\ntemplate<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};\ntemplate< typename T = int >\nstruct edge {\n int to;\n T cost;\n int id;\n edge():id(-1){};\n edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}\n operator int() const { return to; }\n};\n\ntemplate<typename T>\nusing Graph = vector<vector<edge<T>>>;\ntemplate<typename T>\nGraph<T>revgraph(const Graph<T> &g){\n Graph<T>ret(g.size());\n for(int i=0;i<g.size();i++){\n for(auto e:g[i]){\n int to = e.to;\n e.to = i;\n ret[to].push_back(e);\n }\n }\n return ret;\n}\ntemplate<typename T>\nGraph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){\n Graph<T> ret(n);\n for(int es = 0; es < m; es++){\n int u,v;\n T w=1;\n cin>>u>>v;u-=indexed,v-=indexed;\n if(weighted)cin>>w;\n ret[u].emplace_back(v,w,es);\n if(!directed)ret[v].emplace_back(u,w,es);\n }\n return ret;\n}\ntemplate<typename T>\nGraph<T> readParent(int n,int indexed=1,bool directed=true){\n Graph<T>ret(n);\n for(int i=1;i<n;i++){\n int p;cin>>p;\n p-=indexed;\n ret[p].emplace_back(i);\n if(!directed)ret[i].emplace_back(p);\n }\n return ret;\n}\n\nint main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n ll res=0,buf=0;\n bool judge = true;\n ll n,m,k;cin>>n>>m>>k;\n vector<ll>a(n);\n rep(i,0,n)cin>>a[i];\n res=0;\n rep(i,0,n)res+=a[i]*(a[i]+1)/2;\n sort(ALLR(a));\n vector<ll>l(n),r(n);\n rep(i,0,n){\n l[i]=0,r[i]=a[i];\n ll mi=min(a[i],m);\n res-=mi*(mi+1)/2;\n l[i]+=mi;\n m-=mi;\n }\n //cout<<res spa m<<endl;\n //debug(l);debug(r);\n ll cost=0,rk;\n auto f=[&](ll lower){\n rk=k,cost=0;\n rrep(i,0,n){\n ll mi=min(rk,max(0LL,r[i]-max(lower,l[i])));\n rk-=mi;\n cost+=r[i]*(r[i]+1)/2-(r[i]-mi)*(r[i]-mi+1)/2;\n }\n //cout<<lower spa cost spa rk<<endl;\n };\n ll ng=-1,ok=10000000;\n while(abs(ok-ng)>=2){\n ll mid=(ok+ng)/2;\n f(mid);\n if(rk>0)ok=mid;\n else ng=mid;\n }\n f(ok);\n cout<<res-cost-ok*rk<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5428, "score_of_the_acc": -0.2597, "final_rank": 5 }, { "submission_id": "aoj_3144_4806043", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll=long long;\n#define int ll\n\n#define rng(i,a,b) for(int i=int(a);i<int(b);i++)\n#define rep(i,b) rng(i,0,b)\n#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)\n#define per(i,b) gnr(i,0,b)\n#define pb push_back\n#define eb emplace_back\n#define a first\n#define b second\n#define bg begin()\n#define ed end()\n#define all(x) x.bg,x.ed\n#define si(x) int(x.size())\n#ifdef LOCAL\n#define dmp(x) cerr<<__LINE__<<\" \"<<#x<<\" \"<<x<<endl\n#else\n#define dmp(x) void(0)\n#endif\n\ntemplate<class t,class u> void chmax(t&a,u b){if(a<b)a=b;}\ntemplate<class t,class u> void chmin(t&a,u b){if(b<a)a=b;}\n\ntemplate<class t> using vc=vector<t>;\ntemplate<class t> using vvc=vc<vc<t>>;\n\nusing pi=pair<int,int>;\nusing vi=vc<int>;\n\ntemplate<class t,class u>\nostream& operator<<(ostream& os,const pair<t,u>& p){\n\treturn os<<\"{\"<<p.a<<\",\"<<p.b<<\"}\";\n}\n\ntemplate<class t> ostream& operator<<(ostream& os,const vc<t>& v){\n\tos<<\"{\";\n\tfor(auto e:v)os<<e<<\",\";\n\treturn os<<\"}\";\n}\n\n#define mp make_pair\n#define mt make_tuple\n#define one(x) memset(x,-1,sizeof(x))\n#define zero(x) memset(x,0,sizeof(x))\n#ifdef LOCAL\nvoid dmpr(ostream&os){os<<endl;}\ntemplate<class T,class... Args>\nvoid dmpr(ostream&os,const T&t,const Args&... args){\n\tos<<t<<\" \";\n\tdmpr(os,args...);\n}\n#define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__)\n#else\n#define dmp2(...) void(0)\n#endif\n\nusing uint=unsigned;\nusing ull=unsigned long long;\n\ntemplate<class t,size_t n>\nostream& operator<<(ostream&os,const array<t,n>&a){\n\treturn os<<vc<t>(all(a));\n}\n\ntemplate<int i,class T>\nvoid print_tuple(ostream&,const T&){\n}\n\ntemplate<int i,class T,class H,class ...Args>\nvoid print_tuple(ostream&os,const T&t){\n\tif(i)os<<\",\";\n\tos<<get<i>(t);\n\tprint_tuple<i+1,T,Args...>(os,t);\n}\n\ntemplate<class ...Args>\nostream& operator<<(ostream&os,const tuple<Args...>&t){\n\tos<<\"{\";\n\tprint_tuple<0,tuple<Args...>,Args...>(os,t);\n\treturn os<<\"}\";\n}\n\ntemplate<class t>\nvoid print(t x,int suc=1){\n\tcout<<x;\n\tif(suc==1)\n\t\tcout<<\"\\n\";\n\tif(suc==2)\n\t\tcout<<\" \";\n}\n\nll read(){\n\tll i;\n\tcin>>i;\n\treturn i;\n}\n\nvi readvi(int n,int off=0){\n\tvi v(n);\n\trep(i,n)v[i]=read()+off;\n\treturn v;\n}\n\npi readpi(int off=0){\n\tint a,b;cin>>a>>b;\n\treturn pi(a+off,b+off);\n}\n\ntemplate<class T>\nvoid print(const vector<T>&v,int suc=1){\n\trep(i,v.size())\n\t\tprint(v[i],i==int(v.size())-1?suc:2);\n}\n\nstring readString(){\n\tstring s;\n\tcin>>s;\n\treturn s;\n}\n\ntemplate<class T>\nT sq(const T& t){\n\treturn t*t;\n}\n\n//#define CAPITAL\nvoid yes(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"YES\"<<\"\\n\";\n\t#else\n\tcout<<\"Yes\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid no(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"NO\"<<\"\\n\";\n\t#else\n\tcout<<\"No\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid possible(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"POSSIBLE\"<<\"\\n\";\n\t#else\n\tcout<<\"Possible\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid impossible(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"IMPOSSIBLE\"<<\"\\n\";\n\t#else\n\tcout<<\"Impossible\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\n\nconstexpr ll ten(int n){\n\treturn n==0?1:ten(n-1)*10;\n}\n\nconst ll infLL=LLONG_MAX/3;\n\n#ifdef int\nconst int inf=infLL;\n#else\nconst int inf=INT_MAX/2-100;\n#endif\n\nint topbit(signed t){\n\treturn t==0?-1:31-__builtin_clz(t);\n}\nint topbit(ll t){\n\treturn t==0?-1:63-__builtin_clzll(t);\n}\nint botbit(signed a){\n\treturn a==0?32:__builtin_ctz(a);\n}\nint botbit(ll a){\n\treturn a==0?64:__builtin_ctzll(a);\n}\nint popcount(signed t){\n\treturn __builtin_popcount(t);\n}\nint popcount(ll t){\n\treturn __builtin_popcountll(t);\n}\nbool ispow2(int i){\n\treturn i&&(i&-i)==i;\n}\nll mask(int i){\n\treturn (ll(1)<<i)-1;\n}\n\nbool inc(int a,int b,int c){\n\treturn a<=b&&b<=c;\n}\n\ntemplate<class t> void mkuni(vc<t>&v){\n\tsort(all(v));\n\tv.erase(unique(all(v)),v.ed);\n}\n\nll rand_int(ll l, ll r) { //[l, r]\n\t#ifdef LOCAL\n\tstatic mt19937_64 gen;\n\t#else\n\tstatic mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());\n\t#endif\n\treturn uniform_int_distribution<ll>(l, r)(gen);\n}\n\ntemplate<class t>\nvoid myshuffle(vc<t>&a){\n\trep(i,si(a))swap(a[i],a[rand_int(0,i)]);\n}\n\ntemplate<class t>\nint lwb(const vc<t>&v,const t&a){\n\treturn lower_bound(all(v),a)-v.bg;\n}\n\nvvc<int> readGraph(int n,int m){\n\tvvc<int> g(n);\n\trep(i,m){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\t//sc.read(a,b);\n\t\ta--;b--;\n\t\tg[a].pb(b);\n\t\tg[b].pb(a);\n\t}\n\treturn g;\n}\n\nvvc<int> readTree(int n){\n\treturn readGraph(n,n-1);\n}\n\nsigned main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(0);\n\tcout<<fixed<<setprecision(20);\n\t\n\tint n,m,k;cin>>n>>m>>k;\n\tvi a=readvi(n);\n\tsort(all(a),greater<int>());\n\tint cur=0;\n\tvi sum(m+1);\n\tfor(auto v:a){\n\t\tif(cur+v<=m){\n\t\t\tcur+=v;\n\t\t}else{\n\t\t\tsum[cur]--;\n\t\t\tcur=m-v;\n\t\t\tsum[cur]++;\n\t\t\tcur+=v;\n\t\t}\n\t}\n\tint ans=0;\n\trep(i,m)sum[i+1]+=sum[i];\n\trep(i,m){\n\t\tint u=min(k,sum[i]);\n\t\tk-=u;\n\t\tsum[i]-=u;\n\t\tans+=(m-i)*sum[i];\n\t}\n\tprint(ans);\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 11416, "score_of_the_acc": -0.9784, "final_rank": 14 }, { "submission_id": "aoj_3144_4562353", "code_snippet": "#include <iostream>\n#include <utility>\n#include <tuple>\n#include <vector>\n#include <string>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <unordered_set>\n#include <algorithm>\n#include <functional>\n#include <climits>\n#include <numeric>\n#include <queue>\n#include <cmath>\n#include <iomanip>\n#include <array>\n#include <string>\n#include <stack>\n#include <cassert>\n#include <memory>\nlong long int recover_all(int a) {\n\treturn a * (a + 1LL) / 2;\n}\nint main() {\n\tint n, m; long long int k; std::cin >> n >> m >> k;\n\tstd::vector<int> magic(n); for (auto& a : magic) std::cin >> a;\n\tstd::sort(magic.begin(), magic.end());\n\tconst auto need_to_recover = std::accumulate(magic.begin(), magic.end(), 0LL) - m;\n\tif (need_to_recover <= 0) {\n\t\tstd::cout << 0 << '\\n'; return 0;\n\t}\n\tint min{ 0 }, max{ m };\n\twhile (min < max) {\n\t\tconst auto mid = (min + max) >> 1;\n\t\tauto cookie = k;\n\t\tauto recover = need_to_recover;\n\t\tfor (auto a : magic) {\n\t\t\tif (cookie < 0) break;\n\t\t\tif (mid < a) {\n\t\t\t\tconst auto minus = std::min<long long int>(a - mid, recover);\n\t\t\t\tcookie -= minus;\n\t\t\t\trecover -= minus;\n\t\t\t\ta -= minus;\n\t\t\t}\n\t\t\trecover -= std::min<long long int>(recover, a);\n\t\t}\n\t\tif (cookie < 0) {\n\t\t\tmin = mid + 1;\n\t\t}\n\t\telse {\n\t\t\tmax = mid;\n\t\t}\n\t}\n\tauto cookie = k;\n\tauto recover = need_to_recover;\n\tlong long int time{ 0 };\n\tint just{ 0 };\n\tfor (auto a : magic) {\n\t\tif (max < a) {\n\t\t\tconst auto minus = std::min<long long int>(a - max, recover);\n\t\t\tcookie -= minus;\n\t\t\trecover -= minus;\n\t\t\ta -= minus;\n\t\t}\n\t\tconst auto r = std::min<long long int>(recover, a);\n\t\ttime += recover_all(a) - recover_all(a - r);\n\t\trecover -= r;\n\t\tif (a == max) ++just;\n\t}\n\tconst auto additional = std::min<long long int>(just, cookie);\n\ttime -= max * additional;\n\tstd::cout << time << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3264, "score_of_the_acc": -0.5, "final_rank": 7 }, { "submission_id": "aoj_3144_4562343", "code_snippet": "#include <iostream>\n#include <utility>\n#include <tuple>\n#include <vector>\n#include <string>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <unordered_set>\n#include <algorithm>\n#include <functional>\n#include <climits>\n#include <numeric>\n#include <queue>\n#include <cmath>\n#include <iomanip>\n#include <array>\n#include <string>\n#include <stack>\n#include <cassert>\n#include <memory>\nlong long int recover_all(int a) {\n\treturn a * (a + 1LL) / 2;\n}\nint main() {\n\tint n, m, k; std::cin >> n >> m >> k;\n\tstd::vector<int> magic(n); for (auto& a : magic) std::cin >> a;\n\tstd::sort(magic.begin(), magic.end());\n\tconst auto need_to_recover = std::accumulate(magic.begin(), magic.end(), 0LL) - m;\n\tif (need_to_recover <= 0) {\n\t\tstd::cout << 0 << '\\n'; return 0;\n\t}\n\tint min{ 0 }, max{ m };\n\twhile (min < max) {\n\t\tconst auto mid = (min + max) >> 1;\n\t\tauto cookie = k;\n\t\tauto recover = need_to_recover;\n\t\tfor (auto a : magic) {\n\t\t\tif (cookie < 0) break;\n\t\t\tif (mid < a) {\n\t\t\t\tconst auto minus = std::min<long long int>(a - mid, recover);\n\t\t\t\tcookie -= minus;\n\t\t\t\trecover -= minus;\n\t\t\t\ta -= minus;\n\t\t\t}\n\t\t\trecover -= std::min<long long int>(recover, a);\n\t\t}\n\t\tif (cookie < 0) {\n\t\t\tmin = mid + 1;\n\t\t}\n\t\telse {\n\t\t\tmax = mid;\n\t\t}\n\t}\n\tauto cookie = k;\n\tauto recover = need_to_recover;\n\tlong long int time{ 0 };\n\tint just{ 0 };\n\tfor (auto a : magic) {\n\t\tif (max < a) {\n\t\t\tconst auto minus = std::min<long long int>(a - max, recover);\n\t\t\tcookie -= minus;\n\t\t\trecover -= minus;\n\t\t\ta -= minus;\n\t\t}\n\t\tconst auto r = std::min<long long int>(recover, a);\n\t\ttime += recover_all(a) - recover_all(a - r);\n\t\trecover -= r;\n\t\tif (a == max) ++just;\n\t}\n\tconst auto additional = std::min(just, cookie);\n\ttime -= (long long int)max * additional;\n\tstd::cout << time << '\\n';\n}", "accuracy": 0.6931818181818182, "time_ms": 20, "memory_kb": 3264, "score_of_the_acc": -0.5, "final_rank": 18 }, { "submission_id": "aoj_3144_4357196", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\ntypedef double db;\nmt19937 mrand(1); \nconst ll mod=998244353;\nint rnd(int x) { return mrand() % x;}\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\nll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}\n// head\n\nconst int N=101000;\n#define kill assss\nint n,m,a[N],kill[N];\nll k,rm,ans;\nint main() {\n\tscanf(\"%d%d%lld\",&n,&m,&k);\n\trep(i,0,n) scanf(\"%d\",a+i);\n\tsort(a,a+n);\n\trep(i,0,n) rm+=a[i];\n\trep(i,0,n) {\n\t\tif (rm<=m) break;\n\t\tif (rm-a[i]>m) kill[i]=a[i];\n\t\telse {\n\t\t\tint l=a[i],r=m-(rm-a[i]);\n\t\t\tkill[i]=l-r;\n\t\t}\n\t\trm-=a[i];\n\t}\n\n\tint l=-1,r=m;\n\twhile (l+1<r) {\n\t\tint md=(l+r)>>1;\n\t\tll s=0;\n\t\trep(i,0,n) s+=min(max(a[i]-md,0),kill[i]);\n\t\tif (s<=k) r=md; else l=md;\n\t}\n\trep(i,0,n) {\n\t\tint d=min(max(a[i]-r,0),kill[i]);\n\t\tk-=d;\n\t\ta[i]-=d;\n\t\tkill[i]-=d;\n\t}\n\trep(i,0,n) if (k&&a[i]==r&&kill[i]) --k,--a[i],--kill[i];\n\t/*rep(i,0,n) printf(\"%d \",a[i]); \n\tputs(\"\");*/\n\tsort(a,a+n);\n\trm=0;\n\trep(i,0,n) rm+=a[i];\n\trep(i,0,n) {\n\t\tif (rm<=m) break;\n\t\tif (rm-a[i]>m) ans+=(ll)a[i]*(a[i]+1)/2;\n\t\telse {\n\t\t\tint l=a[i],r=m-(rm-a[i])+1;\n\t\t//\tprintf(\"%d %d\\n\",l,r);\n\t\t\tans+=(ll)(l+r)*(l-r+1)/2;\n\t\t}\n\t\trm-=a[i];\n\t}\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4040, "score_of_the_acc": -0.0931, "final_rank": 3 }, { "submission_id": "aoj_3144_4279772", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n/*#include <ext/pb_ds/assoc_container.hpp>\n#include <ext/pb_ds/tree_policy.hpp>\nusing namespace __gnu_pbds;\ntemplate<typename T> using gpp_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;\ntemplate<typename T, typename L> using gpp_map = tree<T, L, less<T>, rb_tree_tag, tree_order_statistics_node_update>;\ntemplate<typename T> using gpp_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;*/\nstruct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;\n#define FOR(i, begin, end) for(int i=(begin);i<(end);i++)\n#define REP(i, n) FOR(i,0,n)\n#define IFOR(i, begin, end) for(int i=(end)-1;i>=(begin);i--)\n#define IREP(i, n) IFOR(i,0,n)\n#define Sort(v) sort(v.begin(), v.end())\n#define Reverse(v) reverse(v.begin(), v.end())\n#define all(v) v.begin(),v.end()\n#define SZ(v) ((int)v.size())\n#define Lower_bound(v, x) distance(v.begin(), lower_bound(v.begin(), v.end(), x))\n#define Upper_bound(v, x) distance(v.begin(), upper_bound(v.begin(), v.end(), x))\n#define Max(a, b) a = max(a, b)\n#define Min(a, b) a = min(a, b)\n#define bit(n) (1LL<<(n))\n#define bit_exist(x, n) ((x >> n) & 1)\n#define debug(x) cout << #x << \"=\" << x << endl;\n#define vdebug(v) { cout << #v << \"=\" << endl; REP(i_debug, v.size()){ cout << v[i_debug] << \",\"; } cout << endl; }\n#define mdebug(m) { cout << #m << \"=\" << endl; REP(i_debug, m.size()){ REP(j_debug, m[i_debug].size()){ cout << m[i_debug][j_debug] << \",\"; } cout << endl;} }\n#define Return(ans) { cout << (ans) << endl; return 0; }\n#define pb push_back\n#define f first\n#define s second\n#define int long long\n#define INF 1000000000000000000\ntemplate<typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; }\ntemplate<typename T> ostream &operator<<(ostream &os, vector<T> &v){ for(int i = 0; i < v.size(); i++) { cout << v[i]; if(i != v.size() - 1) cout << endl; }; return os; }\ntemplate<typename T1, typename T2> ostream &operator<<(ostream &os, pair<T1, T2> p){ cout << '(' << p.first << ',' << p.second << ')'; return os; }\ntemplate<typename T> void Out(T x) { cout << x << endl; }\ntemplate<typename T1, typename T2> void Ans(bool f, T1 y, T2 n) { if(f) Out(y); else Out(n); }\n\nusing vec = vector<int>;\nusing mat = vector<vec>;\nusing Pii = pair<int, int>;\nusing PiP = pair<int, Pii>;\nusing PPi = pair<Pii, int>;\nusing bools = vector<bool>;\nusing pairs = vector<Pii>;\n\n//int dx[4] = {1,0,-1,0};\n//int dy[4] = {0,1,0,-1};\n//char d[4] = {'D','R','U','L'};\n\nconst int mod = 1000000007;\n//const int mod = 998244353;\n//#define Add(x, y) x = (x + (y)) % mod\n//#define Mult(x, y) x = (x * (y)) % mod\n\nint solve(vec A, int N, int M, int K, int r){\n\n int x0 = 0, x1 = M;\n while(x1 - x0 > 1){\n int x = (x0 + x1) / 2;\n int cnt = 0;\n REP(i, N) if(A[i] > x) cnt += A[i] - x;\n\n if(cnt <= K) x1 = x;\n else x0 = x;\n }\n\n int cnt = 0;\n REP(i, N) if(A[i] > x1){\n cnt += A[i] - x1;\n A[i] = x1;\n }\n REP(i, N) if(A[i] == A[N - 1] && cnt < K){\n cnt++;\n A[i]--;\n }\n\n if(A[N - 1] < r) return INF;\n\n int t = 0;\n REP(i, N) t += A[i] * (A[i] + 1) / 2;\n t -= r * (r + 1) / 2;\n\n return t;\n}\n\nsigned main(){\n\n int N, M, K; cin >> N >> M >> K;\n vec A(N); cin >> A;\n Sort(A);\n\n int s = 0; REP(i, N) s += A[i];\n if(s - K <= M){\n Out(0);\n return 0;\n }\n\n int n = 0, r = M;\n while(A[N - 1 - n] <= r){\n r -= A[N - 1 - n];\n n++;\n }\n\n int ans = INF;\n Min(ans, solve(A, N - n, M, K, r));\n\n if(A[N - 1 - n] - r <= K){\n Min(ans, solve(A, N - n - 1, M, K - (A[N - 1 - n] - r), 0));\n }\n Out(ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4572, "score_of_the_acc": -0.157, "final_rank": 4 }, { "submission_id": "aoj_3144_4279707", "code_snippet": "#include <string>\n#include <vector>\n#include<iostream>\n#include<cstdio>\n#include<cstdlib>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<list>\n#include<deque>\n#include<bitset>\n#include<set>\n#include<map>\n#include<unordered_map>\n#include<unordered_set>\n#include<cstring>\n#include<sstream>\n#include<complex>\n#include<iomanip>\n#include<numeric>\n#include<cassert>\n#define X first\n#define Y second\n#define pb push_back\n#define rep(X,Y) for (int (X) = 0;(X) < (Y);++(X))\n#define reps(X,S,Y) for (int (X) = S;(X) < (Y);++(X))\n#define rrep(X,Y) for (int (X) = (Y)-1;(X) >=0;--(X))\n#define rreps(X,S,Y) for (int (X) = (Y)-1;(X) >= (S);--(X))\n#define repe(X,Y) for ((X) = 0;(X) < (Y);++(X))\n#define peat(X,Y) for (;(X) < (Y);++(X))\n#define all(X) (X).begin(),(X).end()\n#define rall(X) (X).rbegin(),(X).rend()\n#define eb emplace_back\n#define UNIQUE(X) (X).erase(unique(all(X)),(X).end())\n#define Endl endl\n#define NL <<\"\\n\"\n\nusing namespace std;\nusing ll=long long;\nusing pii=pair<int,int>;\nusing pll=pair<ll,ll>;\ntemplate<class T> using vv=vector<vector<T>>;\ntemplate<class T> inline bool MX(T &l,const T &r){return l<r?l=r,1:0;}\ntemplate<class T> inline bool MN(T &l,const T &r){return l>r?l=r,1:0;}\n//#undef NUIP\n#ifdef NUIP\n#include \"benri.h\"\n#else\n#define out(args...)\n#endif\n#ifdef __cpp_init_captures\ntemplate<typename T>vector<T> table(int n, T v){ return vector<T>(n, v);}\ntemplate <class... Args> auto table(int n, Args... args){auto val = table(args...); return vector<decltype(val)>(n, move(val));}\n#endif\nconst ll MOD=1e9+7; //998244353\n\nll sumf(const vector<ll> &a,ll lb){\n\tll re=0;\n\tfor(auto x:a) re+=max(0ll,x-lb);\n\treturn re;\n}\n\nint main(){\n ios_base::sync_with_stdio(false); cin.tie(0);\n cout<<fixed<<setprecision(0);\n\tint n,m;\n\tll t;\n\tcin>>n>>m>>t;\n\tvector<ll> a(n);\n\tfor(auto &x:a) cin>>x;\n\tsort(all(a));\n\tint rem=m;\n\twhile(a.size() && rem>=a.back()){\n\t\trem-=a.back();\n\t\ta.pop_back();\n\t}\n\tif(a.empty()){\n\t\tcout<<0 NL;\n\t\treturn 0;\n\t}\n\tout(a,1);\n\t//keep x==rem if pos\n\tif(t>sumf(a,rem+1)){\n\t\tassert(a.back()>=rem);\n\t\tt-=a.back()-rem;\n\t\trem=0;\n\t\ta.pop_back();\n\t}\n\tif(a.empty()){\n\t\tcout<<0 NL;\n\t\treturn 0;\n\t}\n\tout(a,1);\n\n\tif(t>=sumf(a,0)){\n\t\tcout<<0 NL;\n\t\treturn 0;\n\t}\n\tint l=0,r=MOD;\n\twhile(r-l>1){\n\t\tint m=(l+r)/2;\n\t\t(sumf(a,m)<=t?r:l)=m;\n\t}\n\tout(a,r,1);\n\tt-=sumf(a,r);\n\tfor(auto &x:a) MN<ll>(x,r);\n\trep(i,t) --a[a.size()-1-i];\n\tsort(rall(a));\n\tll re=0;\n\tfor(ll x:a){\n\t\tll t=min<ll>(x,rem);\n\t\trem-=t;\n\t\tre+=x*(x+1)/2-t*(t+1)/2;\n\t}\n\tcout<<re NL;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3628, "score_of_the_acc": -0.0437, "final_rank": 1 }, { "submission_id": "aoj_3144_4279501", "code_snippet": "//#define NDEBUG\n#include <algorithm>\n#include <cstddef>\n#include <cstdint>\n#include <iostream>\n#include <utility>\n#include <vector>\n\nnamespace n91 {\n\n using i8 = std::int_fast8_t;\n using i32 = std::int_fast32_t;\n using i64 = std::int_fast64_t;\n using u8 = std::uint_fast8_t;\n using u32 = std::uint_fast32_t;\n using u64 = std::uint_fast64_t;\n using isize = std::ptrdiff_t;\n using usize = std::size_t;\n\n struct rep {\n struct itr {\n usize i;\n constexpr itr(const usize i) noexcept : i(i) {}\n void operator++() noexcept { ++i; }\n constexpr usize operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr x) const noexcept { return i != x.i; }\n };\n const itr f, l;\n constexpr rep(const usize f, const usize l) noexcept\n : f(std::min(f, l)), l(l) {}\n constexpr auto begin() const noexcept { return f; }\n constexpr auto end() const noexcept { return l; }\n };\n struct revrep {\n struct itr {\n usize i;\n constexpr itr(const usize i) noexcept : i(i) {}\n void operator++() noexcept { --i; }\n constexpr usize operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr x) const noexcept { return i != x.i; }\n };\n const itr f, l;\n constexpr revrep(const usize f, const usize l) noexcept\n : f(l - 1), l(std::min(f, l) - 1) {}\n constexpr auto begin() const noexcept { return f; }\n constexpr auto end() const noexcept { return l; }\n };\n template <class T> auto md_vec(const usize n, const T& value) {\n return std::vector<T>(n, value);\n }\n template <class... Args> auto md_vec(const usize n, Args... args) {\n return std::vector<decltype(md_vec(args...))>(n, md_vec(args...));\n }\n template <class T> constexpr T difference(const T& a, const T& b) noexcept {\n return a < b ? b - a : a - b;\n }\n template <class T> void chmin(T& a, const T& b) noexcept {\n if (b < a)\n a = b;\n }\n template <class T> void chmax(T& a, const T& b) noexcept {\n if (a < b)\n a = b;\n }\n template <class F> class rec_lambda {\n F f;\n\n public:\n rec_lambda(F&& f) : f(std::move(f)) {}\n template <class... Args> auto operator()(Args&&... args) const {\n return f(*this, std::forward<Args>(args)...);\n }\n };\n template <class F> auto make_rec(F&& f) { return rec_lambda<F>(std::move(f)); }\n template <class T> T scan() {\n T ret;\n std::cin >> ret;\n return ret;\n }\n\n} // namespace n91\n#include <numeric>\nnamespace n91 {\n\n void main_() {\n /*\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n //*/\n const usize n = scan<usize>();\n const u64 m = scan<u64>();\n u64 k = scan<u64>();\n std::vector<u64> a(n);\n for (auto& e : a) {\n std::cin >> e;\n }\n if (std::accumulate(a.begin(), a.end(), static_cast<u64>(0)) <= m+k) {\n std::cout << \"0\\n\";\n return;\n }\n std::sort(a.begin(), a.end());\n usize s = n - 1;\n u64 rem = m;\n while (true) {\n if (a[s] <= rem) {\n rem -= a[s];\n s -= 1;\n }\n else {\n break;\n }\n }\n const auto get = [](const u64 a, const u64 b) {\n return (b * (b + 1) - a * (a + 1)) / 2;\n };\n u64 ups = 0;\n for (const usize i : rep(0, s + 1)) {\n if (a[i] >= rem) {\n ups += a[i] - rem;\n }\n }\n if (ups < k) {\n k -= a[s] - rem;\n rem = 0;\n s -= 1;\n }\n u64 gt = rem, le = a[s] + 1;\n while (le - gt != 1) {\n const u64 mid = (le + gt) / 2;\n u64 sum = 0;\n for (const usize i : rep(0, s + 1)) {\n if (a[i] >= mid) {\n sum += a[i] - mid;\n }\n }\n if (sum <= k) {\n le = mid;\n }\n else {\n gt = mid;\n }\n }\n u64 ans = 0;\n for (const usize i : rep(0, s)) {\n ans += get(0, std::min(a[i], le));\n }\n ans += get(rem, le);\n u64 sum = 0;\n for (const usize i : rep(0, s + 1)) {\n if (a[i] >= le) {\n sum += a[i] - le;\n }\n }\n ans -= le * (k - sum);\n std::cout << ans << std::endl;\n }\n\n} // namespace n91\n\nint main() {\n n91::main_();\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3628, "score_of_the_acc": -0.5437, "final_rank": 8 }, { "submission_id": "aoj_3144_4279158", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main(){\n int N;\n int64_t M, K;\n cin >> N >> M >> K;\n vector<int> A(N);\n for(int i=0; i<N; i++) cin >> A[i];\n sort(A.begin(), A.end());\n int64_t S = accumulate(A.begin(), A.end(), 0LL);\n int64_t need = S-M;\n if(need <= 0){\n cout << 0 << endl;\n return 0;\n }\n\n vector<int64_t> num(M+1);\n for(int a : A){\n if(need > a){\n need -= a;\n num[a]++;\n }else{\n num[a]++;\n num[a-need]--;\n break;\n }\n }\n for(int i=M; i>0; i--) num[i-1] += num[i];\n int64_t ans = 0;\n for(int i=M; i>0; i--){\n int64_t dec = min(num[i], K);\n K -= dec;\n num[i] -= dec;\n ans += num[i]*i;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 10900, "score_of_the_acc": -1.4165, "final_rank": 15 }, { "submission_id": "aoj_3144_4279087", "code_snippet": "#include<iostream>\n#include<cstdio>\n#include<algorithm>\n#include<cassert>\n#include<cmath>\n#include<vector>\n#include<map>\n#include<set>\n#include<string>\n#include<queue>\n#include<stack>\nusing namespace std;\n#define MOD 1000000007\n#define MOD2 998244353\n#define INF ((1<<30)-1)\n#define LINF (1LL<<60)\n#define EPS (1e-10)\ntypedef long long Int;\ntypedef pair<Int, Int> P;\nInt rest;\n\nInt cnt(vector<Int> &a, Int m){\n Int ans = 0;\n for(int i = 0;i < a.size() - 1;i++){\n ans += max(0ll, a[i] - m + 1);\n }\n ans += a.back() - max(rest, m-1);\n return ans;\n}\n\nint main(){\n Int n, m, k;\n cin >> n >> m >> k;\n vector<Int> a(n);\n for(int i = 0;i < n;i++){\n cin >> a[i];\n }\n sort(a.begin(), a.end());\n\n rest = m;\n while(!a.empty() && a.back() <=rest){\n rest -= a.back();\n a.pop_back();\n }\n \n Int sum = 0;\n for(auto x:a)sum += x;\n if(sum - k - rest <= 0){\n cout << 0 << endl;\n return 0; \n }\n \n Int bottom = 0, top = a.back() + 1;\n while(top - bottom > 1){\n Int mid = (top + bottom) / 2;\n if(cnt(a, mid) <= k)top = mid;\n else bottom = mid;\n }\n for(int i = 0;i < a.size();i++){\n Int goal = top-1;\n if(i+1 == a.size())goal = max(goal, rest);\n if(a[i] >= goal){\n k -= a[i] - goal;\n a[i] = goal;\n }\n }\n if(a.back() == rest){\n rest = 0;\n a.pop_back();\n }\n for(int i = (int)a.size()-1;i >= 0 && k > 0;i--){\n a[i]--;\n k--;\n }\n Int ans = 0;\n for(auto x:a)ans += (x+1) * x / 2;\n ans -= (rest + 1) * rest / 2;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3640, "score_of_the_acc": -0.5451, "final_rank": 9 }, { "submission_id": "aoj_3144_4279022", "code_snippet": "#include <bits/stdc++.h>\n#define FOR(i,k,n) for(int i = (k);i < (n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(x) begin(x),end(x)\n\nusing namespace std;\nusing namespace std::string_literals;\nusing ll = int64_t;\nusing vecint = vector<int>;\nusing vecll = vector<ll>;\n\nint main() {\n ll n,m,k;\n cin>>n>>m>>k;\n vecll a(n);\n for(auto&& e:a) cin>>e;\n sort(ALL(a));\n ll sum = 0;\n ll i;\n for(i = n-1; i >= 0; --i) {\n if (sum + a[i] > m) break;\n sum += a[i];\n }\n if (i < 0) {\n cout<<0<<endl;\n return 0;\n }\n ll rem = m - sum;\n ll lo = -1;\n ll hi = m;\n while (hi-lo > 1) {\n ll mid = (hi + lo) / 2;\n ll cnt_punch = 0;\n ll num = 0;\n REP(j,i) {\n if (a[j] > mid) ++num;\n cnt_punch += max(a[j] - mid, 0l);\n }\n ll fin = max(mid, rem);\n if (a[i] > fin && fin == mid) ++num;\n cnt_punch += max(a[i] - fin, 0l);\n if (cnt_punch - k > num) {\n lo = mid;\n } else {\n hi = mid;\n }\n }\n ll cost = 0;\n //ll num = 0;\n ll cnt_punch = 0;\n REP(j,i) {\n ll mx = min(a[j], hi); \n cost += mx * (mx+1) / 2;\n //if (a[j] > hi) ++num;\n cnt_punch += max(a[j] - hi, 0l);\n }\n ll fin = max(hi, rem);\n ll mx = min(a[i], fin);\n cost += mx * (mx+1) / 2;\n cost -= rem * (rem+1) / 2;\n //if (a[i] > fin) ++num;\n cnt_punch += max(a[i] - fin, 0l);\n if (cnt_punch > k) {\n cost += (hi+1) * (cnt_punch - k);\n }\n cout<<cost<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3640, "score_of_the_acc": -0.5451, "final_rank": 9 }, { "submission_id": "aoj_3144_4278850", "code_snippet": "#include <bits/stdc++.h>\n#include <iomanip>\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\ntypedef long long ll;\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\n\nll N,M,H,W,K,Q,A,B;\nstring S;\nconst ll MOD = 998244353;\n//const ll MOD = (1e+9) + 7;\nconst ll INF = 1LL<<60;\ntypedef pair<ll, ll> P;\n\nint main() {\n cin>>N>>M>>K;\n vec a(N);\n rep(i,N) cin>>a[i];\n ll SUM = 0;\n rep(i,N) SUM += a[i];\n if(SUM - K <= M){\n cout<<0<<endl;\n return 0;\n }\n sort(ALL(a));\n reverse(ALL(a));\n ll ans = 0;\n rep(i,N) ans += a[i] * (a[i] + 1) / 2;\n int id = 0, last_sum = 0; //最後に回すやつ(これ含む)\n while(a[id] + last_sum <= M){\n last_sum += a[id];\n ans -= a[id] * (a[id] + 1)/2;\n ++id;\n }\n ll border = M - last_sum;\n ll judge = 0;\n Rreps(i, N, id) if(a[i] > border) judge += a[i] - border;\n if(judge <= K){\n K -= a[id] - border;\n ans -= a[id] * (a[id] + 1) / 2;\n ++id;\n }else{\n ans -= border * (border + 1) / 2;\n }\n a.push_back(-1);\n ll num = 1;\n ll now = a[id];\n //cout<<border<<endl;\n //cout<<ans<<endl;\n Rrep(i, now){\n while(a[id + 1] > i) {\n ++id;\n ++num;\n }\n ans -= min(num, K) * (i + 1);\n K -= num;\n if(K <= 0) break;\n }\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4468, "score_of_the_acc": -0.6445, "final_rank": 12 }, { "submission_id": "aoj_3144_4278817", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cmath>\n#include <ctime>\n#include <cstdlib>\n#include <cassert>\n#include <vector>\n#include <list>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <set>\n#include <bitset>\n#include <string>\n#include <algorithm>\n#define llint long long\n#define inf 1e18\n#define mod 998244353\n#define rep(x, s, t) for(llint (x) = (s); (x) < (t); (x)++)\n#define Rep(x, s, t) for(llint (x) = (s); (x) <= (t); (x)++)\n\nusing namespace std;\ntypedef pair<llint, llint> P;\n\nllint n, m, k;\nllint a[100005];\nvector<P> vec;\n\nllint get(llint l, llint r)\n{\n\treturn r*(r+1)/2 - l*(l+1)/2;\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n >> m >> k;\n\tfor(int i = 1; i <= n; i++) cin >> a[i];\n\t\n\tllint rem = 0;\n\tfor(int i = 1; i <= n; i++) rem += a[i];\n\trem -= m;\n\t\n\tif(rem <= 0){\n\t\tcout << 0 << endl;\n\t\treturn 0;\n\t}\n\t\n\tsort(a+1, a+n+1);\n\tllint ans = 0;\n\tfor(int i = 1; i <= n; i++){\n\t\tif(rem <= 0) break;\n\t\tllint x = a[i]*(a[i]+1)/2;\n\t\tif(a[i] <= rem){\n\t\t\tvec.push_back(P(0, 0));\n\t\t\tvec.push_back(P(a[i], 1));\n\t\t\trem -= a[i];\n\t\t\tans += x;\n\t\t}\n\t\telse{\n\t\t\tllint lb = a[i]-rem+1;\n\t\t\tvec.push_back(P(lb-1, 0));\n\t\t\tvec.push_back(P(a[i], 1));\n\t\t\trem = 0;\n\t\t\tans += x-lb*(lb-1)/2;\n\t\t}\n\t}\n\tsort(vec.rbegin(), vec.rend());\n\t\n\trem = k;\n\tllint sum = 0;\n\tfor(int i = 0; i < vec.size(); i++){\n\t\tif(rem <= 0) break;\n\t\t\n\t\tif(vec[i].second == 1) sum++;\n\t\telse sum--;\n\t\t\n\t\tif(i < (int)vec.size()-1){\n\t\t\tllint dist = vec[i].first - vec[i+1].first;\n\t\t\tif(sum * dist <= rem){\n\t\t\t\trem -= sum * dist;\n\t\t\t\tans -= sum * get(vec[i+1].first, vec[i].first);\n\t\t\t}\n\t\t\telse{\n\t\t\t\tllint pos = vec[i].first - rem/sum;\n\t\t\t\trem %= sum;\n\t\t\t\tans -= sum * get(pos, vec[i].first);\n\t\t\t\tans -= pos * rem;\n\t\t\t\trem = 0;\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 7860, "score_of_the_acc": -0.5516, "final_rank": 11 }, { "submission_id": "aoj_3144_4278651", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing lint = long long int;\nusing pint = pair<int, int>;\nusing plint = pair<lint, lint>;\nstruct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;\n#define ALL(x) (x).begin(), (x).end()\n#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)\n#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)\n#define REP(i, n) FOR(i,0,n)\n#define IREP(i, n) IFOR(i,0,n)\ntemplate<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }\ntemplate<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }\ntemplate<typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }\ntemplate<typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }\ntemplate<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }\ntemplate<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }\ntemplate<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }\ntemplate<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << \"[\"; for (auto v : vec) os << v << \",\"; os << \"]\"; return os; }\ntemplate<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << \"deq[\"; for (auto v : vec) os << v << \",\"; os << \"]\"; return os; }\ntemplate<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << \"{\"; for (auto v : vec) os << v << \",\"; os << \"}\"; return os; }\ntemplate<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << \"{\"; for (auto v : vec) os << v << \",\"; os << \"}\"; return os; }\ntemplate<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << \"{\"; for (auto v : vec) os << v << \",\"; os << \"}\"; return os; }\ntemplate<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << \"{\"; for (auto v : vec) os << v << \",\"; os << \"}\"; return os; }\ntemplate<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << \"(\" << pa.first << \",\" << pa.second << \")\"; return os; }\ntemplate<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << \"{\"; for (auto v : mp) os << v.first << \"=>\" << v.second << \",\"; os << \"}\"; return os; }\ntemplate<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << \"{\"; for (auto v : mp) os << v.first << \"=>\" << v.second << \",\"; os << \"}\"; return os; }\n#define dbg(x) cerr << #x << \" = \" << (x) << \" (L\" << __LINE__ << \") \" << __FILE__ << endl;\n\n\nlint calccost(lint x) {\n return x * (x + 1) / 2;\n}\n\nint main()\n{\n lint N, M, K;\n cin >> N >> M >> K;\n vector<lint> A(N);\n cin >> A;\n sort(ALL(A));\n\n vector<plint> ranges;\n IREP(i, N) {\n lint pre = min(A[i], M);\n M -= pre;\n if (pre < A[i]) ranges.emplace_back(pre, A[i]);\n }\n lint no = -10, ok = 1e12;\n while (abs(ok - no) > 1) {\n lint c = (ok + no) / 2;\n lint cnt = 0;\n for (auto p : ranges) {\n if (p.second < c) continue;\n if (p.first < c) cnt += p.second - c + 1;\n else cnt += p.second - p.first;\n }\n if (cnt > K) no = c;\n else ok = c;\n }\n for (auto &p : ranges) if (p.second >= ok) {\n if (ok > p.first) {\n lint dec = p.second - ok + 1;\n K -= dec;\n p.second -= dec;\n }\n else {\n K -= p.second - p.first;\n p.second = p.first;\n }\n }\n lint ret = 0;\n for (auto p : ranges)\n {\n if (p.second == ok - 1 and p.first < p.second and K) p.second--, K--;\n if (p.first < p.second) ret = ret + calccost(p.second) - calccost(p.first);\n }\n cout << ret << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5780, "score_of_the_acc": -0.302, "final_rank": 6 }, { "submission_id": "aoj_3144_4278578", "code_snippet": "#include <bits/stdc++.h> // clang-format off\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define each(x,v) for(auto& x : v)\n#define all(v) (v).begin(),(v).end()\n#define sz(v) ((int)(v).size())\n#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)\n#define inl(...) long long __VA_ARGS__; in(__VA_ARGS__)\n#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)\n#define inc(...) char __VA_ARGS__; in(__VA_ARGS__)\n#define in2(s,t) rep(i,sz(s)){in(s[i] , t[i]);}\n#define in3(s,t,u) rep(i,sz(s)){in(s[i] , t[i] , u[i]);}\n#define in4(s,t,u,v) rep(i,sz(s)){in(s[i] , t[i] , u[i] , v[i]);}\n#ifdef ONLINE_JUDGE\n #define rep(i,N) for(int i = 0; i < (int)(N); i++)\n #define repr(i,N) for(int i = (int)(N) - 1; i >= 0; i--)\n #define rep1(i,N) for(int i = 1; i <= (int)(N) ; i++)\n #define repr1(i,N) for(int i = (N) ; (int)(i) > 0 ; i--)\n#else\n #define rep(i,N) for(long long i = 0; i < (long long)(N); i++)\n #define repr(i,N) for(long long i = (long long)(N) - 1; i >= 0; i--)\n #define rep1(i,N) for(long long i = 1; i <= (long long)(N) ; i++)\n #define repr1(i,N) for(long long i = (N) ; (long long)(i) > 0 ; i--)\n#endif\nusing namespace std; void solve();\nusing ll = long long; template<class T = ll> using V = vector<T>;\nusing vi = V<int>; using vl = V<>; using vvi = V< V<int> >;\nusing vd = V<double>; using vs = V<string>; using vvl = V< V<> >;\nconstexpr int inf = 1001001001; constexpr ll infLL = (1LL << 61) - 1;\ntemplate<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }\ntemplate<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }\ntemplate<typename T,typename U>ll ceil(T a,U b){return (a + b - 1) / b;}\ntemplate<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << \" \" << p.second; return os; }\ntemplate<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; }\ntemplate<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); for(int i=0;i<s;i++) os << (i ? \" \" : \"\") << v[i]; return os; }\ntemplate<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; }\nvoid in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);}\nvoid out(){cout << \"\\n\";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << \" \"; out(u...);}\ntemplate<typename T>void die(T x){out(x); exit(0);}\n\n#ifdef NyaanDebug\n #include \"NyaanDebug.h\"\n #define trc(...) do { cerr << #__VA_ARGS__ << \" = \"; dbg_out(__VA_ARGS__);} while(0)\n #define trca(v,N) do { cerr << #v << \" = \"; array_out(v , N);} while(0)\n #define trcc(v) do { cerr << \"name : \" << #v << \"\\n\"; int cnt = 0; each(x , v){cerr << (cnt++) << \" : \"; trc(x); } } while(0)\n#else\n #define trc(...)\n #define trca(...)\n #define trcc(...)\n int main(){solve();}\n#endif\n\nconstexpr ll TEN(int n){ll ret=1,x=10;while(n){if(n&1)ret*=x;x*=x;n>>=1;}return ret;}\n#define mem(a, val) memset(a, val, sizeof(a))\n\nstruct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya;\nusing P = pair<ll,ll>; using vp = V<P>;\nconstexpr int MOD = /** 1000000007; //*/ 998244353;\n// clang-format on\n////////////////////////////////////////////////////\n\nvoid solve(){\n inl(N , M , K);\n vl a(N); in(a);\n sort(all(a));\n ll ss = accumulate(all(a),0LL);\n if(ss <= M + K) die(0);\n\n int r = N;\n ll s = 0;\n while(r != 0 && s + a[r - 1] <= M){\n s += a[r - 1];\n r--;\n }\n // \n // r - 1番目の特殊条件\n ll rmin = M - s;\n\n // [ 0 , r )\n trc(s , r , rmin);\n // 実装が難しい\n \n // maxをxに出来ますか?\n ll ng = -1 , ok = M;\n while(ng + 1 < ok){\n ll med = (ng + ok) / 2;\n ll cur = 0;\n rep(i , r){\n if(i != r - 1) cur += max(0LL , a[i] - med);\n else cur += max(0LL , a[i] - max(med,rmin) );\n }\n (cur <= K ? ok : ng) = med;\n }\n\n trc(ok);\n \n rep(i , r){\n if(i != r - 1){\n if(a[i] > ok){\n K -= a[i] - ok;\n a[i] = ok;\n }\n }\n else{\n if(a[i] > max(rmin,ok) ){\n K -= a[i] - max(rmin,ok);\n a[i] = max(rmin,ok);\n }\n }\n }\n\n repr(i , r){\n if(i == r - 1 && a[i] == rmin) continue;\n if(K == 0) break;\n a[i]--; K--;\n }\n\n ll ans = -(rmin) * (rmin + 1) / 2;\n\n rep(i , r){\n ans += a[i] * (a[i] + 1) / 2;\n }\n out(ans);\n\n\n\n \n \n\n\n\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3640, "score_of_the_acc": -0.0451, "final_rank": 2 }, { "submission_id": "aoj_3144_4278559", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <complex>\n#include <cstring>\n#include <deque>\n#include <functional>\n#include <iostream>\n#include <iomanip>\n#include <list>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n#include <cstdint>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef pair<int,int> pii;\n#define MP make_pair\n#define PB push_back\n#define inf 1000000007\n#define rep(i,n) for(int i = 0; i < (int)(n); ++i)\n#define all(x) (x).begin(),(x).end()\n\ntemplate<typename A, size_t N, typename T>\nvoid Fill(A (&array)[N], const T &val){\n std::fill( (T*)array, (T*)(array+N), val );\n}\n \ntemplate<class T> inline bool chmax(T &a, T b){\n if(a<b){\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T> inline bool chmin(T &a, T b){\n if(a>b){\n a = b;\n return true;\n }\n return false;\n}\n\nll dp[1000010];\nint main(){\n int n;\n cin >> n;\n ll m,k;\n cin >> m >> k;\n vector<ll>a(n);\n rep(i,n)cin >> a[i];\n sort(a.rbegin(),a.rend());\n bool flag = 1;\n ll sm = 0;\n \n for(int i=0;i<n;i++){\n if(flag){\n if(sm + a[i]<=m){\n sm += a[i];\n }else{\n flag = 0;\n dp[a[i]]++;\n dp[m-sm]--;\n }\n }else{\n dp[a[i]]++;\n dp[0]--;\n }\n }\n ll cnt = 0;\n ll res = 0;\n for(ll i=1000001;i>=0;i--){\n cnt += dp[i];\n if(cnt==0)continue;\n if(k>0){\n if(k>cnt){\n k-=cnt;\n }else{\n res += (cnt-k)*i;\n k = 0;\n }\n }else{\n res += cnt*i;\n }\n }\n cout << res << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 11468, "score_of_the_acc": -1.4846, "final_rank": 16 }, { "submission_id": "aoj_3144_4277894", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long double EPS = 1e-10;\nconst long long INF = 1e18;\nconst long double PI = acos(-1.0L);\n//const ll mod = 1000000007;\nll N, M, K;\n\nll imos[1005000];\n\nint main() {\n cin >> N >> M >> K;\n vector<ll> A(N);\n for(int i = 0; i < N; i++) cin >> A[i];\n sort(A.begin(), A.end());\n ll sum = 0;\n for(int i = N - 1; i >= 0; i--) {\n ll rest = M - sum;\n if(rest < A[i]) {\n imos[A[i]]++;\n ll tmp = A[i] - rest;\n imos[A[i]-tmp]--;\n //cerr << i << \" \" << A[i] << \" \" << A[i]- tmp - 1 << endl;\n }\n sum += A[i];\n chmin(sum, M);\n }\n for(int i = 1e6; i >= 0; i--) {\n imos[i] += imos[i+1];\n }\n /*\n for(int i = 0; i <= 10; i++) {\n cerr << i << \" \"<< imos[i] << endl;\n }\n */\n ll ans = 0;\n for(int i = 1e6; i >= 1; i--) {\n ll tmp = min(imos[i], K);\n imos[i] -= tmp;\n K -= tmp;\n //if(i <= 10) cerr << i << \" \" << imos[i] << endl;\n ans += i * imos[i];\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 11596, "score_of_the_acc": -2, "final_rank": 17 } ]
aoj_3142_cpp
F: ボタンの木 問題文 $N$ 頂点 $N-1$ 辺からなる木があり、$i$ 番目の辺は $u_i$ 番目の頂点と $v_i$ 番目の頂点を接続しています。 各頂点にはボタンが咲いており、$i$ 番目の頂点に咲いているボタンをボタン $i$ と呼ぶことにします。 はじめ、ボタン $i$ の美しさは $a_i$ です。 ボタン $i$ を押すたびに、ボタン $i$ の美しさを隣接するボタンに $1$ ずつ分け与えます。 すなわち、$i$ 番目の頂点に $c_1, ..., c_k$ 番目の頂点が隣接している場合、ボタン $i$ の美しさが $k$ 減少し、ボタン $c_1, ..., c_k$ の美しさがそれぞれ $1$ ずつ増加します。 このとき、負の美しさのボタンを押しても良いし、ボタンを押した結果あるボタンの美しさが負になっても良いです。 あなたの目的はボタン $1, 2, ..., N$ の美しさをそれぞれ $b_1, ..., b_N$ にすることです。 最小で合計何回ボタンを押せば目的を達成できるでしょうか。 制約 入力はすべて整数である $1 \leq N \leq 10^5$ $1 \leq u_i, v_i \leq N$ $-1000 \leq a_i, b_i \leq 1000$ $\sum_i a_i = \sum_i b_i$ 与えられるグラフは木である 与えられる入力において目的は必ず達成できる 入力 入力は以下の形式で標準入力から与えられる。 $N$ $u_1$ $v_1$ $\vdots$ $u_{N-1}$ $v_{N-1}$ $a_1$ $a_2$ $...$ $a_N$ $b_1$ $b_2$ $...$ $b_N$ 出力 目的を達成するためにボタンを押す合計回数の最小値を出力せよ。 入力例1 4 1 2 1 3 3 4 0 3 2 0 -3 4 5 -1 出力例1 4 次のように合計 $4$ 回ボタンを押すことで目的を達成でき、このときが最小です。 ボタン $1$ を $2$ 回押します。ボタン $1, 2, 3, 4$ の美しさがそれぞれ $-4, 5, 4, 0$ に変化します。 ボタン $2$ を $1$ 回押します。美しさがそれぞれ $-3, 4, 4, 0$ に変化します。 ボタン $4$ を $1$ 回押します。美しさがそれぞれ $-3, 4, 5, -1$ に変化します。 入力例2 5 1 2 1 3 3 4 3 5 -9 5 7 1 8 -7 4 5 1 9 出力例2 3
[ { "submission_id": "aoj_3142_10412835", "code_snippet": "// AOJ #3142 Tree of Peony\n// 2025.4.23\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nint main(){\n int N = Cin();\n\n vector<vector<int>> adj(N+1);\n for(int i = 0; i < N-1; i++){\n int u = Cin(), v = Cin();\n adj[u].push_back(v);\n adj[v].push_back(u);\n }\n\n vector<ll> a(N+1), b(N+1), d(N+1), D(N+1), P(N+1);\n for(int i = 1; i <= N; i++) a[i] = Cin();\n for(int i = 1; i <= N; i++){\n b[i] = Cin();\n d[i] = b[i] - a[i];\n D[i] = d[i];\n }\n\n vector<int> parent(N+1), order;\n order.reserve(N);\n stack<int> st;\n st.push(1);\n parent[1] = 0;\n while(!st.empty()){\n int u = st.top(); st.pop();\n order.push_back(u);\n for(int v: adj[u]){\n if(v == parent[u]) continue;\n parent[v] = u;\n st.push(v);\n }\n }\n\n for(int i = N-1; i >= 0; --i){\n int u = order[i];\n if(u != 1) D[parent[u]] += D[u];\n }\n\n ll C = LLONG_MIN;\n for(int u: order){\n if(u == 1) P[u] = 0;\n else P[u] = P[parent[u]] + D[u];\n C = max(C, P[u]);\n }\n\n ll ans = 0;\n for(int i = 1; i <= N; i++) ans += (C - P[i]);\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 13844, "score_of_the_acc": -0.2517, "final_rank": 1 }, { "submission_id": "aoj_3142_9142281", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=int64_t;\n\nint n;\nll ans=0;\nvector<vector<int>> g(100000);\nvector<ll> a(100000),c(100000),d(100000,0);\n\nvoid dfs(int t,int p){ \n c[t]=1;\n for(int i:g[t]){\n if(i==p) continue;\n dfs(i,t);\n c[t]+=c[i];\n d[t]=max(d[t],-a[i]);\n }\n ans+=d[t];\n for(int i:g[t]){\n if(i==p) continue;\n ans+=(c[i]*(d[t]+a[i]));\n a[t]+=a[i];\n a[i]=0;\n }\n if(p>=0){\n a[t]-=d[t];\n a[p]+=d[t];\n if(a[t]>0){\n ans+=c[t]*a[t];\n a[p]+=a[t];\n a[t]=0;\n }\n }\n return;\n}\n\n\nint main() {\n\n int n;\n cin >> n;\n int u,v;\n for(int i=0;i<n-1;i++){\n cin >> u >> v;\n u--;v--;\n g[u].push_back(v);\n g[v].push_back(u);\n }\n for(int i=0;i<n;i++) cin >> a[i];\n ll b;\n for(int i=0;i<n;i++){\n cin >> b;\n a[i]-=b;\n }\n\n dfs(0,-1);\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 18076, "score_of_the_acc": -0.6402, "final_rank": 5 }, { "submission_id": "aoj_3142_9138691", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=int64_t;\n\nint n;\nll ans=0;\nvector<vector<int>> g(100000);\nvector<ll> a(100000);\n\ntuple<ll,ll,int> dfs(int t,int p){ //pairは、親への+/自身/子、孫の合計数\n if(g[t].size()==1){ \n if(a[t]>0){\n ll at=a[t];\n a[t]=0;\n ans+=at;\n return make_tuple(at,0,1);\n }\n return make_tuple(0,a[t],1);\n }\n vector<pair<ll,int>> ch;\n ll chmin=0;\n int mini=-1,nums=0;\n for(int i=0;i<(int)g[t].size();i++){\n if(g[t][i]==p) continue;\n auto [at,ca,num]=dfs(g[t][i],t);\n \n if(at>0) a[t]+=at;\n if(chmin>ca){\n chmin=ca;\n mini=i;\n }\n ch.emplace_back(ca,num);\n nums+=num;\n }\n int chn=(int)ch.size();\n ll at=0;\n if(mini!=-1){\n ans+=(-chmin);\n if(t!=0){\n at+=(-chmin);\n a[t]+=chmin*(chn+1);\n }else{\n a[t]+=chmin*chn;\n }\n for(int i=0;i<chn;i++){\n if(i==mini) continue;\n auto [ca,num]=ch[i];\n ans+=((ca-chmin)*num);\n a[t]+=(ca-chmin);\n }\n }\n \n if(a[t]>0){\n at+=a[t];\n ans+=a[t];\n ans+=(a[t]*nums);\n a[t]=0;\n }\n return make_tuple(at,a[t],nums+1);\n}\n\n\nint main() {\n\n int n;\n cin >> n;\n int u,v;\n for(int i=0;i<n-1;i++){\n cin >> u >> v;\n u--;v--;\n g[u].push_back(v);\n g[v].push_back(u);\n }\n for(int i=0;i<n;i++) cin >> a[i];\n ll b;\n for(int i=0;i<n;i++){\n cin >> b;\n a[i]-=b;\n }\n\n auto [at,ca,num]=dfs(0,-1);\n cout << ans << endl;\n //cout << at << \" \" << ca << \" \" << num << endl;\n}", "accuracy": 0.08695652173913043, "time_ms": 30, "memory_kb": 7884, "score_of_the_acc": -0.0778, "final_rank": 16 }, { "submission_id": "aoj_3142_9138671", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=int64_t;\n\nint n,ans=0;\nvector<vector<int>> g(100000);\nvector<int> a(100000);\n\ntuple<int,int,int> dfs(int t,int p){ //pairは、親への+/自身/子、孫の合計数\n if(g[t].size()==1){ \n if(a[t]>0){\n int at=a[t];\n a[t]=0;\n ans+=at;\n return make_tuple(at,0,1);\n }\n return make_tuple(0,a[t],1);\n }\n vector<pair<int,int>> ch;\n int chmin=0,mini=-1,nums=0;\n for(int i=0;i<(int)g[t].size();i++){\n if(g[t][i]==p) continue;\n auto [at,ca,num]=dfs(g[t][i],t);\n \n if(at>0) a[t]+=at;\n if(chmin>ca){\n chmin=ca;\n mini=i;\n }\n ch.emplace_back(ca,num);\n nums+=num;\n }\n int chn=(int)ch.size();\n int at=0;\n if(mini!=-1){\n ans+=(-chmin);\n if(t!=0){\n at+=(-chmin);\n a[t]+=chmin*(chn+1);\n }else{\n a[t]+=chmin*chn;\n }\n for(int i=0;i<chn;i++){\n if(i==mini) continue;\n auto [ca,num]=ch[i];\n ans+=((ca-chmin)*num);\n a[t]+=(ca-chmin);\n }\n }\n \n if(a[t]>0){\n at+=a[t];\n ans+=a[t];\n ans+=(a[t]*nums);\n a[t]=0;\n }\n return make_tuple(at,a[t],nums+1);\n}\n\n\nint main() {\n\n int n;\n cin >> n;\n int u,v;\n for(int i=0;i<n-1;i++){\n cin >> u >> v;\n u--;v--;\n g[u].push_back(v);\n g[v].push_back(u);\n }\n for(int i=0;i<n;i++) cin >> a[i];\n for(int i=0;i<n;i++){\n cin >> u;\n a[i]-=u;\n }\n\n auto [at,ca,num]=dfs(0,-1);\n cout << ans << endl;\n //cout << at << \" \" << ca << \" \" << num << endl;\n}", "accuracy": 0.08695652173913043, "time_ms": 30, "memory_kb": 7728, "score_of_the_acc": -0.0714, "final_rank": 15 }, { "submission_id": "aoj_3142_4885527", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, m, n) for(int(i) = (int)(m); i < (int)(n); ++i)\n#define rep2(i, m, n) for(int(i) = (int)(n)-1; i >= (int)(m); --i)\n#define REP(i, n) rep(i, 0, n)\n#define REP2(i, n) rep2(i, 0, n)\n#define all(hoge) (hoge).begin(), (hoge).end()\n#define en '\\n'\nusing ll = long long;\nusing ull = unsigned long long;\ntemplate <class T>\nusing vec = vector<T>;\ntemplate <class T>\nusing vvec = vector<vec<T>>;\ntypedef pair<ll, ll> P;\nusing tp = tuple<ll, ll, ll>;\nconstexpr long long INF = 1LL << 60;\nconstexpr int INF_INT = 1 << 25;\n//constexpr long long MOD = (ll)1e9 + 7;\nconstexpr long long MOD = 998244353LL;\nusing ld = long double;\nstatic const ld pi = 3.141592653589793L;\ntypedef vector<ll> Array;\ntypedef vector<Array> Matrix;\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\n//グラフ関連\nstruct Edge {\n ll to, cap, rev;\n Edge(ll _to, ll _cap, ll _rev) {\n to = _to;\n cap = _cap;\n rev = _rev;\n }\n};\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\n\nvoid add_edge(Graph &G, ll from, ll to, ll cap, bool revFlag, ll revCap) {\n G[from].push_back(Edge(to, cap, (ll)G[to].size()));\n if(revFlag)\n G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1));\n}\n\nint sz[101010];\nint cost[101010];\nint diff[101010];\nvoid solve() {\n ll n;\n cin >> n;\n Graph g(n);\n REP(i, n - 1) {\n ll u, v;\n cin >> u >> v;\n u--;\n v--;\n add_edge(g, u, v, 1, true, 1);\n }\n\n vec<ll> a(n), b(n);\n REP(i, n) {\n cin >> a[i];\n }\n REP(i, n) {\n cin >> b[i];\n }\n\n auto dfs = [&](auto &&self, int v, int p) -> void {\n sz[v] = 1;\n int ma = -INF_INT;\n for(auto e : g[v]) {\n if(e.to == p)\n continue;\n self(self, e.to, v);\n sz[v] += sz[e.to];\n chmax(ma, diff[e.to]);\n }\n\n diff[v] = b[v] - a[v];\n if(ma != -INF_INT)\n cost[v] = max(ma, 0);\n else\n cost[v] += max(a[v] - b[v], 0LL);\n\n for(auto e : g[v]) {\n if(e.to == p)\n continue;\n if(ma >= 0 and diff[e.to] <= ma) {\n cost[v] += max(0, ma - diff[e.to]) * sz[e.to]; //余計に渡したぶんを回収\n }\n diff[v] += diff[e.to]; //不足分を引かれる\n cost[v] += cost[e.to];\n }\n //cout << v << \" \" << cost[v] << \" \" << diff[v] << \" \" << sz[v] << en;\n };\n\n dfs(dfs, 0, -1);\n cout << cost[0] << en;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout.tie(0);\n /*\n ll t;\n cin >> t;\n while(t--)*/\n solve();\n\n return 0;\n}", "accuracy": 0.08695652173913043, "time_ms": 20, "memory_kb": 10096, "score_of_the_acc": -0.1332, "final_rank": 18 }, { "submission_id": "aoj_3142_4885525", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, m, n) for(int(i) = (int)(m); i < (int)(n); ++i)\n#define rep2(i, m, n) for(int(i) = (int)(n)-1; i >= (int)(m); --i)\n#define REP(i, n) rep(i, 0, n)\n#define REP2(i, n) rep2(i, 0, n)\n#define all(hoge) (hoge).begin(), (hoge).end()\n#define en '\\n'\nusing ll = long long;\nusing ull = unsigned long long;\ntemplate <class T>\nusing vec = vector<T>;\ntemplate <class T>\nusing vvec = vector<vec<T>>;\ntypedef pair<ll, ll> P;\nusing tp = tuple<ll, ll, ll>;\nconstexpr long long INF = 1LL << 60;\nconstexpr int INF_INT = 1 << 25;\n//constexpr long long MOD = (ll)1e9 + 7;\nconstexpr long long MOD = 998244353LL;\nusing ld = long double;\nstatic const ld pi = 3.141592653589793L;\ntypedef vector<ll> Array;\ntypedef vector<Array> Matrix;\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\n//グラフ関連\nstruct Edge {\n ll to, cap, rev;\n Edge(ll _to, ll _cap, ll _rev) {\n to = _to;\n cap = _cap;\n rev = _rev;\n }\n};\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\n\nvoid add_edge(Graph &G, ll from, ll to, ll cap, bool revFlag, ll revCap) {\n G[from].push_back(Edge(to, cap, (ll)G[to].size()));\n if(revFlag)\n G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1));\n}\n\nint sz[101010];\nint cost[101010];\nint diff[101010];\nvoid solve() {\n ll n;\n cin >> n;\n Graph g(n);\n REP(i, n - 1) {\n ll u, v;\n cin >> u >> v;\n u--;\n v--;\n add_edge(g, u, v, 1, true, 1);\n }\n\n vec<ll> a(n), b(n);\n REP(i, n) {\n cin >> a[i];\n }\n REP(i, n) {\n cin >> b[i];\n }\n\n auto dfs = [&](auto &&self, int v, int p) -> void {\n sz[v] = 1;\n int ma = -INF_INT;\n for(auto e : g[v]) {\n if(e.to == p)\n continue;\n self(self, e.to, v);\n sz[v] += sz[e.to];\n chmax(ma, diff[e.to]);\n }\n\n diff[v] = b[v] - a[v];\n if(ma != -INF_INT)\n cost[v] = max(ma, 0);\n else\n cost[v] += max(a[v] - b[v], 0LL);\n\n for(auto e : g[v]) {\n if(e.to == p)\n continue;\n if(diff[e.to] <= ma) {\n cost[v] += max(0, ma - diff[e.to]) * sz[e.to]; //余計に渡したぶんを回収\n }\n diff[v] += diff[e.to]; //不足分を引かれる\n cost[v] += cost[e.to];\n }\n //cout << v << \" \" << cost[v] << \" \" << diff[v] << \" \" << sz[v] << en;\n };\n\n dfs(dfs, 0, -1);\n cout << cost[0] << en;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout.tie(0);\n /*\n ll t;\n cin >> t;\n while(t--)*/\n solve();\n\n return 0;\n}", "accuracy": 0.08695652173913043, "time_ms": 10, "memory_kb": 10052, "score_of_the_acc": -0.0957, "final_rank": 17 }, { "submission_id": "aoj_3142_4875881", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3142\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename F>\nstruct FixPoint : F{\n FixPoint(F&& f):F(forward<F>(f)){}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const{\n return F::operator()(*this,forward<Args>(args)...);\n }\n};\ntemplate<typename F>\ninline decltype(auto) MFP(F&& f){\n return FixPoint<F>{forward<F>(f)};\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nstruct Centroid{\n vector<int> sz,dead;\n vector< vector<int> > G;\n Centroid(){}\n Centroid(int n):sz(n,1),dead(n,0),G(n){}\n\n void add_edge(int u,int v){\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n int dfs(int v,int p){\n sz[v]=1;\n for(int u:G[v])\n if(u!=p&&!dead[u]) sz[v]+=dfs(u,v);\n return sz[v];\n }\n\n void find(int v,int p,int tmp,vector<int> &cs) {\n int ok=1;\n for (int u:G[v]){\n if(u==p||dead[u]) continue;\n find(u,v,tmp,cs);\n ok&=(sz[u]<=tmp/2);\n }\n ok&=(tmp-sz[v]<=tmp/2);\n if(ok) cs.emplace_back(v);\n }\n\n vector<int> build(int r) {\n int tmp=dfs(r,-1);\n vector<int> cs;\n find(r,-1,tmp,cs);\n return cs;\n }\n\n const vector<int>& operator[](int k)const{return G[k];}\n void disable(int v){dead[v]=1;}\n void enable(int v){dead[v]=0;}\n int alive(int v){return !dead[v];}\n};\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n;\n cin>>n;\n Centroid G(n);\n for(int i=1;i<n;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n G.add_edge(u,v);\n }\n\n vector<ll> as(n),bs(n);\n for(int i=0;i<n;i++) cin>>as[i];\n for(int i=0;i<n;i++) cin>>bs[i];\n\n using P = pair<int, ll>;\n vector<vector<P>> H(n);\n MFP([&](auto dfs,int v,int p)->ll{\n ll res=as[v]-bs[v];\n for(int u:G[v]){\n if(u==p) continue;\n ll tmp=dfs(u,v);\n H[u].emplace_back(v,-tmp);\n H[v].emplace_back(u,+tmp);\n res+=tmp;\n }\n return res;\n })(0,-1);\n\n vector<ll> dp(n,0);\n queue<int> que;\n que.emplace(G.build(0)[0]);\n\n vector<ll> tmp(n);\n while(!que.empty()){\n int r=que.front();que.pop();\n\n for(int t=0;t<2;t++){\n ll res=0;\n for(auto ch:H[r]){\n int c=ch.first;\n if(!G.alive(c)) continue;\n\n // calc cost\n MFP([&](auto dfs,int v,int p,ll d)->void{\n chmin(dp[v],-d+res);\n for(auto[u,w]:H[v]){\n if(u==p) continue;\n if(!G.alive(u)) continue;\n dfs(u,v,d+w);\n }\n })(c,r,ch.second);\n\n // update cost\n MFP([&](auto dfs,int v,int p,ll d)->void{\n chmin(res,d);\n for(auto[u,w]:H[v]){\n if(u==p) continue;\n if(!G.alive(u)) continue;\n dfs(u,v,d+w);\n }\n })(c,r,ch.second);\n }\n chmin(dp[r],res);\n reverse(H[r].begin(),H[r].end());\n }\n\n G.disable(r);\n for(int c:G.G[r])\n if(G.alive(c))\n que.emplace(G.build(c)[0]);\n }\n\n ll ans=0;\n for(ll x:dp) ans+=x;\n cout<<-ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 31264, "score_of_the_acc": -1.7544, "final_rank": 10 }, { "submission_id": "aoj_3142_4875879", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3142\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename F>\nstruct FixPoint : F{\n FixPoint(F&& f):F(forward<F>(f)){}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const{\n return F::operator()(*this,forward<Args>(args)...);\n }\n};\ntemplate<typename F>\ninline decltype(auto) MFP(F&& f){\n return FixPoint<F>{forward<F>(f)};\n}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nstruct Centroid{\n vector<int> sz,dead;\n vector< vector<int> > G;\n Centroid(){}\n Centroid(int n):sz(n,1),dead(n,0),G(n){}\n\n void add_edge(int u,int v){\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n int dfs(int v,int p){\n sz[v]=1;\n for(int u:G[v])\n if(u!=p&&!dead[u]) sz[v]+=dfs(u,v);\n return sz[v];\n }\n\n void find(int v,int p,int tmp,vector<int> &cs) {\n int ok=1;\n for (int u:G[v]){\n if(u==p||dead[u]) continue;\n find(u,v,tmp,cs);\n ok&=(sz[u]<=tmp/2);\n }\n ok&=(tmp-sz[v]<=tmp/2);\n if(ok) cs.emplace_back(v);\n }\n\n vector<int> build(int r) {\n int tmp=dfs(r,-1);\n vector<int> cs;\n find(r,-1,tmp,cs);\n return cs;\n }\n\n const vector<int>& operator[](int k)const{return G[k];}\n void disable(int v){dead[v]=1;}\n void enable(int v){dead[v]=0;}\n int alive(int v){return !dead[v];}\n};\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n;\n cin>>n;\n Centroid G(n);\n for(int i=1;i<n;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n G.add_edge(u,v);\n }\n\n vector<ll> as(n),bs(n);\n for(int i=0;i<n;i++) cin>>as[i];\n for(int i=0;i<n;i++) cin>>bs[i];\n\n using P = pair<int, ll>;\n vector<vector<P>> H(n);\n MFP([&](auto dfs,int v,int p)->ll{\n ll res=as[v]-bs[v];\n for(int u:G.G[v]){\n if(u==p) continue;\n ll tmp=dfs(u,v);\n H[u].emplace_back(v,-tmp);\n H[v].emplace_back(u,+tmp);\n res+=tmp;\n }\n return res;\n })(0,-1);\n\n vector<ll> dp(n,0);\n queue<int> que;\n que.emplace(G.build(0)[0]);\n\n vector<ll> tmp(n);\n while(!que.empty()){\n int r=que.front();que.pop();\n\n for(int t=0;t<2;t++){\n ll res=0;\n for(auto ch:H[r]){\n int c=ch.first;\n if(!G.alive(c)) continue;\n\n // calc cost\n MFP([&](auto dfs,int v,int p,ll d)->void{\n chmin(dp[v],-d+res);\n for(auto[u,w]:H[v]){\n if(u==p) continue;\n if(!G.alive(u)) continue;\n dfs(u,v,d+w);\n }\n })(c,r,ch.second);\n\n // update cost\n MFP([&](auto dfs,int v,int p,ll d)->void{\n chmin(res,d);\n for(auto[u,w]:H[v]){\n if(u==p) continue;\n if(!G.alive(u)) continue;\n dfs(u,v,d+w);\n }\n })(c,r,ch.second);\n }\n chmin(dp[r],res);\n reverse(H[r].begin(),H[r].end());\n }\n\n G.disable(r);\n for(int c:G.G[r])\n if(G.alive(c))\n que.emplace(G.build(c)[0]);\n }\n\n ll ans=0;\n for(int x:dp) ans+=x;\n cout<<-ans<<endl;\n return 0;\n}", "accuracy": 0.2608695652173913, "time_ms": 240, "memory_kb": 26180, "score_of_the_acc": -1.5809, "final_rank": 12 }, { "submission_id": "aoj_3142_4875794", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\nusing Int = long long;\nconst char newl = '\\n';\n\n\ntemplate<typename F>\nstruct FixPoint : F{\n FixPoint(F&& f):F(forward<F>(f)){}\n template<typename... Args>\n decltype(auto) operator()(Args&&... args) const{\n return F::operator()(*this,forward<Args>(args)...);\n }\n};\ntemplate<typename F>\ninline decltype(auto) MFP(F&& f){\n return FixPoint<F>{forward<F>(f)};\n}\n\n\nstruct Centroid{\n vector<Int> sz,dead;\n vector< vector<Int> > G;\n Centroid(){}\n Centroid(Int n):sz(n,1),dead(n,0),G(n){}\n\n void add_edge(Int u,Int v){\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n Int dfs(Int v,Int p){\n sz[v]=1;\n for(Int u:G[v])\n if(u!=p&&!dead[u]) sz[v]+=dfs(u,v);\n return sz[v];\n }\n\n void find(Int v,Int p,Int tmp,vector<Int> &cs) {\n Int ok=1;\n for (Int u:G[v]){\n if(u==p||dead[u]) continue;\n find(u,v,tmp,cs);\n ok&=(sz[u]<=tmp/2);\n }\n ok&=(tmp-sz[v]<=tmp/2);\n if(ok) cs.emplace_back(v);\n }\n\n vector<Int> build(Int r) {\n Int tmp=dfs(r,-1);\n vector<Int> cs;\n find(r,-1,tmp,cs);\n return cs;\n }\n\n void disable(Int v){dead[v]=1;}\n void enable(Int v){dead[v]=0;}\n Int alive(Int v){return !dead[v];}\n};\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n Int n;\n cin>>n;\n Centroid G(n);\n for(Int i=1;i<n;i++){\n Int u,v;\n cin>>u>>v;\n u--;v--;\n G.add_edge(u,v);\n }\n\n vector<Int> as(n),bs(n);\n for(Int i=0;i<n;i++) cin>>as[i];\n for(Int i=0;i<n;i++) cin>>bs[i];\n\n using P = pair<Int, Int>;\n vector<vector<P>> H(n);\n MFP([&](auto dfs,Int v,Int p)->Int{\n Int res=as[v]-bs[v];\n for(Int u:G.G[v]){\n if(u==p) continue;\n Int tmp=dfs(u,v);\n //cout<<u+1<<\" \"<<v+1<<\":\"<<-tmp<<endl;\n //cout<<v+1<<\" \"<<u+1<<\":\"<<+tmp<<endl;\n H[u].emplace_back(v,-tmp);\n H[v].emplace_back(u,+tmp);\n res+=tmp;\n }\n return res;\n })(0,-1);\n\n vector<Int> dp(n,0);\n queue<Int> que;\n que.emplace(G.build(0)[0]);\n\n vector<Int> tmp(n);\n while(!que.empty()){\n Int r=que.front();que.pop();\n\n for(Int t=0;t<2;t++){\n Int res=0;\n for(auto ch:H[r]){\n Int c=ch.first;\n if(!G.alive(c)) continue;\n\n // calc cost\n MFP([&](auto dfs,Int v,Int p,Int d)->void{\n // cout<<r+1<<\":\"<<v+1<<\" \"<<d<<endl;\n chmin(dp[v],-d+res);\n for(auto e:H[v]){\n Int u=e.first,w=e.second;\n if(u==p) continue;\n if(!G.alive(u)) continue;\n dfs(u,v,d+w);\n }\n })(c,r,ch.second);\n\n // update cost\n MFP([&](auto dfs,Int v,Int p,Int d)->void{\n chmin(res,d);\n for(auto e:H[v]){\n Int u=e.first,w=e.second;\n if(u==p) continue;\n if(!G.alive(u)) continue;\n dfs(u,v,d+w);\n }\n })(c,r,ch.second);\n }\n chmin(dp[r],res);\n reverse(H[r].begin(),H[r].end());\n }\n\n G.disable(r);\n for(Int c:G.G[r])\n if(G.alive(c))\n que.emplace(G.build(c)[0]);\n }\n // for(Int x:dp) cout<<x<<endl;\n\n Int ans=0;\n for(Int x:dp) ans+=x;\n cout<<-ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 290, "memory_kb": 32024, "score_of_the_acc": -2, "final_rank": 11 }, { "submission_id": "aoj_3142_4746489", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n\n\nll V;\nvector<int> G[SIZE];\nll A[SIZE],B[SIZE],diff[SIZE];\nll COUNT[SIZE];\n\nvoid dfs(int node_id,int pre){\n\n\tdiff[node_id] = A[node_id]-B[node_id];\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs(child,node_id);\n\t\tdiff[node_id] += diff[child];\n\t}\n}\n\nvoid dfs2(int node_id,int pre){\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\n\t\tif(child == pre){\n\t\t\tCOUNT[node_id] = COUNT[pre]+diff[node_id];\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs2(child,node_id);\n\t}\n}\n\n\nint main(){\n\n\tscanf(\"%lld\",&V);\n\n\tint from,to;\n\tfor(ll i = 0; i < V-1; i++){\n\n\t\tscanf(\"%d %d\",&from,&to);\n\t\tfrom--;\n\t\tto--;\n\n\t\tG[from].push_back(to);\n\t\tG[to].push_back(from);\n\t}\n\tfor(ll i = 0; i < V; i++){\n\n\t\tscanf(\"%lld\",&A[i]);\n\t}\n\tfor(ll i = 0; i < V; i++){\n\n\t\tscanf(\"%lld\",&B[i]);\n\t}\n\n\tdfs(0,-1);\n\n\tCOUNT[0] = 0;\n\tdfs2(0,-1);\n\n\tll ans = 0;\n\tll minimum = HUGE_NUM;\n\n\tfor(int i = 0; i < V; i++){\n\n\t\tans += COUNT[i];\n\t\tminimum = min(minimum,COUNT[i]);\n\t}\n\n\tans -= V*minimum;\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 17664, "score_of_the_acc": -0.5518, "final_rank": 2 }, { "submission_id": "aoj_3142_4746370", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n\n\nint V;\nll ans;\nvector<int> G[SIZE];\nll A[SIZE],B[SIZE],diff[SIZE];\n\nvoid dfs(int node_id,int pre){\n\n\tll sum = 0;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs(child,node_id);\n\t\tsum += diff[child];\n\t}\n\n\tll tmp = A[node_id]+sum-B[node_id];\n\tans += abs(tmp);\n}\n\n\nint main(){\n\n\tscanf(\"%d\",&V);\n\n\tint from,to;\n\tfor(int i = 0; i < V-1; i++){\n\n\t\tscanf(\"%d %d\",&from,&to);\n\t\tfrom--;\n\t\tto--;\n\n\t\tG[from].push_back(to);\n\t\tG[to].push_back(from);\n\t}\n\tfor(int i = 0; i < V; i++){\n\n\t\tscanf(\"%lld\",&A[i]);\n\t}\n\tfor(int i = 0; i < V; i++){\n\n\t\tscanf(\"%lld\",&B[i]);\n\t}\n\n\tans = 0;\n\n\tdfs(0,-1);\n\n\tprintf(\"%lld\\n\",ans/2);\n\n\treturn 0;\n}", "accuracy": 0.08695652173913043, "time_ms": 20, "memory_kb": 8520, "score_of_the_acc": -0.0683, "final_rank": 14 }, { "submission_id": "aoj_3142_4746359", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n\n\nint V;\nint ans;\nvector<int> G[SIZE];\nint A[SIZE],B[SIZE],diff[SIZE];\n\nvoid dfs(int node_id,int pre){\n\n\tint sum = 0;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs(child,node_id);\n\t\tsum += diff[child];\n\t}\n\n\tint tmp = A[node_id]+sum-B[node_id];\n\tans += abs(tmp);\n}\n\n\nint main(){\n\n\tscanf(\"%d\",&V);\n\n\tint from,to;\n\tfor(int i = 0; i < V-1; i++){\n\n\t\tscanf(\"%d %d\",&from,&to);\n\t\tfrom--;\n\t\tto--;\n\n\t\tG[from].push_back(to);\n\t\tG[to].push_back(from);\n\t}\n\tfor(int i = 0; i < V; i++){\n\n\t\tscanf(\"%d\",&A[i]);\n\t}\n\tfor(int i = 0; i < V; i++){\n\n\t\tscanf(\"%d\",&B[i]);\n\t}\n\n\tans = 0;\n\n\tdfs(0,-1);\n\n\tprintf(\"%d\\n\",ans/2);\n\n\treturn 0;\n}", "accuracy": 0.08695652173913043, "time_ms": 20, "memory_kb": 8048, "score_of_the_acc": -0.0489, "final_rank": 13 }, { "submission_id": "aoj_3142_4356978", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\ntypedef double db;\nmt19937 mrand(random_device{}()); \nconst ll mod=998244353;\nint rnd(int x) { return mrand() % x;}\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\nll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}\n// head\n\nconst int N=201000;\nint n,a[N],b[N],u,v;\nVI e[N];\nll ret[N];\n\nvoid dfs(int u,int f) {\n\tfor (auto v:e[u]) {\n\t\tif (v==f) continue;\n\t\tdfs(v,u);\n\t\ta[u]+=a[v];\n\t\tb[u]+=b[v];\n\t}\n}\n\nvoid dfs2(int u,int f) {\n\tfor (auto v:e[u]) {\n\t\tif (v==f) continue;\n\t\tret[v]=ret[u]+a[v]-b[v];\n\t\tdfs2(v,u);\n\t}\n}\n\nint main() {\n\tscanf(\"%d\",&n);\n\trep(i,1,n) {\n\t\tscanf(\"%d%d\",&u,&v);\n\t\te[u].pb(v);\n\t\te[v].pb(u);\n\t}\n\trep(i,1,n+1) scanf(\"%d\",a+i);\n\trep(i,1,n+1) scanf(\"%d\",b+i);\n\tdfs(1,0);\n\tdfs2(1,0);\n\tll x=*min_element(ret+1,ret+n+1);\n\tll ans=0;\n\trep(i,1,n+1) ans+=ret[i]-x;\n\tprintf(\"%lld\\n\",ans);\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 18448, "score_of_the_acc": -0.5841, "final_rank": 3 }, { "submission_id": "aoj_3142_4285704", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#ifndef ONLINE_JUDGE\n#define dbg(x...) do { cout << \"\\033[32;1m \" << #x << \" -> \"; err(x); } while (0)\nvoid err() { cout << \"\\033[39;0m\" << endl; }\ntemplate<template<typename...> class T, typename t, typename... A>\nvoid err(T<t> a, A... x) { for (auto v: a) cout << v << ' '; err(x...); }\ntemplate<typename T, typename... A>\nvoid err(T a, A... x) { cout << a << ' '; err(x...); }\n#else\n#define dbg(...)\n#endif\ntypedef long long ll;\ntypedef pair<int,int> pi;\ntypedef vector<int> vi;\ntemplate<class T> using vc=vector<T>;\ntemplate<class T> using vvc=vc<vc<T>>;\ntemplate<class T> void mkuni(vector<T>&v)\n{\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\nll rand_int(ll l, ll r) //[l, r]\n{\n static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());\n return uniform_int_distribution<ll>(l, r)(gen);\n}\ntemplate<class T>\nvoid print(T x,int suc=1)\n{\n cout<<x;\n if(suc==1) cout<<'\\n';\n else cout<<' ';\n}\ntemplate<class T>\nvoid print(const vector<T>&v,int suc=1)\n{\n for(int i=0;i<v.size();i++)\n print(v[i],i==(int)(v.size())-1?suc:2);\n}\nconst int maxn=1e5+7;\nvi G[maxn];\nint a[maxn],b[maxn];\nint sum[maxn];\nll ans=0;\nvoid dfs(int u,int fa=-1)\n{\n sum[u]=b[u]-a[u];\n for(auto v:G[u])if(v!=fa)\n {\n dfs(v,u);\n sum[u]+=sum[v];\n }\n}\nll k[maxn];\nvoid dfs2(int u,int fa=-1,ll cur=0)\n{\n k[u]=cur;\n ans=min(ans,k[u]);\n for(auto v:G[u])if(v!=fa)\n dfs2(v,u,cur-sum[v]);\n}\nint main()\n{\n int n;\n cin>>n;\n for(int i=1,u,v;i<n;i++)\n {\n cin>>u>>v;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n for(int i=0;i<n;i++) cin>>a[i+1];\n for(int i=0;i<n;i++) cin>>b[i+1];\n dfs(1);\n dfs2(1);\n //dbg(ans);\n ll op=0;\n for(int i=1;i<=n;i++)\n {\n //dbg(k[i]);\n op+=k[i];\n }\n op+=-n*ans;\n print(op);\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 16268, "score_of_the_acc": -0.6729, "final_rank": 7 }, { "submission_id": "aoj_3142_4285700", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#ifndef ONLINE_JUDGE\n#define dbg(x...) do { cout << \"\\033[32;1m \" << #x << \" -> \"; err(x); } while (0)\nvoid err() { cout << \"\\033[39;0m\" << endl; }\ntemplate<template<typename...> class T, typename t, typename... A>\nvoid err(T<t> a, A... x) { for (auto v: a) cout << v << ' '; err(x...); }\ntemplate<typename T, typename... A>\nvoid err(T a, A... x) { cout << a << ' '; err(x...); }\n#else\n#define dbg(...)\n#endif\ntypedef long long ll;\ntypedef pair<int,int> pi;\ntypedef vector<int> vi;\ntemplate<class T> using vc=vector<T>;\ntemplate<class T> using vvc=vc<vc<T>>;\ntemplate<class T> void mkuni(vector<T>&v)\n{\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\nll rand_int(ll l, ll r) //[l, r]\n{\n static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());\n return uniform_int_distribution<ll>(l, r)(gen);\n}\ntemplate<class T>\nvoid print(T x,int suc=1)\n{\n cout<<x;\n if(suc==1) cout<<'\\n';\n else cout<<' ';\n}\ntemplate<class T>\nvoid print(const vector<T>&v,int suc=1)\n{\n for(int i=0;i<v.size();i++)\n print(v[i],i==(int)(v.size())-1?suc:2);\n}\nconst int maxn=1e5+7;\nvi G[maxn];\nint a[maxn],b[maxn];\nint sum[maxn];\nint ans=0x3f3f3f3f;\nvoid dfs(int u,int fa=-1)\n{\n sum[u]=b[u]-a[u];\n for(auto v:G[u])if(v!=fa)\n {\n dfs(v,u);\n sum[u]+=sum[v];\n }\n}\nint k[maxn];\nvoid dfs2(int u,int fa=-1,int cur=0)\n{\n k[u]=cur;\n ans=min(ans,k[u]);\n for(auto v:G[u])if(v!=fa)\n dfs2(v,u,cur-sum[v]);\n}\nint main()\n{\n int n;\n cin>>n;\n for(int i=1,u,v;i<n;i++)\n {\n cin>>u>>v;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n for(int i=0;i<n;i++) cin>>a[i+1];\n for(int i=0;i<n;i++) cin>>b[i+1];\n dfs(1);\n dfs2(1);\n //dbg(ans);\n int op=0;\n for(int i=1;i<=n;i++)\n {\n //dbg(k[i]);\n op+=k[i];\n }\n op+=-n*ans;\n print(op);\n}", "accuracy": 0.08695652173913043, "time_ms": 50, "memory_kb": 8324, "score_of_the_acc": -0.1674, "final_rank": 19 }, { "submission_id": "aoj_3142_4284031", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=1e9+7;\ntemplate<class T> void chmin(T &a,const T &b){if(a>b) a=b;}\ntemplate<class T> void chmax(T &a,const T &b){if(a<b) a=b;}\n\nvector<vector<int>> g;\nvector<ll> A,B;\n\nll ans;\nvector<int> size;\nvector<ll> dp;\n\nvoid sizedfs(int now,int par){\n size[now]=1;\n for(auto nex:g[now]) if(nex!=par){\n sizedfs(nex,now);\n size[now]+=size[nex];\n }\n}\n\nvoid dfs(int now,int par){\n ll ma=0;\n for(auto nex:g[now]) if(nex!=par){\n dfs(nex,now);\n chmax(ma,-dp[nex]);\n }\n ans+=ma;\n dp[now]-=g[now].size()*ma;\n if(par!=-1) dp[par]+=ma;\n for(auto nex:g[now]) if(nex!=par){\n dp[nex]+=ma;\n ans+=dp[nex]*size[nex];\n dp[now]+=dp[nex];\n dp[nex]=0;\n }\n\n if(dp[now]>0){\n ans+=dp[now]*size[now];\n if(par!=-1) dp[par]+=dp[now];\n dp[now]=0;\n }\n}\n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int N;\n cin>>N;\n g.resize(N);\n rep(i,N-1){\n int a,b;\n cin>>a>>b;\n a--;b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n A.resize(N);\n rep(i,N) cin>>A[i];\n B.resize(N);\n rep(i,N) cin>>B[i];\n\n int root=0;\n rep(i,N) if(g[i].size()==1) root=i;\n size.resize(N);\n sizedfs(root,-1);\n\n dp.resize(N);\n rep(i,N) dp[i]=A[i]-B[i];\n dfs(root,-1);\n\n cout<<ans<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 18912, "score_of_the_acc": -0.6032, "final_rank": 4 }, { "submission_id": "aoj_3142_4282266", "code_snippet": "#include <bits/stdc++.h>\n// created [2020/03/20] 14:42:56\n#pragma GCC diagnostic ignored \"-Wsign-compare\"\n#pragma GCC diagnostic ignored \"-Wsign-conversion\"\n\nusing i32 = int32_t;\nusing i64 = int64_t;\nusing u32 = uint32_t;\nusing u64 = uint64_t;\nusing uint = unsigned int;\nusing usize = std::size_t;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\ntemplate<typename T, usize n>\nusing arr = T (&)[n];\ntemplate<typename T, usize n>\nusing c_arr = const T (&)[n];\ntemplate<typename T>\nusing max_heap = std::priority_queue<T>;\ntemplate<typename T>\nusing min_heap = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate<typename T> constexpr T popcount(const T u) { return u ? static_cast<T>(__builtin_popcountll(static_cast<u64>(u))) : static_cast<T>(0); }\ntemplate<typename T> constexpr T log2p1(const T u) { return u ? static_cast<T>(64 - __builtin_clzll(static_cast<u64>(u))) : static_cast<T>(0); }\ntemplate<typename T> constexpr T msbp1(const T u) { return log2p1(u); }\ntemplate<typename T> constexpr T lsbp1(const T u) { return __builtin_ffsll(u); }\ntemplate<typename T> constexpr T clog(const T u) { return u ? log2p1(u - 1) : static_cast<T>(u); }\ntemplate<typename T> constexpr bool ispow2(const T u) { return u and (static_cast<u64>(u) & static_cast<u64>(u - 1)) == 0; }\ntemplate<typename T> constexpr T ceil2(const T u) { return static_cast<T>(1) << clog(u); }\ntemplate<typename T> constexpr T floor2(const T u) { return u == 0 ? static_cast<T>(0) : static_cast<T>(1) << (log2p1(u) - 1); }\ntemplate<typename T> constexpr bool btest(const T mask, const usize ind) { return static_cast<bool>((static_cast<u64>(mask) >> ind) & static_cast<u64>(1)); }\ntemplate<typename T> void bset(T& mask, const usize ind) { mask |= (static_cast<T>(1) << ind); }\ntemplate<typename T> void breset(T& mask, const usize ind) { mask &= ~(static_cast<T>(1) << ind); }\ntemplate<typename T> void bflip(T& mask, const usize ind) { mask ^= (static_cast<T>(1) << ind); }\ntemplate<typename T> void bset(T& mask, const usize ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); }\ntemplate<typename T> constexpr T bcut(const T mask, const usize ind) { return ind == 0 ? static_cast<T>(0) : static_cast<T>((static_cast<u64>(mask) << (64 - ind)) >> (64 - ind)); }\ntemplate<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }\ntemplate<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }\nconstexpr unsigned int mod = 1000000007;\ntemplate<typename T> constexpr T inf_v = std::numeric_limits<T>::max() / 4;\ntemplate<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};\nauto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; };\n\ntemplate<typename T>\nT in()\n{\n T v;\n return std::cin >> v, v;\n}\ntemplate<typename T, typename Uint, usize n, usize i>\nT in_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type) { return in<T>(); }\ntemplate<typename T, typename Uint, usize n, usize i>\nauto in_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type& szs)\n{\n const usize s = (usize)szs[i];\n std::vector<decltype(in_v<T, Uint, n, i + 1>(szs))> ans(s);\n for (usize j = 0; j < s; j++) { ans[j] = in_v<T, Uint, n, i + 1>(szs); }\n return ans;\n}\ntemplate<typename T, typename Uint, usize n>\nauto in_v(c_arr<Uint, n> szs) { return in_v<T, Uint, n, 0>(szs); }\ntemplate<typename... Types>\nauto in_t() { return std::tuple<std::decay_t<Types>...>{in<Types>()...}; }\nstruct io_init\n{\n io_init()\n {\n std::cin.tie(nullptr), std::ios::sync_with_stdio(false);\n std::cout << std::fixed << std::setprecision(20);\n }\n void clear()\n {\n std::cin.tie(), std::ios::sync_with_stdio(true);\n }\n} io_setting;\n\nint out() { return 0; }\ntemplate<typename T>\nint out(const T& v) { return std::cout << v, 0; }\ntemplate<typename T>\nint out(const std::vector<T>& v)\n{\n for (usize i = 0; i < v.size(); i++) {\n if (i > 0) { std::cout << ' '; }\n out(v[i]);\n }\n return 0;\n}\ntemplate<typename T1, typename T2>\nint out(const std::pair<T1, T2>& v) { return out(v.first), std::cout << ' ', out(v.second), 0; }\ntemplate<typename T, typename... Args>\nint out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; }\ntemplate<typename... Args>\nint outln(const Args... args) { return out(args...), std::cout << '\\n', 0; }\ntemplate<typename... Args>\nint outel(const Args... args) { return out(args...), std::cout << std::endl, 0; }\n# define SHOW(...) static_cast<void>(0)\nconstexpr ull TEN(const usize n) { return n == 0 ? 1ULL : TEN(n - 1) * 10ULL; }\n\ntemplate<typename T, typename Uint, usize n, usize i>\nauto make_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type, const T& v = T{}) { return v; }\ntemplate<typename T, typename Uint, usize n, usize i>\nauto make_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type szs, const T& v = T{})\n{\n const usize s = (usize)szs[i];\n return std::vector<decltype(make_v<T, Uint, n, i + 1>(szs, v))>(s, make_v<T, Uint, n, i + 1>(szs, v));\n}\ntemplate<typename T, typename Uint, usize n>\nauto make_v(c_arr<Uint, n> szs, const T& t = T{}) { return make_v<T, Uint, n, 0>(szs, t); }\n\ntemplate<typename Cost = usize>\nstruct edge\n{\n using cost_type = Cost;\n usize u, v;\n Cost c;\n edge(const usize u, const usize v) : u{u}, v{v}, c{1} {}\n edge(const usize u, const usize v, const Cost& c) : u{u}, v{v}, c{c} {}\n operator usize() const { return v; }\n usize from() const { return u; }\n usize to() const { return v; }\n Cost cost() const { return c; }\n friend std::ostream& operator<<(std::ostream& os, const edge& e) { return os << e.u << \"->\" << e.v << \":\" << e.c; }\n};\ntemplate<typename Edge>\nclass base_graph\n{\npublic:\n base_graph(const usize n) : v{n}, es(n), res(n) {}\n void add_edge(const usize u, const usize v, const bool bi = false)\n {\n es[u].emplace_back(u, v), res[v].emplace_back(v, u);\n if (bi) { es[v].emplace_back(v, u), res[u].emplace_back(u, v); }\n }\n template<typename Cost>\n void add_edge(const usize u, const usize v, const Cost& c, const bool bi = false)\n {\n es[u].emplace_back(u, v, c), res[v].emplace_back(v, u, c);\n if (bi) { es[v].emplace_back(v, u, c), res[u].emplace_back(u, v, c); }\n }\n std::vector<Edge>& operator[](const usize u) { return es[u]; }\n const std::vector<Edge>& operator[](const usize u) const { return es[u]; }\n std::vector<Edge>& from(const usize u) { return es[u]; }\n const std::vector<Edge>& from(const usize u) const { return es[u]; }\n std::vector<Edge>& to(const usize v) { return res[v]; }\n const std::vector<Edge>& to(const usize v) const { return res[v]; }\n usize size() const { return v; }\n friend std::ostream& operator<<(std::ostream& os, const base_graph& g)\n {\n for (usize i = 0; i < g.v; i++) {\n for (const auto& e : g.es[i]) { os << e << '\\n'; }\n }\n return os;\n }\n\nprivate:\n usize v;\n std::vector<std::vector<Edge>> es, res;\n};\ntemplate<typename Edge>\nusing base_tree = base_graph<Edge>;\nusing graph = base_graph<edge<>>;\nusing tree = base_graph<edge<>>;\ntemplate<typename Cost>\nusing cost_graph = base_graph<edge<Cost>>;\ntemplate<typename Cost>\nusing cost_tree = base_graph<edge<Cost>>;\nint main()\n{\n auto N = in<int>();\n graph g(N);\n for (int i = 0; i < N - 1; i++) {\n const auto u = in<int>() - 1, v = in<int>() - 1;\n g.add_edge(u, v, true);\n }\n const auto as = in_v<ll>({N});\n const auto bs = in_v<ll>({N});\n std::vector<ll> cs(N);\n for (int i = 0; i < N; i++) { cs[i] = bs[i] - as[i]; }\n using pll = std::pair<ll, ll>;\n std::vector<ll> push(N); // push[i]=b :頂点iをした回数はx+b\n std::vector<ll> need(N); // need[i]=b :頂点par[i]を押す回数はx+b\n std::vector<pll> total(N); // total[i]=<a,b>:頂点i以下を押した回数はax+b\n mfp([&](auto&& self, const int s, const int p) -> void {\n ll max = 0;\n for (const int to : g[s]) {\n if (to == p) { continue; }\n self(self, to, s);\n chmax(max, need[to]);\n }\n push[s] = max;\n need[s] = cs[s] + push[s] * g[s].size();\n ll ta = 1, tb = push[s];\n for (const int to : g[s]) {\n if (to == p) { continue; }\n const ll alpha = max - need[to];\n need[s] -= push[to] + alpha;\n ta += total[to].first, tb += total[to].second + total[to].first * alpha;\n }\n total[s] = {ta, tb};\n })(0, -1);\n outln(total[0].second);\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 30720, "score_of_the_acc": -1.1963, "final_rank": 9 }, { "submission_id": "aoj_3142_4282259", "code_snippet": "#include <bits/stdc++.h>\n// created [2020/03/20] 14:42:56\n#pragma GCC diagnostic ignored \"-Wsign-compare\"\n#pragma GCC diagnostic ignored \"-Wsign-conversion\"\n\nusing i32 = int32_t;\nusing i64 = int64_t;\nusing u32 = uint32_t;\nusing u64 = uint64_t;\nusing uint = unsigned int;\nusing usize = std::size_t;\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\ntemplate<typename T, usize n>\nusing arr = T (&)[n];\ntemplate<typename T, usize n>\nusing c_arr = const T (&)[n];\ntemplate<typename T>\nusing max_heap = std::priority_queue<T>;\ntemplate<typename T>\nusing min_heap = std::priority_queue<T, std::vector<T>, std::greater<T>>;\ntemplate<typename T> constexpr T popcount(const T u) { return u ? static_cast<T>(__builtin_popcountll(static_cast<u64>(u))) : static_cast<T>(0); }\ntemplate<typename T> constexpr T log2p1(const T u) { return u ? static_cast<T>(64 - __builtin_clzll(static_cast<u64>(u))) : static_cast<T>(0); }\ntemplate<typename T> constexpr T msbp1(const T u) { return log2p1(u); }\ntemplate<typename T> constexpr T lsbp1(const T u) { return __builtin_ffsll(u); }\ntemplate<typename T> constexpr T clog(const T u) { return u ? log2p1(u - 1) : static_cast<T>(u); }\ntemplate<typename T> constexpr bool ispow2(const T u) { return u and (static_cast<u64>(u) & static_cast<u64>(u - 1)) == 0; }\ntemplate<typename T> constexpr T ceil2(const T u) { return static_cast<T>(1) << clog(u); }\ntemplate<typename T> constexpr T floor2(const T u) { return u == 0 ? static_cast<T>(0) : static_cast<T>(1) << (log2p1(u) - 1); }\ntemplate<typename T> constexpr bool btest(const T mask, const usize ind) { return static_cast<bool>((static_cast<u64>(mask) >> ind) & static_cast<u64>(1)); }\ntemplate<typename T> void bset(T& mask, const usize ind) { mask |= (static_cast<T>(1) << ind); }\ntemplate<typename T> void breset(T& mask, const usize ind) { mask &= ~(static_cast<T>(1) << ind); }\ntemplate<typename T> void bflip(T& mask, const usize ind) { mask ^= (static_cast<T>(1) << ind); }\ntemplate<typename T> void bset(T& mask, const usize ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); }\ntemplate<typename T> constexpr T bcut(const T mask, const usize ind) { return ind == 0 ? static_cast<T>(0) : static_cast<T>((static_cast<u64>(mask) << (64 - ind)) >> (64 - ind)); }\ntemplate<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }\ntemplate<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }\nconstexpr unsigned int mod = 1000000007;\ntemplate<typename T> constexpr T inf_v = std::numeric_limits<T>::max() / 4;\ntemplate<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};\nauto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; };\n\ntemplate<typename T>\nT in()\n{\n T v;\n return std::cin >> v, v;\n}\ntemplate<typename T, typename Uint, usize n, usize i>\nT in_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type) { return in<T>(); }\ntemplate<typename T, typename Uint, usize n, usize i>\nauto in_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type& szs)\n{\n const usize s = (usize)szs[i];\n std::vector<decltype(in_v<T, Uint, n, i + 1>(szs))> ans(s);\n for (usize j = 0; j < s; j++) { ans[j] = in_v<T, Uint, n, i + 1>(szs); }\n return ans;\n}\ntemplate<typename T, typename Uint, usize n>\nauto in_v(c_arr<Uint, n> szs) { return in_v<T, Uint, n, 0>(szs); }\ntemplate<typename... Types>\nauto in_t() { return std::tuple<std::decay_t<Types>...>{in<Types>()...}; }\nstruct io_init\n{\n io_init()\n {\n std::cin.tie(nullptr), std::ios::sync_with_stdio(false);\n std::cout << std::fixed << std::setprecision(20);\n }\n void clear()\n {\n std::cin.tie(), std::ios::sync_with_stdio(true);\n }\n} io_setting;\n\nint out() { return 0; }\ntemplate<typename T>\nint out(const T& v) { return std::cout << v, 0; }\ntemplate<typename T>\nint out(const std::vector<T>& v)\n{\n for (usize i = 0; i < v.size(); i++) {\n if (i > 0) { std::cout << ' '; }\n out(v[i]);\n }\n return 0;\n}\ntemplate<typename T1, typename T2>\nint out(const std::pair<T1, T2>& v) { return out(v.first), std::cout << ' ', out(v.second), 0; }\ntemplate<typename T, typename... Args>\nint out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; }\ntemplate<typename... Args>\nint outln(const Args... args) { return out(args...), std::cout << '\\n', 0; }\ntemplate<typename... Args>\nint outel(const Args... args) { return out(args...), std::cout << std::endl, 0; }\n# define SHOW(...) static_cast<void>(0)\nconstexpr ull TEN(const usize n) { return n == 0 ? 1ULL : TEN(n - 1) * 10ULL; }\n\ntemplate<typename T, typename Uint, usize n, usize i>\nauto make_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type, const T& v = T{}) { return v; }\ntemplate<typename T, typename Uint, usize n, usize i>\nauto make_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type szs, const T& v = T{})\n{\n const usize s = (usize)szs[i];\n return std::vector<decltype(make_v<T, Uint, n, i + 1>(szs, v))>(s, make_v<T, Uint, n, i + 1>(szs, v));\n}\ntemplate<typename T, typename Uint, usize n>\nauto make_v(c_arr<Uint, n> szs, const T& t = T{}) { return make_v<T, Uint, n, 0>(szs, t); }\n\ntemplate<typename Cost = usize>\nstruct edge\n{\n using cost_type = Cost;\n usize u, v;\n Cost c;\n edge(const usize u, const usize v) : u{u}, v{v}, c{1} {}\n edge(const usize u, const usize v, const Cost& c) : u{u}, v{v}, c{c} {}\n operator usize() const { return v; }\n usize from() const { return u; }\n usize to() const { return v; }\n Cost cost() const { return c; }\n friend std::ostream& operator<<(std::ostream& os, const edge& e) { return os << e.u << \"->\" << e.v << \":\" << e.c; }\n};\ntemplate<typename Edge>\nclass base_graph\n{\npublic:\n base_graph(const usize n) : v{n}, es(n), res(n) {}\n void add_edge(const usize u, const usize v, const bool bi = false)\n {\n es[u].emplace_back(u, v), res[v].emplace_back(v, u);\n if (bi) { es[v].emplace_back(v, u), res[u].emplace_back(u, v); }\n }\n template<typename Cost>\n void add_edge(const usize u, const usize v, const Cost& c, const bool bi = false)\n {\n es[u].emplace_back(u, v, c), res[v].emplace_back(v, u, c);\n if (bi) { es[v].emplace_back(v, u, c), res[u].emplace_back(u, v, c); }\n }\n std::vector<Edge>& operator[](const usize u) { return es[u]; }\n const std::vector<Edge>& operator[](const usize u) const { return es[u]; }\n std::vector<Edge>& from(const usize u) { return es[u]; }\n const std::vector<Edge>& from(const usize u) const { return es[u]; }\n std::vector<Edge>& to(const usize v) { return res[v]; }\n const std::vector<Edge>& to(const usize v) const { return res[v]; }\n usize size() const { return v; }\n friend std::ostream& operator<<(std::ostream& os, const base_graph& g)\n {\n for (usize i = 0; i < g.v; i++) {\n for (const auto& e : g.es[i]) { os << e << '\\n'; }\n }\n return os;\n }\n\nprivate:\n usize v;\n std::vector<std::vector<Edge>> es, res;\n};\ntemplate<typename Edge>\nusing base_tree = base_graph<Edge>;\nusing graph = base_graph<edge<>>;\nusing tree = base_graph<edge<>>;\ntemplate<typename Cost>\nusing cost_graph = base_graph<edge<Cost>>;\ntemplate<typename Cost>\nusing cost_tree = base_graph<edge<Cost>>;\nint main()\n{\n auto N = in<int>();\n graph g(N);\n for (int i = 0; i < N - 1; i++) {\n const auto u = in<int>() - 1, v = in<int>() - 1;\n g.add_edge(u, v, true);\n }\n const auto as = in_v<ll>({N});\n const auto bs = in_v<ll>({N});\n std::vector<ll> cs(N);\n for (int i = 0; i < N; i++) { cs[i] = bs[i] - as[i]; }\n using pll = std::pair<ll, ll>;\n std::vector<ll> push(N); // push[i]=b :頂点iをした回数はx+b\n std::vector<ll> need(N); // need[i]=b :頂点par[i]を押す回数はx+b\n std::vector<pll> total(N); // total[i]=<a,b>:頂点i以下を押した回数はax+b\n SHOW(cs);\n mfp([&](auto&& self, const int s, const int p) -> void {\n ll max = 0;\n for (const int to : g[s]) {\n if (to == p) { continue; }\n self(self, to, s);\n chmax(max, need[to]);\n }\n push[s] = max;\n need[s] = cs[s] + push[s] * g[s].size();\n ll ta = 1, tb = push[s];\n for (const int to : g[s]) {\n if (to == p) { continue; }\n const ll alpha = max - need[to];\n need[s] -= push[to] + alpha;\n push[s] += push[to] + alpha;\n ta += total[to].first, tb += total[to].second + total[to].first * alpha;\n }\n total[s] = {ta, tb};\n })(0, -1);\n outln(total[0].second);\n return 0;\n}", "accuracy": 0.08695652173913043, "time_ms": 30, "memory_kb": 16664, "score_of_the_acc": -0.4392, "final_rank": 20 }, { "submission_id": "aoj_3142_4281488", "code_snippet": "#include <iostream>\n#include <cmath>\n#include <numeric>\n#include <algorithm>\n#include <deque>\n#include <vector>\n#include <unordered_map>\n#include <unordered_set>\n#include <iomanip>\n#include <map>\n#include <stack>\n#include <queue>\n#include <functional>\n#include <climits>\n#include <bitset>\n#include <random>\n#include <tuple>\n#include <initializer_list>\n#include <fstream>\n\nstruct SubTree {\n\tlong long int min_step, back_for_minstep, need_to_push;\n\tlong long int push_back_multiplier, sum_initial, sum_target;\n};\nint main() {\n\tint n; std::cin >> n;\n\tstd::vector<std::vector<int>> nodes(n);\n\tfor (auto i = 1; i < n; ++i) {\n\t\tint u, v; std::cin >> u >> v;\n\t\tnodes[--u].push_back(--v);\n\t\tnodes[v].push_back(u);\n\t}\n\tstd::vector<int> initial_size(n), target_size(n);\n\tfor (auto& a : initial_size) std::cin >> a;\n\tfor (auto& b : target_size) std::cin >> b;\n\tstd::vector<int> depth(n, -1), parent(n, -1), child_count(n, 0); depth[0] = 0;\n\tstd::stack<int> stack; stack.push(0);\n\twhile (!stack.empty()) {\n\t\tconst auto top = stack.top(); stack.pop();\n\t\tfor (const auto next : nodes[top]) if (depth[next] == -1) {\n\t\t\tdepth[next] = depth[top] + 1;\n\t\t\tparent[next] = top;\n\t\t\tstack.push(next);\n\t\t\t++child_count[top];\n\t\t}\n\t}\n\tstd::vector<SubTree> sub_trees(n);\n\tfor (auto i = 0; i < n; ++i) if (child_count[i] == 0) {\n\t\tstack.push(i);\n\t}\n\twhile (!stack.empty()) {\n\t\tconst auto top = stack.top(); stack.pop();\n\t\tlong long int sum_min_step{ 0 }, sum_back{ 0 }, sum_multiplier{ 0 }, max_need{ 0 }, sum_need{ 0 }, sum_initial_size{ initial_size[top] }, sum_target_size{ target_size[top] };\n\t\tfor (const auto next: nodes[top]) if (depth[next] > depth[top]) {\n\t\t\tsum_min_step += sub_trees[next].min_step;\n\t\t\tsum_back += sub_trees[next].back_for_minstep;\n\t\t\tsum_multiplier += sub_trees[next].push_back_multiplier;\n\t\t\tmax_need = std::max(max_need, sub_trees[next].need_to_push);\n\t\t\tsum_need += sub_trees[next].need_to_push;\n\t\t\tsum_initial_size += sub_trees[next].sum_initial;\n\t\t\tsum_target_size += sub_trees[next].sum_target;\n\t\t}\n\t\tconst auto need_to_push{ std::max(max_need, sum_initial_size - sum_target_size) };\n\t\tsum_min_step += need_to_push;\n\t\tfor (const auto next : nodes[top]) if (depth[next] > depth[top]) {\n\t\t\tsum_min_step += (need_to_push - sub_trees[next].need_to_push) * sub_trees[next].push_back_multiplier;\n\t\t}\n\t\tsub_trees[top] = SubTree{ sum_min_step, need_to_push, std::max(sum_target_size - sum_initial_size + need_to_push, 0LL),\n\t\t\tsum_multiplier + 1, sum_initial_size, sum_target_size };\n\t\tif (parent[top] != -1 && --child_count[parent[top]] == 0) {\n\t\t\tstack.push(parent[top]);\n\t\t}\n\t}\n\tstd::cout << sub_trees[0].min_step << '\\n';\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 15744, "score_of_the_acc": -0.6514, "final_rank": 6 }, { "submission_id": "aoj_3142_4281158", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing i64 = long long;\n#define rep(i,s,e) for(i64 (i) = (s);(i) < (e);(i)++)\n#define all(x) x.begin(),x.end()\n\ntemplate<class T>\nstatic inline std::vector<T> ndvec(size_t&& n, T val) noexcept {\n return std::vector<T>(n, std::forward<T>(val));\n}\n\ntemplate<class... Tail>\nstatic inline auto ndvec(size_t&& n, Tail&&... tail) noexcept {\n return std::vector<decltype(ndvec(std::forward<Tail>(tail)...))>(n, ndvec(std::forward<Tail>(tail)...));\n}\n\ntemplate<class T, class Cond>\nstruct chain {\n Cond cond; chain(Cond cond) : cond(cond) {}\n bool operator()(T& a, const T& b) const {\n if(cond(a, b)) { a = b; return true; }\n return false;\n }\n};\ntemplate<class T, class Cond>\nchain<T, Cond> make_chain(Cond cond) { return chain<T, Cond>(cond); }\n\ni64 N;\nvector<vector<i64>> G;\n\nvector<i64> A, B;\nvector<i64> D;\n\nvoid dfs(i64 v, i64 f) {\n for(auto t: G[v]) {\n if(t == f) continue;\n dfs(t, v);\n D[v] += D[t];\n }\n}\n\nvector<i64> X;\n\nvoid dfs2(i64 v, i64 f) {\n for(auto t: G[v]) {\n if(t == f) continue;\n X[t] = X[v] - D[t];\n dfs2(t, v);\n }\n}\n\nint main() {\n cin >> N;\n G.resize(N);\n rep(i,0,N - 1) {\n i64 a, b;\n cin >> a >> b;\n a--;\n b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n\n A.resize(N);\n B.resize(N);\n D.resize(N);\n rep(i,0,N) {\n cin >> A[i];\n }\n rep(i,0,N) {\n cin >> B[i];\n }\n rep(i,0,N) {\n D[i] = B[i] - A[i];\n }\n\n dfs(0, -1);\n X.resize(N);\n dfs2(0, -1);\n\n i64 MIN = *min_element(all(X));\n i64 ans = 0;\n rep(i,0,N) {\n ans += X[i] - MIN;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 17304, "score_of_the_acc": -0.7156, "final_rank": 8 } ]
aoj_3150_cpp
N: 3人協力ゲーム リアクティブ問題です。 問題文 $1000$ ビットの非負整数が $200$ 個あり、$a_1, \ldots, a_{100}, b_1, \ldots, b_{100}$ とします。 アリスは $a_1, \ldots, a_{100}$ を確認し、$3000$ ビットのメモ $X$ をチャーリーのために残します。 ボブは $b_1, \ldots, b_{100}$ を確認し、$3000$ ビットのメモ $Y$ をチャーリーのために残します。 チャーリーはメモ $X, Y$ の情報をもとに、$100$ 個の質問に答えます。 $i$ 番目の質問は $1000$ ビットの非負整数 $c_i$ で表され、チャーリーは $a_{x_i}$ と $b_{y_i}$ のビットごとの排他的論理和が $c_i$ に等しくなるような $x_i, y_i$ を答えます。 $100$ 個の質問のうち、$95$ 個以上の質問に正答できる戦略を考えてください。 制約 $a_1, \ldots, a_{100}, b_1, \ldots, b_{100}, c_1, \ldots, c_{100}$ は $2$ 進数表記で与えられ、 0 , 1 からなる長さ $1000$ の文字列である。 $a_1, \ldots, a_{100}$ は互いに異なる。 $b_1, \ldots, b_{100}$ は互いに異なる。 $c_1, \ldots, c_{100}$ は互いに異なる。 $i = 1, 2, \ldots, 100$ について、$a_j$ と $b_k$ のビットごとの排他的論理和が $c_i$ になるような $j, k$ が存在する。 入出力とジャッジ あなたのプログラムは $1$ つのテストケースに対して $3$ 回実行される。 $1$ 回目の実行では次の入力形式でアリスへの情報が与えられる。 Alice $a_1$ $a_2$ $\vdots$ $a_{100}$ $1$ 行目に必ず Alice の文字列が与えられる。 この場合、入力を全て受け取った後 0 , 1 からなる長さ $3000$ の文字列 $X$ を出力し、プログラムを即座に終了させなければならない。 $2$ 回目の実行では次の入力形式でボブへの情報が与えられる。 Bob $b_1$ $b_2$ $\vdots$ $b_{100}$ $1$ 行目に必ず Bob の文字列が与えられる。 この場合、入力を全て受け取った後 0 , 1 からなる長さ $3000$ の文字列 $Y$ を出力し、プログラムを即座に終了させなければならない。 $3$ 回目の実行では次の入力形式でチャーリーへの質問およびメモの情報が与えられる。 Charlie $X$ $Y$ $c_1$ $c_2$ $\vdots$ $c_{100}$ $1$ 行目に必ず Charlie の文字列が与えられる。 入力を全て受け取った後 $1$ 以上 $100$ 以下の整数 $x_1, x_2, \ldots, x_{100}$ と $1$ 以上 $100$ 以下の整数 $y_1, y_2, \ldots, y_{100}$ を以下の形式で出力し、プログラムを即座に終了させなければならない。 $x_1$ $y_1$ $x_2$ $y_2$ $\vdots$ $x_{100}$ $y_{100}$ ジャッジは、$i = 1, 2, \ldots, 100$ について $a_{x_i}$ と $b_{y_i}$ のビットごとの排他的論理和が $c_i$ に一致するか調べ、一致数が $95$ 個以上であれば正答、そうでなければ誤答と判定する。 不正な値や不正な形式での出力があった場合にも誤答とする。 注意 出力の度に標準出力を flush せよ。そうしない場合、TLE となる可能性がある。 どの種類の入力の末尾にも EOF が与えられる。 プロセスは、上記によって規定された以外のいかなる通信も行ってはならない。 入出力例1 以下はビット数や非負整数の数、質問の数が異なるが、$a = (000, 011), b = (110, 111), c = (101, 100)$ としたときの対話例である。 解答プログラムの出力 解答プログラムへの入力 説明 解答プログラム(アリス)が実行される Alice $000$ $011$ アリスは $a = (000, 011)$ の情報を得る $0000110\ldots 0$ アリスはメモ $X = 0000110\ldots 0$ を残す 解答プログラム(アリス)の実行が終了し、新たな解答プログラム(ボブ)が実行される Bob $110$ $111$ ボブは $b = (110, 111)$ の情報を得る $1101110\ldots 0$ ボブはメモ $Y = 1101110\ldots 0$ を残す 解答プログラム(ボブ)の実行が終了し、新たな解答プログラム(チャーリー)が実行される Charlie $0000110\ldots 0$ $1101110\ldots 0$ $101$ $100$ チャーリーは $X, Y$ の情報を得たあと、質問の情報 $c = (101, 100)$ を得る $2$ $1$ $2$ $2$ チャーリーは $1$ つ目の質問に対して $(x_1, y_1) = (2, 1)$、$2$ つ目の質問に対して $(x_2, y_2) = (2, 2)$ と回答する
[ { "submission_id": "aoj_3150_10466106", "code_snippet": "/*\n * _|_|_|_|_| _|_|_|_| _|_|_| _|_|_|_|_| _|_|_| _|_|\n * _| _| _| _| _| _| _|\n * _| _|_|_| _|_| _| _|_| _|\n * _| _| _| _| _| _|\n * _|_|_|_|_| _| _|_|_| _| _|_|_| _|_|_|_|\n */\n\n#include <bits/stdc++.h>\n\nconstexpr int L = 30;\n\nstd::string Encode(std::string S) {\n std::mt19937 engine(114514);\n std::reverse(S.begin(), S.end());\n std::string res(L, '0');\n int val = 0;\n for (int i = 0; i < (int) S.length(); i++) {\n int w = std::uniform_int_distribution<>(0, (1 << L) - 1)(engine);\n if (S[i] == '1') { val ^= w; }\n }\n for (int i = 0; i < L; i++) { res[i] = '0' + (val >> i & 1); }\n return res;\n}\n\nstd::string operator^(const std::string &A, const std::string &B) {\n assert(A.size() == B.size());\n std::string S(A.size(), '0');\n for (int i = 0; i < (int) A.size(); i++) {\n if (A[i] != B[i]) { S[i] = '1'; }\n }\n return S;\n}\n\nstd::string Alice(std::vector<std::string> A) {\n std::string ret;\n for (const auto &v: A) { ret += Encode(v); }\n return ret;\n}\n\nstd::string Bob(std::vector<std::string> B) {\n std::string ret;\n for (const auto &v: B) { ret += Encode(v); }\n return ret;\n}\n\nstd::vector<std::pair<int, int>> Catherine(std::string a, std::string b,\n std::vector<std::string> C) {\n int N = (int) a.length() / L;\n std::map<std::string, int> sA, sB;\n std::vector<std::string> A(N), B(N);\n for (int i = 0; i < N; i++) {\n A[i] = a.substr(i * L, L);\n B[i] = b.substr(i * L, L);\n sA[A[i]] = 1, sB[B[i]] = 1;\n }\n\n std::mt19937 engine(133446);\n std::vector<std::pair<int, int>> ans;\n for (const auto &v: C) {\n auto S = Encode(v);\n std::vector<std::pair<int, int>> tmp;\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) {\n if ((A[i] ^ B[j]) == S) { tmp.emplace_back(i, j); }\n }\n }\n assert(!tmp.empty());\n int p = std::uniform_int_distribution<>(0, (int) tmp.size() - 1)(engine);\n ans.emplace_back(tmp[p]);\n }\n\n return ans;\n}\n\nint main() {\n std::string type;\n std::cin >> type;\n if (type == \"Alice\" || type == \"Bob\") {\n std::vector<std::string> A(100);\n for (auto &v: A) { std::cin >> v; }\n std::cout << Alice(A) << '\\n';\n } else {\n std::string a, b;\n std::vector<std::string> C(100);\n std::cin >> a >> b;\n for (auto &v: C) { std::cin >> v; }\n auto ans = Catherine(a, b, C);\n for (auto v: ans) {\n std::cout << v.first + 1 << ' ' << v.second + 1 << '\\n';\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 4352, "score_of_the_acc": -2, "final_rank": 7 }, { "submission_id": "aoj_3150_10466088", "code_snippet": "/*\n * _|_|_|_|_| _|_|_|_| _|_|_| _|_|_|_|_| _|_|_| _|_|\n * _| _| _| _| _| _| _|\n * _| _|_|_| _|_| _| _|_| _|\n * _| _| _| _| _| _|\n * _|_|_|_|_| _| _|_|_| _| _|_|_| _|_|_|_|\n */\n\n#include <bits/stdc++.h>\n\nconstexpr int L = 30;\n\nstd::string Encode(std::string S) {\n constexpr int pMod = 998244853;\n std::reverse(S.begin(), S.end());\n std::string res(L, '0');\n int val = 0;\n for (int i = 0, pw = 1; i < (int) S.length(); i++, pw = pw * 2 % pMod) {\n if (S[i] == '1') { val ^= pw; }\n }\n for (int i = 0; i < L; i++) { res[i] = '0' + (val >> i & 1); }\n return res;\n}\n\nstd::string operator^(const std::string &A, const std::string &B) {\n assert(A.size() == B.size());\n std::string S(A.size(), '0');\n for (int i = 0; i < (int) A.size(); i++) {\n if (A[i] != B[i]) { S[i] = '1'; }\n }\n return S;\n}\n\nstd::string Alice(std::vector<std::string> A) {\n std::string ret;\n for (const auto &v: A) { ret += Encode(v); }\n return ret;\n}\n\nstd::string Bob(std::vector<std::string> B) {\n std::string ret;\n for (const auto &v: B) { ret += Encode(v); }\n return ret;\n}\n\nstd::vector<std::pair<int, int>> Catherine(std::string a, std::string b,\n std::vector<std::string> C) {\n int N = (int) a.length() / L;\n std::map<std::string, int> sA, sB;\n std::vector<std::string> A(N), B(N);\n for (int i = 0; i < N; i++) {\n A[i] = a.substr(i * L, L);\n B[i] = b.substr(i * L, L);\n sA[A[i]] = 1, sB[B[i]] = 1;\n }\n\n std::mt19937 engine(133447);\n std::vector<std::pair<int, int>> ans;\n for (const auto &v: C) {\n auto S = Encode(v);\n std::vector<std::pair<int, int>> tmp;\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) {\n if ((A[i] ^ B[j]) == S) { tmp.emplace_back(i, j); }\n }\n }\n assert(!tmp.empty());\n int p = std::uniform_int_distribution<>(0, (int) tmp.size() - 1)(engine);\n ans.emplace_back(tmp[p]);\n }\n\n return ans;\n}\n\nint main() {\n std::string type;\n std::cin >> type;\n if (type == \"Alice\" || type == \"Bob\") {\n std::vector<std::string> A(100);\n for (auto &v: A) { std::cin >> v; }\n std::cout << Alice(A) << '\\n';\n } else {\n std::string a, b;\n std::vector<std::string> C(100);\n std::cin >> a >> b;\n for (auto &v: C) { std::cin >> v; }\n auto ans = Catherine(a, b, C);\n for (auto v: ans) {\n std::cout << v.first + 1 << ' ' << v.second + 1 << '\\n';\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 4352, "score_of_the_acc": -2, "final_rank": 7 }, { "submission_id": "aoj_3150_10466059", "code_snippet": "/*\n * _|_|_|_|_| _|_|_|_| _|_|_| _|_|_|_|_| _|_|_| _|_|\n * _| _| _| _| _| _| _|\n * _| _|_|_| _|_| _| _|_| _|\n * _| _| _| _| _| _|\n * _|_|_|_|_| _| _|_|_| _| _|_|_| _|_|_|_|\n */\n\n#include <bits/stdc++.h>\n\nconstexpr int L = 30;\n\nstd::string Encode(std::string S) {\n std::mt19937 engine(114515);\n std::reverse(S.begin(), S.end());\n std::string res(L, '0');\n for (int i = 0; i < (int) S.length(); i++) {\n int p = i < L ? i : std::uniform_int_distribution<>(0, L - 1)(engine);\n if (S[i] == '1') { res[p] ^= 1; }\n }\n return res;\n}\n\nstd::string operator^(const std::string &A, const std::string &B) {\n assert(A.size() == B.size());\n std::string S(A.size(), '0');\n for (int i = 0; i < (int) A.size(); i++) {\n if (A[i] != B[i]) { S[i] = '1'; }\n }\n return S;\n}\n\nstd::string Alice(std::vector<std::string> A) {\n std::string ret;\n for (const auto &v: A) { ret += Encode(v); }\n return ret;\n}\n\nstd::string Bob(std::vector<std::string> B) {\n std::string ret;\n for (const auto &v: B) { ret += Encode(v); }\n return ret;\n}\n\nstd::vector<std::pair<int, int>> Catherine(std::string a, std::string b,\n std::vector<std::string> C) {\n int N = (int) a.length() / L;\n std::map<std::string, int> sA, sB;\n std::vector<std::string> A(N), B(N);\n for (int i = 0; i < N; i++) {\n A[i] = a.substr(i * L, L);\n B[i] = b.substr(i * L, L);\n sA[A[i]] = 1, sB[B[i]] = 1;\n }\n\n std::mt19937 engine(133448);\n std::vector<std::pair<int, int>> ans;\n for (const auto &v: C) {\n auto S = Encode(v);\n std::vector<std::pair<int, int>> tmp;\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) {\n if ((A[i] ^ B[j]) == S) { tmp.emplace_back(i, j); }\n }\n }\n assert(!tmp.empty());\n int p = std::uniform_int_distribution<>(0, (int) tmp.size() - 1)(engine);\n ans.emplace_back(tmp[p]);\n }\n\n return ans;\n}\n\nint main() {\n std::string type;\n std::cin >> type;\n if (type == \"Alice\" || type == \"Bob\") {\n std::vector<std::string> A(100);\n for (auto &v: A) { std::cin >> v; }\n std::cout << Alice(A) << '\\n';\n } else {\n std::string a, b;\n std::vector<std::string> C(100);\n std::cin >> a >> b;\n for (auto &v: C) { std::cin >> v; }\n auto ans = Catherine(a, b, C);\n for (auto v: ans) {\n std::cout << v.first + 1 << ' ' << v.second + 1 << '\\n';\n }\n }\n return 0;\n}", "accuracy": 0.3939393939393939, "time_ms": 140, "memory_kb": 4352, "score_of_the_acc": -2, "final_rank": 18 }, { "submission_id": "aoj_3150_10466058", "code_snippet": "/*\n * _|_|_|_|_| _|_|_|_| _|_|_| _|_|_|_|_| _|_|_| _|_|\n * _| _| _| _| _| _| _|\n * _| _|_|_| _|_| _| _|_| _|\n * _| _| _| _| _| _|\n * _|_|_|_|_| _| _|_|_| _| _|_|_| _|_|_|_|\n */\n\n#include <bits/stdc++.h>\n\nconstexpr int L = 30;\n\nstd::string Encode(std::string S) {\n std::mt19937 engine(114515);\n std::reverse(S.begin(), S.end());\n std::string res(L, '0');\n for (int i = 0; i < (int) S.length(); i++) {\n int p = i < L ? i : std::uniform_int_distribution<>(0, L - 1)(engine);\n if (S[i] == '1') { res[p] ^= 1; }\n }\n return res;\n}\n\nstd::string operator^(const std::string &A, const std::string &B) {\n assert(A.size() == B.size());\n std::string S(A.size(), '0');\n for (int i = 0; i < (int) A.size(); i++) {\n if (A[i] != B[i]) { S[i] = '1'; }\n }\n return S;\n}\n\nstd::string Alice(std::vector<std::string> A) {\n std::string ret;\n for (const auto &v: A) { ret += Encode(v); }\n return ret;\n}\n\nstd::string Bob(std::vector<std::string> B) {\n std::string ret;\n for (const auto &v: B) { ret += Encode(v); }\n return ret;\n}\n\nstd::vector<std::pair<int, int>> Catherine(std::string a, std::string b,\n std::vector<std::string> C) {\n int N = (int) a.length() / L;\n std::map<std::string, int> sA, sB;\n std::vector<std::string> A(N), B(N);\n for (int i = 0; i < N; i++) {\n A[i] = a.substr(i * L, L);\n B[i] = b.substr(i * L, L);\n sA[A[i]] = 1, sB[B[i]] = 1;\n }\n\n std::mt19937 engine(133447);\n std::vector<std::pair<int, int>> ans;\n for (const auto &v: C) {\n auto S = Encode(v);\n std::vector<std::pair<int, int>> tmp;\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) {\n if ((A[i] ^ B[j]) == S) { tmp.emplace_back(i, j); }\n }\n }\n assert(!tmp.empty());\n int p = std::uniform_int_distribution<>(0, (int) tmp.size() - 1)(engine);\n ans.emplace_back(tmp[p]);\n }\n\n return ans;\n}\n\nint main() {\n std::string type;\n std::cin >> type;\n if (type == \"Alice\" || type == \"Bob\") {\n std::vector<std::string> A(100);\n for (auto &v: A) { std::cin >> v; }\n std::cout << Alice(A) << '\\n';\n } else {\n std::string a, b;\n std::vector<std::string> C(100);\n std::cin >> a >> b;\n for (auto &v: C) { std::cin >> v; }\n auto ans = Catherine(a, b, C);\n for (auto v: ans) {\n std::cout << v.first + 1 << ' ' << v.second + 1 << '\\n';\n }\n }\n return 0;\n}", "accuracy": 0.3939393939393939, "time_ms": 140, "memory_kb": 4352, "score_of_the_acc": -2, "final_rank": 18 }, { "submission_id": "aoj_3150_4356971", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\ntypedef double db;\nmt19937 mrand(1); \nconst ll mod=998244353;\nint rnd(int x) { return mrand() % x;}\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\nll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}\n// head\n\nconst int N=1010;\nint n,p[N];\nint f[50][1010];\nchar s[3010];\nstring info;\n\nint a[110],b[110];\n\nvoid gao(int *a) {\n\trep(j,0,100) {\n\t\tint x=0;\n\t\trep(c,0,30) x|=(s[j*30+c]-'0')<<c;\n\t\ta[j]=x;\n\t}\n}\n\nint main() {\n\tscanf(\"%s\",s);\n\trep(c,0,30) rep(j,0,1000) f[c][j]=rnd(2);\n\tif (s[0]=='A'||s[0]=='B') {\n\t\trep(i,0,100) {\n\t\t\tscanf(\"%s\",s);\n\t\t\trep(j,0,1000) p[j]=s[j]-'0';\n\t\t\trep(c,0,30) {\n\t\t\t\tint x=0;\n\t\t\t\trep(j,0,1000) if (f[c][j]) x^=p[j];\n\t\t\t\tinfo.pb('0'+x);\n\t\t\t}\n\t\t}\n\t\tprintf(\"%s\\n\",info.c_str());\n\t\tfflush(stdout);\n\t} else {\n\t\tscanf(\"%s\",s);\n\t\tgao(a);\n\t\tscanf(\"%s\",s);\n\t\tgao(b);\n\t\trep(i,0,100) {\n\t\t\tscanf(\"%s\",s);\n\t\t\tint msk=0;\n\t\t\trep(j,0,1000) p[j]=s[j]-'0';\n\t\t\trep(c,0,30) {\n\t\t\t\tint x=0;\n\t\t\t\trep(j,0,1000) if (f[c][j]) x^=p[j];\n\t\t\t\tmsk|=x<<c;\n\t\t\t}\n\t\t\trep(x,0,100) rep(y,0,100) if ((a[x]^b[y])==msk) {\n\t\t\t\tprintf(\"%d %d\\n\",x+1,y+1);\n\t\t\t\tgoto end;\n\t\t\t}\n\t\t\tend:;\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3728, "score_of_the_acc": -0.2308, "final_rank": 6 }, { "submission_id": "aoj_3150_4280407", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\n#define rep(i, n) for(ll (i) = 0; (i) < (n); (i)++)\n#define rep1(i, n) for(ll (i) = 1; (i) <= (n); (i)++)\n#define rrep(i, n) for(ll (i) = (n) - 1; (i) >= 0; (i)--)\n#define rrep1(i, n) for(ll (i) = (n); (i) >= 1; (i)--)\n\nstruct XorShift128 {\n using u32 = uint32_t;\n u32 x = 123456789, y = 362436069, z = 521288629, w = 88675123;\n XorShift128 (u32 seed = 0) { z ^= seed; }\n u32 operator()() {\n u32 t = x ^ (x << 11);\n x = y; y = z; z = w;\n return w = (w ^ ( w >> 19)) ^ (t ^ (t >> 8));\n }\n};\n\nstring ll_to_string(ll num, ll digit = 30){\n string s(digit, '0');\n rrep(i, digit){\n if(num % 2)s[i] = '1';\n num /= 2;\n }\n return s;\n}\nll string_to_ll(string s, ll digit = 30){\n ll num = 0;\n rep(i, digit){\n num *= 2;\n if(s[i] == '1')num += 1;\n }\n return num;\n}\n\nll rnd[100];\n\nvoid Alice(){\n rep(i, 100){\n string s(1000, '0');\n cin >> s;\n cout << ll_to_string(string_to_ll(s.substr(0, 30)) ^ rnd[i]);\n }\n cout << flush;\n}\n\nvoid Charlie(){\n ll A[100] = {}, B[100] = {};\n string s;\n cin >> s;\n for(ll i = 0; i < 3000; i += 30){\n A[i / 30] = (string_to_ll(s.substr(i, i + 30)) ^ rnd[i / 30]);\n }\n cin >> s;\n for(ll i = 0; i < 3000; i += 30){\n B[i / 30] = (string_to_ll(s.substr(i, i + 30)) ^ rnd[i / 30]);\n }\n rep(i, 100){\n string s;\n cin >> s;\n ll c = string_to_ll(s.substr(0, 30));\n ll X = 0, Y = 0;\n rep(x, 100)rep(y, 100)if((A[x] ^ B[y]) == c){\n X = x;\n Y = y;\n }\n cout << X + 1 << \" \" << Y + 1 << endl;\n }\n cout << flush;\n}\n\nint main(){\n \n XorShift128 xs;\n rep(i, 100)rnd[i] = (xs() & ((1 << 30) - 1));\n\n string s;\n cin >> s;\n if(s == \"Charlie\")Charlie();\n else Alice();\n\n return 0;\n}", "accuracy": 0.3939393939393939, "time_ms": 20, "memory_kb": 3752, "score_of_the_acc": -0.1154, "final_rank": 10 }, { "submission_id": "aoj_3150_4280399", "code_snippet": "#include <bits/stdc++.h>\n#include <sys/types.h>\n#include <unistd.h>\n\n#define _overload(_1,_2,_3,name,...) name\n#define _rep(i,n) _range(i,0,n)\n#define _range(i,a,b) for(int i=int(a);i<int(b);++i)\n#define rep(...) _overload(__VA_ARGS__,_range,_rep,)(__VA_ARGS__)\n\n#define _rrep(i,n) _rrange(i,n,0)\n#define _rrange(i,a,b) for(int i=int(a)-1;i>=int(b);--i)\n#define rrep(...) _overload(__VA_ARGS__,_rrange,_rrep,)(__VA_ARGS__)\n\n#define _all(arg) begin(arg),end(arg)\n#define uniq(arg) sort(_all(arg)),(arg).erase(unique(_all(arg)),end(arg))\n#define getidx(ary,key) lower_bound(_all(ary),key)-begin(ary)\n#define clr(a,b) memset((a),(b),sizeof(a))\n#define bit(n) (1LL<<(n))\n#define popcount(n) (__builtin_popcountll(n))\n\nusing namespace std;\n\ntemplate<class T>bool chmax(T &a, const T &b) { return (a<b)?(a=b,1):0;}\ntemplate<class T>bool chmin(T &a, const T &b) { return (b<a)?(a=b,1):0;}\n\nusing ll=long long;\nusing R=long double;\nconst R EPS=1e-9L; // [-1000,1000]->EPS=1e-8 [-10000,10000]->EPS=1e-7\ninline int sgn(const R& r){return(r > EPS)-(r < -EPS);}\ninline R sq(R x){return sqrt(max(x,0.0L));}\n\ntemplate<typename T> vector<T> make_vector(size_t sz){\n\treturn vector<T>(sz);\n}\n\ntemplate<typename T,typename... Ts> \nauto make_vector(size_t sz, Ts... ts){\n\treturn vector<decltype(make_vector<T>(ts...))>(sz, make_vector<T>(ts...));\n}\n\ntemplate<typename T,typename U,typename... V> \ntypename enable_if<is_same<T, U>::value!=0>::type \nfill_value(U &u, const V... v){\n\tu=U(v...);\n}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value==0>::type\nfill_value(U &u, const V... v){\n\tfor(auto &e:u){\n\t\tfill_value<T>(e,v...);\n\t}\n}\n\n\nmt19937 engine(0);\nuniform_int_distribution<> dist(0, 1); \n\n\nconst int len = 1000;\nconst int hash_len = 30;\nusing BO = bitset<len>;\nusing BH = bitset<hash_len>;\n\nvector<BO> base_vec;\n\nvoid init(int m){\n\trep(i, m) {\n\t\tBO tmp;\n\t\trep(j, len) tmp[j] = dist(engine);\n\t\tbase_vec.push_back(tmp);\n\t}\n}\n\n\nBH get_hash(BO bst) {\n\tBH ret;\n\trep(i, hash_len) {\n\t\tBO tmp = bst & base_vec[i]; \n\t\tret[i] = tmp.count() & 1;\n\t}\n\treturn ret;\n}\n\n\n\nvoid alice_bob_process(int n) {\n\tinit(hash_len);\n\n\tstring ret = \"\";\n\n\trep(i, n){\n\t\tstring tmp;\n\t\tcin >> tmp;\n\t\tBO bit_orignal = BO(tmp);\n\t\tBH bit_hash = get_hash(bit_orignal);\n\t\tret += bit_hash.to_string();\n\t}\n\n\tcout << ret << endl << flush;\n}\n\nvoid charlie_process(int n) {\n\tinit(hash_len);\n\tstring x, y;\n\tcin >> x >> y;\n\n\tvector<BH> xary, yary;\n\trep(i, n) {\n\t\txary.push_back(BH(x.substr(hash_len * i, hash_len)));\n\t\tyary.push_back(BH(y.substr(hash_len * i, hash_len)));\t\t\n\t}\n\n\trep(i, n) {\n\t\tstring c;\n\t\tcin >> c;\n\t\tBO bit_orignal = BO(c);\n\t\tBH bit_hash = get_hash(bit_orignal);\n\n\t\trep(j, n) rep(k, n) {\n\t\t\tBH tmp = xary[j] ^ yary[k];\n\t\t\tif(tmp == bit_hash) {\n\t\t\t\tcout << j + 1 << \" \" << k + 1 << endl;\n\t\t\t\tj = n, k = n;\n\t\t\t}\n\t\t}\n\t}\n\n\tcout << flush;\n}\n\nint main(void){\n\tstring who;\n\tcin >> who;\n\tif(who == \"Alice\" or who == \"Bob\") {\n\t\talice_bob_process(100);\n\t} else {\n\t\tcharlie_process(100);\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3752, "score_of_the_acc": -0.1154, "final_rank": 5 }, { "submission_id": "aoj_3150_4280393", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\n#define rep(i, n) for(ll (i) = 0; (i) < (n); (i)++)\n#define rep1(i, n) for(ll (i) = 1; (i) <= (n); (i)++)\n#define rrep(i, n) for(ll (i) = (n) - 1; (i) >= 0; (i)--)\n#define rrep1(i, n) for(ll (i) = (n); (i) >= 1; (i)--)\n\nstruct XorShift128 {\n using u32 = uint32_t;\n u32 x = 123456789, y = 362436069, z = 521288629, w = 88675123;\n XorShift128 (u32 seed = 0) { z ^= seed; }\n u32 operator()() {\n u32 t = x ^ (x << 11);\n x = y; y = z; z = w;\n return w = (w ^ ( w >> 19)) ^ (t ^ (t >> 8));\n }\n};\n\nstring ll_to_string(ll num, ll digit = 30){\n string s(digit, '0');\n rrep(i, digit){\n if(num % 2)s[i] = '1';\n num /= 2;\n }\n return s;\n}\nll string_to_ll(string s, ll digit = 30){\n ll num = 0;\n rep(i, digit){\n num *= 2;\n if(s[i] == '1')num += 1;\n }\n return num;\n}\n\nll rnd[100];\n\nvoid Alice(){\n rep(i, 100){\n string s(1000, '0');\n cin >> s;\n cout << ll_to_string(string_to_ll(s.substr(0, 30)) ^ rnd[i]);\n }\n cout << flush;\n}\n\nvoid Charlie(){\n ll A[100] = {}, B[100] = {};\n string s;\n cin >> s;\n for(ll i = 0; i < 3000; i += 30){\n A[i / 30] = string_to_ll(s.substr(i, i + 30));\n }\n cin >> s;\n for(ll i = 0; i < 3000; i += 30){\n B[i / 30] = string_to_ll(s.substr(i, i + 30));\n }\n rep(i, 100){\n string s;\n cin >> s;\n ll c = string_to_ll(s.substr(0, 30));\n ll X = 0, Y = 0;\n rep(x, 100)rep(y, 100)if((A[x] ^ B[y]) == c){\n X = x;\n Y = y;\n }\n cout << X + 1 << \" \" << Y + 1 << endl;\n }\n cout << flush;\n}\n\nint main(){\n \n XorShift128 xs;\n // rep(i, 100)rnd[i] = (xs() & ((1 << 30) - 1));\n\n string s;\n cin >> s;\n if(s == \"Charlie\")Charlie();\n else Alice();\n\n return 0;\n}", "accuracy": 0.3939393939393939, "time_ms": 20, "memory_kb": 3752, "score_of_the_acc": -0.1154, "final_rank": 10 }, { "submission_id": "aoj_3150_4280348", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> V;\n#define rep(i, n) for(ll (i) = 0; (i) < (n); (i)++)\nstruct XorShift128 {\n using u32 = uint32_t;\n u32 x = 123456789, y = 362436069, z = 521288629, w = 88675123;\n XorShift128 (u32 seed = 0) { z ^= seed; }\n u32 operator()() {\n u32 t = x ^ (x << 11);\n x = y; y = z; z = w;\n return w = (w ^ ( w >> 19)) ^ (t ^ (t >> 8));\n }\n};\n\nll mp[100][30];\n\nvoid Alice(){\n rep(i, 100){\n string s(1000, '0');\n cin >> s;\n rep(j, 30)cout << (ll)(mp[i][j] ^ (s[j] - '0'));\n }\n cout << flush;\n}\nvoid Charlie(){\n ll A[100] = {}, B[100] = {};\n rep(i, 100){\n rep(j, 30){\n char c = '0';\n cin >> c;\n if(c == '1')A[i] |= (1 << j);\n }\n }\n rep(i, 100){\n rep(j, 30){\n char c;\n cin >> c;\n if(c == '1')B[i] |= (1 << j);\n }\n }\n rep(i, 100){\n string s;\n cin >> s;\n ll c = 0;\n rep(j, 30)if(s[j] == '1')c |= (1 << j);\n ll X = 0, Y = 0;\n rep(x, 100)rep(y, 100)if((A[x] ^ B[y]) == c){\n X = x;\n Y = y;\n }\n cout << X + 1 << \" \" << Y + 1 << endl;\n }\n cout << flush;\n}\n\nint main(){\n XorShift128 xs;\n // rep(i, 100)rep(j, 30)mp[i][j] = xs() % 2;\n string s;\n cin >> s;\n if(s == \"Charlie\")Charlie();\n else Alice();\n\n return 0;\n}", "accuracy": 0.3939393939393939, "time_ms": 20, "memory_kb": 3752, "score_of_the_acc": -0.1154, "final_rank": 10 }, { "submission_id": "aoj_3150_4279824", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define lfs cout<<fixed<<setprecision(10)\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n#define spa << \" \" <<\n#define fi first\n#define se second\n#define MP make_pair\n#define MT make_tuple\n#define PB push_back\n#define EB emplace_back\n#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)\n#define rrep(i,n,m) for(ll i = (m) - 1; i >= (ll)(n); i--)\nusing ll = long long;\nusing ld = long double;\nconst ll MOD1 = 1e9+7;\nconst ll MOD9 = 998244353;\nconst ll INF = 1e18;\nusing P = pair<ll, ll>;\ntemplate<typename T>\nbool chmin(T &a,T b){if(a>b){a=b;return true;}else return false;}\ntemplate<typename T>\nbool chmax(T &a,T b){if(a<b){a=b;return true;}else return false;}\nll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}\nvoid ans1(bool x){if(x) cout<<\"Yes\"<<endl;else cout<<\"No\"<<endl;}\nvoid ans2(bool x){if(x) cout<<\"YES\"<<endl;else cout<<\"NO\"<<endl;}\nvoid ans3(bool x){if(x) cout<<\"Yay!\"<<endl;else cout<<\":(\"<<endl;}\ntemplate<typename T1,typename T2>\nvoid ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} \ntemplate<typename T>\nvoid debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++)\n{cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};\nvoid debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++)\n{for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};\ntemplate<typename T>\nvoid debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];\nfor(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};\ntemplate<typename T>\nvector<vector<T>>vec(ll x, ll y, T w){\n vector<vector<T>>v(x,vector<T>(y,w));return v;}\nll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}\nvector<ll>dx={1,0,-1,0,1,1,-1,-1};\nvector<ll>dy={0,1,0,-1,1,-1,1,-1};\ntemplate<typename T>\nvector<T> make_v(size_t a,T b){return vector<T>(a,b);}\ntemplate<typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return vector<decltype(make_v(ts...))>(a,make_v(ts...));\n}\ntemplate<typename T1, typename T2>\nostream &operator<<(ostream &os, pair<T1, T2>&p){\n return os << p.first << \" \" << p.second;\n} \n\nstring convert(ll n,ll bit){\n string ret(bit,'0');\n for(ll i=0;i<bit;i++)if(n&1LL<<bit-1-i)ret[i]='1';\n return ret;\n}\nll convert(string s){\n ll ret=0;\n ll n=s.size();\n for(ll i=0;i<n;i++)if(s[i]=='1')ret|=1<<n-i-1;\n return ret;\n}\n\nint main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n ll res=0,buf=0;\n bool judge = true;\n vector<ll>hash;\n const ll mod=998244353;\n ll k=100000;\n //const ll num=2,len=3;\n const ll num=100,len=1000;\n vector<ll>v(len,k);\n rep(i,0,len-1)v[i+1]=v[i]*k%mod;\n string s;cin>>s;\n if(s==\"Alice\"||s==\"Bob\"){\n vector<string>a(num);\n rep(i,0,num)cin>>a[i];\n vector<ll>h(num);\n string ret;\n rep(i,0,num){\n rep(j,0,len)if(a[i][j]=='1')h[i]^=v[j];\n ret+=convert(h[i],30);\n }\n cout<<ret<<endl;\n }\n else{\n string s,t;cin>>s>>t;\n vector<ll>a(num),b(num);\n rep(i,0,num)a[i]=convert(s.substr(i*30,30));\n rep(i,0,num)b[i]=convert(t.substr(i*30,30));\n rep(i,0,num){\n string input;cin>>input;\n ll c=0;\n rep(j,0,len)if(input[j]=='1')c^=v[j];\n rep(j,0,num){\n bool sw=false;\n rep(o,0,num){\n if((a[j]^b[o]^c)==0){\n cout<<j+1 spa o+1<<endl;\n sw=true;\n break;\n }\n }\n if(sw)break;\n }\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3752, "score_of_the_acc": -0.0385, "final_rank": 3 }, { "submission_id": "aoj_3150_4279742", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n\n#define endl '\\n'\n#define lfs cout<<fixed<<setprecision(10)\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n#define spa << \" \" <<\n#define fi first\n#define se second\n#define MP make_pair\n#define MT make_tuple\n#define PB push_back\n#define EB emplace_back\n#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)\n#define rrep(i,n,m) for(ll i = (m) - 1; i >= (ll)(n); i--)\nusing ll = long long;\nusing ld = long double;\nconst ll MOD1 = 1e9+7;\nconst ll MOD9 = 998244353;\nconst ll INF = 1e18;\nusing P = pair<ll, ll>;\ntemplate<typename T>\nbool chmin(T &a,T b){if(a>b){a=b;return true;}else return false;}\ntemplate<typename T>\nbool chmax(T &a,T b){if(a<b){a=b;return true;}else return false;}\nll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}\nvoid ans1(bool x){if(x) cout<<\"Yes\"<<endl;else cout<<\"No\"<<endl;}\nvoid ans2(bool x){if(x) cout<<\"YES\"<<endl;else cout<<\"NO\"<<endl;}\nvoid ans3(bool x){if(x) cout<<\"Yay!\"<<endl;else cout<<\":(\"<<endl;}\ntemplate<typename T1,typename T2>\nvoid ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} \ntemplate<typename T>\nvoid debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++)\n{cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};\nvoid debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++)\n{for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};\ntemplate<typename T>\nvoid debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];\nfor(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};\ntemplate<typename T>\nvector<vector<T>>vec(ll x, ll y, T w){\n vector<vector<T>>v(x,vector<T>(y,w));return v;}\nll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}\nvector<ll>dx={1,0,-1,0,1,1,-1,-1};\nvector<ll>dy={0,1,0,-1,1,-1,1,-1};\ntemplate<typename T>\nvector<T> make_v(size_t a,T b){return vector<T>(a,b);}\ntemplate<typename... Ts>\nauto make_v(size_t a,Ts... ts){\n return vector<decltype(make_v(ts...))>(a,make_v(ts...));\n}\ntemplate<typename T1, typename T2>\nostream &operator<<(ostream &os, pair<T1, T2>&p){\n return os << p.first << \" \" << p.second;\n} \nint main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n ll res=0,buf=0;\n bool judge = true;\n vector<ll>hash;\n const ll mod=998244353;\n ll k=100000;\n const ll num=100,len=1000;\n //const ll num=100,len=1000;\n vector<ll>v(len,k);\n rep(i,0,len-1)v[i+1]=v[i]*k%mod;\n string s;cin>>s;\n if(s==\"Alice\"||s==\"Bob\"){\n vector<string>a(num);\n rep(i,0,num)cin>>a[i];\n vector<ll>h(num);\n string ret;\n rep(i,0,num){\n rep(j,0,len)if(a[i][j]=='1')h[i]^=v[j];\n string s(30,'0');\n rep(j,0,30){\n s[j]=(h[i]&1)+'0';\n h[i]>>=1;\n }\n ret+=s;\n }\n cout<<ret<<endl;\n }\n else{\n string s,t;cin>>s>>t;\n vector<ll>a(num),b(num);\n rep(i,0,num){\n bitset<30>k;\n rep(j,0,30)if(s[i*30+j]=='1')k[j]=1;\n a[i]=k.to_ullong();\n }\n rep(i,0,num){\n bitset<30>k;\n rep(j,0,30)if(t[i*30+j]=='1')k[j]=1;\n b[i]=k.to_ullong();\n }\n //cout<<s spa t<<endl;\n //debug(a,num);debug(b,num);\n rep(i,0,num){\n string input;cin>>input;\n ll c=0;\n rep(j,0,len)if(input[j]=='1')c^=v[j];\n //cout<<c<<endl;\n rep(j,0,num){\n bool sw=false;\n rep(o,0,num){\n if((a[j]^b[o]^c)==0){\n cout<<j+1 spa o+1<<endl;\n sw=true;\n break;\n }\n }\n if(sw)break;\n }\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3740, "score_of_the_acc": -0.0192, "final_rank": 2 }, { "submission_id": "aoj_3150_4279639", "code_snippet": "//\n#include \"bits/stdc++.h\"\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> V;\n#define rep(i, n) for(ll (i) = 0; (i) < (n); (i)++)\n#define rep1(i, n) for(ll (i) = 1; (i) <= (n); (i)++)\n\nV prime;\nvoid init(){\n V v;\n for(ll i = 2; i <= 1000; i++){\n ll f = 1;\n for(ll j = 2; j * j <= i; j++)if(i % j == 0)f = 0;\n if(f)v.push_back(i);\n }\n rep(i, 30)prime.push_back(34 * i + 5);\n}\n\nll A[110];\nll B[110];\nvoid Alice(){\n rep1(i, 100){\n string s;\n cin >> s;\n rep(j, 30){\n if(s[prime[j]] == '1')cout << 1;\n else cout << 0;\n } \n }\n cout << flush;\n}\nvoid Bob(){\n rep1(i, 100){\n string s;\n cin >> s;\n rep(j, 30){\n if(s[prime[j]] == '1')cout << 1;\n else cout << 0;\n } \n }\n cout << flush;\n}\n\nvoid solve(ll c, ll &x, ll &y){\n x = 1;\n y = 1;\n rep1(i, 100)rep1(j, 100)if((A[i] ^ B[j]) == c){\n x = i;\n y = j;\n }\n}\n\nvoid Charlie(){\n rep1(i, 100){\n for(ll j = 0, k = 1; j < 30; j++, k += k){\n char c;\n cin >> c;\n if(c == '1')A[i] |= k;\n }\n }\n rep1(i, 100){\n for(ll j = 0, k = 1; j < 30; j++, k += k){\n char c;\n cin >> c;\n if(c == '1')B[i] |= k;\n }\n }\n rep1(i, 100){\n string s;\n cin >> s;\n ll c = 0;\n for(ll j = 0, k = 1; j < 30; j++, k += k){\n if(s[prime[j]] == '1')c |= k;\n }\n ll x, y;\n solve(c, x, y);\n cout << x << \" \" << y << endl;\n }\n cout << flush;\n}\n\nint main(){\n init();\n string s;\n cin >> s;\n if(s == \"Alice\")Alice();\n if(s == \"Bob\")Bob();\n if(s == \"Charlie\")Charlie();\n\n return 0;\n}", "accuracy": 0.3939393939393939, "time_ms": 20, "memory_kb": 3752, "score_of_the_acc": -0.1154, "final_rank": 10 }, { "submission_id": "aoj_3150_4279550", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing uint = unsigned int;\nusing pcc = pair<char, char>;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pdd = pair<double, double>;\nusing tuplis = array<ll, 3>;\ntemplate<class T> using pq = priority_queue<T, vector<T>, greater<T>>;\nconst ll LINF=0x1fffffffffffffff;\nconst ll MINF=0x7fffffffffff;\nconst int INF=0x3fffffff;\nconst int MOD=1000000007;\nconst int MODD=998244353;\nconst ld DINF=numeric_limits<ld>::infinity();\nconst ld EPS=1e-9;\nconst ld PI=3.1415926535897932;\nconst ll dx[] = {0, 1, 0, -1, 1, 1, -1, -1};\nconst ll dy[] = {1, 0, -1, 0, 1, -1, 1, -1};\n#define overload4(_1,_2,_3,_4,name,...) name\n#define overload3(_1,_2,_3,name,...) name\n#define rep1(n) for(ll i=0;i<n;++i)\n#define rep2(i,n) for(ll i=0;i<n;++i)\n#define rep3(i,a,b) for(ll i=a;i<b;++i)\n#define rep4(i,a,b,c) for(ll i=a;i<b;i+=c)\n#define rep(...) overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__)\n#define rrep1(n) for(ll i=(n)-1;i>=0;i--)\n#define rrep2(i,n) for(ll i=(n)-1;i>=0;i--)\n#define rrep3(i,a,b) for(ll i=(b)-1;i>=(a);i--)\n#define rrep4(i,a,b,c) for(ll i=a+(b-a-1)/c*c;i>=a;i-=c)\n#define rrep(...) overload4(__VA_ARGS__,rrep4,rrep3,rrep2,rrep1)(__VA_ARGS__)\n#define each(i,...) for(auto&& i:__VA_ARGS__)\n#define all1(i) begin(i),end(i)\n#define all2(i,a) begin(i),begin(i)+a\n#define all3(i,a,b) begin(i)+a,begin(i)+b\n#define all(...) overload3(__VA_ARGS__,all3,all2,all1)(__VA_ARGS__)\n#define rall1(i) (i).rbegin(),(i).rend()\n#define rall2(i,k) (i).rbegin(),(i).rbegin()+k\n#define rall3(i,a,b) (i).rbegin()+a,(i).rbegin()+b\n#define rall(...) overload3(__VA_ARGS__,rall3,rall2,rall1)(__VA_ARGS__)\n#define sum(...) accumulate(all(__VA_ARGS__),0LL)\n#define dsum(...) accumulate(all(__VA_ARGS__),0.0L)\n#define elif else if\n#define unless(a) if(!(a))\n#define mp make_pair\n#define mt make_tuple\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)\n#define Sort(a) sort(all(a))\n#define Rev(a) reverse(all(a))\n#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define vec(type,name,...) vector<type> name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type> name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ntemplate<class T> auto max(const T& a){ return *max_element(all(a)); }\ntemplate<class T> auto min(const T& a){ return *min_element(all(a)); }\nll gcd(ll a, ll b){ while(b){ ll c = b; b = a % b; a = c; } return a; }\nll lcm(ll a, ll b){ if(!a || !b) return 0; return a * b / gcd(a, b); }\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }\ntemplate<class T, class U> bool chmin(T& a, const U& b){ if(a > b){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmax(T& a, const U& b){ if(a < b){ a = b; return 1; } return 0; }\nvector<pll> factor(ull x){ vector<pll> ans; for(ll i = 2; i * i <= x; i++) if(x % i == 0){ ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; }\nvector<ll> divisor(ull x){ vector<ll> ans; for(ll i = 1; i * i <= x; i++) if(x % i == 0) ans.push_back(i); rrep(ans.size() - (ans.back() * ans.back() == x)) ans.push_back(x / ans[i]); return ans; }\ntemplate<class T> unordered_map<T, ll> press(vector<T>& a){ auto b = a; sort(all(b)); b.erase(unique(all(b)), b.end()); unordered_map<T,ll> ans; rep(b.size()) ans[b[i]] = i; each(i, a) i = ans[i]; return ans; }\ntemplate<class T> map<T, ll> press_map(vector<T>& a){ auto b = a; sort(all(b)); b.erase(unique(all(b)), b.end()); map<T,ll> ans; rep(b.size()) ans[b[i]] = i; each(i, a) i = ans[i]; return ans; }\nint scan(){ return getchar(); }\nvoid scan(int& a){ scanf(\"%d\", &a); }\nvoid scan(unsigned& a){ scanf(\"%u\", &a); }\nvoid scan(long& a){ scanf(\"%ld\", &a); }\nvoid scan(long long& a){ scanf(\"%lld\", &a); }\nvoid scan(unsigned long long& a){ scanf(\"%llu\", &a); }\nvoid scan(char& a){ do{ a = getchar(); }while(a == ' ' || a == '\\n'); }\nvoid scan(float& a){ scanf(\"%f\", &a); }\nvoid scan(double& a){ scanf(\"%lf\", &a); }\nvoid scan(long double& a){ scanf(\"%Lf\", &a); }\nvoid scan(vector<bool>& a){ for(unsigned i = 0; i < a.size(); i++){ int b; scan(b); a[i] = b; } }\nvoid scan(char a[]){ scanf(\"%s\", a); }\nvoid scan(string& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>&);\ntemplate<class T, size_t size> void scan(array<T, size>&);\ntemplate<class T, class L> void scan(pair<T, L>&);\ntemplate<class T, size_t size> void scan(T(&)[size]);\ntemplate<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(deque<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, class L> void scan(pair<T, L>& p){ scan(p.first); scan(p.second); }\ntemplate<class T, size_t size> void scan(T (&a)[size]){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(T& a){ cin >> a; }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ putchar(' '); }\nvoid print(bool a){ printf(\"%d\", a); }\nvoid print(int a){ printf(\"%d\", a); }\nvoid print(unsigned a){ printf(\"%u\", a); }\nvoid print(long a){ printf(\"%ld\", a); }\nvoid print(long long a){ printf(\"%lld\", a); }\nvoid print(unsigned long long a){ printf(\"%llu\", a); }\nvoid print(char a){ printf(\"%c\", a); }\nvoid print(char a[]){ printf(\"%s\", a); }\nvoid print(const char a[]){ printf(\"%s\", a); }\nvoid print(float a){ printf(\"%.15f\", a); }\nvoid print(double a){ printf(\"%.15f\", a); }\nvoid print(long double a){ printf(\"%.15Lf\", a); }\nvoid print(const string& a){ for(auto&& i : a) print(i); }\ntemplate<class T> void print(const vector<T>&);\ntemplate<class T, size_t size> void print(const array<T, size>&);\ntemplate<class T, class L> void print(const pair<T, L>& p);\ntemplate<class T, size_t size> void print(const T (&)[size]);\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const deque<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, size_t size> void print(const array<T, size>& a){ print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, class L> void print(const pair<T, L>& p){ print(p.first); putchar(' '); print(p.second); }\ntemplate<class T, size_t size> void print(const T (&a)[size]){ print(a[0]); for(auto i = a; ++i != end(a); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const T& a){ cout << a; }\nint out(){ putchar('\\n'); return 0; }\ntemplate<class T> int out(const T& t){ print(t); putchar('\\n'); return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }\n#ifdef DEBUG\nvoid err(){ putchar('\\n'); }\ntemplate<class T> void err(const T& t){ print(t); putchar('\\n'); }\ntemplate<class Head, class... Tail> void err(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); }\n#else\ntemplate<class... T> void err(const T&...){}\n#endif\nint first(bool i = true){ return out(i?\"first\":\"second\"); }\nint yes(bool i = true){ return out(i?\"yes\":\"no\"); }\nint Yes(bool i = true){ return out(i?\"Yes\":\"No\"); }\nint No(){ return out(\"No\"); }\nint YES(bool i = true){ return out(i?\"YES\":\"NO\"); }\nint NO(){ return out(\"NO\"); }\nint Yay(bool i = true){ return out(i?\"Yay!\":\":(\"); }\nint possible(bool i = true){ return out(i?\"possible\":\"impossible\"); }\nint Possible(bool i = true){ return out(i?\"Possible\":\"Impossible\"); }\nint POSSIBLE(bool i = true){ return out(i?\"POSSIBLE\":\"IMPOSSIBLE\"); }\nvoid Case(ll i){ printf(\"Case #%lld: \", i); }\n\n\nmt19937 RD(58);\nuint32_t xor128() {\n static uint32_t x = RD();\n static uint32_t y = RD();\n static uint32_t z = RD();\n static uint32_t w = RD();\n uint32_t t;\n t = x ^ (x << 11);\n x = y; y = z; z = w;\n return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));\n}\nstruct Xorshift64{\n using result_type = uint32_t;\n static constexpr result_type min(){ return 0; }\n static constexpr result_type max(){ return -1; }\n uint64_t x = RD();\n result_type operator()(){\n x = x ^ (x << 13);\n x = x ^ (x >> 7);\n x = x ^ (x << 17);\n return static_cast<uint32_t>(x);\n }\n}rnd;\nsigned main(){\n bitset<1000>bit[30];\n each(i,bit)rep(_,32){\n i<<=32;\n i^=xor128();\n }\n STR(s);\n if(s==\"Charlie\"){\n STR(x);\n STR(y);\n bitset<30>a[100],b[100];\n rep(100)a[i]=bitset<30>(x.substr(i*30,30));\n rep(100)b[i]=bitset<30>(y.substr(i*30,30));\n vector<ll>sa(100),sb(100);\n iota(all(sa),0);\n iota(all(sb),0);\n rep(100){\n shuffle(all(sa),rnd);\n shuffle(all(sb),rnd);\n STR(s);\n bitset<1000>_c(s);\n bitset<30>c;\n each(i,bit){\n c<<=1;\n c|=(i&_c).count()&1;\n }\n each(i,sa)each(j,sb)if((a[i]^b[j])==c){\n out(i+1,j+1);\n goto br;\n }\n br:;\n }\n }\n else{\n rep(100){\n STR(s);\n bitset<1000>a(s);\n each(i,bit)print((i&a).count()&1);\n }\n out();\n }\n fflush(stdout);\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3748, "score_of_the_acc": -0.109, "final_rank": 4 }, { "submission_id": "aoj_3150_4279528", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cmath>\n#include <ctime>\n#include <cstdlib>\n#include <cassert>\n#include <vector>\n#include <list>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <set>\n#include <bitset>\n#include <string>\n#include <algorithm>\n#define llint long long\n#define inf 1e18\n#define mod 998244353\n#define rep(x, s, t) for(llint (x) = (s); (x) < (t); (x)++)\n#define Rep(x, s, t) for(llint (x) = (s); (x) <= (t); (x)++)\n\nusing namespace std;\ntypedef pair<llint, llint> P;\n\nstring s, t;\nstring a[105];\nllint beki[1005];\nstring ans;\n\nstring x, y;\nvector<llint> vec, vec2;\n\nllint gethash(string &s)\n{\n\tllint hash = 0;\n\tfor(int j = 0; j < 1000; j++){\n\t\tif(s[j] == '1') hash ^= beki[j];\n\t}\n\treturn hash;\n}\n\nvoid get(string &s, vector<llint> &vec)\n{\n\tfor(int i = 0; i < 100; i++){\n\t\tllint h = 0;\n\t\tfor(int j = 0; j < 30; j++){\n\t\t\tllint c = s[i*30+j]-'0';\n\t\t\th |= c<<j;\n\t\t}\n\t\tvec.push_back(h);\n\t}\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tbeki[0] = 1;\n\tfor(int i = 1; i < 1005; i++) beki[i] = beki[i-1] * 2 % mod;\n\t\n\tcin >> s;\n\tif(s == \"Alice\" || s == \"Bob\"){\n\t\tfor(int i = 1; i <= 100; i++) cin >> a[i];\n\t\t\n\t\tfor(int i = 1; i <= 100; i++){\n\t\t\tllint hash = gethash(a[i]);\n\t\t\tfor(int j = 0; j < 30; j++){\n\t\t\t\tans += (char)(((hash >> j)&1) + '0');\n\t\t\t}\n\t\t}\n\t\tcout << ans << endl;\n\t\treturn 0;\n\t}\n\telse{\n\t\tcin >> x >> y;\n\t\tget(x, vec), get(y, vec2);\n\t\t\n\t\tfor(int i = 1; i <= 100; i++){\n\t\tcin >> t;\n\t\t\t\n\t\t\tllint hash = gethash(t);\n\t\t\tfor(int j = 0; j < vec.size(); j++){\n\t\t\t\tfor(int k = 0; k < vec2.size(); k++){\n\t\t\t\t\tif((vec[j]^vec2[k]^hash) == 0){\n\t\t\t\t\t\tcout << j+1 << \" \" << k+1 << endl;\n\t\t\t\t\t\tgoto end;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tend:;\n\t\t}\n\t}\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3728, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3150_4279455", "code_snippet": "#include <iostream>\n#include <queue>\n#include <vector>\n#include <algorithm>\n#include <set>\n#include <cmath>\n#include <tuple>\n#include <cstring>\n#include <map>\n#include <iomanip>\n#include <ctime>\n#include <complex>\n#include <cassert>\n#include <climits>\n#include <bitset>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\n#define _ << \" \" <<\n#define all(X) (X).begin(), (X).end()\n#define len(X) (X).size()\n#define Pii pair<int, int>\n#define Pll pair<ll, ll>\n#define Tiii tuple<int, int, int>\n#define Tlll tuple<ll, ll, ll>\n#define PI 3.14159265358979324\n\nint main() {\n \n string s;\n cin >> s;\n vector<int> pic = {20,54,57,73,84,85,105,107,111,121,132,143,148,174,188,189,234,246,389,465,506,562,593,605,624,727,758,764,923,973};\n if (s[0] == 'C') {\n string x, y;\n cin >> x >> y;\n //vector<int> pic = {28,80,95,112,118,169,185,206,252,255,264,303,307,346,347,369,390,393,473,506,524,558,603,608,616,621,623,678,748,909};\n\n int t = 100;\n while (t--) {\n string c; cin >> c;\n for (int i = 0; i < 100; i++) {\n bool ok = 0;\n string a = x.substr(30*i, 30);\n string b;\n for (int j = 0; j < 30; j++) {\n b += char((c[pic[j]] ^ a[j]) + '0');\n }\n for (int j = 0; j < 100; j++) {\n if (b == y.substr(30*j, 30)) {\n cout << i + 1 _ j + 1 << endl;\n ok = 1;\n break;\n }\n }\n if (ok) break;\n }\n }\n\n }\n else {\n string a[100];\n for (int i = 0; i < 100; i++) cin >> a[i];\n //vector<int> pic = {28,80,95,112,118,169,185,206,252,255,264,303,307,346,347,369,390,393,473,506,524,558,603,608,616,621,623,678,748,909};\n string x;\n for (int j = 0; j < 100; j++) {\n for (int i = 0; i < 30; i++) {\n x += a[j][pic[i]];\n }\n }\n cout << x << endl;\n }\n \n //cerr << char(('0' ^ '1') + '0');\n}", "accuracy": 0.3939393939393939, "time_ms": 40, "memory_kb": 3752, "score_of_the_acc": -0.2692, "final_rank": 15 }, { "submission_id": "aoj_3150_4279443", "code_snippet": "#include <iostream>\n#include <queue>\n#include <vector>\n#include <algorithm>\n#include <set>\n#include <cmath>\n#include <tuple>\n#include <cstring>\n#include <map>\n#include <iomanip>\n#include <ctime>\n#include <complex>\n#include <cassert>\n#include <climits>\n#include <bitset>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\n#define _ << \" \" <<\n#define all(X) (X).begin(), (X).end()\n#define len(X) (X).size()\n#define Pii pair<int, int>\n#define Pll pair<ll, ll>\n#define Tiii tuple<int, int, int>\n#define Tlll tuple<ll, ll, ll>\n#define PI 3.14159265358979324\n\nint main() {\n \n string s;\n cin >> s;\n vector<int> pic = {1,72,137,141,143,151,167,168,209,231,233,317,326,398,418,434,524,530,569,570,578,582,608,776,807,844,859,865,916,937};\n if (s[0] == 'C') {\n string x, y;\n cin >> x >> y;\n //vector<int> pic = {28,80,95,112,118,169,185,206,252,255,264,303,307,346,347,369,390,393,473,506,524,558,603,608,616,621,623,678,748,909};\n\n int t = 100;\n while (t--) {\n string c; cin >> c;\n for (int i = 0; i < 100; i++) {\n bool ok = 0;\n string a = x.substr(30*i, 30);\n string b;\n for (int j = 0; j < 30; j++) {\n b += char((c[pic[j]] ^ a[j]) + '0');\n }\n for (int j = 0; j < 100; j++) {\n if (b == y.substr(30*j, 30)) {\n cout << i + 1 _ j + 1 << endl;\n ok = 1;\n break;\n }\n }\n if (ok) break;\n }\n }\n\n }\n else {\n string a[100];\n for (int i = 0; i < 100; i++) cin >> a[i];\n //vector<int> pic = {28,80,95,112,118,169,185,206,252,255,264,303,307,346,347,369,390,393,473,506,524,558,603,608,616,621,623,678,748,909};\n string x;\n for (int j = 0; j < 100; j++) {\n for (int i = 0; i < 30; i++) {\n x += a[j][pic[i]];\n }\n }\n cout << x << endl;\n }\n \n //cerr << char(('0' ^ '1') + '0');\n}", "accuracy": 0.2727272727272727, "time_ms": 40, "memory_kb": 3740, "score_of_the_acc": -0.25, "final_rank": 20 }, { "submission_id": "aoj_3150_4279440", "code_snippet": "#include <iostream>\n#include <queue>\n#include <vector>\n#include <algorithm>\n#include <set>\n#include <cmath>\n#include <tuple>\n#include <cstring>\n#include <map>\n#include <iomanip>\n#include <ctime>\n#include <complex>\n#include <cassert>\n#include <climits>\n#include <bitset>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\n#define _ << \" \" <<\n#define all(X) (X).begin(), (X).end()\n#define len(X) (X).size()\n#define Pii pair<int, int>\n#define Pll pair<ll, ll>\n#define Tiii tuple<int, int, int>\n#define Tlll tuple<ll, ll, ll>\n#define PI 3.14159265358979324\n\nint main() {\n \n string s;\n cin >> s;\n vector<int> pic = {88,124,180,188,219,251,252,268,320,480,544,548,566,568,571,605,614,621,703,709,711,738,805,884,903,939,959,996,997,999};\n if (s[0] == 'C') {\n string x, y;\n cin >> x >> y;\n //vector<int> pic = {28,80,95,112,118,169,185,206,252,255,264,303,307,346,347,369,390,393,473,506,524,558,603,608,616,621,623,678,748,909};\n\n int t = 100;\n while (t--) {\n string c; cin >> c;\n for (int i = 0; i < 100; i++) {\n bool ok = 0;\n string a = x.substr(30*i, 30);\n string b;\n for (int j = 0; j < 30; j++) {\n b += char((c[pic[j]] ^ a[j]) + '0');\n }\n for (int j = 0; j < 100; j++) {\n if (b == y.substr(30*j, 30)) {\n cout << i + 1 _ j + 1 << endl;\n ok = 1;\n break;\n }\n }\n if (ok) break;\n }\n }\n\n }\n else {\n string a[100];\n for (int i = 0; i < 100; i++) cin >> a[i];\n //vector<int> pic = {28,80,95,112,118,169,185,206,252,255,264,303,307,346,347,369,390,393,473,506,524,558,603,608,616,621,623,678,748,909};\n string x;\n for (int j = 0; j < 100; j++) {\n for (int i = 0; i < 30; i++) {\n x += a[j][pic[i]];\n }\n }\n cout << x << endl;\n }\n \n //cerr << char(('0' ^ '1') + '0');\n}", "accuracy": 0.3939393939393939, "time_ms": 40, "memory_kb": 3748, "score_of_the_acc": -0.2628, "final_rank": 14 }, { "submission_id": "aoj_3150_4279437", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\nusing Int = long long;\nconst char newl = '\\n';\n\nconst Int seed = 114514;\nconst Int B = 1000;\nconst Int N = 100;\nauto make_vec(){\n vector<Int> vs(B,0);\n for(Int i=0;i<30;i++) vs[i]=1;\n mt19937 mt(seed);\n shuffle(vs.begin(),vs.end(),mt);\n return vs;\n}\n\nvoid Alice(){\n auto vs=make_vec();\n string X;\n for(Int i=0;i<N;i++){\n string a;\n cin>>a;\n for(Int j=0;j<B;j++)\n if(vs[j]) X+=a[j];\n }\n cout<<X<<endl;\n}\n\nvoid Bob(){\n auto vs=make_vec();\n string Y;\n for(Int i=0;i<N;i++){\n string b;\n cin>>b;\n for(Int j=0;j<B;j++)\n if(vs[j]) Y+=b[j];\n }\n cout<<Y<<endl;\n}\n\nvector<Int> decode(string s){\n vector<Int> vs;\n for(Int i=0;i<(Int)s.size();i+=30){\n Int res=0;\n for(Int j=0;j<30;j++)\n res=res*2+(s[i+j]-'0');\n vs.emplace_back(res);\n }\n return vs;\n}\n\nvoid Charlie(){\n string X,Y;\n cin>>X>>Y;\n\n auto vs=make_vec();\n string Z;\n for(Int i=0;i<N;i++){\n string c;\n cin>>c;\n for(Int j=0;j<B;j++)\n if(vs[j]) Z+=c[j];\n }\n auto as=decode(X);\n auto bs=decode(Y);\n auto cs=decode(Z);\n for(Int i=0;i<N;i++){\n for(Int a=0;a<N;a++){\n for(Int b=0;b<N;b++){\n if((as[a]^bs[b])==cs[i]){\n cout<<a+1<<\" \"<<b+1<<endl;\n goto END;\n }\n }\n }\n cout<<1<<\" \"<<1<<endl;\n END:\n ;\n }\n}\n//INSERT ABOVE HERE\nsigned main(){\n string s;\n cin>>s;\n if(s==\"Alice\") Alice();\n if(s==\"Bob\") Bob();\n if(s==\"Charlie\") Charlie();\n return 0;\n}", "accuracy": 0.3939393939393939, "time_ms": 10, "memory_kb": 3752, "score_of_the_acc": -0.0385, "final_rank": 9 }, { "submission_id": "aoj_3150_4279429", "code_snippet": "#include <iostream>\n#include <queue>\n#include <vector>\n#include <algorithm>\n#include <set>\n#include <cmath>\n#include <tuple>\n#include <cstring>\n#include <map>\n#include <iomanip>\n#include <ctime>\n#include <complex>\n#include <cassert>\n#include <climits>\n#include <bitset>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\n#define _ << \" \" <<\n#define all(X) (X).begin(), (X).end()\n#define len(X) (X).size()\n#define Pii pair<int, int>\n#define Pll pair<ll, ll>\n#define Tiii tuple<int, int, int>\n#define Tlll tuple<ll, ll, ll>\n#define PI 3.14159265358979324\n\nint main() {\n \n string s;\n cin >> s;\n vector<int> pic = {26,58,59,122,123,155,158,179,217,234,286,306,322,329,357,364,380,523,589,602,604,624,632,665,672,758,840,862,934,965};\n if (s[0] == 'C') {\n string x, y;\n cin >> x >> y;\n //vector<int> pic = {28,80,95,112,118,169,185,206,252,255,264,303,307,346,347,369,390,393,473,506,524,558,603,608,616,621,623,678,748,909};\n\n int t = 100;\n while (t--) {\n string c; cin >> c;\n for (int i = 0; i < 100; i++) {\n bool ok = 0;\n string a = x.substr(30*i, 30);\n string b;\n for (int j = 0; j < 30; j++) {\n b += char((c[pic[j]] ^ a[j]) + '0');\n }\n for (int j = 0; j < 100; j++) {\n if (b == y.substr(30*j, 30)) {\n cout << i + 1 _ j + 1 << endl;\n ok = 1;\n break;\n }\n }\n if (ok) break;\n }\n }\n\n }\n else {\n string a[100];\n for (int i = 0; i < 100; i++) cin >> a[i];\n //vector<int> pic = {28,80,95,112,118,169,185,206,252,255,264,303,307,346,347,369,390,393,473,506,524,558,603,608,616,621,623,678,748,909};\n string x;\n for (int j = 0; j < 100; j++) {\n for (int i = 0; i < 30; i++) {\n x += a[j][pic[i]];\n }\n }\n cout << x << endl;\n }\n \n //cerr << char(('0' ^ '1') + '0');\n}", "accuracy": 0.3939393939393939, "time_ms": 40, "memory_kb": 3764, "score_of_the_acc": -0.2885, "final_rank": 17 }, { "submission_id": "aoj_3150_4279421", "code_snippet": "#include <iostream>\n#include <queue>\n#include <vector>\n#include <algorithm>\n#include <set>\n#include <cmath>\n#include <tuple>\n#include <cstring>\n#include <map>\n#include <iomanip>\n#include <ctime>\n#include <complex>\n#include <cassert>\n#include <climits>\n#include <bitset>\nusing namespace std;\ntypedef long long ll;\ntypedef unsigned long long ull;\n#define _ << \" \" <<\n#define all(X) (X).begin(), (X).end()\n#define len(X) (X).size()\n#define Pii pair<int, int>\n#define Pll pair<ll, ll>\n#define Tiii tuple<int, int, int>\n#define Tlll tuple<ll, ll, ll>\n#define PI 3.14159265358979324\n\nint main() {\n \n string s;\n cin >> s;\n vector<int> pic = {65,116,165,216,218,239,259,294,319,328,330,379,407,442,449,453,539,585,663,677,709,718,812,823,840,907,909,937,941,945};\n if (s[0] == 'C') {\n string x, y;\n cin >> x >> y;\n //vector<int> pic = {28,80,95,112,118,169,185,206,252,255,264,303,307,346,347,369,390,393,473,506,524,558,603,608,616,621,623,678,748,909};\n\n int t = 100;\n while (t--) {\n string c; cin >> c;\n for (int i = 0; i < 100; i++) {\n bool ok = 0;\n string a = x.substr(30*i, 30);\n string b;\n for (int j = 0; j < 30; j++) {\n b += char((c[pic[j]] ^ a[j]) + '0');\n }\n for (int j = 0; j < 100; j++) {\n if (b == y.substr(30*j, 30)) {\n cout << i + 1 _ j + 1 << endl;\n ok = 1;\n break;\n }\n }\n if (ok) break;\n }\n }\n\n }\n else {\n string a[100];\n for (int i = 0; i < 100; i++) cin >> a[i];\n //vector<int> pic = {28,80,95,112,118,169,185,206,252,255,264,303,307,346,347,369,390,393,473,506,524,558,603,608,616,621,623,678,748,909};\n string x;\n for (int j = 0; j < 100; j++) {\n for (int i = 0; i < 30; i++) {\n x += a[j][pic[i]];\n }\n }\n cout << x << endl;\n }\n \n //cerr << char(('0' ^ '1') + '0');\n}", "accuracy": 0.3939393939393939, "time_ms": 40, "memory_kb": 3752, "score_of_the_acc": -0.2692, "final_rank": 15 } ]
aoj_3147_cpp
K: トーナメント 問題文 京都大学クスノキ前にて、$2$ 人用対戦ゲームのトーナメントが行われようとしています。 このトーナメントの参加者は $2^N$ 人いて、 $1$ から $2^N$ までの番号がついています。 参加者のうちの $2$ 人が戦った時の勝敗は、$0$ と $1$ からなる長さ $2^N-1$ の文字列 $S$ によって表されます。 人 $x$ と人 $y$ $(1 \le x < y \le 2^N)$ が戦ったとき、 $S_{y-x} = 0$ のとき、人 $x$ が勝ち、 $S_{y-x} = 1$ のとき、人 $y$ が勝つ ことが分かっています。 トーナメントは参加者が一列に並ぶことで始まり、以下の通りに進行します。 列の先頭から $2$ 人ずつペアを作る。すべてのペアについて、ペア内の $2$ 人が戦う。 1 の対戦で勝った人は列に残り、負けた人は列から抜ける。 残っている人が $2$ 人以上いるときは、列を詰めて 1 に戻る。 残っている人が $1$ 人となったら、その人が優勝者となる。 いま、参加者は初期状態として、先頭から $i$ 番目 $(1 \le i \le 2^N)$ が人 $P_i$ となるように並んでいます。 $0 \le k \le 2^N-1$ を満たすすべての整数 $k$ について、以下の問題を解いてください。 初期状態から先頭 $k$ 人が、その順番を変えずに列の末尾に移動する。 つまり、移動後の列における参加者の番号を先頭から挙げていくと、 $P_{k+1}, P_{k+2}, ..., P_{2^N}, P_1, P_2, ..., P_k$ となる。 移動後の列からトーナメントを始めたときの、優勝者の番号を求めよ。 制約 $1 \leq N \leq 18$ $N$ は整数である。 $S$ は $0$ と $1$ からなる長さ $2^N-1$ の文字列である。 $P$ は $1$ から $2^N$ までの整数を並べ替えた順列である。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $S_1S_2 \ldots S_{2^N-1}$ $P_1$ $P_2$ $\ldots$ $P_{2^N}$ 出力 $2^N$ 行出力せよ。 $i$ 行目 $(1 \le i \le 2^N)$ には、$k = i-1$ としたときの上記の問題の答えを出力せよ。 入力例1 2 100 1 4 2 3 出力例1 1 2 1 2 例えば $k = 2$ としたとき、移動後の列における参加者の番号を先頭から挙げていくと、 $2, 3, 1, 4$ となります。 人 $2$ と 人 $3$ が戦うと、 $S_1 = 1$ より人 $3$ が勝ちます。 人 $1$ と 人 $4$ が戦うと、 $S_3 = 0$ より人 $1$ が勝ちます。 人 $3$ と 人 $1$ が戦うと、 $S_2 = 0$ より人 $1$ が勝ちます。 したがって、 $k = 2$ の場合の優勝者は、人 $1$ となります。 入力例2 4 101011100101000 8 15 2 9 12 5 1 7 14 10 11 3 4 6 16 13 出力例2 16 1 16 2 16 12 10 14 16 1 16 2 16 12 10 14 入力例3 1 0 1 2 出力例3 1 1
[ { "submission_id": "aoj_3147_10215807", "code_snippet": "// AOJ #3147\n// Tournament 2025.2.13\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() { // 整数の入力\n\tint n = 0, c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nchar temp[263000];\nstring Cins() { // 文字列の入力 スペース以下の文字で入力終了\n char *s = temp;\n\tdo *s = gc();\n\twhile (*s++ > ' ');\n\t*(s-1) = 0;\n string input(temp); // 文字配列からstringを作成\n return input;\n}\n\nvoid Cout(int n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nstring S;\n \ninline int match(int a, int b) {\n if(a > b) swap(a, b);\n int diff = b - a;\n return (S[diff - 1] == '0') ? a : b;\n}\n \nint main(){\n int N = Cin(), L = 1 << N;\n S = Cins();\n \n vector<int> P(L);\n for (int i = 0; i < L; i++) P[i] = Cin();\n \n vector<int> B(2 * L);\n for (int i = 0; i < L; i++){\n B[i] = P[i];\n B[i+L] = P[i];\n }\n \n vector<vector<int>> dp;\n dp.push_back(B);\n for (int m = 1; m <= N; m++){\n int segLen = 1 << m;\n int half = 1 << (m-1);\n int prevSize = dp[m-1].size();\n int newSize = prevSize - half;\n vector<int> cur(newSize);\n for (int i = 0; i < newSize; i++){\n cur[i] = match(dp[m-1][i], dp[m-1][i + half]);\n }\n dp.push_back(move(cur));\n }\n for (int k = 0; k < L; k++) Cout(dp[N][k]);\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 43592, "score_of_the_acc": -0.1938, "final_rank": 9 }, { "submission_id": "aoj_3147_10215797", "code_snippet": "// AOJ #3147\n// Tournament 2025.2.13\n\n#include <bits/stdc++.h>\nusing namespace std;\n \nstring S;\n \ninline int match(int a, int b) {\n if(a > b) swap(a, b);\n int diff = b - a;\n return (S[diff - 1] == '0') ? a : b;\n}\n \nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n int N;\n cin >> N;\n int L = 1 << N;\n cin >> S;\n \n vector<int> P(L);\n for (int i = 0; i < L; i++) cin >> P[i];\n \n vector<int> B(2 * L);\n for (int i = 0; i < L; i++){\n B[i] = P[i];\n B[i+L] = P[i];\n }\n \n vector<vector<int>> dp;\n dp.push_back(B);\n for (int m = 1; m <= N; m++){\n int segLen = 1 << m;\n int half = 1 << (m-1);\n int prevSize = dp[m-1].size();\n int newSize = prevSize - half;\n vector<int> cur(newSize);\n for (int i = 0; i < newSize; i++){\n cur[i] = match(dp[m-1][i], dp[m-1][i + half]);\n }\n dp.push_back(move(cur));\n }\n \n for (int k = 0; k < L; k++)\n cout << dp[N][k] << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 43448, "score_of_the_acc": -0.3055, "final_rank": 15 }, { "submission_id": "aoj_3147_9496069", "code_snippet": "// competitive-verifier: PROBLEM\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nstruct increment_impl {\n template <class T>\n const increment_impl &operator>>(std::vector<T> &v) const {\n for (auto &x : v) ++x;\n return *this;\n }\n} Inc;\nstruct decrement_impl {\n template <class T>\n const decrement_impl &operator>>(std::vector<T> &v) const {\n for (auto &x : v) --x;\n return *this;\n }\n} Dec;\nstruct sort_impl {\n template <class T>\n const sort_impl &operator>>(std::vector<T> &v) const {\n std::sort(v.begin(), v.end());\n return *this;\n }\n} Sort;\nstruct unique_impl {\n template <class T>\n const unique_impl &operator>>(std::vector<T> &v) const {\n std::sort(v.begin(), v.end());\n v.erase(std::unique(v.begin(), v.end()), v.end());\n return *this;\n }\n} Uniq;\nint main(void) {\n int n;\n cin >> n;\n int k = 1 << n;\n string s;\n cin >> s;\n vector<int> a(k);\n cin >> a;\n vector dp(n, vector(k, -1));\n auto dfs = [&](auto self, int l, int p) -> int {\n int li = l % k;\n if (p == -1) {\n return a[li];\n }\n if (dp[p][li] != -1)\n return dp[p][li];\n int m = (l + (1 << p)) % k;\n int le = self(self, l, p - 1);\n int re = self(self, m, p - 1);\n if (le > re)\n swap(le, re);\n int d = re - le - 1;\n if (s[d] == '0')\n return dp[p][li] = le;\n else\n return dp[p][li] = re;\n };\n rep (i, k) co(dfs(dfs, i, n - 1));\n return 0;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 23944, "score_of_the_acc": -0.1686, "final_rank": 4 }, { "submission_id": "aoj_3147_9496067", "code_snippet": "// competitive-verifier: PROBLEM\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nstruct increment_impl {\n template <class T>\n const increment_impl &operator>>(std::vector<T> &v) const {\n for (auto &x : v) ++x;\n return *this;\n }\n} Inc;\nstruct decrement_impl {\n template <class T>\n const decrement_impl &operator>>(std::vector<T> &v) const {\n for (auto &x : v) --x;\n return *this;\n }\n} Dec;\nstruct sort_impl {\n template <class T>\n const sort_impl &operator>>(std::vector<T> &v) const {\n std::sort(v.begin(), v.end());\n return *this;\n }\n} Sort;\nstruct unique_impl {\n template <class T>\n const unique_impl &operator>>(std::vector<T> &v) const {\n std::sort(v.begin(), v.end());\n v.erase(std::unique(v.begin(), v.end()), v.end());\n return *this;\n }\n} Uniq;\nint main(void) {\n int n;\n cin >> n;\n int k = 1 << n;\n string s;\n cin >> s;\n vector<int> a(k);\n cin >> a;\n vector dp(k, vector(n, -1));\n auto dfs = [&](auto self, int l, int p) -> int {\n int li = l % k;\n if (p == -1) {\n return a[li];\n }\n if (dp[li][p] != -1)\n return dp[li][p];\n int m = (l + (1 << p)) % k;\n int le = self(self, l, p - 1);\n int re = self(self, m, p - 1);\n if (le > re)\n swap(le, re);\n int d = re - le - 1;\n if (s[d] == '0')\n return dp[li][p] = le;\n else\n return dp[li][p] = re;\n };\n rep (i, k) co(dfs(dfs, i, n - 1));\n return 0;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 31316, "score_of_the_acc": -0.2069, "final_rank": 10 }, { "submission_id": "aoj_3147_9496065", "code_snippet": "// competitive-verifier: PROBLEM\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nstruct increment_impl {\n template <class T>\n const increment_impl &operator>>(std::vector<T> &v) const {\n for (auto &x : v) ++x;\n return *this;\n }\n} Inc;\nstruct decrement_impl {\n template <class T>\n const decrement_impl &operator>>(std::vector<T> &v) const {\n for (auto &x : v) --x;\n return *this;\n }\n} Dec;\nstruct sort_impl {\n template <class T>\n const sort_impl &operator>>(std::vector<T> &v) const {\n std::sort(v.begin(), v.end());\n return *this;\n }\n} Sort;\nstruct unique_impl {\n template <class T>\n const unique_impl &operator>>(std::vector<T> &v) const {\n std::sort(v.begin(), v.end());\n v.erase(std::unique(v.begin(), v.end()), v.end());\n return *this;\n }\n} Uniq;\nint main(void) {\n int n;\n cin >> n;\n int k = 1 << n;\n string s;\n cin >> s;\n vector<int> a(k);\n cin >> a;\n vector dp(k, vector(n + 1, -1));\n auto dfs = [&](auto self, int l, int p) -> int {\n int li = l % k;\n if (p == 0) {\n return a[li];\n }\n if (dp[li][p] != -1)\n return dp[li][p];\n int m = (l + (1 << (p - 1))) % k;\n int le = self(self, l, p - 1);\n int re = self(self, m, p - 1);\n if (le > re)\n swap(le, re);\n int d = re - le - 1;\n if (s[d] == '0')\n return dp[li][p] = le;\n else\n return dp[li][p] = re;\n };\n rep (i, k) co(dfs(dfs, i, n));\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 35348, "score_of_the_acc": -0.2338, "final_rank": 11 }, { "submission_id": "aoj_3147_9496049", "code_snippet": "// competitive-verifier: PROBLEM\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nstruct increment_impl {\n template <class T>\n const increment_impl &operator>>(std::vector<T> &v) const {\n for (auto &x : v) ++x;\n return *this;\n }\n} Inc;\nstruct decrement_impl {\n template <class T>\n const decrement_impl &operator>>(std::vector<T> &v) const {\n for (auto &x : v) --x;\n return *this;\n }\n} Dec;\nstruct sort_impl {\n template <class T>\n const sort_impl &operator>>(std::vector<T> &v) const {\n std::sort(v.begin(), v.end());\n return *this;\n }\n} Sort;\nstruct unique_impl {\n template <class T>\n const unique_impl &operator>>(std::vector<T> &v) const {\n std::sort(v.begin(), v.end());\n v.erase(std::unique(v.begin(), v.end()), v.end());\n return *this;\n }\n} Uniq;\nint main(void) {\n int n;\n cin >> n;\n n = 1 << n;\n string s;\n cin >> s;\n vector<int> a(n);\n cin >> a;\n Dec >> a;\n unordered_map<ll, int> mp;\n auto dfs = [&](auto self, int l, int r) -> int {\n ll li = l % n;\n if (r - l == 1) {\n return a[li];\n }\n int ri = r % n;\n if (mp.count(li * n + ri))\n return mp[li * n + ri];\n int m = (l + r) / 2;\n int p = self(self, l, m);\n int q = self(self, m, r);\n if (p > q)\n swap(p, q);\n int d = abs(p - q) - 1;\n if (s[d] == '0')\n return mp[li * n + ri] = p;\n else\n return mp[li * n + ri] = q;\n };\n rep (i, n) co(dfs(dfs, i, n + i) + 1);\n return 0;\n}", "accuracy": 1, "time_ms": 1120, "memory_kb": 198728, "score_of_the_acc": -1.6391, "final_rank": 17 }, { "submission_id": "aoj_3147_9496048", "code_snippet": "// competitive-verifier: PROBLEM\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nstruct increment_impl {\n template <class T>\n const increment_impl &operator>>(std::vector<T> &v) const {\n for (auto &x : v) ++x;\n return *this;\n }\n} Inc;\nstruct decrement_impl {\n template <class T>\n const decrement_impl &operator>>(std::vector<T> &v) const {\n for (auto &x : v) --x;\n return *this;\n }\n} Dec;\nstruct sort_impl {\n template <class T>\n const sort_impl &operator>>(std::vector<T> &v) const {\n std::sort(v.begin(), v.end());\n return *this;\n }\n} Sort;\nstruct unique_impl {\n template <class T>\n const unique_impl &operator>>(std::vector<T> &v) const {\n std::sort(v.begin(), v.end());\n v.erase(std::unique(v.begin(), v.end()), v.end());\n return *this;\n }\n} Uniq;\nint main(void) {\n int n;\n cin >> n;\n n = 1 << n;\n string s;\n cin >> s;\n vector<int> a(n);\n cin >> a;\n Dec >> a;\n unordered_map<ll, int> mp;\n auto dfs = [&](auto self, int l, int r) -> int {\n int ll = l % n;\n if (r - l == 1) {\n return a[ll];\n }\n int rr = r % n;\n if (mp.count(ll * n + rr))\n return mp[ll * n + rr];\n int m = (l + r) / 2;\n int p = self(self, l, m);\n int q = self(self, m, r);\n if (p > q)\n swap(p, q);\n int d = abs(p - q) - 1;\n if (s[d] == '0')\n return mp[ll * n + rr] = p;\n else\n return mp[ll * n + rr] = q;\n };\n rep (i, n) co(dfs(dfs, i, n + i) + 1);\n return 0;\n}", "accuracy": 0.6511627906976745, "time_ms": 1050, "memory_kb": 166008, "score_of_the_acc": -1.4276, "final_rank": 18 }, { "submission_id": "aoj_3147_9154291", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=int64_t;\n\nint main(){\n int N;\n cin >> N;\n int n=pow(2,N);\n string s;\n cin >> s;\n vector<bool> r(n);\n for(int i=0;i<n-1;i++){\n r[i+1]=(s[i]=='1');\n }\n vector<int> p(n);\n for(int &x:p) cin >> x;\n \n vector w(N,vector<int>(n));\n for(int i=0;i<n/2;i++){\n int i1=i*2,i2=i1+1;\n if(r[abs(p[i1]-p[i2])]){\n w[0][i]=(p[i1]>p[i2] ? p[i1] : p[i2]);\n }else{\n w[0][i]=(p[i1]<p[i2] ? p[i1] : p[i2]);\n }\n i1=((i2+1)%n);\n if(r[abs(p[i1]-p[i2])]){\n w[0][i+n/2]=(p[i1]>p[i2] ? p[i1] : p[i2]);\n }else{\n w[0][i+n/2]=(p[i1]<p[i2] ? p[i1] : p[i2]);\n }\n \n }\n if(N==1){\n cout << w[0][0] << endl;\n cout << w[0][1] << endl;\n return 0;\n }\n \n/* for(int i=0;i<n;i++){\n cout << w[0][i] << \" \";\n }\n cout << endl;\n*/\n int n1=n,n2,nn=1;\n for(int j=1;j<N;j++){\n n1/=2;n2=n1/2;nn*=2;\n for(int k=0;k<2;k++){\n int k1=k*n/2;\n for(int ii=0;ii<nn;ii++){\n int ii1=n1*ii,ii2=n2*ii+k1;\n for(int i=0;i<n2;i++){\n int i1=i*2+k,i2=(i1+1)%n1;\n i1+=ii1;i2+=ii1;\n if(r[abs(w[j-1][i1]-w[j-1][i2])]){\n w[j][i+ii2]=(w[j-1][i1]>w[j-1][i2] ? w[j-1][i1] : w[j-1][i2]);\n }else{\n w[j][i+ii2]=(w[j-1][i1]<w[j-1][i2] ? w[j-1][i1] : w[j-1][i2]);\n }\n //cout << j << \" \" << i+ii2 << \" \" << ii1 << \" \" << i1 << \" \" << i2 << endl;\n }\n }\n }\n }\n for(int i=0;i<n;i++) cout << w[N-1][i] << endl;\n\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 24316, "score_of_the_acc": -0.2356, "final_rank": 12 }, { "submission_id": "aoj_3147_4885512", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, m, n) for(int(i) = (int)(m); i < (int)(n); ++i)\n#define rep2(i, m, n) for(int(i) = (int)(n)-1; i >= (int)(m); --i)\n#define REP(i, n) rep(i, 0, n)\n#define REP2(i, n) rep2(i, 0, n)\n#define all(hoge) (hoge).begin(), (hoge).end()\n#define en '\\n'\nusing ll = long long;\nusing ull = unsigned long long;\ntemplate <class T>\nusing vec = vector<T>;\ntemplate <class T>\nusing vvec = vector<vec<T>>;\ntypedef pair<ll, ll> P;\nusing tp = tuple<ll, ll, ll>;\nconstexpr long long INF = 1LL << 60;\nconstexpr int INF_INT = 1 << 25;\n//constexpr long long MOD = (ll)1e9 + 7;\nconstexpr long long MOD = 998244353LL;\nusing ld = long double;\nstatic const ld pi = 3.141592653589793L;\ntypedef vector<ll> Array;\ntypedef vector<Array> Matrix;\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\n//グラフ関連\nstruct Edge {\n ll to, cap, rev;\n Edge(ll _to, ll _cap, ll _rev) {\n to = _to;\n cap = _cap;\n rev = _rev;\n }\n};\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\n\nvoid add_edge(Graph &G, ll from, ll to, ll cap, bool revFlag, ll revCap) {\n G[from].push_back(Edge(to, cap, (ll)G[to].size()));\n if(revFlag)\n G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1));\n}\n\nint dp[1LL << 18][20];\n\nvoid solve() {\n ll n;\n cin >> n;\n ll m = 1LL << n;\n string s;\n cin >> s;\n vec<int> p(m);\n REP(i, m) {\n cin >> p[i];\n }\n\n auto check = [&](auto &&self, int i, int x) -> int {\n if(dp[i][x] != 0)\n return dp[i][x];\n if(x == 0)\n return dp[i][x] = p[i];\n int L = self(self, i, x - 1);\n int R = self(self, (i + (1 << (x - 1))) % m, x - 1);\n return dp[i][x] = s[abs(R - L) - 1] == '1' ? max(R, L) : min(R, L);\n };\n REP(i, m) {\n cout << check(check, i, n) << en;\n }\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout.tie(0);\n /*\n ll t;\n cin >> t;\n while(t--)*/\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 25088, "score_of_the_acc": -0.1805, "final_rank": 8 }, { "submission_id": "aoj_3147_4518342", "code_snippet": "#include <iostream>\n#include <utility>\n#include <tuple>\n#include <vector>\n#include <string>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <unordered_set>\n#include <algorithm>\n#include <functional>\n#include <climits>\n#include <numeric>\n#include <queue>\n#include <cmath>\n#include <iomanip>\n#include <array>\n#include <string>\nint winner(const int depth, int from, int until, const std::vector<std::vector<int>>& calculated, const std::string& state) {\n\tconst auto length = 1 << depth;\n\tif (from + length == until && (calculated.front().size() <= from || until <= calculated.front().size())) \n\t\treturn calculated.front().size() <= from ? calculated[depth][from - calculated.front().size()] : calculated[depth][from];\n\tconst auto a = winner(depth - 1, from, from + (length >> 1), calculated, state);\n\tconst auto b = winner(depth - 1, from + (length >> 1), until, calculated, state);\n\tconst auto x = std::min(a, b);\n\tconst auto y = std::max(a, b);\n\treturn state[y - x - 1] == '0' ? x : y;\n}\nint main() {\n\tint n; std::cin >> n;\n\tstd::string str; std::cin >> str;\n\tstd::vector<int> permutation(1 << n);\n\tfor (auto& p : permutation) std::cin >> p;\n\tstd::vector<std::vector<int>> calculated;\n\tcalculated.push_back(permutation);\n\tfor (auto d = 0; d < n; ++d) {\n\t\tstd::vector<int> winner; winner.reserve(calculated.back().size() >> 1);\n\t\tconst auto length = 1 << calculated.size();\n\t\tfor (auto i = 0; i + length <= permutation.size(); ++i) {\n\t\t\tconst auto x = std::min(calculated.back()[i], calculated.back()[i + (length >> 1)]);\n\t\t\tconst auto y = std::max(calculated.back()[i], calculated.back()[i + (length >> 1)]);\n\t\t\tif (str[y - x - 1] == '0') \n\t\t\t\twinner.push_back(x);\n\t\t\telse \n\t\t\t\twinner.push_back(y);\n\t\t}\n\t\tcalculated.push_back(winner);\n\t}\n\tfor (auto i = 0; i < permutation.size(); ++i) {\n\t\tstd::cout << winner(calculated.size() - 1, i, i + permutation.size(), calculated, str) << '\\n';\n\t}\n}\n\n//https://onlinejudge.u-aizu.ac.jp/challenges/sources/VPC/KUPC/3147", "accuracy": 1, "time_ms": 180, "memory_kb": 23176, "score_of_the_acc": -0.1705, "final_rank": 6 }, { "submission_id": "aoj_3147_4413011", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\nint N;\nint POW[22],dp[20][1 << 20];\nint P[1 << 20];\nstring line;\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i < 21; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tscanf(\"%d\",&N);\n\n\tcin >> line;\n\n\tfor(int i = 0; i < POW[N]; i++){\n\n\t\tscanf(\"%d\",&P[i]);\n\t\tP[i+POW[N]] = P[i];\n\t}\n\n\tfor(int i = 0; i < 2*POW[N]; i++){\n\n\t\tdp[0][i] = P[i];\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int k = 0; k+POW[i] < 2*POW[N]; k++){\n\n\t\t\tint loc = max(dp[i][k],dp[i][k+POW[i]])-min(dp[i][k],dp[i][k+POW[i]]);\n\n\t\t\tif(line[loc-1] == '1'){\n\n\t\t\t\tdp[i+1][k] = max(dp[i][k],dp[i][k+POW[i]]);\n\n\t\t\t}else{\n\n\t\t\t\tdp[i+1][k] = min(dp[i][k],dp[i][k+POW[i]]);\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < POW[N]; i++){\n\n\t\tprintf(\"%d\\n\",dp[N][i]);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 43476, "score_of_the_acc": -0.2464, "final_rank": 13 }, { "submission_id": "aoj_3147_4361750", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define all(x) (x).begin(),(x).end()\nconst int mod=998244353,MAX=1<<18,INF=1<<30;\nint ans[MAX];\nint N;\nstring win;\n\nvoid DFS(vector<int> &S,int bit,int turn){\n if(turn==N){\n ans[bit]=S[0];\n return;\n }\n \n vector<int> T;\n for(int i=0;i<S.size();i+=2){\n int a=S[i],b=S[i+1];\n if(a>b) swap(a,b);\n if(win[b-a-1]=='1'){\n T.push_back(b);\n }else{\n T.push_back(a);\n }\n }\n \n DFS(T,bit,turn+1);\n \n T.clear();\n \n for(int i=1;i<S.size();i+=2){\n int a=S[i],b=S[(i+1)%int(S.size())];\n if(a>b) swap(a,b);\n if(win[b-a-1]=='1'){\n T.push_back(b);\n }else{\n T.push_back(a);\n }\n }\n \n DFS(T,(bit|(1<<turn)),turn+1);\n}\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n cin>>N;\n cin>>win;\n \n vector<int> S((1<<N));\n for(int i=0;i<(1<<N);i++){\n cin>>S[i];\n S[i]--;\n }\n \n DFS(S,0,0);\n \n for(int i=0;i<(1<<N);i++){\n cout<<ans[i]+1<<endl;\n }\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 6300, "score_of_the_acc": -0.1598, "final_rank": 3 }, { "submission_id": "aoj_3147_4356984", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\ntypedef double db;\nmt19937 mrand(1); \nconst ll mod=998244353;\nint rnd(int x) { return mrand() % x;}\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\nll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}\n// head\n\nconst int N=(1<<18)+10;\nchar s[N];\nint p[N],n;\nint win[N][20];\n\nbool gao(int a,int b) {\n\tif (b>a) return s[b-a]=='0';\n\telse return s[a-b]=='1';\n}\nint main() {\n\tscanf(\"%d\",&n);\n\tscanf(\"%s\",s+1);\n\trep(i,0,(1<<n)) {\n\t\tscanf(\"%d\",p+i);\n\t\twin[i][0]=p[i];\n\t}\n\trep(k,0,n) {\n\t\trep(i,0,(1<<n)) {\n\t\t\tint u=win[i][k],v=win[(i+(1<<k))%(1<<n)][k];\n\t\t\tif (gao(u,v)) win[i][k+1]=u; else win[i][k+1]=v;\n\t\t}\n\t}\n\trep(i,0,(1<<n)) printf(\"%d\\n\",win[i][n]);\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 24944, "score_of_the_acc": -0.1324, "final_rank": 1 }, { "submission_id": "aoj_3147_4285245", "code_snippet": "#pragma GCC optimize (\"O3\")\n#include <iostream>\n#include <iomanip>\n#include <istream>\n#include <ostream>\n#include <sstream>\n#include <iterator>\n#include <vector>\n#include <algorithm>\n#include <queue>\n#include <deque>\n#include <list>\n#include <stack>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <bitset>\n#include <utility>\n#include <cmath>\n#include <cstdio>\n#include <cstring>\n#include <string>\n#include <ctime>\n#include <cctype>\n#include <cstdlib>\n#define IINF 10e8\n#define INF 1<<30\n#define MOD 1000000007\n#define mod 998244353\n#define REP(i, a, n) for (ll i = a; i < (ll)(n); i++)\n#define REPE(i, a, n) for (ll i = a; i <= (ll)(n); i++)\n#define Endl endl\n#define fi first\n#define se second\n#define pb push_back\n#define mp make_pair\n#define eb emplace_back\n#define mmax(x,y)(x>y?x:y)\n#define mmin(x,y)(x<y?x:y)\n#define chmax(x,y) x=mmax(x,y)\n#define chmin(x,y) x=mmin(x,y)\n#define all(x) (x).begin(),(x).end()\n#define siz(x) (ll)(x).size()\n#define PI acos(-1.0)\nusing namespace std;\ntypedef long long int ll;\ntypedef long double ld;\ntypedef pair<int,int>Pin;\ntypedef pair<ll,ll>Pll;\ntemplate<class T> using V=vector<T>;\nlong long GCD(long long a, long long b) {return b?GCD(b,a%b):a;}\nlong long LCM(long long a, long long b) {return a/GCD(a,b)*b;}\nint dx[4]={-1,0,1,0};\nint dy[4]={0,-1,0,1};\nint ddx[8]={-1,0,1,0,1,1,-1,-1};\nint ddy[8]={0,-1,0,1,1,-1,1,-1};\nll cmp(pair<ll,ll>a,pair<ll,ll> b){\n if(a.se!=b.se)\n return a.se<b.se;\n else\n return a.fi<b.fi;\n}\n//----------------------------------------------------------------------\nint n; string s; int p[1 << 19];\nint dp[19][1 << 19];\n//----------------------------------------------------------------------\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n //------------------------------- \n //ll begin_time=clock();\n //-------------------------------\n cin>>n>>s;\n for(ll i=0;i<pow(2,n);i++)cin>>p[i];\n for(ll i=0;i<pow(2,n);i++)p[i+(1<<n)]=p[i];\n //double link\n for(ll i=0;i<pow(2,n+1);i++){\n dp[0][i]=p[i];\n }\n for(ll p=0;p<n;p++){\n for(ll left=0;left<pow(2,n+1);left++){\n int right=left+(1<<p);\n if(right>=pow(2,n+1))continue;\n\n int x=dp[p][left];\n int y=dp[p][right];\n if(x>y)swap(x,y);\n if(s[y-x-1]=='0')dp[p+1][left]=x;\n else dp[p+1][left]=y;\n }\n }\n for(int i=0;i<pow(2,n);i++){\n cout<<dp[n][i]<<endl;\n }\n //------------------------------- \n //ll end_time=clock();cout<<\"time=\"<<end_time-begin_time<<\"ms\"<<endl;\n //-------------------------------\n return 0;\n}\n//----------------------------------------------------------------------", "accuracy": 1, "time_ms": 1240, "memory_kb": 43584, "score_of_the_acc": -0.9038, "final_rank": 16 }, { "submission_id": "aoj_3147_4282116", "code_snippet": "#include <iostream> // cin, cout, cerr\n#include <algorithm> // minmax, sort, swap\n#include <numeric> // iota\n#include <cstdio> // printf, scanf\n#include <string> // string, stoi, to_string\n#include <vector> // vector\n#include <queue> // queue, priority_queue\n#include <deque> // deque\n#include <map> // key-value pairs sorted by keys\n#include <set> // set\n#include <iomanip> // cout<<setprecision(n)\n#include <functional> // function<void(int)>\n#include <cmath>\n#include <cassert>\n#include <bitset>\n\n#ifdef DEBUG\n#include \"debug.hpp\"\n#else\n#define debug(...)\n#endif\n\n#define int long long // at least int64 > 9*10^18\n#define EL '\\n'\n#define rep(i,n) for(int i = 0; i < (n); i++)\n#define print(i) std::cout << (i) << '\\n'\n#define all(v) (v).begin(), (v).end()\n/* libraries */\n\nsigned main() {\n\tint n;\n\tstd::cin >> n;\n\tstd::string s;\n\tstd::cin >> s;\n\tstd::vector<int> p(1<<n);\n\trep(i,1<<n) std::cin >> p[i];\n\tauto f = [&] (int a, int b) -> int {\n\t\tif(a>b) std::swap(a,b);\n\t\tif(s[b-a-1]=='0') return a;\n\t\treturn b;\n\t};\n\tstd::vector<std::vector<int> > dp(n+1,std::vector<int>(1<<n));\n\tdp[0]=p;\n\trep(i,n) {\n\t\tint dx=1<<i;\n\t\trep(j,1<<n) {\n\t\t\tdp[i+1][j]=f(dp[i][j],dp[i][(j+dx)%(1<<n)]);\n\t\t}\n\t}\n\tdebug(dp);\n\trep(i,1<<n) print(dp[n][i]);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 46492, "score_of_the_acc": -0.274, "final_rank": 14 }, { "submission_id": "aoj_3147_4281618", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define fs first\n#define sc second\n#define pb push_back\n#define mp make_pair\n#define eb emplace_back\n#define ALL(A) A.begin(),A.end()\n#define RALL(A) A.rbegin(),A.rend()\ntypedef long long LL;\ntypedef pair<int,int> P;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\ntemplate<typename T> T gcd(T a,T b){return b?gcd(b,a%b):a;}\nconst LL mod=998244353;\nconst LL LINF=1LL<<62;\nconst int INF=1<<30;\nint dx[]={1,0,-1,0,1,-1,1,-1};\nint dy[]={0,1,0,-1,1,-1,-1,1};\n\nvector<int> a;\nstring s;\nvector<vector<int>> dp(18,vector<int> (1<<18,-1));\nint n;\n\nint dfs(int k,int l,int r){\n if(k == n) return a[l];\n if(~dp[k][l]) return dp[k][l];\n int N = 1 << n;\n int p = 1 << (n - k - 1);\n int L = dfs(k + 1, l, (r - p + N)%N), R = dfs(k + 1, (l + p)%N, r);\n if(R < L) swap(L, R);\n int ret;\n if(s[R - L - 1] == '1'){\n ret = R;\n }\n else{\n ret = L;\n }\n return dp[k][l] = ret;\n}\n\n\n\n\nint main(){\n cin >> n;\n int N = 1 << n;\n cin >> s;\n a.resize(N);\n for (int i = 0; i < N; i++) {\n cin >> a[i];\n }\n for (int i = 0; i < N; i++) {\n printf(\"%d\\n\",dfs(0, i, i));\n }\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 23096, "score_of_the_acc": -0.1701, "final_rank": 5 }, { "submission_id": "aoj_3147_4281562", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define fs first\n#define sc second\n#define pb push_back\n#define mp make_pair\n#define eb emplace_back\n#define ALL(A) A.begin(),A.end()\n#define RALL(A) A.rbegin(),A.rend()\ntypedef long long LL;\ntypedef pair<int,int> P;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\ntemplate<typename T> T gcd(T a,T b){return b?gcd(b,a%b):a;}\nconst LL mod=998244353;\nconst LL LINF=1LL<<62;\nconst int INF=1<<30;\nint dx[]={1,0,-1,0,1,-1,1,-1};\nint dy[]={0,1,0,-1,1,-1,-1,1};\n\nvector<int> a;\nstring s;\nvector<vector<int>> dp(18,vector<int> (1<<18,-1));\nint n;\n\nLL get_hash(LL l, LL r){\n return l * (1 << n) + r;\n}\n\nint dfs(int k,int l,int r){\n if(k == n) return a[l];\n int ll = l % (1 << n);\n if(~dp[k][ll]) return dp[k][ll];\n int p = 1 << (n - k - 1);\n int L = dfs(k + 1, l, r - p), R = dfs(k + 1, l + p, r);\n if(R < L) swap(L, R);\n int ret;\n if(s[R - L - 1] == '1'){\n ret = R;\n }\n else{\n ret = L;\n }\n return dp[k][ll] = ret;\n}\n\n\n\n\nint main(){\n cin >> n;\n cin >> s;\n a.resize(2 * (1<<n));\n for (int i = 0; i < 1<<n; i++) {\n cin >> a[i];\n a[i+(1<<n)] = a[i];\n }\n for (int i = 0; i < (1<<n); i++) {\n printf(\"%d\\n\",dfs(0, i, i + (1<<n)));\n }\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 24204, "score_of_the_acc": -0.1759, "final_rank": 7 }, { "submission_id": "aoj_3147_4280877", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define fs first\n#define sc second\n#define pb push_back\n#define mp make_pair\n#define eb emplace_back\n#define ALL(A) A.begin(),A.end()\n#define RALL(A) A.rbegin(),A.rend()\ntypedef long long LL;\ntypedef pair<int,int> P;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\ntemplate<typename T> T gcd(T a,T b){return b?gcd(b,a%b):a;}\nconst LL mod=998244353;\nconst LL LINF=1LL<<62;\nconst int INF=1<<30;\nint dx[]={1,0,-1,0,1,-1,1,-1};\nint dy[]={0,1,0,-1,1,-1,-1,1};\n\nvector<int> a;\nstring s;\nunordered_map<int, int> dp;\nint n;\n\nLL get_hash(LL l, LL r){\n return l * (1 << n) + r;\n}\n\nint dfs(int k,int l,int r){\n if(k == n) return a[l];\n LL H = get_hash(l % (1 << n), r % (1 << n));\n if(dp.find(H) != dp.end()) return dp[H];\n int p = 1 << (n - k - 1);\n int L = dfs(k + 1, l, r - p), R = dfs(k + 1, l + p, r);\n if(R < L) swap(L, R);\n int ret;\n if(s[R - L - 1] == '1'){\n ret = R;\n }\n else{\n ret = L;\n }\n return dp[H] = ret;\n}\n\n\n\n\nint main(){\n cin >> n;\n cin >> s;\n a.resize(2 * (1<<n));\n for (int i = 0; i < 1<<n; i++) {\n cin >> a[i];\n a[i+(1<<n)] = a[i];\n }\n for (int i = 0; i < (1<<n); i++) {\n printf(\"%d\\n\",dfs(0, i, i + (1<<n)));\n }\n return 0;\n}", "accuracy": 0.6511627906976745, "time_ms": 1730, "memory_kb": 153948, "score_of_the_acc": -1.7673, "final_rank": 20 }, { "submission_id": "aoj_3147_4280876", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define fs first\n#define sc second\n#define pb push_back\n#define mp make_pair\n#define eb emplace_back\n#define ALL(A) A.begin(),A.end()\n#define RALL(A) A.rbegin(),A.rend()\ntypedef long long LL;\ntypedef pair<int,int> P;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\ntemplate<typename T> T gcd(T a,T b){return b?gcd(b,a%b):a;}\nconst LL mod=998244353;\nconst LL LINF=1LL<<62;\nconst int INF=1<<30;\nint dx[]={1,0,-1,0,1,-1,1,-1};\nint dy[]={0,1,0,-1,1,-1,-1,1};\n\nvector<int> a;\nstring s;\nunordered_map<int, int> dp;\nint n;\n\nint get_hash(int l, int r){\n return l * (1 << n) + r;\n}\n\nint dfs(int k,int l,int r){\n if(k == n) return a[l];\n int H = get_hash(l % (1 << n), r % (1 << n));\n if(dp.find(H) != dp.end()) return dp[H];\n int p = 1 << (n - k - 1);\n int L = dfs(k + 1, l, r - p), R = dfs(k + 1, l + p, r);\n if(R < L) swap(L, R);\n int ret;\n if(s[R - L - 1] == '1'){\n ret = R;\n }\n else{\n ret = L;\n }\n return dp[H] = ret;\n}\n\n\n\n\nint main(){\n cin >> n;\n cin >> s;\n a.resize(2 * (1<<n));\n for (int i = 0; i < 1<<n; i++) {\n cin >> a[i];\n a[i+(1<<n)] = a[i];\n }\n for (int i = 0; i < (1<<n); i++) {\n printf(\"%d\\n\",dfs(0, i, i + (1<<n)));\n }\n return 0;\n}", "accuracy": 0.6511627906976745, "time_ms": 1700, "memory_kb": 153952, "score_of_the_acc": -1.7496, "final_rank": 19 }, { "submission_id": "aoj_3147_4280759", "code_snippet": "/* Aa^~ kokoro ga pyonpyon suru n jaa^~\n// ZZZXXkXkkkZ!``` ``` ``` ``` ``` ``` ``` ``` ``` ``` ``` ```?Wfpppbpbbpbbpbbbkbkk\n// ppbbbpbbpVr`` `` ` ` ` ` ```` `` ` ` `` ` ` ` ` ` ` ` ` ` dppbbkkkkkkkkkkqkqkk\n// HkqqqqqkkWr`` ` ` ``` ``` `?G, ` ` ``.JC!```` ` ` `` `` ````(Wpbkkkkkkkkqkkkkkqk\n// mmmmmqqqqpr` `` `` ```````.+zT=`` `` 7TO-.```````` `` `` ```(yppbkkkkkkkkkkkkkkk\n// ggmgmmqqqH$ ``````````....````` ` ````````.`````` `` ``````.yfpppbbbbkkkkqqqqqH\n// gmmmmmqqqkW<```` `````...````` .,.` ````....````` ``````` (Wbqqmgmmgmggggggggg\n// qmmmqqqqkkWk.``````````````````` ;:<`` `````.`````````````-_<-?WHHqmmmmmmgmmgggg\n// @@@@@@@gggHH6- ``````````````` `` _ `` ```````````````` ._~~_.`-?Wkqmmmmmmmggg@g\n// @@@@g@gggHY~.-<_- `````````````````````````````````` ._~~(<-``.`.(WHqqqmmggggmmm\n// @@g@gggHH=.`..._<-___..```````````````````````. .-_~~~_(!``-.``.`` OHHWUWHmqHWXW\n// gggggmqK1.``..~.. _<<+-(____.. ```````` ..__~~_((<<!.`.``` .``.`` j0C1XUHmHIdW\n// ggmmqH0!,_``.>`````` _<<;<v<<<++((((((((((<<<<<<~_. (-.``~``.>..``` jOuWHHqHIdH\n// gmmqkW!`(_ J>` `` ` _~<`_~~~~<<<<<<<~~__````````` ?1. ._`(__``` zXWHg@HkXH\n// gHHWS{``(lJ<!``.``.```(:+>`._`````.` <..`` - ``. ` _ ?&._.I`_`````` .XyVfppppW\n// HHHSv``.(X:_..... _..(;+<!.(<..-.....-.-_..+_`..<.`.`..`_IJd} .`..````jqg@@@@@@\n// XHWZ{..<Jk~!.`.. (<.-(+>(_.(1.(_..`.`.`.<_.+<_..<<-..._..-zy>.`_`...```.WH@HHHHH\n// bkWt~.-jCz(_..`.(+<.(;< ._-<=_(<_..-....(_.<1<..(<<.`._..-JUS-._.`...```dHmH9VUH\n// WUUO..(f.(c...__+z<-(+~` _-+<_(><..__.`.(<._.z_.(1;_..__.(C(zT-(..`...``(WHR<+Xk\n// kkkk._(_.->..._(z;:_><.._>_+_<(1>_._<...(v<<.(<.(+z<..-_(Z~_<_j+_..`...`(WHKz1ZW\n// @@gR._+_..~..-<+z<<?<>```_.<_.(+1><_;_..(1_:`.<<??1z--(+Z!..<_.j<....`..(bgHAAQX\n// @@mR.(j:..~.._<z!`.(>~``` ~(_.(+<1><><_.(((_`.<__`.<_.(X>...<_.(<.....`.JUWWWyWW\n// @gmH_(zl..(.._+>```<+_````.~>``(+.<?>>_._(<```(<<``(__<>....<.._<.......dXkkkHHH\n// mmqHl(dk_.(_.-=~`.`.1-..._~-1.``_:`(??<_~(`.--.&_.`.<(;<...._.._<..`..._Xg@@@@@@\n// qHkpk(dX<.(;..j_```.(((JJ&a&-~``````.1<_```-(((e+.-(/`(>...._..(<......(Wmggg@@g\n// HVHbWcz><__+_.(_.(dWWHHH@HHc~````````.+~`` (jHMMMHHHm&.?..._<..(<_..._.(WqqHHmHg\n// 0>vWWkzZwl~<o.__`__~X@@HM@Hb ```.`.``. ```` d@@HHH@@K?76...(<..(<_...(_(ppWWWWHq\n// X0XWHKXXw$<(z<.( `` WHHMHHHH_``````````````.WHHMNMHHH_`(...(<_.(z_..._<(fWVC174W\n// XuXWHHWWz>__+z+.!`..??CZYCOX_`````````````.`~.OvTUZUS_`~.._+?_.(_~_.._zjO=1+~+jy\n// kkkkkkkkX:._<z=1(_`` << ``->``.``.``.``.```` ?<`` (v!`._..(??_.(1._.._=dUOOzzzwX\n// @@@@@@@@H<...1O=v<_...__ -_````````````````.`` `` ~.`` :.~+=?~.(;_(...jdQQQQQkkk\n// H@@@@@@@H~...(==>.~~~~~....`.`````````.`````.`........->.(===~~<<.(...(dg@@@@@@@\n// @@@H@@HHH_.__(=l>~.~~~~~....``.``.``.```..`......~~~~~(<_+=l=~_<.->..~_dqggggg@g\n// @H@@@@MHH_._<(=l>...........```````````````.`...~~~~~~+<(=lz=~((j=z_..~jWqmmgggm\n// @@H@@HHWH_._<(lll-.......```.````.``.`..`````........_z<+llZz~(lOO=<...(VYUUUW9Y\n// @@HMMHWZf>~_=:=llw+.`````````.`.```__~~_``.`````.....(z+llOOz_zllOlz~..~<<1+dW>_\n// MMM#MHHWXl~_=>1ltwOl&.`.``.`````.``````````````.````.(llttwtz(OltwOz<..__zwOwwOz\n// HM#HMHUUI<._1z+ttOZttlt&....``.``.`.````.``...``...(zZtttOktzjttttwlz_._<(Xkkkkk\n// HHHmHSZu:(_~+OztttXtttOZZttO+-..............-(+ztOttwttttd0tOZttttwOl<~.(_dMMHHH\n// rvuuXuuI~~<~(uttttwvOwwwkQQHMMHHHHHHHHHMMMNmgey?OwwwrtttwXOtwttttttXtO-~.((wZyyy\n// HHHHHHK>(~(-(dOrtrrl(QgMHMMMHHHHHHHHHHHHHHHH##HMNkX0rrrrXXrd%`` (Ctwwtz_~.<(Wg@H\n// NNNNNHD(~(zo~zXrrrQdHHMMNMHHHHHHHHHHHHHHHHHHHHHH##HNmyrdKkwZ ` _``-zwrt1~~_<(MNM\n// MMMMM#<<_jwr:(Z4QHHMMHMHHHHHHHHHHHHHHHHHHHHHHHHHHHH###NHSXZ>` ~````.OXtt>~._<?MM\n*/\n#include<bits/stdc++.h>\nusing namespace std;\n#ifndef ONLINE_JUDGE\n#define dbg(x...) do { cout << \"\\033[32;1m \" << #x << \" -> \"; err(x); } while (0)\nvoid err() { cout << \"\\033[39;0m\" << endl; }\ntemplate<template<typename...> class T, typename t, typename... A>\nvoid err(T<t> a, A... x) { for (auto v: a) cout << v << ' '; err(x...); }\ntemplate<typename T, typename... A>\nvoid err(T a, A... x) { cout << a << ' '; err(x...); }\n#else\n#define dbg(...)\n#endif\ntypedef long long ll;\ntypedef pair<int,int> pi;\ntypedef vector<int> vi;\ntemplate<class T> using vc=vector<T>;\ntemplate<class T> using vvc=vc<vc<T>>;\ntemplate<class T> void mkuni(vector<T>&v)\n{\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\nll rand_int(ll l, ll r) //[l, r]\n{\n static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());\n return uniform_int_distribution<ll>(l, r)(gen);\n}\ntemplate<class T>\nvoid print(T x,int suc=1)\n{\n cout<<x;\n if(suc==1) cout<<'\\n';\n else cout<<' ';\n}\ntemplate<class T>\nvoid print(const vector<T>&v,int suc=1)\n{\n for(int i=0;i<v.size();i++)\n print(v[i],i==(int)(v.size())-1?suc:2);\n}\nint dp[1<<18][19];\nint main()\n{\n int n;\n cin>>n;\n string s;\n cin>>s;\n int n2=1<<n;\n vi p(n2);\n auto f=[&](int x,int y)\n {\n if(x>y) swap(x,y);\n return s[y-x-1]=='1'?y:x;\n };\n for(int i=0;i<n2;i++) cin>>p[i];\n for(int i=0;i<n2;i++)\n dp[i][0]=p[i];\n for(int j=1;j<=n;j++)\n {\n int len=1<<(j-1);\n for(int i=0;i<n2;i++)\n {\n int r=(i+len)%n2;\n dp[i][j]=f(dp[i][j-1],dp[r][j-1]);\n //dbg(i,j,dp[i][j]);\n }\n }\n for(int i=0;i<n2;i++) cout<<dp[i][n]<<'\\n';\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 23792, "score_of_the_acc": -0.1501, "final_rank": 2 } ]
aoj_3148_cpp
L: 木の彩色 問題文 モデューロさんは木の絵を描くのがとてもうまいです。 モデューロさんは長い年月をかけて頂点が $N$ 個である木の絵を書きました。 この木の頂点には $1$ から $N$ までの番号がついており、頂点 $a_i$ と $b_i$ $(1 \leq i \leq N-1)$ は直接辺でつながれています。 すべての頂点には色がまだ塗られていません。 モデューロさんが書いたこの木の絵はたくさんの人を感動させ、有名な美術館に飾られることが決まりました。 この美術館には順に $N$ 人の人が来場します。モデューロさんは来場者特典として、それぞれの人に $1$ 枚ずつ木の絵のコピーを配布することにしました。 さらに、来場者に満足してもらうため、配布する木の絵の頂点すべてに色を塗ることにしました。 $k$ 番目 $(1 \leq k \leq N)$ に来場する人は、以下の 2 条件を共に満たす絵が配布されたときにのみ満足します。 最短距離が $k$ の倍数である任意の 2 頂点は、同じ色で塗られている。 最短距離が $k$ の倍数でない任意の 2 頂点は、異なる色で塗られている。 モデューロさんが持っている色の数は無限にあります。また、それぞれのコピーで色の塗り方が違っても構いません。 それぞれの来場者に対し、その来場者を満足させるように頂点を塗ることができるかどうか判定してください。 制約 $1 \leq N \leq 10^5$ $1 \leq a_i, b_i \leq N$ 入力はすべて整数である 入力によって与えられるグラフが木であることは保証される。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $a_1$ $b_1$ $a_2$ $b_2$ $\vdots$ $a_{N-1}$ $b_{N-1}$ $1$ 行目には、木の頂点数を表す整数 $N$ が与えられる。 $2$ 行目から $N$ 行目には、木の辺の情報が与えられる。このうち $i+1(1 \leq i \leq N-1)$ 行目には、頂点 $a_i$ と $b_i$ が辺でつながっていることを示す 2 つの整数 $a_i,b_i$ が与えられる。 出力 以下を満たす 0 または 1 からなる文字列 $S = s_1 s_2 \ldots s_N$ を出力せよ。 $s_k = 1$ : $k$ 番目の来場者が満足できるよう与えられた木の絵の頂点に彩色できる $s_k = 0$ : $k$ 番目の来場者が満足できるよう与えられた木の絵の頂点に彩色できない 入力例 1 7 1 3 2 3 3 4 4 5 4 6 6 7 出力例 1 1100111 入力例1の木は以下の図のようになります。 例えば、$k=2$ の時、以下のように塗れば条件を満たします。 また、$k=5$ の時、以下のように塗れば条件を満たします。 入力例 2 6 1 2 2 3 3 4 4 5 5 6 出力例 2 111111 入力例 3 1 出力例 3 1
[ { "submission_id": "aoj_3148_10155594", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint main(){\n ios::sync_with_stdio(false); \n cin.tie(nullptr);\n int N; cin >> N;\n vector<vector<int>> g(N);\n for(int i=0;i<N-1;i++){\n int u,v; cin >> u >> v; \n u--; v--;\n g[u].push_back(v); \n g[v].push_back(u);\n }\n vector<int> parent(N,-1), q;\n q.push_back(0);\n for(int i=0;i<(int)q.size();i++){\n int cur=q[i];\n for(auto &adj: g[cur]){\n if(adj==parent[cur]) continue;\n parent[adj]=cur;\n q.push_back(adj);\n }\n }\n vector<int> len(N,0), lenDown(N,0);\n int maxInvalid=0;\n for(int i=N-1;i>=0;i--){\n int cur=q[i];\n for(auto &adj:g[cur]){\n if(adj==parent[cur]) continue;\n len[cur]=max(len[cur], len[adj]);\n }\n len[cur]++;\n }\n for(int i=0;i<N;i++){\n int cur=q[i];\n vector<int> maxLeft(g[cur].size()+1);\n maxLeft[0]=lenDown[cur];\n for(int j=0;j<(int)g[cur].size();j++){\n int adj=g[cur][j];\n maxLeft[j+1]=max(maxLeft[j], adj==parent[cur]?0:len[adj]);\n }\n int maxRight=0;\n for(int j=(int)g[cur].size()-1;j>=0;j--){\n int adj=g[cur][j];\n if(adj==parent[cur]) continue;\n lenDown[adj]=max(maxLeft[j], maxRight)+1;\n maxRight=max(maxRight, len[adj]);\n }\n if((int)g[cur].size()>=3){\n vector<int> lens; \n lens.push_back(lenDown[cur]);\n for(auto &adj:g[cur]){\n if(adj==parent[cur]) continue;\n lens.push_back(len[adj]);\n }\n sort(lens.begin(), lens.end());\n int len0=lens.back();\n int len1=lens[lens.size()-2];\n int len2=lens[lens.size()-3];\n maxInvalid=max(maxInvalid, len0);\n if(len0==len2) maxInvalid=max(maxInvalid, len0+len2-1);\n else maxInvalid=max(maxInvalid, len0+len2);\n }\n }\n string ans(N,'1');\n for(int i=3;i<=maxInvalid && i<=N;i++){\n ans[i-1]='0';\n }\n cout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 11992, "score_of_the_acc": -0.0234, "final_rank": 1 }, { "submission_id": "aoj_3148_9159777", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll=int64_t;\n\n\nvector<vector<int>> g(100001);\nvector<int> d(100001);\nint limit=2;\n\nvoid dfs(int c,int pa){\n d[c]=0;\n for(int nx:g[c]){\n if(nx==pa) continue;\n dfs(nx,c);\n d[c]=max(d[c],d[nx]);\n }\n d[c]++;\n return;\n}\n\nvoid dfs1(int c,int pa,int dp){\n vector<pair<int,int>> p;\n for(int nx:g[c]){\n if(nx==pa) continue;\n p.emplace_back(d[nx],nx);\n }\n p.emplace_back(dp,pa);\n sort(p.rbegin(),p.rend());\n \n if((g[c].size()>=3)&&(p[2].first>=1)){\n int d1=p[0].first;\n int d2=p[2].first;\n if(d1!=d2) limit=max(limit,d1+d2);\n else limit=max(limit,d1+d2-1);\n }\n \n for(int nx:g[c]){\n if(nx==pa) continue;\n if(nx==p[0].second) dfs1(nx,c,p[1].first+1);\n else dfs1(nx,c,p[0].first+1);\n }\n return;\n}\n\n\nint main(){\n int N;\n cin >> N;\n if(N==1){\n cout << 1 << endl;\n return 0;\n }\n \n int a,b;\n\n for(int i=0;i<N-1;i++){\n cin >> a >> b;\n a--;b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n \n dfs(0,-1);\n dfs1(0,-1,0);\n \n vector<int> ans(N,1);\n for(int i=2;i<limit;i++) ans[i]=0;\n //cout << limit << endl;\n //for(int i=0;i<N;i++) cout << d[i] << endl;\n \n for(int x:ans) cout << x;\n cout << endl;\n\n \n}", "accuracy": 1, "time_ms": 50, "memory_kb": 22776, "score_of_the_acc": -0.2825, "final_rank": 4 }, { "submission_id": "aoj_3148_6593691", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n\nstruct Info{\n\tInfo(int arg_node,int arg_dist){\n\t\tnode = arg_node;\n\t\tdist = arg_dist;\n\t}\n\tbool operator<(const struct Info &arg) const{\n\n\t\treturn dist > arg.dist;\n\t}\n\tint node,dist;\n};\n\nint N;\nint max_dist[SIZE];\nint number;\nvector<int> G[SIZE];\nvector<Info> children[SIZE];\n\nvoid dfs(int node_id,int pre){\n\n\tint tmp_max = 0;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs(child,node_id);\n\n\t\tchildren[node_id].push_back(Info(child,max_dist[child]+1));\n\t\ttmp_max = max(tmp_max,max_dist[child]+1);\n\t}\n\tmax_dist[node_id] = tmp_max;\n}\n\nvoid dfs2(int node_id,int pre){\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre){\n\n\t\t\tif(node_id == children[pre][0].node){ //自分が親の最大方向\n\n\t\t\t\tif(children[pre].size() == 1){ //親の子が自分しかいない\n\n\t\t\t\t\tchildren[node_id].push_back(Info(pre,1));\n\t\t\t\t}else{\n\n\t\t\t\t\tchildren[node_id].push_back(Info(pre,children[pre][1].dist+1));\n\t\t\t\t}\n\n\t\t\t}else{\n\n\t\t\t\tchildren[node_id].push_back(Info(pre,children[pre][0].dist+1));\n\t\t\t}\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tint value;\n\n\tif(children[node_id].size() > 2){\n\n\t\tsort(children[node_id].begin(),children[node_id].end());\n\n\t\tif(children[node_id][0].dist == children[node_id][2].dist){\n\n\t\t\tvalue = children[node_id][0].dist + children[node_id][2].dist;\n\t\t}else{\n\n\t\t\tvalue = children[node_id][0].dist+children[node_id][2].dist+1;\n\t\t}\n\n\t\t//printf(\"node_id:%d\\n\",node_id);\n\t\t/*for(int i = 0; i < 3; i++){\n\n\t\t\tprintf(\"child[%d]:%d dist:%d\\n\",i,children[node_id][i].node,children[node_id][i].dist);\n\t\t}*/\n\n\t\tnumber = max(number,value);\n\t}\n\n\t//親を先に処理\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs2(child,node_id);\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d\",&N);\n\n\tint from,to;\n\tfor(int i = 0; i < N-1; i++){\n\n\t\tscanf(\"%d %d\",&from,&to);\n\t\tfrom--;\n\t\tto--;\n\t\tG[from].push_back(to);\n\t\tG[to].push_back(from);\n\t}\n\n\tif(N <= 2){\n\n\t\tfor(int i = 0; i < N; i++){\n\n\t\t\tprintf(\"1\");\n\t\t}\n\t\tprintf(\"\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tmax_dist[i] = 0;\n\t}\n\n\tdfs(0,-1);\n\n\tnumber = -1;\n\tdfs2(0,-1);\n\n\tif(number <= 2){\n\n\t\tfor(int i = 0; i < N; i++){\n\n\t\t\tprintf(\"1\");\n\t\t}\n\t\tprintf(\"\\n\");\n\t\treturn 0;\n\t}\n\n\tprintf(\"11\");\n\tfor(int i = 3; i <= number-1; i++){\n\n\t\tprintf(\"0\");\n\t}\n\tfor(int i = number; i <= N; i++){\n\n\t\tprintf(\"1\");\n\t}\n\tprintf(\"\\n\");\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 25424, "score_of_the_acc": -0.3988, "final_rank": 9 }, { "submission_id": "aoj_3148_4875890", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3142\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n\n//BEGIN CUT HERE\ntemplate<typename T, typename Edge>\nstruct ReRooting{\n struct Node{\n int to,rev;\n Edge data;\n Node(int to,Edge data):to(to),data(data){}\n bool operator<(const Node &v)const{return to<v.to;};\n };\n\n using Fold = function<T(T, T)>;\n using Lift = function<T(T, Edge)>;\n\n vector< vector<Node> > G;\n vector< vector<T> > ld,rd;\n vector<int> lp,rp;\n\n const Fold fold;\n const Lift lift;\n const T id;\n\n ReRooting(int n,const Fold fold,const Lift lift,const T id):\n G(n),ld(n),rd(n),lp(n),rp(n),fold(fold),lift(lift),id(id){}\n\n void add_edge(int u,int v,Edge d,Edge e){\n G[u].emplace_back(v,d);\n G[v].emplace_back(u,e);\n }\n\n void add_edge(int u,int v,Edge d){add_edge(u,v,d,d);}\n\n // k: idx for edge (not vertex)\n T dfs(int v,int k){\n while(lp[v]!=k and lp[v]<(int)G[v].size()){\n auto &e=G[v][lp[v]];\n ld[v][lp[v]+1]=fold(ld[v][lp[v]],lift(dfs(e.to,e.rev),e.data));\n lp[v]++;\n }\n while(rp[v]!=k and rp[v]>=0){\n auto &e=G[v][rp[v]];\n rd[v][rp[v]]=fold(rd[v][rp[v]+1],lift(dfs(e.to,e.rev),e.data));\n rp[v]--;\n }\n if(k<0) return rd[v][0];\n return fold(ld[v][k],rd[v][k+1]);\n }\n\n int search(vector<Node> &vs,int idx){\n return lower_bound(vs.begin(),vs.end(),Node(idx,vs[0].data))-vs.begin();\n }\n\n vector<T> build(){\n int n=G.size();\n for(int i=0;i<n;i++){\n sort(G[i].begin(),G[i].end());\n ld[i].assign((int)G[i].size()+1,id);\n rd[i].assign((int)G[i].size()+1,id);\n lp[i]=0;\n rp[i]=(int)G[i].size()-1;\n }\n\n for(int i=0;i<n;i++)\n for(Node &t:G[i])\n t.rev=search(G[t.to],i);\n\n vector<T> res;\n for(int i=0;i<n;i++)\n res.emplace_back(dfs(i,-1));\n\n return res;\n }\n\n // p: idx for vertex\n T subtree(int v,int p){\n int k=search(G[p],v);\n assert(k<(int)G[p].size() and G[p][k].to==v);\n return lift(dfs(v,G[p][k].rev),G[p][k].data);\n }\n};\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n struct T{\n ll a,b,c;\n T(ll a,ll b,ll c):a(a),b(b),c(c){}\n };\n\n const ll INF = 1e9;\n auto fold=[&](T x,T y){\n vector<ll> vs({x.a,x.b,x.c,y.a,y.b,y.c});\n sort(vs.rbegin(),vs.rend());\n return T(vs[0],vs[1],vs[2]);\n };\n auto lift=[&](T x,ll y){\n chmax(x.a,0);\n x.a+=y;\n x.b=-INF;\n x.c=-INF;\n return x;\n };\n\n int n;\n cin>>n;\n if(n==1) drop(1);\n\n ReRooting<T, ll> G(n,fold,lift,T(-INF,-INF,-INF));\n for(int i=1;i<n;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n G.add_edge(u,v,1);\n }\n auto res=G.build();\n\n string ans(n+1,'1');\n\n for(int i=0;i<n;i++){\n if(G.G[i].size()<3) continue;\n T v=res[i];\n ans[v.a+min({v.a-1,v.b,v.c})]='0';\n }\n\n for(int i=n-1;i>=0;i--)\n if(ans[i+1]=='0') ans[i]='0';\n\n ans[1]='1';\n ans[2]='1';\n cout<<ans.substr(1)<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 88340, "score_of_the_acc": -1.5147, "final_rank": 15 }, { "submission_id": "aoj_3148_4875801", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\n\n\ntemplate<typename Data, typename T>\nstruct ReRooting{\n struct Node{\n Int to,rev;\n Data data;\n Node(Int to,Int rev,Data data):to(to),rev(rev),data(data){}\n };\n\n using F1 = function<T(T, T)>;\n using F2 = function<T(T, Data)>;\n\n vector<vector<Node> > G;\n vector<vector<T> > ld,rd;\n vector<Int> lp,rp;\n\n const F1 f1;\n const F2 f2;\n const T id;\n\n ReRooting(Int n,const F1 f1,const F2 f2,const T &id):\n G(n),ld(n),rd(n),lp(n),rp(n),f1(f1),f2(f2),id(id){}\n\n void add_edge(Int u,Int v,Data d){\n G[u].emplace_back(v,(Int)G[v].size(),d);\n G[v].emplace_back(u,(Int)G[u].size()-1,d);\n }\n\n // p: idx for edge (not vertex)\n T dfs(Int v,Int p){\n while(lp[v]!=p&&lp[v]<(Int)G[v].size()){\n auto &e=G[v][lp[v]];\n ld[v][lp[v]+1]=f1(ld[v][lp[v]],f2(dfs(e.to,e.rev),e.data));\n lp[v]++;\n }\n while(rp[v]!=p&&rp[v]>=0){\n auto &e=G[v][rp[v]];\n rd[v][rp[v]]=f1(rd[v][rp[v]+1],f2(dfs(e.to,e.rev),e.data));\n rp[v]--;\n }\n if(p<0) return rd[v][0];\n return f1(ld[v][p],rd[v][p+1]);\n }\n\n vector<T> build(){\n for(Int i=0;i<(Int)G.size();i++){\n ld[i].assign((Int)G[i].size()+1,id);\n rd[i].assign((Int)G[i].size()+1,id);\n lp[i]=0;\n rp[i]=(Int)G[i].size()-1;\n }\n vector<T> res;\n for(Int i=0;i<(Int)G.size();i++){\n res.emplace_back(dfs(i,-1));\n }\n return res;\n }\n};\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n struct T{\n Int a,b,c;\n T(Int a,Int b,Int c):a(a),b(b),c(c){}\n };\n\n const Int INF = 1e9;\n auto f1=\n [&](T x,T y){\n vector<Int> vs({x.a,x.b,x.c,y.a,y.b,y.c});\n sort(vs.rbegin(),vs.rend());\n return T(vs[0],vs[1],vs[2]);\n };\n auto f2=\n [&](T x,Int y){\n chmax(x.a,0);\n x.a+=y;\n x.b=-INF;\n x.c=-INF;\n return x;\n };\n\n Int n;\n cin>>n;\n if(n==1) drop(1);\n\n ReRooting<Int, T> G(n,f1,f2,T(-INF,-INF,-INF));\n for(Int i=1;i<n;i++){\n Int u,v;\n cin>>u>>v;\n u--;v--;\n G.add_edge(u,v,1);\n }\n auto res=G.build();\n\n string ans(n+1,'1');\n\n for(Int i=0;i<n;i++){\n if(G.G[i].size()<3) continue;\n T v=res[i];\n assert(v.a>=v.b);\n assert(v.b>=v.c);\n assert(v.c>=1);\n // cout<<v.a<<\" \"<<v.b<<\" \"<<v.c<<endl;\n ans[v.a+min({v.a-1,v.b,v.c})]='0';\n }\n\n for(Int i=n-1;i>=0;i--)\n if(ans[i+1]=='0') ans[i]='0';\n\n ans[1]='1';\n ans[2]='1';\n cout<<ans.substr(1)<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 90512, "score_of_the_acc": -1.5833, "final_rank": 16 }, { "submission_id": "aoj_3148_4740389", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n\nstruct Info{\n\tInfo(int arg_node,int arg_dist){\n\t\tnode = arg_node;\n\t\tdist = arg_dist;\n\t}\n\tbool operator<(const struct Info &arg) const{\n\n\t\treturn dist > arg.dist;\n\t}\n\tint node,dist;\n};\n\nint N;\nint max_dist[SIZE];\nint number;\nvector<int> G[SIZE];\nvector<Info> children[SIZE];\n\nvoid dfs(int node_id,int pre){\n\n\tint tmp_max = 0;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs(child,node_id);\n\n\t\tchildren[node_id].push_back(Info(child,max_dist[child]+1));\n\t\ttmp_max = max(tmp_max,max_dist[child]+1);\n\t}\n\tmax_dist[node_id] = tmp_max;\n}\n\nvoid dfs2(int node_id,int pre){\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre){\n\n\t\t\tif(node_id == children[pre][0].node){ //自分が親の最大方向\n\n\t\t\t\tif(children[pre].size() == 1){ //親の子が自分しかいない\n\n\t\t\t\t\tchildren[node_id].push_back(Info(pre,1));\n\t\t\t\t}else{\n\n\t\t\t\t\tchildren[node_id].push_back(Info(pre,children[pre][1].dist+1));\n\t\t\t\t}\n\n\t\t\t}else{\n\n\t\t\t\tchildren[node_id].push_back(Info(pre,children[pre][0].dist+1));\n\t\t\t}\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tint value;\n\n\tif(children[node_id].size() > 2){\n\n\t\tsort(children[node_id].begin(),children[node_id].end());\n\n\t\tif(children[node_id][0].dist == children[node_id][2].dist){\n\n\t\t\tvalue = children[node_id][0].dist + children[node_id][2].dist;\n\t\t}else{\n\n\t\t\tvalue = children[node_id][0].dist+children[node_id][2].dist+1;\n\t\t}\n\n\t\t//printf(\"node_id:%d\\n\",node_id);\n\t\t/*for(int i = 0; i < 3; i++){\n\n\t\t\tprintf(\"child[%d]:%d dist:%d\\n\",i,children[node_id][i].node,children[node_id][i].dist);\n\t\t}*/\n\n\t\tnumber = max(number,value);\n\t}\n\n\t//親を先に処理\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs2(child,node_id);\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d\",&N);\n\n\tint from,to;\n\tfor(int i = 0; i < N-1; i++){\n\n\t\tscanf(\"%d %d\",&from,&to);\n\t\tfrom--;\n\t\tto--;\n\t\tG[from].push_back(to);\n\t\tG[to].push_back(from);\n\t}\n\n\tif(N <= 2){\n\n\t\tfor(int i = 0; i < N; i++){\n\n\t\t\tprintf(\"1\");\n\t\t}\n\t\tprintf(\"\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tmax_dist[i] = 0;\n\t}\n\n\tdfs(0,-1);\n\n\tnumber = -1;\n\tdfs2(0,-1);\n\n\tif(number <= 2){\n\n\t\tfor(int i = 0; i < N; i++){\n\n\t\t\tprintf(\"1\");\n\t\t}\n\t\tprintf(\"\\n\");\n\t\treturn 0;\n\t}\n\n\tprintf(\"11\");\n\tfor(int i = 3; i <= number-1; i++){\n\n\t\tprintf(\"0\");\n\t}\n\tfor(int i = number; i <= N; i++){\n\n\t\tprintf(\"1\");\n\t}\n\tprintf(\"\\n\");\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 25440, "score_of_the_acc": -0.3573, "final_rank": 6 }, { "submission_id": "aoj_3148_4740379", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n\nstruct Info{\n\tInfo(int arg_node,int arg_dist){\n\t\tnode = arg_node;\n\t\tdist = arg_dist;\n\t}\n\tbool operator<(const struct Info &arg) const{\n\n\t\treturn dist > arg.dist;\n\t}\n\tint node,dist;\n};\n\nint N;\nint max_dist[SIZE];\nint number;\nvector<int> G[SIZE];\nvector<Info> children[SIZE];\n\nvoid dfs(int node_id,int pre){\n\n\tint tmp_max = 0;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs(child,node_id);\n\n\t\tchildren[node_id].push_back(Info(child,max_dist[child]+1));\n\t\ttmp_max = max(tmp_max,max_dist[child]+1);\n\t}\n\tmax_dist[node_id] = tmp_max;\n}\n\nvoid dfs2(int node_id,int pre){\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre){\n\n\t\t\tif(node_id == children[pre][0].node){ //自分が親の最大方向\n\n\t\t\t\tif(children[pre].size() == 1){ //親の子が自分しかいない\n\n\t\t\t\t\tchildren[node_id].push_back(Info(pre,1));\n\t\t\t\t}else{\n\n\t\t\t\t\tchildren[node_id].push_back(Info(pre,children[pre][1].dist+1));\n\t\t\t\t}\n\n\t\t\t}else{\n\n\t\t\t\tchildren[node_id].push_back(Info(pre,children[pre][0].dist+1));\n\t\t\t}\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tint value;\n\n\tif(children[node_id].size() > 2){\n\n\t\tsort(children[node_id].begin(),children[node_id].end());\n\n\t\tif(children[node_id][0].dist == children[node_id][2].dist){\n\n\t\t\tvalue = children[node_id][0].dist + children[node_id][2].dist;\n\t\t}else{\n\n\t\t\tvalue = children[node_id][0].dist+children[node_id][2].dist+1;\n\t\t}\n\n\t\t//printf(\"node_id:%d\\n\",node_id);\n\t\t/*for(int i = 0; i < 3; i++){\n\n\t\t\tprintf(\"child[%d]:%d dist:%d\\n\",i,children[node_id][i].node,children[node_id][i].dist);\n\t\t}*/\n\n\t\tnumber = max(number,value);\n\t}\n\n\t//親を先に処理\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs2(child,node_id);\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d\",&N);\n\n\tint from,to;\n\tfor(int i = 0; i < N-1; i++){\n\n\t\tscanf(\"%d %d\",&from,&to);\n\t\tfrom--;\n\t\tto--;\n\t\tG[from].push_back(to);\n\t\tG[to].push_back(from);\n\t}\n\n\tif(N <= 2){\n\n\t\tfor(int i = 0; i < N; i++){\n\n\t\t\tprintf(\"1\");\n\t\t}\n\t\tprintf(\"\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tmax_dist[i] = 0;\n\t}\n\n\tdfs(0,-1);\n\n\tnumber = -1;\n\tdfs2(0,-1);\n\n\tif(number == -1){\n\n\t\tfor(int i = 0; i < N; i++){\n\n\t\t\tprintf(\"1\");\n\t\t}\n\t\tprintf(\"\\n\");\n\t\treturn 0;\n\t}\n\n\tprintf(\"11\");\n\tfor(int i = 3; i <= number-1; i++){\n\n\t\tprintf(\"0\");\n\t}\n\tfor(int i = number; i <= N; i++){\n\n\t\tprintf(\"1\");\n\t}\n\tprintf(\"\\n\");\n\n\treturn 0;\n}", "accuracy": 0.8026315789473685, "time_ms": 70, "memory_kb": 25496, "score_of_the_acc": -0.3997, "final_rank": 17 }, { "submission_id": "aoj_3148_4740365", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n\nstruct Info{\n\tInfo(int arg_node,int arg_dist){\n\t\tnode = arg_node;\n\t\tdist = arg_dist;\n\t}\n\tbool operator<(const struct Info &arg) const{\n\n\t\treturn dist > arg.dist;\n\t}\n\tint node,dist;\n};\n\nint N;\nint max_dist[SIZE];\nint number;\nvector<int> G[SIZE];\nvector<Info> children[SIZE];\n\nvoid dfs(int node_id,int pre){\n\n\tint tmp_max = 0;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs(child,node_id);\n\n\t\tchildren[node_id].push_back(Info(child,max_dist[child]+1));\n\t\ttmp_max = max(tmp_max,max_dist[child]+1);\n\t}\n\tmax_dist[node_id] = tmp_max;\n}\n\nvoid dfs2(int node_id,int pre){\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre){\n\n\t\t\tif(node_id == children[pre][0].node){ //自分が親の最大方向\n\n\t\t\t\tif(children[pre].size() == 1){ //親の子が自分しかいない\n\n\t\t\t\t\tchildren[node_id].push_back(Info(pre,1));\n\t\t\t\t}else{\n\n\t\t\t\t\tchildren[node_id].push_back(Info(pre,children[pre][1].dist+1));\n\t\t\t\t}\n\n\t\t\t}else{\n\n\t\t\t\tchildren[node_id].push_back(Info(pre,children[pre][0].dist+1));\n\t\t\t}\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tint value;\n\n\tif(children[node_id].size() > 2){\n\n\t\tsort(children[node_id].begin(),children[node_id].end());\n\n\t\tif(children[node_id][0].dist == children[node_id][2].dist){\n\n\t\t\tvalue = children[node_id][0].dist + children[node_id][2].dist;\n\t\t}else{\n\n\t\t\tvalue = children[node_id][0].dist+children[node_id][2].dist+1;\n\t\t}\n\n\t\t//printf(\"node_id:%d\\n\",node_id);\n\t\t/*for(int i = 0; i < 3; i++){\n\n\t\t\tprintf(\"child[%d]:%d dist:%d\\n\",i,children[node_id][i].node,children[node_id][i].dist);\n\t\t}*/\n\n\t\tnumber = max(number,value);\n\t}\n\n\t//親を先に処理\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint child = G[node_id][i];\n\t\tif(child == pre)continue;\n\n\t\tdfs2(child,node_id);\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d\",&N);\n\n\tint from,to;\n\tfor(int i = 0; i < N-1; i++){\n\n\t\tscanf(\"%d %d\",&from,&to);\n\t\tfrom--;\n\t\tto--;\n\t\tG[from].push_back(to);\n\t\tG[to].push_back(from);\n\t}\n\n\tif(N <= 2){\n\n\t\tfor(int i = 0; i < N; i++){\n\n\t\t\tprintf(\"1\");\n\t\t}\n\t\tprintf(\"\\n\");\n\t\treturn 0;\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tmax_dist[i] = 0;\n\t}\n\n\tdfs(0,-1);\n\n\tnumber = -1;\n\tdfs2(0,-1);\n\n\t//printf(\"number:%d\\n\",number);\n\n\tprintf(\"11\");\n\tfor(int i = 3; i <= number-1; i++){\n\n\t\tprintf(\"0\");\n\t}\n\tfor(int i = number; i <= N; i++){\n\n\t\tprintf(\"1\");\n\t}\n\tprintf(\"\\n\");\n\n\treturn 0;\n}", "accuracy": 0.19736842105263158, "time_ms": 30, "memory_kb": 25452, "score_of_the_acc": -0.2325, "final_rank": 20 }, { "submission_id": "aoj_3148_4554477", "code_snippet": "#include <iostream>\n#include <utility>\n#include <tuple>\n#include <vector>\n#include <string>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <unordered_set>\n#include <algorithm>\n#include <functional>\n#include <climits>\n#include <numeric>\n#include <queue>\n#include <cmath>\n#include <iomanip>\n#include <array>\n#include <string>\n#include <stack>\n\nint main() {\n\tint n; std::cin >> n;\n\tstd::vector<std::vector<int>> nodes(n);\n\tfor (auto i = 1; i < n; ++i) {\n\t\tint a, b; std::cin >> a >> b;\n\t\tnodes[a - 1].push_back(b - 1);\n\t\tnodes[b - 1].push_back(a - 1);\n\t}\n\tstd::stack<int> stack; stack.push(0);\n\tstd::vector<int> depth(n, -1); depth[0] = 1;\n\twhile (!stack.empty()) {\n\t\tconst auto top = stack.top(); stack.pop();\n\t\tfor (const auto next : nodes[top]) if (depth[next] == -1) {\n\t\t\tdepth[next] = depth[top] + 1;\n\t\t\tstack.push(next);\n\t\t}\n\t}\n\tconst auto end_a = std::distance(depth.begin(), std::max_element(depth.begin(), depth.end()));\n\tstack.push(end_a);\n\tdepth.assign(n, -1); depth[end_a] = 1;\n\tstd::vector<int> height(n, -1);\n\twhile (!stack.empty()) {\n\t\tconst auto top = stack.top(); stack.pop();\n\t\tif (top >= 0) {\n\t\t\tstack.push(-1 - top);\n\t\t\tfor (const auto next : nodes[top]) if (depth[next] == -1) {\n\t\t\t\tdepth[next] = depth[top] + 1;\n\t\t\t\tstack.push(next);\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tconst auto current = -1 - top;\n\t\t\theight[current] = 1;\n\t\t\tfor (const auto next : nodes[current]) {\n\t\t\t\theight[current] = std::max(height[current], height[next] + 1);\n\t\t\t}\n\t\t}\n\t}\n\tint max{ 2 };\n\tfor (auto i = 0; i < n; ++i) if (nodes[i].size() >= 3) {\n\t\tstd::vector<int> length; length.reserve(nodes[i].size() + 1);\n\t\tstd::transform(nodes[i].begin(), nodes[i].end(), std::back_inserter(length), [&depth, &height, i](const int a) {return depth[i] < depth[a] ? height[a] : depth[a]; });\n\t\tstd::sort(length.rbegin(), length.rend());\n\t\tconst auto k = length[0] + length[2];\n\t\tif (length[0] == length[2]) {\n\t\t\tmax = std::max(max, k);\n\t\t}\n\t\telse {\n\t\t\tmax = std::max(max, k + 1);\n\t\t}\n\t}\n\tfor (auto i = 1; i <= n; ++i) {\n\t\tif (3 <= i && i < max) {\n\t\t\tstd::cout << '0';\n\t\t}\n\t\telse {\n\t\t\tstd::cout << '1';\n\t\t}\n\t}\n\tstd::cout << std::endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 10112, "score_of_the_acc": -0.1667, "final_rank": 2 }, { "submission_id": "aoj_3148_4380076", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cmath>\n#include <ctime>\n#include <cstdlib>\n#include <cassert>\n#include <vector>\n#include <list>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <set>\n#include <bitset>\n#include <string>\n#include <algorithm>\n#define llint long long\n#define inf 1e18\n#define mod 998244353\n#define rep(x, s, t) for(llint (x) = (s); (x) < (t); (x)++)\n#define Rep(x, s, t) for(llint (x) = (s); (x) <= (t); (x)++)\n\nusing namespace std;\ntypedef pair<llint, llint> P;\n\nint n;\nvector<llint> G[100005];\nmap<P, llint> mp;\nint dif[100005];\n\nint parent[500005];\nllint dp[500005], dp2[500005];\n\nconst llint e = 0; //\nllint ope(llint a, llint b)\n{\n\treturn max(a, b); //\n}\n\nllint get(int u, int v)\n{\n\tif(parent[u] == v) return dp2[u];\n\telse return dp[v];\n}\n\nvoid dfs(int v, int p)\n{\n\tparent[v] = p;\n\tfor(int i = 0; i < G[v].size(); i++){\n\t\tif(G[v][i] == p) continue;\n\t\tdfs(G[v][i], v);\n\t}\n\t\n\tllint sum = e;\n\tfor(int i = 0; i < G[v].size(); i++){\n\t\tint u = G[v][i];\n\t\tif(u == p) continue;\n\t\tsum = ope(sum, get(v, u)); //\n\t}\n\tdp[v] = sum+1; //\n}\n\nllint lsum[500005], rsum[500005];\nvoid dfs2(int v, int p)\n{\n\tllint m = G[v].size(), sum;\n\t\n\tsum = lsum[0] = e;\n\tfor(int i = 0; i < m; i++){\n\t\tint u = G[v][i];\n\t\tsum = ope(sum, get(v, u)); //\n\t\tlsum[i+1] = sum;\n\t}\n\tsum = rsum[m+1] = e;\n\tfor(int i = m-1; i >= 0; i--){\n\t\tint u = G[v][i];\n\t\tsum = ope(sum, get(v, u)); //\n\t\trsum[i+1] = sum;\n\t}\n\tfor(int i = 0; i < m; i++){\n\t\tif(G[v][i] == p) continue;\n\t\tdp2[G[v][i]] = ope(lsum[i], rsum[i+2])+1; //\n\t}\n\t\n\tfor(int i = 0; i < G[v].size(); i++){\n\t\tif(G[v][i] == p) continue;\n\t\tdfs2(G[v][i], v);\n\t}\n}\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n;\n\tint u, v;\n\tfor(int i = 0; i < n-1; i++){\n\t\tcin >> u >> v;\n\t\tG[u].push_back(v);\n\t\tG[v].push_back(u);\n\t}\n\t\n\tdfs(1, -1);\n\tdfs2(1, -1);\n\t\n\t/*for(auto it = mp.begin(); it != mp.end(); it++){\n\t\tcout << it->first.first << \" \" << it->first.second << \" \" << it->second << endl;\n\t}*/\n\t\n\tvector<llint> vec;\n\tfor(int i = 1; i <= n; i++){\n\t\tif(G[i].size() < 3) continue;\n\t\tvec.clear();\n\t\tfor(int j = 0; j < G[i].size(); j++){\n\t\t\tvec.push_back(get(i, G[i][j]));\n\t\t}\n\t\tsort(vec.rbegin(), vec.rend());\n\t\tllint x = vec[0], y = vec[2], l, r;\n\t\t//cout << i << \" \" << x << \" \" << y << endl;\n\t\tif(y == 0 || x+y < 3) continue;\n\t\t\n\t\tif(x > y) l = 3, r = x+y;\n\t\telse l = 3, r = 2*x-1;\n\t\tdif[l]++, dif[r+1]--;\n\t}\n\t\n\tllint sum = 0;\n\tfor(int i = 1; i <= n; i++){\n\t\tsum += dif[i];\n\t\tif(sum) cout << 0;\n\t\telse cout << 1;\n\t}\n\tcout << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 16868, "score_of_the_acc": -0.209, "final_rank": 3 }, { "submission_id": "aoj_3148_4357023", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,a,n) for (int i=a;i<n;i++)\n#define per(i,a,n) for (int i=n-1;i>=a;i--)\n#define pb push_back\n#define mp make_pair\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define SZ(x) ((int)(x).size())\ntypedef vector<int> VI;\ntypedef long long ll;\ntypedef pair<int,int> PII;\ntypedef double db;\nmt19937 mrand(random_device{}()); \nconst ll mod=998244353;\nint rnd(int x) { return mrand() % x;}\nll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}\nll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}\n// head\n\nconst int N=101000;\nint n,u,v;\nint dis[N],dis2[N];\nVI e[N],br[N];\n\nvoid dfs(int u,int f) {\n\tdis[u]=0;\n\tfor (auto v:e[u]) {\n\t\tif (v==f) continue;\n\t\tdfs(v,u);\n\t\tdis[u]=max(dis[u],dis[v]+1);\n\t\tbr[u].pb(dis[v]+1);\n\t}\n}\n\nvoid dfs2(int u,int f) {\n\tint mx=0,mx2=0;\n\tif (u!=1) br[u].pb(dis2[u]);\n\tmx=dis2[u];\n\t//printf(\"uu %d %d\\n\",u,dis2[u]);\n\tfor (auto x:br[u]) {\n\t\tif (x>mx) mx2=mx,mx=x;\n\t\telse if (x>mx2) mx2=x;\n\t}\n\tfor (auto v:e[u]) {\n\t\tif (v==f) continue;\n\t\tif (dis[v]+1==mx) dis2[v]=mx2+1;\n\t\telse dis2[v]=mx+1;\n\t\tdfs2(v,u);\n\t}\n}\nint main() {\n\tscanf(\"%d\",&n);\n\trep(i,1,n) {\n\t\tscanf(\"%d%d\",&u,&v);\n\t\te[u].pb(v);\n\t\te[v].pb(u);\n\t}\n\tdfs(1,0);\n\tdfs2(1,0);\n\t/*rep(i,1,n+1) {\n\t\tfor (auto x:br[i]) printf(\"%d \",x);\n\t\tputs(\"\");\n\t}*/\n\tint t=0;\n\trep(i,1,n+1) if (SZ(br[i])>=3) {\n\t\tsort(all(br[i]));\n\t\treverse(all(br[i]));\n\t\tt=max(t,br[i][0]+br[i][2]-(br[i][0]==br[i][2]));\n\t}\n\trep(i,1,n+1) putchar((i<=2||i>t)?'1':'0');\n\tputs(\"\");\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 24372, "score_of_the_acc": -0.3857, "final_rank": 7 }, { "submission_id": "aoj_3148_4285725", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#ifndef ONLINE_JUDGE\n#define dbg(x...) do { cout << \"\\033[32;1m \" << #x << \" -> \"; err(x); } while (0)\nvoid err() { cout << \"\\033[39;0m\" << endl; }\ntemplate<template<typename...> class T, typename t, typename... A>\nvoid err(T<t> a, A... x) { for (auto v: a) cout << v << ' '; err(x...); }\ntemplate<typename T, typename... A>\nvoid err(T a, A... x) { cout << a << ' '; err(x...); }\n#else\n#define dbg(...)\n#endif\ntypedef long long ll;\ntypedef pair<int,int> pi;\ntypedef vector<int> vi;\ntemplate<class T> using vc=vector<T>;\ntemplate<class T> using vvc=vc<vc<T>>;\ntemplate<class T> void mkuni(vector<T>&v)\n{\n sort(v.begin(),v.end());\n v.erase(unique(v.begin(),v.end()),v.end());\n}\nll rand_int(ll l, ll r) //[l, r]\n{\n static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());\n return uniform_int_distribution<ll>(l, r)(gen);\n}\ntemplate<class T>\nvoid print(T x,int suc=1)\n{\n cout<<x;\n if(suc==1) cout<<'\\n';\n else cout<<' ';\n}\ntemplate<class T>\nvoid print(const vector<T>&v,int suc=1)\n{\n for(int i=0;i<v.size();i++)\n print(v[i],i==(int)(v.size())-1?suc:2);\n}\nconst int maxn=1e5+7;\nvi G[maxn];\nint dp[maxn];\nint len;\nvoid dfs(int u,int fa=-1)\n{\n dp[u]=1;\n for(auto v:G[u])if(v!=fa)\n {\n dfs(v,u);\n dp[u]=max(dp[u],dp[v]+1);\n }\n}\nvoid dfs2(int u,int fa=-1)\n{\n multiset<int> son;\n for(auto v:G[u])\n son.insert(dp[v]);\n if(son.size()>2)\n {\n //dbg(u,son);\n auto it=son.rbegin();\n vi all;\n for(int i=0;i<3;i++)\n {\n all.push_back(*it);\n it++;\n }\n if(all[0]!=all[2])\n len=max(len,all[0]+all[2]+1);\n else len=max(len,all[0]+all[2]);\n }\n for(auto v:G[u])if(v!=fa)\n {\n son.erase(son.find(dp[v]));\n int tmp=dp[u];\n if(son.empty()) dp[u]=1;\n else dp[u]=(*son.rbegin())+1;\n int tmpv=dp[v];\n dp[v]=max(dp[v],dp[u]+1);\n dfs2(v,u);\n dp[u]=tmp;\n dp[v]=tmpv;\n son.insert(dp[v]);\n }\n}\nint main()\n{\n int n;\n cin>>n;\n len=2;\n string ans;\n for(int i=0;i<n;i++) ans+='1';\n bool ac=1;\n for(int i=1,u,v;i<n;i++)\n {\n cin>>u>>v;\n G[u].push_back(v);\n G[v].push_back(u);\n }\n dfs(1);\n dfs2(1);\n for(int i=2;i<len-1;i++) ans[i]='0';\n cout<<ans<<'\\n';\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 30672, "score_of_the_acc": -0.5474, "final_rank": 13 }, { "submission_id": "aoj_3148_4283964", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=1e9+7;\ntemplate<class T> void chmin(T &a,const T &b){if(a>b) a=b;}\ntemplate<class T> void chmax(T &a,const T &b){if(a<b) a=b;}\n\nvector<vector<int>> g;\nvector<int> dp;\nvector<vector<int>> len;\n\nvoid predfs(int now,int par){\n int res=0;\n for(auto nex:g[now]) if(nex!=par){\n predfs(nex,now);\n chmax(res,dp[nex]+1);\n len[now].push_back(dp[nex]+1);\n }\n dp[now]=res;\n}\n\nvoid dfs(int now,int par,int pval){\n if(par!=-1) len[now].push_back(pval);\n sort(len[now].rbegin(),len[now].rend());\n\n for(auto nex:g[now]) if(nex!=par){\n int neco=len[now][0];\n if(neco==dp[nex]+1){\n if(len[now].size()>1) neco=len[now][1];\n else neco=0;\n }\n dfs(nex,now,neco+1);\n }\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int N;\n cin>>N;\n g.resize(N);\n rep(i,N-1){\n int a,b;\n cin>>a>>b;\n a--;b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n\n dp.resize(N,0);\n len.resize(N);\n predfs(0,-1);\n\n dfs(0,-1,-1);\n\n int lim=0;\n for(int i=0;i<N;i++){\n if(len[i].size()<=2) continue;\n int fir=len[i][0];\n int sec=len[i][2];\n if(fir==sec) sec--;\n chmax(lim,fir+sec);\n }\n\n string ans(N,'1');\n rep(i,lim) ans[i]='0';\n ans[0]='1';ans[1]='1';\n cout<<ans<<endl;\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 25352, "score_of_the_acc": -0.3562, "final_rank": 5 }, { "submission_id": "aoj_3148_4280837", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define fs first\n#define sc second\n#define pb push_back\n#define mp make_pair\n#define eb emplace_back\n#define ALL(A) A.begin(),A.end()\n#define RALL(A) A.rbegin(),A.rend()\ntypedef long long LL;\ntypedef pair<int,int> P;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\ntemplate<typename T> T gcd(T a,T b){return b?gcd(b,a%b):a;}\nconst LL mod=998244353;\nconst LL LINF=1LL<<62;\nconst int INF=1<<30;\nint dx[]={1,0,-1,0,1,-1,1,-1};\nint dy[]={0,1,0,-1,1,-1,-1,1};\n\nvector<int> G[1<<17];\nvector<int> dp(1<<17,0);\nint r = 3;\n\nint dfs(int u,int v){\n int ret = 0;\n for(auto g:G[u]){\n if(g == v) continue;\n chmax(ret, dfs(g, u));\n }\n return dp[u] = ret + 1;\n}\n\nvoid dfs2(int u,int v,P x){\n vector<P> vv;\n vv.pb(mp(0, -1));\n for(auto g:G[u]){\n if(g == v){\n vv.pb(x);\n }\n else{\n vv.pb(mp(dp[g], g));\n }\n }\n sort(RALL(vv));\n for(auto g:G[u]){\n if(g == v) continue;\n if(g == vv[0].sc){\n dfs2(g, u, mp(vv[1].fs + 1, u));\n }\n else{\n dfs2(g, u, mp(vv[0].fs + 1, u));\n }\n }\n if(vv.size() >= 4){\n int a = vv[0].fs, b = vv[1].fs, c = vv[2].fs;\n chmax(r, a + c + (a != c));\n }\n}\n\n\nint main(){\n int n;cin >> n;\n for (int i = 0; i < n-1; i++) {\n int a,b;cin >> a >> b;\n a--,b--;\n G[a].pb(b);\n G[b].pb(a);\n }\n dfs(0,-1);\n dfs2(0,-1,mp(0,-1));\n string ans(n, '1');\n for (int i = 3; i < r; i++) {\n ans[i - 1] = '0';\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 28140, "score_of_the_acc": -0.4742, "final_rank": 11 }, { "submission_id": "aoj_3148_4280728", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define fs first\n#define sc second\n#define pb push_back\n#define mp make_pair\n#define eb emplace_back\n#define ALL(A) A.begin(),A.end()\n#define RALL(A) A.rbegin(),A.rend()\ntypedef long long LL;\ntypedef pair<int,int> P;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\ntemplate<typename T> T gcd(T a,T b){return b?gcd(b,a%b):a;}\nconst LL mod=998244353;\nconst LL LINF=1LL<<62;\nconst int INF=1<<30;\nint dx[]={1,0,-1,0,1,-1,1,-1};\nint dy[]={0,1,0,-1,1,-1,-1,1};\n\nvector<int> G[1<<17];\nvector<int> dp(1<<17);\n\nint dfs(int u,int v){\n int ret = 0;\n for(auto g:G[u]){\n if(g == v) continue;\n ret = max(ret, dfs(g, u));\n }\n return dp[u] = ret + 1;\n}\n\nint n;\nint l = 3;\n\nvoid dfs2(int u, int v, P x){\n vector<P> vv;\n for(auto g:G[u]){\n if(g == v){\n vv.pb(x);\n }\n else{\n vv.pb(mp(dp[g],g));\n }\n }\n sort(RALL(vv));\n for(auto g:G[u]){\n if(g == v) continue;\n if(vv[0].sc == g){\n if(vv.size() == 1) dfs2(g, u, mp(1, u));\n else dfs2(g, u, mp(vv[1].fs + 1, u));\n }\n else{\n dfs2(g, u, mp(vv[0].fs + 1, u));\n }\n }\n if(vv.size() >= 3){\n int a = vv[0].fs, b = vv[1].fs, c = vv[2].fs;\n for (int k = l; k < n; k++) {\n if(k > a + c) break;\n else if(a + c == k && k - b == k - c && (k - c) * 2 == k) break;\n l++;\n }\n }\n return;\n}\n\n\n\nint main(){\n cin >> n;\n if(n == 1){\n cout << 1 << endl;\n return 0;\n }\n for (int i = 0; i < n-1; i++) {\n int a,b;cin >> a >> b;\n a--,b--;\n G[a].pb(b);\n G[b].pb(a);\n }\n dfs(0,0);\n dfs2(0,0,mp(0,0));\n for (int i = 1; i <= 2; i++) {\n cout << 1;\n }\n for (int i = 3; i < l; i++) {\n cout << 0;\n }\n for (int i = l; i <= n; i++) {\n cout << 1;\n }\n cout << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 28220, "score_of_the_acc": -0.4752, "final_rank": 12 }, { "submission_id": "aoj_3148_4280663", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nlong long n;\nvector<vector<int>> edge;\nvector<int> dp;\nvector<bool> ch;\n\nstring solve();\nint dfs(int now);\nint reroot(int now);\n\nint main() {\n cin >> n;\n edge.resize(n);\n for(int i = 0; i < n - 1; ++i) {\n int a, b;\n cin >> a >> b;\n edge[--a].push_back(--b);\n edge[b].push_back(a);\n }\n cout << solve() << endl;\n return 0;\n}\n\nstring solve() {\n string res;\n for(int i = 0; i < n; ++i) res += \"1\";\n dp.assign(n, 0);\n ch.assign(n, 0);\n ch[0] = 1;\n dfs(0);\n ch.assign(n, 0);\n ch[0] = 1;\n int num = reroot(0);\n if(num != -1)\n for(int j = 2; j <= num; ++j) res[j] = '0';\n return res;\n}\n\nint dfs(int now) {\n int res = 0;\n for(auto to : edge[now])\n if(!ch[to]) {\n ch[to] = 1;\n res = max(res, 1 + dfs(to));\n }\n return dp[now] = res;\n}\n\nint reroot(int now) {\n int res = -1, num = 0, bf = dp[now];\n dp[now] = 0;\n vector<int> child, pre, suf;\n for(auto to : edge[now]) {\n child.push_back(dp[to]);\n pre.push_back(dp[to]);\n suf.push_back(dp[to]);\n }\n num = child.size();\n for(int i = 1; i < num; ++i) {\n pre[i] = max(pre[i - 1], pre[i]);\n suf[num - i - 1] = max(suf[num - i], suf[num - i - 1]);\n }\n for(int i = 0; i < num; ++i)\n if(!ch[edge[now][i]]) {\n dp[now] = 0;\n ch[edge[now][i]] = 1;\n if(i != 0) dp[now] = max(dp[now], pre[i - 1] + 1);\n if(i != num - 1)\n dp[now] = max(dp[now], suf[i + 1] + 1);\n res = max(res, reroot(edge[now][i]));\n }\n if(num >= 3) {\n sort(child.begin(), child.end(), greater<int>());\n if(child[0] == child[2])\n res = max(res, child[0] + child[2]);\n else\n res = max(res, child[0] + child[2] + 1);\n }\n dp[now] = bf;\n return res;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 35216, "score_of_the_acc": -0.6456, "final_rank": 14 }, { "submission_id": "aoj_3148_4280489", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define fs first\n#define sc second\n#define pb push_back\n#define mp make_pair\n#define eb emplace_back\n#define ALL(A) A.begin(),A.end()\n#define RALL(A) A.rbegin(),A.rend()\ntypedef long long LL;\ntypedef pair<int,int> P;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\ntemplate<typename T> T gcd(T a,T b){return b?gcd(b,a%b):a;}\nconst LL mod=998244353;\nconst LL LINF=1LL<<62;\nconst int INF=1<<30;\nint dx[]={1,0,-1,0,1,-1,1,-1};\nint dy[]={0,1,0,-1,1,-1,-1,1};\n\nvector<int> G[1<<17];\nvector<int> dp(1<<17);\n\nint dfs(int u,int v){\n int ret = 0;\n for(auto g:G[u]){\n if(g == v) continue;\n chmax(ret, dfs(g, u));\n }\n return dp[u] = ret + 1;\n}\n\nint n;\nint l = 3;\n\nvoid dfs2(int u, int v, P x){\n vector<P> vv;\n for(auto g:G[u]){\n if(g == v){\n vv.pb(x);\n }\n else{\n vv.pb(mp(dp[g], g));\n }\n }\n sort(RALL(vv));\n for(auto g:G[u]){\n if(g == v) continue;\n if(vv[0].sc == g){\n if(vv.size() == 1) dfs2(g, u, mp(1, u));\n else dfs2(g, u, mp(vv[1].fs + 1, u));\n }\n else{\n dfs2(g, u, mp(vv[0].fs + 1, u));\n }\n }\n if(vv.size() >= 3){\n int a = vv[0].fs, b = vv[1].fs, c = vv[2].fs;\n if(a == c) chmax(l, a + c);\n else chmax(l, a + c + 1);\n }\n return;\n}\n\n\n\nint main(){\n cin >> n;\n if(n == 1){\n cout << 1 << endl;\n return 0;\n }\n for (int i = 0; i < n-1; i++) {\n int a,b;cin >> a >> b;\n a--,b--;\n G[a].pb(b);\n G[b].pb(a);\n }\n dfs(0,0);\n dfs2(0,0,mp(0,0));\n for (int i = 1; i <= 2; i++) {\n cout << 1;\n }\n for (int i = 3; i < l; i++) {\n cout << 0;\n }\n for (int i = l; i <= n; i++) {\n cout << 1;\n }\n cout << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 28080, "score_of_the_acc": -0.4735, "final_rank": 10 }, { "submission_id": "aoj_3148_4280241", "code_snippet": "#include <iostream>\n#include <vector>\n\nusing namespace std;\nvector<int> G[100010];\nint d[3][100010] = {};\nint dfs(int s, int p,int k){\n for(int v:G[s]){\n if(v==p) continue;\n d[k][v] = d[k][s] + 1;\n dfs(v,s,k);\n }\n}\n\nint mx[100010] = {};\nvoid dfs2(int s,int p,int dia,int par){\n for(int v:G[s]){\n if(v==p) continue;\n if(d[0][v] + d[1][v]==dia) continue;\n d[2][v] = d[2][s] + 1;\n mx[par] = max(mx[par],d[2][v]);\n dfs2(v,s,dia,par);\n }\n}\n\nint n,seg[2][200010];\nvoid init(int n,int x){\n for(int i=n - 1;i>0;i--){\n seg[x][i] = max(seg[x][i<<1],seg[x][i<<1|1]);\n }\n}\n\nvoid update(int val,int p,int x){\n for(seg[x][p += n] = val;p>1;p>>=1){\n seg[x][p>>1] = max(seg[x][p],seg[x][p^1]);\n }\n}\n\nint query(int l,int r,int x){\n int res = 0;\n for(l += n,r += n; l<r;l>>=1,r>>=1){\n if(l&1) res = max(res,seg[x][l++]);\n if(r&1) res = max(res,seg[x][--r]);\n }\n return res;\n}\n\nint ans[100010];\nint main(){\n int i;\n cin >> n;\n for(i=0;i<n - 1;i++){\n int a,b; cin >> a >> b;\n a--; b--;\n G[a].push_back(b); G[b].push_back(a);\n }\n dfs(0,-1,0);\n int j = -1,x = -1;\n for(i=0;i<n;i++){\n if(d[0][i]>x){\n j = i; x = d[0][i];\n }\n }\n for(i=0;i<n;i++){\n d[0][i] = 0;\n }\n dfs(j,-1,0);\n int jj = -1; x = -1;\n for(i=0;i<n;i++){\n if(d[0][i]>x){\n x = d[0][i];\n jj = i;\n }\n }\n int dia = x;\n dfs(jj,-1,1);\n vector<int> choku;\n ans[1] = 1; ans[2] = 1;\n for(i=dia + 1;i<=n;i++){\n ans[i] = 1;\n }\n for(i=0;i<n;i++){\n if(d[0][i] + d[1][i]==dia){\n dfs2(i,-1,dia,i);\n choku.push_back(i);\n }\n }\n for(i=0;i<choku.size();i++){\n int v = choku[i];\n if(mx[v]) update(mx[v] + d[0][v],d[0][v],0);\n if(mx[v]) update(mx[v] + d[1][v],d[1][v],1);\n }\n for(i=3;i<=dia;i++){\n if(i&1){\n if(query(0,n,0)>=i || query(0,n,1)>=i) ans[i] = 0;\n else ans[i] = 1;\n }else{\n int k = i/2;\n if(max(query(0,n,0),query(0,n,1))<i){\n ans[i] = 1;\n }else if(max(query(0,k,0),query(k + 1,n,0))>=i || max(query(0,k,1),query(k + 1,n,1))>=i){\n ans[i] = 0;\n }else if(max(query(k,k + 1,0),query(k,k + 1,1))==i){\n ans[i] = 1;\n }else{\n ans[i] = 0;\n }\n }\n }\n for(i=1;i<=n;i++){\n cout << ans[i];\n }\n cout << endl;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 18384, "score_of_the_acc": -0.3946, "final_rank": 8 }, { "submission_id": "aoj_3148_4280129", "code_snippet": "#include <iostream>\n#include <vector>\n\nusing namespace std;\nvector<int> G[100010];\nint d[3][100010] = {};\nint dfs(int s, int p,int k){\n for(int v:G[s]){\n if(v==p) continue;\n d[k][v] = d[k][s] + 1;\n dfs(v,s,k);\n }\n}\n\nint mx[100010] = {};\nvoid dfs2(int s,int p,int dia,int par){\n for(int v:G[s]){\n if(v==p) continue;\n if(d[0][v] + d[1][v]==dia) continue;\n d[2][v] = d[2][s] + 1;\n mx[par] = max(mx[par],d[2][v]);\n dfs2(v,s,dia,par);\n }\n}\n\nint n,seg[2][200010];\nvoid init(int n,int x){\n for(int i=n - 1;i>0;i--){\n seg[x][i] = max(seg[x][i<<1],seg[x][i<<1|1]);\n }\n}\n\nvoid update(int val,int p,int x){\n for(seg[x][p += n] = val;p>1;p>>=1){\n seg[x][p>>1] = max(seg[x][p],seg[x][p^1]);\n }\n}\n\nint query(int l,int r,int x){\n int res = 0;\n for(l += n,r += n; l<r;l>>=1,r>>=1){\n if(l&1) res = max(res,seg[x][l++]);\n if(r&1) res = max(res,seg[x][--r]);\n }\n return res;\n}\n\nint ans[100010];\nint main(){\n int i;\n cin >> n;\n for(i=0;i<n - 1;i++){\n int a,b; cin >> a >> b;\n a--; b--;\n G[a].push_back(b); G[b].push_back(a);\n }\n dfs(0,-1,0);\n int j = -1,x = -1;\n for(i=0;i<n;i++){\n if(d[0][i]>x){\n j = i; x = d[0][i];\n }\n }\n for(i=0;i<n;i++){\n d[0][i] = 0;\n }\n dfs(j,-1,0);\n int jj = -1; x = -1;\n for(i=0;i<n;i++){\n if(d[0][i]>x){\n x = d[0][i];\n jj = i;\n }\n }\n int dia = x;\n dfs(jj,-1,1);\n vector<int> choku;\n ans[1] = 1; ans[2] = 1;\n for(i=dia + 1;i<=n;i++){\n ans[i] = 1;\n }\n for(i=0;i<n;i++){\n if(d[0][i] + d[1][i]==dia){\n dfs2(i,-1,dia,i);\n choku.push_back(i);\n }\n }\n for(i=0;i<choku.size();i++){\n int v = choku[i];\n if(mx[v]) update(mx[v] + d[0][v],d[0][v],0);\n if(mx[v]) update(mx[v] + d[1][v],d[1][v],1);\n }\n for(i=3;i<=dia;i++){\n if(i&1){\n if(query(0,n,0)>=i || query(0,n,1)>=i) ans[i] = 0;\n else ans[i] = 1;\n }else{\n int k = i/2;\n if(max(query(0,n,0),query(0,n,1))<i){\n ans[i] = 1;\n }else if(max(query(0,k,0),query(k + 1,n,0))>=i || max(query(0,k,1),query(k + 1,n,1))>=i){\n ans[i] = 0;\n }else if(max(query(k,k + 1,0),query(k,k + 1,1))==k){\n ans[i] = 1;\n }else{\n ans[i] = 0;\n }\n }\n }\n for(i=1;i<=n;i++){\n cout << ans[i];\n }\n cout << endl;\n}", "accuracy": 0.75, "time_ms": 90, "memory_kb": 18384, "score_of_the_acc": -0.3946, "final_rank": 18 }, { "submission_id": "aoj_3148_4280122", "code_snippet": "#include <bits/stdc++.h>\n#define be(v) (v).begin(),(v).end()\n#define pb(q) push_back(q)\ntypedef long long ll;\nusing namespace std;\nconst ll mod=1000000007;\n#define doublecout(a) cout<<fixed<<setprecision(10)<<a<<endl;\nvector<vector<ll> > v(100001);\n\nll ans=0,num=0,niko,kotori;\nll umi=0,mid;\nbool hanayo;\nvoid dfs(ll now,ll count,ll p){\n\tif(count>=ans){\n\t\tnum=now;\n\t\tans=count;\n\t}\n\tfor(auto& i:v[now]){\n\t\tif(i==p)continue;\n\t\tdfs(i,count+1,now);\n\t}\n\treturn;\n}\nbool eri=true;\nvoid solve(ll now,ll count,ll p){\n\tif(v[now].size()==1){\n\t\tif(count!=niko){\n\t\t\teri=false;\n\t\t}\n\t}\n\tfor(auto& i:v[now]){\n\t\tif(i==p)continue;\n\t\tsolve(i,count+1,now);\n\t}\n\treturn;\n}\nvoid honoka(ll now,ll count,ll p){\n\tif(v[now].size()==1){\n\t\tif(count>=mid)umi++;\n\t}else if(v[now].size()>=3){\n\t\tif(count>=mid)hanayo=false;\n\t}\n\tfor(auto& i:v[now]){\n\t\tif(i==p)continue;\n\t\thonoka(i,count+1,now);\n\t}\n\treturn;\n}\nint main() {\n cin.tie(0);\n cout.tie(0);\n ios::sync_with_stdio(false);\n ll n;\n cin>>n;\n ll a,b;\n for(int i=0;i<n-1;i++){\n \tcin>>a>>b;\n \ta--;b--;\n \tv[a].pb(b);\n \tv[b].pb(a);\n }\n ll m3=0;\n for(int i=0;i<n;i++){\n \tif(3<=v[i].size()){m3++;a=i;}\n }\n if(m3==0){\n \tfor(int i=0;i<n;i++){\n \t\tcout << 1;\n \t}\n \tcout <<endl;\n \treturn 0;\n }\n dfs(0,0,-1);\n kotori=num;\n dfs(num,0,-1);\n \n bool maki=true;\n if(m3>=2)maki=false;\n else{\n \tniko=ans/2;\n solve(a,0,-1);\n maki=eri;\n }\n ll le=0,ri=ans+1;\n while(ri-le>1){\n \tmid=(le+ri)/2;\n \tumi=0;\n \thanayo=true;\n \thonoka(num,0,-1);\n honoka(kotori,0,-1);\n if(umi==2&&hanayo){\n \tri=mid;\n }else{\n \tle=mid;\n }\n }\n \n\n for(int i=1;i<=n;i++){\n \tif(i>ans)cout <<1;\n \telse if(i==1||i==2)cout << 1;\n \telse if(i>=ri)cout << 1;\n \telse if(i&1)cout<<0;\n \telse if(i==ans&&maki){\n \t\tcout << 1;\n \t}else{\n \t\tcout << 0;\n \t}\n }\n cout<< endl;\n\treturn 0;\n}", "accuracy": 0.75, "time_ms": 260, "memory_kb": 13176, "score_of_the_acc": -1.0381, "final_rank": 19 } ]
aoj_3156_cpp
Problem F: Abyss and Coins 数直線上の座標 $0,1,2,\ldots,N$ に足場があり、座標 $i$ の足場には $i$ 枚のコインがあります。 ウサギのネムは、最初座標 $0$の足場にいて、好きな回数だけジャンプを繰り返すことによって、足場にあるコインを集めたいと思っています。 $1$ 回目のジャンプでは好きな距離だけ飛ぶことが出来ますが、 $2$ 回目以降は、今いる足場の座標と $1$ つ前にいた足場の座標の丁度真ん中の座標にしか飛ぶことが出来ません。 つまり、 $i$ 回ジャンプをした後到達する座標を $x_i$ とし、最初に飛ぶ座標を $X$ とすると、 $x_0=0$, $x_1=X$, $x_{i+2}=\frac{(x_{i+1}+x_i)}{2}$ ただし、 $i \geq 0$ となります。 飛んだ先に足場が存在する場合、その足場にあるコインを全て手に入れることが出来ます。 しかし、既に $1$ 回以上来た事のある足場を再度訪れても、もう一度コインを入手することは出来ません。 ジャンプによって飛んだ先に足場が存在しない場合、ネムは奈落の底に落ちてしまい、今まで集めたコインを全て失って帰ることになります。 逆に、いずれかの足場の上に立っている場合、ネムはいつでもジャンプを繰り返すことをやめ、その時点で持っているコインを全て持ち帰ることが出来ます(座標 $0$ に戻る必要はありません)。 ネムが持ち帰ることが出来るコインの枚数の最大値を求めてください。 Constraints 入力は以下の条件を満たす。 $ 1 \leq N \leq 10^{12}$ 入力は整数である。 Input 入力は以下の形式で与えられる。 $N$ Output ネムが持ち帰ることが出来るコインの枚数の最大値を出力してください。 また、末尾に改行を出力するのを忘れないようにしてください。 Sample Input 1 3 Sample Output 1 3 最初に飛ぶ距離として $2$ を選ぶと、 $1$ 回目のジャンプで座標 $2$ の足場に、 $2$ 回目のジャンプで座標 $1$ の足場に飛ぶことができます。 ここで帰ると、得られるコインは $2+1=3$ 枚となり、これが最大です。 もし $3$ 回目のジャンプを行うと、移動先の座標は $\frac{1+2}{2}=1.5$ となり、足場が存在しないため奈落の底に落ちてしまいます。 また、 $0→1→2→3$ や $0→2→3$ といった移動は許されていないことに注意してください。 なお、最初に飛ぶ距離として $4,-1,1.99999$ などを選ぶこともできますが、このようにした場合 $1$ 枚もコインを得ることなく奈落の底に落ちてしまいます。 Sample Input 2 15 Sample Output 2 27 $ 0 \to 12 \to 6 \to 9$ と飛んでから帰るのが最適です。 Sample Input 3 1000000000000 Sample Output 3 24586301676657 オーバーフローに注意してください。
[ { "submission_id": "aoj_3156_4837127", "code_snippet": "#include <bits/stdc++.h>\n \nconst double pi = 3.141592653589793238462643383279;\nusing namespace std;\n\n//typedef\n//------------------------------------------\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\ntypedef long long LL;\ntypedef unsigned long long ULL;\ntypedef vector<LL> VLL;\ntypedef vector<VLL> VVLL;\n \n \n//container util\n//------------------------------------------\n#define ALL(a) (a).begin(),(a).end()\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define MP make_pair\n#define SQ(a) ((a)*(a))\n#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)\n#define EXIST(s,e) ((s).find(e)!=(s).end())\n#define SORT(c) sort((c).begin(),(c).end())\n \n \n//repetition\n//------------------------------------------\n#define FOR(i,s,n) for(int i=s;i<(int)n;++i)\n#define REP(i,n) FOR(i,0,n)\n#define MOD 1000000007\n \n \n#define rep(i, a, b) for(int i = a; i < (b); ++i)\n#define trav(a, x) for(auto& a : x)\n#define all(x) x.begin(), x.end()\n#define sz(x) (int)(x).size()\n \ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef vector<int> vi;\n \n#define chmin(x,y) x=min(x,y)\n#define chmax(x,y) x=max(x,y)\n\nconst long double EPS = 1e-6, PI = acos((long double)-1);\n\n//ここから編集\n\nll GCD(ll a, ll b){\n return (b == 0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b)*b;\n}\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(4);\n\n ll N;\n cin >> N;\n if(N == 1){\n cout << 1 << endl;\n return 0;\n }\n ll ans = 0;\n ll tmp = 1;\n while(tmp<=N){\n\n for(ll i=2; i<=100000; i++){\n ll prev = 0;\n ll pos = tmp*i;\n if(pos > N) break;\n if(pos<0) break;\n\n ll sum = 0;\n while(1){\n sum += pos;\n if((prev+pos)%2 != 0) break;\n\n \n\n ll tmp2 = pos;\n pos = (prev+pos)/2;\n\n prev = tmp2; \n }\n ans = max(ans, sum);\n }\n tmp *= 2;\n }\n\n \n \n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3224, "score_of_the_acc": -0.172, "final_rank": 1 }, { "submission_id": "aoj_3156_4832153", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <vector>\n#include <algorithm>\n#include <utility>\n#include <string>\n#include <queue>\n#include <stack>\n\nusing namespace std;\n\ntypedef long long int ll;\ntypedef pair<int, int> Pii;\n\nconst ll mod = 1000000007;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll n;\n cin >> n;\n\n if (n == 1) {\n cout << 1 << endl;\n return 0;\n }\n\n vector<bool> sieve(10000001, true);\n sieve[0] = false;\n sieve[1] = false;\n for (ll p = 2; p <= 10000000; p++) {\n if (sieve[p]) {\n for (ll i = p * p; i <= 10000000; i += p) sieve[i] = false;\n }\n }\n\n ll ans = 0;\n for (int i = 0; i <= min(n, 10000000LL); i++) {\n if (!sieve[i]) continue;\n ll p = i;\n ll s = i;\n while (p + s <= n) {\n p += s;\n s <<= 1;\n }\n while (true) {\n ll score = p;\n ll prev = 0;\n ll now = p;\n while (!((prev + now) & 1)) {\n ll next = (prev + now) >> 1;\n score += next;\n prev = now;\n now = next;\n }\n ans = max(ans, score);\n if (s & 1) break;\n s >>= 1;\n p += s;\n if (p > n) break;\n }\n }\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 0.5135135135135135, "time_ms": 60, "memory_kb": 4140, "score_of_the_acc": -1.1693, "final_rank": 2 }, { "submission_id": "aoj_3156_4832141", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <vector>\n#include <algorithm>\n#include <utility>\n#include <string>\n#include <queue>\n#include <stack>\n\nusing namespace std;\n\ntypedef long long int ll;\ntypedef pair<int, int> Pii;\n\nconst ll mod = 1000000007;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n ll n;\n cin >> n;\n\n vector<bool> sieve(10000001, true);\n sieve[0] = false;\n sieve[1] = false;\n for (ll p = 2; p <= 10000000; p++) {\n if (sieve[p]) {\n for (ll i = p * p; i <= 10000000; i += p) sieve[i] = false;\n }\n }\n\n ll ans = 0;\n for (int i = 0; i <= min(n, 10000000LL); i++) {\n if (!sieve[i]) continue;\n ll p = i;\n ll s = i;\n while (p + s <= n) {\n p += s;\n s <<= 1;\n }\n while (true) {\n ll score = p;\n ll prev = 0;\n ll now = p;\n while (!((prev + now) & 1)) {\n ll next = (prev + now) >> 1;\n score += next;\n prev = now;\n now = next;\n }\n ans = max(ans, score);\n if (s & 1) break;\n s >>= 1;\n p += s;\n if (p > n) break;\n }\n }\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 0.43243243243243246, "time_ms": 60, "memory_kb": 4148, "score_of_the_acc": -1.1765, "final_rank": 3 }, { "submission_id": "aoj_3156_4820306", "code_snippet": "// wa\n#include <bits/stdc++.h>\nusing namespace std;\n\nlong long n;\n\nlong long calc(long long x);\n\nint main() {\n cin >> n;\n long long res = 0, now = 1;\n while ((now << 1) <= n) now <<= 1;\n // 5にすると通る(証明可能?)\n for (int i = 0; i < 4; ++i) {\n if (now & 1) break;\n res = max(res, calc(n / now * now));\n now >>= 1;\n }\n for (int i = 0; i <= 100000000; ++i) {\n if (n - i <= 0) break;\n res = max(res, calc(n - i));\n }\n cout << res << endl;\n return 0;\n}\n\nlong long calc(long long x) {\n long long flg = 1, sum = 0, now = 0;\n while (x) {\n now += x * flg;\n sum += now;\n if (x & 1) break;\n flg *= -1;\n x >>= 1;\n }\n return sum;\n}", "accuracy": 0.08108108108108109, "time_ms": 200, "memory_kb": 3032, "score_of_the_acc": -1, "final_rank": 4 } ]
aoj_3152_cpp
Problem B: Canceling Sequence Problem 1以上の整数からなる、長さ $N$ の数列 $A_1, \ldots , A_N$ が与えられます。 以下の条件を満たす数列 $B_1, \ldots , B_N$ を出力してください。 $B_i$は $0$ でない整数である。 $-10^9 ≤ B_i≤ 10^9$ $A_1\times B_1 + \ldots + A_N\times B_N = 0$ Constraints 入力は以下の条件を満たす。 $2 ≤ N ≤ 2 \times 10^5$ $1 ≤ A_i ≤ 1000$ 入力は全て整数である。 Input 入力は以下の形式で標準入力から与えられる。 $N$ $A_1$ $A_2$ $\ldots$ $A_N$ Output 条件を満たす数列 $B_1, \ldots , B_N$ を空白区切りで出力してください。 条件を満たす限り、どのような数列を出力しても構いません。 なお、制約の項で記述される条件のもとで、このような数列は必ず存在することが証明できます。 また、末尾に改行を出力するのを忘れないようにしてください。 Sample Input 1 4 1 2 4 4 Sample Output 1 4 -2 -2 2 他に、$\{2,-1,-1,1\}$ などの数列も正解となります。 Sample Input 2 6 5 3 4 7 3 6 Sample Output 2 1 -1 -1 -1 1 1
[ { "submission_id": "aoj_3152_10371258", "code_snippet": "#include<bits/stdc++.h>\n#define int long long\nusing namespace std;\nsigned main(){\n int N;\n cin>>N;\n vector<int> A(N),B(N);\n for(int &i:A)cin>>i;\n if(N%2==0){\n for(int i=0;i<N;i+=2)B[i]=A[i+1],B[i+1]=-A[i];\n }else{\n for(int i=0;i+3<N;i+=2)B[i]=A[i+1],B[i+1]=-A[i];\n B[N-3]=-A[N-2]-A[N-1];\n B[N-2]=B[N-1]=A[N-3];\n }\n for(int i=0;i<N;i++)cout<<B[i]<<(i==N-1?'\\n':' ');\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6244, "score_of_the_acc": -1.586, "final_rank": 18 }, { "submission_id": "aoj_3152_10371253", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint main() {\n int N,Z=0;\n cin>>N;\n vector<int> A(N);\n for(int i=0;i<N;i++){\n cin>>A[i];\n if(i!=N-1)Z+=A[i];\n }\n for(int i=0;i<N;i++)cout<<(i!=N-1?A[N-1]:-Z)<<(i==N-1?\"\\n\":\" \");\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3892, "score_of_the_acc": -0.6744, "final_rank": 7 }, { "submission_id": "aoj_3152_10086215", "code_snippet": "// competitive-verifier: PROBLEM\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nint main(void) {\n int n;\n cin >> n;\n vector<ll> a(n);\n cin >> a;\n ll m = *min_element(all(a));\n vector<ll> ans(n);\n bool f = true;\n rep (i, n) {\n if (a[i] == m && f) {\n f = false;\n continue;\n }\n if (a[i] % m != 0)\n ans[i] = m;\n else\n ans[i] = 1;\n }\n ll s = 0;\n rep (i, n) {\n s += a[i] * ans[i];\n }\n rep (i, n) {\n if (ans[i] == 0)\n ans[i] = -s / m;\n }\n co(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6188, "score_of_the_acc": -0.8977, "final_rank": 10 }, { "submission_id": "aoj_3152_9870130", "code_snippet": "#include <bits/stdc++.h>\n\n\nusing namespace std;\n//make -f ../makefile SRC=\n/*\n*/\n\n\n//------------------------------------------------------------------------------\nbool DEBUG = false;\nconst int INF = 1000000000;\n\nconst int MAX_N = 200000;\nstatic int vect[MAX_N];\n\n//------------------------------------------------------------------------------\nvoid solve3(int x1, int x2, int x3)\n{\n printf(\"%d %d %d\\n\", -x3, -x3, x1+x2);\n}\n\n// N >= 2\nvoid solve(int N)\n{\n //--------------------------------------------------------------------------\n // base cases:\n if (N == 2)\n {\n printf(\"%d %d\\n\", -vect[1], vect[0]);\n return;\n }\n else if (N == 3)\n {\n solve3(vect[0], vect[1], vect[2]);\n return;\n }\n //--------------------------------------------------------------------------\n // init:\n //--------------------------------------------------------------------------\n // compute:\n if (N%2 == 1)\n {\n for (int i=0; i<N-3; i+=2) printf(\"%d %d \", -vect[i+1], vect[i]);\n solve3(vect[N-3], vect[N-2], vect[N-1]);\n return;\n } \n\n for (int i=0; i<N-2; i+=2) printf(\"%d %d \", -vect[i+1], vect[i]);\n printf(\"%d %d\\n\", -vect[N-1], vect[N-2]);\n}\n\n//------------------------------------------------------------------------------\nvoid test()\n{\n\n}\n\n//------------------------------------------------------------------------------\nint main()\n{\n //test(); return 0;\n //DEBUG = true;\n //--------------------------------------------------------------------------\n int N, num;\n num = scanf(\"%d \", &N);\n for (int i=0; i<N; ++i) num = scanf(\"%d \", &vect[i]);\n solve(N);\n //--------------------------------------------------------------------------\n return 0;\n}\n//------------------------------------------------------------------------------", "accuracy": 1, "time_ms": 10, "memory_kb": 4344, "score_of_the_acc": -0.1829, "final_rank": 3 }, { "submission_id": "aoj_3152_7091717", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint main() {\n int N,Z=0;\n cin>>N;\n vector<int> A(N);\n for(int i=0;i<N;i++){\n cin>>A[i];\n if(i!=N-1)Z+=A[i];\n }\n for(int i=0;i<N;i++)cout<<(i!=N-1?A[N-1]:-Z)<<(i==N-1?\"\\n\":\" \");\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3872, "score_of_the_acc": -0.6667, "final_rank": 6 }, { "submission_id": "aoj_3152_7091715", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n int N;\n cin>>N;\n vector<int> A(N);\n int Z=0;\n for(int i=0;i<N;i++){\n cin>>A[i];\n if(i!=N-1)Z+=A[i];\n }\n\n for(int i=0;i<N;i++)cout<<(i!=N-1?A[N-1]:-Z)<<(i==N-1?\"\\n\":\" \");\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3884, "score_of_the_acc": -0.0047, "final_rank": 2 }, { "submission_id": "aoj_3152_7091712", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nint main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n int N;\n cin>>N;\n vector<int> A(N);\n for(int i=0;i<N;i++){\n cin>>A[i];\n }\n int Z=0;\n for(int i=0;i<N;i++){\n if(i==N-1){\n cout<<-Z<<endl;\n }\n else{\n cout<<A[N-1]<<\" \";\n Z+=A[i];\n }\n }\n\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3876, "score_of_the_acc": -0.0016, "final_rank": 1 }, { "submission_id": "aoj_3152_7009024", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3152.cc: Problem B: Canceling Sequence\n */\n\n#include<cstdio>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 200000;\n\n/* typedef */\n\ntypedef long long ll;\n\n/* global variables */\n\nint as[MAX_N], bs[MAX_N];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n;\n scanf(\"%d\", &n);\n for (int i = 0; i < n; i++) scanf(\"%d\", as + i);\n\n if (! (n & 1))\n for (int i = 0; i < n; i += 2)\n bs[i] = as[i + 1], bs[i + 1] = -as[i];\n else {\n bs[0] = bs[1] = as[2], bs[2] = -(as[0] + as[1]);\n for (int i = 3; i < n; i += 2)\n bs[i] = as[i + 1], bs[i + 1] = -as[i];\n }\n\n for (int i = 0; i < n; i++)\n printf(\"%d%c\", bs[i], (i + 1 < n) ? ' ' : '\\n');\n\n if (false) {\n ll sum = 0;\n for (int i = 0; i < n; i++) sum += as[i] * bs[i];\n printf(\"sum=%lld\\n\", sum);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4516, "score_of_the_acc": -0.5829, "final_rank": 5 }, { "submission_id": "aoj_3152_5236039", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint main(){\n int n;\n cin >> n;\n vector<int> a(n);\n for(int i=0; i<n; i++){\n cin >> a[i];\n }\n vector<int> ans(n);\n if(n%2==0){\n for(int i=0; i<n; i+=2){\n ans[i] = a[i+1];\n ans[i+1] = -a[i];\n }\n }else{\n ans[0] = a[2];\n ans[1] = a[2];\n ans[2] = -(a[0]+a[1]);\n for(int i=3; i<n; i+=2){\n ans[i] = a[i+1];\n ans[i+1] = -a[i];\n }\n }\n for(int i=0; i<n-1; i++){\n cout << ans[i] << \" \";\n }\n cout << ans.back() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4664, "score_of_the_acc": -0.9736, "final_rank": 12 }, { "submission_id": "aoj_3152_4918613", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 200005\n\nint table[SIZE];\n\nint main(){\n\n\tint N;\n\tscanf(\"%d\",&N);\n\n\tint sum = 0;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%d\",&table[i]);\n\t\tif(i < N-1){\n\t\t\tsum += table[i];\n\t\t}\n\t}\n\n\tprintf(\"%d\",table[N-1]);\n\tfor(int i = 1; i < N-1; i++){\n\n\t\tprintf(\" %d\",table[N-1]);\n\t}\n\tprintf(\" %d\\n\",-sum);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3984, "score_of_the_acc": -0.3767, "final_rank": 4 }, { "submission_id": "aoj_3152_4892908", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing LL = long long int;\n#define incII(i, l, r) for(LL i = (l) ; i <= (r); i++)\n#define incIX(i, l, r) for(LL i = (l) ; i < (r); i++)\n#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)\n#define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++)\n#define decII(i, l, r) for(LL i = (r) ; i >= (l); i--)\n#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)\n#define decXI(i, l, r) for(LL i = (r) ; i > (l); i--)\n#define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--)\n#define inc(i, n) incIX(i, 0, n)\n#define dec(i, n) decIX(i, 0, n)\n#define inc1(i, n) incII(i, 1, n)\n#define dec1(i, n) decII(i, 1, n)\nauto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };\nauto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); };\nauto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); };\nauto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); };\nauto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); };\nauto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); };\nauto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };\nauto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };\n#define PB push_back\n#define EB emplace_back\n#define MP make_pair\n#define MT make_tuple\n#define FI first\n#define SE second\n#define FR front()\n#define BA back()\n#define ALL(c) c.begin(), c.end()\n#define RALL(c) c.rbegin(), c.rend()\n#define RV(c) reverse(ALL(c))\n#define SC static_cast\n#define SI(c) SC<int>(c.size())\n#define SL(c) SC<LL >(c.size())\n#define RF(e, c) for(auto & e: c)\n#define SF(c, ...) for(auto & [__VA_ARGS__]: c)\n#define until(e) while(! (e))\n#define if_not(e) if(! (e))\n#define ef else if\n#define UR assert(false)\nauto * IS = & cin;\nauto * OS = & cout;\narray<string, 3> SEQ = { \"\", \" \", \"\" };\n// input\ntemplate<typename T> T in() { T a; (* IS) >> a; return a; }\n// input: tuple\ntemplate<int I, typename U> void tin_(istream & is, U & t) {\n\tif constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); }\n}\ntemplate<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; }\ntemplate<typename ... T> auto tin() { return in<tuple<T ...>>(); }\n// input: array\ntemplate<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; }\ntemplate<typename T, size_t N> auto ain() { return in<array<T, N>>(); }\n// input: multi-dimensional vector\ntemplate<typename T> T vin() { T v; (* IS) >> v; return v; }\ntemplate<typename T, typename N, typename ... M> auto vin(N n, M ... m) {\n\tvector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;\n}\n// input: multi-column (tuple<vector>)\ntemplate<typename U, int I> void colin_([[maybe_unused]] U & t) { }\ntemplate<typename U, int I, typename A, typename ... B> void colin_(U & t) {\n\tget<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);\n}\ntemplate<typename ... T> auto colin(int n) {\n\ttuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;\n}\n// output\nvoid out_([[maybe_unused]] string s) { }\ntemplate<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }\ntemplate<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }\nauto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };\nauto out = [](auto ... a) { outF(\"\", \" \" , \"\\n\", a ...); };\nauto outS = [](auto ... a) { outF(\"\", \" \" , \" \" , a ...); };\nauto outL = [](auto ... a) { outF(\"\", \"\\n\", \"\\n\", a ...); };\nauto outN = [](auto ... a) { outF(\"\", \"\" , \"\" , a ...); };\n// output: multi-dimensional vector\ntemplate<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {\n\tos << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? \"\" : SEQ[1]) << v[i]; } return (os << SEQ[2]);\n}\ntemplate<typename T> void vout_(T && v) { (* OS) << v; }\ntemplate<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {\n\tinc(i, SI(v)) { (* OS) << (i == 0 ? \"\" : a); vout_(v[i], b ...); }\n}\ntemplate<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }\ntemplate<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; }\n\n// ---- ----\n\nint main() {\n\tauto n = in<int>();\n\tauto a = vin<int>(n);\n\tvector<int> ans(n);\n\tinc(i, n) {\n\t\tif(i % 2 == 0 && i + 1 < n) { ans[i] = +a[i + 1]; }\n\t\tif(i % 2 == 1 ) { ans[i] = -a[i - 1]; }\n\t}\n\tif(n % 2 == 1) {\n\t\tauto x = a[n - 3];\n\t\tauto y = a[n - 2];\n\t\tauto z = a[n - 1];\n\t\tans[n - 3] = y * z;\n\t\tans[n - 2] = x * z;\n\t\tans[n - 1] = -2 * x * y;\n\t}\n\tout(ans);\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6256, "score_of_the_acc": -1.5907, "final_rank": 19 }, { "submission_id": "aoj_3152_4878526", "code_snippet": "#include <bits/stdc++.h>\n#define int long long\n#define double long double\nusing namespace std;\nconst int MOD = 1000000007;\nconst int INF = 1e11;\nusing Graph = vector<vector<int>>;\n\nint gcd(int a, int b){\n\tif(!a) return b;\n\treturn gcd(b%a,a);\n}\n\nint lcm(int x, int y){\n\tif(x == 0 || y==0) return 0;\n\treturn x/gcd(x, y) *y;\n}\n\nsigned main(){\n int N;\n cin >> N;\n\n vector<int> A(N);\n int sum = 0;\n for( int i = 0; i < N; i++ ){\n cin >> A[i];\n if( i < N-1 ) sum += A[i];\n }\n\n for( int i = 0; i < N-1; i++ ) cout << -1*A[N-1] << \" \";\n cout << sum << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4688, "score_of_the_acc": -0.9829, "final_rank": 13 }, { "submission_id": "aoj_3152_4874358", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\nint main() {\n int n;\n cin >> n;\n vector<int> a(n);\n rep(i, n) cin >> a[i];\n\n vector<int> b(n, -a[n - 1]);\n b[n - 1] = 0;\n rep(i, n - 1) b[n - 1] += a[i];\n\n rep(i, n) cout << b[i] << \" \\n\"[i == n - 1];\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 4428, "score_of_the_acc": -1.2155, "final_rank": 14 }, { "submission_id": "aoj_3152_4864958", "code_snippet": "#pragma GCC optimize(\"Ofast\", \"unroll-loops\")\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n\nint main(void){\n int N; cin >> N;\n vector<int> A(N);\n for (auto& ai : A)\n cin >> ai;\n \n vector<int> res(N);\n if (N % 2 == 0){\n for (int i = 0; i < N; i += 2){\n res[i] = A[i + 1];\n res[i + 1] = -A[i];\n }\n }\n else{\n for (int i = 3; i < N; i += 2){\n res[i] = A[i + 1];\n res[i + 1] = -A[i];\n }\n if (A[0] != A[2]){\n res[0] = A[1];\n res[1] = -A[0] + A[2];\n res[2] = -A[1];\n }\n else{\n res[1] = -2 * A[0];\n res[0] = 1;\n res[2] = 2 * A[1] - 1;\n }\n }\n\n for (int i = 0; i < N; ++i)\n cout << res[i] << (i == N - 1 ? '\\n' : ' ');\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 4432, "score_of_the_acc": -1.2171, "final_rank": 15 }, { "submission_id": "aoj_3152_4861041", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint n, sum = 0;\nvector<long long> a, b;\n\nint main() {\n cin >> n;\n a.resize(n);\n b.resize(n);\n for (auto &p : a) cin >> p;\n for (int i = 0; i < n - 1; ++i) {\n sum += a[i];\n b[i] = a[n - 1];\n }\n b[n - 1] = -sum;\n sum = 0;\n for (int i = 0; i < n; ++i) {\n sum += a[i] * b[i];\n assert(abs(b[i]) <= (long long)(1e9));\n }\n assert(sum == 0);\n for (int i = 0; i < n; ++i) cout << b[i] << \" \\n\"[i == n - 1];\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6188, "score_of_the_acc": -1.5643, "final_rank": 17 }, { "submission_id": "aoj_3152_4844236", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <iomanip>\n#define vll vector<ll>\n#define vvvl vector<vvl>\n#define vvl vector<vector<ll>>\n#define VV(a, b, c, d) vector<vector<d>>(a, vector<d>(b, c))\n#define VVV(a, b, c, d) vector<vvl>(a, vvl(b, vll (c, d)));\n#define re(c, b) for(ll c=0;c<b;c++)\n#define all(obj) (obj).begin(), (obj).end()\ntypedef long long int ll;\ntypedef long double ld;\nusing namespace std;\n\nll gcd(ll a, ll b){\n if(b<a) swap(a, b);\n ll r = a % b;\n if(r==0) return b;\n while(r!=0) r = a % b, a = b, b = r;\n return a;\n}\nll lcm(ll a, ll b){return (a*b)/gcd(a, b);}\n\nint main(){\n ll n;std::cin >> n;\n vll a(n);re(i, n) scanf(\"%lld\", &a[i]);\n vll ans(n);\n if(n%2==0){\n for(int i=0;i<n;i+=2){\n ll l = lcm(a[i], a[i+1]);\n ll lef = l/a[i];\n ll ri = -l/a[i+1];\n ans[i] = lef, ans[i+1] = ri;\n }\n }else{\n for(int i=0;i<n-3;i+=2){\n ll l = lcm(a[i], a[i+1]);\n ll lef = l/a[i];\n ll ri = -l/a[i+1];\n ans[i] = lef, ans[i+1] = ri;\n }\n //last 3\n ll l = lcm(a[n-3], lcm(a[n-2], a[n-1]));\n ans[n-3] = (2*l)/a[n-3];\n ans[n-2] = -l/a[n-2];\n ans[n-1] = -l/a[n-1];\n }\n for(int i=0;i<n;i++) std::cout << ans[i] << (i==n-1?\"\\n\":\" \");\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 6328, "score_of_the_acc": -1.2853, "final_rank": 16 }, { "submission_id": "aoj_3152_4840089", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<n;i++)\n#define cinf(n,x) for(int i=0;i<(n);i++)cin>>x[i];\n#define ft first\n#define sc second\n#define pb push_back\n#define lb lower_bound\n#define ub upper_bound\n#define all(v) (v).begin(),(v).end()\n#define LB(a,x) lb(all(a),x)-a.begin()\n#define UB(a,x) ub(all(a),x)-a.begin()\n#define mod 1000000007\n//#define mod 998244353\n#define FS fixed<<setprecision(15)\nusing namespace std;\ntypedef long long ll;\nconst double pi=3.141592653589793;\ntemplate<class T> using V=vector<T>;\nusing Graph = vector<vector<int>>;\nusing P=pair<ll,ll>;\ntypedef unsigned long long ull;\ntypedef long double ldouble;\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }\ntemplate<class T> inline void out(T a){ cout << a << '\\n'; }\nvoid YN(bool ok){if(ok) cout << \"Yes\" << endl; else cout << \"No\" << endl;}\n//void YN(bool ok){if(ok) cout << \"YES\" << endl; else cout << \"NO\" << endl;}\n\n\nconst ll INF=1e18;\nconst int mx=200005;\n//wupc\n\nint main(){\n cin.tie(0);ios::sync_with_stdio(false);\n ll n;\n cin>>n;\n V<ll> a(n),b(n);\n cinf(n,a);\n if(n%2==0){\n for(int i=0;i<n;i+=2){\n b[i]=a[i+1];\n b[i+1]=-a[i];\n }\n }else{\n b[2]=-(a[0]*a[1]+a[0]*a[1]);\n b[0]=a[2]*a[1];\n b[1]=a[2]*a[0];\n for(int i=3;i<n;i+=2){\n b[i]=a[i+1];\n b[i+1]=-a[i];\n }\n }\n rep(i,n) cout<<b[i]<<(i==n-1?\"\":\" \");\n cout<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6012, "score_of_the_acc": -0.8295, "final_rank": 8 }, { "submission_id": "aoj_3152_4837247", "code_snippet": "#include <cmath>\n#include <vector>\n#include <iostream>\n#include <algorithm>\n#include <set>\n#include <iomanip>\n#include <numeric>\n#include <queue>\n#include <string>\n#include <map>\n#include <fstream>\n#include <cassert>\n#include <stack>\n#include <climits>\n#include <array>\n#include <unordered_set>\n#include <unordered_map>\n#include <memory>\n#include <functional>\n#include <cfloat>\nconstexpr long long int MOD = 1000000007LL;\n\n\nint main() {\n\tint n; std::cin >> n;\n\tstd::vector<int> array(n);\n\tfor (auto& a : array) std::cin >> a;\n\tstd::vector<int> result(n);\n\tfor (auto i = 0; i + 1< result.size(); i += 2) {\n\t\tresult[i] = array[i + 1];\n\t\tresult[i + 1] = -array[i];\n\t}\n\tif ((n & 1) == 1) {\n\t\tresult[n - 1] = array[n - 2];\n\t\tresult[n - 2] -= array[n - 1];\n\t}\n\tfor (auto i = 0; i < n; ++i) {\n\t\tif (i > 0) std::cout << ' ';\n\t\tstd::cout << result[i];\n\t}\n\tstd::cout << '\\n';\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4644, "score_of_the_acc": -0.9659, "final_rank": 11 }, { "submission_id": "aoj_3152_4837100", "code_snippet": "#include <bits/stdc++.h>\n \nconst double pi = 3.141592653589793238462643383279;\nusing namespace std;\n\n//typedef\n//------------------------------------------\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\ntypedef long long LL;\ntypedef unsigned long long ULL;\ntypedef vector<LL> VLL;\ntypedef vector<VLL> VVLL;\n \n \n//container util\n//------------------------------------------\n#define ALL(a) (a).begin(),(a).end()\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define MP make_pair\n#define SQ(a) ((a)*(a))\n#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)\n#define EXIST(s,e) ((s).find(e)!=(s).end())\n#define SORT(c) sort((c).begin(),(c).end())\n \n \n//repetition\n//------------------------------------------\n#define FOR(i,s,n) for(int i=s;i<(int)n;++i)\n#define REP(i,n) FOR(i,0,n)\n#define MOD 1000000007\n \n \n#define rep(i, a, b) for(int i = a; i < (b); ++i)\n#define trav(a, x) for(auto& a : x)\n#define all(x) x.begin(), x.end()\n#define sz(x) (int)(x).size()\n \ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef vector<int> vi;\n \n#define chmin(x,y) x=min(x,y)\n#define chmax(x,y) x=max(x,y)\n\nconst long double EPS = 1e-6, PI = acos((long double)-1);\n\n//ここから編集\n\nll GCD(ll a, ll b){\n return (b == 0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b)*b;\n}\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(4);\n\n int N; cin >> N;\n vector<ll> a(N);\n REP(i,N) cin >> a[i];\n\n\n if(N%2 == 0){\n\n vector<int> ans(N);\n for(int i=0; i<N; i+=2){\n ll lcm = LCM(a[i], a[i+1]);\n ans[i] = -lcm/a[i];\n ans[i+1] = lcm/a[i+1];\n }\n REP(i,N){\n if(i) cout << \" \";\n cout << ans[i];\n }\n cout << endl;\n }else{\n\n vector<int> ans(N);\n {\n ans[0] = -1;\n ll lcm = LCM(a[1]+a[0], a[2]);\n ans[0] = -lcm/(a[1]+a[0]);\n ans[1] = -lcm/(a[1]+a[0]);\n ans[2] = lcm/a[2];\n }\n for(int i=3; i<N; i+=2){\n ll lcm = LCM(a[i], a[i+1]);\n ans[i] = -lcm/a[i];\n ans[i+1] = lcm/a[i+1];\n }\n REP(i,N){\n if(i) cout << \" \";\n cout << ans[i];\n }\n cout << endl;\n\n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5204, "score_of_the_acc": -0.8496, "final_rank": 9 }, { "submission_id": "aoj_3152_4836111", "code_snippet": "#include<iostream>\n#include<cstdio>\n#include<cstring>\n#include<string>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<map>\n#include<queue>\n#include<deque>\n#include<iomanip>\n#include<tuple>\n#include<cassert>\n#include<set>\nusing namespace std;\ntypedef long long int LL;\ntypedef pair<int,int> P;\ntypedef pair<LL,int> LP;\nconst int INF=1<<30;\nconst LL MAX=1e9+7;\n\nvoid array_show(int *array,int array_n,char middle=' '){\n\tfor(int i=0;i<array_n;i++)printf(\"%d%c\",array[i],(i!=array_n-1?middle:'\\n'));\n}\nvoid array_show(LL *array,int array_n,char middle=' '){\n\tfor(int i=0;i<array_n;i++)printf(\"%lld%c\",array[i],(i!=array_n-1?middle:'\\n'));\n}\nvoid array_show(vector<int> &vec_s,int vec_n=-1,char middle=' '){\n\tif(vec_n==-1)vec_n=vec_s.size();\n\tfor(int i=0;i<vec_n;i++)printf(\"%d%c\",vec_s[i],(i!=vec_n-1?middle:'\\n'));\n}\nvoid array_show(vector<LL> &vec_s,int vec_n=-1,char middle=' '){\n\tif(vec_n==-1)vec_n=vec_s.size();\n\tfor(int i=0;i<vec_n;i++)printf(\"%lld%c\",vec_s[i],(i!=vec_n-1?middle:'\\n'));\n}\n\nint main(){\n\tint n,m;\n\tint i,j,k;\n\tLL a,b,c;\n\tcin>>n;\n\tvector<LL> v1,vs(n);\n\tfor(i=0;i<n;i++){\n\t\tcin>>a;\n\t\tv1.push_back(a);\n\t}\n\tif(n%2==1){\n\t\ta=v1[0]*v1[1]*v1[2];\n\t\tfor(i=0;i<3;i++){\n\t\t\tvs[i]=a/v1[i];\n\t\t}\n\t\tvs[0]*=-2;\n\t}else i=0;\n\tfor(;i<n;i+=2){\n\t\tvs[i]=v1[i+1];\n\t\tvs[i+1]=-v1[i];\n\t}\n\tarray_show(vs);\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 6452, "score_of_the_acc": -2, "final_rank": 20 } ]
aoj_3155_cpp
Problem E: LCM Count Problem 1以上の整数 $N$ が与えられます。 1以上 $N$ 以下の整数からなる、重複のない有限個の要素を持つ整数列 $A_0,A_1,\ldots,A_{k-1}$ であって、 ${\rm lcm}(A_0,A_1,\ldots,A_{k-1})=N$ となる数列の数を求めなさい。 ここで、 ${\rm lcm}(A_0,A_1,\ldots,A_{k-1})$ は数列の全要素に対する最小公倍数を意味します。なお、答えは大きくなることがあるので、 $10^9+7$ で割った余りを求めてください。 Constraints 入力は以下の条件を満たす。 $1 \leq N \leq 10^{12}$ 入力は整数である。 Input 入力は以下の形式で与えられる。 $N$ Output 問題文の条件を満たす数列の数を $10^9+7$ で割った余りを求めなさい。 末尾の改行を忘れないこと。 Sample Input 1 1 Sample Output 1 1 条件を満たす数列は $\{1\}$ のみです。要素数が0であるような数列は考慮しません。 Sample Input 2 6 Sample Output 2 57 条件を満たす数列は、 $\{6\},\{1,6\},\{2,3\},\{2,6\},\{3,6\},\{1,2,3\},$ $\{1,2,6\},\{1,3,6\},\{2,3,6\},\{1,2,3,6\}$ を並べ替えてできる数列のみです。 $\{3,4\}$ や $\{2\}$ を並べ替えてできる数列は、最小公倍数がそれぞれ $12$ と $2$ であるため、条件を満たしません。 Sample Input 3 1000000000 Sample Output 3 919844582 $10^9+7$ で割った余りを出力してください。
[ { "submission_id": "aoj_3155_10092029", "code_snippet": "// competitive-verifier: PROBLEM\n#include <cstdint>\n#include <iostream>\n#include <type_traits>\n#include <utility>\nnamespace internal {\n// @param m `1 <= m`\n// @return x mod m\nconstexpr std::int64_t safe_mod(std::int64_t x, std::int64_t m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n// Fast modular multiplication by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n std::uint64_t im;\n // @param m `1 <= m`\n explicit barrett(unsigned int m) : _m(m), im((std::uint64_t)(-1) / m + 1) {}\n // @return m\n unsigned int umod() const { return _m; }\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n std::uint64_t z = a;\n z *= b;\n std::uint64_t x = (std::uint64_t)(((__uint128_t)(z)*im) >> 64);\n std::uint64_t y = x * _m;\n return (unsigned int)(z - y + (z < y ? _m : 0));\n }\n};\nstruct montgomery {\n std::uint64_t _m;\n std::uint64_t im;\n std::uint64_t r2;\n // @param m `1 <= m`\n explicit constexpr montgomery(std::uint64_t m) : _m(m), im(m), r2(-__uint128_t(m) % m) {\n for (int i = 0; i < 5; ++i) im = im * (2 - _m * im);\n im = -im;\n }\n // @return m\n constexpr std::uint64_t umod() const { return _m; }\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n constexpr std::uint64_t mul(std::uint64_t a, std::uint64_t b) const { return mr(mr(a, b), r2); }\n constexpr std::uint64_t exp(std::uint64_t a, std::uint64_t b) const {\n std::uint64_t res = 1, p = mr(a, r2);\n while (b) {\n if (b & 1) res = mr(res, p);\n p = mr(p, p);\n b >>= 1;\n }\n return res;\n }\n constexpr bool same_pow(std::uint64_t x, int s, std::uint64_t n) const {\n x = mr(x, r2), n = mr(n, r2);\n for (int r = 0; r < s; r++) {\n if (x == n) return true;\n x = mr(x, x);\n }\n return false;\n }\n private:\n constexpr std::uint64_t mr(std::uint64_t x) const {\n return ((__uint128_t)(x * im) * _m + x) >> 64;\n }\n constexpr std::uint64_t mr(std::uint64_t a, std::uint64_t b) const {\n __uint128_t t = (__uint128_t)a * b;\n std::uint64_t inc = std::uint64_t(t) != 0;\n std::uint64_t x = t >> 64, y = ((__uint128_t)(a * b * im) * _m) >> 64;\n unsigned long long z = 0;\n bool f = __builtin_uaddll_overflow(x, y, &z);\n z += inc;\n return f ? z - _m : z;\n }\n};\nconstexpr bool is_SPRP32(std::uint32_t n, std::uint32_t a) {\n std::uint32_t d = n - 1, s = 0;\n while ((d & 1) == 0) ++s, d >>= 1;\n std::uint64_t cur = 1, pw = d;\n while (pw) {\n if (pw & 1) cur = (cur * a) % n;\n a = (std::uint64_t)a * a % n;\n pw >>= 1;\n }\n if (cur == 1) return true;\n for (std::uint32_t r = 0; r < s; r++) {\n if (cur == n - 1) return true;\n cur = cur * cur % n;\n }\n return false;\n}\n// given 2 <= n,a < 2^64, a prime, check whether n is a-SPRP\nconstexpr bool is_SPRP64(const montgomery &m, std::uint64_t a) {\n auto n = m.umod();\n if (n == a) return true;\n if (n % a == 0) return false;\n std::uint64_t d = n - 1;\n int s = 0;\n while ((d & 1) == 0) ++s, d >>= 1;\n std::uint64_t cur = m.exp(a, d);\n if (cur == 1) return true;\n return m.same_pow(cur, s, n - 1);\n}\nconstexpr bool is_prime_constexpr(std::uint64_t x) {\n if (x == 2 || x == 3 || x == 5 || x == 7) return true;\n if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;\n if (x < 121) return (x > 1);\n montgomery m(x);\n constexpr std::uint64_t bases[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};\n for (auto a : bases) {\n if (!is_SPRP64(m, a)) return false;\n }\n return true;\n}\nconstexpr bool is_prime_constexpr(std::int64_t x) {\n if (x < 0) return false;\n return is_prime_constexpr(std::uint64_t(x));\n}\nconstexpr bool is_prime_constexpr(std::uint32_t x) {\n if (x == 2 || x == 3 || x == 5 || x == 7) return true;\n if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;\n if (x < 121) return (x > 1);\n std::uint64_t h = x;\n h = ((h >> 16) ^ h) * 0x45d9f3b;\n h = ((h >> 16) ^ h) * 0x45d9f3b;\n h = ((h >> 16) ^ h) & 255;\n constexpr uint16_t bases[] = {\n 15591, 2018, 166, 7429, 8064, 16045, 10503, 4399, 1949, 1295, 2776, 3620, 560,\n 3128, 5212, 2657, 2300, 2021, 4652, 1471, 9336, 4018, 2398, 20462, 10277, 8028,\n 2213, 6219, 620, 3763, 4852, 5012, 3185, 1333, 6227, 5298, 1074, 2391, 5113,\n 7061, 803, 1269, 3875, 422, 751, 580, 4729, 10239, 746, 2951, 556, 2206,\n 3778, 481, 1522, 3476, 481, 2487, 3266, 5633, 488, 3373, 6441, 3344, 17,\n 15105, 1490, 4154, 2036, 1882, 1813, 467, 3307, 14042, 6371, 658, 1005, 903,\n 737, 1887, 7447, 1888, 2848, 1784, 7559, 3400, 951, 13969, 4304, 177, 41,\n 19875, 3110, 13221, 8726, 571, 7043, 6943, 1199, 352, 6435, 165, 1169, 3315,\n 978, 233, 3003, 2562, 2994, 10587, 10030, 2377, 1902, 5354, 4447, 1555, 263,\n 27027, 2283, 305, 669, 1912, 601, 6186, 429, 1930, 14873, 1784, 1661, 524,\n 3577, 236, 2360, 6146, 2850, 55637, 1753, 4178, 8466, 222, 2579, 2743, 2031,\n 2226, 2276, 374, 2132, 813, 23788, 1610, 4422, 5159, 1725, 3597, 3366, 14336,\n 579, 165, 1375, 10018, 12616, 9816, 1371, 536, 1867, 10864, 857, 2206, 5788,\n 434, 8085, 17618, 727, 3639, 1595, 4944, 2129, 2029, 8195, 8344, 6232, 9183,\n 8126, 1870, 3296, 7455, 8947, 25017, 541, 19115, 368, 566, 5674, 411, 522,\n 1027, 8215, 2050, 6544, 10049, 614, 774, 2333, 3007, 35201, 4706, 1152, 1785,\n 1028, 1540, 3743, 493, 4474, 2521, 26845, 8354, 864, 18915, 5465, 2447, 42,\n 4511, 1660, 166, 1249, 6259, 2553, 304, 272, 7286, 73, 6554, 899, 2816,\n 5197, 13330, 7054, 2818, 3199, 811, 922, 350, 7514, 4452, 3449, 2663, 4708,\n 418, 1621, 1171, 3471, 88, 11345, 412, 1559, 194};\n return is_SPRP32(x, bases[h]);\n}\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr std::int64_t pow_mod_constexpr(std::int64_t x, std::int64_t n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n std::uint64_t r = 1;\n std::uint64_t y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n std::int64_t d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr std::int64_t bases[3] = {2, 7, 61};\n for (std::int64_t a : bases) {\n std::int64_t t = d;\n std::int64_t y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) { return false; }\n }\n return true;\n}\ntemplate <int n>\nconstexpr bool is_prime = is_prime_constexpr(n);\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<std::int64_t, std::int64_t> inv_gcd(std::int64_t a, std::int64_t b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n std::int64_t s = b, t = a;\n std::int64_t m0 = 0, m1 = 1;\n while (t) {\n std::int64_t u = s / t;\n s -= t * u;\n m0 -= m1 * u;\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (std::int64_t)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) { x /= i; }\n }\n }\n if (x > 1) { divs[cnt++] = x; }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m>\nconstexpr int primitive_root = primitive_root_constexpr(m);\n} // namespace internal\n#include <cassert>\n#include <numeric>\nnamespace internal {\ntemplate <class T>\nusing is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;\ntemplate <class T>\nusing is_integral =\n typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value, make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\ntemplate <class T>\nusing to_unsigned_t = typename to_unsigned<T>::type;\n} // namespace internal\nnamespace internal {\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\ntemplate <class T>\nusing is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T>\nusing is_modint_t = std::enable_if_t<is_modint<T>::value>;\n} // namespace internal\ntemplate <int m, std::enable_if_t<(1 <= m)> * = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n public:\n static constexpr int mod() { return m; }\n static constexpr mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n constexpr static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T> * = nullptr>\n constexpr static_modint(T v) : _v(0) {\n std::int64_t x = (std::int64_t)(v % (std::int64_t)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T> * = nullptr>\n constexpr static_modint(T v) : _v(0) {\n _v = (unsigned int)(v % umod());\n }\n constexpr unsigned int val() const { return _v; }\n constexpr mint &operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n constexpr mint &operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n constexpr mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n constexpr mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n constexpr mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n constexpr mint &operator-=(const mint &rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n constexpr mint &operator*=(const mint &rhs) {\n std::uint64_t z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n constexpr mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n constexpr mint operator+() const { return *this; }\n constexpr mint operator-() const { return mint() - *this; }\n constexpr mint pow(std::int64_t n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n constexpr mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n friend constexpr mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }\n friend constexpr mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }\n friend constexpr mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }\n friend constexpr mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }\n friend constexpr bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }\n friend constexpr bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }\n friend std::istream &operator>>(std::istream &is, mint &rhs) {\n std::int64_t t;\n is >> t;\n rhs = mint(t);\n return is;\n }\n friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {\n return os << rhs._v;\n }\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\ntemplate <int id>\nstruct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n std::int64_t x = (std::int64_t)(v % (std::int64_t)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n unsigned int val() const { return _v; }\n mint &operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint &operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint &operator-=(const mint &rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint &operator*=(const mint &rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n mint pow(std::int64_t n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }\n friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }\n friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }\n friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }\n friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }\n friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }\n friend std::istream &operator>>(std::istream &is, mint &rhs) {\n std::int64_t t;\n is >> t;\n rhs = mint(t);\n return is;\n }\n friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {\n return os << rhs._v;\n }\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id>\ninternal::barrett dynamic_modint<id>::bt(998244353);\nusing modint998 = static_modint<998244353>;\nusing modint107 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\nnamespace internal {\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\ntemplate <class>\nstruct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n} // namespace internal\n#include <algorithm>\n#include <bitset>\n#include <iterator>\n#include <vector>\n/**\n * @brief 素数ライブラリ\n *\n * @tparam N\n */\ntemplate <int N = 1 << 22>\nstruct prime_number {\n prime_number() : is_not_prime(), data() { init(); }\n /**\n * @brief 素数判定\n *\n * @param n\n * @return bool\n */\n bool is_prime(std::int64_t n) const {\n assert(n >= 0);\n if (n < N) return !is_not_prime[n];\n for (auto i : data) {\n if ((std::int64_t)i * i > n) break;\n if (n % i == 0) return false;\n }\n return true;\n }\n std::vector<int> prime_numbers(int x) const {\n std::vector<int> res;\n for (auto i : data) {\n if (i > x) break;\n res.emplace_back(i);\n }\n return res;\n }\n /**\n * @brief 素因数分解\n *\n * @tparam T\n * @param x\n * @return std::vector<std::pair<T, int>>\n */\n template <class T>\n std::vector<std::pair<T, int>> prime_factorization(T x) const {\n if (x == 1) return std::vector<std::pair<T, int>>();\n std::vector<std::pair<T, int>> res;\n for (auto p : data) {\n int cnt = 0;\n for (; x % p == 0; x /= p) ++cnt;\n if (cnt) res.emplace_back(p, cnt);\n if ((std::int64_t)p * p > x) break;\n }\n if (x != 1) res.emplace_back(x, 1);\n return res;\n }\n /**\n * @brief 約数列挙\n *\n * @tparam T\n * @param x\n * @return std::vector<T>\n */\n template <class T>\n std::vector<T> divisors(T x) const {\n if (x == 1) return std::vector<T>(1, 1);\n auto v = prime_factorization(x);\n std::vector<T> res;\n res.emplace_back(1);\n for (auto p : v) {\n int n = res.size();\n res.resize(n * (p.second + 1));\n for (int i = 0; i < n * p.second; ++i) res[n + i] = res[i] * p.first;\n for (int i = 1; i <= p.second; ++i) {\n std::inplace_merge(res.begin(), res.begin() + n * i, res.begin() + n * (i + 1));\n }\n }\n return res;\n }\n /**\n * @brief 因数分解列挙\n *\n * @tparam T\n * @param x\n * @return std::vector<std::vector<T>>\n */\n template <class T>\n std::vector<std::vector<T>> factorization(T x) const {\n std::vector<std::vector<T>> res;\n auto f = [&](auto self, std::vector<T> v, T a) -> void {\n if (a == 1) res.emplace_back(v);\n for (auto i : this->divisors(a)) {\n if (i == 1 || (!v.empty() && v.back() > i)) continue;\n v.emplace_back(i);\n self(self, v, a / i);\n v.pop_back();\n }\n };\n f(f, std::vector<T>(), x);\n return res;\n }\n private:\n std::bitset<N> is_not_prime;\n std::vector<int> data;\n void init() {\n is_not_prime[0] = is_not_prime[1] = true;\n for (int i = 2; i < N; ++i) {\n if (!is_not_prime[i]) {\n data.emplace_back(i);\n if ((std::int64_t)i * i >= N) continue;\n if (i == 2) {\n for (int j = i * i; j < N; j += i) is_not_prime[j] = true;\n } else {\n for (int j = i * i; j < N; j += i << 1) is_not_prime[j] = true;\n }\n }\n }\n }\n};\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nusing Mint = modint107;\nprime_number pn;\nint main(void) {\n ll n;\n cin >> n;\n if (n == 1) {\n co(1);\n return 0;\n }\n auto v = pn.prime_factorization(n);\n int m = v.size();\n Mint ans = 0;\n rep (bit, 1 << m) {\n ll sum = 1;\n int c = 0;\n rep (i, m) {\n if (~bit >> i & 1) {\n sum *= v[i].second + 1;\n } else {\n ++c;\n sum *= v[i].second;\n }\n }\n Mint p = 1;\n Mint x = 0;\n repnr (i, sum) {\n p *= i;\n x += p;\n }\n if (c & 1) {\n ans -= x;\n } else {\n ans += x;\n }\n }\n co(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6492, "score_of_the_acc": -0.0176, "final_rank": 1 }, { "submission_id": "aoj_3155_10092027", "code_snippet": "// competitive-verifier: PROBLEM\n#include <cstdint>\n#include <iostream>\n#include <type_traits>\n#include <utility>\nnamespace internal {\n// @param m `1 <= m`\n// @return x mod m\nconstexpr std::int64_t safe_mod(std::int64_t x, std::int64_t m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n// Fast modular multiplication by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n std::uint64_t im;\n // @param m `1 <= m`\n explicit barrett(unsigned int m) : _m(m), im((std::uint64_t)(-1) / m + 1) {}\n // @return m\n unsigned int umod() const { return _m; }\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n std::uint64_t z = a;\n z *= b;\n std::uint64_t x = (std::uint64_t)(((__uint128_t)(z)*im) >> 64);\n std::uint64_t y = x * _m;\n return (unsigned int)(z - y + (z < y ? _m : 0));\n }\n};\nstruct montgomery {\n std::uint64_t _m;\n std::uint64_t im;\n std::uint64_t r2;\n // @param m `1 <= m`\n explicit constexpr montgomery(std::uint64_t m) : _m(m), im(m), r2(-__uint128_t(m) % m) {\n for (int i = 0; i < 5; ++i) im = im * (2 - _m * im);\n im = -im;\n }\n // @return m\n constexpr std::uint64_t umod() const { return _m; }\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n constexpr std::uint64_t mul(std::uint64_t a, std::uint64_t b) const { return mr(mr(a, b), r2); }\n constexpr std::uint64_t exp(std::uint64_t a, std::uint64_t b) const {\n std::uint64_t res = 1, p = mr(a, r2);\n while (b) {\n if (b & 1) res = mr(res, p);\n p = mr(p, p);\n b >>= 1;\n }\n return res;\n }\n constexpr bool same_pow(std::uint64_t x, int s, std::uint64_t n) const {\n x = mr(x, r2), n = mr(n, r2);\n for (int r = 0; r < s; r++) {\n if (x == n) return true;\n x = mr(x, x);\n }\n return false;\n }\n private:\n constexpr std::uint64_t mr(std::uint64_t x) const {\n return ((__uint128_t)(x * im) * _m + x) >> 64;\n }\n constexpr std::uint64_t mr(std::uint64_t a, std::uint64_t b) const {\n __uint128_t t = (__uint128_t)a * b;\n std::uint64_t inc = std::uint64_t(t) != 0;\n std::uint64_t x = t >> 64, y = ((__uint128_t)(a * b * im) * _m) >> 64;\n unsigned long long z = 0;\n bool f = __builtin_uaddll_overflow(x, y, &z);\n z += inc;\n return f ? z - _m : z;\n }\n};\nconstexpr bool is_SPRP32(std::uint32_t n, std::uint32_t a) {\n std::uint32_t d = n - 1, s = 0;\n while ((d & 1) == 0) ++s, d >>= 1;\n std::uint64_t cur = 1, pw = d;\n while (pw) {\n if (pw & 1) cur = (cur * a) % n;\n a = (std::uint64_t)a * a % n;\n pw >>= 1;\n }\n if (cur == 1) return true;\n for (std::uint32_t r = 0; r < s; r++) {\n if (cur == n - 1) return true;\n cur = cur * cur % n;\n }\n return false;\n}\n// given 2 <= n,a < 2^64, a prime, check whether n is a-SPRP\nconstexpr bool is_SPRP64(const montgomery &m, std::uint64_t a) {\n auto n = m.umod();\n if (n == a) return true;\n if (n % a == 0) return false;\n std::uint64_t d = n - 1;\n int s = 0;\n while ((d & 1) == 0) ++s, d >>= 1;\n std::uint64_t cur = m.exp(a, d);\n if (cur == 1) return true;\n return m.same_pow(cur, s, n - 1);\n}\nconstexpr bool is_prime_constexpr(std::uint64_t x) {\n if (x == 2 || x == 3 || x == 5 || x == 7) return true;\n if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;\n if (x < 121) return (x > 1);\n montgomery m(x);\n constexpr std::uint64_t bases[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};\n for (auto a : bases) {\n if (!is_SPRP64(m, a)) return false;\n }\n return true;\n}\nconstexpr bool is_prime_constexpr(std::int64_t x) {\n if (x < 0) return false;\n return is_prime_constexpr(std::uint64_t(x));\n}\nconstexpr bool is_prime_constexpr(std::uint32_t x) {\n if (x == 2 || x == 3 || x == 5 || x == 7) return true;\n if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;\n if (x < 121) return (x > 1);\n std::uint64_t h = x;\n h = ((h >> 16) ^ h) * 0x45d9f3b;\n h = ((h >> 16) ^ h) * 0x45d9f3b;\n h = ((h >> 16) ^ h) & 255;\n constexpr uint16_t bases[] = {\n 15591, 2018, 166, 7429, 8064, 16045, 10503, 4399, 1949, 1295, 2776, 3620, 560,\n 3128, 5212, 2657, 2300, 2021, 4652, 1471, 9336, 4018, 2398, 20462, 10277, 8028,\n 2213, 6219, 620, 3763, 4852, 5012, 3185, 1333, 6227, 5298, 1074, 2391, 5113,\n 7061, 803, 1269, 3875, 422, 751, 580, 4729, 10239, 746, 2951, 556, 2206,\n 3778, 481, 1522, 3476, 481, 2487, 3266, 5633, 488, 3373, 6441, 3344, 17,\n 15105, 1490, 4154, 2036, 1882, 1813, 467, 3307, 14042, 6371, 658, 1005, 903,\n 737, 1887, 7447, 1888, 2848, 1784, 7559, 3400, 951, 13969, 4304, 177, 41,\n 19875, 3110, 13221, 8726, 571, 7043, 6943, 1199, 352, 6435, 165, 1169, 3315,\n 978, 233, 3003, 2562, 2994, 10587, 10030, 2377, 1902, 5354, 4447, 1555, 263,\n 27027, 2283, 305, 669, 1912, 601, 6186, 429, 1930, 14873, 1784, 1661, 524,\n 3577, 236, 2360, 6146, 2850, 55637, 1753, 4178, 8466, 222, 2579, 2743, 2031,\n 2226, 2276, 374, 2132, 813, 23788, 1610, 4422, 5159, 1725, 3597, 3366, 14336,\n 579, 165, 1375, 10018, 12616, 9816, 1371, 536, 1867, 10864, 857, 2206, 5788,\n 434, 8085, 17618, 727, 3639, 1595, 4944, 2129, 2029, 8195, 8344, 6232, 9183,\n 8126, 1870, 3296, 7455, 8947, 25017, 541, 19115, 368, 566, 5674, 411, 522,\n 1027, 8215, 2050, 6544, 10049, 614, 774, 2333, 3007, 35201, 4706, 1152, 1785,\n 1028, 1540, 3743, 493, 4474, 2521, 26845, 8354, 864, 18915, 5465, 2447, 42,\n 4511, 1660, 166, 1249, 6259, 2553, 304, 272, 7286, 73, 6554, 899, 2816,\n 5197, 13330, 7054, 2818, 3199, 811, 922, 350, 7514, 4452, 3449, 2663, 4708,\n 418, 1621, 1171, 3471, 88, 11345, 412, 1559, 194};\n return is_SPRP32(x, bases[h]);\n}\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr std::int64_t pow_mod_constexpr(std::int64_t x, std::int64_t n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n std::uint64_t r = 1;\n std::uint64_t y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n std::int64_t d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr std::int64_t bases[3] = {2, 7, 61};\n for (std::int64_t a : bases) {\n std::int64_t t = d;\n std::int64_t y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) { return false; }\n }\n return true;\n}\ntemplate <int n>\nconstexpr bool is_prime = is_prime_constexpr(n);\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<std::int64_t, std::int64_t> inv_gcd(std::int64_t a, std::int64_t b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n std::int64_t s = b, t = a;\n std::int64_t m0 = 0, m1 = 1;\n while (t) {\n std::int64_t u = s / t;\n s -= t * u;\n m0 -= m1 * u;\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (std::int64_t)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) { x /= i; }\n }\n }\n if (x > 1) { divs[cnt++] = x; }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m>\nconstexpr int primitive_root = primitive_root_constexpr(m);\n} // namespace internal\n#include <cassert>\n#include <numeric>\nnamespace internal {\ntemplate <class T>\nusing is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;\ntemplate <class T>\nusing is_integral =\n typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value, make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\ntemplate <class T>\nusing to_unsigned_t = typename to_unsigned<T>::type;\n} // namespace internal\nnamespace internal {\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\ntemplate <class T>\nusing is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T>\nusing is_modint_t = std::enable_if_t<is_modint<T>::value>;\n} // namespace internal\ntemplate <int m, std::enable_if_t<(1 <= m)> * = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n public:\n static constexpr int mod() { return m; }\n static constexpr mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n constexpr static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T> * = nullptr>\n constexpr static_modint(T v) : _v(0) {\n std::int64_t x = (std::int64_t)(v % (std::int64_t)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T> * = nullptr>\n constexpr static_modint(T v) : _v(0) {\n _v = (unsigned int)(v % umod());\n }\n constexpr unsigned int val() const { return _v; }\n constexpr mint &operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n constexpr mint &operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n constexpr mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n constexpr mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n constexpr mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n constexpr mint &operator-=(const mint &rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n constexpr mint &operator*=(const mint &rhs) {\n std::uint64_t z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n constexpr mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n constexpr mint operator+() const { return *this; }\n constexpr mint operator-() const { return mint() - *this; }\n constexpr mint pow(std::int64_t n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n constexpr mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n friend constexpr mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }\n friend constexpr mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }\n friend constexpr mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }\n friend constexpr mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }\n friend constexpr bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }\n friend constexpr bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }\n friend std::istream &operator>>(std::istream &is, mint &rhs) {\n std::int64_t t;\n is >> t;\n rhs = mint(t);\n return is;\n }\n friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {\n return os << rhs._v;\n }\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\ntemplate <int id>\nstruct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n std::int64_t x = (std::int64_t)(v % (std::int64_t)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n unsigned int val() const { return _v; }\n mint &operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint &operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint &operator-=(const mint &rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint &operator*=(const mint &rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n mint pow(std::int64_t n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }\n friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }\n friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }\n friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }\n friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }\n friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }\n friend std::istream &operator>>(std::istream &is, mint &rhs) {\n std::int64_t t;\n is >> t;\n rhs = mint(t);\n return is;\n }\n friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {\n return os << rhs._v;\n }\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id>\ninternal::barrett dynamic_modint<id>::bt(998244353);\nusing modint998 = static_modint<998244353>;\nusing modint107 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\nnamespace internal {\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\ntemplate <class>\nstruct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n} // namespace internal\n#include <algorithm>\n#include <bitset>\n#include <iterator>\n#include <vector>\n/**\n * @brief 素数ライブラリ\n *\n * @tparam N\n */\ntemplate <int N = 1 << 22>\nstruct prime_number {\n prime_number() : is_not_prime(), data() { init(); }\n /**\n * @brief 素数判定\n *\n * @param n\n * @return bool\n */\n bool is_prime(std::int64_t n) const {\n assert(n >= 0);\n if (n < N) return !is_not_prime[n];\n for (auto i : data) {\n if ((std::int64_t)i * i > n) break;\n if (n % i == 0) return false;\n }\n return true;\n }\n std::vector<int> prime_numbers(int x) const {\n std::vector<int> res;\n for (auto i : data) {\n if (i > x) break;\n res.emplace_back(i);\n }\n return res;\n }\n /**\n * @brief 素因数分解\n *\n * @tparam T\n * @param x\n * @return std::vector<std::pair<T, int>>\n */\n template <class T>\n std::vector<std::pair<T, int>> prime_factorization(T x) const {\n if (x == 1) return std::vector<std::pair<T, int>>();\n std::vector<std::pair<T, int>> res;\n for (auto p : data) {\n int cnt = 0;\n for (; x % p == 0; x /= p) ++cnt;\n if (cnt) res.emplace_back(p, cnt);\n if ((std::int64_t)p * p > x) break;\n }\n if (x != 1) res.emplace_back(x, 1);\n return res;\n }\n /**\n * @brief 約数列挙\n *\n * @tparam T\n * @param x\n * @return std::vector<T>\n */\n template <class T>\n std::vector<T> divisors(T x) const {\n if (x == 1) return std::vector<T>(1, 1);\n auto v = prime_factorization(x);\n std::vector<T> res;\n res.emplace_back(1);\n for (auto p : v) {\n int n = res.size();\n res.resize(n * (p.second + 1));\n for (int i = 0; i < n * p.second; ++i) res[n + i] = res[i] * p.first;\n for (int i = 1; i <= p.second; ++i) {\n std::inplace_merge(res.begin(), res.begin() + n * i, res.begin() + n * (i + 1));\n }\n }\n return res;\n }\n /**\n * @brief 因数分解列挙\n *\n * @tparam T\n * @param x\n * @return std::vector<std::vector<T>>\n */\n template <class T>\n std::vector<std::vector<T>> factorization(T x) const {\n std::vector<std::vector<T>> res;\n auto f = [&](auto self, std::vector<T> v, T a) -> void {\n if (a == 1) res.emplace_back(v);\n for (auto i : this->divisors(a)) {\n if (i == 1 || (!v.empty() && v.back() > i)) continue;\n v.emplace_back(i);\n self(self, v, a / i);\n v.pop_back();\n }\n };\n f(f, std::vector<T>(), x);\n return res;\n }\n private:\n std::bitset<N> is_not_prime;\n std::vector<int> data;\n void init() {\n is_not_prime[0] = is_not_prime[1] = true;\n for (int i = 2; i < N; ++i) {\n if (!is_not_prime[i]) {\n data.emplace_back(i);\n if ((std::int64_t)i * i >= N) continue;\n if (i == 2) {\n for (int j = i * i; j < N; j += i) is_not_prime[j] = true;\n } else {\n for (int j = i * i; j < N; j += i << 1) is_not_prime[j] = true;\n }\n }\n }\n }\n};\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nusing Mint = modint107;\nprime_number pn;\nint main(void) {\n ll n;\n cin >> n;\n if (n == 1) {\n co(1);\n return 0;\n }\n auto v = pn.prime_factorization(n);\n int m = v.size();\n Mint ans = 0;\n rep (bit, 1 << m) {\n ll sum = 1;\n int c = 0;\n rep (i, m) {\n if (~bit >> i & 1) {\n ++c;\n sum *= v[i].second + 1;\n } else {\n sum *= v[i].second;\n }\n }\n Mint p = 1;\n Mint x = 0;\n repnr (i, sum) {\n p *= i;\n x += p;\n }\n if (c & 1) {\n ans -= x;\n } else {\n ans += x;\n }\n }\n co(ans);\n return 0;\n}", "accuracy": 0.12121212121212122, "time_ms": 10, "memory_kb": 5524, "score_of_the_acc": -0.0122, "final_rank": 18 }, { "submission_id": "aoj_3155_5973339", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 1000000007 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n x %= mod;\n if(x == 0) return 0;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n BIT(){}\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n void build(int n) {\n N = n;\n node.resize(N+10);\n }\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash{\n\n using ull = unsigned long long;\n const ull mod = (1ULL << 61) - 1;\n const ull MASK30 = (1ULL << 30) - 1;\n const ull MASK31 = (1ULL << 31) - 1;\n\n const ull MASK61 = mod;\n\n ull base;\n int n;\n vector<ull> hash, pow;\n\n RollingHash(const string &s)\n {\n random_device rnd;\n mt19937_64 mt(rnd());\n base = 1001;\n \n n = (int)s.size();\n hash.assign(n+1, 0);\n pow.assign(n+1, 1);\n \n for(int i=0; i<n; i++){\n hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);\n pow[i+1] = calc_mod(mul(pow[i], base));\n }\n }\n\n ull calc_mod(ull x){\n ull xu = x >> 61;\n ull xd = x & MASK61;\n ull res = xu + xd;\n if(res >= mod) res -= mod;\n return res;\n }\n\n ull mul(ull a, ull b){\n ull au = a >> 31;\n ull ad = a & MASK31;\n ull bu = b >> 31;\n ull bd = b & MASK31;\n ull mid = ad * bu + au * bd;\n ull midu = mid >> 30;\n ull midd = mid & MASK30;\n return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);\n }\n\n //[l,r)のハッシュ値\n inline ull get(int l, int r){\n ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));\n return res;\n }\n //string tのハッシュ値\n inline ull get(string t){\n ull res = 0;\n for(int i=0; i<t.size(); i++){\n res = calc_mod(mul(res, base)+t[i]);\n }\n return res;\n }\n //string s中のtの数をカウント\n inline int count(string t) {\n if(t.size() > n) return 0;\n auto hs = get(t);\n int res = 0;\n for(int i=0; i<n-t.size()+1; i++){\n if(get(i, i+t.size()) == hs) res++; \n }\n return res;\n }\n\n /* \n concat \n @verify https://codeforces.com/problemset/problem/514/C\n */\n inline ull concat(ull h1, ull h2, int h2len){\n return calc_mod(h2 + mul(h1, pow[h2len]));\n }\n\n // LCPを求める S[a:] T[b:]\n inline int LCP(int a, int b){\n int len = min((int)hash.size()-a, (int)hash.size()-b);\n \n int lb = -1, ub = len;\n while(ub-lb>1){\n int mid = (lb+ub)/2;\n\n if(get(a, a+mid) == get(b, b+mid)) lb = mid;\n else ub = mid;\n }\n return lb;\n }\n};\nint maximum_independent_set(vector<vector<int>> &g) {\n int n = g.size();\n int n1 = n/2, n2 = n-n1;\n vector<int> dp2((1<<n2));\n REP(i,n2) dp2[(1<<i)] = 1;\n REP(bit, (1<<n2)) {\n REP(i,n2) {\n if(bit >> i & 1) continue;\n bool ok = true;\n REP(j,n2) {\n if(bit >> j & 1) ok &= g[n1+i][n1+j];\n }\n int c = 0;\n if(ok) c++;\n dp2[bit | (1 << i)] = max(dp2[bit | (1 << i)], dp2[bit] + c);\n }\n }\n int ans = 0;\n REP(bit,(1<<n1)) {\n vector<int> cand;\n REP(i,n1) {\n if(bit >> i & 1) cand.push_back(i);\n }\n bool ok = true;\n REP(i,cand.size()) {\n FOR(j, i+1 ,cand.size()) {\n ok &= g[cand[i]][cand[j]];\n }\n }\n if(!ok) continue;\n ll bit2 = 0;\n REP(i,n2) {\n ok = true;\n REP(j,cand.size()){\n ok &= g[i+n1][cand[j]];\n }\n if(ok) bit2 |= (1<<i);\n }\n ans = max(ans, __builtin_popcount(bit) + dp2[bit2]);\n }\n return ans;\n}\n\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n \n ll N; cin >> N;\n vector<ll> d;\n ll t = N;\n for(ll i=1; i*i<=t; i++) {\n if(t%i == 0) {\n d.push_back(i);\n if(t/i != i) d.push_back(t/i);\n }\n }\n sort(all(d));\n map<ll, int> mp;\n for(ll i=2; i*i<=t; i++) {\n if(t%i == 0) {\n while(t%i == 0) {\n mp[i]++;\n t/=i;\n }\n }\n }\n if(t != 1) mp[t]++;\n vector<ll> v;\n for(auto e: mp) {\n ll tmp = 1;\n REP(i,e.second) tmp *= e.first;\n v.push_back(tmp);\n } \n Combination<modint> comb(10010);\n int n = mp.size();\n modint ans = 0;\n REP(bit, (1<<n)) {\n ll tmp = 1;\n int cnt = 0;\n REP(i,d.size()) {\n bool f = true;\n REP(j,n) {\n if(bit >> j & 1) {\n if(d[i]%v[j] == 0) f = false;\n }\n }\n if(f) cnt++;\n }\n \n modint res = 0;\n for(int i=1; i<=cnt; i++) res += comb.P(cnt, i);\n if(__builtin_popcount(bit)%2 == 1) res *= -1;\n ans += res;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 3580, "score_of_the_acc": -0.2578, "final_rank": 4 }, { "submission_id": "aoj_3155_5973337", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\n//using namespace atcoder;\n#pragma GCC target (\"avx2\")\n#pragma GCC optimization (\"O3\")\n#pragma GCC optimization (\"unroll-loops\")\nusing namespace std;\n \ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\n \ntypedef long long ll;\ntypedef long double ld;\ntypedef unsigned long long ull;\n \n \n#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)\n#define REP(i, n) FOR(i, 0, n)\n#define rep(i, a, b) for (int i = a; i < (b); ++i)\n#define trav(a, x) for (auto &a : x)\n#define all(x) x.begin(), x.end()\n \n#define MOD 1000000007\n \ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\nconst double EPS = 1e-8, PI = acos(-1);\nconst double pi = 3.141592653589793238462643383279;\n//ここから編集 \ntypedef string::const_iterator State;\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b) * b;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n \n ModInt() : x(0) {}\n \n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n \n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n \n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n \n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n \n ModInt operator-() const { return ModInt(-x); }\n \n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n \n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n \n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n \n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n \n bool operator==(const ModInt &p) const { return x == p.x; }\n \n bool operator!=(const ModInt &p) const { return x != p.x; }\n \n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n \n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n \n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n \n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n \n static int get_mod() { return mod; }\n};\n \nusing modint = ModInt< 1000000007 >;\ntemplate< typename T >\nstruct Combination {\n vector< T > _fact, _rfact, _inv;\n \n Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {\n _fact[0] = _rfact[sz] = _inv[0] = 1;\n for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[sz] /= _fact[sz];\n for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n \n inline T fact(int k) const { return _fact[k]; }\n \n inline T rfact(int k) const { return _rfact[k]; }\n \n inline T inv(int k) const { return _inv[k]; }\n \n T P(int n, int r) const {\n if(r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n \n T C(int p, int q) const {\n if(q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n \n T H(int n, int r) const {\n if(n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n \nll modpow(ll x, ll n, ll mod) {\n ll res = 1;\n x %= mod;\n if(x == 0) return 0;\n while(n) {\n if(n&1) res = (res * x) % mod;\n x = (x * x) % mod;\n n >>= 1;\n }\n return res;\n} \ninline long long mod(long long a, long long m) {\n return (a % m + m) % m;\n}\ntemplate<typename T> \nstruct BIT{\n int N;\n std::vector<T> node;\n BIT(){}\n BIT(int n){\n N = n;\n node.resize(N+10);\n }\n void build(int n) {\n N = n;\n node.resize(N+10);\n }\n /* a: 1-indexed */\n void add(int a, T x){\n for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x;\n }\n\n /* [1, a] */\n T sum(int a){\n T res = 0;\n for(int x=a; x>0; x -= x & -x) res += node[x];\n return res;\n }\n\n /* [l, r] */\n T rangesum(int l, int r){\n return sum(r) - sum(l-1);\n }\n\n /* \n a1+a2+...+aw >= valとなるような最小のwを返す\n @verify https://codeforces.com/contest/992/problem/E\n */\n int lower_bound(T val) {\n if(val < 0) return 0;\n\n int res = 0;\n int n = 1; \n while (n < N) n *= 2;\n\n T tv=0;\n for (int k = n; k > 0; k /= 2) {\n if(res + k < N && node[res + k] < val){\n val -= node[res+k];\n res += k;\n }\n }\n return res+1; \n }\n};\nstruct UnionFind{\n std::vector<int> par;\n std::vector<int> siz;\n\n UnionFind(int sz_): par(sz_), siz(sz_) {\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n void init(int sz_){\n par.resize(sz_);\n siz.resize(sz_);\n for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1;\n }\n\n int root(int x){\n if(x == par[x]) return x;\n return par[x] = root(par[x]);\n }\n\n bool merge(int x, int y){\n x = root(x), y = root(y);\n if(x == y) return false;\n if(siz[x] < siz[y]) std::swap(x, y);\n siz[x] += siz[y];\n par[y] = x;\n return true;\n }\n\n bool issame(int x, int y){\n return root(x) == root(y);\n }\n\n int size(int x){\n return siz[root(x)];\n }\n};\nstruct RollingHash{\n\n using ull = unsigned long long;\n const ull mod = (1ULL << 61) - 1;\n const ull MASK30 = (1ULL << 30) - 1;\n const ull MASK31 = (1ULL << 31) - 1;\n\n const ull MASK61 = mod;\n\n ull base;\n int n;\n vector<ull> hash, pow;\n\n RollingHash(const string &s)\n {\n random_device rnd;\n mt19937_64 mt(rnd());\n base = 1001;\n \n n = (int)s.size();\n hash.assign(n+1, 0);\n pow.assign(n+1, 1);\n \n for(int i=0; i<n; i++){\n hash[i+1] = calc_mod(mul(hash[i], base) + s[i]);\n pow[i+1] = calc_mod(mul(pow[i], base));\n }\n }\n\n ull calc_mod(ull x){\n ull xu = x >> 61;\n ull xd = x & MASK61;\n ull res = xu + xd;\n if(res >= mod) res -= mod;\n return res;\n }\n\n ull mul(ull a, ull b){\n ull au = a >> 31;\n ull ad = a & MASK31;\n ull bu = b >> 31;\n ull bd = b & MASK31;\n ull mid = ad * bu + au * bd;\n ull midu = mid >> 30;\n ull midd = mid & MASK30;\n return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd);\n }\n\n //[l,r)のハッシュ値\n inline ull get(int l, int r){\n ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l]));\n return res;\n }\n //string tのハッシュ値\n inline ull get(string t){\n ull res = 0;\n for(int i=0; i<t.size(); i++){\n res = calc_mod(mul(res, base)+t[i]);\n }\n return res;\n }\n //string s中のtの数をカウント\n inline int count(string t) {\n if(t.size() > n) return 0;\n auto hs = get(t);\n int res = 0;\n for(int i=0; i<n-t.size()+1; i++){\n if(get(i, i+t.size()) == hs) res++; \n }\n return res;\n }\n\n /* \n concat \n @verify https://codeforces.com/problemset/problem/514/C\n */\n inline ull concat(ull h1, ull h2, int h2len){\n return calc_mod(h2 + mul(h1, pow[h2len]));\n }\n\n // LCPを求める S[a:] T[b:]\n inline int LCP(int a, int b){\n int len = min((int)hash.size()-a, (int)hash.size()-b);\n \n int lb = -1, ub = len;\n while(ub-lb>1){\n int mid = (lb+ub)/2;\n\n if(get(a, a+mid) == get(b, b+mid)) lb = mid;\n else ub = mid;\n }\n return lb;\n }\n};\nint maximum_independent_set(vector<vector<int>> &g) {\n int n = g.size();\n int n1 = n/2, n2 = n-n1;\n vector<int> dp2((1<<n2));\n REP(i,n2) dp2[(1<<i)] = 1;\n REP(bit, (1<<n2)) {\n REP(i,n2) {\n if(bit >> i & 1) continue;\n bool ok = true;\n REP(j,n2) {\n if(bit >> j & 1) ok &= g[n1+i][n1+j];\n }\n int c = 0;\n if(ok) c++;\n dp2[bit | (1 << i)] = max(dp2[bit | (1 << i)], dp2[bit] + c);\n }\n }\n int ans = 0;\n REP(bit,(1<<n1)) {\n vector<int> cand;\n REP(i,n1) {\n if(bit >> i & 1) cand.push_back(i);\n }\n bool ok = true;\n REP(i,cand.size()) {\n FOR(j, i+1 ,cand.size()) {\n ok &= g[cand[i]][cand[j]];\n }\n }\n if(!ok) continue;\n ll bit2 = 0;\n REP(i,n2) {\n ok = true;\n REP(j,cand.size()){\n ok &= g[i+n1][cand[j]];\n }\n if(ok) bit2 |= (1<<i);\n }\n ans = max(ans, __builtin_popcount(bit) + dp2[bit2]);\n }\n return ans;\n}\n\nint main() { \n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(12);\n \n ll N; cin >> N;\n vector<ll> d;\n ll t = N;\n for(ll i=1; i*i<=t; i++) {\n if(t%i == 0) {\n d.push_back(i);\n if(t/i != i) d.push_back(t/i);\n }\n }\n sort(all(d));\n map<ll, int> mp;\n for(ll i=2; i*i<=t; i++) {\n if(t%i == 0) {\n while(t%i == 0) {\n mp[i]++;\n t/=i;\n }\n }\n }\n if(t != 1) mp[t]++;\n vector<ll> v;\n for(auto e: mp) {\n ll tmp = 1;\n REP(i,e.second) tmp *= e.first;\n v.push_back(tmp);\n } \n Combination<modint> comb(2010);\n int n = mp.size();\n modint ans = 0;\n REP(bit, (1<<n)) {\n ll tmp = 1;\n int cnt = 0;\n REP(i,d.size()) {\n bool f = true;\n REP(j,n) {\n if(bit >> j & 1) {\n if(d[i]%v[j] == 0) f = false;\n }\n }\n if(f) cnt++;\n }\n \n modint res = 0;\n for(int i=1; i<=cnt; i++) res += comb.P(cnt, i);\n if(__builtin_popcount(bit)%2 == 1) res *= -1;\n ans += res;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.696969696969697, "time_ms": 110, "memory_kb": 3484, "score_of_the_acc": -0.2573, "final_rank": 14 }, { "submission_id": "aoj_3155_5147767", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 3000005\n#define MAX 25\n\n\nll POW[MAX];\nll fact[SIZE],inv_fact[SIZE];\n\nll mod_pow(ll x,ll count, ll mod){\n\n\tif(count == 0)return 1;\n\tll ret = mod_pow((x*x)%mod,count/2,mod);\n\tif(count%2 == 1){\n\n\t\tret = (ret*x)%mod;\n\t}\n\treturn ret;\n}\n\nll extgcd(ll a,ll b,ll &x,ll &y){\n\tll d = a;\n\tif(b != 0){\n\t\td = extgcd(b,a%b,y,x);\n\t\ty -= (a/b)*x;\n\t}else{\n\t\tx = 1;\n\t\ty = 0;\n\t}\n\treturn d;\n}\n\nll mod_inverse(ll a,ll m){\n ll x,y;\n extgcd(a,m,x,y);\n return (m+x%m)%m;\n}\n\nll nCk(ll n,ll k){\n\n\tif(k > n)return 0;\n\n\tll ret = fact[n]*inv_fact[k];\n\tret %= MOD;\n\tret *= inv_fact[n-k];\n\n\treturn ret%MOD;\n}\n\nll nPk(ll n,ll k){\n\n\tif(k > n)return 0;\n\n\tll ret = fact[n]*inv_fact[n-k];\n\n\treturn ret%MOD;\n}\n\n\n\nint main(){\n\n\tfact[0] = 1;\n\tfor(ll i = 1; i < SIZE; i++){\n\t\tfact[i] = i*fact[i-1];\n\t\tfact[i] %= MOD;\n\t}\n\tinv_fact[SIZE-1] = mod_inverse(fact[SIZE-1],MOD);\n\tfor(ll i = SIZE-1; i >= 1; i--){\n\n\t\tinv_fact[i-1] = inv_fact[i]*i;\n\t\tinv_fact[i-1] %= MOD;\n\t}\n\tfor(ll i = 1; i < SIZE; i++){\n\n\t\tinv_fact[i] += inv_fact[i-1];\n\t\tinv_fact[i] %= MOD;\n\t}\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i < MAX; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tll N;\n\tscanf(\"%lld\",&N);\n\n\tll tmp = N;\n\tvector<ll> vec;\n\n\tfor(ll i = 2; i*i <= N; i++){\n\t\tif(tmp%i != 0)continue;\n\n\t\tll count = 0;\n\n\t\twhile(tmp%i == 0){\n\n\t\t\ttmp /= i;\n\t\t\tcount++;\n\t\t}\n\t\tvec.push_back(count);\n\t}\n\tif(tmp > 1){\n\n\t\tvec.push_back(1);\n\t}\n\n\tll ans = 0;\n\n\tfor(ll state = 0; state < POW[vec.size()]; state++){\n\t\tll mult = 1;\n\t\tll count = 0;\n\t\tfor(ll loop = 0; loop < vec.size(); loop++){\n\t\t\tif(state & POW[loop]){ //最大次数に到達しない\n\n\n\t\t\t\tmult *= vec[loop];\n\t\t\t\tcount++;\n\n\t\t\t}else{\n\n\t\t\t\tmult *= vec[loop]+1;\n\t\t\t}\n\t\t}\n\n\t\t//printf(\"state:%lld mult:%lld\\n\",state,mult);\n\n\t\tll base = fact[mult];\n\t\tbase *= inv_fact[mult-1];\n\t\tbase %= MOD;\n\n\t\tif(count%2 == 1){\n\n\t\t\tans -= base;\n\t\t\tif(ans < 0){\n\n\t\t\t\tans += MOD;\n\t\t\t}\n\t\t}else{\n\n\t\t\tans += base;\n\t\t\tans %= MOD;\n\t\t}\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 50160, "score_of_the_acc": -0.3376, "final_rank": 5 }, { "submission_id": "aoj_3155_4993773", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 5000005\n#define MAX 25\n\n\nll fact[SIZE],inv_fact[SIZE];\nll POW[MAX+1];\n\n\nll mod_pow(ll x,ll count, ll mod){\n\n\tif(count == 0)return 1;\n\tll ret = mod_pow((x*x)%mod,count/2,mod);\n\tif(count%2 == 1){\n\n\t\tret = (ret*x)%mod;\n\t}\n\treturn ret;\n}\n\nll extgcd(ll a,ll b,ll &x,ll &y){\n\tll d = a;\n\tif(b != 0){\n\t\td = extgcd(b,a%b,y,x);\n\t\ty -= (a/b)*x;\n\t}else{\n\t\tx = 1;\n\t\ty = 0;\n\t}\n\treturn d;\n}\n\nll mod_inverse(ll a,ll m){\n ll x,y;\n extgcd(a,m,x,y);\n return (m+x%m)%m;\n}\n\nll nCk(ll n,ll k){\n\n\tif(k > n)return 0;\n\n\tll ret = fact[n]*inv_fact[k];\n\tret %= MOD;\n\tret *= inv_fact[n-k];\n\n\treturn ret%MOD;\n}\n\n//https://betrue12.hateblo.jp/entry/2020/11/03/205320\n\nint main(){\n\n\tfact[0] = 1;\n\tfor(ll i = 1; i < SIZE; i++){\n\t\tfact[i] = i*fact[i-1];\n\t\tfact[i] %= MOD;\n\t}\n\tinv_fact[SIZE-1] = mod_inverse(fact[SIZE-1],MOD);\n\tfor(ll i = SIZE-1; i >= 1; i--){\n\n\t\tinv_fact[i-1] = inv_fact[i]*i;\n\t\tinv_fact[i-1] %= MOD;\n\t}\n\tfor(ll i = 1; i < SIZE; i++){\n\n\t\tinv_fact[i] += inv_fact[i-1];\n\t\tinv_fact[i] %= MOD;\n\t}\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i <= MAX; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tvector<ll> V;\n\n\tll N;\n\tscanf(\"%lld\",&N);\n\n\tll tmp = N;\n\n\tfor(ll i = 2; i*i <= N; i++){\n\t\tif(tmp%i != 0)continue;\n\n\t\tll count = 0;\n\n\t\twhile(tmp%i == 0){\n\t\t\tcount++;\n\t\t\ttmp /= i;\n\t\t}\n\t\tV.push_back(count);\n\t}\n\n\tif(tmp > 1)V.push_back(1);\n\n\tll ans = 0;\n\n\tfor(ll state = 0; state < POW[V.size()]; state++){\n\n\t\tll mult = 1;\n\t\tll count = 0;\n\n\t\tfor(ll loop = 0; loop < V.size(); loop++){\n\t\t\tif(state&POW[loop]){\n\n\t\t\t\tmult *= V[loop];\n\t\t\t\tmult %= MOD;\n\t\t\t\tcount++;\n\n\t\t\t}else{\n\n\t\t\t\tmult *= (V[loop]+1);\n\t\t\t\tmult %= MOD;\n\t\t\t}\n\t\t}\n\n\t\ttmp = fact[mult]*inv_fact[(mult-1)];\n\t\ttmp %= MOD;\n\n\t\tif(count%2 == 0){\n\n\t\t\tans += tmp;\n\t\t\tans %= MOD;\n\t\t}else{\n\n\t\t\tans -= tmp;\n\t\t\tif(ans < 0){\n\n\t\t\t\tans += MOD;\n\t\t\t}\n\t\t}\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 81412, "score_of_the_acc": -0.5885, "final_rank": 7 }, { "submission_id": "aoj_3155_4965990", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 2000005\n#define MAX 24\n\nll POW[25];\nll fact[SIZE],inv_fact[SIZE];\n\nll mod_pow(ll x,ll count, ll mod){\n\n\tif(count == 0)return 1;\n\tll ret = mod_pow((x*x)%mod,count/2,mod);\n\tif(count%2 == 1){\n\n\t\tret = (ret*x)%mod;\n\t}\n\treturn ret;\n}\n\nll extgcd(ll a,ll b,ll &x,ll &y){\n\tll d = a;\n\tif(b != 0){\n\t\td = extgcd(b,a%b,y,x);\n\t\ty -= (a/b)*x;\n\t}else{\n\t\tx = 1;\n\t\ty = 0;\n\t}\n\treturn d;\n}\n\nll mod_inverse(ll a,ll m){\n ll x,y;\n extgcd(a,m,x,y);\n return (m+x%m)%m;\n}\n\nll nCk(ll n,ll k){\n\n\tif(k > n)return 0;\n\n\tll ret = fact[n]*inv_fact[k];\n\tret %= MOD;\n\tret *= inv_fact[n-k];\n\n\treturn ret%MOD;\n}\n\n//ありがとうございました\n//https://betrue12.hateblo.jp/entry/2020/11/03/205320\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i <= MAX; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tfact[0] = 1;\n\tfor(ll i = 1; i < SIZE; i++){\n\t\tfact[i] = i*fact[i-1];\n\t\tfact[i] %= MOD;\n\t}\n\tinv_fact[SIZE-1] = mod_inverse(fact[SIZE-1],MOD);\n\tfor(ll i = SIZE-1; i >= 1; i--){\n\n\t\tinv_fact[i-1] = inv_fact[i]*i;\n\t\tinv_fact[i-1] %= MOD;\n\t}\n\tfor(ll i = 1; i < SIZE; i++){\n\n\t\tinv_fact[i] += inv_fact[i-1]; //★★累積和にする★★\n\t\tinv_fact[i] %= MOD;\n\t}\n\n\tll N;\n\tscanf(\"%lld\",&N);\n\n\tvector<ll> vec;\n\n\tll tmp = N;\n\tfor(ll i = 2; i*i <= N; i++){\n\t\tif(tmp%i != 0)continue;\n\n\t\tll count = 0;\n\t\twhile(tmp%i == 0){\n\t\t\ttmp /= i;\n\t\t\tcount++;\n\t\t}\n\t\tvec.push_back(count);\n\t}\n\tif(tmp > 1)vec.push_back(1);\n\n\tll num = vec.size();\n\tll ans = 0;\n\n\tfor(ll state = 0; state < POW[num]; state++){\n\t\tll count = 0;\n\t\tll mult = 1;\n\t\tfor(ll loop = 0; loop < num; loop++){\n\t\t\tif(state & POW[loop]){\n\n\t\t\t\tmult *= vec[loop];\n\t\t\t\tcount++;\n\t\t\t}else{\n\n\t\t\t\tmult *= vec[loop]+1;\n\t\t\t}\n\t\t}\n\n\t\tll tmp = fact[mult];\n\t\ttmp *= inv_fact[mult-1];\n\t\ttmp %= MOD;\n\n\t\tif(count%2 == 1){\n\n\t\t\tans -= tmp;\n\t\t\tif(ans < 0){\n\t\t\t\tans += MOD;\n\t\t\t}\n\n\t\t}else{\n\n\t\t\tans += tmp;\n\t\t\tans %= MOD;\n\t\t}\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 34524, "score_of_the_acc": -0.2249, "final_rank": 3 }, { "submission_id": "aoj_3155_4883336", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\ntemplate <int mod>\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator-=(const ModInt &p) {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator*=(const ModInt &p) {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n bool operator==(const ModInt &p) const { return x == p.x; }\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while (n > 0) {\n if (n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\n\nconst int mod = 1e9 + 7;\nusing mint = ModInt<mod>;\n\n// for test\n// 200560490130\n// 963761198400\n\nconst int N = 7000;\nmint fact[N], inv_fact[N];\nmint C(int n, int r) {\n if (n < r) return 0;\n return fact[n] * inv_fact[r] * inv_fact[n - r];\n}\n\nint main() {\n fact[0] = 1;\n for (int i = 1; i < N; ++i) fact[i] = fact[i - 1] * i;\n inv_fact[N - 1] = fact[N - 1].inverse();\n for (int i = N - 2; i >= 0; --i) inv_fact[i] = inv_fact[i + 1] * (i + 1);\n\n ll n;\n cin >> n;\n\n map<ll, int> f;\n vector<ll> d({1, n});\n\n ll t = n;\n for (ll i = 2; i * i <= n; ++i) {\n if (n % i == 0) {\n d.pb(i);\n d.pb(n / i);\n }\n while (t % i == 0) {\n ++f[i];\n t /= i;\n }\n }\n if (t > 1) ++f[t];\n sort(all(d));\n d.erase(unique(all(d)), d.end());\n int D = d.size();\n\n int F = f.size();\n vector<ll> x;\n vector<int> num;\n for (const auto &p : f) {\n x.pb(p.fi);\n num.pb(p.se);\n }\n\n vector<int> cand(1 << F);\n rep(i, D) {\n int cv = 0;\n ll xx = d[i];\n rep(j, F) {\n int ct = 0;\n while (xx % x[j] == 0) {\n ++ct;\n xx /= x[j];\n }\n if (ct == num[j]) cv |= (1 << j);\n }\n ++cand[cv];\n }\n rep(i, F) {\n rep(mask, 1 << F) {\n if (mask & (1 << i)) cand[mask] += cand[mask ^ (1 << i)];\n }\n }\n\n mint ans = 0;\n for (int i = 1; i <= D; ++i) {\n mint pat = 0;\n rep(mask, 1 << F) {\n int mul = 1;\n if ((F - __builtin_popcount(mask)) % 2) mul = -1;\n pat += C(cand[mask], i) * mul;\n }\n ans += pat * fact[i];\n }\n cout << ans << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3332, "score_of_the_acc": -0.0513, "final_rank": 2 }, { "submission_id": "aoj_3155_4862682", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define N (1000000000+7)\n//#define N 998244353\n#define INF 1e16\ntypedef long long ll;\ntypedef pair<int,int> P;\ntypedef pair<int,P> Q;\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\nconst int inf = (int)1e9; \n \nll gcd(ll a, ll b) {\n\tif (b > a) {\n\t\tll tmp = b;\n\t\tb = a;\n\t\ta = tmp;\n\t}\n\tif (a%b == 0)return b;\n\telse return gcd(b, a%b);\n}\n\nll kaijo[2000010];\nll sum[2000010];\nvoid init() {\n\tkaijo[0] = 1;\n\tfor (ll i = 1;i < 2000010;i++)kaijo[i] = (kaijo[i - 1] * i) % N;\n}\n \nll inv(ll x,ll power) {\n\tll res = 1;\n\tll k = power;\n\tll y = x%N;\n\twhile (k) {\n\t\tif (k & 1)res = (res*y) % N;\n\t\ty = (y%N*y%N) % N;\n\t\tk /= 2;\n\t}\n\treturn res;\n}\n\nvoid init1(){\n\tsum[0] = 1;\n\tfor(ll i=1;i< 2000010;i++){\n\t\tsum[i] = (sum[i-1]+inv(kaijo[i],N-2))%N;\n\t}\n}\n\nll Pow(ll x,ll power,ll r){\n\tll res = 1;\n\tll k = power;\n\tll y = x%r;\n\twhile (k) {\n\t\tif (k & 1)res = (res*y) % r;\n\t\ty = (y%r*y%N) % r;\n\t\tk /= 2;\n\t}\n\treturn res;\n}\n\nll Comb(ll n, ll k) {\n\tif (n < 0 || k < 0 || (n - k) < 0)return 0;\n\tll b = kaijo[n];\n\tll c = kaijo[n - k];\n\tll d = kaijo[k];\n\tll cd = (c*d) % N;\n\treturn ((b%N)*(inv(cd,N-2)) % N) % N;\n}\n \nll itertive_pow(ll x,ll power) {\n\tll res = 1;\n\tll k = power;\n\tll y = x;\n\twhile (k) {\n\t\tif (k & 1)res = (res*y) ;\n\t\ty = y*y;\n\t\tk /= 2;\n\t}\n\treturn res;\n}\n\n\nmap<ll,ll>mp1,mp2;\n\nvoid precalc(ll n){\n\tvector<ll>prime;\n\tll p = n;\n\tfor(ll i=2;i*i<=n;i++){\n\t\tif(p%i==0){\n\t\t\twhile(p%i==0)p/=i;\n\t\t\tprime.push_back(i);\n\t\t}\n\t}\n\tif(p>1)prime.push_back(p);\n\tll m = prime.size();\n\tmp1[1]=1;\n\tmp2[1]=1;\n\tfor(ll i=1;i<(1LL<<m);i++){\n\t\tll cnt = 0;\n\t\tll d = 1;\n\t\tfor(ll j=0;j<m;j++){\n\t\t\tif((i>>j)&1){\n\t\t\t\td*=prime[j];\n\t\t\t\tcnt++;\n\t\t\t}\n\t\t}\n\t\tmp1[d] = ((cnt%2==0)?1:-1);\n\t}\n}\n\n\n\nint main(void){\n\tll n;\n\tcin>>n;\n\tll ans = 0;\n\tsum[0] = 0;\n\tinit();\n\tinit1();\n\tprecalc(n);\n\tfor(auto [d,cnt]:mp1){\n\t\tll x = n/d;\n\t\tll c = 0;\n\t\tfor(ll i=1;i*i<=x;i++){\n\t\t\tif(x%i==0){\n\t\t\t\tll t = x/i;\n\t\t\t\tif(i==t)c++;\n\t\t\t\telse c+=2LL;\n\t\t\t}\n\t\t}\n\t\tll tmp = (kaijo[c]*sum[c-1])%N;\n\t\ttmp = (mp1[d]*tmp+N)%N;\n\t\ttmp = (tmp+N)%N;\n\t\tans = (ans+tmp+N)%N;\n\t}\n\tcout<<ans<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 290, "memory_kb": 34732, "score_of_the_acc": -0.8928, "final_rank": 12 }, { "submission_id": "aoj_3155_4861779", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define rep(i, srt, end) for (long long i = (srt); i < (long long)(end); i++)\n\nvector<ll> yakusu(ll n){\n vector<ll> ret;\n for(ll i = 1; i*i <= n; i++){\n if(n % i != 0) continue;\n ret.push_back(i);\n if(i*i != n) ret.push_back(n/i);\n }\n sort(ret.begin(), ret.end());\n reverse(ret.begin(), ret.end());\n return ret;\n}\n\nconst ll mod = 1000000000 + 7;\n#define NMAX 1000010\nll fac[NMAX], inv[NMAX];\n\nll mod_pow(ll a, ll n, ll mod){\n ll ret = 1;\n while(n > 0){\n if(n & 1) ret = (ret*(a % mod))%mod;\n a = ((a%mod)*(a%mod)) % mod;\n n = n >> 1;\n }\n return ret;\n}\n\nll mod_inv(ll a, ll mod){\n return mod_pow(a, mod-2, mod);\n}\n\nvoid mae_nck(){\n fac[1] = 1;\n inv[1] = 1;\n for(ll i = 2; i < NMAX; i++){\n fac[i] = (fac[i-1] * i)%mod;\n inv[i] = (inv[i-1] * mod_inv(i, mod))%mod;\n }\n}\n\nll mod_nck(ll n, ll k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n if(k == 0 || k == n) return 1;\n ll ret = ((fac[n] * inv[k])%mod * inv[n-k])%mod;\n return ret;\n}\n\nll calc(ll n) {\n ll res = 0;\n for(ll i = 1; i <= n; i++) {\n res += (mod_nck(n, i) * fac[i]) % mod;\n res %= mod; \n }\n return res;\n}\n\nint main() {\n mae_nck();\n ll n;\n cin >> n;\n ll invalid = 0;\n auto vn = yakusu(n);\n map<ll, ll> cnt;\n for(auto e : vn) {\n if(cnt[e] == 1 || e == n) continue;\n auto v = yakusu(e);\n if(cnt[e] == 0) {\n invalid += calc(v.size());\n invalid %= mod;\n for(auto p : v) cnt[p]++;\n } else {\n invalid -= ((cnt[e] - 1) * calc(v.size())) % mod;\n invalid %= mod;\n ll gap = cnt[e] - 1;\n for(auto p : v) cnt[p] -= gap; \n }\n }\n ll sum = calc(vn.size());\n ll ans = sum - invalid + mod;\n ans %= mod;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 290, "memory_kb": 19408, "score_of_the_acc": -0.8074, "final_rank": 8 }, { "submission_id": "aoj_3155_4861778", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define rep(i, srt, end) for (long long i = (srt); i < (long long)(end); i++)\n\nvector<ll> yakusu(ll n){\n vector<ll> ret;\n for(ll i = 1; i*i <= n; i++){\n if(n % i != 0) continue;\n ret.push_back(i);\n if(i*i != n) ret.push_back(n/i);\n }\n sort(ret.begin(), ret.end());\n reverse(ret.begin(), ret.end());\n return ret;\n}\n\nconst ll mod = 1000000000 + 7;\n#define NMAX 1000010\nll fac[NMAX], inv[NMAX];\n\nll mod_pow(ll a, ll n, ll mod){\n ll ret = 1;\n while(n > 0){\n if(n & 1) ret = (ret*(a % mod))%mod;\n a = ((a%mod)*(a%mod)) % mod;\n n = n >> 1;\n }\n return ret;\n}\n\nll mod_inv(ll a, ll mod){\n return mod_pow(a, mod-2, mod);\n}\n\nvoid mae_nck(){\n fac[1] = 1;\n inv[1] = 1;\n for(ll i = 2; i < NMAX; i++){\n fac[i] = (fac[i-1] * i)%mod;\n inv[i] = (inv[i-1] * mod_inv(i, mod))%mod;\n }\n}\n\nll mod_nck(ll n, ll k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n if(k == 0 || k == n) return 1;\n ll ret = ((fac[n] * inv[k])%mod * inv[n-k])%mod;\n return ret;\n}\n\nll calc(ll n) {\n ll res = 0;\n for(ll i = 1; i <= n; i++) {\n res += (mod_nck(n, i) * fac[i]) % mod;\n res %= mod; \n }\n return res;\n}\n\nint main() {\n mae_nck();\n ll n;\n cin >> n;\n ll invalid = 0;\n auto vn = yakusu(n);\n map<ll, ll> cnt;\n for(auto e : vn) {\n if(cnt[e] == 1 || e == n) continue;\n auto v = yakusu(e);\n if(cnt[e] == 0) {\n invalid += calc(v.size());\n invalid %= mod;\n for(auto p : v) cnt[p]++;\n } else {\n invalid -= ((cnt[e] - 1) * calc(v.size())) % mod;\n invalid %= mod;\n ll gap = cnt[e] - 1;\n for(auto p : v) cnt[p]--;\n // for(auto p : v) cnt[p] -= gap; <============================ これも通る\n }\n }\n ll sum = calc(vn.size());\n ll ans = sum - invalid + mod;\n ans %= mod;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 19356, "score_of_the_acc": -0.8328, "final_rank": 10 }, { "submission_id": "aoj_3155_4861723", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define rep(i, srt, end) for (long long i = (srt); i < (long long)(end); i++)\n\nvector<ll> yakusu(ll n){\n vector<ll> ret;\n for(ll i = 1; i*i <= n; i++){\n if(n % i != 0) continue;\n ret.push_back(i);\n if(i*i != n) ret.push_back(n/i);\n }\n sort(ret.begin(), ret.end());\n reverse(ret.begin(), ret.end());\n return ret;\n}\n\nconst ll mod = 1000000000 + 7;\n#define NMAX 1000010\nll fac[NMAX], inv[NMAX];\n\nll mod_pow(ll a, ll n, ll mod){\n ll ret = 1;\n while(n > 0){\n if(n & 1) ret = (ret*(a % mod))%mod;\n a = ((a%mod)*(a%mod)) % mod;\n n = n >> 1;\n }\n return ret;\n}\n\nll mod_inv(ll a, ll mod){\n return mod_pow(a, mod-2, mod);\n}\n\nvoid mae_nck(){\n fac[1] = 1;\n inv[1] = 1;\n for(ll i = 2; i < NMAX; i++){\n fac[i] = (fac[i-1] * i)%mod;\n inv[i] = (inv[i-1] * mod_inv(i, mod))%mod;\n }\n}\n\nll mod_nck(ll n, ll k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n if(k == 0 || k == n) return 1;\n ll ret = ((fac[n] * inv[k])%mod * inv[n-k])%mod;\n return ret;\n}\n\nll calc(ll n) {\n ll res = 0;\n for(ll i = 1; i <= n; i++) {\n res += (mod_nck(n, i) * fac[i]) % mod;\n res %= mod; \n }\n return res;\n}\n\nint main() {\n mae_nck();\n ll n;\n cin >> n;\n ll invalid = 0;\n auto vn = yakusu(n);\n map<ll, ll> cnt;\n for(auto e : vn) {\n if(cnt[e] == 1 || e == n) continue;\n auto v = yakusu(e);\n if(cnt[e] == 0) {\n invalid += calc(v.size());\n invalid %= mod;\n for(auto p : v) cnt[p]++;\n } else {\n invalid -= ((cnt[e] - 1) * calc(v.size())) % mod;\n int num = cnt[e] - 1;\n invalid %= mod;\n for(auto p : v) cnt[p] -= num;\n }\n }\n ll sum = calc(vn.size());\n ll ans = sum - invalid + mod;\n ans %= mod;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 290, "memory_kb": 19452, "score_of_the_acc": -0.8077, "final_rank": 9 }, { "submission_id": "aoj_3155_4861562", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define rep(i, srt, end) for (long long i = (srt); i < (long long)(end); i++)\n\nvector<ll> yakusu(ll n){\n vector<ll> ret;\n for(ll i = 1; i*i <= n; i++){\n if(n % i != 0) continue;\n ret.push_back(i);\n if(i*i != n) ret.push_back(n/i);\n }\n sort(ret.begin(), ret.end());\n reverse(ret.begin(), ret.end());\n return ret;\n}\n\nconst ll mod = 1000000000 + 7;\n#define NMAX 1000010\nll fac[NMAX], inv[NMAX];\n\nll mod_pow(ll a, ll n, ll mod){\n ll ret = 1;\n while(n > 0){\n if(n & 1) ret = (ret*(a % mod))%mod;\n a = ((a%mod)*(a%mod)) % mod;\n n = n >> 1;\n }\n return ret;\n}\n\nll mod_inv(ll a, ll mod){\n return mod_pow(a, mod-2, mod);\n}\n\nvoid mae_nck(){\n fac[1] = 1;\n inv[1] = 1;\n for(ll i = 2; i < NMAX; i++){\n fac[i] = (fac[i-1] * i)%mod;\n inv[i] = (inv[i-1] * mod_inv(i, mod))%mod;\n }\n}\n\nll mod_nck(ll n, ll k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n if(k == 0 || k == n) return 1;\n ll ret = ((fac[n] * inv[k])%mod * inv[n-k])%mod;\n return ret;\n}\n\nll calc(ll n) {\n ll res = 0;\n for(ll i = 1; i <= n; i++) {\n res += (mod_nck(n, i) * fac[i]) % mod;\n res %= mod; \n }\n return res;\n}\n\nint main() {\n mae_nck();\n ll n;\n cin >> n;\n ll invalid = 0;\n auto vn = yakusu(n);\n map<ll, ll> cnt;\n for(auto e : vn) {\n if(cnt[e] == 1 || e == n) continue;\n auto v = yakusu(e);\n if(cnt[e] == 0) {\n invalid += calc(v.size());\n invalid %= mod;\n for(auto p : v) cnt[p]++;\n } else {\n invalid -= ((cnt[e] - 1) * calc(v.size())) % mod;\n invalid %= mod;\n for(auto p : v) cnt[p] -= cnt[e] - 1;\n }\n }\n ll sum = calc(vn.size());\n ll ans = sum - invalid + mod;\n ans %= mod;\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.06060606060606061, "time_ms": 160, "memory_kb": 19060, "score_of_the_acc": -0.4722, "final_rank": 19 }, { "submission_id": "aoj_3155_4861560", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define rep(i, srt, end) for (long long i = (srt); i < (long long)(end); i++)\n\nvector<ll> yakusu(ll n){\n vector<ll> ret;\n for(ll i = 1; i*i <= n; i++){\n if(n % i != 0) continue;\n ret.push_back(i);\n if(i*i != n) ret.push_back(n/i);\n }\n sort(ret.begin(), ret.end());\n reverse(ret.begin(), ret.end());\n return ret;\n}\n\nconst ll mod = 1000000000 + 7;\n#define NMAX 1000010\nll fac[NMAX], inv[NMAX];\n\nll mod_pow(ll a, ll n, ll mod){\n ll ret = 1;\n while(n > 0){\n if(n & 1) ret = (ret*(a % mod))%mod;\n a = ((a%mod)*(a%mod)) % mod;\n n = n >> 1;\n }\n return ret;\n}\n\nll mod_inv(ll a, ll mod){\n return mod_pow(a, mod-2, mod);\n}\n\nvoid mae_nck(){\n fac[1] = 1;\n inv[1] = 1;\n for(ll i = 2; i < NMAX; i++){\n fac[i] = (fac[i-1] * i)%mod;\n inv[i] = (inv[i-1] * mod_inv(i, mod))%mod;\n }\n}\n\nll mod_nck(ll n, ll k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n if(k == 0 || k == n) return 1;\n ll ret = ((fac[n] * inv[k])%mod * inv[n-k])%mod;\n return ret;\n}\n\nll calc(ll n) {\n ll res = 0;\n for(ll i = 1; i <= n; i++) {\n res += (mod_nck(n, i) * fac[i]) % mod;\n res %= mod; \n }\n return res;\n}\n\nint main() {\n mae_nck();\n ll n;\n cin >> n;\n ll invalid = 0;\n auto vn = yakusu(n);\n map<ll, ll> cnt;\n for(auto e : vn) {\n if(cnt[e] == 1 || e == n) continue;\n auto v = yakusu(e);\n if(cnt[e] == 0) {\n invalid += calc(v.size());\n invalid %= mod;\n for(auto p : v) cnt[p]++;\n } else {\n invalid -= ((cnt[e] - 1) * calc(v.size())) % mod;\n invalid %= mod;\n for(auto p : v) cnt[p]--;\n }\n }\n ll sum = calc(vn.size());\n ll ans = sum - invalid + mod;\n ans %= mod;\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 19396, "score_of_the_acc": -0.833, "final_rank": 11 }, { "submission_id": "aoj_3155_4861046", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(1e9 + 7)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\nstruct Combination {\n vector<ModInt<>> _fact, _rfact, _inv;\n Combination(long long nsize = 5000000)\n : _fact(nsize + 1), _rfact(nsize + 1), _inv(nsize + 1) {\n _fact[0] = _rfact[nsize] = _inv[0] = 1;\n for (int i = 1; i <= nsize; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[nsize] /= _fact[nsize];\n for (int i = nsize - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for (int i = 1; i <= nsize; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n inline ModInt<> fact(int k) const { return _fact[k]; }\n\n inline ModInt<> rfact(int k) const { return _rfact[k]; }\n\n inline ModInt<> inv(int k) const { return _inv[k]; }\n\n ModInt<> P(int n, int r) const {\n if (r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n\n ModInt<> C(int p, int q) const {\n if (q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n // n types,choose r\n ModInt<> H(int n, int r) const {\n if (n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n\nmap<long long, long long> div_moebius(long long n, vector<long long> &primes) {\n map<long long, long long> res;\n for (long long i = 2; i * i <= n; ++i)\n if (n % i == 0) {\n primes.push_back(i);\n while (n % i == 0) n /= i;\n }\n if (n > 1) primes.push_back(n);\n n = primes.size();\n for (long long i = 0; i < (1 << n); ++i) {\n long long mu = 1, d = 1;\n for (long long j = 0; j < n; ++j)\n if (i >> j & 1) {\n mu *= -1;\n d *= primes[j];\n }\n res[d] = mu;\n }\n return res;\n}\n\nlong long n;\nCombination com;\nvector<ModInt<>> rsum;\n\nModInt<> solve();\n\nint main() {\n {\n int len = com._rfact.size();\n rsum.assign(len, 1);\n for (int i = 1; i < len; ++i) rsum[i] = rsum[i - 1] + com.rfact(i);\n }\n cin >> n;\n cout << solve() << endl;\n return 0;\n}\n\nModInt<> solve() {\n ModInt<> res = 0;\n vector<long long> primes, divisors;\n map<long long, long long> mb = div_moebius(n, primes), cnt;\n for (long long i = 1; i * i <= n; ++i)\n if (n % i == 0) {\n divisors.push_back(i);\n if (i * i != n) divisors.push_back(n / i);\n }\n sort(divisors.begin(), divisors.end());\n cnt[1] = 1;\n for (auto d : divisors)\n for (auto p : primes)\n if (d % p == 0) {\n long long now = 1, tmp = d;\n while (tmp % p == 0) ++now, tmp /= p;\n cnt[d] = cnt[d / p] * now / (now - 1);\n break;\n }\n for (auto p : mb) {\n long long d = n / p.first, u = p.second, c = 0;\n c = cnt[d];\n res += com.fact(c) * rsum[c - 1] * u;\n }\n return res;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 81692, "score_of_the_acc": -0.5644, "final_rank": 6 }, { "submission_id": "aoj_3155_4844234", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <iomanip>\n#define vll vector<ll>\n#define vvvl vector<vvl>\n#define vvl vector<vector<ll>>\n#define VV(a, b, c, d) vector<vector<d>>(a, vector<d>(b, c))\n#define VVV(a, b, c, d) vector<vvl>(a, vvl(b, vll (c, d)));\n#define re(c, b) for(ll c=0;c<b;c++)\n#define all(obj) (obj).begin(), (obj).end()\ntypedef long long int ll;\ntypedef long double ld;\nusing namespace std;\n\nnamespace fact{\n ll gcd(ll _a, ll _b) {\n unsigned long long a = abs(_a), b = abs(_b);\n if(a == 0) return b;\n if(b == 0) return a;\n int shift = __builtin_ctzll(a | b);\n a >>= __builtin_ctzll(a);\n do {\n b >>= __builtin_ctzll(b);\n if(a > b) std::swap(a, b);\n b -= a;\n }while(b);\n return (a << shift);\n }\n template <class T, class U>\n T modpow(T x, U n, T md) {\n T r = 1 % md;\n x %= md;\n while(n) {\n if(n & 1) r = (r * x) % md;\n x = (x * x) % md;\n n >>= 1;\n }\n return r;\n }\n bool is_prime(ll n) {\n if(n<=1) return false;\n if(n==2) return true;\n if(n%2==0) return false;\n ll d = n - 1;\n while(d % 2 == 0) d /= 2;\n for(ll a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {\n if(n <= a) break;\n ll t = d, y = modpow<__int128_t>(a, t, n);\n while(t != n - 1 && y != 1 && y != n - 1) {\n y = __int128_t(y) * y % n, t <<= 1;\n }\n if(y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n }\n ll rho(ll n){\n if(is_prime(n)) return n;\n if(n % 2 == 0) return 2;\n ll c = 0;\n while(true){\n c = (3 * c + 1) % 24;\n auto f = [&](ll x){return(__int128_t(x)*x+c)%n;};\n ll st = 0;\n while(true){\n st++;\n ll x = st%n, y = f(x);\n while(true){\n ll g = gcd(abs(x-y), n);\n if(g==1) x = f(x), y = f(f(y));\n else if(g==n) break;\n else return g;\n }\n }\n }\n }\n vll factorize(ll n) {\n if(n == 1) return {};\n ll x = rho(n);\n if(x == n) return {x};\n vll le = factorize(x);\n vll ri = factorize(n / x);\n le.insert(le.end(), ri.begin(), ri.end());\n return le;\n }\n}\n\n#define P 1000000007\n#define N_MAX 5000000\nll fac[N_MAX+1], inv[N_MAX+1], finv[N_MAX+1];\nll comb(ll n, ll k){\n if(n<0||k<0||n<k) return 0;\n return (((fac[n]*finv[n-k])%P)*finv[k])%P;\n}\nll perm(ll n, ll k){\n if(n<0||k<0||n<k) return 0;\n return (fac[n]*finv[n-k])%P;\n}\nvoid init(){\n fac[0] = finv[0] = fac[1] = finv[1] = inv[1] = 1;\n for(int i = 2; i <= N_MAX; i++){\n fac[i] = (fac[i-1]*i)%P;\n inv[i] = ((-(P/i)*inv[P%i])%P+P)%P;\n finv[i] = (finv[i-1]*inv[i])%P;\n }\n}\nll pp(ll a, ll b){ return (a * b)%P;}\nll mpow(ll a, ll b, ll p = -1){\n ll ret = 1, num = a;\n while(b>0){\n if(b&1) ret = (ret*num)%p;\n num = (num*num)%p;\n b /= 2;\n }\n return ret;\n}\nvll fiacc(N_MAX, 1);\n\nll nn;\nll trans(ll n){\n if(n < 1200000) return n;\n //if(n>=1500000) std::cout << \"err\" << n << '\\n';\n return nn/n + 1500000;\n}\n\nint main(){\n ll n;std::cin >> n;\n nn = n;\n init();\n for(int i=1;i<N_MAX;i++) fiacc[i] = (fiacc[i-1] + finv[i])%P;\n vll d;\n for(ll i=1;i*i<=n;i++){\n if(n%i) continue;\n d.push_back(i);\n if(i*i!=n) d.push_back(n/i);\n }\n ll N = d.size();\n vll ans(3000000, 0);\n ans[1] = 1;\n if(n==1){\n std::cout << 1 << '\\n';\n return 0;\n }\n\n sort(all(d));\n for(int i=1;i<N;i++){\n ll cnt = 0;\n ll num = d[i];\n ll now = trans(num);\n\n for(ll j=1;j*j<=num;j++){\n if(num%j!=0) continue;\n cnt++;\n ans[now] = (ans[now] - ans[trans(j)] + P)%P;\n if(j*j!=num){\n cnt++;\n ll to = trans(num/j);\n if(j!=1) ans[now] = (ans[now] - ans[to] + P)%P;\n }\n }\n ans[now] = (ans[now] + pp(fac[cnt], fiacc[cnt-1]))%P;\n if(i==N-1) std::cout << ans[now] << '\\n';\n }\n}", "accuracy": 1, "time_ms": 400, "memory_kb": 182956, "score_of_the_acc": -2, "final_rank": 13 }, { "submission_id": "aoj_3155_4840410", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing Int = long long;\nint PREP = (cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(12), 0);\n//int SEGV = getenv(\"D\") || (exit(system(\"D= SEGFAULT_SIGNALS=all catchsegv ./prog.exe\") >> 8), 0);\nconst Int MOD = 998244353;\nInt POW2[4100000];\nint main() {\n POW2[0] = 1;\n for (int i = 1; i < 4100000; i++) {\n POW2[i] = POW2[i - 1] * 2 % MOD;\n }\n int N, M, K, F; cin >> N >> M >> K >> F;\n vector<int> A(M), B(M), C(M);\n for (int i = 0; i < M; i++) {\n cin >> A[i] >> B[i] >> C[i];\n A[i]--, B[i]--;\n }\n Int ans = 1;\n for (int i = 0; i < K; i++) {\n int k = (N - 1) * (N - 2);\n for (int j = 0; j < M; j++) {\n if (abs(A[j] - B[j]) >= 2) {\n k--;\n } else {\n if (C[j] & (1 << i)) {\n k = -1;\n }\n }\n }\n Int total = POW2[N * N - M];\n Int zero = (k < 0 ? 0 : POW2[k]);\n Int one = (total - zero + MOD) % MOD;\n if (F & (1 << i)) {\n ans *= one;\n } else {\n ans *= zero;\n }\n ans %= MOD;\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 0.030303030303030304, "time_ms": 10, "memory_kb": 35468, "score_of_the_acc": -0.1789, "final_rank": 20 }, { "submission_id": "aoj_3155_4839810", "code_snippet": "#include <bits/stdc++.h>\n \nconst double pi = 3.141592653589793238462643383279;\nusing namespace std;\n\n//typedef\n//------------------------------------------\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\ntypedef long long LL;\ntypedef unsigned long long ULL;\ntypedef vector<LL> VLL;\ntypedef vector<VLL> VVLL;\n \n \n//container util\n//------------------------------------------\n#define ALL(a) (a).begin(),(a).end()\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define MP make_pair\n#define SQ(a) ((a)*(a))\n#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)\n#define EXIST(s,e) ((s).find(e)!=(s).end())\n#define SORT(c) sort((c).begin(),(c).end())\n \n \n//repetition\n//------------------------------------------\n#define FOR(i,s,n) for(int i=s;i<(int)n;++i)\n#define REP(i,n) FOR(i,0,n)\n#define MOD 1000000007\n \n \n#define rep(i, a, b) for(int i = a; i < (b); ++i)\n#define trav(a, x) for(auto& a : x)\n#define all(x) x.begin(), x.end()\n#define sz(x) (int)(x).size()\n \ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef vector<int> vi;\n \n#define chmin(x,y) x=min(x,y)\n#define chmax(x,y) x=max(x,y)\n\nconst long double EPS = 1e-6, PI = acos((long double)-1);\n\n//ここから編集\n\n \nconst int MAX = 2000010;\nlong long fac[MAX], finv[MAX], inv[MAX];\n \n// テーブルを作る前処理\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < MAX; i++){\n fac[i] = fac[i - 1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n \n// 二項係数計算\nlong long COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;\n}\nll GCD(ll a, ll b){\n if(b == 0) return a;\n return GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b)*b;\n}\n\nunordered_map<ll, vector<ll>> mp;\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n \n ll N; cin >> N;\n\n vector<ll> divisor;\n for(ll i=1; i*i<=N; i++){\n if(N%i == 0){\n if(N/i != i){\n divisor.push_back(i);\n divisor.push_back(N/i);\n }else{\n divisor.push_back(i);\n }\n }\n }\n sort(all(divisor));\n \n mp[0].resize(1010);\n mp[0][0] = 1;\n \n for(int i=0; i<divisor.size(); i++){\n\n for(int sz=(int)divisor.size()-1; sz>=0; sz--){\n for(auto e: mp){\n \n ll a = e.first;\n ll t = a;\n if(a == 0) t = 1;\n ll lcm = LCM(t, divisor[i]);\n\n if(mp.find(lcm) == mp.end()){\n mp[lcm].resize(1010);\n mp[lcm][sz+1] += mp[a][sz];\n mp[lcm][sz+1] %= MOD;\n }else{\n mp[lcm][sz+1] += mp[a][sz];\n mp[lcm][sz+1] %= MOD;\n }\n }\n }\n }\n\n COMinit();\n ll ans = 0;\n for(int i=0; i<=divisor.size(); i++){\n \n if(mp[N][i] != 0){\n ans += fac[i] * mp[N][i] % MOD;\n ans %= MOD;\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.696969696969697, "time_ms": 220, "memory_kb": 50480, "score_of_the_acc": -0.8009, "final_rank": 17 }, { "submission_id": "aoj_3155_4839774", "code_snippet": "#include <bits/stdc++.h>\n \nconst double pi = 3.141592653589793238462643383279;\nusing namespace std;\n\n//typedef\n//------------------------------------------\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\ntypedef long long LL;\ntypedef unsigned long long ULL;\ntypedef vector<LL> VLL;\ntypedef vector<VLL> VVLL;\n \n \n//container util\n//------------------------------------------\n#define ALL(a) (a).begin(),(a).end()\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define MP make_pair\n#define SQ(a) ((a)*(a))\n#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)\n#define EXIST(s,e) ((s).find(e)!=(s).end())\n#define SORT(c) sort((c).begin(),(c).end())\n \n \n//repetition\n//------------------------------------------\n#define FOR(i,s,n) for(int i=s;i<(int)n;++i)\n#define REP(i,n) FOR(i,0,n)\n#define MOD 1000000007\n \n \n#define rep(i, a, b) for(int i = a; i < (b); ++i)\n#define trav(a, x) for(auto& a : x)\n#define all(x) x.begin(), x.end()\n#define sz(x) (int)(x).size()\n \ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef vector<int> vi;\n \n#define chmin(x,y) x=min(x,y)\n#define chmax(x,y) x=max(x,y)\n\nconst long double EPS = 1e-6, PI = acos((long double)-1);\n\n//ここから編集\n\n \nconst int MAX = 2000010;\nlong long fac[MAX], finv[MAX], inv[MAX];\n \n// テーブルを作る前処理\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < MAX; i++){\n fac[i] = fac[i - 1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n \n// 二項係数計算\nlong long COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;\n}\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b)*b;\n}\n\nunordered_map<ll, vector<ll>> mp;\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n \n ll N; cin >> N;\n\n vector<ll> divisor;\n for(ll i=1; i*i<=N; i++){\n if(N%i == 0){\n if(N/i != i){\n divisor.push_back(i);\n divisor.push_back(N/i);\n }else{\n divisor.push_back(i);\n }\n }\n }\n sort(all(divisor));\n \n mp[0].resize(510);\n mp[0][0] = 1;\n \n for(int i=0; i<divisor.size(); i++){\n\n for(int sz=(int)divisor.size()-1; sz>=0; sz--){\n for(auto e: mp){\n \n ll a = e.first;\n ll t = a;\n if(a == 0) t = 1;\n ll lcm = LCM(t, divisor[i]);\n\n if(mp.find(lcm) == mp.end()){\n mp[lcm].resize(510);\n mp[lcm][sz+1] += mp[a][sz];\n mp[lcm][sz+1] %= MOD;\n }else{\n mp[lcm][sz+1] += mp[a][sz];\n mp[lcm][sz+1] %= MOD;\n }\n }\n }\n }\n\n COMinit();\n ll ans = 0;\n for(int i=0; i<510; i++){\n \n if(mp[N].size() != 0 && mp[N][i] != 0){\n ans += fac[i] * mp[N][i] % MOD;\n ans %= MOD;\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.696969696969697, "time_ms": 170, "memory_kb": 50300, "score_of_the_acc": -0.6717, "final_rank": 16 }, { "submission_id": "aoj_3155_4839771", "code_snippet": "#include <bits/stdc++.h>\n \nconst double pi = 3.141592653589793238462643383279;\nusing namespace std;\n\n//typedef\n//------------------------------------------\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\ntypedef long long LL;\ntypedef unsigned long long ULL;\ntypedef vector<LL> VLL;\ntypedef vector<VLL> VVLL;\n \n \n//container util\n//------------------------------------------\n#define ALL(a) (a).begin(),(a).end()\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define MP make_pair\n#define SQ(a) ((a)*(a))\n#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)\n#define EXIST(s,e) ((s).find(e)!=(s).end())\n#define SORT(c) sort((c).begin(),(c).end())\n \n \n//repetition\n//------------------------------------------\n#define FOR(i,s,n) for(int i=s;i<(int)n;++i)\n#define REP(i,n) FOR(i,0,n)\n#define MOD 1000000007\n \n \n#define rep(i, a, b) for(int i = a; i < (b); ++i)\n#define trav(a, x) for(auto& a : x)\n#define all(x) x.begin(), x.end()\n#define sz(x) (int)(x).size()\n \ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef vector<int> vi;\n \n#define chmin(x,y) x=min(x,y)\n#define chmax(x,y) x=max(x,y)\n\nconst long double EPS = 1e-6, PI = acos((long double)-1);\n\n//ここから編集\n\n \nconst int MAX = 2000010;\nlong long fac[MAX], finv[MAX], inv[MAX];\n \n// テーブルを作る前処理\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < MAX; i++){\n fac[i] = fac[i - 1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n \n// 二項係数計算\nlong long COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;\n}\nll GCD(ll a, ll b){\n return (b==0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b)*b;\n}\n\nunordered_map<ll, vector<ll>> mp;\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n \n ll N; cin >> N;\n\n vector<ll> divisor;\n for(ll i=1; i*i<=N; i++){\n if(N%i == 0){\n if(N/i != i){\n divisor.push_back(i);\n divisor.push_back(N/i);\n }else{\n divisor.push_back(i);\n }\n }\n }\n sort(all(divisor));\n \n mp[0].resize(310);\n mp[0][0] = 1;\n \n for(int i=0; i<divisor.size(); i++){\n\n for(int sz=(int)divisor.size()-1; sz>=0; sz--){\n for(auto e: mp){\n \n ll a = e.first;\n ll t = a;\n if(a == 0) t = 1;\n ll lcm = LCM(t, divisor[i]);\n\n if(mp.find(lcm) == mp.end()){\n mp[lcm].resize(310);\n mp[lcm][sz+1] += mp[a][sz];\n mp[lcm][sz+1] %= MOD;\n }else{\n mp[lcm][sz+1] += mp[a][sz];\n mp[lcm][sz+1] %= MOD;\n }\n }\n }\n }\n\n COMinit();\n ll ans = 0;\n for(int i=0; i<310; i++){\n \n if(mp[N].size() != 0 && mp[N][i] != 0){\n ans += fac[i] * mp[N][i] % MOD;\n ans %= MOD;\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.696969696969697, "time_ms": 130, "memory_kb": 50364, "score_of_the_acc": -0.5695, "final_rank": 15 } ]
aoj_3154_cpp
Problem D: Treasure Mountains Problem $N$ 個の山があり、 それぞれ $1 , 2 , \ldots ,N$ の番号が割り振られています。 ここには、たくさんのお宝が眠っていると噂されています。 また、この地域には長さ $M$ の数列が言い伝えられており、その数列の $i (1 ≤ i ≤ M)$ 番目の数字は $d_i$ です。 山田君は $Q$ 個の巻物を入手しました。 $i (1 ≤ i ≤ Q)$ 番目の巻物には、3つの数字 $x_i, y_i, z_i$ が書かれています。 巻物の3つの数字は、宝のある山の番号を探すヒントになるようです。 また、巻物には次のような情報も書かれていました。 宝のある山の番号を $t$ とする。 $t$ を $z$ 回暗号化したものが $x$ である。 1回目の暗号化では、 $d_y$ を鍵として使用する。 それ以降の暗号化では、前回使った鍵の番号を $p$ として、 $d_{p+1}$ を鍵として使用する。ただし、前回使った鍵が $d_{M}$ の場合のみ、 $d_{1}$ を次の鍵とする。 $t$ を鍵 $a$ で暗号化する、という操作は次のことを表す。 $t^a$ を $N+1$ で割った余りを新たな $t$ とする。 複数の巻物が同じ山の番号を指すこともあります。 計算が苦手な山田君の代わりに、それぞれの巻物が指している山の番号を答えてください。 なお、この制約において、それぞれの巻物が指す山の番号は一意に求まることが証明できます( 制約をよく確認することを推奨します )。 Constraints 入力は以下の条件を満たす。 $4 ≤ N ≤ 9999990$ $N+1$ は素数である。 $1 ≤ d_i ≤ N - 1$ $d_i$ は $N$ と互いに素である。 $1 ≤ M, Q ≤ 50000$ $1 ≤ x_i ≤ N$ $1 ≤ y_i ≤ M$ $1 ≤ z_i ≤ 10^9$ 入力は全て整数である。 Input 入力は以下の形式で標準入力から与えられる。 $N$ $M$ $Q$ $d_1$ $d_2$ $\ldots$ $d_M$ $x_1$ $y_1$ $z_1$ $\vdots$ $x_Q$ $y_Q$ $z_Q$ Output $Q$ 行出力してください。 $i$ 行目には、 $i$ 番目の巻物に書かれている宝が存在する山の番号を答えてください。 また、末尾に改行を出力するのを忘れないようにしてください。 Sample Input 1 10 10 5 1 3 7 9 1 3 3 3 9 3 5 6 1 4 6 2 9 6 3 8 10 3 1 4 100 Sample Output 1 3 3 3 7 1 例えば、 $t = 3, y = 6$ として順に3回暗号化した場合のことを考えます。 1回暗号化すると、 $3^3 = 27$ であるから、 $27 \equiv 5 \mod 11$ となり、これは1つ目の巻物の情報 $(5, 6, 1)$ と一致します。 2回目の暗号化を施すと、 $5^3 = 125$ であるから、 $125 \equiv 4 \mod 11$ となり、これは2つ目の巻物の情報 $(4, 6, 2)$ と一致します。 3回目の暗号化も同様に、 $4^3 = 64$ であるから、 $64 \equiv 9 \mod 11$ となり、これは3つ目の巻物の情報 $(9, 6, 3)$ と一致します。 $t$ が $3$ 以外のとき、巻物の情報と一致することがないので、最初の3行は全て $3$ を出力すればよいです。 $y = 10$ の場合に3回暗号化するときは、 $d_{10}, d_1, d_2$ を順に鍵として使用します。 $t = 7$ とすると、 $7 \to 2 \to 2 \to 8$ と変化し、これは4つ目の巻物の情報 $(8, 10, 3)$ と一致します。 これ以外に条件を満たす $t$ はありません。よって、4行目には $7$ を出力します。 $t = 1$ のとき、何乗しても $1$ であるため、5つめの巻物の宝がある山は $1$ となります。 よって、5行目には $1$ を出力します。
[ { "submission_id": "aoj_3154_9741089", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\ntypedef long long int ll;\n\nll mod_inv(ll a,ll p){\n\tll b=p,x=1LL,y=0LL;\n\twhile(b){\n\t\tll t=a/b;\n\t\ta-=t*b; swap(a,b);\n\t\tx-=t*y; swap(x,y);\n\t}\n\treturn (x%p+p)%p;\n}\n\nll mod_pow(ll a,ll n,ll mod){\n\tll res=1LL;\n\twhile(n){\n\t\tif(n%2)res=res*a%mod;\n\t\ta=a*a%mod;\n\t\tn>>=1;\n\t}\n\treturn res;\n}\n\nint main(){\n\tint n,m,q; cin >> n >> m >> q;\n\tvector<ll> d(m);\n\tfor(int i=0;i<m;i++){\n\t\tcin >> d[i]; d[i]=mod_inv(d[i],n);\n\t}\n\tvector<ll> mul(2*m+1);\n\tmul[0]=1LL;\n\tfor(int i=0;i<2*m;i++){\n\t\tmul[i+1]=mul[i]*d[i%m]%n;\n\t}\n\twhile(q--){\n\t\tint x,y,z; cin >> x >> y >> z; y--;\n\t\tll r=mod_pow(mul[m],z/m,n);\n\t\tr=r*mul[y+z%m]%n*mod_inv(mul[y],n)%n;\n\t\tcout << mod_pow(x,r,n+1) << \"\\n\";\n\t}\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 4140, "score_of_the_acc": -0.0501, "final_rank": 3 }, { "submission_id": "aoj_3154_7009230", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3154.cc: Problem D: Treasure Mountains\n */\n\n#include<cstdio>\n#include<vector>\n#include<algorithm>\n#include<utility>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 9999990;\nconst int MAX_M = 50000;\n\n/* typedef */\n\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef pair<int,int> pii;\ntypedef vector<pii> vpii;\n\nstruct MI {\n static int MOD;\n int v;\n MI(): v() {}\n MI(int _v): v(_v % MOD) {}\n MI(long long _v): v(_v % MOD) {}\n\n MI operator+(const MI m) const { return MI(v + m.v); }\n MI operator-(const MI m) const { return MI(v + MOD - m.v); }\n MI operator*(const MI m) const { return MI((long long)v * m.v); }\n\n MI &operator+=(const MI m) { return (*this = *this + m); }\n MI &operator-=(const MI m) { return (*this = *this - m); }\n MI &operator*=(const MI m) { return (*this = *this * m); }\n\n bool operator==(const MI m) const { return v == m.v; }\n bool operator!=(const MI m) const { return v != m.v; }\n\n MI pow(int n) const { // a^n % MOD\n MI pm = 1, a = *this;\n while (n > 0) {\n if (n & 1) pm *= a;\n a *= a;\n n >>= 1;\n }\n return pm;\n }\n\n MI inv() const { return pow(MOD - 2); }\n MI operator/(const MI m) const { return *this * m.inv(); }\n MI &operator/=(const MI m) { return (*this = *this / m); }\n};\n\ntypedef MI mi;\nint MI::MOD;\n\nstruct SegTreeMul {\n typedef int T;\n typedef long long ll;\n int e2;\n vector<T> nodes;\n T defv, mod;\n SegTreeMul() {}\n\n void init(int n, T _defv, T _mod) {\n defv = _defv, mod = _mod;\n for (e2 = 1; e2 < n; e2 <<= 1);\n nodes.assign(e2 * 2, defv);\n }\n\n T &geti(int i) { return nodes[e2 - 1 + i]; }\n void seti(int i, T v) { geti(i) = v; }\n\n void setall() {\n for (int j = e2 - 2; j >= 0; j--)\n nodes[j] = (ll)nodes[j * 2 + 1] * nodes[j * 2 + 2] % mod;\n }\n\n void set(int i, T v) {\n int j = e2 - 1 + i;\n nodes[j] = v;\n while (j > 0) {\n j = (j - 1) / 2;\n nodes[j] = (ll)nodes[j * 2 + 1] * nodes[j * 2 + 2] % mod;\n }\n }\n\n T mul_range(int r0, int r1, int k, int i0, int i1) {\n if (r1 <= i0 || i1 <= r0) return defv;\n if (r0 <= i0 && i1 <= r1) return nodes[k];\n\n int im = (i0 + i1) / 2;\n T v0 = mul_range(r0, r1, k * 2 + 1, i0, im);\n T v1 = mul_range(r0, r1, k * 2 + 2, im, i1);\n return (ll)v0 * v1 % mod;\n }\n T mul_range(int r0, int r1) { return mul_range(r0, r1, 0, 0, e2); }\n};\n\n/* global variables */\n\nbool primes[MAX_N + 1];\nint ds[MAX_M];\nSegTreeMul st;\n\n/* subroutines */\n\nint gen_primes(int maxp, vi &pnums) {\n fill(primes, primes + maxp + 1, true);\n primes[0] = primes[1] = false;\n\n int p;\n for (p = 2; p * p <= maxp; p++)\n if (primes[p]) {\n pnums.push_back(p);\n for (int q = p * p; q <= maxp; q += p) primes[q] = false;\n }\n for (; p <= maxp; p++)\n if (primes[p]) pnums.push_back(p);\n return (int)pnums.size();\n}\n\nbool prime_decomp(int n, vi &pnums, vpii& pds) {\n pds.clear();\n\n int pn = pnums.size();\n for (int i = 0; i < pn; i++) {\n int pi = pnums[i];\n if (pi * pi > n) {\n if (n > 1) pds.push_back(pii(n, 1));\n return true;\n }\n\n if (n % pi == 0) {\n int fi = 0;\n while (n % pi == 0) n /= pi, fi++;\n pds.push_back(pii(pi, fi));\n }\n }\n return false;\n}\n\nint powi(int a, int n) { // a^n\n int pm = 1;\n while (n > 0) {\n if (n & 1) pm *= a;\n a *= a;\n n >>= 1;\n }\n return pm;\n}\n\nint phi(int n, vi &pnums) {\n vpii pds;\n prime_decomp(n, pnums, pds);\n\n int r = 1;\n for (auto pd: pds)\n r *= powi(pd.first, pd.second) - powi(pd.first, pd.second - 1);\n return r;\n}\n\nint powmod(int a, int n, int mod) { // a^n % MOD\n int pm = 1;\n while (n > 0) {\n if (n & 1) pm = (ll)pm * a % mod;\n a = (ll)a * a % mod;\n n >>= 1;\n }\n return pm;\n}\n\n/* main */\n\nint main() {\n vi pnums;\n gen_primes(MAX_N, pnums);\n\n int n, m, qn;\n scanf(\"%d%d%d\", &n, &m, &qn);\n MI::MOD = n + 1;\n\n int ph = phi(n, pnums);\n //printf(\"phi(%d) = %d\\n\", n, ph);\n\n for (int i = 0; i < m; i++) scanf(\"%d\", ds + i);\n\n st.init(m * 2, 1, n);\n for (int i = 0; i < m; i++)\n st.seti(i, ds[i]), st.seti(m + i, ds[i]);\n st.setall();\n\n int dm = st.mul_range(0, m);\n\n while (qn--) {\n int x, y, z;\n scanf(\"%d%d%d\", &x, &y, &z), y--;\n //printf(\"x=%d, y=%d, z=%d\\n\", x, y, z);\n\n int zq = z / m, zr = z % m;\n int e = (ll)powmod(dm, zq, n) * st.mul_range(y, y + zr) % n;\n\n // t^e=x, if e*f=1(%n) -> t=x^f\n // e*f=1(%n) -> f=1/e(%n)\n int f = powmod(e, ph - 1, n);\n //printf(\" t^%d=%d -> f=%d\\n\", e, x, f);\n\n mi t = mi(x).pow(f);\n printf(\"%d\\n\", t.v);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 18340, "score_of_the_acc": -0.1728, "final_rank": 10 }, { "submission_id": "aoj_3154_4883389", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\nll extgcd(ll a, ll b, ll& x, ll& y) {\n ll g = a;\n x = 1;\n y = 0;\n if (b != 0) g = extgcd(b, a % b, y, x), y -= (a / b) * x;\n return g;\n}\n\n// a^(-1) mod m\n// aとmは互いに素でなければならない\nll mod_inverse(ll a, ll m) {\n assert(__gcd(a, m) == 1);\n ll x, y;\n ll g = extgcd(a, m, x, y);\n while (x < 0) x += m;\n return x % m;\n}\n\nll mod_pow(ll x, ll n, ll mod) {\n ll ret = 1;\n while (n) {\n if (n & 1) (ret *= x) %= mod;\n n >>= 1;\n (x *= x) %= mod;\n }\n return ret;\n}\n\nconst int N = 10000000;\nint n, m, q;\nint d[N];\n\nconst int B = 250;\nll v[B][B];\nll b[B];\n\nll calc(int s, int e) {\n int sb = s / B, eb = e / B;\n ll ret = 1;\n if (s <= e) {\n if (sb == eb) {\n for (int i = s; i <= e; ++i) (ret *= v[sb][i % B]) %= n;\n } else {\n for (int i = s; i < (sb + 1) * B; ++i) (ret *= v[sb][i % B]) %= n;\n for (int i = sb + 1; i < eb; ++i) (ret *= b[i]) %= n;\n for (int i = eb * B; i <= e; ++i) (ret *= v[eb][i % B]) %= n;\n }\n } else {\n for (int i = s; i < (sb + 1) * B; ++i) (ret *= v[sb][i % B]) %= n;\n for (int i = sb + 1; i < B; ++i) (ret *= b[i]) %= n;\n for (int i = 0; i < eb; ++i) (ret *= b[i]) %= n;\n for (int i = eb * B; i <= e; ++i) (ret *= v[eb][i % B]) %= n;\n }\n return ret;\n}\n\nint main() {\n rep(i, B) rep(j, B) v[i][j] = 1;\n\n scanf(\" %d %d %d\", &n, &m, &q);\n rep(i, m) {\n scanf(\" %d\", &d[i]);\n v[i / B][i % B] = d[i];\n }\n\n ll prod_n = 1;\n rep(i, m)(prod_n *= d[i]) %= n;\n\n rep(i, B) {\n b[i] = 1;\n rep(j, B)(b[i] *= v[i][j]) %= n;\n }\n\n rep(qi, q) {\n int x, y, z;\n scanf(\" %d %d %d\", &x, &y, &z);\n\n --y;\n\n ll w = mod_pow(prod_n, z / m, n);\n z %= m;\n if (z) (w *= calc(y, (y + z - 1) % m)) %= n;\n\n // t^w = x (mod n+1)\n // x^r = tとして、 x = x^(r*w) (mod n+1)\n // r*w = 1 (mod n)\n ll r = mod_inverse(w, n);\n ll t = mod_pow(x, r, n + 1);\n printf(\"%lld\\n\", t);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 3900, "score_of_the_acc": -0.1612, "final_rank": 9 }, { "submission_id": "aoj_3154_4883384", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\nll extgcd(ll a, ll b, ll& x, ll& y) {\n ll g = a;\n x = 1;\n y = 0;\n if (b != 0) g = extgcd(b, a % b, y, x), y -= (a / b) * x;\n return g;\n}\n\n// a^(-1) mod m\n// aとmは互いに素でなければならない\nll mod_inverse(ll a, ll m) {\n assert(__gcd(a, m) == 1);\n ll x, y;\n ll g = extgcd(a, m, x, y);\n while (x < 0) x += m;\n return x % m;\n}\n\nll mod_pow(ll x, ll n, ll mod) {\n ll ret = 1;\n while (n) {\n if (n & 1) (ret *= x) %= mod;\n n >>= 1;\n (x *= x) %= mod;\n }\n return ret;\n}\n\nconst int N = 10000000;\nint n, m, q;\nint d[N];\n\nconst int B = 3180;\nll v[B][B];\nll b[B];\n\nll calc(int s, int e) {\n int sb = s / B, eb = e / B;\n ll ret = 1;\n if (s < e) {\n for (int i = s; i < (sb + 1) * B; ++i) (ret *= v[sb][i % B]) %= n;\n for (int i = sb + 1; i < eb; ++i) (ret *= b[i]) %= n;\n for (int i = eb * B; i <= e; ++i) (ret *= v[eb][i % B]) %= n;\n } else {\n for (int i = s; i < (sb + 1) * B; ++i) (ret *= v[sb][i % B]) %= n;\n for (int i = sb + 1; i < B; ++i) (ret *= b[i]) %= n;\n for (int i = 0; i < eb; ++i) (ret *= b[i]) %= n;\n for (int i = eb * B; i <= e; ++i) (ret *= v[eb][i % B]) %= n;\n }\n return ret;\n}\n\nint main() {\n rep(i, B) rep(j, B) v[i][j] = 1;\n\n scanf(\" %d %d %d\", &n, &m, &q);\n rep(i, m) {\n scanf(\" %d\", &d[i]);\n v[i / B][i % B] = d[i];\n }\n\n ll prod_n = 1;\n rep(i, m)(prod_n *= d[i]) %= n;\n\n rep(i, B) {\n b[i] = 1;\n rep(j, B)(b[i] *= v[i][j]) %= n;\n }\n\n rep(qi, q) {\n int x, y, z;\n scanf(\" %d %d %d\", &x, &y, &z);\n\n --y;\n\n ll w = mod_pow(prod_n, z / m, n);\n z %= m;\n if (z) (w *= calc(y, (y + z - 1) % m)) %= n;\n\n // t^w = x (mod n+1)\n // x^r = tとして、 x = x^(r*w) (mod n+1)\n // r*w = 1 (mod n)\n ll r = mod_inverse(w, n);\n ll t = mod_pow(x, r, n + 1);\n printf(\"%lld\\n\", t);\n }\n return 0;\n}", "accuracy": 0.034482758620689655, "time_ms": 150, "memory_kb": 82236, "score_of_the_acc": -0.772, "final_rank": 18 }, { "submission_id": "aoj_3154_4883383", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\nll extgcd(ll a, ll b, ll& x, ll& y) {\n ll g = a;\n x = 1;\n y = 0;\n if (b != 0) g = extgcd(b, a % b, y, x), y -= (a / b) * x;\n return g;\n}\n\n// a^(-1) mod m\n// aとmは互いに素でなければならない\nll mod_inverse(ll a, ll m) {\n assert(__gcd(a, m) == 1);\n ll x, y;\n ll g = extgcd(a, m, x, y);\n while (x < 0) x += m;\n return x % m;\n}\n\nll mod_pow(ll x, ll n, ll mod) {\n ll ret = 1;\n while (n) {\n if (n & 1) (ret *= x) %= mod;\n n >>= 1;\n (x *= x) %= mod;\n }\n return ret;\n}\n\nconst int N = 10000000;\nint n, m, q;\nint d[N];\n\nconst int B = 3180;\nll v[B][B];\nll b[B];\n\nll calc(int s, int e) {\n int sb = s / B, eb = e / B;\n ll ret = 1;\n if (s < e) {\n for (int i = s; i < (sb + 1) * B; ++i) (ret *= v[sb][i % B]) %= n;\n for (int i = sb + 1; i < eb; ++i) (ret *= b[i]) %= n;\n for (int i = eb * B; i <= e; ++i) (ret *= v[eb][i % B]) %= n;\n } else {\n for (int i = s; i < (sb + 1) * B; ++i) (ret *= v[sb][i % B]) %= n;\n for (int i = sb + 1; i < B; ++i) (ret *= b[i]) %= n;\n for (int i = 0; i < eb; ++i) (ret *= b[i]) %= n;\n for (int i = eb * B; i <= e; ++i) (ret *= v[eb][i % B]) %= n;\n }\n return ret;\n}\n\nint main() {\n rep(i, B) rep(j, B) v[i][j] = 1;\n\n scanf(\" %d %d %d\", &n, &m, &q);\n rep(i, m) {\n scanf(\" %d\", &d[i]);\n v[i / B][i % B] = d[i];\n }\n\n ll prod_n = 1;\n rep(i, m)(prod_n *= d[i]) %= n;\n\n rep(i, B) {\n b[i] = 1;\n rep(j, B)(b[i] *= v[i][j]) %= n;\n }\n\n rep(qi, q) {\n int x, y, z;\n scanf(\" %d %d %d\", &x, &y, &z);\n\n --y;\n\n ll w = mod_pow(prod_n, z / n, n);\n z %= n;\n if (z) (w *= calc(y, (y + z - 1) % m)) %= n;\n\n // t^w = x (mod n+1)\n // x^r = tとして、 x = x^(r*w) (mod n+1)\n // r*w = 1 (mod n)\n ll r = mod_inverse(w, n);\n ll t = mod_pow(x, r, n + 1);\n printf(\"%lld\\n\", t);\n }\n return 0;\n}", "accuracy": 0.034482758620689655, "time_ms": 150, "memory_kb": 82236, "score_of_the_acc": -0.772, "final_rank": 18 }, { "submission_id": "aoj_3154_4883382", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\nll extgcd(ll a, ll b, ll& x, ll& y) {\n ll g = a;\n x = 1;\n y = 0;\n if (b != 0) g = extgcd(b, a % b, y, x), y -= (a / b) * x;\n return g;\n}\n\n// a^(-1) mod m\n// aとmは互いに素でなければならない\nll mod_inverse(ll a, ll m) {\n assert(__gcd(a, m) == 1);\n ll x, y;\n ll g = extgcd(a, m, x, y);\n while (x < 0) x += m;\n return x % m;\n}\n\nll mod_pow(ll x, ll n, ll mod) {\n ll ret = 1;\n while (n) {\n if (n & 1) (ret *= x) %= mod;\n n >>= 1;\n (x *= x) %= mod;\n }\n return ret;\n}\n\nconst int N = 10000000;\nint n, m, q;\nint d[N];\n\nconst int B = 3180;\nll v[B][B];\nll b[B];\n\nll calc(int s, int e) {\n int sb = s / B, eb = e / B;\n ll ret = 1;\n if (s < e) {\n for (int i = s; i < (sb + 1) * B; ++i) (ret *= v[sb][i % B]) %= n;\n for (int i = sb + 1; i < eb; ++i) (ret *= b[i]) %= n;\n for (int i = eb * B; i <= e; ++i) (ret *= v[eb][i % B]) %= n;\n } else {\n for (int i = s; i < (sb + 1) * B; ++i) (ret *= v[sb][i % B]) %= n;\n for (int i = sb + 1; i < B; ++i) (ret *= b[i]) %= n;\n for (int i = 0; i < eb; ++i) (ret *= b[i]) %= n;\n for (int i = eb * B; i <= e; ++i) (ret *= v[eb][i % B]) %= n;\n }\n return ret;\n}\n\nint main() {\n rep(i, B) rep(j, B) v[i][j] = 1;\n\n scanf(\" %d %d %d\", &n, &m, &q);\n rep(i, m) {\n scanf(\" %d\", &d[i]);\n v[i / B][i % B] = d[i];\n }\n\n ll prod_n = 1;\n rep(i, m)(prod_n *= d[i]) %= n;\n\n rep(i, B) {\n b[i] = 1;\n rep(j, B)(b[i] *= v[i][j]) %= n;\n }\n\n rep(qi, q) {\n int x, y, z;\n scanf(\" %d %d %d\", &x, &y, &z);\n\n --y;\n\n ll w = mod_pow(prod_n, z / n, n);\n z %= n;\n if (z) (w *= calc(y, (y + z - 1) % n)) %= n;\n\n // t^w = x (mod n+1)\n // x^r = tとして、 x = x^(r*w) (mod n+1)\n // r*w = 1 (mod n)\n ll r = mod_inverse(w, n);\n ll t = mod_pow(x, r, n + 1);\n printf(\"%lld\\n\", t);\n }\n return 0;\n}", "accuracy": 0.034482758620689655, "time_ms": 150, "memory_kb": 82264, "score_of_the_acc": -0.7722, "final_rank": 20 }, { "submission_id": "aoj_3154_4865389", "code_snippet": "#include <iostream>\n#include <vector>\n\n\n#include <utility>\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param m `1 <= m`\n// @return x mod m\nconstexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n\n// Fast modular multiplication by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n unsigned long long im;\n\n // @param m `1 <= m < 2^31`\n barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n\n // @return m\n unsigned int umod() const { return _m; }\n\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n // [1] m = 1\n // a = b = im = 0, so okay\n\n // [2] m >= 2\n // im = ceil(2^64 / m)\n // -> im * m = 2^64 + r (0 <= r < m)\n // let z = a*b = c*m + d (0 <= c, d < m)\n // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im\n // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2\n // ((ab * im) >> 64) == c or c + 1\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned int v = (unsigned int)(z - x * _m);\n if (_m <= v) v += _m;\n return v;\n }\n};\n\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr long long bases[3] = {2, 7, 61};\n for (long long a : bases) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n}\ntemplate <int n> constexpr bool is_prime = is_prime_constexpr(n);\n\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n\n // Contracts:\n // [1] s - m0 * a = 0 (mod b)\n // [2] t - m1 * a = 0 (mod b)\n // [3] s * |m1| + t * |m0| <= b\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n // [3]:\n // (s - t * u) * |m1| + t * |m0 - m1 * u|\n // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)\n // = s * |m1| + t * |m0| <= b\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n // by [3]: |m0| <= b/g\n // by g != b: |m0| < b/g\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n\nnamespace internal {\n\n#ifndef _MSC_VER\ntemplate <class T>\nusing is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n\ntemplate <class T>\nusing is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n\n#else\n\ntemplate <class T> using is_integral = typename std::is_integral<T>;\n\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n\n#endif\n\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n\ntemplate <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n\n} // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\n\ntemplate <class T> using is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n\n} // namespace internal\n\ntemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n\n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\n\ntemplate <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id> internal::barrett dynamic_modint<id>::bt = 998244353;\n\nusing modint998244353 = static_modint<998244353>;\nusing modint1000000007 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\n\nnamespace internal {\n\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n\ntemplate <class> struct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n\n} // namespace internal\n\n} // namespace atcoder\n\n\nnamespace ac = atcoder;\n\nusing mint0 = ac::dynamic_modint<0>;\nusing mint1 = ac::dynamic_modint<1>;\n\nvoid solve() {\n int n, m, q;\n std::cin >> n >> m >> q;\n\n mint0::set_mod(n + 0);\n mint1::set_mod(n + 1);\n\n std::vector<mint0> prods(m + 1); // 累積積\n prods[0] = 1;\n for (int i = 1; i <= m; ++i) {\n int d;\n std::cin >> d;\n prods[i] = prods[i - 1] * d;\n }\n\n // [0, len)の積を返す\n auto getprod = [&](int len) {\n return prods[m].pow(len / m) * prods[len % m];\n };\n\n while (q--) {\n int x, y, z;\n std::cin >> x >> y >> z;\n --y;\n\n auto p = getprod(y + z) / getprod(y);\n std::cout << mint1(x).pow(p.inv().val()).val() << \"\\n\";\n }\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3500, "score_of_the_acc": -0.0049, "final_rank": 1 }, { "submission_id": "aoj_3154_4861045", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// as + bt = GCD(a,b) a,b:const s,t:var(any)\n// return GCD(a,b)\nlong long extGCD(long long a, long long b, long long& s, long long& t) {\n s = 1, t = 0;\n long long u = 0, v = 1;\n while (b) {\n long long tmp = a / b;\n a -= b * tmp;\n s -= u * tmp;\n t -= v * tmp;\n swap(s, u);\n swap(t, v);\n swap(a, b);\n }\n return a;\n}\n// (mod)x+ay=1, calculate y -> a^-1 (mod m) (a,m : coprime)\nlong long calcinv(long long a, long long m) {\n long long s, t;\n extGCD(a, m, s, t);\n return (s + m) % m;\n}\n\nlong long mod_pow(long long base, int e, int mod) {\n long long res = 1;\n while (e) {\n if (e & 1) (res *= base) %= mod;\n (base *= base) %= mod;\n e >>= 1;\n }\n return res;\n}\n\nint n, m, q, all = 1;\nvector<int> mul;\n\nint main() {\n cin >> n >> m >> q;\n { // input and pre calc\n mul.assign(2 * m + 1, 1);\n for (int i = 1; i <= 2 * m; ++i) {\n if (i <= m) {\n cin >> mul[i];\n mul[i] = mul[i + m] = calcinv(mul[i], n);\n all = 1LL * all * mul[i] % n;\n }\n mul[i] = 1LL * mul[i - 1] * mul[i] % n;\n }\n }\n auto calc = [](int l, int r) {\n return 1LL * mul[r] * calcinv(mul[l], n) % n;\n };\n for (int i = 0; i < q; ++i) {\n int x, y, z, e;\n cin >> x >> y >> z;\n --y;\n e = 1LL * mod_pow(all, z / m, n) * calc(y, y + z % m) % n;\n cout << mod_pow(x, e, n + 1) << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 3548, "score_of_the_acc": -0.0398, "final_rank": 2 }, { "submission_id": "aoj_3154_4861043", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// 0-indexed\ntemplate <class T>\nstruct SegmentTree {\n // a,b,c: T, e:T(unit)\n // abc = (ab)c = a(bc)\n // ae = ea = a\n typedef function<T(T, T)> F;\n int n;\n F f;\n T unit;\n vector<T> dat;\n SegmentTree(){};\n SegmentTree(int newn, F f, T t) : f(f), unit(t) { init(newn); }\n SegmentTree(const vector<T>& v, F f, T t) : f(f), unit(t) {\n int _n = v.size();\n init(v.size());\n for (int i = 0; i < _n; ++i) dat[n + i] = v[i];\n for (int i = n - 1; i; --i) dat[i] = f(dat[i << 1], dat[(i << 1) | 1]);\n }\n void init(int newn) {\n n = 1;\n while (n < newn) n <<= 1;\n dat.assign(n << 1, unit);\n }\n\n // \"go up\" process\n void update(int k, T newdata) {\n dat[k += n] = newdata;\n while (k >>= 1) {\n dat[k] = f(dat[(k << 1) | 0], dat[(k << 1) | 1]);\n }\n }\n // [a,b)\n T query(int a, int b) {\n T vl = unit, vr = unit;\n for (int l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) {\n if (l & 1) vl = f(vl, dat[l++]);\n if (r & 1) vr = f(dat[--r], vr);\n }\n return f(vl, vr);\n }\n};\n\n// as + bt = GCD(a,b) a,b:const s,t:var(any)\n// return GCD(a,b)\nlong long extGCD(long long a, long long b, long long& s, long long& t) {\n s = 1, t = 0;\n long long u = 0, v = 1;\n while (b) {\n long long tmp = a / b;\n a -= b * tmp;\n s -= u * tmp;\n t -= v * tmp;\n swap(s, u);\n swap(t, v);\n swap(a, b);\n }\n return a;\n}\n// (mod)x+ay=1, calculate y -> a^-1 (mod m) (a,m : coprime)\nlong long calcinv(long long a, long long m) {\n long long s, t;\n extGCD(a, m, s, t);\n return (s + m) % m;\n}\n\nlong long mod_pow(long long base, int e, int mod) {\n long long res = 1;\n while (e) {\n if (e & 1) (res *= base) %= mod;\n (base *= base) %= mod;\n e >>= 1;\n }\n return res;\n}\n\nint n, m, q, all = 1;\nSegmentTree<int> seg;\n\nint main() {\n cin >> n >> m >> q;\n { // input and pre calc\n auto f = [](int l, int r) { return 1LL * l * r % n; };\n vector<int> v(m, 0);\n for (auto& p : v) {\n cin >> p;\n p = calcinv(p, n);\n all = 1LL * all * p % n;\n }\n for (int i = 0; i < m; ++i) v.push_back(v[i]);\n seg = SegmentTree<int>(v, f, 1);\n }\n for (int i = 0; i < q; ++i) {\n int x, y, z, e;\n cin >> x >> y >> z;\n --y;\n e = 1LL * mod_pow(all, z / m, n) * seg.query(y, y + z % m) % n;\n cout << mod_pow(x, e, n + 1) << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 4420, "score_of_the_acc": -0.0526, "final_rank": 4 }, { "submission_id": "aoj_3154_4840907", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\n//using namespace atcoder;\n#define ll long long\n#define FOR(i, a, b) for(ll i=(a);i<(b);++i)\n#define rep(i, n) FOR(i, 0, n)\n#define rep1(i, n) FOR(i, 1, n+1)\n#define rrep(i, n) for (ll i = ((int)(n)-1); i >= 0; --i)\n#define whole(x) (x).begin(),(x).end()\n#define rwhole(x) (x).rbegin(), (x).rend()\n#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())\n#define P pair<int, int>\n#define debug(var) cerr << \"[\" << #var << \"] \" << var << endl\ntemplate<typename T1, typename T2>\nbool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}\ntemplate<typename T1, typename T2>\nbool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}\n#define vi vector<int>\n#define vl vector<ll>\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define pr(s) cout << (s) << '\\n'\nll mod = 1000000007;\nconst int dx[] = {-1,0,1,0};\nconst int dy[] = {0,-1,0,1};\nconst int INF = 1001001001;\nconst ll INFll = 1E+18;\n\nstruct mint {\n ll x; // typedef long long ll;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) {\n (x *= a.x) %= mod;\n return *this;\n }\n mint operator+(const mint a) const {\n mint res(*this);\n return res+=a;\n }\n mint operator-(const mint a) const {\n mint res(*this);\n return res-=a;\n }\n mint operator*(const mint a) const {\n mint res(*this);\n return res*=a;\n }\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n \n // for prime mod\n mint inv() const {\n return pow(mod-2);\n }\n mint& operator/=(const mint a) {\n return (*this) *= a.inv();\n }\n mint operator/(const mint a) const {\n mint res(*this);\n return res/=a;\n }\n};\nistream& operator>>(istream& is, const mint& a) { return is >> a.x;}\nostream& operator<<(ostream& os, const mint& a) { return os << a.x;}\n\nstruct combination {\n vector<mint> fact, ifact;\n combination(int n):fact(n+1),ifact(n+1) {\n assert(n < mod);\n fact[0] = 1;\n for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i;\n ifact[n] = fact[n].inv();\n for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i;\n }\n mint operator()(int n, int k) {\n if (k < 0 || k > n) return 0;\n return fact[n]*ifact[k]*ifact[n-k];\n }\n mint per(int n, int k) {\n return fact[n]*ifact[n-k];\n }\n};\n\n \n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n ll n, m, q;\n cin >> n >> m >> q;\n mod = n;\n //if (n!=10 && n!=970) debug(n);\n //if (n!=10 && n!=970) debug(m);\n //if (n!=10 && n!=970) debug(q);\n vector<ll> d(m);\n rep(i, m) cin >> d[i];\n //if (n!=10 && n!=970) rep(i, m) cerr << i << \" \" << d[i] << endl;\n vector<mint> sd(m*2+1);\n sd[0] = 1;\n rep(i, 2*m) {\n sd[i+1] = sd[i]*d[i%m];\n /*\n if (n!=10 && n!=970) {\n cerr << \"i sd[i]\" << i+1 << \" \" << sd[i+1].x << endl;\n }\n */\n //debug(sd[i+1]);\n }\n vector<ll> inverse(n+1);\n inverse[1] = 1;\n vector<bool> used(n+1);\n for (ll i=2; i<=n; i++) {\n if (used[i]) continue;\n if (__gcd(n, i)==1) {\n ll now = i;\n vector<ll> v;\n while (1) {\n used[now] = true;\n v.pb(now);\n if (now==1) break;\n now *= i;\n now %= n;\n }\n rep(j, v.size()-1) {\n ll zz = lcm(j+1, (ll)v.size());\n ll yy = zz - (j+1);\n inverse[v[j]] = v[(yy-1+v.size())%v.size()];\n if (n!=10) {\n //debug(v[j]);\n //debug((yy-1)%n);\n //debug(inverse[v[j]]);\n }\n }\n //debug(n);\n }\n }\n \n //debug(num_prime);\n rep(qi, q) {\n ll x, y, z;\n cin >> x >> y >> z;\n y--;\n mint p = sd[m].pow(z/m);\n /*\n if (n!=10) {\n cerr << \"sd[m] p \" << sd[m].x << \" \" << p.x << endl;\n }\n */\n z %= m;\n p *= sd[y+z]*inverse[sd[y].x];\n /*\n if (n!=10) {\n cerr << \"y+z y sd[y+z] sd[y] p \" << y+z << \" \" << y << \" \" << sd[y+z].x << \" \" << sd[y].x << \" \" << p.x << endl;\n }\n */\n //debug(y+z); debug(y);\n //debug(sd[y+z]); debug(sd[y]);\n //debug(p);\n ll inv = inverse[p.x];\n //debug(inv);\n mod = n+1;\n mint ans = mint(x).pow(inv);\n pr(ans);\n mod = n;\n /*\n if (n!=10 && n!=970) {\n cerr << x << \" \" << y << \" \" << z << endl;\n cerr << ans << \" \" << p.x << endl;\n int pp = p.x;\n mod = n+1;\n cerr << ans.pow(p.x) << endl;\n mod = n;\n }\n */\n \n }\n return 0;\n}", "accuracy": 1, "time_ms": 2050, "memory_kb": 114716, "score_of_the_acc": -2, "final_rank": 11 }, { "submission_id": "aoj_3154_4840860", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n////////////////////////////// Begin Macros\n\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define in(x, a, b) (a <= x and x < b)\n#define rep(i, N) for (int i = 0; i < (int)(N); i++)\n#define reprev(i, N) for (int i = (int)(N)-1; i >= 0; i--)\n#define rep1(i, N) for (int i = 1; i <= (int)(N); i++)\n#define rep1rev(i, N) for (int i = (int)(N); i >= 0; i--)\n#define forbe(i, b, e) for (int i = (b); i < (e); i++)\n#define forberev(i, b, e) for (int i = (e)-1; i >= (b); i--)\n#define forfl(i, f, l) for (int i = (f); i <= (l); i++)\n#define forflrev(i, f, l) for (int i = (l); i >= (f); i--)\nusing ll = long long;\nusing pii = pair<int, int>;\nusing pil = pair<int, ll>;\nusing pli = pair<ll, int>;\nusing pll = pair<ll, ll>;\n\ntemplate <typename T>\nbool chmax(T &m, const T q)\n{\n if (m < q)\n {\n m = q;\n return true;\n }\n else\n return false;\n}\ntemplate <typename T>\nbool chmin(T &m, const T q)\n{\n if (m > q)\n {\n m = q;\n return true;\n }\n else\n return false;\n}\ntemplate <typename T1, typename T2>\npair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return {l.first + r.first, l.second + r.second}; }\ntemplate <typename T1, typename T2>\npair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return {l.first - r.first, l.second - r.second}; }\ntemplate <typename T>\npair<T, T> operator*(const pair<T, T> &l, const T &r) { return {l.first * r, l.second * r}; }\ntemplate <typename T>\npair<T, T> operator/(const pair<T, T> &l, const T &r) { return {l.first / r, l.second / r}; }\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &vec)\n{\n for (auto &v : vec)\n is >> v;\n return is;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &vec)\n{\n os << \"[\";\n for (auto v : vec)\n os << v << \",\";\n os << \"]\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const deque<T> &vec)\n{\n os << \"deq[\";\n for (auto v : vec)\n os << v << \",\";\n os << \"]\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const set<T> &vec)\n{\n os << \"{\";\n for (auto v : vec)\n os << v << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const unordered_set<T> &vec)\n{\n os << \"{\";\n for (auto v : vec)\n os << v << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const multiset<T> &vec)\n{\n os << \"{\";\n for (auto v : vec)\n os << v << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const unordered_multiset<T> &vec)\n{\n os << \"{\";\n for (auto v : vec)\n os << v << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename T1, typename T2>\nistream &operator>>(istream &is, pair<T1, T2> &pa)\n{\n is >> pa.first >> pa.second;\n return is;\n}\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &os, const pair<T1, T2> &pa)\n{\n os << \"(\" << pa.first << \",\" << pa.second << \")\";\n return os;\n}\ntemplate <typename... Ts>\nistream &operator>>(istream &is, tuple<Ts...> &theTuple)\n{\n apply([&is](Ts &... tupleArgs) { ((is >> tupleArgs), ...); }, theTuple);\n return is;\n}\ntemplate <typename... Ts>\nostream &operator<<(ostream &os, const tuple<Ts...> &theTuple)\n{\n apply([&os](const Ts &... tupleArgs) {\n os << '(';\n size_t n(0);\n ((os << tupleArgs << (++n < sizeof...(Ts) ? \",\" : \"\")), ...);\n os << ')';\n },\n theTuple);\n return os;\n}\ntemplate <typename TK, typename TV>\nostream &operator<<(ostream &os, const map<TK, TV> &mp)\n{\n os << \"{\";\n for (auto v : mp)\n os << v.first << \"=>\" << v.second << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename TK, typename TV>\nostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp)\n{\n os << \"{\";\n for (auto v : mp)\n os << v.first << \"=>\" << v.second << \",\";\n os << \"}\";\n return os;\n}\n\ntemplate <typename T>\nvoid reset(vector<T> &v, const T reset_to)\n{\n for (auto &x : v)\n x = reset_to;\n}\ninline int popcount(const unsigned int x) { return __builtin_popcount(x); }\n#define dbg(x) cerr << #x << \" = \" << (x) << \" (L\" << __LINE__ << \") \" << __FILE__ << endl;\n\nll nC2(ll n)\n{\n return n * (n - 1) / 2;\n}\n\nconst int intinf = numeric_limits<int>::max();\nconst ll llinf = numeric_limits<ll>::max();\nconst pii udlr[4] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};\n\n////////////////////////////// End Macros\n\n// Modulo.h start----------------------------------------\n\n#include <vector>\n#include <iostream>\n#include <cassert>\n\nusing namespace std;\n\n// a x + b y = gcd(a, b)\nint extgcd(const int a, const int b, int &x, int &y)\n{\n // O(log max(a,b))\n int g = a;\n x = 1;\n y = 0;\n if (b != 0)\n g = extgcd(b, a % b, y, x), y -= (a / b) * x;\n return g;\n}\n\nint inv_mod(const int a, const int mod)\n{\n int x, y;\n if (extgcd(a, mod, x, y) == 1)\n return (x + mod) % mod;\n else // unsolvable\n return 0;\n}\n\nstruct Modint\n{\n static int mod;\n static bool mod_is_prime;\n long long value;\n Modint(long long value = 0LL) : value((value % mod + mod) % mod) {}\n inline Modint operator+() const { return *this; }\n inline Modint operator-() const { return Modint(-value); }\n inline Modint &operator+=(const Modint &rhs)\n {\n if ((value += rhs.value) >= mod)\n value -= mod;\n return *this;\n }\n inline Modint &operator-=(const Modint &rhs)\n {\n if ((value += mod - rhs.value) >= mod)\n value -= mod;\n return *this;\n }\n inline Modint &operator*=(const Modint &rhs)\n {\n (value *= rhs.value) %= mod;\n return *this;\n }\n Modint pow(long long k) const\n {\n assert(k >= 0);\n if (k == 0)\n return 1;\n Modint res = pow(k / 2);\n res *= res;\n if (k % 2 == 1)\n res *= *this;\n return res;\n }\n\n Modint inv() const\n {\n if (mod_is_prime)\n return pow(mod - 2);\n\n // value and mod are coprime\n long long a = value, b = mod, u = 1, v = 0;\n while (b)\n {\n long long t = a / b;\n a -= t * b;\n swap(a, b);\n u -= t * v;\n swap(u, v);\n }\n u %= mod;\n if (u < 0)\n u += mod;\n return u;\n }\n inline Modint &operator/=(const Modint &rhs) { return *this *= rhs.inv(); }\n};\nint Modint::mod = 1000000007;\nbool Modint::mod_is_prime = true;\nbool operator==(const Modint &lhs, const Modint &rhs) { return lhs.value == rhs.value; }\nbool operator!=(const Modint &lhs, const Modint &rhs) { return !(lhs == rhs); }\nModint operator+(const Modint &lhs, const Modint &rhs) { return Modint(lhs) += rhs; }\nModint operator-(const Modint &lhs, const Modint &rhs) { return Modint(lhs) -= rhs; }\nModint operator*(const Modint &lhs, const Modint &rhs) { return Modint(lhs) *= rhs; }\nModint operator/(const Modint &lhs, const Modint &rhs) { return Modint(lhs) /= rhs; }\nistream &operator>>(istream &lhs, Modint &rhs) { return lhs >> rhs.value; }\nostream &operator<<(ostream &lhs, const Modint &rhs) { return lhs << rhs.value; }\n\nstruct Combination\n{\n std::vector<Modint> fact, ifact;\n Combination(int n = 0) : fact(n + 1), ifact(n + 1)\n {\n assert(n >= 0);\n fact[0] = 1;\n for (int i = 1; i <= n; i++)\n fact[i] = fact[i - 1] * i;\n ifact[n] = fact[n].inv();\n for (int i = n; i >= 1; i--)\n ifact[i - 1] = ifact[i] * i;\n }\n Modint operator()(int n, int k)\n {\n assert(0 <= n and n <= (int)fact.size());\n if (!(0 <= k and k <= n))\n return 0;\n return fact[n] * ifact[k] * ifact[n - k];\n }\n};\n\n// Modulo.h end----------------------------------------------\n\nvoid solve()\n{\n int N, M, Q;\n cin >> N >> M >> Q;\n vector<int> d(M);\n cin >> d;\n\n Modint::mod = N;\n Modint::mod_is_prime = false;\n vector<Modint> sd(2 * M + 1);\n sd[0] = 1;\n rep(i, 2 * M) sd[i + 1] = sd[i] * d[i % M];\n\n rep(_, Q)\n {\n int x, y, z;\n cin >> x >> y >> z;\n y--;\n\n Modint::mod = N;\n Modint::mod_is_prime = false;\n int q = z / M;\n int r = z % M;\n Modint a = sd[M].pow(q) * sd[y + r] / sd[y];\n auto b = a.inv().value;\n\n Modint::mod = N + 1;\n Modint::mod_is_prime = true;\n Modint t = ((Modint)(x)).pow(b);\n cout << t << endl;\n }\n}\n\nint main()\n{\n // cerr << \"start\" << endl;\n // srand(time(0));\n cout << fixed << setprecision(15);\n\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 3996, "score_of_the_acc": -0.0537, "final_rank": 5 }, { "submission_id": "aoj_3154_4840226", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\n//using namespace atcoder;\n#define ll long long\n#define FOR(i, a, b) for(int i=(a);i<(b);++i)\n#define rep(i, n) FOR(i, 0, n)\n#define rep1(i, n) FOR(i, 1, n+1)\n#define rrep(i, n) for (int i = ((int)(n)-1); i >= 0; --i)\n#define whole(x) (x).begin(),(x).end()\n#define rwhole(x) (x).rbegin(), (x).rend()\n#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())\n#define P pair<int, int>\n#define debug(var) cerr << \"[\" << #var << \"] \" << var << endl\ntemplate<typename T1, typename T2>\nbool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}\ntemplate<typename T1, typename T2>\nbool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}\n#define vi vector<int>\n#define vl vector<ll>\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define pr(s) cout << (s) << '\\n'\nll mod = 1000000007;\nconst int dx[] = {-1,0,1,0};\nconst int dy[] = {0,-1,0,1};\nconst int INF = 1001001001;\nconst ll INFll = 1E+18;\n\nstruct mint {\n ll x; // typedef long long ll;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) {\n (x *= a.x) %= mod;\n return *this;\n }\n mint operator+(const mint a) const {\n mint res(*this);\n return res+=a;\n }\n mint operator-(const mint a) const {\n mint res(*this);\n return res-=a;\n }\n mint operator*(const mint a) const {\n mint res(*this);\n return res*=a;\n }\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n \n // for prime mod\n mint inv() const {\n return pow(mod-2);\n }\n mint& operator/=(const mint a) {\n return (*this) *= a.inv();\n }\n mint operator/(const mint a) const {\n mint res(*this);\n return res/=a;\n }\n};\nistream& operator>>(istream& is, const mint& a) { return is >> a.x;}\nostream& operator<<(ostream& os, const mint& a) { return os << a.x;}\n\nstruct combination {\n vector<mint> fact, ifact;\n combination(int n):fact(n+1),ifact(n+1) {\n assert(n < mod);\n fact[0] = 1;\n for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i;\n ifact[n] = fact[n].inv();\n for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i;\n }\n mint operator()(int n, int k) {\n if (k < 0 || k > n) return 0;\n return fact[n]*ifact[k]*ifact[n-k];\n }\n mint per(int n, int k) {\n return fact[n]*ifact[n-k];\n }\n};\n\n \n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int n, m, q;\n cin >> n >> m >> q;\n mod = n;\n //if (n!=10 && n!=970) debug(n);\n //if (n!=10 && n!=970) debug(m);\n //if (n!=10 && n!=970) debug(q);\n vector<int> d(m);\n rep(i, m) cin >> d[i];\n //if (n!=10 && n!=970) rep(i, m) cerr << i << \" \" << d[i] << endl;\n vector<mint> sd(2*m+1);\n sd[0] = 1;\n rep(i, 2*m) {\n sd[i+1] = sd[i]*d[i%m];\n /*\n if (n!=10 && n!=970) {\n cerr << \"i sd[i]\" << i+1 << \" \" << sd[i+1].x << endl;\n }\n */\n //debug(sd[i+1]);\n }\n vector<int> inverse(n+1);\n inverse[1] = 1;\n vector<bool> used(n+1);\n for (int i=2; i<=n; i++) {\n if (used[i]) continue;\n if (__gcd(n, i)==1) {\n ll now = i;\n vector<int> v;\n while (1) {\n used[now] = true;\n v.pb(now);\n if (now==1) break;\n now *= i;\n now %= n;\n }\n rep(j, v.size()-1) {\n ll zz = lcm(j+1, (int)v.size());\n ll yy = zz - (j+1);\n inverse[v[j]] = v[(yy-1+v.size())%v.size()];\n if (n!=10) {\n //debug(v[j]);\n //debug((yy-1)%n);\n //debug(inverse[v[j]]);\n }\n }\n //debug(n);\n }\n }\n \n //debug(num_prime);\n rep(qi, q) {\n int x, y, z;\n cin >> x >> y >> z;\n y--;\n mint p = sd[m].pow(z/m);\n /*\n if (n!=10) {\n cerr << \"sd[m] p \" << sd[m].x << \" \" << p.x << endl;\n }\n */\n z %= m;\n p *= sd[y+z]*inverse[sd[y].x];\n /*\n if (n!=10) {\n cerr << \"y+z y sd[y+z] sd[y] p \" << y+z << \" \" << y << \" \" << sd[y+z].x << \" \" << sd[y].x << \" \" << p.x << endl;\n }\n */\n //debug(y+z); debug(y);\n //debug(sd[y+z]); debug(sd[y]);\n //debug(p);\n int inv = inverse[p.x];\n //debug(inv);\n mod = n+1;\n mint ans = mint(x).pow(inv);\n pr(ans);\n mod = n;\n /*\n if (n!=10 && n!=970) {\n cerr << x << \" \" << y << \" \" << z << endl;\n cerr << ans << \" \" << p.x << endl;\n int pp = p.x;\n mod = n+1;\n cerr << ans.pow(p.x) << endl;\n mod = n;\n }\n */\n \n }\n return 0;\n}", "accuracy": 0.3103448275862069, "time_ms": 1420, "memory_kb": 46712, "score_of_the_acc": -1.0782, "final_rank": 12 }, { "submission_id": "aoj_3154_4839264", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < n; i++)\n\ntypedef long long ll;\n\nconst int MAX = 10000000;\nint MOD;\n\nlong long extGCD(long long a, long long b, long long &x, long long &y) {\n if (b == 0) {\n x = 1;\n y = 0;\n return a;\n }\n long long d = extGCD(b, a%b, y, x);\n y -= a / b * x;\n return d;\n}\n\ninline long long mod(long long a, long long m=MOD) {\n return (a % m + m) % m;\n}\n\nlong long modinv(long long a, long long m=MOD) {\n long long x, y;\n extGCD(a, m, x, y);\n return mod(x, m);\n}\n\n//Nの剰余でのpow\nll modpow(ll n, ll k){\n if(k == 0) return 1;\n if(k%2){\n return modpow(n, k-1)*n % MOD;\n }\n else{\n ll temp = modpow(n, k/2);\n return temp*temp % MOD;\n }\n}\n\n//N+1の剰余でのpow\nll modpow2(ll n, ll k){\n if(k == 0) return 1;\n if(k%2){\n return modpow2(n, k-1)*n % (MOD+1);\n }\n else{\n ll temp = modpow2(n, k/2);\n return temp*temp % (MOD+1);\n }\n}\n\nint main(void){\n //A[y-1]*A[y]*...*A[y+z-1] = aとすると,\n //pow(t, a) = x かつ a は gcd(a, N) = 1 より剰余環Z/NZ上で乗法逆元が存在するので pow(x, a^(-1)) が唯一の答え\n int N, M, Q; cin >> N >> M >> Q;\n MOD = N;\n vector<ll> A(M);\n rep(i, M){\n ll a; cin >> a;\n A[i] = a;\n }\n vector<ll> acc_left(M*2+1, 1); //acc_left[i]: A[0]~A[i-1]までの積 (mod N)\n for(int i = 1; i <= M*2; i++){\n acc_left[i] = acc_left[i-1]*A[(i-1) % M] % N;\n } \n\n vector<ll> ans;\n rep(i, Q){\n ll x, y, z; cin >> x >> y >> z;\n //A[y-1]*A[y]*...*A[y-1+part-1]を計算\n ll whole = (z - (z % M)) / M; //鍵を完全に周回する回数\n ll part = z - whole*M; //端数\n ll acc = modpow(acc_left[M], whole);\n \n acc = (acc * (acc_left[y-1+part] * modinv(acc_left[y-1]) % N)) % N;\n ans.push_back(modpow2(x, modinv(acc)));\n }\n rep(i, Q) cout << ans[i] << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 4760, "score_of_the_acc": -0.0606, "final_rank": 7 }, { "submission_id": "aoj_3154_4839207", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < n; i++)\n\ntypedef long long ll;\n\nconst int MAX = 10000000;\nint MOD;\n\nlong long inv[MAX];\n\n// テーブルを作る前処理\nvoid COMinit() {\n inv[1] = 1;\n for (int i = 2; i < MAX; i++){\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n }\n}\n\n//Nの剰余でのpow\nll modpow(ll n, ll k){\n if(k == 0) return 1;\n if(k%2){\n return modpow(n, k-1)*n % MOD;\n }\n else{\n ll temp = modpow(n, k/2);\n return temp*temp % MOD;\n }\n}\n\n//N+1の剰余でのpow\nll modpow2(ll n, ll k){\n if(k == 0) return 1;\n if(k%2){\n return modpow2(n, k-1)*n % (MOD+1);\n }\n else{\n ll temp = modpow2(n, k/2);\n return temp*temp % (MOD+1);\n }\n}\n\nint main(void){\n //A[y-1]*A[y]*...*A[y+z-1] = aとすると,\n //pow(t, a) = x かつ a は gcd(a, N) = 1 より剰余環Z/NZ上で乗法逆元が存在するので pow(x, a^(-1)) が唯一の答え\n int N, M, Q; cin >> N >> M >> Q;\n MOD = N;\n COMinit();\n vector<ll> A(M);\n rep(i, M){\n ll a; cin >> a;\n A[i] = a;\n }\n vector<ll> acc_left(M*2+1, 1); //acc_left[i]: A[0]~A[i-1]までの積 (mod N)\n for(int i = 1; i <= M*2; i++){\n acc_left[i] = acc_left[i-1]*A[(i-1) % M] % N;\n } \n\n vector<ll> ans;\n rep(i, Q){\n ll x, y, z; cin >> x >> y >> z;\n //A[y-1]*A[y]*...*A[y-1+part-1]を計算\n ll whole = (z - (z % M)) / M; //鍵を完全に周回する回数\n ll part = z - whole*M; //端数\n ll acc = modpow(acc_left[M], whole);\n acc = (acc * (acc_left[y-1+part] * inv[acc_left[y-1]] % N)) % N;\n ans.push_back(modpow2(x, inv[acc]));\n }\n rep(i, Q) cout << ans[i] << endl;\n return 0;\n}", "accuracy": 0.034482758620689655, "time_ms": 90, "memory_kb": 81572, "score_of_the_acc": -0.7365, "final_rank": 16 }, { "submission_id": "aoj_3154_4839138", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < n; i++)\n\ntypedef long long ll;\n\nconst int MAX = 10000000;\nint MOD;\n\nlong long fac[MAX], finv[MAX], inv[MAX];\n\n// テーブルを作る前処理\nvoid COMinit() {\n inv[1] = 1;\n for (int i = 2; i < MAX; i++){\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n }\n}\n\n//Nの剰余でのpow\nll modpow(ll n, ll k){\n if(k == 0) return 1;\n if(k%2){\n return modpow(n, k-1)*n % MOD;\n }\n else{\n ll temp = modpow(n, k/2);\n return temp*temp % MOD;\n }\n}\n\n//N+1の剰余でのpow\nll modpow2(ll n, ll k){\n if(k == 0) return 1;\n if(k%2){\n return modpow2(n, k-1)*n % (MOD+1);\n }\n else{\n ll temp = modpow2(n, k/2);\n return temp*temp % (MOD+1);\n }\n}\n\nint main(void){\n //A[y-1]*A[y]*...*A[y+z-1] = aとすると,\n //pow(t, a) = x かつ a は gcd(a, N) = 1 より剰余環Z/NZ上で乗法逆元が存在するので pow(x, a^(-1)) が唯一の答え\n int N, M, Q; cin >> N >> M >> Q;\n MOD = N;\n COMinit();\n vector<ll> Ainv(M);\n rep(i, M){\n ll a; cin >> a;\n Ainv[i] = inv[a];\n }\n vector<ll> acc_left(M*2+1, 1); //acc_left[i]: Ainv[0]~Ainv[i-1]までの積 (mod N)\n for(int i = 1; i <= M*2; i++){\n acc_left[i] = acc_left[i-1]*Ainv[(i-1) % M] % MOD;\n } \n\n vector<ll> ans;\n rep(i, Q){\n ll x, y, z; cin >> x >> y >> z;\n //Ainv[y-1]*Ainv[y]*...*Ainv[y-1+part-1]を計算\n ll whole = (z - (z % M)) / M; //鍵を完全に周回する回数\n ll part = z - whole*M; //端数\n ll acc = modpow(acc_left[M], whole);\n acc = (acc * (acc_left[y-1+part] * inv[acc_left[y-1]] % MOD)) % MOD;\n //ll acc = 1;\n //for(int i = y-1, cnt = 0; cnt < z; i = (i+1) % M, cnt++) acc = acc*Ainv[i] % N; これでもダメ\n ans.push_back(modpow2(x, acc));\n }\n rep(i, Q) cout << ans[i] << endl;\n return 0;\n}", "accuracy": 0.034482758620689655, "time_ms": 110, "memory_kb": 81312, "score_of_the_acc": -0.744, "final_rank": 17 }, { "submission_id": "aoj_3154_4839060", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < n; i++)\n\ntypedef long long ll;\n\nconst int MAX = 1000000;\nint MOD;\n\nlong long fac[MAX], finv[MAX], inv[MAX];\n\n// テーブルを作る前処理\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < MAX; i++){\n fac[i] = fac[i - 1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n\n//Nの剰余でのpow\nll modpow(ll n, ll k){\n if(k == 0) return 1;\n if(k%2){\n return modpow(n, k-1)*n % MOD;\n }\n else{\n ll temp = modpow(n, k/2);\n return temp*temp % MOD;\n }\n}\n\n//N+1の剰余でのpow\nll modpow2(ll n, ll k){\n if(k == 0) return 1;\n if(k%2){\n return modpow2(n, k-1)*n % (MOD+1);\n }\n else{\n ll temp = modpow2(n, k/2);\n return temp*temp % (MOD+1);\n }\n}\n\n//これを使うときにはCOMinit();を忘れずに\n\nint main(void){\n int N, M, Q; cin >> N >> M >> Q;\n MOD = N;\n COMinit();\n vector<ll> Ainv(M);\n rep(i, M){\n ll a; cin >> a;\n Ainv[i] = inv[a];\n }\n vector<ll> acc_left(M*2+1, 1);\n for(int i = 1; i <= M*2; i++){\n acc_left[i] = acc_left[i-1]*Ainv[(i-1) % M] % MOD;\n } \n vector<ll> ans;\n rep(i, Q){\n ll x, y, z; cin >> x >> y >> z;\n //Ainv[y-1]*Ainv[y]*...*Ainv[y-1+part-1]を計算\n ll whole = (z - (z % M)) / M; //巻物を完全に周回する回数\n ll part = z - whole*M; //端数\n //ll acc = modpow(acc_left[M], whole);\n ll acc = 1;\n for(int i = y-1, cnt = 0; cnt < z; i = (i+1) % M, cnt++) acc = acc*Ainv[i] % N;\n //acc = (acc * (acc_left[y-1+part] * inv[acc_left[y-1]] % MOD)) % MOD;\n ans.push_back(modpow2(x, acc));\n }\n rep(i, Q) cout << ans[i] << endl;\n return 0;\n}", "accuracy": 0.034482758620689655, "time_ms": 30, "memory_kb": 26524, "score_of_the_acc": -0.2119, "final_rank": 14 }, { "submission_id": "aoj_3154_4838992", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < n; i++)\n\ntypedef long long ll;\n\nconst int MAX = 1000000;\nint MOD;\n\nlong long fac[MAX], finv[MAX], inv[MAX];\n\n// テーブルを作る前処理\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < MAX; i++){\n fac[i] = fac[i - 1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n\n//Nの剰余でのpow\nll modpow(ll n, ll k){\n if(k == 0) return 1;\n if(k%2){\n return modpow(n, k-1)*n % MOD;\n }\n else{\n ll temp = modpow(n, k/2);\n return temp*temp % MOD;\n }\n}\n\n//N+1の剰余でのpow\nll modpow2(ll n, ll k){\n if(k == 0) return 1;\n if(k%2){\n return modpow2(n, k-1)*n % (MOD+1);\n }\n else{\n ll temp = modpow2(n, k/2);\n return temp*temp % (MOD+1);\n }\n}\n\n//これを使うときにはCOMinit();を忘れずに\n\nint main(void){\n int N, M, Q; cin >> N >> M >> Q;\n MOD = N;\n COMinit();\n vector<ll> Ainv(M);\n rep(i, M){\n ll a; cin >> a;\n Ainv[i] = inv[a];\n }\n vector<ll> acc_left(M*2+1, 1);\n for(int i = 1; i <= M*2; i++){\n acc_left[i] = acc_left[i-1]*Ainv[(i-1) % M] % MOD;\n } \n vector<ll> ans;\n rep(i, Q){\n ll x, y, z; cin >> x >> y >> z;\n //Ainv[y-1]*Ainv[y]*...*Ainv[y-1+part-1]を計算\n ll whole = (z - (z % M)) / M; //巻物を完全に周回する回数\n ll part = z - whole*M; //端数\n //ll acc = modpow(acc_left[M], whole);\n ll acc = 1;\n for(int i = y-1, cnt = 0; cnt < z; i = (i+1) % M, cnt++) acc = acc*Ainv[i] % M;\n //acc = (acc * (acc_left[y-1+part] * inv[acc_left[y-1]] % MOD)) % MOD;\n ans.push_back(modpow2(x, acc));\n }\n rep(i, Q) cout << ans[i] << endl;\n return 0;\n}", "accuracy": 0.034482758620689655, "time_ms": 30, "memory_kb": 26620, "score_of_the_acc": -0.2128, "final_rank": 15 }, { "submission_id": "aoj_3154_4838848", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, n) for(int i = 0; i < n; i++)\n\ntypedef long long ll;\n\nconst int MAX = 1000000;\nint MOD;\n\nlong long fac[MAX], finv[MAX], inv[MAX];\n\n// テーブルを作る前処理\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < MAX; i++){\n fac[i] = fac[i - 1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n\nll modpow(ll n, ll k){\n if(k == 0) return 1;\n if(k%2){\n return modpow(n, k-1)*n % MOD;\n }\n else{\n ll temp = modpow(n, k/2);\n return temp*temp % MOD;\n }\n}\n\nll modpow2(ll n, ll k){\n if(k == 0) return 1;\n if(k%2){\n return modpow2(n, k-1)*n % (MOD+1);\n }\n else{\n ll temp = modpow2(n, k/2);\n return temp*temp % (MOD+1);\n }\n}\n\n//これを使うときにはCOMinit();を忘れずに\n\nint main(void){\n int N, M, Q; cin >> N >> M >> Q;\n MOD = N;\n COMinit();\n vector<ll> Ainv(M);\n rep(i, M){\n ll a; cin >> a;\n Ainv[i] = inv[a];\n }\n vector<ll> acc_left(M*2+1, 1);\n for(int i = 1; i <= M*2; i++){\n acc_left[i] = acc_left[i-1]*Ainv[(i-1) % M] % MOD;\n } \n vector<ll> ans;\n rep(i, Q){\n ll x, y, z; cin >> x >> y >> z;\n //Ainv[y-1]*Ainv[y]*...*Ainv[y+z-2]を計算\n ll whole = (z - (z % M)) / M; //巻物を完全に周回する回数\n ll part = z - whole*M; //端数\n ll acc = modpow(acc_left[M], whole);\n acc = (acc * (acc_left[y-1+part] * inv[acc_left[y-1]] % MOD)) % MOD;\n ans.push_back(modpow2(x, acc));\n }\n rep(i, Q) cout << ans[i] << endl;\n return 0;\n}", "accuracy": 0.034482758620689655, "time_ms": 20, "memory_kb": 26776, "score_of_the_acc": -0.2093, "final_rank": 13 }, { "submission_id": "aoj_3154_4837302", "code_snippet": "#include <cmath>\n#include <vector>\n#include <iostream>\n#include <algorithm>\n#include <set>\n#include <iomanip>\n#include <queue>\n#include <string>\n#include <map>\n#include <fstream>\n#include <cassert>\n#include <stack>\n#include <climits>\n#include <array>\n#include <unordered_set>\n#include <unordered_map>\n#include <memory>\n#include <functional>\n#include <cfloat>\n#include <numeric>\nlong long int power(const long long int base, const int exp, const long long int mod) {\n\tswitch (exp) {\n\tcase 0: return 1;\n\tcase 1: return base % mod;\n\tdefault: return power(base * base % mod, exp >> 1, mod) * power(base, exp & 1, mod) % mod;\n\t}\n}\nstd::pair<long long int, long long int> gcd_pair(const long long int a, const long long int b) {\n\tlong long int ax{ 1 }, bx{ 0 }, ay{ 0 }, by{ 1 };\n\twhile (a * ay + b * by != 0) {\n\t\tconst auto n = a * ax + b * bx;\n\t\tconst auto m = a * ay + b * by;\n\t\tconst auto q = n / m;\n\t\tconst auto ar = (ax - q * ay) % b;\n\t\tconst auto br = (bx - q * by) % a;\n\t\tax = ay;\n\t\tbx = by;\n\t\tay = ar;\n\t\tby = br;\n\t}\n\tif (ax < 0) {\n\t\tax += b;\n\t\tbx -= a;\n\t}\n\treturn std::make_pair(ax, by);\n}\nlong long int inverse(const long long int base, const long long int mod) {\n\treturn gcd_pair(base, mod).first;\n}\nint main() {\n\tint n, m, q; std::cin >> n >> m >> q;\n\tstd::vector<long long int> keys(m), product{ 1 };\n\tfor (auto& d : keys) std::cin >> d;\n\tfor (const auto d : keys) {\n\t\tproduct.push_back(product.back() * d % n);\n\t}\n\tfor (const auto d : keys) {\n\t\tproduct.push_back(product.back() * d % n);\n\t}\n\tconst auto all_key = std::accumulate(keys.begin(), keys.end(), 1LL, [n](const long long int acc, const long long int d) {return d * acc % n; });\n\tfor (auto i = 0; i < q; ++i) {\n\t\tint x, y, z; std::cin >> x >> y >> z; --y;\n\t\tconst auto key = power(all_key, z / m, n) * product[y + z % m] % n * inverse(product[y], n) % n;\n\t\tstd::cout << power(x, inverse(key, n), n + 1) << '\\n';\n\t}\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 4508, "score_of_the_acc": -0.0682, "final_rank": 8 }, { "submission_id": "aoj_3154_4836057", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\ntypedef long long ll;\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\nclass mint {\npublic:\n ll x;\n static ll mod;\n static unsigned long long mod_plus;\n static bool prime;\n\n static void set_mod(ll _mod, bool _prime = false) {\n mint::mod = _mod;\n mint::mod_plus = (LLONG_MAX / mod) * mod;\n mint::prime = _prime;\n }\n\n mint() { x = 0; }\n\n mint(ll _x) : x(_x < 0 ? ((_x += mod_plus) < 0 ? _x + mod_plus : _x) : _x){\n if(x >= mod) x %= mod;\n }\n\n mint operator-() {\n return x == 0 ? 0 : mod - x;\n }\n\n mint &operator+=(const mint &a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n\n mint operator+(const mint &a) const {\n return mint(*this) += a;\n }\n\n mint &operator-=(const mint &a) {\n if ((x -= a.x) < 0) x += mod;\n return *this;\n }\n\n mint operator-(const mint &a) const {\n return mint(*this) -= a;\n }\n\n mint &operator*=(const mint &a) {\n (x *= a.x) %= mod;\n return *this;\n }\n\n mint operator*(const mint &a) const {\n return mint(*this) *= a;\n }\n\n mint pow(unsigned long long pw) const {\n mint res(1), comp(*this);\n while (pw) {\n if (pw & 1) res *= comp;\n comp *= comp;\n pw >>= 1;\n }\n return res;\n }\n\n //modと互いに素な数aなら可能\n mint inv() const {\n if(prime){\n return mint(*this).pow(mod - 2);\n }else {\n // return p = (s.x, s.y) : a * p.fi + b * p.se = gcd(a, b);\n // 不要なのでxは省略\n ll su = mod, sy = 0, tu = x, ty = 1;\n while (tu != 0) {\n ll temp = su / tu;\n su -= tu * temp;\n sy -= ty * temp;\n swap(su, tu);\n swap(sy, ty);\n }\n return sy;\n }\n }\n\n mint &operator/=(const mint &a) {\n (x *= a.inv().x) %= mod;\n return *this;\n }\n\n mint operator/(const mint &a) const {\n mint res(*this);\n return res /= a;\n }\n};\nostream& operator<<(ostream& os, const mint& a){\n os << a.x;\n return os;\n}\nlong long mint::mod;\nunsigned long long mint::mod_plus;\nbool mint::prime;\nusing vm = vector<mint>;\n\nmint find_mul(int y, int z, vm &d){\n mint res(1);\n res *= mint(d[M]).pow(z / M);\n z %= M;\n res *= d[y + z - 1];\n res /= d[y - 1];\n return res;\n}\n\nll temp_pow(int x, mint _pw){\n ll pw = _pw.x, res(1), dbl(x);\n while(pw){\n if(pw&1) (res *= dbl) %= N + 1;\n (dbl *= dbl) %= N + 1;\n pw >>= 1;\n }\n return res;\n}\n\nint main() {\n cin>>N>>M>>Q;\n mint::set_mod(N, false);\n vm d(M + 1, 1);\n rep(i, M) cin>>d[i + 1].x;\n rep(i, M) d.push_back(d[i + 1]);\n rep(i, M * 2) d[i + 1] *= d[i];\n rep(_, Q){\n int x, y, z;\n cin>>x>>y>>z;\n mint mul = find_mul(y, z, d);\n cout<<temp_pow(x, mul.inv())<<endl;\n }\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 3600, "score_of_the_acc": -0.0551, "final_rank": 6 } ]
aoj_3153_cpp
Problem C: Flip Difference Sequence Problem ツバサさんは $N$ 個の整数からなる数列 $A=\{A_1,A_2,\ldots,A_N\}$ と、縦 $N$ 行、横 $N$ 列のマス目 $B, X$ を持っています。 また、 $B, X$ のすべてのマスにははじめ $0$ が書き込んであります。 以降、 $B, X$ の上から $i$ 行目、左から $j$ 列目に書き込んである数をそれぞれ $B_{i,j},\,X_{i,j}$ と表記します。 ツバサさんは最初、任意の $(i,j)(1\leq i,j\leq N)$ に対し、 $X_{i,j}=1$ または $X_{i,j}=-1$ と初期化します。ここで、各マスに $1$ を設定するか $-1$ を設定するかは、各 $(i,j)$ ごとに独立に決めることができるものとします。 次に、 $B$ のマスに書いてある数を以下のようにして、上の行から書き換えます。 $B_{1,j}=A_j (1 \leq j \leq N)$ $B_{i+1,j}=X_{i+1,j} \times (B_{i,j}-B_{i,j+1}) (1 \leq i,j \leq N-1)$ ツバサさんが $X$ の各マスの値をうまく設定したとき、 $B_{N,1}$ としてありえる最大値を求めてください。ただし答えは非常に大きくなる可能性があるので、 $10^9+7$ で割ったあまりを出力してください。 Constraints 入力は以下の条件を満たす。 $2 \leq N \leq 2 \times 10^5$ $-10^9 \leq A_i \leq 10^9 (1 \leq i \leq N)$ 入力はすべて整数である。 Input 以下の形式で標準入力から与えられる。 $N$ $A_1$ $A_2$ $\ldots$ $A_N$ Output 答えを一行で出力してください。 末尾に改行を出力するのを忘れないようにしてください。 Sample Input 1 3 5 7 5 Sample Output 1 4 例えば、 $ X= \begin{pmatrix} -1 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \\ \end{pmatrix} $ とすればよいです。このとき、 $ B= \begin{pmatrix} 5 & 7 & 5 \\ 2 & -2 & 0 \\ 4 & -2 & 0 \\ \end{pmatrix} $ となります(全ての行を同時に書き換えるのではなく、上から順に書き換えることに注意してください)。 $B_{3,1}$ を $4$ より大きくするような $X$ は存在しないので、 $4$ を出力します。 Sample Input 2 5 4 2 16 8 1 Sample Output 2 75 Sample Input 3 9 -111111111 222222222 -333333333 444444444 -555555555 666666666 -777777777 888888888 -999999999 Sample Output 3 222221086 オーバーフローに注意してください。
[ { "submission_id": "aoj_3153_10086332", "code_snippet": "// competitive-verifier: PROBLEM\n#include <cassert>\n#include <vector>\n#include <cstdint>\n#include <iostream>\n#include <type_traits>\n#include <utility>\nnamespace internal {\n// @param m `1 <= m`\n// @return x mod m\nconstexpr std::int64_t safe_mod(std::int64_t x, std::int64_t m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n// Fast modular multiplication by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n std::uint64_t im;\n // @param m `1 <= m`\n explicit barrett(unsigned int m) : _m(m), im((std::uint64_t)(-1) / m + 1) {}\n // @return m\n unsigned int umod() const { return _m; }\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n std::uint64_t z = a;\n z *= b;\n std::uint64_t x = (std::uint64_t)(((__uint128_t)(z)*im) >> 64);\n std::uint64_t y = x * _m;\n return (unsigned int)(z - y + (z < y ? _m : 0));\n }\n};\nstruct montgomery {\n std::uint64_t _m;\n std::uint64_t im;\n std::uint64_t r2;\n // @param m `1 <= m`\n explicit constexpr montgomery(std::uint64_t m) : _m(m), im(m), r2(-__uint128_t(m) % m) {\n for (int i = 0; i < 5; ++i) im = im * (2 - _m * im);\n im = -im;\n }\n // @return m\n constexpr std::uint64_t umod() const { return _m; }\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n constexpr std::uint64_t mul(std::uint64_t a, std::uint64_t b) const { return mr(mr(a, b), r2); }\n constexpr std::uint64_t exp(std::uint64_t a, std::uint64_t b) const {\n std::uint64_t res = 1, p = mr(a, r2);\n while (b) {\n if (b & 1) res = mr(res, p);\n p = mr(p, p);\n b >>= 1;\n }\n return res;\n }\n constexpr bool same_pow(std::uint64_t x, int s, std::uint64_t n) const {\n x = mr(x, r2), n = mr(n, r2);\n for (int r = 0; r < s; r++) {\n if (x == n) return true;\n x = mr(x, x);\n }\n return false;\n }\n private:\n constexpr std::uint64_t mr(std::uint64_t x) const {\n return ((__uint128_t)(x * im) * _m + x) >> 64;\n }\n constexpr std::uint64_t mr(std::uint64_t a, std::uint64_t b) const {\n __uint128_t t = (__uint128_t)a * b;\n std::uint64_t inc = std::uint64_t(t) != 0;\n std::uint64_t x = t >> 64, y = ((__uint128_t)(a * b * im) * _m) >> 64;\n unsigned long long z = 0;\n bool f = __builtin_uaddll_overflow(x, y, &z);\n z += inc;\n return f ? z - _m : z;\n }\n};\nconstexpr bool is_SPRP32(std::uint32_t n, std::uint32_t a) {\n std::uint32_t d = n - 1, s = 0;\n while ((d & 1) == 0) ++s, d >>= 1;\n std::uint64_t cur = 1, pw = d;\n while (pw) {\n if (pw & 1) cur = (cur * a) % n;\n a = (std::uint64_t)a * a % n;\n pw >>= 1;\n }\n if (cur == 1) return true;\n for (std::uint32_t r = 0; r < s; r++) {\n if (cur == n - 1) return true;\n cur = cur * cur % n;\n }\n return false;\n}\n// given 2 <= n,a < 2^64, a prime, check whether n is a-SPRP\nconstexpr bool is_SPRP64(const montgomery &m, std::uint64_t a) {\n auto n = m.umod();\n if (n == a) return true;\n if (n % a == 0) return false;\n std::uint64_t d = n - 1;\n int s = 0;\n while ((d & 1) == 0) ++s, d >>= 1;\n std::uint64_t cur = m.exp(a, d);\n if (cur == 1) return true;\n return m.same_pow(cur, s, n - 1);\n}\nconstexpr bool is_prime_constexpr(std::uint64_t x) {\n if (x == 2 || x == 3 || x == 5 || x == 7) return true;\n if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;\n if (x < 121) return (x > 1);\n montgomery m(x);\n constexpr std::uint64_t bases[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};\n for (auto a : bases) {\n if (!is_SPRP64(m, a)) return false;\n }\n return true;\n}\nconstexpr bool is_prime_constexpr(std::int64_t x) {\n if (x < 0) return false;\n return is_prime_constexpr(std::uint64_t(x));\n}\nconstexpr bool is_prime_constexpr(std::uint32_t x) {\n if (x == 2 || x == 3 || x == 5 || x == 7) return true;\n if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;\n if (x < 121) return (x > 1);\n std::uint64_t h = x;\n h = ((h >> 16) ^ h) * 0x45d9f3b;\n h = ((h >> 16) ^ h) * 0x45d9f3b;\n h = ((h >> 16) ^ h) & 255;\n constexpr uint16_t bases[] = {\n 15591, 2018, 166, 7429, 8064, 16045, 10503, 4399, 1949, 1295, 2776, 3620, 560,\n 3128, 5212, 2657, 2300, 2021, 4652, 1471, 9336, 4018, 2398, 20462, 10277, 8028,\n 2213, 6219, 620, 3763, 4852, 5012, 3185, 1333, 6227, 5298, 1074, 2391, 5113,\n 7061, 803, 1269, 3875, 422, 751, 580, 4729, 10239, 746, 2951, 556, 2206,\n 3778, 481, 1522, 3476, 481, 2487, 3266, 5633, 488, 3373, 6441, 3344, 17,\n 15105, 1490, 4154, 2036, 1882, 1813, 467, 3307, 14042, 6371, 658, 1005, 903,\n 737, 1887, 7447, 1888, 2848, 1784, 7559, 3400, 951, 13969, 4304, 177, 41,\n 19875, 3110, 13221, 8726, 571, 7043, 6943, 1199, 352, 6435, 165, 1169, 3315,\n 978, 233, 3003, 2562, 2994, 10587, 10030, 2377, 1902, 5354, 4447, 1555, 263,\n 27027, 2283, 305, 669, 1912, 601, 6186, 429, 1930, 14873, 1784, 1661, 524,\n 3577, 236, 2360, 6146, 2850, 55637, 1753, 4178, 8466, 222, 2579, 2743, 2031,\n 2226, 2276, 374, 2132, 813, 23788, 1610, 4422, 5159, 1725, 3597, 3366, 14336,\n 579, 165, 1375, 10018, 12616, 9816, 1371, 536, 1867, 10864, 857, 2206, 5788,\n 434, 8085, 17618, 727, 3639, 1595, 4944, 2129, 2029, 8195, 8344, 6232, 9183,\n 8126, 1870, 3296, 7455, 8947, 25017, 541, 19115, 368, 566, 5674, 411, 522,\n 1027, 8215, 2050, 6544, 10049, 614, 774, 2333, 3007, 35201, 4706, 1152, 1785,\n 1028, 1540, 3743, 493, 4474, 2521, 26845, 8354, 864, 18915, 5465, 2447, 42,\n 4511, 1660, 166, 1249, 6259, 2553, 304, 272, 7286, 73, 6554, 899, 2816,\n 5197, 13330, 7054, 2818, 3199, 811, 922, 350, 7514, 4452, 3449, 2663, 4708,\n 418, 1621, 1171, 3471, 88, 11345, 412, 1559, 194};\n return is_SPRP32(x, bases[h]);\n}\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr std::int64_t pow_mod_constexpr(std::int64_t x, std::int64_t n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n std::uint64_t r = 1;\n std::uint64_t y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n std::int64_t d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr std::int64_t bases[3] = {2, 7, 61};\n for (std::int64_t a : bases) {\n std::int64_t t = d;\n std::int64_t y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) { return false; }\n }\n return true;\n}\ntemplate <int n>\nconstexpr bool is_prime = is_prime_constexpr(n);\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<std::int64_t, std::int64_t> inv_gcd(std::int64_t a, std::int64_t b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n std::int64_t s = b, t = a;\n std::int64_t m0 = 0, m1 = 1;\n while (t) {\n std::int64_t u = s / t;\n s -= t * u;\n m0 -= m1 * u;\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (std::int64_t)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) { x /= i; }\n }\n }\n if (x > 1) { divs[cnt++] = x; }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m>\nconstexpr int primitive_root = primitive_root_constexpr(m);\n} // namespace internal\n#include <numeric>\nnamespace internal {\ntemplate <class T>\nusing is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;\ntemplate <class T>\nusing is_integral =\n typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value, make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\ntemplate <class T>\nusing to_unsigned_t = typename to_unsigned<T>::type;\n} // namespace internal\nnamespace internal {\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\ntemplate <class T>\nusing is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T>\nusing is_modint_t = std::enable_if_t<is_modint<T>::value>;\n} // namespace internal\ntemplate <int m, std::enable_if_t<(1 <= m)> * = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n public:\n static constexpr int mod() { return m; }\n static constexpr mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n constexpr static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T> * = nullptr>\n constexpr static_modint(T v) : _v(0) {\n std::int64_t x = (std::int64_t)(v % (std::int64_t)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T> * = nullptr>\n constexpr static_modint(T v) : _v(0) {\n _v = (unsigned int)(v % umod());\n }\n constexpr unsigned int val() const { return _v; }\n constexpr mint &operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n constexpr mint &operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n constexpr mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n constexpr mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n constexpr mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n constexpr mint &operator-=(const mint &rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n constexpr mint &operator*=(const mint &rhs) {\n std::uint64_t z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n constexpr mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n constexpr mint operator+() const { return *this; }\n constexpr mint operator-() const { return mint() - *this; }\n constexpr mint pow(std::int64_t n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n constexpr mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n friend constexpr mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }\n friend constexpr mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }\n friend constexpr mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }\n friend constexpr mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }\n friend constexpr bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }\n friend constexpr bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }\n friend std::istream &operator>>(std::istream &is, mint &rhs) {\n std::int64_t t;\n is >> t;\n rhs = mint(t);\n return is;\n }\n friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {\n return os << rhs._v;\n }\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\ntemplate <int id>\nstruct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n std::int64_t x = (std::int64_t)(v % (std::int64_t)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n unsigned int val() const { return _v; }\n mint &operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint &operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint &operator-=(const mint &rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint &operator*=(const mint &rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n mint pow(std::int64_t n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }\n friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }\n friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }\n friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }\n friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }\n friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }\n friend std::istream &operator>>(std::istream &is, mint &rhs) {\n std::int64_t t;\n is >> t;\n rhs = mint(t);\n return is;\n }\n friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {\n return os << rhs._v;\n }\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id>\ninternal::barrett dynamic_modint<id>::bt(998244353);\nusing modint998 = static_modint<998244353>;\nusing modint107 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\nnamespace internal {\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\ntemplate <class>\nstruct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n} // namespace internal\ntemplate <class mint = modint998, internal::is_modint_t<mint> * = nullptr>\nstruct Combination {\n Combination() : _fact(), _finv() {}\n mint operator()(int n, int k) {\n if (n < k || n < 0 || k < 0) return 0;\n _init(n);\n return _fact[n] * _finv[k] * _finv[n - k];\n }\n mint fact(int x) {\n assert(x >= 0);\n _init(x);\n return _fact[x];\n }\n mint finv(int x) {\n assert(x >= 0);\n _init(x);\n return _finv[x];\n }\n mint naive(int n, int k) const {\n if (n < k || n < 0 || k < 0) return 0;\n if (n - k < k) k = n - k;\n mint res = 1;\n for (int i = 0; i < k; ++i) {\n res *= n - i;\n res /= i + 1;\n }\n return res;\n }\n mint permu(int n, int k) {\n if (n < k || n < 0 || k < 0) return 0;\n _init(n);\n return _fact[n] * _finv[n - k];\n }\n private:\n std::vector<mint> _fact, _finv;\n void _init(int n) {\n if ((int)_fact.size() > n) return;\n int m = _fact.size();\n _fact.resize(n + 1);\n for (int i = m; i <= n; ++i) {\n if (i == 0) _fact[i] = 1;\n else _fact[i] = _fact[i - 1] * i;\n }\n _finv.resize(n + 1);\n _finv[n] = _fact[n].inv();\n for (int i = n - 1; i >= m; --i) _finv[i] = _finv[i + 1] * (i + 1);\n }\n};\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nusing Mint = modint107;\nCombination<Mint> combi;\nint main(void) {\n int n;\n cin >> n;\n vector<int> a(n);\n cin >> a;\n Mint ans = 0;\n rep (i, n - 1) {\n if (a[i] >= a[i + 1])\n ans += combi(n - 2, i) * (a[i] - a[i + 1]);\n else\n ans += combi(n - 2, i) * (a[i + 1] - a[i]);\n }\n co(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5428, "score_of_the_acc": -0.0042, "final_rank": 1 }, { "submission_id": "aoj_3153_4949267", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 200005\n\nll N;\nll A[SIZE];ll fact[SIZE],inv_fact[SIZE];\n\nll mod_pow(ll x,ll count, ll mod){\n\n\tif(count == 0)return 1;\n\tll ret = mod_pow((x*x)%mod,count/2,mod);\n\tif(count%2 == 1){\n\n\t\tret = (ret*x)%mod;\n\t}\n\treturn ret;\n}\n\nll extgcd(ll a,ll b,ll &x,ll &y){\n\tll d = a;\n\tif(b != 0){\n\t\td = extgcd(b,a%b,y,x);\n\t\ty -= (a/b)*x;\n\t}else{\n\t\tx = 1;\n\t\ty = 0;\n\t}\n\treturn d;\n}\n\nll mod_inverse(ll a,ll m){\n ll x,y;\n extgcd(a,m,x,y);\n return (m+x%m)%m;\n}\n\nll nCk(ll n,ll k){\n\n\tif(k > n)return 0;\n\n\tll ret = fact[n]*inv_fact[k];\n\tret %= MOD;\n\tret *= inv_fact[n-k];\n\n\treturn ret%MOD;\n}\n\n\nint main(){\n\n\tfact[0] = 1;\n\tfor(ll i = 1; i < SIZE; i++){\n\t\tfact[i] = i*fact[i-1];\n\t\tfact[i] %= MOD;\n\t}\n\tinv_fact[SIZE-1] = mod_inverse(fact[SIZE-1],MOD);\n\tfor(ll i = SIZE-1; i >= 1; i--){\n\n\t\tinv_fact[i-1] = inv_fact[i]*i;\n\t\tinv_fact[i-1] %= MOD;\n\t}\n\n\tscanf(\"%lld\",&N);\n\n\tll ans = 0;\n\tfor(ll i = 1; i <= N; i++){\n\n\t\tscanf(\"%lld\",&A[i]);\n\t\tif(i >= 2){\n\n\t\t\tll tmp = (abs(A[i]-A[i-1])*nCk(N-2,i-2))%MOD;\n\t\t\tans += tmp;\n\t\t\tans %= MOD;\n\t\t}\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 7916, "score_of_the_acc": -0.0602, "final_rank": 2 }, { "submission_id": "aoj_3153_4892930", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing LL = long long int;\n#define incII(i, l, r) for(LL i = (l) ; i <= (r); i++)\n#define incIX(i, l, r) for(LL i = (l) ; i < (r); i++)\n#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)\n#define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++)\n#define decII(i, l, r) for(LL i = (r) ; i >= (l); i--)\n#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)\n#define decXI(i, l, r) for(LL i = (r) ; i > (l); i--)\n#define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--)\n#define inc(i, n) incIX(i, 0, n)\n#define dec(i, n) decIX(i, 0, n)\n#define inc1(i, n) incII(i, 1, n)\n#define dec1(i, n) decII(i, 1, n)\nauto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };\nauto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); };\nauto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); };\nauto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); };\nauto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); };\nauto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); };\nauto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };\nauto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };\n#define PB push_back\n#define EB emplace_back\n#define MP make_pair\n#define MT make_tuple\n#define FI first\n#define SE second\n#define FR front()\n#define BA back()\n#define ALL(c) c.begin(), c.end()\n#define RALL(c) c.rbegin(), c.rend()\n#define RV(c) reverse(ALL(c))\n#define SC static_cast\n#define SI(c) SC<int>(c.size())\n#define SL(c) SC<LL >(c.size())\n#define RF(e, c) for(auto & e: c)\n#define SF(c, ...) for(auto & [__VA_ARGS__]: c)\n#define until(e) while(! (e))\n#define if_not(e) if(! (e))\n#define ef else if\n#define UR assert(false)\nauto * IS = & cin;\nauto * OS = & cout;\narray<string, 3> SEQ = { \"\", \" \", \"\" };\n// input\ntemplate<typename T> T in() { T a; (* IS) >> a; return a; }\n// input: tuple\ntemplate<int I, typename U> void tin_(istream & is, U & t) {\n\tif constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); }\n}\ntemplate<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; }\ntemplate<typename ... T> auto tin() { return in<tuple<T ...>>(); }\n// input: array\ntemplate<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; }\ntemplate<typename T, size_t N> auto ain() { return in<array<T, N>>(); }\n// input: multi-dimensional vector\ntemplate<typename T> T vin() { T v; (* IS) >> v; return v; }\ntemplate<typename T, typename N, typename ... M> auto vin(N n, M ... m) {\n\tvector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;\n}\n// input: multi-column (tuple<vector>)\ntemplate<typename U, int I> void colin_([[maybe_unused]] U & t) { }\ntemplate<typename U, int I, typename A, typename ... B> void colin_(U & t) {\n\tget<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);\n}\ntemplate<typename ... T> auto colin(int n) {\n\ttuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;\n}\n// output\nvoid out_([[maybe_unused]] string s) { }\ntemplate<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }\ntemplate<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }\nauto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };\nauto out = [](auto ... a) { outF(\"\", \" \" , \"\\n\", a ...); };\nauto outS = [](auto ... a) { outF(\"\", \" \" , \" \" , a ...); };\nauto outL = [](auto ... a) { outF(\"\", \"\\n\", \"\\n\", a ...); };\nauto outN = [](auto ... a) { outF(\"\", \"\" , \"\" , a ...); };\n// output: multi-dimensional vector\ntemplate<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {\n\tos << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? \"\" : SEQ[1]) << v[i]; } return (os << SEQ[2]);\n}\ntemplate<typename T> void vout_(T && v) { (* OS) << v; }\ntemplate<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {\n\tinc(i, SI(v)) { (* OS) << (i == 0 ? \"\" : a); vout_(v[i], b ...); }\n}\ntemplate<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }\ntemplate<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; }\n\n// ---- ----\n\ntemplate<LL M> class ModInt {\nprivate:\n\tLL v;\n\tpair<LL, LL> ext_gcd(LL a, LL b) {\n\t\tif(b == 0) { assert(a == 1); return { 1, 0 }; }\n\t\tauto p = ext_gcd(b, a % b);\n\t\treturn { p.SE, p.FI - (a / b) * p.SE };\n\t}\npublic:\n\tModInt(LL vv = 0) { v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } }\n\tLL val() { return v; }\n\tstatic LL mod() { return M; }\n\tModInt inv() { return ext_gcd(M, v).SE; }\n\tModInt exp(LL b) {\n\t\tModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; }\n\t\twhile(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; }\n\t\treturn p;\n\t}\n\tfriend bool operator< (ModInt a, ModInt b) { return (a.v < b.v); }\n\tfriend bool operator> (ModInt a, ModInt b) { return (a.v > b.v); }\n\tfriend bool operator<=(ModInt a, ModInt b) { return (a.v <= b.v); }\n\tfriend bool operator>=(ModInt a, ModInt b) { return (a.v >= b.v); }\n\tfriend bool operator==(ModInt a, ModInt b) { return (a.v == b.v); }\n\tfriend bool operator!=(ModInt a, ModInt b) { return (a.v != b.v); }\n\tfriend ModInt operator+ (ModInt a ) { return ModInt(+a.v); }\n\tfriend ModInt operator- (ModInt a ) { return ModInt(-a.v); }\n\tfriend ModInt operator+ (ModInt a, ModInt b) { return ModInt(a.v + b.v); }\n\tfriend ModInt operator- (ModInt a, ModInt b) { return ModInt(a.v - b.v); }\n\tfriend ModInt operator* (ModInt a, ModInt b) { return ModInt(a.v * b.v); }\n\tfriend ModInt operator/ (ModInt a, ModInt b) { return a * b.inv(); }\n\tfriend ModInt operator^ (ModInt a, LL b) { return a.exp(b); }\n\tfriend ModInt & operator+=(ModInt & a, ModInt b) { return (a = a + b); }\n\tfriend ModInt & operator-=(ModInt & a, ModInt b) { return (a = a - b); }\n\tfriend ModInt & operator*=(ModInt & a, ModInt b) { return (a = a * b); }\n\tfriend ModInt & operator/=(ModInt & a, ModInt b) { return (a = a / b); }\n\tfriend ModInt & operator^=(ModInt & a, LL b) { return (a = a ^ b); }\n\tfriend istream & operator>>(istream & s, ModInt & b) { s >> b.v; b = ModInt(b.v); return s; }\n\tfriend ostream & operator<<(ostream & s, ModInt b) { return (s << b.v); }\n};\n\n// ----\n\ntemplate<typename T> struct Combination {\n\tLL n;\n\tvector<T> f, r;\n\tCombination(LL n) : n(n) {\n\t\tf = r = vector<T>(n + 1);\n\t\tinc(i, n + 1) { f[i] = (i == 0 ? 1 : f[i - 1] * i ); }\n\t\tdec(i, n + 1) { r[i] = (i == n ? f[n].inv() : r[i + 1] * (i + 1)); }\n\t}\n\tT P(LL a, LL b) {\n\t\tassert(inII(a, 0, n) && inII(b, 0, n));\n\t\treturn (a < b ? 0 : f[a] * r[a - b]);\n\t}\n\tT C(LL a, LL b) {\n\t\tassert(inII(a, 0, n) && inII(b, 0, n));\n\t\treturn (a < b ? 0 : f[a] * r[a - b] * r[b]);\n\t}\n\tT H(LL a, LL b) {\n\t\tassert(inII(a, 0, n) && inII(b, 0, n) && inII(a + b - 1, -1, n));\n\t\treturn (a == 0 ? (b == 0 ? 1 : 0) : f[a + b - 1] * r[a - 1] * r[b]);\n\t}\n};\n\nusing MI = ModInt<1'000'000'007>;\n\nint main() {\n\tauto n = in<int>();\n\tauto a = vin<int>(n);\n\t\n\tCombination<MI> c(n - 2);\n\tMI ans = 0;\n\tincII(i, 0, n - 2) { ans += c.C(n - 2, i) * abs(a[i + 1] - a[i]); }\n\tout(ans);\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 7060, "score_of_the_acc": -0.193, "final_rank": 9 }, { "submission_id": "aoj_3153_4874422", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\ntemplate <int mod>\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator-=(const ModInt &p) {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator*=(const ModInt &p) {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n bool operator==(const ModInt &p) const { return x == p.x; }\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while (n > 0) {\n if (n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\n\nconst int mod = 1e9 + 7;\nusing mint = ModInt<mod>;\n\nconst int N = 200002;\nmint f[N], invf[N];\nmint C(int n, int r) { return f[n] * invf[r] * invf[n - r]; }\n\nint main() {\n f[0] = 1;\n for (int i = 1; i < N; ++i) f[i] = f[i - 1] * i;\n invf[N - 1] = f[N - 1].inverse();\n for (int i = N - 2; i >= 0; --i) invf[i] = invf[i + 1] * (i + 1);\n\n int n;\n cin >> n;\n vector<int> a(n);\n rep(i, n) cin >> a[i];\n\n mint ans = 0;\n rep(i, n - 1) {\n mint x = abs(a[i] - a[i + 1]);\n ans += C(n - 2, i) * x;\n }\n cout << ans << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 5180, "score_of_the_acc": -0.2759, "final_rank": 11 }, { "submission_id": "aoj_3153_4861042", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(1e9 + 7)>\nstruct ModInt {\n int x;\n ModInt() : x(0) {}\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n ModInt &operator+=(const ModInt &p) {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator-=(const ModInt &p) {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator*=(const ModInt &p) {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n ModInt operator-() const { return ModInt(-x); }\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n bool operator==(const ModInt &p) const { return x == p.x; }\n bool operator!=(const ModInt &p) const { return x != p.x; }\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; }\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n static int get_mod() { return mod; }\n};\n\nstruct Combination {\n vector<ModInt<>> _fact, _rfact, _inv;\n Combination(long long nsize = 5000000)\n : _fact(nsize + 1), _rfact(nsize + 1), _inv(nsize + 1) {\n _fact[0] = _rfact[nsize] = _inv[0] = 1;\n for (int i = 1; i <= nsize; i++) _fact[i] = _fact[i - 1] * i;\n _rfact[nsize] /= _fact[nsize];\n for (int i = nsize - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);\n for (int i = 1; i <= nsize; i++) _inv[i] = _rfact[i] * _fact[i - 1];\n }\n inline ModInt<> fact(int k) const { return _fact[k]; }\n\n inline ModInt<> rfact(int k) const { return _rfact[k]; }\n\n inline ModInt<> inv(int k) const { return _inv[k]; }\n\n ModInt<> P(int n, int r) const {\n if (r < 0 || n < r) return 0;\n return fact(n) * rfact(n - r);\n }\n\n ModInt<> C(int p, int q) const {\n if (q < 0 || p < q) return 0;\n return fact(p) * rfact(q) * rfact(p - q);\n }\n // n types,choose r\n ModInt<> H(int n, int r) const {\n if (n < 0 || r < 0) return (0);\n return r == 0 ? 1 : C(n + r - 1, r);\n }\n};\n\nint n, bf;\nCombination com;\n\nint main() {\n cin >> n >> bf;\n ModInt<> res;\n for (int i = 1; i < n; ++i) {\n int now, diff;\n cin >> now;\n diff = abs(now - bf);\n res += com.C(n - 2, i - 1) * diff;\n bf = now;\n }\n cout << res << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 61608, "score_of_the_acc": -0.6511, "final_rank": 17 }, { "submission_id": "aoj_3153_4844235", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <iomanip>\n#define vll vector<ll>\n#define vvvl vector<vvl>\n#define vvl vector<vector<ll>>\n#define VV(a, b, c, d) vector<vector<d>>(a, vector<d>(b, c))\n#define VVV(a, b, c, d) vector<vvl>(a, vvl(b, vll (c, d)));\n#define re(c, b) for(ll c=0;c<b;c++)\n#define all(obj) (obj).begin(), (obj).end()\ntypedef long long int ll;\ntypedef long double ld;\nusing namespace std;\n\n#define P 1000000007\n#define N_MAX 10000000\nll fac[N_MAX+1], inv[N_MAX+1], finv[N_MAX+1];\nll comb(ll n, ll k){\n if(n<0||k<0||n<k) return 0;\n return (((fac[n]*finv[n-k])%P)*finv[k])%P;\n}\nll perm(ll n, ll k){\n if(n<0||k<0||n<k) return 0;\n return (fac[n]*finv[n-k])%P;\n}\nvoid init(){\n fac[0] = finv[0] = fac[1] = finv[1] = inv[1] = 1;\n for(int i = 2; i <= N_MAX; i++){\n fac[i] = (fac[i-1]*i)%P;\n inv[i] = ((-(P/i)*inv[P%i])%P+P)%P;\n finv[i] = (finv[i-1]*inv[i])%P;\n }\n}\nll pp(ll a, ll b){ return (a * b)%P;}\nll mpow(ll a, ll b, ll p = -1){\n ll ret = 1, num = a;\n while(b>0){\n if(b&1) ret = (ret*num)%p;\n num = (num*num)%p;\n b /= 2;\n }\n return ret;\n}\nint main(){\n ll n;std::cin >> n;\n init();\n vll a(n), b(n-1);\n re(i, n) scanf(\"%lld\", &a[i]);\n re(i, n-1) b[i] = abs(a[i] - a[i+1])%P;\n ll ans = 0;\n ll N = n-1;\n for(int i=0;i<N;i++){\n ans = (ans + (b[i]*comb(N-1, i))%P)%P;\n }\n std::cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 240676, "score_of_the_acc": -2, "final_rank": 19 }, { "submission_id": "aoj_3153_4840774", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << '\\n';\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const T &a) {\n for (auto e : a) cout << e << ' ';\n cout << '\\n';\n}\n\n//------------------------- Libraries -------------------------//\n\ntemplate<int MOD> struct Fp {\n long long val;\n constexpr Fp(long long v = 0) noexcept : val(v % MOD) {\n if (val < 0) val += MOD;\n }\n constexpr int getmod() { return MOD; }\n constexpr Fp operator - () const noexcept {\n return val ? MOD - val : 0;\n }\n constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }\n constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }\n constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }\n constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }\n constexpr Fp& operator += (const Fp& r) noexcept {\n val += r.val;\n if (val >= MOD) val -= MOD;\n return *this;\n }\n constexpr Fp& operator -= (const Fp& r) noexcept {\n val -= r.val;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr Fp& operator *= (const Fp& r) noexcept {\n val = val * r.val % MOD;\n return *this;\n }\n constexpr Fp& operator /= (const Fp& r) noexcept {\n long long a = r.val, b = MOD, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; swap(a, b);\n u -= t * v; swap(u, v);\n }\n val = val * u % MOD;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr bool operator == (const Fp& r) const noexcept {\n return this->val == r.val;\n }\n constexpr bool operator != (const Fp& r) const noexcept {\n return this->val != r.val;\n }\n friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {\n return os << x.val;\n }\n friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {\n if (n == 0) return 1;\n auto t = modpow(a, n / 2);\n t = t * t;\n if (n & 1) t = t * a;\n return t;\n }\n};\nusing mint = Fp<1000000007>;\n\nconst int MAX = 1000000;\nconst int MOD = 1000000007;\n \nlong long fac[MAX], finv[MAX], inv[MAX];\n \nvoid COMinit(){\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < MAX; i++){\n fac[i] = fac[i - 1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n \nlong long COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;\n}\n \nlong long Perm(int n, int k) {\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * finv[n - k] % MOD;\n}\n\n//--------------------------- Solve ---------------------------//\n\nvoid solve() {\n int n; cin >> n;\n vector<long long> a(n);\n for (int i = 0; i < n; i++) cin >> a[i];\n\n vector<long long> b(n-1);\n for (int i = 0; i < n-1; i++) {\n if (i % 2 == 0) {\n if (a[i] > a[i+1]) b[i] = a[i] - a[i+1];\n else b[i] = -(a[i] - a[i+1]);\n }\n else {\n if (a[i] > a[i+1]) b[i] = -(a[i] - a[i+1]);\n else b[i] = a[i] - a[i+1];\n }\n }\n\n COMinit(); \n\n mint ans = 0;\n for (int i = 0; i < n-1; i++) {\n if (i % 2 == 0) ans += b[i] * COM(n-2, i);\n else ans -= b[i] * COM(n-2, i);\n }\n\n cout << ans << '\\n';\n}\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 29580, "score_of_the_acc": -0.1519, "final_rank": 8 }, { "submission_id": "aoj_3153_4840768", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << '\\n';\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const T &a) {\n for (auto e : a) cout << e << ' ';\n cout << '\\n';\n}\n\n//------------------------- Libraries -------------------------//\n\ntemplate<int MOD> struct Fp {\n long long val;\n constexpr Fp(long long v = 0) noexcept : val(v % MOD) {\n if (val < 0) val += MOD;\n }\n constexpr int getmod() { return MOD; }\n constexpr Fp operator - () const noexcept {\n return val ? MOD - val : 0;\n }\n constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }\n constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }\n constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }\n constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }\n constexpr Fp& operator += (const Fp& r) noexcept {\n val += r.val;\n if (val >= MOD) val -= MOD;\n return *this;\n }\n constexpr Fp& operator -= (const Fp& r) noexcept {\n val -= r.val;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr Fp& operator *= (const Fp& r) noexcept {\n val = val * r.val % MOD;\n return *this;\n }\n constexpr Fp& operator /= (const Fp& r) noexcept {\n long long a = r.val, b = MOD, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; swap(a, b);\n u -= t * v; swap(u, v);\n }\n val = val * u % MOD;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr bool operator == (const Fp& r) const noexcept {\n return this->val == r.val;\n }\n constexpr bool operator != (const Fp& r) const noexcept {\n return this->val != r.val;\n }\n friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {\n return os << x.val;\n }\n friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {\n if (n == 0) return 1;\n auto t = modpow(a, n / 2);\n t = t * t;\n if (n & 1) t = t * a;\n return t;\n }\n};\nusing mint = Fp<1000000007>;\n\nconst int MAX = 1000000;\nconst int MOD = 1000000007;\n \nlong long fac[MAX], finv[MAX], inv[MAX];\n \nvoid COMinit(){\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < MAX; i++){\n fac[i] = fac[i - 1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n \nlong long COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;\n}\n \nlong long Perm(int n, int k) {\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * finv[n - k] % MOD;\n}\n\n//--------------------------- Solve ---------------------------//\n\nvoid solve() {\n int n; cin >> n;\n vector<long long> a(n);\n for (int i = 0; i < n; i++) cin >> a[i];\n\n vector<long long> b(n-1);\n for (int i = 0; i < n; i++) {\n if (i % 2 == 0) {\n if (a[i] > a[i+1]) b[i] = a[i] - a[i+1];\n else b[i] = -(a[i] - a[i+1]);\n }\n else {\n if (a[i] > a[i+1]) b[i] = -(a[i] - a[i+1]);\n else b[i] = a[i] - a[i+1];\n }\n }\n\n COMinit(); \n\n mint ans = 0;\n for (int i = 0; i < n-1; i++) {\n if (i % 2 == 0) ans += b[i] * COM(n-2, i);\n else ans -= b[i] * COM(n-2, i);\n }\n\n cout << ans << '\\n';\n}\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 0.13043478260869565, "time_ms": 10, "memory_kb": 26872, "score_of_the_acc": -0.095, "final_rank": 20 }, { "submission_id": "aoj_3153_4840090", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<n;i++)\n#define cinf(n,x) for(int i=0;i<(n);i++)cin>>x[i];\n#define ft first\n#define sc second\n#define pb push_back\n#define lb lower_bound\n#define ub upper_bound\n#define all(v) (v).begin(),(v).end()\n#define LB(a,x) lb(all(a),x)-a.begin()\n#define UB(a,x) ub(all(a),x)-a.begin()\n#define mod 1000000007\n//#define mod 998244353\n#define FS fixed<<setprecision(15)\nusing namespace std;\ntypedef long long ll;\nconst double pi=3.141592653589793;\ntemplate<class T> using V=vector<T>;\nusing Graph = vector<vector<int>>;\nusing P=pair<ll,ll>;\ntypedef unsigned long long ull;\ntypedef long double ldouble;\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }\ntemplate<class T> inline void out(T a){ cout << a << '\\n'; }\nvoid YN(bool ok){if(ok) cout << \"Yes\" << endl; else cout << \"No\" << endl;}\n//void YN(bool ok){if(ok) cout << \"YES\" << endl; else cout << \"NO\" << endl;}\n\n\nconst ll INF=1e18;\nconst int mx=200005;\n//wupc\n\nll mod_pow(ll x,ll n,ll m){\n if(n==0) return 1;\n ll res=mod_pow(x*x%m,n/2,m);\n if(n&1) res=res*x%m;\n return res;\n}\n\nll modinv(ll n){\n return mod_pow(n,mod-2,mod);\n}\n\nint main(){\n cin.tie(0);ios::sync_with_stdio(false);\n ll n;\n cin>>n;\n V<ll> a(n);\n cinf(n,a);\n ll ans=0;\n ll c[n];\n c[0]=1;\n for(ll i=1;i<=n-1;i++){\n c[i]=(c[i-1]*(n-i-1))%mod;\n c[i]=(c[i]*modinv(i))%mod;\n }\n for(ll i=0;i<n-1;i++) ans=(ans+abs(a[i]-a[i+1])*c[i]%mod)%mod;\n out(ans);\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 6000, "score_of_the_acc": -0.3703, "final_rank": 15 }, { "submission_id": "aoj_3153_4837259", "code_snippet": "#include <cmath>\n#include <vector>\n#include <iostream>\n#include <algorithm>\n#include <set>\n#include <iomanip>\n#include <numeric>\n#include <queue>\n#include <string>\n#include <map>\n#include <fstream>\n#include <cassert>\n#include <stack>\n#include <climits>\n#include <array>\n#include <unordered_set>\n#include <unordered_map>\n#include <memory>\n#include <functional>\n#include <cfloat>\nconstexpr long long int MOD = 1000000007LL;\n\n\nint main() {\n\tint n; std::cin >> n;\n\tstd::vector<long long int> factorial(n, 1), div(n, 1), inverse(n, 1);\n\tfor (auto i = 2; i < factorial.size(); ++i) {\n\t\tfactorial[i] = i * factorial[i - 1] % MOD;\n\t\tdiv[i] = (MOD - MOD / i) * div[MOD % i] % MOD;\n\t\tinverse[i] = div[i] * inverse[i - 1] % MOD;\n\t}\n\tconst auto combination = [&factorial, &inverse](const int n, const int r) {\n\t\treturn factorial[n] * inverse[n - r] % MOD * inverse[r] % MOD;\n\t};\n\tstd::vector<long long int> series(n);\n\tfor (auto& a : series) std::cin >> a;\n\tlong long int result{ 0 };\n\tfor (auto i = 0; i < n - 1; ++i) {\n\t\tresult += std::abs(series[i] - series[i + 1]) * combination(n - 2, i) % MOD;\n\t}\n\tstd::cout << result % MOD << '\\n';\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 9404, "score_of_the_acc": -0.2029, "final_rank": 10 }, { "submission_id": "aoj_3153_4837141", "code_snippet": "#include <bits/stdc++.h>\n \nconst double pi = 3.141592653589793238462643383279;\nusing namespace std;\n\n//typedef\n//------------------------------------------\ntypedef vector<int> VI;\ntypedef vector<VI> VVI;\ntypedef vector<string> VS;\ntypedef pair<int, int> PII;\ntypedef pair<long long, long long> PLL;\ntypedef pair<int, PII> TIII;\ntypedef long long LL;\ntypedef unsigned long long ULL;\ntypedef vector<LL> VLL;\ntypedef vector<VLL> VVLL;\n \n \n//container util\n//------------------------------------------\n#define ALL(a) (a).begin(),(a).end()\n#define RALL(a) (a).rbegin(), (a).rend()\n#define PB push_back\n#define MP make_pair\n#define SQ(a) ((a)*(a))\n#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)\n#define EXIST(s,e) ((s).find(e)!=(s).end())\n#define SORT(c) sort((c).begin(),(c).end())\n \n \n//repetition\n//------------------------------------------\n#define FOR(i,s,n) for(int i=s;i<(int)n;++i)\n#define REP(i,n) FOR(i,0,n)\n#define MOD 1000000007\n \n \n#define rep(i, a, b) for(int i = a; i < (b); ++i)\n#define trav(a, x) for(auto& a : x)\n#define all(x) x.begin(), x.end()\n#define sz(x) (int)(x).size()\n \ntypedef long long ll;\ntypedef pair<int, int> pii;\ntypedef vector<int> vi;\n \n#define chmin(x,y) x=min(x,y)\n#define chmax(x,y) x=max(x,y)\n\nconst long double EPS = 1e-6, PI = acos((long double)-1);\n\n//ここから編集\n\nll GCD(ll a, ll b){\n return (b == 0)?a:GCD(b, a%b);\n}\nll LCM(ll a, ll b){\n return a/GCD(a, b)*b;\n}\n \nconst int MAX = 2000010;\nlong long fac[MAX], finv[MAX], inv[MAX];\n \n// テーブルを作る前処理\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < MAX; i++){\n fac[i] = fac[i - 1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n \n// 二項係数計算\nlong long COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;\n}\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(4);\n\n int N; cin >> N;\n vector<ll> A(N);\n REP(i,N) cin >> A[i];\n COMinit();\n vector<ll> B(N);\n REP(i,N-1){\n B[i] = abs(A[i]-A[i+1]);\n }\n\n ll ans = 0;\n REP(i,N-1){\n ans += B[i] * COM(N-2, i);\n ans %= MOD;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 52724, "score_of_the_acc": -0.4317, "final_rank": 16 }, { "submission_id": "aoj_3153_4835176", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define pb push_back\n#define fi first\n#define se second\ntypedef pair<ll, ll> P;\nusing VP = vector<P>;\nusing VVP = vector<VP>;\nusing VI = vector<ll>;\nusing VVI = vector<VI>;\nusing VVVI = vector<VVI>;\nconst int inf = 1e9 + 7;\nconst ll INF = 1LL << 61;\nconst ll mod = 1e9 + 7;\n\ntemplate <class T> inline bool chmax(T &a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T> inline bool chmin(T &a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nvector<ll> inv, fact, invfact;\nvoid Mod_build(int n = 201010) {\n fact.resize(n + 1);\n inv.resize(n + 1);\n invfact.resize(n + 1);\n fact[0] = inv[0] = invfact[0] = 1;\n inv[1] = 1;\n for (ll i = 0; i < n; i++) {\n fact[i + 1] = fact[i] * (i + 1) % mod;\n if (i > 0) inv[i + 1] = mod - inv[mod % (i + 1)] * (mod / (i + 1)) % mod;\n invfact[i + 1] = invfact[i] * inv[i + 1] % mod;\n }\n}\nll perm(int n, int k) {\n if (n < 0 || k < 0 || k > n) return 0;\n return fact[n] * invfact[n - k] % mod;\n}\nll comb(int n, int k) {\n if (n < 0 || k < 0 || k > n) return 0;\n return (fact[n] * invfact[n - k] % mod) * invfact[k] % mod;\n}\nll powmod(ll n, ll k) {\n k %= mod - 1;\n if (k < 0) k += mod - 1;\n ll ret = 1;\n while (k) {\n if (k & 1) ret = ret * n % mod;\n n = n * n % mod;\n k >>= 1;\n }\n return ret;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int i, j;\n Mod_build();\n ll n;\n cin >> n;\n ll a[n];\n for (i = 0; i < n; i++) cin >> a[i];\n ll ans = 0;\n ll ref = 1;\n for (i = 0; i < n - 1; i++) {\n ans += ref * abs(a[i + 1] - a[i]);\n ref = comb(n - 1, i + 1) + mod - ref;\n ref %= mod;\n ans %= mod;\n // cout << ref << endl;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 9404, "score_of_the_acc": -0.0665, "final_rank": 3 }, { "submission_id": "aoj_3153_4835118", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nconst int MOD=1e9+7;\n\nstd::vector<int> Factorial(5e6),Finverse(5e6);\nint pw(int n,int k){\n assert(k>=0);\n int res=1;\n while(k){\n if(k&1)(res*=n)%=MOD;\n (n*=n)%=MOD;\n k>>=1;\n }\n return res;\n}\ninline void Cinit(){\n Factorial[0]=1;\n for(int i=1;i<5e6;i++)Factorial[i]=(Factorial[i-1]*i)%MOD;\n Finverse[4999999]=pw(Factorial[4999999],MOD-2);\n for(int i=4999998;i>=0;i--)Finverse[i]=(i+1)*Finverse[i+1]%MOD;\n}\nint nCk(int n,int k){\n if(n<k)return 0;if(k<0)return 0;\n if(!Factorial[0])Cinit();\n int res=Factorial[n];\n (res*=Finverse[k])%=MOD;\n (res*=Finverse[n-k])%=MOD;\n return res;\n}\n\nsigned main(){\n int n;cin>>n;\n vector<int>v(n);\n for(int i=0;i<n;i++)cin>>v[i];\n vector<int> w(n-1);\n for(int i=0;i<n-1;i++)w[i]=abs(v[i]-v[i+1]);\n int ans=0;\n for(int i=0;i<n-1;i++)(ans+=nCk(n-2,i)*w[i]%MOD)%=MOD;\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 84116, "score_of_the_acc": -0.8828, "final_rank": 18 }, { "submission_id": "aoj_3153_4835067", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define P pair<ll,ll>\n#define FOR(I,A,B) for(ll I = ll(A); I < ll(B); ++I)\n#define FORR(I,A,B) for(ll I = ll((B)-1); I >= ll(A); --I)\n#define TO(x,t,f) ((x)?(t):(f))\n#define SORT(x) (sort(x.begin(),x.end())) // 0 2 2 3 4 5 8 9\n#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin()) //xi>=v x is sorted\n#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin()) //xi>v x is sorted\n#define NUM(x,v) (POSU(x,v)-POSL(x,v)) //x is sorted\n#define REV(x) (reverse(x.begin(),x.end())) //reverse\nll gcd_(ll a,ll b){if(a%b==0)return b;return gcd_(b,a%b);}\nll lcm_(ll a,ll b){ll c=gcd_(a,b);return ((a/c)*(b/c)*c);}\n#define NEXTP(x) next_permutation(x.begin(),x.end())\nconst ll INF=ll(1e16)+ll(7);\nconst ll MOD=1000000007LL;\n#define out(a) cout<<fixed<<setprecision((a))\n//tie(a,b,c) = make_tuple(10,9,87);\n#define pop_(a) __builtin_popcount((a))\nll keta(ll a){ll r=0;while(a){a/=10;r++;}return r;}\n\nll calc(ll x,ll a){\n\tif(a==0) return 1LL;\n\tll res = calc(x,a/2);\n\tres = res*res % MOD;\n\tif(a&1)res = res*x % MOD;\n\treturn res;\n}\n\n\nint main(){\n\n\tll N;\n\tcin >> N;\n\tvector<ll> A(N);\n\tFOR(i,0,N) cin >> A[i];\n\n\tll ans = 0;\n\tll a = 1;\n\tFOR(i,0,N-1){\n\t\tll k = abs(A[i] - A[i+1]) % MOD;\n\t\t(ans += a*k%MOD) %= MOD;\n\t\ta *= N - 2 - i;\n\t\ta %= MOD;\n\t\ta *= calc(i+1,MOD-2);\n\t\ta %= MOD;\n\t}\n\tcout << ans << endl;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 4428, "score_of_the_acc": -0.3636, "final_rank": 14 }, { "submission_id": "aoj_3153_4834943", "code_snippet": "/**\n * author: otera \n**/\n#include<iostream>\n#include<string> \n#include<cstdio>\n#include<cstring>\n#include<vector>\n#include<cmath>\n#include<algorithm> \n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<deque>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\nusing namespace std;\n\n#define int long long\ntypedef long long ll;\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\ntypedef long double ld;\nconst int inf=1e9+7;\nconst ll INF=1LL<<60 ;\nconst ll mod=1e9+7 ;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef complex<ld> Point;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<int, int> P;\ntypedef pair<ld, ld> LDP;\ntypedef pair<ll, ll> LP;\n#define fr first\n#define sc second\n#define all(c) c.begin(),c.end()\n#define pb push_back\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n// modint: mod 計算を int を扱うように扱える構造体\ntemplate<int MOD> struct Fp {\n long long val;\n constexpr Fp(long long v = 0) noexcept : val(v % MOD) {\n if (val < 0) val += MOD;\n }\n constexpr int getmod() { return MOD; }\n constexpr Fp operator - () const noexcept {\n return val ? MOD - val : 0;\n }\n constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }\n constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }\n constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }\n constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }\n constexpr Fp& operator += (const Fp& r) noexcept {\n val += r.val;\n if (val >= MOD) val -= MOD;\n return *this;\n }\n constexpr Fp& operator -= (const Fp& r) noexcept {\n val -= r.val;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr Fp& operator *= (const Fp& r) noexcept {\n val = val * r.val % MOD;\n return *this;\n }\n constexpr Fp& operator /= (const Fp& r) noexcept {\n long long a = r.val, b = MOD, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; swap(a, b);\n u -= t * v; swap(u, v);\n }\n val = val * u % MOD;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr bool operator == (const Fp& r) const noexcept {\n return this->val == r.val;\n }\n constexpr bool operator != (const Fp& r) const noexcept {\n return this->val != r.val;\n }\n friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {\n return os << x.val;\n }\n friend constexpr istream& operator >> (istream &is, Fp<MOD>& x) noexcept {\n return is >> x.val;\n }\n friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {\n if (n == 0) return 1;\n auto t = modpow(a, n / 2);\n t = t * t;\n if (n & 1) t = t * a;\n return t;\n }\n};\n\n// 二項係数ライブラリ\ntemplate<class T> struct BiCoef {\n vector<T> fact_, inv_, finv_;\n constexpr BiCoef() {}\n constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {\n init(n);\n }\n constexpr void init(int n) noexcept {\n fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);\n int MOD = fact_[0].getmod();\n for(int i = 2; i < n; i++){\n fact_[i] = fact_[i-1] * i;\n inv_[i] = -inv_[MOD%i] * (MOD/i);\n finv_[i] = finv_[i-1] * inv_[i];\n }\n }\n constexpr T com(int n, int k) const noexcept {\n if (n < k || n < 0 || k < 0) return 0;\n return fact_[n] * finv_[k] * finv_[n-k];\n }\n constexpr T fact(int n) const noexcept {\n if (n < 0) return 0;\n return fact_[n];\n }\n constexpr T inv(int n) const noexcept {\n if (n < 0) return 0;\n return inv_[n];\n }\n constexpr T finv(int n) const noexcept {\n if (n < 0) return 0;\n return finv_[n];\n }\n};\n\nconst int MOD = 1000000007;\n//const int MOD = 998244353;\nusing mint = Fp<MOD>;\nBiCoef<mint> bc;\n\nvoid solve() {\n\tint n; cin >> n;\n vector<int> a(n);\n rep(i, n) {\n cin >> a[i];\n }\n bc.init(200200);\n vector<mint> b(n - 1);\n rep(i, n - 1) {\n b[i] = (mint)(abs(a[(i + 1 + n) % n] - a[i]));\n }\n mint ans = 0;\n rep(i, n - 1) {\n ans += b[i] * bc.com(n - 2, i);\n }\n cout << ans << endl;\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(10);\n\t//int t; cin >> t; rep(i, t)solve();\n\tsolve();\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 10720, "score_of_the_acc": -0.0721, "final_rank": 5 }, { "submission_id": "aoj_3153_4834267", "code_snippet": "#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n#define FOR(i, a, b) for(ll i = a; i < b; i++)\n#define rep(i, n) FOR(i, 0, n)\n#define rFOR(i, a, b) for(ll i = a - 1; i >= b; i--)\n#define rrep(i, a) rFOR(i, a, 0)\n#define pb push_back\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\ntypedef pair<ll,ll> P;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<P> vP;\ntypedef vector<char> vc;\ntypedef vector<vc> vvc;\nconst ll MOD = 1000000007;\nconst ll MOD2 = 998244353;\nconst ld PI = acos(-1);\nconst ll INF = 1e18;\nstruct edge{ll to, cost;};\n\ntemplate <typename T>\nbool chmax(T &a, const T &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <typename T>\nbool chmin(T &a, const T &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\n//組み合わせを線形で\n//参考:https://drken1215.hatenablog.com/entry/2018/06/08/210000\n\nconst int MXN = 1000001;//変更可\nlong long fac[MXN], inv[MXN], finv[MXN];\n\nvoid COMinit(int M){\n fac[0] = fac[1] = 1;\n inv[1] = 1;\n finv[0] = finv[1] = 1;\n for(int i = 2; i < MXN; i++){\n fac[i] = fac[i-1] * i % M;\n inv[i] = M - M / i * inv[M%i] % M;\n finv[i] = finv[i-1] * inv[i] % M;\n }\n}\n\nlong long COMBI(int N, int K, int M){\n if(N < K){\n return 0;\n }\n if(N < 0||K < 0){\n return 0;\n }\n return fac[N] * finv[N-K] % M * finv[K] % M;\n}\n\nlong long PERMU(int N, int K, int M){\n if(N < K){\n return 0;\n }\n if(N < 0||K < 0){\n return 0;\n }\n return fac[N] * finv[N-K] % M;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int N;\n cin >> N;\n COMinit(MOD);\n vl A(N);\n rep(i,N){\n cin >> A[i];\n }\n ll MX=-INF,MN=INF;\n vl B(N-1);\n rep(i,N-1){\n B[i]=abs(A[i]-A[i+1]);\n }\n ll ans=0;\n rep(i,N-1){\n ans+=(B[i]*COMBI(N-2,i,MOD))%MOD;\n ans%=MOD;\n }\n cout << (ans+MOD)%MOD << '\\n';\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 29528, "score_of_the_acc": -0.2881, "final_rank": 12 }, { "submission_id": "aoj_3153_4834243", "code_snippet": "#include <iostream>\n#include <string>\n#include <sstream>\n#include <stack>\n#include <algorithm>\n#include <cmath>\n#include <queue>\n#include <bitset>\n#include <iomanip>\n#include <limits>\n#include <chrono>\n#include <random>\n#include <array>\n#include <unordered_map>\n#include <functional>\n#include <complex>\n#include <numeric>\n#include <cctype>\n#include <map>\n#include <set>\n#include <cstdlib>\n#include <bitset>\n#include <tuple>\n#include <assert.h>\n#include <deque>\n#include <utility>\n#include <fstream>\n\nusing namespace std;\ntypedef long long ll;\n\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\ntemplate<typename T> T gcd(T a, T b) { a = abs(a), b = abs(b); while (b > 0) { tie(a, b) = make_pair(b, a % b); } return a; }\n//mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());\n\nconstexpr long long INF = 1LL << 60;\nconstexpr int inf = 1000000007;\nconstexpr long long mod = 1000000007LL;\n\n\nstruct mint {\n\tlong long x;\n\tmint(long long x = 0) :x((x% mod + mod) % mod) {}\n\tmint& operator+=(const mint a) {\n\t\tif ((x += a.x) >= mod) x -= mod;\n\t\treturn *this;\n\t}\n\tmint& operator-=(const mint a) {\n\t\tif ((x += mod - a.x) >= mod) x -= mod;\n\t\treturn *this;\n\t}\n\tmint& operator*=(const mint a) {\n\t\t(x *= a.x) %= mod;\n\t\treturn *this;\n\t}\n\tmint operator+(const mint a) const {\n\t\tmint res(*this);\n\t\treturn res += a;\n\t}\n\tmint operator-(const mint a) const {\n\t\tmint res(*this);\n\t\treturn res -= a;\n\t}\n\tmint operator*(const mint a) const {\n\t\tmint res(*this);\n\t\treturn res *= a;\n\t}\n\tmint pow(ll t) const {\n\t\tif (!t) return 1;\n\t\tmint a = pow(t >> 1);\n\t\ta *= a;\n\t\tif (t & 1) a *= *this;\n\t\treturn a;\n\t}\n\n\t// for prime mod\n\tmint inv() const {\n\t\treturn pow(mod - 2);\n\t}\n\tmint& operator/=(const mint a) {\n\t\treturn (*this) *= a.inv();\n\t}\n\tmint operator/(const mint a) const {\n\t\tmint res(*this);\n\t\treturn res /= a;\n\t}\n};\nconstexpr int MAX = 500000;\nlong long fac[MAX], finv[MAX], inv[MAX];\n\nvoid COMinit() {\n\tfac[0] = fac[1] = 1;\n\tfinv[0] = finv[1] = 1;\n\tinv[1] = 1;\n\tfor (int i = 2; i < MAX; i++) {\n\t\tfac[i] = fac[i - 1] * i % mod;\n\t\tinv[i] = mod - inv[mod % i] * (mod / i) % mod;\n\t\tfinv[i] = finv[i - 1] * inv[i] % mod;\n\t}\n}\n\nmint COM(int n, int k) {\n\tif (n < k) return 0;\n\tif (n < 0 || k < 0) return 0;\n\treturn mint(fac[n] * (finv[k] * finv[n - k] % mod) % mod);\n}\n\nmint LCOM(ll n, ll k) {\n\tif (n < k) return 0;\n\tif (n < 0 || k < 0) return 0;\n\tif (k > n / 2) k = n - k;\n\tmint res = 1;\n\tfor (int i = 0; i < k; i++) res *= (n - i);\n\tres *= finv[k];\n\treturn res;\n}\nint main()\n{\n\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\n\tCOMinit();\n\tint n; cin >> n;\n\tvector<ll> a(n); for (int i = 0; i < n; i++) cin >> a[i];\n\tvector<mint> b(n); for (int i = 0; i < n - 1; i++) b[i] = llabs(a[i + 1] - a[i]);\n\tmint res = 0;\n\tfor (int i = 0; i < n - 1; i++) {\n\t\tres += COM(n - 2, i) * b[i];\n\t}\n\tcout << res.x << \"\\n\";\n\treturn 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 17604, "score_of_the_acc": -0.1012, "final_rank": 7 }, { "submission_id": "aoj_3153_4834208", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\ntypedef long long int ll;\n\nconstexpr ll mod=1e9+7;\n\nll mod_pow(ll a,ll b){\n\ta%=mod;\n\tif(b==0)return 1;\n\tif(b==1)return a;\n\tll res=mod_pow(a,b/2)%mod;\n\tres*=res; res%=mod;\n\tif(b%2)res*=a;\n\treturn res%mod;\n}\n\nstruct perm{\nprivate:\n\tint sz;\n\tvector<ll> p,invp;\npublic:\n\tperm(int n){\n\t\tsz=n+1;\n\t\tp.resize(sz),invp.resize(sz);\n\t\tp[0]=1;\n\t\tfor(int i=1;i<=sz-1;i++){\n\t\t\tp[i]=p[i-1]*i%mod;\n\t\t}\n\t\tinvp[sz-1]=mod_pow(p[sz-1],mod-2);\n\t\tfor(int i=sz-2;i>=0;i--){\n\t\t\tinvp[i]=invp[i+1]*(i+1)%mod;\n\t\t}\n\t}\n\tll comb(ll x,ll y){\n\t\tif(x<y||y<0)return 0;\n\t\treturn (p[x]*invp[x-y]%mod)*invp[y]%mod;\n\t}\n};\nperm p(1<<20);\n\nint main(){\n\tint n; cin >> n;\n\tvector<ll> a(n);\n\tvector<ll> b(n-1);\n\tfor(int i=0;i<n;i++){\n\t\tcin >> a[i];\n\t}\n\tfor(int i=0;i<n-1;i++){\n\t\tb[i]=abs(a[i]-a[i+1]);\n\t}\n\tll res=0;\n\tfor(int i=0;i<n-1;i++){\n\t\t(res+=b[i]*p.comb(n-2,i)%mod)%=mod;\n\t}\n\tcout << res << \"\\n\";\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 22340, "score_of_the_acc": -0.3485, "final_rank": 13 }, { "submission_id": "aoj_3153_4834114", "code_snippet": "#pragma region Macros\n#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w) \\\n vector<vector<type>> name(h, vector<type>(w)); \\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\nstring YES[2] = {\"NO\", \"YES\"};\nstring Yes[2] = {\"No\", \"Yes\"};\nstring yes[2] = {\"no\", \"yes\"};\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define DBL(...) \\\n double __VA_ARGS__; \\\n IN(__VA_ARGS)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\n\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n\n#define i128 __int128_t\n#define ull unsigned long long int\n#define TEST \\\n INT(testcases); \\\n while(testcases--)\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n for(auto &e : v) cout << e << \" \";\n cout << endl;\n return os;\n}\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {\n cout << \"(\" << p.fi << \", \" << p.se << \")\";\n return os;\n}\ntemplate <class S, class T> string to_string(pair<S, T> p) { return \"(\" + to_string(p.first) + \",\" + to_string(p.second) + \")\"; }\ntemplate <class A> string to_string(A v) {\n if(v.empty()) return \"{}\";\n string ret = \"{\";\n for(auto &x : v) ret += to_string(x) + \",\";\n ret.back() = '}';\n return ret;\n}\n\nvoid dump() { cerr << endl; }\ntemplate <class Head, class... Tail> void dump(Head head, Tail... tail) {\n cerr << to_string(head) << \" \";\n dump(tail...);\n}\n#define endl '\\n'\n#ifdef _LOCAL\n#undef endl\n#define debug(x) \\\n cout << #x << \": \"; \\\n dump(x)\n#else\n#define debug(x)\n#endif\n// mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());\n\n// int rnd(int n) { return uniform_int_distribution<int>(0, n - 1)(rng); }\n// ll rndll(ll n) { return uniform_int_distribution<ll>(0, n - 1)(rng); }\n\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\n#pragma endregion\nnamespace modular {\nconstexpr ll MOD = 1000000007;\nconst int MAXN = 1100000;\ntemplate <ll Modulus> class modint;\n#define mint modint<MOD>\n#define vmint vector<mint>\nvector<mint> Inv;\nmint inv(int x);\ntemplate <ll Modulus> class modint {\n\n public:\n static constexpr int mod() { return Modulus; }\n ll a;\n\n constexpr modint(const ll x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {}\n constexpr ll &value() noexcept { return a; }\n constexpr const ll &value() const noexcept { return a; }\n constexpr modint operator-() const noexcept { return modint() - *this; }\n constexpr modint operator+() const noexcept { return *this; }\n constexpr modint &operator++() noexcept {\n if(++a == MOD) a = 0;\n return *this;\n }\n constexpr modint &operator--() noexcept {\n if(!a) a = MOD;\n a--;\n return *this;\n }\n constexpr modint operator++(int) {\n modint res = *this;\n ++*this;\n return res;\n }\n constexpr modint operator--(int) {\n mint res = *this;\n --*this;\n return res;\n }\n constexpr modint &operator+=(const modint rhs) noexcept {\n a += rhs.a;\n if(a >= Modulus) { a -= Modulus; }\n return *this;\n }\n constexpr modint &operator-=(const modint rhs) noexcept {\n if(a < rhs.a) { a += Modulus; }\n a -= rhs.a;\n return *this;\n }\n constexpr modint &operator*=(const modint rhs) noexcept {\n a = a * rhs.a % Modulus;\n return *this;\n }\n constexpr modint &operator/=(const modint rhs) noexcept {\n a = a * (modular::inv(rhs.a)).a % Modulus;\n return *this;\n }\n constexpr modint pow(long long n) const noexcept {\n modint x = *this, r = 1;\n while(n) {\n if(n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n constexpr modint inv() const noexcept { return pow(Modulus - 2); }\n constexpr friend modint operator+(const modint &lhs, const modint &rhs) { return modint(lhs) += modint(rhs); }\n constexpr friend modint operator-(const modint &lhs, const modint &rhs) { return modint(lhs) -= modint(rhs); }\n constexpr friend modint operator*(const modint &lhs, const modint &rhs) { return modint(lhs) *= modint(rhs); }\n constexpr friend modint operator/(const modint &lhs, const modint &rhs) { return modint(lhs) /= modint(rhs); }\n constexpr friend modint operator==(const modint &lhs, const modint &rhs) { return lhs.a == rhs.a; }\n constexpr friend modint operator!=(const modint &lhs, const modint &rhs) { return lhs.a != rhs.a; }\n // constexpr friend modint operator^=(const modint &lhs, const modint &rhs) { return modint(lhs) ^= modint(rhs); }\n};\nvmint Prd{1, 1}, Invprd{1, 1};\nmint inv(int n) {\n if(Inv.empty()) Inv.emplace_back(0), Inv.emplace_back(1);\n if(Inv.size() > n)\n return Inv[n];\n else {\n for(int i = Inv.size(); i <= n; ++i) Inv.emplace_back(Inv[MOD % i] * (-MOD / i));\n return Inv[n];\n }\n}\nmint prd(int n) {\n if(Prd.size() > n)\n return Prd[n];\n else\n for(int i = Prd.size(); i <= n; ++i) Prd.emplace_back(Prd[i - 1] * i);\n return Prd[n];\n}\nmint invprd(int n) {\n if(Invprd.size() > n)\n return Invprd[n];\n else\n for(int i = Invprd.size(); i <= n; ++i) Invprd.emplace_back(Invprd[i - 1] * inv(i));\n return Invprd[n];\n}\nmint modpow(ll a, ll n) { return mint(a).pow(n); }\nmint inv(mint a) { return inv(a.a); }\nmint invprd(mint a) { return invprd(a.a); }\nmint prd(mint a) { return prd(a.a); }\nmint modpow(mint a, ll n) { return modpow(a.a, n); }\nmint C(int a, int b) {\n if(a < 0 || b < 0) return 0;\n if(a < b) return 0;\n return prd(a) * invprd(b) * invprd(a - b);\n}\nmint P(int a, int b) {\n if(a < 0 || b < 0) return 0;\n if(a < b) return 0;\n return prd(a) * invprd(a - b);\n}\nostream &operator<<(ostream &os, mint a) {\n os << a.a;\n return os;\n}\nistream &operator>>(istream &is, mint &a) {\n ll x;\n is >> x;\n a = x;\n return is;\n}\nstruct modinfo {\n int mod, root;\n};\nconstexpr modinfo base0{1045430273, 3};\nconstexpr modinfo base1{1051721729, 6};\nconstexpr modinfo base2{1053818881, 7};\nusing mint0 = modint<base0.mod>;\nusing mint1 = modint<base1.mod>;\nusing mint2 = modint<base2.mod>;\nusing Poly = vmint;\ntemplate <int mod> void FMT(vector<modint<mod>> &f, bool inv = false) {\n using V = vector<modint<mod>>;\n static V g(30), ig(30);\n if(g.front().a == 0) {\n modint<mod> root = 2;\n while((root.pow((mod - 1) / 2)).a == 1) root += 1;\n rep(i, 30) g[i] = -(root.pow((mod - 1) >> (i + 2))), ig[i] = g[i].inv();\n }\n int n = size(f);\n if(!inv) {\n for(int m = n; m >>= 1;) {\n modint<mod> w = 1;\n for(int s = 0, k = 0; s < n; s += 2 * m) {\n for(int i = s, j = s + m; i < s + m; ++i, ++j) {\n auto x = f[i], y = f[j] * w;\n if(x.a >= mod) x.a -= mod;\n f[i].a = x.a + y.a, f[j].a = x.a + (mod - y.a);\n }\n w *= g[__builtin_ctz(++k)];\n }\n }\n } else {\n for(int m = 1; m < n; m *= 2) {\n modint<mod> w = 1;\n for(int s = 0, k = 0; s < n; s += 2 * m) {\n for(int i = s, j = s + m; i < s + m; ++i, ++j) {\n auto x = f[i], y = f[j];\n f[i] = x + y, f[j].a = x.a + (mod - y.a), f[j] *= w;\n }\n w *= ig[__builtin_ctz(++k)];\n }\n }\n }\n modint<mod> c;\n if(inv)\n c = modint<mod>(n).inv();\n else\n c = 1;\n for(auto &&e : f) e *= c;\n}\nPoly operator-(Poly f) {\n for(auto &&e : f) e = -e;\n return f;\n}\nPoly &operator+=(Poly &l, const Poly &r) {\n l.resize(max(l.size(), r.size()));\n rep(i, r.size()) l[i] += r[i];\n return l;\n}\nPoly operator+(Poly l, const Poly &r) { return l += r; }\nPoly &operator-=(Poly &l, const Poly &r) {\n l.resize(max(l.size(), r.size()));\n rep(i, r.size()) l[i] -= r[i];\n return l;\n}\nPoly operator-(Poly l, const Poly &r) { return l -= r; }\nPoly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; }\nPoly operator<<(Poly f, size_t n) { return f <<= n; }\nPoly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; }\nPoly operator>>(Poly f, size_t n) { return f >>= n; }\n\nconstexpr int mod0 = 998244353, mod1 = 1300234241, mod2 = 1484783617;\nusing M0 = modint<mod0>;\nusing M1 = modint<mod1>;\nusing M2 = modint<mod2>;\n\ntemplate <int mod> void mul(vector<modint<mod>> &l, vector<modint<mod>> &r) {\n int n = size(l), m = size(r), sz = 1 << __lg(2 * (n + m - 1) - 1);\n l.resize(sz), FMT<mod>(l);\n r.resize(sz), FMT<mod>(r);\n rep(i, sz) l[i] *= r[i];\n FMT<mod>(l, true);\n l.resize(n + m - 1);\n}\nPoly operator*(const Poly &l, const Poly &r) {\n if(l.empty() or r.empty()) return Poly();\n int n = size(l), m = size(r), sz = 1 << __lg(2 * (n + m - 1) - 1);\n vector<M0> l0(n), r0(m);\n vector<M1> l1(n), r1(m);\n vector<M2> l2(n), r2(m);\n rep(i, n) l0[i] = l[i].a, l1[i] = l[i].a, l2[i] = l[i].a;\n rep(i, m) r0[i] = r[i].a, r1[i] = r[i].a, r2[i] = r[i].a;\n mul<mod0>(l0, r0), mul<mod1>(l1, r1), mul<mod2>(l2, r2);\n Poly res(n + m - 1);\n // garner\n static constexpr M1 inv0 = 613999507;\n static constexpr M2 inv1 = 1147332803, inv0m1 = 45381342;\n static constexpr mint m0 = mod0, m0m1 = m0 * mod1;\n rep(i, n + m - 1) {\n int y0 = l0[i].a;\n int y1 = (inv0 * (l1[i] - y0)).a;\n int y2 = (inv0m1 * (l2[i] - y0) - inv1 * y1).a;\n res[i] = m0 * y1 + m0m1 * y2 + y0;\n }\n return res;\n}\nPoly &operator*=(Poly &l, const Poly &r) { return l = l * r; }\nPoly integ(const Poly &f) {\n Poly res(f.size() + 1);\n for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i;\n return res;\n}\n// Poly deriv(const Poly &f) {\n// if(f.size() == 0) return Poly();\n// Poly res(f.size() - 1);\n// rep(i, res.size()) res[i] = f[i + 1] * (i + 1);\n// return res;\n// }\nostream &operator<<(ostream &os, Poly a) {\n for(auto e : a) cout << e.a << \" \";\n return os;\n}\n} // namespace modular\nusing namespace modular;\n\nint main() {\n INT(n);\n VEC(int, a, n);\n vmint b;\n rep(i, n - 1) b.eb(abs(a[i + 1] - a[i]));\n mint ans;\n rep(i, n - 1) ans += C(n - 2, i) * b[i];\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 12100, "score_of_the_acc": -0.0779, "final_rank": 6 }, { "submission_id": "aoj_3153_4834051", "code_snippet": "#include <bits/stdc++.h>\n#define be(v) (v).begin(),(v).end()\n#define pb(q) push_back(q)\ntypedef long long ll;\nusing namespace std;\nconst ll mod=1000000007, INF=(1LL<<60);\n#define doublecout(a) cout<<fixed<<setprecision(10)<<a<<endl;\nlong long modpow(long long a, long long n) {\n long long res = 1;\n while (n > 0) {\n if (n & 1) res = res * a % mod;\n a = a * a % mod;\n n >>= 1;\n }\n return res;\n}\n\n\n///////// combinatison\nll fac[200007],finv[200007],inv[200007];\nvoid cominit(){\n fac[0]=fac[1]=1;\n finv[0]=finv[1]=1;\n inv[1]=1;\n for(int i=2;i<200007;i++){\n fac[i]=fac[i-1]*i%mod;\n inv[i]=mod-inv[mod%i]*(mod/i)%mod;\n finv[i]=finv[i-1]*inv[i]%mod;\n }\n}\nll com(ll n,ll k){\n if(n<k)return 0;\n if(n<0 || k<0)return 0;\n return fac[n]*(finv[k]*finv[n-k]%mod)%mod;\n}\n\n\n///////modint\nstruct mint {\n ll x; // typedef long long ll;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}\n mint operator+(const mint a) const { return mint(*this) += a;}\n mint operator-(const mint a) const { return mint(*this) -= a;}\n mint operator*(const mint a) const { return mint(*this) *= a;}\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n\n // for prime mod\n mint inv() const { return pow(mod-2);}\n mint& operator/=(const mint a) { return *this *= a.inv();}\n mint operator/(const mint a) const { return mint(*this) /= a;}\n};\nistream& operator>>(istream& is, const mint& a) { return is >> a.x;}\nostream& operator<<(ostream& os, const mint& a) { return os << a.x;}\n\n\nint main() {\n cin.tie(0);\n cout.tie(0);\n ios::sync_with_stdio(false);\n ll n;\n cin >> n;\n ll a[n];\n for(int i=0;i<n;i++) cin >> a[i];\n for(int i=1;i<n;i++) a[i - 1] = abs(a[i] - a[i - 1]);\n cominit();\n mint ans = mint(0);\n for(int i=0;i<n-1;i++){\n ans += mint(a[i]) * mint(com(n - 2, i));\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 9456, "score_of_the_acc": -0.0667, "final_rank": 4 } ]
aoj_3157_cpp
Problem G: Fitness Problem 外出することが少ないツバサくんは、家で筋トレを毎日行うようにしている。 筋トレのレパートリーは $N$ 種類あり、 $i (1 \leqq i \leqq N)$ 種類目のトレーニングを1回行うと、 $t_i$ 分で $p_i$ だけ筋力アップする。 ただし、それぞれのトレーニングは筋力にとても負荷がかかるので、基本的に1回しか行うことができない。 負荷がかかる場所はバラバラなので、複数種類のトレーニングを行うことは可能だ。 また、ツバサくんは休憩も重要だと考えていて、 $K$ 分費やして休憩することができる。 十分に休憩をすることで筋力も回復し、以前既に行ったトレーニング全てを再び行うことができる。 もちろん休憩時に筋力アップは見込めない。休憩は複数回取ることも可能だ。 さて、今日はトレーニングを行う時間が $T$ 分ある。時間内に終わるようなトレーニングメニューを上手く作成したとき、どれだけ筋力アップできるだろうか? なお、トレーニングや休憩の切り替え時間は無視できるものとする。 Constraints 入力は以下の条件を満たす。 $1 \leqq N,K,T \leqq 2000$ $1 \leqq t_i \leqq 2000$ $1 \leqq p_i \leqq 10^{9}$ 入力は全て整数である。 Input 入力は以下の形式で標準入出力から与えられる。 $N$ $K$ $T$ $t_1$ $p_1$ $t_2$ $p_2$ $\vdots$ $t_N$ $p_N$ Output $T$ 分以内で上昇する筋力の最大値を1行で出力せよ。 末尾の改行を忘れないこと。 Sample Input 1 3 1 10 1 2 2 4 3 3 Sample Output 1 16 例えば、 $1$ $\to$ $2$ $\to$ $3$ $\to$ 休憩 $\to$ $1$ $\to$ $2$ というメニューを選ぶと、 $10$ 分で筋力が $15$ アップする。 $2$ $\to$ 休憩 $\to$ $2$ $\to$ 休憩 $\to$ $2$ $\to$ $1$ とすると $9$ 分で筋力が $14$ アップする。時間を余らせても問題ない点に注意すること。 $1$ $\to$ $2$ $\to$ 休憩 $\to$ $1$ $\to$ $2$ $\to$ 休憩 $\to$ $2$ とすると $10$ 分で筋力が $16$アップし、これが最適である。 Sample Input 2 3 1 10 53 1576 78 2115 89 2006 Sample Output 2 0 そもそも時間内に終わるトレーニングが存在しない。 Sample Input 3 4 8 800 10 49275367 474 100000000 9 2587424 20 99999999 Sample Output 3 3137370110 オーバーフローに注意すること。
[ { "submission_id": "aoj_3157_7073173", "code_snippet": "#include <iostream>\n#include <string.h>\nusing namespace std;\nlong long int dp[2002][2002];\nlong long int ts[2001];\nlong long int ps[2001];\n\nint t;\nvoid f(int t2,int p2,long long int s2){\n\tif(t2>t)return ;\n\tif(dp[t2][p2]<s2)dp[t2][p2]=s2;\n}\n\n\nint main() {\n\tmemset(dp,-1,sizeof(dp));\n\tdp[0][0]=0;\n\tint n,k;\n\tcin>>n>>k>>t;\n\tfor(int i=0;i<n;i++){\n\t\tcin>>ts[i]>>ps[i];\n\t}\n\tlong long int ans=0;\n\tfor(int t2=0;t2<=t;t2++){\n\t\tfor(int p2=0;p2<=n;p2++){\n\t\t\tlong long int s2=dp[t2][p2];\n\t\t\tif(s2==-1)continue;\n\t\t\tif(ans<s2)ans=s2;\n\t\t\tif(p2==n){\n\t\t\t\tf(t2+k,0,s2);\n\t\t\t}else{\n\t\t\t\tf(t2,p2+1,s2);\n\t\t\t\tf(t2+ts[p2],p2+1,s2+ps[p2]);\n\t\t\t\tf(t2+k,0,s2);\n\t\t\t}\n\t\t}\n\t}\n\tcout<<ans<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 34456, "score_of_the_acc": -0.5115, "final_rank": 12 }, { "submission_id": "aoj_3157_4947204", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 2005\n\nstruct Info{\n\n\tll need_time,value;\n};\n\nll N,K,T;\nInfo info[SIZE];\nll dp1[SIZE][SIZE],dp2[SIZE];\n\nint main(){\n\n\tscanf(\"%lld %lld %lld\",&N,&K,&T);\n\n\tfor(ll i = 1; i <= N; i++){\n\n\t\tscanf(\"%lld %lld\",&info[i].need_time,&info[i].value);\n\t}\n\n\tfor(ll i = 0; i <= N; i++){\n\t\tfor(ll k = 0; k <= T; k++){\n\t\t\tdp1[i][k] = -BIG_NUM;\n\t\t}\n\t}\n\n\tdp1[0][0] = 0;\n\tfor(ll i = 1; i <= N; i++){\n\t\tfor(ll k = 0; k <= T; k++){\n\t\t\tif(dp1[i-1][k] == -BIG_NUM)continue;\n\n\t\t\t//足さない\n\t\t\tdp1[i][k] = max(dp1[i][k],dp1[i-1][k]);\n\n\t\t\tif(k+info[i].need_time > T)continue;\n\n\t\t\t//足す\n\t\t\tdp1[i][k+info[i].need_time] = max(dp1[i][k+info[i].need_time],dp1[i-1][k]+info[i].value);\n\t\t}\n\t}\n\n\tfor(ll k = 0; k <= T; k++){\n\n\t\tdp2[k] = dp1[N][k];\n\t}\n\tdp2[0] = 0;\n\n\tfor(ll t = 1; t <= T; t++){\n\t\tfor(ll p = 0; p+(t+K) <= T; p++){\n\t\t\tif(dp2[p] == -BIG_NUM)continue;\n\n\t\t\tdp2[p+(t+K)] = max(dp2[p+(t+K)],dp2[p]+dp1[N][t]);\n\t\t}\n\t}\n\n\tll ans = 0;\n\n\tfor(ll k = 0; k <= T; k++){\n\n\t\tans = max(ans,dp2[k]);\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 34624, "score_of_the_acc": -0.1372, "final_rank": 4 }, { "submission_id": "aoj_3157_4844233", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <iomanip>\n#define vll vector<ll>\n#define vvvl vector<vvl>\n#define vvl vector<vector<ll>>\n#define VV(a, b, c, d) vector<vector<d>>(a, vector<d>(b, c))\n#define VVV(a, b, c, d) vector<vvl>(a, vvl(b, vll (c, d)));\n#define re(c, b) for(ll c=0;c<b;c++)\n#define all(obj) (obj).begin(), (obj).end()\ntypedef long long int ll;\ntypedef long double ld;\nusing namespace std;\n\nint main(){\n ll INF = 1000000000000000000;\n ll n, k, t;scanf(\"%lld %lld %lld\", &n, &k, &t);\n vvl DP = VV(n+1, t+1, -INF, ll);\n DP[0][0] = 0;\n vvl dat = VV(n, 2, 0, ll);\n for(ll i=0;i<n;i++) scanf(\"%lld %lld\", &dat[i][0], &dat[i][1]);\n for(ll i=0;i<n;i++){\n for(ll j=0;j<=t;j++){\n DP[i+1][j] = max(DP[i+1][j], DP[i][j]);\n if(j + dat[i][0]<=t) DP[i+1][j+dat[i][0]] = max(DP[i+1][j+dat[i][0]], DP[i][j]+dat[i][1]);\n }\n }\n vll te = DP[n];//時間あたりの効率\n for(ll i=1;i<=t;i++) te[i] = max(te[i], te[i-1]);//メインの周期\n ll ans = 0;\n\n vvl dp = VV(t+n+2, t+1, -INF, ll);// 物0~T-1は重複可能\n dp[0][0] = 0;\n\n for(ll i=0;i<t+n+1;i++){\n if(i<=t){\n for(ll j=0;j<=t;j++){\n dp[i+1][j] = max(dp[i+1][j], dp[i][j]);\n if(j+i+k<=t) dp[i+1][j+i+k] = max({dp[i+1][j+i+k], dp[i][j]+te[i], dp[i+1][j]+te[i]});\n }\n }else{\n ll idx = i - t - 1;\n ll w = dat[idx][0], v = dat[idx][1];\n for(ll j=0;j<=t;j++){\n dp[i+1][j] = max(dp[i+1][j], dp[i][j]);\n if(j+w<=t) dp[i+1][j+w] = max(dp[i+1][j+w], dp[i][j] + v);\n }\n }\n }\n for(int i=0;i<=t;i++) ans = max(ans, dp[n+t+1][i]);\n std::cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 97316, "score_of_the_acc": -0.7889, "final_rank": 15 }, { "submission_id": "aoj_3157_4840893", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << '\\n';\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const T &a) {\n for (auto e : a) cout << e << ' ';\n cout << '\\n';\n}\n\n//------------------------- Libraries -------------------------//\n\ntemplate<class T>\nbool chmax(T& a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\n//--------------------------- Solve ---------------------------//\n\nlong long dp1[2005][2005];\nlong long dp2[2005][2005];\n\nvoid solve() {\n int N, K, T; cin >> N >> K >> T;\n vector<long long> t(N+1), p(N+1);\n for (int i = 1; i <= N; i++) cin >> t[i] >> p[i];\n\n for (int i = 1; i <= N; i++) {\n for (int j = 0; j <= T; j++) {\n chmax(dp1[i][j], dp1[i-1][j]);\n if (j - t[i] >= 0) chmax(dp1[i][j], dp1[i-1][j-t[i]] + p[i]);\n }\n }\n\n for (int i = 0; i <= T; i++) {\n dp2[0][i] = dp1[N][i];\n }\n for (int i = 1; i <= T; i++) {\n for (int j = 0; j <= T; j++) {\n chmax(dp2[i][j], dp2[i-1][j]);\n if (j-(i+K) >= 0) chmax(dp2[i][j], dp2[i][j-(i+K)] + dp1[N][i]);\n }\n }\n\n cout << dp2[T][T] << '\\n';\n}\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 66220, "score_of_the_acc": -0.2767, "final_rank": 7 }, { "submission_id": "aoj_3157_4840791", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }\nusing ll = long long;\nusing P = pair<ll, ll>;\nconst long double PI = acos(-1.0L);\nll GCD(ll a, ll b) { return b?GCD(b, a%b):a; }\nll LCM(ll a, ll b) { return a/GCD(a, b)*b; }\n\nll n, k, t;\nll dp[2020][2020];\nll dp2[2020][2020];\n\nint main() {\n cin >> n >> k >> t;\n vector<ll> tvec(n, 0);\n vector<ll> pvec(n, 0);\n for(int i = 0; i < n; ++i) cin >> tvec[i] >> pvec[i];\n\n memset(dp, 0, sizeof(dp));\n memset(dp2, 0, sizeof(dp2));\n\n for(int i = 0; i < n; ++i) {\n for(int j = 0; j <= t; ++j) {\n chmax(dp[i+1][j], dp[i][j]);\n if(j-tvec[i] >= 0) {\n chmax(dp[i+1][j], dp[i][j-tvec[i]]+pvec[i]);\n }\n }\n }\n\n for(int i = 0; i <= t; ++i) dp2[0][i] = dp[n][i];\n\n vector<ll> wvec(t+1, 0);\n for(int i = 0; i <= t; ++i) wvec[i] = i+k;\n\n for(int i = 1; i <= t; ++i) {\n for(int j = 1; j <= t; ++j) {\n chmax(dp2[i][j], dp2[i-1][j]);\n if(j-wvec[i] >= 0) {\n chmax(dp2[i][j], dp2[i][j-wvec[i]]+dp[n][i]);\n }\n }\n }\n\n ll ans = 0;\n for(int i = 0; i <= t; ++i) chmax(ans, dp2[t][i]);\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 66932, "score_of_the_acc": -0.4048, "final_rank": 10 }, { "submission_id": "aoj_3157_4840784", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }\nusing ll = long long;\nusing P = pair<ll, ll>;\nconst long double PI = acos(-1.0L);\nll GCD(ll a, ll b) { return b?GCD(b, a%b):a; }\nll LCM(ll a, ll b) { return a/GCD(a, b)*b; }\n\nll n, k, t;\nll dp[2020][2020];\nll dp2[2020][2020];\n\nint main() {\n cin >> n >> k >> t;\n vector<ll> tvec(n, 0);\n vector<ll> pvec(n, 0);\n for(int i = 0; i < n; ++i) cin >> tvec[i] >> pvec[i];\n\n memset(dp, 0, sizeof(dp));\n memset(dp2, 0, sizeof(dp2));\n\n for(int i = 0; i < n; ++i) {\n for(int j = 0; j <= t; ++j) {\n chmax(dp[i+1][j], dp[i][j]);\n if(j-tvec[i] >= 0) {\n chmax(dp[i+1][j], dp[i][j-tvec[i]]+pvec[i]);\n }\n }\n }\n\n for(int i = 0; i <= t; ++i) dp2[0][i] = dp[n][i];\n\n vector<ll> wvec(t, 0);\n for(int i = 0; i <= t; ++i) wvec[i] = i+k;\n\n for(int i = 1; i <= t; ++i) {\n for(int j = 1; j <= t; ++j) {\n chmax(dp2[i][j], dp2[i-1][j]);\n if(j-wvec[i] >= 0) {\n chmax(dp2[i][j], dp2[i][j-wvec[i]]+dp[n][i]);\n }\n }\n }\n\n ll ans = 0;\n for(int i = 0; i <= t; ++i) chmax(ans, dp2[t][i]);\n\n cout << ans << endl;\n}", "accuracy": 0.1, "time_ms": 20, "memory_kb": 66900, "score_of_the_acc": -0.4047, "final_rank": 19 }, { "submission_id": "aoj_3157_4840092", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<n;i++)\n#define cinf(n,x) for(int i=0;i<(n);i++)cin>>x[i];\n#define ft first\n#define sc second\n#define pb push_back\n#define lb lower_bound\n#define ub upper_bound\n#define all(v) (v).begin(),(v).end()\n#define LB(a,x) lb(all(a),x)-a.begin()\n#define UB(a,x) ub(all(a),x)-a.begin()\n#define mod 1000000007\n//#define mod 998244353\n#define FS fixed<<setprecision(15)\nusing namespace std;\ntypedef long long ll;\nconst double pi=3.141592653589793;\ntemplate<class T> using V=vector<T>;\nusing Graph = vector<vector<int>>;\nusing P=pair<ll,ll>;\ntypedef unsigned long long ull;\ntypedef long double ldouble;\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }\ntemplate<class T> inline void out(T a){ cout << a << '\\n'; }\nvoid YN(bool ok){if(ok) cout << \"Yes\" << endl; else cout << \"No\" << endl;}\n//void YN(bool ok){if(ok) cout << \"YES\" << endl; else cout << \"NO\" << endl;}\n\n\nconst ll INF=1e18;\nconst int mx=200005;\n//wupc\n\nll dp1[2005][2005],dp2[2005];\n\nint main(){\n cin.tie(0);ios::sync_with_stdio(false);\n ll n,k,T;\n cin>>n>>k>>T;\n V<ll> t(n),p(n);\n rep(i,n) cin>>t[i]>>p[i];\n rep(i,n){\n for(int j=0;j<=T;j++){\n chmax(dp1[i+1][j],dp1[i][j]);\n if(j-t[i]>=0) chmax(dp1[i+1][j],dp1[i][j-t[i]]+p[i]);\n }\n }\n V<ll> tt(T+1),q(T+1);\n for(int i=0;i<=T;i++){\n tt[i]=i+k;\n q[i]=dp1[n][i];\n }\n for(int i=0;i<=T;i++) dp2[i]=dp1[n][i];\n rep(j,T+1){\n rep(i,T+1){\n if(j+tt[i]<=T) chmax(dp2[j+tt[i]],dp2[j]+q[i]);\n }\n }\n ll ans=0;\n for(int i=0;i<=T;i++) chmax(ans,dp2[i]);\n out(ans);\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 34596, "score_of_the_acc": -0.1371, "final_rank": 3 }, { "submission_id": "aoj_3157_4836623", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define REP(i,n) for(ll i=0;i<(ll)n;i++)\n#define dump(x) cerr << \"Line \" << __LINE__ << \": \" << #x << \" = \" << (x) << \"\\n\";\n#define spa << \" \" <<\n#define fi first\n#define se second\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n\nusing ld = long double;\nusing ll = long long;\nusing ull = unsigned long long;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pdd = pair<ld, ld>;\n\ntemplate<typename T> using V = vector<T>;\ntemplate<typename T> using P = pair<T, T>;\ntemplate<typename T> vector<T> make_vec(size_t n, T a) { return vector<T>(n, a); }\ntemplate<typename... Ts> auto make_vec(size_t n, Ts... ts) { return vector<decltype(make_vec(ts...))>(n, make_vec(ts...)); }\ntemplate<class S, class T> ostream& operator << (ostream& os, const pair<S, T> v){os << \"(\" << v.first << \", \" << v.second << \")\"; return os;}\ntemplate<typename T> ostream& operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; }\ntemplate<class T> ostream& operator<<(ostream& os, const vector<vector<T>> &v){ for(auto &e : v){os << e << \"\\n\";} return os;}\nstruct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;\n\ntemplate <class T> void UNIQUE(vector<T> &x) {sort(ALL(x));x.erase(unique(ALL(x)), x.end());}\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\nvoid fail() { cout << -1 << '\\n'; exit(0); }\ninline int popcount(const int x) { return __builtin_popcount(x); }\ninline int popcount(const ll x) { return __builtin_popcountll(x); }\ntemplate<typename T> void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++)\n{cerr<<v[i][0];for(ll j=1;j<w;j++)cerr spa v[i][j];cerr<<\"\\n\";}};\ntemplate<typename T> void debug(vector<T>&v,ll n){if(n!=0)cerr<<v[0];\nfor(ll i=1;i<n;i++)cerr spa v[i];\ncerr<<\"\\n\";};\n\nconst ll INF = (1ll<<62);\n// const ld EPS = 1e-10;\n// const ld PI = acos(-1.0);\nconst ll mod = (int)1e9 + 7;\n//const ll mod = 998244353;\n\nint main(){\n\n ll N, K, T;\n cin >> N >> K >> T;\n V<ll> t(N), p(N);\n REP(i, N) cin >> t[i] >> p[i];\n\n V<V<ll>> dp(N+1, V<ll>(T+1, -1));\n dp[0][0] = 0;\n REP(i, N){\n REP(j, T+1){\n if(dp[i][j]!=-1){\n chmax(dp[i+1][j], dp[i][j]);\n if(j+t[i]<T+1)chmax(dp[i+1][j+t[i]], dp[i][j]+p[i]);\n }\n }\n }\n\n V<ll> pos(T+1, 0);\n REP(i, T+1) pos[i] = dp[N][i];\n\n V<V<ll>> dq(T+1, V<ll>(2, -INF));\n dq[0][0] = 0;\n REP(i, T){\n REP(j, T+1){\n if(i+j<T+1) chmax(dq[i+j][1], dq[i][0]+pos[j]);\n }\n if(i+K<T+1) chmax(dq[i+K][0], dq[i][1]);\n }\n\n ll res = 0;\n REP(i, T+1){\n REP(j, 2){\n chmax(res, dq[i][j]);\n }\n }\n\n cout << res << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 34936, "score_of_the_acc": -0.1386, "final_rank": 5 }, { "submission_id": "aoj_3157_4835649", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n#define P pair<ll,ll>\n#define FOR(I,A,B) for(ll I = ll(A); I < ll(B); ++I)\n#define FORR(I,A,B) for(ll I = ll((B)-1); I >= ll(A); --I)\n#define TO(x,t,f) ((x)?(t):(f))\n#define SORT(x) (sort(x.begin(),x.end())) // 0 2 2 3 4 5 8 9\n#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin()) //xi>=v x is sorted\n#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin()) //xi>v x is sorted\n#define NUM(x,v) (POSU(x,v)-POSL(x,v)) //x is sorted\n#define REV(x) (reverse(x.begin(),x.end())) //reverse\nll gcd_(ll a,ll b){if(a%b==0)return b;return gcd_(b,a%b);}\nll lcm_(ll a,ll b){ll c=gcd_(a,b);return ((a/c)*(b/c)*c);}\n#define NEXTP(x) next_permutation(x.begin(),x.end())\nconst ll INF=ll(1e16)+ll(7);\nconst ll MOD=1000000007LL;\n#define out(a) cout<<fixed<<setprecision((a))\n//tie(a,b,c) = make_tuple(10,9,87);\n#define pop_(a) __builtin_popcount((a))\nll keta(ll a){ll r=0;while(a){a/=10;r++;}return r;}\n\n\n\n\nint main(){\n\n\n\tll N,K,T;\n\tcin >> N >> K >> T;\n\tvector<ll> t(N),p(N);\n\tFOR(i,0,N) cin >> t[i] >> p[i];\n\n\tll dp[N+1][T+1] = {};\n\tFOR(i,1,N+1){\n\t\tFOR(j,0,T+1){\n\t\t\tif(j>=t[i-1]){\n\t\t\t\tdp[i][j] = max(dp[i-1][j],dp[i-1][j-t[i-1]]+p[i-1]);\n\t\t\t}else{\n\t\t\t\tdp[i][j] = dp[i-1][j];\n\t\t\t}\n\t\t}\n\t}\n\n\tt.resize(T+24);\n\tp.resize(T+14);\n\tFOR(i,0,T+1){\n\t\tt[i] = i + K;\n\t\tp[i] = dp[N][i];\n\t}\n\n\tll dp2[T+2][T+1]={};\n\tll ans = 0;\n\tFOR(i,0,T+1) dp2[0][i] = dp[N][i];\n\tFOR(i,1,T+2){\n\t\tFOR(j,0,T+1){\n\t\t\tif(j>=t[i-1]){\n\t\t\t\tdp2[i][j] = max(dp2[i-1][j],dp2[i][j-t[i-1]]+p[i-1]);\n\t\t\t}else{\n\t\t\t\tdp2[i][j] = dp2[i-1][j];\n\t\t\t}\n\t\t\tans = max(ans,dp2[i][j]);\n\t\t}\n\t}\n\tcout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 65776, "score_of_the_acc": -0.3997, "final_rank": 9 }, { "submission_id": "aoj_3157_4835620", "code_snippet": "/*\tauthor: Kite_kuma\n\tcreated: 2020.09.13 14:31:18 */\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region aliases\n\n#define rep(i, n) for(long long i = 0; i < (n); i++)\n#define rrep(i, n) for(long long i = (n)-1; i > -1; i--)\n#define Rep(i, m, n) for(long long i = (m); i < (n); i++)\n#define rRep(i, m, n) for(long long i = (n)-1; i >= (m); i--)\n#define REP(i, m, n, p) for(long long i = m; i < n; i += p)\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define bcnt(n) __builtin_popcountll(n)\n#define endk endl\n#define ednl endl\n#define enld endl\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vb = vector<bool>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing mll = map<long long, long long>;\nusing pll = pair<long long, long long>;\nusing qll = queue<long long>;\nusing sll = set<long long>;\nusing vpll = vector<pair<long long, long long>>;\ntemplate <class T = ll>\nusing V = vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\n//昇順pq(小さい方から取り出す)\ntemplate <class T = ll>\nusing pqup = priority_queue<T, vector<T>, greater<T>>;\n//降順pq(大きい方から取り出す)\ntemplate <class T = ll>\nusing pqdn = priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nlong long const limLL = 9223372036854775807; // POW(2,63)-1 ~ 9.22e18\nlong long const dekai = 3e16;\nconst long double pi = acos(-1);\nconst char el = '\\n';\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\nint ddx[8] = {-1, -1, -1, 0, 0, 1, 1, 1};\nint ddy[8] = {-1, 0, 1, -1, 1, -1, 0, 1};\n\nconst int mod = 1000000007;\n// const int mod = 998244353;\n\n#pragma endregion\n\n#pragma region basic_procedure\n\ntemplate <class T>\ninline bool isin(T x, T lef, T rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { cout << (f ? \"Yes\" : \"No\") << \"\\n\"; }\nvoid No() { cout << \"No\\n\"; }\nvoid YES(bool f = 1) { cout << (f ? \"YES\" : \"NO\") << \"\\n\"; }\nvoid NO() { cout << \"NO\\n\"; }\ntemplate <class T>\nvoid drop(T answer) {\n\tcout << answer << \"\\n\";\n\texit(0);\n}\nvoid err() {\n\tcout << -1 << \"\\n\";\n\texit(0);\n}\n\nvector<long long> vin(long long n) { //整数n個の入力を受け取ってベクトルに突っ込んで返す\n\tvector<long long> v(n);\n\tfor(long long i = 0; i < n; i++) {\n\t\tcin >> v[i];\n\t}\n\treturn v;\n}\n\n//ベクトルの出力(検証済)\n// vectorの中身を出力する 答えの出力に利用可能\ntemplate <class T>\nvoid vout(vector<T> &v, bool tate = 0) {\n\tif(v.size() > 0) {\n\t\tfor(auto it = v.begin(); it < v.end(); it++) {\n\t\t\tcout << *it;\n\t\t\tif(it != v.end() - 1) {\n\t\t\t\tif(tate)\n\t\t\t\t\tcout << endl;\n\t\t\t\telse\n\t\t\t\t\tcout << \" \";\n\t\t\t}\n\t\t}\n\t}\n\tcout << endl;\n}\n\ntemplate <class T>\nvoid add(vector<T> &v, T val) {\t //ベクトルの各要素に加算\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\n// vectorの中身を数える map<要素,個数>を返す\ntemplate <class T>\nmap<T, long long> cntv(vector<T> v) {\n\tmap<T, long long> m;\n\tfor(auto &g : v) {\n\t\tif(m.count(g))\n\t\t\tm[g]++;\n\t\telse\n\t\t\tm[g] = 1;\n\t}\n\treturn m;\n}\n\n//配列圧縮(検証済)\n//{1,36,1,3,8,-2,-92}を\n//{2, 5,2,3,4, 1, 0}にする\ntemplate <class T>\nvector<long long> press(vector<T> &v) {\n\tlong long n = v.size();\n\tvector<long long> w(n);\n\tmap<T, long long> m;\n\tfor(T &p : v) m[p] = 0;\n\tlong long i = 0;\n\tfor(auto &p : m) {\n\t\tp.second = i;\n\t\ti++;\n\t}\n\tfor(long long i = 0; i < n; i++) w.at(i) = m[v.at(i)];\n\treturn w;\n}\n\ntemplate <class T>\nT divup(T a, T b) {\n\t//端数繰りあがり割り算\n\tassert(b != 0);\n\tT x = abs(a);\n\tT y = abs(b);\n\tT z = (x + y - 1) / y;\n\tif((a < 0 && b > 0) || (a > 0 && b < 0))\n\t\treturn -z;\n\telse if(a == 0)\n\t\treturn 0;\n\telse\n\t\treturn z;\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\ntemplate <class T>\nint sgn(T x) {\t//符号関数\n\tif(x < 0) return -1;\n\tif(x == 0) return 0;\n\treturn 1;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\n// a * x % mod == __gcd(a,mod)なるxを返す\n// a が modの倍数でないことが条件\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tswap(a, b);\n\t\tu -= t * v;\n\t\tswap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\nvvll comb(100, vll(100, -1));\nlong long com(long long n, long long k) { //普通の二項計数(overflowに注意)\n\tassert(n < 100 && k < 100);\n\tif(n < k || k < 0 || n < 0) return 0;\n\tif(comb[n][k] != -1) return comb[n][k];\n\tll res;\n\tif(n - k < k)\n\t\tres = com(n, n - k);\n\telse if(k == 0)\n\t\tres = 1;\n\telse\n\t\tres = com(n - 1, k - 1) + com(n - 1, k);\n\tcomb[n][k] = res;\n\treturn res;\n}\n\n// nCk modを求める\nconst ll MAX = 5100000;\n// この値は求める二項計数の値に応じて変える\n// MAX=3*10^7のとき1900msほど、ほぼ比例\n// MAX=5*10^6程度ならそれほど気にしなくてよい(300ms程)\nlong long fac[MAX], finv[MAX], inv[MAX];\n\nvoid cominit() {\n\t// テーブルを作る前処理\n\tfac[0] = fac[1] = 1;\n\tfinv[0] = finv[1] = 1;\n\tinv[1] = 1;\n\tfor(ll i = 2; i < MAX; i++) {\n\t\tfac[i] = fac[i - 1] * i % mod;\n\t\tinv[i] = mod - inv[mod % i] * (mod / i) % mod;\n\t\tfinv[i] = finv[i - 1] * inv[i] % mod;\n\t}\n}\nlong long commod(ll n, ll k) {\t// 二項係数計算\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * (finv[k] * finv[n - k] % mod) % mod;\n}\nlong long pmod(ll n, ll k) { //順列計算\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * finv[n - k] % mod;\n}\nlong long hmod(ll n, ll k) { // nHk計算\n\t// n個の区別しないoを区別するk個の箱に入れる方法の総数\n\t//(n+k-1)C(k-1)と等しい\n\treturn commod(n + k - 1, n);\n}\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tINPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tINPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define CHAR(...) \\\n\tchar __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define DOUBLE(...) \\\n\tdouble __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n\ntemplate <class T>\nvoid scan(T &a) {\n\tcin >> a;\n}\ntemplate <class T>\nvoid scan(vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\ntemplate <class T, class L>\nvoid scan(pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\ntemplate <class T>\ninline void print(T x) {\n\tcout << x << '\\n';\n}\n\ntemplate <typename T1, typename T2>\nistream &operator>>(istream &is, pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &os, const pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tcerr << \", \";\n\tview(p.second);\n\tcerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(std::set<T> &s) {\n\tif(s.empty()) {\n\t\tcerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tcerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tcerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tcerr << \", \";\n\t\tview(c.second);\n\t\tcerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tcerr << \"] : \";\n\t\tview(t.second);\n\t\tcerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tview(H);\n\tcerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tcerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tview(x); \\\n\t\tcerr << \"\\n\"; \\\n\t} while(0)\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\tcout << fixed << setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tINT(n, k, timelim);\n\ttimelim += k;\n\tvll t(n), p(n);\n\trep(i, n) cin >> t[i] >> p[i];\n\n\tvvll dp(n + 1, vll(timelim + 1, -dekai));\n\n\tdp[0][k] = 0;\n\n\trep(i, n) {\n\t\trep(j, timelim + 1) {\n\t\t\tchmax(dp[i + 1][j], dp[i][j]);\n\t\t\tif(j - t[i] >= 0) {\n\t\t\t\tchmax(dp[i + 1][j], dp[i][j - t[i]] + p[i]);\n\t\t\t}\n\t\t}\n\t}\n\n\tvll cospa(timelim + 1);\n\trep(i, timelim + 1) { cospa[i] = dp[n][i]; }\n\tdebug(dp, cospa);\n\tvvll ep(timelim + 2, vll(timelim + 1, -dekai));\n\tep[0][0] = 0;\n\trep(i, timelim + 1) {\n\t\trep(j, timelim + 1) {\n\t\t\tchmax(ep[i + 1][j], ep[i][j]);\n\t\t\tll pre = j - i;\n\t\t\tif(pre >= 0) {\n\t\t\t\tchmax(ep[i + 1][j], ep[i][pre] + cospa[i]);\n\t\t\t\tchmax(ep[i + 1][j], ep[i + 1][pre] + cospa[i]);\n\t\t\t}\n\t\t}\n\t}\n\tll maxi = -1;\n\trep(i, timelim + 2) rep(j, timelim + 1) { chmax(maxi, ep[i][j]); }\n\tdrop(maxi);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 191452, "score_of_the_acc": -1.8295, "final_rank": 16 }, { "submission_id": "aoj_3157_4834937", "code_snippet": "/**\n * author: otera \n**/\n#include<iostream>\n#include<string> \n#include<cstdio>\n#include<cstring>\n#include<vector>\n#include<cmath>\n#include<algorithm> \n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<deque>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\nusing namespace std;\n\n#define int long long\ntypedef long long ll;\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\ntypedef long double ld;\nconst int inf=1e9+7;\nconst ll INF=1LL<<60 ;\nconst ll mod=1e9+7 ;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef complex<ld> Point;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<int, int> P;\ntypedef pair<ld, ld> LDP;\ntypedef pair<ll, ll> LP;\n#define fr first\n#define sc second\n#define all(c) c.begin(),c.end()\n#define pb push_back\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\nvoid solve() {\n\tint n, k, T; cin >> n >> k >> T;\n vector<int> t(n), p(n);\n rep(i, n) {\n cin >> t[i] >> p[i];\n }\n static int dp[2020][2020];\n rep(i, 2020) {\n rep(j, 2020) {\n dp[i][j] = -INF;\n }\n }\n dp[0][0] = 0;\n rep(i, n) {\n for(int j = 0; j <= T; ++ j) {\n if(j + t[i] <= T) chmax(dp[i + 1][j + t[i]], dp[i][j] + p[i]);\n chmax(dp[i + 1][j], dp[i][j]);\n }\n }\n vector<int> sdp(T + 1, 0);\n rep(i, T + 1) {\n sdp[i] = dp[n][i];\n }\n for(int i = 0; i <= T; ++ i) {\n for(int j = 1; j <= T; ++ j) {\n if(i + k + j <= T) chmax(sdp[i + k + j], sdp[i] + dp[n][j]);\n }\n }\n cout << *max_element(all(sdp)) << endl;\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(10);\n\t//int t; cin >> t; rep(i, t)solve();\n\tsolve();\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 35128, "score_of_the_acc": -0.1394, "final_rank": 6 }, { "submission_id": "aoj_3157_4834273", "code_snippet": "/**\n * @FileName\ta.cpp\n * @Author\tkanpurin\n * @Created\t2020.09.12 21:46:46\n**/\n\n#include \"bits/stdc++.h\" \nusing namespace std; \ntypedef long long ll;\n\nint main() {\n int n,k,t;cin >> n >> k >> t;\n vector<vector<ll>> dp(n+1,vector<ll>(t+1,0));\n for (int i = 0; i < n; i++) {\n int a,p;cin >> a >> p;\n for (int j = 0; j <= t; j++) {\n dp[i+1][j]=dp[i][j];\n if (j-a>=0) dp[i + 1][j] = max(dp[i+1][j],dp[i][j-a] + p);\n }\n }\n \n vector<vector<ll>> dp2(t+1,vector<ll>(t+1,0));\n for (int i = 0; i < t; i++) {\n for (int j = 0; j <= t; j++) {\n dp2[i+1][j] = dp2[i][j];\n if (j-k-i-1>=0) dp2[i + 1][j] = max(dp2[i + 1][j],dp2[i + 1][j-k-i-1] + dp[n][i+1]);\n }\n }\n ll ans = 0;\n for (int i = 0; i < t; i++) {\n ans = max(ans,dp[n][i+1]);\n }\n for (int i = 0; i <= t; i++) {\n ans = max(ans,dp2[t][i] + dp[n][t-i]);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 65672, "score_of_the_acc": -0.3993, "final_rank": 8 }, { "submission_id": "aoj_3157_4834261", "code_snippet": "/**\n * @FileName\ta.cpp\n * @Author\tkanpurin\n * @Created\t2020.09.12 21:46:46\n**/\n\n#include \"bits/stdc++.h\" \nusing namespace std; \ntypedef long long ll;\n\nint main() {\n int n,k,t;cin >> n >> k >> t;\n vector<vector<ll>> dp(n+1,vector<ll>(t+1,0));\n for (int i = 0; i < n; i++) {\n int a,p;cin >> a >> p;\n for (int j = 0; j <= t; j++) {\n dp[i+1][j]=dp[i][j];\n if (j-a>=0) dp[i + 1][j] = max(dp[i+1][j],dp[i][j-a] + p);\n }\n }\n \n vector<vector<ll>> dp2(t+1,vector<ll>(t,0));\n for (int i = 0; i < t; i++) {\n for (int j = 0; j < t; j++) {\n dp2[i+1][j] = dp2[i][j];\n if (j-k-i-1>=0) dp2[i + 1][j] = max(dp2[i + 1][j],dp2[i + 1][j-k-i-1] + dp[n][i+1]);\n }\n }\n ll ans = 0;\n for (int i = 0; i < t; i++) {\n ans = max(ans,dp[n][i+1]);\n }\n for (int i = 0; i <= t; i++) {\n ans = max(ans,dp2[t][i] + dp[n][t-i]);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.4, "time_ms": 20, "memory_kb": 65696, "score_of_the_acc": -0.3994, "final_rank": 18 }, { "submission_id": "aoj_3157_4834123", "code_snippet": "#pragma region Macros\n#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w) \\\n vector<vector<type>> name(h, vector<type>(w)); \\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\nstring YES[2] = {\"NO\", \"YES\"};\nstring Yes[2] = {\"No\", \"Yes\"};\nstring yes[2] = {\"no\", \"yes\"};\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define DBL(...) \\\n double __VA_ARGS__; \\\n IN(__VA_ARGS)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\n\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n\n#define i128 __int128_t\n#define ull unsigned long long int\n#define TEST \\\n INT(testcases); \\\n while(testcases--)\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n for(auto &e : v) cout << e << \" \";\n cout << endl;\n return os;\n}\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {\n cout << \"(\" << p.fi << \", \" << p.se << \")\";\n return os;\n}\ntemplate <class S, class T> string to_string(pair<S, T> p) { return \"(\" + to_string(p.first) + \",\" + to_string(p.second) + \")\"; }\ntemplate <class A> string to_string(A v) {\n if(v.empty()) return \"{}\";\n string ret = \"{\";\n for(auto &x : v) ret += to_string(x) + \",\";\n ret.back() = '}';\n return ret;\n}\n\nvoid dump() { cerr << endl; }\ntemplate <class Head, class... Tail> void dump(Head head, Tail... tail) {\n cerr << to_string(head) << \" \";\n dump(tail...);\n}\n#define endl '\\n'\n#ifdef _LOCAL\n#undef endl\n#define debug(x) \\\n cout << #x << \": \"; \\\n dump(x)\n#else\n#define debug(x)\n#endif\n// mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());\n\n// int rnd(int n) { return uniform_int_distribution<int>(0, n - 1)(rng); }\n// ll rndll(ll n) { return uniform_int_distribution<ll>(0, n - 1)(rng); }\n\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\n#pragma endregion\nnamespace modular {\nconstexpr ll MOD = 998244353;\nconst int MAXN = 1100000;\ntemplate <ll Modulus> class modint {\n using u64 = ll;\n\n public:\n u64 a;\n\n constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {}\n constexpr u64 &value() noexcept { return a; }\n constexpr const u64 &value() const noexcept { return a; }\n constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; }\n constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; }\n constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; }\n template <typename T> constexpr modint operator^(T rhs) const noexcept { return modint(*this) ^= rhs; }\n constexpr modint operator-() const noexcept { return modint() - *this; }\n constexpr modint &operator+=(const modint rhs) noexcept {\n a += rhs.a;\n if(a >= Modulus) { a -= Modulus; }\n return *this;\n }\n constexpr modint &operator-=(const modint rhs) noexcept {\n if(a < rhs.a) { a += Modulus; }\n a -= rhs.a;\n return *this;\n }\n constexpr modint &operator*=(const modint rhs) noexcept {\n a = a * rhs.a % Modulus;\n return *this;\n }\n constexpr bool operator==(const modint rhs) const noexcept { return a == rhs.a; }\n template <typename T> constexpr modint &operator^=(T n) noexcept {\n modint<Modulus> res = 1;\n modint<Modulus> x = a;\n while(n) {\n if(n & 1) res *= x;\n x *= x;\n n >>= 1;\n }\n a = res.a;\n return *this;\n }\n};\n#define mint modint<MOD>\n#define vmint vector<mint>\nvmint Inv{0, 1}, Prd{1, 1}, Invprd{1, 1};\nmint inv(int n) {\n if(n > MAXN) return mint(n) ^ (MOD - 2);\n if(Inv.size() > n)\n return Inv[n];\n else {\n for(int i = Inv.size(); i <= n; ++i) Inv.emplace_back(Inv[MOD % i] * (-MOD / i));\n return Inv[n];\n }\n}\nmint inv(mint x) { return inv(x.a); }\nmint prd(int n) {\n if(Prd.size() > n)\n return Prd[n];\n else\n for(int i = Prd.size(); i <= n; ++i) Prd.emplace_back(Prd[i - 1] * i);\n return Prd[n];\n}\nmint invprd(int n) {\n if(Invprd.size() > n)\n return Invprd[n];\n else\n for(int i = Invprd.size(); i <= n; ++i) Invprd.emplace_back(Invprd[i - 1] * inv(i));\n return Invprd[n];\n}\nmint modpow(ll a, ll n) {\n mint x = a;\n return x ^= n;\n}\nmint operator/(mint l, mint r) { return l * inv(r); }\nmint &operator/=(mint &l, mint r) { return l = l / r; }\nmint C(int a, int b) {\n if(a < 0 || b < 0) return 0;\n if(a < b) return 0;\n return prd(a) * invprd(b) * invprd(a - b);\n}\nmint P(int a, int b) {\n if(a < 0 || b < 0) return 0;\n if(a < b) return 0;\n return prd(a) * invprd(a - b);\n}\nostream &operator<<(ostream &os, mint a) {\n os << a.a;\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, vector<T> a) {\n for(auto &e : a) os << e << \" \";\n return os;\n}\nmint operator*(ll x, mint y) { return y * x; }\nistream &operator>>(istream &is, mint &a) {\n ll x;\n is >> x;\n a = x;\n return is;\n}\nmint proot = 3;\n\nvoid FMT(vmint &f, const bool is_inv = false) {\n const int n = f.size();\n const mint root = is_inv ? inv(proot) : proot;\n vmint g(n);\n for(int b = n >> 1; b > 0; b >>= 1) {\n mint a = root ^ ((MOD - 1) / (n / b)), p = 1;\n for(int i = 0; i < n; i += b << 1) {\n rep(j, b) {\n f[i + j + b] *= p;\n g[(i >> 1) + j] = f[i + j] + f[i + b + j];\n g[(n >> 1) + (i >> 1) + j] = f[i + j] - f[i + b + j];\n }\n p *= a;\n }\n swap(f, g);\n }\n if(is_inv) rep(i, n) f[i] *= inv(n);\n}\n\nvmint mul(vmint x, const vmint &y) {\n int n = x.size() + y.size() - 1;\n int s = 1;\n while(s < n) s <<= 1;\n x.resize(s);\n FMT(x);\n vmint z(s);\n rep(i, y.size()) z[i] = y[i];\n FMT(z);\n rep(i, s) x[i] *= z[i];\n FMT(x, true);\n x.resize(n);\n return x;\n}\n\nusing Poly = vmint;\nPoly operator-(Poly f) {\n for(auto &&e : f) e = -e;\n return f;\n}\nPoly &operator+=(Poly &l, const Poly &r) {\n l.resize(max(l.size(), r.size()));\n rep(i, r.size()) l[i] += r[i];\n return l;\n}\nPoly operator+(Poly l, const Poly &r) { return l += r; }\nPoly &operator-=(Poly &l, const Poly &r) {\n l.resize(max(l.size(), r.size()));\n rep(i, r.size()) l[i] -= r[i];\n return l;\n}\nPoly operator-(Poly l, const Poly &r) { return l -= r; }\nPoly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; }\nPoly operator<<(Poly f, size_t n) { return f <<= n; }\nPoly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; }\nPoly operator>>(Poly f, size_t n) { return f >>= n; }\nPoly operator*(const Poly &l, const Poly &r) { return mul(l, r); }\nPoly &operator*=(Poly &l, const Poly &r) { return l = l * r; }\nPoly inv(const Poly &f) {\n Poly g{1 / f[0]};\n while(g.size() < f.size()) {\n Poly x(f.begin(), f.begin() + min(f.size(), g.size() << 1)), y = g;\n x.resize(g.size() << 1), FMT(x);\n y.resize(g.size() << 1), FMT(y);\n rep(i, x.size()) x[i] *= y[i];\n FMT(x, true);\n x >>= g.size();\n x.resize(g.size() << 1), FMT(x);\n rep(i, x.size()) x[i] *= -y[i];\n FMT(x, true);\n g.insert(g.end(), x.begin(), x.begin() + g.size());\n }\n return Poly{begin(g), begin(g) + f.size()};\n}\nPoly integ(const Poly &f) {\n Poly res(f.size() + 1);\n for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i;\n return res;\n}\nPoly deriv(const Poly &f) {\n if(f.size() == 0) return Poly();\n Poly res(f.size() - 1);\n rep(i, res.size()) res[i] = f[i + 1] * (i + 1);\n return res;\n}\nPoly log(const Poly &f) {\n Poly g = integ(inv(f) * deriv(f));\n return Poly{g.begin(), g.begin() + f.size()};\n}\nPoly exp(const Poly &f) {\n Poly g{1};\n while(g.size() < f.size()) {\n Poly x(f.begin(), f.begin() + min(f.size(), g.size() * 2));\n x[0] += 1;\n g.resize(2 * g.size());\n x -= log(g);\n x *= {g.begin(), g.begin() + g.size() / 2};\n rep2(i, g.size() / 2, min<int>(x.size(), g.size()) - 1) g[i] = x[i];\n }\n return {g.begin(), g.begin() + f.size()};\n}\n\n} // namespace modular\nusing namespace modular;\nint main() {\n INT(n, k, t);\n constexpr int N = 2001;\n vv(int, v, N);\n rep(i, n) {\n INT(a, b);\n v[a].eb(b);\n }\n vv(pii, w, N);\n rep(i, N) {\n if(empty(v[i])) continue;\n sort(all(v[i]), greater<>());\n rep(j, si(v[i])) { rep(K, t / i / (j + 1)) w[K].eb(i, v[i][j]); }\n }\n vll dp(t + 1);\n ll ans = 0;\n rep(i, t / k + 1) {\n for(auto [W, V] : w[i]) { rep3(j, t, W) chmax(dp[j], dp[j - W] + V); }\n chmax(ans, dp[t - i * k]);\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3932, "score_of_the_acc": -0.1267, "final_rank": 2 }, { "submission_id": "aoj_3157_4834076", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n#include <string>\n#include <utility>\n#include <set>\n#include <map>\n#include <cmath>\n#include <queue>\n#include <cstdio>\n#include <limits>\n#define rep(i,n) for(int i = 0; i < n; ++i)\n#define rep1(i,n) for(int i = 1; i <= n; ++i)\nusing namespace std;\ntemplate<class T>bool chmax(T &a, const T &b) { if(a < b){ a = b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if(a > b){ a = b; return 1; } return 0; }\nusing ll = long long; using ld = long double;\nusing pi = pair<int,int>; using pl = pair<ll,ll>;\nusing vi = vector<int>; using vii = vector<vi>;\nusing vl = vector<ll>; using vll = vector<vl>;\nconst int inf = numeric_limits<int>::max();\nconst ll infll = numeric_limits<ll>::max();\nint main()\n{\n ll n,k,t; scanf(\"%lld %lld %lld\", &n, &k, &t);\n vector<ll> a(n), b(n);\n rep(i,n) {\n scanf(\"%lld %lld\", &a[i], &b[i]);\t\n }\n\n vl dp(t+1, 0);\n rep(i,n) {\n vl ndp(t+1, 0);\n rep(j,t+1) {\n if(j - a[i] >= 0) chmax(ndp[j], max(dp[j], dp[j - a[i]] + b[i]));\n else chmax(ndp[j], dp[j]);\n }\n dp = ndp;\n }\n\n vl dp2(t+k+1, 0);\n rep(i,t+1) {\n rep(j,t+k+1) {\n if(j - (i + k) >= 0) chmax(dp2[j], dp2[j - (i+k)] + dp[i]);\n }\n }\n cout << dp2[t+k] << \"\\n\";\n \n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3544, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3157_4833979", "code_snippet": "#include <iostream>\n#include <vector>\n#include <queue>\n#include <tuple>\n#include <algorithm>\n\nusing namespace std;\n#define rep(i, n) for(int i = 0; i < (int)(n); i++)\n\nvoid chmax(int64_t &a, int64_t b) {\n if (a < b) {\n a = b;\n }\n}\n\nint main() {\n int n, K, T;\n cin >> n >> K >> T;\n vector<pair<int, int64_t>> tp(n);\n for (auto &e: tp) {\n cin >> e.first >> e.second;\n }\n// sort(tp.begin(), tp.end(), [](const auto &lhs, const auto &rhs) {\n// // return lhs.second / lhs.first > rhs.second / rhs.first;\n// return lhs.second * rhs.first > rhs.second * lhs.first;\n// });\n vector<vector<int64_t>> dp(T + 1, vector<int64_t>(n + 1, -1));\n dp[0][0] = 0;\n rep(t, T) {\n rep(i, n + 1) {\n if (dp[t][i] < 0) continue;\n if (i + 1 <= n) { // i < n\n chmax(dp[t][i + 1], dp[t][i]);\n int ti;\n int64_t pi;\n tie(ti, pi) = tp[i];\n if (t + ti <= T) {\n chmax(dp[t + ti][i + 1], dp[t][i] + pi);\n }\n }\n if (t + K <= T) {\n chmax(dp[t + K][0], dp[t][i]);\n }\n }\n }\n int64_t ans = 0;\n for (int t = 0; t <= T; t++) {\n for (int i = 0; i <= n; i++) {\n chmax(ans, dp[t][i]);\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 34280, "score_of_the_acc": -0.6357, "final_rank": 14 }, { "submission_id": "aoj_3157_4833798", "code_snippet": "// I SELL YOU...! \n#include<iostream>\n#include<vector>\n#include<algorithm>\n#include<functional>\n#include<queue>\n#include<chrono>\n#include<iomanip>\n#include<map>\n#include<set>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll,ll>;\nusing TP = tuple<ll,ll,ll>;\nvoid init_io(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(18);\n}\nsigned main(){\n init_io();\n ll n,k,T,ans=0;\n cin >> n >> k >> T;\n vector<ll> t(n),p(n);\n vector<vector<ll>> dp(n+1,vector<ll>(T+1,-1e15));\n vector<vector<ll>> dpx(T+1,vector<ll>(T+1,0));\n for(int i=0;i<n;i++){\n cin >> t[i] >> p[i];\n }\n for(int i=0;i<=T;i++){\n dp[0][i] = 0;\n }\n for(int i=0;i<n;i++){\n for(int j=0;j<=T;j++){\n dp[i+1][j] = max(dp[i][j],dp[i+1][j]);\n if(j+t[i]<=T){\n dp[i+1][j+t[i]] = max(dp[i+1][j+t[i]],dp[i][j]+p[i]);\n }\n }\n }\n ans = dp[n][T];\n for(int i=0;i<=T;i++){\n dpx[0][i] = dp[n][i];\n }\n for(int i=1;i<=T;i++){\n for(int j=0;j<=T;j++){\n ll w = i+k;\n ll v = dp[n][i];\n ll x=0;\n if(j-w>=0){\n x = dpx[i][j-w]+v;\n }\n dpx[i][j] = max(dpx[i-1][j],x);\n ans = max(ans,dpx[i][j]);\n }\n }\n for(int i=0;i<=T;i++){\n ans = max(ans,dpx[T][i]);\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 65904, "score_of_the_acc": -0.5253, "final_rank": 13 }, { "submission_id": "aoj_3157_4833785", "code_snippet": "// I SELL YOU...! \n#include<iostream>\n#include<vector>\n#include<algorithm>\n#include<functional>\n#include<queue>\n#include<chrono>\n#include<iomanip>\n#include<map>\n#include<set>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll,ll>;\nusing TP = tuple<ll,ll,ll>;\nvoid init_io(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(18);\n}\nsigned main(){\n init_io();\n ll n,k,T,ans=0,c=13; cin >> n >> k >> T;\n vector<ll> t(n),p(n);\n vector<vector<ll>> dp(n+1,vector<ll>(T+1,-1e15));\n vector<vector<ll>> dpx(T+1,vector<ll>(T+1,0));\n for(int i=0;i<n;i++){\n cin >> t[i] >> p[i];\n }\n for(int i=0;i<=T;i++){\n dp[0][i] = 0;\n }\n for(int i=0;i<n;i++){\n for(int j=0;j<=T;j++){\n dp[i+1][j] = max(dp[i][j],dp[i+1][j]);\n if(j+t[i]<=T){\n dp[i+1][j+t[i]] = max(dp[i+1][j+t[i]],dp[i][j]+p[i]);\n }\n }\n }\n ans = dp[n][T];\n for(int i=0;i<=T;i++){\n dpx[0][i] = dp[n][i];\n }\n for(int i=1;i<=T;i++){\n for(int j=0;j<=T;j++){\n ll w = i+k;\n ll v = dp[n][i];\n if(j-w<0) continue;\n dpx[i][j] = max(dpx[i-1][j],dpx[i][j-w]+v);\n ans = max(ans,dpx[i][j]);\n }\n }\n cout << ans << endl;\n}", "accuracy": 0.05714285714285714, "time_ms": 20, "memory_kb": 49160, "score_of_the_acc": -0.3264, "final_rank": 20 }, { "submission_id": "aoj_3157_4833547", "code_snippet": "#include <iostream>\n#include <vector>\n#include <queue>\n#include <tuple>\n#include <algorithm>\n\nusing namespace std;\n#define rep(i, n) for(int i = 0; i < (int)(n); i++)\n\nvoid chmax(int64_t &a, int64_t b) {\n if (a < b) {\n a = b;\n }\n}\n\nint main() {\n int n, K, T;\n cin >> n >> K >> T;\n vector<pair<int, int64_t>> tp(n);\n for (auto &e: tp) {\n cin >> e.first >> e.second;\n }\n sort(tp.begin(), tp.end(), [](const auto &lhs, const auto &rhs) {\n // return lhs.second / lhs.first > rhs.second / rhs.first;\n return lhs.second * rhs.first > rhs.second * lhs.first;\n });\n vector<vector<int64_t>> dp(T + 1, vector<int64_t>(n + 1, -1));\n dp[0][0] = 0;\n rep(t, T) {\n rep(i, n + 1) {\n if (dp[t][i] < 0) continue;\n if (i + 1 <= n) { // i < n\n chmax(dp[t][i + 1], dp[t][i]);\n int ti;\n int64_t pi;\n tie(ti, pi) = tp[i];\n if (t + ti <= T) {\n chmax(dp[t + ti][i + 1], dp[t][i] + pi);\n }\n }\n if (t + K <= T) {\n chmax(dp[t + K][0], dp[t][i]);\n }\n }\n }\n int64_t ans = 0;\n for (int t = 0; t <= T; t++) {\n for (int i = 0; i <= n; i++) {\n chmax(ans, dp[t][i]);\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 34280, "score_of_the_acc": -0.5107, "final_rank": 11 }, { "submission_id": "aoj_3157_4833532", "code_snippet": "//include\n//------------------------------------------\n#include <bits/stdc++.h>\nusing namespace std;\n\n//typedef\n//------------------------------------------\nusing LL = int64_t;\nusing VL = vector<LL>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing PLL = pair<LL, LL>;\n\n//container util\n//------------------------------------------\n#define whole(f,x,...) ([&](decltype((x)) whole) { return (f)(begin(whole), end(whole), ## __VA_ARGS__); })(x)\n#define rwhole(f,x,...) ([&](decltype((x)) whole) { return (f)(rbegin(whole), rend(whole), ## __VA_ARGS__); })(x)\n#define EACH(i,c) for(decltype((c).begin()) i=(c).begin(); i!=(c).end(); ++i)\n#define EXIST(s,e) ((s).find(e)!=(s).end())\n#define ALL(x) ::std::begin(x), ::std::end(x)\n#define RALL(x) ::std::rbegin(x), ::std::rend(x)\n#define SORT(c) whole(sort, c)\n#define RSORT(c) rwhole(sort, c)\n\n//constant\n//--------------------------------------------\nconstexpr double EPS = 1e-10;\nconstexpr double PI = 3.14159265358979323846;\nconstexpr int MOD = 1000000007;\n\n// grid\n//--------------------------------------------\nVL dx = {0, 1, 0, -1};\nVL dy = {1, 0, -1, 0};\nVL dx2 = {-1, 0, 1, -1, 1, -1, 0, 1};\nVL dy2 = {-1, -1, -1, 0, 0, 1, 1, 1};\n\n//debug\n//--------------------------------------------\n#define dump(x) cerr << #x << \" = \" << (x) << endl;\n#define debug(x) cerr << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << \" \" << __FILE__ << endl;\n\n//IO accelerate\n//--------------------------------------------\nstruct InitIO {\n InitIO() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(30);\n }\n} init_io;\n\n//template\n//--------------------------------------------\n// declaretion\ntemplate<typename T> istream& operator >>(istream& is, vector<T>& vec);\ntemplate<typename T1, typename T2> ostream& operator <<(ostream& os, const pair<T1, T2>& p);\ntemplate<typename T> ostream& operator <<(ostream& os, const vector<T>& vec);\ntemplate<typename T> ostream& operator <<(ostream& os, const vector<vector<T>>& vv);\ntemplate<typename T> vector<T> make_v(size_t a);\ntemplate<typename T,typename... Ts> auto make_v(size_t a,Ts... ts);\ntemplate<typename T,typename V> typename enable_if<is_class<T>::value==0>::type fill_v(T &t,const V &v);\ntemplate<typename T,typename V> typename enable_if<is_class<T>::value!=0>::type fill_v(T &t,const V &v);\n\n// implementation\ntemplate<typename T>\nistream& operator >>(istream& is, vector<T>& vec) {\n\tfor(T& x: vec) is >> x;\n\treturn is;\n}\ntemplate<typename T1, typename T2>\nostream& operator <<(ostream& os, const pair<T1, T2>& p) {\n\tos << p.first << \",\" << p.second;\n\treturn os;\n}\ntemplate<typename T>\nostream& operator <<(ostream& os, const vector<T>& vec) {\n\tfor(int i=0; i<vec.size(); i++){\n\t\tos << vec[i] << ( i+1 == vec.size() ? \"\" : \"\\t\" );\n\t}\n\treturn os;\n}\ntemplate<typename T>\nostream& operator <<(ostream& s, const vector<vector<T>>& vv) {\n\tfor (int i = 0; i < vv.size(); ++i) {\n\t\ts << vv[i] << endl;\n\t}\n\treturn s;\n}\n\n// 多重vector\n// auto dp=make_v<int>(4,h,w) みたいに使える\ntemplate<typename T>\nvector<T> make_v(size_t a){return vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n\treturn vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\n// 多重vectorのためのfill\n// fill_v(dp,0) みたいに使える\ntemplate<typename T,typename V>\ntypename enable_if<is_class<T>::value==0>::type\nfill_v(T &t,const V &v){t=v;}\n\ntemplate<typename T,typename V>\ntypename enable_if<is_class<T>::value!=0>::type\nfill_v(T &t,const V &v){\n\tfor(auto &e:t) fill_v(e,v);\n}\n\ntemplate<class T,class U> void chmax(T&a,U b){if(a<b)a=b;}\ntemplate<class T,class U> void chmin(T&a,U b){if(b<a)a=b;}\ntemplate<typename T> T gcd(T a, T b) { return b?gcd(b,a%b):a;}\ntemplate<typename T> T lcm(T a, T b) { return a/gcd(a,b)*b;}\n\nLL N,K,T;\n\n//main code\nint main(int argc, char *argv[])\n{\n\tcin >> N >> K >> T;\n VL t(N), p(N);\n\tfor (int i = 0; i < N; i++) {\n\t\tcin >> t[i] >> p[i];\n\t}\n\tVVL dp(N,VL(T+1,0));\n\tfor (int i = t[0]; i < T+1; i++) {\n\t\tdp[0][i] = p[0];\n\t}\n\tfor (int i = 1; i < N; i++) {\n\t\tfor (int j = 0; j < T+1; j++) {\n\t\t\tif (j < t[i]) {\n\t\t\t\tdp[i][j] = dp[i-1][j];\n\t\t\t} else {\n\t\t\t\tdp[i][j] = max(dp[i-1][j-t[i]] + p[i], dp[i-1][j]);\n\t\t\t}\n\t\t}\n\t}\n\n VVL dp2(5000, VL(5000, 0));\n for(int i = 0; i <= T; i++) {\n for(int j = 0; j <= T; j++) {\n chmax(dp2[i+1][j], dp2[i][j]);\n if(i > j) chmax(dp2[i+K+1][i+K], dp2[i][j] + dp[N-1][i-j]);\n }\n } \n\t//dump(dp);\n\t//LL ans = dp[N-1][T];\n /*\n\tfor (int i = 1; i < T+1; i++) {\n\t\tif (dp[N-1][i] > dp[N-1][i-1]) { // iを区切りにやる\n\t\t\tLL tt = (K + i);\n\t\t\tLL d = T / tt;\n\t\t\tfor (LL j = 1; j < d+1; j++) { // j回休憩する((i,k)の組み合わせがj回)\n\t\t\t\tLL tmp = j*dp[N-1][i];\n\t\t\t\tLL nokori = T - (i+K)*j;\n\t\t\t\ttmp += dp[N-1][nokori];\n\t\t\t\tchmax(ans, tmp);\n\t\t\t}\n\t\t}\n\t}\n */\n LL ans = 0;\n for(int i = 0; i < 5000; i++) {\n for(int j = 0; j < 5000; j++) ans = max(ans, dp2[i][j]);\n }\n\tcout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 230076, "score_of_the_acc": -2, "final_rank": 17 } ]
aoj_3160_cpp
Problem J: Meet on the Island Problem やまだくんは、友達と会うために旅行をすることにしました。 やまだくんの住む国は $N$ 個の島からなる島国であり、島と島の間には $M$ 個の海流が流れています。 $i$ 番目の海流が島 $A_i$ から島 $B_i$ に流れている時、またその時のみ、やまだくんは海流に乗ることで島 $A_i$ から島 $B_i$ に移動することができます。 やまだくんは、はじめ島 $1$ にいるものとします。以下の $Q$ 個のクエリを処理してください。 $i$ 番目のクエリでは、クエリの種類を表す $X_i$ と、島の番号を表す $Y_i$ が与えられます。 クエリ 1: $X_i = 1$ のとき、やまだくんは今いる島から島 $Y_i$ へ $0$ 個以上の海流に乗って移動します。ここで、今いる島から $Y_i$ に $0$ 個以上の海流に乗って移動できることが保証されます。 クエリ 2: $X_i = 2$ のとき、島 $Y_i$ に住んでいるやまだくんの友達が、 $0$ 個以上の海流に乗って移動することで、やまだくんのいる島にたどり着くことができるか判定してください。 Constraints 入力は以下の条件を満たします。 $1 \leq N \leq 200000$ $0 \leq M \leq \min(N(N-1),200000)$ $1 \leq A_i , B_i \leq N$ $i \neq j$ であって、 $A_i = A_j$ かつ $B_i = B_j$ であるような $( i , j )$ は存在しない。 $1 \leq Q \leq 100000$ $1 \leq X_i \leq 2$ $1 \leq Y_i \leq N$ $X_i = 1$ のとき、やまだくんが今いる島から、$0$ 個以上の海流を辿って $Y_i$ にたどり着けることが保証される。 $X_i = 2$ であるような$ i ( 1 \leq i \leq Q )$ が、少なくとも一つ存在することが保証される。 入力は全て整数である。 Input 入力は以下の形式で標準入力から与えられます。 $N$ $M$ $A_1$ $B_1$ $A_2$ $B_2$ $\vdots$ $A_M$ $B_M$ $Q$ $X_1$ $Y_1$ $X_2$ $Y_2$ $\vdots$ $X_Q$ $Y_Q$ Output それぞれのクエリ2に対して順番に、移動可能な場合は"YES"、不可能な場合は"NO"を出力してください。 各クエリ2の答えは改行区切りで出力してください。 最後の出力の後に改行を出力するのを忘れないようにしてください。 Sample Input 1 4 4 1 2 2 3 3 4 4 2 3 2 4 1 2 2 4 Sample Output 1 NO YES 島 $4$ から島 $1$ にはたどり着けないため、やまだくんが島 $1$ にいる間、島 $4$ にいる友達はやまだくんに会うことができません。 その後、やまだくんが島 $2$ に移動すると、島 $4$ にいる友達は島 $2$ に移動することで、やまだくんに会うことができるようになります。 Sample Input 2 2 0 2 2 1 2 2 Sample Output 2 YES NO Sample Input 3 7 9 1 4 1 5 1 6 2 4 2 5 2 6 3 4 3 5 3 6 4 2 7 2 1 1 4 2 3 Sample Output 3 NO YES YES 他の海流を飛び越える海流や、海流が流れていない島が存在する場合があります。
[ { "submission_id": "aoj_3160_10497568", "code_snippet": "#include <bits/extc++.h>\n\nusing namespace std;\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector<pair<int, int>> AB(M);\n \n vector<vector<int>> nanachi(N), rev(N);\n \n for (int i = 0 ; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a--, b--;\n AB[i] = {a, b};\n nanachi[a].push_back(b);\n rev[b].push_back(a);\n }\n \n vector<bool> ok(N);\n \n ok[0] = true;\n \n queue<int> que;\n \n que.push(0);\n \n while (!que.empty()) {\n int v = que.front();\n que.pop();\n \n for (int w : rev[v]) {\n if (ok[w]) continue;\n ok[w] = true;\n que.push(w);\n }\n }\n \n int Q;\n cin >> Q;\n \n while (Q--) {\n int t, x;\n cin >> t >> x;\n x--;\n \n if (t == 1) {\n if (ok[x]) continue;\n \n ok[x] = true;\n \n queue<int> que;\n \n que.push(x);\n \n while (!que.empty()) {\n int v = que.front();\n que.pop();\n \n for (int w : rev[v]) {\n if (ok[w]) continue;\n ok[w] = true;\n que.push(w);\n }\n }\n } else {\n if (ok[x]) {\n cout << \"YES\\n\";\n } else {\n cout << \"NO\\n\";\n }\n }\n }\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 23440, "score_of_the_acc": -0.8471, "final_rank": 10 }, { "submission_id": "aoj_3160_10497514", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i, a, b) for (ll i = a; i < b; i++)\nconst int INF = (1 << 29);\n\nint main(){\n int N, M;\n cin >> N >> M;\n vector<vector<int>> G(N);\n rep(i, 0, M){\n int a, b;\n cin >> a >> b;\n a--, b--;\n G[b].push_back(a);\n }\n int Q;\n cin >> Q;\n vector<int> seen(N);\n auto upd = [&](int a) -> void {\n if (seen[a]) return;\n vector<int> order = {a};\n seen[a] = 1;\n rep(rp, 0, order.size()){\n int b = order[rp];\n for (auto x : G[b]) if (seen[x] == 0){\n seen[x] = 1;\n order.push_back(x);\n }\n }\n };\n upd(0);\n while (Q--){\n int X, Y;\n cin >> X >> Y;\n Y--;\n if (X == 1) upd(Y);\n else cout << (seen[Y] ? \"YES\\n\" : \"NO\\n\");\n }\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 13684, "score_of_the_acc": -0.7503, "final_rank": 9 }, { "submission_id": "aoj_3160_10495082", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,s,n) for (int i = (int)(s); i < (int)(n); i++)\nusing namespace std;\nusing ll = long long;\n\nbool chmin(auto &a, auto b){ return a > b ? a = b, 1 : 0; }\nbool chmax(auto &a, auto b){ return a < b ? a = b, 1 : 0; }\n\nconst ll linf = 1e18;\n\nvoid solve(){\n int n, m; cin >> n >> m;\n vector<vector<int>> g(n);\n rep(i,0,m){\n int u, v; cin >> u >> v; u--, v--;\n g[v].emplace_back(u);\n }\n vector<bool> done(n,false);\n auto proc = [&](int start){\n if (done[start]) return ;\n queue<int> que;\n que.push(start);\n done[start] = true;\n while (!que.empty()){\n int v = que.front(); que.pop();\n for (int u : g[v]){\n if (done[u]) continue;\n que.push(u);\n done[u] = true;\n }\n }\n };\n proc(0);\n int q; cin >> q;\n while (q--){\n int t, v; cin >> t >> v; v--;\n if (t == 1){\n proc(v);\n }\n else {\n cout << (done[v] ? \"YES\" : \"NO\") << '\\n';\n }\n }\n}\n\nint main(){\n solve();\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 12704, "score_of_the_acc": -0.5016, "final_rank": 6 }, { "submission_id": "aoj_3160_10489273", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,s,n) for (int i = (int)(s); i < (int)(n); i++)\n#define all(v) begin(v),end(v)\nusing namespace std;\nusing ll = long long;\n\n\nvoid solve(){\n int n, m; cin >> n >> m;\n vector<vector<int>> g(n);\n rep(i,0,m){\n int u, v; cin >> u >> v; u--, v--;\n g[v].emplace_back(u);\n }\n vector<bool> done(n,false);\n auto vis = [&](int s){\n if (done[s]) return ;\n queue<int> que;\n que.push(s);\n done[s] = true;\n while (!que.empty()){\n int v = que.front(); que.pop();\n for (int u : g[v]){\n if (!done[u]){\n done[u] = true;\n que.push(u);\n }\n }\n }\n };\n int s = 0;\n vis(s);\n int q; cin >> q;\n while (q--){\n int t; cin >> t;\n if (t == 1){\n int v; cin >> v; v--;\n s = v;\n vis(s);\n }\n else if (t == 2){\n int v; cin >> v; v--;\n cout << (done[v] ? \"YES\" : \"NO\") << endl;\n }\n }\n}\n\nint main(){\n int t = 1; //cin >> t;\n while (t--){\n solve();\n }\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 12704, "score_of_the_acc": -0.5016, "final_rank": 6 }, { "submission_id": "aoj_3160_10489254", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,s,n) for (int i = (int)(s); i < (int)(n); i++)\n#define all(v) begin(v),end(v)\nusing namespace std;\nusing ll = long long;\n\n\nvoid solve(){\n int n, m; cin >> n >> m;\n vector<vector<int>> g(n);\n rep(i,0,m){\n int u, v; cin >> u >> v; u--, v--;\n g[v].emplace_back(u);\n }\n vector<bool> done(n,false);\n auto vis = [&](int s){\n if (done[s]) return ;\n queue<int> que;\n que.push(s);\n done[s] = true;\n while (!que.empty()){\n int v = que.front(); que.pop();\n for (int u : g[v]){\n if (!done[u]){\n done[u] = true;\n que.push(u);\n }\n }\n }\n };\n int s = 0;\n done[s] = true;\n int q; cin >> q;\n while (q--){\n int t; cin >> t;\n if (t == 1){\n int v; cin >> v; v--;\n s = v;\n vis(s);\n }\n else if (t == 2){\n int v; cin >> v; v--;\n cout << (done[v] ? \"YES\" : \"NO\") << endl;\n }\n }\n}\n\nint main(){\n int t = 1; //cin >> t;\n while (t--){\n solve();\n }\n}", "accuracy": 0.14634146341463414, "time_ms": 40, "memory_kb": 9248, "score_of_the_acc": -0.1306, "final_rank": 19 }, { "submission_id": "aoj_3160_10199101", "code_snippet": "// AOJ #3160\n// Meet on the Island 2025.2.6\n\n#include <bits/stdc++.h>\nusing namespace std;\n \nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n int N, M;\n cin >> N >> M;\n // 逆グラフを作成:原グラフで A -> B なら,逆グラフでは B -> A\n vector<vector<int>> rev(N+1);\n for(int i = 0; i < M; i++){\n int A, B;\n cin >> A >> B;\n rev[B].push_back(A);\n }\n \n int Q;\n cin >> Q;\n \n // やまだくんの現在位置.初期は1.\n int current = 1;\n // canMeet[x] = true なら,原グラフで x から現在の島にたどり着ける\n vector<bool> canMeet(N+1, false);\n \n // 初期状態:現在の島が1なので,逆グラフで1からたどれる頂点が集合 S(1)\n {\n queue<int> qu;\n qu.push(1);\n canMeet[1] = true;\n while(!qu.empty()){\n int cur = qu.front();\n qu.pop();\n for(auto nxt : rev[cur]){\n if(!canMeet[nxt]){\n canMeet[nxt] = true;\n qu.push(nxt);\n }\n }\n }\n }\n \n // 各クエリの処理\n for(int i = 0; i < Q; i++){\n int type, Y;\n cin >> type >> Y;\n if(type == 1){\n // クエリ1:移動\n current = Y;\n // モノトニシティの性質により,\n // S(Y) = { x: x -> Y (原グラフ) } は既に global に含まれている S(current) の部分集合に含まれていなければ,追加する\n if(!canMeet[Y]){\n queue<int> qu;\n qu.push(Y);\n canMeet[Y] = true;\n while(!qu.empty()){\n int cur = qu.front();\n qu.pop();\n for(auto nxt : rev[cur]){\n if(!canMeet[nxt]){\n canMeet[nxt] = true;\n qu.push(nxt);\n }\n }\n }\n }\n } else if(type == 2){\n cout << (canMeet[Y] ? \"YES\" : \"NO\") << endl;\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 12452, "score_of_the_acc": -0.4948, "final_rank": 5 }, { "submission_id": "aoj_3160_10091982", "code_snippet": "// competitive-verifier: PROBLEM\n#include <iostream>\n#include <vector>\n/**\n * @brief 重み付きグラフ\n *\n * @tparam T 辺の重みの型\n */\ntemplate <class T>\nstruct Graph {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to(), _weight() {}\n constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {}\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr T weight() const { return _weight; }\n private:\n int _from, _to;\n T _weight;\n };\n public:\n using edge_type = typename Graph<T>::_edge;\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); }\n void add_edges(int from, int to, T weight = T(1)) {\n edges[from].emplace_back(from, to, weight);\n edges[to].emplace_back(to, from, weight);\n }\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edge(from - base, to - base, weight);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edges(from - base, to - base, weight);\n }\n }\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\ntemplate <>\nstruct Graph<void> {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to() {}\n constexpr _edge(int from, int to) : _from(from), _to(to) {}\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr int weight() const { return 1; }\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n private:\n int _from, _to;\n };\n public:\n using edge_type = typename Graph<void>::_edge;\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to) { edges[from].emplace_back(from, to); }\n void add_edges(int from, int to) {\n edges[from].emplace_back(from, to);\n edges[to].emplace_back(to, from);\n }\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edge(from - base, to - base);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edges(from - base, to - base);\n }\n }\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nint main(void) {\n int n, m;\n cin >> n >> m;\n Graph<void> g(n);\n rep (i, m) {\n int a, b;\n cin >> a >> b;\n g.add_edge(b - 1, a - 1);\n }\n vector<bool> visit(n);\n auto dfs = [&](auto self, int x) {\n if (visit[x])\n return;\n visit[x] = true;\n for (auto e : g[x]) self(self, e.to());\n };\n dfs(dfs, 0);\n int q;\n cin >> q;\n rep (i, q) {\n int x, y;\n cin >> x >> y;\n if (x == 1) {\n dfs(dfs, y - 1);\n } else {\n YES(visit[y - 1]);\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 16544, "score_of_the_acc": -0.3275, "final_rank": 3 }, { "submission_id": "aoj_3160_7009659", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3160.cc: Problem J: Meet on the Island\n */\n\n#include<cstdio>\n#include<vector>\n#include<stack>\n#include<queue>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 200000;\n\n/* typedef */\n\ntypedef queue<int> qi;\ntypedef vector<int> vi;\ntypedef vector<bool> vb;\ntypedef vector<vi> vvi;\ntypedef stack<int> si;\n\n/* global variables */\n\nvi nbrs[MAX_N], gnbrs[MAX_N];\nint gids[MAX_N];\nbool used[MAX_N];\n\n/* subroutines */\n\nvoid scc_visit(const vi *nbrs, int v, vvi& scc,\n\t si& S, vb &inS, vi& low, vi& num, int& time) {\n low[v] = num[v] = ++time;\n S.push(v);\n inS[v] = true;\n\n const vi& nbrv = nbrs[v];\n for (vi::const_iterator vit = nbrv.begin(); vit != nbrv.end(); vit++) {\n const int& w = *vit;\n if (num[w] == 0) {\n scc_visit(nbrs, w, scc, S, inS, low, num, time);\n low[v] = min(low[v], low[w]);\n }\n else if (inS[w])\n low[v] = min(low[v], num[w]);\n }\n\n if (low[v] == num[v]) {\n scc.push_back(vi());\n for (;;) {\n int w = S.top(); S.pop();\n inS[w] = false;\n scc.back().push_back(w);\n if (v == w) break;\n }\n }\n}\n\nvoid calc_scc(const int n, const vi *nbrs, vvi& scc) {\n vi num(n), low(n);\n si S;\n vb inS(n);\n int time = 0;\n\n for (int u = 0; u < n; u++)\n if (num[u] == 0)\n scc_visit(nbrs, u, scc, S, inS, low, num, time);\n}\n\nvoid traceback(int st) {\n if (used[st]) return;\n\n used[st] = true;\n qi q;\n q.push(st);\n\n while (! q.empty()) {\n int u = q.front(); q.pop();\n for (auto v: gnbrs[u])\n if (! used[v]) {\n\tused[v] = true;\n\tq.push(v);\n }\n }\n}\n\n/* main */\n\nint main() {\n int n, m;\n scanf(\"%d%d\", &n, &m);\n\n for (int i = 0; i < m; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n u--, v--;\n nbrs[u].push_back(v);\n }\n\n vvi scc;\n calc_scc(n, nbrs, scc);\n\n int gn = scc.size();\n for (int i = 0; i < gn; i++)\n for (auto u: scc[i]) gids[u] = i;\n\n for (int u = 0; u < n; u++) {\n int gu = gids[u];\n for (auto v: nbrs[u]) {\n int gv = gids[v];\n if (gu != gv) gnbrs[gv].push_back(gu);\n }\n }\n\n int cu = gids[0];\n traceback(cu);\n\n int qn;\n scanf(\"%d\", &qn);\n\n while (qn--) {\n int x, y;\n scanf(\"%d%d\", &x, &y), y--;\n\n if (x == 1) {\n cu = gids[y];\n traceback(cu);\n //for (int i = 0; i < gn; i++) printf(\"%d\", used[i]); putchar('\\n');\n }\n else {\n if (used[gids[y]]) puts(\"YES\");\n else puts(\"NO\");\n }\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 43112, "score_of_the_acc": -1.1005, "final_rank": 13 }, { "submission_id": "aoj_3160_7009645", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3160.cc: Problem J: Meet on the Island\n */\n\n#include<cstdio>\n#include<vector>\n#include<set>\n#include<stack>\n#include<queue>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 200000;\n\n/* typedef */\n\ntypedef queue<int> qi;\ntypedef vector<int> vi;\ntypedef vector<bool> vb;\ntypedef vector<vi> vvi;\ntypedef stack<int> si;\ntypedef set<int> seti;\n\n/* global variables */\n\nvi nbrs[MAX_N], gnbrs[MAX_N];\nint gids[MAX_N];\nbool used[MAX_N];\n\n/* subroutines */\n\nvoid scc_visit(const vi *nbrs, int v, vvi& scc,\n\t si& S, vb &inS, vi& low, vi& num, int& time) {\n low[v] = num[v] = ++time;\n S.push(v);\n inS[v] = true;\n\n const vi& nbrv = nbrs[v];\n for (vi::const_iterator vit = nbrv.begin(); vit != nbrv.end(); vit++) {\n const int& w = *vit;\n if (num[w] == 0) {\n scc_visit(nbrs, w, scc, S, inS, low, num, time);\n low[v] = min(low[v], low[w]);\n }\n else if (inS[w])\n low[v] = min(low[v], num[w]);\n }\n\n if (low[v] == num[v]) {\n scc.push_back(vi());\n for (;;) {\n int w = S.top(); S.pop();\n inS[w] = false;\n scc.back().push_back(w);\n if (v == w) break;\n }\n }\n}\n\nvoid calc_scc(const int n, const vi *nbrs, vvi& scc) {\n vi num(n), low(n);\n si S;\n vb inS(n);\n int time = 0;\n\n for (int u = 0; u < n; u++)\n if (num[u] == 0)\n scc_visit(nbrs, u, scc, S, inS, low, num, time);\n}\n\nvoid traceback(int st, seti &ts) {\n if (used[st]) return;\n\n used[st] = true, ts.insert(st);\n qi q;\n q.push(st);\n\n while (! q.empty()) {\n int u = q.front(); q.pop();\n for (auto v: nbrs[u])\n if (! used[v]) {\n\tused[v] = true, ts.insert(v);\n\tq.push(v);\n }\n }\n}\n\n/* main */\n\nint main() {\n int n, m;\n scanf(\"%d%d\", &n, &m);\n\n for (int i = 0; i < m; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n u--, v--;\n nbrs[u].push_back(v);\n }\n\n vvi scc;\n calc_scc(n, nbrs, scc);\n\n int gn = scc.size();\n for (int i = 0; i < gn; i++)\n for (auto u: scc[i]) gids[u] = i;\n\n for (int u = 0; u < n; u++) {\n int gu = gids[u];\n for (auto v: nbrs[u]) {\n int gv = gids[v];\n if (gu != gv) gnbrs[gv].push_back(gu);\n }\n }\n\n seti ts;\n int cu = gids[0];\n traceback(cu, ts);\n\n int qn;\n scanf(\"%d\", &qn);\n\n while (qn--) {\n int x, y;\n scanf(\"%d%d\", &x, &y), y--;\n\n if (x == 1) {\n cu = gids[y];\n traceback(cu, ts);\n }\n else {\n if (ts.find(gids[y]) != ts.end()) puts(\"YES\");\n else puts(\"NO\");\n }\n }\n\n return 0;\n}", "accuracy": 0.17073170731707318, "time_ms": 40, "memory_kb": 31616, "score_of_the_acc": -0.7345, "final_rank": 16 }, { "submission_id": "aoj_3160_6304577", "code_snippet": "#include <iostream>\n#include <unordered_map>\n#include <unordered_set>\n#include <set>\n#include <vector>\n#include <numeric>\n#include <algorithm>\n#include <queue>\n#include <string>\n#include <random>\n#include <array>\n#include <climits>\n#include <map>\n#include <cassert>\n#include <stack>\n#include <iomanip>\n#include <cfloat>\n#include <fstream>\nstd::vector<int> calc_dag(const std::vector<std::vector<int>>& nodes) {\n\tconst int n = nodes.size();\n\tstd::vector<int> out_time(n, -1), indices; indices.reserve(n);\n\tstd::stack<int> stack;\n\tfor (auto root = 0; root < n; ++root) {\n\t\tif (out_time[root] != -1) continue;\n\t\tstack.push(root);\n\t\twhile (!stack.empty()) {\n\t\t\tconst auto top = stack.top(); stack.pop();\n\t\t\tif (top >= 0) {\n\t\t\t\tif (out_time[top] != -1) continue;\n\t\t\t\tout_time[top] = 0;\n\t\t\t\tstack.push(-1 - top);\n\t\t\t\tfor (const auto next : nodes[top]) {\n\t\t\t\t\tif (out_time[next] != -1) continue;\n\t\t\t\t\tstack.push(next);\n\t\t\t\t}\n\t\t\t}\n\t\t\telse {\n\t\t\t\tindices.push_back(-1 - top);\n\t\t\t}\n\t\t}\n\t}\n\tstd::reverse(indices.begin(), indices.end());\n\tstd::vector<std::vector<int>> reverse(nodes.size());\n\tfor (auto from = 0; from < nodes.size(); ++from) {\n\t\tfor (const auto to : nodes[from]) {\n\t\t\treverse[to].push_back(from);\n\t\t}\n\t}\n\tstd::fill(out_time.begin(), out_time.end(), -1);\n\tint time = 0;\n\tfor (const auto root : indices) {\n\t\tif (out_time[root] != -1) continue;\n\t\tout_time[root] = time;\n\t\tstack.push(root);\n\t\twhile (!stack.empty()) {\n\t\t\tconst auto top = stack.top(); stack.pop();\n\t\t\tfor (const auto next : reverse[top]) {\n\t\t\t\tif (out_time[next] != -1) continue;\n\t\t\t\tout_time[next] = time;\n\t\t\t\tstack.push(next);\n\t\t\t}\n\t\t}\n\t\t++time;\n\t}\n\treturn out_time;\n}\nint main() {\n\tint n, m; std::cin >> n >> m;\n\tstd::vector<std::pair<int, int>> edges(m);\n\tfor (auto& [s, t] : edges) {\n\t\tstd::cin >> s >> t; --s; --t;\n\t}\n\tint q; std::cin >> q;\n\tstd::vector<std::pair<int, int>> queries(q);\n\tfor (auto& [x, y] : queries) {\n\t\tstd::cin >> x >> y; --y;\n\t}\n\tstd::vector<std::vector<int>> graph(n);\n\tfor (const auto [s, t] : edges) {\n\t\tgraph[s].push_back(t);\n\t}\n\tconst auto dag = calc_dag(graph);\n\tstd::vector<std::vector<int>> dag_rev_graph(n);\n\tfor (const auto [s, t] : edges) {\n\t\tdag_rev_graph[dag[t]].push_back(dag[s]);\n\t}\n\tstd::vector<bool> can_reach(n, false);\n\tstd::queue<int> queue;\n\tcan_reach[dag[0]] = true;\n\tqueue.push(dag[0]);\n\twhile (!queue.empty()) {\n\t\tconst auto top = queue.front(); queue.pop();\n\t\tfor (const auto prev : dag_rev_graph[top]) {\n\t\t\tif (can_reach[prev]) continue;\n\t\t\tcan_reach[prev] = true;\n\t\t\tqueue.push(prev);\n\t\t}\n\t}\n\tfor (const auto [x, y] : queries) {\n\t\tif (x == 1) {\n\t\t\tif (can_reach[dag[y]]) continue;\n\t\t\tcan_reach[dag[y]] = true;\n\t\t\tqueue.push(dag[y]);\n\t\t\twhile (!queue.empty()) {\n\t\t\t\tconst auto top = queue.front(); queue.pop();\n\t\t\t\tfor (const auto prev : dag_rev_graph[top]) {\n\t\t\t\t\tif (can_reach[prev]) continue;\n\t\t\t\t\tcan_reach[prev] = true;\n\t\t\t\t\tqueue.push(prev);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tif (can_reach[dag[y]]) {\n\t\t\t\tstd::cout << \"YES\\n\";\n\t\t\t}\n\t\t\telse {\n\t\t\t\tstd::cout << \"NO\\n\";\n\t\t\t}\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 25520, "score_of_the_acc": -0.9032, "final_rank": 11 }, { "submission_id": "aoj_3160_5675914", "code_snippet": "#include <iostream>\n#include <vector>\n#include <queue>\nusing namespace std;\nint main(){\n int N, M;\n scanf(\"%d %d\", &N, &M);\n vector<vector<int>> G(N);\n vector<vector<int>> to(N), from(N);\n for(int i = 0; i < M; i++){\n int a, b;\n scanf(\"%d %d\", &a, &b);\n a--;\n b--;\n G[b].push_back(a);\n }\n int Q;\n cin >> Q;\n queue<int> q;\n q.push(0);\n vector<int> can(N, 0);\n can[0] = 1;\n while(!q.empty()){\n int t = q.front();\n q.pop();\n for(int s: G[t]){\n if(can[s] == 0){\n can[s] = 1;\n q.push(s);\n }\n }\n }\n for(int i = 0; i < Q; i++){\n int X, Y;\n scanf(\"%d %d\", &X, &Y);\n Y--;\n if(X == 1){\n if(can[Y] == 0){\n q.push(Y);\n can[Y] = 1;\n while(!q.empty()){\n int t = q.front();\n q.pop();\n for(int s : G[t]){\n if(can[s] == 0){\n can[s] = 1;\n q.push(s);\n }\n }\n }\n }\n }\n else{\n if(can[Y] == 1) printf(\"YES\\n\");\n else printf(\"NO\\n\");\n }\n }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 22604, "score_of_the_acc": -0.4356, "final_rank": 4 }, { "submission_id": "aoj_3160_5073711", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Printer {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid print(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(bool v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(vector<bool>::reference v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid print(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid print(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid print(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void print(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void print(const pair<T, U>& v) const {\n\t\tprint(v.first);\n\t\tprint(D.d);\n\t\tprint(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid print_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) print(D.d);\n\t\t\tprint(*i);\n\t\t}\n\t}\n\ttemplate <class T> void print(const vector<T>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void print(const array<T, N>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void print(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) print(D.l);\n\t\t\tprint(v[i]);\n\t\t}\n\t}\n\n\tPrinter() = default;\n\tPrinter(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tPrinter& operator()() {\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Printer& operator()(H&& h) {\n\t\tprint(h);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Printer& operator()(H&& h, T&&... t) {\n\t\tprint(h);\n\t\tprint(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tPrinter& range(const InputIterator& begin, const InputIterator& end) {\n\t\tprint_range(begin, end);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Printer& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tPrinter& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tPrinter& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tPrinter& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tPrinter& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n\ttemplate <class V> auto operator()(const V& val, size_t i) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(next(begin(v), i), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T> constexpr int BIT(T x, int i) {\n\treturn (x & (1 << i)) ? 1 : 0;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 5 \"/home/yuruhiya/programming/library/Graph/StronglyConnectedComponents.cpp\"\nusing namespace std;\n\nclass StronglyConnectedComponents {\n\tint n;\n\tvector<vector<int>> graph, rgraph;\n\tvector<bool> used;\n\tvector<int> cmp, vs;\n\tint k;\n\tbool builded = false;\n\tvoid dfs(int v) {\n\t\tused[v] = true;\n\t\tfor (auto e : graph[v]) {\n\t\t\tif (!used[e]) dfs(e);\n\t\t}\n\t\tvs.push_back(v);\n\t}\n\tvoid rdfs(int v, int k) {\n\t\tused[v] = true;\n\t\tcmp[v] = k;\n\t\tfor (auto e : rgraph[v]) {\n\t\t\tif (!used[e]) rdfs(e, k);\n\t\t}\n\t}\n\npublic:\n\tStronglyConnectedComponents(int _n) : n(_n), graph(n), rgraph(n) {}\n\tStronglyConnectedComponents(const vector<vector<int>>& _graph)\n\t : n(_graph.size()), graph(_graph), rgraph(n) {\n\t\tfor (int v = 0; v < n; ++v) {\n\t\t\tfor (int u : graph[v]) {\n\t\t\t\trgraph[u].push_back(v);\n\t\t\t}\n\t\t}\n\t}\n\tvoid add_edge(int s, int t) {\n\t\tbuilded = false;\n\t\tgraph[s].push_back(t);\n\t\trgraph[t].push_back(s);\n\t}\n\tint build() {\n\t\tvs.clear();\n\t\tused.assign(n, false);\n\t\tcmp.assign(n, 0);\n\t\tfor (int i = 0; i < n; ++i) {\n\t\t\tif (!used[i]) dfs(i);\n\t\t}\n\t\tk = 0;\n\t\tfill(used.begin(), used.end(), false);\n\t\tfor (int i = vs.size() - 1; i >= 0; --i) {\n\t\t\tif (!used[vs[i]]) rdfs(vs[i], k++);\n\t\t}\n\t\tbuilded = true;\n\t\treturn k;\n\t}\n\tint operator[](int i) const {\n\t\tassert(builded);\n\t\treturn cmp[i];\n\t}\n\tconst vector<int>& get_cmp() const {\n\t\tassert(builded);\n\t\treturn cmp;\n\t}\n\tconst vector<vector<int>>& get_graph() const {\n\t\tassert(builded);\n\t\treturn graph;\n\t}\n\tint count_strongly_components() const {\n\t\tassert(builded);\n\t\treturn k;\n\t}\n\tvector<vector<int>> groups() const {\n\t\tassert(builded);\n\t\tvector<vector<int>> result(k);\n\t\tfor (int i = 0; i < n; ++i) {\n\t\t\tresult[cmp[i]].push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\tvector<vector<int>> make_DAG() const {\n\t\tassert(builded);\n\t\tvector<vector<int>> result(k);\n\t\tfor (int i = 0; i < n; ++i) {\n\t\t\tfor (auto e : graph[i]) {\n\t\t\t\tif (cmp[i] != cmp[e]) {\n\t\t\t\t\tresult[cmp[i]].push_back(cmp[e]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor (auto& v : result) {\n\t\t\tsort(v.begin(), v.end());\n\t\t\tv.erase(unique(v.begin(), v.end()), v.end());\n\t\t}\n\t\treturn result;\n\t}\n};\n#line 3 \"a.cpp\"\n\nVVI reverse_edge(const VVI& g) {\n\tint n = g.size();\n\tVVI rg(n);\n\trep(v, n) {\n\t\tfor (int u : g[v]) {\n\t\t\trg[u].push_back(v);\n\t\t}\n\t}\n\treturn rg;\n}\n\nint main() {\n\tini(n, m);\n\tStronglyConnectedComponents scc(n);\n\trep(i, m) {\n\t\tint a = in--, b = in--;\n\t\tscc.add_edge(a, b);\n\t}\n\n\tint k = scc.build();\n\tauto g = scc.make_DAG();\n\tauto rg = reverse_edge(g);\n\n\tVB flag(k);\n\n\tauto update_flag = [&](auto&& f, int v) -> void {\n\t\tif (flag[v]) return;\n\t\tflag[v] = true;\n\t\tfor (int u : rg[v]) {\n\t\t\tif (!flag[u]) f(f, u);\n\t\t}\n\t};\n\n\tupdate_flag(update_flag, scc[0]);\n\n\tfor (int q = in; q--;) {\n\t\tint x = in, y = in--;\n\t\tif (x == 1) {\n\t\t\tupdate_flag(update_flag, scc[y]);\n\t\t} else {\n\t\t\tout.set(YES)(flag[scc[y]]);\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 45244, "score_of_the_acc": -1.158, "final_rank": 14 }, { "submission_id": "aoj_3160_4959577", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 200005\n\nint N,E;\nbool check[SIZE];\nvector<int> rev_G[SIZE];\n\nvoid dfs(int node_id,int pre){\n\n\tcheck[node_id] = true;\n\tfor(int i = 0; i < rev_G[node_id].size(); i++){\n\t\tint next = rev_G[node_id][i];\n\t\tif(next == pre||check[next])continue;\n\n\t\tdfs(next,node_id);\n\t}\n}\n\nint main(){\n\n\tscanf(\"%d %d\",&N,&E);\n\n\tint from,to;\n\tfor(int loop = 0; loop < E; loop++){\n\n\t\tscanf(\"%d %d\",&from,&to);\n\t\tfrom--;\n\t\tto--;\n\t\trev_G[to].push_back(from);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tcheck[i] = false;\n\t}\n\n\tdfs(0,-1);\n\n\tint num_query;\n\tscanf(\"%d\",&num_query);\n\n\tint command,loc;\n\tint current = 0;\n\n\tfor(int loop = 0; loop < num_query; loop++){\n\n\t\tscanf(\"%d %d\",&command,&loc);\n\t\tloc--;\n\t\tif(command == 1){\n\n\t\t\tcurrent = loc;\n\t\t\tif(!check[current]){\n\t\t\t\tdfs(current,-1);\n\t\t\t}\n\t\t}else{\n\n\t\t\tif(check[loc]){\n\n\t\t\t\tprintf(\"YES\\n\");\n\t\t\t}else{\n\n\t\t\t\tprintf(\"NO\\n\");\n\t\t\t}\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 15720, "score_of_the_acc": -0.3053, "final_rank": 2 }, { "submission_id": "aoj_3160_4959499", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n\n#define SIZE 200005\n\n\nstruct GROUP{\n\tvector<int> nodes;\n};\n\nint N,E;\nGROUP group[SIZE]; //強連結成分のグループ\nvector<int> scc_G[SIZE];\nvector<int> reverse_scc_G[SIZE];\nstack<int> S;\n\nbool check[SIZE];\nint table[SIZE],in_num[SIZE];\nint boss[SIZE],height[SIZE];\nint group_index,global_index;\n\n\nvector<int> G[SIZE];\n\nbool visited[SIZE];\nint LEFT[SIZE],RIGHT[SIZE];\n\n\nvoid scc_dfs(int node_id){\n\tcheck[node_id] = true;\n\n\tfor(int i = 0; i < scc_G[node_id].size(); i++){\n\t\tif(!check[scc_G[node_id][i]])scc_dfs(scc_G[node_id][i]);\n\t}\n\tS.push(node_id);\n}\n\nvoid reverse_scc_dfs(int node_id){\n\tcheck[node_id] = true;\n\n\tgroup[group_index].nodes.push_back(node_id); //group[group_index]にノードを突っ込む\n\ttable[node_id] = group_index;\n\n\tfor(int i = 0; i < reverse_scc_G[node_id].size(); i++){\n\t\tif(!check[reverse_scc_G[node_id][i]])reverse_scc_dfs(reverse_scc_G[node_id][i]);\n\t}\n}\n\nint get_boss(int id){\n\tif(boss[id] == id)return id;\n\telse{\n\t\treturn boss[id] = get_boss(boss[id]);\n\t}\n}\n\nint isSame(int x,int y){\n\treturn get_boss(x) == get_boss(y);\n}\n\nvoid unite(int x,int y){\n\tint boss_x = get_boss(x);\n\tint boss_y = get_boss(y);\n\n\tif(boss_x == boss_y)return;\n\n\tif(height[boss_x] > height[boss_y]){\n\n\t\tboss[boss_y] = boss_x;\n\n\t}else if(height[boss_x] < height[boss_y]){\n\n\t\tboss[boss_x] = boss_y;\n\n\t}else{ //height[boss_x] == height[boss_y]\n\n\t\tboss[boss_y] = boss_x;\n\t\theight[x]++;\n\t}\n}\n\nvoid euler_tour(int node_id,int pre){\n\tLEFT[node_id] = global_index++;\n\tvisited[node_id] = true;\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next = G[node_id][i];\n\t\tif(next == pre)continue;\n\n\t\teuler_tour(next,node_id);\n\t}\n\tRIGHT[node_id] = global_index++;\n}\n\nint main(){\n\n\tscanf(\"%d %d\",&N,&E);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tboss[i] = i;\n\t\theight[i] = 0;\n\t}\n\n\tint from,to;\n\n\tfor(int i = 0; i < E; i++){\n\t\tscanf(\"%d %d\",&from,&to);\n\t\tfrom--;\n\t\tto--;\n\n\t\tscc_G[from].push_back(to);\n\t\treverse_scc_G[to].push_back(from);\n\t}\n\n\tfor(int i = 0; i < N; i++)check[i] = false;\n\n\t//まずは帰りがけ順を計算\n\tfor(int i = 0; i < N;i++){\n\t\tif(!check[i])scc_dfs(i);\n\t}\n\n\tfor(int i = 0; i < N;i++)check[i] = false;\n\tfor(int i = 0; i < SIZE; i++)group[i].nodes.clear();\n\n\tgroup_index = -1;\n\t//ノードを、帰りがけ順の逆順に、各強連結成分(グループ)に分解\n\twhile(!S.empty()){\n\t\tif(!check[S.top()]){\n\t\t\tgroup_index++;\n\n\t\t\treverse_scc_dfs(S.top());\n\t\t}\n\t\tS.pop();\n\t}\n\n\n\tfor(int i = 0; i <= group_index; i++){\n\t\tfor(int k = 0; k < group[i].nodes.size(); k++){\n\t\t\tfor(int p = 0; p < scc_G[group[i].nodes[k]].size(); p++){\n\t\t\t\tint next_group = table[scc_G[group[i].nodes[k]][p]];\n\t\t\t\tif(next_group != i){\n\t\t\t\t\tG[i].push_back(next_group);\n\t\t\t\t\tunite(i,next_group);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i <= group_index; i++){\n\t\tif(G[i].size() == 0)continue;\n\n\t\tsort(G[i].begin(),G[i].end());\n\t\tG[i].erase(unique(G[i].begin(),G[i].end()),G[i].end());\n\t}\n\n\tfor(int i = 0; i <= group_index; i++){\n\n\t\tvisited[i] = false;\n\t}\n\tfor(int i = 0; i <= group_index; i++){\n\t\tif(!visited[i]){\n\t\t\tglobal_index = 0;\n\t\t\teuler_tour(i,-1);\n\t\t}\n\t}\n\n\tint num_query;\n\tscanf(\"%d\",&num_query);\n\n\tint current = 0;\n\tint command,loc;\n\n\tfor(int loop = 0; loop < num_query; loop++){\n\n\t\tscanf(\"%d %d\",&command,&loc);\n\t\tloc--;\n\n\t\tif(command == 1){\n\n\t\t\tcurrent = loc;\n\n\t\t}else{\n\n\t\t\tint from_group = table[loc];\n\t\t\tint to_group = table[current];\n\n\t\t\tif(!isSame(from_group,to_group)){\n\n\t\t\t\tprintf(\"NO\\n\");\n\n\t\t\t}else{\n\n\t\t\t\tif(from_group == to_group){\n\n\t\t\t\t\tprintf(\"YES\\n\");\n\t\t\t\t}else{\n\n\t\t\t\t\tif(LEFT[from_group] < LEFT[to_group] && RIGHT[from_group] > RIGHT[to_group]){\n\n\t\t\t\t\t\tprintf(\"YES\\n\");\n\t\t\t\t\t}else{\n\n\t\t\t\t\t\tprintf(\"NO\\n\");\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\treturn 0;\n}", "accuracy": 0.17073170731707318, "time_ms": 60, "memory_kb": 45564, "score_of_the_acc": -1.2222, "final_rank": 17 }, { "submission_id": "aoj_3160_4893215", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing LL = long long int;\n#define incII(i, l, r) for(LL i = (l) ; i <= (r); i++)\n#define incIX(i, l, r) for(LL i = (l) ; i < (r); i++)\n#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)\n#define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++)\n#define decII(i, l, r) for(LL i = (r) ; i >= (l); i--)\n#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)\n#define decXI(i, l, r) for(LL i = (r) ; i > (l); i--)\n#define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--)\n#define inc(i, n) incIX(i, 0, n)\n#define dec(i, n) decIX(i, 0, n)\n#define inc1(i, n) incII(i, 1, n)\n#define dec1(i, n) decII(i, 1, n)\nauto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };\nauto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); };\nauto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); };\nauto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); };\nauto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); };\nauto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); };\nauto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };\nauto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };\n#define PB push_back\n#define EB emplace_back\n#define MP make_pair\n#define MT make_tuple\n#define FI first\n#define SE second\n#define FR front()\n#define BA back()\n#define ALL(c) c.begin(), c.end()\n#define RALL(c) c.rbegin(), c.rend()\n#define RV(c) reverse(ALL(c))\n#define SC static_cast\n#define SI(c) SC<int>(c.size())\n#define SL(c) SC<LL >(c.size())\n#define RF(e, c) for(auto & e: c)\n#define SF(c, ...) for(auto & [__VA_ARGS__]: c)\n#define until(e) while(! (e))\n#define if_not(e) if(! (e))\n#define ef else if\n#define UR assert(false)\nauto * IS = & cin;\nauto * OS = & cout;\narray<string, 3> SEQ = { \"\", \" \", \"\" };\n// input\ntemplate<typename T> T in() { T a; (* IS) >> a; return a; }\n// input: tuple\ntemplate<int I, typename U> void tin_(istream & is, U & t) {\n\tif constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); }\n}\ntemplate<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; }\ntemplate<typename ... T> auto tin() { return in<tuple<T ...>>(); }\n// input: array\ntemplate<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; }\ntemplate<typename T, size_t N> auto ain() { return in<array<T, N>>(); }\n// input: multi-dimensional vector\ntemplate<typename T> T vin() { T v; (* IS) >> v; return v; }\ntemplate<typename T, typename N, typename ... M> auto vin(N n, M ... m) {\n\tvector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;\n}\n// input: multi-column (tuple<vector>)\ntemplate<typename U, int I> void colin_([[maybe_unused]] U & t) { }\ntemplate<typename U, int I, typename A, typename ... B> void colin_(U & t) {\n\tget<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);\n}\ntemplate<typename ... T> auto colin(int n) {\n\ttuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;\n}\n// output\nvoid out_([[maybe_unused]] string s) { }\ntemplate<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }\ntemplate<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }\nauto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };\nauto out = [](auto ... a) { outF(\"\", \" \" , \"\\n\", a ...); };\nauto outS = [](auto ... a) { outF(\"\", \" \" , \" \" , a ...); };\nauto outL = [](auto ... a) { outF(\"\", \"\\n\", \"\\n\", a ...); };\nauto outN = [](auto ... a) { outF(\"\", \"\" , \"\" , a ...); };\n// output: multi-dimensional vector\ntemplate<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {\n\tos << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? \"\" : SEQ[1]) << v[i]; } return (os << SEQ[2]);\n}\ntemplate<typename T> void vout_(T && v) { (* OS) << v; }\ntemplate<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {\n\tinc(i, SI(v)) { (* OS) << (i == 0 ? \"\" : a); vout_(v[i], b ...); }\n}\ntemplate<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }\ntemplate<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; }\n\n// ---- ----\n\nint main() {\n\tauto [n, m] = ain<int, 2>();\n\tvector<vector<int>> g(n);\n\tinc(i, m) {\n\t\tauto [a, b] = ain<int, 2>();\n\t\ta--; b--;\n\t\tg[b].PB(a);\n\t}\n\t\n\tvector<bool> r(n, false);\n\tfunction<void(int)> dfs = [&](int v) {\n\t\tif(r[v]) { return; }\n\t\tr[v] = true;\n\t\tRF(e, g[v]) { dfs(e); }\n\t};\n\tdfs(0);\n\t\n\tvector<string> ans;\n\tauto Q = in<int>();\n\tinc(q, Q) {\n\t\tauto [x, y] = ain<int, 2>();\n\t\ty--;\n\t\tif(x == 1) {\n\t\t\tdfs(y);\n\t\t} else {\n\t\t\tans.PB(r[y] ? \"YES\" : \"NO\");\n\t\t}\n\t}\n\tvout(ans, \"\\n\");\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 19012, "score_of_the_acc": -0.672, "final_rank": 8 }, { "submission_id": "aoj_3160_4893208", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing LL = long long int;\n#define incII(i, l, r) for(LL i = (l) ; i <= (r); i++)\n#define incIX(i, l, r) for(LL i = (l) ; i < (r); i++)\n#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)\n#define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++)\n#define decII(i, l, r) for(LL i = (r) ; i >= (l); i--)\n#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)\n#define decXI(i, l, r) for(LL i = (r) ; i > (l); i--)\n#define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--)\n#define inc(i, n) incIX(i, 0, n)\n#define dec(i, n) decIX(i, 0, n)\n#define inc1(i, n) incII(i, 1, n)\n#define dec1(i, n) decII(i, 1, n)\nauto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };\nauto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); };\nauto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); };\nauto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); };\nauto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); };\nauto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); };\nauto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };\nauto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };\n#define PB push_back\n#define EB emplace_back\n#define MP make_pair\n#define MT make_tuple\n#define FI first\n#define SE second\n#define FR front()\n#define BA back()\n#define ALL(c) c.begin(), c.end()\n#define RALL(c) c.rbegin(), c.rend()\n#define RV(c) reverse(ALL(c))\n#define SC static_cast\n#define SI(c) SC<int>(c.size())\n#define SL(c) SC<LL >(c.size())\n#define RF(e, c) for(auto & e: c)\n#define SF(c, ...) for(auto & [__VA_ARGS__]: c)\n#define until(e) while(! (e))\n#define if_not(e) if(! (e))\n#define ef else if\n#define UR assert(false)\nauto * IS = & cin;\nauto * OS = & cout;\narray<string, 3> SEQ = { \"\", \" \", \"\" };\n// input\ntemplate<typename T> T in() { T a; (* IS) >> a; return a; }\n// input: tuple\ntemplate<int I, typename U> void tin_(istream & is, U & t) {\n\tif constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); }\n}\ntemplate<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; }\ntemplate<typename ... T> auto tin() { return in<tuple<T ...>>(); }\n// input: array\ntemplate<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; }\ntemplate<typename T, size_t N> auto ain() { return in<array<T, N>>(); }\n// input: multi-dimensional vector\ntemplate<typename T> T vin() { T v; (* IS) >> v; return v; }\ntemplate<typename T, typename N, typename ... M> auto vin(N n, M ... m) {\n\tvector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;\n}\n// input: multi-column (tuple<vector>)\ntemplate<typename U, int I> void colin_([[maybe_unused]] U & t) { }\ntemplate<typename U, int I, typename A, typename ... B> void colin_(U & t) {\n\tget<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);\n}\ntemplate<typename ... T> auto colin(int n) {\n\ttuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;\n}\n// output\nvoid out_([[maybe_unused]] string s) { }\ntemplate<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }\ntemplate<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }\nauto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };\nauto out = [](auto ... a) { outF(\"\", \" \" , \"\\n\", a ...); };\nauto outS = [](auto ... a) { outF(\"\", \" \" , \" \" , a ...); };\nauto outL = [](auto ... a) { outF(\"\", \"\\n\", \"\\n\", a ...); };\nauto outN = [](auto ... a) { outF(\"\", \"\" , \"\" , a ...); };\n// output: multi-dimensional vector\ntemplate<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {\n\tos << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? \"\" : SEQ[1]) << v[i]; } return (os << SEQ[2]);\n}\ntemplate<typename T> void vout_(T && v) { (* OS) << v; }\ntemplate<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {\n\tinc(i, SI(v)) { (* OS) << (i == 0 ? \"\" : a); vout_(v[i], b ...); }\n}\ntemplate<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }\ntemplate<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; }\n\n// ---- ----\n\nint main() {\n\tauto [n, m] = ain<int, 2>();\n\tvector<vector<int>> g(n);\n\tinc(i, m) {\n\t\tauto [a, b] = ain<int, 2>();\n\t\ta--; b--;\n\t\tg[b].PB(a);\n\t}\n\t\n\tvector<bool> r(n, false);\n\tr[0] = true;\n\tfunction<void(int)> dfs = [&](int v) {\n\t\tif(r[v]) { return; }\n\t\tr[v] = true;\n\t\tRF(e, g[v]) { dfs(e); }\n\t};\n\t\n\tvector<string> ans;\n\tauto Q = in<int>();\n\tinc(q, Q) {\n\t\tauto [x, y] = ain<int, 2>();\n\t\ty--;\n\t\tif(x == 1) {\n\t\t\tdfs(y);\n\t\t} else {\n\t\t\tans.PB(r[y] ? \"YES\" : \"NO\");\n\t\t}\n\t}\n\tvout(ans, \"\\n\");\n}", "accuracy": 0.14634146341463414, "time_ms": 60, "memory_kb": 8528, "score_of_the_acc": -0.2222, "final_rank": 20 }, { "submission_id": "aoj_3160_4880238", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\nstruct SCC {\n int V;\n vector<vector<int>> G, rG;\n vector<int> vs; // 帰りがけ順の並び\n vector<int> cmp; //属する強連結成分トポロジカル順序\n vector<bool> used;\n\n SCC() {}\n SCC(int n) {\n V = n;\n G = vector<vector<int>>(n);\n rG = vector<vector<int>>(n);\n }\n\n void add_edge(int from, int to) {\n G[from].push_back(to);\n rG[to].push_back(from);\n }\n\n void dfs(int v) {\n used[v] = true;\n rep(i, G[v].size()) if (!used[G[v][i]]) dfs(G[v][i]);\n vs.push_back(v);\n }\n\n void rdfs(int v, int k) {\n used[v] = true;\n cmp[v] = k;\n rep(i, rG[v].size()) if (!used[rG[v][i]]) rdfs(rG[v][i], k);\n }\n\n int scc() {\n used = vector<bool>(V, false);\n vs.clear();\n rep(i, V) if (!used[i]) dfs(i);\n\n used = vector<bool>(V, false);\n cmp = vector<int>(V);\n int num_scc = 0;\n for (int i = vs.size() - 1; i >= 0; --i)\n if (!used[vs[i]]) rdfs(vs[i], num_scc++);\n return num_scc;\n }\n};\n\nint main() {\n int n, m;\n cin >> n >> m;\n\n SCC s(n);\n\n vector<int> a(m), b(m);\n rep(i, m) {\n cin >> a[i] >> b[i];\n --a[i];\n --b[i];\n s.add_edge(a[i], b[i]);\n }\n\n const int V = s.scc();\n vector<vector<int>> rG(V);\n rep(i, m) {\n int u = s.cmp[a[i]], v = s.cmp[b[i]];\n if (u != v) rG[v].pb(u);\n }\n\n vector<bool> vis(V);\n auto MOVE = [&](int x) {\n if (vis[x]) return;\n vis[x] = true;\n queue<int> que({x});\n while (!que.empty()) {\n int v = que.front();\n que.pop();\n for (int e : rG[v])\n if (!vis[e]) {\n vis[e] = true;\n que.push(e);\n }\n }\n };\n\n MOVE(s.cmp[0]);\n\n int q;\n cin >> q;\n rep(qi, q) {\n int x, y;\n cin >> x >> y;\n --y;\n if (x == 1)\n MOVE(s.cmp[y]);\n else\n cout << (vis[s.cmp[y]] ? \"YES\" : \"NO\") << \"\\n\";\n }\n return 0;\n}", "accuracy": 1, "time_ms": 200, "memory_kb": 34960, "score_of_the_acc": -1.7137, "final_rank": 15 }, { "submission_id": "aoj_3160_4861053", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint n, m, q;\nvector<vector<int>> g, rg;\nvector<bool> reachable;\n\nvoid update(int x);\n\nint main() {\n cin >> n >> m;\n g.resize(n);\n rg.resize(n);\n for (int i = 0; i < m; ++i) {\n int a, b;\n cin >> a >> b;\n g[--a].push_back(--b);\n rg[b].push_back(a);\n }\n reachable.assign(n, 0);\n update(0);\n cin >> q;\n while (q--) {\n int x, y;\n cin >> x >> y;\n --x, --y;\n if (x)\n cout << (reachable[y] ? \"YES\" : \"NO\") << endl;\n else\n update(y);\n }\n return 0;\n}\n\nvoid update(int x) {\n queue<int> qu;\n qu.push(x);\n if (reachable[x]) return;\n reachable[x] = 1;\n while (qu.size()) {\n int now = qu.front();\n qu.pop();\n reachable[now] = 1;\n for (auto to : rg[now])\n if (!reachable[to]) {\n reachable[to] = 1;\n qu.push(to);\n }\n }\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 21480, "score_of_the_acc": -1.0164, "final_rank": 12 }, { "submission_id": "aoj_3160_4850124", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << '\\n';\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const T &a) {\n for (auto e : a) cout << e << ' ';\n cout << '\\n';\n}\n\n//------------------------- Libraries -------------------------//\n\n//--------------------------- Solve ---------------------------//\n\nusing Graph = vector<vector<int> >;\n\nint N, M;\nvector<bool> reach;\nGraph g;\n\nvoid dfs(int v) {\n reach[v] = true;\n for (int e : g[v]) {\n if (!reach[e]) dfs(e);\n }\n}\n\nvoid solve() {\n cin >> N >> M;\n g.resize(N);\n reach.resize(N);\n for (int i = 0; i < M; i++) {\n int a, b; cin >> a >> b;\n a--; b--;\n g[b].push_back(a);\n }\n\n reach[0] = true;\n dfs(0);\n\n int Q; cin >> Q;\n while (Q--) {\n int x, y; cin >> x >> y;\n y--;\n if (x == 1) {\n if (!reach[y]) dfs(y);\n }\n else if (x == 2) {\n if (reach[y]) cout << \"YES\" << '\\n';\n else cout << \"NO\" << '\\n';\n }\n }\n}\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 12296, "score_of_the_acc": -0.1573, "final_rank": 1 }, { "submission_id": "aoj_3160_4850121", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << '\\n';\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const T &a) {\n for (auto e : a) cout << e << ' ';\n cout << '\\n';\n}\n\n//------------------------- Libraries -------------------------//\n\n//--------------------------- Solve ---------------------------//\n\nusing Graph = vector<vector<int> >;\n\nint N, M;\nvector<bool> reach;\nGraph g;\n\nvoid dfs(int v) {\n if (reach[v]) return;\n reach[v] = true;\n for (int e : g[v]) {\n if (!reach[e]) dfs(e);\n }\n}\n\nvoid solve() {\n cin >> N >> M;\n g.resize(N);\n reach.resize(N);\n for (int i = 0; i < M; i++) {\n int a, b; cin >> a >> b;\n a--; b--;\n g[b].push_back(a);\n }\n\n reach[0] = true;\n dfs(0);\n \n int Q; cin >> Q;\n while (Q--) {\n int x, y; cin >> x >> y;\n y--;\n if (x == 1) {\n dfs(y);\n }\n else if (x == 2) {\n if (reach[y]) cout << \"YES\" << '\\n';\n else cout << \"NO\" << '\\n';\n }\n }\n}\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 0.14634146341463414, "time_ms": 20, "memory_kb": 8696, "score_of_the_acc": -0.0045, "final_rank": 18 } ]
aoj_3158_cpp
Problem H: RGBtree Problem $N$ 頂点 $N-1$ 辺からなる木があり、頂点には $1,2,\ldots,N$ の番号が、辺には $1,2,\ldots,N-1$ の番号がついており、 $i$ 番目の辺は頂点 $a_i$ と 頂点 $b_i$ を繋ぎます。 カトー君は、赤、緑、青の三色を用いてこの木の全ての頂点に色をつけます。 以下、'R' で赤、'G' で緑、'B' で青を表します。 あるパスに含まれる赤色で塗られた頂点の個数を $r$ 、緑色で塗られた頂点の個数を $g$ 、青色で塗られた頂点の個数を $b$ としたとき、 $\max (r,g,b)$ をそのパスのペナルティと定義します。 木全体のペナルティを「その木に含まれる、全てのパスのペナルティの最大値」と定義します。 あなたは、与えられた木に適切に色をつけた場合ペナルティの最小値はいくつになるか、カトー君の代わりに計算してあげることにしました。 ペナルティの最小値を求めてください。 また、そのペナルティを実現する色のつけ方を1つ求めてください。 複数の色のつけ方が存在する場合、どれを出力しても構いません。 Constraints 入力は以下の条件を満たす。 $1 \leqq N \leqq 2 \times 10^{5}$ $1 \leqq a_i, b_i \leqq N$ 与えられるグラフは木であることが保証される。 入力は全て整数である。 Input 入力は以下の形式で標準入出力から与えられる。 $N$ $a_1$ $b_1$ $a_2$ $b_2$ $\vdots$ $a_{N-1}$ $b_{N-1}$ Output 非負整数 $X$ 、文字列 $S$ を以下の形式で出力せよ。 ただし、 $X$ は達成可能な木全体のペナルティの最小値である。 $S$ は $i$ 文字目 $(1 \leqq i \leqq N)$ が頂点 $i$ の色を表す、ペナルティ $X$ を達成する塗り方を表す長さ $N$ の文字列である。 $S$ は、'R','G','B' の文字以外を含んではならない。 $X$ $S$ 末尾の改行を忘れないこと。 Sample Input 1 4 1 2 2 3 3 4 Sample Output 1 2 RGBR この塗り方では、頂点1から頂点4までのパスのペナルティが一番大きく、最も多く含まれるのは 'R' で2個です。 よって、この木のペナルティは2で、これ以上ペナルティを小さくすることはできないため、 $X=2$ が答えになります。 $S$ としては他にも、 "RRBG" や "GGBB" といったものが正解として考えられます。 Sample Input 2 6 1 2 2 3 2 4 4 5 4 6 Sample Output 2 2 RGBRGB どのように色を塗ってもペナルティを2より小さくすることはできません。 $S$ としては他にも、 "RRGGBB" といったものが正解として考えられます。
[ { "submission_id": "aoj_3158_4861050", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint n;\nvector<vector<int>> g;\nstring res, col = \"RGB\";\n\nvector<int> search_diameter();\nvoid mod_coloring(int now, int par, int dist, int ad = 1);\nint calc_dist(int now, int par, int dist);\nint solve();\n\nint main() {\n cin >> n;\n g.resize(n);\n res = string(n, '-');\n for (int i = 1; i < n; ++i) {\n int a, b;\n cin >> a >> b;\n g[--a].push_back(--b);\n g[b].push_back(a);\n }\n cout << solve() << endl;\n cout << res << endl;\n return 0;\n}\n\nvector<int> search_diameter() {\n vector<int> par;\n int root = 0;\n for (int i = 0; i < 2; ++i) {\n queue<int> qu;\n qu.push(root);\n par.assign(n, -2);\n par[root] = -1;\n while (qu.size()) {\n int now = qu.front();\n root = now;\n qu.pop();\n for (auto to : g[now])\n if (par[to] == -2) {\n par[to] = now;\n qu.push(to);\n }\n }\n }\n vector<int> v;\n while (root != -1) {\n v.push_back(root);\n root = par[root];\n }\n return v;\n}\n\nvoid mod_coloring(int now, int par, int dist, int ad) {\n res[now] = col[dist];\n for (auto to : g[now])\n if (to != par) mod_coloring(to, now, (dist + ad + 3) % 3, ad);\n}\n\nint calc_dist(int now, int par, int dist) {\n int res = dist;\n for (auto to : g[now])\n if (to != par) res = max(res, calc_dist(to, now, dist + 1));\n return res;\n}\n\nint solve() {\n auto dpath = search_diameter();\n int d = dpath.size();\n if (d & 1) {\n if (d % 3) {\n mod_coloring(0, -1, 0);\n return (d + 2) / 3;\n } else { // check\n int cnt = 0, root = dpath[d / 2];\n mod_coloring(root, -1, 0);\n mod_coloring(dpath[d / 2 - 1], root, 2, -1);\n for (auto to : g[root])\n if (calc_dist(to, root, 1) == d / 2) ++cnt;\n return (d + 2 + (cnt >= 3)) / 3;\n }\n } else {\n mod_coloring(dpath[d / 2], dpath[d / 2 - 1], 0);\n mod_coloring(dpath[d / 2 - 1], dpath[d / 2], 2, -1);\n return (d + 2) / 3;\n }\n return -1;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 27628, "score_of_the_acc": -0.1837, "final_rank": 2 }, { "submission_id": "aoj_3158_4835731", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\n#define all(v) v.begin(),v.end()\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=1e9+7;\ntemplate<class T> void chmin(T &a,const T &b){if(a>b) a=b;}\ntemplate<class T> void chmax(T &a,const T &b){if(a<b) a=b;}\n\nint N;\nvector<vector<int>> g;\n\nint findFar(int st){\n queue<int> Q;\n vector<int> dist(N,MOD);\n dist[st]=0;\n Q.push(st);\n while(!Q.empty()){\n int now=Q.front();Q.pop();\n for(auto nex:g[now]){\n if(dist[nex]==MOD){\n dist[nex]=dist[now]+1;\n Q.push(nex);\n }\n }\n }\n int fat=0;\n rep(i,N) if(dist[i]>dist[fat]) fat=i;\n return fat;\n}\n\nbool dfs(int now,int par,int goal,vector<int> &v){\n if(now==goal){\n v.push_back(now);\n return true;\n }\n for(auto nex:g[now]) if(nex!=par){\n if(dfs(nex,now,goal,v)){\n v.push_back(now);\n return true;\n }\n }\n return false;\n}\n\nvector<int> getDiameter(){\n int st=findFar(0);\n st=findFar(st);\n int ed=findFar(st);\n vector<int> path;\n dfs(st,-1,ed,path);\n return path;\n}\n\nvector<int> getdist(int st,int ed){\n vector<int> dist(N,MOD);\n dist[st]=0;\n dist[ed]=0;\n queue<int> Q;\n Q.push(st);\n if(ed!=st) Q.push(ed);\n while(!Q.empty()){\n int now=Q.front();Q.pop();\n for(auto nex:g[now]){\n if(dist[nex]==MOD){\n dist[nex]=dist[now]+1;\n Q.push(nex);\n }\n }\n }\n return dist;\n}\n\nbool dfs(int now,int par,int d,int goal){\n if(d==goal) return true;\n for(auto nex:g[now]){\n if(nex!=par){\n if(dfs(nex,now,d+1,goal)) return true;\n }\n }\n return false;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n cin>>N;\n g.resize(N);\n rep(i,N-1){\n int a,b;\n cin>>a>>b;\n a--;b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n\n vector<int> diameter=getDiameter();\n int D=diameter.size();\n if(D%3){\n int st=diameter[D/2];\n vector<int> dist=getdist(st,st);\n\n string ans=\"\";\n rep(i,N){\n dist[i]%=3;\n if(dist[i]==0) ans+='R';\n else if(dist[i]==1) ans+='G';\n else ans+='B';\n }\n cout<<D/3+1<<\"\\n\";\n cout<<ans<<\"\\n\";\n return 0;\n }\n\n if(D%2==0){\n int st=diameter[D/2-1];\n int ed=diameter[D/2];\n vector<int> dist=getdist(st,ed);\n\n string ans=\"\";\n rep(i,N){\n dist[i]%=3;\n if(dist[i]==0) ans+='R';\n else if(dist[i]==1) ans+='G';\n else ans+='B';\n }\n cout<<D/3<<\"\\n\";\n cout<<ans<<\"\\n\";\n return 0;\n }\n\n {\n int st=diameter[D/2];\n vector<int> dist=getdist(st,st);\n int ma=*max_element(all(dist));\n\n int masubg=0;\n for(auto nex:g[st]){\n if(dfs(nex,st,1,ma)) masubg++;\n }\n\n if(masubg>2){\n cout<<D/3+1<<\"\\n\";\n\n st=diameter[D/2];\n dist=getdist(st,st);\n\n string ans=\"\";\n rep(i,N){\n dist[i]%=3;\n if(dist[i]==0) ans+='R';\n else if(dist[i]==1) ans+='G';\n else ans+='B';\n }\n cout<<ans<<\"\\n\";\n return 0;\n }else{\n cout<<D/3<<\"\\n\";\n\n st=diameter[D/2];\n int fir=diameter[D/2-1];\n int sec=diameter[D/2+1];\n vector<int> dist(N,MOD);\n queue<int> Q;\n Q.push(st);Q.push(fir);Q.push(sec);\n dist[st]=0;dist[fir]=1;dist[sec]=2;\n while(!Q.empty()){\n int now=Q.front();\n Q.pop();\n for(auto nex:g[now]){\n if(dist[nex]==MOD){\n dist[nex]=dist[now]+1;\n dist[nex]%=3;\n Q.push(nex);\n }\n }\n }\n\n string ans=\"\";\n rep(i,N){\n dist[i]%=3;\n if(dist[i]==0) ans+='R';\n else if(dist[i]==1) ans+='G';\n else ans+='B';\n }\n cout<<ans<<\"\\n\";\n }\n return 0;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 28428, "score_of_the_acc": -0.2034, "final_rank": 5 }, { "submission_id": "aoj_3158_4835724", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\n#define all(v) v.begin(),v.end()\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=1e9+7;\ntemplate<class T> void chmin(T &a,const T &b){if(a>b) a=b;}\ntemplate<class T> void chmax(T &a,const T &b){if(a<b) a=b;}\n\nint N;\nvector<vector<int>> g;\n\nint findFar(int st){\n queue<int> Q;\n vector<int> dist(N,MOD);\n dist[st]=0;\n Q.push(st);\n while(!Q.empty()){\n int now=Q.front();Q.pop();\n for(auto nex:g[now]){\n if(dist[nex]==MOD){\n dist[nex]=dist[now]+1;\n Q.push(nex);\n }\n }\n }\n int fat=0;\n rep(i,N) if(dist[i]>dist[fat]) fat=i;\n return fat;\n}\n\nbool dfs(int now,int par,int goal,vector<int> &v){\n if(now==goal){\n v.push_back(now);\n return true;\n }\n for(auto nex:g[now]) if(nex!=par){\n if(dfs(nex,now,goal,v)){\n v.push_back(now);\n return true;\n }\n }\n return false;\n}\n\nvector<int> getDiameter(){\n int st=findFar(0);\n st=findFar(st);\n int ed=findFar(st);\n vector<int> path;\n dfs(st,-1,ed,path);\n return path;\n}\n\nvector<int> getdist(int st,int ed){\n vector<int> dist(N,MOD);\n dist[st]=0;\n dist[ed]=0;\n queue<int> Q;\n Q.push(st);\n if(ed!=st) Q.push(ed);\n while(!Q.empty()){\n int now=Q.front();Q.pop();\n for(auto nex:g[now]){\n if(dist[nex]==MOD){\n dist[nex]=dist[now]+1;\n Q.push(nex);\n }\n }\n }\n return dist;\n}\n\nbool dfs(int now,int par,int d,int goal){\n if(d==goal) return true;\n for(auto nex:g[now]){\n if(nex!=par){\n if(dfs(nex,now,d+1,goal)) return true;\n }\n }\n return false;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n cin>>N;\n g.resize(N);\n rep(i,N-1){\n int a,b;\n cin>>a>>b;\n a--;b--;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n\n vector<int> diameter=getDiameter();\n int D=diameter.size();\n\n if(D%3){\n int st=diameter[D/2];\n vector<int> dist=getdist(st,st);\n\n string ans=\"\";\n rep(i,N){\n dist[i]%=3;\n if(dist[i]==0) ans+='R';\n else if(dist[i]==1) ans+='G';\n else ans+='B';\n }\n cout<<D/3+1<<\"\\n\";\n cout<<ans<<\"\\n\";\n return 0;\n }\n\n if(D%2==0){\n int st=diameter[D/2-1];\n int ed=diameter[D/2];\n vector<int> dist(N,MOD);\n dist[st]=0;dist[ed]=2;\n queue<int> Q;\n Q.push(st);\n while(!Q.empty()){\n int now=Q.front();\n Q.pop();\n for(auto nex:g[now]){\n if(dist[nex]==MOD){\n dist[nex]=dist[now]+1;\n dist[nex]%=3;\n Q.push(nex);\n }\n }\n }\n Q.push(ed);\n while(!Q.empty()){\n int now=Q.front();\n Q.pop();\n for(auto nex:g[now]){\n if(dist[nex]==MOD){\n dist[nex]=dist[now]-1;\n dist[nex]+=3;\n dist[nex]%=3;\n Q.push(nex);\n }\n }\n }\n\n string ans=\"\";\n rep(i,N){\n dist[i]%=3;\n if(dist[i]==0) ans+='R';\n else if(dist[i]==1) ans+='G';\n else ans+='B';\n }\n cout<<D/3<<\"\\n\";\n cout<<ans<<\"\\n\";\n return 0;\n }\n\n {\n int st=diameter[D/2];\n vector<int> dist=getdist(st,st);\n int ma=*max_element(all(dist));\n\n int masubg=0;\n for(auto nex:g[st]){\n if(dfs(nex,st,1,ma)) masubg++;\n }\n\n if(masubg>2){\n cout<<D/3+1<<\"\\n\";\n\n st=diameter[D/2];\n dist=getdist(st,st);\n\n string ans=\"\";\n rep(i,N){\n dist[i]%=3;\n if(dist[i]==0) ans+='R';\n else if(dist[i]==1) ans+='G';\n else ans+='B';\n }\n cout<<ans<<\"\\n\";\n return 0;\n }else{\n cout<<D/3<<\"\\n\";\n\n st=diameter[D/2];\n int fir=diameter[D/2-1];\n int sec=diameter[D/2+1];\n vector<int> dist(N,MOD);\n queue<int> Q;\n Q.push(st);Q.push(fir);\n dist[st]=0;dist[fir]=1;\n dist[sec]=2;\n while(!Q.empty()){\n int now=Q.front();\n Q.pop();\n for(auto nex:g[now]){\n if(dist[nex]==MOD){\n dist[nex]=dist[now]+1;\n dist[nex]%=3;\n Q.push(nex);\n }\n }\n }\n\n Q.push(sec);\n dist[sec]=2;\n while(!Q.empty()){\n int now=Q.front();\n Q.pop();\n for(auto nex:g[now]){\n if(dist[nex]==MOD){\n dist[nex]=dist[now]-1;\n dist[nex]+=3;\n dist[nex]%=3;\n Q.push(nex);\n }\n }\n }\n\n string ans=\"\";\n rep(i,N){\n dist[i]%=3;\n if(dist[i]==0) ans+='R';\n else if(dist[i]==1) ans+='G';\n else ans+='B';\n }\n cout<<ans<<\"\\n\";\n }\n return 0;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 28416, "score_of_the_acc": -0.1977, "final_rank": 3 }, { "submission_id": "aoj_3158_4834902", "code_snippet": "//#define _GLIBCXX_DEBUG\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define endl '\\n'\n#define lfs cout<<fixed<<setprecision(10)\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n#define spa << \" \" <<\n#define fi first\n#define se second\n#define MP make_pair\n#define MT make_tuple\n#define PB push_back\n#define EB emplace_back\n#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)\n#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)\nusing ll = long long;\nusing ld = long double;\nconst ll MOD1 = 1e9+7;\nconst ll MOD9 = 998244353;\nconst ll INF = 1e18;\nusing P = pair<ll, ll>;\ntemplate<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}\ntemplate<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}\nll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}\nvoid ans1(bool x){if(x) cout<<\"Yes\"<<endl;else cout<<\"No\"<<endl;}\nvoid ans2(bool x){if(x) cout<<\"YES\"<<endl;else cout<<\"NO\"<<endl;}\nvoid ans3(bool x){if(x) cout<<\"Yay!\"<<endl;else cout<<\":(\"<<endl;}\ntemplate<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} \ntemplate<typename T>void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};\nvoid debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++){for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};\ntemplate<typename T>void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};\ntemplate<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}\nll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}\nvector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};\ntemplate<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}\ntemplate<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}\ntemplate<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << \" \" << p.second;}\ntemplate<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << \" \";cout<<\"|\"; return os;}\n//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());\nstruct edge{\n ll to=-1,cost=0;\n edge(){};\n edge(ll t,ll c):to(t),cost(c){};\n};\nstruct HLD{\n ll n, root;\n ll cnt = 0;\n vector<ll>sz;//部分木サイズ\n vector<ll>par,head;\n vector<vector<struct edge>>g;//隣接リスト\n vector<struct edge>edges;//データ構造に乗せるedge列\n vector<ll>in,out;//[in,out)で部分木、[ina,inb]でa~bのパス(aが上)\n //inは頂点のindexを表す。また、edge列の下側の頂点である\n HLD(vector<vector<struct edge>>&G,ll r = -1)\n :g(G),n(G.size()),root(r){\n par.assign(n,-1),in.assign(n,-1);\n out.assign(n,-1),head.assign(n,-1),sz.assign(n,-1);\n edges.assign(n,edge());\n dfs_build();\n }\n void dfs_build(){\n if(root == -1){//根がどこでも良い場合(森でも可)\n for(ll i=0;i<n;i++){\n if(sz[i] == -1){\n head[i] = i;\n dfs_sz(i);\n dfs_hld(i);\n }\n }\n }\n else{\n head[root] = root;\n dfs_sz(root);\n dfs_hld(root);\n }\n }\n void dfs_sz(ll k){\n sz[k] = 1;\n for(auto &e: g[k]){\n if(e.to == par[k])continue;\n par[e.to] = k;\n dfs_sz(e.to);\n sz[k] += sz[e.to];\n if(sz[e.to] > sz[g[k][0].to])swap(e, g[k][0]);\n }\n }\n void dfs_hld(ll k){\n in[k] = cnt++;\n for(auto e:g[k]){\n if(e.to == par[k])continue;\n head[e.to] = (e.to == g[k][0].to ? head[k]: e.to);\n edges[cnt] = e;\n dfs_hld(e.to);\n }\n out[k] = cnt;\n }\n ll lca(ll p,ll q){\n while(1){\n if(in[p] < in[q])swap(p,q);\n if(head[p] == head[q])return q;\n p = par[head[p]];\n }\n }\n vector<pair<ll,ll>>query_path(ll p,ll q,bool isEdge=true){\n ll r=lca(p,q);\n vector<pair<ll,ll>>ret;\n for(ll i=0;i<2;i++){\n if(i == 1)swap(p,q);\n while(1){\n if(isEdge&&p==r)break;\n if(head[p]==head[r]){\n ret.emplace_back(in[r]+(isEdge?1:i),in[p]+1);\n break;\n }\n ret.emplace_back(in[head[p]],in[p]+1);\n p = par[head[p]];\n }\n }\n return ret;\n }\n vector<vector<pair<ll,ll>>>query_order_path(ll p,ll q,bool isEdge=true){\n\t//非可換クエリ用、配列0を順番を反転したデータ構造に、配列1を通常のデータ構造に\n vector<vector<pair<ll,ll>>>ret(2);\n ll r=lca(p,q);\n for(ll i=0;i<2;i++){\n if(i == 1)swap(p,q);\n while(1){\n if(isEdge&&p==r)break;\n if(head[p]==head[r]){\n if(i==0) ret[i].emplace_back(n-(in[p]+1),n-(in[r]+(isEdge?1:i)));\n else ret[i].emplace_back(in[r]+(isEdge?1:i),in[p]+1);\n break;\n }\n if(i==0) ret[i].emplace_back(n-(in[p]+1),n-(in[head[p]]));\n else ret[i].emplace_back(in[head[p]],in[p]+1);\n p = par[head[p]];\n }\n }\n reverse(ret[1].begin(), ret[1].end());\n return ret;\n }\n pair<ll,ll>query_subtree(ll p,bool isEdge=true){\n return make_pair(in[p]+isEdge,out[p]);\n }\n};\ntemplate<typename T>\nstruct BIT{\n ll n;\n ll k=1;\n vector<T>data;\n BIT() = default;\n BIT(ll size):n(size){\n data.assign(n,0);\n while(k*2<=n)k*=2;\n }\n void add(ll a,T w){\n for(ll i=a+1;i<=n;i+=i&-i)data[i-1]+=w;\n }\n T sum(ll a){\n\tif(a<0)return 0;\n T ret = 0;\n for(ll i=a+1;i>0;i-=i&-i)ret+=data[i-1];\n return ret;\n }\n T sum(ll a,ll b){return a>b?0:sum(b)-sum(a-1);}\n T operator[](ll pos){\n return sum(pos,pos);\n }\n ll lower_bound(ll x){\n ll ret=0; \n for(ll i=k;i>0;i/=2){\n if(ret+i<=n&&data[ret+i-1]<x){\n x-=data[ret+i-1];\n ret+=i;\n }\n }\n return ret;\n }\n void print(){\n for(ll i=0;i<n;i++){\n if(i!=0)cout<<\" \";\n cout<<(*this)[i];\n }\n cout<<endl;\n }\n};\nstruct Diameter{\n vector<ll>dep,ret;\n ll n;\n vector<vector<ll>>g;\n ll diam,root,end;\n Diameter(vector<vector<ll>>&G):g(G),n(G.size()){\n dep.assign(n,-1LL);\n dfs(0,0);\n root = max_element(ALL(dep)) - dep.begin();\n fill(ALL(dep),-1LL);\n dfs(root,0);\n end = max_element(ALL(dep)) - dep.begin();\n diam = dep[end];\n }\n void dfs(ll k, ll d){\n dep[k] = d;\n for(auto to:g[k]){\n if(dep[to]==-1)dfs(to,d+1);\n }\n }\n vector<ll>diam_path(){\n vector<ll>tmp;\n dfs2(root,-1,tmp);\n return ret;\n }\n void dfs2(ll k, ll par,vector<ll>&v){\n v.PB(k);\n if(k==end)ret=v;\n for(auto to:g[k]){\n if(par!=to)dfs2(to,k,v);\n }\n v.pop_back();\n }\n};\nint main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n ll res=0,buf=0;\n bool judge = true;\n ll n;cin>>n;\n vector<vector<edge>>g(n);\n vector<vector<ll>>gw(n);\n rep(i,0,n-1){\n ll u,v;cin>>u>>v;u--;v--;\n g[u].EB(v,1);\n g[v].EB(u,1);\n gw[u].PB(v);\n gw[v].PB(u);\n }\n HLD hld(g);\n Diameter dia(gw);\n string s(n,'?');\n string r=\"RGB\";\n vector<BIT<ll>>bit(3,BIT<ll>(n));\n auto vd=dia.diam_path();\n vector<ll>td(n,-1);\n rep(i,0,vd.size()){\n if(i*2<vd.size())td[vd[i]]=0;\n else td[vd[i]]=1;\n }\n //debug(td,n);\n //debug(vd,vd.size());\n {\n\n auto dfs=[&](auto &&f,ll k,ll par,ll d,ll flip)->void{\n s[k]=r[d];\n bit[d].add(hld.in[k],1);\n for(auto to:gw[k]){\n if(to==par)continue;\n if(flip||(td[k]==0&&td[to]==-1))f(f,to,k,(d+2)%3,1);\n else f(f,to,k,(d+1)%3,0);\n }\n };\n dfs(dfs,dia.root,-1,0,0);\n }\n //cout<<dia.root spa dia.end spa dia.diam<<endl;\n rep(i,0,n){\n for(auto to:{dia.root,dia.end}){\n //for(auto to:v){\n auto p=hld.query_path(i,to,false);\n rep(j,0,3){\n ll now=0;\n for(auto z:p)now+=bit[j].sum(z.fi,z.se-1);\n chmax(res,now);\n }\n }\n }\n cout<<res<<endl;\n cout<<s<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 400, "memory_kb": 88128, "score_of_the_acc": -1.0011, "final_rank": 16 }, { "submission_id": "aoj_3158_4834266", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <queue>\nusing namespace std;\nconst int N=200000;\nvector<int> g[N];\nint res[N];\n\nvoid paint_tree(int s,int p,int c,int sn){\n\tres[s]=c;\n\tfor(int t:g[s]){\n\t\tif(t==p)continue;\n\t\tpaint_tree(t,s,(c+sn+3)%3,sn);\n\t}\n}\n\nvoid printres(int n){\n\tfor(int i=0;i<n;i++){\n\t\tif(res[i]==0)printf(\"R\");\n\t\tif(res[i]==1)printf(\"G\");\n\t\tif(res[i]==2)printf(\"B\");\n\t}\n\tprintf(\"\\n\");\n}\n\nint main(){\n\tint n; cin >> n;\n\tfor(int i=1;i<n;i++){\n\t\tint x,y; cin >> x >> y;\n\t\tx--; y--;\n\t\tg[x].push_back(y);\n\t\tg[y].push_back(x);\n\t}\n\tqueue<int> q;\n\tq.push(0);\n\tvector<int> d(n);\n\twhile(q.size()){\n\t\tint s=q.front(); q.pop();\n\t\tfor(int t:g[s]){\n\t\t\tif(t!=0&&d[t]==0){\n\t\t\t\td[t]=d[s]+1;\n\t\t\t\tq.push(t);\n\t\t\t}\n\t\t}\n\t}\n\tint id=-1;\n\tint mx=-1;\n\tfor(int i=0;i<n;i++){\n\t\tif(mx<d[i]){\n\t\t\tmx=d[i];\n\t\t\tid=i;\n\t\t}\n\t}\n\tvector<int> dd(n);\n\tq.push(id);\n\twhile(q.size()){\n\t\tint s=q.front(); q.pop();\n\t\tfor(int t:g[s]){\n\t\t\tif(t!=id&&dd[t]==0){\n\t\t\t\tdd[t]=dd[s]+1;\n\t\t\t\tq.push(t);\n\t\t\t}\n\t\t}\n\t}\n\tint D=*max_element(dd.begin(), dd.end());\n\tD++;\n\tif(D%3){\n\t\tprintf(\"%d\\n\",(D+2)/3);\n\t\tpaint_tree(0,-1,0,1);\n\t\tprintres(n);\n\t}\n\telse{\n\t\tif(D%2==0){\n\t\t\tint jd=-1;\n\t\t\tfor(int i=0;i<n;i++){\n\t\t\t\tif(dd[i]==D-1)jd=i;\n\t\t\t}\n\t\t\tvector<int> ddd(n);\n\t\t\tq.push(jd);\n\t\t\twhile(q.size()){\n\t\t\t\tint s=q.front(); q.pop();\n\t\t\t\tfor(int t:g[s]){\n\t\t\t\t\tif(t!=jd&&ddd[t]==0){\n\t\t\t\t\t\tddd[t]=ddd[s]+1;\n\t\t\t\t\t\tq.push(t);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tfor(int i=0;i<n;i++){\n\t\t\t\tif(dd[i]==D/2-1&&ddd[i]==D/2)id=i;\n\t\t\t\tif(dd[i]==D/2&&ddd[i]==D/2-1)jd=i;\n\t\t\t}\n\t\t\tprintf(\"%d\\n\",D/3);\n\t\t\tpaint_tree(id,jd,0,1);\n\t\t\tpaint_tree(jd,id,2,-1);\n\t\t\tprintres(n);\n\t\t}\n\t\telse{\n\t\t\tint jd=-1;\n\t\t\tfor(int i=0;i<n;i++){\n\t\t\t\tif(dd[i]==D-1)jd=i;\n\t\t\t}\n\t\t\tvector<int> ddd(n);\n\t\t\tq.push(jd);\n\t\t\twhile(q.size()){\n\t\t\t\tint s=q.front(); q.pop();\n\t\t\t\tfor(int t:g[s]){\n\t\t\t\t\tif(t!=jd&&ddd[t]==0){\n\t\t\t\t\t\tddd[t]=ddd[s]+1;\n\t\t\t\t\t\tq.push(t);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tfor(int i=0;i<n;i++){\n\t\t\t\tif(dd[i]==D/2&&ddd[i]==D/2)id=i;\n\t\t\t\td[i]=0;\n\t\t\t}\n\t\t\tq.push(id);\n\t\t\twhile(q.size()){\n\t\t\t\tint s=q.front(); q.pop();\n\t\t\t\tfor(int t:g[s]){\n\t\t\t\t\tif(t!=id&&d[t]==0){\n\t\t\t\t\t\td[t]=d[s]+1;\n\t\t\t\t\t\tq.push(t);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tint cnt=0;\n\t\t\tint DD=*max_element(d.begin(), d.end());\n\t\t\tvector<bool>used(n);\n\t\t\tused[id]=1;\n\t\t\tfor(int s:g[id]){\n\t\t\t\tbool ok=0;\n\t\t\t\tqueue<int> qq;\n\t\t\t\tqq.push(s);\n\t\t\t\twhile(qq.size()){\n\t\t\t\t\tint ss=qq.front(); qq.pop();\n\t\t\t\t\tif(d[ss]==DD)ok=1;\n\t\t\t\t\tused[ss]=1;\n\t\t\t\t\tfor(int t:g[ss]){\n\t\t\t\t\t\tif(!used[t])qq.push(t);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(ok)cnt++;\n\t\t\t}\n\t\t\tif(cnt>=3){\n\t\t\t\tprintf(\"%d\\n\",(D+3)/3);\n\t\t\t\tpaint_tree(0,-1,0,1);\n\t\t\t\tprintres(n);\n\t\t\t}\n\t\t\telse{\n\t\t\t\tint kd=-1;\n\t\t\t\tfor(int i=0;i<n;i++){\n\t\t\t\t\tif(d[i]==1&&ddd[i]+1==ddd[id])kd=i;\n\t\t\t\t}\n\t\t\t\tprintf(\"%d\\n\",D/3);\n\t\t\t\tpaint_tree(id,kd,0,1);\n\t\t\t\tpaint_tree(kd,id,2,-1);\n\t\t\t\tprintres(n);\n\t\t\t}\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 28860, "score_of_the_acc": -0.2246, "final_rank": 6 }, { "submission_id": "aoj_3158_4834124", "code_snippet": "#pragma region Macros\n#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w) \\\n vector<vector<type>> name(h, vector<type>(w)); \\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\nstring YES[2] = {\"NO\", \"YES\"};\nstring Yes[2] = {\"No\", \"Yes\"};\nstring yes[2] = {\"no\", \"yes\"};\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define DBL(...) \\\n double __VA_ARGS__; \\\n IN(__VA_ARGS)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\n\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n\n#define i128 __int128_t\n#define ull unsigned long long int\n#define TEST \\\n INT(testcases); \\\n while(testcases--)\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n for(auto &e : v) cout << e << \" \";\n cout << endl;\n return os;\n}\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {\n cout << \"(\" << p.fi << \", \" << p.se << \")\";\n return os;\n}\ntemplate <class S, class T> string to_string(pair<S, T> p) { return \"(\" + to_string(p.first) + \",\" + to_string(p.second) + \")\"; }\ntemplate <class A> string to_string(A v) {\n if(v.empty()) return \"{}\";\n string ret = \"{\";\n for(auto &x : v) ret += to_string(x) + \",\";\n ret.back() = '}';\n return ret;\n}\n\nvoid dump() { cerr << endl; }\ntemplate <class Head, class... Tail> void dump(Head head, Tail... tail) {\n cerr << to_string(head) << \" \";\n dump(tail...);\n}\n#define endl '\\n'\n#ifdef _LOCAL\n#undef endl\n#define debug(x) \\\n cout << #x << \": \"; \\\n dump(x)\n#else\n#define debug(x)\n#endif\n// mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());\n\n// int rnd(int n) { return uniform_int_distribution<int>(0, n - 1)(rng); }\n// ll rndll(ll n) { return uniform_int_distribution<ll>(0, n - 1)(rng); }\n\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\n#pragma endregion\n\nusing tree = Graph;\nint search_center(tree &g) {\n vector<int> res;\n int max_depth = -1, leaf;\n auto dfs = [&](auto &&self, int x, int p, int d, bool looking = false) -> bool {\n bool flag = false;\n if(max_depth < d) {\n max_depth = d, leaf = x, flag = true;\n res.clear();\n }\n for(auto e : g[x]) {\n if(e != p) flag |= self(self, e, x, d + 1, looking);\n }\n if(looking and flag and d == (max_depth >> 1) or d == ((max_depth + 1) >> 1)) res.emplace_back(x);\n return flag;\n };\n dfs(dfs, 0, -1, 0);\n max_depth = -1;\n dfs(dfs, leaf, -1, 0, true);\n return res[0];\n}\nint main() {\n string s = \"RGB\";\n INT(n);\n Graph g = getG(n);\n if(n <= 3) {\n cout << 1 << endl;\n cout << s.substr(0, n) << endl;\n exit(0);\n }\n vi ans(n);\n int num = 0;\n int c = search_center(g);\n vi d(n);\n {\n auto dfs = [&](auto &&f, int x, int p) -> int {\n d[x] = 1;\n for(auto e : g[x])\n if(e != p) chmax(d[x], f(f, e, x) + 1);\n return d[x];\n };\n dfs(dfs, c, -1);\n }\n int ma[2] = {};\n vi v;\n for(auto e : g[c]) v.eb(d[e]);\n sort(all(v), greater<>());\n num = 1 + v[0] / 3 + v[1] / 3;\n int cnt = 0;\n for(auto e : v)\n if(v[0] / 3 == e / 3) cnt += e % 3;\n if(cnt > 2) num++;\n cout << num << endl;\n auto dfs = [&](auto &&f, int x, int p, int col, int dx) -> void {\n ans[x] = col;\n col = (col + 3 + dx) % 3;\n for(auto e : g[x])\n if(e != p) f(f, e, x, col, dx);\n };\n vi w;\n for(auto e : g[c]) w.eb(e);\n sort(all(w), [&](int i, int j) { return d[i] > d[j]; });\n int k = 1;\n for(auto e : w) {\n dfs(dfs, e, c, (3 + k) % 3, k);\n k *= -1;\n }\n rep(i, n) cout << s[ans[i]];\n cout << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 34304, "score_of_the_acc": -0.2438, "final_rank": 8 }, { "submission_id": "aoj_3158_4833750", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef int_fast32_t int32;\ntypedef int_fast64_t int64;\n\nconst int32 inf = 1e9+7;\nconst int32 MOD = 1000000007;\nconst int64 llinf = 1e18;\n\n#define YES(n) cout << ((n) ? \"YES\\n\" : \"NO\\n\" )\n#define Yes(n) cout << ((n) ? \"Yes\\n\" : \"No\\n\" )\n#define POSSIBLE(n) cout << ((n) ? \"POSSIBLE\\n\" : \"IMPOSSIBLE\\n\" )\n#define ANS(n) cout << (n) << \"\\n\"\n#define REP(i,n) for(int64 i=0;i<(n);++i)\n#define FOR(i,a,b) for(int64 i=(a);i<(b);i++)\n#define FORR(i,a,b) for(int64 i=(a);i>=(b);i--)\n#define all(obj) (obj).begin(),(obj).end()\n#define rall(obj) (obj).rbegin(),(obj).rend()\n#define fi first\n#define se second\n#define pb(a) push_back(a)\ntypedef pair<int32,int32> pii;\ntypedef pair<int64,int64> pll;\n\ntemplate<class T> inline bool chmax(T& a, T b) {\n if (a < b) { a = b; return true; } return false;\n}\ntemplate<class T> inline bool chmin(T& a, T b) {\n if (a > b) { a = b; return true; } return false;\n}\n\nvector<vector<int32>> adj;\nvector<int32> dist;\n\nvoid dfs(int32 v){\n for(auto u : adj[v]){\n if(dist[u] != inf)continue;\n dist[u] = dist[v] + 1;\n dfs(u);\n }\n}\n\n\nvector<int32> mxdepth;\n\nint32 dfs2(int32 v, int32 p = -1){\n for(auto u : adj[v]){\n if(u == p)continue;\n chmax(mxdepth[v],dfs2(u,v));\n }\n return mxdepth[v];\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int32 n;\n cin >> n;\n adj.resize(n);\n REP(i,n-1){\n int32 a,b;\n cin >> a >> b;\n --a;--b;\n adj[a].pb(b);\n adj[b].pb(a);\n }\n\n dist.resize(n,inf);\n dist[0] = 0;\n dfs(0);\n // REP(i,n)ANS(dist[i]);\n int32 s = -1;\n {\n int32 mx = 0;\n REP(i,n)chmax(mx, dist[i]);\n REP(i,n){\n if(dist[i] == mx){\n s = i;\n break;\n }\n }\n }\n\n dist = vector<int32>(n,inf);\n dist[s] = 0;\n dfs(s);\n int32 t = -1;\n {\n int32 mx = 0;\n REP(i,n)chmax(mx, dist[i]);\n REP(i,n){\n if(dist[i] == mx){\n t = i;\n break;\n }\n }\n }\n // ANS(s);\n // ANS(t);\n int32 diam = dist[t];\n // ANS(diam);\n\n vector<int32> diampath;\n int32 cur = t;\n diampath.pb(t);\n while(cur != s){\n for(auto v : adj[cur]){\n if(dist[v] == dist[cur] - 1){\n diampath.pb(v);\n cur = v;\n }\n }\n }\n // for(auto v : diampath){\n // ANS(v+1);\n // }\n\n dist = vector<int32>(n,inf);\n dist[diampath[diam/2]] = 0;\n dfs(diampath[diam/2]);\n vector<int32> depth1 = dist;\n\n dist = vector<int32>(n,inf);\n dist[diampath[diam/2+1]] = 0;\n dfs(diampath[diam/2+1]);\n vector<int32> depth2 = dist;\n\n vector<int32> color(n,-1);\n REP(i,n){\n if(depth1[i] < depth2[i]){\n color[i] = depth1[i] % 3;\n }else{\n color[i] = 2 - depth2[i] % 3;\n }\n }\n\n mxdepth = depth1;\n dfs2(diampath[diam/2]);\n int32 cnt = 0;\n for(auto v : adj[diampath[diam/2]]){\n if(mxdepth[v] == diam/2)++cnt;\n }\n\n if(diam % 6 == 2 && cnt >= 3){\n ANS((diam+3)/3+1);\n }else{\n ANS((diam+3)/3);\n }\n\n REP(i,n){\n // ANS(color[i]);\n if(color[i] == 0){\n cout << \"R\";\n }else if(color[i] == 1){\n cout << \"G\";\n }else{\n cout << \"B\";\n }\n }\n cout << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 29568, "score_of_the_acc": -0.1989, "final_rank": 4 }, { "submission_id": "aoj_3158_4833644", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef int_fast32_t int32;\ntypedef int_fast64_t int64;\n\nconst int32 inf = 1e9+7;\nconst int32 MOD = 1000000007;\nconst int64 llinf = 1e18;\n\n#define YES(n) cout << ((n) ? \"YES\\n\" : \"NO\\n\" )\n#define Yes(n) cout << ((n) ? \"Yes\\n\" : \"No\\n\" )\n#define POSSIBLE(n) cout << ((n) ? \"POSSIBLE\\n\" : \"IMPOSSIBLE\\n\" )\n#define ANS(n) cout << (n) << \"\\n\"\n#define REP(i,n) for(int64 i=0;i<(n);++i)\n#define FOR(i,a,b) for(int64 i=(a);i<(b);i++)\n#define FORR(i,a,b) for(int64 i=(a);i>=(b);i--)\n#define all(obj) (obj).begin(),(obj).end()\n#define rall(obj) (obj).rbegin(),(obj).rend()\n#define fi first\n#define se second\n#define pb(a) push_back(a)\ntypedef pair<int32,int32> pii;\ntypedef pair<int64,int64> pll;\n\ntemplate<class T> inline bool chmax(T& a, T b) {\n if (a < b) { a = b; return true; } return false;\n}\ntemplate<class T> inline bool chmin(T& a, T b) {\n if (a > b) { a = b; return true; } return false;\n}\n\nvector<vector<int32>> adj;\nvector<int32> dist;\n\nvoid dfs(int32 v){\n for(auto u : adj[v]){\n if(dist[u] != inf)continue;\n dist[u] = dist[v] + 1;\n dfs(u);\n }\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n int32 n;\n cin >> n;\n adj.resize(n);\n REP(i,n-1){\n int32 a,b;\n cin >> a >> b;\n --a;--b;\n adj[a].pb(b);\n adj[b].pb(a);\n }\n\n dist.resize(n,inf);\n dist[0] = 0;\n dfs(0);\n // REP(i,n)ANS(dist[i]);\n int32 s = -1;\n {\n int32 mx = 0;\n REP(i,n)chmax(mx, dist[i]);\n REP(i,n){\n if(dist[i] == mx){\n s = i;\n break;\n }\n }\n }\n\n dist = vector<int32>(n,inf);\n dist[s] = 0;\n dfs(s);\n int32 t = -1;\n {\n int32 mx = 0;\n REP(i,n)chmax(mx, dist[i]);\n REP(i,n){\n if(dist[i] == mx){\n t = i;\n break;\n }\n }\n }\n // ANS(s);\n // ANS(t);\n int32 diam = dist[t];\n // ANS(diam);\n\n vector<int32> diampath;\n int32 cur = t;\n diampath.pb(t);\n while(cur != s){\n for(auto v : adj[cur]){\n if(dist[v] == dist[cur] - 1){\n diampath.pb(v);\n cur = v;\n }\n }\n }\n // for(auto v : diampath){\n // ANS(v+1);\n // }\n\n dist = vector<int32>(n,inf);\n dist[diampath[diam/2]] = 0;\n dfs(diampath[diam/2]);\n vector<int32> depth1 = dist;\n\n dist = vector<int32>(n,inf);\n dist[diampath[diam/2+1]] = 0;\n dfs(diampath[diam/2+1]);\n vector<int32> depth2 = dist;\n\n vector<int32> color(n,-1);\n REP(i,n){\n if(depth1[i] < depth2[i]){\n color[i] = depth1[i] % 3;\n }else{\n color[i] = 2 - depth2[i] % 3;\n }\n }\n\n if(diam == 2 && n >= 4){\n ANS(2);\n }else{\n ANS((diam+3)/3); \n }\n\n REP(i,n){\n // ANS(color[i]);\n if(color[i] == 0){\n cout << \"R\";\n }else if(color[i] == 1){\n cout << \"G\";\n }else{\n cout << \"B\";\n }\n }\n cout << endl;\n return 0;\n}", "accuracy": 0.9444444444444444, "time_ms": 80, "memory_kb": 27852, "score_of_the_acc": -0.1806, "final_rank": 18 }, { "submission_id": "aoj_3158_4833524", "code_snippet": "#pragma region kyopro_template\n#define Nyaan_template\n#include <immintrin.h>\n#include <bits/stdc++.h>\n#define pb push_back\n#define eb emplace_back\n#define fi first\n#define se second\n#define each(x, v) for (auto &x : v)\n#define all(v) (v).begin(), (v).end()\n#define sz(v) ((int)(v).size())\n#define mem(a, val) memset(a, val, sizeof(a))\n#define ini(...) \\\n int __VA_ARGS__; \\\n in(__VA_ARGS__)\n#define inl(...) \\\n long long __VA_ARGS__; \\\n in(__VA_ARGS__)\n#define ins(...) \\\n string __VA_ARGS__; \\\n in(__VA_ARGS__)\n#define inc(...) \\\n char __VA_ARGS__; \\\n in(__VA_ARGS__)\n#define in2(s, t) \\\n for (int i = 0; i < (int)s.size(); i++) { \\\n in(s[i], t[i]); \\\n }\n#define in3(s, t, u) \\\n for (int i = 0; i < (int)s.size(); i++) { \\\n in(s[i], t[i], u[i]); \\\n }\n#define in4(s, t, u, v) \\\n for (int i = 0; i < (int)s.size(); i++) { \\\n in(s[i], t[i], u[i], v[i]); \\\n }\n#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)\n#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)\n#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)\n#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)\n#define reg(i, a, b) for (long long i = (a); i < (b); i++)\n#define die(...) \\\n do { \\\n out(__VA_ARGS__); \\\n return; \\\n } while (0)\nusing namespace std;\nusing ll = long long;\ntemplate <class T>\nusing V = vector<T>;\nusing vi = vector<int>;\nusing vl = vector<long long>;\nusing vvi = vector<vector<int>>;\nusing vd = V<double>;\nusing vs = V<string>;\nusing vvl = vector<vector<long long>>;\nusing P = pair<long long, long long>;\nusing vp = vector<P>;\nusing pii = pair<int, int>;\nusing vpi = vector<pair<int, int>>;\nconstexpr int inf = 1001001001;\nconstexpr long long infLL = (1LL << 61) - 1;\ntemplate <typename T, typename U>\ninline bool amin(T &x, U y) {\n return (y < x) ? (x = y, true) : false;\n}\ntemplate <typename T, typename U>\ninline bool amax(T &x, U y) {\n return (x < y) ? (x = y, true) : false;\n}\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\ntemplate <typename T, typename U>\nistream &operator>>(istream &is, pair<T, U> &p) {\n is >> p.first >> p.second;\n return is;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n int s = (int)v.size();\n for (int i = 0; i < s; i++) os << (i ? \" \" : \"\") << v[i];\n return os;\n}\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v) {\n for (auto &x : v) is >> x;\n return is;\n}\nvoid in() {}\ntemplate <typename T, class... U>\nvoid in(T &t, U &... u) {\n cin >> t;\n in(u...);\n}\nvoid out() { cout << \"\\n\"; }\ntemplate <typename T, class... U>\nvoid out(const T &t, const U &... u) {\n cout << t;\n if (sizeof...(u)) cout << \" \";\n out(u...);\n}\n\n#ifdef NyaanDebug\n#define trc(...) \\\n do { \\\n cerr << #__VA_ARGS__ << \" = \"; \\\n dbg_out(__VA_ARGS__); \\\n } while (0)\n#define trca(v, N) \\\n do { \\\n cerr << #v << \" = \"; \\\n array_out(v, N); \\\n } while (0)\n#define trcc(v) \\\n do { \\\n cerr << #v << \" = {\"; \\\n each(x, v) { cerr << \" \" << x << \",\"; } \\\n cerr << \"}\" << endl; \\\n } while (0)\ntemplate <typename T>\nvoid _cout(const T &c) {\n cerr << c;\n}\nvoid _cout(const int &c) {\n if (c == 1001001001)\n cerr << \"inf\";\n else if (c == -1001001001)\n cerr << \"-inf\";\n else\n cerr << c;\n}\nvoid _cout(const unsigned int &c) {\n if (c == 1001001001)\n cerr << \"inf\";\n else\n cerr << c;\n}\nvoid _cout(const long long &c) {\n if (c == 1001001001 || c == (1LL << 61) - 1)\n cerr << \"inf\";\n else if (c == -1001001001 || c == -((1LL << 61) - 1))\n cerr << \"-inf\";\n else\n cerr << c;\n}\nvoid _cout(const unsigned long long &c) {\n if (c == 1001001001 || c == (1LL << 61) - 1)\n cerr << \"inf\";\n else\n cerr << c;\n}\ntemplate <typename T, typename U>\nvoid _cout(const pair<T, U> &p) {\n cerr << \"{ \";\n _cout(p.fi);\n cerr << \", \";\n _cout(p.se);\n cerr << \" } \";\n}\ntemplate <typename T>\nvoid _cout(const vector<T> &v) {\n int s = v.size();\n cerr << \"{ \";\n for (int i = 0; i < s; i++) {\n cerr << (i ? \", \" : \"\");\n _cout(v[i]);\n }\n cerr << \" } \";\n}\ntemplate <typename T>\nvoid _cout(const vector<vector<T>> &v) {\n cerr << \"[ \";\n for (const auto &x : v) {\n cerr << endl;\n _cout(x);\n cerr << \", \";\n }\n cerr << endl << \" ] \";\n}\nvoid dbg_out() { cerr << endl; }\ntemplate <typename T, class... U>\nvoid dbg_out(const T &t, const U &... u) {\n _cout(t);\n if (sizeof...(u)) cerr << \", \";\n dbg_out(u...);\n}\ntemplate <typename T>\nvoid array_out(const T &v, int s) {\n cerr << \"{ \";\n for (int i = 0; i < s; i++) {\n cerr << (i ? \", \" : \"\");\n _cout(v[i]);\n }\n cerr << \" } \" << endl;\n}\ntemplate <typename T>\nvoid array_out(const T &v, int H, int W) {\n cerr << \"[ \";\n for (int i = 0; i < H; i++) {\n cerr << (i ? \", \" : \"\");\n array_out(v[i], W);\n }\n cerr << \" ] \" << endl;\n}\n#else\n#define trc(...)\n#define trca(...)\n#define trcc(...)\n#endif\n\ninline int popcnt(unsigned long long a) { return __builtin_popcountll(a); }\ninline int lsb(unsigned long long a) { return __builtin_ctzll(a); }\ninline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); }\ntemplate <typename T>\ninline int getbit(T a, int i) {\n return (a >> i) & 1;\n}\ntemplate <typename T>\ninline void setbit(T &a, int i) {\n a |= (1LL << i);\n}\ntemplate <typename T>\ninline void delbit(T &a, int i) {\n a &= ~(1LL << i);\n}\ntemplate <typename T>\nint lb(const vector<T> &v, const T &a) {\n return lower_bound(begin(v), end(v), a) - begin(v);\n}\ntemplate <typename T>\nint ub(const vector<T> &v, const T &a) {\n return upper_bound(begin(v), end(v), a) - begin(v);\n}\ntemplate <typename T>\nint btw(T a, T x, T b) {\n return a <= x && x < b;\n}\ntemplate <typename T, typename U>\nT ceil(T a, U b) {\n return (a + b - 1) / b;\n}\nconstexpr long long TEN(int n) {\n long long ret = 1, x = 10;\n while (n) {\n if (n & 1) ret *= x;\n x *= x;\n n >>= 1;\n }\n return ret;\n}\ntemplate <typename T>\nvector<T> mkrui(const vector<T> &v) {\n vector<T> ret(v.size() + 1);\n for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];\n return ret;\n};\ntemplate <typename T>\nvector<T> mkuni(const vector<T> &v) {\n vector<T> ret(v);\n sort(ret.begin(), ret.end());\n ret.erase(unique(ret.begin(), ret.end()), ret.end());\n return ret;\n}\ntemplate <typename F>\nvector<int> mkord(int N, F f) {\n vector<int> ord(N);\n iota(begin(ord), end(ord), 0);\n sort(begin(ord), end(ord), f);\n return ord;\n}\ntemplate <typename T = int>\nvector<T> mkiota(int N) {\n vector<T> ret(N);\n iota(begin(ret), end(ret), 0);\n return ret;\n}\ntemplate <typename T>\nvector<int> mkinv(vector<T> &v) {\n vector<int> inv(v.size());\n for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;\n return inv;\n}\n\nstruct IoSetupNya {\n IoSetupNya() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n cerr << fixed << setprecision(7);\n }\n} iosetupnya;\n\nvoid solve();\nint main() { solve(); }\n\n#pragma endregion\nusing namespace std;\n\ntemplate <typename T>\nstruct edge {\n int src, to;\n T cost;\n\n edge(int to, T cost) : src(-1), to(to), cost(cost) {}\n edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}\n\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n\n operator int() const { return to; }\n};\ntemplate <typename T>\nusing Edges = vector<edge<T>>;\ntemplate <typename T>\nusing WeightedGraph = vector<Edges<T>>;\nusing UnweightedGraph = vector<vector<int>>;\n\n// Input of (Unweighted) Graph\nUnweightedGraph graph(int N, int M = -1, bool is_directed = false,\n bool is_1origin = true) {\n UnweightedGraph g(N);\n if (M == -1) M = N - 1;\n for (int _ = 0; _ < M; _++) {\n int x, y;\n cin >> x >> y;\n if (is_1origin) x--, y--;\n g[x].push_back(y);\n if (!is_directed) g[y].push_back(x);\n }\n return g;\n}\n\n// Input of Weighted Graph\ntemplate <typename T>\nWeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,\n bool is_1origin = true) {\n WeightedGraph<T> g(N);\n if (M == -1) M = N - 1;\n for (int _ = 0; _ < M; _++) {\n int x, y;\n cin >> x >> y;\n T c;\n cin >> c;\n if (is_1origin) x--, y--;\n g[x].eb(x, y, c);\n if (!is_directed) g[y].eb(y, x, c);\n }\n return g;\n}\n\n// Input of Edges\ntemplate <typename T>\nEdges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) {\n Edges<T> es;\n for (int _ = 0; _ < M; _++) {\n int x, y;\n cin >> x >> y;\n T c;\n if (is_weighted)\n cin >> c;\n else\n c = 1;\n if (is_1origin) x--, y--;\n es.emplace_back(x, y, c);\n }\n return es;\n}\n\n// Input of Adjacency Matrix\ntemplate <typename T>\nvector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,\n bool is_directed = false, bool is_1origin = true) {\n vector<vector<T>> d(N, vector<T>(N, INF));\n for (int _ = 0; _ < M; _++) {\n int x, y;\n cin >> x >> y;\n T c;\n if (is_weighted)\n cin >> c;\n else\n c = 1;\n if (is_1origin) x--, y--;\n d[x][y] = c;\n if (!is_directed) d[y][x] = c;\n }\n return d;\n}\nusing namespace std;\n\n\n// Depth of Rooted Tree\n// unvisited nodes : d = -1\nvector<int> Depth(const UnweightedGraph &g, int start = 0) {\n vector<int> d(g.size(), -1);\n auto dfs = [&](auto rec, int cur, int par = -1) -> void {\n d[cur] = par == -1 ? 0 : d[par] + 1;\n for (auto &dst : g[cur]) {\n if (dst == par) continue;\n rec(rec, dst, cur);\n }\n };\n dfs(dfs, start);\n return d;\n}\n\n// Depth of Rooted Weighted Tree\n// unvisited nodes : d = -1\ntemplate <typename T>\nvector<T> Depth(const WeightedGraph<T> &g, int start = 0) {\n vector<T> d(g.size(), -1);\n auto dfs = [&](auto rec, int cur, T val, int par = -1) -> void {\n d[cur] = val;\n for (auto &dst : g[cur]) {\n if (dst == par) continue;\n rec(rec, dst, val + dst.cost, cur);\n }\n };\n dfs(dfs, start, 0);\n return d;\n}\n\n// Diameter of Tree\n// return value : { {u, v}, length }\npair<pair<int, int>, int> Diameter(const UnweightedGraph &g) {\n auto d = Depth(g, 0);\n int u = max_element(begin(d), end(d)) - begin(d);\n d = Depth(g, u);\n int v = max_element(begin(d), end(d)) - begin(d);\n return make_pair(make_pair(u, v), d[v]);\n}\n\n// Diameter of Weighted Tree\n// return value : { {u, v}, length }\ntemplate <typename T>\npair<pair<int, int>, T> Diameter(const WeightedGraph<T> &g) {\n auto d = Depth(g, 0);\n int u = max_element(begin(d), end(d)) - begin(d);\n d = Depth(g, u);\n int v = max_element(begin(d), end(d)) - begin(d);\n return make_pair(make_pair(u, v), d[v]);\n}\n\n// nodes on the path u-v ( O(N) )\ntemplate <typename G>\nvector<int> Path(G &g, int u, int v) {\n vi ret;\n int end = 0;\n auto dfs = [&](auto rec, int cur, int par = -1) -> void {\n ret.push_back(cur);\n if (cur == v) {\n end = 1;\n return;\n }\n for (int dst : g[cur]) {\n if (dst == par) continue;\n rec(rec, dst, cur);\n if (end) return;\n }\n if (end) return;\n ret.pop_back();\n };\n dfs(dfs, u);\n return ret;\n}\n\nstring ans;\nint n = 0;\n\ntemplate <typename G>\nstruct CentroidDecomposition {\n const G &g;\n vector<int> sub;\n vector<bool> v;\n vector<vector<int>> tree;\n int root;\n\n CentroidDecomposition(const G &g_, int isbuild = true) : g(g_) {\n sub.resize(g.size(), 0);\n v.resize(g.size(), false);\n if (isbuild) build();\n }\n\n void build() {\n tree.resize(g.size());\n root = build_dfs(0);\n }\n\n int get_size(int cur, int par) {\n sub[cur] = 1;\n for (auto &dst : g[cur]) {\n if (dst == par || v[dst]) continue;\n sub[cur] += get_size(dst, cur);\n }\n return sub[cur];\n }\n\n int get_centroid(int cur, int par, int mid) {\n for (auto &dst : g[cur]) {\n if (dst == par || v[dst]) continue;\n if (sub[dst] > mid) return get_centroid(dst, cur, mid);\n }\n return cur;\n }\n\n array<int, 3> calc(int cur, int par) {\n array<int, 3> r1{0, 0, 0}, r2{0, 0, 0};\n for (auto &dst : g[cur]) {\n if (dst == par || v[dst]) continue;\n auto d = calc(dst, cur);\n rep(i, 3) {\n if (d[i] > r1[i]) swap(d[i], r1[i]);\n if (d[i] > r2[i]) swap(d[i], r2[i]);\n }\n }\n if (ans[cur] == 'R') r1[0]++;\n if (ans[cur] == 'G') r1[1]++;\n if (ans[cur] == 'B') r1[2]++;\n rep(i, 3) amax(n, r1[i] + r2[i]);\n return r1;\n }\n\n int build_dfs(int cur) {\n int centroid = get_centroid(cur, -1, get_size(cur, -1) / 2);\n v[centroid] = true;\n calc(centroid, -1);\n for (auto &dst : g[centroid]) {\n if (!v[dst]) {\n int nxt = build_dfs(dst);\n if (centroid != nxt) tree[centroid].emplace_back(nxt);\n }\n }\n v[centroid] = false;\n return centroid;\n }\n};\n\nint solve_(int N, vvi g) {\n // ini(N);\n // auto g = graph(N);\n ans.resize(N);\n fill(all(ans), ' ');\n\n auto [p, l] = Diameter(g);\n auto [u, v] = p;\n auto path = Path(g, u, v);\n\n int i = 0;\n auto c = [&]() { return i == 0 ? 'R' : i == 1 ? 'G' : 'B'; };\n //int i = 0;\n rep(j,sz(path)) {\n ans[path[j]] = c();\n i = (i + 1) % 3;\n } \n //out(path);\n //out(ans);\n {\n i = 0;\n int rev = 0;\n auto dfs = [&](auto rec, int cur, int par) -> void {\n ans[cur] = c();\n each(dst, g[cur]) {\n if (dst == par || ans[dst] != ' ') continue;\n i = (rev ? (i + 2) % 3 : (i + 1) % 3);\n rec(rec, dst, cur);\n i = (rev ? (i + 1) % 3 : (i + 2) % 3);\n }\n };\n for(int j = 0; j < sz(path); j++){\n if(j * 2 <= sz(path) ) rev = 1;\n else rev = 0;\n i = j % 3;\n dfs(dfs, path[j], -1);\n }\n }\n each(x, ans) if (x == ' ') exit(1);\n // trc(ans);\n n = 0;\n CentroidDecomposition<vvi> dec(g);\n out(n);\n out(ans);\n return n;\n}\n\nint naive(int N, vvi g) {\n ans.resize(N, ' ');\n int n2 = inf;\n rep(i, int(pow(3, N))) {\n int j = i;\n rep(_, N) {\n int k = j % 3;\n j /= 3;\n ans[_] = (k == 0 ? 'R' : k == 1 ? 'G' : 'B');\n }\n n = 0;\n CentroidDecomposition<vvi> dec(g);\n amin(n2, n);\n }\n return n2;\n}\n\nvoid solve() {\n /**/\n ini(N);\n auto g=graph(N);\n solve_(N,g);\n //*/\n /**\n mt19937 rng;\n while (1) {\n int N = rng() % 7 + 2;\n vvi g(N);\n rep1(i, N - 1) {\n int j = rng() % i;\n g[i].push_back(j);\n g[j].push_back(i);\n }\n int n1 = solve_(N, g);\n int n2 = naive(N, g);\n if (n1 != n2) {\n trc(N);\n trc(g);\n trc(n1, n2);\n exit(1);\n }\n //trc(N);\n }\n //*/\n \n}", "accuracy": 1, "time_ms": 310, "memory_kb": 54372, "score_of_the_acc": -0.5912, "final_rank": 15 }, { "submission_id": "aoj_3158_4833422", "code_snippet": "#pragma region Macros\n#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w) \\\n vector<vector<type>> name(h, vector<type>(w)); \\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\nstring YES[2] = {\"NO\", \"YES\"};\nstring Yes[2] = {\"No\", \"Yes\"};\nstring yes[2] = {\"no\", \"yes\"};\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define DBL(...) \\\n double __VA_ARGS__; \\\n IN(__VA_ARGS)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\n\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n\n#define i128 __int128_t\n#define ull unsigned long long int\n#define TEST \\\n INT(testcases); \\\n while(testcases--)\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n for(auto &e : v) cout << e << \" \";\n cout << endl;\n return os;\n}\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {\n cout << \"(\" << p.fi << \", \" << p.se << \")\";\n return os;\n}\ntemplate <class S, class T> string to_string(pair<S, T> p) { return \"(\" + to_string(p.first) + \",\" + to_string(p.second) + \")\"; }\ntemplate <class A> string to_string(A v) {\n if(v.empty()) return \"{}\";\n string ret = \"{\";\n for(auto &x : v) ret += to_string(x) + \",\";\n ret.back() = '}';\n return ret;\n}\n\nvoid dump() { cerr << endl; }\ntemplate <class Head, class... Tail> void dump(Head head, Tail... tail) {\n cerr << to_string(head) << \" \";\n dump(tail...);\n}\n#define endl '\\n'\n#ifdef _LOCAL\n#undef endl\n#define debug(x) \\\n cout << #x << \": \"; \\\n dump(x)\n#else\n#define debug(x)\n#endif\n// mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());\n\n// int rnd(int n) { return uniform_int_distribution<int>(0, n - 1)(rng); }\n// ll rndll(ll n) { return uniform_int_distribution<ll>(0, n - 1)(rng); }\n\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\n#pragma endregion\n\nusing tree = Graph;\nint search_center(tree &g) {\n vector<int> res;\n int max_depth = -1, leaf;\n auto dfs = [&](auto &&self, int x, int p, int d, bool looking = false) -> bool {\n bool flag = false;\n if(max_depth < d) {\n max_depth = d, leaf = x, flag = true;\n res.clear();\n }\n for(auto e : g[x]) {\n if(e != p) flag |= self(self, e, x, d + 1, looking);\n }\n if(looking and flag and d == (max_depth >> 1) or d == ((max_depth + 1) >> 1)) res.emplace_back(x);\n return flag;\n };\n dfs(dfs, 0, -1, 0);\n max_depth = -1;\n dfs(dfs, leaf, -1, 0, true);\n return res[0];\n}\nint main() {\n string s = \"RGB\";\n INT(n);\n Graph g = getG(n);\n if(n <= 3) {\n cout << 1 << endl;\n cout << s.substr(0, n) << endl;\n exit(0);\n }\n vi ans(n);\n int num = 0;\n int c = search_center(g);\n vi d(n);\n {\n auto dfs = [&](auto &&f, int x, int p) -> int {\n d[x] = 1;\n for(auto e : g[x])\n if(e != p) chmax(d[x], f(f, e, x) + 1);\n return d[x];\n };\n dfs(dfs, c, -1);\n }\n int ma[2] = {};\n vi v;\n for(auto e : g[c]) v.eb(d[e]);\n sort(all(v), greater<>());\n num = 1 + v[0] / 3 + v[1] / 3;\n int cnt = 0;\n for(auto e : v)\n if(v[0] / 3 == e / 3) cnt += e % 3;\n if(cnt > 2) num++;\n cout << num << endl;\n auto dfs = [&](auto &&f, int x, int p, int col, int dx) -> void {\n ans[x] = col;\n col = (col + 3 + dx) % 3;\n for(auto e : g[x])\n if(e != p) f(f, e, x, col, dx);\n };\n vi w;\n for(auto e : g[c]) w.eb(e);\n sort(all(w), [&](int i, int j) { return d[i] > d[j]; });\n int k = 1;\n for(auto e : w) {\n dfs(dfs, e, c, (3 + k) % 3, k);\n k *= -1;\n }\n rep(i, n) cout << s[ans[i]];\n cout << endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 34400, "score_of_the_acc": -0.2393, "final_rank": 7 }, { "submission_id": "aoj_3158_4833314", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }\n#define all(x) (x).begin(),(x).end()\n#define fi first\n#define se second\n#define mp make_pair\n#define si(x) int(x.size())\nconst int mod=998244353,MAX=200005,INF=1<<30;\nvector<int> G[MAX];\nint deg[MAX];\nint ans[MAX];\n\nint main(){\n \n std::ifstream in(\"text.txt\");\n std::cin.rdbuf(in.rdbuf());\n cin.tie(0);\n ios::sync_with_stdio(false);\n \n int N;cin>>N;\n \n if(N==1){\n cout<<1<<endl;\n cout<<\"R\"<<endl;\n return 0;\n }\n \n for(int i=0;i<N-1;i++){\n int a,b;cin>>a>>b;\n a--;b--;\n G[a].push_back(b);\n G[b].push_back(a);\n deg[a]++;\n deg[b]++;\n }\n \n memset(ans,-1,sizeof(ans));\n \n int rem=N,now=0,res=0;\n \n set<int> SE;\n for(int i=0;i<N;i++) if(deg[i]==1) SE.insert(i);\n \n while(rem){\n set<int> nex;\n if(rem<=3&&now%3==0){\n int cnt=0;\n for(int i=0;i<N;i++){\n if(ans[i]==-1){\n ans[i]=cnt;\n cnt++;\n }\n }\n res=now/3*2+1;\n \n break;\n }else{\n for(auto a:SE){\n ans[a]=now;\n deg[a]=0;\n rem--;\n \n for(int to:G[a]){\n if(ans[to]!=-1) continue;\n deg[to]--;\n if(deg[to]==1) nex.insert(to);\n }\n }\n \n res=(now/3+1)*2;\n }\n \n now++;\n SE=nex;\n }\n \n cout<<res<<endl;\n \n for(int i=0;i<N;i++){\n if(ans[i]%3==0) cout<<'R';\n else if(ans[i]%3==1) cout<<'G';\n else cout<<'B';\n }\n cout<<endl;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 25276, "score_of_the_acc": -0.1586, "final_rank": 1 }, { "submission_id": "aoj_3158_4833256", "code_snippet": "#include <string>\n#include <vector>\n#include<iostream>\n#include<cstdio>\n#include<cstdlib>\n#include<stack>\n#include<queue>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<list>\n#include<deque>\n#include<bitset>\n#include<set>\n#include<map>\n#include<unordered_map>\n#include<unordered_set>\n#include<cstring>\n#include<sstream>\n#include<complex>\n#include<iomanip>\n#include<numeric>\n#include<cassert>\n#include<random>\n#define X first\n#define Y second\n#define pb push_back\n#define rep(X,Y) for (int (X) = 0;(X) < (int)(Y);++(X))\n#define reps(X,S,Y) for (int (X) = (int)(S);(X) < (int)(Y);++(X))\n#define rrep(X,Y) for (int (X) = (int)(Y)-1;(X) >=0;--(X))\n#define rreps(X,S,Y) for (int (X) = (int)(Y)-1;(X) >= (int)(S);--(X))\n#define repe(X,Y) for ((X) = 0;(X) < (Y);++(X))\n#define peat(X,Y) for (;(X) < (Y);++(X))\n#define all(X) (X).begin(),(X).end()\n#define rall(X) (X).rbegin(),(X).rend()\n#define eb emplace_back\n#define UNIQUE(X) (X).erase(unique(all(X)),(X).end())\n#define Endl endl\n#define NL <<\"\\n\"\n#define cauto const auto\n\nusing namespace std;\nusing ll=long long;\nusing pii=pair<int,int>;\nusing pll=pair<ll,ll>;\ntemplate<class T> using vv=vector<vector<T>>;\ntemplate<class T> inline bool MX(T &l,const T &r){return l<r?l=r,1:0;}\ntemplate<class T> inline bool MN(T &l,const T &r){return l>r?l=r,1:0;}\n//#undef NUIP\n#ifdef NUIP\n#include \"benri.h\"\n#else\n#define out(args...)\n#endif\n#ifdef __cpp_init_captures\ntemplate<typename T>vector<T> table(int n, T v){ return vector<T>(n, v);}\ntemplate <class... Args> auto table(int n, Args... args){auto val = table(args...); return vector<decltype(val)>(n, move(val));}\n#endif\ntemplate<class A,class B> pair<A,B> operator+(const pair<A,B> &p,const pair<A,B> &q){ return {p.X+q.X,p.Y+q.Y};}\ntemplate<class A,class B,class C,class D> pair<A,B>& operator+=(pair<A,B> &p,const pair<C,D> &q){ p.X+=q.X; p.Y+=q.Y; return p;}\ntemplate<class A,class B> pair<A,B> operator-(const pair<A,B> &p,const pair<A,B> &q){ return {p.X-q.X,p.Y-q.Y};}\ntemplate<class A,class B,class C,class D> pair<A,B>& operator-=(pair<A,B> &p,const pair<C,D> &q){ p.X-=q.X; p.Y-=q.Y; return p;}\ntemplate<class A,class B> istream& operator>>(istream &is, pair<A,B> &p){ is>>p.X>>p.Y; return is;}\ntemplate<class T=ll> T read(){ T re; cin>>re; return move(re);}\ntemplate<class T=ll> T read(const T &dec){ T re; cin>>re; return re-dec;}\ntemplate<class T=ll> vector<T> readV(const int sz){ vector<T> re(sz); for(auto &x:re) x=read<T>(); return move(re);}\ntemplate<class T=ll> vector<T> readV(const int sz, const T &dec){ vector<T> re(sz); for(auto &x:re) x=read<T>(dec); return move(re);}\nvv<int> readG(const int &n,const int &m){ vv<int> g(n); rep(_,m){ cauto a=read<int>(1),b=read<int>(1); g[a].pb(b); g[b].pb(a);} return move(g);}\nvv<int> readG(const int &n){ return readG(n,n-1);}\nconst ll MOD=1e9+7; //998244353\n\nvector<int> getDiam(const vv<int> &g){\n\tconst int n=g.size();\n\tint rt;\n\t{\n\t\tvector<int> d(n,MOD); d[0]=0;\n\t\tqueue<int> que; que.emplace(0);\n\t\twhile(que.size()){\n\t\t\tcauto v=que.front(); que.pop();\n\t\t\tfor(auto w:g[v])if(MN(d[w],d[v]+1)) que.emplace(w);\n\t\t}\n\t\tint mx=-1;\n\t\trep(v,n)if(MX(mx,d[v])) rt=v;\n\t\tout(d[3],mx,rt,1);\n\t}\n\tvector<int> re;\n\t{\n\t\tvector<pii> d(n,{MOD,0}); d[rt]={0,-1};\n\t\tqueue<int> que; que.emplace(rt);\n\t\twhile(que.size()){\n\t\t\tcauto v=que.front(); que.pop();\n\t\t\tfor(auto w:g[v])if(MN(d[w],{d[v].X+1,v})) que.emplace(w);\n\t\t}\n\t\tpii mx{-1,0};\n\t\tre.eb();\n\t\trep(v,n)if(MX(mx,d[v])) re.back()=v;\n\t\tout(d[3],re,rt,1);\n\t\twhile(re.back()!=rt){\n\t\t\tcauto tmp=d[re.back()].Y;\n\t\t\tre.eb(tmp);\n\t\t}\n\t\treturn re;\n\t}\n}\n\nvector<int> solve(const vv<int> &g){\n\tconst int n=g.size();\n\t// if(n==3) return {0,1,2};\n\tcauto diam=getDiam(g);\n\tout(diam,1);\n\tcauto rt=diam[diam.size()/2];\n\tvector<int> re(n,MOD); re[rt]=0;\n\tqueue<int> que; que.emplace(rt);\n\twhile(que.size()){\n\t\tcauto v=que.front(); que.pop();\n\t\tfor(auto w:g[v])if(MN(re[w],re[v]+1)) que.emplace(w);\n\t}\n\tfor(auto &x:re) x%=3;\n\tif(diam.size()%2){\n\t\tauto dfs=\n\t\t[&](auto &&dfs,int v,int p)->void{\n\t\t\tif(re[v]) re[v]=3-re[v];\n\t\t\tfor(auto w:g[v])if(w!=p) dfs(dfs,w,v);\n\t\t};\n\t\tdfs(dfs,rt,diam[diam.size()/2-1]);\n\t}else{\n\t\tauto dfs=\n\t\t[&](auto &&dfs,int v,int p)->void{\n\t\t\tre[v]=2-re[v];\n\t\t\tfor(auto w:g[v])if(w!=p) dfs(dfs,w,v);\n\t\t};\n\t\tdfs(dfs,rt,diam[diam.size()/2-1]);\n\t}\n\t// out(re,1);\n\treturn re;\n}\n\nint calc(const vv<int> &g, vector<int> cs){\n\tconst int n=g.size();\n\tvector<array<int,3>> cnt(n,{0,0,0});\n\tint re=1;\n\tauto dfs=\n\t\t[&](auto &&dfs,int v,int p)->void{\n\t\t\tarray<int,3> mx{0,0,0};\n\t\t\tfor(auto w:g[v])if(w!=p){\n\t\t\t\tdfs(dfs,w,v);\n\t\t\t\trep(i,3) MX(re,mx[i]+cnt[w][i]+(cs[v]==i));\n\t\t\t\trep(i,3) out(v,w,i,mx,cnt[w],mx[i]+cnt[w][i]+(cs[v]==i),1);\n\t\t\t\trep(i,3){\n\t\t\t\t\tMX(cnt[v][i],cnt[w][i]);\n\t\t\t\t\tMX(mx[i],cnt[w][i]);\n\t\t\t\t}\n\t\t\t}\n\t\t\t++cnt[v][cs[v]];\n\t\t};\n\tdfs(dfs,0,-1);\n\treturn re;\n}\n\nmt19937 rnd(123);\nvv<int> tree(int n){\n\tvv<int> g(n);\n\tvector<int> ind(n); iota(all(ind),0);\n\tshuffle(all(ind),rnd);\n\treps(i,1,n){\n\t\tint a=ind[i];\n\t\tint b=ind[i-1];\n\t\t// while(b>0){\n\t\t// \tif(rnd()%2) break;\n\t\t// \t--b;\n\t\t// }\n\t\tg[a].pb(b);\n\t\tg[b].pb(a);\n\t}\n\treturn g;\n}\n\nint main(){\n ios_base::sync_with_stdio(false); cin.tie(0);\n cout<<fixed<<setprecision(0);\n\t// cauto gg=tree(100000);\n\t// out(solve(gg),1); return 0;\n// \tout(calc({{5,7}\n// ,{7}\n// ,{5,4}\n// ,{6}\n// ,{2}\n// ,{0,2}\n// ,{7,3}\n// \t\t\t\t\t\t,{0,1,6}},{1,1,0,0,0,0,0,0}),1);\n// \treturn 0;\n\tif(0){\n\t\tconst int N=12;\n\t\tvector<int> pw(N+1); pw[0]=1;\n\t\trep(i,N) pw[i+1]=pw[i]*3;\n\t\trep(_,1000){\n\t\t\tconst int n=rand()%N+1;\n\t\t\tcauto g=tree(n);\n\t\t\tint best=n;\n\t\t\tvector<int> wit;\n\t\t\trep(i,pw[n]){\n\t\t\t\tvector<int> v(n);\n\t\t\t\trep(j,n) v[j]=i/pw[j]%3;\n\t\t\t\tif(MN(best,calc(g,v))) wit=v;\n\t\t\t}\n\t\t\tcauto ans=solve(g);\n\t\t\tint act=calc(g,ans);\n\t\t\tif(act!=best){\n\t\t\t\tout(g,ans,act,best,wit,1);\n\t\t\t\trep(v,n)for(auto w:g[v])if(v<w) cout<<v<<\" \"<<w NL;\n\t\t\t\texit(0);\n\t\t\t}\n\t\t}\n\t\tout(\"done\",1);\n\t\texit(0);\n\t}\n\tcauto n=read();\n\tcauto g=readG(n);\n\tcauto re=solve(g);\n\tcout<<calc(g,re) NL;\n\tfor(auto x:re) cout<<\"RGB\"[x]; cout NL;\n return 0;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 39764, "score_of_the_acc": -0.302, "final_rank": 10 }, { "submission_id": "aoj_3158_4833048", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long long INF = 1e18;\n//const ll mod = 1000000007;\nll dist[10][201000];\nll N;\nvector<ll> edges[201000];\nll ans = 0;\nchar S[201000];\nstring RGB = \"RGB\";\nvector<ll> dp[201000];\n\nvoid dfs(int idx, int now, int from) {\n for(auto to : edges[now]) {\n if(to == from) continue;\n dist[idx][to] = dist[idx][now] + 1;\n dfs(idx, to, now);\n }\n}\n\nvoid dfs2(ll now, ll from) {\n for(int i = 0; i < 3; i++) {\n if(RGB[i] == S[now]) dp[now][i]++;\n chmax(ans, dp[now][i]);\n }\n for(auto to : edges[now]) {\n if(to == from) continue;\n dp[to] = dp[now];\n dfs2(to, now);\n }\n}\n\nvoid dfs3(int idx, int now, int from) {\n dist[idx][now] = 1;\n for(auto to : edges[now]) {\n if(to == from) continue;\n dfs3(idx, to, now);\n chmax(dist[idx][now], dist[idx][to] + 1);\n }\n}\n\nstring T[2] = {\"RGB\", \"GRB\"};\n\nvoid dfs4(string T, int idx, int now, int from) {\n S[now] = T[idx];\n for(auto to : edges[now]) {\n if(to == from) continue;\n dfs4(T, (idx + 1) % 3, to, now);\n }\n}\n\nvoid f(ll c) {\n map<ll, vector<ll>> mp;\n for(auto to : edges[c]) {\n mp[-dist[2][to]].push_back(to);\n }\n int parity = 0;\n for(auto tmp : mp) {\n ll d = -tmp.first;\n auto v = tmp.second;\n /*\n cerr << \"- \" << d << \" -\" << endl;\n for(auto tmp : v) {\n cerr << tmp << \" \";\n }\n cerr << endl;\n */\n if(v.size() == 1) {\n ll len = 1 + 2 * d - 1;\n chmax(ans, (len + 2) / 3);\n } else if(v.size() == 2) {\n ll len = 1 + 2 * d;\n chmax(ans, (len + 2) / 3);\n } else {\n if(d % 3 == 0) {\n chmax(ans, 1 + (d / 3) * 2);\n } else {\n chmax(ans, (d + 2) / 3 * 2);\n }\n }\n for(auto to : v) {\n dfs4(T[parity], 0, to, c);\n parity = 1 - parity;\n }\n }\n}\n\n\nint main() {\n cin >> N;\n for(int i = 0; i < N - 1; i++) {\n ll a, b;\n cin >> a >> b;\n a--;\n b--;\n edges[a].push_back(b);\n edges[b].push_back(a);\n }\n dist[0][0] = 0;\n dfs(0, 0, -1);\n ll B = 0;\n for(int i = 0; i < N; i++) {\n if(dist[0][i] > dist[0][B]) B = i;\n }\n dist[0][B] = 0;\n dfs(0, B, -1);\n ll A = 0;\n for(int i = 0; i < N; i++) {\n if(dist[0][A] < dist[0][i]) A = i;\n }\n dist[1][A] = 0;\n dfs(1, A, -1);\n ll c;\n for(int i = 0; i < N; i++) {\n if(dist[0][i] + dist[1][i] == dist[0][A] and abs(dist[0][i] - dist[1][i]) <= 1) {\n c = i;\n }\n }\n //cerr << A << \" \" << B << \" \" << c << endl;\n dfs3(2, c, -1);\n S[c] = 'B';\n f(c);\n dp[A] = {0, 0, 0};\n dfs2(A, -1);\n cout << ans << endl;\n for(int i = 0; i < N; i++) cout << S[i];\n cout << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 45576, "score_of_the_acc": -0.4807, "final_rank": 12 }, { "submission_id": "aoj_3158_4832749", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n//#include<atcoder/dsu>\n//#include<atcoder/fenwicktree>\n//#include<atcoder/math>\n//#include<atcoder/maxflow>\n\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m) {\n\tif (x >= m)x %= m;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\n\n\nconst int mn = 1 << 18;\nstruct edge {\n\tint to;\n};\nstruct Data {\n\tint d, ma;\n};\nvector<edge> G[mn];\nvector<int> ids[mn];\nvector<Data> memo[mn];\nint root;\n\nData merge(Data a, Data b) {\n\tData res;\n\t//\n\tres.d = max(a.d, b.d);\n\tres.ma = max(a.ma, b.ma);\n\t//\n\treturn res;\n}\n\nvoid add(P& p, int x) {\n\tif (p.first < x) {\n\t\tp.second = p.first;\n\t\tp.first = x;\n\t}\n\telse if (p.second < x)p.second = x;\n}\nData dfs(int id, int fr) {\n\tData res;\n\t//\n\t//initialize\n\tres = { 0,1 };\n\tP p = { 0,0 };\n\t//\n\tfor (edge e : G[id]) {\n\t\tif (e.to == fr)continue;\n\t\tData nex = dfs(e.to, id);\n\t\t//\n\t\t//update with edge\n\t\t//\n\t\tadd(p, nex.d);\n\t\tres = merge(res, nex);\n\t\tids[id].push_back(e.to);\n\t\tmemo[id].push_back(nex);\n\t}\n\t\n\t//\n\t//update for return\n int s0 = p.first/ 3 + p.second / 3 + 1;\n int s1 = (p.first+2) / 3 + (p.second+2) / 3;\n res.ma = max({ res.ma,s0,s1 });\n\tres.d++;\n\n\t//\n\treturn res;\n}\n\nint score[1 << 18];\nvoid invdfs(int id, int fr, Data pre) {\n\tvector<Data> v;\n\tfor (Data d : memo[id])v.push_back(d);\n\tif (fr >= 0)v.push_back(pre);\n\tint len = v.size();\n\t//\n\tP p = { 0,0 };\n\t//calcurate id's ans\n\tfor (Data d : v) {\n\t\tscore[id] = max(score[id], d.ma);\n\t\tadd(p, d.d);\n\t}\n\tint s0 = p.first / 3 + p.second / 3 + 1;\n\tint s1 = (p.first+2) / 3 + (p.second+2) / 3;\n\tscore[id] = max({ score[id],s0,s1 });\n\t//\n\tvector<Data> le(len + 1);\n\tvector<Data> ri(len + 1);\n\tvector<P> ple(len + 1);\n\tvector<P> pri(len + 1);\n\t//\n\tData init_c = { 0,0 };\n\t//\n\tle[0] = init_c;\n\tple[0] = { 0,0 };\n\trep(i, len) {\n\t\tle[i + 1] = merge(le[i], v[i]);\n\t\tple[i + 1] = ple[i]; add(ple[i + 1], v[i].d);\n\n\t}\n\tri[len] = init_c;\n\tpri[len] = { 0,0 };\n\tper(i, len) {\n\t\tri[i] = merge(ri[i + 1], v[i]);\n\t\tpri[i] = pri[i + 1]; add(pri[i], v[i].d);\n\t}\n\trep(i, ids[id].size()) {\n\t\tint to = ids[id][i];\n\t\tData d = merge(le[i], ri[i + 1]);\n\n\t\t//\n\t\t//update for return\n\t\tP p = { 0,0 };\n\t\tadd(p, ple[i].first);\n\t\tadd(p, ple[i].second);\n\t\tadd(p, pri[i+1].first);\n\t\tadd(p, pri[i+1].second);\n\n\t\tint s0 = p.first / 3 + p.second / 3 + 1;\n\t\tint s1 = (p.first+2) / 3 + (p.second+2) / 3;\n\t\td.ma = max({ d.ma,s0,s1 });\n\t\td.d++;\n\t\t//\n\t\tinvdfs(to, id, d);\n\t}\n}\nvoid yaru() {\n\tdfs(root, -1);\n\tinvdfs(root, -1, { 0,0 });\n}\n\n\n\nstring s = \"RGB\";\nstring ans;\nvoid dfs(int id, int fr, int col) {\n\tif (col == 3)col = 0;\n\tans[id] = s[col];\n\tfor (edge e : G[id])if (e.to != fr) {\n\t\tdfs(e.to, id, col + 1);\n\t}\n}\n\nint calcans() {\n\tint ma = 0;\n\trep(i, 3) {\n\t\tfunction<int(int, int)> calc = [&](int id, int fr)->int {\n\t\t\tvector<int> ts;\n\t\t\tfor (edge e : G[id])if (e.to != fr) {\n\t\t\t\tint nex = calc(e.to, id);\n\t\t\t\tts.push_back(nex);\n\t\t\t}\n\t\t\tsort(all(ts), greater<int>());\n\t\t\tif (ts.size() >= 2) {\n\t\t\t\tint sum = ts[0] + ts[1];\n\t\t\t\tif (ans[id] == s[i])sum++;\n\t\t\t\tma = max(ma, sum);\n\t\t\t}\n\t\t\tint res = 0;\n\t\t\tif (ts.size()) {\n\t\t\t\tres = ts[0];\n\t\t\t}\n\t\t\tif (ans[id] == s[i])res++;\n\t\t\tma = max(ma, res);\n\t\t\treturn res;\n\t\t}; calc(0, -1);\n\t}\n\treturn ma;\n}\n\nvoid solve() {\n\tint n; cin >> n; ans.resize(n);\n\trep(i, n - 1) {\n\t\tint a, b; cin >> a >> b; a--; b--;\n\t\tG[a].push_back({ b });\n\t\tG[b].push_back({ a });\n\t}\n\tyaru();\n\tint mi = mod;\n\tint chk = -1;\n\trep(i, n) {\n\t\tif (mi > score[i]) {\n\t\t\tmi = score[i];\n\t\t\tchk = i;\n\t\t}\n\t}\n\tdfs(chk, -1, 0);\n\tint val = calcans();\n\tassert(mi == val);\n\tcout << mi << \"\\n\";\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 106776, "score_of_the_acc": -1.1667, "final_rank": 17 }, { "submission_id": "aoj_3158_4832735", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i, n) for(long long i=0;i<(long long)(n);i++)\n#define REP(i,k,n) for(long long i=k;i<(long long)(n);i++)\n#define all(a) a.begin(),a.end()\n#define pb emplace_back\n#define eb emplace_back\n#define lb(v,k) (lower_bound(all(v),k)-v.begin())\n#define ub(v,k) (upper_bound(all(v),k)-v.begin())\n#define fi first\n#define se second\n#define pi M_PI\n#define PQ(T) priority_queue<T>\n#define SPQ(T) priority_queue<T,vector<T>,greater<T>>\n#define dame(a) {out(a);return 0;}\n#define decimal cout<<fixed<<setprecision(15);\n#define dupli(a) {sort(all(a));a.erase(unique(all(a)),a.end());}\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef tuple<ll,ll,ll> PP;\ntypedef tuple<ll,ll,ll,ll> PPP;\ntypedef multiset<ll> S;\nusing vi=vector<ll>;\nusing vvi=vector<vi>;\nusing vvvi=vector<vvi>;\nusing vvvvi=vector<vvvi>;\nusing vp=vector<P>;\nusing vvp=vector<vp>;\nusing vb=vector<bool>;\nusing vvb=vector<vb>;\nconst ll inf=1001001001001001001;\nconst ll INF=1001001001;\nconst ll mod=1000000007;\nconst double eps=1e-10;\ntemplate<class T> bool chmin(T&a,T b){if(a>b){a=b;return true;}return false;}\ntemplate<class T> bool chmax(T&a,T b){if(a<b){a=b;return true;}return false;}\ntemplate<class T> void out(T a){cout<<a<<'\\n';}\ntemplate<class T> void outp(T a){cout<<'('<<a.fi<<','<<a.se<<')'<<'\\n';}\ntemplate<class T> void outvp(T v){rep(i,v.size())cout<<'('<<v[i].fi<<','<<v[i].se<<')';cout<<'\\n';}\ntemplate<class T> void outvvp(T v){rep(i,v.size())outvp(v[i]);}\ntemplate<class T> void outv(T v){rep(i,v.size()){if(i)cout<<' ';cout<<v[i];}cout<<'\\n';}\ntemplate<class T> void outvv(T v){rep(i,v.size())outv(v[i]);}\ntemplate<class T> bool isin(T x,T l,T r){return (l)<=(x)&&(x)<=(r);}\ntemplate<class T> void yesno(T b){if(b)out(\"yes\");else out(\"no\");}\ntemplate<class T> void YesNo(T b){if(b)out(\"Yes\");else out(\"No\");}\ntemplate<class T> void YESNO(T b){if(b)out(\"YES\");else out(\"NO\");}\ntemplate<class T> void noyes(T b){if(b)out(\"no\");else out(\"yes\");}\ntemplate<class T> void NoYes(T b){if(b)out(\"No\");else out(\"Yes\");}\ntemplate<class T> void NOYES(T b){if(b)out(\"NO\");else out(\"YES\");}\nvoid outs(ll a,ll b){if(a>=inf-100)out(b);else out(a);}\nll gcd(ll a,ll b){if(b==0)return a;return gcd(b,a%b);}\nll modpow(ll a,ll b){ll res=1;a%=mod;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}return res;}\nvvi g;\nvi diameter(){\n ll n=g.size(),ne;\n vi par(n,-1);\n P far(-1,0);\n rep(tt,2){\n vi dis(n,inf);\n queue<ll> q;\n ne=far.se;\n q.emplace(ne);\n dis[ne]=0;\n while(!q.empty()){\n auto t=q.front();q.pop();\n for(ll x:g[t]){\n if(chmin(dis[x],dis[t]+1)){\n q.emplace(x);\n par[x]=t;\n }\n }\n }\n far=P(-1,0);\n rep(i,n)chmax(far,P(dis[i],i));\n }\n ll w=far.se;\n vi res;\n while(w!=ne){\n res.pb(w);\n w=par[w];\n }\n res.pb(ne);\n return res;\n}\nvi ans;\nvoid dfs0(int i,int p,int c){\n for(ll x:g[i])if(x!=p){\n ll nc=c-1;if(nc==-1)nc=2;\n ans[x]=nc;\n dfs0(x,i,nc);\n }\n}\nvoid dfs1(int i,int p,int c){\n for(ll x:g[i])if(x!=p){\n ll nc=c+1;if(nc==3)nc=0;\n ans[x]=nc;\n dfs1(x,i,nc);\n }\n}\nll res=0;\nvi dfs(int i,int p){\n vvi v(3);\n for(ll x:g[i])if(x!=p){\n auto t=dfs(x,i);\n rep(cnt,3)v[cnt].pb(t[cnt]);\n }\n rep(cnt,3){\n sort(all(v[cnt]));reverse(all(v[cnt]));\n }\n vi r(3),t(3);\n if(v[0].size())rep(c,3)r[c]=v[c][0];\n if(v[0].size()>1)rep(c,3)t[c]=v[c][0]+v[c][1];\n r[ans[i]]++;t[ans[i]]++;\n rep(c,3){chmax(res,r[c]);chmax(res,t[c]);}\n return r;\n}\nint main(){\n ll n;cin>>n;\n g=vvi(n);\n rep(i,n-1){\n ll a,b;cin>>a>>b;a--;b--;\n g[a].pb(b);g[b].pb(a);\n }\n vi d=diameter();\n // outv(d);\n ans=vi(n);\n rep(i,d.size()/2){\n ans[d[i]]=i%3;\n for(ll x:g[d[i]]){\n if((i!=d.size()-1&&x==d[i+1])||(i&&x==d[i-1]))continue;\n ans[x]=ans[d[i]]-1;\n if(ans[x]==-1)ans[x]=2;\n dfs0(x,d[i],ans[x]);\n }\n }\n REP(i,d.size()/2,d.size()){\n ans[d[i]]=i%3;\n for(ll x:g[d[i]]){\n if((i!=d.size()-1&&x==d[i+1])||(i&&x==d[i-1]))continue;\n ans[x]=ans[d[i]]+1;\n if(ans[x]==3)ans[x]=0;\n dfs1(x,d[i],ans[x]);\n }\n }\n // outv(ans);\n dfs(0,-1);\n out(res);\n for(ll x:ans){\n if(x==0)cout<<'R';\n if(x==1)cout<<'G';\n if(x==2)cout<<'B';\n }\n cout<<endl;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 60588, "score_of_the_acc": -0.5686, "final_rank": 14 }, { "submission_id": "aoj_3158_4832645", "code_snippet": "#include <stdio.h>\n#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for (int i = 0; i < (n); ++i)\n#define modulo N\n#define mod(mod_x) ((((long long)mod_x+modulo))%modulo)\n#define Inf 1000000000000000000\nint Ans;\nstring S;\nint N;\nint D;\nvector<vector<int>> E;\nstruct tree_diameter{\n\tconst long long X = 1000000000000000000;\n\tpair<long long,vector<int>> get(vector<vector<pair<int,long long>>> &E){\n\t\tvector<long long> dis = bfs(E,0);\n\t\tlong long maxi = -1;\n\t\tint ind = 0;\n\t\tfor(int i=0;i<E.size();i++){\n\t\t\tif(dis[i]>maxi){\n\t\t\t\tmaxi=dis[i];\n\t\t\t\tind=i;\n\t\t\t}\n\t\t}\n\n\t\tdis = bfs(E,ind);\n\t\tmaxi = -1;\n\n\t\tfor(int i=0;i<E.size();i++){\n\t\t\tif(dis[i]>maxi){\n\t\t\t\tmaxi=dis[i];\n\t\t\t\tind=i;\n\t\t\t}\n\t\t}\n\n\t\tvector<int> ret;\n\t\tret.push_back(ind);\n\t\twhile(dis[ind]!=0LL){\n\t\t\tfor(int i=0;i<E[ind].size();i++){\n\t\t\t\tif(dis[ind] == dis[E[ind][i].first] + E[ind][i].second){\n\t\t\t\t\tind = E[ind][i].first;\n\t\t\t\t\tret.push_back(ind);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t\n\t\treturn make_pair(maxi,ret);\n\t\t\n\t}\n\t\n\tpair<long long,vector<int>> get(vector<vector<int>> &E){\n\t\tvector<vector<pair<int,long long>>> e(E.size(),vector<pair<int,long long>>());\n\t\tfor(int i=0;i<E.size();i++){\n\t\t\tfor(int j=0;j<E[i].size();j++){\n\t\t\t\te[i].emplace_back(E[i][j],1LL);\n\t\t\t}\n\t\t}\n\t\treturn get(e);\n\t}\n\t\n\tvector<long long> bfs(vector<vector<pair<int,long long>>> &E,int start){\n\t\tvector<long long> dis(E.size(),X);\n\t\tdis[start] = 0LL;\n\t\tqueue<int> Q;\n\t\tQ.push(start);\n\t\t\n\t\twhile(Q.size()!=0){\n\t\t\tint u = Q.front();\n\t\t\tQ.pop();\n\t\t\tfor(int i=0;i<E[u].size();i++){\n\t\t\t\tint v = E[u][i].first;\n\t\t\t\tif(dis[v]!=X)continue;\n\t\t\t\tdis[v] = dis[u] + E[u][i].second;\n\t\t\t\tQ.push(v);\n\t\t\t}\n\t\t}\n\t\treturn dis;\n\t}\n\t\n};\nvector<int> maxi;\n\nvoid dfs(int now,int p){\n\trep(i,E[now].size()){\n\t\tint to = E[now][i];\n\t\tif(to==p)continue;\n\t\tdfs(to,now);\n\t\tmaxi[now] = max(maxi[to] + 1,maxi[now]);\n\t}\n}\nstring s = \"RGB\";\nvoid dfs2(int now,int p,int ind,int d){\n\tS[now] = s[ind];\n\tif(d==0){\n\t\tvector<int> t;\n\t\trep(i,E[now].size()){\n\t\t\tt.push_back(maxi[E[now][i]]);\n\t\t}\n\t\tsort(t.rbegin(),t.rend());\n\t\tint x = 1;\n\t\tint cnt = 0;\n\t\trep(i,E[now].size()){\n\t\t\tint to = E[now][i];\n\t\t\tif(maxi[to]>=t[0]){\n\t\t\t\tcnt++;\n\t\t\t\tx*=-1;\n\t\t\t}\n\t\t\tint iind = ind + 3 + x;\n\t\t\tiind %= 3;\n\t\t\tdfs2(to,now,iind,x);\n\t\t}\n\t\tAns = (D+2)/3;\n\t\tif(cnt>=3){\n\t\t\tif(D%3==0)Ans++;\n\t\t}\n\t\t\t\n\t}\n\telse{\n\t\tind += d+3;\n\t\tind %= 3;\n\t\trep(i,E[now].size()){\n\t\t\tint to = E[now][i];\n\t\t\tif(to==p)continue;\n\t\t\tdfs2(to,now,ind,d);\n\t\t}\n\t}\n}\nint main(){\n\t\n\tcin>>N;\n\tS.resize(N,'.');\n\tE.resize(N,vector<int>());\n\trep(i,N-1){\n\t\tint a,b;\n\t\tscanf(\"%d %d\",&a,&b);\n\t\ta--;b--;\n\t\tE[a].push_back(b);\n\t\tE[b].push_back(a);\n\t\t\n\t}\n\t\n\ttree_diameter T;\n\tvector<int> X = T.get(E).second;\n\tD = X.size();\n\tif(N==1){\n\t\tS = \"R\";\n\t\tAns = 1;\n\t}\n\telse if(N==2){\n\t\tS = \"RG\";\n\t\tAns = 1;\n\t}\n\telse{\n\t\tint f = X[X.size()/2];\n\t\tmaxi.resize(N,0);\n\t\tdfs(f,-1);\n\t\tdfs2(f,-1,0,0);\n\t}\n\t\n\tcout<<Ans<<endl;\n\tcout<<S<<endl;\n\t\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 37852, "score_of_the_acc": -0.2983, "final_rank": 9 }, { "submission_id": "aoj_3158_4832639", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\n//#include<atcoder/dsu>\n//#include<atcoder/fenwicktree>\n//#include<atcoder/math>\n//#include<atcoder/maxflow>\n\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-8;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m) {\n\tif (x >= m)x %= m;\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\n\nstring s = \"RGB\";\nstring ans;\nvector<int> G[1 << 18];\nvoid dfs(int id, int fr, int col) {\n\tif (col == 3)col = 0;\n\tans[id] = s[col];\n\tfor (int to : G[id])if (to != fr) {\n\t\tdfs(to, id, col + 1);\n\t}\n}\n\nint calcans() {\n\tint ma = 0;\n\trep(i, 3) {\n\t\tfunction<int(int, int)> calc = [&](int id, int fr)->int {\n\t\t\tvector<int> ts;\n\t\t\tfor (int to : G[id])if (to != fr) {\n\t\t\t\tint nex = calc(to, id);\n\t\t\t\tts.push_back(nex);\n\t\t\t}\n\t\t\tsort(all(ts), greater<int>());\n\t\t\tif (ts.size() >= 2) {\n\t\t\t\tint sum = ts[0] + ts[1];\n\t\t\t\tif (ans[id] == s[i])sum++;\n\t\t\t\tma = max(ma, sum);\n\t\t\t}\n\t\t\tint res = 0;\n\t\t\tif (ts.size()) {\n\t\t\t\tres = ts[0];\n\t\t\t}\n\t\t\tif (ans[id] == s[i])res++;\n\t\t\tma = max(ma, res);\n\t\t\treturn res;\n\t\t}; calc(0, -1);\n\t}\n\treturn ma;\n}\n\nvoid solve() {\n\tint n; cin >> n; ans.resize(n);\n\trep(i, n - 1) {\n\t\tint a, b; cin >> a >> b; a--; b--;\n\t\tG[a].push_back(b);\n\t\tG[b].push_back(a);\n\t}\n\tint mi = mod;\n\tint chk = -1;\n\tmt19937 mt(time(0));\n\tuniform_int_distribution<> ud(0, n - 1);\n\trep(i, 100) {\n\t\tint r = ud(mt);\n\t\tdfs(r, -1, 0);\n\t\tif (mi > calcans()) {\n\t\t\tmi = calcans();\n\t\t\tchk = r;\n\t\t}\n\t}\n\tdfs(chk, -1, 0);\n\tcout << mi << \"\\n\";\n\tcout << ans << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\t//init_f();\n\t//init();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 0.4222222222222222, "time_ms": 1840, "memory_kb": 13004, "score_of_the_acc": -1, "final_rank": 20 }, { "submission_id": "aoj_3158_4832589", "code_snippet": "#include <stdio.h>\n#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for (int i = 0; i < (n); ++i)\n#define modulo N\n#define mod(mod_x) ((((long long)mod_x+modulo))%modulo)\n#define Inf 1000000000000000000\nint Ans;\nstring S;\nint N;\nint D;\nvector<vector<int>> E;\nstruct tree_diameter{\n\tconst long long X = 1000000000000000000;\n\tpair<long long,vector<int>> get(vector<vector<pair<int,long long>>> &E){\n\t\tvector<long long> dis = bfs(E,0);\n\t\tlong long maxi = -1;\n\t\tint ind = 0;\n\t\tfor(int i=0;i<E.size();i++){\n\t\t\tif(dis[i]>maxi){\n\t\t\t\tmaxi=dis[i];\n\t\t\t\tind=i;\n\t\t\t}\n\t\t}\n\n\t\tdis = bfs(E,ind);\n\t\tmaxi = -1;\n\n\t\tfor(int i=0;i<E.size();i++){\n\t\t\tif(dis[i]>maxi){\n\t\t\t\tmaxi=dis[i];\n\t\t\t\tind=i;\n\t\t\t}\n\t\t}\n\n\t\tvector<int> ret;\n\t\tret.push_back(ind);\n\t\twhile(dis[ind]!=0LL){\n\t\t\tfor(int i=0;i<E[ind].size();i++){\n\t\t\t\tif(dis[ind] == dis[E[ind][i].first] + E[ind][i].second){\n\t\t\t\t\tind = E[ind][i].first;\n\t\t\t\t\tret.push_back(ind);\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t\n\t\treturn make_pair(maxi,ret);\n\t\t\n\t}\n\t\n\tpair<long long,vector<int>> get(vector<vector<int>> &E){\n\t\tvector<vector<pair<int,long long>>> e(E.size(),vector<pair<int,long long>>());\n\t\tfor(int i=0;i<E.size();i++){\n\t\t\tfor(int j=0;j<E[i].size();j++){\n\t\t\t\te[i].emplace_back(E[i][j],1LL);\n\t\t\t}\n\t\t}\n\t\treturn get(e);\n\t}\n\t\n\tvector<long long> bfs(vector<vector<pair<int,long long>>> &E,int start){\n\t\tvector<long long> dis(E.size(),X);\n\t\tdis[start] = 0LL;\n\t\tqueue<int> Q;\n\t\tQ.push(start);\n\t\t\n\t\twhile(Q.size()!=0){\n\t\t\tint u = Q.front();\n\t\t\tQ.pop();\n\t\t\tfor(int i=0;i<E[u].size();i++){\n\t\t\t\tint v = E[u][i].first;\n\t\t\t\tif(dis[v]!=X)continue;\n\t\t\t\tdis[v] = dis[u] + E[u][i].second;\n\t\t\t\tQ.push(v);\n\t\t\t}\n\t\t}\n\t\treturn dis;\n\t}\n\t\n};\nvector<int> maxi;\n\nvoid dfs(int now,int p){\n\trep(i,E[now].size()){\n\t\tint to = E[now][i];\n\t\tif(to==p)continue;\n\t\tdfs(to,now);\n\t\tmaxi[now] = max(maxi[to] + 1,maxi[now]);\n\t}\n}\nstring s = \"RGB\";\nvoid dfs2(int now,int p,int ind,int d){\n\tS[now] = s[ind];\n\tif(d==0){\n\t\tvector<int> t;\n\t\trep(i,E[now].size()){\n\t\t\tt.push_back(maxi[E[now][i]]);\n\t\t}\n\t\tsort(t.rbegin(),t.rend());\n\t\tint x = 1;\n\t\tint cnt = 0;\n\t\trep(i,E[now].size()){\n\t\t\tint to = E[now][i];\n\t\t\tif(maxi[to]>=t[1]){\n\t\t\t\tcnt++;\n\t\t\t\tx*=-1;\n\t\t\t}\n\t\t\tint iind = ind + 3 + x;\n\t\t\tiind %= 3;\n\t\t\tdfs2(to,now,iind,x);\n\t\t}\n\t\tAns = (D+2)/3;\n\t\tif(cnt>=3){\n\t\t\tif(D%3==0)Ans++;\n\t\t}\n\t\t\t\n\t}\n\telse{\n\t\tind += d+3;\n\t\tind %= 3;\n\t\trep(i,E[now].size()){\n\t\t\tint to = E[now][i];\n\t\t\tif(to==p)continue;\n\t\t\tdfs2(to,now,ind,d);\n\t\t}\n\t}\n}\nint main(){\n\t\n\tcin>>N;\n\tS.resize(N,'.');\n\tE.resize(N,vector<int>());\n\trep(i,N-1){\n\t\tint a,b;\n\t\tscanf(\"%d %d\",&a,&b);\n\t\ta--;b--;\n\t\tE[a].push_back(b);\n\t\tE[b].push_back(a);\n\t\t\n\t}\n\t\n\ttree_diameter T;\n\tvector<int> X = T.get(E).second;\n\tD = X.size();\n\tif(N==1){\n\t\tS = \"R\";\n\t\tAns = 1;\n\t}\n\telse if(N==2){\n\t\tS = \"RG\";\n\t\tAns = 1;\n\t}\n\telse{\n\t\tint f = X[X.size()/2];\n\t\tmaxi.resize(N,0);\n\t\tdfs(f,-1);\n\t\tdfs2(f,-1,0,0);\n\t}\n\t\n\tcout<<Ans<<endl;\n\tcout<<S<<endl;\n\t\n return 0;\n}", "accuracy": 0.4888888888888889, "time_ms": 40, "memory_kb": 29820, "score_of_the_acc": -0.1793, "final_rank": 19 }, { "submission_id": "aoj_3158_4832083", "code_snippet": "//#define NDEBUG\n\n#pragma region cp_template\n\n#include <algorithm>\n#include <cstddef>\n#include <cstdint>\n#include <iostream>\n#include <utility>\n#include <vector>\n\nnamespace n91 {\n\n using i32 = std::int32_t;\n using i64 = std::int64_t;\n using u32 = std::uint32_t;\n using u64 = std::uint64_t;\n using isize = std::ptrdiff_t;\n using usize = std::size_t;\n\n struct rep {\n struct itr {\n usize i;\n constexpr itr(const usize i) noexcept : i(i) {}\n void operator++() noexcept { ++i; }\n constexpr usize operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr x) const noexcept { return i != x.i; }\n };\n const itr f, l;\n constexpr rep(const usize f, const usize l) noexcept\n : f(std::min(f, l)), l(l) {}\n constexpr auto begin() const noexcept { return f; }\n constexpr auto end() const noexcept { return l; }\n };\n struct revrep {\n struct itr {\n usize i;\n constexpr itr(const usize i) noexcept : i(i) {}\n void operator++() noexcept { --i; }\n constexpr usize operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr x) const noexcept { return i != x.i; }\n };\n const itr f, l;\n constexpr revrep(const usize f, const usize l) noexcept\n : f(l - 1), l(std::min(f, l) - 1) {}\n constexpr auto begin() const noexcept { return f; }\n constexpr auto end() const noexcept { return l; }\n };\n template <class T> auto md_vec(const usize n, const T& value) {\n return std::vector<T>(n, value);\n }\n template <class... Args> auto md_vec(const usize n, Args... args) {\n return std::vector<decltype(md_vec(args...))>(n, md_vec(args...));\n }\n template <class T> constexpr T difference(const T& a, const T& b) noexcept {\n return a < b ? b - a : a - b;\n }\n template <class T> void chmin(T& a, const T& b) noexcept {\n if (b < a)\n a = b;\n }\n template <class T> void chmax(T& a, const T& b) noexcept {\n if (a < b)\n a = b;\n }\n template <class F> class rec_lambda {\n F f;\n\n public:\n rec_lambda(F&& f) : f(std::move(f)) {}\n template <class... Args> auto operator()(Args&&... args) const {\n return f(*this, std::forward<Args>(args)...);\n }\n };\n template <class F> auto make_rec(F&& f) { return rec_lambda<F>(std::move(f)); }\n template <class T> T scan() {\n T ret;\n std::cin >> ret;\n return ret;\n }\n constexpr char eoln = '\\n';\n template <class T> T ceildiv(const T& l, const T& r) {\n return l / r + (l % r != 0 ? 1 : 0);\n }\n\n} // namespace n91\n\n#pragma endregion cp_template\n\n#include <cstdint>\n\ntemplate <std::uint_fast64_t mod> class modint {\n using u64 = std::uint_fast64_t;\n\npublic:\n u64 v;\n\n constexpr modint(const u64 x = 0) noexcept : v(x% mod) {}\n constexpr modint operator+(const modint rhs) const noexcept {\n return modint(*this) += rhs;\n }\n constexpr modint operator-(const modint rhs) const noexcept {\n return modint(*this) -= rhs;\n }\n constexpr modint operator*(const modint rhs) const noexcept {\n return modint(*this) *= rhs;\n }\n constexpr modint operator/(const modint rhs) const noexcept {\n return modint(*this) /= rhs;\n }\n constexpr modint& operator+=(const modint rhs) noexcept {\n v += rhs.v;\n if (v >= mod)\n v -= mod;\n return *this;\n }\n constexpr modint& operator-=(const modint rhs) noexcept {\n if (v < rhs.v)\n v += mod;\n v -= rhs.v;\n return *this;\n }\n constexpr modint& operator*=(const modint rhs) noexcept {\n v = v * rhs.v % mod;\n return *this;\n }\n constexpr modint& operator/=(modint rhs) noexcept {\n u64 exp = mod - 2;\n while (exp != 0) {\n if (exp % 2 != 0)\n *this *= rhs;\n rhs *= rhs;\n exp /= 2;\n }\n return *this;\n }\n};\n\n#include <functional>\n#include <utility>\n\nnamespace n91 {\n\n template <class T, class U, class Operate = std::multiplies<T>>\n constexpr T power(T base, U exp, const Operate& oper = Operate(), T iden = 1) {\n while (exp != 0) {\n if (exp % 2 != 0) {\n iden = oper(iden, base);\n }\n exp /= 2;\n base = oper(base, base);\n }\n return iden;\n }\n\n} // namespace n91\n\nnamespace n91 {\n\n void main_() {\n using mint = modint<998244353>;\n /*\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n //*/\n const usize n = scan<usize>();\n auto g = md_vec(n, 0, usize());\n for (const usize i : rep(0, n - 1)) {\n const usize a = scan<usize>() - 1;\n const usize b = scan<usize>() - 1;\n g[a].push_back(b);\n g[b].push_back(a);\n }\n std::vector<usize> dist(n, 0), par(n);\n const auto dfs = [&](const auto& dfs, const usize v, const usize p) -> void {\n par[v] = p;\n for (const auto e : g[v]) {\n if (e != p) {\n dist[e] = dist[v] + 1;\n dfs(dfs, e, v);\n }\n }\n };\n dfs(dfs, 0, n);\n const usize d0 = std::max_element(dist.begin(), dist.end()) - dist.begin();\n dist[d0] = 0;\n dfs(dfs, d0, n);\n const usize d1 = std::max_element(dist.cbegin(), dist.cend()) - dist.begin();\n const usize diam = dist[d1];\n usize ans_x;\n std::vector<u32> ans(n);\n if (diam % 2 == 1) {\n usize c1 = d1;\n for (const usize i : rep(0, diam / 2)) {\n c1 = par[c1];\n }\n usize c0 = par[c1];\n ans_x = diam / 3 + 1;\n dist[c0] = 0;\n dist[c1] = n;\n dfs(dfs, c0, c1);\n dfs(dfs, c1, c0);\n for (const usize i : rep(0, n)) {\n if (dist[i] >= n) {\n ans[i] = 2 - (dist[i] - n) % 3;\n }\n else {\n ans[i] = dist[i] % 3;\n }\n }\n }\n else {\n usize c = d1;\n for (const usize i : rep(0, diam / 2)) {\n c = par[c];\n }\n dfs(dfs, c, n);\n dist[c] = 0;\n bool fl = false;\n for (const usize v : g[c]) {\n if (fl) {\n dist[v] = n;\n }\n else {\n dist[v] = 1;\n }\n dfs(dfs, v, c);\n fl = !fl;\n }\n for (const usize i : rep(0, n)) {\n if (dist[i] >= n) {\n ans[i] = 2 - (dist[i] - n) % 3;\n }\n else {\n ans[i] = dist[i] % 3;\n }\n }\n }\n std::vector<usize> c_dist(n, 0);\n const auto c_dfs = [&](const auto& c_dfs, const usize v, const usize p,\n const usize col) -> void {\n if (ans[v] == col) {\n ++c_dist[v];\n }\n for (const auto e : g[v]) {\n if (e != p) {\n c_dist[e] = c_dist[v];\n c_dfs(c_dfs, e, v, col);\n }\n }\n };\n ans_x = 0;\n for (const usize i : rep(0, 3)) {\n c_dist[0] = 0;\n c_dfs(c_dfs, 0, n, i);\n const usize c_d0 =\n std::max_element(c_dist.begin(), c_dist.end()) - c_dist.begin();\n c_dist[c_d0] = 0;\n c_dfs(c_dfs, c_d0, n, i);\n chmax(ans_x, *std::max_element(c_dist.cbegin(), c_dist.cend()));\n }\n\n std::cout << ans_x << eoln;\n for (const auto e : ans) {\n if (e % 3 == 0) {\n std::cout << \"R\";\n }\n else if (e % 3 == 1) {\n std::cout << \"G\";\n }\n else {\n std::cout << \"B\";\n }\n }\n std::cout << eoln;\n }\n\n} // namespace n91\n\nint main() {\n n91::main_();\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 35072, "score_of_the_acc": -0.3131, "final_rank": 11 }, { "submission_id": "aoj_3158_4832039", "code_snippet": "#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2\")\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing uint = unsigned;\nusing pcc = pair<char, char>;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pdd = pair<ld, ld>;\nusing tuplis = array<ll, 3>;\ntemplate<class T> using pq = priority_queue<T, vector<T>, greater<T>>;\nconst ll LINF=0x1fffffffffffffff;\nconst ll MINF=0x7fffffffffff;\nconst int INF=0x3fffffff;\nconst int MOD=1000000007;\nconst int MODD=998244353;\nconst ld DINF=numeric_limits<ld>::infinity();\nconst ld EPS=1e-9;\nconst ld PI=3.1415926535897932;\nconst ll dx[] = {0, 1, 0, -1, 1, -1, 1, -1};\nconst ll dy[] = {1, 0, -1, 0, 1, 1, -1, -1};\n#define overload4(_1,_2,_3,_4,name,...) name\n#define overload3(_1,_2,_3,name,...) name\n#define rep1(n) for(ll i=0;i<n;++i)\n#define rep2(i,n) for(ll i=0;i<n;++i)\n#define rep3(i,a,b) for(ll i=a;i<b;++i)\n#define rep4(i,a,b,c) for(ll i=a;i<b;i+=c)\n#define rep(...) overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__)\n#define rrep1(n) for(ll i=n;i--;)\n#define rrep2(i,n) for(ll i=n;i--;)\n#define rrep3(i,a,b) for(ll i=b;i-->(a);)\n#define rrep4(i,a,b,c) for(ll i=(a)+((b)-(a)-1)/(c)*(c);i>=(a);i-=c)\n#define rrep(...) overload4(__VA_ARGS__,rrep4,rrep3,rrep2,rrep1)(__VA_ARGS__)\n#define each1(i,a) for(auto&&i:a)\n#define each2(x,y,a) for(auto&&[x,y]:a)\n#define each3(x,y,z,a) for(auto&&[x,y,z]:a)\n#define each(...) overload4(__VA_ARGS__,each3,each2,each1)(__VA_ARGS__)\n#define all1(i) begin(i),end(i)\n#define all2(i,a) begin(i),begin(i)+a\n#define all3(i,a,b) begin(i)+a,begin(i)+b\n#define all(...) overload3(__VA_ARGS__,all3,all2,all1)(__VA_ARGS__)\n#define rall1(i) (i).rbegin(),(i).rend()\n#define rall2(i,k) (i).rbegin(),(i).rbegin()+k\n#define rall3(i,a,b) (i).rbegin()+a,(i).rbegin()+b\n#define rall(...) overload3(__VA_ARGS__,rall3,rall2,rall1)(__VA_ARGS__)\n#define sum(...) accumulate(all(__VA_ARGS__),0LL)\n#define dsum(...) accumulate(all(__VA_ARGS__),0.0L)\n#define Msum(...) accumulate(all(__VA_ARGS__),0_M)\n#define elif else if\n#define unless(a) if(!(a))\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)\n#define Sort(a) sort(all(a))\n#define Rev(a) reverse(all(a))\n#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define vec(type,name,...) vector<type>name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type>name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ntemplate<class T> auto min(const T& a){ return *min_element(all(a)); }\ntemplate<class T> auto max(const T& a){ return *max_element(all(a)); }\ninline ll popcnt(ull a){ return __builtin_popcountll(a); }\nll gcd(ll a, ll b){ while(b){ ll c = b; b = a % b; a = c; } return a; }\nll lcm(ll a, ll b){ if(!a || !b) return 0; return a * b / gcd(a, b); }\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }\ntemplate<class T> bool chmin(T& a, const T& b){ if(a > b){ a = b; return 1; } return 0; }\ntemplate<class T> bool chmax(T& a, const T& b){ if(a < b){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmin(T& a, const U& b){ if(a > T(b)){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmax(T& a, const U& b){ if(a < T(b)){ a = b; return 1; } return 0; }\nvector<ll> iota(ll n){ vector<ll> a(n); iota(a.begin(), a.end(), 0); return a; }\nvector<pll> factor(ull x){ vector<pll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; }\nmap<ll,ll> factor_map(ull x){ map<ll,ll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans[i] = 1; while((x /= i) % i == 0) ans[i]++; } if(x != 1) ans[x] = 1; return ans; }\nvector<ll> divisor(ull x){ vector<ll> ans; for(ull i = 1; i * i <= x; i++) if(x % i == 0) ans.push_back(i); rrep(ans.size() - (ans.back() * ans.back() == x)) ans.push_back(x / ans[i]); return ans; }\ntemplate<class T> unordered_map<T, ll> press(vector<T> a){ Uniq(a); unordered_map<T, ll> ans; rep(a.size()) ans[a[i]] = i; return ans; }\ntemplate<class T> map<T, ll> press_map(vector<T> a){ Uniq(a); map<T, ll> ans; rep(a.size()) ans[a[i]] = i; return ans; }\nint scan(){ return getchar(); }\nvoid scan(int& a){ scanf(\"%d\", &a); }\nvoid scan(unsigned& a){ scanf(\"%u\", &a); }\nvoid scan(long& a){ scanf(\"%ld\", &a); }\nvoid scan(long long& a){ scanf(\"%lld\", &a); }\nvoid scan(unsigned long long& a){ scanf(\"%llu\", &a); }\nvoid scan(char& a){ do{ a = getchar(); }while(a == ' ' || a == '\\n'); }\nvoid scan(float& a){ scanf(\"%f\", &a); }\nvoid scan(double& a){ scanf(\"%lf\", &a); }\nvoid scan(long double& a){ scanf(\"%Lf\", &a); }\nvoid scan(vector<bool>& a){ for(unsigned i = 0; i < a.size(); i++){ int b; scan(b); a[i] = b; } }\nvoid scan(char a[]){ scanf(\"%s\", a); }\nvoid scan(string& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>&);\ntemplate<class T, size_t size> void scan(array<T, size>&);\ntemplate<class T, class L> void scan(pair<T, L>&);\ntemplate<class T, size_t size> void scan(T(&)[size]);\ntemplate<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(deque<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, class L> void scan(pair<T, L>& p){ scan(p.first); scan(p.second); }\ntemplate<class T, size_t size> void scan(T (&a)[size]){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(T& a){ cin >> a; }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ putchar(' '); }\nvoid print(bool a){ printf(\"%d\", a); }\nvoid print(int a){ printf(\"%d\", a); }\nvoid print(unsigned a){ printf(\"%u\", a); }\nvoid print(long a){ printf(\"%ld\", a); }\nvoid print(long long a){ printf(\"%lld\", a); }\nvoid print(unsigned long long a){ printf(\"%llu\", a); }\nvoid print(char a){ printf(\"%c\", a); }\nvoid print(char a[]){ printf(\"%s\", a); }\nvoid print(const char a[]){ printf(\"%s\", a); }\nvoid print(float a){ printf(\"%.15f\", a); }\nvoid print(double a){ printf(\"%.15f\", a); }\nvoid print(long double a){ printf(\"%.15Lf\", a); }\nvoid print(const string& a){ for(auto&& i : a) print(i); }\ntemplate<class T> void print(const complex<T>& a){ if(a.real() >= 0) print('+'); print(a.real()); if(a.imag() >= 0) print('+'); print(a.imag()); print('i'); }\ntemplate<class T> void print(const vector<T>&);\ntemplate<class T, size_t size> void print(const array<T, size>&);\ntemplate<class T, class L> void print(const pair<T, L>& p);\ntemplate<class T, size_t size> void print(const T (&)[size]);\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const deque<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, size_t size> void print(const array<T, size>& a){ print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, class L> void print(const pair<T, L>& p){ print(p.first); putchar(' '); print(p.second); }\ntemplate<class T, size_t size> void print(const T (&a)[size]){ print(a[0]); for(auto i = a; ++i != end(a); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const T& a){ cout << a; }\nint out(){ putchar('\\n'); return 0; }\ntemplate<class T> int out(const T& t){ print(t); putchar('\\n'); return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }\n#ifdef DEBUG\ninline ll __lg(ull __n){ return sizeof(ull) * __CHAR_BIT__ - 1 - __builtin_clzll(__n); }\n#define debug(...) { print(#__VA_ARGS__); print(\":\"); out(__VA_ARGS__); }\n#else\n#define debug(...) void(0)\n#endif\nint first(bool i = true){ return out(i?\"first\":\"second\"); }\nint yes(bool i = true){ return out(i?\"yes\":\"no\"); }\nint Yes(bool i = true){ return out(i?\"Yes\":\"No\"); }\nint No(){ return out(\"No\"); }\nint YES(bool i = true){ return out(i?\"YES\":\"NO\"); }\nint NO(){ return out(\"NO\"); }\nint Yay(bool i = true){ return out(i?\"Yay!\":\":(\"); }\nint possible(bool i = true){ return out(i?\"possible\":\"impossible\"); }\nint Possible(bool i = true){ return out(i?\"Possible\":\"Impossible\"); }\nint POSSIBLE(bool i = true){ return out(i?\"POSSIBLE\":\"IMPOSSIBLE\"); }\nvoid Case(ll i){ printf(\"Case #%lld: \", i); }\n\n\n\nstruct UnWeightedEdge{\n ll to;\n static constexpr ll cost = 1;\n UnWeightedEdge(){}\n UnWeightedEdge(ll to): to(to){}\n operator ll() const { return to; }\n};\nstruct UnWeightedGraph{\n using E = UnWeightedEdge;\n vector<vector<E>> g;\n UnWeightedGraph(){}\n UnWeightedGraph(ll n): g(n){}\n vector<E>& operator[](ll at){ return g[at]; }\n operator vector<vector<E>>&(){ return g; }\n auto begin(){ return g.begin(); }\n auto end(){ return g.end(); }\n auto begin() const { return g.cbegin(); }\n auto end() const { return g.cend(); }\n ll size() const { return g.size(); }\n void resize(ll n){ g.resize(n); }\n const vector<E>& operator[](ll at) const { return g[at]; }\n operator const vector<vector<E>>&() const { return g; }\n void add_edge(ll a, ll b){\n g[a].emplace_back(b);\n g[b].emplace_back(a);\n }\n void add_directed_edge(ll from, ll to){\n g[from].emplace_back(to);\n }\n template<ll start_index = 1, bool directed = false> void input_graph(ll m){\n while(m--){\n ll a, b;\n scanf(\"%lld%lld\", &a, &b);\n a -= start_index;\n b -= start_index;\n g[a].emplace_back(b);\n if(!directed) g[b].emplace_back(a);\n }\n }\n template<ll start_index = 1> void input_tree(ll n = -1){ if(n == -1) n = g.size(); input_graph<start_index>(n - 1); }\n};\nvector<ll> Diameter(const UnWeightedGraph& g){\n ll n = g.size();\n vector<ll> cost(n, LINF);\n queue<ll> q;\n cost[0] = 0;\n q.push(0);\n ll d1 = 0;\n while(q.size()){\n d1 = q.front();\n q.pop();\n each(i, g[d1]) if(chmin(cost[i], cost[d1] + 1)) q.push(i);\n }\n cost.assign(n, LINF);\n vector<ll> back(n, -1);\n cost[d1] = 0;\n q.push(d1);\n ll d2 = 0;\n while(q.size()){\n d2 = q.front();\n q.pop();\n each(i, g[d2]) if(chmin(cost[i], cost[d2] + 1)){\n back[i] = d2;\n q.push(i);\n }\n }\n vector<ll> ans = {d2};\n while(ans.back() != d1) ans.push_back(back[ans.back()]);\n return ans;\n}\nvector<ll> BFS(const UnWeightedGraph& g, ll start){\n vector<ll> cost(g.size(), LINF);\n queue<ll> q;\n cost[start] = 0;\n q.push(start);\n while(q.size()){\n ll at = q.front();\n q.pop();\n each(i, g[at]) if(chmin(cost[i], cost[at] + i.cost)) q.push(i);\n }\n return cost;\n}\nsigned main(){\n LL(n);\n if(n==1){\n out(1);\n return out('R');\n }\n UnWeightedGraph g(n);\n g.input_tree();\n auto d=Diameter(g);\n string color(n,'-');\n auto cost1=BFS(g,d[(d.size()-1)/2]),cost2=BFS(g,d[(d.size()+1)/2]);\n rep(n)color[i]=cost1[i]<cost2[i]?\"BGR\"[cost1[i]%3]:\"RGB\"[cost2[i]%3];\n ll ans=0;\n for(char c:\"RGB\"s){\n vec(pll,dp,n);\n auto dfs = [&](ll from, ll at, auto dfs) -> void {\n each(i, g[at]) if(i != from){\n dfs(at, i, dfs);\n if(chmax(dp[at].second,dp[i].first+(color[i]==c))&&dp[at].first<dp[at].second)swap(dp[at].first,dp[at].second);\n }\n };\n dfs(-1, 0, dfs);\n auto dfs2 = [&](ll from, ll at, auto dfs) -> void {\n each(i, g[at]) if(i != from){\n const ll a=dp[at].first==dp[i].first+(color[i]==c)?dp[at].second:dp[at].first;\n if(chmax(dp[i].second,a+(color[at]==c))&&dp[i].first<dp[i].second)swap(dp[i].first,dp[i].second);\n dfs(at, i, dfs);\n }\n };\n dfs2(-1, 0, dfs2);\n rep(n)chmax(ans,dp[i].first+dp[i].second+(color[i]==c));\n }\n out(ans);\n out(color);\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 53488, "score_of_the_acc": -0.504, "final_rank": 13 } ]
aoj_3163_cpp
Problem M: Star Gazer Problem suta君は夜空を見ていた際に、オリジナルの新しい星座を思いつきました。 思いついた星座は $N$ 個の星からなり、 $N-1$ 本の線で結ばれています。 具体的には、 $i(1 \leq i \leq N-1)$ 本目の線が、 $a_i$ 番目の星と $b_i$ 番目の星を結びます。どの星も、少なくとも1つの別の星と結ばれます。 suta君は、この星座における、 $p(1 \leq p \leq N)$ 番目の星の美しさを次のように定義しました。 $q(1 \leq q \leq N)$ 番目の星の明るさを $l_q$ 、 $p$ 番目の星と $q$ 番目の星の距離を $d_{p,q}$ とし、 $\displaystyle \sum_{q = 1}^{N} l_q \times d_{p,q}$ ここで $p$ 番目の星と $q$ 番目の星の距離とは、「 $p$ 番目の星から $q$ 番目の星に線を辿っていく時、辿る必要のある線の本数」 です。 また、 $d_{p,p} = 0$ です。 suta君は星座の完成度を確認するために、それぞれの星の美しさが知りたくなりました。 計算が苦手なsuta君に代わって、星の美しさを計算するプログラムを組んでください! Constraints 入力は以下の条件を満たす。 $2 \leq N \leq 10^5$ $1 \leq l_i \leq 10^8$ $1 \leq a_i, b_i \leq N$ $a_i \neq b_i$ $(a_i, b_i) = (b_j, a_j)$ もしくは $(a_i, b_i) = (a_j, b_j)$ となるような $i,j(1 \leq i,j \leq N, i \neq j)$ の組み合わせは存在しない。 任意の星からいくつかの線を辿って別の星にたどり着くことができる。 入力は全て整数で与えられる。 Input 入力は以下の形式で与えられる。 $N$ $l_1$ $l_2$ $\ldots$ $l_N$ $a_1$ $b_1$ $a_2$ $b_2$ $\vdots$ $a_{N-1}$ $b_{N-1}$ Output $N$ 行出力せよ。 $i$ 行目には、 $i$ 番目の星の美しさを出力せよ。 末尾の改行を忘れないこと。 Sample Input 1 4 1 2 3 4 1 2 1 3 3 4 Sample Output 1 13 19 9 11 与えられる星座は図のようになります。 1番目の星の美しさは、 $1 × 0 + 2 × 1 + 3 × 1 + 4 × 2 = 13$ となります。 同様に、2番目の星の美しさは、 $1 × 1 + 2 × 0 + 3 × 2 + 4 × 3 = 19$ となります。 3番目の星の美しさは、 $1 × 1 + 2 × 2 + 3 × 0 + 4 × 1 = 9$ となります。 4番目の星の美しさは、 $1 × 2 + 2 × 3 + 3 × 1 + 4 × 0 = 11$ となります。 Sample Input 2 5 123 456 789 119 1 5 2 3 1 1 2 1 4 Sample Output 2 1366 1940 1276 2616 3426
[ { "submission_id": "aoj_3163_10092502", "code_snippet": "// AOJ #3163\n// Star Gazer 2025.1.11\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n// 最大 10^5 頂点想定 (問題制約)\nstatic const int MAXN = 100005;\n\n// 各頂点の明るさ、部分木の明るさ合計、beauty(distSum) を格納\nlong long L[MAXN+1]; // brightness\nlong long subB[MAXN+1]; // uの部分木に含まれるすべての頂点の明るさ合計\nlong long distSum[MAXN+1]; // beauty(u)\n\n// 全頂点の明るさ合計\nlong long sumAll = 0;\n\n// 木の隣接リスト\nvector<int> g[MAXN+1];\n\nint N;\n\n// dfs1: 根を 1 として、distSum[1] と subB[u] をまとめて計算\n// d は「(仮の)根1 からの深さ」 = 距離\nvoid dfs1(int u, int parent, int depth) {\n // beauty(1) に l[u] * depth を足す\n distSum[1] += L[u] * depth;\n\n // 部分木の明るさを初期化\n subB[u] = L[u];\n\n // 子頂点へ\n for (auto &w : g[u]) {\n if (w == parent) continue;\n\n dfs1(w, u, depth + 1);\n subB[u] += subB[w]; // 子の部分木を親に加算\n }\n}\n\n// dfs2: 親 -> 子 で「再根付き」\n// parent = -1 はダミー (根)\nvoid dfs2(int u, int parent) {\n // 子頂点 w について「根を u から w へ移す(再根付き)」ときの beauty(w) を計算\n for (auto &w : g[u]) {\n if (w == parent) continue;\n\n // 親u の beauty(u) をもとに、再根付きで beauty(w) を更新\n distSum[w] = distSum[u] + (sumAll - 2 * subB[w]);\n\n // 再帰的に処理\n dfs2(w, u);\n }\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(0);\n\n cin >> N;\n for(int i = 1; i <= N; i++){\n cin >> L[i];\n sumAll += L[i];\n }\n\n // 辺の入力\n for(int i = 0; i < N - 1; i++){\n int a, b;\n cin >> a >> b;\n // 無向グラフ(=木)\n g[a].push_back(b);\n g[b].push_back(a);\n }\n\n // 1. dfs1 で beauty(1) と subB を計算\n dfs1(1, -1, 0);\n\n // 2. dfs2 で「再根付き」により distSum(beauty) を求める\n dfs2(1, -1);\n\n // 出力\n for(int i = 1; i <= N; i++){\n cout << distSum[i] << \"\\n\";\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 16456, "score_of_the_acc": -0.1123, "final_rank": 2 }, { "submission_id": "aoj_3163_10086570", "code_snippet": "// competitive-verifier: PROBLEM https://onlinejudge.u-aizu.ac.jp/problems/3163\n#include <cstdint>\n#include <iostream>\n#include <utility>\n#include <vector>\n/**\n * @brief 重み付きグラフ\n *\n * @tparam T 辺の重みの型\n */\ntemplate <class T>\nstruct Graph {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to(), _weight() {}\n constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {}\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr T weight() const { return _weight; }\n private:\n int _from, _to;\n T _weight;\n };\n public:\n using edge_type = typename Graph<T>::_edge;\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); }\n void add_edges(int from, int to, T weight = T(1)) {\n edges[from].emplace_back(from, to, weight);\n edges[to].emplace_back(to, from, weight);\n }\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edge(from - base, to - base, weight);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edges(from - base, to - base, weight);\n }\n }\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\ntemplate <>\nstruct Graph<void> {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to() {}\n constexpr _edge(int from, int to) : _from(from), _to(to) {}\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr int weight() const { return 1; }\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n private:\n int _from, _to;\n };\n public:\n using edge_type = typename Graph<void>::_edge;\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to) { edges[from].emplace_back(from, to); }\n void add_edges(int from, int to) {\n edges[from].emplace_back(from, to);\n edges[to].emplace_back(to, from);\n }\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edge(from - base, to - base);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edges(from - base, to - base);\n }\n }\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\n/// @brief 全方位木dp\n/// @see https://algo-logic.info/tree-dp/\ntemplate <class M, class T, class U>\nstruct ReRooting {\n private:\n using Value = typename M::value_type;\n public:\n ReRooting(const Graph<T> &g, const std::vector<U> &v)\n : graph(g), data(v), dp(g.size()), values(g.size()) {\n build();\n }\n const auto &operator[](int i) const { return values[i]; }\n auto &operator[](int i) { return values[i]; }\n const auto begin() const { return values.begin(); }\n auto begin() { return values.begin(); }\n const auto end() const { return values.end(); }\n auto end() { return values.end(); }\n private:\n Graph<T> graph;\n const std::vector<U> &data;\n std::vector<std::vector<Value>> dp;\n std::vector<Value> values;\n void build() {\n dfs(0);\n bfs(0);\n }\n Value dfs(int v, int p = -1) {\n Value res = M::id();\n int deg = graph[v].size();\n dp[v] = std::vector<Value>(deg, M::id());\n for (int i = 0; i < deg; ++i) {\n auto e = graph[v][i];\n if (e.to() == p) continue;\n dp[v][i] = M::f(dfs(e.to(), v), e.weight());\n res = M::op(res, dp[v][i]);\n }\n return M::g(res, data[v]);\n }\n void bfs(int v, int p = -1, Value dp_p = M::id()) {\n int deg = graph[v].size();\n std::vector<Value> dp_r(deg + 1, M::id());\n for (int i = deg - 1; i >= 0; --i) {\n auto e = graph[v][i];\n if (e.to() == p) dp[v][i] = M::f(dp_p, e.weight());\n dp_r[i] = M::op(dp[v][i], dp_r[i + 1]);\n }\n Value dp_l = M::id();\n for (int i = 0; i < deg; ++i) {\n int u = graph[v][i].to();\n if (u != p) bfs(u, v, M::g(M::op(dp_l, dp_r[i + 1]), data[v]));\n dp_l = M::op(dp_l, dp[v][i]);\n }\n values[v] = M::g(dp_l, v);\n }\n};\nstruct Monoid {\n using T = std::pair<std::int64_t, std::int64_t>;\n using value_type = T;\n static constexpr T id() {\n return {0, 0};\n };\n static constexpr T op(const T &lhs, const T &rhs) {\n return {lhs.first + rhs.first, lhs.second + rhs.second};\n }\n template <class U>\n static constexpr T f(const T &v, U u) {\n return {v.first + v.second, v.second};\n }\n template <class U>\n static constexpr T g(const T &v, U u) {\n return {v.first, v.second + u};\n }\n};\nint main(void) {\n int n;\n std::cin >> n;\n std::vector<std::int64_t> a(n);\n for (auto &e : a) std::cin >> e;\n Graph<void> g(n);\n g.input_edges(n - 1);\n ReRooting<Monoid, void, std::int64_t> rr(g, a);\n for (int i = 0; i < n; ++i) std::cout << rr[i].first << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 37640, "score_of_the_acc": -1.0498, "final_rank": 16 }, { "submission_id": "aoj_3163_10086558", "code_snippet": "// competitive-verifier: PROBLEM\n#include <iostream>\n#include <vector>\n/**\n * @brief 重み付きグラフ\n *\n * @tparam T 辺の重みの型\n */\ntemplate <class T>\nstruct Graph {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to(), _weight() {}\n constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {}\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr T weight() const { return _weight; }\n private:\n int _from, _to;\n T _weight;\n };\n public:\n using edge_type = typename Graph<T>::_edge;\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); }\n void add_edges(int from, int to, T weight = T(1)) {\n edges[from].emplace_back(from, to, weight);\n edges[to].emplace_back(to, from, weight);\n }\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edge(from - base, to - base, weight);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edges(from - base, to - base, weight);\n }\n }\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\ntemplate <>\nstruct Graph<void> {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to() {}\n constexpr _edge(int from, int to) : _from(from), _to(to) {}\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr int weight() const { return 1; }\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n private:\n int _from, _to;\n };\n public:\n using edge_type = typename Graph<void>::_edge;\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to) { edges[from].emplace_back(from, to); }\n void add_edges(int from, int to) {\n edges[from].emplace_back(from, to);\n edges[to].emplace_back(to, from);\n }\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edge(from - base, to - base);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edges(from - base, to - base);\n }\n }\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\n/// @brief 全方位木dp\n/// @see https://algo-logic.info/tree-dp/\ntemplate <class M, class T, class U>\nstruct ReRooting {\n private:\n using Value = typename M::value_type;\n public:\n ReRooting(const Graph<T> &g, const std::vector<U> &v)\n : graph(g), data(v), dp(g.size()), values(g.size()) {\n build();\n }\n const auto &operator[](int i) const { return values[i]; }\n auto &operator[](int i) { return values[i]; }\n const auto begin() const { return values.begin(); }\n auto begin() { return values.begin(); }\n const auto end() const { return values.end(); }\n auto end() { return values.end(); }\n private:\n Graph<T> graph;\n const std::vector<U> &data;\n std::vector<std::vector<Value>> dp;\n std::vector<Value> values;\n void build() {\n dfs(0);\n bfs(0);\n }\n Value dfs(int v, int p = -1) {\n Value res = M::id();\n int deg = graph[v].size();\n dp[v] = std::vector<Value>(deg, M::id());\n for (int i = 0; i < deg; ++i) {\n auto e = graph[v][i];\n if (e.to() == p) continue;\n dp[v][i] = M::f(dfs(e.to(), v), e.weight());\n res = M::op(res, dp[v][i]);\n }\n return M::g(res, data[v]);\n }\n void bfs(int v, int p = -1, Value dp_p = M::id()) {\n int deg = graph[v].size();\n std::vector<Value> dp_r(deg + 1, M::id());\n for (int i = deg - 1; i >= 0; --i) {\n auto e = graph[v][i];\n if (e.to() == p) dp[v][i] = M::f(dp_p, e.weight());\n dp_r[i] = M::op(dp[v][i], dp_r[i + 1]);\n }\n Value dp_l = M::id();\n for (int i = 0; i < deg; ++i) {\n int u = graph[v][i].to();\n if (u != p) bfs(u, v, M::g(M::op(dp_l, dp_r[i + 1]), data[v]));\n dp_l = M::op(dp_l, dp[v][i]);\n }\n values[v] = M::g(dp_l, v);\n }\n};\nstruct Monoid {\n using T = pair<ll, ll>;\n using value_type = T;\n static constexpr T id() {\n return {0, 0};\n };\n static constexpr T op(const T &lhs, const T &rhs) {\n return {lhs.first + rhs.first, lhs.second + rhs.second};\n }\n template <class U>\n static constexpr T f(const T &v, U u) {\n return {v.first + v.second, v.second};\n }\n template <class U>\n static constexpr T g(const T &v, U u) {\n return {v.first, v.second + u};\n }\n};\nint main(void) {\n int n;\n cin >> n;\n vector<ll> a(n);\n cin >> a;\n Graph<void> g(n);\n g.input_edges(n - 1);\n ReRooting<Monoid, void, ll> rr(g, a);\n rep (i, n) co(rr[i].first);\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 37752, "score_of_the_acc": -0.8527, "final_rank": 12 }, { "submission_id": "aoj_3163_10086546", "code_snippet": "// competitive-verifier: PROBLEM\n#include <iostream>\n#include <vector>\n/**\n * @brief 重み付きグラフ\n *\n * @tparam T 辺の重みの型\n */\ntemplate <class T>\nstruct Graph {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to(), _weight() {}\n constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {}\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr T weight() const { return _weight; }\n private:\n int _from, _to;\n T _weight;\n };\n public:\n using edge_type = typename Graph<T>::_edge;\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); }\n void add_edges(int from, int to, T weight = T(1)) {\n edges[from].emplace_back(from, to, weight);\n edges[to].emplace_back(to, from, weight);\n }\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edge(from - base, to - base, weight);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edges(from - base, to - base, weight);\n }\n }\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\ntemplate <>\nstruct Graph<void> {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to() {}\n constexpr _edge(int from, int to) : _from(from), _to(to) {}\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr int weight() const { return 1; }\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n private:\n int _from, _to;\n };\n public:\n using edge_type = typename Graph<void>::_edge;\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to) { edges[from].emplace_back(from, to); }\n void add_edges(int from, int to) {\n edges[from].emplace_back(from, to);\n edges[to].emplace_back(to, from);\n }\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edge(from - base, to - base);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edges(from - base, to - base);\n }\n }\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\n/**\n * @brief 全方位木dp\n * @see https://algo-logic.info/tree-dp/\n *\n * @tparam M モノイド\n * @tparam T 辺の重みの型\n */\ntemplate <class M, class U, class T>\nstruct ReRooting {\n private:\n using Value = typename M::value_type;\n public:\n ReRooting(const Graph<T> &g, const std::vector<U> &v)\n : graph(g), data(v), dp(g.size()), values(g.size()) {\n build();\n }\n const auto &operator[](int i) const { return values[i]; }\n auto &operator[](int i) { return values[i]; }\n const auto begin() const { return values.begin(); }\n auto begin() { return values.begin(); }\n const auto end() const { return values.end(); }\n auto end() { return values.end(); }\n private:\n Graph<T> graph;\n const std::vector<U> &data;\n std::vector<std::vector<Value>> dp;\n std::vector<Value> values;\n void build() {\n dfs(0);\n bfs(0);\n }\n Value dfs(int v, int p = -1) {\n Value res = M::id();\n int deg = graph[v].size();\n dp[v] = std::vector<Value>(deg, M::id());\n for (int i = 0; i < deg; ++i) {\n auto e = graph[v][i];\n if (e.to() == p) continue;\n dp[v][i] = M::f(dfs(e.to(), v), e.weight());\n res = M::op(res, dp[v][i]);\n }\n return M::g(res, data[v]);\n }\n void bfs(int v, int p = -1, Value dp_p = M::id()) {\n int deg = graph[v].size();\n std::vector<Value> dp_r(deg + 1, M::id());\n for (int i = deg - 1; i >= 0; --i) {\n auto e = graph[v][i];\n if (e.to() == p) dp[v][i] = M::f(dp_p, e.weight());\n dp_r[i] = M::op(dp[v][i], dp_r[i + 1]);\n }\n Value dp_l = M::id();\n for (int i = 0; i < deg; ++i) {\n int u = graph[v][i].to();\n if (u != p) bfs(u, v, M::g(M::op(dp_l, dp_r[i + 1]), data[v]));\n dp_l = M::op(dp_l, dp[v][i]);\n }\n values[v] = M::g(dp_l, v);\n }\n};\nstruct Monoid {\n using T = pair<ll, ll>;\n using value_type = T;\n static constexpr T id() {\n return {0, 0};\n };\n static constexpr T op(const T &lhs, const T &rhs) {\n return {lhs.first + rhs.first, lhs.second + rhs.second};\n }\n template <class U>\n static constexpr T f(const T &v, U u) {\n return {v.first + v.second, v.second};\n }\n template <class U>\n static constexpr T g(const T &v, U u) {\n return {v.first, v.second + u};\n }\n};\nint main(void) {\n int n;\n cin >> n;\n vector<ll> a(n);\n cin >> a;\n Graph<void> g(n);\n g.input_edges(n - 1);\n ReRooting<Monoid, ll, void> rr(g, a);\n rep (i, n) co(rr[i].first);\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 37712, "score_of_the_acc": -0.8516, "final_rank": 11 }, { "submission_id": "aoj_3163_10086513", "code_snippet": "// competitive-verifier: PROBLEM\n#include <iostream>\n#include <vector>\n/**\n * @brief 重み付きグラフ\n *\n * @tparam T 辺の重みの型\n */\ntemplate <class T>\nstruct Graph {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to(), _weight() {}\n constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {}\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr T weight() const { return _weight; }\n private:\n int _from, _to;\n T _weight;\n };\n public:\n using edge_type = typename Graph<T>::_edge;\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); }\n void add_edges(int from, int to, T weight = T(1)) {\n edges[from].emplace_back(from, to, weight);\n edges[to].emplace_back(to, from, weight);\n }\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edge(from - base, to - base, weight);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n T weight;\n std::cin >> from >> to >> weight;\n add_edges(from - base, to - base, weight);\n }\n }\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\ntemplate <>\nstruct Graph<void> {\n private:\n struct _edge {\n constexpr _edge() : _from(), _to() {}\n constexpr _edge(int from, int to) : _from(from), _to(to) {}\n constexpr int from() const { return _from; }\n constexpr int to() const { return _to; }\n constexpr int weight() const { return 1; }\n constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }\n constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }\n private:\n int _from, _to;\n };\n public:\n using edge_type = typename Graph<void>::_edge;\n Graph() : _size(), edges() {}\n Graph(int v) : _size(v), edges(v) {}\n const auto &operator[](int i) const { return edges[i]; }\n auto &operator[](int i) { return edges[i]; }\n const auto begin() const { return edges.begin(); }\n auto begin() { return edges.begin(); }\n const auto end() const { return edges.end(); }\n auto end() { return edges.end(); }\n constexpr int size() const { return _size; }\n void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }\n void add_edge(int from, int to) { edges[from].emplace_back(from, to); }\n void add_edges(int from, int to) {\n edges[from].emplace_back(from, to);\n edges[to].emplace_back(to, from);\n }\n void input_edge(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edge(from - base, to - base);\n }\n }\n void input_edges(int m, int base = 1) {\n for (int i = 0; i < m; ++i) {\n int from, to;\n std::cin >> from >> to;\n add_edges(from - base, to - base);\n }\n }\n private:\n int _size;\n std::vector<std::vector<edge_type>> edges;\n};\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\n/**\n * @brief 全方位木dp\n * @see https://algo-logic.info/tree-dp/\n *\n * @tparam M モノイド\n * @tparam T 辺の重みの型\n */\ntemplate <class M, class U, class T>\nstruct ReRooting {\n private:\n using Value = typename M::value_type;\n public:\n ReRooting(const Graph<T> &g, const std::vector<U> &v)\n : graph(g), data(v), dp(g.size()), values(g.size()) {\n build();\n }\n const auto &operator[](int i) const { return values[i]; }\n auto &operator[](int i) { return values[i]; }\n const auto begin() const { return values.begin(); }\n auto begin() { return values.begin(); }\n const auto end() const { return values.end(); }\n auto end() { return values.end(); }\n private:\n Graph<T> graph;\n const std::vector<U> &data;\n std::vector<std::vector<Value>> dp;\n std::vector<Value> values;\n void build() {\n dfs(0);\n bfs(0);\n }\n Value dfs(int v, int p = -1) {\n Value res = M::id();\n int deg = graph[v].size();\n dp[v] = std::vector<Value>(deg, M::id());\n for (int i = 0; i < deg; ++i) {\n auto e = graph[v][i];\n if (e.to() == p) continue;\n dp[v][i] = M::f(dfs(e.to(), v), e.weight());\n res = M::op(res, dp[v][i]);\n }\n return M::g(res, data[v]);\n }\n void bfs(int v, int p = -1, Value dp_p = M::id()) {\n int deg = graph[v].size();\n std::vector<Value> dp_r(deg + 1, M::id());\n for (int i = deg - 1; i >= 0; --i) {\n auto e = graph[v][i];\n if (e.to() == p) dp[v][i] = M::f(dp_p, e.weight());\n dp_r[i] = M::op(dp[v][i], dp_r[i + 1]);\n }\n Value dp_l = M::id();\n for (int i = 0; i < deg; ++i) {\n int u = graph[v][i].to();\n if (u != p) bfs(u, v, M::g(M::op(dp_l, dp_r[i + 1]), data[v]));\n dp_l = M::op(dp_l, dp[v][i]);\n }\n values[v] = M::g(dp_l, v);\n }\n};\nstruct Monoid {\n using value_type = pair<ll, ll>;\n static constexpr value_type id() {\n return {0, 0};\n };\n static constexpr value_type op(const value_type &lhs, const value_type &rhs) {\n return {lhs.first + rhs.first, lhs.second + rhs.second};\n }\n template <class T>\n static constexpr value_type f(const value_type &v, T u) {\n return {v.first + v.second, v.second};\n }\n template <class T>\n static constexpr value_type g(const value_type &v, T u) {\n return {v.first, v.second + u};\n }\n};\nint main(void) {\n int n;\n cin >> n;\n vector<ll> a(n);\n cin >> a;\n Graph<void> g(n);\n g.input_edges(n - 1);\n ReRooting<Monoid, ll, void> rr(g, a);\n rep (i, n) co(rr[i].first);\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 37740, "score_of_the_acc": -0.7857, "final_rank": 10 }, { "submission_id": "aoj_3163_9631368", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nconst int INF = 1000000000;\nint main() {\n int N;\n cin >> N;\n vector<int> l(N);\n for (int i = 0; i < N; i++) {\n cin >> l[i];\n }\n vector<vector<int>> E(N);\n for (int i = 0; i < N - 1; i++) {\n int a, b;\n cin >> a >> b;\n a--;\n b--;\n E[a].push_back(b);\n E[b].push_back(a);\n }\n vector<vector<int>> c(N);\n vector<int> p(N, -1);\n vector<int> bfs;\n queue<int> Q;\n Q.push(0);\n while (!Q.empty()) {\n int v = Q.front();\n Q.pop();\n bfs.push_back(v);\n for (int w : E[v]) {\n if (w != p[v]) {\n p[w] = v;\n c[v].push_back(w);\n Q.push(w);\n }\n }\n }\n reverse(bfs.begin(), bfs.end());\n vector<long long> dp1(N);//部分木のlの合計\n vector<long long> dp2(N);\n for (int v : bfs) {\n for (int w : c[v]) {\n dp1[v] += dp1[w];\n dp2[v] += dp2[w];\n }\n dp2[v] += dp1[v];\n dp1[v] += l[v];\n }\n reverse(bfs.begin(), bfs.end());\n vector<long long> dp3(N);\n dp3[0] = 0;\n for (int v : bfs) {\n long long sum = dp2[v];\n for (int w : c[v]) {\n long long sum2 = sum - dp2[w];\n sum2 -= dp1[w];\n sum2 += dp1[0] - dp1[w];\n sum2 += dp3[v];\n dp3[w] = sum2;\n }\n }\n for (int i = 0; i < N; i++) {\n cout << dp2[i] + dp3[i] << '\\n';\n }\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 17360, "score_of_the_acc": -0.4019, "final_rank": 7 }, { "submission_id": "aoj_3163_9579823", "code_snippet": "#include <iostream>\n#include <cstdint>\n#include <vector>\n\nusing namespace std;\n\nvoid calc_sub(vector<uint64_t>& sub_l_sum, vector<uint64_t>& sub_beauty, const vector<vector<uint32_t>>& edges, const vector<uint32_t>& l, const uint32_t cur = 0, const uint32_t from = 0)\n{\n\tsub_l_sum[cur] = l[cur], sub_beauty[cur] = 0;\n\tfor (auto edge : edges[cur])\n\t\tif (edge != from)\n\t\t\tcalc_sub(sub_l_sum, sub_beauty, edges, l, edge, cur), sub_l_sum[cur] += sub_l_sum[edge], sub_beauty[cur] += sub_beauty[edge] + sub_l_sum[edge];\n}\n\nvoid calc_beauty(vector<uint64_t>& beauty, const vector<uint64_t>& sub_l_sum, const vector<uint64_t>& sub_beauty, const vector<vector<uint32_t>>& edges, const uint32_t cur = 0, const uint32_t from = 0)\n{\n\tif (cur == 0) beauty[0] = sub_beauty[0];\n\telse beauty[cur] = beauty[from] + sub_l_sum[0] - sub_l_sum[cur] * 2;\n\n\tfor (auto edge : edges[cur])\n\t\tif (edge != from)\n\t\t\tcalc_beauty(beauty, sub_l_sum, sub_beauty, edges, edge, cur);\n}\n\nint main()\n{\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\n\tuint32_t N, i;\n\tcin >> N;\n\tvector<uint32_t> l(N), a(N - 1), b(N - 1);\n\tfor (i = 0; i != N; ++i)\n\t\tcin >> l[i];\n\tfor (i = 0; i != N - 1; ++i)\n\t\tcin >> a[i] >> b[i];\n\n\tvector<vector<uint32_t>> edges(N, vector<uint32_t>());\n\tvector<uint64_t> sub_l_sum(N), sub_beauty(N), beauty(N);\n\tfor (i = 0; i != N - 1; ++i)\n\t\tedges[a[i] - 1].push_back(b[i] - 1), edges[b[i] - 1].push_back(a[i] - 1);\n\n\tcalc_sub(sub_l_sum, sub_beauty, edges, l);\n\tcalc_beauty(beauty, sub_l_sum, sub_beauty, edges);\n\t\n\tfor (i = 0; i != N; ++i) cout << beauty[i] << '\\n';\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 19848, "score_of_the_acc": -0.1983, "final_rank": 3 }, { "submission_id": "aoj_3163_8575509", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repd(i,a,b) for (ll i=(a);i<(b);i++)\n#define rep(i,n) repd(i,0,n)\n#define all(x) (x).begin(),(x).end()\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }\ntypedef long long ll;\ntypedef pair<ll,ll> P;\ntypedef vector<ll> vec;\nusing Graph = vector<vector<ll>>;\nconst long long INF = 1LL<<60;\nconst long long MOD = 1000000007;\n\n//https://nyaannyaan.github.io/library/graph/graph-template.hpp\ntemplate <typename T>\nstruct edge {\n int src, to;\n T cost;\n\n edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}\n edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}\n\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n\n operator int() const { return to; }\n};\ntemplate <typename T>\nusing Edges = vector<edge<T>>;\ntemplate <typename T>\nusing WeightedGraph = vector<Edges<T>>;\nusing UnweightedGraph = vector<vector<int>>;\n\n// Input of (Unweighted) Graph\nUnweightedGraph graph(int N, int M = -1, bool is_directed = false,\n bool is_1origin = true) {\n UnweightedGraph g(N);\n if (M == -1) M = N - 1;\n for (int _ = 0; _ < M; _++) {\n int x, y;\n cin >> x >> y;\n if (is_1origin) x--, y--;\n g[x].push_back(y);\n if (!is_directed) g[y].push_back(x);\n }\n return g;\n}\n\n// Input of Weighted Graph\ntemplate <typename T>\nWeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,\n bool is_1origin = true) {\n WeightedGraph<T> g(N);\n if (M == -1) M = N - 1;\n for (int _ = 0; _ < M; _++) {\n int x, y;\n cin >> x >> y;\n T c;\n cin >> c;\n if (is_1origin) x--, y--;\n g[x].emplace_back(x, y, c);\n if (!is_directed) g[y].emplace_back(y, x, c);\n }\n return g;\n}\n\n// Input of Edges\ntemplate <typename T>\nEdges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) {\n Edges<T> es;\n for (int _ = 0; _ < M; _++) {\n int x, y;\n cin >> x >> y;\n T c;\n if (is_weighted)\n cin >> c;\n else\n c = 1;\n if (is_1origin) x--, y--;\n es.emplace_back(x, y, c);\n }\n return es;\n}\n\n// Input of Adjacency Matrix\ntemplate <typename T>\nvector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,\n bool is_directed = false, bool is_1origin = true) {\n vector<vector<T>> d(N, vector<T>(N, INF));\n for (int _ = 0; _ < M; _++) {\n int x, y;\n cin >> x >> y;\n T c;\n if (is_weighted)\n cin >> c;\n else\n c = 1;\n if (is_1origin) x--, y--;\n d[x][y] = c;\n if (!is_directed) d[y][x] = c;\n }\n return d;\n}\n\n/**\n * @brief グラフテンプレート\n * @docs docs/graph/graph-template.md\n */\n\n//https://nyaannyaan.github.io/library/tree/rerooting.hpp\n\n// Rerooting\n// f1(c1, c2) ... merge value of child node\n// f2(memo[i], chd, par) ... return value from child node to parent node\n// memo[i] ... result of subtree rooted i\n// dp[i] ... result of tree rooted i\ntemplate <typename T, typename G, typename F1, typename F2>\nstruct Rerooting {\n const G &g;\n const F1 f1;\n const F2 f2;\n vector<T> memo, dp;\n T I;\n\n Rerooting(const G &_g, const F1 _f1, const F2 _f2, const T &I_)\n : g(_g), f1(_f1), f2(_f2), memo(g.size(), I_), dp(g.size(), I_), I(I_) {\n dfs(0, -1);\n efs(0, -1, I);\n }\n\n const T &operator[](int i) const { return dp[i]; }\n\n void dfs(int cur, int par) {\n for (auto &dst : g[cur]) {\n if (dst == par) continue;\n dfs(dst, cur);\n memo[cur] = f1(memo[cur], f2(memo[dst], dst, cur));\n }\n }\n\n void efs(int cur, int par, const T &pval) {\n // get cumulative sum\n vector<T> buf;\n for (auto dst : g[cur]) {\n if (dst == par) continue;\n buf.push_back(f2(memo[dst], dst, cur));\n }\n vector<T> head(buf.size() + 1), tail(buf.size() + 1);\n head[0] = tail[buf.size()] = I;\n for (int i = 0; i < (int)buf.size(); i++) head[i + 1] = f1(head[i], buf[i]);\n for (int i = (int)buf.size() - 1; i >= 0; i--)\n tail[i] = f1(tail[i + 1], buf[i]);\n\n // update\n dp[cur] = par == -1 ? head.back() : f1(pval, head.back());\n\n // propagate\n int idx = 0;\n for (auto &dst : g[cur]) {\n if (dst == par) continue;\n efs(dst, cur, f2(f1(pval, f1(head[idx], tail[idx + 1])), cur, dst));\n idx++;\n }\n }\n};\n\n/**\n * @brief Rerooting(全方位木DP)\n * @docs docs/tree/rerooting.md\n */\n\n// auto mod int\n// https://youtu.be/L8grWxBlIZ4?t=9858\n// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize\n// https://youtu.be/8uowVvQ_-Mo?t=1329 : division\nconst int mod = 1000000007;\nstruct mint {\n ll x; // typedef long long ll;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}\n mint operator+(const mint a) const { return mint(*this) += a;}\n mint operator-(const mint a) const { return mint(*this) -= a;}\n mint operator*(const mint a) const { return mint(*this) *= a;}\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n\n // for prime mod\n mint inv() const { return pow(mod-2);}\n mint& operator/=(const mint a) { return *this *= a.inv();}\n mint operator/(const mint a) const { return mint(*this) /= a;}\n};\nistream& operator>>(istream& is, mint& a) { return is >> a.x;}\nostream& operator<<(ostream& os, const mint& a) { return os << a.x;}\n\n// combination mod prime\n// https://www.youtube.com/watch?v=8uowVvQ_-Mo&feature=youtu.be&t=1619\nstruct combination {\n vector<mint> fact, ifact;\n combination(int n):fact(n+1),ifact(n+1) {\n assert(n < mod);\n fact[0] = 1;\n for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i;\n ifact[n] = fact[n].inv();\n for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i;\n }\n mint operator()(int n, int k) {\n if (k < 0 || k > n) return 0;\n return fact[n]*ifact[k]*ifact[n-k];\n }\n mint p(int n,int k){\n return fact[n]*ifact[n-k];\n }\n} C(1000005);\n\nusing F=tuple<ll,ll>;\n\nint main()\n{ \n ios::sync_with_stdio(false);\n cin.tie(0);\n ll n;cin>>n;\n vec l(n);\n rep(i,n)cin>>l[i];\n auto g=graph(n,n-1,0,1);\n auto f1=[&](F x,F y){\n auto[a,b]=x;\n auto[c,d]=y;\n a+=c;\n b+=d;\n return F(a,b);\n };\n auto f2=[&](F x,int ch,int p){\n auto[a,b]=x;\n b+=l[ch];\n a+=b;\n return F(a,b);\n };\n Rerooting<F,decltype(g),decltype(f1),decltype(f2)> dp(g,f1,f2,{0,0});\n for(auto ans:dp.dp){\n cout<<get<0>(ans)<<endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 51160, "score_of_the_acc": -1.6596, "final_rank": 18 }, { "submission_id": "aoj_3163_7009675", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3163.cc: Problem M: Star Gazer\n */\n\n#include<cstdio>\n#include<vector>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 100000;\n\n/* typedef */\n\ntypedef long long ll;\ntypedef vector<int> vi;\n\n/* global variables */\n\nint ls[MAX_N], ps[MAX_N], cis[MAX_N];\nvi nbrs[MAX_N];\nll lss[MAX_N], dp[MAX_N], pdp[MAX_N];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n;\n scanf(\"%d\", &n);\n for (int i = 0; i < n; i++) scanf(\"%d\", ls + i);\n\n for (int i = 1; i < n; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n u--, v--;\n nbrs[u].push_back(v);\n nbrs[v].push_back(u);\n }\n\n ps[0] = -1;\n for (int u = 0; u >= 0;) {\n vi &nbru = nbrs[u];\n int up = ps[u];\n\n if (cis[u] < nbru.size()) {\n int v = nbru[cis[u]++];\n if (v != up) {\n\tps[v] = u;\n\tu = v;\n }\n }\n else {\n lss[u] += ls[u];\n\n if (up >= 0) {\n\tlss[up] += lss[u];\n\tdp[up] += dp[u] + lss[u];\n }\n\n u = up;\n }\n }\n //for (int u = 0; u < n; u++) printf(\"%lld \", dp[u]); putchar('\\n');\n\n fill(cis, cis + n, 0);\n pdp[0] = 0;\n for (int u = 0; u >= 0;) {\n vi &nbru = nbrs[u];\n int up = ps[u];\n\n if (cis[u] < nbru.size()) {\n int v = nbru[cis[u]++];\n if (v != up) {\n\tpdp[v] = (dp[u] + pdp[u]) - (dp[v] + lss[v]) + (lss[0] - lss[v]);\n\tu = v;\n }\n }\n else\n u = up;\n }\n\n for (int u = 0; u < n; u++) printf(\"%lld\\n\", dp[u] + pdp[u]);\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 12032, "score_of_the_acc": -0.0667, "final_rank": 1 }, { "submission_id": "aoj_3163_6304884", "code_snippet": "#include <iostream>\n#include <unordered_map>\n#include <unordered_set>\n#include <set>\n#include <vector>\n#include <numeric>\n#include <algorithm>\n#include <queue>\n#include <string>\n#include <random>\n#include <array>\n#include <climits>\n#include <map>\n#include <cassert>\n#include <stack>\n#include <iomanip>\n#include <cfloat>\n#include <fstream>\n\n\nint main() {\n\tint n; std::cin >> n;\n\tstd::vector<int> brightness(n);\n\tfor (auto& l : brightness) {\n\t\tstd::cin >> l;\n\t}\n\tstd::vector<std::pair<int, int>> edges(n - 1);\n\tfor (auto& [a, b] : edges) {\n\t\tstd::cin >> a >> b; --a; --b;\n\t}\n\tstd::vector<std::vector<int>> graph(n);\n\tfor (const auto [a, b] : edges) {\n\t\tgraph[a].push_back(b);\n\t\tgraph[b].push_back(a);\n\t}\n\tstd::vector<int> depth(n, -1);\n\tstd::stack<int> stack;\n\tstd::vector<int> history;\n\tdepth[0] = 0;\n\tstack.push(0);\n\twhile (!stack.empty()) {\n\t\tconst auto top = stack.top(); stack.pop();\n\t\thistory.push_back(top);\n\t\tfor (const auto next : graph[top]) {\n\t\t\tif (depth[next] != -1) continue;\n\t\t\tdepth[next] = depth[top] + 1;\n\t\t\tstack.push(next);\n\t\t}\n\t}\n\tstd::vector<long long int> sum_brightness(n), from_leaf(n, 0);\n\tstd::copy(brightness.begin(), brightness.end(), sum_brightness.begin());\n\tstd::reverse(history.begin(), history.end());\n\tfor (const auto node : history) {\n\t\tfor (const auto child : graph[node]) {\n\t\t\tif (depth[child] < depth[node]) continue;\n\t\t\tsum_brightness[node] += sum_brightness[child];\n\t\t\tfrom_leaf[node] += from_leaf[child] + sum_brightness[child];\n\t\t}\n\t}\n\tstd::vector<long long int> from_root(n, 0);\n\tstd::reverse(history.begin(), history.end());\n\tfor (const auto node : history) {\n\t\tfor (const auto child : graph[node]) {\n\t\t\tif (depth[child] < depth[node]) continue;\n\t\t\tfrom_root[child] = from_root[node] + (from_leaf[node] - from_leaf[child] - sum_brightness[child]) + (sum_brightness[0] - sum_brightness[child]);\n\t\t}\n\t}\n\tfor (auto i = 0; i < n; ++i) {\n\t\tstd::cout << from_leaf[i] + from_root[i] << '\\n';\n\t}\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 13780, "score_of_the_acc": -0.2444, "final_rank": 4 }, { "submission_id": "aoj_3163_5948346", "code_snippet": "#ifdef LOCAL\n #define _GLIBCXX_DEBUG\n #define __clock__\n#else\n #pragma GCC optimize(\"Ofast\")\n#endif\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing VI = vector<ll>;\nusing VV = vector<VI>;\nusing VS = vector<string>;\nusing PII = pair<ll, ll>;\n\n// #define INT128 // 必要なら有効化してください\n#ifdef INT128\n using LL = __int128;\n#endif\n\n// tourist set\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p);\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p);\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p);\n\nstring to_string(const string& s) {\n return '\"' + s + '\"';\n}\n\nstring to_string(const char* s) {\n return to_string((string) s);\n}\n\nstring to_string(bool b) {\n return (b ? \"true\" : \"false\");\n}\n\nstring to_string(char c){\n string s = {c};\n return s;\n}\n\n// LL\n#ifdef INT128\n// input\nistream& operator>>(istream& is, LL& v)\n{\n string s;\n is >> s;\n v = 0;\n for (int i = 0; i < (int)s.size(); i++) {\n if (isdigit(s[i])) { v = v * 10 + s[i] - '0'; }\n }\n if (s[0] == '-') { v *= -1; }\n return is;\n}\nstd::ostream &operator<<(std::ostream &dest, LL value) {\n std::ostream::sentry s(dest);\n if (s) {\n LL tmp = value < 0 ? -value : value;\n char buffer[128];\n char *d = std::end(buffer);\n do {\n --d;\n *d = \"0123456789\"[tmp % 10];\n tmp /= 10;\n } while (tmp != 0);\n if (value < 0) {\n --d;\n *d = '-';\n }\n int len = std::end(buffer) - d;\n if (dest.rdbuf()->sputn(d, len) != len) {\n dest.setstate(std::ios_base::badbit);\n }\n }\n return dest;\n}\nstring to_string(LL v){\n stringstream ss;\n ss << v;\n return ss.str();\n}\n#endif // LL\n\nstring to_string(vector<bool> v) {\n bool first = true;\n string res = \"{\";\n for (int i = 0; i < static_cast<int>(v.size()); i++) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(v[i]);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <size_t N>\nstring to_string(bitset<N> v) {\n string res = \"\";\n for (size_t i = 0; i < N; i++) {\n res += static_cast<char>('0' + v[i]);\n }\n return res;\n}\n\ntemplate <typename A>\nstring to_string(A v) {\n bool first = true;\n string res = \"{\";\n for (const auto &x : v) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(x);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p) {\n return \"(\" + to_string(p.first) + \", \" + to_string(p.second) + \")\";\n}\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \")\";\n}\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \", \" + to_string(get<3>(p)) + \")\";\n}\n\nvoid debug_out() { cerr << '\\n'; }\n\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n cerr << \" \" << to_string(H);\n debug_out(T...);\n}\n\n#ifdef LOCAL\n#define debug(...) cerr << \"[\" << #__VA_ARGS__ << \"]:\", debug_out(__VA_ARGS__)\n#else\n#define debug(...) 42\n#endif\n// tourist set end\n\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\n\n#define FOR(i,a,b) for(ll i=(a);i<(b);++i)\n#define rep(i,b) FOR(i, 0, b)\n#define ALL(v) (v).begin(), (v).end()\n#define p(s) cout<<(s)<<'\\n'\n#define p2(s, t) cout << (s) << \" \" << (t) << '\\n'\n#define SZ(x) ((int)(x).size())\n#define SORT(A) sort(ALL(A))\n#define RSORT(A) sort(ALL(A), greater<ll>())\n#define MP make_pair\n#define p_yes() p(\"Yes\")\n#define p_no() p(\"No\")\n#define p_possible() p(\"Possible\")\n#define p_impossible() p(\"Impossible\")\nvoid yes(){p_yes(); exit(0);}\nvoid no(){p_no(); exit(0);}\nvoid possible(){p_possible(); exit(0);}\nvoid impossible(){p_impossible(); exit(0);}\n\nll SUM(VI& V){\n return accumulate(ALL(V), 0LL);\n}\n\nll MIN(VI& V){return *min_element(ALL(V));}\nll MAX(VI& V){return *max_element(ALL(V));}\n\nvoid print_vector(VI& V, ll offset=0){\n ll n = V.size();\n rep(i, n){\n if(i) cout << ' ';\n cout << V[i]+offset;\n }\n cout << endl;\n}\n\nll gcd(ll a,ll b){\n if(b == 0) return a;\n return gcd(b,a%b);\n}\n\nll lcm(ll a,ll b){\n ll g = gcd(a,b);\n return a / g * b;\n}\n\n// long double\nusing ld = long double;\n// #define EPS (1e-14)\nconstexpr ld EPS = 1e-14;\n// #define equals(a,b) (fabs((a)-(b)) < EPS)\nconstexpr bool equals(ld a, ld b){return fabs((a)-(b)) < EPS;}\n\n// 小さい順に取り出すpriority queue\nusing inverse_priority_queue = priority_queue<ll, vector<ll>, greater<ll> >;\n\nint popcount(ll t){\n return __builtin_popcountll(t);\n}\n\nconst ll mod = 1e9 + 7;\n// const ll mod = 998244353;\nconst ll inf = 4e18; // LLONG_MAX = 9223372036854775807 (atcoder, codeforces)\nconst double PI = acos(-1);\n\n// [a/b] (繰り上げ)\nll ceil_div(ll a, ll b){\n return (a+b-1)/b;\n}\n\nll ll_pow(ll a, ll n){\n ll ans = 1;\n FOR(i, 0, n){\n ans *= a;\n }\n return ans;\n}\n// modなし\n\n// snuke's mint\n// auto mod int\n// https://youtu.be/L8grWxBlIZ4?t=9858\n// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize\n// https://youtu.be/8uowVvQ_-Mo?t=1329 : division\n// const int mod = 1000000007;\nstruct mint {\n ll x; // using ll = long long;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) {\n (x *= a.x) %= mod;\n return *this;\n }\n mint operator+(const mint a) const {\n mint res(*this);\n return res+=a;\n }\n mint operator-(const mint a) const {\n mint res(*this);\n return res-=a;\n }\n mint operator*(const mint a) const {\n mint res(*this);\n return res*=a;\n }\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n\n // for prime mod\n mint inv() const {\n return pow(mod-2);\n }\n mint& operator/=(const mint a) {\n return (*this) *= a.inv();\n }\n mint operator/(const mint a) const {\n mint res(*this);\n return res/=a;\n }\n};\n\n// ※双方向\n// N : 頂点数\n// M : 辺数\n// return vector<vector<ll>>\nVV load_graph(ll N, ll M){\n VV G(N);\n rep(i,M){\n ll a,b;cin>>a>>b;\n a--;b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n return G;\n}\nVV load_tree(ll N){\n return load_graph(N, N-1);\n}\n\nVI loadV(ll N){\n VI A(N);\n rep(i,N)cin>>A[i];\n return A;\n}\n\n//#include <atcoder/dsu>\n//using namespace atcoder; // 忘れがち\n\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n // input\n ll N;cin>>N;\n VI L = loadV(N); // light\n ll sumL = SUM(L);\n\n VV G(N);\n rep(i,N-1){\n ll a,b;cin>>a>>b;\n a--;b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n\n VI parent(N,-1); // parent\n\n // light of subtree\n VI dpL(N);\n function<ll(ll,ll)> dfs2 = [&](ll i, ll prev){\n parent[i]=prev;\n ll sum=L[i];\n for(ll to : G[i]){\n if(to==prev)continue;\n sum += dfs2(to,i);\n }\n return dpL[i]=sum;\n };\n dfs2(0,-1);\n debug(dpL);\n\n // answer of subtree\n VI dp(N);\n function<ll(ll,ll)> dfs = [&](ll i, ll prev){\n ll sum=0;\n for(ll to : G[i]){\n if(to==prev)continue;\n sum += dfs(to,i) + dpL[to];\n }\n return dp[i]=sum;\n };\n dfs(0,-1);\n \n function<void(ll,ll)> bfs = [&](ll i, ll prev){\n // prevには全方向が入っている\n \n // 自分のdpを求めて\n ll otherlight = sumL - dpL[i];\n\n ll add = dp[prev]-dp[i]-dpL[i]+otherlight;\n dp[i]+=add;\n\n // 子へ\n for(ll to : G[i]){\n if(to==prev)continue;\n bfs(to,i);\n }\n };\n for(ll to : G[0]){\n bfs(to,0);\n }\n\n rep(i,N){\n p(dp[i]);\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 19368, "score_of_the_acc": -0.2528, "final_rank": 5 }, { "submission_id": "aoj_3163_5073758", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Printer {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid print(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(bool v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(vector<bool>::reference v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid print(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid print(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid print(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void print(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void print(const pair<T, U>& v) const {\n\t\tprint(v.first);\n\t\tprint(D.d);\n\t\tprint(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid print_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) print(D.d);\n\t\t\tprint(*i);\n\t\t}\n\t}\n\ttemplate <class T> void print(const vector<T>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void print(const array<T, N>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void print(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) print(D.l);\n\t\t\tprint(v[i]);\n\t\t}\n\t}\n\n\tPrinter() = default;\n\tPrinter(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tPrinter& operator()() {\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Printer& operator()(H&& h) {\n\t\tprint(h);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Printer& operator()(H&& h, T&&... t) {\n\t\tprint(h);\n\t\tprint(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tPrinter& range(const InputIterator& begin, const InputIterator& end) {\n\t\tprint_range(begin, end);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Printer& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tPrinter& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tPrinter& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tPrinter& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tPrinter& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n\ttemplate <class V> auto operator()(const V& val, size_t i) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(next(begin(v), i), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T> constexpr int BIT(T x, int i) {\n\treturn (x & (1 << i)) ? 1 : 0;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 3 \"/home/yuruhiya/programming/library/Graph/ReRooting.cpp\"\nusing namespace std;\n\ntemplate <class DP> class ReRooting {\n\tint n;\n\tvector<vector<int>> graph;\n\tvector<vector<DP>> dp;\n\tvector<DP> ans;\n\n\tDP dfs(int v, int p) {\n\t\tDP sum;\n\t\tfor (size_t i = 0; i < graph[v].size(); ++i) {\n\t\t\tint e = graph[v][i];\n\t\t\tDP& dp_e = dp[v][i];\n\t\t\tif (e != p) {\n\t\t\t\tdp_e = dfs(e, v);\n\t\t\t\tsum += dp_e;\n\t\t\t}\n\t\t}\n\t\treturn sum.add_root(v);\n\t}\n\tvoid bfs(int v, int p, const DP& dp_par) {\n\t\tfor (size_t i = 0; i < graph[v].size(); ++i) {\n\t\t\tif (graph[v][i] == p) {\n\t\t\t\tdp[v][i] = dp_par;\n\t\t\t}\n\t\t}\n\n\t\tvector<DP> dp_left(graph[v].size() + 1);\n\t\tfor (size_t i = 0; i < graph[v].size(); ++i) {\n\t\t\tdp_left[i + 1] = dp_left[i] + dp[v][i];\n\t\t}\n\t\tvector<DP> dp_right(graph[v].size() + 1);\n\t\tfor (int i = graph[v].size() - 1; i >= 0; --i) {\n\t\t\tdp_right[i] = dp_right[i + 1] + dp[v][i];\n\t\t}\n\t\tans[v] = dp_left.back().add_root(v);\n\n\t\tfor (size_t i = 0; i < graph[v].size(); ++i) {\n\t\t\tint e = graph[v][i];\n\t\t\tif (e != p) {\n\t\t\t\tbfs(e, v, (dp_left[i] + dp_right[i + 1]).add_root(v));\n\t\t\t}\n\t\t}\n\t}\n\npublic:\n\tReRooting(const vector<vector<int>>& _graph) : n(_graph.size()), graph(_graph), dp(n), ans(n) {\n\t\tfor (int i = 0; i < n; ++i) dp[i].resize(graph[i].size());\n\t}\n\tvector<DP> solve() {\n\t\tdfs(0, -1);\n\t\tbfs(0, -1, DP());\n\t\treturn ans;\n\t}\n};\n\n/*\nstruct DP {\n int dp;\n DP(int _dp = 1) : dp(_dp) {}\n DP operator+(const DP& d) const {\n return DP(*this) += d;\n }\n DP& operator+=(const DP& d) {\n return *this;\n }\n DP add_root([[maybe_unused]] int v) const {\n DP res = *this;\n\n return res;\n }\n};\n*/\n#line 3 \"a.cpp\"\n\nVL a;\n\nstruct DP {\n\tll sum, val;\n\tDP() : sum(0), val(0) {}\n\tDP operator+(const DP& d) const {\n\t\treturn DP(*this) += d;\n\t}\n\tDP& operator+=(const DP& d) {\n\t\tsum += d.sum;\n\t\tval += d.val;\n\t\treturn *this;\n\t}\n\tDP add_root([[maybe_unused]] int v) const {\n\t\tDP res = *this;\n\t\tres.val += sum;\n\t\tres.sum += a[v];\n\t\treturn res;\n\t}\n};\n\nint main() {\n\tini(n);\n\ta = in[n];\n\tVVI g(n);\n\trep(i, n - 1) {\n\t\tint u = in--, v = in--;\n\t\tg[u].push_back(v);\n\t\tg[v].push_back(u);\n\t}\n\n\tReRooting<DP> dp(g);\n\tauto ans = dp.solve();\n\trep(i, n) out(ans[i].val);\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 43232, "score_of_the_acc": -0.9251, "final_rank": 13 }, { "submission_id": "aoj_3163_4952868", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 100005\n\nint N,root;\nll total_L;\nll dp[SIZE],L[SIZE],sum_L[SIZE];\nll ans[SIZE];\nvector<int> G[SIZE];\n\nvoid dfs(int node_id,int pre){\n\n\tsum_L[node_id] += L[node_id];\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next = G[node_id][i];\n\t\tif(next == pre)continue;\n\n\t\tdfs(next,node_id);\n\t\tdp[node_id] += dp[next]+sum_L[next];\n\t\tsum_L[node_id] += sum_L[next];\n\t}\n}\n\nvoid dfs2(int node_id,int pre){\n\n\tif(node_id == root){\n\n\t\tans[root] = dp[root];\n\t}else{\n\n\t\tans[node_id] = dp[node_id]+(ans[pre]-(dp[node_id]+sum_L[node_id]))+total_L-sum_L[node_id];\n\t}\n\n\tfor(int i = 0; i < G[node_id].size(); i++){\n\n\t\tint next = G[node_id][i];\n\t\tif(next == pre)continue;\n\n\t\tdfs2(next,node_id);\n\t}\n}\n\n\nint main(){\n\n\tscanf(\"%d\",&N);\n\n\ttotal_L = 0;\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lld\",&L[i]);\n\t\ttotal_L += L[i];\n\t}\n\n\tint from,to;\n\n\tfor(int i = 0; i < N-1; i++){\n\n\t\tscanf(\"%d %d\",&from,&to);\n\t\tfrom--;\n\t\tto--;\n\n\t\tG[from].push_back(to);\n\t\tG[to].push_back(from);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tdp[i] = 0;\n\t\tsum_L[i] = 0;\n\t}\n\n\troot = 0;\n\n\tdfs(root,-1);\n\tdfs2(root,-1);\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tprintf(\"%lld\\n\",ans[i]);\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 17152, "score_of_the_acc": -0.2633, "final_rank": 6 }, { "submission_id": "aoj_3163_4949975", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define REP(i,n) for(ll i=0;i<(ll)n;i++)\n#define dump(x) cerr << \"Line \" << __LINE__ << \": \" << #x << \" = \" << (x) << \"\\n\";\n#define spa << \" \" <<\n#define fi first\n#define se second\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n\nusing ld = long double;\nusing ll = long long;\nusing ull = unsigned long long;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pdd = pair<ld, ld>;\n\ntemplate<typename T> using V = vector<T>;\ntemplate<typename T> using P = pair<T, T>;\ntemplate<typename T> vector<T> make_vec(size_t n, T a) { return vector<T>(n, a); }\ntemplate<typename... Ts> auto make_vec(size_t n, Ts... ts) { return vector<decltype(make_vec(ts...))>(n, make_vec(ts...)); }\ntemplate<class S, class T> ostream& operator << (ostream& os, const pair<S, T> v){os << \"(\" << v.first << \", \" << v.second << \")\"; return os;}\ntemplate<typename T> ostream& operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; }\ntemplate<class T> ostream& operator<<(ostream& os, const vector<vector<T>> &v){ for(auto &e : v){os << e << \"\\n\";} return os;}\nstruct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;\n\ntemplate <class T> void UNIQUE(vector<T> &x) {sort(ALL(x));x.erase(unique(ALL(x)), x.end());}\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\nvoid fail() { cout << -1 << '\\n'; exit(0); }\ninline int popcount(const int x) { return __builtin_popcount(x); }\ninline int popcount(const ll x) { return __builtin_popcountll(x); }\ntemplate<typename T> void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++)\n{cerr<<v[i][0];for(ll j=1;j<w;j++)cerr spa v[i][j];cerr<<\"\\n\";}};\ntemplate<typename T> void debug(vector<T>&v,ll n){if(n!=0)cerr<<v[0];\nfor(ll i=1;i<n;i++)cerr spa v[i];\ncerr<<\"\\n\";};\n\nconst ll INF = (1ll<<62);\n// const ld EPS = 1e-10;\n// const ld PI = acos(-1.0);\nconst ll mod = (int)1e9 + 7;\n//const ll mod = 998244353;\n\ntemplate< typename sum_t, typename key_t >\nstruct ReRooting {\n struct Edge {\n int to;\n key_t data;\n sum_t dp, ndp;\n };\n\n using F = function< sum_t(sum_t, sum_t) >;\n using G = function< sum_t(sum_t, key_t) >;\n\n // subdp: 一度目のdfsの結果を保持する配列\n // dp: 二度目のdfsの後,結果を各頂点でマージした値を保持する配列\n vector< vector< Edge > > g;\n const F f;\n const G gg;\n const sum_t ident;\n vector< sum_t > subdp, dp;\n\n ReRooting(int V, const F f, const G g, const sum_t &ident)\n : g(V), f(f), gg(g), ident(ident), subdp(V, ident), dp(V, ident) {}\n\n // add_edge は危険なので使わない方が良い\n // u->v に重み d の有向辺を追加するのではなく,\n // u->v と v->u の両方に重み d の有向辺を追加する\n // void add_edge(int u, int v, const key_t &d) {\n // g[u].emplace_back((Edge) {v, d, ident, ident});\n // g[v].emplace_back((Edge) {u, d, ident, ident});\n // }\n\n // u->v に重み d の有向辺を追加し,\n // v->u に重み e の有向辺を追加する\n void add_edge_bi(int u, int v, const key_t &d, const key_t &e) {\n g[u].emplace_back((Edge) {v, d, ident, ident});\n g[v].emplace_back((Edge) {u, e, ident, ident});\n }\n\n // 一度目のdfs\n void dfs_sub(int idx, int par) {\n for(auto &e : g[idx]) {\n if(e.to == par) continue;\n dfs_sub(e.to, idx);\n subdp[idx] = f(subdp[idx], gg(subdp[e.to], e.data));\n }\n }\n\n // 二度目のdfs\n void dfs_all(int idx, int par, const sum_t &top) {\n sum_t buff{ident};\n for(int i = 0; i < (int) g[idx].size(); i++) {\n auto &e = g[idx][i];\n e.ndp = buff;\n e.dp = gg(par == e.to ? top : subdp[e.to], e.data);\n buff = f(buff, e.dp);\n }\n dp[idx] = buff;\n buff = ident;\n for(int i = (int) g[idx].size() - 1; i >= 0; i--) {\n auto &e = g[idx][i];\n if(e.to != par) dfs_all(e.to, idx, f(e.ndp, buff));\n e.ndp = f(e.ndp, buff);\n buff = f(buff, e.dp);\n }\n }\n\n vector< sum_t > build() {\n dfs_sub(0, -1);\n dfs_all(0, -1, ident);\n return dp;\n }\n};\n\nint main(){\n\n ll N;\n cin >> N;\n V<ll> l(N);\n REP(i, N) cin >> l[i];\n\n auto f1 = [](pll x, pll y){\n return pll{x.first+y.first, x.second+y.second};\n };\n\n auto f2 = [](pll x, ll a){\n return pll{x.first+a, x.first+x.second+a};\n };\n\n ReRooting<pll, ll> RR(N, f1, f2, pll{0, 0});\n\n REP(i, N-1){\n ll a, b;\n cin >> a >> b;\n a--, b--;\n RR.add_edge_bi(a, b, l[b], l[a]);\n }\n RR.build();\n\n REP(i, N) cout << RR.dp[i].second << \"\\n\";\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 44264, "score_of_the_acc": -1.0179, "final_rank": 15 }, { "submission_id": "aoj_3163_4893533", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing LL = long long int;\n#define incII(i, l, r) for(LL i = (l) ; i <= (r); i++)\n#define incIX(i, l, r) for(LL i = (l) ; i < (r); i++)\n#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)\n#define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++)\n#define decII(i, l, r) for(LL i = (r) ; i >= (l); i--)\n#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)\n#define decXI(i, l, r) for(LL i = (r) ; i > (l); i--)\n#define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--)\n#define inc(i, n) incIX(i, 0, n)\n#define dec(i, n) decIX(i, 0, n)\n#define inc1(i, n) incII(i, 1, n)\n#define dec1(i, n) decII(i, 1, n)\nauto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };\nauto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); };\nauto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); };\nauto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); };\nauto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); };\nauto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); };\nauto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };\nauto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };\n#define PB push_back\n#define EB emplace_back\n#define MP make_pair\n#define MT make_tuple\n#define FI first\n#define SE second\n#define FR front()\n#define BA back()\n#define ALL(c) c.begin(), c.end()\n#define RALL(c) c.rbegin(), c.rend()\n#define RV(c) reverse(ALL(c))\n#define SC static_cast\n#define SI(c) SC<int>(c.size())\n#define SL(c) SC<LL >(c.size())\n#define RF(e, c) for(auto & e: c)\n#define SF(c, ...) for(auto & [__VA_ARGS__]: c)\n#define until(e) while(! (e))\n#define if_not(e) if(! (e))\n#define ef else if\n#define UR assert(false)\nauto * IS = & cin;\nauto * OS = & cout;\narray<string, 3> SEQ = { \"\", \" \", \"\" };\n// input\ntemplate<typename T> T in() { T a; (* IS) >> a; return a; }\n// input: tuple\ntemplate<int I, typename U> void tin_(istream & is, U & t) {\n\tif constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); }\n}\ntemplate<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; }\ntemplate<typename ... T> auto tin() { return in<tuple<T ...>>(); }\n// input: array\ntemplate<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; }\ntemplate<typename T, size_t N> auto ain() { return in<array<T, N>>(); }\n// input: multi-dimensional vector\ntemplate<typename T> T vin() { T v; (* IS) >> v; return v; }\ntemplate<typename T, typename N, typename ... M> auto vin(N n, M ... m) {\n\tvector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;\n}\n// input: multi-column (tuple<vector>)\ntemplate<typename U, int I> void colin_([[maybe_unused]] U & t) { }\ntemplate<typename U, int I, typename A, typename ... B> void colin_(U & t) {\n\tget<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);\n}\ntemplate<typename ... T> auto colin(int n) {\n\ttuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;\n}\n// output\nvoid out_([[maybe_unused]] string s) { }\ntemplate<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }\ntemplate<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }\nauto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };\nauto out = [](auto ... a) { outF(\"\", \" \" , \"\\n\", a ...); };\nauto outS = [](auto ... a) { outF(\"\", \" \" , \" \" , a ...); };\nauto outL = [](auto ... a) { outF(\"\", \"\\n\", \"\\n\", a ...); };\nauto outN = [](auto ... a) { outF(\"\", \"\" , \"\" , a ...); };\n// output: multi-dimensional vector\ntemplate<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {\n\tos << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? \"\" : SEQ[1]) << v[i]; } return (os << SEQ[2]);\n}\ntemplate<typename T> void vout_(T && v) { (* OS) << v; }\ntemplate<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {\n\tinc(i, SI(v)) { (* OS) << (i == 0 ? \"\" : a); vout_(v[i], b ...); }\n}\ntemplate<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }\ntemplate<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; }\n\n// ---- ----\n\nint main() {\n\tauto n = in<int>();\n\tauto l = vin<LL>(n);\n\tvector<vector<int>> g(n);\n\tinc(i, n - 1) {\n\t\tauto [a, b] = ain<int, 2>();\n\t\ta--; b--;\n\t\tg[a].PB(b);\n\t\tg[b].PB(a);\n\t}\n\t\n\tvector<LL> s(n), ans(n);\n\tfunction<void(int, int, int)> dfs = [&](int t, int v, int p) {\n\t\tif(t == 0) {\n\t\t\tRF(e, g[v]) {\n\t\t\t\tif(e == p) { continue; }\n\t\t\t\tdfs(t, e, v);\n\t\t\t\tl[v] += l[e];\n\t\t\t\ts[v] += l[e] + s[e];\n\t\t\t}\n\t\t} else {\n\t\t\tif(v == 0) {\n\t\t\t\tans[v] = s[v];\n\t\t\t} else {\n\t\t\t\tans[v] = ans[p] + l[0] - 2 * l[v]; \n\t\t\t}\n\t\t\tRF(e, g[v]) {\n\t\t\t\tif(e == p) { continue; }\n\t\t\t\tdfs(t, e, v);\n\t\t\t}\n\t\t}\n\t};\n\tdfs(0, 0, -1);\n\tdfs(1, 0, -1);\n\tvout(ans, \"\\n\");\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 20124, "score_of_the_acc": -0.472, "final_rank": 8 }, { "submission_id": "aoj_3163_4878874", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\nusing namespace std;\n//#include <atcoder/all>\n//using namespace atcoder;\nusing ll = long long;\n#define pp pair<int,int>\n#define rep(i,n) for(int (i)=0;(i)<(n);(i)++)\n#define ld long double\n#define al(a) (a).begin(),(a).end()\n#define mk make_pair\n#define check cout<<\"?\"<<endl;\n\nll MOD=1000000007;\nll mod=998244353;\nint inf=1000001000;\nll INF=1e18+5;\n\ntemplate<typename T>\nostream& operator<<(ostream& os,const vector<T>& v){\n if(v.empty()){\n os<<\"{ }\";\n return os;\n }\n os<<\"{\"<<v.front();\n for(auto itr=++v.begin();itr!=v.end();itr++){\n os<<\", \"<<*itr;\n }\n os<<\"}\";\n return os;\n}\n\ntemplate<typename T_first,typename T_second>\nostream& operator<<(ostream& os,const pair<T_first,T_second>& P){\n os<<\"(\"<<P.first;\n os<<\", \"<<P.second;\n os<<\")\";\n return os;\n}\n\nstruct edge{\n int from;\n int to;\n int idx;\n int rev;\n edge(int from=-1,int to=-1,int idx=-1,int rev=-1):to(to),rev(rev){}\n};\n\ntemplate<class DP>\nclass ReRooting{\npublic:\n\n using E=function<DP()>; \n using F=function<DP(DP,DP)>;\n using F_=function<DP(edge,DP)>;\n int n;\n vector<vector<edge>> path;\n vector<vector<DP>> edges_dp;\n E e;\n vector<DP> res;\n F merge;\n F_ mapping;\n\n ReRooting(int n,E e,F merge,F_ mapping):n(n),e(e),merge(merge),mapping(mapping){\n res.assign(n,e());\n path.assign(n,vector<edge>(0));\n edges_dp.assign(n,vector<DP>(0));\n }\n\n void add_edge(int from,int to){\n path[from].push_back(edge{from,to,(int)path[from].size(),(int)path[to].size()});\n path[to].push_back(edge{to,from,(int)path[to].size(),(int)path[from].size()-1});\n edges_dp[from].push_back(e());\n edges_dp[to].push_back(e());\n }\n\n void solve(){\n dfs(0,-1,-1);\n bfs(0);\n }\n\n DP dfs(int s,int p,int idx){\n if(s==0){\n rep(i,(int)path[s].size()){\n dfs(path[s][i].to,s,i);\n }\n return DP{};\n }\n\n DP& cur_edge=edges_dp[p][idx];\n rep(i,(int)path[s].size()){\n if(path[s][i].to==p) continue;\n cur_edge=merge(cur_edge,dfs(path[s][i].to,s,i));\n }\n cur_edge=mapping(path[p][idx],cur_edge);\n\n return cur_edge;\n }\n\n void bfs(int start){\n vector<bool> visited(n,false);\n queue<int> que;\n que.push(start);\n while(!que.empty()){\n int s=que.front();\n que.pop();\n int degree=(int)path[s].size();\n vector<DP> merge_left(degree,e());\n vector<DP> merge_right(degree,e());\n for(int i=1;i<degree;i++){\n merge_left[i]=merge(edges_dp[s][i-1],merge_left[i-1]);\n }\n for(int i=degree-2;i>=0;i--){\n merge_right[i]=merge(edges_dp[s][i+1],merge_right[i+1]);\n }\n rep(i,degree){\n if(visited[path[s][i].to]) continue;\n edge& cur_edge=path[s][i];\n edges_dp[cur_edge.to][cur_edge.rev]=merge(edges_dp[cur_edge.to][cur_edge.rev],merge_left[i]);\n edges_dp[cur_edge.to][cur_edge.rev]=merge(edges_dp[cur_edge.to][cur_edge.rev],merge_right[i]);\n edges_dp[cur_edge.to][cur_edge.rev]=mapping(path[cur_edge.to][cur_edge.rev],edges_dp[cur_edge.to][cur_edge.rev]);\n que.push(cur_edge.to);\n }\n res[s]=merge(edges_dp[s][0],merge_right[0]);\n visited[s]=true;\n }\n }\n};\n\nvector<ll> l;\n\n//using DP=intなども可\nstruct DP{\n ll dp;\n ll sum;\n};\nDP e(){\n return DP{0,0}; \n}\n//モノイド\nDP dp_merge(DP p,DP a){\n p.dp=p.dp+a.dp;\n p.sum=p.sum+a.sum;\n return p;\n}\nDP mapping(edge cur_edge,DP x){\n x.sum=x.sum+l[cur_edge.to];\n x.dp=x.dp+x.sum;\n return x;\n}\n\nint main(){\n int n; cin>>n;\n l.assign(n,0);\n rep(i,n) cin>>l[i];\n ReRooting<DP> tdp(n,e,dp_merge,mapping);\n rep(i,n-1){\n int a,b; cin>>a>>b;\n tdp.add_edge(a-1,b-1);\n }\n tdp.solve();\n rep(i,n) printf(\"%lld\\n\",tdp.res[i].dp);\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 33408, "score_of_the_acc": -1.0091, "final_rank": 14 }, { "submission_id": "aoj_3163_4878216", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\nusing namespace std;\n//#include <atcoder/all>\n//using namespace atcoder;\nusing ll = long long;\n#define pp pair<int,int>\n#define rep(i,n) for(int (i)=0;(i)<(n);(i)++)\n#define ld long double\n#define al(a) (a).begin(),(a).end()\n#define mk make_pair\n#define check cout<<\"?\"<<endl;\n\nll MOD=1000000007;\nll mod=998244353;\nint inf=1000001000;\nll INF=1e18+5;\n\ntemplate<typename T>\nostream& operator<<(ostream& os,const vector<T>& v){\n if(v.empty()){\n os<<\"{ }\";\n return os;\n }\n os<<\"{\"<<v.front();\n for(auto itr=++v.begin();itr!=v.end();itr++){\n os<<\", \"<<*itr;\n }\n os<<\"}\";\n return os;\n}\n\ntemplate<typename T_first,typename T_second>\nostream& operator<<(ostream& os,const pair<T_first,T_second>& P){\n os<<\"(\"<<P.first;\n os<<\", \"<<P.second;\n os<<\")\";\n return os;\n}\n\ntemplate<class DP>\nclass ReRooting{\npublic:\n struct edge{\n int to;\n int rev;\n edge(int to=-1,int rev=-1):to(to),rev(rev){}\n };\n\n using E=function<DP(int)>; \n using F=function<DP(DP,DP)>;\n using F_=function<DP(DP)>;\n int n;\n vector<vector<edge>> path;\n vector<vector<DP>> edges_dp;\n E e;\n vector<DP> res;\n F merge;\n F_ mapping;\n\n ReRooting(int n,E e,F merge,F_ mapping):n(n),e(e),merge(merge),mapping(mapping){\n res.assign(n,e(-1));\n path.assign(n,vector<edge>(0));\n edges_dp.assign(n,vector<DP>(0));\n }\n\n void add_edge(int from,int to){\n path[from].push_back(edge{to,(int)path[to].size()});\n path[to].push_back(edge{from,(int)path[from].size()-1});\n edges_dp[from].push_back(e(to));\n edges_dp[to].push_back(e(from));\n }\n\n void solve(){\n dfs(0,-1,-1);\n bfs(0);\n }\n\n DP dfs(int s,int p,int idx){\n if(s==0){\n rep(i,(int)path[s].size()){\n dfs(path[s][i].to,s,i);\n }\n return DP{};\n }\n\n DP& cur_edge=edges_dp[p][idx];\n rep(i,(int)path[s].size()){\n if(path[s][i].to==p) continue;\n cur_edge=merge(cur_edge,dfs(path[s][i].to,s,i));\n }\n cur_edge=mapping(cur_edge);\n\n return cur_edge;\n }\n\n void bfs(int start){\n vector<bool> visited(n,false);\n queue<int> que;\n que.push(start);\n while(!que.empty()){\n int s=que.front();\n que.pop();\n int degree=(int)path[s].size();\n vector<DP> merge_left(degree,e(-1));\n vector<DP> merge_right(degree,e(-1));\n for(int i=1;i<degree;i++){\n merge_left[i]=merge(edges_dp[s][i-1],merge_left[i-1]);\n }\n for(int i=degree-2;i>=0;i--){\n merge_right[i]=merge(edges_dp[s][i+1],merge_right[i+1]);\n }\n rep(i,degree){\n if(visited[path[s][i].to]) continue;\n edge& cur_edge=path[s][i];\n edges_dp[cur_edge.to][cur_edge.rev]=merge(edges_dp[cur_edge.to][cur_edge.rev],merge_left[i]);\n edges_dp[cur_edge.to][cur_edge.rev]=merge(edges_dp[cur_edge.to][cur_edge.rev],merge_right[i]);\n edges_dp[cur_edge.to][cur_edge.rev]=mapping(edges_dp[cur_edge.to][cur_edge.rev]);\n que.push(cur_edge.to);\n }\n res[s]=merge(edges_dp[s][0],merge_right[0]);\n visited[s]=true;\n }\n }\n};\n\nvector<ll> l;\n\n//using DP=intなども可\nstruct DP{\n int to;\n ll dp;\n ll sum;\n};\nDP e(int to=-1){\n return DP{to,0,0}; \n}\nDP dp_merge(DP p,DP a){\n p.dp=p.dp+a.dp;\n p.sum=p.sum+a.sum;\n return p;\n}\nDP mapping(DP x){\n x.sum=x.sum+l[x.to];\n x.dp=x.dp+x.sum;\n return x;\n}\n\nint main(){\n int n; cin>>n;\n l.assign(n,0);\n rep(i,n) cin>>l[i];\n ReRooting<DP> tdp(n,e,dp_merge,mapping);\n rep(i,n-1){\n int a,b; cin>>a>>b;\n tdp.add_edge(a-1,b-1);\n }\n tdp.solve();\n rep(i,n) printf(\"%lld\\n\",tdp.res[i].dp);\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 40836, "score_of_the_acc": -1.2643, "final_rank": 17 }, { "submission_id": "aoj_3163_4876903", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n////////////////////////////// Begin Macros\n\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define in(x, a, b) (a <= x and x < b)\n#define rep(i, N) for (int i = 0; i < (int)(N); i++)\n#define reprev(i, N) for (int i = (int)(N)-1; i >= 0; i--)\n#define rep1(i, N) for (int i = 1; i <= (int)(N); i++)\n#define rep1rev(i, N) for (int i = (int)(N); i >= 0; i--)\n#define forbe(i, b, e) for (int i = (b); i < (e); i++)\n#define forberev(i, b, e) for (int i = (e)-1; i >= (b); i--)\n#define forfl(i, f, l) for (int i = (f); i <= (l); i++)\n#define forflrev(i, f, l) for (int i = (l); i >= (f); i--)\nusing ll = long long;\nusing pii = pair<int, int>;\nusing pil = pair<int, ll>;\nusing pli = pair<ll, int>;\nusing pll = pair<ll, ll>;\n\ntemplate <typename T>\nbool chmax(T &m, const T q)\n{\n if (m < q)\n {\n m = q;\n return true;\n }\n else\n return false;\n}\ntemplate <typename T>\nbool chmin(T &m, const T q)\n{\n if (m > q)\n {\n m = q;\n return true;\n }\n else\n return false;\n}\ntemplate <typename T1, typename T2>\npair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return {l.first + r.first, l.second + r.second}; }\ntemplate <typename T1, typename T2>\npair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return {l.first - r.first, l.second - r.second}; }\ntemplate <typename T>\npair<T, T> operator*(const pair<T, T> &l, const T &r) { return {l.first * r, l.second * r}; }\ntemplate <typename T>\npair<T, T> operator/(const pair<T, T> &l, const T &r) { return {l.first / r, l.second / r}; }\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &vec)\n{\n for (auto &v : vec)\n is >> v;\n return is;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &vec)\n{\n os << \"[\";\n for (auto v : vec)\n os << v << \",\";\n os << \"]\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const deque<T> &vec)\n{\n os << \"deq[\";\n for (auto v : vec)\n os << v << \",\";\n os << \"]\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const set<T> &vec)\n{\n os << \"{\";\n for (auto v : vec)\n os << v << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const unordered_set<T> &vec)\n{\n os << \"{\";\n for (auto v : vec)\n os << v << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const multiset<T> &vec)\n{\n os << \"{\";\n for (auto v : vec)\n os << v << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const unordered_multiset<T> &vec)\n{\n os << \"{\";\n for (auto v : vec)\n os << v << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename T1, typename T2>\nistream &operator>>(istream &is, pair<T1, T2> &pa)\n{\n is >> pa.first >> pa.second;\n return is;\n}\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &os, const pair<T1, T2> &pa)\n{\n os << \"(\" << pa.first << \",\" << pa.second << \")\";\n return os;\n}\ntemplate <typename... Ts>\nistream &operator>>(istream &is, tuple<Ts...> &theTuple)\n{\n apply([&is](Ts &... tupleArgs) { ((is >> tupleArgs), ...); }, theTuple);\n return is;\n}\ntemplate <typename... Ts>\nostream &operator<<(ostream &os, const tuple<Ts...> &theTuple)\n{\n apply([&os](const Ts &... tupleArgs) {\n os << '(';\n size_t n(0);\n ((os << tupleArgs << (++n < sizeof...(Ts) ? \",\" : \"\")), ...);\n os << ')';\n },\n theTuple);\n return os;\n}\ntemplate <typename TK, typename TV>\nostream &operator<<(ostream &os, const map<TK, TV> &mp)\n{\n os << \"{\";\n for (auto v : mp)\n os << v.first << \"=>\" << v.second << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename TK, typename TV>\nostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp)\n{\n os << \"{\";\n for (auto v : mp)\n os << v.first << \"=>\" << v.second << \",\";\n os << \"}\";\n return os;\n}\n\ntemplate <typename T>\nvoid reset(vector<T> &v, const T reset_to)\n{\n for (auto &x : v)\n x = reset_to;\n}\ninline int popcount(const unsigned int x) { return __builtin_popcount(x); }\n#define dbg(x) cerr << #x << \" = \" << (x) << \" (L\" << __LINE__ << \") \" << __FILE__ << endl;\n\nll nC2(ll n)\n{\n return n * (n - 1) / 2;\n}\n\nconst int intinf = numeric_limits<int>::max();\nconst ll llinf = numeric_limits<ll>::max();\nconst pii udlr[4] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};\n\n////////////////////////////// End Macros\n\n// Graph.h start--------------------------------------------\n\n#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <typename Weight>\nstruct Vertex;\ntemplate <typename Weight>\nstruct Edge;\n\ntemplate <typename Weight>\nstruct Vertex\n{\n int id;\n long long l;\n vector<int> ids_dst;\n vector<Edge<Weight>> edges;\n\n Vertex(const int id = 0) : id(id){};\n int &operator[](int n) { return ids_dst[n]; }\n const int &operator[](int n) const { return ids_dst[n]; }\n\n size_t size() const { return edges.size(); }\n void add_edge(const Edge<Weight> &);\n};\n\ntemplate <typename Weight>\nstruct Edge\n{\n int id_src, id_dst;\n Weight weight;\n\n Edge(const int id_src, const int id_dst) : id_src(id_src), id_dst(id_dst){};\n Edge(const int id_src, const int id_dst, const Weight weight) : id_src(id_src), id_dst(id_dst), weight(weight){};\n};\ntemplate <typename Weight>\nostream &operator<<(ostream &os, const Edge<Weight> &e) { return os << \"Edge(\" << e.id_src << \"->\" << e.id_dst << \",\" << e.weight << \")\"; }\n\ntemplate <typename Weight = long long>\nstruct Graph\n{\n vector<Vertex<Weight>> vertices;\n vector<Edge<Weight>> edges;\n\n Graph(const int nvertices = 0);\n Vertex<Weight> &operator[](int n) { return vertices[n]; }\n const Vertex<Weight> &operator[](int n) const { return vertices[n]; }\n\n size_t size() const { return vertices.size(); }\n void add_edge(const Edge<Weight> &);\n void add_edge(const int id_src, const int id_dst) { add_edge({id_src, id_dst}); };\n void add_edge(const int id_src, const int id_dst, const Weight w) { add_edge({id_src, id_dst, w}); };\n};\ntemplate <typename Weight>\nostream &operator<<(ostream &os, const Graph<Weight> &g)\n{\n cout << \"Graph(\" << g.size() << \")\"\n << \"[\" << endl;\n for (auto &e : g.edges)\n os << \" \" << e << \",\" << endl;\n cout << \"]\";\n return os;\n}\n\n//----------------------------------------------------------\n\ntemplate <typename Weight>\nvoid Vertex<Weight>::add_edge(const Edge<Weight> &e)\n{\n edges.push_back(e);\n ids_dst.push_back(e.id_dst);\n}\n\ntemplate <typename Weight>\nbool operator<(const Edge<Weight> &e1, const Edge<Weight> &e2)\n{\n return e1.weight != e2.weight ? e1.weight > e2.weight : // !!INVERSE!!\n e1.id_src != e2.id_src ? e1.id_src < e2.id_src : e1.id_dst < e2.id_dst;\n}\n\ntemplate <typename Weight>\nGraph<Weight>::Graph(const int nvertices)\n{\n for (int id = 0; id < nvertices; id++)\n vertices.emplace_back(id);\n}\ntemplate <typename Weight>\nvoid Graph<Weight>::add_edge(const Edge<Weight> &e)\n{\n edges.push_back(e);\n vertices[e.id_src].add_edge(e);\n}\n\ntemplate <typename Weight>\nGraph<Weight> make_tree(Graph<Weight> &g)\n{\n int nvertices = g.size();\n Graph<Weight> g_tree(nvertices);\n queue<int> q;\n vector<bool> is_used(nvertices, false);\n\n int v_start = 0;\n q.push(v_start);\n is_used[v_start] = true;\n while (!q.empty())\n {\n int v = q.front();\n q.pop();\n for (int c : g[v].ids_dst)\n {\n if (is_used[c])\n continue;\n g_tree.add_edge(v, c);\n g_tree.add_edge(c, v);\n q.push(c);\n is_used[c] = true;\n }\n }\n\n return g_tree;\n}\n\n// Graph.h end----------------------------------------------\n\n// Rerooting.h start--------------------------------------------\n\n#include <vector>\n#include <set>\n\ntemplate <typename Weight>\nstruct Rerooting\n{\n const vector<Vertex<Weight>> &vertices;\n\n // edit from here ----------------------------------------------------\n struct DP\n {\n long long b;\n ll sum_l;\n DP() : b(0), sum_l(0){};\n DP &operator+=(const DP &rhs)\n {\n sum_l += rhs.sum_l;\n b += rhs.b;\n return *this;\n }\n // DP &operator-=(const DP &rhs)\n // {\n // sum_l -= rhs.sum_l;\n // b -= rhs.b;\n // return *this;\n // }\n inline DP operator+(const DP &rhs) const\n {\n return DP(*this) += rhs;\n }\n // inline DP operator-(const DP &rhs) const\n // {\n // return DP(*this) -= rhs;\n // }\n };\n DP add_root(DP dp, const int v)\n {\n dp.b += dp.sum_l;\n dp.sum_l += vertices[v].l;\n return dp;\n }\n\n // edit until here ----------------------------------------------------\n\n vector<vector<DP>> dp;\n vector<DP> ans;\n Rerooting(const Graph<Weight> &g) : vertices(g.vertices), dp(g.size()), ans(g.size()){};\n\n void init()\n {\n const int root_init = 0;\n dfs(root_init);\n bfs(root_init);\n }\n DP dfs(int v, int parent = -1)\n {\n DP dp_sum;\n int n = vertices[v].size();\n dp[v] = vector<DP>(n);\n for (int i = 0; i < n; i++)\n {\n const int child = vertices[v][i];\n if (child == parent)\n continue;\n dp_sum += dp[v][i] = dfs(child, v);\n }\n return add_root(dp_sum, v);\n }\n void bfs(int v, int parent = -1, const DP &dp_parent = DP())\n {\n const int n = vertices[v].size();\n for (int i = 0; i < n; i++)\n if (vertices[v][i] == parent)\n dp[v][i] = dp_parent;\n\n vector<DP> dp_sum_left(n + 1);\n for (int i = 0; i < n; i++)\n dp_sum_left[i + 1] = dp_sum_left[i] + dp[v][i];\n vector<DP> dp_sum_right(n + 1);\n for (int i = n - 1; i >= 0; i--)\n dp_sum_right[i] = dp[v][i] + dp_sum_right[i + 1];\n\n ans[v] = add_root(dp_sum_left[n], v);\n\n for (int i = 0; i < n; i++)\n {\n int child = vertices[v][i];\n if (child == parent)\n continue;\n const DP dp_sum_without_i = dp_sum_left[i] + dp_sum_right[i + 1];\n bfs(child, v, add_root(dp_sum_without_i, v));\n }\n }\n};\n\n// Rerooting.h end----------------------------------------------\n\nvoid solve()\n{\n int N;\n cin >> N;\n Graph g(N);\n rep(i, N)\n {\n int l;\n cin >> l;\n g[i].l = l;\n }\n rep(i, N - 1)\n {\n int a, b;\n cin >> a >> b;\n a--;\n b--;\n g.add_edge(a, b);\n g.add_edge(b, a);\n }\n\n Rerooting rt(g);\n rt.init();\n auto ans = rt.ans;\n rep(i, N)\n {\n cout << ans[i].b << endl;\n }\n}\n\nint main()\n{\n cout << fixed << setprecision(15);\n\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 51440, "score_of_the_acc": -2, "final_rank": 20 }, { "submission_id": "aoj_3163_4876858", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n////////////////////////////// Begin Macros\n\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define in(x, a, b) (a <= x and x < b)\n#define rep(i, N) for (int i = 0; i < (int)(N); i++)\n#define reprev(i, N) for (int i = (int)(N)-1; i >= 0; i--)\n#define rep1(i, N) for (int i = 1; i <= (int)(N); i++)\n#define rep1rev(i, N) for (int i = (int)(N); i >= 0; i--)\n#define forbe(i, b, e) for (int i = (b); i < (e); i++)\n#define forberev(i, b, e) for (int i = (e)-1; i >= (b); i--)\n#define forfl(i, f, l) for (int i = (f); i <= (l); i++)\n#define forflrev(i, f, l) for (int i = (l); i >= (f); i--)\nusing ll = long long;\nusing pii = pair<int, int>;\nusing pil = pair<int, ll>;\nusing pli = pair<ll, int>;\nusing pll = pair<ll, ll>;\n\ntemplate <typename T>\nbool chmax(T &m, const T q)\n{\n if (m < q)\n {\n m = q;\n return true;\n }\n else\n return false;\n}\ntemplate <typename T>\nbool chmin(T &m, const T q)\n{\n if (m > q)\n {\n m = q;\n return true;\n }\n else\n return false;\n}\ntemplate <typename T1, typename T2>\npair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return {l.first + r.first, l.second + r.second}; }\ntemplate <typename T1, typename T2>\npair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return {l.first - r.first, l.second - r.second}; }\ntemplate <typename T>\npair<T, T> operator*(const pair<T, T> &l, const T &r) { return {l.first * r, l.second * r}; }\ntemplate <typename T>\npair<T, T> operator/(const pair<T, T> &l, const T &r) { return {l.first / r, l.second / r}; }\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &vec)\n{\n for (auto &v : vec)\n is >> v;\n return is;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &vec)\n{\n os << \"[\";\n for (auto v : vec)\n os << v << \",\";\n os << \"]\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const deque<T> &vec)\n{\n os << \"deq[\";\n for (auto v : vec)\n os << v << \",\";\n os << \"]\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const set<T> &vec)\n{\n os << \"{\";\n for (auto v : vec)\n os << v << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const unordered_set<T> &vec)\n{\n os << \"{\";\n for (auto v : vec)\n os << v << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const multiset<T> &vec)\n{\n os << \"{\";\n for (auto v : vec)\n os << v << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename T>\nostream &operator<<(ostream &os, const unordered_multiset<T> &vec)\n{\n os << \"{\";\n for (auto v : vec)\n os << v << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename T1, typename T2>\nistream &operator>>(istream &is, pair<T1, T2> &pa)\n{\n is >> pa.first >> pa.second;\n return is;\n}\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &os, const pair<T1, T2> &pa)\n{\n os << \"(\" << pa.first << \",\" << pa.second << \")\";\n return os;\n}\ntemplate <typename... Ts>\nistream &operator>>(istream &is, tuple<Ts...> &theTuple)\n{\n apply([&is](Ts &... tupleArgs) { ((is >> tupleArgs), ...); }, theTuple);\n return is;\n}\ntemplate <typename... Ts>\nostream &operator<<(ostream &os, const tuple<Ts...> &theTuple)\n{\n apply([&os](const Ts &... tupleArgs) {\n os << '(';\n size_t n(0);\n ((os << tupleArgs << (++n < sizeof...(Ts) ? \",\" : \"\")), ...);\n os << ')';\n },\n theTuple);\n return os;\n}\ntemplate <typename TK, typename TV>\nostream &operator<<(ostream &os, const map<TK, TV> &mp)\n{\n os << \"{\";\n for (auto v : mp)\n os << v.first << \"=>\" << v.second << \",\";\n os << \"}\";\n return os;\n}\ntemplate <typename TK, typename TV>\nostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp)\n{\n os << \"{\";\n for (auto v : mp)\n os << v.first << \"=>\" << v.second << \",\";\n os << \"}\";\n return os;\n}\n\ntemplate <typename T>\nvoid reset(vector<T> &v, const T reset_to)\n{\n for (auto &x : v)\n x = reset_to;\n}\ninline int popcount(const unsigned int x) { return __builtin_popcount(x); }\n#define dbg(x) cerr << #x << \" = \" << (x) << \" (L\" << __LINE__ << \") \" << __FILE__ << endl;\n\nll nC2(ll n)\n{\n return n * (n - 1) / 2;\n}\n\nconst int intinf = numeric_limits<int>::max();\nconst ll llinf = numeric_limits<ll>::max();\nconst pii udlr[4] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};\n\n////////////////////////////// End Macros\n\n// Graph.h start--------------------------------------------\n\n#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <typename Weight>\nstruct Vertex;\ntemplate <typename Weight>\nstruct Edge;\n\ntemplate <typename Weight>\nstruct Vertex\n{\n int id;\n long long l;\n vector<int> ids_dst;\n vector<Edge<Weight>> edges;\n\n Vertex(const int id = 0) : id(id){};\n int &operator[](int n) { return ids_dst[n]; }\n const int &operator[](int n) const { return ids_dst[n]; }\n\n size_t size() const { return edges.size(); }\n void add_edge(const Edge<Weight> &);\n};\n\ntemplate <typename Weight>\nstruct Edge\n{\n int id_src, id_dst;\n Weight weight;\n\n Edge(const int id_src, const int id_dst) : id_src(id_src), id_dst(id_dst){};\n Edge(const int id_src, const int id_dst, const Weight weight) : id_src(id_src), id_dst(id_dst), weight(weight){};\n};\ntemplate <typename Weight>\nostream &operator<<(ostream &os, const Edge<Weight> &e) { return os << \"Edge(\" << e.id_src << \"->\" << e.id_dst << \",\" << e.weight << \")\"; }\n\ntemplate <typename Weight = long long>\nstruct Graph\n{\n vector<Vertex<Weight>> vertices;\n vector<Edge<Weight>> edges;\n\n Graph(const int nvertices = 0);\n Vertex<Weight> &operator[](int n) { return vertices[n]; }\n const Vertex<Weight> &operator[](int n) const { return vertices[n]; }\n\n size_t size() const { return vertices.size(); }\n void add_edge(const Edge<Weight> &);\n void add_edge(const int id_src, const int id_dst) { add_edge({id_src, id_dst}); };\n void add_edge(const int id_src, const int id_dst, const Weight w) { add_edge({id_src, id_dst, w}); };\n};\ntemplate <typename Weight>\nostream &operator<<(ostream &os, const Graph<Weight> &g)\n{\n cout << \"Graph(\" << g.size() << \")\"\n << \"[\" << endl;\n for (auto &e : g.edges)\n os << \" \" << e << \",\" << endl;\n cout << \"]\";\n return os;\n}\n\n//----------------------------------------------------------\n\ntemplate <typename Weight>\nvoid Vertex<Weight>::add_edge(const Edge<Weight> &e)\n{\n edges.push_back(e);\n ids_dst.push_back(e.id_dst);\n}\n\ntemplate <typename Weight>\nbool operator<(const Edge<Weight> &e1, const Edge<Weight> &e2)\n{\n return e1.weight != e2.weight ? e1.weight > e2.weight : // !!INVERSE!!\n e1.id_src != e2.id_src ? e1.id_src < e2.id_src : e1.id_dst < e2.id_dst;\n}\n\ntemplate <typename Weight>\nGraph<Weight>::Graph(const int nvertices)\n{\n for (int id = 0; id < nvertices; id++)\n vertices.emplace_back(id);\n}\ntemplate <typename Weight>\nvoid Graph<Weight>::add_edge(const Edge<Weight> &e)\n{\n edges.push_back(e);\n vertices[e.id_src].add_edge(e);\n}\n\ntemplate <typename Weight>\nGraph<Weight> make_tree(Graph<Weight> &g)\n{\n int nvertices = g.size();\n Graph<Weight> g_tree(nvertices);\n queue<int> q;\n vector<bool> is_used(nvertices, false);\n\n int v_start = 0;\n q.push(v_start);\n is_used[v_start] = true;\n while (!q.empty())\n {\n int v = q.front();\n q.pop();\n for (int c : g[v].ids_dst)\n {\n if (is_used[c])\n continue;\n g_tree.add_edge(v, c);\n g_tree.add_edge(c, v);\n q.push(c);\n is_used[c] = true;\n }\n }\n\n return g_tree;\n}\n\n// Graph.h end----------------------------------------------\n\n// Rerooting.h start--------------------------------------------\n\n#include <vector>\n#include <set>\n\ntemplate <typename Weight>\nstruct Rerooting\n{\n const vector<Vertex<Weight>> &vertices;\n\n // edit from here ----------------------------------------------------\n struct DP\n {\n long long b;\n ll sum_l;\n DP() : b(0), sum_l(0){};\n DP &operator+=(const DP &rhs)\n {\n sum_l += rhs.sum_l;\n b += rhs.b + rhs.sum_l;\n return *this;\n }\n DP &operator-=(const DP &rhs)\n {\n sum_l -= rhs.sum_l;\n b -= rhs.b + rhs.sum_l;\n return *this;\n }\n inline DP operator+(const DP &rhs) const\n {\n return DP(*this) += rhs;\n }\n inline DP operator-(const DP &rhs) const\n {\n return DP(*this) -= rhs;\n }\n };\n DP add_root(DP dp, const int v)\n {\n dp.sum_l += vertices[v].l;\n return dp;\n }\n\n // edit until here ----------------------------------------------------\n\n vector<vector<DP>> dp;\n vector<DP> ans;\n Rerooting(const Graph<Weight> &g) : vertices(g.vertices), dp(g.size()), ans(g.size()){};\n\n void init()\n {\n const int root_init = 0;\n dfs(root_init);\n bfs(root_init);\n }\n DP dfs(int v, int parent = -1)\n {\n DP dp_sum;\n int n = vertices[v].size();\n dp[v] = vector<DP>(n);\n for (int i = 0; i < n; i++)\n {\n const int child = vertices[v][i];\n if (child == parent)\n continue;\n dp_sum += dp[v][i] = dfs(child, v);\n }\n return add_root(dp_sum, v);\n }\n\n void bfs(int v, int parent = -1, const DP &dp_parent = DP())\n {\n const int n = vertices[v].size();\n for (int i = 0; i < n; i++)\n if (vertices[v][i] == parent)\n dp[v][i] = dp_parent;\n\n DP dp_sum;\n for (int i = 0; i < n; i++)\n dp_sum += dp[v][i];\n\n ans[v] = add_root(dp_sum, v);\n for (int i = 0; i < n; i++)\n {\n int child = vertices[v][i];\n if (child == parent)\n continue;\n const DP dp_sum_without_i = dp_sum - dp[v][i];\n bfs(child, v, add_root(dp_sum_without_i, v));\n }\n }\n};\n\n// Rerooting.h end----------------------------------------------\n\nvoid solve()\n{\n int N;\n cin >> N;\n Graph g(N);\n rep(i, N)\n {\n int l;\n cin >> l;\n g[i].l = l;\n }\n rep(i, N - 1)\n {\n int a, b;\n cin >> a >> b;\n a--;\n b--;\n g.add_edge(a, b);\n g.add_edge(b, a);\n }\n\n Rerooting rt(g);\n rt.init();\n auto ans = rt.ans;\n rep(i, N)\n {\n cout << ans[i].b << endl;\n }\n}\n\nint main()\n{\n cout << fixed << setprecision(15);\n\n solve();\n return 0;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 40896, "score_of_the_acc": -1.6658, "final_rank": 19 }, { "submission_id": "aoj_3163_4875922", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\nconst int N = 100010;\nll L[N];\nvector<int> G[N];\n\nll sL = 0;\n\nll s[N], d[N];\nvoid calc(int v, int p) {\n s[v] = L[v];\n for (int e : G[v])\n if (e != p) {\n d[e] = d[v] + 1;\n calc(e, v);\n s[v] += s[e];\n }\n}\n\nll ans[N];\nvoid dfs(int v, int p, ll now) {\n ans[v] = now;\n for (int e : G[v])\n if (e != p) {\n ll t = now - s[e] + (sL - s[e]);\n dfs(e, v, t);\n }\n}\n\nint main() {\n int n;\n cin >> n;\n rep(i, n) {\n cin >> L[i];\n sL += L[i];\n }\n rep(i, n - 1) {\n int a, b;\n cin >> a >> b;\n --a;\n --b;\n G[a].pb(b);\n G[b].pb(a);\n }\n\n calc(0, -1);\n\n ll v0 = 0;\n rep(i, n) v0 += L[i] * d[i];\n\n dfs(0, -1, v0);\n\n rep(i, n) cout << ans[i] << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 16988, "score_of_the_acc": -0.5924, "final_rank": 9 } ]
aoj_3162_cpp
Problem L: Count Pow Sum Problem $Q$ 個の3つの整数の組 $(a_i,l_i,r_i) (1 \leq i \leq Q)$ が与えられる。 それぞれの組に対し、 $\displaystyle \sum_{k=l_i}^{r_i}\left\lfloor{\left(a_i+\sqrt{a_i^2-1}\right)^k}\right\rfloor$ を $10^9+7$ で割った余りを求めよ。 但し、$\lfloor{x}\rfloor$ は $x$ 以下である最大の整数を表す。 Constraints 入力は以下の条件を満たす。 $1 \leq Q \leq 10000$ $1 \leq a_i \leq 10^9$ $0 \leq l_i \leq r_i \leq 10^9$ 入力は全て整数である。 Input 入力は以下の形式で与えられる。 $Q$ $a_1$ $l_1$ $r_1$ $a_2$ $l_2$ $r_2$ $\vdots$ $a_Q$ $l_Q$ $r_Q$ Output $Q$ 個のクエリそれぞれに対し、 $\displaystyle \sum_{k=l_i}^{r_i}\left\lfloor{\left(a_i+\sqrt{a_i^2-1}\right)^k}\right\rfloor$ を $10^9+7$ で割った余りを出力せよ。 末尾の改行を忘れないこと。 Sample Input 1 5 2 0 0 2 1 1 2 2 2 2 3 3 2 2 3 Sample Output 1 1 3 13 51 64 $\left\lfloor\left(2+\sqrt{3}\right)^0\right\rfloor=1$ $\left\lfloor\left(2+\sqrt{3}\right)^1\right\rfloor=\left\lfloor 2+\sqrt{3}\right\rfloor=3$ $\left\lfloor\left(2+\sqrt{3}\right)^2\right\rfloor=\left\lfloor 7+4\sqrt{3}\right\rfloor=13$ $\left\lfloor\left(2+\sqrt{3}\right)^3\right\rfloor=\left\lfloor 26+15\sqrt{3}\right\rfloor=51$ より、 それぞれ $1$ $3$ $13$ $51$ $13+51=64$ が答えになります。 Sample Input 2 10 459404297 517642810 741889747 581992024 866504331 929744396 222841627 420642437 697287723 683338343 430705406 509597170 390891363 475139614 643827664 855081312 565758976 925253656 883384773 466157419 667964073 962783174 289373011 576778244 843984728 54647959 959764601 825451551 69560986 411653622 Sample Output 2 818692813 502289003 874771119 265904125 166949046 644621561 489591300 573971217 378976183 486013871 $10^9+7$ で割った余りを求めてください。
[ { "submission_id": "aoj_3162_9739986", "code_snippet": "#include <iostream>\n#include <algorithm>\nusing namespace std;\ntypedef long long int ll;\nconstexpr ll mod=1e9+7;\n\nstruct mat{\n\tll x[3][3];\n\tfriend mat operator*(mat &a,mat &b){\n\t\tmat c;\n\t\tfor(int i=0;i<3;i++){\n\t\t\tfor(int j=0;j<3;j++){\n\t\t\t\tc.x[i][j]=0;\n\t\t\t\tfor(int k=0;k<3;k++){\n\t\t\t\t\t(c.x[i][j]+=a.x[i][k]*b.x[k][j]%mod)%=mod;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn c;\n\t}\n};\n\nmat x,res;\n\nll mod_pow(int n){\n\twhile(n){\n\t\tif(n%2)res=x*res;\n\t\tx=x*x;\n\t\tn>>=1;\n\t}\n\treturn res.x[0][0];\n}\n\nvoid init(ll a){\n\tfor(int i=0;i<3;i++)for(int j=0;j<3;j++)x.x[i][j]=res.x[i][j]=0;\n\tres.x[0][0]=2,res.x[1][0]=1;\n\tx.x[0][0]=1,x.x[0][1]=2*a,x.x[0][2]=2*(a*a-1);\n\tx.x[1][1]=a,x.x[1][2]=a*a-1;\n\tx.x[2][1]=1,x.x[2][2]=a;\n\tfor(int i=0;i<3;i++)for(int j=0;j<3;j++)x.x[i][j]%=mod;\n\treturn;\n}\n\nll solve(int a,int l,int r){\n\tif(a==1)return (r-l+1);\n\tinit(a); ll R=mod_pow(r);\n\tinit(a); ll L=(l?mod_pow(l-1):0);\n\tll val=(R-L-(r-l+1))%mod;\n\treturn (val+mod)%mod;\n}\n\nint main(){\n\tint q; cin >> q;\n\twhile(q--){\n\t\tint a,l,r; cin >> a >> l >> r;\n\t\tcout << solve(a,l,r) << \"\\n\";\n\t}\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3440, "score_of_the_acc": -0.6761, "final_rank": 7 }, { "submission_id": "aoj_3162_5128860", "code_snippet": "#line 1 \"a.cpp\"\n#include<iostream>\nusing namespace std;\n#line 3 \"/home/kotatsugame/library/math/modint.cpp\"\n#include<utility>\ntemplate<int m>\nstruct modint{\n\tunsigned int x;\n\tconstexpr modint()noexcept:x(){}\n\ttemplate<typename T>\n\tconstexpr modint(T x_)noexcept:x((x_%=m)<0?x_+m:x_){}\n\tconstexpr unsigned int val()const noexcept{return x;}\n\tconstexpr modint&operator++()noexcept{if(++x==m)x=0;return*this;}\n\tconstexpr modint&operator--()noexcept{if(x==0)x=m;--x;return*this;}\n\tconstexpr modint operator++(int)noexcept{modint res=*this;++*this;return res;}\n\tconstexpr modint operator--(int)noexcept{modint res=*this;--*this;return res;}\n\tconstexpr modint&operator+=(const modint&a)noexcept{x+=a.x;if(x>=m)x-=m;return*this;}\n\tconstexpr modint&operator-=(const modint&a)noexcept{if(x<a.x)x+=m;x-=a.x;return*this;}\n\tconstexpr modint&operator*=(const modint&a)noexcept{x=(unsigned long long)x*a.x%m;return*this;}\n\tconstexpr modint&operator/=(const modint&a)noexcept{return*this*=a.inv();}\n\tconstexpr modint operator+()const noexcept{return*this;}\n\tconstexpr modint operator-()const noexcept{return modint()-*this;}\n\tconstexpr modint pow(long long n)const noexcept\n\t{\n\t\tif(n<0)return pow(-n).inv();\n\t\tmodint x=*this,r=1;\n\t\tfor(;n;x*=x,n>>=1)if(n&1)r*=x;\n\t\treturn r;\n\t}\n\tconstexpr modint inv()const noexcept\n\t{\n\t\tint s=x,t=m,x=1,u=0;\n\t\twhile(t)\n\t\t{\n\t\t\tint k=s/t;\n\t\t\ts-=k*t;\n\t\t\tswap(s,t);\n\t\t\tx-=k*u;\n\t\t\tswap(x,u);\n\t\t}\n\t\treturn modint(x);\n\t}\n\tfriend constexpr modint operator+(const modint&a,const modint&b){return modint(a)+=b;}\n\tfriend constexpr modint operator-(const modint&a,const modint&b){return modint(a)-=b;}\n\tfriend constexpr modint operator*(const modint&a,const modint&b){return modint(a)*=b;}\n\tfriend constexpr modint operator/(const modint&a,const modint&b){return modint(a)/=b;}\n\tfriend constexpr bool operator==(const modint&a,const modint&b){return a.x==b.x;}\n\tfriend constexpr bool operator!=(const modint&a,const modint&b){return a.x!=b.x;}\n\tfriend ostream&operator<<(ostream&os,const modint&a){return os<<a.x;}\n\tfriend istream&operator>>(istream&is,modint&a){long long v;is>>v;a=modint(v);return is;}\n};\n#line 1 \"/home/kotatsugame/library/math/squarematrix.cpp\"\n#include<array>\ntemplate<typename T,unsigned int N>\nstruct Matrix{\n\tarray<array<T,N>,N>dat;\n\tarray<T,N>&operator[](int i){return dat[i];}\n\tconst array<T,N>&operator[](int i)const{return dat[i];}\n\tstatic Matrix eye(){\n\t\tMatrix res;\n\t\tfor(int i=0;i<N;i++)res[i][i]=1;\n\t\treturn res;\n\t}\n\tMatrix operator+(const Matrix&A)const{\n\t\tMatrix res;\n\t\tfor(int i=0;i<N;i++)for(int j=0;j<N;j++)\n\t\t\tres[i][j]=dat[i][j]+A[i][j];\n\t\treturn res;\n\t}\n\tMatrix operator*(const Matrix&A)const{\n\t\tMatrix res;\n\t\tfor(int i=0;i<N;i++)for(int j=0;j<N;j++)for(int k=0;k<N;k++)\n\t\t\tres[i][j]+=dat[i][k]*A[k][j];\n\t\treturn res;\n\t}\n\tMatrix pow(long long n)const{\n\t\tMatrix a=*this,res=eye();\n\t\tfor(;n;a=a*a,n>>=1)if(n&1)res=res*a;\n\t\treturn res;\n\t}\n};\n#line 5 \"a.cpp\"\nusing mint=modint<(int)1e9+7>;\nusing mat=Matrix<mint,3>;\nint Q,A;\nmint f(int N)\n{\n\tif(N<0)return 0;\n\tmat X;\n\tX[0][0]=1;\n\tX[0][1]=1;\n\tX[1][1]=2*A;\n\tX[1][2]=-1;\n\tX[2][1]=1;\n\tX=X.pow(N);\n\treturn X[0][0]*2+X[0][1]*2*A+X[0][2]*2-N-1;\n}\nmain()\n{\n\tcin>>Q;\n\tfor(;Q--;)\n\t{\n\t\tint L,R;\n\t\tcin>>A>>L>>R;\n\t\tcout<<f(R)-f(L-1)<<endl;\n\t}\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 3104, "score_of_the_acc": -0.1739, "final_rank": 2 }, { "submission_id": "aoj_3162_4867538", "code_snippet": "#pragma GCC target(\"avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#include<bits/stdc++.h>\n// #include<ext/pb_ds/assoc_container.hpp>\n// #include<ext/pb_ds/tree_policy.hpp>\n// #include<ext/pb_ds/tag_and_trait.hpp>\n// using namespace __gnu_pbds;\n// #include<boost/multiprecision/cpp_int.hpp>\n// namespace multiprecisioninteger = boost::multiprecision;\n// using cint=multiprecisioninteger::cpp_int;\nusing namespace std;\nusing ll=long long;\n#define double long double\nusing datas=pair<ll,ll>;\nusing ddatas=pair<double,double>;\nusing tdata=pair<ll,datas>;\nusing vec=vector<ll>;\nusing mat=vector<vec>;\nusing pvec=vector<datas>;\nusing pmat=vector<pvec>;\n// using llset=tree<ll,null_type,less<ll>,rb_tree_tag,tree_order_statistics_node_update>;\n#define For(i,a,b) for(i=a;i<(ll)b;++i)\n#define bFor(i,b,a) for(i=b,--i;i>=(ll)a;--i)\n#define rep(i,N) For(i,0,N)\n#define rep1(i,N) For(i,1,N)\n#define brep(i,N) bFor(i,N,0)\n#define brep1(i,N) bFor(i,N,1)\n#define all(v) (v).begin(),(v).end()\n#define allr(v) (v).rbegin(),(v).rend()\n#define vsort(v) sort(all(v))\n#define vrsort(v) sort(allr(v))\n#define endl \"\\n\"\n#define eb emplace_back\n#define print(v) cout<<v<<endl\n#define printyes cout<<\"Yes\"<<endl\n#define printno cout<<\"No\"<<endl\n#define printYES cout<<\"YES\"<<endl\n#define printNO cout<<\"NO\"<<endl\n#define output(v) do{bool f=0;for(auto outi:v){cout<<(f?\" \":\"\")<<outi;f=1;}cout<<endl;}while(0)\n#define matoutput(v) do{for(auto outimat:v)output(outimat);}while(0)\nconst ll mod=1000000007;\n// const ll mod=998244353;\nconst ll inf=1LL<<60;\nconst double PI = acos(-1);\nconst double eps = 1e-9;\ntemplate<class T> inline bool chmax(T& a,T b){bool x=a<b;if(x)a=b;return x;} \ntemplate<class T> inline bool chmin(T& a,T b){bool x=a>b;if(x)a=b;return x;} \n\nvoid startupcpp(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout<<fixed<<setprecision(15);\n}\n\ndouble distance(ddatas x,ddatas y){\n double a=x.first-y.first,b=x.second-y.second;\n return sqrt(a*a+b*b);\n}\n\nll modinv(ll a,ll m=mod) {\n ll b=m,u=1,v=0,t;\n while(b){\n t=a/b;\n a-=t*b; swap(a,b);\n u-=t*v; swap(u,v);\n }\n return (u+m)%m;\n}\n\nll moddevide(ll a,ll b){return (a*modinv(b))%mod;}\n\nvec modncrlistp,modncrlistm;\n\nll modncr(ll n,ll r){\n if(n<r)return 0;\n ll i,size=modncrlistp.size();\n if(size<=n){\n modncrlistp.resize(n+1);\n modncrlistm.resize(n+1);\n if(!size){\n modncrlistp[0]=modncrlistm[0]=1;\n size++;\n }\n For(i,size,n+1){\n modncrlistp[i]=modncrlistp[i-1]*i%mod;\n modncrlistm[i]=modinv(modncrlistp[i]);\n }\n }\n return modncrlistp[n]*modncrlistm[r]%mod*modncrlistm[n-r]%mod;\n}\n\nll modpow(ll a,ll n,ll m=mod){\n ll res=1;\n while(n>0){\n if(n&1)res=res*a%m;\n a=a*a%m;\n n>>=1;\n }\n return res;\n}\n\nll gcd(ll a,ll b){if(!b)return abs(a);return (a%b==0)?abs(b):gcd(b,a%b);}\nll lcm(ll a,ll b){return a/gcd(a,b)*b;}\n\nll countdigits(ll n){\n ll ans=0;\n while(n){n/=10;ans++;}\n return ans;\n}\n\nll sumdigits(ll n){\n ll ans=0;\n while(n){ans+=n%10;n/=10;}\n return ans;\n}\nclass matrix{\n mat a;\n ll H,W;\npublic:\n matrix(mat& g):a(g){\n H=g.size();\n W=g[0].size();\n }\n matrix(ll i,ll j):a(i,vec(j,0)){H=i;W=j;}\n matrix(ll n):a(n,vec(n,0)){H=W=n;}\n inline vec& operator [](int k){\n return a.at(k);\n }\n // matrix operator =(matrix b){\n // this->a.swap(b->a);\n // this->H=b.H;\n // this->W=b.W;\n // return (*this);\n // }\n matrix operator +=(matrix b){\n ll i,j;\n rep(i,this->H)rep(j,this->W)(*this)[i][j]+=b[i][j];\n return (*this);\n }\n matrix operator -=(matrix b){\n ll i,j;\n rep(i,this->H)rep(j,this->W)(*this)[i][j]-=b[i][j];\n return (*this);\n }\n matrix operator *=(matrix b){\n ll i,j,k;\n assert(this->W==b.H);\n matrix c(this->H,b.W);\n rep(i,this->H)rep(j,b.W){\n c[i][j]=0;\n rep(k,this->W)(c[i][j]+=(*this)[i][k]*b[k][j]%mod)%=mod;\n }\n (*this)=c;\n return (*this);\n }\n matrix operator ^=(ll K){\n assert(this->H==this->W);\n matrix c(this->H);\n ll i;\n rep(i,this->H)c[i][i]=1;\n if(K&1)c*=(*this);\n while(K){\n K>>=1;\n (*this)*=(*this);\n if(K&1)c*=(*this);\n }\n this->a.swap(c.a);\n return (*this);\n }\n matrix operator +(matrix c){\n return matrix(*this)+=c;\n }\n matrix operator -(matrix c){\n return matrix(*this)-=c;\n }\n matrix operator *(matrix c){\n return matrix(*this)*=c;\n }\n matrix operator ^(ll K){\n return matrix(*this)^=K;\n }\n void out(){\n for(auto x:a)output(x);\n }\n};\n\nint main(){\n startupcpp();\n int codeforces;cin>>codeforces;while(codeforces--){\n ll i,j,a,l,r,ans;\n cin>>a>>l>>r;\n if(r==0){\n print(1);\n continue;\n }\n if(a==1){\n print(r-l+1);\n continue;\n }\n l+=ans=!l;\n ans-=r-l+1;\n matrix g(2),I(2),v(2,1);\n I[0][0]=I[1][1]=1;\n v[0][0]=-1;v[1][0]=1;\n g[0][0]=2*a%mod;g[0][1]=-1;g[1][0]=1;g[1][1]=0;\n auto xg=I-(g^(r-l+1));\n auto ansg=(g^(l-1))*xg*v;\n ans+=ansg[0][0];\n ans%=mod;\n if(ans<0)ans+=mod;\n print(ans);\n}\n}", "accuracy": 1, "time_ms": 160, "memory_kb": 3476, "score_of_the_acc": -0.9597, "final_rank": 14 }, { "submission_id": "aoj_3162_4865597", "code_snippet": "#include <iostream>\n#include <array>\n\n\n#include <utility>\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param m `1 <= m`\n// @return x mod m\nconstexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n\n// Fast modular multiplication by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n unsigned long long im;\n\n // @param m `1 <= m < 2^31`\n barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n\n // @return m\n unsigned int umod() const { return _m; }\n\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n // [1] m = 1\n // a = b = im = 0, so okay\n\n // [2] m >= 2\n // im = ceil(2^64 / m)\n // -> im * m = 2^64 + r (0 <= r < m)\n // let z = a*b = c*m + d (0 <= c, d < m)\n // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im\n // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2\n // ((ab * im) >> 64) == c or c + 1\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned int v = (unsigned int)(z - x * _m);\n if (_m <= v) v += _m;\n return v;\n }\n};\n\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr long long bases[3] = {2, 7, 61};\n for (long long a : bases) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n}\ntemplate <int n> constexpr bool is_prime = is_prime_constexpr(n);\n\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n\n // Contracts:\n // [1] s - m0 * a = 0 (mod b)\n // [2] t - m1 * a = 0 (mod b)\n // [3] s * |m1| + t * |m0| <= b\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n // [3]:\n // (s - t * u) * |m1| + t * |m0 - m1 * u|\n // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)\n // = s * |m1| + t * |m0| <= b\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n // by [3]: |m0| <= b/g\n // by g != b: |m0| < b/g\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n\nnamespace internal {\n\n#ifndef _MSC_VER\ntemplate <class T>\nusing is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n\ntemplate <class T>\nusing is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n\n#else\n\ntemplate <class T> using is_integral = typename std::is_integral<T>;\n\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n\n#endif\n\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n\ntemplate <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n\n} // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\n\ntemplate <class T> using is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n\n} // namespace internal\n\ntemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n\n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\n\ntemplate <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id> internal::barrett dynamic_modint<id>::bt = 998244353;\n\nusing modint998244353 = static_modint<998244353>;\nusing modint1000000007 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\n\nnamespace internal {\n\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n\ntemplate <class> struct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n\n} // namespace internal\n\n} // namespace atcoder\n\n\nnamespace ac = atcoder;\n\ntemplate <class T, int D>\nstruct Vector {\n using V = std::array<T, D>;\n\n V vec;\n\n // constructor\n Vector(T val = 0) { vec.fill(val); }\n\n // getter\n T& operator[](int i) { return vec[i]; }\n T operator[](int i) const { return vec[i]; }\n typename V::iterator begin() { return vec.begin(); }\n typename V::iterator end() { return vec.end(); }\n\n // arithmetic\n Vector operator+(const Vector& v) const { return Vector(*this) += v; }\n Vector operator-(const Vector& v) const { return Vector(*this) -= v; }\n T operator*(const Vector& v) const {\n T ret(0);\n for (int i = 0; i < D; ++i) ret += vec[i] * v[i];\n return ret;\n }\n\n // compound assignment\n Vector& operator+=(const Vector& v) {\n for (int i = 0; i < D; ++i) vec[i] += v[i];\n return *this;\n }\n Vector& operator-=(const Vector& v) {\n for (int i = 0; i < D; ++i) vec[i] -= v[i];\n return *this;\n }\n};\n\ntemplate <class T, int D>\nstruct Matrix {\n using M = std::array<std::array<T, D>, D>;\n\n M mat;\n\n // constructor\n Matrix(T val = 0) {\n for (auto& v : mat) v.fill(val);\n }\n\n static Matrix id() {\n Matrix m;\n for (int i = 0; i < D; ++i) m[i][i] = 1;\n return m;\n }\n\n // getter\n std::array<T, D>& operator[](int i) { return mat[i]; }\n std::array<T, D> operator[](int i) const { return mat[i]; }\n typename M::iterator begin() { return mat.begin(); }\n typename M::iterator end() { return mat.end(); }\n\n // arithmetic\n Matrix operator+(const Matrix& m) const { return Matrix(*this) += m; }\n Matrix operator-(const Matrix& m) const { return Matrix(*this) -= m; }\n Matrix operator*(const Matrix& m) const { return Matrix(*this) *= m; }\n\n template <class U>\n Matrix pow(U k) {\n Matrix ret = id();\n Matrix a = *this;\n\n while (k > 0) {\n if (k & 1) ret *= a;\n a *= a;\n k >>= 1;\n }\n return ret;\n }\n\n // compound assignment\n Matrix& operator+=(const Matrix& m) {\n for (int i = 0; i < D; ++i) {\n for (int j = 0; j < D; ++j) {\n mat[i][j] += m[i][j];\n }\n }\n return *this;\n }\n Matrix& operator-=(const Matrix& m) {\n for (int i = 0; i < D; ++i) {\n for (int j = 0; j < D; ++j) {\n mat[i][j] -= m[i][j];\n }\n }\n return *this;\n }\n Matrix& operator*=(const Matrix& m) {\n M nmat;\n for (auto& v : nmat) v.fill(0);\n\n for (int i = 0; i < D; ++i) {\n for (int j = 0; j < D; ++j) {\n for (int k = 0; k < D; ++k) {\n nmat[i][j] += mat[i][k] * m[k][j];\n }\n }\n }\n mat = nmat;\n return *this;\n }\n\n // arithmetic with vector\n using Vec = Vector<T, D>;\n Vec operator*(const Vec& v) {\n Vec ret;\n for (int i = 0; i < D; ++i) {\n for (int j = 0; j < D; ++j) {\n ret[i] += mat[i][j] * v[j];\n }\n }\n return ret;\n }\n};\n\nusing mint = ac::modint1000000007;\nusing Vec = Vector<mint, 3>;\nusing Mat = Matrix<mint, 3>;\n\nmint calc(int n, int a) {\n Vec v; // p, q, psum\n v[0] = 1;\n\n Mat m;\n m[0][0] = a, m[0][1] = mint(a) * a - 1;\n m[1][0] = 1, m[1][1] = a;\n m[2][0] = 1, m[2][2] = 1;\n\n auto psum = (m.pow(n) * v)[2];\n return psum * 2 - n;\n}\n\nvoid solve() {\n int a, l, r;\n std::cin >> a >> l >> r;\n\n auto ans = calc(r + 1, a) - calc(l, a);\n std::cout << ans.val() << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n int q;\n std::cin >> q;\n while (q--) solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3460, "score_of_the_acc": -0.6619, "final_rank": 6 }, { "submission_id": "aoj_3162_4861056", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(1e9 + 7)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\ntemplate <class T>\nstruct Matrix {\n vector<vector<T>> A;\n Matrix() {}\n Matrix(size_t m, size_t n) : A(m, vector<T>(n, 0)) {}\n Matrix(size_t n) : A(n, vector<T>(n, 0)) {}\n size_t height() const { return (A.size()); }\n size_t width() const { return (A[0].size()); }\n inline const vector<T> &operator[](int k) const { return (A.at(k)); }\n inline vector<T> &operator[](int k) { return (A.at(k)); }\n static Matrix E(size_t n) {\n Matrix mat(n);\n for (int i = 0; i < n; ++i) mat[i][i] = 1;\n return (mat);\n }\n Matrix &operator+=(const Matrix &B) {\n size_t m = height(), n = width();\n assert(m == B.height() && n == B.width());\n for (int i = 0; i < m; ++i)\n for (int j = 0; j < n; ++j) (*this)[i][j] += B[i][j];\n return (*this);\n }\n Matrix &operator-=(const Matrix &B) {\n size_t m = height(), n = width();\n assert(m == B.height() && n == B.width());\n for (int i = 0; i < m; ++i)\n for (int j = 0; j < n; ++j) (*this)[i][j] -= B[i][j];\n return (*this);\n }\n Matrix &operator*=(const Matrix &B) {\n size_t m = height(), n = B.width(), p = width();\n assert(p == B.height());\n vector<vector<T>> C(m, vector<T>(n, 0));\n for (int i = 0; i < m; ++i)\n for (int k = 0; k < p; ++k) {\n T tmp = (*this)[i][k];\n for (int j = 0; j < n; ++j) C[i][j] += tmp * B[k][j];\n }\n A.swap(C);\n return (*this);\n }\n Matrix &operator^=(long long k) {\n Matrix B = Matrix::E(height());\n while (k) {\n if (k & 1) B *= *this;\n *this *= *this;\n k >>= 1;\n }\n A.swap(B.A);\n return (*this);\n }\n\n Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }\n Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }\n Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }\n Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }\n friend ostream &operator<<(ostream &os, Matrix &p) {\n size_t m = p.height(), n = p.width();\n for (int i = 0; i < m; i++) {\n os << \"[\";\n for (int j = 0; j < n; j++) {\n os << p[i][j] << (j + 1 == n ? \"]\\n\" : \",\");\n }\n }\n return (os);\n }\n};\n\nint q, a, l, r;\n\nModInt<> calc(int x);\n\nint main() {\n cin >> q;\n for (int i = 0; i < q; ++i) {\n cin >> a >> l >> r;\n cout << calc(r) - calc(l - 1) << endl;\n }\n return 0;\n}\n\nModInt<> calc(int x) {\n if (x < 0) return 0;\n if (a == 1) return x + 1;\n long long b = (long long)a * a - 1;\n Matrix<ModInt<>> mat(4, 4), vec(4, 1);\n mat[0][0] = mat[2][1] = mat[3][3] = vec[0][0] = vec[1][0] = vec[3][0] = 1;\n mat[0][3] = -1;\n mat[0][1] = 2 * a;\n mat[0][2] = 2 * b;\n mat[1][1] = mat[2][2] = a;\n mat[1][2] = b;\n return ((mat ^ x) * vec)[0][0];\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 3456, "score_of_the_acc": -0.9739, "final_rank": 15 }, { "submission_id": "aoj_3162_4835779", "code_snippet": "/*\tauthor: Kite_kuma\n\tcreated: 2020.09.13 15:07:01 */\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region aliases\n\n#define rep(i, n) for(long long i = 0; i < (n); i++)\n#define rrep(i, n) for(long long i = (n)-1; i > -1; i--)\n#define Rep(i, m, n) for(long long i = (m); i < (n); i++)\n#define rRep(i, m, n) for(long long i = (n)-1; i >= (m); i--)\n#define REP(i, m, n, p) for(long long i = m; i < n; i += p)\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define bcnt(n) __builtin_popcountll(n)\n#define endk endl\n#define ednl endl\n#define enld endl\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vb = vector<bool>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing mll = map<long long, long long>;\nusing pll = pair<long long, long long>;\nusing qll = queue<long long>;\nusing sll = set<long long>;\nusing vpll = vector<pair<long long, long long>>;\ntemplate <class T = ll>\nusing V = vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\n//昇順pq(小さい方から取り出す)\ntemplate <class T = ll>\nusing pqup = priority_queue<T, vector<T>, greater<T>>;\n//降順pq(大きい方から取り出す)\ntemplate <class T = ll>\nusing pqdn = priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nlong long const limLL = 9223372036854775807; // POW(2,63)-1 ~ 9.22e18\nlong long const dekai = 3e16;\nconst long double pi = acos(-1);\nconst char el = '\\n';\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\nint ddx[8] = {-1, -1, -1, 0, 0, 1, 1, 1};\nint ddy[8] = {-1, 0, 1, -1, 1, -1, 0, 1};\n\nconst int mod = 1000000007;\n// const int mod = 998244353;\n\n#pragma endregion\n\n#pragma region basic_procedure\n\ntemplate <class T>\ninline bool isin(T x, T lef, T rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { cout << (f ? \"Yes\" : \"No\") << \"\\n\"; }\nvoid No() { cout << \"No\\n\"; }\nvoid YES(bool f = 1) { cout << (f ? \"YES\" : \"NO\") << \"\\n\"; }\nvoid NO() { cout << \"NO\\n\"; }\ntemplate <class T>\nvoid drop(T answer) {\n\tcout << answer << \"\\n\";\n\texit(0);\n}\nvoid err() {\n\tcout << -1 << \"\\n\";\n\texit(0);\n}\n\nvector<long long> vin(long long n) { //整数n個の入力を受け取ってベクトルに突っ込んで返す\n\tvector<long long> v(n);\n\tfor(long long i = 0; i < n; i++) {\n\t\tcin >> v[i];\n\t}\n\treturn v;\n}\n\n//ベクトルの出力(検証済)\n// vectorの中身を出力する 答えの出力に利用可能\ntemplate <class T>\nvoid vout(vector<T> &v, bool tate = 0) {\n\tif(v.size() > 0) {\n\t\tfor(auto it = v.begin(); it < v.end(); it++) {\n\t\t\tcout << *it;\n\t\t\tif(it != v.end() - 1) {\n\t\t\t\tif(tate)\n\t\t\t\t\tcout << endl;\n\t\t\t\telse\n\t\t\t\t\tcout << \" \";\n\t\t\t}\n\t\t}\n\t}\n\tcout << endl;\n}\n\ntemplate <class T>\nvoid add(vector<T> &v, T val) {\t //ベクトルの各要素に加算\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\n// vectorの中身を数える map<要素,個数>を返す\ntemplate <class T>\nmap<T, long long> cntv(vector<T> v) {\n\tmap<T, long long> m;\n\tfor(auto &g : v) {\n\t\tif(m.count(g))\n\t\t\tm[g]++;\n\t\telse\n\t\t\tm[g] = 1;\n\t}\n\treturn m;\n}\n\n//配列圧縮(検証済)\n//{1,36,1,3,8,-2,-92}を\n//{2, 5,2,3,4, 1, 0}にする\ntemplate <class T>\nvector<long long> press(vector<T> &v) {\n\tlong long n = v.size();\n\tvector<long long> w(n);\n\tmap<T, long long> m;\n\tfor(T &p : v) m[p] = 0;\n\tlong long i = 0;\n\tfor(auto &p : m) {\n\t\tp.second = i;\n\t\ti++;\n\t}\n\tfor(long long i = 0; i < n; i++) w.at(i) = m[v.at(i)];\n\treturn w;\n}\n\ntemplate <class T>\nT divup(T a, T b) {\n\t//端数繰りあがり割り算\n\tassert(b != 0);\n\tT x = abs(a);\n\tT y = abs(b);\n\tT z = (x + y - 1) / y;\n\tif((a < 0 && b > 0) || (a > 0 && b < 0))\n\t\treturn -z;\n\telse if(a == 0)\n\t\treturn 0;\n\telse\n\t\treturn z;\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\ntemplate <class T>\nint sgn(T x) {\t//符号関数\n\tif(x < 0) return -1;\n\tif(x == 0) return 0;\n\treturn 1;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\n// a * x % mod == __gcd(a,mod)なるxを返す\n// a が modの倍数でないことが条件\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tswap(a, b);\n\t\tu -= t * v;\n\t\tswap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\nvvll comb(100, vll(100, -1));\nlong long com(long long n, long long k) { //普通の二項計数(overflowに注意)\n\tassert(n < 100 && k < 100);\n\tif(n < k || k < 0 || n < 0) return 0;\n\tif(comb[n][k] != -1) return comb[n][k];\n\tll res;\n\tif(n - k < k)\n\t\tres = com(n, n - k);\n\telse if(k == 0)\n\t\tres = 1;\n\telse\n\t\tres = com(n - 1, k - 1) + com(n - 1, k);\n\tcomb[n][k] = res;\n\treturn res;\n}\n\n// nCk modを求める\nconst ll MAX = 5100000;\n// この値は求める二項計数の値に応じて変える\n// MAX=3*10^7のとき1900msほど、ほぼ比例\n// MAX=5*10^6程度ならそれほど気にしなくてよい(300ms程)\nlong long fac[MAX], finv[MAX], inv[MAX];\n\nvoid cominit() {\n\t// テーブルを作る前処理\n\tfac[0] = fac[1] = 1;\n\tfinv[0] = finv[1] = 1;\n\tinv[1] = 1;\n\tfor(ll i = 2; i < MAX; i++) {\n\t\tfac[i] = fac[i - 1] * i % mod;\n\t\tinv[i] = mod - inv[mod % i] * (mod / i) % mod;\n\t\tfinv[i] = finv[i - 1] * inv[i] % mod;\n\t}\n}\nlong long commod(ll n, ll k) {\t// 二項係数計算\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * (finv[k] * finv[n - k] % mod) % mod;\n}\nlong long pmod(ll n, ll k) { //順列計算\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * finv[n - k] % mod;\n}\nlong long hmod(ll n, ll k) { // nHk計算\n\t// n個の区別しないoを区別するk個の箱に入れる方法の総数\n\t//(n+k-1)C(k-1)と等しい\n\treturn commod(n + k - 1, n);\n}\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tINPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tINPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define CHAR(...) \\\n\tchar __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define DOUBLE(...) \\\n\tdouble __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n\ntemplate <class T>\nvoid scan(T &a) {\n\tcin >> a;\n}\ntemplate <class T>\nvoid scan(vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\ntemplate <class T, class L>\nvoid scan(pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\ntemplate <class T>\ninline void print(T x) {\n\tcout << x << '\\n';\n}\n\ntemplate <typename T1, typename T2>\nistream &operator>>(istream &is, pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &os, const pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tcerr << \", \";\n\tview(p.second);\n\tcerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(std::set<T> &s) {\n\tif(s.empty()) {\n\t\tcerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tcerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tcerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tcerr << \", \";\n\t\tview(c.second);\n\t\tcerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tcerr << \"] : \";\n\t\tview(t.second);\n\t\tcerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tview(H);\n\tcerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tcerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tview(x); \\\n\t\tcerr << \"\\n\"; \\\n\t} while(0)\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\nstruct mint {\n\tlong long x;\n\tmint(long long x = 0) : x((x % mod + mod) % mod) {}\n\tmint operator-() const { return mint(-x); }\n\tmint &operator+=(const mint a) {\n\t\tif((x += a.x) >= mod) x -= mod;\n\t\treturn *this;\n\t}\n\tmint &operator-=(const mint a) {\n\t\tif((x += mod - a.x) >= mod) x -= mod;\n\t\treturn *this;\n\t}\n\tmint &operator*=(const mint a) {\n\t\t(x *= a.x) %= mod;\n\t\treturn *this;\n\t}\n\tmint operator+(const mint a) const { return mint(*this) += a; }\n\tmint operator-(const mint a) const { return mint(*this) -= a; }\n\tmint operator*(const mint a) const { return mint(*this) *= a; }\n\tmint pow(long long t) const {\n\t\tif(!t) return 1;\n\t\tmint a = pow(t >> 1);\n\t\ta *= a;\n\t\tif(t & 1) a *= *this;\n\t\treturn a;\n\t}\n\n\t// for prime mod\n\tmint inv() const { return pow(mod - 2); }\n\tmint &operator/=(const mint a) { return *this *= a.inv(); }\n\tmint operator/(const mint a) const { return mint(*this) /= a; }\n};\nostream &operator<<(ostream &os, const mint &a) { return os << a.x; }\n\ntemplate <class T, int a, int b = a>\nstruct matrix {\t // a * b 行列\n\tvector<vector<T>> mat;\n\tmatrix() : mat(a, vector<T>(b, (T)0)) {}\n\tmatrix(vector<vector<T>> vec) : mat(a, vector<T>(b)) {\n\t\tfor(int i = 0; i < a; i++) {\n\t\t\tfor(int j = 0; j < b; j++) {\n\t\t\t\tmat[i][j] = vec[i][j];\n\t\t\t}\n\t\t}\n\t}\n\tmatrix<T, a, b> &operator=(vector<vector<T>> vec) {\n\t\tfor(int i = 0; i < a; i++) {\n\t\t\tfor(int j = 0; j < b; j++) {\n\t\t\t\tmat[i][j] = vec[i][j];\n\t\t\t}\n\t\t}\n\t\treturn *this;\n\t}\n\tvector<T> &operator[](int row) { return mat[row]; }\n\n\tmatrix<T, a, b> operator-() const {\n\t\tauto m = *this;\n\t\tfor(int i = 0; i < a; i++) {\n\t\t\tfor(int j = 0; j < b; j++) {\n\t\t\t\tm.mat[i][j] *= -1;\n\t\t\t}\n\t\t}\n\t\treturn m;\n\t}\n\n\tmatrix<T, a, b> &operator+=(const matrix<T, a, b> other) {\n\t\tfor(int i = 0; i < a; i++) {\n\t\t\tfor(int j = 0; j < b; j++) {\n\t\t\t\tmat[i][j] += other.mat[i][j];\n\t\t\t}\n\t\t}\n\t\treturn *this;\n\t}\n\tmatrix<T, a, b> operator+(matrix<T, a, b> other) {\n\t\tfor(int i = 0; i < a; i++) {\n\t\t\tfor(int j = 0; j < b; j++) {\n\t\t\t\tother.mat[i][j] += mat[i][j];\n\t\t\t}\n\t\t}\n\t\treturn other;\n\t}\n\tmatrix<T, a, b> &operator-=(const matrix<T, a, b> other) {\n\t\tfor(int i = 0; i < a; i++) {\n\t\t\tfor(int j = 0; j < b; j++) {\n\t\t\t\tmat[i][j] -= other.mat[i][j];\n\t\t\t}\n\t\t}\n\t\treturn *this;\n\t}\n\tmatrix<T, a, b> operator-(matrix<T, a, b> other) {\n\t\tfor(int i = 0; i < a; i++) {\n\t\t\tfor(int j = 0; j < b; j++) {\n\t\t\t\tother.mat[i][j] = mat[i][j] - other.mat[i][j];\n\t\t\t}\n\t\t}\n\t\treturn other;\n\t}\n\ttemplate <int c>\n\tmatrix<T, a, c> operator*(const matrix<T, b, c> other) {\n\t\tmatrix<T, a, c> res;\n\t\tfor(int i = 0; i < a; i++) {\n\t\t\tfor(int j = 0; j < c; j++) {\n\t\t\t\tfor(int k = 0; k < b; k++) {\n\t\t\t\t\tres.mat[i][j] += mat[i][k] * other.mat[k][j];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn res;\n\t}\n\tmatrix<T, a, b> &operator*=(const matrix<T, b, b> other) {\n\t\tmatrix<T, a, b> res;\n\t\tfor(int i = 0; i < a; i++) {\n\t\t\tfor(int j = 0; j < b; j++) {\n\t\t\t\tfor(int k = 0; k < b; k++) {\n\t\t\t\t\tres.mat[i][j] += mat[i][k] * other.mat[k][j];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn *this = res;\n\t}\n\ttemplate <class U>\n\tmatrix<T, a, a> pow(U n) {\t// n乗\n\t\tassert(a == b);\n\t\tmatrix<T, a, a> ret;\n\t\tret.unit();\n\t\tmatrix<T, a, a> m = *this;\n\t\twhile(n > 0) {\n\t\t\tif(n & 1) ret *= m;\n\t\t\tn /= 2;\n\t\t\tm *= m;\n\t\t}\n\t\treturn ret;\n\t}\n\n\tvoid print() {\n\t\tfor(int i = 0; i < a; i++) {\n\t\t\tfor(int j = 0; j < b; j++) {\n\t\t\t\tcout << mat[i][j];\n\t\t\t\tcout << (j == b - 1 ? \"\\n\" : \" \");\n\t\t\t}\n\t\t}\n\t}\n\tvoid zero() { // 0行列\n\t\tfor(int i = 0; i < a; i++)\n\t\t\tfor(int j = 0; j < b; j++) mat[i][j] = 0;\n\t}\n\tvoid unit() { //単位行列\n\t\tfor(int i = 0; i < a; i++)\n\t\t\tfor(int j = 0; j < b; j++) mat[i][j] = (i == j ? 1 : 0);\n\t}\n};\n\ntemplate <class T, int a, int b>\nvoid view(matrix<T, a, b> mat) {\n\tview(mat.mat);\n}\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\tcout << fixed << setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tINT(q);\n\tvector<mint> ans(q);\n\n\trep(i, q) {\n\t\tINT(a, l, r);\n\t\tif(a == 1) {\n\t\t\tans[i] = r - l + 1;\n\t\t\tcontinue;\n\t\t}\n\n\t\t// debug(a, l, r);\n\n\t\tmatrix<mint, 3, 3> mat;\n\t\tmat.mat = {{1, 1, 0}, {0, 2 * a, -1}, {0, 1, 0}};\n\n\t\tauto p = mat.pow(r);\n\n\t\tif(l >= 1) {\n\t\t\tauto rr = mat.pow(l - 1);\n\t\t\tdebug(p, rr);\n\t\t\tp -= rr;\n\t\t}\n\n\t\tmatrix<mint, 3, 1> t;\n\t\tt.mat = {{2}, {2 * a}, {2}};\n\t\tmatrix<mint, 3, 1> g = p * t;\n\n\t\t// debug(mat, g, t);\n\t\t// d//ump(p);\n\n\t\tans[i] = g[0][0] - (r - l + 1);\n\t}\n\tvout(ans, 1);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 3616, "score_of_the_acc": -1.1557, "final_rank": 20 }, { "submission_id": "aoj_3162_4835530", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\n#define all(v) v.begin(),v.end()\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=1e9+7;\ntemplate<class T> void chmin(T &a,const T &b){if(a>b) a=b;}\ntemplate<class T> void chmax(T &a,const T &b){if(a<b) a=b;}\n\ntypedef vector<ll> vec;//ll?\ntypedef vector<vec> mat;\n\nmat mul(mat &A,mat &B){\n mat C(A.size(),vec(B[0].size()));\n for(int i=0;i<A.size();i++){\n for(int k=0;k<B.size();k++){\n for(int j=0;j<B[0].size();j++){\n C[i][j]=(C[i][j]+(A[i][k]*B[k][j])%MOD)%MOD;\n }\n }\n }\n return C;\n}\n\nmat pow(mat A,ll n){\n mat B(A.size(),vec(A.size()));\n for(int i=0;i<A.size();i++){\n B[i][i]=1;\n }\n while(n>0){\n if(n&1) B=mul(B,A);\n A=mul(A,A);\n n=(n>>1);\n }\n return B;\n}\n\nll solve(ll R,ll A){\n if(R==0) return 2;\n if(R==1) return (2*A+2)%MOD;\n\n mat B(3,vec(3,0));\n B[0][0]=2*A%MOD;B[0][1]=MOD-1;B[0][2]=0;\n B[1][0]=1;B[1][1]=0;B[1][2]=0;\n B[2][0]=2*A%MOD;B[2][1]=MOD-1;B[2][2]=1;\n\n mat C=pow(B,R-1);\n ll ans=(C[2][0]*2%MOD*A%MOD+C[2][1]*2%MOD+C[2][2]*(2*A%MOD+2)%MOD)%MOD;\n return ans;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int Q;\n cin>>Q;\n rep(q,Q){\n ll A,L,R;\n cin>>A>>L>>R;\n\n ll ans=solve(R,A);\n if(L-1>=0) ans=(ans-solve(L-1,A)+MOD)%MOD;\n ans=(ans-(R-L+1)+MOD)%MOD;\n cout<<ans<<\"\\n\";\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 170, "memory_kb": 3216, "score_of_the_acc": -0.5761, "final_rank": 4 }, { "submission_id": "aoj_3162_4835403", "code_snippet": "#include<stdio.h>\n#include<iostream>\n#include<algorithm>\n#include<vector>\n#include<string>\n#include<utility>\n#include<map>\n#include<set>\n#include<queue>\n#include<stack>\n#include<functional>\n#include<math.h>\n#include<random>\n#include <bitset>\n#include <deque>\nusing namespace std;\n#define N (1000000000+7)\n//#define N 998244353\n#define INF 1e16\ntypedef long long ll;\ntypedef pair<int,int> P;\ntypedef pair<int,P> Q;\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\nconst int inf = (int)1e9; \n \nll gcd(ll a, ll b) {\n\tif (b > a) {\n\t\tll tmp = b;\n\t\tb = a;\n\t\ta = tmp;\n\t}\n\tif (a%b == 0)return b;\n\telse return gcd(b, a%b);\n}\n\nmat mul(mat &A,mat &B){\n mat C(A.size(),vec(B[0].size()));\n for(int i=0;i<A.size();i++){\n for(int k=0;k<B.size();k++){\n for(int j=0;j<B[0].size();j++){\n ll t = (A[i][k]*B[k][j])%N;\n C[i][j] = (C[i][j]+t)%N;\n C[i][j] = (C[i][j]+N)%N;\n }\n }\n }\n return C;\n}\n\nmat Pow(mat A,ll n){\n mat B(A.size(),vec(A.size()));\n for(int i=0;i<A.size();i++)B[i][i]=1LL;\n while(n>0){\n if(n&1)B = mul(B,A);\n A = mul(A,A);\n n>>=1;\n }\n return B;\n}\n\nint main(void){\n\tint q;\n\tcin>>q;\n\twhile(q--){\n\t\tll a,l,r;\n\t\tcin>>a>>l>>r;\n\t\tmat A(2,vec(2));\n\t\tA[0][0] = (2*a)%N;\n\t\tA[0][1] = (-1+N)%N;\n\t\tA[1][0] = 1;\n\t\tif(l==r){\n\t\t\tA = Pow(A,r);\n\t\t\tll ans = (A[1][0]*2*a)%N;\n\t\t\tans = (ans+A[1][1]*2)%N;\n\t\t\tcout<<(ans-1+N)%N<<endl;\n\t\t}\n\t\telse{\n\t\t\tif(l==0){\n\t\t\t\tmat B(2*2,vec(2*2));\n\t\t\t\tfor(int i=0;i<2;i++){\n\t\t\t\t\tfor(int j=0;j<2;j++){\n\t\t\t\t\t\tB[i][j] = A[i][j];\n\t\t\t\t\t}\n\t\t\t\t\tB[2+i][i]=1;\n\t\t\t\t\tB[2+i][2+i]=1;\n\t\t\t\t}\n\t\t\t\tB = Pow(B,r+1);\n\t\t\t\tll ans = (B[2+1][0]*2*a)%N;\n\t\t\t\tans = (ans+B[2+1][1]*2)%N;\n\t\t\t\tans = ans-(r-l+1);\n\t\t\t\tans = (ans+N)%N;\n\t\t\t\tcout<<ans<<endl;\n\t\t\t}\n\t\t\telse{\n\t\t\t\tmat Br(2*2,vec(2*2)),Bl(2*2,vec(2*2));\n\t\t\t\tfor(int i=0;i<2;i++){\n\t\t\t\t\tfor(int j=0;j<2;j++){\n\t\t\t\t\t\tBr[i][j] = A[i][j];\n\t\t\t\t\t\tBl[i][j] = A[i][j];\n\t\t\t\t\t}\n\t\t\t\t\tBr[2+i][i]=1;\n\t\t\t\t\tBr[2+i][2+i]=1;\n\t\t\t\t\tBl[2+i][i]=1;\n\t\t\t\t\tBl[2+i][2+i]=1;\n\t\t\t\t}\n\t\t\t\tBr = Pow(Br,r+1);\n\t\t\t\tBl = Pow(Bl,l);\n\t\t\t\tll ans1 = (Br[3][0]*2*a)%N;\n\t\t\t\tans1 = (ans1+Br[3][1]*2)%N;\n\t\t\t\tll ans2 = (Bl[3][0]*2*a)%N;\n\t\t\t\tans2 = (ans2+Bl[3][1]*2)%N;\n\t\t\t\tll ans = (ans1-ans2+N)%N;\n\t\t\t\tans = (ans-(r-l+1)+N)%N;\n\t\t\t\tcout<<ans<<endl;\n\t\t\t}\n\t\t}\n\t}\n\treturn 0;\n}", "accuracy": 1, "time_ms": 450, "memory_kb": 3156, "score_of_the_acc": -1.1187, "final_rank": 19 }, { "submission_id": "aoj_3162_4834939", "code_snippet": "/**\n * author: otera \n**/\n#include<iostream>\n#include<string> \n#include<cstdio>\n#include<cstring>\n#include<vector>\n#include<cmath>\n#include<algorithm> \n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<deque>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\nusing namespace std;\n\n#define int long long\ntypedef long long ll;\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\ntypedef long double ld;\nconst int inf=1e9+7;\nconst ll INF=1LL<<60 ;\nconst ll mod=1e9+7 ;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef complex<ld> Point;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<int, int> P;\ntypedef pair<ld, ld> LDP;\ntypedef pair<ll, ll> LP;\n#define fr first\n#define sc second\n#define all(c) c.begin(),c.end()\n#define pb push_back\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\n\nmat mul(mat& A, mat& B) {\n mat C(A.size(), vec(B[0].size(), 0));\n for(int i = 0; i < A.size(); ++i) {\n for(int j = 0; j < B[0].size(); ++j) {\n for(int k = 0; k < B.size(); ++k) {\n C[i][j] = (C[i][j] + A[i][k] * B[k][j] % mod) % mod;\n }\n }\n }\n return C;\n}\n\nmat pow(mat A, ll n) {\n mat B(A.size(), vec(A.size(), 0));\n for(int i = 0; i < A.size(); ++i) {\n B[i][i] = 1LL;\n }\n while(n > 0) {\n if(n & 1) B = mul(B, A);\n A = mul(A, A);\n n >>= 1;\n }\n return B;\n}\n\nvoid solve() {\n\tint q; cin >> q;\n rep(_, q) {\n int a, l, r; cin >> a >> l >> r;\n if(a == 1) {\n cout << r - l + 1 << endl;\n continue;\n }\n mat A(3, vec(3, 0));\n A[0][0] = (2 * a + 1) % mod, A[0][1] = (- 2 * a - 1 + 2 * mod) % mod, A[0][2] = 1LL, A[1][0] = 1LL, A[2][1] = 1LL;\n ll sl = 0, sr = 0;\n if(l >= 2) {\n mat B = pow(A, l - 2);\n sl = (B[0][0] * ((2 * a + 2) % mod) % mod + B[0][1] * 2LL % mod) % mod;\n } else {\n if(l == 1) sl = 2;\n if(l == 0) sl = 0;\n }\n if(r + 1 >= 2) {\n mat B = pow(A, r + 1 - 2);\n sr = (B[0][0] * ((2 * a + 2) % mod) % mod + B[0][1] * 2LL % mod) % mod;\n } else {\n sr = 2;\n }\n cout << ((sr - sl + mod) % mod - (r - l + 1) + mod) % mod << endl;\n }\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(10);\n\t//int t; cin >> t; rep(i, t)solve();\n\tsolve();\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 3212, "score_of_the_acc": -0.5926, "final_rank": 5 }, { "submission_id": "aoj_3162_4834901", "code_snippet": "#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n//#include <atcoder/all>\n//using namespace atcoder;\n//using mint = modint998244353;\n//using mint = modint1000000007;\n#include <bits/stdc++.h>\nusing namespace std;\n//#include <ext/pb_ds/assoc_container.hpp>\n//#include <ext/pb_ds/tree_policy.hpp>\n//using namespace __gnu_pbds;\n//using i128 = __int128_t;\nusing ll = long long;\nusing ull = unsigned long long;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for(int i = 0; i < (n); ++i)\n#define all(x) (x).begin(),(x).end()\n#define SZ(x) ((int)(x).size())\nconstexpr char ln = '\\n';\ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\ninline int topbit(int x) {return x == 0 ? -1 : 31-__builtin_clz(x);}\ninline int topbit(long long x) {return x == 0 ? -1 : 63-__builtin_clzll(x);}\ninline int botbit(int x) {return x == 0 ? 32 : __builtin_ctz(x);}\ninline int botbit(long long x) {return x == 0 ? 64 : __builtin_ctzll(x);}\ninline int popcount(int x) {return __builtin_popcount(x);}\ninline int popcount(long long x) {return __builtin_popcountll(x);}\ninline int kthbit(long long x, int k) {return (x>>k)&1;}\ninline void print() {cout << \"\\n\";}\ntemplate<class T>\ninline void print(const vector<T> &v) {\n for (auto itr = v.begin(); itr != v.end(); ++itr) cout << *itr << \" \";\n print();\n}\ntemplate<class T, class... Args>\ninline void print(const T &x, const Args &... args) {\n cout << x << \" \";\n print(args...);\n}\n#ifdef MINATO_LOCAL\n#define dump(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\ninline void debug() {cerr << endl;}\ntemplate<class T>\ninline void debug(const vector<T> &v) {\n for (auto itr = v.begin(); itr != v.end(); ++itr) cerr << *itr << \" \";\n debug();\n}\ntemplate<class T, class... Args>\ninline void debug(const T &x, const Args &... args) {\n cerr << x << \" \";\n debug(args...);\n}\n#else\n#define dump(x) void(0)\ninline void debug() {}\ntemplate<class T> inline void debug(const vector<T> &v) {}\ntemplate<class T, class... Args> inline void debug(const T &x, const Args &... args) {}\n#endif\nstruct Fast_ios {Fast_ios() {cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20);};} fast_ios;\n////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\ntemplate<typename T, int sz>\nstruct Matrix {\n \tarray<array<T, sz>, sz> A;\n\tint N;\n\n \tMatrix() : N(sz) {}\n \tMatrix(int N) : N(N) {}\n\n\tconst array<T, sz> &operator[](int k) const {return A[k];}\n \tarray<T, sz> &operator[](int k) {return A[k];}\n\n \tstatic Matrix I(int N) {\n \tMatrix<T, sz> mat(N);\n \tfor(int i = 0; i < N; i++) mat[i][i] = 1;\n \treturn mat;\n \t}\n\n \tMatrix &operator+=(const Matrix &B) {\n \tfor(int i = 0; i < N; i++) {\n \t for(int j = 0; j < N; j++) {\n \t (*this)[i][j] += B[i][j];\n }\n }\n \treturn *this;\n \t}\n\n \tMatrix &operator-=(const Matrix &B) {\n \tfor(int i = 0; i < N; i++) {\n \t\tfor(int j = 0; j < N; j++) {\n\t\t\t\t(*this)[i][j] -= B[i][j];\n\t\t\t}\n\t\t}\n \treturn *this;\n \t}\n\n Matrix &operator*=(const Matrix &B) {\n Matrix<T, sz> C(N);\n for(int i = 0; i < N; i++) {\n for(int k = 0; k < N; k++) {\n for(int j = 0; j < N; j++) {\n C[i][j] += (*this)[i][k] * B[k][j];\n }\n }\n }\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) {\n swap(A[i][j],C.A[i][j]);\n }\n }\n return *this;\n }\n\n Matrix &operator^=(long long k) {\n Matrix<T, sz> B = Matrix<T, sz>::I(N);\n while(k) {\n if(k & 1) B *= *this;\n *this *= *this;\n k >>= 1;\n }\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) {\n swap(A[i][j],B.A[i][j]);\n }\n }\n return *this;\n }\n\n Matrix operator+(const Matrix &B) const {return (Matrix(*this) += B);}\n Matrix operator-(const Matrix &B) const {return (Matrix(*this) -= B);}\n Matrix operator*(const Matrix &B) const {return (Matrix(*this) *= B);}\n Matrix operator^(const long long k) const {return (Matrix(*this) ^= k);}\n};\n\ntemplate <uint_fast64_t Modulus> \nstruct ModInt {\n using u64 = uint_fast64_t;\n\n u64 a;\n\n constexpr ModInt(const long long x = 0) noexcept : a(x >= 0 ? x % Modulus : (Modulus - (-x) % Modulus) % Modulus) {}\n constexpr u64 &value() noexcept {return a;}\n constexpr const u64 &value() const noexcept {return a;}\n constexpr ModInt operator+(const ModInt rhs) const noexcept {return ModInt(*this) += rhs;}\n constexpr ModInt operator-(const ModInt rhs) const noexcept {return ModInt(*this) -= rhs;}\n constexpr ModInt operator*(const ModInt rhs) const noexcept {return ModInt(*this) *= rhs;}\n constexpr ModInt operator/(const ModInt rhs) const noexcept {return ModInt(*this) /= rhs;}\n constexpr ModInt operator^(const long long rhs) const noexcept {return ModInt(*this) ^= rhs;}\n constexpr bool operator==(const ModInt &rhs) const noexcept {return a == rhs.a;}\n constexpr bool operator!=(const ModInt &rhs) const noexcept {return a != rhs.a;}\n constexpr ModInt &operator+=(const ModInt rhs) noexcept {\n a += rhs.a;\n if (a >= Modulus) {\n a -= Modulus;\n }\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt rhs) noexcept {\n if (a < rhs.a) {\n a += Modulus;\n }\n a -= rhs.a;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt rhs) noexcept {\n a = a * rhs.a % Modulus;\n return *this;\n }\n constexpr ModInt &operator/=(ModInt rhs) noexcept {\n u64 exp = Modulus - 2;\n while (exp) {\n if (exp&1) *this *= rhs;\n exp >>= 1;\n rhs *= rhs;\n }\n return *this;\n }\n constexpr ModInt &operator^=(long long exp) noexcept {\n ModInt rhs = a;\n a = 1;\n while (exp) {\n if (exp&1) *this *= rhs;\n exp >>= 1;\n rhs *= rhs;\n }\n return *this;\n }\n\n friend ostream &operator<<(ostream& os, const ModInt& rhs) noexcept {return os << rhs.a;}\n friend istream &operator>>(istream& is, ModInt& rhs) noexcept {long long a; is >> a; rhs = a; return is;}\n};\n\nconstexpr long long MOD = 1000000007;\n//constexpr long long MOD = 998244353;\n\nusing mint = ModInt<MOD>;\n\nint main() {\n Matrix<mint, 4> mat(4);\n int Q; cin >> Q;\n while(Q--) {\n ll a,l,r; cin >> a >> l >> r;\n if (a==1) {\n cout << r-l+1 << ln;\n continue;\n }\n mint root = a*a-1;\n rep(i,4) rep(j,4) mat[i][j] = 0;\n mat[0][0] = mat[2][1] = mat[3][3] = 1;\n mat[0][1] = a*2;\n mat[0][2] = root*2;\n mat[0][3] = -1;\n mat[1][1] = mat[2][2] = a;\n mat[1][2] = root;\n mat ^= r;\n mint ans = mat[0][0]+mat[0][1]+mat[0][3];\n //dump(ans);\n if (l) {\n rep(i,4) rep(j,4) mat[i][j] = 0;\n mat[0][0] = mat[2][1] = mat[3][3] = 1;\n mat[0][1] = a*2;\n mat[0][2] = root*2;\n mat[0][3] = -1;\n mat[1][1] = mat[2][2] = a;\n mat[1][2] = root;\n mat ^= (l-1);\n ans -= mat[0][0]+mat[0][1]+mat[0][3];\n }\n\n cout << ans << ln;\n }\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3452, "score_of_the_acc": -0.6949, "final_rank": 8 }, { "submission_id": "aoj_3162_4834790", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\nconstexpr int INF = 0x3f3f3f3f;\nconstexpr ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nconstexpr double EPS = 1e-8;\nconstexpr int MOD = 1000000007;\n// constexpr int MOD = 998244353;\nconstexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\nconstexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n }\n} iosetup;\n\ntemplate <int MOD>\nstruct MInt {\n unsigned val;\n MInt(): val(0) {}\n MInt(long long x) : val(x >= 0 ? x % MOD : x % MOD + MOD) {}\n static int get_mod() { return MOD; }\n static void set_mod(int divisor) { assert(divisor == MOD); }\n MInt pow(long long exponent) const {\n MInt tmp = *this, res = 1;\n while (exponent > 0) {\n if (exponent & 1) res *= tmp;\n tmp *= tmp;\n exponent >>= 1;\n }\n return res;\n }\n MInt &operator+=(const MInt &x) { if((val += x.val) >= MOD) val -= MOD; return *this; }\n MInt &operator-=(const MInt &x) { if((val += MOD - x.val) >= MOD) val -= MOD; return *this; }\n MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % MOD; return *this; }\n MInt &operator/=(const MInt &x) {\n // assert(std::__gcd(static_cast<int>(x.val), MOD) == 1);\n unsigned a = x.val, b = MOD; int u = 1, v = 0;\n while (b) {\n unsigned tmp = a / b;\n std::swap(a -= tmp * b, b);\n std::swap(u -= tmp * v, v);\n }\n return *this *= u;\n }\n bool operator==(const MInt &x) const { return val == x.val; }\n bool operator!=(const MInt &x) const { return val != x.val; }\n bool operator<(const MInt &x) const { return val < x.val; }\n bool operator<=(const MInt &x) const { return val <= x.val; }\n bool operator>(const MInt &x) const { return val > x.val; }\n bool operator>=(const MInt &x) const { return val >= x.val; }\n MInt &operator++() { if (++val == MOD) val = 0; return *this; }\n MInt operator++(int) { MInt res = *this; ++*this; return res; }\n MInt &operator--() { val = (val == 0 ? MOD : val) - 1; return *this; }\n MInt operator--(int) { MInt res = *this; --*this; return res; }\n MInt operator+() const { return *this; }\n MInt operator-() const { return MInt(val ? MOD - val : 0); }\n MInt operator+(const MInt &x) const { return MInt(*this) += x; }\n MInt operator-(const MInt &x) const { return MInt(*this) -= x; }\n MInt operator*(const MInt &x) const { return MInt(*this) *= x; }\n MInt operator/(const MInt &x) const { return MInt(*this) /= x; }\n friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }\n friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }\n};\nnamespace std { template <int MOD> MInt<MOD> abs(const MInt<MOD> &x) { return x; } }\ntemplate <int MOD>\nstruct Combinatorics {\n using ModInt = MInt<MOD>;\n int val; // \"val!\" and \"mod\" must be disjoint.\n std::vector<ModInt> fact, fact_inv, inv;\n Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) {\n fact[0] = 1;\n for (int i = 1; i <= val; ++i) fact[i] = fact[i - 1] * i;\n fact_inv[val] = ModInt(1) / fact[val];\n for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i;\n for (int i = 1; i <= val; ++i) inv[i] = fact[i - 1] * fact_inv[i];\n }\n ModInt nCk(int n, int k) const {\n if (n < 0 || n < k || k < 0) return 0;\n assert(n <= val && k <= val);\n return fact[n] * fact_inv[k] * fact_inv[n - k];\n }\n ModInt nPk(int n, int k) const {\n if (n < 0 || n < k || k < 0) return 0;\n assert(n <= val);\n return fact[n] * fact_inv[n - k];\n }\n ModInt nHk(int n, int k) const {\n if (n < 0 || k < 0) return 0;\n return k == 0 ? 1 : nCk(n + k - 1, k);\n }\n};\nusing ModInt = MInt<MOD>;\n\ntemplate <typename T>\nstruct Matrix {\n Matrix(int m, int n, T val = 0) : dat(m, std::vector<T>(n, val)) {}\n\n int height() const { return dat.size(); }\n\n int width() const { return dat.front().size(); }\n\n Matrix pow(long long exponent) const {\n int n = height();\n Matrix<T> tmp = *this, res(n, n, 0);\n for (int i = 0; i < n; ++i) res[i][i] = 1;\n while (exponent > 0) {\n if (exponent & 1) res *= tmp;\n tmp *= tmp;\n exponent >>= 1;\n }\n return res;\n }\n\n inline const std::vector<T> &operator[](const int idx) const { return dat[idx]; }\n inline std::vector<T> &operator[](const int idx) { return dat[idx]; }\n\n Matrix &operator=(const Matrix &x) {\n int m = x.height(), n = x.width();\n dat.resize(m, std::vector<T>(n));\n for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) dat[i][j] = x[i][j];\n return *this;\n }\n\n Matrix &operator+=(const Matrix &x) {\n int m = height(), n = width();\n for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) dat[i][j] += x[i][j];\n return *this;\n }\n\n Matrix &operator-=(const Matrix &x) {\n int m = height(), n = width();\n for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) dat[i][j] -= x[i][j];\n return *this;\n }\n\n Matrix &operator*=(const Matrix &x) {\n int m = height(), n = x.width(), l = width();\n std::vector<std::vector<T>> res(m, std::vector<T>(n, 0));\n for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) {\n for (int k = 0; k < l; ++k) res[i][j] += dat[i][k] * x[k][j];\n }\n std::swap(dat, res);\n return *this;\n }\n\n Matrix operator+(const Matrix &x) const { return Matrix(*this) += x; }\n\n Matrix operator-(const Matrix &x) const { return Matrix(*this) -= x; }\n\n Matrix operator*(const Matrix &x) const { return Matrix(*this) *= x; }\n\nprivate:\n std::vector<std::vector<T>> dat;\n};\n\nModInt solve(int a, int r) {\n if (r == -1) return 0;\n if (r == 0) return 2;\n Matrix<ModInt> m(3, 3), init(3, 1);\n m[0][0] = 1; m[0][1] = a * 2; m[0][2] = -1;\n m[1][1] = a * 2; m[1][2] = -1;\n m[2][1] = 1;\n init[0][0] = a * 2 + 2;\n init[1][0] = a * 2;\n init[2][0] = 2;\n return (m.pow(r - 1) * init)[0][0];\n}\n\nint main() {\n int q; cin >> q;\n while (q--) {\n int a, l, r; cin >> a >> l >> r;\n cout << solve(a, r) - solve(a, l - 1) - (r - l + 1) << '\\n';\n }\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 3452, "score_of_the_acc": -0.7858, "final_rank": 10 }, { "submission_id": "aoj_3162_4834309", "code_snippet": "#include<bits/stdc++.h>\n\nint main(){\n using namespace std;\n using f_1e9_7_va = pair<unsigned long, unsigned long>;\n constexpr unsigned long MOD = 1000000007;\n constexpr unsigned long buf_size = 3UL << 18UL;\n char buffer[buf_size];\n fread(buffer, 1, buf_size, stdin);\n unsigned long tmp_buf = 0;\n const auto& read = [&tmp_buf, &buffer]{\n const auto& M_reread_from_stdin = [&]{\n ptrdiff_t len = buf_size - tmp_buf;\n if (len > tmp_buf) return;\n memcpy(buffer, buffer + tmp_buf, len);\n char* tmp = buffer + len;\n fread(tmp, 1, buf_size-len, stdin);\n tmp_buf = 0;\n };\n unsigned long ret;\n from_chars_result tmp{};\n do{\n if (__builtin_expect(buf_size <= tmp_buf + 32, 0))\n M_reread_from_stdin();\n tmp = from_chars(begin(buffer) + tmp_buf, end(buffer), ret);\n tmp_buf = tmp.ptr - buffer + 1;\n }while(tmp.ec != errc{});\n return ret;\n };\n const auto& scan = [scan_impl = [&read](auto& x) -> decltype(auto) { return x = read(); }](auto&...args){ tuple<decltype(args)...>{scan_impl(args)...}; };\n const unsigned long Q{read()};\n const auto& modinv = [](unsigned long a, unsigned long b = 1) -> unsigned long {\n unsigned long r{b % MOD}, n{MOD - 2};\n while(n){\n if(n & 1)(r *= a) %= MOD;\n (a *= a) %= MOD;\n n >>= 1;\n }\n return r;\n };\n for(unsigned long i{0}, a, l, r; i < Q; ++i)cout << [&modinv, &scan, &a, &l, &r]{\n scan(a, l, r);\n ++r;\n if(a == 1)return r - l;\n const auto& mul = [&a](const f_1e9_7_va& x, const f_1e9_7_va& y) -> f_1e9_7_va {\n f_1e9_7_va ret{x.first * y.first + MOD - x.second * y.second % MOD, x.first * y.second + x.second * y.first + 2 * a * x.second % MOD * y.second};\n ret.first %= MOD;\n ret.second %= MOD;\n return ret;\n };\n const auto& modpow = [&mul](const f_1e9_7_va& a, unsigned long n, const f_1e9_7_va& b = {1, 0}) -> f_1e9_7_va {\n f_1e9_7_va ret{b}, al{a};\n while(n){\n if(n & 1)ret = mul(ret, al);\n al = mul(al, al);\n n >>= 1;\n }\n return ret;\n };\n const auto& subtract = [](const f_1e9_7_va& a, const f_1e9_7_va& b) -> f_1e9_7_va {\n return {(a.first + MOD - b.first) % MOD, (a.second + MOD - b.second) % MOD};\n };\n unsigned long k{modinv(2 * a - 2)}, m{(2 * MOD - 1 - k) % MOD};\n f_1e9_7_va tmp{m, k}, x{modpow({0, 1}, r, tmp)}, y{modpow({0, 1}, l, tmp)}, z{subtract(x, y)};\n return (2 * (z.first + a * z.second) + l + MOD - r) % MOD;\n }() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3716, "score_of_the_acc": -0.9938, "final_rank": 16 }, { "submission_id": "aoj_3162_4834305", "code_snippet": "#include<bits/stdc++.h>\n\nint main(){\n using namespace std;\n using f_1e9_7_va = pair<unsigned long, unsigned long>;\n constexpr unsigned long MOD = 1000000007;\n constexpr unsigned long buf_size = 1UL << 20UL;\n char buffer[buf_size];\n fread(buffer, 1, buf_size, stdin);\n unsigned long tmp_buf = 0;\n const auto& read = [&tmp_buf, &buffer]{\n const auto& M_reread_from_stdin = [&]{\n ptrdiff_t len = buf_size - tmp_buf;\n if (len > tmp_buf) return;\n memcpy(buffer, buffer + tmp_buf, len);\n char* tmp = buffer + len;\n fread(tmp, 1, buf_size-len, stdin);\n tmp_buf = 0;\n };\n unsigned long ret;\n from_chars_result tmp{};\n do{\n if (__builtin_expect(buf_size <= tmp_buf + 32, 0))\n M_reread_from_stdin();\n tmp = from_chars(begin(buffer) + tmp_buf, end(buffer), ret);\n tmp_buf = tmp.ptr - buffer + 1;\n }while(tmp.ec != errc{});\n return ret;\n };\n const auto& scan = [scan_impl = [&read](auto& x) -> decltype(auto) { return x = read(); }](auto&...args){ tuple<decltype(args)...>{scan_impl(args)...}; };\n const unsigned long Q{read()};\n const auto& modinv = [](unsigned long a, unsigned long b = 1) -> unsigned long {\n unsigned long r{b % MOD}, n{MOD - 2};\n while(n){\n if(n & 1)(r *= a) %= MOD;\n (a *= a) %= MOD;\n n >>= 1;\n }\n return r;\n };\n for(unsigned long i{0}, a, l, r; i < Q; ++i)cout << [&modinv, &scan, &a, &l, &r]{\n scan(a, l, r);\n ++r;\n if(a == 1)return r - l;\n const auto& mul = [&a](const f_1e9_7_va& x, const f_1e9_7_va& y) -> f_1e9_7_va {\n f_1e9_7_va ret{x.first * y.first + MOD - x.second * y.second % MOD, x.first * y.second + x.second * y.first + 2 * a * x.second % MOD * y.second};\n ret.first %= MOD;\n ret.second %= MOD;\n return ret;\n };\n const auto& modpow = [&mul](const f_1e9_7_va& a, unsigned long n, const f_1e9_7_va& b = {1, 0}) -> f_1e9_7_va {\n f_1e9_7_va ret{b}, al{a};\n while(n){\n if(n & 1)ret = mul(ret, al);\n al = mul(al, al);\n n >>= 1;\n }\n return ret;\n };\n const auto& subtract = [](const f_1e9_7_va& a, const f_1e9_7_va& b) -> f_1e9_7_va {\n return {(a.first + MOD - b.first) % MOD, (a.second + MOD - b.second) % MOD};\n };\n unsigned long k{modinv(2 * a - 2)}, m{(2 * MOD - 1 - k) % MOD};\n f_1e9_7_va tmp{m, k}, x{modpow({0, 1}, r, tmp)}, y{modpow({0, 1}, l, tmp)}, z{subtract(x, y)};\n return (2 * (z.first + a * z.second) + l + MOD - r) % MOD;\n }() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3648, "score_of_the_acc": -0.8875, "final_rank": 11 }, { "submission_id": "aoj_3162_4834303", "code_snippet": "#include<bits/stdc++.h>\n\nint main(){\n using namespace std;\n using f_1e9_7_va = pair<unsigned long, unsigned long>;\n constexpr unsigned long MOD = 1000000007;\n constexpr unsigned long buf_size = 1UL << 17UL;\n char buffer[buf_size];\n fread(buffer, 1, buf_size, stdin);\n unsigned long tmp_buf = 0;\n const auto& read = [&tmp_buf, &buffer]{\n const auto& M_reread_from_stdin = [&]{\n ptrdiff_t len = buf_size - tmp_buf;\n if (len > tmp_buf) return;\n memcpy(buffer, buffer + tmp_buf, len);\n char* tmp = buffer + len;\n fread(tmp, 1, buf_size-len, stdin);\n tmp_buf = 0;\n };\n unsigned long ret;\n from_chars_result tmp{};\n do{\n if (__builtin_expect(buf_size <= tmp_buf + 20, 0))\n M_reread_from_stdin();\n tmp = from_chars(begin(buffer) + tmp_buf, end(buffer), ret);\n tmp_buf = tmp.ptr - buffer + 1;\n }while(tmp.ec != errc{});\n return ret;\n };\n const auto& scan = [scan_impl = [&read](auto& x) -> decltype(auto) { return x = read(); }](auto&...args){ tuple<decltype(args)...>{scan_impl(args)...}; };\n const unsigned long Q{read()};\n const auto& modinv = [](unsigned long a, unsigned long b = 1) -> unsigned long {\n unsigned long r{b % MOD}, n{MOD - 2};\n while(n){\n if(n & 1)(r *= a) %= MOD;\n (a *= a) %= MOD;\n n >>= 1;\n }\n return r;\n };\n for(unsigned long i{0}, a, l, r; i < Q; ++i)cout << [&modinv, &scan, &a, &l, &r]{\n scan(a, l, r);\n ++r;\n if(a == 1)return r - l;\n const auto& mul = [&a](const f_1e9_7_va& x, const f_1e9_7_va& y) -> f_1e9_7_va {\n f_1e9_7_va ret{x.first * y.first + MOD - x.second * y.second % MOD, x.first * y.second + x.second * y.first + 2 * a * x.second % MOD * y.second};\n ret.first %= MOD;\n ret.second %= MOD;\n return ret;\n };\n const auto& modpow = [&mul](const f_1e9_7_va& a, unsigned long n, const f_1e9_7_va& b = {1, 0}) -> f_1e9_7_va {\n f_1e9_7_va ret{b}, al{a};\n while(n){\n if(n & 1)ret = mul(ret, al);\n al = mul(al, al);\n n >>= 1;\n }\n return ret;\n };\n const auto& subtract = [](const f_1e9_7_va& a, const f_1e9_7_va& b) -> f_1e9_7_va {\n return {(a.first + MOD - b.first) % MOD, (a.second + MOD - b.second) % MOD};\n };\n unsigned long k{modinv(2 * a - 2)}, m{(2 * MOD - 1 - k) % MOD};\n f_1e9_7_va tmp{m, k}, x{modpow({0, 1}, r, tmp)}, y{modpow({0, 1}, l, tmp)}, z{subtract(x, y)};\n return (2 * (z.first + a * z.second) + l + MOD - r) % MOD;\n }() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3540, "score_of_the_acc": -0.7188, "final_rank": 9 }, { "submission_id": "aoj_3162_4834155", "code_snippet": "#include<bits/stdc++.h>\n\nint main(){\n using namespace std;\n using f_1e9_7_va = pair<unsigned long, unsigned long>;\n constexpr unsigned long MOD = 1000000007;\n char buffer[1UL << 19UL];\n fread(buffer, 1, size(buffer), stdin);\n unsigned long tmp_buf = 0;\n const auto& read = [&tmp_buf, &buffer]{\n unsigned long ret;\n from_chars_result tmp{};\n do{\n tmp = from_chars(begin(buffer) + tmp_buf, end(buffer), ret);\n tmp_buf = tmp.ptr - buffer + 1;\n }while(tmp.ec != errc{});\n return ret;\n };\n const auto& scan = [scan_impl = [&read](auto& x) -> decltype(auto) {\n return x = read();\n }](auto&...args){\n tuple<decltype(args)...>{scan_impl(args)...};\n };\n const unsigned long Q{read()};\n const auto& modinv = [](unsigned long a, unsigned long b = 1) -> unsigned long {\n unsigned long r{b % MOD}, n{MOD - 2};\n while(n){\n if(n & 1)(r *= a) %= MOD;\n (a *= a) %= MOD;\n n >>= 1;\n }\n return r;\n };\n for(unsigned long i{0}, a, l, r; i < Q; ++i)cout << [&modinv, &scan, &a, &l, &r]{\n scan(a, l, r);\n ++r;\n if(a == 1)return r - l;\n const auto& mul = [&a](const f_1e9_7_va& x, const f_1e9_7_va& y) -> f_1e9_7_va {\n f_1e9_7_va ret{x.first * y.first + MOD - x.second * y.second % MOD, x.first * y.second + x.second * y.first + 2 * a * x.second % MOD * y.second};\n ret.first %= MOD;\n ret.second %= MOD;\n return ret;\n };\n const auto& modpow = [&mul](const f_1e9_7_va& a, unsigned long n, const f_1e9_7_va& b = {1, 0}) -> f_1e9_7_va {\n f_1e9_7_va ret{b}, al{a};\n while(n){\n if(n & 1)ret = mul(ret, al);\n al = mul(al, al);\n n >>= 1;\n }\n return ret;\n };\n const auto& subtract = [](const f_1e9_7_va& a, const f_1e9_7_va& b) -> f_1e9_7_va {\n return {(a.first + MOD - b.first) % MOD, (a.second + MOD - b.second) % MOD};\n };\n unsigned long k{modinv(2 * a - 2)}, m{(2 * MOD - 1 - k) % MOD};\n f_1e9_7_va tmp{m, k}, x{modpow({0, 1}, r, tmp)}, y{modpow({0, 1}, l, tmp)}, z{subtract(x, y)};\n return (2 * (z.first + a * z.second) + l + MOD - r) % MOD;\n }() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3716, "score_of_the_acc": -0.9938, "final_rank": 16 }, { "submission_id": "aoj_3162_4834144", "code_snippet": "#include<bits/stdc++.h>\n\nint main(){\n using namespace std;\n using f_1e9_7_va = pair<unsigned long, unsigned long>;\n constexpr unsigned long MOD = 1000000007;\n char buffer[1UL << 19UL];\n fread(buffer, 1, size(buffer), stdin);\n unsigned long tmp_buf = 0;\n const auto& read = [&tmp_buf, &buffer]{\n unsigned long ret;\n from_chars_result tmp{};\n do{\n tmp = from_chars(begin(buffer) + tmp_buf, end(buffer), ret);\n tmp_buf = tmp.ptr - buffer + 1;\n }while(tmp.ec != errc{});\n return ret;\n };\n const auto& scan = [scan_impl = [&read](auto& x) -> auto {\n return x = read();\n }](auto&...args){\n [](auto... args) -> void {}(scan_impl(args)...);\n };\n const unsigned long Q{read()};\n const auto& modinv = [](unsigned long a, unsigned long b = 1) -> unsigned long {\n unsigned long r{b % MOD}, n{MOD - 2};\n while(n){\n if(n & 1)(r *= a) %= MOD;\n (a *= a) %= MOD;\n n >>= 1;\n }\n return r;\n };\n for(unsigned long i{0}, a, l, r; i < Q; ++i)cout << [&modinv, &scan, &a, &l, &r]{\n scan(r, l, a);\n ++r;\n if(a == 1)return r - l;\n const auto& mul = [&a](const f_1e9_7_va& x, const f_1e9_7_va& y) -> f_1e9_7_va {\n f_1e9_7_va ret{x.first * y.first + MOD - x.second * y.second % MOD, x.first * y.second + x.second * y.first + 2 * a * x.second % MOD * y.second};\n ret.first %= MOD;\n ret.second %= MOD;\n return ret;\n };\n const auto& modpow = [&mul](const f_1e9_7_va& a, unsigned long n, const f_1e9_7_va& b = {1, 0}) -> f_1e9_7_va {\n f_1e9_7_va ret{b}, al{a};\n while(n){\n if(n & 1)ret = mul(ret, al);\n al = mul(al, al);\n n >>= 1;\n }\n return ret;\n };\n const auto& subtract = [](const f_1e9_7_va& a, const f_1e9_7_va& b) -> f_1e9_7_va {\n return {(a.first + MOD - b.first) % MOD, (a.second + MOD - b.second) % MOD};\n };\n unsigned long k{modinv(2 * a - 2)}, m{(2 * MOD - 1 - k) % MOD};\n f_1e9_7_va tmp{m, k}, x{modpow({0, 1}, r, tmp)}, y{modpow({0, 1}, l, tmp)}, z{subtract(x, y)};\n return (2 * (z.first + a * z.second) + l + MOD - r) % MOD;\n }() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3720, "score_of_the_acc": -1, "final_rank": 18 }, { "submission_id": "aoj_3162_4834131", "code_snippet": "#pragma region Macros\n#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w) \\\n vector<vector<type>> name(h, vector<type>(w)); \\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\nstring YES[2] = {\"NO\", \"YES\"};\nstring Yes[2] = {\"No\", \"Yes\"};\nstring yes[2] = {\"no\", \"yes\"};\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define DBL(...) \\\n double __VA_ARGS__; \\\n IN(__VA_ARGS)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\n\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n\n#define i128 __int128_t\n#define ull unsigned long long int\n#define TEST \\\n INT(testcases); \\\n while(testcases--)\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n for(auto &e : v) cout << e << \" \";\n cout << endl;\n return os;\n}\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {\n cout << \"(\" << p.fi << \", \" << p.se << \")\";\n return os;\n}\ntemplate <class S, class T> string to_string(pair<S, T> p) { return \"(\" + to_string(p.first) + \",\" + to_string(p.second) + \")\"; }\ntemplate <class A> string to_string(A v) {\n if(v.empty()) return \"{}\";\n string ret = \"{\";\n for(auto &x : v) ret += to_string(x) + \",\";\n ret.back() = '}';\n return ret;\n}\n\nvoid dump() { cerr << endl; }\ntemplate <class Head, class... Tail> void dump(Head head, Tail... tail) {\n cerr << to_string(head) << \" \";\n dump(tail...);\n}\n#define endl '\\n'\n#ifdef _LOCAL\n#undef endl\n#define debug(x) \\\n cout << #x << \": \"; \\\n dump(x)\n#else\n#define debug(x)\n#endif\n// mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());\n\n// int rnd(int n) { return uniform_int_distribution<int>(0, n - 1)(rng); }\n// ll rndll(ll n) { return uniform_int_distribution<ll>(0, n - 1)(rng); }\n\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\n#pragma endregion\ntemplate <class T> struct Matrix {\n vector<vector<T>> A;\n\n Matrix() {}\n\n Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {}\n\n Matrix(size_t n) : A(n, vector<T>(n, 0)){};\n\n size_t height() const { return (A.size()); }\n\n size_t width() const { return (A[0].size()); }\n\n inline const vector<T> &operator[](int k) const { return (A.at(k)); }\n\n inline vector<T> &operator[](int k) { return (A.at(k)); }\n\n static Matrix I(size_t n) {\n Matrix mat(n);\n for(int i = 0; i < n; i++) mat[i][i] = 1;\n return (mat);\n }\n\n Matrix &operator+=(const Matrix &B) {\n size_t n = height(), m = width();\n assert(n == B.height() && m == B.width());\n for(int i = 0; i < n; i++)\n for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j];\n return (*this);\n }\n\n Matrix &operator-=(const Matrix &B) {\n size_t n = height(), m = width();\n assert(n == B.height() && m == B.width());\n for(int i = 0; i < n; i++)\n for(int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];\n return (*this);\n }\n\n Matrix &operator*=(const Matrix &B) {\n size_t n = height(), m = B.width(), p = width();\n assert(p == B.height());\n vector<vector<T>> C(n, vector<T>(m, 0));\n for(int i = 0; i < n; i++)\n for(int j = 0; j < m; j++)\n for(int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);\n A.swap(C);\n return (*this);\n }\n\n Matrix &operator^=(long long k) {\n Matrix B = Matrix::I(height());\n while(k > 0) {\n if(k & 1) B *= *this;\n *this *= *this;\n k >>= 1LL;\n }\n A.swap(B.A);\n return (*this);\n }\n\n Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }\n\n Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }\n\n Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }\n\n Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }\n\n friend ostream &operator<<(ostream &os, Matrix &p) {\n size_t n = p.height(), m = p.width();\n for(int i = 0; i < n; i++) {\n os << \"[\";\n for(int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? \"]\\n\" : \",\"); }\n }\n return (os);\n }\n\n T determinant() {\n Matrix B(*this);\n assert(width() == height());\n T ret = 1;\n for(int i = 0; i < width(); i++) {\n int idx = -1;\n for(int j = i; j < width(); j++) {\n if(B[j][i] != 0) idx = j;\n }\n if(idx == -1) return (0);\n if(i != idx) {\n ret *= -1;\n swap(B[i], B[idx]);\n }\n ret *= B[i][i];\n T vv = B[i][i];\n for(int j = 0; j < width(); j++) { B[i][j] /= vv; }\n for(int j = i + 1; j < width(); j++) {\n T a = B[j][i];\n for(int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; }\n }\n }\n return (ret);\n }\n};\nnamespace modular {\nconstexpr ll MOD = 1000000007;\nconst int MAXN = 1100000;\ntemplate <ll Modulus> class modint;\n#define mint modint<MOD>\n#define vmint vector<mint>\nvector<mint> Inv;\nmint inv(int x);\ntemplate <ll Modulus> class modint {\n\n public:\n static constexpr int mod() { return Modulus; }\n ll a;\n\n constexpr modint(const ll x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {}\n constexpr ll &value() noexcept { return a; }\n constexpr const ll &value() const noexcept { return a; }\n constexpr modint operator-() const noexcept { return modint() - *this; }\n constexpr modint operator+() const noexcept { return *this; }\n constexpr modint &operator++() noexcept {\n if(++a == MOD) a = 0;\n return *this;\n }\n constexpr modint &operator--() noexcept {\n if(!a) a = MOD;\n a--;\n return *this;\n }\n constexpr modint operator++(int) {\n modint res = *this;\n ++*this;\n return res;\n }\n constexpr modint operator--(int) {\n mint res = *this;\n --*this;\n return res;\n }\n constexpr modint &operator+=(const modint rhs) noexcept {\n a += rhs.a;\n if(a >= Modulus) { a -= Modulus; }\n return *this;\n }\n constexpr modint &operator-=(const modint rhs) noexcept {\n if(a < rhs.a) { a += Modulus; }\n a -= rhs.a;\n return *this;\n }\n constexpr modint &operator*=(const modint rhs) noexcept {\n a = a * rhs.a % Modulus;\n return *this;\n }\n constexpr modint &operator/=(const modint rhs) noexcept {\n a = a * (modular::inv(rhs.a)).a % Modulus;\n return *this;\n }\n constexpr modint pow(long long n) const noexcept {\n assert(n >= 0);\n modint x = *this, r = 1;\n while(n) {\n if(n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n constexpr modint inv() const noexcept { return pow(Modulus - 2); }\n constexpr friend modint operator+(const modint &lhs, const modint &rhs) { return modint(lhs) += modint(rhs); }\n constexpr friend modint operator-(const modint &lhs, const modint &rhs) { return modint(lhs) -= modint(rhs); }\n constexpr friend modint operator*(const modint &lhs, const modint &rhs) { return modint(lhs) *= modint(rhs); }\n constexpr friend modint operator/(const modint &lhs, const modint &rhs) { return modint(lhs) /= modint(rhs); }\n constexpr friend modint operator==(const modint &lhs, const modint &rhs) { return lhs.a == rhs.a; }\n constexpr friend modint operator!=(const modint &lhs, const modint &rhs) { return lhs.a != rhs.a; }\n // constexpr friend modint operator^=(const modint &lhs, const modint &rhs) { return modint(lhs) ^= modint(rhs); }\n};\nvmint Prd{1, 1}, Invprd{1, 1};\nmint inv(int n) {\n if(Inv.empty()) Inv.emplace_back(0), Inv.emplace_back(1);\n if(Inv.size() > n)\n return Inv[n];\n else {\n for(int i = Inv.size(); i <= n; ++i) Inv.emplace_back(Inv[MOD % i] * (-MOD / i));\n return Inv[n];\n }\n}\nmint prd(int n) {\n if(Prd.size() > n)\n return Prd[n];\n else\n for(int i = Prd.size(); i <= n; ++i) Prd.emplace_back(Prd[i - 1] * i);\n return Prd[n];\n}\nmint invprd(int n) {\n if(Invprd.size() > n)\n return Invprd[n];\n else\n for(int i = Invprd.size(); i <= n; ++i) Invprd.emplace_back(Invprd[i - 1] * inv(i));\n return Invprd[n];\n}\nmint modpow(ll a, ll n) { return mint(a).pow(n); }\nmint inv(mint a) { return inv(a.a); }\nmint invprd(mint a) { return invprd(a.a); }\nmint prd(mint a) { return prd(a.a); }\nmint modpow(mint a, ll n) { return modpow(a.a, n); }\nmint C(int a, int b) {\n if(a < 0 || b < 0) return 0;\n if(a < b) return 0;\n return prd(a) * invprd(b) * invprd(a - b);\n}\nmint P(int a, int b) {\n if(a < 0 || b < 0) return 0;\n if(a < b) return 0;\n return prd(a) * invprd(a - b);\n}\nostream &operator<<(ostream &os, mint a) {\n os << a.a;\n return os;\n}\nistream &operator>>(istream &is, mint &a) {\n ll x;\n is >> x;\n a = x;\n return is;\n}\nstruct modinfo {\n int mod, root;\n};\nconstexpr modinfo base0{1045430273, 3};\nconstexpr modinfo base1{1051721729, 6};\nconstexpr modinfo base2{1053818881, 7};\nusing mint0 = modint<base0.mod>;\nusing mint1 = modint<base1.mod>;\nusing mint2 = modint<base2.mod>;\nusing Poly = vmint;\ntemplate <int mod> void FMT(vector<modint<mod>> &f, bool inv = false) {\n using V = vector<modint<mod>>;\n static V g(30), ig(30);\n if(g.front().a == 0) {\n modint<mod> root = 2;\n while((root.pow((mod - 1) / 2)).a == 1) root += 1;\n rep(i, 30) g[i] = -(root.pow((mod - 1) >> (i + 2))), ig[i] = g[i].inv();\n }\n int n = size(f);\n if(!inv) {\n for(int m = n; m >>= 1;) {\n modint<mod> w = 1;\n for(int s = 0, k = 0; s < n; s += 2 * m) {\n for(int i = s, j = s + m; i < s + m; ++i, ++j) {\n auto x = f[i], y = f[j] * w;\n if(x.a >= mod) x.a -= mod;\n f[i].a = x.a + y.a, f[j].a = x.a + (mod - y.a);\n }\n w *= g[__builtin_ctz(++k)];\n }\n }\n } else {\n for(int m = 1; m < n; m *= 2) {\n modint<mod> w = 1;\n for(int s = 0, k = 0; s < n; s += 2 * m) {\n for(int i = s, j = s + m; i < s + m; ++i, ++j) {\n auto x = f[i], y = f[j];\n f[i] = x + y, f[j].a = x.a + (mod - y.a), f[j] *= w;\n }\n w *= ig[__builtin_ctz(++k)];\n }\n }\n }\n modint<mod> c;\n if(inv)\n c = modint<mod>(n).inv();\n else\n c = 1;\n for(auto &&e : f) e *= c;\n}\nPoly operator-(Poly f) {\n for(auto &&e : f) e = -e;\n return f;\n}\nPoly &operator+=(Poly &l, const Poly &r) {\n l.resize(max(l.size(), r.size()));\n rep(i, r.size()) l[i] += r[i];\n return l;\n}\nPoly operator+(Poly l, const Poly &r) { return l += r; }\nPoly &operator-=(Poly &l, const Poly &r) {\n l.resize(max(l.size(), r.size()));\n rep(i, r.size()) l[i] -= r[i];\n return l;\n}\nPoly operator-(Poly l, const Poly &r) { return l -= r; }\nPoly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; }\nPoly operator<<(Poly f, size_t n) { return f <<= n; }\nPoly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; }\nPoly operator>>(Poly f, size_t n) { return f >>= n; }\n\nconstexpr int mod0 = 998244353, mod1 = 1300234241, mod2 = 1484783617;\nusing M0 = modint<mod0>;\nusing M1 = modint<mod1>;\nusing M2 = modint<mod2>;\n\ntemplate <int mod> void mul(vector<modint<mod>> &l, vector<modint<mod>> &r) {\n int n = size(l), m = size(r), sz = 1 << __lg(2 * (n + m - 1) - 1);\n l.resize(sz), FMT<mod>(l);\n r.resize(sz), FMT<mod>(r);\n rep(i, sz) l[i] *= r[i];\n FMT<mod>(l, true);\n l.resize(n + m - 1);\n}\nPoly operator*(const Poly &l, const Poly &r) {\n if(l.empty() or r.empty()) return Poly();\n int n = size(l), m = size(r), sz = 1 << __lg(2 * (n + m - 1) - 1);\n vector<M0> l0(n), r0(m);\n vector<M1> l1(n), r1(m);\n vector<M2> l2(n), r2(m);\n rep(i, n) l0[i] = l[i].a, l1[i] = l[i].a, l2[i] = l[i].a;\n rep(i, m) r0[i] = r[i].a, r1[i] = r[i].a, r2[i] = r[i].a;\n mul<mod0>(l0, r0), mul<mod1>(l1, r1), mul<mod2>(l2, r2);\n Poly res(n + m - 1);\n // garner\n static constexpr M1 inv0 = 613999507;\n static constexpr M2 inv1 = 1147332803, inv0m1 = 45381342;\n static constexpr mint m0 = mod0, m0m1 = m0 * mod1;\n rep(i, n + m - 1) {\n int y0 = l0[i].a;\n int y1 = (inv0 * (l1[i] - y0)).a;\n int y2 = (inv0m1 * (l2[i] - y0) - inv1 * y1).a;\n res[i] = m0 * y1 + m0m1 * y2 + y0;\n }\n return res;\n}\nPoly &operator*=(Poly &l, const Poly &r) { return l = l * r; }\nPoly integ(const Poly &f) {\n Poly res(f.size() + 1);\n for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i;\n return res;\n}\n// Poly deriv(const Poly &f) {\n// if(f.size() == 0) return Poly();\n// Poly res(f.size() - 1);\n// rep(i, res.size()) res[i] = f[i + 1] * (i + 1);\n// return res;\n// }\nostream &operator<<(ostream &os, Poly a) {\n for(auto e : a) cout << e.a << \" \";\n return os;\n}\n} // namespace modular\nusing namespace modular;\n\nint main() {\n TEST {\n INT(_a, l, r);\n if(_a == 1) {\n cout << r - l + 1 << endl;\n continue;\n }\n mint a = _a;\n Matrix<mint> A(2);\n A[0][0] = A[1][1] = a;\n A[0][1] = (mint)a * a - 1;\n A[1][0] = 1;\n auto I = A.I(2);\n Matrix<mint> inv = I - A;\n swap(inv[0][0], inv[1][1]);\n inv[0][1] *= -1, inv[1][0] *= -1;\n Matrix<mint> x(2, 1);\n x[0][0] = 1;\n auto E = (I - A) * inv;\n auto f = [&](int k) -> mint {\n if(k == -1) return 0;\n return (((I - (A ^ (k + 1))) * inv) * x)[0][0] * modpow(1 - a.a, MOD - 2);\n };\n cout << f(r) - f(l - 1) - (r - l + 1) << endl;\n }\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3552, "score_of_the_acc": -0.8966, "final_rank": 12 }, { "submission_id": "aoj_3162_4834055", "code_snippet": "#include<bits/stdc++.h>\n\nint main(){\n using namespace std;\n using f_1e9_7_va = pair<unsigned long, unsigned long>;\n constexpr unsigned long MOD = 1000000007;\n const unsigned long Q{[]{unsigned long ret; cin >> ret; return ret;}()};\n const auto& modinv = [](unsigned long a, unsigned long b = 1) -> unsigned long {\n unsigned long r{b % MOD}, n{MOD - 2};\n while(n){\n if(n & 1)(r *= a) %= MOD;\n (a *= a) %= MOD;\n n >>= 1;\n }\n return r;\n };\n for(unsigned long i{0}, a, l, r; i < Q; ++i)cout << [&modinv, &a, &l, &r]{\n cin >> a >> l >> r;\n ++r;\n if(a == 1)return r - l;\n const auto& mul = [&a](const f_1e9_7_va& x, const f_1e9_7_va& y) -> f_1e9_7_va {\n f_1e9_7_va ret{x.first * y.first + MOD - x.second * y.second % MOD, x.first * y.second + x.second * y.first + 2 * a * x.second % MOD * y.second};\n ret.first %= MOD;\n ret.second %= MOD;\n return ret;\n };\n const auto& modpow = [&mul](const f_1e9_7_va& a, unsigned long n, const f_1e9_7_va& b = {1, 0}) -> f_1e9_7_va {\n f_1e9_7_va ret{b}, al{a};\n while(n){\n if(n & 1)ret = mul(ret, al);\n al = mul(al, al);\n n >>= 1;\n }\n return ret;\n };\n const auto& subtract = [](const f_1e9_7_va& a, const f_1e9_7_va& b) -> f_1e9_7_va {\n return {(a.first + MOD - b.first) % MOD, (a.second + MOD - b.second) % MOD};\n };\n unsigned long k{modinv(2 * a - 2)}, m{(2 * MOD - 1 - k) % MOD};\n f_1e9_7_va tmp{m, k}, x{modpow({0, 1}, r, tmp)}, y{modpow({0, 1}, l, tmp)}, z{subtract(x, y)};\n return (2 * (z.first + a * z.second) + l + MOD - r) % MOD;\n }() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3080, "score_of_the_acc": -0.0227, "final_rank": 1 }, { "submission_id": "aoj_3162_4834036", "code_snippet": "#include<bits/stdc++.h>\n\nint main(){\n using namespace std;\n using f_1e9_7_va = pair<unsigned long, unsigned long>;\n constexpr unsigned long MOD = 1000000007;\n const unsigned long Q{[]{unsigned long ret; cin >> ret; return ret;}()};\n const auto& modinv = [](unsigned long a, unsigned long b = 1) -> unsigned long {\n unsigned long r{b % MOD}, n{MOD - 2};\n while(n){\n if(n & 1)(r *= a) %= MOD;\n (a *= a) %= MOD;\n n >>= 1;\n }\n return r;\n };\n for(unsigned long i{0}, a, l, r; i < Q; ++i)cout << [&modinv, &a, &l, &r]{\n cin >> a >> l >> r;\n ++r;\n if(a == 1)return r - l;\n const auto& mul = [&a](const f_1e9_7_va& x, const f_1e9_7_va& y) -> f_1e9_7_va {\n f_1e9_7_va ret{x.first * y.first + MOD - x.second * y.second % MOD, x.first * y.second + x.second * y.first + 2 * a * x.second % MOD * y.second};\n ret.first %= MOD;\n ret.second %= MOD;\n return ret;\n };\n const auto& modpow = [&mul](const f_1e9_7_va& a, unsigned long n, const f_1e9_7_va& b = {1, 0}) -> f_1e9_7_va {\n f_1e9_7_va ret{b}, al{a};\n while(n){\n if(n & 1)ret = mul(ret, al);\n al = mul(al, al);\n n >>= 1;\n }\n return ret;\n };\n const auto& subtract = [](const f_1e9_7_va& a, const f_1e9_7_va& b) -> f_1e9_7_va {\n return {(a.first + MOD - b.first) % MOD, (a.second + MOD - b.second) % MOD};\n };\n unsigned long k{modinv(2 * a - 2, 1)}, m{(2 * MOD - 1 - k) % MOD};\n f_1e9_7_va tmp{m, k}, x{modpow({0, 1}, r, tmp)}, y{modpow({0, 1}, l, tmp)}, z{subtract(x, y)};\n return (2 * (z.first + a * z.second) + l + MOD - r) % MOD;\n }() << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3416, "score_of_the_acc": -0.525, "final_rank": 3 }, { "submission_id": "aoj_3162_4833942", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for (long long i = 0; i < (n); ++i)\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll,ll>;\nusing vec = vector<ll>;\nusing vecp = vector<P>;\nusing mat = vector<vec>;\nusing matp = vector<vecp>;\nconst ll MOD = 1e9+7;\nconst ll INF = 1e18;\n#define all(v) v.begin(), v.end()\n\nmat matmul(ll a,ll b,ll c,mat &A,mat &B){\n mat C(a,vec(c,0));\n rep(i,a)rep(j,c){\n rep(k,b){\n C.at(i).at(j)+=A.at(i).at(k)*B.at(k).at(j);\n }\n C.at(i).at(j)%=MOD;\n }\n return C;\n}\nmat matpow(mat A,ll n,ll k){\n if (n == 0){\n mat B(k,vec(k,0));\n rep(i,k){\n B.at(i).at(i)=1;\n }\n return B;\n }\n if (n == 1) return A;\n if (n % 2 == 1){\n mat t=matpow(A,n-1,k);\n return matmul(k,k,k,A,t);\n }\n mat t=matpow(A,n/2,k);\n return matmul(k,k,k,t,t);\n}\n\n\nint main(){\n ll Q;\n cin >> Q;\n rep(i,Q){\n ll a,r,l;\n cin >> a >> l >> r;\n if(a==1){\n cout << r-l+1 << endl;\n continue;\n }\n mat G(3,vec(3)),A(3,vec(1));\n A.at(0).at(0)=2*a+2;\n A.at(1).at(0)=2*a;\n A.at(2).at(0)=2;\n G.at(0).at(0)=1;\n G.at(0).at(1)=2*a;\n G.at(0).at(2)=-1;\n G.at(1).at(0)=0;\n G.at(1).at(1)=2*a;\n G.at(1).at(2)=-1;\n G.at(2).at(0)=0;\n G.at(2).at(1)=1;\n G.at(2).at(2)=0;\n ll R,L;\n if(r>=1){\n mat X=matpow(G,r-1,3);\n mat Y=matmul(3,3,1,X,A);\n R=Y.at(0).at(0);\n }else{\n R=2;\n }\n if(l>1){\n mat X=matpow(G,l-2,3);\n mat Y=matmul(3,3,1,X,A);\n L=Y.at(0).at(0);\n }else if(l==1){\n L=2;\n }else{\n L=0;\n }\n cout << (R-L-(r-l+1)+5*MOD)%MOD << endl;\n }\n \n \n \n}", "accuracy": 1, "time_ms": 190, "memory_kb": 3428, "score_of_the_acc": -0.9528, "final_rank": 13 } ]
aoj_3159_cpp
Problem I: Magical Matrix Problem 魔女の紬さんは、$N × N$ のマス目を持っています。上から $i$ 行目、左から $j$ 行目のマスをマス $( i , j )$ と呼びます。 $ N^2$ 個のマスのうち、 $M$ 個のマスには既に整数が書き込まれており、そのうち $i$ 個目はマス $( A_i , B_i )$ で、書き込まれている数は $C_i$ です。 紬さんは、まだ数が書かれていないマス全てについて、それぞれ $0$ 以上 $2^K$ 未満の整数のうちいずれかを書き込むことが出来ます。 全てのマスに整数が書き込まれた後、紬さんはマス目が $1 × 1$ となるまで魔法を連続して使います。 $1$ 回魔法が使われるごとに、紬さんの持っているマス目は以下のように変化します。 紬さんが今持っているマス目が $L \times L$ のマス目だとすると、$( L - 1 ) \times ( L - 1 )$ のマス目に変化する。 魔法が使われる前のマス目のマス $( i , j )$ に書かれている数を $X_{i,j}$ 、使われた後のマス目のマス $( i , j )$ に書かれている数を $Y_{i,j}$ とすると、 $i + j$ が偶数の時、$Y_{i,j} = X_{i,j}$ ${\rm or}$ $X_{i,j + 1}$ ${\rm or}$ $X_{i + 1 ,j}$ ${\rm or}$ $X_{ i + 1 , j + 1 }$ $i + j$ が奇数の時、$Y_{i,j} = X_{i,j}$ ${\rm and}$ $X_{i,j+1}$ ${\rm and}$ $X_{i + 1 , j}$ ${\rm and}$ $X_{ i + 1 , j + 1 }$ となる。ただし、${\rm or}$ , ${\rm and}$ はそれぞれビットごとの論理和、論理積を表す。 紬さんのお気に入りの整数は $F$ であり、マス目が $1 × 1$ になった時、ただ $1$ つ残るマスに書かれている数が $F$ となるようにしたいと思っています。 数が書かれていないマス全てに整数を書き込むことによって生成することが可能な各マスの整数の配置であって、魔法が使われマス目が$1 × 1$ になった時にただ $1$ つ残る数が $F$ となるようなものは全部で何通りあるでしょうか? 答えは非常に大きくなることがあるので、$998244353$ で割ったあまりを求めてください。 Constraints 入力は以下の条件を満たす。 $2 \leq N \leq 2020$ $0 \leq M \leq \min \left(N^2,100000\right)$ $1 \leq K \leq 30$ $0 \leq F \lt 2^K $ $1 \leq A_i,B_i \leq N$ $0 \leq C_i \lt 2^K$ $i \neq j $ ならば $A_i \neq A_j$ または $B_i \neq B_j$ 入力は全て整数である。 Input 入力は以下の形式で与えられる。 $N$ $M$ $K$ $F$ $A_1$ $B_1$ $C_1$ $ \vdots $ $A_M$ $B_M$ $C_M$ Output 数の書かれていないマス全てに整数を書き込むことにより生成できる各マスの整数の配置であり、 最終的にただ $1$ つ残る数が $F$ となるようなものの個数を $998244353$ で割ったあまりを出力してください。 末尾に改行を出力するのを忘れないようにしてください。 Sample Input 1 3 9 3 7 1 1 7 1 2 3 1 3 4 2 1 6 2 2 2 2 3 5 3 1 3 3 2 1 3 3 4 Sample Output 1 1 既に全てのマス目に数が書き込まれているので、生成することが可能な整数の配置は $1$ 通りです。 このマス目が $1×1$ となるまでには $2$ 回魔法が使われ、マス目は次のように変化していきます。 図の通り、このマス目について最後に残る数は $7$ なので、この配置は条件を満たします。 よって、答えは $1$ 通りとなります。 Sample Input 2 2 1 1 1 1 1 1 Sample Output 2 8 このケースでは、$1$ マスだけ既に書き込まれており、残りの $3$ マスについて自由に決めることが出来ます。 $K = 1$ より各マスに書き込める整数は $0$ か $1$ の $2$ 通りであるので、生成可能な配置は全てで $2^3 = 8$ 通りです。 これらの配置は全て条件を満たすので、答えは $8$ 通りとなります。 Sample Input 3 418 10 21 2097151 64 224 666666 78 78 1531381 160 90 53 165 75 60 321 321 1963935 418 269 114 314 159 265358 271 82 818284 141 42 1356237 281 274 8620 Sample Output 3 209645193 $998244353$ で割った余りを求めてください。
[ { "submission_id": "aoj_3159_10093281", "code_snippet": "// competitive-verifier: PROBLEM\n#include <cassert>\n#include <vector>\n#include <cstdint>\n#include <iostream>\n#include <type_traits>\n#include <utility>\nnamespace internal {\n// @param m `1 <= m`\n// @return x mod m\nconstexpr std::int64_t safe_mod(std::int64_t x, std::int64_t m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n// Fast modular multiplication by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n std::uint64_t im;\n // @param m `1 <= m`\n explicit barrett(unsigned int m) : _m(m), im((std::uint64_t)(-1) / m + 1) {}\n // @return m\n unsigned int umod() const { return _m; }\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n std::uint64_t z = a;\n z *= b;\n std::uint64_t x = (std::uint64_t)(((__uint128_t)(z)*im) >> 64);\n std::uint64_t y = x * _m;\n return (unsigned int)(z - y + (z < y ? _m : 0));\n }\n};\nstruct montgomery {\n std::uint64_t _m;\n std::uint64_t im;\n std::uint64_t r2;\n // @param m `1 <= m`\n explicit constexpr montgomery(std::uint64_t m) : _m(m), im(m), r2(-__uint128_t(m) % m) {\n for (int i = 0; i < 5; ++i) im = im * (2 - _m * im);\n im = -im;\n }\n // @return m\n constexpr std::uint64_t umod() const { return _m; }\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n constexpr std::uint64_t mul(std::uint64_t a, std::uint64_t b) const { return mr(mr(a, b), r2); }\n constexpr std::uint64_t exp(std::uint64_t a, std::uint64_t b) const {\n std::uint64_t res = 1, p = mr(a, r2);\n while (b) {\n if (b & 1) res = mr(res, p);\n p = mr(p, p);\n b >>= 1;\n }\n return res;\n }\n constexpr bool same_pow(std::uint64_t x, int s, std::uint64_t n) const {\n x = mr(x, r2), n = mr(n, r2);\n for (int r = 0; r < s; r++) {\n if (x == n) return true;\n x = mr(x, x);\n }\n return false;\n }\n private:\n constexpr std::uint64_t mr(std::uint64_t x) const {\n return ((__uint128_t)(x * im) * _m + x) >> 64;\n }\n constexpr std::uint64_t mr(std::uint64_t a, std::uint64_t b) const {\n __uint128_t t = (__uint128_t)a * b;\n std::uint64_t inc = std::uint64_t(t) != 0;\n std::uint64_t x = t >> 64, y = ((__uint128_t)(a * b * im) * _m) >> 64;\n unsigned long long z = 0;\n bool f = __builtin_uaddll_overflow(x, y, &z);\n z += inc;\n return f ? z - _m : z;\n }\n};\nconstexpr bool is_SPRP32(std::uint32_t n, std::uint32_t a) {\n std::uint32_t d = n - 1, s = 0;\n while ((d & 1) == 0) ++s, d >>= 1;\n std::uint64_t cur = 1, pw = d;\n while (pw) {\n if (pw & 1) cur = (cur * a) % n;\n a = (std::uint64_t)a * a % n;\n pw >>= 1;\n }\n if (cur == 1) return true;\n for (std::uint32_t r = 0; r < s; r++) {\n if (cur == n - 1) return true;\n cur = cur * cur % n;\n }\n return false;\n}\n// given 2 <= n,a < 2^64, a prime, check whether n is a-SPRP\nconstexpr bool is_SPRP64(const montgomery &m, std::uint64_t a) {\n auto n = m.umod();\n if (n == a) return true;\n if (n % a == 0) return false;\n std::uint64_t d = n - 1;\n int s = 0;\n while ((d & 1) == 0) ++s, d >>= 1;\n std::uint64_t cur = m.exp(a, d);\n if (cur == 1) return true;\n return m.same_pow(cur, s, n - 1);\n}\nconstexpr bool is_prime_constexpr(std::uint64_t x) {\n if (x == 2 || x == 3 || x == 5 || x == 7) return true;\n if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;\n if (x < 121) return (x > 1);\n montgomery m(x);\n constexpr std::uint64_t bases[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};\n for (auto a : bases) {\n if (!is_SPRP64(m, a)) return false;\n }\n return true;\n}\nconstexpr bool is_prime_constexpr(std::int64_t x) {\n if (x < 0) return false;\n return is_prime_constexpr(std::uint64_t(x));\n}\nconstexpr bool is_prime_constexpr(std::uint32_t x) {\n if (x == 2 || x == 3 || x == 5 || x == 7) return true;\n if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;\n if (x < 121) return (x > 1);\n std::uint64_t h = x;\n h = ((h >> 16) ^ h) * 0x45d9f3b;\n h = ((h >> 16) ^ h) * 0x45d9f3b;\n h = ((h >> 16) ^ h) & 255;\n constexpr uint16_t bases[] = {\n 15591, 2018, 166, 7429, 8064, 16045, 10503, 4399, 1949, 1295, 2776, 3620, 560,\n 3128, 5212, 2657, 2300, 2021, 4652, 1471, 9336, 4018, 2398, 20462, 10277, 8028,\n 2213, 6219, 620, 3763, 4852, 5012, 3185, 1333, 6227, 5298, 1074, 2391, 5113,\n 7061, 803, 1269, 3875, 422, 751, 580, 4729, 10239, 746, 2951, 556, 2206,\n 3778, 481, 1522, 3476, 481, 2487, 3266, 5633, 488, 3373, 6441, 3344, 17,\n 15105, 1490, 4154, 2036, 1882, 1813, 467, 3307, 14042, 6371, 658, 1005, 903,\n 737, 1887, 7447, 1888, 2848, 1784, 7559, 3400, 951, 13969, 4304, 177, 41,\n 19875, 3110, 13221, 8726, 571, 7043, 6943, 1199, 352, 6435, 165, 1169, 3315,\n 978, 233, 3003, 2562, 2994, 10587, 10030, 2377, 1902, 5354, 4447, 1555, 263,\n 27027, 2283, 305, 669, 1912, 601, 6186, 429, 1930, 14873, 1784, 1661, 524,\n 3577, 236, 2360, 6146, 2850, 55637, 1753, 4178, 8466, 222, 2579, 2743, 2031,\n 2226, 2276, 374, 2132, 813, 23788, 1610, 4422, 5159, 1725, 3597, 3366, 14336,\n 579, 165, 1375, 10018, 12616, 9816, 1371, 536, 1867, 10864, 857, 2206, 5788,\n 434, 8085, 17618, 727, 3639, 1595, 4944, 2129, 2029, 8195, 8344, 6232, 9183,\n 8126, 1870, 3296, 7455, 8947, 25017, 541, 19115, 368, 566, 5674, 411, 522,\n 1027, 8215, 2050, 6544, 10049, 614, 774, 2333, 3007, 35201, 4706, 1152, 1785,\n 1028, 1540, 3743, 493, 4474, 2521, 26845, 8354, 864, 18915, 5465, 2447, 42,\n 4511, 1660, 166, 1249, 6259, 2553, 304, 272, 7286, 73, 6554, 899, 2816,\n 5197, 13330, 7054, 2818, 3199, 811, 922, 350, 7514, 4452, 3449, 2663, 4708,\n 418, 1621, 1171, 3471, 88, 11345, 412, 1559, 194};\n return is_SPRP32(x, bases[h]);\n}\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr std::int64_t pow_mod_constexpr(std::int64_t x, std::int64_t n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n std::uint64_t r = 1;\n std::uint64_t y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n std::int64_t d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr std::int64_t bases[3] = {2, 7, 61};\n for (std::int64_t a : bases) {\n std::int64_t t = d;\n std::int64_t y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) { return false; }\n }\n return true;\n}\ntemplate <int n>\nconstexpr bool is_prime = is_prime_constexpr(n);\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<std::int64_t, std::int64_t> inv_gcd(std::int64_t a, std::int64_t b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n std::int64_t s = b, t = a;\n std::int64_t m0 = 0, m1 = 1;\n while (t) {\n std::int64_t u = s / t;\n s -= t * u;\n m0 -= m1 * u;\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (std::int64_t)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) { x /= i; }\n }\n }\n if (x > 1) { divs[cnt++] = x; }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m>\nconstexpr int primitive_root = primitive_root_constexpr(m);\n} // namespace internal\n#include <numeric>\nnamespace internal {\ntemplate <class T>\nusing is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;\ntemplate <class T>\nusing is_integral =\n typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value, make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\ntemplate <class T>\nusing to_unsigned_t = typename to_unsigned<T>::type;\n} // namespace internal\nnamespace internal {\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\ntemplate <class T>\nusing is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T>\nusing is_modint_t = std::enable_if_t<is_modint<T>::value>;\n} // namespace internal\ntemplate <int m, std::enable_if_t<(1 <= m)> * = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n public:\n static constexpr int mod() { return m; }\n static constexpr mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n constexpr static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T> * = nullptr>\n constexpr static_modint(T v) : _v(0) {\n std::int64_t x = (std::int64_t)(v % (std::int64_t)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T> * = nullptr>\n constexpr static_modint(T v) : _v(0) {\n _v = (unsigned int)(v % umod());\n }\n constexpr unsigned int val() const { return _v; }\n constexpr mint &operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n constexpr mint &operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n constexpr mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n constexpr mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n constexpr mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n constexpr mint &operator-=(const mint &rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n constexpr mint &operator*=(const mint &rhs) {\n std::uint64_t z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n constexpr mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n constexpr mint operator+() const { return *this; }\n constexpr mint operator-() const { return mint() - *this; }\n constexpr mint pow(std::int64_t n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n constexpr mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n friend constexpr mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }\n friend constexpr mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }\n friend constexpr mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }\n friend constexpr mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }\n friend constexpr bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }\n friend constexpr bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }\n friend std::istream &operator>>(std::istream &is, mint &rhs) {\n std::int64_t t;\n is >> t;\n rhs = mint(t);\n return is;\n }\n friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {\n return os << rhs._v;\n }\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\ntemplate <int id>\nstruct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n std::int64_t x = (std::int64_t)(v % (std::int64_t)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n unsigned int val() const { return _v; }\n mint &operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint &operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint &operator-=(const mint &rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint &operator*=(const mint &rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n mint pow(std::int64_t n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }\n friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }\n friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }\n friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }\n friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }\n friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }\n friend std::istream &operator>>(std::istream &is, mint &rhs) {\n std::int64_t t;\n is >> t;\n rhs = mint(t);\n return is;\n }\n friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {\n return os << rhs._v;\n }\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id>\ninternal::barrett dynamic_modint<id>::bt(998244353);\nusing modint998 = static_modint<998244353>;\nusing modint107 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\nnamespace internal {\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\ntemplate <class>\nstruct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n} // namespace internal\ntemplate <class mint = modint998, internal::is_modint_t<mint> * = nullptr>\nstruct Combination {\n Combination() : _fact(), _finv() {}\n mint operator()(int n, int k) {\n if (n < k || n < 0 || k < 0) return 0;\n _init(n);\n return _fact[n] * _finv[k] * _finv[n - k];\n }\n mint fact(int x) {\n assert(x >= 0);\n _init(x);\n return _fact[x];\n }\n mint finv(int x) {\n assert(x >= 0);\n _init(x);\n return _finv[x];\n }\n mint naive(int n, int k) const {\n if (n < k || n < 0 || k < 0) return 0;\n if (n - k < k) k = n - k;\n mint res = 1;\n for (int i = 0; i < k; ++i) {\n res *= n - i;\n res /= i + 1;\n }\n return res;\n }\n mint permu(int n, int k) {\n if (n < k || n < 0 || k < 0) return 0;\n _init(n);\n return _fact[n] * _finv[n - k];\n }\n private:\n std::vector<mint> _fact, _finv;\n void _init(int n) {\n if ((int)_fact.size() > n) return;\n int m = _fact.size();\n _fact.resize(n + 1);\n for (int i = m; i <= n; ++i) {\n if (i == 0) _fact[i] = 1;\n else _fact[i] = _fact[i - 1] * i;\n }\n _finv.resize(n + 1);\n _finv[n] = _fact[n].inv();\n for (int i = n - 1; i >= m; --i) _finv[i] = _finv[i + 1] * (i + 1);\n }\n};\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nCombination combi;\nusing Mint = modint998;\nint main(void) {\n int n, m, k, f;\n cin >> n >> m >> k >> f;\n vector<int> a(m), b(m), c(m);\n rep (i, m) cin >> a[i] >> b[i] >> c[i];\n int ans = 0;\n int cnt = n * 3 - 2;\n int rest = n * n - cnt;\n rep (i, m) {\n if (abs(a[i] - b[i]) <= 1) {\n ans = ans | c[i];\n --cnt;\n } else {\n --rest;\n }\n }\n if (ans & ~f) {\n co(0);\n return 0;\n }\n int p = 0;\n rep (i, k) p += f >> i & 1;\n if (ans == f) {\n co(Mint(2).pow(p).pow(cnt) * Mint(1 << k).pow(rest));\n } else {\n Mint s = 0;\n int q = 0;\n rep (i, k) q += ans >> i & 1;\n q = p - q;\n rep (i, q + 1) {\n if (i & 1) {\n s -= combi(q, i) * Mint(2).pow(p - i).pow(cnt);\n } else {\n s += combi(q, i) * Mint(2).pow(p - i).pow(cnt);\n }\n }\n co(s * Mint(1 << k).pow(rest));\n }\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4388, "score_of_the_acc": -0.076, "final_rank": 2 }, { "submission_id": "aoj_3159_10093277", "code_snippet": "// competitive-verifier: PROBLEM\n#include <cassert>\n#include <vector>\n#include <cstdint>\n#include <iostream>\n#include <type_traits>\n#include <utility>\nnamespace internal {\n// @param m `1 <= m`\n// @return x mod m\nconstexpr std::int64_t safe_mod(std::int64_t x, std::int64_t m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n// Fast modular multiplication by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n std::uint64_t im;\n // @param m `1 <= m`\n explicit barrett(unsigned int m) : _m(m), im((std::uint64_t)(-1) / m + 1) {}\n // @return m\n unsigned int umod() const { return _m; }\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n std::uint64_t z = a;\n z *= b;\n std::uint64_t x = (std::uint64_t)(((__uint128_t)(z)*im) >> 64);\n std::uint64_t y = x * _m;\n return (unsigned int)(z - y + (z < y ? _m : 0));\n }\n};\nstruct montgomery {\n std::uint64_t _m;\n std::uint64_t im;\n std::uint64_t r2;\n // @param m `1 <= m`\n explicit constexpr montgomery(std::uint64_t m) : _m(m), im(m), r2(-__uint128_t(m) % m) {\n for (int i = 0; i < 5; ++i) im = im * (2 - _m * im);\n im = -im;\n }\n // @return m\n constexpr std::uint64_t umod() const { return _m; }\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n constexpr std::uint64_t mul(std::uint64_t a, std::uint64_t b) const { return mr(mr(a, b), r2); }\n constexpr std::uint64_t exp(std::uint64_t a, std::uint64_t b) const {\n std::uint64_t res = 1, p = mr(a, r2);\n while (b) {\n if (b & 1) res = mr(res, p);\n p = mr(p, p);\n b >>= 1;\n }\n return res;\n }\n constexpr bool same_pow(std::uint64_t x, int s, std::uint64_t n) const {\n x = mr(x, r2), n = mr(n, r2);\n for (int r = 0; r < s; r++) {\n if (x == n) return true;\n x = mr(x, x);\n }\n return false;\n }\n private:\n constexpr std::uint64_t mr(std::uint64_t x) const {\n return ((__uint128_t)(x * im) * _m + x) >> 64;\n }\n constexpr std::uint64_t mr(std::uint64_t a, std::uint64_t b) const {\n __uint128_t t = (__uint128_t)a * b;\n std::uint64_t inc = std::uint64_t(t) != 0;\n std::uint64_t x = t >> 64, y = ((__uint128_t)(a * b * im) * _m) >> 64;\n unsigned long long z = 0;\n bool f = __builtin_uaddll_overflow(x, y, &z);\n z += inc;\n return f ? z - _m : z;\n }\n};\nconstexpr bool is_SPRP32(std::uint32_t n, std::uint32_t a) {\n std::uint32_t d = n - 1, s = 0;\n while ((d & 1) == 0) ++s, d >>= 1;\n std::uint64_t cur = 1, pw = d;\n while (pw) {\n if (pw & 1) cur = (cur * a) % n;\n a = (std::uint64_t)a * a % n;\n pw >>= 1;\n }\n if (cur == 1) return true;\n for (std::uint32_t r = 0; r < s; r++) {\n if (cur == n - 1) return true;\n cur = cur * cur % n;\n }\n return false;\n}\n// given 2 <= n,a < 2^64, a prime, check whether n is a-SPRP\nconstexpr bool is_SPRP64(const montgomery &m, std::uint64_t a) {\n auto n = m.umod();\n if (n == a) return true;\n if (n % a == 0) return false;\n std::uint64_t d = n - 1;\n int s = 0;\n while ((d & 1) == 0) ++s, d >>= 1;\n std::uint64_t cur = m.exp(a, d);\n if (cur == 1) return true;\n return m.same_pow(cur, s, n - 1);\n}\nconstexpr bool is_prime_constexpr(std::uint64_t x) {\n if (x == 2 || x == 3 || x == 5 || x == 7) return true;\n if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;\n if (x < 121) return (x > 1);\n montgomery m(x);\n constexpr std::uint64_t bases[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};\n for (auto a : bases) {\n if (!is_SPRP64(m, a)) return false;\n }\n return true;\n}\nconstexpr bool is_prime_constexpr(std::int64_t x) {\n if (x < 0) return false;\n return is_prime_constexpr(std::uint64_t(x));\n}\nconstexpr bool is_prime_constexpr(std::uint32_t x) {\n if (x == 2 || x == 3 || x == 5 || x == 7) return true;\n if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;\n if (x < 121) return (x > 1);\n std::uint64_t h = x;\n h = ((h >> 16) ^ h) * 0x45d9f3b;\n h = ((h >> 16) ^ h) * 0x45d9f3b;\n h = ((h >> 16) ^ h) & 255;\n constexpr uint16_t bases[] = {\n 15591, 2018, 166, 7429, 8064, 16045, 10503, 4399, 1949, 1295, 2776, 3620, 560,\n 3128, 5212, 2657, 2300, 2021, 4652, 1471, 9336, 4018, 2398, 20462, 10277, 8028,\n 2213, 6219, 620, 3763, 4852, 5012, 3185, 1333, 6227, 5298, 1074, 2391, 5113,\n 7061, 803, 1269, 3875, 422, 751, 580, 4729, 10239, 746, 2951, 556, 2206,\n 3778, 481, 1522, 3476, 481, 2487, 3266, 5633, 488, 3373, 6441, 3344, 17,\n 15105, 1490, 4154, 2036, 1882, 1813, 467, 3307, 14042, 6371, 658, 1005, 903,\n 737, 1887, 7447, 1888, 2848, 1784, 7559, 3400, 951, 13969, 4304, 177, 41,\n 19875, 3110, 13221, 8726, 571, 7043, 6943, 1199, 352, 6435, 165, 1169, 3315,\n 978, 233, 3003, 2562, 2994, 10587, 10030, 2377, 1902, 5354, 4447, 1555, 263,\n 27027, 2283, 305, 669, 1912, 601, 6186, 429, 1930, 14873, 1784, 1661, 524,\n 3577, 236, 2360, 6146, 2850, 55637, 1753, 4178, 8466, 222, 2579, 2743, 2031,\n 2226, 2276, 374, 2132, 813, 23788, 1610, 4422, 5159, 1725, 3597, 3366, 14336,\n 579, 165, 1375, 10018, 12616, 9816, 1371, 536, 1867, 10864, 857, 2206, 5788,\n 434, 8085, 17618, 727, 3639, 1595, 4944, 2129, 2029, 8195, 8344, 6232, 9183,\n 8126, 1870, 3296, 7455, 8947, 25017, 541, 19115, 368, 566, 5674, 411, 522,\n 1027, 8215, 2050, 6544, 10049, 614, 774, 2333, 3007, 35201, 4706, 1152, 1785,\n 1028, 1540, 3743, 493, 4474, 2521, 26845, 8354, 864, 18915, 5465, 2447, 42,\n 4511, 1660, 166, 1249, 6259, 2553, 304, 272, 7286, 73, 6554, 899, 2816,\n 5197, 13330, 7054, 2818, 3199, 811, 922, 350, 7514, 4452, 3449, 2663, 4708,\n 418, 1621, 1171, 3471, 88, 11345, 412, 1559, 194};\n return is_SPRP32(x, bases[h]);\n}\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr std::int64_t pow_mod_constexpr(std::int64_t x, std::int64_t n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n std::uint64_t r = 1;\n std::uint64_t y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n std::int64_t d = n - 1;\n while (d % 2 == 0) d /= 2;\n constexpr std::int64_t bases[3] = {2, 7, 61};\n for (std::int64_t a : bases) {\n std::int64_t t = d;\n std::int64_t y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) { return false; }\n }\n return true;\n}\ntemplate <int n>\nconstexpr bool is_prime = is_prime_constexpr(n);\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<std::int64_t, std::int64_t> inv_gcd(std::int64_t a, std::int64_t b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n std::int64_t s = b, t = a;\n std::int64_t m0 = 0, m1 = 1;\n while (t) {\n std::int64_t u = s / t;\n s -= t * u;\n m0 -= m1 * u;\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (std::int64_t)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) { x /= i; }\n }\n }\n if (x > 1) { divs[cnt++] = x; }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m>\nconstexpr int primitive_root = primitive_root_constexpr(m);\n} // namespace internal\n#include <numeric>\nnamespace internal {\ntemplate <class T>\nusing is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;\ntemplate <class T>\nusing is_integral =\n typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type, std::false_type>::type;\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value, make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\ntemplate <class T>\nusing to_unsigned_t = typename to_unsigned<T>::type;\n} // namespace internal\nnamespace internal {\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\ntemplate <class T>\nusing is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T>\nusing is_modint_t = std::enable_if_t<is_modint<T>::value>;\n} // namespace internal\ntemplate <int m, std::enable_if_t<(1 <= m)> * = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n public:\n static constexpr int mod() { return m; }\n static constexpr mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n constexpr static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T> * = nullptr>\n constexpr static_modint(T v) : _v(0) {\n std::int64_t x = (std::int64_t)(v % (std::int64_t)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T> * = nullptr>\n constexpr static_modint(T v) : _v(0) {\n _v = (unsigned int)(v % umod());\n }\n constexpr unsigned int val() const { return _v; }\n constexpr mint &operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n constexpr mint &operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n constexpr mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n constexpr mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n constexpr mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n constexpr mint &operator-=(const mint &rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n constexpr mint &operator*=(const mint &rhs) {\n std::uint64_t z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n constexpr mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n constexpr mint operator+() const { return *this; }\n constexpr mint operator-() const { return mint() - *this; }\n constexpr mint pow(std::int64_t n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n constexpr mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n friend constexpr mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }\n friend constexpr mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }\n friend constexpr mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }\n friend constexpr mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }\n friend constexpr bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }\n friend constexpr bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }\n friend std::istream &operator>>(std::istream &is, mint &rhs) {\n std::int64_t t;\n is >> t;\n rhs = mint(t);\n return is;\n }\n friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {\n return os << rhs._v;\n }\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\ntemplate <int id>\nstruct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n std::int64_t x = (std::int64_t)(v % (std::int64_t)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n unsigned int val() const { return _v; }\n mint &operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint &operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint &operator-=(const mint &rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint &operator*=(const mint &rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n mint pow(std::int64_t n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }\n friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }\n friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }\n friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }\n friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }\n friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }\n friend std::istream &operator>>(std::istream &is, mint &rhs) {\n std::int64_t t;\n is >> t;\n rhs = mint(t);\n return is;\n }\n friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {\n return os << rhs._v;\n }\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id>\ninternal::barrett dynamic_modint<id>::bt(998244353);\nusing modint998 = static_modint<998244353>;\nusing modint107 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\nnamespace internal {\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\ntemplate <class>\nstruct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n} // namespace internal\ntemplate <class mint = modint998, internal::is_modint_t<mint> * = nullptr>\nstruct Combination {\n Combination() : _fact(), _finv() {}\n mint operator()(int n, int k) {\n if (n < k || n < 0 || k < 0) return 0;\n _init(n);\n return _fact[n] * _finv[k] * _finv[n - k];\n }\n mint fact(int x) {\n assert(x >= 0);\n _init(x);\n return _fact[x];\n }\n mint finv(int x) {\n assert(x >= 0);\n _init(x);\n return _finv[x];\n }\n mint naive(int n, int k) const {\n if (n < k || n < 0 || k < 0) return 0;\n if (n - k < k) k = n - k;\n mint res = 1;\n for (int i = 0; i < k; ++i) {\n res *= n - i;\n res /= i + 1;\n }\n return res;\n }\n mint permu(int n, int k) {\n if (n < k || n < 0 || k < 0) return 0;\n _init(n);\n return _fact[n] * _finv[n - k];\n }\n private:\n std::vector<mint> _fact, _finv;\n void _init(int n) {\n if ((int)_fact.size() > n) return;\n int m = _fact.size();\n _fact.resize(n + 1);\n for (int i = m; i <= n; ++i) {\n if (i == 0) _fact[i] = 1;\n else _fact[i] = _fact[i - 1] * i;\n }\n _finv.resize(n + 1);\n _finv[n] = _fact[n].inv();\n for (int i = n - 1; i >= m; --i) _finv[i] = _finv[i + 1] * (i + 1);\n }\n};\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\nCombination combi;\nusing Mint = modint998;\nint main(void) {\n int n, m, k, f;\n cin >> n >> m >> k >> f;\n vector<int> a(m), b(m), c(m);\n rep (i, m) cin >> a[i] >> b[i] >> c[i];\n int ans = 0;\n int cnt = n * 3 - 2;\n int rest = n * n - cnt;\n rep (i, m) {\n if (abs(a[i] - b[i]) <= 1) {\n ans = ans | c[i];\n --cnt;\n } else {\n --rest;\n }\n }\n if (ans & ~f) {\n co(0);\n return 0;\n }\n int p = 0;\n rep (i, k) p += f >> i & 1;\n if (ans == f) {\n co(Mint(2).pow(p).pow(cnt) * Mint(1 << k).pow(rest));\n } else {\n Mint s = 0;\n int q = 0;\n rep (i, k) q += ans >> i & 1;\n rep (i, q + 1) {\n if (i & 1) {\n s -= combi(q, i) * Mint(2).pow(p - i).pow(cnt);\n } else {\n s += combi(q, i) * Mint(2).pow(p - i).pow(cnt);\n }\n }\n co(s * Mint(1 << k).pow(rest));\n }\n return 0;\n}", "accuracy": 0.3026315789473684, "time_ms": 10, "memory_kb": 4128, "score_of_the_acc": -0.0609, "final_rank": 12 }, { "submission_id": "aoj_3159_9737298", "code_snippet": "#include <iostream>\n\nusing namespace std;\ntypedef long long ll;\nll mod = 998244353;\nll pw(ll a, ll x){\n ll ret = 1;\n while(x){\n if(x&1) (ret *= a) %= mod;\n (a *= a) %= mod; x /= 2;\n }\n return ret;\n}\n\nll a[100010],b[100010],c[100010];\nint main(){\n ll i,j,n,m,k,f; cin >> n >> m >> k >> f;\n for(i=0;i<m;i++) cin >> a[i] >> b[i] >> c[i];\n ll ans = 1;\n for(j=0;j<k;j++){\n ll res = n*n - 3*n + 2;\n int x = f&1;\n ll z = 1;\n for(i=0;i<m;i++){\n if(a[i] - b[i]>=-1 && a[i] - b[i]<=1){\n if((c[i]&1)==1) z *= 0;\n }else{\n res--;\n }\n c[i] /= 2;\n }\n (z *= pw(2,res)) %= mod;\n if(x==0) (ans *= z) %= mod;\n if(x==1) (ans *= (pw(2,n*n - m) + mod - z)%mod) %= mod;\n f /= 2;\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 5700, "score_of_the_acc": -0.9525, "final_rank": 7 }, { "submission_id": "aoj_3159_6304781", "code_snippet": "#include <iostream>\n#include <unordered_map>\n#include <unordered_set>\n#include <set>\n#include <vector>\n#include <numeric>\n#include <algorithm>\n#include <queue>\n#include <string>\n#include <random>\n#include <array>\n#include <climits>\n#include <map>\n#include <cassert>\n#include <stack>\n#include <iomanip>\n#include <cfloat>\n#include <fstream>\n\nconstexpr int MOD = 998244353;\nlong long int pow_mod(long long int base, int exp) {\n\tlong long int result{ 1 };\n\tbase %= MOD;\n\twhile (exp > 0) {\n\t\tif (exp & 1) {\n\t\t\tresult = result * base % MOD;\n\t\t}\n\t\tbase = base * base % MOD;\n\t\texp >>= 1;\n\t}\n\treturn result;\n}\n\nint main() {\n\tint n, m, k, f; std::cin >> n >> m >> k >> f;\n\tstd::vector<std::tuple<int, int, int>> determined(m);\n\tfor (auto& [a, b, c] : determined) {\n\t\tstd::cin >> a >> b >> c; --a; --b;\n\t}\n\tstd::vector<std::vector<int>> state(n, std::vector<int>(n, -1));\n\tfor (const auto [a, b, c] : determined) {\n\t\tstate[a][b] = c;\n\t}\n\tconst int free_count = n * n - m;\n\tint free_on_diagonal{ 0 };\n\tfor (auto i = 0; i < n; ++i) {\n\t\tif (state[i][i] == -1) {\n\t\t\tfree_on_diagonal += 1;\n\t\t}\n\t\tif (i > 0) {\n\t\t\tif (state[i - 1][i] == -1) {\n\t\t\t\tfree_on_diagonal += 1;\n\t\t\t}\n\t\t\tif (state[i][i - 1] == -1) {\n\t\t\t\tfree_on_diagonal += 1;\n\t\t\t}\n\t\t}\n\t}\n\tlong long int result{ 1 };\n\tfor (auto d = 0; d < k; ++d) {\n\t\tbool has_one{ false };\n\t\tfor (auto i = 0; i < n; ++i) {\n\t\t\tif (state[i][i] >= 0) {\n\t\t\t\tif ((state[i][i] >> d) & 1) {\n\t\t\t\t\thas_one = true;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (i > 0) {\n\t\t\t\tif (state[i - 1][i] >= 0) {\n\t\t\t\t\tif ((state[i - 1][i] >> d) & 1) {\n\t\t\t\t\t\thas_one = true;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif (state[i][i - 1] >= 0) {\n\t\t\t\t\tif ((state[i][i - 1] >> d) & 1) {\n\t\t\t\t\t\thas_one = true;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (has_one) {\n\t\t\tif ((f >> d) & 1) {\n\t\t\t\tresult = result * pow_mod(2, free_count) % MOD;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tresult = 0;\n\t\t\t}\n\t\t}\n\t\telse {\n\t\t\tif ((f >> d) & 1) {\n\t\t\t\tresult = result * (pow_mod(2, free_on_diagonal) - 1) % MOD * pow_mod(2, free_count - free_on_diagonal) % MOD;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tresult = result * pow_mod(2, free_count - free_on_diagonal) % MOD;\n\t\t\t}\n\t\t}\n\t}\n\tstd::cout << result << '\\n';\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 20240, "score_of_the_acc": -1.8, "final_rank": 10 }, { "submission_id": "aoj_3159_4905552", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\ntemplate <int mod>\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator-=(const ModInt &p) {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator*=(const ModInt &p) {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n bool operator==(const ModInt &p) const { return x == p.x; }\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while (n > 0) {\n if (n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\n\nconst int mod = 998244353;\nusing mint = ModInt<mod>;\n\nint main() {\n int n, m, k, f;\n cin >> n >> m >> k >> f;\n\n int ct = 0;\n rep(i, n) rep(j, n) {\n if (abs(i - j) <= 1) ++ct;\n }\n int nct = n * n - ct;\n\n bool ok = true;\n int dig_or = 0;\n rep(i, m) {\n int a, b, c;\n cin >> a >> b >> c;\n if (abs(a - b) <= 1) {\n --ct;\n dig_or |= c;\n if ((c | f) != f) ok = false;\n } else\n --nct;\n }\n if (ct == 0 && dig_or != f) ok = false;\n if (!ok) {\n cout << 0 << \"\\n\";\n return 0;\n }\n\n int p = __builtin_popcount(dig_or), q = __builtin_popcount(f);\n\n mint x = mint(1 << p).pow(ct);\n rep(i, q - p) x *= (mint(2).pow(ct) - 1);\n\n cout << x * mint(1 << k).pow(nct) << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3128, "score_of_the_acc": -1.0026, "final_rank": 9 }, { "submission_id": "aoj_3159_4905517", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\ntemplate <int mod>\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator-=(const ModInt &p) {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator*=(const ModInt &p) {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n bool operator==(const ModInt &p) const { return x == p.x; }\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while (n > 0) {\n if (n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\n\nconst int mod = 998244353;\nusing mint = ModInt<mod>;\n\nint main() {\n int n, m, k, f;\n cin >> n >> m >> k >> f;\n\n int ct = 0;\n rep(i, n) rep(j, n) {\n if (abs(i - j) <= 1) ++ct;\n }\n int nct = n * n - ct;\n\n bool ok = true;\n int dig_or = 0;\n rep(i, m) {\n int a, b, c;\n cin >> a >> b >> c;\n --a;\n --b;\n if (abs(a - b) <= 1) {\n --ct;\n dig_or |= c;\n if ((c | f) != f) ok = false;\n } else\n --nct;\n }\n if (ct == 0 && dig_or != f) ok = false;\n if (!ok) {\n cout << 0 << \"\\n\";\n return 0;\n }\n\n mint x = mint(1 << (__builtin_popcount(f))).pow(ct);\n mint y = mint(1 << k).pow(nct);\n cout << x * y << \"\\n\";\n return 0;\n}", "accuracy": 0.3026315789473684, "time_ms": 40, "memory_kb": 3124, "score_of_the_acc": -0.6023, "final_rank": 13 }, { "submission_id": "aoj_3159_4905501", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\ntemplate <int mod>\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator-=(const ModInt &p) {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator*=(const ModInt &p) {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n bool operator==(const ModInt &p) const { return x == p.x; }\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while (n > 0) {\n if (n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\n\nconst int mod = 998244353;\nusing mint = ModInt<mod>;\n\nint main() {\n int n, m, k, f;\n cin >> n >> m >> k >> f;\n\n int ct = 0;\n rep(i, n) rep(j, n) {\n if (abs(i - j) == 1) ++ct;\n }\n int nct = n * n - ct;\n\n bool ok = true;\n int dig_or = 0;\n rep(i, m) {\n int a, b, c;\n cin >> a >> b >> c;\n --a;\n --b;\n if (abs(a - b) == 1) {\n --ct;\n dig_or |= c;\n if ((c | f) != f) ok = false;\n } else\n --nct;\n }\n if (ct == 0 && dig_or != f) ok = false;\n if (!ok) {\n cout << 0 << \"\\n\";\n return 0;\n }\n\n mint x = mint(1 << (__builtin_popcount(f))).pow(ct);\n mint y = mint(1 << k).pow(nct);\n cout << x * y << \"\\n\";\n return 0;\n}", "accuracy": 0.3026315789473684, "time_ms": 40, "memory_kb": 3124, "score_of_the_acc": -0.6023, "final_rank": 13 }, { "submission_id": "aoj_3159_4905498", "code_snippet": "// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n#define rep(i,n) for(int i=0;i<(int)(n);++i)\n#define all(x) (x).begin(),(x).end()\n#define pb push_back\n#define fi first\n#define se second\n#define dbg(x) cout<<#x\" = \"<<((x))<<endl\ntemplate<class T,class U> ostream& operator<<(ostream& o, const pair<T,U> &p){o<<\"(\"<<p.fi<<\",\"<<p.se<<\")\";return o;}\ntemplate<class T> ostream& operator<<(ostream& o, const vector<T> &v){o<<\"[\";for(T t:v){o<<t<<\",\";}o<<\"]\";return o;}\n// clang-format on\n\ntemplate <int mod>\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator-=(const ModInt &p) {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n ModInt &operator*=(const ModInt &p) {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n bool operator==(const ModInt &p) const { return x == p.x; }\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while (n > 0) {\n if (n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\n\nconst int mod = 998244353;\nusing mint = ModInt<mod>;\n\nint main() {\n int n, m, k, f;\n cin >> n >> m >> k >> f;\n\n int ct = 0;\n rep(i, n) rep(j, n) {\n if (abs(i - j) == 1) ++ct;\n }\n int nct = n * n - ct;\n\n bool ok = true;\n rep(i, m) {\n int a, b, c;\n cin >> a >> b >> c;\n --a;\n --b;\n if (abs(a - b) == 1) {\n --ct;\n if ((c | f) != f) ok = false;\n } else\n --nct;\n }\n if (!ok) {\n dbg(\"NOT OK\");\n cout << 0 << \"\\n\";\n return 0;\n }\n\n mint x = mint(1 << (__builtin_popcount(f))).pow(ct);\n mint y = mint(1 << k).pow(nct);\n cout << x * y << \"\\n\";\n return 0;\n}", "accuracy": 0.039473684210526314, "time_ms": 10, "memory_kb": 3100, "score_of_the_acc": -0.0009, "final_rank": 16 }, { "submission_id": "aoj_3159_4861052", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\nint n, m, k, f, frees = 0;\nvector<int> cnt;\n\nModInt<> solve();\n\nint main() {\n cin >> n >> m >> k >> f;\n cnt.assign(k, 0);\n for (int i = 0; i < m; ++i) {\n int y, x, z;\n cin >> y >> x >> z;\n if (abs(y - x) <= 1)\n for (int j = 0; j < k; ++j) cnt[j] += z >> j & 1;\n else\n ++frees;\n }\n cout << solve() << endl;\n return 0;\n}\n\nModInt<> solve() {\n ModInt<> res = ModInt<>(1 << k).pow(n * n - 3 * n + 2 - frees);\n m -= frees;\n for (int i = 0; i < k; ++i)\n if (f >> i & 1)\n res *= ModInt<>(2).pow(3 * n - 2 - m) - (cnt[i] == 0);\n else\n res *= cnt[i] == 0;\n return res;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3436, "score_of_the_acc": -0.6205, "final_rank": 4 }, { "submission_id": "aoj_3159_4835267", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\ntypedef long long ll;\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\ntemplate <unsigned long long mod > class modint{\npublic:\n ll x;\n constexpr modint(){x = 0;}\n constexpr modint(ll _x) : x((_x < 0 ? ((_x += (LLONG_MAX / mod) * mod) < 0 ? _x + (LLONG_MAX / mod) * mod : _x) : _x)%mod){}\n constexpr modint operator-(){\n return x == 0 ? 0 : mod - x;\n }\n constexpr modint& operator+=(const modint& a){\n if((x += a.x) >= mod) x -= mod;\n return *this;\n }\n constexpr modint operator+(const modint& a) const{\n return modint(*this) += a;\n }\n constexpr modint& operator-=(const modint& a){\n if((x -= a.x) < 0) x += mod;\n return *this;\n }\n constexpr modint operator-(const modint& a) const{\n return modint(*this) -= a;\n }\n constexpr modint& operator*=(const modint& a){\n (x *= a.x)%=mod;\n return *this;\n }\n constexpr modint operator*(const modint& a) const{\n return modint(*this) *= a;\n }\n constexpr modint pow(unsigned long long pw) const{\n modint res(1), comp(*this);\n while(pw){\n if(pw&1) res *= comp;\n comp *= comp;\n pw >>= 1;\n }\n return res;\n }\n //以下、modが素数のときのみ\n constexpr modint inv() const{\n return modint(*this).pow(mod - 2);\n }\n constexpr modint& operator/=(const modint &a){\n (x *= a.inv().x)%=mod;\n return *this;\n }\n constexpr modint operator/(const modint &a) const{\n return modint(*this) /= a;\n }\n};\n#define mod1 998244353\nusing mint = modint<mod1>;\n\nostream& operator<<(ostream& os, const mint& a){\n os << a.x;\n return os;\n}\nusing vm = vector<mint>;\n\nint main() {\n ll F;\n cin>>N>>M>>K>>F;\n ll or_sum(0), num_free((N - 1) * (N - 2)), num_care(N * 3 - 2);\n rep(i, M){\n ll C;\n cin>>A>>B>>C;\n if(abs(A - B) <= 1){\n or_sum |= C;\n --num_care;\n }else{\n --num_free;\n }\n }\n if((or_sum | F) != F){\n cout<<0<<endl;\n }else{\n mint res(1);\n rep(i, K){\n if((F>>i)&1) {\n if((or_sum>>i)&1) res *= mint(2).pow(num_care + num_free);\n else res *= (mint(2).pow(num_care) - 1) * mint(2).pow(num_free);\n }else{\n res *= mint(2).pow(num_free);\n }\n }\n cout<<res<<endl;\n }\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3140, "score_of_the_acc": -0.8033, "final_rank": 6 }, { "submission_id": "aoj_3159_4835264", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\ntypedef long long ll;\ntypedef vector<ll> vec;\ntypedef vector<vec> mat;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\ntemplate <unsigned long long mod > class modint{\npublic:\n ll x;\n constexpr modint(){x = 0;}\n constexpr modint(ll _x) : x((_x < 0 ? ((_x += (LLONG_MAX / mod) * mod) < 0 ? _x + (LLONG_MAX / mod) * mod : _x) : _x)%mod){}\n constexpr modint operator-(){\n return x == 0 ? 0 : mod - x;\n }\n constexpr modint& operator+=(const modint& a){\n if((x += a.x) >= mod) x -= mod;\n return *this;\n }\n constexpr modint operator+(const modint& a) const{\n return modint(*this) += a;\n }\n constexpr modint& operator-=(const modint& a){\n if((x -= a.x) < 0) x += mod;\n return *this;\n }\n constexpr modint operator-(const modint& a) const{\n return modint(*this) -= a;\n }\n constexpr modint& operator*=(const modint& a){\n (x *= a.x)%=mod;\n return *this;\n }\n constexpr modint operator*(const modint& a) const{\n return modint(*this) *= a;\n }\n constexpr modint pow(unsigned long long pw) const{\n modint res(1), comp(*this);\n while(pw){\n if(pw&1) res *= comp;\n comp *= comp;\n pw >>= 1;\n }\n return res;\n }\n //以下、modが素数のときのみ\n constexpr modint inv() const{\n return modint(*this).pow(mod - 2);\n }\n constexpr modint& operator/=(const modint &a){\n (x *= a.inv().x)%=mod;\n return *this;\n }\n constexpr modint operator/(const modint &a) const{\n return modint(*this) /= a;\n }\n};\n#define mod1 998244353\nusing mint = modint<mod1>;\n\nostream& operator<<(ostream& os, const mint& a){\n os << a.x;\n return os;\n}\nusing vm = vector<mint>;\n\nint main() {\n ll F;\n cin>>N>>M>>K>>F;\n ll or_sum(0), num_free((N - 1) * (N - 2)), num_care(N * 3 - 2);\n rep(i, M){\n ll C;\n cin>>A>>B>>C;\n if(abs(A - B) <= 1){\n or_sum |= C;\n --num_care;\n }else{\n --num_free;\n }\n }\n if((or_sum | F) != F){\n cout<<0<<endl;\n }else{\n mint res(1);\n rep(i, K){\n if((F>>i)&1) {\n if((or_sum>>i)&1) res *= mint(2).pow(num_care + num_free);\n else res *= (mint(2).pow(num_care) - 1) * mint(2).pow(num_free);\n }\n }\n cout<<res<<endl;\n }\n}", "accuracy": 0.3026315789473684, "time_ms": 40, "memory_kb": 3140, "score_of_the_acc": -0.6033, "final_rank": 15 }, { "submission_id": "aoj_3159_4834272", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\ntypedef long long int ll;\nconstexpr ll mod=998244353;\n\nll mod_pow(ll a,ll b){\n\ta%=mod;\n\tif(b==0)return 1;\n\tif(b==1)return a;\n\tll res=mod_pow(a,b/2)%mod;\n\tres*=res; res%=mod;\n\tif(b%2)res*=a;\n\treturn res%mod;\n}\n\nint main(){\n\tint n,m,k,f; cin >> n >> m >> k >> f;\n\tvector<bool> used(k,false);\n\tint cnt=3*n-2;\n\tfor(int i=0;i<m;i++){\n\t\tint a,b,c; cin >> a >> b >> c;\n\t\tif(abs(a-b)>1)continue;\n\t\tcnt--;\n\t\tfor(int j=0;j<k;j++){\n\t\t\tif((1<<j)&c)used[j]=1;\n\t\t}\n\t}\n\tll res=1;\n\tfor(int i=0;i<k;i++){\n\t\tif((1<<i)&f){\n\t\t\tif(used[i]) (res*=mod_pow(2,n*n-m))%=mod;\n\t\t\telse (res*=mod_pow(2,n*n-m)-mod_pow(2,n*n-m-cnt)+mod)%=mod;\n\t\t}\n\t\telse{\n\t\t\tif(used[i]) res=0;\n\t\t\telse (res*=mod_pow(2,n*n-m-cnt))%=mod;\n\t\t}\n\t}\n\tcout << res << \"\\n\";\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3084, "score_of_the_acc": -1, "final_rank": 8 }, { "submission_id": "aoj_3159_4834126", "code_snippet": "#pragma region Macros\n#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w) \\\n vector<vector<type>> name(h, vector<type>(w)); \\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\nstring YES[2] = {\"NO\", \"YES\"};\nstring Yes[2] = {\"No\", \"Yes\"};\nstring yes[2] = {\"no\", \"yes\"};\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define DBL(...) \\\n double __VA_ARGS__; \\\n IN(__VA_ARGS)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\n\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n\n#define i128 __int128_t\n#define ull unsigned long long int\n#define TEST \\\n INT(testcases); \\\n while(testcases--)\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n for(auto &e : v) cout << e << \" \";\n cout << endl;\n return os;\n}\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {\n cout << \"(\" << p.fi << \", \" << p.se << \")\";\n return os;\n}\ntemplate <class S, class T> string to_string(pair<S, T> p) { return \"(\" + to_string(p.first) + \",\" + to_string(p.second) + \")\"; }\ntemplate <class A> string to_string(A v) {\n if(v.empty()) return \"{}\";\n string ret = \"{\";\n for(auto &x : v) ret += to_string(x) + \",\";\n ret.back() = '}';\n return ret;\n}\n\nvoid dump() { cerr << endl; }\ntemplate <class Head, class... Tail> void dump(Head head, Tail... tail) {\n cerr << to_string(head) << \" \";\n dump(tail...);\n}\n#define endl '\\n'\n#ifdef _LOCAL\n#undef endl\n#define debug(x) \\\n cout << #x << \": \"; \\\n dump(x)\n#else\n#define debug(x)\n#endif\n// mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());\n\n// int rnd(int n) { return uniform_int_distribution<int>(0, n - 1)(rng); }\n// ll rndll(ll n) { return uniform_int_distribution<ll>(0, n - 1)(rng); }\n\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\n#pragma endregion\nnamespace modular {\nconstexpr ll MOD = 998244353;\nconst int MAXN = 1100000;\ntemplate <ll Modulus> class modint {\n using u64 = ll;\n\n public:\n u64 a;\n\n constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {}\n constexpr u64 &value() noexcept { return a; }\n constexpr const u64 &value() const noexcept { return a; }\n constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; }\n constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; }\n constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; }\n template <typename T> constexpr modint operator^(T rhs) const noexcept { return modint(*this) ^= rhs; }\n constexpr modint operator-() const noexcept { return modint() - *this; }\n constexpr modint &operator+=(const modint rhs) noexcept {\n a += rhs.a;\n if(a >= Modulus) { a -= Modulus; }\n return *this;\n }\n constexpr modint &operator-=(const modint rhs) noexcept {\n if(a < rhs.a) { a += Modulus; }\n a -= rhs.a;\n return *this;\n }\n constexpr modint &operator*=(const modint rhs) noexcept {\n a = a * rhs.a % Modulus;\n return *this;\n }\n constexpr bool operator==(const modint rhs) const noexcept { return a == rhs.a; }\n template <typename T> constexpr modint &operator^=(T n) noexcept {\n modint<Modulus> res = 1;\n modint<Modulus> x = a;\n while(n) {\n if(n & 1) res *= x;\n x *= x;\n n >>= 1;\n }\n a = res.a;\n return *this;\n }\n};\n#define mint modint<MOD>\n#define vmint vector<mint>\nvmint Inv{0, 1}, Prd{1, 1}, Invprd{1, 1};\nmint inv(int n) {\n if(n > MAXN) return mint(n) ^ (MOD - 2);\n if(Inv.size() > n)\n return Inv[n];\n else {\n for(int i = Inv.size(); i <= n; ++i) Inv.emplace_back(Inv[MOD % i] * (-MOD / i));\n return Inv[n];\n }\n}\nmint inv(mint x) { return inv(x.a); }\nmint prd(int n) {\n if(Prd.size() > n)\n return Prd[n];\n else\n for(int i = Prd.size(); i <= n; ++i) Prd.emplace_back(Prd[i - 1] * i);\n return Prd[n];\n}\nmint invprd(int n) {\n if(Invprd.size() > n)\n return Invprd[n];\n else\n for(int i = Invprd.size(); i <= n; ++i) Invprd.emplace_back(Invprd[i - 1] * inv(i));\n return Invprd[n];\n}\nmint modpow(ll a, ll n) {\n mint x = a;\n return x ^= n;\n}\nmint operator/(mint l, mint r) { return l * inv(r); }\nmint &operator/=(mint &l, mint r) { return l = l / r; }\nmint C(int a, int b) {\n if(a < 0 || b < 0) return 0;\n if(a < b) return 0;\n return prd(a) * invprd(b) * invprd(a - b);\n}\nmint P(int a, int b) {\n if(a < 0 || b < 0) return 0;\n if(a < b) return 0;\n return prd(a) * invprd(a - b);\n}\nostream &operator<<(ostream &os, mint a) {\n os << a.a;\n return os;\n}\ntemplate <typename T> ostream &operator<<(ostream &os, vector<T> a) {\n for(auto &e : a) os << e << \" \";\n return os;\n}\nmint operator*(ll x, mint y) { return y * x; }\nistream &operator>>(istream &is, mint &a) {\n ll x;\n is >> x;\n a = x;\n return is;\n}\nmint proot = 3;\n\nvoid FMT(vmint &f, const bool is_inv = false) {\n const int n = f.size();\n const mint root = is_inv ? inv(proot) : proot;\n vmint g(n);\n for(int b = n >> 1; b > 0; b >>= 1) {\n mint a = root ^ ((MOD - 1) / (n / b)), p = 1;\n for(int i = 0; i < n; i += b << 1) {\n rep(j, b) {\n f[i + j + b] *= p;\n g[(i >> 1) + j] = f[i + j] + f[i + b + j];\n g[(n >> 1) + (i >> 1) + j] = f[i + j] - f[i + b + j];\n }\n p *= a;\n }\n swap(f, g);\n }\n if(is_inv) rep(i, n) f[i] *= inv(n);\n}\n\nvmint mul(vmint x, const vmint &y) {\n int n = x.size() + y.size() - 1;\n int s = 1;\n while(s < n) s <<= 1;\n x.resize(s);\n FMT(x);\n vmint z(s);\n rep(i, y.size()) z[i] = y[i];\n FMT(z);\n rep(i, s) x[i] *= z[i];\n FMT(x, true);\n x.resize(n);\n return x;\n}\n\nusing Poly = vmint;\nPoly operator-(Poly f) {\n for(auto &&e : f) e = -e;\n return f;\n}\nPoly &operator+=(Poly &l, const Poly &r) {\n l.resize(max(l.size(), r.size()));\n rep(i, r.size()) l[i] += r[i];\n return l;\n}\nPoly operator+(Poly l, const Poly &r) { return l += r; }\nPoly &operator-=(Poly &l, const Poly &r) {\n l.resize(max(l.size(), r.size()));\n rep(i, r.size()) l[i] -= r[i];\n return l;\n}\nPoly operator-(Poly l, const Poly &r) { return l -= r; }\nPoly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; }\nPoly operator<<(Poly f, size_t n) { return f <<= n; }\nPoly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; }\nPoly operator>>(Poly f, size_t n) { return f >>= n; }\nPoly operator*(const Poly &l, const Poly &r) { return mul(l, r); }\nPoly &operator*=(Poly &l, const Poly &r) { return l = l * r; }\nPoly inv(const Poly &f) {\n Poly g{1 / f[0]};\n while(g.size() < f.size()) {\n Poly x(f.begin(), f.begin() + min(f.size(), g.size() << 1)), y = g;\n x.resize(g.size() << 1), FMT(x);\n y.resize(g.size() << 1), FMT(y);\n rep(i, x.size()) x[i] *= y[i];\n FMT(x, true);\n x >>= g.size();\n x.resize(g.size() << 1), FMT(x);\n rep(i, x.size()) x[i] *= -y[i];\n FMT(x, true);\n g.insert(g.end(), x.begin(), x.begin() + g.size());\n }\n return Poly{begin(g), begin(g) + f.size()};\n}\nPoly integ(const Poly &f) {\n Poly res(f.size() + 1);\n for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i;\n return res;\n}\nPoly deriv(const Poly &f) {\n if(f.size() == 0) return Poly();\n Poly res(f.size() - 1);\n rep(i, res.size()) res[i] = f[i + 1] * (i + 1);\n return res;\n}\nPoly log(const Poly &f) {\n Poly g = integ(inv(f) * deriv(f));\n return Poly{g.begin(), g.begin() + f.size()};\n}\nPoly exp(const Poly &f) {\n Poly g{1};\n while(g.size() < f.size()) {\n Poly x(f.begin(), f.begin() + min(f.size(), g.size() * 2));\n x[0] += 1;\n g.resize(2 * g.size());\n x -= log(g);\n x *= {g.begin(), g.begin() + g.size() / 2};\n rep2(i, g.size() / 2, min<int>(x.size(), g.size()) - 1) g[i] = x[i];\n }\n return {g.begin(), g.begin() + f.size()};\n}\n\n} // namespace modular\nusing namespace modular;\nint main() {\n INT(n, m, k, f);\n vi a(m), b(m), c(m);\n rep(i, m) cin >> a[i] >> b[i] >> c[i];\n mint ans = 1;\n int t = n + (n - 1) * 2;\n int s = 0;\n rep(i, m) if(abs(a[i] - b[i]) <= 1) s++;\n rep(i, k) {\n int cnt = 0;\n rep(j, m) {\n if(c[j] & 1 << i and abs(a[j] - b[j]) <= 1) cnt++;\n }\n if(f & 1 << i) {\n if(cnt)\n ans *= modpow(2, n * n - m);\n else\n ans *= modpow(2, n * n - t - (m - s)) * (modpow(2, t - s) - 1);\n } else {\n if(cnt)\n ans = 0;\n else {\n ans *= modpow(2, n * n - t - (m - s));\n }\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 4344, "score_of_the_acc": -0.0734, "final_rank": 1 }, { "submission_id": "aoj_3159_4834120", "code_snippet": "#include <bits/stdc++.h>\n#define be(v) (v).begin(),(v).end()\n#define pb(q) push_back(q)\ntypedef long long ll;\nusing namespace std;\nconst ll mod=998244353, INF=(1LL<<60);\n#define doublecout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nlong long modpow(long long a, long long n) {\n long long res = 1;\n while (n > 0) {\n if (n & 1) res = res * a % mod;\n a = a * a % mod;\n n >>= 1;\n }\n return res;\n}\n\n\n///////modint\nstruct mint {\n ll x; // typedef long long ll;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}\n mint operator+(const mint a) const { return mint(*this) += a;}\n mint operator-(const mint a) const { return mint(*this) -= a;}\n mint operator*(const mint a) const { return mint(*this) *= a;}\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n\n // for prime mod\n mint inv() const { return pow(mod-2);}\n mint& operator/=(const mint a) { return *this *= a.inv();}\n mint operator/(const mint a) const { return mint(*this) /= a;}\n};\nistream& operator>>(istream& is, const mint& a) { return is >> a.x;}\nostream& operator<<(ostream& os, const mint& a) { return os << a.x;}\n\n\n\nint main() {\n cin.tie(0);\n cout.tie(0);\n ios::sync_with_stdio(false);\n ll n, m, k, f;\n cin >> n >> m >> k >> f;\n ll a, b, c;\n ll cnt = (n - 1) * 2 + n, maki = n * n - cnt;\n bool ok[k];\n memset(ok, 0, sizeof(ok));\n for(int i=0;i<m;i++){\n cin >> a >> b >> c;\n bool niko = (abs(a - b) <= 1);\n if(niko) cnt--;\n else maki--;\n for(int j=0;j<k;j++){\n if((c >> j & 1) && niko){\n ok[j] = true;\n }\n }\n }\n mint ans = mint(1);\n\n for(int i=0;i<k;i++){\n if(f >> i & 1){\n if(ok[i]){\n ans *= mint(modpow(2LL, cnt + maki));\n }else{\n ans *= mint(modpow(2LL, maki));\n ans *= mint(modpow(2LL, cnt) - 1);\n }\n }else{\n if(ok[i]){\n ans = mint(0);\n }else{\n ans *= mint(modpow(2LL, maki));\n }\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3208, "score_of_the_acc": -0.2072, "final_rank": 3 }, { "submission_id": "aoj_3159_4834102", "code_snippet": "#include <bits/stdc++.h>\n#define be(v) (v).begin(),(v).end()\n#define pb(q) push_back(q)\ntypedef long long ll;\nusing namespace std;\nconst ll mod=998244353, INF=(1LL<<60);\n#define doublecout(a) cout<<fixed<<setprecision(10)<<a<<endl;\n\nlong long modpow(long long a, long long n) {\n long long res = 1;\n while (n > 0) {\n if (n & 1) res = res * a % mod;\n a = a * a % mod;\n n >>= 1;\n }\n return res;\n}\n\n\n///////modint\nstruct mint {\n ll x; // typedef long long ll;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}\n mint operator+(const mint a) const { return mint(*this) += a;}\n mint operator-(const mint a) const { return mint(*this) -= a;}\n mint operator*(const mint a) const { return mint(*this) *= a;}\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n\n // for prime mod\n mint inv() const { return pow(mod-2);}\n mint& operator/=(const mint a) { return *this *= a.inv();}\n mint operator/(const mint a) const { return mint(*this) /= a;}\n};\nistream& operator>>(istream& is, const mint& a) { return is >> a.x;}\nostream& operator<<(ostream& os, const mint& a) { return os << a.x;}\n\n\n\nint main() {\n cin.tie(0);\n cout.tie(0);\n ios::sync_with_stdio(false);\n ll n, m, k, f;\n cin >> n >> m >> k >> f;\n ll a, b, c[m];\n ll cnt = (n - 1) * 2, maki = n * n - cnt;\n bool ok[k];\n memset(ok, 0, sizeof(ok));\n for(int i=0;i<m;i++){\n cin >> a >> b >> c[i];\n bool niko = (abs(a - b) <= 1);\n if(niko) cnt--;\n else maki--;\n for(int j=0;j<k;j++){\n if((c[i] >> j & 1) && niko){\n ok[j] = true;\n }\n }\n }\n mint ans = mint(1);\n\n for(int i=0;i<k;i++){\n if(f >> i & 1){\n if(ok[i]){\n ans *= mint(modpow(2LL, cnt + maki));\n }else{\n ans *= mint(modpow(2LL, maki));\n ans *= mint(modpow(2LL, cnt) - 1);\n }\n }else{\n if(ok[i]){\n ans = mint(0);\n }else{\n ans *= mint(modpow(2LL, maki));\n }\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 0.3026315789473684, "time_ms": 10, "memory_kb": 3844, "score_of_the_acc": -0.0443, "final_rank": 11 }, { "submission_id": "aoj_3159_4833747", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long\ntypedef pair<int,int> P;\nint INF = 1e18;\nint mod = 998244353;\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\nint mod_pow(int x,int y) {\n int res = 1;\n while(y > 0) {\n if(y%2) {\n res = res*x%mod;\n }\n x = x*x%mod;\n y/=2;\n }\n return res;\n}\nint fac[2500], finv[2500], inv[2500];\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < 2500; i++){\n fac[i] = fac[i - 1] * i % mod;\n inv[i] = mod - inv[mod%i] * (mod / i) % mod;\n finv[i] = finv[i - 1] * inv[i] % mod;\n }\n}\nint COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % mod) % mod;\n}\nsigned main() {\n int N,M,K,F;\n cin >> N >> M >> K >> F;\n int X = 0;\n vector<bool>ok(35,true);\n for(int i = 0; i < 35; i++) {\n ok[i] = (1^(F >> i));\n if(1 & (F >> i)) {\n X++;\n }\n }\n COMinit();\n for(int i = 0; i < M; i++) {\n int a,b,c;\n cin >> a >> b >> c;\n for(int j = 0; j < 35; j++) {\n if(1 & (c >> j)) {\n if((F >> j) == 0) {\n cout << 0 << endl;\n return 0;\n }\n ok[j] = true;\n }\n }\n }\n int cnt = 0;\n for(int i = 0; i < 35; i++) {\n if(!ok[i]) {\n cnt++;\n }\n }\n int ng = 0;\n for(int i = 0; i < cnt; i++) {\n ng += mod_pow(2,X-cnt)*COM(cnt,i)%mod;\n ng %= mod;\n }\n cout << (mod_pow(mod_pow(2,X),N*N-M)+mod-ng)%mod << endl;\n}", "accuracy": 0.039473684210526314, "time_ms": 10, "memory_kb": 3152, "score_of_the_acc": -0.004, "final_rank": 18 }, { "submission_id": "aoj_3159_4833737", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long\ntypedef pair<int,int> P;\nint INF = 1e18;\nint mod = 998244353;\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\nint mod_pow(int x,int y) {\n int res = 1;\n while(y > 0) {\n if(y%2) {\n res = res*x%mod;\n }\n x = x*x%mod;\n y/=2;\n }\n return res;\n}\nint fac[2500], finv[2500], inv[2500];\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < 2500; i++){\n fac[i] = fac[i - 1] * i % mod;\n inv[i] = mod - inv[mod%i] * (mod / i) % mod;\n finv[i] = finv[i - 1] * inv[i] % mod;\n }\n}\nint COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % mod) % mod;\n}\nsigned main() {\n int N,M,K,F;\n cin >> N >> M >> K >> F;\n int X = 0;\n vector<bool>ok(35,true);\n for(int i = 0; i < 35; i++) {\n ok[i] = (1^(F >> i));\n if(1 & (F >> i)) {\n X++;\n }\n }\n COMinit();\n for(int i = 0; i < M; i++) {\n int a,b,c;\n cin >> a >> b >> c;\n for(int j = 0; j < 35; j++) {\n if(1 & (c >> j)) {\n if((F >> j) == 0) {\n cout << 0 << endl;\n return 0;\n }\n ok[j] = true;\n }\n }\n }\n int cnt = 0;\n for(int i = 0; i < 35; i++) {\n if(!ok[i]) {\n cnt++;\n }\n }\n int ng = 0;\n for(int i = 0; i < cnt; i++) {\n if(i%2 == 0) {\n ng += mod_pow(2,X-cnt)*COM(cnt,i)%mod;\n }\n else {\n ng = (ng+mod-mod_pow(2,X-cnt)*COM(cnt,i))%mod;\n }\n }\n cout << (mod_pow(mod_pow(2,X),N*N-M)+mod-ng)%mod << endl;\n}", "accuracy": 0.039473684210526314, "time_ms": 10, "memory_kb": 3176, "score_of_the_acc": -0.0054, "final_rank": 20 }, { "submission_id": "aoj_3159_4833736", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n\n#include <utility>\n\nnamespace atcoder {\n\n namespace internal {\n\n// @param m `1 <= m`\n// @return x mod m\n constexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) { x += m; }\n return x;\n }\n\n// Fast moduler by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\n struct barrett {\n unsigned int _m;\n unsigned long long im;\n\n // @param m `1 <= m`\n barrett(unsigned int m) : _m(m), im((unsigned long long) (-1) / m + 1) {}\n\n // @return m\n unsigned int umod() const { return _m; }\n\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n // [1] m = 1\n // a = b = im = 0, so okay\n\n // [2] m >= 2\n // im = ceil(2^64 / m)\n // -> im * m = 2^64 + r (0 <= r < m)\n // let z = a*b = c*m + d (0 <= c, d < m)\n // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im\n // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2\n // ((ab * im) >> 64) == c or c + 1\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long) (((unsigned __int128) (z) * im) >> 64);\n#endif\n unsigned int v = (unsigned int) (z - x * _m);\n if (_m <= v) { v += _m; }\n return v;\n }\n };\n\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\n constexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) { return 0; }\n unsigned int _m = (unsigned int) (m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) { r = (r * y) % _m; }\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n }\n\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\n constexpr bool is_prime_constexpr(int n) {\n if (n <= 1) { return false; }\n if (n == 2 || n == 7 || n == 61) { return true; }\n if (n % 2 == 0) { return false; }\n long long d = n - 1;\n while (d % 2 == 0) { d /= 2; }\n for (long long a : {2, 7, 61}) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n }\n template<int n> constexpr bool is_prime = is_prime_constexpr(n);\n\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\n constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) { return {b, 0}; }\n\n // Contracts:\n // [1] s - m0 * a = 0 (mod b)\n // [2] t - m1 * a = 0 (mod b)\n // [3] s * |m1| + t * |m0| <= b\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n // [3]:\n // (s - t * u) * |m1| + t * |m0 - m1 * u|\n // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)\n // = s * |m1| + t * |m0| <= b\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n // by [3]: |m0| <= b/g\n // by g != b: |m0| < b/g\n if (m0 < 0) { m0 += b / s; }\n return {s, m0};\n }\n\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\n constexpr int primitive_root_constexpr(int m) {\n if (m == 2) { return 1; }\n if (m == 167772161) { return 3; }\n if (m == 469762049) { return 3; }\n if (m == 754974721) { return 11; }\n if (m == 998244353) { return 3; }\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) { x /= 2; }\n for (int i = 3; (long long) (i) * i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) { return g; }\n }\n }\n template<int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\n } // namespace internal\n\n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n\n namespace internal {\n\n#ifndef _MSC_VER\n template<class T>\n using is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n\n template<class T>\n using is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n\n template<class T>\n using make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n\n template<class T>\n using is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\n template<class T>\n using is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\n template<class T>\n using is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\n template<class T>\n using to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n\n#else\n\n template <class T> using is_integral = typename std::is_integral<T>;\n\n template <class T>\n using is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n\n template <class T>\n using is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n\n template <class T>\n using to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n\n#endif\n\n template<class T>\n using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n\n template<class T>\n using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n\n template<class T> using to_unsigned_t = typename to_unsigned<T>::type;\n\n } // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\n namespace internal {\n\n struct modint_base {};\n struct static_modint_base : modint_base {};\n\n template<class T> using is_modint = std::is_base_of<modint_base, T>;\n template<class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n\n } // namespace internal\n\n template<int m, std::enable_if_t<(1 <= m)> * = nullptr>\n struct static_modint : internal::static_modint_base {\n using mint = static_modint;\n\n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n static_modint() : _v(0) {}\n template<class T, internal::is_signed_int_t<T> * = nullptr>\n static_modint(T v) {\n long long x = (long long) (v % (long long) (umod()));\n if (x < 0) { x += umod(); }\n _v = (unsigned int) (x);\n }\n template<class T, internal::is_unsigned_int_t<T> * = nullptr>\n static_modint(T v) {\n _v = (unsigned int) (v % umod());\n }\n static_modint(bool v) { _v = ((unsigned int) (v) % umod()); }\n\n unsigned int val() const { return _v; }\n\n mint &operator++() {\n _v++;\n if (_v == umod()) { _v = 0; }\n return *this;\n }\n mint &operator--() {\n if (_v == 0) { _v = umod(); }\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) { _v -= umod(); }\n return *this;\n }\n mint &operator-=(const mint &rhs) {\n _v -= rhs._v;\n if (_v >= umod()) { _v += umod(); }\n return *this;\n }\n mint &operator*=(const mint &rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int) (z % umod());\n return *this;\n }\n mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) { r *= x; }\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n\n friend mint operator+(const mint &lhs, const mint &rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint &lhs, const mint &rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint &lhs, const mint &rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint &lhs, const mint &rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint &lhs, const mint &rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint &lhs, const mint &rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n };\n\n template<int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n\n public:\n static int mod() { return (int) (bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n dynamic_modint() : _v(0) {}\n template<class T, internal::is_signed_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n long long x = (long long) (v % (long long) (mod()));\n if (x < 0) { x += mod(); }\n _v = (unsigned int) (x);\n }\n template<class T, internal::is_unsigned_int_t<T> * = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int) (v % mod());\n }\n dynamic_modint(bool v) { _v = ((unsigned int) (v) % mod()); }\n\n unsigned int val() const { return _v; }\n\n mint &operator++() {\n _v++;\n if (_v == umod()) { _v = 0; }\n return *this;\n }\n mint &operator--() {\n if (_v == 0) { _v = umod(); }\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint &operator+=(const mint &rhs) {\n _v += rhs._v;\n if (_v >= umod()) { _v -= umod(); }\n return *this;\n }\n mint &operator-=(const mint &rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) { _v -= umod(); }\n return *this;\n }\n mint &operator*=(const mint &rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) { r *= x; }\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n\n friend mint operator+(const mint &lhs, const mint &rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint &lhs, const mint &rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint &lhs, const mint &rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint &lhs, const mint &rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint &lhs, const mint &rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint &lhs, const mint &rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n };\n template<int id> internal::barrett dynamic_modint<id>::bt = 998244353;\n\n using modint998244353 = static_modint<998244353>;\n using modint1000000007 = static_modint<1000000007>;\n using modint = dynamic_modint<-1>;\n\n namespace internal {\n\n template<class T>\n using is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n\n template<class T>\n using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n\n template<class> struct is_dynamic_modint : public std::false_type {};\n template<int id>\n struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n\n template<class T>\n using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n\n } // namespace internal\n\n} // namespace atcoder\n\nusing namespace atcoder;\n\n#define int long long\n#define rep(i, n) for (int i = 0; i < (int) (n); i++)\n#define reps(i, n) for (int i = 1; i <= (int) (n); i++)\n#define all(x) (x).begin(), (x).end()\n#define uniq(x) (x).erase(unique(all(x)), (x).end())\n#define bit(n) (1LL << (n))\n#define dump(x) cerr << #x \" = \" << (x) << endl\nusing vint = vector<int>;\nusing vvint = vector<vint>;\nusing pint = pair<int, int>;\nusing vpint = vector<pint>;\ntemplate<typename T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;\nconstexpr double PI = 3.1415926535897932384626433832795028;\nconstexpr int DY[9] = {0, 1, 0, -1, 1, 1, -1, -1, 0};\nconstexpr int DX[9] = {1, 0, -1, 0, 1, -1, -1, 1, 0};\nint sign(int x) { return (x > 0) - (x < 0); }\nint gcd(int a, int b) {\n while (b) { swap(a %= b, b); }\n return a;\n}\nint lcm(int a, int b) { return a / gcd(a, b) * b; }\nint cdiv(int a, int b) { return (a - 1 + b) / b; }\ntemplate<typename T> void fin(T mes) {\n cout << mes << endl;\n exit(0);\n}\ntemplate<typename T> T sq(T x) { return x * x; }\ntemplate<typename T, typename U> bool chmax(T &a, const U &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<typename T, typename U> bool chmin(T &a, const U &b) {\n if (b < a) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &rhs) {\n os << \"(\" << rhs.first << \", \" << rhs.second << \")\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const vector<T> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const deque<T> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const set<T> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const multiset<T> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\nstruct setup {\n static constexpr int PREC = 20;\n setup() {\n cout << fixed << setprecision(PREC);\n cerr << fixed << setprecision(PREC);\n };\n} setup;\n\nusing mint = modint998244353;\n\nsigned main() {\n int N, M, K, F;\n cin >> N >> M >> K >> F;\n int x = 0, hasi = (N - 2) * (N - 1);\n int hoge = 0;\n rep(i, M) {\n int a, b, c;\n cin >> a >> b >> c;\n if (abs(a - b) > 1) {\n hoge++;\n continue;\n }\n x |= c;\n }\n M -= hoge;\n if (F != (F | x)) { fin(0); }\n int cnt = __builtin_popcountll(F ^ x);\n int p = __builtin_popcountll(x);\n fin((((mint(2).pow(hasi - hoge).pow(K)) * (mint(2).pow(N * N - hasi - M) - 1).pow(cnt))\n * (mint(2).pow(N * N - hasi - M).pow(p))).val());\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3464, "score_of_the_acc": -0.6221, "final_rank": 5 }, { "submission_id": "aoj_3159_4833695", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long\ntypedef pair<int,int> P;\nint INF = 1e18;\nint mod = 998244353;\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\nint mod_pow(int x,int y) {\n int res = 1;\n while(y > 0) {\n if(y%2) {\n res = res*x%mod;\n }\n x = x*x%mod;\n y/=2;\n }\n return res;\n}\nint fac[2500], finv[2500], inv[2500];\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < 2500; i++){\n fac[i] = fac[i - 1] * i % mod;\n inv[i] = mod - inv[mod%i] * (mod / i) % mod;\n finv[i] = finv[i - 1] * inv[i] % mod;\n }\n}\nint COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % mod) % mod;\n}\nsigned main() {\n int N,M,K,F;\n cin >> N >> M >> K >> F;\n int X = 0;\n vector<bool>ok(35,true);\n for(int i = 0; i < 35; i++) {\n ok[i] = (1^(F >> i));\n if(1 & (F >> i)) {\n X++;\n }\n }\n COMinit();\n for(int i = 0; i < M; i++) {\n int a,b,c;\n cin >> a >> b >> c;\n for(int j = 0; j < 35; j++) {\n if(1 & (c >> j)) {\n if((F >> j) == 0) {\n cout << 0 << endl;\n return 0;\n }\n ok[j] = true;\n }\n }\n }\n int cnt = 0;\n for(int i = 0; i < 35; i++) {\n if(!ok[i]) {\n cnt++;\n }\n }\n int ng = 0;\n for(int i = 1; i <= cnt; i++) {\n if(i%2 == cnt%2) {\n ng += mod_pow(2,X-i)*COM(cnt,i)%mod;\n }\n else {\n ng = (ng+mod-mod_pow(2,X-i)*COM(cnt,i))%mod;\n }\n }\n cout << (mod_pow(mod_pow(2,X),N*N-M)+mod-ng)%mod << endl;\n}", "accuracy": 0.039473684210526314, "time_ms": 10, "memory_kb": 3140, "score_of_the_acc": -0.0033, "final_rank": 17 }, { "submission_id": "aoj_3159_4833691", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define int long long\ntypedef pair<int,int> P;\nint INF = 1e18;\nint mod = 998244353;\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\nint mod_pow(int x,int y) {\n int res = 1;\n while(y > 0) {\n if(y%2) {\n res = res*x%mod;\n }\n x = x*x%mod;\n y/=2;\n }\n return res;\n}\nint fac[2500], finv[2500], inv[2500];\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (int i = 2; i < 2500; i++){\n fac[i] = fac[i - 1] * i % mod;\n inv[i] = mod - inv[mod%i] * (mod / i) % mod;\n finv[i] = finv[i - 1] * inv[i] % mod;\n }\n}\nint COM(int n, int k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % mod) % mod;\n}\nsigned main() {\n int N,M,K,F;\n cin >> N >> M >> K >> F;\n int X = 0;\n vector<bool>ok(35,true);\n for(int i = 0; i < 35; i++) {\n ok[i] = (1^(F >> i));\n if(1 & (F >> i)) {\n X++;\n }\n }\n COMinit();\n for(int i = 0; i < M; i++) {\n int a,b,c;\n cin >> a >> b >> c;\n for(int j = 0; j < 35; j++) {\n if(1 & (c >> j)) {\n if((F >> j) == 0) {\n cout << 0 << endl;\n return 0;\n }\n ok[j] = true;\n }\n }\n }\n int cnt = 0;\n for(int i = 0; i < 35; i++) {\n if(!ok[i]) {\n cnt++;\n }\n }\n int ng = 0;\n for(int i = 1; i <= cnt; i++) {\n if(i%2 == 1) {\n ng += mod_pow(2,X-i)*COM(cnt,i)%mod;\n }\n if(i%2 == 0) {\n ng = (ng+mod-mod_pow(2,X-i)*COM(cnt,i))%mod;\n }\n }\n cout << (mod_pow(mod_pow(2,X),N*N-M)+mod-ng)%mod << endl;\n}", "accuracy": 0.039473684210526314, "time_ms": 10, "memory_kb": 3156, "score_of_the_acc": -0.0042, "final_rank": 19 } ]
aoj_3165_cpp
B: 三角形足し算 問題 長さ $N$ の数列 $A = (a_1, ..., a_N)$ があり、値は最初全て $0$ である。 数列 $A$ に対して、以下で説明するクエリを $Q$ 回行う。 二つの正整数 $l$, $k$ が与えられる。$0 \leq i < k$ を満たす各整数 $i$ に対して $a_{l+i}$ に $i+1$ を加算する。 $Q$ 回のクエリを順に処理した後の数列 $A$ を出力せよ。 入力形式 入力は $Q + 1$ 行で与えられる。 $N$ $Q$ $l_1$ $k_1$ $l_2$ $k_2$ ... $l_Q$ $k_Q$ $1$ 行目には、数列の長さ $N$ とクエリの数 $Q$ が空白区切りで与えられる。 続く $Q$ 行には、各 $l$ と $k$ が空白区切りで与えられる。$l_i$ 及び $k_i$ はそれぞれ $i$ 番目のクエリの $l$ 及び $k$ を表す。 制約 入力は全て整数で与えられる $1 \leq N \leq 2 \times 10^5$ $1 \leq Q \leq 2 \times 10^5$ $2 \leq l_i + k_i \leq N + 1$ ($1\leq i\leq Q$) $1 \leq l_i$ ($1\leq i\leq Q$) $1 \leq k_i$ ($1\leq i\leq Q$) 出力形式 クエリを処理し終えた後の $A$ の各要素を、$1$ 番目から順番に半角スペース区切りで一行に出力せよ。 入力例1 4 1 2 3 出力例1 0 1 2 3 このクエリにおいて、$A$ の添字 $2 \leq i < 2+3$ の部分が変化する。 まず $a_2$ に $1$ 加算する。 次に $a_3$ に $2$ 加算する。 最後に $a_4$ に $3$ 加算する。 結果、できる数列は $(0, 1, 2, 3)$ である。 入力例2 8 3 1 2 2 4 3 6 出力例2 1 3 3 5 7 4 5 6 入力例3 10 15 1 2 2 3 3 2 3 2 3 2 3 2 3 2 4 3 5 3 5 2 5 2 5 2 7 2 8 2 9 2 出力例3 1 3 7 14 6 11 4 3 3 2 ここにそのような例を載せることはできませんが、オーバーフローには注意してください。
[ { "submission_id": "aoj_3165_10637653", "code_snippet": "#pragma region Macros\n#include <bits/stdc++.h>\n\nusing namespace std;\nusing lint = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing int128 = __int128_t;\n#define all(x) (x).begin(), (x).end()\n#define EPS 1e-8\n#define uniqv(v) v.erase(unique(all(v)), v.end())\n#define OVERLOAD_REP(_1, _2, _3, name, ...) name\n#define REP1(i, n) for (auto i = std::decay_t<decltype(n)>{}; (i) != (n); ++(i))\n#define REP2(i, l, r) for (auto i = (l); (i) != (r); ++(i))\n#define rep(...) OVERLOAD_REP(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)\n#define log(x) cout << x << endl\n#define logfixed(x) cout << fixed << setprecision(10) << x << endl;\n#define logy(bool) \\\n if (bool) { \\\n cout << \"Yes\" << endl; \\\n } else { \\\n cout << \"No\" << endl; \\\n }\n\nostream &operator<<(ostream &dest, __int128_t value) {\n ostream::sentry s(dest);\n if (s) {\n __uint128_t tmp = value < 0 ? -value : value;\n char buffer[128];\n char *d = end(buffer);\n do {\n --d;\n *d = \"0123456789\"[tmp % 10];\n tmp /= 10;\n } while (tmp != 0);\n if (value < 0) {\n --d;\n *d = '-';\n }\n int len = end(buffer) - d;\n if (dest.rdbuf()->sputn(d, len) != len) {\n dest.setstate(ios_base::badbit);\n }\n }\n return dest;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n for (int i = 0; i < (int)v.size(); i++) {\n os << v[i] << (i + 1 != (int)v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate <typename T>\nostream &operator<<(ostream &os, const set<T> &set_var) {\n for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {\n os << *itr;\n ++itr;\n if (itr != set_var.end()) os << \" \";\n itr--;\n }\n return os;\n}\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const map<T, U> &map_var) {\n for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {\n os << itr->first << \" -> \" << itr->second << \"\\n\";\n }\n return os;\n}\n\ntemplate <typename T, typename U>\nostream &operator<<(ostream &os, const pair<T, U> &pair_var) {\n os << \"(\" << pair_var.first << \", \" << pair_var.second << \")\";\n return os;\n}\n\nvoid out() { cout << '\\n'; }\ntemplate <class T, class... Ts>\nvoid out(const T &a, const Ts &...b) {\n cout << a;\n (cout << ... << (cout << ' ', b));\n cout << '\\n';\n}\n\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v) {\n for (T &in : v) is >> in;\n return is;\n}\n\ninline void in(void) { return; }\ntemplate <typename First, typename... Rest>\nvoid in(First &first, Rest &...rest) {\n cin >> first;\n in(rest...);\n return;\n}\n\ntemplate <typename T>\nbool chmax(T &a, const T &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <typename T>\nbool chmin(T &a, const T &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nvector<lint> dx8 = {1, 1, 0, -1, -1, -1, 0, 1};\nvector<lint> dy8 = {0, 1, 1, 1, 0, -1, -1, -1};\nvector<lint> dx4 = {1, 0, -1, 0};\nvector<lint> dy4 = {0, 1, 0, -1};\n\n#pragma endregion\n\ntemplate <class S,\n auto op,\n auto e,\n class F,\n auto mapping,\n auto composition,\n auto id>\nstruct lazy_segtree {\n private:\n unsigned int seg_bit_ceil(unsigned int n) {\n unsigned int x = 1;\n while (x < (unsigned int)(n)) x *= 2;\n return x;\n }\n\n public:\n static_assert(std::is_convertible_v<decltype(op), std::function<S(S, S)>>,\n \"op must work as S(S, S)\");\n static_assert(std::is_convertible_v<decltype(e), std::function<S()>>,\n \"e must work as S()\");\n static_assert(\n std::is_convertible_v<decltype(mapping), std::function<S(F, S)>>,\n \"mapping must work as F(F, S)\");\n static_assert(\n std::is_convertible_v<decltype(composition), std::function<F(F, F)>>,\n \"compostiion must work as F(F, F)\");\n static_assert(std::is_convertible_v<decltype(id), std::function<F()>>,\n \"id must work as F()\");\n lazy_segtree() : lazy_segtree(0) {}\n explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}\n explicit lazy_segtree(const std::vector<S> &v) : _n(int(v.size())) {\n size = (int)seg_bit_ceil((unsigned int)(_n));\n log = __builtin_ctz((unsigned int)size);\n d = std::vector<S>(2 * size, e());\n lz = std::vector<F>(size, id());\n for (int i = 0; i < _n; i++) d[size + i] = v[i];\n for (int i = size - 1; i >= 1; i--) {\n update(i);\n }\n }\n\n void set(int p, S x) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n d[p] = x;\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n\n S get(int p) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n return d[p];\n }\n\n S prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return e();\n\n l += size;\n r += size;\n\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n\n S sml = e(), smr = e();\n while (l < r) {\n if (l & 1) sml = op(sml, d[l++]);\n if (r & 1) smr = op(d[--r], smr);\n l >>= 1;\n r >>= 1;\n }\n\n return op(sml, smr);\n }\n\n S all_prod() { return d[1]; }\n\n void apply(int p, F f) {\n assert(0 <= p && p < _n);\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n d[p] = mapping(f, d[p]);\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n void apply(int l, int r, F f) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return;\n\n l += size;\n r += size;\n\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n\n {\n int l2 = l, r2 = r;\n while (l < r) {\n if (l & 1) all_apply(l++, f);\n if (r & 1) all_apply(--r, f);\n l >>= 1;\n r >>= 1;\n }\n l = l2;\n r = r2;\n }\n\n for (int i = 1; i <= log; i++) {\n if (((l >> i) << i) != l) update(l >> i);\n if (((r >> i) << i) != r) update((r - 1) >> i);\n }\n }\n\n template <bool (*g)(S)>\n int max_right(int l) {\n return max_right(l, [](S x) { return g(x); });\n }\n template <class G>\n int max_right(int l, G g) {\n assert(0 <= l && l <= _n);\n assert(g(e()));\n if (l == _n) return _n;\n l += size;\n for (int i = log; i >= 1; i--) push(l >> i);\n S sm = e();\n do {\n while (l % 2 == 0) l >>= 1;\n if (!g(op(sm, d[l]))) {\n while (l < size) {\n push(l);\n l = (2 * l);\n if (g(op(sm, d[l]))) {\n sm = op(sm, d[l]);\n l++;\n }\n }\n return l - size;\n }\n sm = op(sm, d[l]);\n l++;\n } while ((l & -l) != l);\n return _n;\n }\n\n template <bool (*g)(S)>\n int min_left(int r) {\n return min_left(r, [](S x) { return g(x); });\n }\n template <class G>\n int min_left(int r, G g) {\n assert(0 <= r && r <= _n);\n assert(g(e()));\n if (r == 0) return 0;\n r += size;\n for (int i = log; i >= 1; i--) push((r - 1) >> i);\n S sm = e();\n do {\n r--;\n while (r > 1 && (r % 2)) r >>= 1;\n if (!g(op(d[r], sm))) {\n while (r < size) {\n push(r);\n r = (2 * r + 1);\n if (g(op(d[r], sm))) {\n sm = op(d[r], sm);\n r--;\n }\n }\n return r + 1 - size;\n }\n sm = op(d[r], sm);\n } while ((r & -r) != r);\n return 0;\n }\n\n private:\n int _n, size, log;\n std::vector<S> d;\n std::vector<F> lz;\n\n void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }\n void all_apply(int k, F f) {\n d[k] = mapping(f, d[k]);\n if (k < size) lz[k] = composition(f, lz[k]);\n }\n void push(int k) {\n all_apply(2 * k, lz[k]);\n all_apply(2 * k + 1, lz[k]);\n lz[k] = id();\n }\n};\n\nclass RangeLinearAddRangeSum {\n private:\n static constexpr long long INF = 8e18;\n static constexpr int INFI = int(1e9) + 10;\n\n struct S {\n long long sum;\n int l, r;\n };\n struct F {\n long long a, b;\n };\n\n static S op(S a, S b) {\n return S{a.sum + b.sum, min(a.l, b.l), max(a.r, b.r)};\n }\n static S e() {\n return S{0, INFI, -INFI};\n }\n\n static S mapping(F f, S s) {\n return {s.sum + (f.a * (s.l + s.r - 1) + f.b * 2) * (s.r - s.l) / 2, s.l, s.r};\n }\n\n static F composition(F f, F g) {\n return {f.a + g.a, f.b + g.b};\n }\n\n static F id() {\n return F{0, 0};\n }\n\n lazy_segtree<S, op, e, F, mapping, composition, id> seg;\n\n public:\n RangeLinearAddRangeSum(const vector<long long> &v) {\n int n = int(v.size());\n vector<S> tmp(n);\n for (int i = 0; i < n; i++) {\n tmp[i].l = i;\n tmp[i].r = i + 1;\n tmp[i].sum = v[i];\n }\n seg = lazy_segtree<S, op, e, F, mapping, composition, id>(tmp);\n }\n\n void set(int i, S x) {\n seg.set(i, x);\n }\n S get(int i) {\n return seg.get(i);\n }\n S all_prod() {\n return seg.all_prod();\n }\n S prod(int l, int r) {\n return seg.prod(l, r);\n }\n void apply(int l, int r, F f) {\n seg.apply(l, r, F{f.a, f.b - f.a * get(l).l});\n }\n void apply(int i, F f) {\n seg.apply(i, F{f.a, f.b - f.a * get(i).l});\n }\n\n template <bool (*g)(S)>\n int max_right(int l) {\n return seg.max_right(l, [](S x) { return g(x); });\n }\n template <bool (*g)(S)>\n int min_left(int r) {\n return seg.min_left(r, [](S x) { return g(x); });\n }\n};\nint main() {\n cin.tie(0)->sync_with_stdio(0);\n int n, q;\n in(n, q);\n vector<long long> v(n);\n RangeLinearAddRangeSum seg(v);\n\n rep(i, q) {\n int l, k;\n in(l, k);\n l--;\n seg.apply(l, l + k, {1, 1});\n }\n\n vector<long long> res(n);\n rep(i, n) {\n res[i] = seg.get(i).sum;\n }\n\n out(res);\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 20168, "score_of_the_acc": -1.1462, "final_rank": 16 }, { "submission_id": "aoj_3165_10114656", "code_snippet": "#include <vector>\n#include <numeric>\n#include <algorithm>\n#include <functional>\n#include <cassert>\n#include <limits>\n\nconstexpr int bit_ceil_log(unsigned int n) {\n int x = 0;\n while ((1 << x) < (unsigned int)(n)) x++;\n return x;\n}\n\ntemplate <typename T>\nstruct linear_add_range_sum {\n private:\n struct node {\n T sum, lza, lzb;\n long long isum;\n int sz;\n node(int i = -1, T v = 0) : sum(v), lza(0), lzb(0), isum(i == -1 ? 0 : i), sz(i == -1 ? 0 : 1) {}\n };\n\n int _n, size, log;\n std::vector<node> nd;\n\n void all_apply(int k, T a, T b) {\n nd[k].sum += nd[k].isum * a + nd[k].sz * b;\n if (k < size) nd[k].lza += a, nd[k].lzb += b;\n }\n\n void push(int k) {\n all_apply(2 * k, nd[k].lza, nd[k].lzb);\n all_apply(2 * k + 1, nd[k].lza, nd[k].lzb);\n nd[k].lza = nd[k].lzb = 0;\n }\n\n void pull(int k) {\n nd[k].sum = nd[k * 2].sum + nd[k * 2 + 1].sum;\n }\n \n public:\n linear_add_range_sum() : linear_add_range_sum(0) {}\n linear_add_range_sum(int n) : linear_add_range_sum(std::vector<T>(n, 0)) {}\n linear_add_range_sum(const std::vector<T>& v) : _n(int(v.size())) {\n log = bit_ceil_log((unsigned int)_n);\n size = 1 << log;\n nd = std::vector<node>(2 * size);\n for (int i = 0; i < size; i++) nd[size + i] = node(i < _n ? i : -1, i < _n ? v[i] : 0);\n for (int i = size - 1; i >= 1; i--) {\n nd[i].sz = nd[2 * i].sz + nd[2 * i + 1].sz;\n nd[i].isum = nd[2 * i].isum + nd[2 * i + 1].isum;\n nd[i].sum = nd[2 * i].sum + nd[2 * i + 1].sum;\n }\n }\n \n void set(int p, T x) {\n assert(0 <= p && p < _n);\n int P = p;\n p += size;\n for (int i = log; i >= 1; i--) push(p >> i);\n nd[p] = node(P, x);\n for (int i = 1; i <= log; i++) pull(P >> i);\n }\n\n T get(int p) {\n assert(0 <= p && p < _n);\n p += size;\n T a = 0, b = 0;\n for (int i = log; i >= 1; i--) a += nd[p >> i].lza, b += nd[p >> i].lzb;\n return nd[p].sum + nd[p].isum * a + b;\n }\n\n void apply(int l, int r, T a, T b) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return;\n l += size;\n r += size;\n {\n int l2 = l, r2 = r;\n while (l < r) {\n if (l & 1) all_apply(l++, a, b);\n if (r & 1) all_apply(--r, a, b);\n l >>= 1;\n r >>= 1;\n }\n l = l2;\n r = r2;\n }\n for (int i = 1; i <= log; i++) {\n if (((l >> i) << i) != l) pull(l >> i);\n if (((r >> i) << i) != r) pull((r - 1) >> i);\n }\n }\n\n // [l, r)のsum\n T prod(int l, int r) {\n assert(0 <= l && l <= r && r <= _n);\n if (l == r) return 0;\n l += size;\n r += size;\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n T res = 0;\n while (l < r) {\n if (l & 1) res += nd[l++].sum;\n if (r & 1) res += nd[--r].sum;\n l >>= 1;\n r >>= 1;\n }\n return res;\n }\n};\n\n#include <iostream>\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n int N, Q;\n std::cin >> N >> Q;\n linear_add_range_sum<long long> seg(N);\n\n for (int i = 0; i < Q; i++) {\n int l, k;\n std::cin >> l >> k;\n l--;\n seg.apply(l, l + k, 1, -l + 1);\n }\n\n for (int i = 0; i < N; i++) {\n std::cout << seg.get(i) << (i + 1 == N ? \"\\n\" : \" \");\n }\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 25164, "score_of_the_acc": -1.1471, "final_rank": 17 }, { "submission_id": "aoj_3165_10071855", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate<typename OpMonoid>\nstruct lazy_segtree {\n using S = typename OpMonoid::S;\n using F = typename OpMonoid::F;\n lazy_segtree() : lazy_segtree(0) {}\n lazy_segtree(int _n) : lazy_segtree(vector<S>(_n, OpMonoid::e())) {}\n lazy_segtree(const vector<S> &v) { init(v); }\n void set(const vector<S> &v) { init(v); }\n void set(int p, const S &x) {\n assert(0 <= p && p < n);\n p += sz;\n inner_push(p);\n d[p] = x;\n inner_update(p);\n }\n void apply(int p, const F &f) {\n assert(0 <= p && p < n);\n p += sz;\n inner_push(p);\n d[p] = OpMonoid::mapping(f, d[p]);\n inner_update(p);\n }\n void apply(int l, int r, const F &f) {\n assert(0 <= l && l <=r && r <= n);\n l += sz;\n r += sz;\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n int l2 = l, r2 = r;\n while (l < r) {\n if (l & 1) all_apply(l++, f);\n if (r & 1) all_apply(--r, f);\n l >>= 1;\n r >>= 1;\n }\n l = l2, r = r2;\n for (int i = 1; i <= log; i++) {\n if (((l >> i) << i) != l) update(l >> i);\n if (((r >> i) << i) != r) update((r - 1) >> i);\n }\n }\n S get(int p) {\n assert(0 <= p && p < n);\n p += sz;\n inner_push(p);\n return d[p];\n }\n S prod(int l, int r) {\n assert(0 <= l && l <=r && r <= n);\n l += sz;\n r += sz;\n for (int i = log; i >= 1; i--) {\n if (((l >> i) << i) != l) push(l >> i);\n if (((r >> i) << i) != r) push((r - 1) >> i);\n }\n S pl = OpMonoid::e(), pr = OpMonoid::e();\n while (l < r) {\n if (l & 1) pl = OpMonoid::op(pl, d[l++]);\n if (r & 1) pr = OpMonoid::op(d[--r], pr);\n l >>= 1;\n r >>= 1;\n }\n return OpMonoid::op(pl, pr);\n }\n S all_prod() const { return d[1]; }\nprivate:\n int n, log, sz;\n vector<S> d;\n vector<F> lz;\n void init(const vector<S> &v) {\n n = v.size();\n log = 1;\n while ((1 << log) < n) log++;\n sz = 1 << log;\n d = vector<S>(2 * sz, OpMonoid::e());\n lz = vector<F>(sz, OpMonoid::id());\n for (int i = 0; i < n; i++) d[i + sz] = v[i];\n for (int i = sz - 1; i >= 1; i--) update(i);\n }\n void update(int p) {\n d[p] = OpMonoid::op(d[2 * p], d[2 * p + 1]);\n }\n void all_apply(int p, const F &f) {\n d[p] = OpMonoid::mapping(f, d[p]);\n if (p < sz) lz[p] = OpMonoid::comp(f, lz[p]);\n }\n void push(int p) {\n all_apply(2 * p, lz[p]);\n all_apply(2 * p + 1, lz[p]);\n lz[p] = OpMonoid::id();\n }\n void inner_update(int p) {\n for (int i = 1; i <= log; i++) update(p >> i);\n }\n void inner_push(int p) {\n for (int i = log; i >= 1; i--) push(p >> i);\n }\n};\n\ntemplate<typename T>\nstruct range_arithmetic_add_range_sum {\n static constexpr int inf = numeric_limits<int>::max() / 2;\n struct S {\n T sm;\n int l, r;\n T sum() const { return sm; }\n S() : S(0, inf, -inf) {}\n S(T x, int p) : S(x, p, p + 1) {}\n S(T _sm, int _l, int _r) : sm(_sm), l(_l), r(_r) {}\n };\n static S op(const S&a, const S &b) {\n S c;\n c.sm = a.sum() + b.sum();\n c.l = min(a.l, b.l);\n c.r = max(a.r, b.r);\n return c;\n }\n static S e() {\n return S();\n }\n struct F {\n T a, b;\n F() : F(0, 0) {}\n F(T _a, T _b) : a(_a), b(_b) {}\n };\n static F comp(const F &f, const F &g) {\n return F(f.a + g.a, f.b + g.b);\n }\n static F id() {\n return F();\n }\n static S mapping(const F &f, const S &x) {\n S y;\n y.sm = x.sm + (f.a * (x.l + x.r - 1) + f.b * 2) * (x.r - x.l) / 2;\n y.l = x.l;\n y.r = x.r;\n return y;\n }\n};\n\nusing M = range_arithmetic_add_range_sum<long long>;\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int N, Q;\n cin >> N >> Q;\n lazy_segtree<M> seg(N);\n for (int i = 0; i < N; i++) {\n seg.set(i, M::S(0, i));\n }\n while (Q--) {\n int l, k;\n cin >> l >> k;\n l--;\n seg.apply(l, l + k, M::F(1, 1 - l));\n }\n for (int i = 0; i < N; i++) {\n cout << seg.get(i).sum() << \" \\n\"[i + 1 == N];\n }\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 18556, "score_of_the_acc": -1.07, "final_rank": 15 }, { "submission_id": "aoj_3165_9870270", "code_snippet": "#include <bits/stdc++.h>\n\n\nusing namespace std;\n//make -f ../makefile SRC=\n/*\nprefix sum for AP\n*/\n\n\n//------------------------------------------------------------------------------\nbool DEBUG = false;\nconst int INF = 1000000000;\n\nconst int MAX_N = 200000 + 5;\nstatic int64_t vect[MAX_N];\n\n//------------------------------------------------------------------------------\nvoid solve(int N)\n{\n //--------------------------------------------------------------------------\n // base cases:\n //--------------------------------------------------------------------------\n // init:\n //--------------------------------------------------------------------------\n // compute:\n for (int i=1; i<N+1; ++i) vect[i] += vect[i-1];\n for (int i=1; i<N+1; ++i) vect[i] += vect[i-1];\n\n for (int i=1; i<N; ++i) printf(\"%ld \", vect[i]);\n printf(\"%ld\\n\", vect[N]);\n}\n\n//------------------------------------------------------------------------------\nvoid test()\n{\n\n}\n\n//------------------------------------------------------------------------------\nint main()\n{\n //test(); return 0;\n //DEBUG = true;\n //--------------------------------------------------------------------------\n int N, Q, K, L, num;\n num = scanf(\"%d %d \", &N, &Q);\n for (int i=0; i<N+5; ++i) vect[i] = 0;\n for (int q=0; q<Q; ++q)\n {\n num = scanf(\"%d %d \", &K, &L);\n vect[K]++;\n vect[K+L] -= L+1;\n vect[K+L+1] += L;\n }\n solve(N);\n //--------------------------------------------------------------------------\n return 0;\n}\n//------------------------------------------------------------------------------", "accuracy": 1, "time_ms": 30, "memory_kb": 5128, "score_of_the_acc": -0.0824, "final_rank": 3 }, { "submission_id": "aoj_3165_9870265", "code_snippet": "#include <bits/stdc++.h>\n\n\nusing namespace std;\n//make -f ../makefile SRC=\n/*\nprefix sum for AP\n*/\n\n\n//------------------------------------------------------------------------------\nbool DEBUG = false;\nconst int INF = 1000000000;\n\nconst int MAX_N = 200000 + 5;\nstatic int vect[MAX_N];\n\n//------------------------------------------------------------------------------\nvoid solve(int N)\n{\n //--------------------------------------------------------------------------\n // base cases:\n //--------------------------------------------------------------------------\n // init:\n //--------------------------------------------------------------------------\n // compute:\n for (int i=1; i<N+1; ++i) vect[i] += vect[i-1];\n for (int i=1; i<N+1; ++i) vect[i] += vect[i-1];\n\n for (int i=1; i<N; ++i) printf(\"%d \", vect[i]);\n printf(\"%d\\n\", vect[N]);\n}\n\n//------------------------------------------------------------------------------\nvoid test()\n{\n\n}\n\n//------------------------------------------------------------------------------\nint main()\n{\n //test(); return 0;\n //DEBUG = true;\n //--------------------------------------------------------------------------\n int N, Q, K, L, num;\n num = scanf(\"%d %d \", &N, &Q);\n for (int i=0; i<N+5; ++i) vect[i] = 0;\n for (int q=0; q<Q; ++q)\n {\n num = scanf(\"%d %d \", &K, &L);\n vect[K]++;\n vect[K+L] -= L+1;\n vect[K+L+1] += L;\n }\n solve(N);\n //--------------------------------------------------------------------------\n return 0;\n}\n//------------------------------------------------------------------------------", "accuracy": 0.38235294117647056, "time_ms": 20, "memory_kb": 4008, "score_of_the_acc": 0, "final_rank": 20 }, { "submission_id": "aoj_3165_8813212", "code_snippet": "#define _CRT_SECURE_NO_WARNINGS\n#pragma GCC target \"no-avx\"\n\n#if USE_MP\n#include <boost/multiprecision/cpp_int.hpp>\n#endif\n#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <cmath>\n#include <cstdio>\n#include <cstring>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <list>\n#include <map>\n#include <memory>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <unordered_set>\n#include <unordered_map>\n#include <vector>\n#if defined _DEBUG\n//#include \"TestCase.h\"\n//#include \"Util.h\"\n#endif\n\nusing namespace std;\n\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\ntypedef tuple<ll, ll, ll> tlll;\ntypedef tuple<int, int, int> tiii;\n\nusing ai2 = array<int, 2>;\nusing ai3 = array<int, 3>;\nusing ai4 = array<int, 4>;\nusing al2 = array<ll, 2>;\nusing al3 = array<ll, 3>;\nusing al4 = array<ll, 4>;\nusing ad2 = array<ld, 2>;\nusing ad3 = array<ld, 3>;\nusing ad4 = array<ld, 4>;\n\ninline void Yes(bool upper = false) { cout << (upper ? \"YES\" : \"Yes\") << \"\\n\"; }\ninline void No(bool upper = false) { cout << (upper ? \"NO\" : \"No\") << \"\\n\"; }\n\ninline ll DivCeil(ll nume, ll deno)\n{\n\tassert(deno != 0);\n\tif (deno < 0) { nume = -nume; deno = -deno; }\n\tif (nume < 0) return -(-nume / deno);\n\telse return (nume + deno - 1) / deno;\n}\ninline ll DivFloor(ll nume, ll deno)\n{\n\tassert(deno != 0);\n\tif (deno < 0) { nume = -nume; deno = -deno; }\n\tif (nume < 0) return -((-nume + deno - 1) / deno);\n\telse return nume / deno;\n}\ninline ll DivRound(ll nume, ll deno)\n{\n\tassert(deno != 0);\n\tif (deno < 0) { nume = -nume; deno = -deno; }\n\tif (nume < 0) return -((-nume + deno / 2) / deno);\n\telse return (nume + deno / 2) / deno;\n}\n\ntemplate <typename T, int S>\nauto MakeVecImpl(queue<int>& size, const T& ini)\n{\n\tif constexpr (S == 1)\n\t{\n\t\treturn vector<T>(size.front(), ini);\n\t}\n\telse\n\t{\n\t\tint fsize = size.front();\n\t\tsize.pop();\n\t\treturn vector(fsize, MakeVecImpl<T, S - 1>(size, ini));\n\t}\n}\n\ntemplate <typename T, int S>\nauto MakeVec(const array<int, S>& size, const T ini = T())\n{\n\tqueue<int> qsize;\n\tfor (const auto v : size) qsize.push(v);\n\treturn MakeVecImpl<T, S>(qsize, ini);\n}\nint d4[][2] =\n{\n\t{0,-1},\n\t{0,1},\n\t{-1,0},\n\t{1,0},\n};\nint d8[][2] =\n{\n\t{-1,-1},\n\t{0,-1},\n\t{1,-1},\n\n\t{-1,0},\n\t{1,0},\n\n\t{-1,1},\n\t{0,1},\n\t{1,1},\n};\nvector<array<int, 2>> Neighbor2(int y, int x)\n{\n\tvector<array<int, 2>> ret;\n\tret.push_back({ y, x + 1 });\n\tret.push_back({ y + 1, x });\n\treturn ret;\n}\nvector<array<int, 2>> Neighbor4(int y, int x)\n{\n\tvector<array<int, 2>> ret;\n\tret.push_back({ y, x - 1 });\n\tret.push_back({ y, x + 1 });\n\tret.push_back({ y - 1, x });\n\tret.push_back({ y + 1, x });\n\treturn ret;\n}\nvector<array<int, 2>> Neighbor6(int y, int x)\n{\n\tvector<array<int, 2>> ret;\n\tconst int ofs = (y & 1); // 1 - (y & 1); //\n\n\tret.push_back({ y, x - 1 });\n\tret.push_back({ y, x + 1 });\n\n\tret.push_back({ y - 1, x - 1 + ofs });\n\tret.push_back({ y - 1, x + ofs });\n\n\tret.push_back({ y + 1, x - 1 + ofs });\n\tret.push_back({ y + 1, x + ofs });\n\n\treturn ret;\n}\nvector<array<int, 2>> Neighbor8(int y, int x)\n{\n\tvector<array<int, 2>> ret;\n\tret.push_back({ y - 1, x - 1 });\n\tret.push_back({ y - 1, x });\n\tret.push_back({ y - 1, x + 1 });\n\n\tret.push_back({ y, x - 1 });\n\tret.push_back({ y, x + 1 });\n\n\tret.push_back({ y + 1, x - 1 });\n\tret.push_back({ y + 1, x });\n\tret.push_back({ y + 1, x + 1 });\n\treturn ret;\n}\n\nvector<int> DecompDigit(ull val)\n{\n\tif (val == 0)\n\t\treturn { 0 };\n\n\tvector<int> ret;\n\twhile (val)\n\t{\n\t\tret.emplace_back(val % 10);\n\t\tval /= 10;\n\t}\n\treverse(ret.begin(), ret.end());\n\treturn ret;\n}\n\n\n#define PI 3.14'159'265'358'979l\nlong double R2D = 180 / PI;\nlong double D2R = PI / 180;\n\nstatic const ll Mod = 1'000'000'007;\nstatic const ll Mod9 = 998244353;// 1000000007;\nstatic const ll INF64 = 4'500000'000000'000000;// 10000000000000000;\nstatic const int INF32 = 2'000'000'000;\n\nrandom_device rd;\n//mt19937 mt(rd());\nmt19937 mt(0);\n#if USE_MP\nusing mpint = boost::multiprecision::cpp_int;\n#endif\n\nconst double EPS = 1e-10;\n\nstruct Solver\n{\n\tvoid Run()\n\t{\n\t\tint N, Q;\n\t\tcin >> N >> Q;\n\t\tvector<ll> A(N + 2);\n\t\twhile (Q--) {\n\t\t\tint l, k;\n\t\t\tcin >> l >> k;\n\t\t\tl--;\n\t\t\tA[l]++;\n\t\t\tA[l + k] -= k + 1;\n\t\t\tA[l + k + 1] += k;\n\t\t}\n\t\tfor (int i = 1; i < A.size(); i++) A[i] += A[i - 1];\n\t\tfor (int i = 1; i < A.size(); i++) A[i] += A[i - 1];\n\t\tfor (int i = 0; i < N; i++) {\n\t\t\tif (i) cout << ' ';\n\t\t\tcout << A[i];\n\t\t}\n\t\tcout << \"\\n\";\n\t}\n};\n\nint main()\n{\n\tstd::cin.tie(nullptr); //★インタラクティブ注意★\n\tstd::ios_base::sync_with_stdio(false);\n\tint T = 1;\n\t//cin >> T;\n\twhile (T--)\n\t{\n\t\tSolver S;\n\t\tS.Run();\n\t}\n\n\treturn 0;\n}\n\n/// 値渡しになっていないか?\n/// 入力を全部読んでいるか? 途中でreturnしない\n/// 32bitで収まるか? 10^5数えるとき\n/// modは正しいか?\n/// multisetでcountしていないか?", "accuracy": 1, "time_ms": 30, "memory_kb": 4660, "score_of_the_acc": -0.0602, "final_rank": 2 }, { "submission_id": "aoj_3165_8813205", "code_snippet": "#define _CRT_SECURE_NO_WARNINGS\n#pragma GCC target \"no-avx\"\n\n#if USE_MP\n#include <boost/multiprecision/cpp_int.hpp>\n#endif\n#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <cmath>\n#include <cstdio>\n#include <cstring>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <list>\n#include <map>\n#include <memory>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <unordered_set>\n#include <unordered_map>\n#include <vector>\n#if defined _DEBUG\n//#include \"TestCase.h\"\n//#include \"Util.h\"\n#endif\n\nusing namespace std;\n\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\ntypedef tuple<ll, ll, ll> tlll;\ntypedef tuple<int, int, int> tiii;\n\nusing ai2 = array<int, 2>;\nusing ai3 = array<int, 3>;\nusing ai4 = array<int, 4>;\nusing al2 = array<ll, 2>;\nusing al3 = array<ll, 3>;\nusing al4 = array<ll, 4>;\nusing ad2 = array<ld, 2>;\nusing ad3 = array<ld, 3>;\nusing ad4 = array<ld, 4>;\n\ninline void Yes(bool upper = false) { cout << (upper ? \"YES\" : \"Yes\") << \"\\n\"; }\ninline void No(bool upper = false) { cout << (upper ? \"NO\" : \"No\") << \"\\n\"; }\n\ninline ll DivCeil(ll nume, ll deno)\n{\n\tassert(deno != 0);\n\tif (deno < 0) { nume = -nume; deno = -deno; }\n\tif (nume < 0) return -(-nume / deno);\n\telse return (nume + deno - 1) / deno;\n}\ninline ll DivFloor(ll nume, ll deno)\n{\n\tassert(deno != 0);\n\tif (deno < 0) { nume = -nume; deno = -deno; }\n\tif (nume < 0) return -((-nume + deno - 1) / deno);\n\telse return nume / deno;\n}\ninline ll DivRound(ll nume, ll deno)\n{\n\tassert(deno != 0);\n\tif (deno < 0) { nume = -nume; deno = -deno; }\n\tif (nume < 0) return -((-nume + deno / 2) / deno);\n\telse return (nume + deno / 2) / deno;\n}\n\ntemplate <typename T, int S>\nauto MakeVecImpl(queue<int>& size, const T& ini)\n{\n\tif constexpr (S == 1)\n\t{\n\t\treturn vector<T>(size.front(), ini);\n\t}\n\telse\n\t{\n\t\tint fsize = size.front();\n\t\tsize.pop();\n\t\treturn vector(fsize, MakeVecImpl<T, S - 1>(size, ini));\n\t}\n}\n\ntemplate <typename T, int S>\nauto MakeVec(const array<int, S>& size, const T ini = T())\n{\n\tqueue<int> qsize;\n\tfor (const auto v : size) qsize.push(v);\n\treturn MakeVecImpl<T, S>(qsize, ini);\n}\nint d4[][2] =\n{\n\t{0,-1},\n\t{0,1},\n\t{-1,0},\n\t{1,0},\n};\nint d8[][2] =\n{\n\t{-1,-1},\n\t{0,-1},\n\t{1,-1},\n\n\t{-1,0},\n\t{1,0},\n\n\t{-1,1},\n\t{0,1},\n\t{1,1},\n};\nvector<array<int, 2>> Neighbor2(int y, int x)\n{\n\tvector<array<int, 2>> ret;\n\tret.push_back({ y, x + 1 });\n\tret.push_back({ y + 1, x });\n\treturn ret;\n}\nvector<array<int, 2>> Neighbor4(int y, int x)\n{\n\tvector<array<int, 2>> ret;\n\tret.push_back({ y, x - 1 });\n\tret.push_back({ y, x + 1 });\n\tret.push_back({ y - 1, x });\n\tret.push_back({ y + 1, x });\n\treturn ret;\n}\nvector<array<int, 2>> Neighbor6(int y, int x)\n{\n\tvector<array<int, 2>> ret;\n\tconst int ofs = (y & 1); // 1 - (y & 1); //\n\n\tret.push_back({ y, x - 1 });\n\tret.push_back({ y, x + 1 });\n\n\tret.push_back({ y - 1, x - 1 + ofs });\n\tret.push_back({ y - 1, x + ofs });\n\n\tret.push_back({ y + 1, x - 1 + ofs });\n\tret.push_back({ y + 1, x + ofs });\n\n\treturn ret;\n}\nvector<array<int, 2>> Neighbor8(int y, int x)\n{\n\tvector<array<int, 2>> ret;\n\tret.push_back({ y - 1, x - 1 });\n\tret.push_back({ y - 1, x });\n\tret.push_back({ y - 1, x + 1 });\n\n\tret.push_back({ y, x - 1 });\n\tret.push_back({ y, x + 1 });\n\n\tret.push_back({ y + 1, x - 1 });\n\tret.push_back({ y + 1, x });\n\tret.push_back({ y + 1, x + 1 });\n\treturn ret;\n}\n\nvector<int> DecompDigit(ull val)\n{\n\tif (val == 0)\n\t\treturn { 0 };\n\n\tvector<int> ret;\n\twhile (val)\n\t{\n\t\tret.emplace_back(val % 10);\n\t\tval /= 10;\n\t}\n\treverse(ret.begin(), ret.end());\n\treturn ret;\n}\n\n\n#define PI 3.14'159'265'358'979l\nlong double R2D = 180 / PI;\nlong double D2R = PI / 180;\n\nstatic const ll Mod = 1'000'000'007;\nstatic const ll Mod9 = 998244353;// 1000000007;\nstatic const ll INF64 = 4'500000'000000'000000;// 10000000000000000;\nstatic const int INF32 = 2'000'000'000;\n\nrandom_device rd;\n//mt19937 mt(rd());\nmt19937 mt(0);\n#if USE_MP\nusing mpint = boost::multiprecision::cpp_int;\n#endif\n\nconst double EPS = 1e-10;\n\ntemplate <typename DATA, typename LAZY>\nstruct LazySegmentTree\n{\n\tLazySegmentTree(size_t size,\n\t\tDATA unit,\n\t\tLAZY identity,\n\t\tfunction<DATA(DATA, DATA)> dataMergeFunc,\n\t\tfunction<DATA(LAZY, DATA)> evaluationFunc,\n\t\tfunction<LAZY(LAZY, LAZY)> lazyMergeFunc\n\t) : e(unit),\n\t\tI(identity),\n\t\tmergeData(dataMergeFunc),\n\t\tevaluate(evaluationFunc),\n\t\tmergeLazy(lazyMergeFunc),\n\t\tNorg(size)\n\t{\n\t\t// 2べきのサイズを求める\n\t\tN = 1;\n\t\twhile (N < size) N <<= 1;\n\n\t\t// 領域確保\n\t\tdata.resize(2 * N - 1, e);\n\t\tlazy.resize(2 * N - 1, I);\n\n\t\t// 伝搬\n\t\tfor (int i = N - 2; i >= 0; i--)\n\t\t\tdata[i] = mergeData(data[i * 2 + 1], data[i * 2 + 2]);\n\t}\n\tLazySegmentTree(const vector<DATA>& vec,\n\t\tDATA unit,\n\t\tLAZY identity,\n\t\tfunction<DATA(DATA, DATA)> dataMergeFunc,\n\t\tfunction<DATA(LAZY, DATA)> evaluationFunc,\n\t\tfunction<LAZY(LAZY, LAZY)> lazyMergeFunc\n\t) : e(unit),\n\t\tI(identity),\n\t\tmergeData(dataMergeFunc),\n\t\tevaluate(evaluationFunc),\n\t\tmergeLazy(lazyMergeFunc),\n\t\tNorg(vec.size())\n\t{\n\t\t// 2べきのサイズを求める\n\t\tN = 1;\n\t\twhile (N < vec.size()) N <<= 1;\n\n\t\t// 領域確保\n\t\tdata.resize(2 * N - 1, e);\n\t\tlazy.resize(2 * N - 1, I);\n\n\t\t// vecをコピーして伝搬\n\t\tcopy(vec.begin(), vec.end(), data.begin() + N - 1);\n\t\tfor (int i = N - 2; i >= 0; i--)\n\t\t\tdata[i] = mergeData(data[i * 2 + 1], data[i * 2 + 2]);\n\t}\n\n\t// 区間評価\n\tDATA Fold(size_t l, size_t r)\n\t{\n\t\treturn Fold(l, r, 0, 0, N);\n\t}\n\n\t// 区間更新\n\tvoid Update(size_t l, size_t r, LAZY val)\n\t{\n\t\tUpdate(l, r, 0, 0, N, val);\n\t}\n\n#pragma region binary search\n\t// セグメント木上の二分探索\n\t// 区間[l, r)について、IsOKになる最大のrを求める\n\tsize_t MaxRight(size_t l, function<bool(DATA)> IsOK)\n\t{\n\t\tvector<bool> isEvaluated(data.size());\n\t\tauto LazyEvalToRoot = [this, &isEvaluated](size_t idx) {\t// 根に向かって未反映のノードを探し、自分まで辿る\n\t\t\tsize_t cur = idx;\n\t\t\tvector<size_t> target;\n\t\t\twhile (!isEvaluated[cur]) {\n\t\t\t\ttarget.emplace_back(cur);\n\t\t\t\tif (cur == 0) break;\n\t\t\t\tcur = (cur - 1) >> 1;\n\t\t\t}\n\t\t\tfor (int i = target.size() - 1; i >= 0; i--) {\n\t\t\t\tLazyEval(target[i]);\n\t\t\t\tisEvaluated[target[i]] = true;\n\t\t\t}\n\t\t\t};\n\n\t\t// [l, l+1)でも満たさない場合は即終了\n\t\tLazyEvalToRoot(l + N - 1);\n\t\tif (!IsOK(data[l + N - 1])) return l;\n\n\t\t// 二分探索\n\t\tsize_t maxR = N;\n\t\tsize_t curIdx = l + N - 1;\n\t\tsize_t curR = l + 1;\n\t\tDATA curVal = data[curIdx];\n\t\tDATA prvVal = e;\n\t\tsize_t step = 2;\n\n\t\tsize_t nxtR, nxtIdx;\n\t\tDATA nxtVal;\n\n\t\t// 葉から上へ\n\t\twhile (maxR > curR)\n\t\t{\n\t\t\t// 自分が左部分木なら[l, l+step)のstepを増やしていくイメージ\n\t\t\tif (IsLeft(curIdx))\n\t\t\t{\n\t\t\t\tnxtR = curR + step - (step >> 1);\n\t\t\t\tnxtIdx = (curIdx - 1) >> 1;\t// 親\n\t\t\t\tLazyEvalToRoot(nxtIdx);\n\t\t\t\tnxtVal = mergeData(prvVal, data[nxtIdx]);\n\t\t\t\tif (IsOK(nxtVal))\n\t\t\t\t{\n\t\t\t\t\tcurIdx = nxtIdx;\n\t\t\t\t\tcurR = nxtR;\n\t\t\t\t\t// prvValはまだ更新しない lが同じでstepが大きいものを試すため\n\t\t\t\t\tcurVal = nxtVal;\n\t\t\t\t}\n\t\t\t\telse\n\t\t\t\t{\n\t\t\t\t\t// 次のノードの左部分木から下りていく\n\t\t\t\t\tstep >>= 2;\n\t\t\t\t\tnxtR = curR + step;\n\t\t\t\t\tnxtIdx = (curIdx + 1) * 2 + 1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\t// 自分が右部分木なら[l, l+step)に[l+step, l+step*2)を継ぎ足すイメージ\n\t\t\telse\n\t\t\t{\n\t\t\t\tnxtR = curR + step;\n\t\t\t\tnxtIdx = (curIdx + 1) >> 1;\t// 隣の親\n\t\t\t\tLazyEvalToRoot(nxtIdx);\n\t\t\t\tnxtVal = mergeData(curVal, data[nxtIdx]);\n\t\t\t\tif (IsOK(nxtVal))\n\t\t\t\t{\n\t\t\t\t\tcurIdx = nxtIdx;\n\t\t\t\t\tcurR = nxtR;\n\t\t\t\t\tprvVal = curVal;\n\t\t\t\t\tcurVal = nxtVal;\n\t\t\t\t}\n\t\t\t\telse\n\t\t\t\t{\n\t\t\t\t\t// 次のノードからから下りていく\n\t\t\t\t\tstep >>= 1;\n\t\t\t\t\tnxtR = curR + step;\n\t\t\t\t\tnxtIdx = curIdx + 1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\n\t\t\t}\n\t\t\tstep <<= 1;\n\t\t}\n\t\t// OKのまま右端まで来てたら終了\n\t\tif (maxR == curR)\n\t\t\treturn min(curR, Norg);\n\n\t\t// 下へ(prv~はもう使わない)\n\t\twhile (nxtR > curR)\n\t\t{\n\t\t\tLazyEvalToRoot(nxtIdx);\n\t\t\tnxtVal = mergeData(curVal, data[nxtIdx]);\n\t\t\tif (IsOK(nxtVal))\n\t\t\t{\n\t\t\t\tcurIdx = nxtIdx;\n\t\t\t\tcurVal = nxtVal;\n\t\t\t\tcurR = nxtR;\n\n\t\t\t\t// 次のノードの左部分木へ\n\t\t\t\tstep >>= 1;\n\t\t\t\tnxtR = curR + step;\n\t\t\t\tnxtIdx = (curIdx + 1) * 2 + 1;\n\t\t\t}\n\t\t\telse\n\t\t\t{\n\t\t\t\t// 自分の左部分木へ\n\t\t\t\tstep >>= 1;\n\t\t\t\tnxtR = curR + step;\n\t\t\t\tnxtIdx = nxtIdx * 2 + 1;\n\t\t\t}\n\t\t}\n\t\treturn min(curR, Norg);\n\t}\n\n\t// セグメント木上の二分探索\n\t// 区間[l, r)について、IsOKになる最小のlを求める\n\tsize_t MinLeft(size_t r, function<bool(DATA)> IsOK)\n\t{\n\t\tr = min(r, Norg);\n\n\t\tvector<bool> isEvaluated(data.size());\n\t\tauto LazyEvalToRoot = [this, &isEvaluated](size_t idx) {\t// 根に向かって未反映のノードを探し、自分まで辿る\n\t\t\tsize_t cur = idx;\n\t\t\tvector<size_t> target;\n\t\t\twhile (!isEvaluated[cur]) {\n\t\t\t\ttarget.emplace_back(cur);\n\t\t\t\tif (cur == 0) break;\n\t\t\t\tcur = (cur - 1) >> 1;\n\t\t\t}\n\t\t\tfor (int i = target.size() - 1; i >= 0; i--) {\n\t\t\t\tLazyEval(target[i]);\n\t\t\t\tisEvaluated[target[i]] = true;\n\t\t\t}\n\t\t\t};\n\n\t\t// [r-1, r)でも満たさない場合は即終了\n\t\tLazyEvalToRoot(r - 1 + N - 1);\n\t\tif (!IsOK(data[r - 1 + N - 1])) return r;\n\n\t\t// 二分探索\n\t\tsize_t minL = 0;\n\t\tsize_t curIdx = r - 1 + N - 1;\n\t\tsize_t curL = r - 1;\n\t\tDATA curVal = data[curIdx];\n\t\tDATA prvVal = e;\n\t\tsize_t step = 2;\n\n\t\tsize_t nxtL, nxtIdx;\n\t\tDATA nxtVal;\n\n\t\t// 葉から上へ\n\t\twhile (minL < curL)\n\t\t{\n\t\t\t// 自分が右部分木なら[r-step, r)のstepを増やしていくイメージ\n\t\t\tif (IsRight(curIdx))\n\t\t\t{\n\t\t\t\tnxtL = curL - step + (step >> 1);\n\t\t\t\tnxtIdx = (curIdx - 1) >> 1;\t// 親\n\t\t\t\tLazyEvalToRoot(nxtIdx);\n\t\t\t\tnxtVal = mergeData(data[nxtIdx], prvVal);\n\t\t\t\tif (IsOK(nxtVal))\n\t\t\t\t{\n\t\t\t\t\tcurIdx = nxtIdx;\n\t\t\t\t\tcurL = nxtL;\n\t\t\t\t\t// prvValはまだ更新しない rが同じでstepが大きいものを試すため\n\t\t\t\t\tcurVal = nxtVal;\n\t\t\t\t}\n\t\t\t\telse\n\t\t\t\t{\n\t\t\t\t\t// 前のノードの右部分木から下りていく\n\t\t\t\t\tstep >>= 2;\n\t\t\t\t\tnxtL = curL - step;\n\t\t\t\t\tnxtIdx = (curIdx - 1) * 2 + 2;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t\t// 自分が左部分木なら[r-step, r)に[r-step*2, r-step)を継ぎ足すイメージ\n\t\t\telse\n\t\t\t{\n\t\t\t\tnxtL = curL - step;\n\t\t\t\tnxtIdx = ((curIdx - 1) >> 1) - 1;\t// 隣の親\n\t\t\t\tLazyEvalToRoot(nxtIdx);\n\t\t\t\tnxtVal = mergeData(data[nxtIdx], curVal);\n\t\t\t\tif (IsOK(nxtVal))\n\t\t\t\t{\n\t\t\t\t\tcurIdx = nxtIdx;\n\t\t\t\t\tcurL = nxtL;\n\t\t\t\t\tprvVal = curVal;\n\t\t\t\t\tcurVal = nxtVal;\n\t\t\t\t}\n\t\t\t\telse\n\t\t\t\t{\n\t\t\t\t\t// 前のノードからから下りていく\n\t\t\t\t\tstep >>= 1;\n\t\t\t\t\tnxtL = curL - step;\n\t\t\t\t\tnxtIdx = curIdx - 1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\n\t\t\t}\n\t\t\tstep <<= 1;\n\t\t}\n\t\t// OKのまま左端まで来てたら終了\n\t\tif (minL == curL)\n\t\t\treturn minL;\n\n\t\t// 下へ(prv~はもう使わない)\n\t\twhile (nxtL < curL)\n\t\t{\n\t\t\tLazyEvalToRoot(nxtIdx);\n\t\t\tnxtVal = mergeData(curVal, data[nxtIdx]);\n\t\t\tif (IsOK(nxtVal))\n\t\t\t{\n\t\t\t\tcurIdx = nxtIdx;\n\t\t\t\tcurVal = nxtVal;\n\t\t\t\tcurL = nxtL;\n\n\t\t\t\t// 前のノードの右部分木へ\n\t\t\t\tstep >>= 1;\n\t\t\t\tnxtL = curL - step;\n\t\t\t\tnxtIdx = (curIdx - 1) * 2 + 2;\n\t\t\t}\n\t\t\telse\n\t\t\t{\n\t\t\t\t// 自分の右部分木へ\n\t\t\t\tstep >>= 1;\n\t\t\t\tnxtL = curL - step;\n\t\t\t\tnxtIdx = nxtIdx * 2 + 2;\n\t\t\t}\n\t\t}\n\t\treturn curL;\n\t}\n#pragma endregion\nprivate:\n#pragma region primitive data\n\tsize_t N;\t\t\t\t\t\t\t\t// 2べき化したサイズ\t\n\tsize_t Norg;\t\t\t\t\t\t\t// 元のサイズ\n\tDATA e;\t\t\t\t\t\t\t\t\t// 実データの単位元\n\tLAZY I;\t\t\t\t\t\t\t\t\t// 遅延評価の恒等写像\n\tvector<DATA> data;\t\t\t\t\t\t// 実データ\n\tvector<LAZY> lazy;\t\t\t\t\t\t// 遅延評価値\n\tfunction<DATA(DATA, DATA)> mergeData;\t// 取得時のマージ演算\n\tfunction<DATA(LAZY, DATA)> evaluate;\t// lazy -> dataの反映\n\tfunction<LAZY(LAZY, LAZY)> mergeLazy;\t// lazyを下のlazyにマージする操作\n#pragma endregion\n\n#pragma region implementation\n\t// 区間評価(本体)\n\tDATA Fold(size_t queryL, size_t queryR,\n\t\tsize_t nodeIdx, size_t nodeL, size_t nodeR\n\t)\n\t{\n\t\t// 遅延評価\n\t\tLazyEval(nodeIdx);\n\n\t\t// かすりもしない\n\t\tif (queryL >= nodeR || queryR <= nodeL) return e;\n\n\t\t// 完全に覆われる\n\t\tif (queryL <= nodeL && queryR >= nodeR) return data[nodeIdx];\n\n\t\t// 部分的に覆われる\n\t\tsize_t nodeM = (nodeL + nodeR) / 2;\n\t\treturn mergeData(\n\t\t\tFold(queryL, queryR, 2 * nodeIdx + 1, nodeL, nodeM),\n\t\t\tFold(queryL, queryR, 2 * nodeIdx + 2, nodeM, nodeR)\n\t\t);\n\t}\n\n\t// 区間更新(本体)\n\tvoid Update(size_t queryL, size_t queryR,\n\t\tsize_t nodeIdx, size_t nodeL, size_t nodeR,\n\t\tLAZY val\n\t)\n\t{\n\t\tLazyEval(nodeIdx);\n\n\t\t// かすりもしない\n\t\tif (queryL >= nodeR || queryR <= nodeL) return;\n\n\t\t// 完全に覆われる\n\t\tif (queryL <= nodeL && queryR >= nodeR) {\n\t\t\tlazy[nodeIdx] = mergeLazy(val, lazy[nodeIdx]);\n\t\t\tLazyEval(nodeIdx);\n\t\t\treturn;\n\t\t}\n\n\t\t// 部分的に覆われる\n\t\tsize_t nodeM = (nodeL + nodeR) / 2;\n\t\tUpdate(queryL, queryR, 2 * nodeIdx + 1, nodeL, nodeM, val);\n\t\tUpdate(queryL, queryR, 2 * nodeIdx + 2, nodeM, nodeR, val);\n\t\tdata[nodeIdx] = mergeData(data[2 * nodeIdx + 1], data[2 * nodeIdx + 2]);\n\t}\n\n\t// 遅延評価\n\tvoid LazyEval(size_t idx)\n\t{\n\t\tdata[idx] = evaluate(lazy[idx], data[idx]);\n\n\t\t// 一段落とす\n\t\tif (idx < N - 1)\n\t\t{\n\t\t\tlazy[idx * 2 + 1] = mergeLazy(lazy[idx], lazy[idx * 2 + 1]);\n\t\t\tlazy[idx * 2 + 2] = mergeLazy(lazy[idx], lazy[idx * 2 + 2]);\n\t\t}\n\n\t\tlazy[idx] = I;\n\t}\n#pragma endregion\n\tinline bool IsLeft(size_t idx) const { return (idx & 1) == 1; }\n\tinline bool IsRight(size_t idx) const { return (idx & 1) == 0; }\n};\n\nstruct Data\n{\n\tll val;\n\tsize_t size;\n};\n\t\nusing Lazy = ll;\n\t\nData MergeData(Data a, Data b)\n{\n\treturn { a.val + b.val, a.size + b.size };\n}\n\t\nData Evaluate(Lazy l, Data a)\n{\n\ta.val += l * a.size;\n\treturn a;\n}\n\t\nLazy MergeLazy(Lazy a, Lazy b)\n{\n\treturn a + b;\n}\n\t \nconst Data unit{ 0, 1 };\nconst Lazy Identity = 0;\n\nstruct Solver\n{\n\tvoid Run()\n\t{\n\t\tint N, Q;\n\t\tcin >> N >> Q;\n\n\t\tLazySegmentTree<Data, Lazy> st(N+1, unit, Identity, MergeData, Evaluate, MergeLazy );\n\t\twhile (Q--) {\n\t\t\tint l, k;\n\t\t\tcin >> l >> k;\n\t\t\tl--;\n\t\t\tst.Update(l, l + k, 1);\n\t\t\tst.Update(l + k, l + k + 1, -k);\n\t\t}\n\n\t\tll a = 0;\n\t\tfor (int i = 0; i < N; i++) {\n\t\t\ta += st.Fold(i, i + 1).val;\n\t\t\tif (i)\n\t\t\t\tcout << ' ';\n\t\t\tcout << a;\n\t\t}\n\t\tcout << \"\\n\";\n\t}\n};\n\nint main()\n{\n\tstd::cin.tie(nullptr); //★インタラクティブ注意★\n\tstd::ios_base::sync_with_stdio(false);\n\tint T = 1;\n\t//cin >> T;\n\twhile (T--)\n\t{\n\t\tSolver S;\n\t\tS.Run();\n\t}\n\n\treturn 0;\n}\n\n/// 値渡しになっていないか?\n/// 入力を全部読んでいるか? 途中でreturnしない\n/// 32bitで収まるか? 10^5数えるとき\n/// modは正しいか?\n/// multisetでcountしていないか?", "accuracy": 1, "time_ms": 360, "memory_kb": 15496, "score_of_the_acc": -1.543, "final_rank": 18 }, { "submission_id": "aoj_3165_8738135", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vl = vector<ll>;\n#define rep(i, s, f) for(long long i = s; i <= f; i++)\n\ntemplate<typename T>\nstruct dualsegtree {\n \n dualsegtree(int siz, T _id) : id(_id) {\n n = 1;\n while(n < siz) n <<= 1;\n dat.resize(n*2, id);\n }\n\n private: \n\n \n int n;\n vector<T> dat;\n T id;\n \n\n void eval(int k, int len) {\n if(len == 1) return;\n dat[k << 1] = op(dat[k << 1], dat[k]);\n dat[(k << 1) + 1] = op(dat[(k << 1) + 1], dat[k]);\n dat[k] = id;\n }\n\n\n void update(int a, int b, T e, int l, int r, int k) {//[a, b) := 今見ている区間 [l, r) := クエリ区間\n eval(k, b-a);\n if(b <= l || r <= a) return;\n if(l <= a && b <= r) {\n dat[k] = op(dat[k], e);\n eval(k, b-a);\n return;\n }\n int mid = (a+b)>>1;\n update(a, mid, e, l, r, k<<1);\n update(mid, b, e, l, r, (k<<1)+1);\n }\n\n T query(int pos) {\n int a = 1;\n int b = n+1;\n int k = 1;\n while(1) {\n eval(k, b-a);\n if(b-a == 1) {\n return dat[k];\n }\n int mid = (a+b)>>1;\n if(mid <= pos) {\n k = (k << 1) + 1;\n a = mid;\n }\n else {\n k <<= 1;\n b = mid;\n } \n }\n }\n\n\n public: \n\n void set(int pos, T val) {\n dat[pos+n-1] = val;\n }\n\n void init() {\n\n }\n\n void change(int l, int r, T x) {\n update(1, n+1, x, l, r+1, 1);\n }\n\n T get(int pos) {\n return query(pos);\n }\n\n};\n\n\nstruct Monoid {\n ll a, d;\n Monoid():a(0), d(0){}\n Monoid(ll _a, ll _d) : a(_a), d(_d) {}\n friend Monoid op(const Monoid& l, const Monoid& r) {//monoid * monoid\n return Monoid(l.a + r.a, l.d + r.d);\n }\n\n};\nusing E = Monoid;\n\nMonoid id(0, 0);\n\nint main() {\n ll N, Q;\n cin >> N >> Q;\n dualsegtree<Monoid> seg(N+1, id);\n rep(i,1,N)seg.set(i, id);\n seg.init();\n rep(qi, 1, Q) {\n ll l, k;\n cin >> l >> k;\n seg.change(l, l + k - 1, Monoid(2-l, 1));\n }\n\n rep(i,1,N) {\n auto [a,d] = seg.get(i);\n cout << a + (i-1) * d;\n if(i != N) cout << \" \";}\n cout << endl;\n \n}", "accuracy": 1, "time_ms": 150, "memory_kb": 11316, "score_of_the_acc": -0.7278, "final_rank": 11 }, { "submission_id": "aoj_3165_8738048", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vl = vector<ll>;\n#define rep(i, s, f) for(long long i = s; i <= f; i++)\n\ntemplate<typename T>\nstruct dualsegtree {\n dualsegtree(int siz) {\n n = 1;\n while(n < siz) n <<= 1;\n dat.resize(n*2);\n }\n\n private: \n struct E {\n T a, d;\n E():a(0), d(0){}\n E(T _a, T _d) : a(_a), d(_d) {}\n };\n\n int n;\n vector<E> dat;\n E id = E(0, 0); \n\n E fe(const E& l, const E& r) {//作用素の合成\n return E(l.a + r.a, l.d + r.d);\n }\n\n\n void eval(int k, int len) {\n if(dat[k].a == 0 && dat[k].d == 0) return;\n if(len == 1) return;\n dat[k << 1] = fe(dat[k << 1], dat[k]);\n dat[(k << 1) + 1] = fe(dat[(k << 1) + 1], E(dat[k].a + (len >> 1) * dat[k].d, dat[k].d));\n dat[k] = id;\n }\n\n\n void update(int a, int b, E e, int l, int r, int k) {//[a, b) := 今見ている区間 [l, r) := クエリ区間\n eval(k, b-a);\n if(b <= l || r <= a) return;\n if(l <= a && b <= r) {\n dat[k] = fe(dat[k], e);\n eval(k, b-a);\n return;\n }\n int mid = (a+b)>>1;\n update(a, mid, e, l, r, k<<1);\n update(mid, b, E(e.a + (mid - a)*e.d, e.d), l, r, (k<<1)+1);\n }\n\n T query(int pos) {\n int a = 1;\n int b = n+1;\n int k = 1;\n while(1) {\n eval(k, b-a);\n if(b-a == 1) {\n return dat[k].a;\n }\n int mid = (a+b)>>1;\n if(mid <= pos) {\n k = (k << 1) + 1;\n a = mid;\n }\n else {\n k <<= 1;\n b = mid;\n } \n }\n }\n\n\n public: \n\n void set(int pos, T val) {\n dat[pos+n-1].a = val;\n }\n\n void init() {\n\n }\n\n void change(int l, int r, T a, T d) {\n if(l != 1) {\n a = a - (l-1) * d;\n update(1, n+1, E(-a, -d), 1, l, 1);//左端を1に合わせる為に、打ち消すaddをする。\n } \n update(1, n+1, E(a, d), 1, r+1, 1);\n }\n\n T get(int pos) {\n return query(pos);\n }\n\n};\n\n\nint main() {\n ll N, Q;\n cin >> N >> Q;\n dualsegtree<ll> seg(N+1);\n rep(i,1,N)seg.set(i, 0);\n seg.init();\n rep(qi, 1, Q) {\n ll l, k;\n cin >> l >> k;\n seg.change(l, l + k - 1, 1, 1);\n }\n\n rep(i,1,N) {cout << seg.get(i);if(i != N) cout << \" \";}\n cout << endl;\n \n}", "accuracy": 1, "time_ms": 160, "memory_kb": 11320, "score_of_the_acc": -0.7574, "final_rank": 12 }, { "submission_id": "aoj_3165_8730817", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\n#define rep(i, n) for (ll i = 0; i < (ll) (n); i++)\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll N, Q;\n cin >> N >> Q;\n vll A(N, 0);\n vll B(N,0);\n rep(i, Q) {\n ll L, K;\n cin >> L >> K;\n L--;\n A[L]++;\n if (L + K < N){\n A[L + K]--;\n B[L+K]-=K;\n }\n }\n rep(i, N - 1)A[i + 1] += A[i];\n rep(i,N)A[i]+=B[i];\n rep(i, N - 1)A[i + 1] += A[i];\n rep(i,N)cout<<A[i]<<\" \\n\"[i==N-1];\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6248, "score_of_the_acc": -0.1353, "final_rank": 5 }, { "submission_id": "aoj_3165_7976044", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int n, q;\n cin >> n >> q;\n vector<long long> imos_range(n + 2), imos_l_sum(n + 2);\n for (int i = 0; i < q; i++) {\n int l, k;\n cin >> l >> k;\n imos_range[l]++;\n imos_range[l + k]--;\n imos_l_sum[l] += l;\n imos_l_sum[l + k] -= l;\n }\n for (int i = 1; i <= n; i++) {\n imos_range[i] += imos_range[i - 1];\n imos_l_sum[i] += imos_l_sum[i - 1];\n cout << imos_range[i] * (i + 1) - imos_l_sum[i];\n if (i < n) cout << ' ';\n }\n cout << '\\n';\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 6284, "score_of_the_acc": -0.2546, "final_rank": 9 }, { "submission_id": "aoj_3165_7975323", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef unsigned uint;\ntypedef long long ll;\ntypedef long long lint;\ntypedef unsigned long long ull;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\n\ntypedef char chr;\ntypedef string str;\n\n#define REP(i, n) for (int i=0;i<(int)n;i++)\n#define ALL(x) x.begin() x.begin()\n#define SEP \" \"\n#define YES cout << \"Yes\" << endl\n#define NO cout << \"NO\" << endl\n#define OUT(x) cout << x << endl\n#define OUTF(x) cout << fixed << setprecision(10) << x << endl\n#define SIZE(v) v.size()\n#define PB push_back\n#define MP make_pair\n#define MT make_typle\n\nconst double pi = 3.141592653589793238;\n\nconst int large_a = 65;\nconst int small_a = 97;\n\nconst int INF = 2147483647;\nconst int INT_INF = 2147483647;\n\nconst int dy[4] = {-1, 0, 1, 0};\nconst int dx[4] = {0, 1, 0, -1};\n\ntemplate<class T> inline void print_vec(const vector<T>& v) {\n\tint last = SIZE(v);\n\tREP(i, last) {\n\t\tcout << v[i];\n\t\tif(i != last-1) cout << SEP;\n\t}\n\tcout << endl;\n}\n\nint main() {\n\tint n,q;\n\tcin >> n >> q;\n\tvector<ll> v(n+2),b(n+2);\n\tfor(int i=0;i<q;i++){\n\t\tint l,k;\n\t\tcin >> l >> k;\n\t\tv[l]++;\n\t\tv[l+k]--;\n\t\tb[l]-=l-1;\n\t\tb[l+k]+=l-1;\n\t}\n\tfor(int i=1;i<n+1;i++){\n\t\tv[i]+=v[i-1];\n\t\tb[i]+=b[i-1];\n\t}\n\tfor(int i=1;i<n+1;i++){\n\t\tv[i]*=i;\n\t}\n\tfor(int i=1;i<n;i++){\n\t\tcout << v[i]+b[i] << \" \";\n\t}\n\tcout << v[n]+b[n] << endl;\n\n\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 6244, "score_of_the_acc": -0.2527, "final_rank": 7 }, { "submission_id": "aoj_3165_7975209", "code_snippet": "#include<cstdio>\n#include<iostream>\nusing namespace std;\n\nunsigned long long ans[200002];\nunsigned long long dp[200002];\n\nint main(){\n unsigned long long n,q,i,j;\n unsigned long long l,k;\n\n scanf(\"%llu %llu\", &n, &q);\n \n for(i=1;i<=n;i++){\n ans[i] = 0;\n dp[i] = 0;\n }\n\n for(i=0;i<q;i++){\n scanf(\"%llu %llu\", &l, &k);\n dp[l-1] += -1;\n dp[l+k-1] += 1;\n ans[l+k-1] += k;\n }\n\n for(i=n;i>=2;i--){\n if(dp[i]==0)continue;\n \n dp[i-1] = dp[i-1] + dp[i];\n ans[i-1] = (ans[i] - dp[i]) + ans[i-1];\n }\n \n for(i=1;i<=n;i++){\n printf(\"%llu\", ans[i]);\n if(i!=n){\n printf(\" \");\n }\n }\n printf(\"\\n\");\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6348, "score_of_the_acc": -0.14, "final_rank": 6 }, { "submission_id": "aoj_3165_7974994", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,n) for(int i=0; i<(n); i++)\n\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod = 998244353;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,1,0};\n\nint main(){\n int n,q;cin>>n>>q;\n vector<pair<long long,long long>> A(n+2);\n vector<long long> D(n+2);\n for(int i = 0; q > i; i++){\n long long l,k;cin>>l>>k;\n l--;\n A[l].first++;\n A[l+k].second+=k; \n D[l+k]++;\n }\n long long nw = 0;\n long long ans = 0;\n for(int i = 0; n > i; i++){\n if(A[i].first){\n nw += A[i].first; \n }\n if(A[i].second){\n ans -= A[i].second;\n nw -= D[i];\n }\n ans += nw;\n cout << ans<< \" \\n\"[i+1==n];\n }\n \n}", "accuracy": 1, "time_ms": 70, "memory_kb": 7828, "score_of_the_acc": -0.3276, "final_rank": 10 }, { "submission_id": "aoj_3165_7974968", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nint main() {\n int n, q;\n cin >> n >> q;\n vector<long long> imos(n + 2, 0), ans(n + 2, 0);\n for (int i = 0; i < q; i++) {\n int l, k;\n cin >> l >> k;\n imos[l]++;\n imos[l + k]--;\n ans[l + k] -= k;\n }\n for (int i = 0; i < n; i++) {\n imos[i + 1] += imos[i];\n }\n for (int i = 0; i < n; i++) {\n ans[i + 1] += ans[i] + imos[i + 1];\n }\n for (int i = 0; i < n; i++) {\n cout << ans[i + 1];\n if (i < n - 1) cout << ' ';\n }\n cout << '\\n';\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 6252, "score_of_the_acc": -0.2531, "final_rank": 8 }, { "submission_id": "aoj_3165_7009756", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3165.cc: Triangle Addition\n */\n\n#include<cstdio>\n#include<vector>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 200000;\n\n/* typedef */\n\ntypedef long long ll;\n\ntemplate <typename T>\nstruct SegTreeSumDelay {\n int e2;\n vector<T> nodes, das, dbs;\n vector<int> ls;\n T defv;\n SegTreeSumDelay() {}\n\n void init(int n, T _defv) {\n defv = _defv;\n for (e2 = 1; e2 < n; e2 <<= 1);\n nodes.assign(e2 * 2, defv);\n das.assign(e2 * 2, 0);\n dbs.assign(e2 * 2, 0);\n ls.assign(e2 * 2, 1);\n for (int j = e2 - 2; j >= 0; j--) ls[j] = ls[j * 2 + 1] + ls[j * 2 + 2];\n }\n\n T &geti(int i) { return nodes[e2 - 1 + i]; }\n void seti(int i, T v) { geti(i) = v; }\n\n void setall() {\n for (int j = e2 - 2; j >= 0; j--)\n nodes[j] = nodes[j * 2 + 1] + nodes[j * 2 + 2];\n }\n\n T __sigma(T a, T b, int dx) {\n // sigma_{x=0}^(dx-1) (ax+b)\n return a * dx * (dx - 1) / 2 + b * dx;\n }\n\n void __update(int k) {\n if (das[k] > 0 || dbs[k] > 0) {\n int k0 = k * 2 + 1, k1 = k0 + 1;\n ll a = das[k], b0 = dbs[k], b1 = b0 + a * ls[k0];\n nodes[k0] += __sigma(a, b0, ls[k0]);\n nodes[k1] += __sigma(a, b1, ls[k1]);\n das[k0] += a, das[k1] += a;\n dbs[k0] += b0, dbs[k1] += b1;\n das[k] = dbs[k] = 0;\n }\n }\n\n void updateall() {\n for (int j = 0; j < e2 - 1; j++) __update(j);\n }\n\n void add_range(int r0, int r1, T v, int k, int i0, int i1) {\n if (r1 <= i0 || i1 <= r0) return;\n if (r0 <= i0 && i1 <= r1) {\n T b = v + (i0 - r0);\n nodes[k] += __sigma(1, b, ls[k]);\n das[k]++, dbs[k] += b;\n return;\n }\n\n __update(k);\n\n int im = (i0 + i1) / 2;\n int k0 = k * 2 + 1, k1 = k0 + 1;\n add_range(r0, r1, v, k0, i0, im);\n add_range(r0, r1, v, k1, im, i1);\n nodes[k] = nodes[k0] + nodes[k1];\n }\n void add_range(int r0, int r1, T v) { add_range(r0, r1, v, 0, 0, e2); }\n};\n\n/* global variables */\n\nSegTreeSumDelay<ll> st;\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, qn;\n scanf(\"%d%d\", &n, &qn);\n\n st.init(n, 0);\n\n while (qn--) {\n int l, k;\n scanf(\"%d%d\", &l, &k), l--;\n st.add_range(l, l + k, 1);\n }\n\n st.updateall();\n\n for (int i = 0; i < n; i++)\n printf(\"%lld%c\", st.geti(i), (i + 1 < n) ? ' ' : '\\n');\n\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 16924, "score_of_the_acc": -0.9635, "final_rank": 13 }, { "submission_id": "aoj_3165_6928534", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=9167167167167167167;\nconst int INF=2100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N,Q;\n\tcin>>N>>Q;\n\tvector<ll> A(N+3),B(N+3);\n\trep(i,Q){\n\t\tint l,k;\n\t\tcin>>l>>k;\n\t\tB[l]++;\n\t\tB[l+k]-=k+1;\n\t\tB[l+k+1]+=k;\n\t}\n\trep(i,N){\n\t\tif(i) cout<<\" \";\n\t\tB[i+1]+=B[i];\n\t\tA[i+1]=B[i+1]+A[i];\n\t\tcout<<A[i+1];\n\t}\n\tcout<<\"\\n\";\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 6272, "score_of_the_acc": -0.107, "final_rank": 4 }, { "submission_id": "aoj_3165_6451223", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std ;\ntypedef long long ll ;\ntypedef long double ld ;\ntypedef pair<ll,ll> P ;\ntypedef tuple<ll,ll,ll> TP ;\n#define chmin(a,b) a = min(a,b)\n#define chmax(a,b) a = max(a,b)\n#define bit_count(x) __builtin_popcountll(x)\n#define gcd(a,b) __gcd(a,b)\n#define lcm(a,b) a / gcd(a,b) * b\n#define rep(i,n) for(int i = 0 ; i < n ; i++)\n#define rrep(i,a,b) for(int i = a ; i < b ; i++)\n#define endl \"\\n\"\n\ntemplate<typename S , typename M>\nstruct LazySegmentTree{\n private :\n int n , _n ;\n using FS = function<S(S,S)> ;\n using FM = function<M(M,M)> ;\n using FA = function<S(S,M)> ;\n FS fs ;\n FM fm ;\n FA fa ;\n S es ;\n M em ;\n vector<S> dat ;\n vector<M> lazy ;\n \n // 各セグメントに左端値, 右端値を持たせる\n void build(){\n int id = 0 ;\n for(int i = n ; i > 0 ; i = i / 2){\n for(int j = 0 ; j < n ; j += i){\n dat[id].lef = j ;\n dat[id].rig = j + i ;\n id++ ;\n }\n }\n }\n void eval(int k , int l , int r){\n if(lazy[k] == em) return ;\n int len = (r - l) / 2 ;\n if(k < n - 1) {\n lazy[2 * k + 1] = fm(lazy[2 * k + 1] , {lazy[k].a,lazy[k].b}) ;\n lazy[2 * k + 2] = fm(lazy[2 * k + 2] , {lazy[k].a,lazy[k].a*len+lazy[k].b}) ;\n }\n dat[k] = fa(dat[k],lazy[k]) ;\n lazy[k] = em ;\n }\n void apply(int a , int b , int k , int l , int r , M x){\n eval(k,l,r) ;\n if(r <= a || b <= l) return ;\n if(a <= l && r <= b) {\n lazy[k] = fm(lazy[k],{x.a,x.a*(l-a)+x.b}) ;\n eval(k,l,r) ;\n return ;\n }\n apply(a,b,2*k+1,l,(l+r)/2,x) ;\n apply(a,b,2*k+2,(l+r)/2,r,x) ;\n dat[k] = fs(dat[2*k+1],dat[2*k+2]) ;\n }\n S prod(int a , int b , int k , int l , int r) {\n eval(k,l,r) ;\n if(r <= a || b <= l) return es ;\n if(a <= l && r <= b) return dat[k] ;\n S lef = prod(a,b,2*k+1,l,(l+r)/2) ;\n S rig = prod(a,b,2*k+2,(l+r)/2,r) ;\n return fs(lef,rig) ;\n }\n \n public :\n LazySegmentTree(int n_ , FS fs_ , S es_ , S ee_ , FM fm_ , M em_ , FA fa_) : fs(fs_) , fm(fm_) , fa(fa_) , es(es_) , em(em_) {\n _n = n_ ;\n n = 1 ;\n while(n_ > n) n *= 2 ;\n dat.resize(2 * n - 1,ee_) ;\n lazy.resize(2 * n - 1,em) ;\n build() ;\n }\n void apply(int a , int b , M x) { apply(a,b,0,0,n,x) ; }\n S prod(int a , int b) { return prod(a,b,0,0,n) ; }\n};\n\nnamespace monoid{\n ll linf = 1e16 ;\n int inf = 1e8 ;\n\n // モノイド\n struct S{\n ll sum ;\n int lef , rig ;\n };\n\n // S*S->Sにおける演算の定義\n function<S(S,S)> fs = [](S x , S y) -> S {\n return S{\n x.sum + y.sum,\n x.lef,\n y.rig\n };\n };\n \n // Sの単位元\n S es = {0,inf,-inf} ;\n\n // Sの初期化単位元\n S ee = {0,0,0} ;\n\n // 作用モノイド\n struct M{\n ll a , b ;\n bool operator == (M x) { return a == x.a && b == x.b ; }\n };\n\n // M*M->Mにおける演算の定義1\n function<M(M,M)> fm = [](M x , M y) -> M {\n return M{\n x.a + y.a,\n x.b + y.b\n };\n };\n\n // Mの単位元\n M em = {0,0} ;\n\n // S*M->Sにおける演算の定義\n function<S(S,M)> fa = [](S x , M y) -> S {\n int len = (x.rig - x.lef) ;\n int lef = x.lef ;\n return S{\n x.sum + len * (len - 1) / 2 * y.a + len * y.b ,\n x.lef,\n x.rig,\n };\n };\n};\nusing namespace monoid ;\n\n// default\n// S : sum(区間和) , lef(区間左端値), rig(区間右端値) \n// M : (a,b) -> ax + b のモノイド\n// apply: 区間等差数列加算\n// prod : sum(区間和), min(区間最小値), max(区間最大値)\n\nint n , q ;\n\nint main(){\n cin >> n >> q ;\n LazySegmentTree<S,M> segtree(n,fs,es,ee,fm,em,fa) ;\n rep(i,q){\n int l , r ;\n cin >> l >> r ;\n l-- ;\n segtree.apply(l,l+r,{1,1}) ;\n }\n rep(i,n) {\n if(i == n - 1) cout << segtree.prod(i,i+1).sum << endl ;\n else cout << segtree.prod(i,i+1).sum << \" \" ;\n }\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 19608, "score_of_the_acc": -1.5903, "final_rank": 19 }, { "submission_id": "aoj_3165_6422580", "code_snippet": "// #pragma GCC target(\"avx2\")\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC optimize(\"unroll-loops\")\n\n#define CONSTANTS\n// #define CAST_MINT_TO_LL\n#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n\nconstexpr long long INF = 1e18;\n// constexpr long long INF = LONG_LONG_MAX;\nconstexpr int MOD = 1000000007;\n// constexpr int MOD = 998244353;\nconstexpr long double EPS = 1e-10;\nconstexpr long double PI = M_PI;\n\nusing ll = long long; using ull = unsigned long long; using ld = long double; using pll = pair<ll, ll>; using pii = pair<int, int>; using pli = pair<ll, int>; using pil = pair<int, ll>; using vvl = vector<vector<ll>>; using vvi = vector<vector<int>>; using vvpll = vector<vector<pll>>; using vvpli = vector<vector<pli>>; using vvpil = vector<vector<pil>>;\n#define name4(i, a, b, c, d, e, ...) e\n#define rep(...) name4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)\n#define rep1(i, a) for (ll i = 0, _aa = a; i < _aa; i++)\n#define rep2(i, a, b) for (ll i = a, _bb = b; i < _bb; i++)\n#define rep3(i, a, b, c) for (ll i = a, _bb = b; (c > 0 && a <= i && i < _bb) or (c < 0 && a >= i && i > _bb); i += c)\n#define rrep(i, a, b) for (ll i=(a); i>(b); i--)\n#define pb push_back\n#define eb emplace_back\n#define mkp make_pair\n#define ALL(A) A.begin(), A.end()\n#define UNIQUE(A) sort(ALL(A)), A.erase(unique(ALL(A)), A.end())\n#define elif else if\n#define tostr to_string\n#ifndef CONSTANTS\nconstexpr ll INF = 1e18; constexpr int MOD = 1000000007; constexpr ld EPS = 1e-10; constexpr ld PI = M_PI;\n#endif\ntemplate<int mod> struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator++() { x++; if (x == mod) x = 0; return *this; } ModInt &operator--() { if (x == 0) x = mod; x--; return *this; } ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inv(); return *this; } ModInt operator++(int) { ModInt result = *this; ++*this; return result; } ModInt operator--(int) { ModInt result = *this; --*this; return result; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inv() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; }\n#ifdef CAST_MINT_TO_LL\noperator ll() const { return x; }\n#endif\n}; using mint = ModInt<MOD>;\ntemplate<typename T> vector<vector<T>> list2d(int N, int M, T init) { return vector<vector<T>>(N, vector<T>(M, init)); } template<typename T> vector<vector<vector<T>>> list3d(int N, int M, int L, T init) { return vector<vector<vector<T>>>(N, vector<vector<T>>(M, vector<T>(L, init))); } template<typename T> vector<vector<vector<vector<T>>>> list4d(int N, int M, int L, int O, T init) { return vector<vector<vector<vector<T>>>>(N, vector<vector<vector<T>>>(M, vector<vector<T>>(L, vector<T>(O, init)))); }\ntemplate<typename T=ll> vector<T> LIST(ll N) { vector<T> A(N); rep(i, N) { cin >> A[i]; } return A; }\nvoid print() { cout << '\\n'; } template<typename T> void print(T out) { cout << out << '\\n'; } template<typename T1, typename T2> void print(const pair<T1, T2> &p) { cout << p.first << ' ' << p.second << '\\n'; } template<typename T1, typename T2, typename T3> void print(const tuple<T1, T2, T3> &tp) { cout << get<0>(tp) << ' ' << get<1>(tp) << ' ' << get<2>(tp) << '\\n'; } template<typename T1, typename T2, typename T3, typename T4> void print(const tuple<T1, T2, T3, T4> &tp) { cout << get<0>(tp) << ' ' << get<1>(tp) << ' ' << get<2>(tp) << ' ' << get<3>(tp) << '\\n'; } template<typename T1, typename T2> void print(const vector<pair<T1, T2>> &V) { for (auto& p : V) print(p); } template<typename T> void print(const vector<T> &V) { rep(i, V.size()) { cout << V[i]; if (i != V.size()-1) cout << ' '; } cout << '\\n'; } template<typename T, size_t SZ> void print(const array<T, SZ> &arr) { rep(i, arr.size()) { cout << arr[i]; if (i != arr.size()-1) cout << ' '; } cout << '\\n'; } template<typename T, size_t SZ> void print(const vector<array<T, SZ>> &V) { for (auto& arr : V) print(arr); } template<typename T> void print(const deque<T> &que) { vector<T> V(ALL(que)); print(V); } template<typename T> void print(const set<T> &se) { vector<T> V(ALL(se)); print(V); }\n#define debug(x) (cout << #x << \": \", print(x));\nvoid Yes() { print(\"Yes\"); } void No() { print(\"No\"); } void YES() { print(\"YES\"); } void NO() { print(\"NO\"); }\nll toint(string s) { assert(s.size() < 20); ll res = 0; for (char &c : s) { res *= 10; res += c - '0'; } return res; } int toint(char num) { return num - '0'; }\nchar tochar(int num) { return '0' + num; }\ntemplate<typename T> T ceil(T a, T b) { if (a >= 0) return (a+b-1) / b; else return a / b; }\ntemplate<typename T> T modulo(T a, T b) { return ((a % b) + b) % b; }\ntemplate<typename T> pair<T, T> divmod(T a, T b) { T d = a / b; T m = a % b; return {d, m}; }\ntemplate<typename T> bool chmin(T &x, T y) { return (y < x) ? x = y, true : false; }\ntemplate<typename T> bool chmax(T &x, T y) { return (y > x) ? x = y, true : false; }\ntemplate<typename T> T sum(const vector<T> &A) { return accumulate(ALL(A), (T)0); } template<typename key, typename val> val sum(const map<key, val> &mp) { val res = 0; for (auto& [k, v] : mp) res += v; return res; }\ntemplate<typename T> T min(const vector<T> &A) { return *min_element(ALL(A)); } template<typename key, typename val> val min(const map<key, val> &mp) { val res = numeric_limits<val>::max(); for (auto& [k, v] : mp) chmin(res, v); return res; }\ntemplate<typename T> T max(const vector<T> &A) { return *max_element(ALL(A)); } template<typename key, typename val> val max(const map<key, val> &mp) { val res = numeric_limits<val>::min(); for (auto& [k, v] : mp) chmax(res, v); return res; }\nll pow(ll x, ll n) { ll res = 1; rep(_, n) res *= x; return res; } ll pow(int x, ll n) { return pow((ll)x, n); } ll pow(ll x, int n) { return pow(x, (ll)n); } ll pow(int x, int n) { return pow((ll)x, (ll)n); } ll pow(ll x, ll n, int mod) { x %= mod; ll res = 1; while (n > 0) { if (n & 1) { res = (res * x) % mod; } x = (x * x) % mod; n >>= 1; } return res; }\nint popcount(ll S) { return __builtin_popcountll(S); }\nint bit_length(ll x) { return x != 0 ? floor(log2((ld)x))+1 : 0; }\ntemplate<typename T> int bisect_left(const vector<T> &A, T val, int lo=0) { return lower_bound(A.begin()+lo, A.end(), val) - A.begin(); } template<typename T> int bisect_right(const vector<T> &A, T val, int lo=0) { return upper_bound(A.begin()+lo, A.end(), val) - A.begin(); }\ntemplate<typename T> map<T, ll> Counter(const vector<T> &A) { map<T, ll> res; for (T a : A) { res[a]++; } return res; } template<typename T> vector<ll> Counter(const vector<T> &A, int mx) { vector<ll> res(mx+1); for (T a : A) { res[a]++; } return res; } map<char, ll> Counter(const string &S) { map<char, ll> res; for (char c : S) { res[c]++; } return res; }\ntemplate<typename F> ll bisearch_min(ll mn, ll mx, const F &func) { ll ok = mx; ll ng = mn; while (ng+1 < ok) { ll mid = (ok+ng) / 2; if (func(mid)) { ok = mid; } else { ng = mid; } } return ok; } template<typename F> ll bisearch_max(ll mn, ll mx, const F &func) { ll ok = mn; ll ng = mx; while (ok+1 < ng) { ll mid = (ok+ng) / 2; if (func(mid)) { ok = mid; } else { ng = mid; } } return ok; }\ntemplate<typename T1, typename T2> pair<vector<T1>, vector<T2>> zip(const vector<pair<T1, T2>> &A) { int N = A.size(); pair<vector<T1>, vector<T2>> res = {vector<T1>(N), vector<T2>(N)}; rep(i, N) { res.first[i] = A[i].first; res.second[i] = A[i].second; } return res; } template<typename T1, typename T2, typename T3> tuple<vector<T1>, vector<T2>, vector<T3>> zip(const vector<tuple<T1, T2, T3>> &A) { int N = A.size(); tuple<vector<T1>, vector<T2>, vector<T3>> res = {vector<T1>(N), vector<T2>(N), vector<T3>(N)}; rep(i, N) { get<0>(res)[i] = get<0>(A[i]); get<1>(res)[i] = get<1>(A[i]); get<2>(res)[i] = get<2>(A[i]); } return res; }\ntemplate<typename T> struct Compress { int N; vector<T> dat; Compress(vector<T> A) { sort(A.begin(), A.end()); A.erase(unique(A.begin(), A.end()), A.end()); N = A.size(); dat = A; } int zip(T x) { return bisect_left(dat, x); } T unzip(int x) { return dat[x]; } int operator[](T x) { return zip(x); } int size() { return dat.size(); } vector<ll> zip(const vector<T> &A) { int M = A.size(); vector<ll> res(M); rep(i, M) res[i] = zip(A[i]); return res; } };\ntemplate<typename T> vector<pair<T, int>> RLE(const vector<T> &A) { if (A.empty()) return {}; int N = A.size(); vector<pair<T, int>> res; T cur = A[0]; int cnt = 1; rep(i, 1, N) { if (A[i] == A[i-1]) { cnt++; } else { res.pb({cur, cnt}); cnt = 1; cur = A[i]; } } res.pb({cur, cnt}); return res; } vector<pair<char, int>> RLE(const string &S) { if (S.empty()) return {}; int N = S.size(); vector<pair<char, int>> res; char cur = S[0]; int cnt = 1; rep(i, 1, N) { if (S[i] == S[i-1]) { cnt++; } else { res.pb({cur, cnt}); cnt = 1; cur = S[i]; } } res.pb({cur, cnt}); return res; }\ntemplate<typename T> bool mul_overflow(T x, T y) { T z; return __builtin_mul_overflow(x, y, &z); }\nvector<ll> split(const string &S, char separator) { int N = S.size(); vector<ll> res; string cur; rep(i, N) { if (S[i] == separator) { res.eb(toint(cur)); cur = \"\"; } else { cur += S[i]; } } if (cur.size()) res.eb(toint(cur)); return res; }\nstring to_string(const string &S) { return S; } string to_string(char c) { return {c}; }\ntemplate<typename T> string join(const vector<T> &A, char separator=0) { int N = A.size(); string res; rep(i, N) { res += tostr(A[i]); if (separator != 0 and i != N-1) res += separator; } return res; }\ntemplate<typename T> vector<T> sorted(vector<T> A, bool reverse=false) { sort(ALL(A)); if (reverse) std::reverse(ALL(A)); return A; } string sorted(string S, bool reverse=false) { sort(ALL(S)); if (reverse) std::reverse(ALL(S)); return S; }\ntemplate<typename T> vector<T> reversed(vector<T> A) { reverse(ALL(A)); return A; } string reversed(string S) { reverse(ALL(S)); return S; }\ntemplate<typename Mint> struct ModTools { int MAX; vector<Mint> _fact, _factinv, inv; ModTools(int mx) : MAX(++mx) { _fact.resize(MAX); _factinv.resize(MAX); inv.resize(MAX); _fact[0] = _fact[1] = 1; rep(i, 2, MAX) { _fact[i] = _fact[i-1]*(Mint)i; } _factinv[MAX-1] = (Mint)1/_fact[MAX-1]; rep(i, MAX-2, -1, -1) { _factinv[i] = _factinv[i+1]*(Mint)(i+1); } rep(i, MAX-1, 0, -1) { inv[i] = _factinv[i]*_fact[i-1]; } } Mint div(Mint a, int b) { return a*inv[b]; } Mint fact(int x) { assert(x < MAX); return _fact[x]; } Mint factinv(int x) { assert(x < MAX); return _factinv[x]; } Mint nCr(int n, int r) { if (n < r or r < 0) return 0; r = min(r, n-r); Mint num = _fact[n]; Mint den = _factinv[r] * _factinv[n-r]; return num * den; } Mint nHr(int n, int r) { assert(r+n-1 < MAX); return nCr(r+n-1, r); } Mint nPr(int n, int r) { if (n < r or r < 0) return 0; return _fact[n] * _factinv[n-r]; } Mint double_factorial(int n) { if (n%2 == 0) { int k = n/2; return Mint(2).pow(k)*fact(k); } else { int k = (n+1)/2; return fact(2*k)/Mint(2).pow(k)/fact(k); } } };\ntemplate<typename T> vector<vector<T>> permutations(const vector<T> &A, int N=-1) { if (N == -1) N = A.size(); int M = A.size(); assert(N <= M); vector<vector<T>> comb; rep(bit, 1<<M) { if (popcount(bit) != N) continue; vector<T> res; rep(i, M) { if (bit>>i & 1) { res.pb(A[i]); } } comb.pb(res); } vector<vector<T>> res; for (auto &perm : comb) { sort(ALL(perm)); do { res.pb(perm); } while (next_permutation(ALL(perm))); } return res; }\ntemplate<typename T> vector<vector<T>> combinations(const vector<T> &A, int N) { int M = A.size(); vector<vector<T>> res; auto rec = [&](auto&& f, vector<T> &cur, ll x, ll n) -> void { if (n == N) { res.pb(cur); return; } rep(i, x, M) { cur.pb(A[i]); f(f, cur, i+1, n+1); cur.pop_back(); } }; vector<T> cur; rec(rec, cur, 0, 0); return res; }\nll nC2(ll n) { if (n < 2) return 0; return n*(n-1)/2; }\ntemplate<typename T> T factorial(int x) { T res = 1; for (int i=1; i<=x; i++) res *= i; return res; }\nstruct UnionFind { int n, groupcnt; vector<int> par, rank, sz; vector<bool> tree; UnionFind(int n) : n(n) { par.assign(n, 0); rank.assign(n, 0); sz.assign(n, 1); tree.assign(n, true); rep(i, n) par[i] = i; groupcnt = n; } UnionFind() {} void resize(int _n) { n = _n; par.assign(n, 0); rank.assign(n, 0); sz.assign(n, 1); tree.assign(n, true); rep(i, n) par[i] = i; groupcnt = n; } int find(int x) { if (par[x] == x) { return x; } else { par[x] = find(par[x]); return par[x]; } } int merge(int a, int b) { int x = find(a); int y = find(b); if (x == y) { tree[x] = false; return x; } if (!tree[x] or !tree[y]) { tree[x] = tree[y] = false; } groupcnt--; if (rank[x] < rank[y]) { par[x] = y; sz[y] += sz[x]; return y; } else { par[y] = x; sz[x] += sz[y]; if (rank[x] == rank[y]) { rank[x]++; } return x; } } bool same(int a, int b) { return find(a) == find(b); } ll size(int x) { return sz[find(x)]; } int size() { return groupcnt; } bool is_tree(int x) { return tree[find(x)]; } set<int> get_roots() { set<int> res; rep(i, n) { res.insert(find(i)); } return res; } };\nconst vector<pii> dir4 = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};\n#define directions dir4\nll gridtoid(ll i, ll j, ll W) { return i*W+j; }\npll idtogrid(ll id, ll W) { return divmod(id, W); }\ntemplate<typename _Key, typename _Tp> struct defaultdict : map<_Key, _Tp> { const _Tp init; defaultdict() : init(_Tp()) {}; defaultdict(_Tp init) : init(init) {} _Tp& operator[](const _Key& k) { if (this->count(k)) { return map<_Key, _Tp>::operator[](k); } else { return map<_Key, _Tp>::operator[](k) = init; } } _Tp& operator[](_Key&& k) { if (this->count(k)) { return map<_Key, _Tp>::operator[](k); } else { return map<_Key, _Tp>::operator[](k) = init; } } };\nll gcd(ll a, ll b) { return __gcd(a, b); } template<typename T> T gcd(const vector<T> &A) { T res = 0; for (auto a : A) res = gcd(res, a); return res; }\nll lcm(ll x, ll y) { return x/gcd(x, y)*y; } template<typename T> T lcm(const vector<T> &A) { T res = 1; for (auto a : A) res = lcm(res, a); return res; }\ntemplate<typename T> vector<pair<T, int>> factorize(T n) { vector<pair<T, int>> ret; for (T i=2; i*i<=n; i++) { int cnt = 0; while (n % i == 0) { n /= i; cnt++; } if (cnt) ret.emplace_back(i, cnt); } if (n > 1) ret.emplace_back(n, 1); return ret; }\ntemplate<typename T> vector<T> divisors(T n) { vector<T> res; for (T i=1; i*i<=n; i++) { if (n%i == 0) { res.eb(i); if (n/i != i) res.eb(n/i); } } return res; }\nll isqrt(ll n, bool ceil=false) { ll ok = 0; ll ng = 3037000500; while (ng - ok > 1) { ll m = ok + (ng - ok) / 2; if (m * m <= n) { ok = m; } else { ng = m; } } if (ceil and ok*ok != n) ok++; return ok; }\ntemplate<typename T> struct Accumulate { vector<T> acc; int N; Accumulate(int N) : N(N) { acc.resize(N); } Accumulate(const vector<T> &A) : N(A.size()), acc(A) { build(); } void set(int i, T a) { acc[i] = a; } void add(int i, T a) { acc[i] += a; } void build() { rep(i, N-1) { acc[i+1] += acc[i]; } acc.insert(acc.begin(), 0); } T query(int l, int r) { assert(0 <= l and l <= N and 0 <= r and r <= N); return acc[r]-acc[l]; } T get(int i) { return query(i, i+1); } T operator[](int i) { return query(i, i+1); } ll bisearch_fore(int l, int r, ll x) { if (l > r) return -1; ll l_sm = query(0, l); int ok = r + 1; int ng = l - 1; while (ng+1 < ok) { int mid = (ok+ng) / 2; if (query(0, mid+1) - l_sm >= x) { ok = mid; } else { ng = mid; } } if (ok != r+1) { return ok; } else { return -1; } } ll bisearch_back(int l, int r, ll x) { if (l > r) return -1; ll r_sm = query(0, r+1); int ok = l - 1; int ng = r + 1; while (ok+1 < ng) { int mid = (ok+ng) / 2; if (r_sm - query(0, mid) >= x) { ok = mid; } else { ng = mid; } } if (ok != l-1) { return ok; } else { return -1; } } };\ntemplate<typename T> struct BIT { int sz; vector<T> tree; BIT(int n) { n++; sz = 1; while (sz < n) { sz *= 2; } tree.resize(sz); } T sum(int i) { T s = 0; i++; while (i > 0) { s += tree[i-1]; i -= i & -i; } return s; } void add(int i, T x) { i++; while (i <= sz) { tree[i-1] += x; i += i & -i; } } T query(int l, int r) { return sum(r-1) - sum(l-1); } T get(int i) { return query(i, i+1); } void update(int i, T x) { add(i, x - get(i)); } T operator[](int i) { return query(i, i+1); } void print(int n) { rep(i, n) { cout << query(i, i+1); if (i == n-1) cout << endl; else cout << ' '; } } ll bisearch_fore(int l, int r, ll x) { if (l > r) return -1; ll l_sm = sum(l-1); int ok = r + 1; int ng = l - 1; while (ng+1 < ok) { int mid = (ok+ng) / 2; if (sum(mid) - l_sm >= x) { ok = mid; } else { ng = mid; } } if (ok != r+1) { return ok; } else { return -1; } } ll bisearch_back(int l, int r, ll x) { if (l > r) return -1; ll r_sm = sum(r); int ok = l - 1; int ng = r + 1; while (ok+1 < ng) { int mid = (ok+ng) / 2; if (r_sm - sum(mid-1) >= x) { ok = mid; } else { ng = mid; } } if (ok != l-1) { return ok; } else { return -1; } } };\ntemplate<typename Monoid, typename F> struct SegmentTree { int sz; vector<Monoid> seg; const F f; const Monoid M1; SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1) { sz = 1; while(sz < n) sz <<= 1; seg.assign(2 * sz, M1); } SegmentTree(const F f, const Monoid &M1) : f(f), M1(M1) {} void resize(int n) { sz = 1; while(sz < n) sz <<= 1; seg.resize(2 * sz, M1); } void clear() { seg.clear(); } void set(int k, const Monoid &x) { seg[k+sz] = x; } void build() { for(int k = sz - 1; k > 0; k--) { seg[k] = f(seg[2*k], seg[2*k+1]); } } void build(const vector<Monoid> &A) { int n = A.size(); resize(n); rep(i, n) set(i, A[i]); build(); } void update(int k, const Monoid &x) { k += sz; seg[k] = x; while(k >>= 1) { seg[k] = f(seg[2*k], seg[2*k+1]); } } Monoid query(int a, int b) { Monoid L = M1, R = M1; for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if(a & 1) L = f(L, seg[a++]); if(b & 1) R = f(seg[--b], R); } return f(L, R); } Monoid operator[](const int &k) const { return seg[k+sz]; } Monoid all() { return seg[1]; } void print(int n) { for (int i=0; i<n; i++) { cout << query(i, i+1); if (i == n-1) cout << endl; else cout << ' '; } } template<typename C> int find_subtree(int a, const C &check, Monoid &M, bool type) { while(a < sz) { Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]); if(check(nxt)) a = 2 * a + type; else M = nxt, a = 2 * a + 1 - type; } return a - sz; } template<typename C> int find_first(int a, const C &check) { Monoid L = M1; if(a <= 0) { if(check(f(L, seg[1]))) return find_subtree(1, check, L, false); return -1; } int b = sz; for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if(a & 1) { Monoid nxt = f(L, seg[a]); if(check(nxt)) return find_subtree(a, check, L, false); L = nxt; ++a; } } return -1; } template<typename C> int find_last(int b, const C &check) { Monoid R = M1; if(b >= sz) { if(check(f(seg[1], R))) return find_subtree(1, check, R, true); return -1; } int a = sz; for(b += sz; a < b; a >>= 1, b >>= 1) { if(b & 1) { Monoid nxt = f(seg[--b], R); if(check(nxt)) return find_subtree(b, check, R, true); R = nxt; } } return -1; } }; template<typename Monoid, typename F> SegmentTree<Monoid, F> get_segment_tree(int N, const F& f, const Monoid& M1) { return {N, f, M1}; } template<typename Monoid, typename F> SegmentTree<Monoid, F> get_segment_tree(const F& f, const Monoid& M1) { return {f, M1}; }\nconst string digits = \"0123456789\";\nconst string ascii_lowercase = \"abcdefghijklmnopqrstuvwxyz\";\nconst string ascii_uppercase = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nstring zfill(string str, int len) { string zeros; int n = str.size(); rep(i, len-n) zeros += '0'; return zeros+str; }\nstring bin(ll x) { string res; while (x) { if (x & 1) { res += '1'; } else { res += '0'; } x >>= 1; } reverse(ALL(res)); if (res == \"\") res += '0'; return res; }\n\nvoid solve() {\n ll N, Q;\n cin >> N >> Q;\n \n vector<ll> imos(N);\n rep(i, Q) {\n ll l, k;\n cin >> l >> k;\n l--;\n ll r = l + k;\n imos[l]++;\n if (r < N) {\n imos[r] -= r - l + 1;\n }\n if (r+1 < N) {\n imos[r+1] += r - l;\n }\n }\n\n rep(_, 2) {\n rep(i, 1, N) {\n imos[i] += imos[i-1];\n }\n }\n print(imos);\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n\n // single test case\n solve();\n\n // multi test cases\n // int T;\n // cin >> T;\n // while (T--) solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4572, "score_of_the_acc": -0.0561, "final_rank": 1 }, { "submission_id": "aoj_3165_5941369", "code_snippet": "// #pragma GCC target(\"avx2\")\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC optimize(\"unroll-loops\")\n\n#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll = long long;\nusing ull = unsigned long long;\nusing ld = long double;\nusing pll = pair<ll, ll>;\nusing pii = pair<int, int>;\nusing vvl = vector<vector<ll>>;\nusing vvi = vector<vector<int>>;\nusing vvpll = vector<vector<pll>>;\n#define name4(i, a, b, c, d, e, ...) e\n#define rep(...) name4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)\n#define rep1(i, a) for (ll i = 0, _aa = a; i < _aa; i++)\n#define rep2(i, a, b) for (ll i = a, _bb = b; i < _bb; i++)\n#define rep3(i, a, b, c) for (ll i = a, _bb = b; (c > 0 && a <= i && i < _bb) or (c < 0 && a >= i && i > _bb); i += c)\n#define rrep(i, a, b) for (ll i=(a); i>(b); i--)\n#define pb push_back\n#define eb emplace_back\n#define mkp make_pair\n#define ALL(A) A.begin(), A.end()\n#define UNIQUE(A) sort(ALL(A)), A.erase(unique(ALL(A)), A.end())\n#define elif else if\n#define tostr to_string\nconstexpr ll INF = 1e18;\n// constexpr ll INF = LONG_LONG_MAX;\nconstexpr int MOD = 1000000007;\n// constexpr int MOD = 998244353;\n\ntemplate<typename T> vector<vector<T>> list2d(int N, int M, T init) { return vector<vector<T>>(N, vector<T>(M, init)); }\ntemplate<typename T> vector<vector<vector<T>>> list3d(int N, int M, int L, T init) { return vector<vector<vector<T>>>(N, vector<vector<T>>(M, vector<T>(L, init))); }\ntemplate<typename T> vector<vector<vector<vector<T>>>> list4d(int N, int M, int L, int O, T init) { return vector<vector<vector<vector<T>>>>(N, vector<vector<vector<T>>>(M, vector<vector<T>>(L, vector<T>(O, init)))); }\n\ntemplate<typename T=ll> vector<T> LIST(ll N) { vector<T> A(N); rep(i, N) cin >> A[i]; return A; }\n\nvoid print() { cout << '\\n'; }\ntemplate<typename T> void print(T out) { cout << out << '\\n'; }\ntemplate<typename T1, typename T2> void print(pair<T1, T2> out) { cout << out.first << ' ' << out.second << '\\n'; }\ntemplate<typename T> void print(const vector<T> &A) { rep(i, A.size()) { cout << A[i]; if (i != A.size()-1) cout << ' '; } cout << '\\n'; }\ntemplate<typename T> void print(const deque<T> &A) { vector<T> V(A.begin(), A.end()); print(V); }\ntemplate<typename T> void print(const set<T> &S) { vector<T> A(S.begin(), S.end()); print(A); }\n#define debug(x) (cout << #x << \": \", print(x));\n\nvoid Yes() { print(\"Yes\"); }\nvoid No() { print(\"No\"); }\nvoid YES() { print(\"YES\"); }\nvoid NO() { print(\"NO\"); }\n\n// from common.cpp\nll toint(string s) { ll res = 0; for (char c : s) { res *= 10; res += (c - '0'); } return res; }\nint toint(char num) { return num - '0'; }\nchar tochar(int num) { return '0' + num; }\nll floor(ll a, ll b) { if (a < 0) return (a-b+1) / b; else return a / b; }\nll ceil(ll a, ll b) { if (a >= 0) return (a+b-1) / b; else return a / b; }\nll modulo(ll a, ll b) { return ((a % b) + b) % b; }\ntemplate<typename T> pll divmod(ll a, T b) { ll d = a / b; ll m = a % b; return {d, m}; }\ntemplate<typename T> bool chmax(T &x, T y) { return (y > x) ? x = y, true : false; }\ntemplate<typename T> bool chmin(T &x, T y) { return (y < x) ? x = y, true : false; }\ntemplate<typename T> T sum(const vector<T> &A) { T res = 0; for (T a: A) res += a; return res; }\ntemplate<typename key, typename val> val sum(const map<key, val> &mp) { val res = 0; for (auto [k, v] : mp) res += v; return res; }\ntemplate<typename T> T max(const vector<T> &A) { return *max_element(ALL(A)); }\ntemplate<typename T> T min(const vector<T> &A) { return *min_element(ALL(A)); }\nll pow(int x, int n) { ll res = 1; rep(_, n) res *= x; return res; }\nll pow(int x, ll n) { ll res = 1; rep(_, n) res *= x; return res; }\nll pow(ll x, int n) { ll res = 1; rep(_, n) res *= x; return res; }\nll pow(ll x, ll n) { ll res = 1; rep(_, n) res *= x; return res; }\nll pow(ll x, ll n, int mod) { ll res = 1; while (n > 0) { if (n & 1) { res = (res * x) % mod; } x = (x * x) % mod; n >>= 1; } return res; }\nint popcount(ll S) { return __builtin_popcountll(S); }\nint bit_length(ll x) { return x != 0 ? floor(log2((ld)x))+1 : 0; }\ntemplate<typename T> int bisect_left(const vector<T> &A, T val, int lo=0) { return lower_bound(A.begin()+lo, A.end(), val) - A.begin(); }\ntemplate<typename T> int bisect_right(const vector<T> &A, T val, int lo=0) { return upper_bound(A.begin()+lo, A.end(), val) - A.begin(); }\ntemplate<typename T> map<T, ll> Counter(const vector<T> &A) { map<T, ll> res; for (T a : A) res[a]++; return res; }\ntemplate<typename T> vector<ll> Counter(const vector<T> &A, T mx) { vector<ll> res(mx+1); for (T a : A) { res[a]++; } return res; }\nmap<char, ll> Counter(const string &S) { map<char, ll> res; for (char c : S) res[c]++; return res; }\ntemplate<typename F> ll bisearch_min(ll mn, ll mx, const F &func) { ll ok = mx, ng = mn; while (ng+1 < ok) { ll mid = (ok+ng) / 2; if (func(mid)) ok = mid; else ng = mid; } return ok; }\ntemplate<typename F> ll bisearch_max(ll mn, ll mx, const F &func) { ll ok = mn, ng = mx; while (ok+1 < ng) { ll mid = (ok+ng) / 2; if (func(mid)) ok = mid; else ng = mid; } return ok; }\ntemplate<typename T1, typename T2> pair<vector<T1>, vector<T2>> zip(const vector<pair<T1, T2>> &A) { ll N = A.size(); pair<vector<T1>, vector<T2>> res = {vector<T1>(N), vector<T2>(N)}; rep(i, N) { res.first[i] = A[i].first; res.second[i] = A[i].second; } return res; }\ntemplate<typename T1, typename T2, typename T3> tuple<vector<T1>, vector<T2>, vector<T3>> zip(const vector<tuple<T1, T2, T3>> &A) { int N = A.size(); tuple<vector<T1>, vector<T2>, vector<T3>> res = {vector<T1>(N), vector<T2>(N), vector<T3>(N)}; rep(i, N) { get<0>(res)[i] = get<0>(A[i]); get<1>(res)[i] = get<1>(A[i]); get<2>(res)[i] = get<2>(A[i]); } return res; }\ntemplate<typename T> struct Compress { int N; vector<T> dat; Compress(vector<T> A) { sort(A.begin(), A.end()); A.erase(unique(A.begin(), A.end()), A.end()); N = A.size(); dat = A; } int zip(T x) { return bisect_left(dat, x); } T unzip(int x) { return dat[x]; } int operator[](T x) { return zip(x); } int size() { return dat.size(); } vector<T> zip(const vector<T> &A) { int M = A.size(); vector<T> res(M); rep(i, M) res[i] = zip(A[i]); return res; } };\ntemplate<typename T> vector<pair<T, int>> RLE(const vector<T> &A) { if (A.empty()) return {}; int N = A.size(); vector<pair<T, int>> res; T cur = A[0]; int cnt = 1; rep(i, 1, N) { if (A[i] == A[i-1]) { cnt++; } else { res.pb({cur, cnt}); cnt = 1; cur = A[i]; } } res.pb({cur, cnt}); return res; }\nvector<pair<char, int>> RLE(const string &S) { if (S.empty()) return {}; int N = S.size(); vector<pair<char, int>> res; char cur = S[0]; int cnt = 1; rep(i, 1, N) { if (S[i] == S[i-1]) { cnt++; } else { res.pb({cur, cnt}); cnt = 1; cur = S[i]; } } res.pb({cur, cnt}); return res; }\nbool mul_overflow(ll x, ll y) { ll z; return __builtin_mul_overflow(x, y, &z); }\nvector<ll> split(const string &S, char separator) { int N = S.size(); vector<ll> res; string cur; rep(i, N) { if (S[i] == separator) { res.eb(toint(cur)); cur = \"\"; } else { cur += S[i]; } } if (cur.size()) res.eb(toint(cur)); return res; }\nstring to_string(const string &S) { return S; }\nstring to_string(char c) { return {c}; }\ntemplate<typename T> string join(const vector<T> &A, char separator=0) { int N = A.size(); string res; rep(i, N) { res += tostr(A[i]); if (separator != 0 and i != N-1) res += separator; } return res; }\n\n// from combinatorics.cpp\ntemplate<int mod> struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } };\nusing mint = ModInt<MOD>;\ntemplate<typename T=mint> struct ModTools { int MAX; vector<T> fact, factinv; ModTools() {}; ModTools(int mx) { build(mx); } void build(int mx) { MAX = ++mx; fact.resize(MAX); factinv.resize(MAX); fact[0] = fact[1] = 1; rep(i, 2, MAX) { fact[i] = fact[i-1] * i; } factinv[MAX-1] = (T)1 / fact[MAX-1]; rep(i, MAX-2, -1, -1) { factinv[i] = factinv[i+1] * (i+1); } } T factorial(int x) { return fact[x]; } T inverse(int x) { return factinv[x]; } T nCr(int n, int r) { if (n < r or r < 0) return 0; r = min(r, n-r); T num = fact[n]; T den = factinv[r] * factinv[n-r]; return num * den; } T nHr(int n, int r) { return nCr(r+n-1, r); } T nPr(int n, int r) { if (n < r or r < 0) return 0; return fact[n] * factinv[n-r]; } };\ntemplate<typename T> vector<vector<T>> permutations(const vector<T> &A, int N=-1) { if (N == -1) N = A.size(); int M = A.size(); vector<vector<T>> comb; rep(bit, 1<<M) { if (popcount(bit) != N) continue; vector<T> res; rep(i, M) { if (bit>>i & 1) { res.pb(A[i]); } } comb.pb(res); } vector<vector<T>> res; for (auto &perm : comb) { sort(ALL(perm)); do { res.pb(perm); } while (next_permutation(ALL(perm))); } return res; }\ntemplate<typename T> vector<vector<T>> combinations(const vector<T> &A, int N) { int M = A.size(); vector<vector<T>> res; auto rec = [&](auto&& f, vector<T> &cur, ll x, ll n) -> void { if (n == N) { res.pb(cur); return; } rep(i, x, M) { cur.pb(A[i]); f(f, cur, i+1, n+1); cur.pop_back(); } }; vector<T> cur; rec(rec, cur, 0, 0); return res; }\ntemplate<typename T> T factorial(T x) { T res = 1; for (T i=1; i<=x; i++) res *= i; return res; }\n\n// from graph.cpp\nstruct UnionFind { int n, groupcnt; vector<int> par, rank, sz; vector<bool> tree; UnionFind(int n) : n(n) { par.resize(n); rank.resize(n); sz.resize(n, 1); tree.resize(n, 1); rep(i, n) par[i] = i; groupcnt = n; } UnionFind() {} void resize(int _n) { n = _n; par.resize(n); rank.resize(n); sz.resize(n, 1); rep(i, n) par[i] = i; groupcnt = n; } int find(int x) { if (par[x] == x) { return x; } else { par[x] = find(par[x]); return par[x]; } } int merge(int a, int b) { int x = find(a); int y = find(b); if (x == y) { tree[x] = false; return x; } if (!tree[x] or !tree[y]) { tree[x] = tree[y] = false; } groupcnt--; if (rank[x] < rank[y]) { par[x] = y; sz[y] += sz[x]; return y; } else { par[y] = x; sz[x] += sz[y]; if (rank[x] == rank[y]) { rank[x]++; } return x; } } bool same(int a, int b) { return find(a) == find(b); } ll size(int x) { return sz[find(x)]; } int size() { return groupcnt; } bool is_tree(int x) { return tree[find(x)]; } set<int> get_roots() { set<int> res; rep(i, n) { res.insert(find(i)); } return res; } };\n\n// from grid.cpp\nconst vector<pii> directions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};\nll gridtoid(ll i, ll j, ll W) { return i*W+j; }\npll idtogrid(ll id, ll W) { return divmod(id, W); }\ntemplate<typename T> vector<vector<T>> transpose(const vector<vector<T>> &grid) { int H = grid.size(); int W = grid[0].size(); auto res = list2d(W, H, (T)0); rep(i, H) { rep(j, W) { res[j][i] = grid[i][j]; } } return res; }\nvector<string> transpose(const vector<string> &grid) { int H = grid.size(); int W = grid[0].size(); vector<string> res(W, string(H, '*')); rep(i, H) { rep(j, W) { res[j][i] = grid[i][j]; } } return res; }\nvector<string> rot90(const vector<string> &grid) { int H = grid.size(); int W = grid[0].size(); vector<string> res(W, string(H, '*')); rep(i, H) { rep(j, W) { res[j][H-i-1] = grid[i][j]; } } return res; }\n\n// from mystl.cpp\ntemplate<typename _Key, typename _Tp, typename _Compare=less<_Key>, typename _Alloc=allocator<pair<const _Key, _Tp>>> struct defaultdict : public map<_Key, _Tp, _Compare, _Alloc> { const _Tp init; defaultdict() : init(_Tp()) {}; defaultdict(_Tp init) : init(init) {} _Tp& operator[](const _Key& k) { if (this->count(k)) { return map<_Key, _Tp, _Compare, _Alloc>::operator[](k); } else { return map<_Key, _Tp, _Compare, _Alloc>::operator[](k) = init; } } _Tp& operator[](_Key&& k) { if (this->count(k)) { return map<_Key, _Tp, _Compare, _Alloc>::operator[](k); } else { return map<_Key, _Tp, _Compare, _Alloc>::operator[](k) = init; } } };\ntemplate<typename _Key, typename _Compare=less<_Key>, typename _Alloc=allocator<_Key>> struct my_set : public set<_Key, _Compare, _Alloc> { _Key front() { return *this->begin(); } _Key pop_front() { auto res = this->front(); this->erase(this->begin()); return res; } _Key back() { return *this->rbegin(); } _Key pop_back() { auto res = this->back(); this->erase(prev(this->end())); return res; } };\ntemplate<typename _Key, typename _Compare=less<_Key>, typename _Alloc=allocator<_Key>> struct my_multiset : public multiset<_Key, _Compare, _Alloc> { _Key front() { return *this->begin(); } _Key pop_front() { auto res = this->front(); this->erase(this->begin()); return res; } _Key back() { return *this->rbegin(); } _Key pop_back() { auto res = this->back(); this->erase(prev(this->end())); return res; } };\ntemplate<typename _Tp, typename _Sequence=vector<_Tp>, typename _Compare=less<typename _Sequence::value_type>> struct my_priority_queue : public priority_queue<_Tp, _Sequence, _Compare> { _Tp pop() { auto res = this->top(); priority_queue<_Tp, _Sequence, _Compare>::pop(); return res; } };\ntemplate<typename _Tp, typename _Sequence=deque<_Tp>> struct my_queue : public queue<_Tp, _Sequence> { _Tp pop() { auto res = this->front(); queue<_Tp, _Sequence>::pop(); return res; } };\ntemplate<typename _Tp, typename _Alloc=std::allocator<_Tp>> struct my_deque : public deque<_Tp, _Alloc> { _Tp pop_front() { auto res = this->front(); deque<_Tp, _Alloc>::pop_front(); return res; } _Tp pop_back() { auto res = this->back(); deque<_Tp, _Alloc>::pop_back(); return res; } };\n\n// from numbers.cpp\nll gcd(ll a, ll b) { return __gcd(a, b); }\nll lcm(ll x, ll y) { return (x * y) / gcd(x, y); }\ntemplate<typename T> vector<pair<T, int>> factorize(T n) { vector<pair<T, int>> ret; for(T i=2; i*i<=n; i++) { int cnt = 0; while(n % i == 0) { n /= i; cnt++; } if(cnt) ret.emplace_back(i, cnt); } if(n > 1) ret.emplace_back(n, 1); return ret; }\nvector<ll> divisors(ll n) { vector<ll> res; for (ll i=1; i*i<=n; i++) { if (n%i == 0) { res.pb(i); if (n/i != i) res.pb(n/i); } } return res; }\nll ntod(string S, ll n) { ll res = 0, k = 1; reverse(ALL(S)); for (char &c : S) { res += k*toint(c); k *= n; } return res; }\nstring dton(ll num, ll n, char base='0') { string res; while (abs(num) > 0) { ll m = num % abs(n); num -= m; res += base+m; num /= n; } reverse(ALL(res)); if (res != \"\") { return res; } else { return res+base; } }\nll isqrt(ll n, bool ceil=false) { ll ok = 0; ll ng = 3037000500; while (ng - ok > 1) { ll m = ok + (ng - ok) / 2; if (m * m <= n) { ok = m; } else { ng = m; } } if (ceil and ok*ok != n) ok++; return ok; }\nll digit_sum(ll n) { ll res = 0; while (n > 0) { res += n % 10; n /= 10; } return res; }\nll digit_sum(string S) { ll res = 0; rep(i, S.size()) { res += toint(S[i]); } return res; }\n\n// from segment.cpp\ntemplate<typename T> struct Accumulate { vector<T> acc; int N; Accumulate() {} Accumulate(int N) : N(N) { acc.resize(N); } Accumulate(const vector<T> &A) { N = A.size(); acc = A; build(); } void set(int i, T a) { acc[i] = a; } void build() { rep(i, N-1) { acc[i+1] += acc[i]; } acc.insert(acc.begin(), 0); } T query(int l, int r) { assert(0 <= l and l <= N and 0 <= r and r <= N); return acc[r]-acc[l]; } T get(int i) { return query(i, i+1); } T operator[](int i){ return query(i, i+1); } ll bisearch_fore(int l, int r, ll x) { if (l > r) return -1; ll l_sm = query(0, l); int ok = r + 1; int ng = l - 1; while (ng+1 < ok) { int mid = (ok+ng) / 2; if (query(0, mid+1) - l_sm >= x) { ok = mid; } else { ng = mid; } } if (ok != r+1) { return ok; } else { return -1; } } ll bisearch_back(int l, int r, ll x) { if (l > r) return -1; ll r_sm = query(0, r+1); int ok = l - 1; int ng = r + 1; while (ok+1 < ng) { int mid = (ok+ng) / 2; if (r_sm - query(0, mid) >= x) { ok = mid; } else { ng = mid; } } if (ok != l-1) { return ok; } else { return -1; } } };\ntemplate<typename T> struct BIT { int sz; vector<T> tree; BIT(int n) { n++; sz = 1; while (sz < n) { sz *= 2; } tree.resize(sz); } T sum(int i) { T s = 0; i++; while (i > 0) { s += tree[i-1]; i -= i & -i; } return s; } void add(int i, T x) { i++; while (i <= sz) { tree[i-1] += x; i += i & -i; } } T query(int l, int r) { return sum(r-1) - sum(l-1); } T get(int i) { return query(i, i+1); } void update(int i, T x) { add(i, x - get(i)); } T operator[](int i) { return query(i, i+1); } void print(int n) { rep(i, n) { cout << query(i, i+1); if (i == n-1) cout << endl; else cout << ' '; } } ll bisearch_fore(int l, int r, ll x) { if (l > r) return -1; ll l_sm = sum(l-1); int ok = r + 1; int ng = l - 1; while (ng+1 < ok) { int mid = (ok+ng) / 2; if (sum(mid) - l_sm >= x) { ok = mid; } else { ng = mid; } } if (ok != r+1) { return ok; } else { return -1; } } ll bisearch_back(int l, int r, ll x) { if (l > r) return -1; ll r_sm = sum(r); int ok = l - 1; int ng = r + 1; while (ok+1 < ng) { int mid = (ok+ng) / 2; if (r_sm - sum(mid-1) >= x) { ok = mid; } else { ng = mid; } } if (ok != l-1) { return ok; } else { return -1; } } };\ntemplate<typename Monoid, typename F> struct SegmentTree { int sz; vector<Monoid> seg; const F f; const Monoid M1; SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1) { sz = 1; while(sz < n) sz <<= 1; seg.assign(2 * sz, M1); } SegmentTree(const F f, const Monoid &M1) : f(f), M1(M1) {} void resize(int n) { sz = 1; while(sz < n) sz <<= 1; seg.resize(2 * sz, M1); } void clear() { seg.clear(); } void set(int k, const Monoid &x) { seg[k+sz] = x; } void build() { for(int k = sz - 1; k > 0; k--) { seg[k] = f(seg[2*k], seg[2*k+1]); } } void build(const vector<Monoid> &A) { int n = A.size(); resize(n); rep(i, 0, n) set(i, A[i]); build(); } void update(int k, const Monoid &x) { k += sz; seg[k] = x; while(k >>= 1) { seg[k] = f(seg[2*k], seg[2*k+1]); } } Monoid query(int a, int b) { Monoid L = M1, R = M1; for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if(a & 1) L = f(L, seg[a++]); if(b & 1) R = f(seg[--b], R); } return f(L, R); } Monoid operator[](const int &k) const { return seg[k+sz]; } Monoid all() { return seg[1]; } void print(int n) { rep(i, n) { cout << query(i, i+1); if (i == n-1) cout << endl; else cout << ' '; } } template<typename C> int find_subtree(int a, const C &check, Monoid &M, bool type) { while(a < sz) { Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]); if(check(nxt)) a = 2 * a + type; else M = nxt, a = 2 * a + 1 - type; } return a - sz; } template<typename C> int find_first(int a, const C &check) { Monoid L = M1; if(a <= 0) { if(check(f(L, seg[1]))) return find_subtree(1, check, L, false); return -1; } int b = sz; for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if(a & 1) { Monoid nxt = f(L, seg[a]); if(check(nxt)) return find_subtree(a, check, L, false); L = nxt; ++a; } } return -1; } template<typename C> int find_last(int b, const C &check) { Monoid R = M1; if(b >= sz) { if(check(f(seg[1], R))) return find_subtree(1, check, R, true); return -1; } int a = sz; for(b += sz; a < b; a >>= 1, b >>= 1) { if(b & 1) { Monoid nxt = f(seg[--b], R); if(check(nxt)) return find_subtree(b, check, R, true); R = nxt; } } return -1; } }; template<typename Monoid, typename F> SegmentTree<Monoid, F> get_segment_tree(int N, const F& f, const Monoid& M1) { return {N, f, M1}; } template<typename Monoid, typename F> SegmentTree<Monoid, F> get_segment_tree(const F& f, const Monoid& M1) { return {f, M1}; }\n\n// from strings.cpp\nconst string digits = \"0123456789\";\nconst string ascii_lowercase = \"abcdefghijklmnopqrstuvwxyz\";\nconst string ascii_uppercase = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\";\nconst string ascii_letters = ascii_lowercase + ascii_uppercase;\nstring replace(string str, const string& replace, const string& with) { if(!replace.empty()) { size_t pos = 0; while ((pos = str.find(replace, pos)) != string::npos) { str.replace(pos, replace.length(), with); pos += with.length(); } } return str; }\nstring zfill(string str, int len) { string zeros; int n = str.size(); rep(i, len-n) zeros += '0'; return zeros+str; }\nstring bin(ll x) { string res; while (x) { if (x & 1) res += '1'; else res += '0'; x >>= 1; } reverse(ALL(res)); if(res == \"\") res += '0'; return res; }\n\n// 遅延評価セグメント木\ntemplate<typename F, typename G, typename H, typename Monoid, typename OperatorMonoid>\nstruct LazySegmentTree {\n int sz, height;\n vector<Monoid> data;\n vector<OperatorMonoid> lazy;\n const F f;\n const G g;\n const H h;\n const Monoid M1;\n const OperatorMonoid OM0;\n\n LazySegmentTree(int n, const F f, const G g, const H h,\n const Monoid &M1, const OperatorMonoid OM0)\n : f(f), g(g), h(h), M1(M1), OM0(OM0) {\n sz = 1;\n height = 0;\n while(sz < n) sz <<= 1, height++;\n data.assign(2 * sz, M1);\n lazy.assign(2 * sz, OM0);\n }\n\n LazySegmentTree(const F f, const G g, const H h,\n const Monoid &M1, const OperatorMonoid OM0)\n : f(f), g(g), h(h), M1(M1), OM0(OM0) {}\n\n void set(int k, const Monoid &x) {\n data[k + sz] = x;\n }\n\n void build() {\n for(int k = sz - 1; k > 0; k--) {\n data[k] = f(data[2 * k + 0], data[2 * k + 1]);\n }\n }\n\n void build(const vector<Monoid> &A) {\n int n = A.size();\n sz = 1;\n height = 0;\n while(sz < n) sz <<= 1, height++;\n data.assign(2 * sz, M1);\n lazy.assign(2 * sz, OM0);\n rep(i, n) set(i, A[i]);\n build();\n }\n\n inline void propagate(int k) {\n if(lazy[k] == OM0) return;\n lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);\n lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);\n data[k] = apply(k);\n lazy[k] = OM0;\n }\n\n inline Monoid apply(int k) {\n return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);\n }\n\n inline void recalc(int k) {\n while(k >>= 1) data[k] = f(apply(2 * k + 0), apply(2 * k + 1));\n }\n\n inline void thrust(int k) {\n for(int i = height; i > 0; i--) propagate(k >> i);\n }\n\n void update(int a, int b, const OperatorMonoid &x) {\n if(a >= b) return;\n thrust(a += sz);\n thrust(b += sz - 1);\n for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {\n if(l & 1) lazy[l] = h(lazy[l], x), ++l;\n if(r & 1) --r, lazy[r] = h(lazy[r], x);\n }\n recalc(a);\n recalc(b);\n }\n\n Monoid query(int a, int b) {\n if(a >= b) return M1;\n thrust(a += sz);\n thrust(b += sz - 1);\n Monoid L = M1, R = M1;\n for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {\n if(l & 1) L = f(L, apply(l++));\n if(r & 1) R = f(apply(--r), R);\n }\n return f(L, R);\n }\n\n Monoid operator[](const int &k) {\n return query(k, k + 1);\n }\n\n void update(int i, const OperatorMonoid &x) {\n update(i, i+1, x);\n }\n\n template<typename P=ll>\n void print(int n) {\n rep(i, n) {\n cout << (P)query(i, i+1);\n if (i == n-1) cout << '\\n';\n else cout << ' ';\n }\n }\n\n template<typename C>\n int find_subtree(int a, const C &check, Monoid &M, bool type) {\n while(a < sz) {\n propagate(a);\n Monoid nxt = type ? f(apply(2 * a + type), M) : f(M, apply(2 * a + type));\n if(check(nxt)) a = 2 * a + type;\n else M = nxt, a = 2 * a + 1 - type;\n }\n return a - sz;\n }\n\n // 区間[a,N)でcheckの条件を満たすような最小位置を返す(なければ-1)\n template<typename C>\n int find_first(int a, const C &check) {\n Monoid L = M1;\n if(a <= 0) {\n if(check(f(L, apply(1)))) return find_subtree(1, check, L, false);\n return -1;\n }\n thrust(a + sz);\n int b = sz;\n for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {\n if(a & 1) {\n Monoid nxt = f(L, apply(a));\n if(check(nxt)) return find_subtree(a, check, L, false);\n L = nxt;\n ++a;\n }\n }\n return -1;\n }\n\n // 区間[0,b)でcheckの条件を満たすような最大位置を返す(なければ-1)\n template<typename C>\n int find_last(int b, const C &check) {\n Monoid R = M1;\n if(b >= sz) {\n if(check(f(apply(1), R))) return find_subtree(1, check, R, true);\n return -1;\n }\n thrust(b + sz - 1);\n int a = sz;\n for(b += sz; a < b; a >>= 1, b >>= 1) {\n if(b & 1) {\n Monoid nxt = f(apply(--b), R);\n if(check(nxt)) return find_subtree(b, check, R, true);\n R = nxt;\n }\n }\n return -1;\n }\n};\n\ntemplate<typename F, typename G, typename H, typename T, typename E>\nLazySegmentTree<F, G, H, T, E> get_lazy_segment_tree(const F& f, const G& g, const H& h, const T& ti, const E& ei) {\n return {f, g, h, ti, ei};\n}\n\ntemplate<typename F, typename G, typename H, typename T, typename E>\nLazySegmentTree<F, G, H, T, E> get_lazy_segment_tree(int N, const F& f, const G& g, const H& h, const T& ti, const E& ei) {\n return {N, f, g, h, ti, ei};\n}\n\n// 区間和取得・区間等差数列加算\n// 参考:https://opt-cp.com/lazysegtree-practice/\nstruct Node {\n ll val, left;\n operator ll() const { return val; }\n};\nstruct Func {\n ll cnt, sub;\n bool operator==(const Func &f) const {\n return cnt == f.cnt and sub == f.sub;\n }\n};\nauto f = [](const Node &a, const Node &b) -> Node { \n return { a.val+b.val, min(a.left, b.left) };\n};\nauto g = [](const Node &a, const Func &b) -> Node {\n return { a.val+b.cnt*a.left+b.sub, a.left }; \n};\nauto h = [](const Func &a, const Func &b) -> Func {\n return { a.cnt+b.cnt, a.sub+b.sub };\n};\nconst Node T = {0, INF};\nconst Func E = {0, 0};\n\nvoid solve() {\n ll N, Q;\n cin >> N >> Q;\n\n auto seg = get_lazy_segment_tree(N, f, g, h, T, E);\n const ll a = 1, d = 1;\n rep(i, N) {\n // 数列の先頭を初項0とした公差dの等差数列でleftを初期化\n seg.set(i, {0, i*d});\n }\n seg.build();\n rep(_, Q) {\n ll l, k;\n cin >> l >> k;\n l--;\n ll r = l+k;\n // seg.print(N);\n // 位置lを初項aとした公差dの等差数列を[l,r)に加算\n seg.update(l, r, {1, a-l*d});\n }\n seg.print(N);\n // print(seg.query(0, 3));\n // print(seg.query(6, 10));\n // print(seg.query(5, 7));\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n\n // single test case\n solve();\n\n // multi test cases\n // int T;\n // cin >> T;\n // while (T--) solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 19572, "score_of_the_acc": -1.0298, "final_rank": 14 } ]
aoj_3166_cpp
C: Not Found 問題 文字 0 , 1 からなる長さ $n$ の相異なる文字列が $m$ 個与えられるので、以下の条件をすべて満たす文字列 $t$ を構築せよ。 $t$ は 0 , 1 , * のみからなる長さ $n$ の文字列である $t$ に含まれる 0 と 1 の個数の合計は $20$ 以下である $t$ 中の文字 * を 0 または 1 にどのように置き換えても、全ての $1 \leq i \leq m$ に対して,与えられた $i$ 番目の文字列 $s_i$ と $t$ が一致することはない 入力形式 $n$ $m$ $s_1$ ... $s_m$ 制約 $1 \leq n$ $1 \leq m < 2^n$ $n \times m \leq 2500000$ $|s_i| = n$ ($1 \leq i \leq m$) $s_i \neq s_j$ ($1 \leq i < j \leq m$) $s_i$ は 0 , 1 のみからなる ($1 \leq i \leq m$) 出力形式 条件を満たす文字列を一行に出力せよ。条件を満たすものであれば何を出力しても構わない。条件を満たす文字列が存在しない場合は hokudai と出力せよ。 入力例1 3 2 101 000 出力例1 *1* 各 * を 0 とみても 1 とみても 101 や 000 に一致することはありません。 入力例2 2 3 11 10 00 出力例2 01
[ { "submission_id": "aoj_3166_10760316", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 2500005\n#define MAX 20\n\nint N,M;\nint POW[MAX+1];\nbool check[SIZE][2],used[1<<20];\nstring line[SIZE];\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i <= MAX; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tscanf(\"%d %d\",&N,&M);\n\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int k = 0; k < 2; k++){\n\t\t\tcheck[i][k] = false;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tcin >> line[i];\n\t\tfor(int k = 0; k < line[i].length(); k++){\n\t\t\tcheck[k][line[i][k]-'0'] = true;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int k = 0; k < 2; k++){\n\t\t\tif(!check[i][k]){\n\t\t\t\tfor(int a = 0; a < i; a++){\n\t\t\t\t\tprintf(\"*\");\n\t\t\t\t}\n\t\t\t\tprintf(\"%d\",k);\n\t\t\t\tfor(int a = i+1; a < N; a++){\n\t\t\t\t\tprintf(\"*\");\n\t\t\t\t}\n\t\t\t\tprintf(\"\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < POW[min(MAX,N)]; i++){\n\n\t\tused[i] = false;\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint tmp = 0;\n\t\tfor(int k = 0; k < min(MAX,N); k++){\n\n\t\t\ttmp = 2*tmp+(line[i][k]-'0');\n\t\t}\n\t\tused[tmp] = true;\n\t}\n\n\tfor(int i = 0; i < POW[min(MAX,N)]; i++){\n\t\tif(!used[i]){\n\n\t\t\tint tmp = i;\n\t\t\tfor(int k = min(MAX,N)-1; k >= 0; k--){\n\t\t\t\tif(POW[k] <= tmp){\n\t\t\t\t\ttmp -= POW[k];\n\t\t\t\t\tprintf(\"1\");\n\n\t\t\t\t}else{\n\n\t\t\t\t\tprintf(\"0\");\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(MAX < N){\n\t\t\t\tint diff = N-MAX;\n\t\t\t\tfor(int a = 0; a < diff; a++){\n\t\t\t\t\tprintf(\"*\");\n\t\t\t\t}\n\t\t\t}\n\t\t\tprintf(\"\\n\");\n\t\t\treturn 0;\n\t\t}\n\t}\n\n\tprintf(\"hokudai\\n\");\n\n\treturn 0;\n}", "accuracy": 0.036585365853658534, "time_ms": 50, "memory_kb": 91288, "score_of_the_acc": -1.0851, "final_rank": 19 }, { "submission_id": "aoj_3166_8730834", "code_snippet": "#include <bits/stdc++.h>\n//#include<atcoder/modint>\n//using namespace atcoder;\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\nusing vvvb = vector<vvb>;\nusing vd = vector<double>;\nusing vvd = vector<vd>;\nusing vvvd = vector<vvd>;\n#define all(A) A.begin(),A.end()\n#define rep(i, n) for (ll i = 0; i < (ll) (n); i++)\ntemplate<class T>\nbool chmax(T& p, T q, bool C = 1) {\n if (C == 0 && p == q) {\n return 1;\n }\n if (p < q) {\n p = q;\n return 1;\n }\n else {\n return 0;\n }\n}\ntemplate<class T>\nbool chmin(T& p, T q, bool C = 1) {\n if (C == 0 && p == q) {\n return 1;\n }\n if (p > q) {\n p = q;\n return 1;\n }\n else {\n return 0;\n }\n}\nll modPow(long long a, long long n, long long p) {\n if (n == 0) return 1; // 0乗にも対応する場合\n if (n == 1) return a % p;\n if (n % 2 == 1) return (a * modPow(a, n - 1, p)) % p;\n long long t = modPow(a, n / 2, p);\n return (t * t) % p;\n}\nll cnt = 0;\nll gcd(ll(a), ll(b)) {\n cnt++;\n if (a == 0)return b;\n if (b == 0)return a;\n ll c = a;\n while (a % b != 0) {\n c = a % b;\n a = b;\n b = c;\n }\n return b;\n}\nll sqrtz(ll N) {\n ll L = 0;\n ll R = sqrt(N) + 10000;\n while (abs(R - L) > 1) {\n ll mid = (R + L) / 2;\n if (mid * mid <= N)L = mid;\n else R = mid;\n }\n return L;\n}\n\nusing LD = long double;\n\n/*\nusing mint = modint1000000007;\nusing vm = vector<mint>;\nusing vvm = vector<vm>;\nusing vvvm = vector<vvm>;\n\n\nvector<mint> fact, factinv, inv;\nconst ll mod = 1e9+7;\nvoid prenCkModp(ll n) {\n fact.resize(n + 5);\n factinv.resize(n + 5);\n inv.resize(n + 5);\n fact[0] = fact[1] = 1;\n factinv[0] = factinv[1] = 1;\n inv[1] = 1;\n for (ll i = 2; i < n + 5; i++) {\n fact[i] = (fact[i - 1] * i);\n inv[i] = (mod - ((inv[mod % i] * (mod / i))));\n factinv[i] = (factinv[i - 1] * inv[i]);\n }\n}\nmint nCk(ll n, ll k) {\n if (n < k || k < 0) return 0;\n return (fact[n] * ((factinv[k] * factinv[n - k])));\n}\n*/\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll N,M;\n cin>>N>>M;\n vector<string> S(M);\n rep(i,M)cin>>S[i];\n vector<bool> L(M,1);\n ll t=N;\n rep(i,min(ll(20),N)){\n vll A(2,0);\n rep(m,M){\n if(!L[m])continue;\n A[S[m][i]-'0']++;\n }\n char p=(A[0]<A[1]?'0':'1');\n cout<<p;\n rep(m,M){\n if(L[m]&&S[m][i]!=p)L[m]=0;\n }\n t--;\n }\n rep(i,t)cout<<\"*\";\n cout<<endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 11228, "score_of_the_acc": -0.104, "final_rank": 6 }, { "submission_id": "aoj_3166_7975102", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nint main() {\n int N, M; cin >> N >> M;\n vector<string> S(M);\n for(int i = 0; i < M; i++) cin >> S[i];\n\n sort(S.begin(), S.end());\n\n string t;\n int L = 0, R = M;\n for(int i = 0; i < 20; i++){\n if(i >= N) break;\n int num0 = 0, num1 = 0;\n int mid = R;\n for(int j = L; j < R; j++){\n if(S[j][i] == '0') num0++;\n else{\n mid = min(mid, j);\n num1++;\n }\n }\n\n if(num0 <= num1){\n t += '0';\n R = mid;\n }\n else{\n t += '1';\n L = mid;\n }\n }\n\n while(t.size() < size_t(N)) t += '*';\n cout << t << endl;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 13612, "score_of_the_acc": -0.1745, "final_rank": 8 }, { "submission_id": "aoj_3166_7009771", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3166.cc: Not Found\n */\n\n#include<cstdio>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_NM = 2500000;\nconst int MAX_L = 20;\nconst int LBITS = 1 << MAX_L;\n\n/* typedef */\n\n/* global variables */\n\nchar s[MAX_NM + 4];\nbool used[LBITS];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, m;\n scanf(\"%d%d\", &n, &m);\n for (int i = 0; i < m; i++) scanf(\"%s\", s + i * n);\n //puts(s);\n\n int l = min(n, MAX_L), lbits = 1 << l;\n\n for (int i = 0; i < m; i++) {\n char *t = s + i * n;\n int bits = 0;\n for (int j = 0; j < l; j++) bits = (bits << 1) | (t[j] - '0');\n used[bits] = true;\n }\n\n for (int bits = 0; bits < lbits; bits++)\n if (! used[bits]) {\n for (int i = 0; i < l; i++)\n\tputchar('0' + ((bits >> (l - 1 - i)) & 1));\n for (int i = l; i < n; i++) putchar('*');\n putchar('\\n');\n break;\n }\n \n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 5984, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3166_6928559", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=9167167167167167167;\nconst int INF=2100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint n,m;\n\tcin>>n>>m;\n\tint x=0;\n\twhile((1<<x)<=m) x++;\n\tassert(x<=20);\n\tvector<bool> p((1<<x));\n\trep(i,m){\n\t\tstring S;\n\t\tcin>>S;\n\t\tint tmp=0;\n\t\trep(j,x){\n\t\t\tif(S[j]=='1') tmp+=(1<<j);\n\t\t}\n\t\tp[tmp]=1;\n\t}\n\trep(i,(1<<x)){\n\t\tif(p[i]) continue;\n\t\tstring ans;\n\t\tint D=i;\n\t\trep(j,x) ans+=(char)(D%2+'0'),D/=2;\n\t\trep(j,n-x) ans+='*';\n\t\tcout<<ans<<\"\\n\";\n\t\treturn;\n\t}\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 10820, "score_of_the_acc": -0.0567, "final_rank": 2 }, { "submission_id": "aoj_3166_5145183", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint main(){\n int n,m;\n cin >> n >> m;\n vector<string> s(m);\n for(int i=0; i<m; i++){\n cin >> s[i];\n }\n vector<bool> used(m, false);\n string ans = \"\";\n int rem = m;\n for(int i=0; i<n; i++){\n int count[2] = {};\n for(int j=0; j<m; j++){\n if(!used[j]) count[s[j][i]-'0']++;\n }\n char c = (count[0] < count[1])? '0': '1';\n ans += c;\n for(int j=0; j<m; j++){\n if(!used[j] and s[j][i] != c){\n used[j] = true;\n rem--;\n }\n }\n if(rem == 0){\n break;\n }\n }\n if(rem > 0){\n cout << \"hokudai\" << endl;\n }else{\n cout << ans << string(n-(int)ans.length(), '*') << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 11196, "score_of_the_acc": -0.1249, "final_rank": 7 }, { "submission_id": "aoj_3166_5067037", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T> constexpr int BIT(T x, int i) {\n\treturn (x & (1 << i)) ? 1 : 0;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 2 \"a.cpp\"\n\nint main() {\n\tini(n, m);\n\tVS s = in[m];\n\n\tint len = min(20, n);\n\tVB flag(1 << len);\n\trep(i, m) {\n\t\tint val = stoi(s[i].substr(0, len), nullptr, 2);\n\t\tflag[val] = true;\n\t}\n\trep(i, 1 << len) {\n\t\tif (!flag[i]) {\n\t\t\tstring ans;\n\t\t\trep(d, len) ans += BIT(i, len - 1 - d) + '0';\n\t\t\tans += string(n - len, '*');\n\t\t\tout.exit(ans);\n\t\t}\n\t}\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 11484, "score_of_the_acc": -0.0645, "final_rank": 3 }, { "submission_id": "aoj_3166_4982541", "code_snippet": "#define MOD_TYPE 2\n\n#pragma region Macros\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#if 0\n#include <boost/multiprecision/cpp_int.hpp>\n#include <boost/multiprecision/cpp_dec_float.hpp>\nusing Int = boost::multiprecision::cpp_int;\nusing lld = boost::multiprecision::cpp_dec_float_100;\n#endif\n#if 0\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\nusing ll = long long int;\nusing ld = long double;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pld = pair<ld, ld>;\ntemplate <typename Q_type>\nusing smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;\n\nconstexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);\nconstexpr int INF = (int)1e9 + 10;\nconstexpr ll LINF = (ll)4e18;\nconstexpr double PI = acos(-1.0);\nconstexpr double EPS = 1e-7;\nconstexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};\nconstexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};\n\n#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)\n#define rep(i, n) REP(i, 0, n)\n#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)\n#define repi(i, n) REPI(i, 0, n)\n#define MP make_pair\n#define MT make_tuple\n#define YES(n) cout << ((n) ? \"YES\" : \"NO\") << \"\\n\"\n#define Yes(n) cout << ((n) ? \"Yes\" : \"No\") << \"\\n\"\n#define possible(n) cout << ((n) ? \"possible\" : \"impossible\") << \"\\n\"\n#define Possible(n) cout << ((n) ? \"Possible\" : \"Impossible\") << \"\\n\"\n#define all(v) v.begin(), v.end()\n#define NP(v) next_permutation(all(v))\n#define dbg(x) cerr << #x << \":\" << x << \"\\n\";\n\nstruct io_init\n{\n io_init()\n {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << setprecision(30) << setiosflags(ios::fixed);\n };\n} io_init;\ntemplate <typename T>\ninline bool chmin(T &a, T b)\n{\n if (a > b)\n {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <typename T>\ninline bool chmax(T &a, T b)\n{\n if (a < b)\n {\n a = b;\n return true;\n }\n return false;\n}\ninline ll CEIL(ll a, ll b)\n{\n return (a + b - 1) / b;\n}\ntemplate <typename A, size_t N, typename T>\ninline void Fill(A (&array)[N], const T &val)\n{\n fill((T *)array, (T *)(array + N), val);\n}\ntemplate <typename T, typename U>\nconstexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept\n{\n is >> p.first >> p.second;\n return is;\n}\ntemplate <typename T, typename U>\nconstexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept\n{\n os << p.first << \" \" << p.second;\n return os;\n}\n#pragma endregion\n\nvoid solve()\n{\n int n, m;\n cin >> n >> m;\n assert(m < (1 << 20));\n if (m >= (1 << 20))\n {\n cout << \"hokudai\\n\";\n return;\n }\n vector<string> s(m);\n rep(i, m) cin >> s[i];\n string t;\n vector<int> idx(m);\n iota(all(idx), 0);\n rep(j, min(20, n))\n {\n vector<int> v[2];\n for (auto i : idx)\n {\n v[s[i][j] == '1'].push_back(i);\n }\n if (v[0].size() <= v[1].size())\n {\n t.push_back('0');\n idx = move(v[0]);\n }\n else\n {\n t.push_back('1');\n idx = move(v[1]);\n }\n }\n while (t.length() < n)\n t.push_back('*');\n assert(t.length() == n);\n cout << t << \"\\n\";\n}\n\nint main()\n{\n solve();\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 12336, "score_of_the_acc": -0.0745, "final_rank": 4 }, { "submission_id": "aoj_3166_4964091", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint dx[] = {1, 0, -1, 0};\nint dy[] = {0, 1, 0, -1};\n\nint main() {\n int n, m;\n cin >> n >> m;\n vector<string> s(m);\n for (int i = 0; i < m; i++) cin >> s[i];\n\n string ans = \"\";\n vector<int> flag(m, true);\n for (int i = 0; i < n; i++) {\n if (i >= 20) {\n ans += \"*\";\n continue;\n }\n int cnt0 = 0;\n int rest = 0;\n for (int j = 0; j < m; j++) {\n if (!flag[j]) continue;\n rest++;\n if (s[j][i] == '0') cnt0++;\n }\n int cnt1 = rest - cnt0;\n if (cnt0 < cnt1)\n ans += \"0\";\n else\n ans += \"1\";\n\n vector<string> news;\n for (int j = 0; j < m; j++) {\n if (!flag[j]) continue;\n if (cnt0 < cnt1 && s[j][i] == '1' || cnt0 >= cnt1 && s[j][i] == '0') {\n flag[j] = false;\n }\n }\n }\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 12200, "score_of_the_acc": -0.2218, "final_rank": 9 }, { "submission_id": "aoj_3166_4964088", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint dx[] = {1, 0, -1, 0};\nint dy[] = {0, 1, 0, -1};\n\nint main() {\n int n, m;\n cin >> n >> m;\n vector<string> s(m);\n for(int i=0;i<m;i++) cin>>s[i];\n\n string ans = \"\";\n vector<int> flag(m,true);\n for(int i=0;i<n;i++){\n if(i>=20) {\n ans+=\"*\";\n continue;\n }\n int cnt0 = 0;\n int rest = 0;\n for(int j=0;j<m;j++){\n if(!flag[j]) continue;\n rest++;\n if(s[j][i] == '0') cnt0++;\n }\n int cnt1 = rest - cnt0;\n if(cnt0<cnt1) ans+=\"0\";\n else ans+=\"1\";\n \n vector<string> news;\n for(int j=0;j<m;j++){\n if(!flag[j]) continue;\n if(cnt0<cnt1 && s[j][i]=='0' || cnt0>=cnt1 && s[j][i]=='1') {\n flag[j] = false;\n }\n }\n }\n\n cout<<ans<<endl;\n\n return 0;\n}", "accuracy": 0.14634146341463414, "time_ms": 60, "memory_kb": 11456, "score_of_the_acc": -0.1705, "final_rank": 17 }, { "submission_id": "aoj_3166_4964086", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint dx[] = {1, 0, -1, 0};\nint dy[] = {0, 1, 0, -1};\n\nint main() {\n int n, m;\n cin >> n >> m;\n vector<string> s(m);\n for(int i=0;i<m;i++) cin>>s[i];\n\n string ans = \"\";\n vector<int> flag(n,true);\n for(int i=0;i<n;i++){\n if(i>=20) {\n ans+=\"*\";\n continue;\n }\n int cnt0 = 0;\n int rest = 0;\n for(int j=0;j<m;j++){\n if(!flag[i]) continue;\n rest++;\n if(s[j][i] == '0') cnt0++;\n }\n int cnt1 = rest - cnt0;\n if(cnt0<cnt1) ans+=\"0\";\n else ans+=\"1\";\n \n vector<string> news;\n for(int j=0;j<m;j++){\n if(!flag[j]) continue;\n if(cnt0<cnt1 && s[j][i]=='0' || cnt0>=cnt1 && s[j][i]=='1') {\n flag[j] = false;\n }\n }\n }\n\n cout<<ans<<endl;\n\n return 0;\n}", "accuracy": 0.14634146341463414, "time_ms": 60, "memory_kb": 21056, "score_of_the_acc": -0.2831, "final_rank": 18 }, { "submission_id": "aoj_3166_4944240", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 2500005\n#define MAX 22\n\nint N,M;\nint POW[MAX+1];\nbool check[SIZE][2],used[1<<22];\nstring line[SIZE];\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i <= MAX; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tscanf(\"%d %d\",&N,&M);\n\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int k = 0; k < 2; k++){\n\t\t\tcheck[i][k] = false;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tcin >> line[i];\n\t\tfor(int k = 0; k < line[i].length(); k++){\n\t\t\tcheck[k][line[i][k]-'0'] = true;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int k = 0; k < 2; k++){\n\t\t\tif(!check[i][k]){\n\t\t\t\tfor(int a = 0; a < i; a++){\n\t\t\t\t\tprintf(\"*\");\n\t\t\t\t}\n\t\t\t\tprintf(\"%d\",k);\n\t\t\t\tfor(int a = i+1; a < N; a++){\n\t\t\t\t\tprintf(\"*\");\n\t\t\t\t}\n\t\t\t\tprintf(\"\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < POW[min(MAX,N)]; i++){\n\n\t\tused[i] = false;\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint tmp = 0;\n\t\tfor(int k = 0; k < min(MAX,N); k++){\n\n\t\t\ttmp = 2*tmp+(line[i][k]-'0');\n\t\t}\n\t\tused[tmp] = true;\n\t}\n\n\tfor(int i = 0; i < POW[min(MAX,N)]; i++){\n\t\tif(!used[i]){\n\n\t\t\tint tmp = i;\n\t\t\tfor(int k = min(MAX,N)-1; k >= 0; k--){\n\t\t\t\tif(POW[k] <= tmp){\n\t\t\t\t\ttmp -= POW[k];\n\t\t\t\t\tprintf(\"1\");\n\n\t\t\t\t}else{\n\n\t\t\t\t\tprintf(\"0\");\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(MAX < N){\n\t\t\t\tint diff = N-MAX;\n\t\t\t\tfor(int a = 0; a < diff; a++){\n\t\t\t\t\tprintf(\"*\");\n\t\t\t\t}\n\t\t\t}\n\t\t\tprintf(\"\\n\");\n\t\t\treturn 0;\n\t\t}\n\t}\n\n\tprintf(\"hokudai\\n\");\n\n\treturn 0;\n}", "accuracy": 0.24390243902439024, "time_ms": 60, "memory_kb": 31312, "score_of_the_acc": -0.4033, "final_rank": 14 }, { "submission_id": "aoj_3166_4944218", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 2500005\n#define MAX 27\n\nint N,M;\nint POW[MAX+1];\nbool check[SIZE][2],used[1<<27];\nstring line[SIZE];\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i <= MAX; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tscanf(\"%d %d\",&N,&M);\n\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int k = 0; k < 2; k++){\n\t\t\tcheck[i][k] = false;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tcin >> line[i];\n\t\tfor(int k = 0; k < line[i].length(); k++){\n\t\t\tcheck[k][line[i][k]-'0'] = true;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int k = 0; k < 2; k++){\n\t\t\tif(!check[i][k]){\n\t\t\t\tfor(int a = 0; a < i; a++){\n\t\t\t\t\tprintf(\"*\");\n\t\t\t\t}\n\t\t\t\tprintf(\"%d\",k);\n\t\t\t\tfor(int a = i+1; a < N; a++){\n\t\t\t\t\tprintf(\"*\");\n\t\t\t\t}\n\t\t\t\tprintf(\"\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < POW[N]; i++){\n\n\t\tused[i] = false;\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint tmp = 0;\n\t\tfor(int k = 0; k < N; k++){\n\n\t\t\ttmp = 2*tmp+(line[i][k]-'0');\n\t\t}\n\t\tused[tmp] = true;\n\t}\n\n\tfor(int i = 0; i < POW[N]; i++){\n\t\tif(!used[i]){\n\n\t\t\tint tmp = i;\n\t\t\tfor(int k = N-1; k >= 0; k--){\n\t\t\t\tif(POW[k] <= tmp){\n\t\t\t\t\ttmp -= POW[k];\n\t\t\t\t\tprintf(\"1\");\n\n\t\t\t\t}else{\n\n\t\t\t\t\tprintf(\"0\");\n\t\t\t\t}\n\t\t\t}\n\t\t\tprintf(\"\\n\");\n\t\t\treturn 0;\n\t\t}\n\t}\n\n\tprintf(\"hokudai\\n\");\n\n\treturn 0;\n}", "accuracy": 0.24390243902439024, "time_ms": 60, "memory_kb": 57668, "score_of_the_acc": -0.7123, "final_rank": 15 }, { "submission_id": "aoj_3166_4944196", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 2500005\n#define MAX 22\n\nint N,M;\nint POW[MAX+1];\nbool check[SIZE][2],used[1<<22];\nstring line[SIZE];\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i <= MAX; i++){\n\n\t\tPOW[i] = POW[i-1]*2;\n\t}\n\n\tscanf(\"%d %d\",&N,&M);\n\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int k = 0; k < 2; k++){\n\t\t\tcheck[i][k] = false;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tcin >> line[i];\n\t\tfor(int k = 0; k < line[i].length(); k++){\n\t\t\tcheck[k][line[i][k]-'0'] = true;\n\t\t}\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\t\tfor(int k = 0; k < 2; k++){\n\t\t\tif(!check[i][k]){\n\t\t\t\tfor(int a = 0; a < i; a++){\n\t\t\t\t\tprintf(\"*\");\n\t\t\t\t}\n\t\t\t\tprintf(\"%d\",k);\n\t\t\t\tfor(int a = i+1; a < N; a++){\n\t\t\t\t\tprintf(\"*\");\n\t\t\t\t}\n\t\t\t\tprintf(\"\\n\");\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\t}\n\n\tfor(int i = 0; i < POW[N]; i++){\n\n\t\tused[i] = false;\n\t}\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tint tmp = 0;\n\t\tfor(int k = 0; k < N; k++){\n\n\t\t\ttmp = 2*tmp+(line[i][k]-'0');\n\t\t}\n\t\tused[tmp] = true;\n\t}\n\n\tfor(int i = 0; i < POW[N]; i++){\n\t\tif(!used[i]){\n\n\t\t\tint tmp = i;\n\t\t\tfor(int k = N-1; k >= 0; k--){\n\t\t\t\tif(POW[k] <= tmp){\n\t\t\t\t\ttmp -= POW[k];\n\t\t\t\t\tprintf(\"1\");\n\n\t\t\t\t}else{\n\n\t\t\t\t\tprintf(\"0\");\n\t\t\t\t}\n\t\t\t}\n\t\t\tprintf(\"\\n\");\n\t\t\treturn 0;\n\t\t}\n\t}\n\n\tprintf(\"hokudai\\n\");\n\n\treturn 0;\n}", "accuracy": 0.24390243902439024, "time_ms": 60, "memory_kb": 31308, "score_of_the_acc": -0.4033, "final_rank": 13 }, { "submission_id": "aoj_3166_4894854", "code_snippet": "#ifdef ONLINE_JUDGE\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for(int i = 0; i < (n); ++i)\n#define all(x) (x).begin(),(x).end()\nconstexpr char ln = '\\n';\nistream& operator>>(istream& is, __int128_t &x) {\n x = 0;\n string s;\n is >> s;\n int n = int(s.size()), it = 0;\n if (s[0] == '-') it++;\n for (; it < n; it++) x = (x * 10 + s[it] - '0');\n if (s[0] == '-') x = -x;\n return is;\n}\nostream& operator<<(ostream& os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n deque<int> deq;\n while (x) deq.emplace_front(x % 10), x /= 10;\n for (int e : deq) os << e;\n return os;\n}\ntemplate<class T1, class T2>\nostream& operator<<(ostream& os, const pair<T1, T2>& p) {\n return os << \"(\" << p.first << \", \" << p.second << \")\";\n}\ntemplate<class T> \nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"[\";\n for(auto e : v) os << e << \", \";\n return os << \"]\";\n}\ntemplate<class Container> inline int SZ(Container& v) {return int(v.size());}\ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\ninline int topbit(int x) {return x == 0 ? -1 : 31 - __builtin_clz(x);}\ninline int topbit(long long x) {return x == 0 ? -1 : 63 - __builtin_clzll(x);}\ninline int botbit(int x) {return x == 0 ? 32 : __builtin_ctz(x);}\ninline int botbit(long long x) {return x == 0 ? 64 : __builtin_ctzll(x);}\ninline int popcount(int x) {return __builtin_popcount(x);}\ninline int popcount(long long x) {return __builtin_popcountll(x);}\ninline int kthbit(long long x, int k) {return (x>>k)&1;}\ninline constexpr long long TEN(int x) {return x == 0 ? 1 : TEN(x-1) * 10;}\nnamespace detail {\n template<typename Tp, int Nb>\n auto make_vector(vector<int>& sizes, Tp const& x) {\n if constexpr (Nb == 1) {\n return vector(sizes[0], x);\n } else {\n int size = sizes[Nb-1];\n sizes.pop_back();\n return vector(size, make_vector<Tp, Nb-1>(sizes, x));\n }\n }\n}\ntemplate<typename Tp, int Nb>\nauto make_vector(int const(&sizes)[Nb], Tp const& x = Tp()) {\n vector<int> s(Nb);\n for (int i = 0; i < Nb; i++) s[i] = sizes[Nb-i-1];\n return detail::make_vector<Tp, Nb>(s, x);\n}\ninline void print() {cout << \"\\n\";}\ntemplate<class T>\ninline void print(const vector<T>& v) {\n for (auto itr = v.begin(); itr != v.end(); ++itr) cout << *itr << \" \";\n print();\n}\ntemplate<class T, class... Args>\ninline void print(const T &x, const Args &... args) {\n cout << x << \" \";\n print(args...);\n}\n#ifdef MINATO_LOCAL\n#define dump(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\ninline void debug() {cerr << endl;}\ntemplate<class T>\ninline void debug(const vector<T> &v) {\n for (auto itr = v.begin(); itr != v.end(); ++itr) cerr << *itr << \" \";\n debug();\n}\ntemplate<class T, class... Args>\ninline void debug(const T &x, const Args &... args) {\n cerr << x << \" \";\n debug(args...);\n}\n#else\n#define dump(x) void(0)\ninline void debug() {}\ntemplate<class T> inline void debug(const vector<T> &v) {}\ntemplate<class T, class... Args> inline void debug(const T &x, const Args &... args) {}\n#endif\nstruct Fast_ios {Fast_ios() {cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20);};} fast_ios;\n////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nint main() {\n int N,M; cin >> N >> M;\n vector<string> S(M);\n rep(i,M) cin >> S[i];\n\n int K = min(N,20);\n vector<bool> seen(1<<K);\n rep(i,M) {\n int a = 0;\n rep(j,K) {\n if (S[i][j]=='1') a |= (1<<j);\n }\n seen[a] = 1;\n }\n\n rep(i,1<<K) {\n if (!seen[i]) {\n string ans = \"\";\n rep(bit,K) {\n if (kthbit(i,bit)) ans += '1';\n else ans += '0';\n }\n while (int(ans.size()) < N) ans += '*';\n cout << ans << ln;\n return 0;\n }\n }\n\n cout << \"hokudai\" << ln;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 13764, "score_of_the_acc": -0.0912, "final_rank": 5 }, { "submission_id": "aoj_3166_4894851", "code_snippet": "#ifdef ONLINE_JUDGE\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for(int i = 0; i < (n); ++i)\n#define all(x) (x).begin(),(x).end()\nconstexpr char ln = '\\n';\nistream& operator>>(istream& is, __int128_t &x) {\n x = 0;\n string s;\n is >> s;\n int n = int(s.size()), it = 0;\n if (s[0] == '-') it++;\n for (; it < n; it++) x = (x * 10 + s[it] - '0');\n if (s[0] == '-') x = -x;\n return is;\n}\nostream& operator<<(ostream& os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n deque<int> deq;\n while (x) deq.emplace_front(x % 10), x /= 10;\n for (int e : deq) os << e;\n return os;\n}\ntemplate<class T1, class T2>\nostream& operator<<(ostream& os, const pair<T1, T2>& p) {\n return os << \"(\" << p.first << \", \" << p.second << \")\";\n}\ntemplate<class T> \nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"[\";\n for(auto e : v) os << e << \", \";\n return os << \"]\";\n}\ntemplate<class Container> inline int SZ(Container& v) {return int(v.size());}\ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\ninline int topbit(int x) {return x == 0 ? -1 : 31 - __builtin_clz(x);}\ninline int topbit(long long x) {return x == 0 ? -1 : 63 - __builtin_clzll(x);}\ninline int botbit(int x) {return x == 0 ? 32 : __builtin_ctz(x);}\ninline int botbit(long long x) {return x == 0 ? 64 : __builtin_ctzll(x);}\ninline int popcount(int x) {return __builtin_popcount(x);}\ninline int popcount(long long x) {return __builtin_popcountll(x);}\ninline int kthbit(long long x, int k) {return (x>>k)&1;}\ninline constexpr long long TEN(int x) {return x == 0 ? 1 : TEN(x-1) * 10;}\nnamespace detail {\n template<typename Tp, int Nb>\n auto make_vector(vector<int>& sizes, Tp const& x) {\n if constexpr (Nb == 1) {\n return vector(sizes[0], x);\n } else {\n int size = sizes[Nb-1];\n sizes.pop_back();\n return vector(size, make_vector<Tp, Nb-1>(sizes, x));\n }\n }\n}\ntemplate<typename Tp, int Nb>\nauto make_vector(int const(&sizes)[Nb], Tp const& x = Tp()) {\n vector<int> s(Nb);\n for (int i = 0; i < Nb; i++) s[i] = sizes[Nb-i-1];\n return detail::make_vector<Tp, Nb>(s, x);\n}\ninline void print() {cout << \"\\n\";}\ntemplate<class T>\ninline void print(const vector<T>& v) {\n for (auto itr = v.begin(); itr != v.end(); ++itr) cout << *itr << \" \";\n print();\n}\ntemplate<class T, class... Args>\ninline void print(const T &x, const Args &... args) {\n cout << x << \" \";\n print(args...);\n}\n#ifdef MINATO_LOCAL\n#define dump(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\ninline void debug() {cerr << endl;}\ntemplate<class T>\ninline void debug(const vector<T> &v) {\n for (auto itr = v.begin(); itr != v.end(); ++itr) cerr << *itr << \" \";\n debug();\n}\ntemplate<class T, class... Args>\ninline void debug(const T &x, const Args &... args) {\n cerr << x << \" \";\n debug(args...);\n}\n#else\n#define dump(x) void(0)\ninline void debug() {}\ntemplate<class T> inline void debug(const vector<T> &v) {}\ntemplate<class T, class... Args> inline void debug(const T &x, const Args &... args) {}\n#endif\nstruct Fast_ios {Fast_ios() {cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20);};} fast_ios;\n////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nint main() {\n int N,M; cin >> N >> M;\n vector<string> S(M);\n rep(i,N) cin >> S[i];\n\n int K = min(N,20);\n vector<bool> seen(1<<K);\n rep(i,M) {\n int a = 0;\n rep(j,K) {\n if (S[i][j]=='1') a |= (1<<j);\n }\n seen[a] = 1;\n }\n\n rep(i,1<<K) {\n if (!seen[i]) {\n string ans = \"\";\n rep(bit,K) {\n if (kthbit(i,bit)) ans += '1';\n else ans += '0';\n }\n while (int(ans.size()) < N) ans += '*';\n cout << ans << ln;\n return 0;\n }\n }\n\n cout << \"hokudai\" << ln;\n}", "accuracy": 0.14634146341463414, "time_ms": 10, "memory_kb": 14344, "score_of_the_acc": -0.098, "final_rank": 16 }, { "submission_id": "aoj_3166_4880263", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int N, M;\n cin >> N >> M; // 長さ N、M 個\n vector<string> fi(M);\n for (int i = 0; i < M; ++i) cin >> fi[i];\n \n int len = min(20, N);\n set<string> se;\n for (int i = 0; i < M; ++i) se.insert(fi[i].substr(0, len));\n string res = \"\";\n for (int bit = 0; bit < (1<<len); ++bit) {\n string ans = \"\";\n for (int i = 0; i < len; ++i) {\n if (bit & (1<<i)) ans += \"1\";\n else ans += \"0\";\n }\n if (!se.count(ans)) res = ans;\n }\n if (res == \"\") cout << \"hokudai\" << endl;\n else cout << res + string(N - len, '*') << endl;\n}", "accuracy": 1, "time_ms": 480, "memory_kb": 22340, "score_of_the_acc": -1.1917, "final_rank": 11 }, { "submission_id": "aoj_3166_4879977", "code_snippet": "#include <algorithm>\n#include <cassert>\n#include <cmath>\n#include <cstring>\n#include <iomanip>\n#include <iostream>\n#include <iterator>\n#include <limits>\n#include <map>\n#include <queue>\n#include <set>\n#include <stack>\n#include <vector>\n#define repeat(i, n) for (int i = 0; (i) < (n); ++(i))\n#define repeat_from(i, m, n) for (int i = (m); (i) < (n); ++(i))\n#define sz(x) int(x.size())\nusing namespace std;\ntemplate <class T>\nvoid setmax(T &a, T const &b) {\n if (a < b) a = b;\n}\n\ntemplate <class T>\nvoid setmin(T &a, T const &b) {\n if (a > b) a = b;\n}\n\ntemplate <typename T, typename X>\nauto vectors(T a, X x) { return vector<T>(x, a); }\n\ntemplate <typename T, typename X, typename Y, typename... Zs>\nauto vectors(T a, X x, Y y, Zs... zs) {\n auto cont = vectors(a, y, zs...);\n return vector<decltype(cont)>(x, cont);\n}\n\n// N >= 20なら、\n// m <= 125000\n// また、0と1のどちらかを20個ならべる通りは2^20 = 1048576通り\n// 2^20 > mになるので、先頭20個のパターンをすべて調べて、\n// 使われていない並びをtの先頭20文字に使って、他は'*'\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector<string> S(M);\n repeat(i, M) cin >> S[i];\n int L = min(20, N);\n vector<bool> used(1 << L);\n for (int i = 0; i < M; ++i) {\n int v = 0;\n for (int j = 0; j < L; ++j) {\n if (S[i][j] == '1') {\n v |= 1 << j;\n }\n }\n used[v] = true;\n }\n int last = -1;\n for (int i = 0; i < (1 << L); ++i) {\n if (used[i]) continue;\n last = i;\n }\n string ans(N, '*');\n for (int i = 0; i < L; ++i) {\n if ((last >> i) & 1) {\n ans[i] = '1';\n } else {\n ans[i] = '0';\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 11860, "score_of_the_acc": -0.2391, "final_rank": 10 }, { "submission_id": "aoj_3166_4879452", "code_snippet": "// n <= 20\n// bool used[1<<n]\n// s_i = 1010...01 -> 数字200489\n// used[s_i] = true\n// used[x] = falseになってるやつ出力\n\n// n > 20\n// 文字列tに'*'を含める必要あり\n// 2^n > 2^20 = 1048576\n// m > 2500000/20 = 125000\n// 2^n > m therfore かならず条件満たす出力はだせる?\n// 文字列tの中で\n// '*'をどこにするか\n// '1', '0'をどこにするか\n// m個の文字列{s_i}のj文字目を見て行って、\n// すべて'0' -> tのj文字目を'1'にして、他は'*'\n// '1' -> '0'にして、他は'*'\n\n#include <bits/stdc++.h>\nusing namespace std;\ntemplate<typename T>\nT sz(T& x){return x.size(); }\n\nstring i2bit(int n, int keta) {\n string s = \"\";\n while(n > 0) {\n if(n & 1) s += '1';\n else s += '0';\n n >>= 1;\n }\n while(s.size() < keta) s += '0';\n reverse(s.begin(), s.end());\n return s;\n}\n\nint main() {\n int n, m;\n cin >> n >> m;\n vector<string> vs(m);\n for(int i = 0; i < m; ++i) {\n cin >> vs[i];\n }\n if(n <= 20) {\n vector<bool> used(1<<n);\n for(string& s : vs) {\n int num = stoi(s, nullptr, 2);\n //cout << num << endl;\n used[num] = true;\n }\n for(int i = 0; i < (1<<n); ++i) {\n if(!used[i]) {\n cout << i2bit(i, n) << endl;\n return 0;\n }\n }\n } else {\n // n > 20\n string t(n, '*');\n for(int i = 0; i < n; ++i){\n int num0 = 0;\n for(int j = 0; j < m; ++j) {\n if(vs[j][i] == '0') ++num0;\n }\n if(num0 == m) {\n t[i] = '1';\n cout << t << endl;\n return 0;\n } else if(num0 == 0) {\n t[i] = '0';\n cout << t << endl;\n return 0;\n }\n }\n cout << \"hokudai\" << endl;\n }\n return 0;\n}", "accuracy": 0.24390243902439024, "time_ms": 40, "memory_kb": 7820, "score_of_the_acc": -0.0854, "final_rank": 12 }, { "submission_id": "aoj_3166_4879447", "code_snippet": "// n <= 20\n// bool used[1<<n]\n// s_i = 1010...01 -> 数字200489\n// used[s_i] = true\n// used[x] = falseになってるやつ出力\n\n// n > 20\n// 文字列tに'*'を含める必要あり\n// 2^n > 2^20 = 1048576\n// m > 2500000/20 = 125000\n// 2^n > m therfore かならず条件満たす出力はだせる?\n// 文字列tの中で\n// '*'をどこにするか\n// '1', '0'をどこにするか\n// m個の文字列{s_i}のj文字目を見て行って、\n// すべて'0' -> tのj文字目を'1'にして、他は'*'\n// '1' -> '0'にして、他は'*'\n\n#include <bits/stdc++.h>\nusing namespace std;\ntemplate<typename T>\nT sz(T& x){return x.size(); }\n\nstring i2bit(int n, int keta) {\n string s = \"\";\n while(n > 0) {\n if(n & 1) s += '1';\n else s += '0';\n n >>= 1;\n }\n while(s.size() < keta) s += '0';\n reverse(s.begin(), s.end());\n return s;\n}\n\nint main() {\n int n, m;\n cin >> n >> m;\n vector<string> vs(m);\n for(int i = 0; i < m; ++i) {\n cin >> vs[i];\n }\n if(n <= 20) {\n vector<bool> used(1<<n);\n for(string& s : vs) {\n int num = stoi(s, nullptr, 2);\n //cout << num << endl;\n used[num] = true;\n }\n for(int i = 0; i < (1<<n); ++i) {\n if(!used[i]) {\n cout << i2bit(i, n) << endl;\n return 0;\n }\n }\n } else {\n // n > 20\n string t(n, '*');\n for(int i = 0; i < n; ++i){\n int num0 = 0;\n for(int j = 0; j < m; ++j) {\n if(vs[j][i] == '0') ++num0;\n }\n if(num0 == m) {\n t[i] = '0';\n cout << t << endl;\n return 0;\n } else if(num0 == 0) {\n t[i] = '1';\n cout << t << endl;\n return 0;\n }\n }\n cout << \"hokudai\" << endl;\n }\n return 0;\n}", "accuracy": 0.024390243902439025, "time_ms": 40, "memory_kb": 7740, "score_of_the_acc": -0.0844, "final_rank": 20 } ]
aoj_3167_cpp
D: Many Points 問題 二次元平面上に $N$ 個の点があります。それぞれには $1$ から $N$ までの番号がついており、$i$ 番目の点 $p_i$ の座標は $(x_i, y_i)$ です。異なる番号がつけられた二つの点が重なることはありません。 あなたはこれらの $N$ 個の点全てからのユークリッド距離が等しい直線 $L$ を引きたいです。より形式的には、点 $p_i$ と直線 $L$ との距離を $d(p_i, L)$ と表記するとき、$d(p_1, L) = d(p_2, L) = \ldots = d(p_N, L)$ となる直線 $L$ を求めたいです。 しかし、そのような直線が常に存在するわけではありません。 $T$ 個のテストケースに対して、条件を満たす直線が存在するか判定してください。 入力形式 入力は複数のテストケースからなります。$1$ 行目にはテストケースの数 $T$ が与えられます。 各テストケースの形式は以下の通りです。 $N$ $x_1$ $y_1$ $x_2$ $y_2$ ... $x_N$ $y_N$ 制約 入力は全て整数で与えられる $1 \leq T \leq 30$ $1 \leq N \leq 2 \times 10^4$ $-10^9 \leq x_i, y_i \leq 10^9$ $i \neq j$ ならば $x_i \neq x_j$ または $y_i \neq y_j$ が成り立つ 出力形式 $T$ 行出力してください。$i$ 行目には $i$ 番目のテストケースに対する出力をしてください。 条件を満たす直線が存在する場合は Yes 、存在しない場合は No と出力してください。 入力例1 2 3 -1 -1 1 -1 1 1 5 -1 -1 1 -1 1 1 -1 1 0 0 出力例1 Yes No この入力の 1 つ目のテストケースでは直線 $x = 0$ や $y = 0$ が条件を満たします。 2 つ目のテストケースでは条件を満たす直線は存在しません。
[ { "submission_id": "aoj_3167_10760592", "code_snippet": "// AOJ #3167 Many Points\n// 2025.4.7\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Couts(const string &s) { for (char c : s) pc(c); pc('\\n'); }\n\nstruct P { ll x, y; };\nP diff(const P &p, const P &q) { return {q.x - p.x, q.y - p.y}; }\nll cross(ll ax, ll ay, ll bx, ll by) { return ax * by - ay * bx; }\n\nint main(){\n int T = Cin();\n while(T--){\n int n = Cin();\n vector<P> pts(n);\n for (int i=0; i<n; i++) pts[i].x = Cin(), pts[i].y = Cin();\n if(n <= 2) { Couts(\"Yes\"); continue; }\n\n bool col = true;\n P d0 = diff(pts[0], pts[1]);\n for (int i=2; i<n; i++){\n P d1 = diff(pts[0], pts[i]);\n if(cross(d0.x, d0.y, d1.x, d1.y) != 0){\n col = false;\n break;\n }\n }\n if(col) { Couts(\"Yes\"); continue; }\n\n bool ok = false;\n int lim = min(n, 10);\n for (int i = 0; i < lim && !ok; i++){\n for (int j = i+1; j < lim && !ok; j++){\n ll dx = pts[j].x - pts[i].x;\n ll dy = pts[j].y - pts[i].y;\n for (int k = 0; k < 2 && !ok; k++){\n ll cx, cy;\n if(k == 0){ cx = dx; cy = dy; }\n else { cx = dy; cy = -dx; }\n if(cx == 0 && cy == 0) continue;\n unordered_set<ll> S;\n S.reserve(n*2);\n for(auto &p : pts){\n ll f = cx * p.x + cy * p.y;\n S.insert(f);\n if(S.size() > 2) break;\n }\n if(S.size() <= 2){\n ok = true;\n break;\n }\n }\n }\n }\n Couts(ok? \"Yes\": \"No\");\n }\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3968, "score_of_the_acc": -0.3268, "final_rank": 2 }, { "submission_id": "aoj_3167_7975392", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,n) for(int i=0; i<(n); i++)\n\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod = 998244353;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,1,0};\n\n#define double long double\n#define equals(a,b) (fabs((a)-(b)) < EPS)\n\nnamespace geometry {\n const double EPS = 1e-10;\n const double PI = asinl(1) * 2;\n\n struct Point {\n double x,y;\n Point(){}\n Point(double x, double y):x(x),y(y){}\n Point operator+(Point p) {return Point(x+p.x,y+p.y);}\n Point operator-(Point p) {return Point(x-p.x,y-p.y);}\n Point operator*(double k) {return Point(x*k,y*k);}\n Point operator/(double k) {return Point(x/k,y/k);}\n double norm() {return x*x+y*y;}\n double abs() {return sqrt(norm());}\n\n bool operator<(const Point &p) const {\n return x!=p.x ? x<p.x : x<p.y;\n }\n\n bool operator==(const Point &p) const {\n return fabs(x-p.x) < EPS and fabs(y-p.y) < EPS;\n }\n };\n\n struct Segment {\n Point p1, p2;\n Segment() {}\n Segment(Point p1, Point p2):p1(p1),p2(p2){}\n };\n\n // using Line = Segment;\n typedef Segment Line;\n\n double norm(Point a) {\n return a.x*a.x+a.y*a.y;\n }\n\n double abs(Point a) {\n return sqrt(norm(a));\n }\n\n double dot(Point a, Point b) {\n return a.x*b.x+a.y*b.y;\n }\n\n double cross(Point a, Point b) {\n return a.x*b.y-a.y*b.x;\n }\n\n bool isParallel(Point a, Point b) {\n return equals(cross(a,b), 0.0);\n }\n\n bool isParallel(Point a1, Point a2, Point b1, Point b2) {\n return isParallel(a1-a2,b1-b2);\n }\n\n bool isParallel(Line l1, Line l2) {\n return equals(cross(l1.p2-l1.p1,l2.p2-l2.p1), 0.0);\n }\n\n // COUNTER CLOCKWISE\n static const int CCW_COUNTER_CLOCKWISE = 1;\n static const int CCW_CLOCKWISE = -1;\n static const int CCW_ONLINE_BACK = 2;\n static const int CCW_ONLINE_FRONT = -2;\n static const int CCW_ON_SEGMENT = 0;\n\n int ccw(Point p0, Point p1, Point p2) {\n Point a = p1-p0;\n Point b = p2-p0;\n if(cross(a,b) > EPS) return CCW_COUNTER_CLOCKWISE;\n if(cross(a,b) < -EPS) return CCW_CLOCKWISE;\n if(dot(a,b) < -EPS) return CCW_ONLINE_BACK;\n if(a.norm() < b.norm()) return CCW_ONLINE_FRONT;\n return CCW_ON_SEGMENT;\n }\n}\nusing namespace geometry;\n\nnamespace geometry {\n ostream &operator<<(ostream &os, Point p) {\n os<<fixed<<setprecision(12)<<p.x<<\" \"<<p.y;\n return os;\n }\n}\n\nbool on_line(int ccw_result) {\n return ccw_result == CCW_ONLINE_BACK or ccw_result == CCW_ONLINE_FRONT or ccw_result == CCW_ON_SEGMENT;\n}\n\nbool is_all_points_on_line(const vector<Point> &ps, Line l) {\n for(const auto &p:ps) {\n if(not on_line(ccw(l.p1, l.p2, p))) {\n return false;\n }\n }\n return true;\n}\n\nbool on_lines( Line l1, Line l2, Point p) {\n return on_line(ccw(l1.p1, l1.p2, p)) or on_line(ccw(l2.p1, l2.p2, p));\n}\n\npair<Line, bool> find_line(Line l1, const vector<Point> &ps, int used1, int used2) {\n bool found_p = false, found_l2 = false;\n Point p;\n Line l2;\n for(int i=0;i<(int)(ps.size());i++) {\n if(i==used1 or i==used2) {\n continue;\n }\n\n if (not on_line(ccw(l1.p1, l1.p2, ps[i]))) {\n if (found_p) {\n l2 = Line(p, ps[i]);\n found_l2 = true;\n break;\n }\n p = ps[i];\n found_p = true;\n }\n }\n\n return {l2, found_l2};\n}\n\npair<Point, int> find_point(Line l, const vector<Point> &ps) {\n for(int i=0;i<(int)(ps.size()); i++) {\n const auto &p = ps[i];\n\n if (not on_line(ccw(l.p1, l.p2, p))) {\n return {p, i};\n }\n }\n return {Point(), -1};\n}\n\nbool is_only_point_not_on_line(Line l, const vector<Point> &ps) {\n auto [p, p_idx] = find_point(l, ps);\n for(int i=p_idx+1;i<(int)(ps.size());i++) {\n const auto &p = ps[i];\n\n if (not on_line(ccw(l.p1, l.p2, p))) {\n return false;\n }\n }\n return true;\n}\n\nbool solve() {\n int n;\n cin >> n;\n\n vector<Point> ps(n);\n rep(i, n) {\n cin >> ps[i].x >> ps[i].y;\n }\n\n if (n <= 3) {\n cout << \"Yes\\n\";\n return true;\n }\n\n if (is_all_points_on_line(ps, Line(ps[0], ps[1]))) {\n cout << \"Yes\\n\";\n return true;\n }\n\n if (is_only_point_not_on_line(Line(ps[0], ps[1]), ps)) {\n cout << \"Yes\\n\";\n return true;\n }\n\n Line l1 = Line(ps[0], ps[1]);\n\n auto [p, p_idx] = find_point(l1, ps);\n\n {\n Line l1 = Line(ps[0], ps[1]);\n\n auto [l2, found_l2] = find_line(l1, ps, 0, 1);\n\n assert(found_l2);\n\n if (isParallel(l1, l2)) {\n bool all_points_on_line = true;\n\n for (auto p: ps) {\n if(not on_lines(l1, l2, p)) {\n all_points_on_line = false;\n break;\n }\n }\n\n if (all_points_on_line) {\n cout << \"Yes\\n\";\n return true;\n }\n }\n }\n\n {\n Line l1 = Line(ps[0], ps[p_idx]);\n\n auto [l2, found_l2] = find_line(l1, ps, 0, p_idx);\n\n assert(found_l2);\n\n if (isParallel(l1, l2)) {\n bool all_points_on_line = true;\n\n for (auto p: ps) {\n if(not on_lines(l1, l2, p)) {\n all_points_on_line = false;\n break;\n }\n }\n\n if (all_points_on_line) {\n cout << \"Yes\\n\";\n return true;\n }\n }\n }\n\n {\n Line l1 = Line(ps[1], ps[p_idx]);\n\n auto [l2, found_l2] = find_line(l1, ps, 1, p_idx);\n\n assert(found_l2);\n\n if (isParallel(l1, l2)) {\n bool all_points_on_line = true;\n\n for (auto p: ps) {\n if(not on_lines(l1, l2, p)) {\n all_points_on_line = false;\n break;\n }\n }\n\n if (all_points_on_line) {\n cout << \"Yes\\n\";\n return true;\n }\n }\n }\n\n cout << \"No\\n\";\n\n return true;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int t;\n cin >> t;\n\n rep(_, t) {\n solve();\n }\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 4200, "score_of_the_acc": -0.6887, "final_rank": 7 }, { "submission_id": "aoj_3167_7975389", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,n) for(int i=0; i<(n); i++)\n\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod = 998244353;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,1,0};\n\n#define equals(a,b) (fabs((a)-(b)) < EPS)\n\nnamespace geometry {\n const double EPS = 1e-10;\n const double PI = asinl(1) * 2;\n\n struct Point {\n double x,y;\n Point(){}\n Point(double x, double y):x(x),y(y){}\n Point operator+(Point p) {return Point(x+p.x,y+p.y);}\n Point operator-(Point p) {return Point(x-p.x,y-p.y);}\n Point operator*(double k) {return Point(x*k,y*k);}\n Point operator/(double k) {return Point(x/k,y/k);}\n double norm() {return x*x+y*y;}\n double abs() {return sqrt(norm());}\n\n bool operator<(const Point &p) const {\n return x!=p.x ? x<p.x : x<p.y;\n }\n\n bool operator==(const Point &p) const {\n return fabs(x-p.x) < EPS and fabs(y-p.y) < EPS;\n }\n };\n\n struct Segment {\n Point p1, p2;\n Segment() {}\n Segment(Point p1, Point p2):p1(p1),p2(p2){}\n };\n\n // using Line = Segment;\n typedef Segment Line;\n\n double norm(Point a) {\n return a.x*a.x+a.y*a.y;\n }\n\n double abs(Point a) {\n return sqrt(norm(a));\n }\n\n double dot(Point a, Point b) {\n return a.x*b.x+a.y*b.y;\n }\n\n double cross(Point a, Point b) {\n return a.x*b.y-a.y*b.x;\n }\n\n bool isParallel(Point a, Point b) {\n return equals(cross(a,b), 0.0);\n }\n\n bool isParallel(Point a1, Point a2, Point b1, Point b2) {\n return isParallel(a1-a2,b1-b2);\n }\n\n bool isParallel(Line l1, Line l2) {\n return equals(cross(l1.p2-l1.p1,l2.p2-l2.p1), 0.0);\n }\n\n // COUNTER CLOCKWISE\n static const int CCW_COUNTER_CLOCKWISE = 1;\n static const int CCW_CLOCKWISE = -1;\n static const int CCW_ONLINE_BACK = 2;\n static const int CCW_ONLINE_FRONT = -2;\n static const int CCW_ON_SEGMENT = 0;\n\n int ccw(Point p0, Point p1, Point p2) {\n Point a = p1-p0;\n Point b = p2-p0;\n if(cross(a,b) > EPS) return CCW_COUNTER_CLOCKWISE;\n if(cross(a,b) < -EPS) return CCW_CLOCKWISE;\n if(dot(a,b) < -EPS) return CCW_ONLINE_BACK;\n if(a.norm() < b.norm()) return CCW_ONLINE_FRONT;\n return CCW_ON_SEGMENT;\n }\n}\nusing namespace geometry;\n\nnamespace geometry {\n ostream &operator<<(ostream &os, Point p) {\n os<<fixed<<setprecision(12)<<p.x<<\" \"<<p.y;\n return os;\n }\n}\n\nbool on_line(int ccw_result) {\n return ccw_result == CCW_ONLINE_BACK or ccw_result == CCW_ONLINE_FRONT or ccw_result == CCW_ON_SEGMENT;\n}\n\nbool is_all_points_on_line(const vector<Point> &ps, Line l) {\n for(const auto &p:ps) {\n if(not on_line(ccw(l.p1, l.p2, p))) {\n return false;\n }\n }\n return true;\n}\n\nbool on_lines( Line l1, Line l2, Point p) {\n return on_line(ccw(l1.p1, l1.p2, p)) or on_line(ccw(l2.p1, l2.p2, p));\n}\n\npair<Line, bool> find_line(Line l1, const vector<Point> &ps, int used1, int used2) {\n bool found_p = false, found_l2 = false;\n Point p;\n Line l2;\n for(int i=0;i<(int)(ps.size());i++) {\n if(i==used1 or i==used2) {\n continue;\n }\n\n if (not on_line(ccw(l1.p1, l1.p2, ps[i]))) {\n if (found_p) {\n l2 = Line(p, ps[i]);\n found_l2 = true;\n break;\n }\n p = ps[i];\n found_p = true;\n }\n }\n\n return {l2, found_l2};\n}\n\npair<Point, int> find_point(Line l, const vector<Point> &ps) {\n for(int i=0;i<(int)(ps.size()); i++) {\n const auto &p = ps[i];\n\n if (not on_line(ccw(l.p1, l.p2, p))) {\n return {p, i};\n }\n }\n return {Point(), -1};\n}\n\nbool is_only_point_not_on_line(Line l, const vector<Point> &ps) {\n auto [p, p_idx] = find_point(l, ps);\n for(int i=p_idx+1;i<(int)(ps.size());i++) {\n const auto &p = ps[i];\n\n if (not on_line(ccw(l.p1, l.p2, p))) {\n return false;\n }\n }\n return true;\n}\n\nbool solve() {\n int n;\n cin >> n;\n\n vector<Point> ps(n);\n rep(i, n) {\n cin >> ps[i].x >> ps[i].y;\n }\n\n if (n <= 3) {\n cout << \"Yes\\n\";\n return true;\n }\n\n if (is_all_points_on_line(ps, Line(ps[0], ps[1]))) {\n cout << \"Yes\\n\";\n return true;\n }\n\n if (is_only_point_not_on_line(Line(ps[0], ps[1]), ps)) {\n cout << \"Yes\\n\";\n return true;\n }\n\n Line l1 = Line(ps[0], ps[1]);\n\n auto [p, p_idx] = find_point(l1, ps);\n\n {\n Line l1 = Line(ps[0], ps[1]);\n\n auto [l2, found_l2] = find_line(l1, ps, 0, 1);\n\n assert(found_l2);\n\n if (isParallel(l1, l2)) {\n bool all_points_on_line = true;\n\n for (auto p: ps) {\n if(not on_lines(l1, l2, p)) {\n all_points_on_line = false;\n break;\n }\n }\n\n if (all_points_on_line) {\n cout << \"Yes\\n\";\n return true;\n }\n }\n }\n\n {\n Line l1 = Line(ps[0], ps[p_idx]);\n\n auto [l2, found_l2] = find_line(l1, ps, 0, p_idx);\n\n assert(found_l2);\n\n if (isParallel(l1, l2)) {\n bool all_points_on_line = true;\n\n for (auto p: ps) {\n if(not on_lines(l1, l2, p)) {\n all_points_on_line = false;\n break;\n }\n }\n\n if (all_points_on_line) {\n cout << \"Yes\\n\";\n return true;\n }\n }\n }\n\n {\n Line l1 = Line(ps[1], ps[p_idx]);\n\n auto [l2, found_l2] = find_line(l1, ps, 1, p_idx);\n\n assert(found_l2);\n\n if (isParallel(l1, l2)) {\n bool all_points_on_line = true;\n\n for (auto p: ps) {\n if(not on_lines(l1, l2, p)) {\n all_points_on_line = false;\n break;\n }\n }\n\n if (all_points_on_line) {\n cout << \"Yes\\n\";\n return true;\n }\n }\n }\n\n cout << \"No\\n\";\n\n return true;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int t;\n cin >> t;\n\n rep(_, t) {\n solve();\n }\n}", "accuracy": 0.8846153846153846, "time_ms": 210, "memory_kb": 3844, "score_of_the_acc": -0.5299, "final_rank": 16 }, { "submission_id": "aoj_3167_7975343", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n//using ll = long long;\n\nusing Real = long double;\n\nconst Real EPS = 1e-13;\nconst string Yes = \"Yes\";\nconst string No = \"No\";\n\nstruct Point{\n Real x, y;\n Point(){}\n Point(Real a, Real b){\n x = a;\n y = b;\n }\n};\n\n// ax + by + c = 0\nstruct Line{\n Real a, b, c;\n Line(){}\n Line(Real x0, Real y0, Real x1, Real y1){\n a = -(y1 - y0);\n b = x1 - x0;\n c = -y0 * (x1 - x0) + x0 * (y1 - y0);\n }\n};\n\nReal dist2(Point p, Line l){\n Real res = fabsl(l.a * p.x + l.b * p.y + l.c);\n res *= res;\n res /= (l.a * l.a + l.b * l.b);\n return res;\n}\n\nbool equal(Real a, Real b){\n return fabsl(a - b) <= EPS; \n}\n\nint main() {\n int T; cin >> T;\n while(T--){\n int N; cin >> N;\n vector<Point> P(N);\n for(int i= 0; i < N; i++) cin >> P[i].x >> P[i].y;\n\n if(N <= 2){\n cout << Yes << endl;\n continue;\n }\n\n Line line(P[0].x, P[0].y, P[1].x, P[1].y);\n int idx = -1;\n for(int i = 2; i < N; i++){\n if(!equal(0.0, dist2(P[i], line))){\n idx = i;\n break;\n }\n }\n\n if(idx == -1){\n cout << Yes << endl;\n continue;\n }\n\n vector<Point> Ps(3);\n Ps[0] = P[0];\n Ps[1] = P[1];\n Ps[2] = P[idx];\n //for(int i = 0; i < 3; i++) cerr << Ps[i].x << Ps[i].y << endl;\n\n Point mid01((Ps[0].x + Ps[1].x) / 2, (Ps[0].y + Ps[1].y) / 2);\n Point mid12((Ps[1].x + Ps[2].x) / 2, (Ps[1].y + Ps[2].y) / 2);\n Point mid20((Ps[2].x + Ps[0].x) / 2, (Ps[2].y + Ps[0].y) / 2);\n //cerr << mid01.x << \" \" << mid01.y << endl;\n //cerr << mid12.x << \" \" << mid12.y << endl;\n //cerr << mid20.x << \" \" << mid20.y << endl;\n \n vector<Line> ls(3);\n ls[0] = Line(mid01.x, mid01.y, mid12.x, mid12.y);\n assert(equal(dist2(Ps[0], ls[0]), dist2(Ps[1], ls[0])));\n assert(equal(dist2(Ps[0], ls[0]), dist2(Ps[2], ls[0])));\n\n ls[1] = Line(mid12.x, mid12.y, mid20.x, mid20.y);\n assert(equal(dist2(Ps[0], ls[1]), dist2(Ps[1], ls[1])));\n assert(equal(dist2(Ps[0], ls[1]), dist2(Ps[2], ls[1])));\n\n ls[2] = Line(mid20.x, mid20.y, mid01.x, mid01.y);\n assert(equal(dist2(Ps[0], ls[2]), dist2(Ps[1], ls[2])));\n assert(equal(dist2(Ps[0], ls[2]), dist2(Ps[2], ls[2])));\n\n //ll tmp = fabsl(dist2(P[0], );\n bool isok = 0;\n for(int i = 0; i < 3; i++){\n Real tmp = fabsl(dist2(P[0], ls[i]));\n bool flag = 1;\n for(int j = 0; j < N; j++){\n if(!equal(fabsl(dist2(P[j], ls[i])), tmp)){\n flag = 0;\n break;\n }\n }\n if(flag) isok = 1;\n }\n\n if(isok) cout << Yes << endl;\n else cout << No << endl;\n\n }\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 4264, "score_of_the_acc": -0.9542, "final_rank": 9 }, { "submission_id": "aoj_3167_7009838", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3167.cc: Many Points\n */\n\n#include<cstdio>\n#include<vector>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 20000;\n\n/* typedef */\n\ntypedef long long ll;\n\ntemplate <typename T>\nstruct Pt {\n T x, y;\n Pt() {}\n Pt(T _x, T _y) : x(_x), y(_y) {}\n Pt(const Pt<T> &p) : x(p.x), y(p.y) {}\n\n Pt<T> operator+(const Pt<T> p) const { return Pt<T>(x + p.x, y + p.y); }\n Pt<T> operator-() const { return Pt<T>(-x, -y); }\n Pt<T> operator-(const Pt<T> p) const { return Pt<T>(x - p.x, y - p.y); }\n Pt<T> operator*(T t) const { return Pt<T>(x * t, y * t); }\n Pt<T> operator/(T t) const { return Pt<T>(x / t, y / t); }\n T dot(Pt<T> v) const { return x * v.x + y * v.y; }\n T cross(Pt<T> v) const { return x * v.y - y * v.x; }\n T d2() { return x * x + y * y; }\n\n Pt<T> rot90() { return Pt<T>(-y, x); }\n\n bool operator==(const Pt<T> pt) const { return x == pt.x && y == pt.y; }\n bool operator<(const Pt<T> &pt) const {\n return x < pt.x || (x == pt.x && y < pt.y);\n }\n};\n\ntypedef Pt<ll> pt;\ntypedef vector<pt> vpt;\n\n/* global variables */\n\npt ps[MAX_N];\n\n/* subroutines */\n\n// convex_hull()\n// make a convex_hull 'chs' from a set of points 'ps'\n// Note: ps must be sorted, and must contain at least 2 points\nvoid convex_hull(const int n, const pt ps[], vpt& chs) {\n vpt lhs, uhs;\n\n lhs.push_back(ps[0]);\n lhs.push_back(ps[1]);\n for (int i = 2; i < n; i++) {\n while (lhs.size() >= 2) {\n int ln = lhs.size();\n pt &lh0 = lhs[ln - 2], &lh1 = lhs[ln - 1];\n if ((lh1 - lh0).cross(ps[i] - lh1) > 0) break;\n lhs.pop_back();\n }\n lhs.push_back(ps[i]);\n }\n\n uhs.push_back(ps[n - 1]);\n uhs.push_back(ps[n - 2]);\n for (int i = n - 3; i >= 0; i--) {\n while (uhs.size() >= 2) {\n int un = uhs.size();\n pt &uh0 = uhs[un - 2], &uh1 = uhs[un - 1];\n if ((uh1 - uh0).cross(ps[i] - uh1) > 0) break;\n uhs.pop_back();\n }\n uhs.push_back(ps[i]);\n }\n\n lhs.pop_back();\n uhs.pop_back();\n\n chs.clear();\n chs.reserve(lhs.size() + uhs.size());\n chs.assign(lhs.begin(), lhs.end());\n chs.insert(chs.end(), uhs.begin(), uhs.end());\n}\n\n/* main */\n\nint main() {\n //freopen(\"input.txt\", \"r\", stdin);\n //freopen(\"output.txt\", \"w\", stdout);\n\n int tn;\n scanf(\"%d\", &tn);\n\n for (int ti = 0; ti < tn; ti++) {\n int n;\n scanf(\"%d\", &n);\n for (int i = 0; i < n; i++)\n scanf(\"%lld%lld\", &ps[i].x, &ps[i].y);\n\n if (ti == -1) {\n printf(\"%d\\n\", n);\n for (int i = 0; i < n; i++) printf(\"%lld,%lld\\n\", ps[i].x, ps[i].y);\n }\n\n if (n <= 2) { puts(\"Yes\"); continue; }\n\n sort(ps, ps + n);\n vpt chs;\n convex_hull(n, ps, chs);\n int chn = chs.size();\n //printf(\"chs=%d\\n\", chn);\n\n if (chn <= 2)\n puts(\"Yes\");\n else if (chn == 3) {\n bool ok = false;\n for (int i = 0; ! ok && i < 3; i++) {\n\tpt p0 = chs[i], p1 = chs[(i + 1) % 3], p2 = chs[(i + 2) % 3];\n\tpt v(p2 - p1);\n\n\tok = true;\n\tfor (int j = 0; ok && j < n; j++)\n\t ok = (ps[j] == p0 || v.cross(ps[j] - p1) == 0);\n }\n\n if (ok) puts(\"Yes\");\n else puts(\"No\");\n }\n else if (chn == 4) {\n bool ok = false;\n for (int i = 0; ! ok && i < 2; i++) {\n\tpt p0 = chs[i], p1 = chs[(i + 1) % 4];\n\tpt p2 = chs[(i + 2) % 4], p3 = chs[(i + 3) % 4];\n\tpt v0(p1 - p0), v1(p3 - p2);\n\n\tif (v0.cross(v1) != 0) continue;\n\n\tok = true;\n\tfor (int j = 0; ok && j < n; j++)\n\t ok = (v0.cross(ps[j] - p0) == 0 || v1.cross(ps[j] - p2) == 0);\n }\n\n if (ok) puts(\"Yes\");\n else puts(\"No\");\n }\n else\n puts(\"No\");\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 3220, "score_of_the_acc": -0.1354, "final_rank": 1 }, { "submission_id": "aoj_3167_7009834", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3167.cc: Many Points\n */\n\n#include<cstdio>\n#include<vector>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 20000;\n\n/* typedef */\n\ntypedef long long ll;\n\ntemplate <typename T>\nstruct Pt {\n T x, y;\n Pt() {}\n Pt(T _x, T _y) : x(_x), y(_y) {}\n Pt(const Pt<T> &p) : x(p.x), y(p.y) {}\n\n Pt<T> operator+(const Pt<T> p) const { return Pt<T>(x + p.x, y + p.y); }\n Pt<T> operator-() const { return Pt<T>(-x, -y); }\n Pt<T> operator-(const Pt<T> p) const { return Pt<T>(x - p.x, y - p.y); }\n Pt<T> operator*(T t) const { return Pt<T>(x * t, y * t); }\n Pt<T> operator/(T t) const { return Pt<T>(x / t, y / t); }\n T dot(Pt<T> v) const { return x * v.x + y * v.y; }\n T cross(Pt<T> v) const { return x * v.y - y * v.x; }\n T d2() { return x * x + y * y; }\n\n Pt<T> rot90() { return Pt<T>(-y, x); }\n\n bool operator==(const Pt<T> pt) const { return x == pt.x && y == pt.y; }\n bool operator<(const Pt<T> &pt) const {\n return x < pt.x || (x == pt.x && y < pt.y);\n }\n};\n\ntypedef Pt<ll> pt;\ntypedef vector<pt> vpt;\n\n/* global variables */\n\npt ps[MAX_N];\n\n/* subroutines */\n\n// convex_hull()\n// make a convex_hull 'chs' from a set of points 'ps'\n// Note: ps must be sorted, and must contain at least 2 points\nvoid convex_hull(const int n, const pt ps[], vpt& chs) {\n vpt lhs, uhs;\n\n lhs.push_back(ps[0]);\n lhs.push_back(ps[1]);\n for (int i = 2; i < n; i++) {\n while (lhs.size() >= 2) {\n int ln = lhs.size();\n pt &lh0 = lhs[ln - 2], &lh1 = lhs[ln - 1];\n if ((lh1 - lh0).cross(ps[i] - lh1) > 0) break;\n lhs.pop_back();\n }\n lhs.push_back(ps[i]);\n }\n\n uhs.push_back(ps[n - 1]);\n uhs.push_back(ps[n - 2]);\n for (int i = n - 3; i >= 0; i--) {\n while (uhs.size() >= 2) {\n int un = uhs.size();\n pt &uh0 = uhs[un - 2], &uh1 = uhs[un - 1];\n if ((uh1 - uh0).cross(ps[i] - uh1) > 0) break;\n uhs.pop_back();\n }\n uhs.push_back(ps[i]);\n }\n\n lhs.pop_back();\n uhs.pop_back();\n\n chs.clear();\n chs.reserve(lhs.size() + uhs.size());\n chs.assign(lhs.begin(), lhs.end());\n chs.insert(chs.end(), uhs.begin(), uhs.end());\n}\n\n/* main */\n\nint main() {\n //freopen(\"input.txt\", \"r\", stdin);\n //freopen(\"output.txt\", \"w\", stdout);\n\n int tn;\n scanf(\"%d\", &tn);\n\n while (tn--) {\n int n;\n scanf(\"%d\", &n);\n for (int i = 0; i < n; i++)\n scanf(\"%lld%lld\", &ps[i].x, &ps[i].y);\n\n if (n <= 2) { puts(\"Yes\"); continue; }\n\n sort(ps, ps + n);\n vpt chs;\n convex_hull(n, ps, chs);\n int chn = chs.size();\n //printf(\"chs=%d\\n\", chn);\n\n if (chn <= 2)\n puts(\"Yes\");\n else if (chn == 3) {\n bool ok = false;\n for (int i = 0; ! ok && i < 3; i++) {\n\tpt p0 = chs[i], p1 = chs[(i + 1) % 3], p2 = chs[(i + 2) % 3];\n\tpt v(p2 - p1);\n\n\tok = true;\n\tfor (int j = 0; ok && j < n; j++)\n\t ok = (ps[j] == p0 || v.cross(ps[j] - p1) == 0);\n }\n\n if (ok) puts(\"Yes\");\n else puts(\"No\");\n }\n else if (chn == 4) {\n bool ok = false;\n for (int i = 0; ! ok && i < 2; i++) {\n\tpt p0 = chs[i], p1 = chs[(i + 1) % 4];\n\tpt p2 = chs[(i + 2) % 4], p3 = chs[(i + 3) % 4];\n\tpt v0(p1 - p0), v1(p3 - p2);\n\n\tok = true;\n\tfor (int j = 0; ok && j < n; j++)\n\t ok = (v0.cross(ps[j] - p0) == 0 || v1.cross(ps[j] - p2) == 0);\n }\n\n if (ok) puts(\"Yes\");\n else puts(\"No\");\n }\n else\n puts(\"No\");\n }\n\n return 0;\n}", "accuracy": 0.8846153846153846, "time_ms": 110, "memory_kb": 3164, "score_of_the_acc": -0.1127, "final_rank": 15 }, { "submission_id": "aoj_3167_6928919", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=9167167167167167167;\nconst int INF=100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\tcin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N;\n\tcin>>N;\n\tvector<pair<ll,ll>> p(N);\n\trep(i,N) cin>>p[i].first>>p[i].second;\n\tif(N<4){\n\t\tcout<<\"Yes\\n\";\n\t\treturn;\n\t}\n\tauto f=[](vector<pair<ll,ll>> pos,pair<ll,ll> A,pair<ll,ll> B)->bool{\n\t\tint n=pos.size();\n\t\tll X=A.second-B.second;\n\t\tll Y=B.first-A.first;\n\t\tset<ll> s;\n\t\trep(i,n) s.insert(X*pos[i].first+Y*pos[i].second);\n\t\treturn (int)s.size()<=2;\n\t};\n\tyneos(f(p,p[0],p[1])||f(p,p[0],p[2])||f(p,p[1],p[2]));\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 5624, "score_of_the_acc": -1.2535, "final_rank": 10 }, { "submission_id": "aoj_3167_5145361", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\nusing lli = long long int;\nusing Point = pair<lli, lli>;\n\nlli gcd(lli a, lli b){\n if(a%b==0) return b;\n return gcd(b,a%b);\n}\nPoint operator +(const Point& a, const Point& b){\n return Point(a.first +b.first, a.second +b.second);\n}\nPoint operator -(const Point& a, const Point& b){\n return Point(a.first -b.first, a.second -b.second);\n}\nPoint reduce(Point p){\n if(p.first == 0){\n if(p.second == 0) return Point(0, 0);\n return Point(0, 1);\n }\n if(p.second == 0){\n return Point(1, 0);\n }\n if(p.first < 0){\n p.first = -p.first;\n p.second = -p.second;\n }\n lli d = gcd(p.first, abs(p.second));\n return Point(p.first/d, p.second/d);\n}\n\nint main(){\n int t;\n cin >> t;\n for(int rep=0; rep<t; rep++){\n int n;\n cin >> n;\n vector<Point> p(n);\n for(int i=0; i<n; i++){\n cin >> p[i].first >> p[i].second;\n }\n\n if(n <= 2){\n cout << \"Yes\" << endl;\n continue;\n }\n\n bool ok = false;\n for(int d=0; d<3; d++){\n Point dir = reduce(p[d] -p[(d+1)%3]);\n vector<Point> rem;\n for(int i=0; i<n; i++){\n if(i == d) continue;\n if(reduce(p[i] -p[d]) != dir){\n rem.push_back(p[i]);\n }\n }\n if(rem.size() < 2u){\n ok = true;\n break;\n }\n int count = 0;\n for(int i=1; i<(int)rem.size(); i++){\n if(reduce(rem[i] -rem[0]) != dir){\n count++;\n }\n }\n if(count == 0){\n ok = true;\n break;\n }\n }\n if(ok){\n cout << \"Yes\" << endl;\n }else{\n cout << \"No\" << endl;\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 630, "memory_kb": 4244, "score_of_the_acc": -1.2841, "final_rank": 12 }, { "submission_id": "aoj_3167_5145291", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <vector>\n#include <algorithm>\n#include <cmath>\n#include <array>\n#include <limits>\nusing namespace std;\n\nconst double EPS = 1e-6;\nconst double INF = 1e12;\nconst double PI = acos(-1);\nconst double NaN = std::numeric_limits<double>::quiet_NaN();\n#define EQ(n,m) (abs((n)-(m)) < EPS)\n\nstruct P{\n double X;\n double Y;\n P(double x=0.0, double y=0.0): X(x),Y(y){}\n\n inline const P inv() const { return P(X/(X*X+Y*Y), -Y/(X*X+Y*Y)); }\n inline const P operator -() const { return P(-X, -Y); }\n inline const P operator +(const P& a) const { return P(X+a.X, Y+a.Y); }\n inline const P operator -(const P& a) const { return P(X-a.X, Y-a.Y); }\n inline const P operator *(const P& a) const { return P(X*a.X -Y*a.Y, X*a.Y +Y*a.X); }\n inline const P operator /(const P& a) const { return *this *a.inv(); }\n inline const P operator *(const double& c) const { return P(c*X, c*Y); }\n inline const P operator /(const double& c) const { return P(X/c, Y/c); }\n\n inline P& operator +=(const P& a){ X+=a.X; Y+=a.Y; return *this; }\n inline P& operator -=(const P& a){ X-=a.X; Y-=a.Y; return *this; }\n inline P& operator *=(const P& a){ double nX=X*a.X-Y*a.Y; Y=X*a.Y+Y*a.X; X=nX; return *this; }\n inline P& operator /=(const P& a){ double d=a.X*a.X+a.Y*a.Y; double nX=(X*a.X+Y*a.Y)/d; Y=(-X*a.Y+Y*a.X)/d; X=nX; return *this; }\n inline P& operator *=(const double& c){ X*=c; Y*=c; return *this; }\n inline P& operator /=(const double& c){ X/=c; Y/=c; return *this; }\n\n inline bool operator ==(const P& a) const { return EQ(X,a.X) and EQ(Y,a.Y); }\n inline bool operator !=(const P& a) const { return !(*this==a); }\n inline bool operator <(const P& a) const { return !EQ(X,a.X)? X<a.X: Y+EPS<a.Y; }\n inline bool operator <=(const P& a) const { return *this<a or *this==a; }\n inline bool operator >(const P& a) const { return !(*this<=a); }\n inline bool operator >=(const P& a) const { return !(*this<a); }\n};\nP operator *(const double& c, const P& p){ return P(c*p.X, c*p.Y); }\ndouble norm(const P& a){ return a.X*a.X +a.Y*a.Y; }\ndouble abs(const P& a){ return sqrt(a.X*a.X +a.Y*a.Y); }\ndouble arg(const P& a){ return atan2(a.X, a.Y); }\ndouble dot(const P& a, const P& b){ return a.X*b.X +a.Y*b.Y; }\ndouble cross(const P& a, const P& b){ return a.X*b.Y -a.Y*b.X; }\nstd::ostream& operator <<(std::ostream& lhs, const P& rhs){\n lhs << \"(\" << rhs.X << \", \" << rhs.Y << \")\";\n return lhs;\n}\n\ntypedef vector<P> VP;\nstruct L : array<P, 2>{\n L(const P& a, const P& b){ at(0)=a; at(1)=b; }\n L(){}\n};\n\ndouble distanceLP(const L &l, const P &p) {\n return abs(cross(l[1]-l[0], p-l[0])) /abs(l[1]-l[0]);\n}\nbool isParallel(const P &a, const P &b){\n return abs(cross(a,b)) < EPS;\n}\nbool isParallel(const L &a, const L &b){\n return isParallel(a[1]-a[0], b[1]-b[0]);\n}\n\nint main(){\n int t;\n cin >> t;\n for(int rep=0; rep<t; rep++){\n int n;\n cin >> n;\n vector<P> p(n);\n for(int i=0; i<n; i++){\n cin >> p[i].X >> p[i].Y;\n }\n\n if(n <= 2){\n cout << \"Yes\" << endl;\n continue;\n }\n\n bool ok = false;\n for(int d=0; d<3; d++){\n L line(p[d], p[(d+1)%3]);\n vector<P> rem;\n for(int i=0; i<n; i++){\n if(abs(distanceLP(line, p[i]) > EPS)){\n rem.push_back(p[i]);\n }\n }\n if(rem.size() < 2u){\n ok = true;\n break;\n }\n L nline(rem[0], rem[1]);\n if(!isParallel(line, nline)){\n continue;\n }\n int count = 0;\n for(P v: rem){\n if(abs(distanceLP(nline, v) > EPS)){\n count++;\n }\n }\n if(count == 0){\n ok = true;\n break;\n }\n }\n if(ok){\n cout << \"Yes\" << endl;\n }else{\n cout << \"No\" << endl;\n }\n }\n return 0;\n}", "accuracy": 0.8846153846153846, "time_ms": 400, "memory_kb": 4280, "score_of_the_acc": -0.9748, "final_rank": 18 }, { "submission_id": "aoj_3167_5067302", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template_no_Ruby.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Output {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid put(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid put(bool v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(vector<bool>::reference v) const {\n\t\tput(v ? B.t : B.f);\n\t}\n\tvoid put(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid put(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid put(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid put(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void put(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void put(const pair<T, U>& v) const {\n\t\tput(v.first);\n\t\tput(D.d);\n\t\tput(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid put_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) put(D.d);\n\t\t\tput(*i);\n\t\t}\n\t}\n\ttemplate <class T> void put(const vector<T>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void put(const array<T, N>& v) const {\n\t\tput_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void put(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) put(D.l);\n\t\t\tput(v[i]);\n\t\t}\n\t}\n\n\tOutput() = default;\n\tOutput(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tOutput& operator()() {\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Output& operator()(H&& h) {\n\t\tput(h);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Output& operator()(H&& h, T&&... t) {\n\t\tput(h);\n\t\tput(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tOutput& range(const InputIterator& begin, const InputIterator& end) {\n\t\tput_range(begin, end);\n\t\tput(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Output& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tOutput& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tOutput& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tOutput& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tOutput& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T> constexpr int BIT(T x, int i) {\n\treturn (x & (1 << i)) ? 1 : 0;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 7 \"/home/yuruhiya/programming/library/template/template_no_Ruby.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 5 \"/home/yuruhiya/programming/library/Utility/Pair.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Pair {\n\tusing value_type = T;\n\tstatic constexpr bool cmp_x(const Pair<value_type>& p1, const Pair<value_type>& p2) {\n\t\treturn p1.xy() < p2.xy();\n\t}\n\tstatic constexpr bool cmp_y(const Pair<value_type>& p1, const Pair<value_type>& p2) {\n\t\treturn p1.yx() < p2.yx();\n\t}\n\tstatic constexpr value_type get_x(const Pair<value_type>& p) {\n\t\treturn p.x;\n\t}\n\tstatic constexpr value_type get_y(const Pair<value_type>& p) {\n\t\treturn p.y;\n\t}\n\n\tvalue_type x, y;\n\tconstexpr Pair() : x(), y() {}\n\tconstexpr Pair(value_type _x, value_type _y) : x(_x), y(_y) {}\n\tconstexpr Pair(const pair<value_type, value_type>& xy) : x(xy.first), y(xy.second) {}\n\tconstexpr Pair(const tuple<value_type, value_type>& xy)\n\t : x(get<0>(xy)), y(get<0>(xy)) {}\n\tconstexpr Pair operator+() const {\n\t\treturn *this;\n\t}\n\tconstexpr Pair operator-() const {\n\t\treturn {-x, -y};\n\t}\n\tconstexpr Pair operator+(const Pair& p) const {\n\t\treturn Pair(*this) += p;\n\t}\n\tconstexpr Pair operator-(const Pair& p) const {\n\t\treturn Pair(*this) -= p;\n\t}\n\tconstexpr Pair operator*(const Pair& p) const {\n\t\treturn Pair(*this) *= p;\n\t}\n\tconstexpr Pair operator/(const Pair& p) const {\n\t\treturn Pair(*this) /= p;\n\t}\n\tconstexpr Pair operator%(const Pair& p) const {\n\t\treturn Pair(*this) %= p;\n\t}\n\tconstexpr Pair operator+(value_type n) const {\n\t\treturn Pair(*this) += n;\n\t}\n\tconstexpr Pair operator-(value_type n) const {\n\t\treturn Pair(*this) -= n;\n\t}\n\tconstexpr Pair operator*(value_type n) const {\n\t\treturn Pair(*this) *= n;\n\t}\n\tconstexpr Pair operator/(value_type n) const {\n\t\treturn Pair(*this) /= n;\n\t}\n\tconstexpr Pair operator%(value_type n) const {\n\t\treturn Pair(*this) %= n;\n\t}\n\tconstexpr Pair& operator+=(const Pair& p) {\n\t\tx += p.x;\n\t\ty += p.y;\n\t\treturn *this;\n\t}\n\tconstexpr Pair& operator-=(const Pair& p) {\n\t\tx -= p.x;\n\t\ty -= p.y;\n\t\treturn *this;\n\t}\n\tconstexpr Pair& operator*=(const Pair& p) {\n\t\tx *= p.x;\n\t\ty *= p.y;\n\t\treturn *this;\n\t}\n\tconstexpr Pair& operator/=(const Pair& p) {\n\t\tx /= p.x;\n\t\ty /= p.y;\n\t\treturn *this;\n\t}\n\tconstexpr Pair& operator%=(const Pair& p) {\n\t\tx %= p.x;\n\t\ty %= p.y;\n\t\treturn *this;\n\t}\n\tconstexpr Pair& operator+=(value_type n) {\n\t\tx += n;\n\t\ty += n;\n\t\treturn *this;\n\t}\n\tconstexpr Pair& operator-=(value_type n) {\n\t\tx -= n;\n\t\ty -= n;\n\t\treturn *this;\n\t}\n\tconstexpr Pair& operator*=(value_type n) {\n\t\tx *= n;\n\t\ty *= n;\n\t\treturn *this;\n\t}\n\tconstexpr Pair& operator/=(value_type n) {\n\t\tx /= n;\n\t\ty /= n;\n\t\treturn *this;\n\t}\n\tconstexpr Pair& operator%=(value_type n) {\n\t\tx %= n;\n\t\ty %= n;\n\t\treturn *this;\n\t}\n\tconstexpr bool operator==(const Pair& p) const {\n\t\treturn x == p.x && y == p.y;\n\t}\n\tconstexpr bool operator!=(const Pair& p) const {\n\t\treturn x != p.x || y != p.y;\n\t}\n\tconstexpr bool operator<(const Pair& p) const {\n\t\treturn x < p.x || (!(p.x < x) && y < p.y);\n\t}\n\tconstexpr bool operator>(const Pair& p) const {\n\t\treturn p < *this;\n\t}\n\tconstexpr bool operator<=(const Pair& p) const {\n\t\treturn !(p < *this);\n\t}\n\tconstexpr bool operator>=(const Pair& p) const {\n\t\treturn !(*this < p);\n\t}\n\tconstexpr value_type operator[](size_t i) const {\n\t\tassert(0 <= i && i < 2);\n\t\treturn i == 0 ? x : y;\n\t}\n\tconstexpr pair<value_type, value_type> to_pair() const {\n\t\treturn {x, y};\n\t}\n\tconstexpr tuple<value_type, value_type> to_tuple() const {\n\t\treturn {x, y};\n\t}\n\tconstexpr Pair xy() const {\n\t\treturn {x, y};\n\t}\n\tconstexpr Pair yx() const {\n\t\treturn {y, x};\n\t}\n\tconstexpr operator tuple<value_type&, value_type&>() {\n\t\treturn tuple<value_type&, value_type&>(x, y);\n\t}\n\tfriend ostream& operator<<(ostream& os, const Pair& p) {\n\t\treturn os << p.x << ' ' << p.y;\n\t}\n\tfriend istream& operator>>(istream& is, Pair& p) {\n\t\treturn is >> p.x >> p.y;\n\t}\n};\nnamespace std {\n\ttemplate <class T> struct tuple_size<Pair<T>> : integral_constant<size_t, 2> {};\n\ttemplate <size_t N, class T> struct tuple_element<N, Pair<T>> { using type = T; };\n} // namespace std\ntemplate <size_t N, class T> T get(const Pair<T>& p) {\n\treturn N == 0 ? p.x : p.y;\n}\n#line 3 \"b.cpp\"\n\nvoid solve() {\n\tusing P = Pair<ll>;\n\n\tini(n);\n\tvector<P> p = in[n];\n\tif (n <= 3) {\n\t\tout(true);\n\t\treturn;\n\t}\n\n\tauto check = [&](P a) {\n\t\tvector<P> remain;\n\t\tFOR(i, 1, n) {\n\t\t\tP b = p[0] - p[i];\n\t\t\tif (a.x * b.y - a.y * b.x != 0) {\n\t\t\t\tremain.push_back(p[i]);\n\t\t\t}\n\t\t}\n\t\tFOR(i, 1, sz(remain)) {\n\t\t\tP b = remain[0] - remain[i];\n\t\t\tif (a.x * b.y - a.y * b.x != 0) {\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t\treturn true;\n\t};\n\n\tout(check(p[0] - p[1]) || check(p[0] - p[2]) || check(p[1] - p[2]));\n}\n\nint main() {\n\tfor (int t = in; t--;) {\n\t\tsolve();\n\t}\n}", "accuracy": 1, "time_ms": 280, "memory_kb": 4300, "score_of_the_acc": -0.8139, "final_rank": 8 }, { "submission_id": "aoj_3167_4965075", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 20005\n\nstruct Point{\n\n\tll x,y;\n};\n\nstruct Info{\n\tbool operator==(const struct Info &arg) const{\n\n\t\tif(bunbo == 0 && arg.bunbo == 0){ //★★★注意★★★\n\n\t\t\treturn true;\n\t\t}\n\n\t\treturn bunshi == arg.bunshi && bunbo == arg.bunbo;\n\t}\n\n\tll bunshi,bunbo;\n};\n\nint N;\nPoint point[SIZE];\n\nll gcd(ll x,ll y){\n\n\tx = abs(x);\n\ty = abs(y);\n\n\tif(x < y){\n\t\tswap(x,y);\n\t}\n\tif(y == 0){\n\t\treturn x;\n\t}else{\n\t\treturn gcd(y,x%y);\n\t}\n}\n\nInfo calc_slope(int a,int b){\n\n\tInfo ret;\n\tret.bunbo = point[a].x-point[b].x;\n\tret.bunshi = point[a].y-point[b].y;\n\tll common = gcd(ret.bunbo,ret.bunshi);\n\n\tret.bunbo /= common;\n\tret.bunshi /= common;\n\n\tif(ret.bunbo < 0){\n\t\tret.bunshi *= -1;\n\t\tret.bunbo *= -1;\n\t}\n\treturn ret;\n}\n\nvoid func(){\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lld %lld\",&point[i].x,&point[i].y);\n\t}\n\tif(N <= 3){\n\n\t\tprintf(\"Yes\\n\");\n\t\treturn;\n\t}\n\n\tint tmp_index = -1;\n\tInfo base_info = calc_slope(0,1);\n\n\tfor(int i = 2; i < N; i++){\n\n\t\tInfo tmp_info = calc_slope(0,i);\n\t\tif(tmp_info.bunbo != base_info.bunbo || (tmp_info.bunbo != 0 && tmp_info.bunshi != base_info.bunshi)){\n\n\t\t\ttmp_index = i;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(tmp_index == -1){ //全て同一直線上\n\n\t\tprintf(\"Yes\\n\");\n\t\treturn;\n\t}\n\n\tInfo work_info1,work_info2;\n\n\tfor(int loop = 0; loop < 3; loop++){\n\n\t\tswitch(loop){\n\t\tcase 0: //0,1基準\n\t\t\tbase_info = calc_slope(0,1);\n\t\t\tbreak;\n\t\tcase 1: //1,tmp_index基準\n\t\t\tbase_info = calc_slope(1,tmp_index);\n\t\t\tbreak;\n\t\tcase 2: //tmp_index,0基準\n\t\t\tbase_info = calc_slope(tmp_index,0);\n\t\t\tbreak;\n\t\t}\n\n\t\tbool FLG = true;\n\n\t\tfor(int i = 2; i < N; i++){\n\t\t\tif(i == tmp_index)continue;\n\n\t\t\tbool tmp_FLG = false;\n\n\t\t\tswitch(loop){\n\t\t\tcase 0: //0,1基準\n\n\t\t\t\twork_info1 = calc_slope(i,tmp_index);\n\t\t\t\twork_info2 = calc_slope(i,0);\n\n\t\t\t\tbreak;\n\t\t\tcase 1: //1,tmp_index基準\n\n\t\t\t\twork_info1 = calc_slope(i,0);\n\t\t\t\twork_info2 = calc_slope(i,1);\n\n\t\t\t\tbreak;\n\t\t\tcase 2: //tmp_index,0基準\n\n\t\t\t\twork_info1 = calc_slope(i,1);\n\t\t\t\twork_info2 = calc_slope(i,tmp_index);\n\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t\tif(base_info == work_info1 || base_info == work_info2){\n\n\t\t\t\ttmp_FLG = true;\n\t\t\t}\n\n\t\t\tif(!tmp_FLG){\n\t\t\t\tFLG = false;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tif(FLG){\n\t\t\tprintf(\"Yes\\n\");\n\t\t\treturn;\n\t\t}\n\t}\n\n\n\tprintf(\"No\\n\");\n}\n\n\nint main(){\n\n\tint num_case;\n\tscanf(\"%d\",&num_case);\n\n\tfor(int loop = 0; loop < num_case; loop++){\n\t\tscanf(\"%d\",&N);\n\n\t\tfunc();\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 3476, "score_of_the_acc": -0.4085, "final_rank": 3 }, { "submission_id": "aoj_3167_4965072", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 20005\n\nstruct Point{\n\n\tll x,y;\n};\n\nstruct Info{\n\tbool operator==(const struct Info &arg) const{\n\n\t\tif(bunbo == 0 && arg.bunbo == 0){\n\n\t\t\treturn true;\n\t\t}\n\n\t\treturn bunshi == arg.bunshi && bunbo == arg.bunbo;\n\t}\n\n\tll bunshi,bunbo;\n};\n\nint N;\nPoint point[SIZE];\n\nll gcd(ll x,ll y){\n\n\tx = abs(x);\n\ty = abs(y);\n\n\tif(x < y){\n\t\tswap(x,y);\n\t}\n\tif(y == 0){\n\t\treturn x;\n\t}else{\n\t\treturn gcd(y,x%y);\n\t}\n}\n\nInfo calc_slope(int a,int b){\n\n\tInfo ret;\n\tret.bunbo = point[a].x-point[b].x;\n\tret.bunshi = point[a].y-point[b].y;\n\tll common = gcd(ret.bunbo,ret.bunshi);\n\n\tret.bunbo /= common;\n\tret.bunshi /= common;\n\n\tif(ret.bunbo < 0){\n\t\tret.bunshi *= -1;\n\t\tret.bunbo *= -1;\n\t}\n\treturn ret;\n}\n\nvoid func(){\n\n\tfor(int i = 0; i < N; i++){\n\n\t\tscanf(\"%lld %lld\",&point[i].x,&point[i].y);\n\t}\n\tif(N <= 3){\n\n\t\tprintf(\"Yes\\n\");\n\t\treturn;\n\t}\n\n\tint tmp_index = -1;\n\tInfo base_info = calc_slope(0,1);\n\n\tfor(int i = 2; i < N; i++){\n\n\t\tInfo tmp_info = calc_slope(0,i);\n\t\tif(tmp_info.bunbo != base_info.bunbo || (tmp_info.bunbo != 0 && tmp_info.bunshi != base_info.bunshi)){\n\n\t\t\ttmp_index = i;\n\t\t\tbreak;\n\t\t}\n\t}\n\n\tif(tmp_index == -1){ //全て同一直線上\n\n\t\tprintf(\"Yes\\n\");\n\t\treturn;\n\t}\n\n\tInfo work_info1,work_info2;\n\n\t//printf(\"tmp_index:%d\\n\",tmp_index);\n\n\tfor(int loop = 0; loop < 3; loop++){\n\n\t\tswitch(loop){\n\t\tcase 0: //0,1基準\n\t\t\tbase_info = calc_slope(0,1);\n\t\t\tbreak;\n\t\tcase 1: //1,tmp_index基準\n\t\t\tbase_info = calc_slope(1,tmp_index);\n\t\t\tbreak;\n\t\tcase 2: //tmp_index,0基準\n\t\t\tbase_info = calc_slope(tmp_index,0);\n\t\t\tbreak;\n\t\t}\n\n\t\tbool FLG = true;\n\n\t\tfor(int i = 2; i < N; i++){\n\t\t\tif(i == tmp_index)continue;\n\n\t\t\tbool tmp_FLG = false;\n\n\t\t\tswitch(loop){\n\t\t\tcase 0: //0,1基準\n\n\t\t\t\twork_info1 = calc_slope(i,tmp_index);\n\t\t\t\twork_info2 = calc_slope(i,0);\n\n\t\t\t\tbreak;\n\t\t\tcase 1: //1,tmp_index基準\n\n\t\t\t\twork_info1 = calc_slope(i,0);\n\t\t\t\twork_info2 = calc_slope(i,1);\n\n\t\t\t\tbreak;\n\t\t\tcase 2: //tmp_index,0基準\n\n\t\t\t\twork_info1 = calc_slope(i,1);\n\t\t\t\twork_info2 = calc_slope(i,tmp_index);\n\n\t\t\t\tbreak;\n\t\t\t}\n\n\t\t\tif(base_info == work_info1 || base_info == work_info2){\n\n\t\t\t\ttmp_FLG = true;\n\t\t\t}\n\n\t\t\tif(!tmp_FLG){\n\t\t\t\t/*printf(\"loop:%d\\n\",loop);\n\n\t\t\t\tprintf(\"base bunbo:%lld bunshi:%lld\\n\",base_info.bunbo,base_info.bunshi);\n\t\t\t\tprintf(\"work1: bunbo:%lld bunshi:%lld\\n\",work_info1.bunbo,work_info1.bunshi);\n\t\t\t\tprintf(\"work2: bunbo:%lld bunshi:%lld\\n\",work_info2.bunbo,work_info2.bunshi);*/\n\t\t\t\tFLG = false;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tif(FLG){\n\t\t\tprintf(\"Yes\\n\");\n\t\t\treturn;\n\t\t}\n\t}\n\n\n\tprintf(\"No\\n\");\n}\n\n\nint main(){\n\n\tint num_case;\n\tscanf(\"%d\",&num_case);\n\n\tfor(int loop = 0; loop < num_case; loop++){\n\t\tscanf(\"%d\",&N);\n\n\t\tfunc();\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 3480, "score_of_the_acc": -0.4101, "final_rank": 4 }, { "submission_id": "aoj_3167_4964153", "code_snippet": "#include <random>\n#include \"bits/stdc++.h\"\n//#include <atcoder/all>\n\nusing namespace std;\n// using namespace atcoder;\n\nusing ld = long double;\nusing Point = std::complex<ld>;\n\nconst ld eps = 1e-9, pi = acos(-1.0);\n\nnamespace std {\nbool operator<(const Point &lhs, const Point &rhs) {\n if (lhs.real() < rhs.real() - eps) return true;\n if (lhs.real() > rhs.real() + eps) return false;\n return lhs.imag() < rhs.imag();\n}\n} // namespace std\n\nPoint input_point() {\n ld x, y;\n std::cin >> x >> y;\n return Point(x, y);\n}\n\nbool eq(ld a, ld b) { return (abs(a - b) < eps); }\n\nld dot(Point a, Point b) { return real(conj(a) * b); }\n\nld cross(Point a, Point b) { return imag(conj(a) * b); }\n\n// CCW::counter clockwise\nint ccw(Point a, Point b, Point c) {\n b -= a;\n c -= a;\n if (cross(b, c) > eps) return 1; // a,b,c : counter-clockwise\n if (cross(b, c) < -eps) return -1; // a,b,c : clockwise\n if (dot(b, c) < 0) return 2; // c,a,b : on a line\n if (norm(b) < norm(c)) return -2; // a,b,c : on a line\n return 0; // a,c,b : on a line\n}\n\nclass Line {\n public:\n Point a, b;\n Line() : a(Point(0, 0)), b(Point(0, 0)) {}\n Line(Point a, Point b) : a(a), b(b) {}\n};\n\nld dot(Line l, Line m) { return dot((l.a - l.b), (m.a - m.b)); }\n\n// l:line, m:line が交点を持つか\nbool isis_ll(Line l, Line m) { return !eq(cross(l.b - l.a, m.b - m.a), 0); }\n\n// l:line, s:segment\nbool isis_ls(Line l, Line s) {\n return isis_ll(l, s) &&\n (cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);\n}\n\n// s:segment, t:segment\nbool isis_ss(Line s, Line t) {\n return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&\n ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;\n}\n\n// p が l:line 上に存在するか\nbool isis_lp(Line l, Point p) { return (abs(cross(l.b - p, l.a - p)) < eps); }\n\ntemplate <typename T>\nvoid printv(const vector<T> &v) {\n int sz = v.size();\n for (int i = 0; i < sz; i++) {\n cout << v[i] << \" \\n\"[i == sz - 1];\n }\n}\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n auto output_answer = [](bool f) { cout << (f ? \"Yes\" : \"No\") << endl; };\n int t;\n cin >> t;\n while (t--) {\n int n;\n cin >> n;\n vector<Point> ps(n);\n for (int i = 0; i < n; i++) {\n ps[i] = input_point();\n }\n if (n <= 3) {\n output_answer(true);\n continue;\n }\n auto check = [&](Point p1, Point p2) {\n Line l1 = Line(p1, p2);\n vector<Point> not_ls;\n for (int i = 0; i < n; i++) {\n if (!isis_lp(l1, ps[i])) not_ls.emplace_back(ps[i]);\n }\n if (not_ls.size() <= 1) {\n return true;\n }\n Line l2 = Line(not_ls[0], not_ls[1]);\n bool ok = !isis_ll(l1, l2);\n for (auto p : not_ls) {\n if (!isis_lp(l2, p)) ok = false;\n }\n return ok;\n };\n {\n // 全て一直線上 / p[0], p[1] が同じ側\n auto ok = check(ps[0], ps[1]);\n if (ok) {\n output_answer(ok);\n continue;\n }\n }\n // p[0], p[1] が反対側\n {\n // p[0], p[2] が同じ側\n auto ok = check(ps[0], ps[2]);\n if (ok) {\n output_answer(ok);\n continue;\n }\n }\n {\n // p[1], p[2] が同じ側\n auto ok = check(ps[1], ps[2]);\n if (ok) {\n output_answer(ok);\n continue;\n }\n }\n output_answer(false);\n }\n}", "accuracy": 1, "time_ms": 260, "memory_kb": 5560, "score_of_the_acc": -1.2979, "final_rank": 13 }, { "submission_id": "aoj_3167_4894938", "code_snippet": "#ifdef ONLINE_JUDGE\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for(int i = 0; i < (n); ++i)\n#define all(x) (x).begin(),(x).end()\nconstexpr char ln = '\\n';\nistream& operator>>(istream& is, __int128_t &x) {\n x = 0;\n string s;\n is >> s;\n int n = int(s.size()), it = 0;\n if (s[0] == '-') it++;\n for (; it < n; it++) x = (x * 10 + s[it] - '0');\n if (s[0] == '-') x = -x;\n return is;\n}\nostream& operator<<(ostream& os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n deque<int> deq;\n while (x) deq.emplace_front(x % 10), x /= 10;\n for (int e : deq) os << e;\n return os;\n}\ntemplate<class T1, class T2>\nostream& operator<<(ostream& os, const pair<T1, T2>& p) {\n return os << \"(\" << p.first << \", \" << p.second << \")\";\n}\ntemplate<class T> \nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"[\";\n for(auto e : v) os << e << \", \";\n return os << \"]\";\n}\ntemplate<class Container> inline int SZ(Container& v) {return int(v.size());}\ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\ninline int topbit(int x) {return x == 0 ? -1 : 31 - __builtin_clz(x);}\ninline int topbit(long long x) {return x == 0 ? -1 : 63 - __builtin_clzll(x);}\ninline int botbit(int x) {return x == 0 ? 32 : __builtin_ctz(x);}\ninline int botbit(long long x) {return x == 0 ? 64 : __builtin_ctzll(x);}\ninline int popcount(int x) {return __builtin_popcount(x);}\ninline int popcount(long long x) {return __builtin_popcountll(x);}\ninline int kthbit(long long x, int k) {return (x>>k)&1;}\ninline constexpr long long TEN(int x) {return x == 0 ? 1 : TEN(x-1) * 10;}\nnamespace detail {\n template<typename Tp, int Nb>\n auto make_vector(vector<int>& sizes, Tp const& x) {\n if constexpr (Nb == 1) {\n return vector(sizes[0], x);\n } else {\n int size = sizes[Nb-1];\n sizes.pop_back();\n return vector(size, make_vector<Tp, Nb-1>(sizes, x));\n }\n }\n}\ntemplate<typename Tp, int Nb>\nauto make_vector(int const(&sizes)[Nb], Tp const& x = Tp()) {\n vector<int> s(Nb);\n for (int i = 0; i < Nb; i++) s[i] = sizes[Nb-i-1];\n return detail::make_vector<Tp, Nb>(s, x);\n}\ninline void print() {cout << \"\\n\";}\ntemplate<class T>\ninline void print(const vector<T>& v) {\n for (auto itr = v.begin(); itr != v.end(); ++itr) cout << *itr << \" \";\n print();\n}\ntemplate<class T, class... Args>\ninline void print(const T &x, const Args &... args) {\n cout << x << \" \";\n print(args...);\n}\n#ifdef MINATO_LOCAL\n#define dump(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\ninline void debug() {cerr << endl;}\ntemplate<class T>\ninline void debug(const vector<T> &v) {\n for (auto itr = v.begin(); itr != v.end(); ++itr) cerr << *itr << \" \";\n debug();\n}\ntemplate<class T, class... Args>\ninline void debug(const T &x, const Args &... args) {\n cerr << x << \" \";\n debug(args...);\n}\n#else\n#define dump(x) void(0)\ninline void debug() {}\ntemplate<class T> inline void debug(const vector<T> &v) {}\ntemplate<class T, class... Args> inline void debug(const T &x, const Args &... args) {}\n#endif\nstruct Fast_ios {Fast_ios() {cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20);};} fast_ios;\n////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\n// 精度が足りないときはlong double\nusing DD = long double;\nconstexpr DD EPS = 1e-11;\nconst DD PI = acos(DD(-1));\ninline int sgn(DD a) {return (a < -EPS) ? -1 : (a > EPS) ? 1 : 0;}\n\n//点\nstruct Point {\n DD x, y;\n Point (DD x = 0, DD y = 0): x(x), y(y) {}\n\n Point operator+(const Point &p) const { return Point(*this) += p;}\n Point operator-(const Point &p) const { return Point(*this) -= p;}\n Point operator*(const Point &p) const { return Point(*this) *= p;}\n Point operator*(DD a) const { return Point(*this) *= a;}\n Point operator/(DD a) const { return Point(*this) /= a;}\n Point& operator+=(const Point &p) { x += p.x; y += p.y; return *this;}\n Point& operator-=(const Point &p) { x -= p.x; y -= p.y; return *this;}\n Point& operator*=(const Point &p) { DD u = x*p.x - y*p.y; DD v = x*p.y + y*p.x; x = u; y = v; return *this;}\n Point& operator*=(DD a) { x *= a; y *= a; return *this;}\n Point& operator/=(DD a) { x /= a; y /= a; return *this;}\n bool operator==(const Point &p) const { return !sgn(x - p.x) && !sgn(y - p.y);}\n bool operator!=(const Point &p) const { return sgn(x - p.x) || sgn(y - p.y);}\n bool operator<(const Point &p) const {\n if (sgn(x - p.x)) return sgn(x - p.x) < 0;\n return sgn(y - p.y) < 0;\n }\n friend istream& operator>>(istream& is, Point& p) { is >> p.x >> p.y; return is;}\n friend ostream& operator<<(ostream& os, const Point& p) { os << p.x << \" \" << p.y; return os;}\n\n DD norm() { return x*x + y*y;}\n DD abs() { return sqrt(norm());}\n DD arg() { return atan2(y,x);}\n};\n\n//ベクトル\nusing Vector = Point;\n\ninline DD norm(const Vector &a) { return a.x * a.x + a.y * a.y;}\ninline DD abs(const Vector &a) { return sqrt(norm(a));}\ninline DD dot(const Vector &a, const Vector &b) { return a.x * b.x + a.y * b.y;}\ninline DD cross(const Vector &a, const Vector &b) { return a.x * b.y - a.y * b.x;}\ninline Point rot(const Point &p, DD ang) { return Point(cos(ang) * p.x - sin(ang) * p.y, sin(ang) * p.x + cos(ang) * p.y);}\ninline Point rot90(const Point &p) { return Point(-p.y, p.x);}\ninline DD arg(const Vector &p) { return atan2(p.y, p.x);}\ninline Vector polar(DD a, DD r) { return Point(cos(r) * a, sin(r) * a);}\n//象限\nint ort(const Point &a) {\n if (sgn(norm(a))) {\n if (sgn(a.y) > 0) return sgn(a.x) > 0 ? 1 : 2;\n return sgn(a.x) > 0 ? 4 : 3;\n }\n return 0;\n}\nbool xsort(const Point &a, const Point &b) {\n if (sgn(a.x - b.x)) return sgn(a.x - b.x) < 0;\n return sgn(a.y - b.y) < 0;\n}\nbool ysort(const Point &a, const Point &b) {\n if (sgn(a.y - b.y)) return sgn(a.y - b.y) < 0;\n return sgn(a.x - b.x) < 0;\n}\n\nbool argsortcross(const Point &a, const Point &b) {\n int ao = ort(a), bo = ort(b);\n if (ao != bo) return ao < bo;\n return sgn(cross(a,b)) > 0;\n}\n\nbool argsortatan2(const Point &a, const Point &b) {\n return sgn(atan2(b.y, b.x) - atan2(a.y, a.x)) > 0;\n}\n\n//線分\nstruct Segment {\n Point p1,p2;\n Segment() {};\n Segment(Point p1, Point p2) : p1(p1),p2(p2) {}\n};\n\n//直線\nusing Line = Segment;\n\n// 円\nstruct Circle {\n Point c;\n DD r;\n Circle(){}\n Circle(Point c, DD r): c(c), r(r) {}\n friend istream& operator >>(istream& is, Circle& C) { is >> C.c >> C.r; return is;}\n friend ostream& operator <<(ostream& os, const Circle& C) { os << C.c << \" \" << C.r; return os;}\n};\n\n//多角形\nusing Polygon = vector<Point>;\n\n//点の進行方向\nint ccw(const Point &p0, const Point &p1, const Point &p2) {\n Vector a = p1 - p0;\n Vector b = p2 - p0;\n if (sgn(cross(a,b)) > 0) return 1; //p0,p1から見てp2は左側(反時計回り)\n if (sgn(cross(a,b)) < 0) return -1; //p0,p1から見てp2は右側(時計回り)\n if (sgn(dot(a,b)) < 0) return 2; //p2-p0-p1の順に一直線上\n if (sgn(norm(b) - norm(a)) > 0) return -2; //p0-p1-p2の順に一直線上\n return 0; //p0-p2-p1の順に一直線上\n}\n\n//直線の交差判定 交差する場合1, 平行な場合0, 同一直線のとき-1\nint intersectLP(const Vector &a, const Vector &b) {\n if (sgn(cross(a,b))) return 1;\n if (sgn(dot(a,b))) return 0;\n return -1;\n} \nint intersectLP(const Point &p1, const Point &p2, const Point &p3, const Point &p4) {return intersectLP(p2-p1,p4-p3);}\nint intersectLP(const Line &l1, const Line &l2) {return intersectLP(l1.p1,l1.p2,l2.p1,l2.p2);}\n\n//直線の平行判定\nbool isParallel(const Vector &a, Vector &b) {return intersectLP(a,b) <= 0;}\nbool isParallel(const Point &p1, const Point &p2, const Point &p3, const Point &p4) {return intersectLP(p1,p2,p3,p4) <= 0;}\nbool isParallel(const Line &l1, const Line &l2) {return intersectLP(l1,l2) <= 0;}\n\n//直線の直交判定\nbool isOrthogonal(const Vector &a, const Vector &b) {return !sgn(dot(a,b));}\nbool isOrthogonal(const Point &p1, const Point &p2, const Point &p3, const Point &p4) {return isOrthogonal(p2-p1,p4-p3);}\nbool isOrthogonal(const Line &l1, const Line &l2) {return isOrthogonal(l1.p1,l1.p2,l2.p1,l2.p2);}\n\n//線分の交差判定\nbool intersectSP(const Point &p1, const Point &p2, const Point &p3, const Point &p4) { return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 && ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0);}\nbool intersectSP(const Segment &s1, const Segment &s2) { return intersectSP(s1.p1, s1.p2, s2.p1, s2.p2);}\n\n//直線と線分の交差判定\nbool intersectLSP(const Line &l, const Segment &s) {return ccw(l.p1,l.p2,s.p1)*ccw(l.p1,l.p2,s.p2) <= 0;}\n\n//直線と直線の交点\nPoint getCrossPointLP(const Line &l1, const Line &l2) {\n assert(intersectLP(l1,l2)==1);\n return l1.p1 + (l1.p2-l1.p1)*cross(l2.p1-l1.p1,l2.p2-l2.p1)/cross(l1.p2-l1.p1,l2.p2-l2.p1);\n}\n\n//線分と線分の交点\nPoint getCrossPointSP(const Segment &s1, const Segment &s2) {\n assert(intersectSP(s1,s2));\n return getCrossPointLP(s1,s2);\n}\n\n//射影\nPoint project(const Segment &s, const Point &p) {\n Vector base = s.p2 - s.p1;\n DD r = dot(p - s.p1, base) / norm(base);\n return s.p1 + base * r;\n}\n\n//線対称\nPoint reflect(const Segment &s, const Point &p) {return p + (project(s,p) - p) * 2;}\n\n//点と直線の距離\nDD getDistanceLP(const Line &l, const Point &p) { return abs(cross(l.p2 - l.p1,p - l.p1) / abs(l.p2 - l.p1));}\n\n//点と線分の距離\nDD getDistanceSP(const Segment &s, const Point &p) {\n if (sgn(dot(s.p2 - s.p1,p - s.p1)) < 0) return abs(p - s.p1);\n if (sgn(dot(s.p1 - s.p2,p - s.p2)) < 0) return abs(p - s.p2);\n return getDistanceLP(s, p);\n}\n\n//直線と直線の距離\nDD getDistanceLP(const Line &l1, const Line &l2) {\n if (intersectLP(l1,l2)) return 0;\n return getDistanceLP(l1,l2.p1);\n}\n\n//直線と線分の距離\nDD getDistanceLSP(const Line &l, const Segment &s) {\n if (intersectLSP(l,s)) return 0;\n return min(getDistanceLP(l,s.p1),getDistanceLP(l,s.p2));\n}\n\n//線分と線分の距離\nDD getDistanceSP(const Segment &s1, const Segment &s2) {\n if (intersectSP(s1, s2)) return 0;\n return min({getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2), getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2)});\n}\n\n//円と直線の交差判定\nbool intersectLP(const Circle &c, const Line &l) { return sgn(getDistanceLP(l, c.c) - c.r) <= 0;}\n//円と線分の交差判定\nbool intersectSP(const Circle &c, const Segment &s) {\n return sgn(getDistanceSP(s,c.c) - c.r) <= 0 && sgn(max(abs(s.p1 - c.c),abs(s.p2 - c.c)) - c.r) >= 0;\n}\n//円と円の交差判定\nint intersect(const Circle &c1, const Circle &c2) {\n if (sgn(abs(c1.c - c2.c) - (c1.r + c2.r)) > 0) return 4; //2つの円が離れている場合\n if (!sgn(abs(c1.c - c2.c) - (c1.r + c2.r))) return 3; //2つの円が外接する場合\n if (sgn(fabs(c1.r - c2.r) - abs(c1.c - c2.c)) > 0) return 0; //一方がもう一方を内包する場合\n if (!sgn(fabs(c1.r - c2.r) - abs(c1.c - c2.c))) return 1; //2つの円が内接する場合\n return 2; //2つの円が交わる場合\n}\n\n//円と直線の交点\npair<Point, Point> getCrossPoints(const Circle &c, const Line &l) {\n assert(intersectLP(c,l));\n Vector pr = project(l, c.c);\n Vector e = (l.p2 - l.p1) / abs(l.p2 - l.p1);\n DD base = sqrt(c.r * c.r - norm(pr - c.c));\n return make_pair(pr + e * base, pr - e * base);\n}\n\n//円と円の交点\npair<Point, Point> getCrossPoints(const Circle &c1, const Circle &c2) {\n assert(intersect(c1, c2));\n DD d = abs(c1.c - c2.c);\n DD a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (c1.r * d * 2));\n DD t = arg(c2.c - c1.c);\n return make_pair(c1.c + polar(c1.r, t + a), c1.c + polar(c1.r, t - a));\n}\n\n//点pを通る円の接線\npair<Line, Line> tangent(const Circle &c, const Point &p) {\n assert(sgn(abs(c.c - p) - c.r) >= 0);\n if (!sgn(abs(c.c - p) - c.r)) {\n Point q = rot90(c.c - p);\n return pair<Line, Line>(Line(p,p+q), Line(p,p+q));\n } \n Circle c2=Circle(p,sqrt(norm(c.c-p)-c.r*c.r));\n auto q = getCrossPoints(c,c2);\n return pair<Line, Line>(Line(p,q.first), Line(p,q.second));\n}\n\n//多角形の面積\nDD area(const Polygon &g) {\n const int N = g.size();\n DD ret = 0;\n for (int i = 0; i < N; ++i) {\n ret += cross(g[i],g[(i+1)%N]);\n }\n return fabs(ret)/2;\n}\n\n//凸性判定\nbool isConvex(const Polygon &g) {\n const int N = g.size();\n for (int i = 0; i < N; ++i) {\n if (ccw(g[i],g[(i+1)%N],g[(i+2)%N]) == -1) return 0;\n }\n return 1;\n}\n\n// 多角形-点の包含判定\nint containment(const Polygon &g, const Point &p) {\n const int N = g.size();\n DD ang = 0;\n for (int i = 0; i < N; i++) {\n if (!ccw(g[i],g[(i+1)%N],p)) return 1; // pがgの辺上に存在する\n ang += atan2(cross(g[(i+1)%N] - p, g[i] - p), dot(g[(i+1)%N] - p, g[i] - p));\n }\n if (sgn(ang)) return 2; // pがgに含まれる\n return 0; // pがgに含まれない\n}\n\n//凸包\nPolygon andrewScan(Polygon s) {\n Polygon u,l;\n const int N = s.size();\n if (N < 3) return s;\n sort(s.begin(), s.end(), xsort);\n u.emplace_back(s[0]);\n u.emplace_back(s[1]);\n l.emplace_back(s[N-1]);\n l.emplace_back(s[N-2]);\n \n for (int i = 2; i < s.size(); ++i) {\n // 凸包上の点も含めるなら ccw() == 1 含めないなら ccw() != -1\n for (int n = u.size(); n >= 2 && ccw(u[n-2],u[n-1],s[i]) != -1; --n) {\n u.pop_back();\n }\n u.emplace_back(s[i]);\n }\n\n for (int i = N - 3; i >= 0; --i) {\n // 凸包上の点も含めるなら ccw() == 1 含めないなら ccw() != -1\n for (int n = l.size(); n >= 2 && ccw(l[n-2], l[n-1], s[i]) != -1; --n) {\n l.pop_back();\n }\n l.emplace_back(s[i]);\n }\n\n reverse(l.begin(), l.end());\n for (int i = u.size() - 2; i >= 1; --i) l.emplace_back(u[i]);\n\n return l;\n}\n\n//最遠点対\nDD farthestpointpair(const Polygon &g) {\n const int N = g.size();\n if (N == 2) return abs(g[1] - g[0]);\n int i = 0, j = 0;\n for (int k = 0; k < N; ++k) {\n if (g[k].y > g[i].y) i = k;\n if (g[k].y < g[j].y) j = k;\n }\n\n DD ret = 0;\n int si = i, sj = j;\n while (i != sj || j != si) {\n ret = max(ret, abs(g[i]-g[j]));\n if (sgn(cross(g[(i+1)%N] - g[i], g[(j+1)%N] - g[j])) < 0) {\n ++i;\n if (i == N) i = 0;\n } else {\n ++j;\n if (j == N) j = 0;\n }\n }\n\n return ret;\n}\n\nvoid solve() {\n int N; cin >> N;\n Polygon P(N);\n rep(i,N) cin >> P[i];\n\n if (N <= 2) {\n cout << \"Yes\" << ln;\n return;\n }\n\n vector<pii> arr = {pii(0,1),pii(1,2),pii(2,0)};\n for (auto &[a,b] : arr) {\n Line l = Line(P[a],P[b]);\n Polygon Q;\n rep(i,N) {\n if (sgn(getDistanceLP(l,P[i])) == 0) continue;\n Q.emplace_back(P[i]);\n }\n if (int(Q.size()) <= 1) {\n cout << \"Yes\" << ln;\n return;\n }\n Line s = Line(Q[0],Q[1]);\n if (intersectLP(l,s)) continue;\n bool ok = true;\n for (auto &p : Q) {\n if (sgn(getDistanceLP(s,p))) ok = false; \n }\n if (ok) {\n cout << \"Yes\" << ln;\n return;\n }\n }\n\n cout << \"No\" << ln;\n}\n\nint main() {\n int Q; cin >> Q;\n while (Q--) {\n solve();\n }\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 5532, "score_of_the_acc": -1.2584, "final_rank": 11 }, { "submission_id": "aoj_3167_4894931", "code_snippet": "#ifdef ONLINE_JUDGE\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for(int i = 0; i < (n); ++i)\n#define all(x) (x).begin(),(x).end()\nconstexpr char ln = '\\n';\nistream& operator>>(istream& is, __int128_t &x) {\n x = 0;\n string s;\n is >> s;\n int n = int(s.size()), it = 0;\n if (s[0] == '-') it++;\n for (; it < n; it++) x = (x * 10 + s[it] - '0');\n if (s[0] == '-') x = -x;\n return is;\n}\nostream& operator<<(ostream& os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n deque<int> deq;\n while (x) deq.emplace_front(x % 10), x /= 10;\n for (int e : deq) os << e;\n return os;\n}\ntemplate<class T1, class T2>\nostream& operator<<(ostream& os, const pair<T1, T2>& p) {\n return os << \"(\" << p.first << \", \" << p.second << \")\";\n}\ntemplate<class T> \nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"[\";\n for(auto e : v) os << e << \", \";\n return os << \"]\";\n}\ntemplate<class Container> inline int SZ(Container& v) {return int(v.size());}\ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\ninline int topbit(int x) {return x == 0 ? -1 : 31 - __builtin_clz(x);}\ninline int topbit(long long x) {return x == 0 ? -1 : 63 - __builtin_clzll(x);}\ninline int botbit(int x) {return x == 0 ? 32 : __builtin_ctz(x);}\ninline int botbit(long long x) {return x == 0 ? 64 : __builtin_ctzll(x);}\ninline int popcount(int x) {return __builtin_popcount(x);}\ninline int popcount(long long x) {return __builtin_popcountll(x);}\ninline int kthbit(long long x, int k) {return (x>>k)&1;}\ninline constexpr long long TEN(int x) {return x == 0 ? 1 : TEN(x-1) * 10;}\nnamespace detail {\n template<typename Tp, int Nb>\n auto make_vector(vector<int>& sizes, Tp const& x) {\n if constexpr (Nb == 1) {\n return vector(sizes[0], x);\n } else {\n int size = sizes[Nb-1];\n sizes.pop_back();\n return vector(size, make_vector<Tp, Nb-1>(sizes, x));\n }\n }\n}\ntemplate<typename Tp, int Nb>\nauto make_vector(int const(&sizes)[Nb], Tp const& x = Tp()) {\n vector<int> s(Nb);\n for (int i = 0; i < Nb; i++) s[i] = sizes[Nb-i-1];\n return detail::make_vector<Tp, Nb>(s, x);\n}\ninline void print() {cout << \"\\n\";}\ntemplate<class T>\ninline void print(const vector<T>& v) {\n for (auto itr = v.begin(); itr != v.end(); ++itr) cout << *itr << \" \";\n print();\n}\ntemplate<class T, class... Args>\ninline void print(const T &x, const Args &... args) {\n cout << x << \" \";\n print(args...);\n}\n#ifdef MINATO_LOCAL\n#define dump(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\ninline void debug() {cerr << endl;}\ntemplate<class T>\ninline void debug(const vector<T> &v) {\n for (auto itr = v.begin(); itr != v.end(); ++itr) cerr << *itr << \" \";\n debug();\n}\ntemplate<class T, class... Args>\ninline void debug(const T &x, const Args &... args) {\n cerr << x << \" \";\n debug(args...);\n}\n#else\n#define dump(x) void(0)\ninline void debug() {}\ntemplate<class T> inline void debug(const vector<T> &v) {}\ntemplate<class T, class... Args> inline void debug(const T &x, const Args &... args) {}\n#endif\nstruct Fast_ios {Fast_ios() {cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20);};} fast_ios;\n////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\n// 精度が足りないときはlong double\nusing DD = double;\nconstexpr DD EPS = 1e-11;\nconst DD PI = acos(DD(-1));\ninline int sgn(DD a) {return (a < -EPS) ? -1 : (a > EPS) ? 1 : 0;}\n\n//点\nstruct Point {\n DD x, y;\n Point (DD x = 0, DD y = 0): x(x), y(y) {}\n\n Point operator+(const Point &p) const { return Point(*this) += p;}\n Point operator-(const Point &p) const { return Point(*this) -= p;}\n Point operator*(const Point &p) const { return Point(*this) *= p;}\n Point operator*(DD a) const { return Point(*this) *= a;}\n Point operator/(DD a) const { return Point(*this) /= a;}\n Point& operator+=(const Point &p) { x += p.x; y += p.y; return *this;}\n Point& operator-=(const Point &p) { x -= p.x; y -= p.y; return *this;}\n Point& operator*=(const Point &p) { DD u = x*p.x - y*p.y; DD v = x*p.y + y*p.x; x = u; y = v; return *this;}\n Point& operator*=(DD a) { x *= a; y *= a; return *this;}\n Point& operator/=(DD a) { x /= a; y /= a; return *this;}\n bool operator==(const Point &p) const { return !sgn(x - p.x) && !sgn(y - p.y);}\n bool operator!=(const Point &p) const { return sgn(x - p.x) || sgn(y - p.y);}\n bool operator<(const Point &p) const {\n if (sgn(x - p.x)) return sgn(x - p.x) < 0;\n return sgn(y - p.y) < 0;\n }\n friend istream& operator>>(istream& is, Point& p) { is >> p.x >> p.y; return is;}\n friend ostream& operator<<(ostream& os, const Point& p) { os << p.x << \" \" << p.y; return os;}\n\n DD norm() { return x*x + y*y;}\n DD abs() { return sqrt(norm());}\n DD arg() { return atan2(y,x);}\n};\n\n//ベクトル\nusing Vector = Point;\n\ninline DD norm(const Vector &a) { return a.x * a.x + a.y * a.y;}\ninline DD abs(const Vector &a) { return sqrt(norm(a));}\ninline DD dot(const Vector &a, const Vector &b) { return a.x * b.x + a.y * b.y;}\ninline DD cross(const Vector &a, const Vector &b) { return a.x * b.y - a.y * b.x;}\ninline Point rot(const Point &p, DD ang) { return Point(cos(ang) * p.x - sin(ang) * p.y, sin(ang) * p.x + cos(ang) * p.y);}\ninline Point rot90(const Point &p) { return Point(-p.y, p.x);}\ninline DD arg(const Vector &p) { return atan2(p.y, p.x);}\ninline Vector polar(DD a, DD r) { return Point(cos(r) * a, sin(r) * a);}\n//象限\nint ort(const Point &a) {\n if (sgn(norm(a))) {\n if (sgn(a.y) > 0) return sgn(a.x) > 0 ? 1 : 2;\n return sgn(a.x) > 0 ? 4 : 3;\n }\n return 0;\n}\nbool xsort(const Point &a, const Point &b) {\n if (sgn(a.x - b.x)) return sgn(a.x - b.x) < 0;\n return sgn(a.y - b.y) < 0;\n}\nbool ysort(const Point &a, const Point &b) {\n if (sgn(a.y - b.y)) return sgn(a.y - b.y) < 0;\n return sgn(a.x - b.x) < 0;\n}\n\nbool argsortcross(const Point &a, const Point &b) {\n int ao = ort(a), bo = ort(b);\n if (ao != bo) return ao < bo;\n return sgn(cross(a,b)) > 0;\n}\n\nbool argsortatan2(const Point &a, const Point &b) {\n return sgn(atan2(b.y, b.x) - atan2(a.y, a.x)) > 0;\n}\n\n//線分\nstruct Segment {\n Point p1,p2;\n Segment() {};\n Segment(Point p1, Point p2) : p1(p1),p2(p2) {}\n};\n\n//直線\nusing Line = Segment;\n\n// 円\nstruct Circle {\n Point c;\n DD r;\n Circle(){}\n Circle(Point c, DD r): c(c), r(r) {}\n friend istream& operator >>(istream& is, Circle& C) { is >> C.c >> C.r; return is;}\n friend ostream& operator <<(ostream& os, const Circle& C) { os << C.c << \" \" << C.r; return os;}\n};\n\n//多角形\nusing Polygon = vector<Point>;\n\n//点の進行方向\nint ccw(const Point &p0, const Point &p1, const Point &p2) {\n Vector a = p1 - p0;\n Vector b = p2 - p0;\n if (sgn(cross(a,b)) > 0) return 1; //p0,p1から見てp2は左側(反時計回り)\n if (sgn(cross(a,b)) < 0) return -1; //p0,p1から見てp2は右側(時計回り)\n if (sgn(dot(a,b)) < 0) return 2; //p2-p0-p1の順に一直線上\n if (sgn(norm(b) - norm(a)) > 0) return -2; //p0-p1-p2の順に一直線上\n return 0; //p0-p2-p1の順に一直線上\n}\n\n//直線の交差判定 交差する場合1, 平行な場合0, 同一直線のとき-1\nint intersectLP(const Vector &a, const Vector &b) {\n if (sgn(cross(a,b))) return 1;\n if (sgn(dot(a,b))) return 0;\n return -1;\n} \nint intersectLP(const Point &p1, const Point &p2, const Point &p3, const Point &p4) {return intersectLP(p2-p1,p4-p3);}\nint intersectLP(const Line &l1, const Line &l2) {return intersectLP(l1.p1,l1.p2,l2.p1,l2.p2);}\n\n//直線の平行判定\nbool isParallel(const Vector &a, Vector &b) {return intersectLP(a,b) <= 0;}\nbool isParallel(const Point &p1, const Point &p2, const Point &p3, const Point &p4) {return intersectLP(p1,p2,p3,p4) <= 0;}\nbool isParallel(const Line &l1, const Line &l2) {return intersectLP(l1,l2) <= 0;}\n\n//直線の直交判定\nbool isOrthogonal(const Vector &a, const Vector &b) {return !sgn(dot(a,b));}\nbool isOrthogonal(const Point &p1, const Point &p2, const Point &p3, const Point &p4) {return isOrthogonal(p2-p1,p4-p3);}\nbool isOrthogonal(const Line &l1, const Line &l2) {return isOrthogonal(l1.p1,l1.p2,l2.p1,l2.p2);}\n\n//線分の交差判定\nbool intersectSP(const Point &p1, const Point &p2, const Point &p3, const Point &p4) { return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 && ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0);}\nbool intersectSP(const Segment &s1, const Segment &s2) { return intersectSP(s1.p1, s1.p2, s2.p1, s2.p2);}\n\n//直線と線分の交差判定\nbool intersectLSP(const Line &l, const Segment &s) {return ccw(l.p1,l.p2,s.p1)*ccw(l.p1,l.p2,s.p2) <= 0;}\n\n//直線と直線の交点\nPoint getCrossPointLP(const Line &l1, const Line &l2) {\n assert(intersectLP(l1,l2)==1);\n return l1.p1 + (l1.p2-l1.p1)*cross(l2.p1-l1.p1,l2.p2-l2.p1)/cross(l1.p2-l1.p1,l2.p2-l2.p1);\n}\n\n//線分と線分の交点\nPoint getCrossPointSP(const Segment &s1, const Segment &s2) {\n assert(intersectSP(s1,s2));\n return getCrossPointLP(s1,s2);\n}\n\n//射影\nPoint project(const Segment &s, const Point &p) {\n Vector base = s.p2 - s.p1;\n DD r = dot(p - s.p1, base) / norm(base);\n return s.p1 + base * r;\n}\n\n//線対称\nPoint reflect(const Segment &s, const Point &p) {return p + (project(s,p) - p) * 2;}\n\n//点と直線の距離\nDD getDistanceLP(const Line &l, const Point &p) { return abs(cross(l.p2 - l.p1,p - l.p1) / abs(l.p2 - l.p1));}\n\n//点と線分の距離\nDD getDistanceSP(const Segment &s, const Point &p) {\n if (sgn(dot(s.p2 - s.p1,p - s.p1)) < 0) return abs(p - s.p1);\n if (sgn(dot(s.p1 - s.p2,p - s.p2)) < 0) return abs(p - s.p2);\n return getDistanceLP(s, p);\n}\n\n//直線と直線の距離\nDD getDistanceLP(const Line &l1, const Line &l2) {\n if (intersectLP(l1,l2)) return 0;\n return getDistanceLP(l1,l2.p1);\n}\n\n//直線と線分の距離\nDD getDistanceLSP(const Line &l, const Segment &s) {\n if (intersectLSP(l,s)) return 0;\n return min(getDistanceLP(l,s.p1),getDistanceLP(l,s.p2));\n}\n\n//線分と線分の距離\nDD getDistanceSP(const Segment &s1, const Segment &s2) {\n if (intersectSP(s1, s2)) return 0;\n return min({getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2), getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2)});\n}\n\n//円と直線の交差判定\nbool intersectLP(const Circle &c, const Line &l) { return sgn(getDistanceLP(l, c.c) - c.r) <= 0;}\n//円と線分の交差判定\nbool intersectSP(const Circle &c, const Segment &s) {\n return sgn(getDistanceSP(s,c.c) - c.r) <= 0 && sgn(max(abs(s.p1 - c.c),abs(s.p2 - c.c)) - c.r) >= 0;\n}\n//円と円の交差判定\nint intersect(const Circle &c1, const Circle &c2) {\n if (sgn(abs(c1.c - c2.c) - (c1.r + c2.r)) > 0) return 4; //2つの円が離れている場合\n if (!sgn(abs(c1.c - c2.c) - (c1.r + c2.r))) return 3; //2つの円が外接する場合\n if (sgn(fabs(c1.r - c2.r) - abs(c1.c - c2.c)) > 0) return 0; //一方がもう一方を内包する場合\n if (!sgn(fabs(c1.r - c2.r) - abs(c1.c - c2.c))) return 1; //2つの円が内接する場合\n return 2; //2つの円が交わる場合\n}\n\n//円と直線の交点\npair<Point, Point> getCrossPoints(const Circle &c, const Line &l) {\n assert(intersectLP(c,l));\n Vector pr = project(l, c.c);\n Vector e = (l.p2 - l.p1) / abs(l.p2 - l.p1);\n DD base = sqrt(c.r * c.r - norm(pr - c.c));\n return make_pair(pr + e * base, pr - e * base);\n}\n\n//円と円の交点\npair<Point, Point> getCrossPoints(const Circle &c1, const Circle &c2) {\n assert(intersect(c1, c2));\n DD d = abs(c1.c - c2.c);\n DD a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (c1.r * d * 2));\n DD t = arg(c2.c - c1.c);\n return make_pair(c1.c + polar(c1.r, t + a), c1.c + polar(c1.r, t - a));\n}\n\n//点pを通る円の接線\npair<Line, Line> tangent(const Circle &c, const Point &p) {\n assert(sgn(abs(c.c - p) - c.r) >= 0);\n if (!sgn(abs(c.c - p) - c.r)) {\n Point q = rot90(c.c - p);\n return pair<Line, Line>(Line(p,p+q), Line(p,p+q));\n } \n Circle c2=Circle(p,sqrt(norm(c.c-p)-c.r*c.r));\n auto q = getCrossPoints(c,c2);\n return pair<Line, Line>(Line(p,q.first), Line(p,q.second));\n}\n\n//多角形の面積\nDD area(const Polygon &g) {\n const int N = g.size();\n DD ret = 0;\n for (int i = 0; i < N; ++i) {\n ret += cross(g[i],g[(i+1)%N]);\n }\n return fabs(ret)/2;\n}\n\n//凸性判定\nbool isConvex(const Polygon &g) {\n const int N = g.size();\n for (int i = 0; i < N; ++i) {\n if (ccw(g[i],g[(i+1)%N],g[(i+2)%N]) == -1) return 0;\n }\n return 1;\n}\n\n// 多角形-点の包含判定\nint containment(const Polygon &g, const Point &p) {\n const int N = g.size();\n DD ang = 0;\n for (int i = 0; i < N; i++) {\n if (!ccw(g[i],g[(i+1)%N],p)) return 1; // pがgの辺上に存在する\n ang += atan2(cross(g[(i+1)%N] - p, g[i] - p), dot(g[(i+1)%N] - p, g[i] - p));\n }\n if (sgn(ang)) return 2; // pがgに含まれる\n return 0; // pがgに含まれない\n}\n\n//凸包\nPolygon andrewScan(Polygon s) {\n Polygon u,l;\n const int N = s.size();\n if (N < 3) return s;\n sort(s.begin(), s.end(), xsort);\n u.emplace_back(s[0]);\n u.emplace_back(s[1]);\n l.emplace_back(s[N-1]);\n l.emplace_back(s[N-2]);\n \n for (int i = 2; i < s.size(); ++i) {\n // 凸包上の点も含めるなら ccw() == 1 含めないなら ccw() != -1\n for (int n = u.size(); n >= 2 && ccw(u[n-2],u[n-1],s[i]) != -1; --n) {\n u.pop_back();\n }\n u.emplace_back(s[i]);\n }\n\n for (int i = N - 3; i >= 0; --i) {\n // 凸包上の点も含めるなら ccw() == 1 含めないなら ccw() != -1\n for (int n = l.size(); n >= 2 && ccw(l[n-2], l[n-1], s[i]) != -1; --n) {\n l.pop_back();\n }\n l.emplace_back(s[i]);\n }\n\n reverse(l.begin(), l.end());\n for (int i = u.size() - 2; i >= 1; --i) l.emplace_back(u[i]);\n\n return l;\n}\n\n//最遠点対\nDD farthestpointpair(const Polygon &g) {\n const int N = g.size();\n if (N == 2) return abs(g[1] - g[0]);\n int i = 0, j = 0;\n for (int k = 0; k < N; ++k) {\n if (g[k].y > g[i].y) i = k;\n if (g[k].y < g[j].y) j = k;\n }\n\n DD ret = 0;\n int si = i, sj = j;\n while (i != sj || j != si) {\n ret = max(ret, abs(g[i]-g[j]));\n if (sgn(cross(g[(i+1)%N] - g[i], g[(j+1)%N] - g[j])) < 0) {\n ++i;\n if (i == N) i = 0;\n } else {\n ++j;\n if (j == N) j = 0;\n }\n }\n\n return ret;\n}\n\nvoid solve() {\n int N; cin >> N;\n Polygon P(N);\n rep(i,N) cin >> P[i];\n\n if (N <= 2) {\n cout << \"Yes\" << ln;\n return;\n }\n\n vector<pii> arr = {pii(0,1),pii(1,2),pii(2,0)};\n for (auto &[a,b] : arr) {\n Line l = Line(P[a],P[b]);\n Polygon Q;\n rep(i,N) {\n if (sgn(getDistanceLP(l,P[i])) == 0) continue;\n Q.emplace_back(P[i]);\n }\n if (int(Q.size()) <= 1) {\n cout << \"Yes\" << ln;\n return;\n }\n Line s = Line(Q[0],Q[1]);\n if (intersectLP(l,s)) continue;\n bool ok = true;\n for (auto &p : Q) {\n if (sgn(getDistanceLP(s,p))) ok = false; \n }\n if (ok) {\n cout << \"Yes\" << ln;\n return;\n }\n }\n\n cout << \"No\" << ln;\n}\n\nint main() {\n int Q; cin >> Q;\n while (Q--) {\n solve();\n }\n}", "accuracy": 0.8846153846153846, "time_ms": 230, "memory_kb": 4312, "score_of_the_acc": -0.7484, "final_rank": 17 }, { "submission_id": "aoj_3167_4880252", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nbool isheiko(long long dx1, long long dy1, long long dx2, long long dy2) {\n return dx1 * dy2 == dy1 * dx2;\n}\n\nbool solve(const vector<long long> &x, const vector<long long> &y) {\n int N = (int)x.size();\n if (N <= 3) return true;\n int k = -1;\n for (int i = 2; i < N; ++i) {\n if (!isheiko(x[i]-x[0], y[i]-y[0], x[1]-x[0], y[1]-y[0])) k = i;\n }\n if (k == -1) return true;\n\n vector<long long> ax = {x[0], x[1], x[k]}, ay = {y[0], y[1], y[k]};\n for (int iter = 0; iter < 3; ++iter) {\n long long dx = ax[(iter+2)%3] - ax[(iter+1)%3];\n long long dy = ay[(iter+2)%3] - ay[(iter+1)%3];\n bool ok = true;\n for (int i = 0; i < N; ++i) {\n if (!isheiko(x[i]-ax[iter], y[i]-ay[iter], dx, dy) &&\n !isheiko(x[i]-ax[(iter+1)%3], y[i]-ay[(iter+1)%3], dx, dy))\n ok = false;\n }\n if (ok) return true;\n }\n return false;\n}\n\nint main() {\n int T; cin >> T;\n while (T--) {\n int N; cin >> N;\n vector<long long> x(N), y(N);\n for (int i = 0; i < N; ++i) cin >> x[i] >> y[i];\n if (solve(x, y)) cout << \"Yes\" << endl;\n else cout << \"No\" << endl;\n }\n}", "accuracy": 1, "time_ms": 390, "memory_kb": 3396, "score_of_the_acc": -0.6014, "final_rank": 6 }, { "submission_id": "aoj_3167_4880049", "code_snippet": "#include <algorithm>\n#include <cassert>\n#include <cmath>\n#include <cstring>\n#include <iomanip>\n#include <iostream>\n#include <iterator>\n#include <limits>\n#include <map>\n#include <queue>\n#include <set>\n#include <stack>\n#include <vector>\n#define repeat(i, n) for (int i = 0; (i) < (n); ++(i))\n#define repeat_from(i, m, n) for (int i = (m); (i) < (n); ++(i))\n#define sz(x) int(x.size())\nusing namespace std;\ntemplate <class T>\nvoid setmax(T &a, T const &b) {\n if (a < b) a = b;\n}\n\ntemplate <class T>\nvoid setmin(T &a, T const &b) {\n if (a > b) a = b;\n}\n\ntemplate <typename T, typename X>\nauto vectors(T a, X x) { return vector<T>(x, a); }\n\ntemplate <typename T, typename X, typename Y, typename... Zs>\nauto vectors(T a, X x, Y y, Zs... zs) {\n auto cont = vectors(a, y, zs...);\n return vector<decltype(cont)>(x, cont);\n}\n\ntemplate <typename T>\nT cross(T a, T b, T c, T d) {\n return a * d - b * c;\n}\n\nint main() {\n int T;\n cin >> T;\n vector<int> gp(20010);\n while (T--) {\n int N;\n cin >> N;\n vector<long long> x(N), y(N);\n repeat(i, N) cin >> x[i] >> y[i];\n if (N <= 3) {\n cout << \"Yes\" << endl;\n continue;\n }\n bool flg = false;\n repeat(i, 3) {\n repeat(j, N) gp[j] = 0;\n // 方向ベクトル i -> (i + 1)%3\n int f1 = i;\n int t1 = (i + 1) % 3;\n int num1 = 2, num2 = 0;\n gp[f1] = gp[t1] = 1;\n repeat(j, N) {\n if (gp[j]) continue;\n // (x[t1] - x[f1], y[t1] - y[f1]) cross (x[j] - x[f1], y[j] - y[f1])\n if (cross(x[t1] - x[f1], y[t1] - y[f1], x[j] - x[f1], y[j] - y[f1]) == 0LL) {\n gp[j] = 1;\n ++num1;\n }\n }\n int f2 = -1;\n int t2 = -1;\n repeat(j, N) {\n if (gp[j]) continue;\n if (f2 == -1) {\n f2 = j;\n gp[j] = 2;\n ++num2;\n } else if (t2 == -1) {\n t2 = j;\n gp[j] = 2;\n ++num2;\n } else {\n assert(f2 != -1 && t2 != -1);\n if (cross(x[t2] - x[f2], y[t2] - y[f2], x[t1] - x[f1], y[t1] - y[f1]) != 0LL) {\n break;\n }\n // (x[t2] - x[f2], y[t2] - y[f2]) cross (x[j] - x[f2], y[j] - y[f2])\n if (cross(x[t2] - x[f2], y[t2] - y[f2], x[j] - x[f2], y[j] - y[f2]) == 0LL) {\n gp[j] = 2;\n ++num2;\n }\n }\n }\n if (num1 + num2 == N) {\n if (t2 == -1 || f2 == -1) {\n flg = true;\n break;\n }\n if (cross(x[t2] - x[f2], y[t2] - y[f2], x[t1] - x[f1], y[t1] - y[f1]) == 0LL) {\n flg = true;\n break;\n }\n }\n }\n if (flg)\n cout << \"Yes\" << endl;\n else\n cout << \"No\" << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 340, "memory_kb": 3440, "score_of_the_acc": -0.5488, "final_rank": 5 }, { "submission_id": "aoj_3167_4880045", "code_snippet": "#include <algorithm>\n#include <cassert>\n#include <cmath>\n#include <cstring>\n#include <iomanip>\n#include <iostream>\n#include <iterator>\n#include <limits>\n#include <map>\n#include <queue>\n#include <set>\n#include <stack>\n#include <vector>\n#define repeat(i, n) for (int i = 0; (i) < (n); ++(i))\n#define repeat_from(i, m, n) for (int i = (m); (i) < (n); ++(i))\n#define sz(x) int(x.size())\nusing namespace std;\ntemplate <class T>\nvoid setmax(T &a, T const &b) {\n if (a < b) a = b;\n}\n\ntemplate <class T>\nvoid setmin(T &a, T const &b) {\n if (a > b) a = b;\n}\n\ntemplate <typename T, typename X>\nauto vectors(T a, X x) { return vector<T>(x, a); }\n\ntemplate <typename T, typename X, typename Y, typename... Zs>\nauto vectors(T a, X x, Y y, Zs... zs) {\n auto cont = vectors(a, y, zs...);\n return vector<decltype(cont)>(x, cont);\n}\n\ntemplate <typename T>\nT cross(T a, T b, T c, T d) {\n return a * d - b * c;\n}\n\nint main() {\n int T;\n cin >> T;\n vector<int> gp(20010);\n while (T--) {\n int N;\n cin >> N;\n vector<long long> x(N), y(N);\n repeat(i, N) cin >> x[i] >> y[i];\n if (N <= 3) {\n cout << \"Yes\" << endl;\n continue;\n }\n bool flg = false;\n repeat(i, 3) {\n repeat(j, N) gp[j] = 0;\n // 方向ベクトル i -> (i + 1)%3\n int f1 = i;\n int t1 = (i + 1) % 3;\n int num1 = 2, num2 = 0;\n gp[f1] = gp[t1] = 1;\n repeat(j, N) {\n if (gp[j]) continue;\n // (x[t1] - x[f1], y[t1] - y[f1]) cross (x[j] - x[f1], y[j] - y[f1])\n if (cross(x[t1] - x[f1], y[t1] - y[f1], x[j] - x[f1], y[j] - y[f1]) == 0LL) {\n gp[j] = 1;\n ++num1;\n }\n }\n int f2 = -1;\n int t2 = -1;\n repeat(j, N) {\n if (gp[j]) continue;\n if (f2 == -1) {\n f2 = j;\n gp[j] = 2;\n ++num2;\n } else if (t2 == -1) {\n t2 = j;\n gp[j] = 2;\n ++num2;\n } else {\n assert(f2 != -1 && t2 != -1);\n if (cross(x[t2] - x[f2], y[t2] - y[f2], x[t1] - x[f1], y[t1] - y[f1]) != 0LL) {\n break;\n }\n // (x[t2] - x[f2], y[t2] - y[f2]) cross (x[j] - x[f2], y[j] - y[f2])\n if (cross(x[t2] - x[f2], y[t2] - y[f2], x[j] - x[f2], y[j] - y[f2]) == 0LL) {\n gp[j] = 2;\n ++num2;\n }\n }\n }\n if (num1 + num2 == N) {\n if (cross(x[t2] - x[f2], y[t2] - y[f2], x[t1] - x[f1], y[t1] - y[f1]) == 0LL) {\n flg = true;\n }\n }\n }\n if (flg)\n cout << \"Yes\" << endl;\n else\n cout << \"No\" << endl;\n }\n return 0;\n}", "accuracy": 0.7692307692307693, "time_ms": 340, "memory_kb": 3464, "score_of_the_acc": -0.5586, "final_rank": 20 }, { "submission_id": "aoj_3167_4877418", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nvector<string> ans;\nstruct Q{int s,b;};\nvoid update(Q &a){\n if(a.b==0&&a.s==0)return;\n int g=__gcd(abs(a.b),abs(a.s));\n a.b/=g;a.s/=g;\n if(a.b<0)a.s*=-1,a.b*=-1;\n if(a.b==0)a.s=abs(a.s);\n}\nbool same(Q &a,Q &b){\n update(a);update(b);\n return a.s==b.s&&a.b==b.b;\n}\n\nstring solve(){\n int n;cin>>n;\n vector<int> x(n),y(n);\n for(int i=0;i<n;i++)cin>>x[i]>>y[i];\n set<int> S;for(int p:x)S.insert(p);if(S.size()<=2)return \"Yes\";\n for(int _=0;_<1000;_++){\n int s=rand()%n,t=rand()%n;\n while(x[s]==x[t])(++t)%=n;\n //cout<<x[s]<<\" \"<<y[s]<<\" \"<<x[t]<<\" \"<<y[t]<<endl;\n Q slope={y[s]-y[t],x[s]-x[t]};update(slope);\n Q se1,se2;\n se2={0,0};update(se2);//cout<<\"SSS\"<<se2.b<<\" \"<<se2.s<<endl;\n se1={x[s]*y[t]-x[t]*y[s],x[s]-x[t]};update(se1);\n int out=0;\n for(int i=0;i<n&&!out;i++){\n Q tmp={slope.b*y[i]-slope.s*x[i],slope.b};update(tmp);\n if(same(tmp,se1)||same(tmp,se2))continue;\n if(!se2.s&&!se2.b)se2=tmp;\n else out=1;\n }\n //if(!out)cout<<x[s]<<\" \"<<y[s]<<\" \"<<x[t]<<\" \"<<y[t]<<\" \"<<se1.b<<\" \"<<se1.s<<\" \"<<se2.b<<\" \"<<se2.s<<endl;\n if(!out)return \"Yes\";\n }\n return \"No\";\n}\n\nsigned main(){\n int t;cin>>t;\n while(t--)ans.push_back(solve());\n for(auto p:ans)cout<<p<<endl;\n}", "accuracy": 1, "time_ms": 740, "memory_kb": 4500, "score_of_the_acc": -1.5431, "final_rank": 14 }, { "submission_id": "aoj_3167_4877374", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ld=long double;\nstruct line{ld a,b;};//y=ax+b\n\nbool same(ld x,ld y){\n return abs(x-y)<1e-1;\n}\n\nline f(ld x1,ld y1,ld x2,ld y2){//2点を通る直線\n return {(y1-y2)/(x1-x2),(y2*x1-y1*x2)/(x1-x2)};\n}\nline g(ld x1,ld y1,ld x2,ld y2,ld x3,ld y3){\n ld a=f(x2,y2,x3,y3).a;\n return {a,(y1+y2)/2.0-a*(x1+x2)/2.0};\n}\n\nld d(line A,ld x,ld y){//直線と点の距離\n return abs(A.a*x-y+A.b)/sqrt(A.a*A.a+1.0);\n}\n\nbool check1(vector<ld> &x,vector<ld> &y){\n line a=f((x[1]+x[2])/2.0,(y[1]+y[2])/2.0,(x[0]+x[2])/2.0,(y[0]+y[2])/2.0);\n ld D=d(a,x[0],y[0]);\n for(int i=0;i<x.size();i++)if(!same(d(a,x[i],y[i]),D))return false;\n return true;\n}\n\nbool check2(vector<ld> &x,vector<ld> &y){\n line a=g(x[0],y[0],x[2],y[2],x[1],y[1]);\n ld D=d(a,x[0],y[0]);\n for(int i=0;i<x.size();i++)if(!same(d(a,x[i],y[i]),D))return false;\n return true;\n}\n\nstring solve(){\n int n;cin>>n;\n vector<ld> x(n),y(n);\n for(int i=0;i<n;i++)cin>>x[i]>>y[i];\n if(n<=3)return \"Yes\";\n\n set<int> XX;\n for(ld p:x)XX.insert(round(p));\n if(XX.size()<=2)return \"Yes\";\n\n int cnt=0;\n\n AHAHA:\n assert(++cnt<=1000);\n for(int i=2;i<n&&same(x[0],x[1]);i++)\n if(!same(x[i],x[0])){\n swap(x[i],x[1]);\n swap(y[i],y[1]);\n }\n for(int i=3;i<n&&(same(x[0],x[2])||same(x[1],x[2]));i++)\n if(!same(x[i],x[0])&&!same(x[i],x[1])){\n swap(x[i],x[2]);\n swap(y[i],y[2]);\n }\n\n line A=f(x[0],y[0],x[1],y[1]);\n bool F=true;\n for(int i=2;i<n;i++)\n if(!same(A.a*x[i]+A.b,y[i])){\n F=false;\n if(!same(x[0],x[i])&&!same(x[1],x[i])){\n swap(x[i],x[2]);\n swap(y[i],y[2]);\n }\n }\n if(F)return \"Yes\";\n if(same(A.a*x[2]+A.b,y[2])){\n int aa=rand()%(n-2)+2,bb=rand()%(n-2)+2;\n swap(x[0],x[aa]);swap(y[0],y[aa]);\n swap(x[1],x[bb]);swap(y[1],y[bb]);\n goto AHAHA;\n }\n\n if(check1(x,y)||check2(x,y))return \"Yes\";\n swap(x[2],x[1]);swap(y[2],y[1]);\n if(check1(x,y)||check2(x,y))return \"Yes\";\n swap(x[2],x[0]);swap(y[2],y[0]);\n if(check1(x,y)||check2(x,y))return \"Yes\";\n return \"No\";\n}\n\nint main(){\n int t;cin>>t;\n vector<string> ans;\n while(t--)ans.push_back(solve());\n for(string p:ans)cout<<p<<endl;\n}", "accuracy": 0.8846153846153846, "time_ms": 710, "memory_kb": 5148, "score_of_the_acc": -1.7643, "final_rank": 19 } ]
aoj_3169_cpp
F: n 角錐グラフ 問題 $n$ 角錐グラフを以下のように定義する。 頂点数は $n + 1$ である。 頂点 $0$ と自身を除くすべての頂点との間に、重み付きの無向辺が張られている。 頂点 $1, 2, …, n$ はこの順にサイクルとなるように、重み付きの無向辺が張られている。 あなたは $n$ 角錐グラフ上の頂点 $0$ を出発し、異なる $k$ 個の辺を通って頂点 $0$ に戻ってくる必要がある。一度通った辺は,たとえ向きが異なっても二度と通ることはできない。 同じ頂点を何回通っても構わないし、途中で頂点 $0$ を通っても構わない。 これを満たす道順を良いサーキットと呼ぶ。より形式的には、以下のように定義される。 $n$ 角錐グラフの辺からなる集合を $E$ とよび、辺 $e \in E$ の重みを $w(e)$ と書く。 ここで、$n$ 角錐グラフの頂点の列 $(v_1, …, v_{k + 1})$ であり、以下の条件を満たすものを長さ $k$ の 良いサーキット とよぶ。 すべての $1 \leq i \leq k$ に対して $\{v_i, v_{i + 1}\} \in E$ $v_1 = v_{k + 1} = 0$ すべての $1 \leq i, j \leq k$ に対して、$i \neq j$ ならば $\{v_i, v_{i + 1}\} \neq \{v_j, v_{j + 1}\}$ また、長さ $k$ の良いサーキットの コスト を、通った辺の重みの総和 $\sum_{i = 1}^{k} w(\{v_i, v_{i + 1}\})$ と定義する。 長さ $k$ の良いサーキットすべてについてコストを求め、その総和を $998244353$ で割った余りを出力せよ。長さ $k$ の良いサーキットが存在しない場合は、$0$ を出力せよ。 ただし、二つの長さ $k$ の良いサーキット $(v_1, …, v_{k + 1})$ と $(v'_1, …, v'_{k + 1})$ が異なるとは、$v_i \neq v'_i$ を満たす $i$ ($1 \leq i \leq k+1$) が存在することを言う。 入力形式 入力は $3$ 行からなる。 $1$ 行目には $n$ と $k$ が空白区切りで与えられる。 $2$ 行目と $3$ 行目には、$n$ 角錐グラフの重みを表す長さ $n$ の配列 $A=(a_1, ..., a_n)$ と $B=(b_1, ..., b_n)$ がそれぞれ空白区切りで与えられる。 $a_i$ は、辺 $\{0, i\}$ の重みを表し、$b_i$ は、辺 $\{i, i + 1\}$(ただし、$i = n$ のときは 辺 $\{n, 1\}$)の重みを表す。 $n$ $k$ $a_1$ ... $a_n$ $b_1$ ... $b_n$ 制約 入力は全て整数で与えられる $3 \leq n \leq 10^6$ $3 \leq k \leq 2n$ $1 \leq a_i, b_i \leq 10^9$ 出力形式 長さ $k$ の良いサーキットすべてに対してコストを求め、その総和を $998244353$ で割った余りを一行に出力せよ。良いサーキットが存在しない場合は $0$ を一行に出力せよ。 入力例1 3 4 1 2 3 4 4 4 出力例1 72 この入力例は上図の $3$ 角錐グラフを表す。 長さ $4$ の良いサーキットとコストは全部で $6$ 個存在する。 $(0, 1, 2, 3, 0)$ $(0, 2, 3, 1, 0)$ $(0, 3, 1, 2, 0)$ $(0, 3, 2, 1, 0)$ $(0, 1, 3, 2, 0)$ $(0, 2, 1, 3, 0)$ コストはそれぞれ、$12$、$11$、$13$、$12$、$11$、$13$ である。 よって、これらを足し合わせた $72$ を出力する。 入力例2 4 6 1 1 3 4 4 3 1 2 出力例2 224 長さ $6$ の良いサーキットの一例として、$(0, 1, 2, 0, 3, 4, 0)$ が挙げられる。
[ { "submission_id": "aoj_3169_10697597", "code_snippet": "#ifndef HIDDEN_IN_VS // 折りたたみ用\n\n// 警告の抑制\n#define _CRT_SECURE_NO_WARNINGS\n\n// ライブラリの読み込み\n#include <bits/stdc++.h>\nusing namespace std;\n\n// 型名の短縮\nusing ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)\nusing pii = pair<int, int>;\tusing pll = pair<ll, ll>;\tusing pil = pair<int, ll>;\tusing pli = pair<ll, int>;\nusing vi = vector<int>;\t\tusing vvi = vector<vi>;\t\tusing vvvi = vector<vvi>;\tusing vvvvi = vector<vvvi>;\nusing vl = vector<ll>;\t\tusing vvl = vector<vl>;\t\tusing vvvl = vector<vvl>;\tusing vvvvl = vector<vvvl>;\nusing vb = vector<bool>;\tusing vvb = vector<vb>;\t\tusing vvvb = vector<vvb>;\nusing vc = vector<char>;\tusing vvc = vector<vc>;\t\tusing vvvc = vector<vvc>;\nusing vd = vector<double>;\tusing vvd = vector<vd>;\t\tusing vvvd = vector<vvd>;\ntemplate <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;\nusing Graph = vvi;\n\n// 定数の定義\nconst double PI = acos(-1);\nint DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)\nint DY[4] = { 0, 1, 0, -1 };\nint INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;\n\n// 入出力高速化\nstruct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;\n\n// 汎用マクロの定義\n#define all(a) (a).begin(), (a).end()\n#define sz(x) ((int)(x).size())\n#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))\n#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))\n#define Yes(b) {cout << ((b) ? \"Yes\\n\" : \"No\\n\");}\n#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順\n#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順\n#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順\n#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)\n#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)\n#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)\n#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)\n#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)\n#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去\n#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了\n#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定\n\n// 汎用関数の定義\ntemplate <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }\ntemplate <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)\ntemplate <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)\ntemplate <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }\ntemplate <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod\n\n// 演算子オーバーロード\ntemplate <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }\ntemplate <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }\ntemplate <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }\ntemplate <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }\n\n#endif // 折りたたみ用\n\n\n#if __has_include(<atcoder/all>)\n#include <atcoder/all>\nusing namespace atcoder;\n\n#ifdef _MSC_VER\n#include \"localACL.hpp\"\n#endif\n\nusing mint = modint998244353;\n//using mint = static_modint<(int)1e9+7>;\n//using mint = modint; // mint::set_mod(m);\n\nusing vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;\n#endif\n\n\n#ifdef _MSC_VER // 手元環境(Visual Studio)\n#include \"local.hpp\"\n#else // 提出用(gcc)\nint mute_dump = 0;\nint frac_print = 0;\n#if __has_include(<atcoder/all>)\nnamespace atcoder {\n\tinline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }\n\tinline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }\n}\n#endif\ninline int popcount(int n) { return __builtin_popcount(n); }\ninline int popcount(ll n) { return __builtin_popcountll(n); }\ninline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }\ninline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }\ninline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }\ninline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }\n#define dump(...)\n#define dumpel(v)\n#define dump_math(v)\n#define input_from_file(f)\n#define output_to_file(f)\n//#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す\n#endif\n\n#define Assert(b) assert(b)\n\n//【階乗など(法が大きな素数)】\n/*\n* Factorial_mint(int N) : O(n)\n*\tN まで計算可能として初期化する.\n*\n* mint fact(int n) : O(1)\n*\tn! を返す.\n*\n* mint fact_inv(int n) : O(1)\n*\t1/n! を返す(n が負なら 0 を返す)\n*\n* mint inv(int n) : O(1)\n*\t1/n を返す.\n*\n* mint perm(int n, int r) : O(1)\n*\t順列の数 nPr を返す.\n*\n* mint perm_inv(int n, int r) : O(1)\n*\t順列の数の逆数 1/nPr を返す.\n*\n* mint bin(int n, int r) : O(1)\n*\t二項係数 nCr を返す.\n*\n* mint bin_inv(int n, int r) : O(1)\n*\t二項係数の逆数 1/nCr を返す.\n*\n* mint mul(vi rs) : O(|rs|)\n*\t多項係数 nC[rs] を返す.(n = Σrs)\n*\n* mint hom(int n, int r) : O(1)\n*\t重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする)\n*\n* mint neg_bin(int n, int r) : O(1)\n*\t負の二項係数 nCr = (-1)^r -n+r-1Cr を返す(n ≦ 0, r ≧ 0)\n*\n* mint pochhammer(int x, int n) : O(1)\n*\tポッホハマー記号 x^(n) を返す(n ≧ 0)\n*\n* mint pochhammer_inv(int x, int n) : O(1)\n*\tポッホハマー記号の逆数 1/x^(n) を返す(n ≧ 0)\n*/\nclass Factorial_mint {\n\tint n_max;\n\n\t// 階乗と階乗の逆数の値を保持するテーブル\n\tvm fac, fac_inv;\n\npublic:\n\t// n! までの階乗とその逆数を前計算しておく.O(n)\n\tFactorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {\n\t\t// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b\n\n\t\tfac[0] = 1;\n\t\trepi(i, 1, n) fac[i] = fac[i - 1] * i;\n\n\t\tfac_inv[n] = fac[n].inv();\n\t\trepir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);\n\t}\n\tFactorial_mint() : n_max(0) {} // ダミー\n\n\t// n! を返す.\n\tmint fact(int n) const {\n\t\t// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b\n\n\t\tAssert(0 <= n && n <= n_max);\n\t\treturn fac[n];\n\t}\n\n\t// 1/n! を返す(n が負なら 0 を返す)\n\tmint fact_inv(int n) const {\n\t\t// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h\n\n\t\tAssert(n <= n_max);\n\t\tif (n < 0) return 0;\n\t\treturn fac_inv[n];\n\t}\n\n\t// 1/n を返す.\n\tmint inv(int n) const {\n\t\t// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d\n\n\t\tAssert(n > 0);\n\t\tAssert(n <= n_max);\n\t\treturn fac[n - 1] * fac_inv[n];\n\t}\n\n\t// 順列の数 nPr を返す.\n\tmint perm(int n, int r) const {\n\t\t// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e\n\n\t\tAssert(n <= n_max);\n\n\t\tif (r < 0 || n - r < 0) return 0;\n\t\treturn fac[n] * fac_inv[n - r];\n\t}\n\n\t// 順列の数 nPr の逆数を返す.\n\tmint perm_inv(int n, int r) const {\n\t\t// verify : https://yukicoder.me/problems/no/3139\n\n\t\tAssert(n <= n_max);\n\t\tAssert(0 <= r); Assert(r <= n);\n\n\t\treturn fac_inv[n] * fac[n - r];\n\t}\n\n\t// 二項係数 nCr を返す.\n\tmint bin(int n, int r) const {\n\t\t// verify : https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod\n\n\t\tAssert(n <= n_max);\n\t\tif (r < 0 || n - r < 0) return 0;\n\t\treturn fac[n] * fac_inv[r] * fac_inv[n - r];\n\t}\n\n\t// 二項係数の逆数 1/nCr を返す.\n\tmint bin_inv(int n, int r) const {\n\t\t// verify : https://www.codechef.com/problems/RANDCOLORING\n\n\t\tAssert(n <= n_max);\n\t\tAssert(r >= 0);\n\t\tAssert(n - r >= 0);\n\t\treturn fac_inv[n] * fac[r] * fac[n - r];\n\t}\n\n\t// 多項係数 nC[rs] を返す.\n\tmint mul(const vi& rs) const {\n\t\t// verify : https://yukicoder.me/problems/no/2141\n\n\t\tif (*min_element(all(rs)) < 0) return 0;\n\t\tint n = accumulate(all(rs), 0);\n\t\tAssert(n <= n_max);\n\n\t\tmint res = fac[n];\n\t\trepe(r, rs) res *= fac_inv[r];\n\n\t\treturn res;\n\t}\n\n\t// 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする)\n\tmint hom(int n, int r) {\n\t\t// verify : https://mojacoder.app/users/riantkb/problems/toj_ex_2\n\n\t\tif (n == 0) return (int)(r == 0);\n\t\tif (r < 0 || n - 1 < 0) return 0;\n\t\tAssert(n + r - 1 <= n_max);\n\t\treturn fac[n + r - 1] * fac_inv[r] * fac_inv[n - 1];\n\t}\n\n\t// 負の二項係数 nCr を返す(n ≦ 0, r ≧ 0)\n\tmint neg_bin(int n, int r) {\n\t\t// verify : https://atcoder.jp/contests/abc345/tasks/abc345_g\n\n\t\tif (n == 0) return (int)(r == 0);\n\t\tif (r < 0 || -n - 1 < 0) return 0;\n\t\tAssert(-n + r - 1 <= n_max);\n\t\treturn (r & 1 ? -1 : 1) * fac[-n + r - 1] * fac_inv[r] * fac_inv[-n - 1];\n\t}\n\n\t// ポッホハマー記号 x^(n) を返す(n ≧ 0)\n\tmint pochhammer(int x, int n) {\n\t\t// verify : https://atcoder.jp/contests/agc070/tasks/agc070_c\n\n\t\tint x2 = x + n - 1;\n\t\tif (x <= 0 && 0 <= x2) return 0;\n\n\t\tif (x > 0) {\n\t\t\tAssert(x2 <= n_max);\n\t\t\treturn fac[x2] * fac_inv[x - 1];\n\t\t}\n\t\telse {\n\t\t\tAssert(-x <= n_max);\n\t\t\treturn (n & 1 ? -1 : 1) * fac[-x] * fac_inv[-x2 - 1];\n\t\t}\n\t}\n\n\t// ポッホハマー記号の逆数 1/x^(n) を返す(n ≧ 0)\n\tmint pochhammer_inv(int x, int n) {\n\t\t// verify : https://atcoder.jp/contests/agc070/tasks/agc070_c\n\n\t\tint x2 = x + n - 1;\n\t\tAssert(!(x <= 0 && 0 <= x2));\n\n\t\tif (x > 0) {\n\t\t\tAssert(x2 <= n_max);\n\t\t\treturn fac_inv[x2] * fac[x - 1];\n\t\t}\n\t\telse {\n\t\t\tAssert(-x <= n_max);\n\t\t\treturn (n & 1 ? -1 : 1) * fac_inv[-x] * fac[-x2 - 1];\n\t\t}\n\t}\n};\n\n\nint main() {\n//\tinput_from_file(\"input.txt\");\n//\toutput_to_file(\"output.txt\");\n\n\tint n, K;\n\tcin >> n >> K;\n\n\tvl a(n), b(n);\n\tcin >> a >> b;\n\n\tFactorial_mint fm(n + 10);\n\n\tll a_sum = accumulate(all(a), 0LL);\n\tll b_sum = accumulate(all(b), 0LL);\n\n\tvm pow2(n + 1);\n\tpow2[0] = 1;\n\trep(i, n) pow2[i + 1] = pow2[i] * 2;\n\n\tmint res = 0;\n\n\trepi(A, 1, K / 2) {\n\t\tint B = K - 2 * A;\n\t\tif (B >= n) continue;\n\t\tif (B < A) break;\n\n\t\t// n 本中 B 本を選んで A 個のブロックに分ける.\n\t\tmint cnt = fm.bin(B - 1, A - 1) * fm.bin(n - B - 1, A - 1);\n\t\tcnt *= 2 * pow2[A - 1] * fm.fact(A - 1);\n\n\t\tres += cnt * (mint(a_sum) * 2 * A + mint(b_sum) * B);\n\t}\n\n\tEXIT(res);\n}", "accuracy": 1, "time_ms": 110, "memory_kb": 30936, "score_of_the_acc": -0.3558, "final_rank": 2 }, { "submission_id": "aoj_3169_10697595", "code_snippet": "#ifndef HIDDEN_IN_VS // 折りたたみ用\n\n// 警告の抑制\n#define _CRT_SECURE_NO_WARNINGS\n\n// ライブラリの読み込み\n#include <bits/stdc++.h>\nusing namespace std;\n\n// 型名の短縮\nusing ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)\nusing pii = pair<int, int>;\tusing pll = pair<ll, ll>;\tusing pil = pair<int, ll>;\tusing pli = pair<ll, int>;\nusing vi = vector<int>;\t\tusing vvi = vector<vi>;\t\tusing vvvi = vector<vvi>;\tusing vvvvi = vector<vvvi>;\nusing vl = vector<ll>;\t\tusing vvl = vector<vl>;\t\tusing vvvl = vector<vvl>;\tusing vvvvl = vector<vvvl>;\nusing vb = vector<bool>;\tusing vvb = vector<vb>;\t\tusing vvvb = vector<vvb>;\nusing vc = vector<char>;\tusing vvc = vector<vc>;\t\tusing vvvc = vector<vvc>;\nusing vd = vector<double>;\tusing vvd = vector<vd>;\t\tusing vvvd = vector<vvd>;\ntemplate <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;\nusing Graph = vvi;\n\n// 定数の定義\nconst double PI = acos(-1);\nint DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)\nint DY[4] = { 0, 1, 0, -1 };\nint INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;\n\n// 入出力高速化\nstruct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;\n\n// 汎用マクロの定義\n#define all(a) (a).begin(), (a).end()\n#define sz(x) ((int)(x).size())\n#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))\n#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))\n#define Yes(b) {cout << ((b) ? \"Yes\\n\" : \"No\\n\");}\n#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順\n#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順\n#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順\n#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)\n#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)\n#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)\n#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)\n#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)\n#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去\n#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了\n#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定\n\n// 汎用関数の定義\ntemplate <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }\ntemplate <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)\ntemplate <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)\ntemplate <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }\ntemplate <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod\n\n// 演算子オーバーロード\ntemplate <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }\ntemplate <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }\ntemplate <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }\ntemplate <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }\n\n#endif // 折りたたみ用\n\n\n#if __has_include(<atcoder/all>)\n#include <atcoder/all>\nusing namespace atcoder;\n\n#ifdef _MSC_VER\n#include \"localACL.hpp\"\n#endif\n\nusing mint = modint998244353;\n//using mint = static_modint<(int)1e9+7>;\n//using mint = modint; // mint::set_mod(m);\n\nusing vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;\n#endif\n\n\n#ifdef _MSC_VER // 手元環境(Visual Studio)\n#include \"local.hpp\"\n#else // 提出用(gcc)\nint mute_dump = 0;\nint frac_print = 0;\n#if __has_include(<atcoder/all>)\nnamespace atcoder {\n\tinline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }\n\tinline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }\n}\n#endif\ninline int popcount(int n) { return __builtin_popcount(n); }\ninline int popcount(ll n) { return __builtin_popcountll(n); }\ninline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }\ninline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }\ninline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }\ninline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }\n#define dump(...)\n#define dumpel(v)\n#define dump_math(v)\n#define input_from_file(f)\n#define output_to_file(f)\n//#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す\n#endif\n\n#define Assert(b) assert(b)\n\n//【階乗など(法が大きな素数)】\n/*\n* Factorial_mint(int N) : O(n)\n*\tN まで計算可能として初期化する.\n*\n* mint fact(int n) : O(1)\n*\tn! を返す.\n*\n* mint fact_inv(int n) : O(1)\n*\t1/n! を返す(n が負なら 0 を返す)\n*\n* mint inv(int n) : O(1)\n*\t1/n を返す.\n*\n* mint perm(int n, int r) : O(1)\n*\t順列の数 nPr を返す.\n*\n* mint perm_inv(int n, int r) : O(1)\n*\t順列の数の逆数 1/nPr を返す.\n*\n* mint bin(int n, int r) : O(1)\n*\t二項係数 nCr を返す.\n*\n* mint bin_inv(int n, int r) : O(1)\n*\t二項係数の逆数 1/nCr を返す.\n*\n* mint mul(vi rs) : O(|rs|)\n*\t多項係数 nC[rs] を返す.(n = Σrs)\n*\n* mint hom(int n, int r) : O(1)\n*\t重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする)\n*\n* mint neg_bin(int n, int r) : O(1)\n*\t負の二項係数 nCr = (-1)^r -n+r-1Cr を返す(n ≦ 0, r ≧ 0)\n*\n* mint pochhammer(int x, int n) : O(1)\n*\tポッホハマー記号 x^(n) を返す(n ≧ 0)\n*\n* mint pochhammer_inv(int x, int n) : O(1)\n*\tポッホハマー記号の逆数 1/x^(n) を返す(n ≧ 0)\n*/\nclass Factorial_mint {\n\tint n_max;\n\n\t// 階乗と階乗の逆数の値を保持するテーブル\n\tvm fac, fac_inv;\n\npublic:\n\t// n! までの階乗とその逆数を前計算しておく.O(n)\n\tFactorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {\n\t\t// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b\n\n\t\tfac[0] = 1;\n\t\trepi(i, 1, n) fac[i] = fac[i - 1] * i;\n\n\t\tfac_inv[n] = fac[n].inv();\n\t\trepir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);\n\t}\n\tFactorial_mint() : n_max(0) {} // ダミー\n\n\t// n! を返す.\n\tmint fact(int n) const {\n\t\t// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b\n\n\t\tAssert(0 <= n && n <= n_max);\n\t\treturn fac[n];\n\t}\n\n\t// 1/n! を返す(n が負なら 0 を返す)\n\tmint fact_inv(int n) const {\n\t\t// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h\n\n\t\tAssert(n <= n_max);\n\t\tif (n < 0) return 0;\n\t\treturn fac_inv[n];\n\t}\n\n\t// 1/n を返す.\n\tmint inv(int n) const {\n\t\t// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d\n\n\t\tAssert(n > 0);\n\t\tAssert(n <= n_max);\n\t\treturn fac[n - 1] * fac_inv[n];\n\t}\n\n\t// 順列の数 nPr を返す.\n\tmint perm(int n, int r) const {\n\t\t// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e\n\n\t\tAssert(n <= n_max);\n\n\t\tif (r < 0 || n - r < 0) return 0;\n\t\treturn fac[n] * fac_inv[n - r];\n\t}\n\n\t// 順列の数 nPr の逆数を返す.\n\tmint perm_inv(int n, int r) const {\n\t\t// verify : https://yukicoder.me/problems/no/3139\n\n\t\tAssert(n <= n_max);\n\t\tAssert(0 <= r); Assert(r <= n);\n\n\t\treturn fac_inv[n] * fac[n - r];\n\t}\n\n\t// 二項係数 nCr を返す.\n\tmint bin(int n, int r) const {\n\t\t// verify : https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod\n\n\t\tAssert(n <= n_max);\n\t\tif (r < 0 || n - r < 0) return 0;\n\t\treturn fac[n] * fac_inv[r] * fac_inv[n - r];\n\t}\n\n\t// 二項係数の逆数 1/nCr を返す.\n\tmint bin_inv(int n, int r) const {\n\t\t// verify : https://www.codechef.com/problems/RANDCOLORING\n\n\t\tAssert(n <= n_max);\n\t\tAssert(r >= 0);\n\t\tAssert(n - r >= 0);\n\t\treturn fac_inv[n] * fac[r] * fac[n - r];\n\t}\n\n\t// 多項係数 nC[rs] を返す.\n\tmint mul(const vi& rs) const {\n\t\t// verify : https://yukicoder.me/problems/no/2141\n\n\t\tif (*min_element(all(rs)) < 0) return 0;\n\t\tint n = accumulate(all(rs), 0);\n\t\tAssert(n <= n_max);\n\n\t\tmint res = fac[n];\n\t\trepe(r, rs) res *= fac_inv[r];\n\n\t\treturn res;\n\t}\n\n\t// 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする)\n\tmint hom(int n, int r) {\n\t\t// verify : https://mojacoder.app/users/riantkb/problems/toj_ex_2\n\n\t\tif (n == 0) return (int)(r == 0);\n\t\tif (r < 0 || n - 1 < 0) return 0;\n\t\tAssert(n + r - 1 <= n_max);\n\t\treturn fac[n + r - 1] * fac_inv[r] * fac_inv[n - 1];\n\t}\n\n\t// 負の二項係数 nCr を返す(n ≦ 0, r ≧ 0)\n\tmint neg_bin(int n, int r) {\n\t\t// verify : https://atcoder.jp/contests/abc345/tasks/abc345_g\n\n\t\tif (n == 0) return (int)(r == 0);\n\t\tif (r < 0 || -n - 1 < 0) return 0;\n\t\tAssert(-n + r - 1 <= n_max);\n\t\treturn (r & 1 ? -1 : 1) * fac[-n + r - 1] * fac_inv[r] * fac_inv[-n - 1];\n\t}\n\n\t// ポッホハマー記号 x^(n) を返す(n ≧ 0)\n\tmint pochhammer(int x, int n) {\n\t\t// verify : https://atcoder.jp/contests/agc070/tasks/agc070_c\n\n\t\tint x2 = x + n - 1;\n\t\tif (x <= 0 && 0 <= x2) return 0;\n\n\t\tif (x > 0) {\n\t\t\tAssert(x2 <= n_max);\n\t\t\treturn fac[x2] * fac_inv[x - 1];\n\t\t}\n\t\telse {\n\t\t\tAssert(-x <= n_max);\n\t\t\treturn (n & 1 ? -1 : 1) * fac[-x] * fac_inv[-x2 - 1];\n\t\t}\n\t}\n\n\t// ポッホハマー記号の逆数 1/x^(n) を返す(n ≧ 0)\n\tmint pochhammer_inv(int x, int n) {\n\t\t// verify : https://atcoder.jp/contests/agc070/tasks/agc070_c\n\n\t\tint x2 = x + n - 1;\n\t\tAssert(!(x <= 0 && 0 <= x2));\n\n\t\tif (x > 0) {\n\t\t\tAssert(x2 <= n_max);\n\t\t\treturn fac_inv[x2] * fac[x - 1];\n\t\t}\n\t\telse {\n\t\t\tAssert(-x <= n_max);\n\t\t\treturn (n & 1 ? -1 : 1) * fac_inv[-x] * fac[-x2 - 1];\n\t\t}\n\t}\n};\n\n\nint main() {\n//\tinput_from_file(\"input.txt\");\n//\toutput_to_file(\"output.txt\");\n\n\tint n, K;\n\tcin >> n >> K;\n\n\tvl a(n), b(n);\n\tcin >> a >> b;\n\n\tFactorial_mint fm(n + 10);\n\n\tll a_sum = accumulate(all(a), 0LL);\n\tll b_sum = accumulate(all(b), 0LL);\n\n\tvm pow2(n + 1);\n\tpow2[0] = 1;\n\trep(i, n) pow2[i + 1] = pow2[i] * 2;\n\n\tmint res = 0;\n\n\trepi(A, 1, K / 2) {\n\t\tint B = K - 2 * A;\n\t\tif (B >= n) continue;\n\t\tif (B < A) break;\n\n\t\t// n 本中 B 本を選んで A 個のブロックに分ける.\n\t\tmint cnt = fm.bin(B - 1, A - 1) * fm.bin(n - B - 1, A - 1);\n\t\tcnt *= 2 * pow2[A - 1] * fm.fact(A - 1);\n\n\t\tres += cnt * (a_sum * 2 * A + b_sum * B);\n\t}\n\n\tEXIT(res);\n}", "accuracy": 0.4, "time_ms": 70, "memory_kb": 22352, "score_of_the_acc": -0.1873, "final_rank": 11 }, { "submission_id": "aoj_3169_10697594", "code_snippet": "#ifndef HIDDEN_IN_VS // 折りたたみ用\n\n// 警告の抑制\n#define _CRT_SECURE_NO_WARNINGS\n\n// ライブラリの読み込み\n#include <bits/stdc++.h>\nusing namespace std;\n\n// 型名の短縮\nusing ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)\nusing pii = pair<int, int>;\tusing pll = pair<ll, ll>;\tusing pil = pair<int, ll>;\tusing pli = pair<ll, int>;\nusing vi = vector<int>;\t\tusing vvi = vector<vi>;\t\tusing vvvi = vector<vvi>;\tusing vvvvi = vector<vvvi>;\nusing vl = vector<ll>;\t\tusing vvl = vector<vl>;\t\tusing vvvl = vector<vvl>;\tusing vvvvl = vector<vvvl>;\nusing vb = vector<bool>;\tusing vvb = vector<vb>;\t\tusing vvvb = vector<vvb>;\nusing vc = vector<char>;\tusing vvc = vector<vc>;\t\tusing vvvc = vector<vvc>;\nusing vd = vector<double>;\tusing vvd = vector<vd>;\t\tusing vvvd = vector<vvd>;\ntemplate <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;\nusing Graph = vvi;\n\n// 定数の定義\nconst double PI = acos(-1);\nint DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)\nint DY[4] = { 0, 1, 0, -1 };\nint INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;\n\n// 入出力高速化\nstruct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;\n\n// 汎用マクロの定義\n#define all(a) (a).begin(), (a).end()\n#define sz(x) ((int)(x).size())\n#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))\n#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))\n#define Yes(b) {cout << ((b) ? \"Yes\\n\" : \"No\\n\");}\n#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順\n#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順\n#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順\n#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)\n#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)\n#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)\n#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)\n#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)\n#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去\n#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了\n#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定\n\n// 汎用関数の定義\ntemplate <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }\ntemplate <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)\ntemplate <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)\ntemplate <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }\ntemplate <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod\n\n// 演算子オーバーロード\ntemplate <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }\ntemplate <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }\ntemplate <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }\ntemplate <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }\n\n#endif // 折りたたみ用\n\n\n#if __has_include(<atcoder/all>)\n#include <atcoder/all>\nusing namespace atcoder;\n\n#ifdef _MSC_VER\n#include \"localACL.hpp\"\n#endif\n\nusing mint = modint998244353;\n//using mint = static_modint<(int)1e9+7>;\n//using mint = modint; // mint::set_mod(m);\n\nusing vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;\n#endif\n\n\n#ifdef _MSC_VER // 手元環境(Visual Studio)\n#include \"local.hpp\"\n#else // 提出用(gcc)\nint mute_dump = 0;\nint frac_print = 0;\n#if __has_include(<atcoder/all>)\nnamespace atcoder {\n\tinline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }\n\tinline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }\n}\n#endif\ninline int popcount(int n) { return __builtin_popcount(n); }\ninline int popcount(ll n) { return __builtin_popcountll(n); }\ninline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }\ninline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }\ninline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }\ninline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }\n#define dump(...)\n#define dumpel(v)\n#define dump_math(v)\n#define input_from_file(f)\n#define output_to_file(f)\n#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す\n#endif\n\n\n//【階乗など(法が大きな素数)】\n/*\n* Factorial_mint(int N) : O(n)\n*\tN まで計算可能として初期化する.\n*\n* mint fact(int n) : O(1)\n*\tn! を返す.\n*\n* mint fact_inv(int n) : O(1)\n*\t1/n! を返す(n が負なら 0 を返す)\n*\n* mint inv(int n) : O(1)\n*\t1/n を返す.\n*\n* mint perm(int n, int r) : O(1)\n*\t順列の数 nPr を返す.\n*\n* mint perm_inv(int n, int r) : O(1)\n*\t順列の数の逆数 1/nPr を返す.\n*\n* mint bin(int n, int r) : O(1)\n*\t二項係数 nCr を返す.\n*\n* mint bin_inv(int n, int r) : O(1)\n*\t二項係数の逆数 1/nCr を返す.\n*\n* mint mul(vi rs) : O(|rs|)\n*\t多項係数 nC[rs] を返す.(n = Σrs)\n*\n* mint hom(int n, int r) : O(1)\n*\t重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする)\n*\n* mint neg_bin(int n, int r) : O(1)\n*\t負の二項係数 nCr = (-1)^r -n+r-1Cr を返す(n ≦ 0, r ≧ 0)\n*\n* mint pochhammer(int x, int n) : O(1)\n*\tポッホハマー記号 x^(n) を返す(n ≧ 0)\n*\n* mint pochhammer_inv(int x, int n) : O(1)\n*\tポッホハマー記号の逆数 1/x^(n) を返す(n ≧ 0)\n*/\nclass Factorial_mint {\n\tint n_max;\n\n\t// 階乗と階乗の逆数の値を保持するテーブル\n\tvm fac, fac_inv;\n\npublic:\n\t// n! までの階乗とその逆数を前計算しておく.O(n)\n\tFactorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {\n\t\t// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b\n\n\t\tfac[0] = 1;\n\t\trepi(i, 1, n) fac[i] = fac[i - 1] * i;\n\n\t\tfac_inv[n] = fac[n].inv();\n\t\trepir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);\n\t}\n\tFactorial_mint() : n_max(0) {} // ダミー\n\n\t// n! を返す.\n\tmint fact(int n) const {\n\t\t// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b\n\n\t\tAssert(0 <= n && n <= n_max);\n\t\treturn fac[n];\n\t}\n\n\t// 1/n! を返す(n が負なら 0 を返す)\n\tmint fact_inv(int n) const {\n\t\t// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h\n\n\t\tAssert(n <= n_max);\n\t\tif (n < 0) return 0;\n\t\treturn fac_inv[n];\n\t}\n\n\t// 1/n を返す.\n\tmint inv(int n) const {\n\t\t// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d\n\n\t\tAssert(n > 0);\n\t\tAssert(n <= n_max);\n\t\treturn fac[n - 1] * fac_inv[n];\n\t}\n\n\t// 順列の数 nPr を返す.\n\tmint perm(int n, int r) const {\n\t\t// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e\n\n\t\tAssert(n <= n_max);\n\n\t\tif (r < 0 || n - r < 0) return 0;\n\t\treturn fac[n] * fac_inv[n - r];\n\t}\n\n\t// 順列の数 nPr の逆数を返す.\n\tmint perm_inv(int n, int r) const {\n\t\t// verify : https://yukicoder.me/problems/no/3139\n\n\t\tAssert(n <= n_max);\n\t\tAssert(0 <= r); Assert(r <= n);\n\n\t\treturn fac_inv[n] * fac[n - r];\n\t}\n\n\t// 二項係数 nCr を返す.\n\tmint bin(int n, int r) const {\n\t\t// verify : https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod\n\n\t\tAssert(n <= n_max);\n\t\tif (r < 0 || n - r < 0) return 0;\n\t\treturn fac[n] * fac_inv[r] * fac_inv[n - r];\n\t}\n\n\t// 二項係数の逆数 1/nCr を返す.\n\tmint bin_inv(int n, int r) const {\n\t\t// verify : https://www.codechef.com/problems/RANDCOLORING\n\n\t\tAssert(n <= n_max);\n\t\tAssert(r >= 0);\n\t\tAssert(n - r >= 0);\n\t\treturn fac_inv[n] * fac[r] * fac[n - r];\n\t}\n\n\t// 多項係数 nC[rs] を返す.\n\tmint mul(const vi& rs) const {\n\t\t// verify : https://yukicoder.me/problems/no/2141\n\n\t\tif (*min_element(all(rs)) < 0) return 0;\n\t\tint n = accumulate(all(rs), 0);\n\t\tAssert(n <= n_max);\n\n\t\tmint res = fac[n];\n\t\trepe(r, rs) res *= fac_inv[r];\n\n\t\treturn res;\n\t}\n\n\t// 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする)\n\tmint hom(int n, int r) {\n\t\t// verify : https://mojacoder.app/users/riantkb/problems/toj_ex_2\n\n\t\tif (n == 0) return (int)(r == 0);\n\t\tif (r < 0 || n - 1 < 0) return 0;\n\t\tAssert(n + r - 1 <= n_max);\n\t\treturn fac[n + r - 1] * fac_inv[r] * fac_inv[n - 1];\n\t}\n\n\t// 負の二項係数 nCr を返す(n ≦ 0, r ≧ 0)\n\tmint neg_bin(int n, int r) {\n\t\t// verify : https://atcoder.jp/contests/abc345/tasks/abc345_g\n\n\t\tif (n == 0) return (int)(r == 0);\n\t\tif (r < 0 || -n - 1 < 0) return 0;\n\t\tAssert(-n + r - 1 <= n_max);\n\t\treturn (r & 1 ? -1 : 1) * fac[-n + r - 1] * fac_inv[r] * fac_inv[-n - 1];\n\t}\n\n\t// ポッホハマー記号 x^(n) を返す(n ≧ 0)\n\tmint pochhammer(int x, int n) {\n\t\t// verify : https://atcoder.jp/contests/agc070/tasks/agc070_c\n\n\t\tint x2 = x + n - 1;\n\t\tif (x <= 0 && 0 <= x2) return 0;\n\n\t\tif (x > 0) {\n\t\t\tAssert(x2 <= n_max);\n\t\t\treturn fac[x2] * fac_inv[x - 1];\n\t\t}\n\t\telse {\n\t\t\tAssert(-x <= n_max);\n\t\t\treturn (n & 1 ? -1 : 1) * fac[-x] * fac_inv[-x2 - 1];\n\t\t}\n\t}\n\n\t// ポッホハマー記号の逆数 1/x^(n) を返す(n ≧ 0)\n\tmint pochhammer_inv(int x, int n) {\n\t\t// verify : https://atcoder.jp/contests/agc070/tasks/agc070_c\n\n\t\tint x2 = x + n - 1;\n\t\tAssert(!(x <= 0 && 0 <= x2));\n\n\t\tif (x > 0) {\n\t\t\tAssert(x2 <= n_max);\n\t\t\treturn fac_inv[x2] * fac[x - 1];\n\t\t}\n\t\telse {\n\t\t\tAssert(-x <= n_max);\n\t\t\treturn (n & 1 ? -1 : 1) * fac_inv[-x] * fac[-x2 - 1];\n\t\t}\n\t}\n};\n\n\nint main() {\n//\tinput_from_file(\"input.txt\");\n//\toutput_to_file(\"output.txt\");\n\n\tint n, K;\n\tcin >> n >> K;\n\n\tvl a(n), b(n);\n\tcin >> a >> b;\n\n\tFactorial_mint fm(n + 10);\n\n\tll a_sum = accumulate(all(a), 0LL);\n\tll b_sum = accumulate(all(b), 0LL);\n\n\tvm pow2(n + 1);\n\tpow2[0] = 1;\n\trep(i, n) pow2[i + 1] = pow2[i] * 2;\n\n\tmint res = 0;\n\n\trepi(A, 1, K / 2) {\n\t\tint B = K - 2 * A;\n\t\tif (B >= n) continue;\n\t\tif (B < A) break;\n\n\t\t// n 本中 B 本を選んで A 個のブロックに分ける.\n\t\tmint cnt = fm.bin(B - 1, A - 1) * fm.bin(n - B - 1, A - 1);\n\t\tcnt *= 2 * pow2[A - 1] * fm.fact(A - 1);\n\n\t\tres += cnt * (a_sum * 2 * A + b_sum * B);\n\t}\n\n\tEXIT(res);\n}", "accuracy": 0.4, "time_ms": 70, "memory_kb": 22352, "score_of_the_acc": -0.1873, "final_rank": 11 }, { "submission_id": "aoj_3169_6928687", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=9167167167167167167;\nconst int INF=100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\nnamespace po167{\nstruct combination{\n\tint upper;\n\tlong long MOD;\n\tstd::vector<long long> fact;\n\tstd::vector<long long> rev;\n\tstd::vector<long long> fact_rev;\n\tcombination(int max,long long mod):upper(max),MOD(mod),fact(max+1),rev(max+1),fact_rev(max+1){\n\t\tfor(long long i=0;i<=max;i++){\n\t\t\tif(i<2){\n\t\t\t\tfact[i]=1;\n\t\t\t\tfact_rev[i]=1;\n\t\t\t\trev[i]=1;\n\t\t\t\tcontinue;\n\t\t\t}\n\t\t\tfact[i]=(fact[i-1]*i)%mod;\n\t\t\trev[i]=mod-((mod/i)*rev[mod%i])%mod;\n\t\t\tfact_rev[i]=(fact_rev[i-1]*rev[i])%mod;\n\t\t}\n\t}\n\tlong long Comb(int x,int y){\n\t\tassert(upper>=x);\n\t\tif (x<y||y<0||x<0) return 0;\n\t\treturn (((fact_rev[y]*fact_rev[x-y])%MOD)*fact[x])%MOD;\n\t}\n\tlong long P(int x,int y){\n\t\tassert(upper>=x);\n\t\tif (x<y||y<0||x<0) return 0;\n\t\treturn (fact_rev[x-y]*fact[x])%MOD;\n\t}\n};\n}\nusing po167::combination;\n\nll jyo(ll x,ll y,ll z){\n ll H=y; //ここから\n ll a=1,b=(x%z+z)%z,c=1;\n while(H>0){\n a*=2;\n if(H%a!=0){\n H-=a/2;\n c*=b;\n c%=z;\n }\n b*=b;\n b%=z;\n } //ここまで\n return c;\n}\n\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tll n,k;\n\tcin>>n>>k;\n\tll A=0,B=0;\n\trep(i,n){\n\t\tll a;\n\t\tcin>>a;\n\t\tA+=a;\n\t}rep(i,n){\n\t\tll a;\n\t\tcin>>a;\n\t\tB+=a;\n\t}\n\tA%=mod,B%=mod;\n\tcombination table(n,mod);\n\tll ans=0;\n\tfor(ll i=1;i<=n;i++){\n\t\tll tmp=(jyo(2,i,mod)*table.fact[i-1])%mod;\n\t\tll C=k-i*2;\n\t\tif(C<i||n-C<i) continue;\n\t\ttmp=(tmp*table.Comb(n-C-1,i-1))%mod;\n\t\ttmp=(tmp*table.Comb(C-1,i-1))%mod;\n\t\tans=(ans+(tmp*((i*2*A+B*C)%mod))%mod)%mod;\n\t}\n\tcout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 26560, "score_of_the_acc": -0.5378, "final_rank": 3 }, { "submission_id": "aoj_3169_5300091", "code_snippet": "#include <bits/stdc++.h>\n\n\n\n#include <utility>\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param m `1 <= m`\n// @return x mod m\nconstexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n\n// Fast moduler by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n unsigned long long im;\n\n // @param m `1 <= m`\n barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n\n // @return m\n unsigned int umod() const { return _m; }\n\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n // [1] m = 1\n // a = b = im = 0, so okay\n\n // [2] m >= 2\n // im = ceil(2^64 / m)\n // -> im * m = 2^64 + r (0 <= r < m)\n // let z = a*b = c*m + d (0 <= c, d < m)\n // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im\n // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2\n // ((ab * im) >> 64) == c or c + 1\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned int v = (unsigned int)(z - x * _m);\n if (_m <= v) v += _m;\n return v;\n }\n};\n\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n for (long long a : {2, 7, 61}) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n}\ntemplate <int n> constexpr bool is_prime = is_prime_constexpr(n);\n\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n\n // Contracts:\n // [1] s - m0 * a = 0 (mod b)\n // [2] t - m1 * a = 0 (mod b)\n // [3] s * |m1| + t * |m0| <= b\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n // [3]:\n // (s - t * u) * |m1| + t * |m0 - m1 * u|\n // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)\n // = s * |m1| + t * |m0| <= b\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n // by [3]: |m0| <= b/g\n // by g != b: |m0| < b/g\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n\nnamespace internal {\n\n#ifndef _MSC_VER\ntemplate <class T>\nusing is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n\ntemplate <class T>\nusing is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n\n#else\n\ntemplate <class T> using is_integral = typename std::is_integral<T>;\n\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n\n#endif\n\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n\ntemplate <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n\n} // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\n\ntemplate <class T> using is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n\n} // namespace internal\n\ntemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n\n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\n\ntemplate <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id> internal::barrett dynamic_modint<id>::bt = 998244353;\n\nusing modint998244353 = static_modint<998244353>;\nusing modint1000000007 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\n\nnamespace internal {\n\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n\ntemplate <class> struct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n\n} // namespace internal\n\n} // namespace atcoder\n\n#define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i))\n#define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i))\n#define rep(i, n) For((i), 0, (n))\n#define rrep(i, n) rFor((i), (n), 0)\n#define fi first\n#define se second\nusing namespace std;\ntypedef long long lint;\ntypedef unsigned long long ulint;\ntypedef pair<int, int> pii;\ntypedef pair<lint, lint> pll;\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nT div_floor(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a >= 0 ? a / b : (a + 1) / b - 1;\n}\ntemplate <class T>\nT div_ceil(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a > 0 ? (a - 1) / b + 1 : a / b;\n}\n\nconstexpr lint mod = 1000000007;\nconstexpr lint INF = mod * mod;\nconstexpr int MAX = 200010;\n\nusing namespace atcoder;\nusing mint = modint998244353;\n\nvector<mint> fact;\nvector<mint> revfact;\n\nvoid setfact(int n) {\n fact.resize(n + 1);\n revfact.resize(n + 1);\n fact[0] = 1;\n rep(i, n) fact[i + 1] = fact[i] * mint(i + 1);\n\n revfact[n] = fact[n].inv();\n for (int i = n - 1; i >= 0; i--) revfact[i] = revfact[i + 1] * mint(i + 1);\n}\n\nmint getC(int n, int r) {\n if (n < r || r < 0) return 0;\n return fact[n] * revfact[r] * revfact[n - r];\n}\n\nint main() {\n int n, K;\n scanf(\"%d%d\", &n, &K);\n mint side = 0, bottom = 0;\n rep(i, n) {\n int a;\n scanf(\"%d\", &a);\n side += a;\n }\n rep(i, n) {\n int a;\n scanf(\"%d\", &a);\n bottom += a;\n }\n\n setfact(2 * n);\n mint pow2 = 1, a = 0, b = 0;\n for (int l = 0; 2 * l < K; ++l) {\n mint c = fact[l - 1] * pow2 * getC(K - 2 * l - 1, l - 1) *\n getC(n - K + 2 * l - 1, l - 1);\n a += c * 2 * l;\n b += c * (K - 2 * l);\n pow2 *= 2;\n }\n printf(\"%u\\n\", (side * a + bottom * b).val());\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 18804, "score_of_the_acc": -0.2299, "final_rank": 1 }, { "submission_id": "aoj_3169_5300088", "code_snippet": "#include <bits/stdc++.h>\n\n\n\n#include <utility>\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param m `1 <= m`\n// @return x mod m\nconstexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n\n// Fast moduler by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n unsigned long long im;\n\n // @param m `1 <= m`\n barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n\n // @return m\n unsigned int umod() const { return _m; }\n\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n // [1] m = 1\n // a = b = im = 0, so okay\n\n // [2] m >= 2\n // im = ceil(2^64 / m)\n // -> im * m = 2^64 + r (0 <= r < m)\n // let z = a*b = c*m + d (0 <= c, d < m)\n // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im\n // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2\n // ((ab * im) >> 64) == c or c + 1\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned int v = (unsigned int)(z - x * _m);\n if (_m <= v) v += _m;\n return v;\n }\n};\n\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n for (long long a : {2, 7, 61}) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n}\ntemplate <int n> constexpr bool is_prime = is_prime_constexpr(n);\n\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n\n // Contracts:\n // [1] s - m0 * a = 0 (mod b)\n // [2] t - m1 * a = 0 (mod b)\n // [3] s * |m1| + t * |m0| <= b\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n // [3]:\n // (s - t * u) * |m1| + t * |m0 - m1 * u|\n // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)\n // = s * |m1| + t * |m0| <= b\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n // by [3]: |m0| <= b/g\n // by g != b: |m0| < b/g\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n\nnamespace internal {\n\n#ifndef _MSC_VER\ntemplate <class T>\nusing is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n\ntemplate <class T>\nusing is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n\n#else\n\ntemplate <class T> using is_integral = typename std::is_integral<T>;\n\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n\n#endif\n\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n\ntemplate <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n\n} // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\n\ntemplate <class T> using is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n\n} // namespace internal\n\ntemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n\n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\n\ntemplate <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id> internal::barrett dynamic_modint<id>::bt = 998244353;\n\nusing modint998244353 = static_modint<998244353>;\nusing modint1000000007 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\n\nnamespace internal {\n\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n\ntemplate <class> struct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n\n} // namespace internal\n\n} // namespace atcoder\n\n#define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i))\n#define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i))\n#define rep(i, n) For((i), 0, (n))\n#define rrep(i, n) rFor((i), (n), 0)\n#define fi first\n#define se second\nusing namespace std;\ntypedef long long lint;\ntypedef unsigned long long ulint;\ntypedef pair<int, int> pii;\ntypedef pair<lint, lint> pll;\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nT div_floor(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a >= 0 ? a / b : (a + 1) / b - 1;\n}\ntemplate <class T>\nT div_ceil(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a > 0 ? (a - 1) / b + 1 : a / b;\n}\n\nconstexpr lint mod = 1000000007;\nconstexpr lint INF = mod * mod;\nconstexpr int MAX = 200010;\n\nusing namespace atcoder;\nusing mint = modint998244353;\n\nvector<mint> fact;\nvector<mint> revfact;\n\nvoid setfact(int n) {\n fact.resize(n + 1);\n revfact.resize(n + 1);\n fact[0] = 1;\n rep(i, n) fact[i + 1] = fact[i] * mint(i + 1);\n\n revfact[n] = fact[n].inv();\n for (int i = n - 1; i >= 0; i--) revfact[i] = revfact[i + 1] * mint(i + 1);\n}\n\nmint getC(int n, int r) {\n if (n < r || r < 0) return 0;\n return fact[n] * revfact[r] * revfact[n - r];\n}\n\nint main() {\n int n, K;\n scanf(\"%d%d\", &n, &K);\n mint side = 0, bottom = 0;\n rep(i, n) {\n int a;\n scanf(\"%d\", &a);\n side += a;\n }\n rep(i, n) {\n int a;\n scanf(\"%d\", &a);\n bottom += a;\n }\n\n setfact(n);\n mint pow2 = 1, a = 0, b = 0;\n for (int l = 0; 2 * l < K; ++l) {\n mint c = fact[l - 1] * pow2 * getC(K - 2 * l - 1, l - 1) *\n getC(n - K + 2 * l - 1, l - 1);\n a += c * 2 * l;\n b += c * (K - 2 * l);\n pow2 *= 2;\n }\n printf(\"%u\\n\", (side * a + bottom * b).val());\n}", "accuracy": 0.8, "time_ms": 140, "memory_kb": 10808, "score_of_the_acc": -0.1047, "final_rank": 9 }, { "submission_id": "aoj_3169_4964416", "code_snippet": "#include <bits/stdc++.h>\n\n#include<bits/stdc++.h>\n\nnamespace ProconLib{\n\n template<typename MInt>\n class ModCombination{\n int N;\n std::vector<MInt> fact;\n std::vector<MInt> factInv;\n public:\n ModCombination(int n);\n MInt F(int n){return fact[n];}\n MInt FI(int n){return factInv[n];}\n MInt P(int n,int k){return fact[n]*factInv[n-k];}\n MInt PI(int n,int k){return factInv[n]*fact[n-k];}\n MInt C(int n,int k){return fact[n]*factInv[k]*factInv[n-k];}\n MInt CI(int n,int k){return factInv[n]*fact[k]*fact[n-k];}\n };\n\n template<typename MInt>\n ModCombination<MInt>::ModCombination(int n):N(n),fact(n+1),factInv(n+1){\n fact[0]=MInt(1);\n for(int i=1;i<=n;i++) fact[i]=fact[i-1]*MInt(i);\n factInv[n]=inv(fact[n]);\n for(int i=n-1;i>=0;i--){\n factInv[i]=factInv[i+1]*MInt(i+1);\n }\n }\n \n}\n#include<iostream>\n\nnamespace ProconLib{\n using ll=long long;\n using Int=int;\n template<Int MOD,bool IsPrime=true>\n class ModInt{\n Int n; \n static Int regularize(int n){Int tmp=n%MOD; return tmp>=0 ? tmp : tmp+MOD;}\n static Int regularize(ll n){Int tmp=n%MOD; return tmp>=0 ? tmp : tmp+MOD;}\n public:\n ModInt():n(0){};\n ModInt(int n):n(regularize(n)){}\n ModInt(long long n):n(regularize(n)){}\n ModInt(const ModInt<MOD,IsPrime> &mn):n(mn.n){}\n explicit operator int() const{return n;}\n explicit operator long long() const{return n;}\n\n ModInt<MOD,IsPrime>& operator+=(ModInt<MOD,IsPrime> rhs);\n ModInt<MOD,IsPrime>& operator-=(ModInt<MOD,IsPrime> rhs);\n ModInt<MOD,IsPrime>& operator*=(ModInt<MOD,IsPrime> rhs);\n\n bool operator==(ModInt<MOD,IsPrime> rhs){return n==rhs.n;}\n const Int& get() const {return n;}\n void set(int x){n=regularize(x);}\n void set(ll x){n=regularize(x);} \n };\n\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator+(ModInt<MOD,IsPrime> lhs,ModInt<MOD,IsPrime> rhs){return lhs+=rhs;};\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator+(ModInt<MOD,IsPrime> lhs,int rhs){return lhs+ModInt<MOD,IsPrime>(rhs);}\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator+(ModInt<MOD,IsPrime> lhs,ll rhs){return lhs+ModInt<MOD,IsPrime>(rhs);}\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator+(int lhs,ModInt<MOD,IsPrime> rhs){return ModInt<MOD,IsPrime>(lhs)+rhs;}\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator+(ll lhs,ModInt<MOD,IsPrime> rhs){return ModInt<MOD,IsPrime>(lhs)+rhs;}\n\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator+(ModInt<MOD,IsPrime> mn){return mn;};\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator-(ModInt<MOD,IsPrime> mn){return ModInt<MOD,IsPrime>(-mn.get());};\n\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator-(ModInt<MOD,IsPrime> lhs,ModInt<MOD,IsPrime> rhs){return lhs-=rhs;};\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator-(ModInt<MOD,IsPrime> lhs,int rhs){return lhs-ModInt<MOD,IsPrime>(rhs);};\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator-(ModInt<MOD,IsPrime> lhs,ll rhs){return lhs-ModInt<MOD,IsPrime>(rhs);};\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator-(int lhs,ModInt<MOD,IsPrime> rhs){return ModInt<MOD,IsPrime>(lhs)-rhs;};\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator-(ll lhs,ModInt<MOD,IsPrime> rhs){return ModInt<MOD,IsPrime>(lhs)-rhs;};\n\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator*(ModInt<MOD,IsPrime> lhs,ModInt<MOD,IsPrime> rhs){return lhs*=rhs;};\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator*(ModInt<MOD,IsPrime> lhs,int rhs){return lhs*ModInt<MOD,IsPrime>(rhs);}\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator*(ModInt<MOD,IsPrime> lhs,ll rhs){return lhs*ModInt<MOD,IsPrime>(rhs);}\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator*(ll lhs,ModInt<MOD,IsPrime> rhs){return ModInt<MOD,IsPrime>(lhs)*rhs;}\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> operator*(int lhs,ModInt<MOD,IsPrime> rhs){return ModInt<MOD,IsPrime>(lhs)*rhs;}\n\n template<Int MOD>\n ModInt<MOD,true> operator/(ModInt<MOD,true> lhs,ModInt<MOD,true> rhs);\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> powm(ModInt<MOD,IsPrime> x,Int k);\n template<Int MOD>\n ModInt<MOD,true> inv(ModInt<MOD,true> x){return powm(x,MOD-2);}\n\n template<Int MOD,bool IsPrime>\n std::ostream& operator<<(std::ostream& os,const ModInt<MOD,IsPrime> &mn);\n \n\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime>& ModInt<MOD,IsPrime>::operator+=(ModInt<MOD,IsPrime> rhs){\n n+=rhs.n;\n n= n>=MOD ? n-MOD : n;\n return *this;\n }\n \n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime>& ModInt<MOD,IsPrime>::operator-=(ModInt rhs){\n n=n-rhs.n<0 ? n-rhs.n+MOD : n-rhs.n;\n return *this;\n }\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime>& ModInt<MOD,IsPrime>::operator*=(ModInt<MOD,IsPrime> rhs){\n n=ll(n)*rhs.n%MOD;\n return *this;\n }\n \n template<Int MOD>\n ModInt<MOD,true> operator/(ModInt<MOD,true> lhs,ModInt<MOD,true> rhs){\n return lhs*inv(rhs);\n }\n template<Int MOD,bool IsPrime>\n ModInt<MOD,IsPrime> powm(ModInt<MOD,IsPrime> x,Int k){\n ModInt<MOD,IsPrime> res(1);\n while(k){\n if(k&1) res*=x;\n k>>=1;\n x*=x;\n }\n return res;\n }\n\n template<Int MOD,bool IsPrime>\n std::ostream& operator<<(std::ostream& os,const ModInt<MOD,IsPrime> &mn){\n os<<mn.get();\n return os;\n }\n\n template<Int MOD,bool IsPrime>\n std::istream& operator>>(std::istream& is,ModInt<MOD,IsPrime> &mn){\n Int tmp;\n is>>tmp;\n mn.set(tmp);\n return is;\n }\n}\n\nusing namespace std;\n\nusing ll = long long;\nconst ll MOD = 998244353;\nusing mInt = ProconLib::ModInt<MOD, true>;\nconst int MAX_N = 4000000;\nProconLib::ModCombination<mInt> mComb(MAX_N);\n\nmInt fact(ll x) { return mComb.F(x); }\nmInt calc(ll n, ll k) {\n if (n == 0 && k == 0) return 1;\n if (k <= 0) return 0;\n if (n<0) return 0;\n return mComb.C(n + k - 1, k - 1);\n}\n\nint main() {\n ll n, k;\n cin >> n >> k;\n\n vector<int> a(n);\n vector<int> b(n);\n for (int i = 0; i < n; i++) cin >> a[i];\n for (int i = 0; i < n; i++) cin >> b[i];\n\n mInt P = 0;\n for (int i = 1; i <= n; i++) {\n mInt x = mInt(k - 2 * i) * mInt(2) * mInt(n);\n mInt y = mInt(powm(mInt(2), i - 1)) * fact(i - 1);\n mInt z = calc(k - 2 * i - i, i) * calc(n - (k - 2 * i) - i, i);\n // cerr << \"#P \" << i << \" \" << x << \" \" << y << \" \" << z << endl;\n P += x * y * z;\n }\n P = P / mInt(n);\n // cerr << P << endl;\n\n mInt Q = 0;\n for (int i = 1; i <= n; i++) {\n mInt x = mInt(2) * mInt(i) * mInt(2) * mInt(n);\n mInt y = powm(mInt(2), i - 1) * fact(i - 1);\n mInt z = calc(k - 2 * i - i, i) * calc(n - (k - 2 * i) - i, i);\n // cerr << \"#Q \" << i << \" \" << x << \" \" << y << \" \" << z << endl;\n Q += x * y * z;\n }\n Q = Q / mInt(n);\n\n mInt asum = accumulate(a.begin(), a.end(), 0LL);\n mInt bsum = accumulate(b.begin(), b.end(), 0LL);\n mInt ans = bsum * P + asum * Q;\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 610, "memory_kb": 42136, "score_of_the_acc": -1.0964, "final_rank": 5 }, { "submission_id": "aoj_3169_4883802", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <unordered_map>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\n#include <unordered_map>\n#include <fstream>\n#include <ctime>\n#include <complex>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 2020000;\nll dy[8] = {1,-1,0,0,1,-1,1,-1};\nll dx[8] = {0,0,1,-1,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-10;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << \"debug: \" << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << \"debug: \" << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\ntemplate <std::uint_fast64_t Modulus> class modint {\n using u64 = std::uint_fast64_t;\n\npublic:\n u64 a;\n\n constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}\n constexpr u64 &value() noexcept { return a; }\n constexpr const u64 &value() const noexcept { return a; }\n constexpr modint operator+(const modint rhs) const noexcept {\n\treturn modint(*this) += rhs;\n }\n constexpr modint operator-(const modint rhs) const noexcept {\n\treturn modint(*this) -= rhs;\n }\n constexpr modint operator*(const modint rhs) const noexcept {\n\treturn modint(*this) *= rhs;\n }\n constexpr modint operator/(const modint rhs) const noexcept {\n\treturn modint(*this) /= rhs;\n }\n constexpr modint &operator+=(const modint rhs) noexcept {\n\ta += rhs.a;\n\tif (a >= Modulus) {\n\t a -= Modulus;\n\t}\n\treturn *this;\n }\n constexpr modint &operator-=(const modint rhs) noexcept {\n\tif (a < rhs.a) {\n\t a += Modulus;\n\t}\n\ta -= rhs.a;\n\treturn *this;\n }\n constexpr modint &operator*=(const modint rhs) noexcept {\n\ta = a * rhs.a % Modulus;\n\treturn *this;\n }\n constexpr modint &operator/=(modint rhs) noexcept {\n\tu64 exp = Modulus - 2;\n\twhile (exp) {\n\t if (exp % 2) {\n\t\t*this *= rhs;\n\t }\n\t rhs *= rhs;\n\t exp /= 2;\n\t}\n\treturn *this;\n }\n};\n\nusing mint = modint<mod>;\n\nvector<ll> fac(MAX), finv(MAX), inv(MAX);\n\nvoid comInit(){\n\tfac[0] = fac[1] = 1;\n\tfinv[0] = finv[1] = 1;\n\tinv[1] = 1;\n\tfor(ll i=2; i<MAX; i++){\n\t\tfac[i] = fac[i-1]*i % mod;\n\t\tinv[i] = mod - inv[mod%i] * (mod/i) % mod;\n\t\tfinv[i] = finv[i-1] * inv[i] % mod;\n\t}\n}\n\n\nll com(ll n, ll k){\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * (finv[k] * finv[n-k] % mod) % mod;\n}\n\nll modpow(ll x, ll n, ll mod){\n\tll res = 1;\n\twhile(n > 0){\n\t\tif(n & 1) res = res * x % mod;\n\t\tx = x * x % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nint main(){\n\tll n,k; cin >> n >> k;\n\tmint suma = 0, sumb = 0;\n\tvl a(n); rep(i,n) cin >> a[i], suma += a[i];\n\tvl b(n); rep(i,n) cin >> b[i], sumb += b[i];\n\tcomInit();\n\tmint ans = 0;\n\tfor(int t=1; t*3<=k; t++){\n\t\tmint tmp = modpow(2,t,mod);\n\t\ttmp = tmp * fac[t-1] * com(k-t*2-1,t-1) * com(n+t*2-k-1,t-1);\n\t\tans += suma * tmp * t * 2 + sumb * tmp * (k-2*t);\n\t}\n\tcout << ans.value() << \"\\n\";\n}", "accuracy": 1, "time_ms": 670, "memory_kb": 65920, "score_of_the_acc": -1.5041, "final_rank": 7 }, { "submission_id": "aoj_3169_4883357", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <unordered_map>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\n#include <unordered_map>\n#include <fstream>\n#include <ctime>\n#include <complex>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 2020000;\nll dy[8] = {1,-1,0,0,1,-1,1,-1};\nll dx[8] = {0,0,1,-1,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-10;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << \"debug: \" << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << \"debug: \" << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\ntemplate <std::uint_fast64_t Modulus> class modint {\n using u64 = std::uint_fast64_t;\n\npublic:\n u64 a;\n\n constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}\n constexpr u64 &value() noexcept { return a; }\n constexpr const u64 &value() const noexcept { return a; }\n constexpr modint operator+(const modint rhs) const noexcept {\n\treturn modint(*this) += rhs;\n }\n constexpr modint operator-(const modint rhs) const noexcept {\n\treturn modint(*this) -= rhs;\n }\n constexpr modint operator*(const modint rhs) const noexcept {\n\treturn modint(*this) *= rhs;\n }\n constexpr modint operator/(const modint rhs) const noexcept {\n\treturn modint(*this) /= rhs;\n }\n constexpr modint &operator+=(const modint rhs) noexcept {\n\ta += rhs.a;\n\tif (a >= Modulus) {\n\t a -= Modulus;\n\t}\n\treturn *this;\n }\n constexpr modint &operator-=(const modint rhs) noexcept {\n\tif (a < rhs.a) {\n\t a += Modulus;\n\t}\n\ta -= rhs.a;\n\treturn *this;\n }\n constexpr modint &operator*=(const modint rhs) noexcept {\n\ta = a * rhs.a % Modulus;\n\treturn *this;\n }\n constexpr modint &operator/=(modint rhs) noexcept {\n\tu64 exp = Modulus - 2;\n\twhile (exp) {\n\t if (exp % 2) {\n\t\t*this *= rhs;\n\t }\n\t rhs *= rhs;\n\t exp /= 2;\n\t}\n\treturn *this;\n }\n};\n\nusing mint = modint<mod>;\n\nvector<ll> fac(MAX), finv(MAX), inv(MAX);\n\nvoid comInit(){\n\tfac[0] = fac[1] = 1;\n\tfinv[0] = finv[1] = 1;\n\tinv[1] = 1;\n\tfor(ll i=2; i<MAX; i++){\n\t\tfac[i] = fac[i-1]*i % mod;\n\t\tinv[i] = mod - inv[mod%i] * (mod/i) % mod;\n\t\tfinv[i] = finv[i-1] * inv[i] % mod;\n\t}\n}\n\n\nll com(ll n, ll k){\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * (finv[k] * finv[n-k] % mod) % mod;\n}\n\nll modpow(ll x, ll n, ll mod){\n\tll res = 1;\n\twhile(n > 0){\n\t\tif(n & 1) res = res * x % mod;\n\t\tx = x * x % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nint main(){\n\tll n,k; cin >> n >> k;\n\tmint suma = 0, sumb = 0;\n\tvl a(n); rep(i,n) cin >> a[i], suma += a[i];\n\tvl b(n); rep(i,n) cin >> b[i], sumb += b[i];\n\tcomInit();\n\tmint ans = 0;\n\tfor(int t=0; t*3<=k-3; t++){\n\t\tif(n-2+t < k-3) continue;\n\t\tll rest = k-3 - t*3;\n\t\tans += (suma * (t+1) * 4 + sumb * (rest+t+1) * 2) * com(t+rest,rest) * modpow(2,t,mod);\n\t}\n\tcout << ans.value() << \"\\n\";\n}", "accuracy": 0.1, "time_ms": 50, "memory_kb": 49872, "score_of_the_acc": -0.5551, "final_rank": 16 }, { "submission_id": "aoj_3169_4880472", "code_snippet": "#include <iostream>\n#include <array>\n#include <algorithm>\n#include <vector>\n#include <bitset>\n#include <set>\n#include <unordered_set>\n#include <cmath>\n#include <complex>\n#include <deque>\n#include <iterator>\n#include <numeric>\n#include <map>\n#include <unordered_map>\n#include <queue>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <utility>\n#include <limits>\n#include <iomanip>\n#include <functional>\n#include <cassert>\n// #include <atcoder/all>\nusing namespace std;\n\nusing ll=long long;\ntemplate<class T> using V = vector<T>;\ntemplate<class T, class U> using P = pair<T, U>;\nusing vll = V<ll>;\nusing vvll = V<vll>;\n#define ALL(v) v.begin(),v.end()\ntemplate < class T > inline bool chmax(T& a, T b) {if (a < b) { a=b; return true; } return false; }\ntemplate < class T > inline bool chmin(T& a, T b) {if (a > b) { a=b; return true; } return false; }\n#define DEBUG_VLL(vec) for(int sz=0;sz<int(vec.size());sz++) std::cerr<<vec[sz]<<(sz==vec.size()-1?'\\n':' ');\n\nconst long long MOD = 998244353;\nconst long long HIGHINF = (long long)1e18;\nconst int INF = (int)1e9;\n\nclass ModInt {\npublic:\n long long x;\n constexpr ModInt(const long long x=0) : x((x+MOD)%MOD) {}\n constexpr ModInt& operator+=(const ModInt rhs) {\n x += rhs.x;\n if (x >= MOD) x -= MOD;\n return *this;\n }\n constexpr ModInt operator+(const ModInt rhs) const {\n return ModInt(*this) += rhs; \n }\n constexpr ModInt& operator-=(const ModInt& rhs) {\n x -= rhs.x;\n if (x < 0) x += MOD;\n return *this;\n }\n constexpr ModInt operator-(const ModInt rhs) const {\n return ModInt(*this) -= rhs; \n }\n constexpr ModInt& operator*=(const ModInt& rhs) {\n x = x * rhs.x % MOD;\n return *this;\n }\n constexpr ModInt operator*(const ModInt rhs) const {\n return ModInt(*this) *= rhs; \n }\n constexpr ModInt& operator/=(const ModInt& rhs) {\n ModInt div = powmod(rhs, MOD - 2);\n (x *= div.x) %= MOD;\n return *this;\n }\n constexpr ModInt operator/(const ModInt rhs) const {\n return ModInt(*this) /= rhs;\n }\n constexpr ModInt powmod(ModInt m, long long p) {\n if (p == 0) return ModInt(1);\n ModInt tmp = powmod(m, p / 2);\n if (p & 1) return tmp * tmp * m;\n else return tmp * tmp;\n }\n constexpr ModInt& operator++() {\n x += 1;\n return *this;\n }\n constexpr ModInt operator++(int) {\n ModInt tmp(*this);\n operator++();\n return tmp;\n }\n constexpr ModInt& operator--() {\n x -= 1;\n return *this;\n }\n constexpr ModInt operator--(int) {\n ModInt tmp(*this);\n operator--();\n return tmp;\n }\n\n friend ostream& operator<<(ostream& os, const ModInt &rhs) {\n os << rhs.x;\n return os;\n }\n friend istream& operator>>(istream& is, ModInt& rhs) {\n is >> rhs.x;\n return is;\n }\n};\nbool operator==(const ModInt& lhs, const ModInt& rhs) {\n return lhs.x == rhs.x;\n}\nbool operator!=(const ModInt& lhs, const ModInt& rhs) {\n return !(lhs == rhs);\n}\nModInt powmod(ModInt m, long long p) {\n if (p == 0) return ModInt(1);\n ModInt tmp = powmod(m, p / 2);\n if (p & 1) return tmp * tmp * m;\n else return tmp * tmp;\n}\n\nusing modi = ModInt;\n\n\n// [ModInt]\n// verified at https://atcoder.jp/contests/abc021/submissions/15053490\nconst int NMAX = 2000005;\ntemplate < typename T >\nclass Combination {\npublic:\n std::vector<T> fac, invfac;\n Combination() {\n fac.resize(NMAX), invfac.resize(NMAX);\n fac[0] = fac[1] = T(1);\n invfac[0] = invfac[1] = T(1);\n for (int i = 2; i <= NMAX; i++) {\n fac[i] = fac[i - 1] * T(i);\n invfac[i] = invfac[i - 1] * powmod(T(i), MOD - 2);\n }\n }\n\n // nCr = n! / r!(n-r)!\n T nCr(int n, int r) {\n if (n < 0 || r > n || r < 0) return T(0);\n return fac[n] * invfac[r] * invfac[n - r];\n }\n \n // 重複組み合わせ nHr = (n + r - 1)C(r)\n T nHr(int n, int r) {\n return nCr(n + r - 1, r);\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n, k; cin >> n >> k;\n Combination<modi> comb;\n\n modi asum = 0, bsum = 0;\n for (int i = 0; i < n; i++) {\n ll a; cin >> a; asum += modi(a);\n }\n for (int i = 0; i < n; i++) {\n ll b; cin >> b; bsum += modi(b);\n }\n V<modi> fac(n + 1, 1), pow2(n + 1, 1);\n pow2[1] = modi(2);\n for (int i = 2; i < n; i++) {\n fac[i] = fac[i - 1] * modi(i);\n pow2[i] = pow2[i - 1] * modi(2);\n }\n\n modi ans = 0;\n for (int cyc = 1; 2 * cyc <= k; cyc++) {\n modi tmp = pow2[cyc] * fac[cyc - 1] * comb.nHr(cyc, k - 3 * cyc) * comb.nHr(cyc, n - k + cyc);\n ans += tmp * (modi(2 * cyc) * asum + modi(k - 2 * cyc) * bsum);\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 1, "time_ms": 500, "memory_kb": 50096, "score_of_the_acc": -1.0816, "final_rank": 4 }, { "submission_id": "aoj_3169_4880458", "code_snippet": "#include <iostream>\n#include <array>\n#include <algorithm>\n#include <vector>\n#include <bitset>\n#include <set>\n#include <unordered_set>\n#include <cmath>\n#include <complex>\n#include <deque>\n#include <iterator>\n#include <numeric>\n#include <map>\n#include <unordered_map>\n#include <queue>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <utility>\n#include <limits>\n#include <iomanip>\n#include <functional>\n#include <cassert>\n// #include <atcoder/all>\nusing namespace std;\n\nusing ll=long long;\ntemplate<class T> using V = vector<T>;\ntemplate<class T, class U> using P = pair<T, U>;\nusing vll = V<ll>;\nusing vvll = V<vll>;\n#define ALL(v) v.begin(),v.end()\ntemplate < class T > inline bool chmax(T& a, T b) {if (a < b) { a=b; return true; } return false; }\ntemplate < class T > inline bool chmin(T& a, T b) {if (a > b) { a=b; return true; } return false; }\n#define DEBUG_VLL(vec) for(int sz=0;sz<int(vec.size());sz++) std::cerr<<vec[sz]<<(sz==vec.size()-1?'\\n':' ');\n\nconst long long MOD = 998244353;\nconst long long HIGHINF = (long long)1e18;\nconst int INF = (int)1e9;\n\nclass ModInt {\npublic:\n long long x;\n constexpr ModInt(const long long x=0) : x((x+MOD)%MOD) {}\n constexpr ModInt& operator+=(const ModInt rhs) {\n x += rhs.x;\n if (x >= MOD) x -= MOD;\n return *this;\n }\n constexpr ModInt operator+(const ModInt rhs) const {\n return ModInt(*this) += rhs; \n }\n constexpr ModInt& operator-=(const ModInt& rhs) {\n x -= rhs.x;\n if (x < 0) x += MOD;\n return *this;\n }\n constexpr ModInt operator-(const ModInt rhs) const {\n return ModInt(*this) -= rhs; \n }\n constexpr ModInt& operator*=(const ModInt& rhs) {\n x = x * rhs.x % MOD;\n return *this;\n }\n constexpr ModInt operator*(const ModInt rhs) const {\n return ModInt(*this) *= rhs; \n }\n constexpr ModInt& operator/=(const ModInt& rhs) {\n ModInt div = powmod(rhs, MOD - 2);\n (x *= div.x) %= MOD;\n return *this;\n }\n constexpr ModInt operator/(const ModInt rhs) const {\n return ModInt(*this) /= rhs;\n }\n constexpr ModInt powmod(ModInt m, long long p) {\n if (p == 0) return ModInt(1);\n ModInt tmp = powmod(m, p / 2);\n if (p & 1) return tmp * tmp * m;\n else return tmp * tmp;\n }\n constexpr ModInt& operator++() {\n x += 1;\n return *this;\n }\n constexpr ModInt operator++(int) {\n ModInt tmp(*this);\n operator++();\n return tmp;\n }\n constexpr ModInt& operator--() {\n x -= 1;\n return *this;\n }\n constexpr ModInt operator--(int) {\n ModInt tmp(*this);\n operator--();\n return tmp;\n }\n\n friend ostream& operator<<(ostream& os, const ModInt &rhs) {\n os << rhs.x;\n return os;\n }\n friend istream& operator>>(istream& is, ModInt& rhs) {\n is >> rhs.x;\n return is;\n }\n};\nbool operator==(const ModInt& lhs, const ModInt& rhs) {\n return lhs.x == rhs.x;\n}\nbool operator!=(const ModInt& lhs, const ModInt& rhs) {\n return !(lhs == rhs);\n}\nModInt powmod(ModInt m, long long p) {\n if (p == 0) return ModInt(1);\n ModInt tmp = powmod(m, p / 2);\n if (p & 1) return tmp * tmp * m;\n else return tmp * tmp;\n}\n\nusing modi = ModInt;\n\n\n// [ModInt]\n// verified at https://atcoder.jp/contests/abc021/submissions/15053490\nconst int NMAX = 5000005;\ntemplate < typename T >\nclass Combination {\npublic:\n std::vector<T> fac, invfac;\n Combination() {\n fac.resize(NMAX), invfac.resize(NMAX);\n fac[0] = fac[1] = T(1);\n invfac[0] = invfac[1] = T(1);\n for (int i = 2; i <= NMAX; i++) {\n fac[i] = fac[i - 1] * T(i);\n invfac[i] = invfac[i - 1] * powmod(T(i), MOD - 2);\n }\n }\n\n // nCr = n! / r!(n-r)!\n T nCr(int n, int r) {\n if (n < 0 || r > n || r < 0) return T(0);\n return fac[n] * invfac[r] * invfac[n - r];\n }\n \n // 重複組み合わせ nHr = (n + r - 1)C(r)\n T nHr(int n, int r) {\n return nCr(n + r - 1, r);\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n, k; cin >> n >> k;\n Combination<modi> comb;\n\n modi asum = 0, bsum = 0;\n for (int i = 0; i < n; i++) {\n ll a, b; cin >> a >> b;\n asum += modi(a), bsum += modi(b);\n }\n V<modi> fac(n + 1, 1), pow2(n + 1, 1);\n pow2[1] = modi(2);\n for (int i = 2; i <= n; i++) {\n fac[i] = fac[i - 1] * modi(i);\n pow2[i] = pow2[i - 1] * modi(2);\n }\n\n modi ans = 0;\n for (int cyc = 1; 2 * cyc <= k; cyc++) {\n modi tmp = pow2[cyc] * fac[cyc - 1] * comb.nCr(k - 2 * cyc - 1, k - 3 * cyc) * comb.nCr(n - k + 2 * cyc - 1, n - k + cyc);\n ans += tmp * (modi(2 * cyc) * asum + modi(k - 2 * cyc) * bsum);\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 0.1, "time_ms": 910, "memory_kb": 81176, "score_of_the_acc": -2, "final_rank": 20 }, { "submission_id": "aoj_3169_4880452", "code_snippet": "#include <iostream>\n#include <array>\n#include <algorithm>\n#include <vector>\n#include <bitset>\n#include <set>\n#include <unordered_set>\n#include <cmath>\n#include <complex>\n#include <deque>\n#include <iterator>\n#include <numeric>\n#include <map>\n#include <unordered_map>\n#include <queue>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <utility>\n#include <limits>\n#include <iomanip>\n#include <functional>\n#include <cassert>\n// #include <atcoder/all>\nusing namespace std;\n\nusing ll=long long;\ntemplate<class T> using V = vector<T>;\ntemplate<class T, class U> using P = pair<T, U>;\nusing vll = V<ll>;\nusing vvll = V<vll>;\n#define ALL(v) v.begin(),v.end()\ntemplate < class T > inline bool chmax(T& a, T b) {if (a < b) { a=b; return true; } return false; }\ntemplate < class T > inline bool chmin(T& a, T b) {if (a > b) { a=b; return true; } return false; }\n#define DEBUG_VLL(vec) for(int sz=0;sz<int(vec.size());sz++) std::cerr<<vec[sz]<<(sz==vec.size()-1?'\\n':' ');\n\nconst long long MOD = 998244353;\nconst long long HIGHINF = (long long)1e18;\nconst int INF = (int)1e9;\n\nclass ModInt {\npublic:\n long long x;\n constexpr ModInt(const long long x=0) : x((x+MOD)%MOD) {}\n constexpr ModInt& operator+=(const ModInt rhs) {\n x += rhs.x;\n if (x >= MOD) x -= MOD;\n return *this;\n }\n constexpr ModInt operator+(const ModInt rhs) const {\n return ModInt(*this) += rhs; \n }\n constexpr ModInt& operator-=(const ModInt& rhs) {\n x -= rhs.x;\n if (x < 0) x += MOD;\n return *this;\n }\n constexpr ModInt operator-(const ModInt rhs) const {\n return ModInt(*this) -= rhs; \n }\n constexpr ModInt& operator*=(const ModInt& rhs) {\n x = x * rhs.x % MOD;\n return *this;\n }\n constexpr ModInt operator*(const ModInt rhs) const {\n return ModInt(*this) *= rhs; \n }\n constexpr ModInt& operator/=(const ModInt& rhs) {\n ModInt div = powmod(rhs, MOD - 2);\n (x *= div.x) %= MOD;\n return *this;\n }\n constexpr ModInt operator/(const ModInt rhs) const {\n return ModInt(*this) /= rhs;\n }\n constexpr ModInt powmod(ModInt m, long long p) {\n if (p == 0) return ModInt(1);\n ModInt tmp = powmod(m, p / 2);\n if (p & 1) return tmp * tmp * m;\n else return tmp * tmp;\n }\n constexpr ModInt& operator++() {\n x += 1;\n return *this;\n }\n constexpr ModInt operator++(int) {\n ModInt tmp(*this);\n operator++();\n return tmp;\n }\n constexpr ModInt& operator--() {\n x -= 1;\n return *this;\n }\n constexpr ModInt operator--(int) {\n ModInt tmp(*this);\n operator--();\n return tmp;\n }\n\n friend ostream& operator<<(ostream& os, const ModInt &rhs) {\n os << rhs.x;\n return os;\n }\n friend istream& operator>>(istream& is, ModInt& rhs) {\n is >> rhs.x;\n return is;\n }\n};\nbool operator==(const ModInt& lhs, const ModInt& rhs) {\n return lhs.x == rhs.x;\n}\nbool operator!=(const ModInt& lhs, const ModInt& rhs) {\n return !(lhs == rhs);\n}\nModInt powmod(ModInt m, long long p) {\n if (p == 0) return ModInt(1);\n ModInt tmp = powmod(m, p / 2);\n if (p & 1) return tmp * tmp * m;\n else return tmp * tmp;\n}\n\nusing modi = ModInt;\n\n\n// [ModInt]\n// verified at https://atcoder.jp/contests/abc021/submissions/15053490\nconst int NMAX = 5000005;\ntemplate < typename T >\nclass Combination {\npublic:\n std::vector<T> fac, invfac;\n Combination() {\n fac.resize(NMAX), invfac.resize(NMAX);\n fac[0] = fac[1] = T(1);\n invfac[0] = invfac[1] = T(1);\n for (int i = 2; i <= NMAX; i++) {\n fac[i] = fac[i - 1] * T(i);\n invfac[i] = invfac[i - 1] * powmod(T(i), MOD - 2);\n }\n }\n\n // nCr = n! / r!(n-r)!\n T nCr(int n, int r) {\n if (n < 0 || r > n || r < 0) return T(0);\n return fac[n] * invfac[r] * invfac[n - r];\n }\n \n // 重複組み合わせ nHr = (n + r - 1)C(r - 1)\n T nHr(int n, int r) {\n return nCr(n + r - 1, r);\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n, k; cin >> n >> k;\n Combination<modi> comb;\n\n modi asum = 0, bsum = 0;\n for (int i = 0; i < n; i++) {\n modi a, b; cin >> a >> b;\n asum += modi(a), bsum += modi(b);\n }\n asum /= modi(n), bsum /= modi(n);\n V<modi> fac(n, 1), pow2(n, 1);\n pow2[1] = 2;\n for (int i = 2; i < n; i++) {\n fac[i] = fac[i - 1] * modi(i);\n pow2[i] = pow2[i - 1] * modi(2);\n }\n\n modi ans = 0;\n for (int cyc = 1; 2 * cyc <= k; cyc++) {\n modi tmp = pow2[cyc] * fac[cyc - 1] * modi(n) * comb.nHr(cyc, k - 3 * cyc) * comb.nHr(cyc, n - k + cyc);\n ans += tmp * (modi(2 * cyc) * asum + modi(k - 2 * cyc) * bsum);\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 0.1, "time_ms": 910, "memory_kb": 81148, "score_of_the_acc": -1.9996, "final_rank": 19 }, { "submission_id": "aoj_3169_4880444", "code_snippet": "#include <iostream>\n#include <array>\n#include <algorithm>\n#include <vector>\n#include <bitset>\n#include <set>\n#include <unordered_set>\n#include <cmath>\n#include <complex>\n#include <deque>\n#include <iterator>\n#include <numeric>\n#include <map>\n#include <unordered_map>\n#include <queue>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <utility>\n#include <limits>\n#include <iomanip>\n#include <functional>\n#include <cassert>\n// #include <atcoder/all>\nusing namespace std;\n\nusing ll=long long;\ntemplate<class T> using V = vector<T>;\ntemplate<class T, class U> using P = pair<T, U>;\nusing vll = V<ll>;\nusing vvll = V<vll>;\n#define ALL(v) v.begin(),v.end()\ntemplate < class T > inline bool chmax(T& a, T b) {if (a < b) { a=b; return true; } return false; }\ntemplate < class T > inline bool chmin(T& a, T b) {if (a > b) { a=b; return true; } return false; }\n#define DEBUG_VLL(vec) for(int sz=0;sz<int(vec.size());sz++) std::cerr<<vec[sz]<<(sz==vec.size()-1?'\\n':' ');\n\nconst long long MOD = 998244353;\nconst long long HIGHINF = (long long)1e18;\nconst int INF = (int)1e9;\n\nclass ModInt {\npublic:\n long long x;\n constexpr ModInt(const long long x=0) : x((x+MOD)%MOD) {}\n constexpr ModInt& operator+=(const ModInt rhs) {\n x += rhs.x;\n if (x >= MOD) x -= MOD;\n return *this;\n }\n constexpr ModInt operator+(const ModInt rhs) const {\n return ModInt(*this) += rhs; \n }\n constexpr ModInt& operator-=(const ModInt& rhs) {\n x -= rhs.x;\n if (x < 0) x += MOD;\n return *this;\n }\n constexpr ModInt operator-(const ModInt rhs) const {\n return ModInt(*this) -= rhs; \n }\n constexpr ModInt& operator*=(const ModInt& rhs) {\n x = x * rhs.x % MOD;\n return *this;\n }\n constexpr ModInt operator*(const ModInt rhs) const {\n return ModInt(*this) *= rhs; \n }\n constexpr ModInt& operator/=(const ModInt& rhs) {\n ModInt div = powmod(rhs, MOD - 2);\n (x *= div.x) %= MOD;\n return *this;\n }\n constexpr ModInt operator/(const ModInt rhs) const {\n return ModInt(*this) /= rhs;\n }\n constexpr ModInt powmod(ModInt m, long long p) {\n if (p == 0) return ModInt(1);\n ModInt tmp = powmod(m, p / 2);\n if (p & 1) return tmp * tmp * m;\n else return tmp * tmp;\n }\n constexpr ModInt& operator++() {\n x += 1;\n return *this;\n }\n constexpr ModInt operator++(int) {\n ModInt tmp(*this);\n operator++();\n return tmp;\n }\n constexpr ModInt& operator--() {\n x -= 1;\n return *this;\n }\n constexpr ModInt operator--(int) {\n ModInt tmp(*this);\n operator--();\n return tmp;\n }\n\n friend ostream& operator<<(ostream& os, const ModInt &rhs) {\n os << rhs.x;\n return os;\n }\n friend istream& operator>>(istream& is, ModInt& rhs) {\n is >> rhs.x;\n return is;\n }\n};\nbool operator==(const ModInt& lhs, const ModInt& rhs) {\n return lhs.x == rhs.x;\n}\nbool operator!=(const ModInt& lhs, const ModInt& rhs) {\n return !(lhs == rhs);\n}\nModInt powmod(ModInt m, long long p) {\n if (p == 0) return ModInt(1);\n ModInt tmp = powmod(m, p / 2);\n if (p & 1) return tmp * tmp * m;\n else return tmp * tmp;\n}\n\nusing modi = ModInt;\n\n\n// [ModInt]\n// verified at https://atcoder.jp/contests/abc021/submissions/15053490\nconst int NMAX = 1000005;\ntemplate < typename T >\nclass Combination {\npublic:\n std::vector<T> fac, invfac;\n Combination() {\n fac.resize(NMAX), invfac.resize(NMAX);\n fac[0] = fac[1] = T(1);\n invfac[0] = invfac[1] = T(1);\n for (int i = 2; i <= NMAX; i++) {\n fac[i] = fac[i - 1] * T(i);\n invfac[i] = invfac[i - 1] * powmod(T(i), MOD - 2);\n }\n }\n\n // nCr = n! / r!(n-r)!\n T nCr(int n, int r) {\n if (n < 0 || r > n || r < 0) return T(0);\n return fac[n] * invfac[r] * invfac[n - r];\n }\n \n // 重複組み合わせ nHr = (n + r - 1)C(r - 1)\n T nHr(int n, int r) {\n return nCr(n + r - 1, r);\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n, k; cin >> n >> k;\n Combination<modi> comb;\n\n modi asum = 0, bsum = 0;\n for (int i = 0; i < n; i++) {\n modi a, b; cin >> a >> b;\n asum += modi(a), bsum += modi(b);\n }\n asum /= modi(n), bsum /= modi(n);\n V<modi> fac(n, 1), pow2(n, 1);\n pow2[1] = 2;\n for (int i = 2; i < n; i++) {\n fac[i] = fac[i - 1] * modi(i);\n pow2[i] = pow2[i - 1] * modi(2);\n }\n\n modi ans = 0;\n for (int cyc = 1; 2 * cyc <= k; cyc++) {\n modi tmp = pow2[cyc] * fac[cyc - 1] * modi(n) * comb.nHr(cyc, k - 3 * cyc) * comb.nHr(cyc, n - k + cyc);\n ans += tmp * (modi(2 * cyc) * asum + modi(k - 2 * cyc) * bsum);\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 0.1, "time_ms": 180, "memory_kb": 18772, "score_of_the_acc": -0.2643, "final_rank": 15 }, { "submission_id": "aoj_3169_4880443", "code_snippet": "#include <iostream>\n#include <array>\n#include <algorithm>\n#include <vector>\n#include <bitset>\n#include <set>\n#include <unordered_set>\n#include <cmath>\n#include <complex>\n#include <deque>\n#include <iterator>\n#include <numeric>\n#include <map>\n#include <unordered_map>\n#include <queue>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <utility>\n#include <limits>\n#include <iomanip>\n#include <functional>\n#include <cassert>\n// #include <atcoder/all>\nusing namespace std;\n\nusing ll=long long;\ntemplate<class T> using V = vector<T>;\ntemplate<class T, class U> using P = pair<T, U>;\nusing vll = V<ll>;\nusing vvll = V<vll>;\n#define ALL(v) v.begin(),v.end()\ntemplate < class T > inline bool chmax(T& a, T b) {if (a < b) { a=b; return true; } return false; }\ntemplate < class T > inline bool chmin(T& a, T b) {if (a > b) { a=b; return true; } return false; }\n#define DEBUG_VLL(vec) for(int sz=0;sz<int(vec.size());sz++) std::cerr<<vec[sz]<<(sz==vec.size()-1?'\\n':' ');\n\nconst long long MOD = 998244353;\nconst long long HIGHINF = (long long)1e18;\nconst int INF = (int)1e9;\n\nclass ModInt {\npublic:\n long long x;\n constexpr ModInt(const long long x=0) : x((x+MOD)%MOD) {}\n constexpr ModInt& operator+=(const ModInt rhs) {\n x += rhs.x;\n if (x >= MOD) x -= MOD;\n return *this;\n }\n constexpr ModInt operator+(const ModInt rhs) const {\n return ModInt(*this) += rhs; \n }\n constexpr ModInt& operator-=(const ModInt& rhs) {\n x -= rhs.x;\n if (x < 0) x += MOD;\n return *this;\n }\n constexpr ModInt operator-(const ModInt rhs) const {\n return ModInt(*this) -= rhs; \n }\n constexpr ModInt& operator*=(const ModInt& rhs) {\n x = x * rhs.x % MOD;\n return *this;\n }\n constexpr ModInt operator*(const ModInt rhs) const {\n return ModInt(*this) *= rhs; \n }\n constexpr ModInt& operator/=(const ModInt& rhs) {\n ModInt div = powmod(rhs, MOD - 2);\n (x *= div.x) %= MOD;\n return *this;\n }\n constexpr ModInt operator/(const ModInt rhs) const {\n return ModInt(*this) /= rhs;\n }\n constexpr ModInt powmod(ModInt m, long long p) {\n if (p == 0) return ModInt(1);\n ModInt tmp = powmod(m, p / 2);\n if (p & 1) return tmp * tmp * m;\n else return tmp * tmp;\n }\n constexpr ModInt& operator++() {\n x += 1;\n return *this;\n }\n constexpr ModInt operator++(int) {\n ModInt tmp(*this);\n operator++();\n return tmp;\n }\n constexpr ModInt& operator--() {\n x -= 1;\n return *this;\n }\n constexpr ModInt operator--(int) {\n ModInt tmp(*this);\n operator--();\n return tmp;\n }\n\n friend ostream& operator<<(ostream& os, const ModInt &rhs) {\n os << rhs.x;\n return os;\n }\n friend istream& operator>>(istream& is, ModInt& rhs) {\n is >> rhs.x;\n return is;\n }\n};\nbool operator==(const ModInt& lhs, const ModInt& rhs) {\n return lhs.x == rhs.x;\n}\nbool operator!=(const ModInt& lhs, const ModInt& rhs) {\n return !(lhs == rhs);\n}\nModInt powmod(ModInt m, long long p) {\n if (p == 0) return ModInt(1);\n ModInt tmp = powmod(m, p / 2);\n if (p & 1) return tmp * tmp * m;\n else return tmp * tmp;\n}\n\nusing modi = ModInt;\n\n\n// [ModInt]\n// verified at https://atcoder.jp/contests/abc021/submissions/15053490\nconst int NMAX = 1000005;\ntemplate < typename T >\nclass Combination {\npublic:\n std::vector<T> fac, invfac;\n Combination() {\n fac.resize(NMAX), invfac.resize(NMAX);\n fac[0] = fac[1] = T(1);\n invfac[0] = invfac[1] = T(1);\n for (int i = 2; i <= NMAX; i++) {\n fac[i] = fac[i - 1] * T(i);\n invfac[i] = invfac[i - 1] * powmod(T(i), MOD - 2);\n }\n }\n\n // nCr = n! / r!(n-r)!\n T nCr(int n, int r) {\n if (n < 0 || r > n || r < 0) return T(0);\n return fac[n] * invfac[r] * invfac[n - r];\n }\n \n // 重複組み合わせ nHr = (n + r - 1)C(r - 1)\n T nHr(int n, int r) {\n return nCr(n + r - 1, r);\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n, k; cin >> n >> k;\n Combination<modi> comb;\n\n modi asum = 0, bsum = 0;\n for (int i = 0; i < n; i++) {\n modi a, b; cin >> a >> b;\n asum += a, bsum += b;\n }\n asum /= modi(n), bsum /= modi(n);\n V<modi> fac(n, 1), pow2(n, 1);\n pow2[1] = 2;\n for (int i = 2; i < n; i++) {\n fac[i] = fac[i - 1] * modi(i);\n pow2[i] = pow2[i - 1] * modi(2);\n }\n\n modi ans = 0;\n for (int cyc = 1; cyc < n; cyc++) {\n if (k < 2 * cyc) break;\n modi tmp = pow2[cyc] * fac[cyc - 1] * modi(n) * comb.nHr(cyc, k - 3 * cyc) * comb.nHr(cyc, n - k + cyc);\n ans += tmp * (modi(2 * cyc) * asum + modi(k - 2 * cyc) * bsum);\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 0.1, "time_ms": 180, "memory_kb": 18700, "score_of_the_acc": -0.2633, "final_rank": 13 }, { "submission_id": "aoj_3169_4879627", "code_snippet": "#include <iostream>\n#include <array>\n#include <algorithm>\n#include <vector>\n#include <bitset>\n#include <set>\n#include <unordered_set>\n#include <cmath>\n#include <complex>\n#include <deque>\n#include <iterator>\n#include <numeric>\n#include <map>\n#include <unordered_map>\n#include <queue>\n#include <stack>\n#include <string>\n#include <tuple>\n#include <utility>\n#include <limits>\n#include <iomanip>\n#include <functional>\n#include <cassert>\n// #include <atcoder/all>\nusing namespace std;\n\nusing ll=long long;\ntemplate<class T> using V = vector<T>;\ntemplate<class T, class U> using P = pair<T, U>;\nusing vll = V<ll>;\nusing vvll = V<vll>;\n#define ALL(v) v.begin(),v.end()\ntemplate < class T > inline bool chmax(T& a, T b) {if (a < b) { a=b; return true; } return false; }\ntemplate < class T > inline bool chmin(T& a, T b) {if (a > b) { a=b; return true; } return false; }\n#define DEBUG_VLL(vec) for(int sz=0;sz<int(vec.size());sz++) std::cerr<<vec[sz]<<(sz==vec.size()-1?'\\n':' ');\n\nconst long long MOD = 998244353;\nconst long long HIGHINF = (long long)1e18;\nconst int INF = (int)1e9;\n\nclass ModInt {\npublic:\n long long x;\n constexpr ModInt(const long long x=0) : x((x+MOD)%MOD) {}\n constexpr ModInt& operator+=(const ModInt rhs) {\n x += rhs.x;\n if (x >= MOD) x -= MOD;\n return *this;\n }\n constexpr ModInt operator+(const ModInt rhs) const {\n return ModInt(*this) += rhs; \n }\n constexpr ModInt& operator-=(const ModInt& rhs) {\n x -= rhs.x;\n if (x < 0) x += MOD;\n return *this;\n }\n constexpr ModInt operator-(const ModInt rhs) const {\n return ModInt(*this) -= rhs; \n }\n constexpr ModInt& operator*=(const ModInt& rhs) {\n x = x * rhs.x % MOD;\n return *this;\n }\n constexpr ModInt operator*(const ModInt rhs) const {\n return ModInt(*this) *= rhs; \n }\n constexpr ModInt& operator/=(const ModInt& rhs) {\n ModInt div = powmod(rhs, MOD - 2);\n (x *= div.x) %= MOD;\n return *this;\n }\n constexpr ModInt operator/(const ModInt rhs) const {\n return ModInt(*this) /= rhs;\n }\n constexpr ModInt powmod(ModInt m, long long p) {\n if (p == 0) return ModInt(1);\n ModInt tmp = powmod(m, p / 2);\n if (p & 1) return tmp * tmp * m;\n else return tmp * tmp;\n }\n constexpr ModInt& operator++() {\n x += 1;\n return *this;\n }\n constexpr ModInt operator++(int) {\n ModInt tmp(*this);\n operator++();\n return tmp;\n }\n constexpr ModInt& operator--() {\n x -= 1;\n return *this;\n }\n constexpr ModInt operator--(int) {\n ModInt tmp(*this);\n operator--();\n return tmp;\n }\n\n friend ostream& operator<<(ostream& os, const ModInt &rhs) {\n os << rhs.x;\n return os;\n }\n friend istream& operator>>(istream& is, ModInt& rhs) {\n is >> rhs.x;\n return is;\n }\n};\nbool operator==(const ModInt& lhs, const ModInt& rhs) {\n return lhs.x == rhs.x;\n}\nbool operator!=(const ModInt& lhs, const ModInt& rhs) {\n return !(lhs == rhs);\n}\nModInt powmod(ModInt m, long long p) {\n if (p == 0) return ModInt(1);\n ModInt tmp = powmod(m, p / 2);\n if (p & 1) return tmp * tmp * m;\n else return tmp * tmp;\n}\n\nusing modi = ModInt;\n\n\n// [ModInt]\n// verified at https://atcoder.jp/contests/abc021/submissions/15053490\nconst int NMAX = 1000005;\ntemplate < typename T >\nclass Combination {\npublic:\n std::vector<T> fac, invfac;\n Combination() {\n fac.resize(NMAX), invfac.resize(NMAX);\n fac[0] = fac[1] = T(1);\n invfac[0] = invfac[1] = T(1);\n for (int i = 2; i <= NMAX; i++) {\n fac[i] = fac[i - 1] * T(i);\n invfac[i] = invfac[i - 1] * powmod(T(i), MOD - 2);\n }\n }\n\n // nCr = n! / r!(n-r)!\n T nCr(int n, int r) {\n if (n < 0 || r > n || r < 0) return T(0);\n return fac[n] * invfac[r] * invfac[n - r];\n }\n \n // 重複組み合わせ nHr = (n + r - 1)C(r - 1)\n T nHr(int n, int r) {\n return nCr(n + r - 1, r);\n }\n};\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n int n, k; cin >> n >> k;\n Combination<modi> comb;\n\n modi asum = 0, bsum = 0;\n for (int i = 0; i < n; i++) {\n modi a, b; cin >> a >> b;\n asum += a, bsum += b;\n }\n asum /= modi(n), bsum /= modi(n);\n V<modi> fac(n, 1), pow2(n, 1);\n pow2[1] = 2;\n for (int i = 2; i < n; i++) {\n fac[i] = fac[i - 1] * modi(i);\n pow2[i] = pow2[i - 1] * modi(2);\n }\n\n modi ans = 0;\n for (int cyc = 1; cyc < n; cyc++) {\n if (k - 2 * cyc <= 0) break;\n modi tmp = pow2[cyc] * fac[cyc - 1] * modi(n) * comb.nHr(cyc, k - 3 * cyc) * comb.nHr(cyc, n - k + cyc);\n ans += tmp * (modi(2 * cyc) * asum + modi(k - 2 * cyc) * bsum);\n }\n cout << ans << '\\n';\n return 0;\n}", "accuracy": 0.1, "time_ms": 180, "memory_kb": 18740, "score_of_the_acc": -0.2639, "final_rank": 14 }, { "submission_id": "aoj_3169_4879023", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\ntemplate<class T> ostream& operator << (ostream &s, vector<vector<T> > P)\n{ for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; }\ntemplate<class T> ostream& operator << (ostream &s, set<T> P)\n{ for(auto it : P) { s << \"<\" << it << \"> \"; } return s << endl; }\ntemplate<class T1, class T2> ostream& operator << (ostream &s, map<T1,T2> P)\n{ for(auto it : P) { s << \"<\" << it.first << \"->\" << it.second << \"> \"; } return s << endl; }\n\n\n\n// modint: mod 計算を int を扱うように扱える構造体\ntemplate<int MOD> struct Fp {\n long long val;\n constexpr Fp(long long v = 0) noexcept : val(v % MOD) {\n if (val < 0) val += MOD;\n }\n constexpr int getmod() { return MOD; }\n constexpr Fp operator - () const noexcept {\n return val ? MOD - val : 0;\n }\n constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }\n constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }\n constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }\n constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }\n constexpr Fp& operator += (const Fp& r) noexcept {\n val += r.val;\n if (val >= MOD) val -= MOD;\n return *this;\n }\n constexpr Fp& operator -= (const Fp& r) noexcept {\n val -= r.val;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr Fp& operator *= (const Fp& r) noexcept {\n val = val * r.val % MOD;\n return *this;\n }\n constexpr Fp& operator /= (const Fp& r) noexcept {\n long long a = r.val, b = MOD, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; swap(a, b);\n u -= t * v; swap(u, v);\n }\n val = val * u % MOD;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr bool operator == (const Fp& r) const noexcept {\n return this->val == r.val;\n }\n constexpr bool operator != (const Fp& r) const noexcept {\n return this->val != r.val;\n }\n friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {\n return os << x.val;\n }\n friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {\n if (n == 0) return 1;\n auto t = modpow(a, n / 2);\n t = t * t;\n if (n & 1) t = t * a;\n return t;\n }\n};\n\n// 二項係数ライブラリ\ntemplate<class T> struct BiCoef {\n vector<T> fact_, inv_, finv_;\n constexpr BiCoef() {}\n constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {\n init(n);\n }\n constexpr void init(int n) noexcept {\n fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);\n int MOD = fact_[0].getmod();\n for(int i = 2; i < n; i++){\n fact_[i] = fact_[i-1] * i;\n inv_[i] = -inv_[MOD%i] * (MOD/i);\n finv_[i] = finv_[i-1] * inv_[i];\n }\n }\n constexpr T com(int n, int k) const noexcept {\n if (n < k || n < 0 || k < 0) return 0;\n return fact_[n] * finv_[k] * finv_[n-k];\n }\n constexpr T fact(int n) const noexcept {\n if (n < 0) return 0;\n return fact_[n];\n }\n constexpr T inv(int n) const noexcept {\n if (n < 0) return 0;\n return inv_[n];\n }\n constexpr T finv(int n) const noexcept {\n if (n < 0) return 0;\n return finv_[n];\n }\n};\n\nconst int MOD = 998244353;\nusing mint = Fp<MOD>;\n\nint main() {\n int N, K;\n cin >> N >> K;\n BiCoef<mint> bc(N*2 + 1);\n mint A = 0, B = 0;\n for (int i = 0; i < N; ++i) { long long v; cin >> v; A += v; }\n for (int i = 0; i < N; ++i) { long long v; cin >> v; B += v; }\n vector<mint> two(N+5, 1);\n for (int i = 1; i < two.size(); ++i) two[i] = two[i-1] * 2;\n\n mint res = 0;\n for (int i = 1; i*2 <= K; ++i) {\n mint fac = bc.com(K - i*2 - 1, i - 1) *\n bc.com(N - K + i*2 - 1, i - 1) *\n bc.fact(i - 1) * two[i];\n mint tmp = fac * (A * i*2 + B * (K - i*2));\n res += tmp;\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 680, "memory_kb": 57388, "score_of_the_acc": -1.3945, "final_rank": 6 }, { "submission_id": "aoj_3169_4879018", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\ntemplate<class T> ostream& operator << (ostream &s, vector<vector<T> > P)\n{ for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; }\ntemplate<class T> ostream& operator << (ostream &s, set<T> P)\n{ for(auto it : P) { s << \"<\" << it << \"> \"; } return s << endl; }\ntemplate<class T1, class T2> ostream& operator << (ostream &s, map<T1,T2> P)\n{ for(auto it : P) { s << \"<\" << it.first << \"->\" << it.second << \"> \"; } return s << endl; }\n\n\n\n// modint: mod 計算を int を扱うように扱える構造体\ntemplate<int MOD> struct Fp {\n long long val;\n constexpr Fp(long long v = 0) noexcept : val(v % MOD) {\n if (val < 0) val += MOD;\n }\n constexpr int getmod() { return MOD; }\n constexpr Fp operator - () const noexcept {\n return val ? MOD - val : 0;\n }\n constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }\n constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }\n constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }\n constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }\n constexpr Fp& operator += (const Fp& r) noexcept {\n val += r.val;\n if (val >= MOD) val -= MOD;\n return *this;\n }\n constexpr Fp& operator -= (const Fp& r) noexcept {\n val -= r.val;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr Fp& operator *= (const Fp& r) noexcept {\n val = val * r.val % MOD;\n return *this;\n }\n constexpr Fp& operator /= (const Fp& r) noexcept {\n long long a = r.val, b = MOD, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b; swap(a, b);\n u -= t * v; swap(u, v);\n }\n val = val * u % MOD;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr bool operator == (const Fp& r) const noexcept {\n return this->val == r.val;\n }\n constexpr bool operator != (const Fp& r) const noexcept {\n return this->val != r.val;\n }\n friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {\n return os << x.val;\n }\n friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {\n if (n == 0) return 1;\n auto t = modpow(a, n / 2);\n t = t * t;\n if (n & 1) t = t * a;\n return t;\n }\n};\n\n// 二項係数ライブラリ\ntemplate<class T> struct BiCoef {\n vector<T> fact_, inv_, finv_;\n constexpr BiCoef() {}\n constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {\n init(n);\n }\n constexpr void init(int n) noexcept {\n fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);\n int MOD = fact_[0].getmod();\n for(int i = 2; i < n; i++){\n fact_[i] = fact_[i-1] * i;\n inv_[i] = -inv_[MOD%i] * (MOD/i);\n finv_[i] = finv_[i-1] * inv_[i];\n }\n }\n constexpr T com(int n, int k) const noexcept {\n if (n < k || n < 0 || k < 0) return 0;\n return fact_[n] * finv_[k] * finv_[n-k];\n }\n constexpr T fact(int n) const noexcept {\n if (n < 0) return 0;\n return fact_[n];\n }\n constexpr T inv(int n) const noexcept {\n if (n < 0) return 0;\n return inv_[n];\n }\n constexpr T finv(int n) const noexcept {\n if (n < 0) return 0;\n return finv_[n];\n }\n};\n\nconst int MOD = 998244353;\nusing mint = Fp<MOD>;\n\nint main() {\n int N, K;\n cin >> N >> K;\n BiCoef<mint> bc(N+1);\n mint A = 0, B = 0;\n for (int i = 0; i < N; ++i) { long long v; cin >> v; A += v; }\n for (int i = 0; i < N; ++i) { long long v; cin >> v; B += v; }\n vector<mint> two(N+5, 1);\n for (int i = 1; i < two.size(); ++i) two[i] = two[i-1] * 2;\n\n mint res = 0;\n for (int i = 1; i*2 <= K; ++i) {\n mint fac = bc.com(K - i*2 - 1, i - 1) *\n bc.com(N - K + i*2 - 1, i - 1) *\n bc.fact(i - 1) * two[i];\n mint tmp = fac * (A * i*2 + B * (K - i*2));\n res += tmp;\n }\n cout << res << endl;\n}", "accuracy": 0.8, "time_ms": 570, "memory_kb": 33892, "score_of_the_acc": -0.9327, "final_rank": 10 }, { "submission_id": "aoj_3169_4877335", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nconst int MOD=998244353;\n\nint pw(int n,int k){\n assert(k>=0);\n int res=1;\n while(k){\n if(k&1)(res*=n)%=MOD;\n (n*=n)%=MOD;\n k>>=1;\n }\n return res;\n}\nstd::vector<int> Factorial(5e6),Finverse(5e6);\ninline void Cinit(){\n Factorial[0]=1;\n for(int i=1;i<5e6;i++)Factorial[i]=(Factorial[i-1]*i)%MOD;\n Finverse[4999999]=pw(Factorial[4999999],MOD-2);\n for(int i=4999998;i>=0;i--)Finverse[i]=(i+1)*Finverse[i+1]%MOD;\n}\nint nCk(int n,int k){\n assert(n>=k&&k>=0);\n if(n<k)return 0;if(k<0)return 0;\n assert(n<5000000&&k<5000000);\n if(!Factorial[0])Cinit();\n int res=Factorial[n];\n (res*=Finverse[k])%=MOD;\n (res*=Finverse[n-k])%=MOD;\n return res;\n}\n\nsigned main(){\n int n,k;cin>>n>>k;\n int asum=0,bsum=0;\n for(int i=0;i<n;i++){\n int a;cin>>a;asum+=a;\n }\n for(int i=0;i<n;i++){\n int b;cin>>b;bsum+=b;\n }\n asum%=MOD;bsum%=MOD;\n int ans=0;\n for(int i=1;i*3<=k&&2*i<=n;i++){//i回降りてi回登る->k-2i個下を旅する\n if(k-2*i>n-i)continue;\n int tmp=nCk(k-3*i+i-1,i-1)*nCk(n-k+2*i-i+i-1,i-1)%MOD;\n (tmp*=n)%=MOD;\n (tmp*=pw(i,MOD-2))%=MOD;\n (tmp*=pw(2,i))%=MOD;\n (tmp*=Factorial[i])%=MOD;\n int A=asum*2*i%MOD*pw(n,MOD-2)%MOD;\n int B=bsum*(k-2*i)%MOD*pw(n,MOD-2)%MOD;\n (tmp*=A+B)%=MOD;\n (ans+=tmp)%=MOD;\n }\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 600, "memory_kb": 80816, "score_of_the_acc": -1.6344, "final_rank": 8 }, { "submission_id": "aoj_3169_4877310", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nconst int MOD=998244353;\n\nint pw(int n,int k){\n assert(k>=0);\n int res=1;\n while(k){\n if(k&1)(res*=n)%=MOD;\n (n*=n)%=MOD;\n k>>=1;\n }\n return res;\n}\nstd::vector<int> Factorial(5e6),Finverse(5e6);\ninline void Cinit(){\n Factorial[0]=1;\n for(int i=1;i<5e6;i++)Factorial[i]=(Factorial[i-1]*i)%MOD;\n Finverse[4999999]=pw(Factorial[4999999],MOD-2);\n for(int i=4999998;i>=0;i--)Finverse[i]=(i+1)*Finverse[i+1]%MOD;\n}\nint nCk(int n,int k){\n assert(n>=k&&k>=0);\n if(n<k)return 0;if(k<0)return 0;\n assert(n<5000000&&k<5000000);\n if(!Factorial[0])Cinit();\n int res=Factorial[n];\n (res*=Finverse[k])%=MOD;\n (res*=Finverse[n-k])%=MOD;\n return res;\n}\n\nsigned main(){\n int n,k;cin>>n>>k;\n int asum=0,bsum=0;\n for(int i=0;i<n;i++){\n int a;cin>>a;asum+=a;\n }\n for(int i=0;i<n;i++){\n int b;cin>>b;bsum+=b;\n }\n asum%=MOD;bsum%=MOD;\n int ans=0;\n for(int i=1;i*3<=k&&2*i<=n;i++){//i回降りてi回登る->k-2i個下を旅する\n if(k-2*i>n-i)continue;\n int tmp=nCk(k-3*i+i-1,i-1)*nCk(n-k+2*i-i+i-1,i-1)%MOD;\n (tmp*=n)%=MOD;\n (tmp*=pw(n-(k-2*i),MOD-2))%=MOD;\n (tmp*=pw(2,i))%=MOD;\n (tmp*=Factorial[i])%=MOD;\n int A=asum*2*i%MOD*pw(n,MOD-2)%MOD;\n int B=bsum*(k-2*i)%MOD*pw(n,MOD-2)%MOD;\n (tmp*=A+B)%=MOD;\n (ans+=tmp)%=MOD;\n }\n cout<<ans<<endl;\n}", "accuracy": 0.1, "time_ms": 60, "memory_kb": 80728, "score_of_the_acc": -1.0053, "final_rank": 17 }, { "submission_id": "aoj_3169_4877308", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\nconst int MOD=998244353;\n\nint pw(int n,int k){\n assert(k>=0);\n int res=1;\n while(k){\n if(k&1)(res*=n)%=MOD;\n (n*=n)%=MOD;\n k>>=1;\n }\n return res;\n}\nstd::vector<int> Factorial(5e6),Finverse(5e6);\ninline void Cinit(){\n Factorial[0]=1;\n for(int i=1;i<5e6;i++)Factorial[i]=(Factorial[i-1]*i)%MOD;\n Finverse[4999999]=pw(Factorial[4999999],MOD-2);\n for(int i=4999998;i>=0;i--)Finverse[i]=(i+1)*Finverse[i+1]%MOD;\n}\nint nCk(int n,int k){\n if(n<k)return 0;if(k<0)return 0;\n assert(n<5000000&&k<5000000);\n if(!Factorial[0])Cinit();\n int res=Factorial[n];\n (res*=Finverse[k])%=MOD;\n (res*=Finverse[n-k])%=MOD;\n return res;\n}\n\nsigned main(){\n int n,k;cin>>n>>k;\n int asum=0,bsum=0;\n for(int i=0;i<n;i++){\n int a;cin>>a;asum+=a;\n }\n for(int i=0;i<n;i++){\n int b;cin>>b;bsum+=b;\n }\n asum%=MOD;bsum%=MOD;\n int ans=0;\n for(int i=1;i*3<=k&&2*i<=n;i++){//i回降りてi回登る->k-2i個下を旅する\n if(k-2*i>n-i)continue;\n int tmp=nCk(k-3*i+i-1,i-1)*nCk(n-k+2*i-i+i-1,i-1)%MOD;\n (tmp*=n)%=MOD;\n (tmp*=pw(n-(k-2*i),MOD-2))%=MOD;\n (tmp*=pw(2,i))%=MOD;\n (tmp*=Factorial[i])%=MOD;\n int A=asum*2*i%MOD*pw(n,MOD-2)%MOD;\n int B=bsum*(k-2*i)%MOD*pw(n,MOD-2)%MOD;\n (tmp*=A+B)%=MOD;\n (ans+=tmp)%=MOD;\n }\n cout<<ans<<endl;\n}", "accuracy": 0.1, "time_ms": 60, "memory_kb": 80768, "score_of_the_acc": -1.0058, "final_rank": 18 } ]
aoj_3173_cpp
B Hokkaido_University2 問題文 ほむちゃんは春から北海道大学に入学しました。 今日は初めての授業。しかし大変、寝坊をしてしまいました。 ほむちゃんは初めての授業に間に合うことができるのでしょうか。 札幌は碁盤目状の町並みで知られています。 より正確には、札幌はxy平面で表されます。 ほむちゃんは各時刻 $t=0,1,2,\ldots$ で次のいずれかの行動をします。 ほむちゃんは時刻 $t$ に $(x,y)$ にいるとします。 $x$ が偶数または $t$ が偶数のとき時刻 $t+1$ に $(x+1,y)$ に移動する。 $x$ が奇数または $t$ が偶数のとき時刻 $t+1$ に $(x-1,y)$ に移動する。 $y$ が偶数または $t$ が奇数のとき時刻 $t+1$ に $(x,y+1)$ に移動する。 $y$ が奇数または $t$ が奇数のとき時刻 $t+1$ に $(x,y-1)$ に移動する。 時刻 $t+1$ まで $(x,y)$ にとどまる。 ほむちゃんは時刻 $0$ に $(s_x,s_y)$ にいます。 北海道大学の校門は $(g_x,g_y)$ にあります。 全ての行動の選び方にたいする、ほむちゃんが $(g_x,g_y)$ にたどり着く時刻の最小値を求めてください。 入力 入力は以下の形式で標準入力から与えられる。 $s_x$ $s_y$ $g_x$ $g_y$ 制約 $0 \leq s_x,s_y,g_x,g_y \leq 10^{18}$ 入力は全て整数である。 出力 答えを 1 行に出力せよ。 入力例1 3 5 4 9 出力例1 5 以下のように動くのが最適です。 時刻 $0$ に $(3,5)$ から $(4,5)$ に移動する。 時刻 $1$ に $(4,5)$ から $(4,6)$ に移動する。 時刻 $2$ に $(4,6)$ から $(4,7)$ に移動する。 時刻 $3$ に $(4,7)$ から $(4,8)$ に移動する。 時刻 $4$ に $(4,8)$ から $(4,9)$ に移動する。 時刻 $5$ に $(4,9)$ に到着する。 他の動き方では時刻 $5$ に $(4,9)$ にいることはできません。 入力例2 0 0 1000 0 出力例2 1001
[ { "submission_id": "aoj_3173_5075124", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Printer {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid print(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(bool v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(vector<bool>::reference v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid print(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid print(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid print(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void print(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void print(const pair<T, U>& v) const {\n\t\tprint(v.first);\n\t\tprint(D.d);\n\t\tprint(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid print_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) print(D.d);\n\t\t\tprint(*i);\n\t\t}\n\t}\n\ttemplate <class T> void print(const vector<T>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void print(const array<T, N>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void print(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) print(D.l);\n\t\t\tprint(v[i]);\n\t\t}\n\t}\n\n\tPrinter() = default;\n\tPrinter(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tPrinter& operator()() {\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Printer& operator()(H&& h) {\n\t\tprint(h);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Printer& operator()(H&& h, T&&... t) {\n\t\tprint(h);\n\t\tprint(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tPrinter& range(const InputIterator& begin, const InputIterator& end) {\n\t\tprint_range(begin, end);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Printer& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tPrinter& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tPrinter& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tPrinter& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tPrinter& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n\ttemplate <class V> auto operator()(const V& val, size_t i) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(next(begin(v), i), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct EachConsPair_impl {\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, EachConsPair_impl& c) {\n\t\tvector<pair<value_type, value_type>> result;\n\t\tif (size(v) >= 2) {\n\t\t\tresult.reserve(size(v) - 1);\n\t\t\tfor (size_t i = 0; i < size(v) - 1; ++i) {\n\t\t\t\tresult.emplace_back(v[i], v[i + 1]);\n\t\t\t}\n\t\t}\n\t\treturn result;\n\t}\n} EachConsPair;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T> constexpr int BIT(T x, int i) {\n\treturn (x & (T(1) << i)) ? 1 : 0;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 5 \"/home/yuruhiya/programming/library/Graph/GraphTemplate.cpp\"\nusing namespace std;\n\nusing Weight = long long;\nconstexpr Weight INF = numeric_limits<Weight>::max();\nstruct Edge {\n\tint to;\n\tWeight cost;\n\tEdge() : to(-1), cost(-1) {}\n\tEdge(int _to, Weight _cost = 1) : to(_to), cost(_cost) {}\n\tfriend bool operator<(const Edge& e1, const Edge& e2) {\n\t\treturn e1.cost < e2.cost;\n\t}\n\tfriend bool operator>(const Edge& e1, const Edge& e2) {\n\t\treturn e1.cost > e2.cost;\n\t}\n\tfriend ostream& operator<<(ostream& os, const Edge& e) {\n\t\treturn os << \"->\" << e.to << '(' << e.cost << ')';\n\t}\n};\nusing Graph = vector<vector<Edge>>;\nstruct Edge2 {\n\tint from, to;\n\tWeight cost;\n\tEdge2() : from(-1), to(-1), cost(0) {}\n\tEdge2(int _from, int _to, Weight _cost) : from(_from), to(_to), cost(_cost) {}\n\tfriend bool operator<(const Edge2& e1, const Edge2& e2) {\n\t\treturn e1.cost < e2.cost;\n\t}\n\tfriend bool operator>(const Edge2& e1, const Edge2& e2) {\n\t\treturn e1.cost > e2.cost;\n\t}\n\tfriend ostream& operator<<(ostream& os, const Edge2& e) {\n\t\treturn os << e.from << \"->\" << e.to << '(' << e.cost << ')';\n\t}\n};\nusing Edges = vector<Edge2>;\nusing Matrix = vector<vector<Weight>>;\n#line 5 \"/home/yuruhiya/programming/library/Graph/Dijkstra.cpp\"\nusing namespace std;\n\nvector<Weight> Dijkstra(const Graph& graph, int s) {\n\tint V = graph.size();\n\tvector<Weight> dist(V, INF);\n\tdist[s] = 0;\n\tpriority_queue<Edge, vector<Edge>, greater<Edge>> pq;\n\tpq.emplace(s, 0);\n\twhile (!pq.empty()) {\n\t\tEdge p = pq.top();\n\t\tpq.pop();\n\t\tint v = p.to;\n\t\tif (dist[v] < p.cost) continue;\n\t\tfor (auto e : graph[v]) {\n\t\t\tif (dist[e.to] > dist[v] + e.cost) {\n\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\tpq.emplace(e.to, dist[e.to]);\n\t\t\t}\n\t\t}\n\t}\n\treturn dist;\n}\nWeight Dijkstra(const Graph& graph, int s, int t) {\n\tint V = graph.size();\n\tvector<Weight> dist(V, INF);\n\tdist[s] = 0;\n\tpriority_queue<Edge, vector<Edge>, greater<Edge>> pq;\n\tpq.emplace(s, 0);\n\twhile (!pq.empty()) {\n\t\tEdge p = pq.top();\n\t\tpq.pop();\n\t\tint v = p.to;\n\t\tif (v == t) return dist[t];\n\t\tif (dist[v] < p.cost) continue;\n\t\tfor (auto e : graph[v]) {\n\t\t\tif (dist[e.to] > dist[v] + e.cost) {\n\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\tpq.emplace(e.to, dist[e.to]);\n\t\t\t}\n\t\t}\n\t}\n\treturn dist[t];\n}\n#line 3 \"a.cpp\"\n\nint main() {\n\tinl(sx, sy, gx, gy);\n\n\tconst int range = 50;\n\tVL x_val, y_val;\n\tx_val << step(sx - range, sx + range).to_a();\n\tx_val << step(gx - range, gx + range).to_a();\n\ty_val << step(sy - range, sy + range).to_a();\n\ty_val << step(gy - range, gy + range).to_a();\n\tx_val = x_val | Uniq;\n\ty_val = y_val | Uniq;\n\tdump(x_val, y_val);\n\n\tconst int MAX_V = sz(x_val) * sz(y_val) * 2;\n\tGraph g(MAX_V);\n\tauto to_i = [&](ll x, ll y, ll time) {\n\t\treturn lower_index(x_val, x) * sz(y_val) * 2 + lower_index(y_val, y) * 2 + time;\n\t};\n\tauto add_edge = [&](ll x1, ll y1, ll t1, ll x2, ll y2, ll t2, ll cost) {\n\t\tg[to_i(x1, y1, t1)].emplace_back(to_i(x2, y2, t2), cost);\n\t};\n\tauto add_edge2 = [&](ll x1, ll y1, ll t1, ll x2, ll y2, ll t2, ll cost) {\n\t\tadd_edge(x1, y1, t1, x2, y2, t2, cost);\n\t\tadd_edge(x2, y2, t2, x1, y1, t1, cost);\n\t};\n\n\tfor (ll x : x_val) {\n\t\tfor (ll y : y_val) {\n\t\t\tfor (ll f : {0, 1}) {\n\t\t\t\tadd_edge2(x, y, f, x, y, 1 - f, 1);\n\t\t\t}\n\t\t}\n\t}\n\tfor (auto [x1, x2] : x_val | EachConsPair) {\n\t\tfor (ll y : y_val) {\n\t\t\tfor (ll f : {0, 1}) {\n\t\t\t\tif (x1 + 1 == x2) {\n\t\t\t\t\tif (x1 % 2 == 0 || f == 0) {\n\t\t\t\t\t\tadd_edge2(x1, y, f, x2, y, 1 - f, 1);\n\t\t\t\t\t}\n\t\t\t\t} else {\n\t\t\t\t\tif ((x1 % 2 == 1 && f == 0) || (x1 % 2 == 0 && f == 1)) {\n\t\t\t\t\t\tadd_edge(x1, y, f, x2, y, (f + x2 - x1) % 2, x2 - x1);\n\t\t\t\t\t}\n\t\t\t\t\tif ((x2 % 2 == 0 && f == 0) || (x2 % 2 == 1 && f == 1)) {\n\t\t\t\t\t\tadd_edge(x2, y, f, x1, y, (f + x2 - x1) % 2, x2 - x1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tfor (ll x : x_val) {\n\t\tfor (auto [y1, y2] : y_val | EachConsPair) {\n\t\t\tfor (ll f : {0, 1}) {\n\t\t\t\tif (y1 + 1 == y2) {\n\t\t\t\t\tif (y1 % 2 == 0 || f == 1) {\n\t\t\t\t\t\tadd_edge2(x, y1, f, x, y2, 1 - f, 1);\n\t\t\t\t\t}\n\t\t\t\t} else {\n\t\t\t\t\tif ((y1 % 2 == 1 && f == 1) || (y1 % 2 == 0 && f == 0)) {\n\t\t\t\t\t\tadd_edge(x, y1, f, x, y2, (f + y2 - y1) % 2, y2 - y1);\n\t\t\t\t\t}\n\t\t\t\t\tif ((y2 % 2 == 0 && f == 1) || (y2 % 2 == 1 && f == 0)) {\n\t\t\t\t\t\tadd_edge(x, y2, f, x, y1, (f + y2 - y1) % 2, y2 - y1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tll ans1 = Dijkstra(g, to_i(sx, sy, 0), to_i(gx, gy, 0));\n\tll ans2 = Dijkstra(g, to_i(sx, sy, 0), to_i(gx, gy, 1));\n\tout(min(ans1, ans2));\n}", "accuracy": 0.0425531914893617, "time_ms": 40, "memory_kb": 17076, "score_of_the_acc": -0.3794, "final_rank": 20 }, { "submission_id": "aoj_3173_5075116", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Printer {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid print(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(bool v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(vector<bool>::reference v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid print(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid print(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid print(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void print(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void print(const pair<T, U>& v) const {\n\t\tprint(v.first);\n\t\tprint(D.d);\n\t\tprint(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid print_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) print(D.d);\n\t\t\tprint(*i);\n\t\t}\n\t}\n\ttemplate <class T> void print(const vector<T>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void print(const array<T, N>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void print(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) print(D.l);\n\t\t\tprint(v[i]);\n\t\t}\n\t}\n\n\tPrinter() = default;\n\tPrinter(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tPrinter& operator()() {\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Printer& operator()(H&& h) {\n\t\tprint(h);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Printer& operator()(H&& h, T&&... t) {\n\t\tprint(h);\n\t\tprint(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tPrinter& range(const InputIterator& begin, const InputIterator& end) {\n\t\tprint_range(begin, end);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Printer& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tPrinter& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tPrinter& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tPrinter& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tPrinter& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n\ttemplate <class V> auto operator()(const V& val, size_t i) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(next(begin(v), i), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct EachConsPair_impl {\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, EachConsPair_impl& c) {\n\t\tvector<pair<value_type, value_type>> result;\n\t\tif (size(v) >= 2) {\n\t\t\tresult.reserve(size(v) - 1);\n\t\t\tfor (size_t i = 0; i < size(v) - 1; ++i) {\n\t\t\t\tresult.emplace_back(v[i], v[i + 1]);\n\t\t\t}\n\t\t}\n\t\treturn result;\n\t}\n} EachConsPair;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T> constexpr int BIT(T x, int i) {\n\treturn (x & (T(1) << i)) ? 1 : 0;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 5 \"/home/yuruhiya/programming/library/Graph/GraphTemplate.cpp\"\nusing namespace std;\n\nusing Weight = long long;\nconstexpr Weight INF = numeric_limits<Weight>::max();\nstruct Edge {\n\tint to;\n\tWeight cost;\n\tEdge() : to(-1), cost(-1) {}\n\tEdge(int _to, Weight _cost = 1) : to(_to), cost(_cost) {}\n\tfriend bool operator<(const Edge& e1, const Edge& e2) {\n\t\treturn e1.cost < e2.cost;\n\t}\n\tfriend bool operator>(const Edge& e1, const Edge& e2) {\n\t\treturn e1.cost > e2.cost;\n\t}\n\tfriend ostream& operator<<(ostream& os, const Edge& e) {\n\t\treturn os << \"->\" << e.to << '(' << e.cost << ')';\n\t}\n};\nusing Graph = vector<vector<Edge>>;\nstruct Edge2 {\n\tint from, to;\n\tWeight cost;\n\tEdge2() : from(-1), to(-1), cost(0) {}\n\tEdge2(int _from, int _to, Weight _cost) : from(_from), to(_to), cost(_cost) {}\n\tfriend bool operator<(const Edge2& e1, const Edge2& e2) {\n\t\treturn e1.cost < e2.cost;\n\t}\n\tfriend bool operator>(const Edge2& e1, const Edge2& e2) {\n\t\treturn e1.cost > e2.cost;\n\t}\n\tfriend ostream& operator<<(ostream& os, const Edge2& e) {\n\t\treturn os << e.from << \"->\" << e.to << '(' << e.cost << ')';\n\t}\n};\nusing Edges = vector<Edge2>;\nusing Matrix = vector<vector<Weight>>;\n#line 5 \"/home/yuruhiya/programming/library/Graph/Dijkstra.cpp\"\nusing namespace std;\n\nvector<Weight> Dijkstra(const Graph& graph, int s) {\n\tint V = graph.size();\n\tvector<Weight> dist(V, INF);\n\tdist[s] = 0;\n\tpriority_queue<Edge, vector<Edge>, greater<Edge>> pq;\n\tpq.emplace(s, 0);\n\twhile (!pq.empty()) {\n\t\tEdge p = pq.top();\n\t\tpq.pop();\n\t\tint v = p.to;\n\t\tif (dist[v] < p.cost) continue;\n\t\tfor (auto e : graph[v]) {\n\t\t\tif (dist[e.to] > dist[v] + e.cost) {\n\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\tpq.emplace(e.to, dist[e.to]);\n\t\t\t}\n\t\t}\n\t}\n\treturn dist;\n}\nWeight Dijkstra(const Graph& graph, int s, int t) {\n\tint V = graph.size();\n\tvector<Weight> dist(V, INF);\n\tdist[s] = 0;\n\tpriority_queue<Edge, vector<Edge>, greater<Edge>> pq;\n\tpq.emplace(s, 0);\n\twhile (!pq.empty()) {\n\t\tEdge p = pq.top();\n\t\tpq.pop();\n\t\tint v = p.to;\n\t\tif (v == t) return dist[t];\n\t\tif (dist[v] < p.cost) continue;\n\t\tfor (auto e : graph[v]) {\n\t\t\tif (dist[e.to] > dist[v] + e.cost) {\n\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\tpq.emplace(e.to, dist[e.to]);\n\t\t\t}\n\t\t}\n\t}\n\treturn dist[t];\n}\n#line 3 \"a.cpp\"\n\nint main() {\n\tinl(sx, sy, gx, gy);\n\n\tconst int range = 50;\n\tVL x_val, y_val;\n\tx_val << step(sx - range, sx + range).to_a();\n\tx_val << step(gx - range, gx + range).to_a();\n\ty_val << step(sy - range, sy + range).to_a();\n\ty_val << step(gy - range, gy + range).to_a();\n\tx_val = x_val | Uniq;\n\ty_val = y_val | Uniq;\n\tdump(x_val, y_val);\n\n\tconst int MAX_V = sz(x_val) * sz(y_val) * 2;\n\tGraph g(MAX_V);\n\tauto to_i = [&](ll x, ll y, ll time) {\n\t\treturn lower_index(x_val, x) * sz(y_val) * 2 + lower_index(y_val, y) * 2 + time;\n\t};\n\tauto add_edge = [&](ll x1, ll y1, ll t1, ll x2, ll y2, ll t2, ll cost) {\n\t\tg[to_i(x1, y1, t1)].emplace_back(to_i(x2, y2, t2), cost);\n\t};\n\tauto add_edge2 = [&](ll x1, ll y1, ll t1, ll x2, ll y2, ll t2, ll cost) {\n\t\tadd_edge(x1, y1, t1, x2, y2, t2, cost);\n\t\tadd_edge(x2, y2, t2, x1, y1, t1, cost);\n\t};\n\n\tfor (ll x : x_val) {\n\t\tfor (ll y : y_val) {\n\t\t\tfor (ll f : {0, 1}) {\n\t\t\t\tadd_edge2(x, y, f, x, y, 1 - f, 1);\n\t\t\t}\n\t\t}\n\t}\n\tfor (auto [x1, x2] : x_val | EachConsPair) {\n\t\tfor (ll y : y_val) {\n\t\t\tfor (ll f : {0, 1}) {\n\t\t\t\tif (x1 + 1 == x2) {\n\t\t\t\t\tif (x1 % 2 == 0 || f == 0) {\n\t\t\t\t\t\tadd_edge2(x1, y, f, x2, y, 1 - f, 1);\n\t\t\t\t\t}\n\t\t\t\t} else {\n\t\t\t\t\tif ((x1 % 2 == 1 && f == 0) || (x1 % 2 == 0 && f == 1)) {\n\t\t\t\t\t\tadd_edge2(x1, y, f, x2, y, (f + x2 - x1) % 2, x2 - x1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tfor (ll x : x_val) {\n\t\tfor (auto [y1, y2] : y_val | EachConsPair) {\n\t\t\tfor (ll f : {0, 1}) {\n\t\t\t\tif (y1 + 1 == y2) {\n\t\t\t\t\tif (y1 % 2 == 0 || f == 1) {\n\t\t\t\t\t\tadd_edge2(x, y1, f, x, y2, 1 - f, 1);\n\t\t\t\t\t}\n\t\t\t\t} else {\n\t\t\t\t\tif ((y1 % 2 == 1 && f == 1) || (y1 % 2 == 0 && f == 0)) {\n\t\t\t\t\t\tadd_edge2(x, y1, f, x, y2, (f + y2 - y1) % 2, y2 - y1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tll ans1 = Dijkstra(g, to_i(sx, sy, 0), to_i(gx, gy, 0));\n\tll ans2 = Dijkstra(g, to_i(sx, sy, 0), to_i(gx, gy, 1));\n\tout(min(ans1, ans2));\n}", "accuracy": 0.06382978723404255, "time_ms": 40, "memory_kb": 17320, "score_of_the_acc": -0.3831, "final_rank": 18 }, { "submission_id": "aoj_3173_5075069", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Printer {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid print(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(bool v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(vector<bool>::reference v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid print(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid print(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid print(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void print(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void print(const pair<T, U>& v) const {\n\t\tprint(v.first);\n\t\tprint(D.d);\n\t\tprint(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid print_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) print(D.d);\n\t\t\tprint(*i);\n\t\t}\n\t}\n\ttemplate <class T> void print(const vector<T>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void print(const array<T, N>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void print(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) print(D.l);\n\t\t\tprint(v[i]);\n\t\t}\n\t}\n\n\tPrinter() = default;\n\tPrinter(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tPrinter& operator()() {\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Printer& operator()(H&& h) {\n\t\tprint(h);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Printer& operator()(H&& h, T&&... t) {\n\t\tprint(h);\n\t\tprint(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tPrinter& range(const InputIterator& begin, const InputIterator& end) {\n\t\tprint_range(begin, end);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Printer& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tPrinter& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tPrinter& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tPrinter& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tPrinter& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n\ttemplate <class V> auto operator()(const V& val, size_t i) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(next(begin(v), i), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct EachConsPair_impl {\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, EachConsPair_impl& c) {\n\t\tvector<pair<value_type, value_type>> result;\n\t\tif (size(v) >= 2) {\n\t\t\tresult.reserve(size(v) - 1);\n\t\t\tfor (size_t i = 0; i < size(v) - 1; ++i) {\n\t\t\t\tresult.emplace_back(v[i], v[i + 1]);\n\t\t\t}\n\t\t}\n\t\treturn result;\n\t}\n} EachConsPair;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T> constexpr int BIT(T x, int i) {\n\treturn (x & (T(1) << i)) ? 1 : 0;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 5 \"/home/yuruhiya/programming/library/Graph/GraphTemplate.cpp\"\nusing namespace std;\n\nusing Weight = long long;\nconstexpr Weight INF = numeric_limits<Weight>::max();\nstruct Edge {\n\tint to;\n\tWeight cost;\n\tEdge() : to(-1), cost(-1) {}\n\tEdge(int _to, Weight _cost = 1) : to(_to), cost(_cost) {}\n\tfriend bool operator<(const Edge& e1, const Edge& e2) {\n\t\treturn e1.cost < e2.cost;\n\t}\n\tfriend bool operator>(const Edge& e1, const Edge& e2) {\n\t\treturn e1.cost > e2.cost;\n\t}\n\tfriend ostream& operator<<(ostream& os, const Edge& e) {\n\t\treturn os << \"->\" << e.to << '(' << e.cost << ')';\n\t}\n};\nusing Graph = vector<vector<Edge>>;\nstruct Edge2 {\n\tint from, to;\n\tWeight cost;\n\tEdge2() : from(-1), to(-1), cost(0) {}\n\tEdge2(int _from, int _to, Weight _cost) : from(_from), to(_to), cost(_cost) {}\n\tfriend bool operator<(const Edge2& e1, const Edge2& e2) {\n\t\treturn e1.cost < e2.cost;\n\t}\n\tfriend bool operator>(const Edge2& e1, const Edge2& e2) {\n\t\treturn e1.cost > e2.cost;\n\t}\n\tfriend ostream& operator<<(ostream& os, const Edge2& e) {\n\t\treturn os << e.from << \"->\" << e.to << '(' << e.cost << ')';\n\t}\n};\nusing Edges = vector<Edge2>;\nusing Matrix = vector<vector<Weight>>;\n#line 5 \"/home/yuruhiya/programming/library/Graph/Dijkstra.cpp\"\nusing namespace std;\n\nvector<Weight> Dijkstra(const Graph& graph, int s) {\n\tint V = graph.size();\n\tvector<Weight> dist(V, INF);\n\tdist[s] = 0;\n\tpriority_queue<Edge, vector<Edge>, greater<Edge>> pq;\n\tpq.emplace(s, 0);\n\twhile (!pq.empty()) {\n\t\tEdge p = pq.top();\n\t\tpq.pop();\n\t\tint v = p.to;\n\t\tif (dist[v] < p.cost) continue;\n\t\tfor (auto e : graph[v]) {\n\t\t\tif (dist[e.to] > dist[v] + e.cost) {\n\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\tpq.emplace(e.to, dist[e.to]);\n\t\t\t}\n\t\t}\n\t}\n\treturn dist;\n}\nWeight Dijkstra(const Graph& graph, int s, int t) {\n\tint V = graph.size();\n\tvector<Weight> dist(V, INF);\n\tdist[s] = 0;\n\tpriority_queue<Edge, vector<Edge>, greater<Edge>> pq;\n\tpq.emplace(s, 0);\n\twhile (!pq.empty()) {\n\t\tEdge p = pq.top();\n\t\tpq.pop();\n\t\tint v = p.to;\n\t\tif (v == t) return dist[t];\n\t\tif (dist[v] < p.cost) continue;\n\t\tfor (auto e : graph[v]) {\n\t\t\tif (dist[e.to] > dist[v] + e.cost) {\n\t\t\t\tdist[e.to] = dist[v] + e.cost;\n\t\t\t\tpq.emplace(e.to, dist[e.to]);\n\t\t\t}\n\t\t}\n\t}\n\treturn dist[t];\n}\n#line 3 \"a.cpp\"\n\nint main() {\n\tinl(sx, sy, gx, gy);\n\n\tconst int range = 50;\n\tVL x_val, y_val;\n\tx_val << step(sx - range, sx + range).to_a();\n\tx_val << step(gx - range, gx + range).to_a();\n\ty_val << step(sy - range, sy + range).to_a();\n\ty_val << step(gy - range, gy + range).to_a();\n\tx_val = x_val | Uniq;\n\ty_val = y_val | Uniq;\n\n\tconst int MAX_V = sz(x_val) * sz(y_val) * 2;\n\tGraph g(MAX_V);\n\tauto to_i = [&](int x, int y, int time) {\n\t\treturn lower_index(x_val, x) * sz(y_val) * 2 + lower_index(y_val, y) * 2 + time;\n\t};\n\tauto add_edge = [&](int x1, int y1, int t1, int x2, int y2, int t2, ll cost) {\n\t\tg[to_i(x1, y1, t1)].emplace_back(to_i(x2, y2, t2), cost);\n\t};\n\tauto add_edge2 = [&](int x1, int y1, int t1, int x2, int y2, int t2, ll cost) {\n\t\tadd_edge(x1, y1, t1, x2, y2, t2, cost);\n\t\tadd_edge(x2, y2, t2, x1, y1, t1, cost);\n\t};\n\n\tfor (ll x : x_val) {\n\t\tfor (ll y : y_val) {\n\t\t\tfor (int f : {0, 1}) {\n\t\t\t\tadd_edge2(x, y, f, x, y, 1 - f, 1);\n\t\t\t}\n\t\t}\n\t}\n\tfor (auto [x1, x2] : x_val | EachConsPair) {\n\t\tfor (ll y : y_val) {\n\t\t\tfor (int f : {0, 1}) {\n\t\t\t\tif (x1 + 1 == x2) {\n\t\t\t\t\tif (x1 % 2 == 0 || f == 0) {\n\t\t\t\t\t\tadd_edge2(x1, y, f, x2, y, 1 - f, 1);\n\t\t\t\t\t}\n\t\t\t\t} else {\n\t\t\t\t\tif (x1 % 2 == 1 && f == 0) {\n\t\t\t\t\t\tadd_edge2(x1, y, f, x2, y, (f + x2 - x1) % 2, x2 - x1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tfor (ll x : x_val) {\n\t\tfor (auto [y1, y2] : y_val | EachConsPair) {\n\t\t\tfor (int f : {0, 1}) {\n\t\t\t\tif (y1 + 1 == y2) {\n\t\t\t\t\tif (y1 % 2 == 0 || f == 1) {\n\t\t\t\t\t\tadd_edge2(x, y1, f, x, y2, 1 - f, 1);\n\t\t\t\t\t}\n\t\t\t\t} else {\n\t\t\t\t\tif (y1 % 2 == 1 && f == 1) {\n\t\t\t\t\t\tadd_edge2(x, y1, f, x, y2, (f + y2 - y1) % 2, y2 - y1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\n\tll ans1 = Dijkstra(g, to_i(sx, sy, 0), to_i(gx, gy, 0));\n\tll ans2 = Dijkstra(g, to_i(sx, sy, 0), to_i(gx, gy, 1));\n\tout(min(ans1, ans2));\n}", "accuracy": 0.0425531914893617, "time_ms": 10, "memory_kb": 13020, "score_of_the_acc": -0.1426, "final_rank": 19 }, { "submission_id": "aoj_3173_4860824", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#ifdef _DEBUG\n#include \"_DEBUG.hpp\"\n#endif\n#define int long long\nconst int INF = 2e18;\nconst int MOD = 1e9 + 7;\n\nsigned main() {\n int Sx, Sy, Gx, Gy;\n cin >> Sx >> Sy >> Gx >> Gy;\n\n int ans = INF;\n auto dfs = [&](auto&& dfs, int y, int x, int t, int lim) -> void {\n if (lim == 8) return;\n if (y == Gy && x == Gx) {\n ans = min(ans, t);\n return;\n }\n /* ----- x + 1 ----- */\n if (x % 2 == 0 || t % 2 == 0) {\n dfs(dfs, y, x + 1, t + 1, lim + 1);\n }\n /* ----- x - 1 ----- */\n if (x % 2 == 1 || t % 2 == 0) {\n dfs(dfs, y, x - 1, t + 1, lim + 1);\n }\n /* ----- y + 1 ----- */\n if (y % 2 == 0 || t % 2 == 1) {\n dfs(dfs, y + 1, x, t + 1, lim + 1);\n }\n /* ----- y - 1 ----- */\n if (y % 2 == 1 || t % 2 == 1) {\n dfs(dfs, y - 1, x, t + 1, lim + 1);\n }\n /* ----- + 0 ----- */\n dfs(dfs, y, x, t + 1, lim + 1);\n\n /* ----- 一気に行く ----- */\n if ((Gx - x) >= 0 && (x % 2 != t % 2)) {\n dfs(dfs, y, Gx, t + (Gx - x), lim + 1);\n }\n if ((x - Gx) >= 0 && (x % 2 == t % 2)) {\n dfs(dfs, y, Gx, t + (x - Gx), lim + 1);\n }\n if ((Gy - y) >= 0 && (y % 2 == t % 2)) {\n dfs(dfs, Gy, x, t + (Gy - y), lim + 1);\n }\n if ((y - Gy) >= 0 && (y % 2 != t % 2)) {\n dfs(dfs, Gy, x, t + (y - Gy), lim + 1);\n }\n\n /* ----- 1つ手前まで行く ----- */\n if ((Gx - x) >= 1 && (x % 2 != t % 2)) {\n dfs(dfs, y, Gx - 1, t + (Gx - x) - 1, lim + 1);\n }\n if ((x - Gx) >= 1 && (x % 2 == t % 2)) {\n dfs(dfs, y, Gx + 1, t + (x - Gx) - 1, lim + 1);\n }\n if ((Gy - y) >= 1 && (y % 2 == t % 2)) {\n dfs(dfs, Gy - 1, x, t + (Gy - y) - 1, lim + 1);\n }\n if ((y - Gy) >= 1 && (y % 2 != t % 2)) {\n dfs(dfs, Gy + 1, x, t + (y - Gy) - 1, lim + 1);\n }\n\n /* ----- 2つ手前まで行く ----- */\n if ((Gx - x) >= 2 && (x % 2 != t % 2)) {\n dfs(dfs, y, Gx - 2, t + (Gx - x) - 2, lim + 1);\n }\n if ((x - Gx) >= 2 && (x % 2 == t % 2)) {\n dfs(dfs, y, Gx + 2, t + (x - Gx) - 2, lim + 1);\n }\n if ((Gy - y) >= 2 && (y % 2 == t % 2)) {\n dfs(dfs, Gy - 2, x, t + (Gy - y) - 2, lim + 1);\n }\n if ((y - Gy) >= 2 && (y % 2 != t % 2)) {\n dfs(dfs, Gy + 2, x, t + (y - Gy) - 2, lim + 1);\n }\n\n /* ----- 3つ手前まで行く ----- */\n if ((Gx - x) >= 3 && (x % 2 != t % 2)) {\n dfs(dfs, y, Gx - 3, t + (Gx - x) - 3, lim + 1);\n }\n if ((x - Gx) >= 3 && (x % 2 == t % 2)) {\n dfs(dfs, y, Gx + 3, t + (x - Gx) - 3, lim + 1);\n }\n if ((Gy - y) >= 3 && (y % 2 == t % 2)) {\n dfs(dfs, Gy - 3, x, t + (Gy - y) - 3, lim + 1);\n }\n if ((y - Gy) >= 3 && (y % 2 != t % 2)) {\n dfs(dfs, Gy + 3, x, t + (y - Gy) - 3, lim + 1);\n }\n\n // /* ----- ジグザグ ----- */\n // if ((Gx - x) > 0 && (Gy - y) > 0 && (x % 2 == 0 && t % 2 == 0)) {\n // int dy = abs(Gy - y), dx = abs(Gx - x);\n // int d = min(dy, dx);\n // dfs(dfs, y + d, x + d, t + d * 2, lim + 1);\n // }\n // if ((Gx - x) < 0 && (Gy - y) > 0 && (x % 2 == 1 && t % 2 == 0)) {\n // int dy = abs(Gy - y), dx = abs(Gx - x);\n // int d = min(dy, dx);\n // dfs(dfs, y + d, x - d, t + d * 2, lim + 1);\n // }\n // if ((Gx - x) < 0 && (Gy - y) < 0 && (x % 2 == 0 && t % 2 == 1)) {\n // int dy = abs(Gy - y), dx = abs(Gx - x);\n // int d = min(dy, dx);\n // dfs(dfs, y - d, x - d, t + d * 2, lim + 1);\n // }\n // if ((Gx - x) > 0 && (Gy - y) < 0 && (x % 2 == 1 && t % 2 == 1)) {\n // int dy = abs(Gy - y), dx = abs(Gx - x);\n // int d = min(dy, dx);\n // dfs(dfs, y - d, x + d, t + d * 2, lim + 1);\n // }\n };\n dfs(dfs, Sy, Sx, 0, 0);\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3432, "score_of_the_acc": -0.1765, "final_rank": 2 }, { "submission_id": "aoj_3173_4860823", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#ifdef _DEBUG\n#include \"_DEBUG.hpp\"\n#endif\n#define int long long\nconst int INF = 2e18;\nconst int MOD = 1e9 + 7;\n\nsigned main() {\n int Sx, Sy, Gx, Gy;\n cin >> Sx >> Sy >> Gx >> Gy;\n\n int ans = INF;\n auto dfs = [&](auto&& dfs, int y, int x, int t, int lim) -> void {\n if (lim == 8) return;\n if (y == Gy && x == Gx) {\n ans = min(ans, t);\n return;\n }\n /* ----- x + 1 ----- */\n if (x % 2 == 0 || t % 2 == 0) {\n dfs(dfs, y, x + 1, t + 1, lim + 1);\n }\n /* ----- x - 1 ----- */\n if (x % 2 == 1 || t % 2 == 0) {\n dfs(dfs, y, x - 1, t + 1, lim + 1);\n }\n /* ----- y + 1 ----- */\n if (y % 2 == 0 || t % 2 == 1) {\n dfs(dfs, y + 1, x, t + 1, lim + 1);\n }\n /* ----- y - 1 ----- */\n if (y % 2 == 1 || t % 2 == 1) {\n dfs(dfs, y - 1, x, t + 1, lim + 1);\n }\n /* ----- + 0 ----- */\n dfs(dfs, y, x, t + 1, lim + 1);\n\n /* ----- 一気に行く ----- */\n if ((Gx - x) >= 0 && (x % 2 != t % 2)) {\n dfs(dfs, y, Gx, t + (Gx - x), lim + 1);\n }\n if ((x - Gx) >= 0 && (x % 2 == t % 2)) {\n dfs(dfs, y, Gx, t + (x - Gx), lim + 1);\n }\n if ((Gy - y) >= 0 && (y % 2 == t % 2)) {\n dfs(dfs, Gy, x, t + (Gy - y), lim + 1);\n }\n if ((y - Gy) >= 0 && (y % 2 != t % 2)) {\n dfs(dfs, Gy, x, t + (y - Gy), lim + 1);\n }\n\n /* ----- 1つ手前まで行く ----- */\n if ((Gx - x) >= 1 && (x % 2 != t % 2)) {\n dfs(dfs, y, Gx - 1, t + (Gx - x) - 1, lim + 1);\n }\n if ((x - Gx) >= 1 && (x % 2 == t % 2)) {\n dfs(dfs, y, Gx + 1, t + (x - Gx) - 1, lim + 1);\n }\n if ((Gy - y) >= 1 && (y % 2 == t % 2)) {\n dfs(dfs, Gy - 1, x, t + (Gy - y) - 1, lim + 1);\n }\n if ((y - Gy) >= 1 && (y % 2 != t % 2)) {\n dfs(dfs, Gy + 1, x, t + (y - Gy) - 1, lim + 1);\n }\n\n /* ----- 2つ手前まで行く ----- */\n if ((Gx - x) >= 2 && (x % 2 != t % 2)) {\n dfs(dfs, y, Gx - 2, t + (Gx - x) - 2, lim + 1);\n }\n if ((x - Gx) >= 2 && (x % 2 == t % 2)) {\n dfs(dfs, y, Gx + 2, t + (x - Gx) - 2, lim + 1);\n }\n if ((Gy - y) >= 2 && (y % 2 == t % 2)) {\n dfs(dfs, Gy - 2, x, t + (Gy - y) - 2, lim + 1);\n }\n if ((y - Gy) >= 2 && (y % 2 != t % 2)) {\n dfs(dfs, Gy + 2, x, t + (y - Gy) - 2, lim + 1);\n }\n\n /* ----- 3つ手前まで行く ----- */\n if ((Gx - x) >= 3 && (x % 2 != t % 2)) {\n dfs(dfs, y, Gx - 3, t + (Gx - x) - 3, lim + 1);\n }\n if ((x - Gx) >= 3 && (x % 2 == t % 2)) {\n dfs(dfs, y, Gx + 3, t + (x - Gx) - 3, lim + 1);\n }\n if ((Gy - y) >= 3 && (y % 2 == t % 2)) {\n dfs(dfs, Gy - 3, x, t + (Gy - y) - 3, lim + 1);\n }\n if ((y - Gy) >= 3 && (y % 2 != t % 2)) {\n dfs(dfs, Gy + 3, x, t + (y - Gy) - 3, lim + 1);\n }\n\n /* ----- ジグザグ ----- */\n if ((Gx - x) > 0 && (Gy - y) > 0 && (x % 2 == 0 && t % 2 == 0)) {\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y + d, x + d, t + d * 2, lim + 1);\n }\n if ((Gx - x) < 0 && (Gy - y) > 0 && (x % 2 == 1 && t % 2 == 0)) {\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y + d, x - d, t + d * 2, lim + 1);\n }\n if ((Gx - x) < 0 && (Gy - y) < 0 && (x % 2 == 0 && t % 2 == 1)) {\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y - d, x - d, t + d * 2, lim + 1);\n }\n if ((Gx - x) > 0 && (Gy - y) < 0 && (x % 2 == 1 && t % 2 == 1)) {\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y - d, x + d, t + d * 2, lim + 1);\n }\n };\n dfs(dfs, Sy, Sx, 0, 0);\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3432, "score_of_the_acc": -0.2353, "final_rank": 3 }, { "submission_id": "aoj_3173_4860797", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#ifdef _DEBUG\n #include \"_DEBUG.hpp\"\n#endif\n#define int long long\nconst int INF = 1LL << 61;\nconst int MOD = 1e9 + 7;\n\nsigned main(){\n\n int Sx, Sy, Gx, Gy;\n cin >> Sx >> Sy >> Gx >> Gy;\n \n int ans = INF;\n auto dfs = [&](auto&& dfs, int y, int x, int t, int lim)->void{\n if(lim == 10) return;\n if(y == Gy && x == Gx){\n ans = min(ans, t);\n return;\n }\n /* ----- x + 1 ----- */\n if(x % 2 == 0 || t % 2 == 0){\n dfs(dfs, y, x + 1, t + 1, lim + 1);\n }\n /* ----- x - 1 ----- */\n if(x % 2 == 1 || t % 2 == 0){\n dfs(dfs, y, x - 1, t + 1, lim + 1);\n }\n /* ----- y + 1 ----- */\n if(y % 2 == 0 || t % 2 == 1){\n dfs(dfs, y + 1, x, t + 1, lim + 1);\n }\n /* ----- y - 1 ----- */\n if(y % 2 == 1 || t % 2 == 1){\n dfs(dfs, y - 1, x, t + 1, lim + 1);\n }\n /* ----- + 0 ----- */\n dfs(dfs, y, x, t + 1, lim + 1);\n\n if((Gx - x) >= 0 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx, t + (Gx - x), lim + 1);\n }\n if((x - Gx) >= 0 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx, t + (x - Gx), lim + 1);\n }\n if((Gy - y) >= 0 && (x % 2 != t % 2)){\n dfs(dfs, Gy, x, t + (Gy - y), lim + 1);\n }\n if((y - Gy) >= 0 && (x % 2 != t % 2)){\n dfs(dfs, Gy, x, t + (y - Gy), lim + 1);\n }\n };\n dfs(dfs, Sy, Sx, 0, 0);\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 0.8723404255319149, "time_ms": 40, "memory_kb": 3432, "score_of_the_acc": -0.1765, "final_rank": 7 }, { "submission_id": "aoj_3173_4860795", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#ifdef _DEBUG\n #include \"_DEBUG.hpp\"\n#endif\n#define int long long\nconst int INF = 1LL << 61;\nconst int MOD = 1e9 + 7;\n\nsigned main(){\n\n int Sx, Sy, Gx, Gy;\n cin >> Sx >> Sy >> Gx >> Gy;\n \n int ans = INF;\n auto dfs = [&](auto&& dfs, int y, int x, int t, int lim)->void{\n if(lim == 8) return;\n if(y == Gy && x == Gx){\n ans = min(ans, t);\n return;\n }\n /* ----- x + 1 ----- */\n if(x % 2 == 0 || t % 2 == 0){\n dfs(dfs, y, x + 1, t + 1, lim + 1);\n }\n /* ----- x - 1 ----- */\n if(x % 2 == 1 || t % 2 == 0){\n dfs(dfs, y, x - 1, t + 1, lim + 1);\n }\n /* ----- y + 1 ----- */\n if(y % 2 == 0 || t % 2 == 1){\n dfs(dfs, y + 1, x, t + 1, lim + 1);\n }\n /* ----- y - 1 ----- */\n if(y % 2 == 1 || t % 2 == 1){\n dfs(dfs, y - 1, x, t + 1, lim + 1);\n }\n /* ----- + 0 ----- */\n dfs(dfs, y, x, t + 1, lim + 1);\n\n /* ----- 一気に行く ----- */\n if((Gx - x) >= 0 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx, t + (Gx - x), lim + 1);\n }\n if((x - Gx) >= 0 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx, t + (x - Gx), lim + 1);\n }\n if((Gy - y) >= 0 && (y % 2 == t % 2)){\n dfs(dfs, Gy, x, t + (Gy - y), lim + 1);\n }\n if((y - Gy) >= 0 && (y % 2 != t % 2)){\n dfs(dfs, Gy, x, t + (y - Gy), lim + 1);\n }\n\n /* ----- 1つ手前まで行く ----- */\n if((Gx - x) >= 1 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx-1, t + (Gx - x) - 1, lim + 1);\n }\n if((x - Gx) >= 1 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx+1, t + (x - Gx) - 1, lim + 1);\n }\n if((Gy - y) >= 1 && (y % 2 == t % 2)){\n dfs(dfs, Gy-1, x, t + (Gy - y) - 1, lim + 1);\n }\n if((y - Gy) >= 1 && (y % 2 != t % 2)){\n dfs(dfs, Gy+1, x, t + (y - Gy) - 1, lim + 1);\n }\n\n /* ----- 2つ手前まで行く ----- */\n if((Gx - x) >= 2 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx-2, t + (Gx - x) - 2, lim + 1);\n }\n if((x - Gx) >= 2 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx+2, t + (x - Gx) - 2, lim + 1);\n }\n if((Gy - y) >= 2 && (y % 2 == t % 2)){\n dfs(dfs, Gy-2, x, t + (Gy - y) - 2, lim + 1);\n }\n if((y - Gy) >= 2 && (y % 2 != t % 2)){\n dfs(dfs, Gy+2, x, t + (y - Gy) - 2, lim + 1);\n }\n };\n dfs(dfs, Sy, Sx, 0, 0);\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3432, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3173_4860780", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#ifdef _DEBUG\n#include \"_DEBUG.hpp\"\n#endif\n#define int long long\nconst int INF = 1LL << 61;\nconst int MOD = 1e9 + 7;\n\nsigned main() {\n int Sx, Sy, Gx, Gy;\n cin >> Sx >> Sy >> Gx >> Gy;\n\n int ans = INF;\n auto dfs = [&](auto&& dfs, int y, int x, int t, int lim) -> void {\n if (lim == 8) return;\n if (y == Gy && x == Gx) {\n ans = min(ans, t);\n return;\n }\n /* ----- x + 1 ----- */\n if (x % 2 == 0 || t % 2 == 0) {\n dfs(dfs, y, x + 1, t + 1, lim + 1);\n }\n /* ----- x - 1 ----- */\n if (x % 2 == 1 || t % 2 == 0) {\n dfs(dfs, y, x - 1, t + 1, lim + 1);\n }\n /* ----- y + 1 ----- */\n if (y % 2 == 0 || t % 2 == 1) {\n dfs(dfs, y + 1, x, t + 1, lim + 1);\n }\n /* ----- y - 1 ----- */\n if (y % 2 == 1 || t % 2 == 1) {\n dfs(dfs, y - 1, x, t + 1, lim + 1);\n }\n /* ----- + 0 ----- */\n dfs(dfs, y, x, t + 1, lim + 1);\n\n /* ----- 一気に行く ----- */\n if ((Gx - x) >= 0 && (x % 2 != t % 2)) {\n dfs(dfs, y, Gx, t + (Gx - x), lim + 1);\n }\n if ((x - Gx) >= 0 && (x % 2 == t % 2)) {\n dfs(dfs, y, Gx, t + (x - Gx), lim + 1);\n }\n if ((Gy - y) >= 0 && (y % 2 == t % 2)) {\n dfs(dfs, Gy, x, t + (Gy - y), lim + 1);\n }\n if ((y - Gy) >= 0 && (y % 2 != t % 2)) {\n dfs(dfs, Gy, x, t + (y - Gy), lim + 1);\n }\n\n /* ----- 1つ手前まで行く ----- */\n if ((Gx - x) >= 1 && (x % 2 != t % 2)) {\n dfs(dfs, y, Gx - 1, t + (Gx - x) - 1, lim + 1);\n }\n if ((x - Gx) >= 1 && (x % 2 == t % 2)) {\n dfs(dfs, y, Gx + 1, t + (x - Gx) - 1, lim + 1);\n }\n if ((Gy - y) >= 1 && (y % 2 == t % 2)) {\n dfs(dfs, Gy - 1, x, t + (Gy - y) - 1, lim + 1);\n }\n if ((y - Gy) >= 1 && (y % 2 != t % 2)) {\n dfs(dfs, Gy + 1, x, t + (y - Gy) - 1, lim + 1);\n }\n\n /* ----- 2つ手前まで行く ----- */\n if ((Gx - x) >= 2 && (x % 2 != t % 2)) {\n dfs(dfs, y, Gx - 2, t + (Gx - x) - 2, lim + 1);\n }\n if ((x - Gx) >= 2 && (x % 2 == t % 2)) {\n dfs(dfs, y, Gx + 2, t + (x - Gx) - 2, lim + 1);\n }\n if ((Gy - y) >= 2 && (y % 2 == t % 2)) {\n dfs(dfs, Gy - 2, x, t + (Gy - y) - 2, lim + 1);\n }\n if ((y - Gy) >= 2 && (y % 2 != t % 2)) {\n dfs(dfs, Gy + 2, x, t + (y - Gy) - 2, lim + 1);\n }\n\n /* ----- 3つ手前まで行く ----- */\n if ((Gx - x) >= 3 && (x % 2 != t % 2)) {\n dfs(dfs, y, Gx - 3, t + (Gx - x) - 3, lim + 1);\n }\n if ((x - Gx) >= 3 && (x % 2 == t % 2)) {\n dfs(dfs, y, Gx + 3, t + (x - Gx) - 3, lim + 1);\n }\n if ((Gy - y) >= 3 && (y % 2 == t % 2)) {\n dfs(dfs, Gy - 3, x, t + (Gy - y) - 3, lim + 1);\n }\n if ((y - Gy) >= 3 && (y % 2 != t % 2)) {\n dfs(dfs, Gy + 3, x, t + (y - Gy) - 3, lim + 1);\n }\n\n /* ----- ジグザグ ----- */\n if ((Gx - x) > 0 && (Gy - y) > 0 && (x % 2 == 0 && t % 2 == 0)) {\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y + d, x + d, t + d * 2, lim + 1);\n }\n if ((Gx - x) < 0 && (Gy - y) > 0 && (x % 2 == 1 && t % 2 == 0)) {\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y + d, x - d, t + d * 2, lim + 1);\n }\n if ((Gx - x) < 0 && (Gy - y) < 0 && (x % 2 == 0 && t % 2 == 1)) {\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y - d, x - d, t + d * 2, lim + 1);\n }\n if ((Gx - x) > 0 && (Gy - y) < 0 && (x % 2 == 1 && t % 2 == 1)) {\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y - d, x + d, t + d * 2, lim + 1);\n }\n };\n dfs(dfs, Sy, Sx, 0, 0);\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3436, "score_of_the_acc": -0.2354, "final_rank": 4 }, { "submission_id": "aoj_3173_4845900", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#ifdef _DEBUG\n #include \"_DEBUG.hpp\"\n#endif\n#define int long long\nconst int INF = 1LL << 60;\nconst int MOD = 1e9 + 7;\n\nsigned main(){\n\n int Sx, Sy, Gx, Gy;\n cin >> Sx >> Sy >> Gx >> Gy;\n \n int ans = INF;\n auto dfs = [&](auto&& dfs, int y, int x, int t, int lim)->void{\n if(lim == 8) return;\n if(y == Gy && x == Gx){\n ans = min(ans, t);\n return;\n }\n /* ----- x + 1 ----- */\n if(x % 2 == 0 || t % 2 == 0){\n dfs(dfs, y, x + 1, t + 1, lim + 1);\n }\n /* ----- x - 1 ----- */\n if(x % 2 == 1 || t % 2 == 0){\n dfs(dfs, y, x - 1, t + 1, lim + 1);\n }\n /* ----- y + 1 ----- */\n if(y % 2 == 0 || t % 2 == 1){\n dfs(dfs, y + 1, x, t + 1, lim + 1);\n }\n /* ----- y - 1 ----- */\n if(y % 2 == 1 || t % 2 == 1){\n dfs(dfs, y - 1, x, t + 1, lim + 1);\n }\n /* ----- + 0 ----- */\n dfs(dfs, y, x, t + 1, lim + 1);\n\n /* ----- 一気に行く ----- */\n if((Gx - x) >= 0 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx, t + (Gx - x), lim + 1);\n }\n if((x - Gx) >= 0 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx, t + (x - Gx), lim + 1);\n }\n if((Gy - y) >= 0 && (y % 2 == t % 2)){\n dfs(dfs, Gy, x, t + (Gy - y), lim + 1);\n }\n if((y - Gy) >= 0 && (y % 2 != t % 2)){\n dfs(dfs, Gy, x, t + (y - Gy), lim + 1);\n }\n\n /* ----- 1つ手前まで行く ----- */\n if((Gx - x) >= 1 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx-1, t + (Gx - x) - 1, lim + 1);\n }\n if((x - Gx) >= 1 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx+1, t + (x - Gx) - 1, lim + 1);\n }\n if((Gy - y) >= 1 && (y % 2 == t % 2)){\n dfs(dfs, Gy-1, x, t + (Gy - y) - 1, lim + 1);\n }\n if((y - Gy) >= 1 && (y % 2 != t % 2)){\n dfs(dfs, Gy+1, x, t + (y - Gy) - 1, lim + 1);\n }\n\n /* ----- 2つ手前まで行く ----- */\n if((Gx - x) >= 2 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx-2, t + (Gx - x) - 2, lim + 1);\n }\n if((x - Gx) >= 2 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx+2, t + (x - Gx) - 2, lim + 1);\n }\n if((Gy - y) >= 2 && (y % 2 == t % 2)){\n dfs(dfs, Gy-2, x, t + (Gy - y) - 2, lim + 1);\n }\n if((y - Gy) >= 2 && (y % 2 != t % 2)){\n dfs(dfs, Gy+2, x, t + (y - Gy) - 2, lim + 1);\n }\n\n /* ----- 3つ手前まで行く ----- */\n if((Gx - x) >= 3 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx-3, t + (Gx - x) - 3, lim + 1);\n }\n if((x - Gx) >= 3 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx+3, t + (x - Gx) - 3, lim + 1);\n }\n if((Gy - y) >= 3 && (y % 2 == t % 2)){\n dfs(dfs, Gy-3, x, t + (Gy - y) - 3, lim + 1);\n }\n if((y - Gy) >= 3 && (y % 2 != t % 2)){\n dfs(dfs, Gy+3, x, t + (y - Gy) - 3, lim + 1);\n }\n\n /* ----- ジグザグ ----- */\n if((Gx - x) > 0 && (Gy - y) > 0 && (x % 2 == 0 && t % 2 == 0)){\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y + d, x + d, t + d * 2, lim + 1);\n }\n if((Gx - x) < 0 && (Gy - y) > 0 && (x % 2 == 1 && t % 2 == 0)){\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y + d, x - d, t + d * 2, lim + 1);\n }\n if((Gx - x) < 0 && (Gy - y) < 0 && (x % 2 == 0 && t % 2 == 1)){\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y - d, x - d, t + d * 2, lim + 1);\n }\n if((Gx - x) > 0 && (Gy - y) < 0 && (x % 2 == 1 && t % 2 == 1)){\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y - d, x + d, t + d * 2, lim + 1);\n }\n };\n dfs(dfs, Sy, Sx, 0, 0);\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 0.19148936170212766, "time_ms": 50, "memory_kb": 3432, "score_of_the_acc": -0.2353, "final_rank": 15 }, { "submission_id": "aoj_3173_4845891", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#ifdef _DEBUG\n #include \"_DEBUG.hpp\"\n#endif\n#define int long long\nconst int INF = 1LL << 60;\nconst int MOD = 1e9 + 7;\n\nsigned main(){\n\n int Sx, Sy, Gx, Gy;\n cin >> Sx >> Sy >> Gx >> Gy;\n \n int ans = INF;\n auto dfs = [&](auto&& dfs, int y, int x, int t, int lim)->void{\n if(lim == 8) return;\n if(y == Gy && x == Gx){\n ans = min(ans, t);\n return;\n }\n /* ----- x + 1 ----- */\n if(x % 2 == 0 || t % 2 == 0){\n dfs(dfs, y, x + 1, t + 1, lim + 1);\n }\n /* ----- x - 1 ----- */\n if(x % 2 == 1 || t % 2 == 0){\n dfs(dfs, y, x - 1, t + 1, lim + 1);\n }\n /* ----- y + 1 ----- */\n if(y % 2 == 0 || t % 2 == 1){\n dfs(dfs, y + 1, x, t + 1, lim + 1);\n }\n /* ----- y - 1 ----- */\n if(y % 2 == 1 || t % 2 == 1){\n dfs(dfs, y - 1, x, t + 1, lim + 1);\n }\n /* ----- + 0 ----- */\n dfs(dfs, y, x, t + 1, lim + 1);\n\n /* ----- 一気に行く ----- */\n if((Gx - x) >= 0 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx, t + (Gx - x), lim + 1);\n }\n if((x - Gx) >= 0 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx, t + (x - Gx), lim + 1);\n }\n if((Gy - y) >= 0 && (y % 2 == t % 2)){\n dfs(dfs, Gy, x, t + (Gy - y), lim + 1);\n }\n if((y - Gy) >= 0 && (y % 2 != t % 2)){\n dfs(dfs, Gy, x, t + (y - Gy), lim + 1);\n }\n\n /* ----- 1つ手前まで行く ----- */\n if((Gx - x) >= 1 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx-1, t + (Gx - x) - 1, lim + 1);\n }\n if((x - Gx) >= 1 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx+1, t + (x - Gx) - 1, lim + 1);\n }\n if((Gy - y) >= 1 && (y % 2 == t % 2)){\n dfs(dfs, Gy-1, x, t + (Gy - y) - 1, lim + 1);\n }\n if((y - Gy) >= 1 && (y % 2 != t % 2)){\n dfs(dfs, Gy+1, x, t + (y - Gy) - 1, lim + 1);\n }\n\n /* ----- 2つ手前まで行く ----- */\n if((Gx - x) >= 2 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx-2, t + (Gx - x) - 2, lim + 1);\n }\n if((x - Gx) >= 2 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx+2, t + (x - Gx) - 2, lim + 1);\n }\n if((Gy - y) >= 2 && (y % 2 == t % 2)){\n dfs(dfs, Gy-2, x, t + (Gy - y) - 2, lim + 1);\n }\n if((y - Gy) >= 2 && (y % 2 != t % 2)){\n dfs(dfs, Gy+2, x, t + (y - Gy) - 2, lim + 1);\n }\n\n /* ----- 3つ手前まで行く ----- */\n if((Gx - x) >= 3 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx-3, t + (Gx - x) - 3, lim + 1);\n }\n if((x - Gx) >= 3 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx+3, t + (x - Gx) - 3, lim + 1);\n }\n if((Gy - y) >= 3 && (y % 2 == t % 2)){\n dfs(dfs, Gy-3, x, t + (Gy - y) - 3, lim + 1);\n }\n if((y - Gy) >= 3 && (y % 2 != t % 2)){\n dfs(dfs, Gy+3, x, t + (y - Gy) - 3, lim + 1);\n }\n\n /* ----- ジグザグ ----- */\n if((Gx - x) > 0 && (Gy - y) > 0 && !(x % 2 != t % 2)){\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y + d, x + d, t + d * 2, lim + 1);\n }\n if((Gx - x) < 0 && (Gy - y) > 0 && !(x % 2 == t % 2)){\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y + d, x - d, t + d * 2, lim + 1);\n }\n if((Gx - x) < 0 && (Gy - y) < 0 && !(y % 2 == t % 2)){\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y - d, x - d, t + d * 2, lim + 1);\n }\n if((Gx - x) > 0 && (Gy - y) < 0 && !(y % 2 != t % 2)){\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y - d, x + d, t + d * 2, lim + 1);\n }\n };\n dfs(dfs, Sy, Sx, 0, 0);\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 0.19148936170212766, "time_ms": 60, "memory_kb": 3464, "score_of_the_acc": -0.2946, "final_rank": 17 }, { "submission_id": "aoj_3173_4845845", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#ifdef _DEBUG\n #include \"_DEBUG.hpp\"\n#endif\n#define int long long\nconst int INF = 1LL << 60;\nconst int MOD = 1e9 + 7;\n\nsigned main(){\n\n int Sx, Sy, Gx, Gy;\n cin >> Sx >> Sy >> Gx >> Gy;\n \n int ans = INF;\n auto dfs = [&](auto&& dfs, int y, int x, int t, int lim)->void{\n if(lim == 8) return;\n if(y == Gy && x == Gx){\n ans = min(ans, t);\n return;\n }\n /* ----- x + 1 ----- */\n if(x % 2 == 0 || t % 2 == 0){\n dfs(dfs, y, x + 1, t + 1, lim + 1);\n }\n /* ----- x - 1 ----- */\n if(x % 2 == 1 || t % 2 == 0){\n dfs(dfs, y, x - 1, t + 1, lim + 1);\n }\n /* ----- y + 1 ----- */\n if(y % 2 == 0 || t % 2 == 1){\n dfs(dfs, y + 1, x, t + 1, lim + 1);\n }\n /* ----- y - 1 ----- */\n if(y % 2 == 1 || t % 2 == 1){\n dfs(dfs, y - 1, x, t + 1, lim + 1);\n }\n /* ----- + 0 ----- */\n dfs(dfs, y, x, t + 1, lim + 1);\n\n /* ----- 一気に行く ----- */\n if((Gx - x) >= 0 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx, t + (Gx - x), lim + 1);\n }\n if((x - Gx) >= 0 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx, t + (x - Gx), lim + 1);\n }\n if((Gy - y) >= 0 && (y % 2 == t % 2)){\n dfs(dfs, Gy, x, t + (Gy - y), lim + 1);\n }\n if((y - Gy) >= 0 && (y % 2 != t % 2)){\n dfs(dfs, Gy, x, t + (y - Gy), lim + 1);\n }\n\n /* ----- 1つ手前まで行く ----- */\n if((Gx - x) >= 1 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx-1, t + (Gx - x) - 1, lim + 1);\n }\n if((x - Gx) >= 1 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx+1, t + (x - Gx) - 1, lim + 1);\n }\n if((Gy - y) >= 1 && (y % 2 == t % 2)){\n dfs(dfs, Gy-1, x, t + (Gy - y) - 1, lim + 1);\n }\n if((y - Gy) >= 1 && (y % 2 != t % 2)){\n dfs(dfs, Gy+1, x, t + (y - Gy) - 1, lim + 1);\n }\n\n /* ----- 2つ手前まで行く ----- */\n if((Gx - x) >= 2 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx-2, t + (Gx - x) - 2, lim + 1);\n }\n if((x - Gx) >= 2 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx+2, t + (x - Gx) - 2, lim + 1);\n }\n if((Gy - y) >= 2 && (y % 2 == t % 2)){\n dfs(dfs, Gy-2, x, t + (Gy - y) - 2, lim + 1);\n }\n if((y - Gy) >= 2 && (y % 2 != t % 2)){\n dfs(dfs, Gy+2, x, t + (y - Gy) - 2, lim + 1);\n }\n\n /* ----- 3つ手前まで行く ----- */\n if((Gx - x) >= 3 && (x % 2 != t % 2)){\n dfs(dfs, y, Gx-3, t + (Gx - x) - 3, lim + 1);\n }\n if((x - Gx) >= 3 && (x % 2 == t % 2)){\n dfs(dfs, y, Gx+3, t + (x - Gx) - 3, lim + 1);\n }\n if((Gy - y) >= 3 && (y % 2 == t % 2)){\n dfs(dfs, Gy-3, x, t + (Gy - y) - 3, lim + 1);\n }\n if((y - Gy) >= 3 && (y % 2 != t % 2)){\n dfs(dfs, Gy+3, x, t + (y - Gy) - 3, lim + 1);\n }\n\n /* ----- ジグザグ ----- */\n if((Gx - x) > 0 && (Gy - y) > 0 && !(x % 2 != t % 2)){\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y + d, x + d, t + d * 2, lim + 1);\n }\n if((Gx - x) < 0 && (Gy - y) > 0 && !(x % 2 == t % 2)){\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y + d, x - d, t + d * 2, lim + 1);\n }\n if((Gx - x) < 0 && (Gy - y) < 0 && !(y % 2 == t % 2)){\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y - d, x - d, t + d * 2, lim + 1);\n }\n if((Gx - x) > 0 && (Gy - y) < 0 && !(y % 2 != t % 2)){\n int dy = abs(Gy - y), dx = abs(Gx - x);\n int d = min(dy, dx);\n dfs(dfs, y - d, x + d, t + d * 2, lim + 1);\n }\n };\n dfs(dfs, Sy, Sx, 0, 0);\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 0.19148936170212766, "time_ms": 60, "memory_kb": 3432, "score_of_the_acc": -0.2941, "final_rank": 16 }, { "submission_id": "aoj_3173_4845754", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\n\n#define int long long\n#define REP(i, n) for ( int i = 0; i < (n); i++ )\n\nstruct state {\n int x, y, t;\n state(int x, int y, int t): x(x), y(y), t(t){} \n};\n\nint Sx[5][2] = {{30, 31},\n\t\t{30, 31},\n\t\t{14, 15},\n\t\t{21, 20},\n\t\t{20, 21}};\nint Sy[5][2] = {{40, 41},\n\t\t{40, 41},\n\t\t{24, 25},\n\t\t{31, 30},\n\t\t{30, 31}};\nint Gx[5][2] = {{30, 31},\n\t\t{14, 15},\n\t\t{30, 31},\n\t\t{20, 21},\n\t\t{21, 20}};\nint Gy[5][2] = {{40, 41},\n\t\t{24, 25},\n\t\t{40, 41},\n\t\t{30, 31},\n\t\t{31, 30}};\n\nint pre_calc[5][5][2][2][2][2];\n\nint bfs(int sx, int sy, int gx, int gy) {\n bool used[50][50][100];\n fill_n(**used, 50*50*100, false); \n queue<state> Q;\n Q.push(state(sx, sy, 0));\n while ( !Q.empty() ) {\n int x = Q.front().x; \n int y = Q.front().y;\n int t = Q.front().t;\n Q.pop();\n \n if ( x == gx && y == gy ) {\n // if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) cout << t << \" \" << (abs(sx-gx)+abs(sy-gy)) << endl; \n return (t - (abs(sx-gx)+abs(sy-gy))); \n break;\t\n }\n\n if ( x < 0 || y < 0 || t < 0 || x >= 50 || y >= 50 || t >= 100 ) continue; \n \n if ( used[y][x][t] ) continue;\n used[y][x][t] = true; \n\n if ( x%2 == 0 || t%2 == 0 ) {\n Q.push(state(x+1, y, t+1));\t\n }\n if ( x%2 == 1 || t%2 == 0 ) {\n Q.push(state(x-1, y, t+1));\t\n }\n if ( y%2 == 0 || t%2 == 1 ) {\n Q.push(state(x, y+1, t+1));\t\n }\n if ( y%2 == 1 || t%2 == 1 ) {\n Q.push(state(x, y-1, t+1));\t\n }\n Q.push(state(x, y, t+1)); \n }\n\n return 0; \n}\n\nint bfs2(int sx, int sy, int gx, int gy) {\n bool used[50][50][100];\n fill_n(**used, 50*50*100, false); \n queue<state> Q;\n Q.push(state(sx, sy, 0));\n while ( !Q.empty() ) {\n int x = Q.front().x; \n int y = Q.front().y;\n int t = Q.front().t;\n Q.pop();\n \n if ( x == gx && y == gy ) {\n // if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) cout << t << \" \" << (abs(sx-gx)+abs(sy-gy)) << endl; \n return t; \n break;\t\n }\n\n if ( x < 0 || y < 0 || t < 0 || x >= 50 || y >= 50 || t >= 100 ) continue; \n \n if ( used[y][x][t] ) continue;\n used[y][x][t] = true; \n\n if ( x%2 == 0 || t%2 == 0 ) {\n Q.push(state(x+1, y, t+1));\t\n }\n if ( x%2 == 1 || t%2 == 0 ) {\n Q.push(state(x-1, y, t+1));\t\n }\n if ( y%2 == 0 || t%2 == 1 ) {\n Q.push(state(x, y+1, t+1));\t\n }\n if ( y%2 == 1 || t%2 == 1 ) {\n Q.push(state(x, y-1, t+1));\t\n }\n Q.push(state(x, y, t+1)); \n }\n\n return 0; \n}\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n\n for ( int k = 0; k < 5; k++ ) {\n for ( int l = 0; l < 5; l++ ) {\n for ( int i = 0; i < (1<<4); i++ ) {\n\tint sx = Sx[k][(i>>0)&1];\n\tint sy = Sy[l][(i>>1)&1];\n\tint gx = Gx[k][(i>>2)&1];\n\tint gy = Gy[l][(i>>3)&1];\t\n\tpre_calc[k][l][sx%2][sy%2][gx%2][gy%2] = bfs(sx, sy, gx, gy);\n\t/*if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) {\n\t cout << \"aaa \" << k << \" \" << l << \" \" << bfs(sx, sy, gx, gy) << \" \" << pre_calc[2][0][0][0][0][0] << endl;\n\t \n\t }*/\n\t/*if ( k == 2 && l == 0 && sx%2 == 0 && sy%2 == 0 && gx%2 == 0 && gy%2 == 0 ) {\n\t cout << k << \" \" << l << \" \" << sx << \" \" << sy << \" \" << gx << \" \" << gy << endl;\t \n\t cout << pre_calc[k][l][sx%2][sy%2][gx%2][gy%2] << endl;\t \t \n\t }*/\t\n }\n }\n }\n\n int sx, sy, gx, gy;\n cin >> sx >> sy >> gx >> gy;\n\n /*cout << Sx[2][0] << \" \" << Sy[0][0] << \" \" << Gx[2][0] << \" \" << Gy[0][0] << endl;\n cout << pre_calc[2][0][0][0][0][0] << endl; */\n\n int abs_x = min(sx, gx);\n int abs_y = min(sy, gy);\n int hiku_x = abs_x / 2 * 2;\n int hiku_y = abs_y / 2 * 2;\n sx -= hiku_x;\n sy -= hiku_y;\n gx -= hiku_x;\n gy -= hiku_y;\n // cerr << sx << \" \" << sy << endl;\n if ( sx < 50 && sy < 50 && gx < 50 && gy < 50 ) {\n cout << bfs2(sx, sy, gx, gy) << endl; \n } else { \n\n int ans = abs(sx-gx)+abs(sy-gy); \n int k = 0, l = 0;\n if (sx == gx + 1) {\n k = 3;\n } else if (gx == sx + 1) {\n k = 4;\n } else {\n if ( sx > gx ) k = 1;\n if ( sx < gx ) k = 2;\n }\n\n \n if (sy == gy + 1) {\n l = 3;\n } else if (gy == sy + 1) {\n l = 4;\n } else {\n if ( sy > gy ) l = 1;\n if ( sy < gy ) l = 2;\n }\n\n ans += pre_calc[k][l][sx%2][sy%2][gx%2][gy%2];\n \n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3888, "score_of_the_acc": -0.4185, "final_rank": 5 }, { "submission_id": "aoj_3173_4845747", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\n\n#define int long long\n#define REP(i, n) for ( int i = 0; i < (n); i++ )\n\nstruct state {\n int x, y, t;\n state(int x, int y, int t): x(x), y(y), t(t){} \n};\n\nint Sx[5][2] = {{30, 31},\n\t\t{30, 31},\n\t\t{14, 15},\n\t\t{21, 20},\n\t\t{20, 21}};\nint Sy[5][2] = {{40, 41},\n\t\t{40, 41},\n\t\t{24, 25},\n\t\t{31, 30},\n\t\t{30, 31}};\nint Gx[5][2] = {{30, 31},\n\t\t{14, 15},\n\t\t{30, 31},\n\t\t{20, 21},\n\t\t{21, 20}};\nint Gy[5][2] = {{40, 41},\n\t\t{24, 25},\n\t\t{40, 41},\n\t\t{30, 31},\n\t\t{31, 30}};\n\nint pre_calc[5][5][2][2][2][2];\n\nint bfs(int sx, int sy, int gx, int gy) {\n bool used[50][50][100];\n fill_n(**used, 50*50*100, false); \n queue<state> Q;\n Q.push(state(sx, sy, 0));\n while ( !Q.empty() ) {\n int x = Q.front().x; \n int y = Q.front().y;\n int t = Q.front().t;\n Q.pop();\n \n if ( x == gx && y == gy ) {\n // if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) cout << t << \" \" << (abs(sx-gx)+abs(sy-gy)) << endl; \n return (t - (abs(sx-gx)+abs(sy-gy))); \n break;\t\n }\n\n if ( x < 0 || y < 0 || t < 0 || x >= 50 || y >= 50 || t >= 100 ) continue; \n \n if ( used[y][x][t] ) continue;\n used[y][x][t] = true; \n\n if ( x%2 == 0 || t%2 == 0 ) {\n Q.push(state(x+1, y, t+1));\t\n }\n if ( x%2 == 1 || t%2 == 0 ) {\n Q.push(state(x-1, y, t+1));\t\n }\n if ( y%2 == 0 || t%2 == 1 ) {\n Q.push(state(x, y+1, t+1));\t\n }\n if ( y%2 == 1 || t%2 == 1 ) {\n Q.push(state(x, y-1, t+1));\t\n }\n Q.push(state(x, y, t+1)); \n }\n\n return 0; \n}\n\nint bfs2(int sx, int sy, int gx, int gy) {\n bool used[50][50][100];\n fill_n(**used, 50*50*100, false); \n queue<state> Q;\n Q.push(state(sx, sy, 0));\n while ( !Q.empty() ) {\n int x = Q.front().x; \n int y = Q.front().y;\n int t = Q.front().t;\n Q.pop();\n \n if ( x == gx && y == gy ) {\n // if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) cout << t << \" \" << (abs(sx-gx)+abs(sy-gy)) << endl; \n return t; \n break;\t\n }\n\n if ( x < 0 || y < 0 || t < 0 || x >= 50 || y >= 50 || t >= 100 ) continue; \n \n if ( used[y][x][t] ) continue;\n used[y][x][t] = true; \n\n if ( x%2 == 0 || t%2 == 0 ) {\n Q.push(state(x+1, y, t+1));\t\n }\n if ( x%2 == 1 || t%2 == 0 ) {\n Q.push(state(x-1, y, t+1));\t\n }\n if ( y%2 == 0 || t%2 == 1 ) {\n Q.push(state(x, y+1, t+1));\t\n }\n if ( y%2 == 1 || t%2 == 1 ) {\n Q.push(state(x, y-1, t+1));\t\n }\n Q.push(state(x, y, t+1)); \n }\n\n return 0; \n}\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n\n for ( int k = 0; k < 5; k++ ) {\n for ( int l = 0; l < 5; l++ ) {\n for ( int i = 0; i < (1<<4); i++ ) {\n\tint sx = Sx[k][(i>>0)&1];\n\tint sy = Sy[l][(i>>1)&1];\n\tint gx = Gx[k][(i>>2)&1];\n\tint gy = Gy[l][(i>>3)&1];\t\n\tpre_calc[k][l][sx%2][sy%2][gx%2][gy%2] = bfs(sx, sy, gx, gy);\n\t/*if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) {\n\t cout << \"aaa \" << k << \" \" << l << \" \" << bfs(sx, sy, gx, gy) << \" \" << pre_calc[2][0][0][0][0][0] << endl;\n\t \n\t }*/\n\t/*if ( k == 2 && l == 0 && sx%2 == 0 && sy%2 == 0 && gx%2 == 0 && gy%2 == 0 ) {\n\t cout << k << \" \" << l << \" \" << sx << \" \" << sy << \" \" << gx << \" \" << gy << endl;\t \n\t cout << pre_calc[k][l][sx%2][sy%2][gx%2][gy%2] << endl;\t \t \n\t }*/\t\n }\n }\n }\n\n int sx, sy, gx, gy;\n cin >> sx >> sy >> gx >> gy;\n\n /*cout << Sx[2][0] << \" \" << Sy[0][0] << \" \" << Gx[2][0] << \" \" << Gy[0][0] << endl;\n cout << pre_calc[2][0][0][0][0][0] << endl; */\n\n int abs_x = min(sx, gx); int abs_y = min(sy, gy);\n int hiku = min(abs_x, abs_y) / 2 * 2;\n sx -= hiku;\n sy -= hiku;\n gx -= hiku;\n gy -= hiku;\n // cerr << sx << \" \" << sy << endl;\n if ( sx < 50 && sy < 50 && gx < 50 && gy < 50 ) {\n cout << bfs2(sx, sy, gx, gy) << endl; \n } else { \n\n int ans = abs(sx-gx)+abs(sy-gy); \n int k = 0, l = 0;\n if (sx == gx + 1) {\n k = 3;\n } else if (gx == sx + 1) {\n k = 4;\n } else {\n if ( sx > gx ) k = 1;\n if ( sx < gx ) k = 2;\n }\n\n \n if (sy == gy + 1) {\n l = 3;\n } else if (gy == sy + 1) {\n l = 4;\n } else {\n if ( sy > gy ) l = 1;\n if ( sy < gy ) l = 2;\n }\n\n ans += pre_calc[k][l][sx%2][sy%2][gx%2][gy%2];\n \n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 0.6808510638297872, "time_ms": 100, "memory_kb": 3856, "score_of_the_acc": -0.5357, "final_rank": 10 }, { "submission_id": "aoj_3173_4845708", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\n\n#define int long long\n#define REP(i, n) for ( int i = 0; i < (n); i++ )\n\nstruct state {\n int x, y, t;\n state(int x, int y, int t): x(x), y(y), t(t){} \n};\n\nint Sx[5][2] = {{30, 31},\n\t\t{30, 31},\n\t\t{14, 15},\n\t\t{21, 20},\n\t\t{20, 21}};\nint Sy[5][2] = {{40, 41},\n\t\t{40, 41},\n\t\t{24, 25},\n\t\t{31, 30},\n\t\t{30, 31}};\nint Gx[5][2] = {{30, 31},\n\t\t{14, 15},\n\t\t{30, 31},\n\t\t{20, 21},\n\t\t{21, 20}};\nint Gy[5][2] = {{40, 41},\n\t\t{24, 25},\n\t\t{40, 41},\n\t\t{30, 31},\n\t\t{31, 30}};\n\nint pre_calc[5][5][2][2][2][2];\n\nint bfs(int sx, int sy, int gx, int gy) {\n bool used[50][50][100];\n fill_n(**used, 50*50*100, false); \n queue<state> Q;\n Q.push(state(sx, sy, 0));\n while ( !Q.empty() ) {\n int x = Q.front().x; \n int y = Q.front().y;\n int t = Q.front().t;\n Q.pop();\n \n if ( x == gx && y == gy ) {\n // if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) cout << t << \" \" << (abs(sx-gx)+abs(sy-gy)) << endl; \n return (t - (abs(sx-gx)+abs(sy-gy))); \n break;\t\n }\n\n if ( x < 0 || y < 0 || t < 0 || x >= 50 || y >= 50 || t >= 100 ) continue; \n \n if ( used[y][x][t] ) continue;\n used[y][x][t] = true; \n\n if ( x%2 == 0 || t%2 == 0 ) {\n Q.push(state(x+1, y, t+1));\t\n }\n if ( x%2 == 1 || t%2 == 0 ) {\n Q.push(state(x-1, y, t+1));\t\n }\n if ( y%2 == 0 || t%2 == 1 ) {\n Q.push(state(x, y+1, t+1));\t\n }\n if ( y%2 == 1 || t%2 == 1 ) {\n Q.push(state(x, y-1, t+1));\t\n }\n Q.push(state(x, y, t+1)); \n }\n\n return 0; \n}\n\nint bfs2(int sx, int sy, int gx, int gy) {\n bool used[50][50][100];\n fill_n(**used, 50*50*100, false); \n queue<state> Q;\n Q.push(state(sx, sy, 0));\n while ( !Q.empty() ) {\n int x = Q.front().x; \n int y = Q.front().y;\n int t = Q.front().t;\n Q.pop();\n \n if ( x == gx && y == gy ) {\n // if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) cout << t << \" \" << (abs(sx-gx)+abs(sy-gy)) << endl; \n return t; \n break;\t\n }\n\n if ( x < 0 || y < 0 || t < 0 || x >= 50 || y >= 50 || t >= 100 ) continue; \n \n if ( used[y][x][t] ) continue;\n used[y][x][t] = true; \n\n if ( x%2 == 0 || t%2 == 0 ) {\n Q.push(state(x+1, y, t+1));\t\n }\n if ( x%2 == 1 || t%2 == 0 ) {\n Q.push(state(x-1, y, t+1));\t\n }\n if ( y%2 == 0 || t%2 == 1 ) {\n Q.push(state(x, y+1, t+1));\t\n }\n if ( y%2 == 1 || t%2 == 1 ) {\n Q.push(state(x, y-1, t+1));\t\n }\n Q.push(state(x, y, t+1)); \n }\n\n return 0; \n}\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n\n for ( int k = 0; k < 5; k++ ) {\n for ( int l = 0; l < 5; l++ ) {\n for ( int i = 0; i < (1<<4); i++ ) {\n\tint sx = Sx[k][(i>>0)&1];\n\tint sy = Sy[l][(i>>1)&1];\n\tint gx = Gx[k][(i>>2)&1];\n\tint gy = Gy[l][(i>>3)&1];\t\n\tpre_calc[k][l][sx%2][sy%2][gx%2][gy%2] = bfs(sx, sy, gx, gy);\n\t/*if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) {\n\t cout << \"aaa \" << k << \" \" << l << \" \" << bfs(sx, sy, gx, gy) << \" \" << pre_calc[2][0][0][0][0][0] << endl;\n\t \n\t }*/\n\t/*if ( k == 2 && l == 0 && sx%2 == 0 && sy%2 == 0 && gx%2 == 0 && gy%2 == 0 ) {\n\t cout << k << \" \" << l << \" \" << sx << \" \" << sy << \" \" << gx << \" \" << gy << endl;\t \n\t cout << pre_calc[k][l][sx%2][sy%2][gx%2][gy%2] << endl;\t \t \n\t }*/\t\n }\n }\n }\n\n int sx, sy, gx, gy;\n cin >> sx >> sy >> gx >> gy;\n\n /*cout << Sx[2][0] << \" \" << Sy[0][0] << \" \" << Gx[2][0] << \" \" << Gy[0][0] << endl;\n cout << pre_calc[2][0][0][0][0][0] << endl; */\n\n int abs_x = abs(sx-gx), abs_y = abs(sy-gy);\n int hiku = min(abs_x, abs_y) / 2 * 2;\n sx -= hiku;\n sy -= hiku;\n gx -= hiku;\n gy -= hiku;\n if ( sx < 50 && sy < 50 && gx < 50 && gy < 50 ) {\n cout << bfs2(sx, sy, gx, gy) << endl; \n } else { \n\n int ans = abs(sx-gx)+abs(sy-gy); \n int k = 0, l = 0;\n if (sx == gx + 1) {\n k = 3;\n } else if (gx == sx + 1) {\n k = 4;\n } else {\n if ( sx > gx ) k = 1;\n if ( sx < gx ) k = 2;\n }\n\n \n if (sy == gy + 1) {\n l = 3;\n } else if (gy == sy + 1) {\n l = 4;\n } else {\n if ( sy > gy ) l = 1;\n if ( sy < gy ) l = 2;\n }\n\n ans += pre_calc[k][l][sx%2][sy%2][gx%2][gy%2];\n \n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 0.6808510638297872, "time_ms": 80, "memory_kb": 3856, "score_of_the_acc": -0.4181, "final_rank": 8 }, { "submission_id": "aoj_3173_4845695", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <functional>\n#include <bitset>\n\nusing namespace std;\n\n#define int long long\n#define REP(i, n) for ( int i = 0; i < (n); i++ )\n\nstruct state {\n int x, y, t;\n state(int x, int y, int t): x(x), y(y), t(t){} \n};\n\nint Sx[5][2] = {{30, 31},\n\t\t{30, 31},\n\t\t{14, 15},\n\t\t{21, 20},\n\t\t{20, 21}};\nint Sy[5][2] = {{40, 41},\n\t\t{40, 41},\n\t\t{24, 25},\n\t\t{31, 30},\n\t\t{30, 31}};\nint Gx[5][2] = {{30, 31},\n\t\t{14, 15},\n\t\t{30, 31},\n\t\t{20, 21},\n\t\t{21, 20}};\nint Gy[5][2] = {{40, 41},\n\t\t{24, 25},\n\t\t{40, 41},\n\t\t{31, 30},\n\t\t{30, 31}};\n\nint pre_calc[5][5][2][2][2][2];\n\nint bfs(int sx, int sy, int gx, int gy) {\n bool used[50][50][100];\n fill_n(**used, 50*50*100, false); \n queue<state> Q;\n Q.push(state(sx, sy, 0));\n while ( !Q.empty() ) {\n int x = Q.front().x; \n int y = Q.front().y;\n int t = Q.front().t;\n Q.pop();\n \n if ( x == gx && y == gy ) {\n // if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) cout << t << \" \" << (abs(sx-gx)+abs(sy-gy)) << endl; \n return (t - (abs(sx-gx)+abs(sy-gy))); \n break;\t\n }\n\n if ( x < 0 || y < 0 || t < 0 || x >= 50 || y >= 50 || t >= 100 ) continue; \n \n if ( used[y][x][t] ) continue;\n used[y][x][t] = true; \n\n if ( x%2 == 0 || t%2 == 0 ) {\n Q.push(state(x+1, y, t+1));\t\n }\n if ( x%2 == 1 || t%2 == 0 ) {\n Q.push(state(x-1, y, t+1));\t\n }\n if ( y%2 == 0 || t%2 == 1 ) {\n Q.push(state(x, y+1, t+1));\t\n }\n if ( y%2 == 1 || t%2 == 1 ) {\n Q.push(state(x, y-1, t+1));\t\n }\n Q.push(state(x, y, t+1)); \n }\n\n return 0; \n}\n\nint bfs2(int sx, int sy, int gx, int gy) {\n bool used[50][50][100];\n fill_n(**used, 50*50*100, false); \n queue<state> Q;\n Q.push(state(sx, sy, 0));\n while ( !Q.empty() ) {\n int x = Q.front().x; \n int y = Q.front().y;\n int t = Q.front().t;\n Q.pop();\n \n if ( x == gx && y == gy ) {\n // if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) cout << t << \" \" << (abs(sx-gx)+abs(sy-gy)) << endl; \n return t; \n break;\t\n }\n\n if ( x < 0 || y < 0 || t < 0 || x >= 50 || y >= 50 || t >= 100 ) continue; \n \n if ( used[y][x][t] ) continue;\n used[y][x][t] = true; \n\n if ( x%2 == 0 || t%2 == 0 ) {\n Q.push(state(x+1, y, t+1));\t\n }\n if ( x%2 == 1 || t%2 == 0 ) {\n Q.push(state(x-1, y, t+1));\t\n }\n if ( y%2 == 0 || t%2 == 1 ) {\n Q.push(state(x, y+1, t+1));\t\n }\n if ( y%2 == 1 || t%2 == 1 ) {\n Q.push(state(x, y-1, t+1));\t\n }\n Q.push(state(x, y, t+1)); \n }\n\n return 0; \n}\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n\n for ( int k = 0; k < 5; k++ ) {\n for ( int l = 0; l < 5; l++ ) {\n for ( int i = 0; i < (1<<4); i++ ) {\n\tint sx = Sx[k][(i>>0)&1];\n\tint sy = Sy[l][(i>>1)&1];\n\tint gx = Gx[k][(i>>2)&1];\n\tint gy = Gy[l][(i>>3)&1];\t\n\tpre_calc[k][l][sx%2][sy%2][gx%2][gy%2] = bfs(sx, sy, gx, gy);\n\t/*if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) {\n\t cout << \"aaa \" << k << \" \" << l << \" \" << bfs(sx, sy, gx, gy) << \" \" << pre_calc[2][0][0][0][0][0] << endl;\n\t \n\t }*/\n\t/*if ( k == 2 && l == 0 && sx%2 == 0 && sy%2 == 0 && gx%2 == 0 && gy%2 == 0 ) {\n\t cout << k << \" \" << l << \" \" << sx << \" \" << sy << \" \" << gx << \" \" << gy << endl;\t \n\t cout << pre_calc[k][l][sx%2][sy%2][gx%2][gy%2] << endl;\t \t \n\t }*/\t\n }\n }\n }\n\n int sx, sy, gx, gy;\n cin >> sx >> sy >> gx >> gy;\n\n /*cout << Sx[2][0] << \" \" << Sy[0][0] << \" \" << Gx[2][0] << \" \" << Gy[0][0] << endl;\n cout << pre_calc[2][0][0][0][0][0] << endl; */\n\n int abs_x = abs(sx-gx), abs_y = abs(sy-gy);\n int hiku = min(abs_x, abs_y) / 2 * 2;\n sx -= hiku;\n sy -= hiku;\n gx -= hiku;\n gy -= hiku;\n if ( sx < 50 && sy < 50 && gx < 50 && gy < 50 ) {\n cout << bfs2(sx, sy, gx, gy) << endl; \n } else { \n\n int ans = abs(sx-gx)+abs(sy-gy); \n int k = 0, l = 0;\n if (sx == gx + 1) {\n k = 3;\n } else if (gx == sx + 1) {\n k = 4;\n } else {\n if ( sx > gx ) k = 1;\n if ( sx < gx ) k = 2;\n }\n\n \n if (sy == gy + 1) {\n l = 3;\n } else if (gy == sy + 1) {\n l = 4;\n } else {\n if ( sy > gy ) l = 1;\n if ( sy < gy ) l = 2;\n }\n\n ans += pre_calc[k][l][sx%2][sy%2][gx%2][gy%2];\n \n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 0.6808510638297872, "time_ms": 90, "memory_kb": 3856, "score_of_the_acc": -0.4769, "final_rank": 9 }, { "submission_id": "aoj_3173_4845587", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n#define REP(i, n) for ( int i = 0; i < (n); i++ )\n\nstruct state {\n int x, y, t;\n state(int x, int y, int t): x(x), y(y), t(t){} \n};\n\nint Sx[3][2] = {{30, 31},\n\t\t{30, 31},\n\t\t{14, 15}};\nint Sy[3][2] = {{40, 41},\n\t\t{40, 41},\n\t\t{24, 25}};\nint Gx[3][2] = {{30, 31},\n\t\t{14, 15},\n\t\t{30, 31}};\nint Gy[3][2] = {{40, 41},\n\t\t{24, 25},\n\t\t{40, 41}};\n\nint pre_calc[3][3][2][2][2][2];\n\nint bfs(int sx, int sy, int gx, int gy) {\n bool used[50][50][100];\n fill_n(**used, 50*50*100, false); \n queue<state> Q;\n Q.push(state(sx, sy, 0));\n while ( !Q.empty() ) {\n int x = Q.front().x; \n int y = Q.front().y;\n int t = Q.front().t;\n Q.pop();\n \n if ( x == gx && y == gy ) {\n // if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) cout << t << \" \" << (abs(sx-gx)+abs(sy-gy)) << endl; \n return (t - (abs(sx-gx)+abs(sy-gy))); \n break;\t\n }\n\n if ( x < 0 || y < 0 || t < 0 || x >= 50 || y >= 50 || t >= 100 ) continue; \n \n if ( used[y][x][t] ) continue;\n used[y][x][t] = true; \n\n if ( x%2 == 0 || t%2 == 0 ) {\n Q.push(state(x+1, y, t+1));\t\n }\n if ( x%2 == 1 || t%2 == 0 ) {\n Q.push(state(x-1, y, t+1));\t\n }\n if ( y%2 == 0 || t%2 == 1 ) {\n Q.push(state(x, y+1, t+1));\t\n }\n if ( y%2 == 1 || t%2 == 1 ) {\n Q.push(state(x, y-1, t+1));\t\n }\n Q.push(state(x, y, t+1)); \n }\n\n return 0; \n}\n\nint bfs2(int sx, int sy, int gx, int gy) {\n bool used[50][50][100];\n fill_n(**used, 50*50*100, false); \n queue<state> Q;\n Q.push(state(sx, sy, 0));\n while ( !Q.empty() ) {\n int x = Q.front().x; \n int y = Q.front().y;\n int t = Q.front().t;\n Q.pop();\n \n if ( x == gx && y == gy ) {\n // if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) cout << t << \" \" << (abs(sx-gx)+abs(sy-gy)) << endl; \n return t; \n break;\t\n }\n\n if ( x < 0 || y < 0 || t < 0 || x >= 50 || y >= 50 || t >= 100 ) continue; \n \n if ( used[y][x][t] ) continue;\n used[y][x][t] = true; \n\n if ( x%2 == 0 || t%2 == 0 ) {\n Q.push(state(x+1, y, t+1));\t\n }\n if ( x%2 == 1 || t%2 == 0 ) {\n Q.push(state(x-1, y, t+1));\t\n }\n if ( y%2 == 0 || t%2 == 1 ) {\n Q.push(state(x, y+1, t+1));\t\n }\n if ( y%2 == 1 || t%2 == 1 ) {\n Q.push(state(x, y-1, t+1));\t\n }\n Q.push(state(x, y, t+1)); \n }\n\n return 0; \n}\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n for ( int k = 0; k < 3; k++ ) {\n for ( int l = 0; l < 3; l++ ) {\n for ( int i = 0; i < (1<<4); i++ ) {\n\tint sx = Sx[k][(i>>0)&1];\n\tint sy = Sy[l][(i>>1)&1];\n\tint gx = Gx[k][(i>>2)&1];\n\tint gy = Gy[l][(i>>3)&1];\t\n\tpre_calc[k][l][sx%2][sy%2][gx%2][gy%2] = bfs(sx, sy, gx, gy);\n\t/*if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) {\n\t cout << \"aaa \" << k << \" \" << l << \" \" << bfs(sx, sy, gx, gy) << \" \" << pre_calc[2][0][0][0][0][0] << endl;\n\t \n\t }*/\n\t/*if ( k == 2 && l == 0 && sx%2 == 0 && sy%2 == 0 && gx%2 == 0 && gy%2 == 0 ) {\n\t cout << k << \" \" << l << \" \" << sx << \" \" << sy << \" \" << gx << \" \" << gy << endl;\t \n\t cout << pre_calc[k][l][sx%2][sy%2][gx%2][gy%2] << endl;\t \t \n\t }*/\t\n }\n }\n }\n\n int sx, sy, gx, gy;\n cin >> sx >> sy >> gx >> gy;\n\n /*cout << Sx[2][0] << \" \" << Sy[0][0] << \" \" << Gx[2][0] << \" \" << Gy[0][0] << endl;\n cout << pre_calc[2][0][0][0][0][0] << endl; */\n\n int abs_x = abs(sx-gx), abs_y = abs(sy-gy);\n int hiku = min(abs_x, abs_y) / 2 * 2;\n sx -= hiku;\n sy -= hiku;\n gx -= hiku;\n gy -= hiku;\n if ( sx < 50 && sy < 50 && gx < 50 && gy < 50 ) {\n cout << bfs2(sx, sy, gx, gy) << endl; \n } else { \n\n int ans = abs(sx-gx)+abs(sy-gy); \n int k = 0, l = 0;\n if ( sx > gx ) k = 1;\n if ( sx < gx ) k = 2;\n if ( sy > gy ) l = 1;\n if ( sy < gy ) l = 2;\n ans += pre_calc[k][l][sx%2][sy%2][gx%2][gy%2];\n \n cout << ans << endl;\n }\n return 0;\n}", "accuracy": 0.6170212765957447, "time_ms": 50, "memory_kb": 3892, "score_of_the_acc": -0.2421, "final_rank": 12 }, { "submission_id": "aoj_3173_4845454", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n#define REP(i, n) for ( int i = 0; i < (n); i++ )\n\nstruct state {\n int x, y, t;\n state(int x, int y, int t): x(x), y(y), t(t){} \n};\n\nint Sx[3][2] = {{30, 31},\n\t\t{30, 31},\n\t\t{14, 15}};\nint Sy[3][2] = {{40, 41},\n\t\t{40, 41},\n\t\t{24, 25}};\nint Gx[3][2] = {{30, 31},\n\t\t{14, 15},\n\t\t{30, 31}};\nint Gy[3][2] = {{40, 41},\n\t\t{24, 25},\n\t\t{40, 41}};\n\nint pre_calc[3][3][2][2][2][2];\n\nint bfs(int sx, int sy, int gx, int gy) {\n bool used[50][50][100];\n fill_n(**used, 50*50*100, false); \n queue<state> Q;\n Q.push(state(sx, sy, 0));\n while ( !Q.empty() ) {\n int x = Q.front().x; \n int y = Q.front().y;\n int t = Q.front().t;\n Q.pop();\n \n if ( x == gx && y == gy ) {\n // if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) cout << t << \" \" << (abs(sx-gx)+abs(sy-gy)) << endl; \n return (t - (abs(sx-gx)+abs(sy-gy))); \n break;\t\n }\n\n if ( x < 0 || y < 0 || t < 0 || x >= 50 || y >= 50 || t >= 100 ) continue; \n \n if ( used[y][x][t] ) continue;\n used[y][x][t] = true; \n\n if ( x%2 == 0 || t%2 == 0 ) {\n Q.push(state(x+1, y, t+1));\t\n }\n if ( x%2 == 1 || t%2 == 0 ) {\n Q.push(state(x-1, y, t+1));\t\n }\n if ( y%2 == 0 || t%2 == 1 ) {\n Q.push(state(x, y+1, t+1));\t\n }\n if ( y%2 == 1 || t%2 == 1 ) {\n Q.push(state(x, y-1, t+1));\t\n }\n Q.push(state(x, y, t+1)); \n }\n\n return 0; \n}\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n for ( int k = 0; k < 3; k++ ) {\n for ( int l = 0; l < 3; l++ ) {\n for ( int i = 0; i < (1<<4); i++ ) {\n\tint sx = Sx[k][(i>>0)&1];\n\tint sy = Sy[l][(i>>1)&1];\n\tint gx = Gx[k][(i>>2)&1];\n\tint gy = Gy[l][(i>>3)&1];\t\n\tpre_calc[k][l][sx%2][sy%2][gx%2][gy%2] = bfs(sx, sy, gx, gy);\n\t/*if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) {\n\t cout << \"aaa \" << k << \" \" << l << \" \" << bfs(sx, sy, gx, gy) << \" \" << pre_calc[2][0][0][0][0][0] << endl;\n\t \n\t }*/\n\t/*if ( k == 2 && l == 0 && sx%2 == 0 && sy%2 == 0 && gx%2 == 0 && gy%2 == 0 ) {\n\t cout << k << \" \" << l << \" \" << sx << \" \" << sy << \" \" << gx << \" \" << gy << endl;\t \n\t cout << pre_calc[k][l][sx%2][sy%2][gx%2][gy%2] << endl;\t \t \n\t }*/\t\n }\n }\n }\n\n int sx, sy, gx, gy;\n cin >> sx >> sy >> gx >> gy;\n\n /*cout << Sx[2][0] << \" \" << Sy[0][0] << \" \" << Gx[2][0] << \" \" << Gy[0][0] << endl;\n cout << pre_calc[2][0][0][0][0][0] << endl; */ \n\n int ans = abs(sx-gx)+abs(sy-gy); \n int k = 0, l = 0;\n if ( sx > gx ) k = 1;\n if ( sx < gx ) k = 2;\n if ( sy > gy ) l = 1;\n if ( sy < gy ) l = 2;\n ans += pre_calc[k][l][sx%2][sy%2][gx%2][gy%2];\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 0.6170212765957447, "time_ms": 60, "memory_kb": 3876, "score_of_the_acc": -0.3007, "final_rank": 13 }, { "submission_id": "aoj_3173_4845451", "code_snippet": "#pragma target(\"avx\")\n#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef long double ld;\ntypedef pair<ll, ll> P;\ntypedef vector<ll> V;\ntypedef unordered_map<ll, ll> U_MAP;\ntypedef priority_queue<ll> pq;\ntypedef priority_queue<ll, vector<ll>, greater<ll>> rpq;\nconstexpr ll INF = 1e9, MOD = 1e9 + 7, ohara = 1e6 + 10;\nconstexpr ll LINF = 1e18;\n\n#define rep(i, n) for (ll(i) = 0; (i) < (int)(n); (i)++)\n#define rrep(i, a, b) for (ll i = (a); i < (b); i++)\n#define rrrep(i, a, b) for (ll i = (a); i >= (b); i--)\n#define all(v) (v).begin(), (v).end()\n#define Size(n) (n).size()\n#define Cout(x) cout << (x) << endl\n#define doublecout(a) cout << fixed << setprecision(15) << a << endl;\n#define fi first\n#define se second\n#define m_p make_pair\n#define p_b push_back\nstring to_string(string s) { return '\"' + s + '\"'; }\nstring to_string(const char* s) { return to_string((string)s); }\nstring to_string(bool b) { return (b ? \"true\" : \"false\"); }\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p) {\n return \"(\" + to_string(p.first) + \", \" + to_string(p.second) + \")\";\n}\ntemplate <typename A>\nstring to_string(A v) {\n bool first = true;\n string res = \"{\";\n for (const auto& x : v) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(x);\n }\n res += \"}\";\n return res;\n}\nvoid debug_out() { cerr << endl; }\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n cerr << \" \" << to_string(H);\n debug_out(T...);\n}\n#define debug(...) cerr << \"[\" << #__VA_ARGS__ << \"]:\", debug_out(__VA_ARGS__)\n\n//------ Believe yourself as a genius!!!!!! ------\n\nint dy[] = {1, 0, -1, 0};\nint dx[] = {0, 1, 0, -1};\n// int dy[]={-1,0,1,-1,1,-1,0,1};int dx[]={-1,-1,-1,0,0,1,1,1};\nstring alph(\"abcdefghijklmnopqrstuvwxyz\"), s;\nll n, cnt, ans, a, b, c, d, tmp, m, h, w, x, y, sum, k, q, sx, sy, gx, gy;\nll dat[210][210][210];\n\nint main(void) {\n cin.tie(0);\n cout.tie(0);\n ios::sync_with_stdio(false);\n\n cin >> sx >> sy >> gx >> gy;\n if (abs(gy - sy) + abs(gx - sx) <= 50) {\n tmp = abs(sx - gx);\n if (min(sx, gx) % 2 == 1) {\n if (sx < gx) {\n sx = 1;\n gx = sx + tmp;\n } else {\n gx = 1;\n sx = gx + tmp;\n }\n } else {\n if (sx < gx) {\n sx = 0;\n gx = sx + tmp;\n } else {\n gx = 0;\n sx = gx + tmp;\n }\n }\n tmp = abs(sy - gy);\n if (min(sy, gy) % 2 == 1) {\n if (sy < gy) {\n sy = 1;\n gy = sy + tmp;\n } else {\n gy = 1;\n sy = gy + tmp;\n }\n } else {\n if (sy < gy) {\n sy = 0;\n gy = sy + tmp;\n } else {\n gy = 0;\n sy = gy + tmp;\n }\n }\n priority_queue<pair<P, P>, vector<pair<P, P>>, greater<pair<P, P>>> que;\n que.push({{0, 0}, {sy, sx}});\n ans = INF;\n rep(i, 200) rep(j, 200) rep(k, 200) dat[i][j][k] = INF;\n dat[0][sy][sx] = 0;\n\n while (1) {\n if (que.empty()) break;\n pair<P, P> X;\n X = que.top();\n que.pop();\n\n int time = X.fi.se, nowy = X.se.fi, nowx = X.se.se, cost = X.fi.fi;\n // cout << time << \" \" << nowx << \" \" << nowy << \"\\n\";\n\n if (dat[time][nowy][nowx] < cost) continue;\n\n if (time % 2 == 0) {\n if (dat[time + 1][nowy][nowx - 1] > cost + 1 && nowx - 1 >= 0) {\n que.push({{cost + 1, time + 1}, {nowy, nowx - 1}});\n dat[time + 1][nowy][nowx - 1] = cost + 1;\n }\n if (dat[time + 1][nowy][nowx + 1] > cost + 1 && nowx + 1 < 200) {\n que.push({{cost + 1, time + 1}, {nowy, nowx + 1}});\n dat[time + 1][nowy][nowx + 1] = cost + 1;\n }\n } else {\n if (dat[time + 1][nowy - 1][nowx] > cost + 1 && nowy - 1 >= 0) {\n que.push({{cost + 1, time + 1}, {nowy - 1, nowx}});\n dat[time + 1][nowy - 1][nowx] = cost + 1;\n }\n if (dat[time + 1][nowy + 1][nowx] > cost + 1 && nowy + 1 < 200) {\n que.push({{cost + 1, time + 1}, {nowy + 1, nowx}});\n dat[time + 1][nowy + 1][nowx] = cost + 1;\n }\n }\n if (nowx % 2 == 0) {\n if (dat[time + 1][nowy][nowx + 1] > cost + 1 && nowx + 1 < 200) {\n que.push({{cost + 1, time + 1}, {nowy, nowx + 1}});\n dat[time + 1][nowy][nowx + 1] = cost + 1;\n }\n } else {\n if (dat[time + 1][nowy][nowx - 1] > cost + 1 && nowx - 1 >= 0) {\n que.push({{cost + 1, time + 1}, {nowy, nowx - 1}});\n dat[time + 1][nowy][nowx - 1] = cost + 1;\n }\n }\n if (nowy % 2 == 0) {\n if (dat[time + 1][nowy + 1][nowx] > cost + 1 && nowy + 1 < 200) {\n que.push({{cost + 1, time + 1}, {nowy + 1, nowx}});\n dat[time + 1][nowy + 1][nowx] = cost + 1;\n }\n } else {\n if (dat[time + 1][nowy - 1][nowx] > cost + 1 && nowy - 1 >= 0) {\n que.push({{cost + 1, time + 1}, {nowy - 1, nowx}});\n dat[time + 1][nowy - 1][nowx] = cost + 1;\n }\n }\n if (dat[time + 1][nowy][nowx] > cost + 1) {\n que.push({{cost + 1, time + 1}, {nowy, nowx}});\n dat[time + 1][nowy][nowx] = cost + 1;\n }\n }\n rep(i, 200) ans = min(ans, dat[i][gy][gx]);\n Cout(ans);\n return 0;\n }\n if (sx == gx && sy == gy) {\n Cout(0);\n } else if (sx < gx && sy < gy) {\n Cout(abs(gy - sy) + abs(gx - sx));\n } else if (sx < gx && sy > gy) {\n Cout(abs(gy - sy) + abs(gx - sx));\n } else if (sx > gx && sy < gy) {\n Cout(abs(gy - sy) + abs(gx - sx));\n } else if (sx > gx && sy > gy) {\n Cout(abs(gy - sy) + abs(gx - sx)); //さぼった\n } else {\n if (sx == gx) {\n if (sy < gy) {\n if (sy % 2 == 1)\n Cout(abs(gy - sy) + abs(gx - sx) + 1);\n else\n Cout(abs(gy - sy) + abs(gx - sx));\n } else {\n if (sy % 2 == 0)\n Cout(abs(gy - sy) + abs(gx - sx) + 1);\n else\n Cout(abs(gy - sy) + abs(gx - sx));\n }\n } else {\n if (sx < gx) {\n if (sx % 2 == 0)\n Cout(abs(gy - sy) + abs(gx - sx) + 1);\n else\n Cout(abs(gy - sy) + abs(gx - sx));\n } else {\n if (sx % 2 == 1)\n Cout(abs(gy - sy) + abs(gx - sx) + 1);\n else\n Cout(abs(gy - sy) + abs(gx - sx));\n }\n }\n }\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 70656, "score_of_the_acc": -2, "final_rank": 6 }, { "submission_id": "aoj_3173_4845405", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n#define REP(i, n) for ( int i = 0; i < (n); i++ )\n\nstruct state {\n int x, y, t;\n state(int x, int y, int t): x(x), y(y), t(t){} \n};\n\nint Sx[3][2] = {{30, 31},\n\t\t{30, 31},\n\t\t{14, 15}};\nint Sy[3][2] = {{40, 41},\n\t\t{40, 41},\n\t\t{24, 25}};\nint Gx[3][2] = {{30, 31},\n\t\t{14, 15},\n\t\t{30, 31}};\nint Gy[3][2] = {{40, 41},\n\t\t{24, 25},\n\t\t{40, 41}};\n\nint pre_calc[3][3][2][2][2][2];\n\nint bfs(int sx, int sy, int gx, int gy) {\n bool used[50][50][50];\n fill_n(**used, 50*50*50, false); \n queue<state> Q;\n Q.push(state(sx, sy, 0));\n while ( !Q.empty() ) {\n int x = Q.front().x; \n int y = Q.front().y;\n int t = Q.front().t;\n Q.pop();\n\n if ( x == gx && y == gy ) {\n // if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) cout << t << \" \" << (abs(sx-gx)+abs(sy-gy)) << endl; \n return (t - (abs(sx-gx)+abs(sy-gy))); \n break;\t\n }\n\n if ( x < 0 || y < 0 || t < 0 || x >= 50 || y >= 50 || t >= 50 ) continue; \n \n if ( used[y][x][t] ) continue;\n used[y][x][t] = true; \n\n if ( x%2 == 0 || t%2 == 0 ) {\n Q.push(state(x+1, y, t+1));\t\n }\n if ( x%2 == 1 || t%2 == 0 ) {\n Q.push(state(x-1, y, t+1));\t\n }\n if ( y%2 == 0 || t%2 == 1 ) {\n Q.push(state(x, y+1, t+1));\t\n }\n if ( y%2 == 1 || t%2 == 1 ) {\n Q.push(state(x, y-1, t+1));\t\n }\n Q.push(state(x, y, t+1)); \n }\n\n return 0; \n}\n\nsigned main() {\n cin.tie(0);\n ios_base::sync_with_stdio(0);\n cout << fixed << setprecision(12);\n\n for ( int k = 0; k < 3; k++ ) {\n for ( int l = 0; l < 3; l++ ) {\n for ( int i = 0; i < (1<<4); i++ ) {\n\tint sx = Sx[k][(i>>0)&1];\n\tint sy = Sy[l][(i>>1)&1];\n\tint gx = Gx[k][(i>>2)&1];\n\tint gy = Gy[l][(i>>3)&1];\t\n\tpre_calc[k][l][sx%2][sy%2][gx%2][gy%2] = bfs(sx, sy, gx, gy);\n\t/*if ( sx == 14 && sy == 40 && gx == 30 && gy == 40 ) {\n\t cout << \"aaa \" << k << \" \" << l << \" \" << bfs(sx, sy, gx, gy) << \" \" << pre_calc[2][0][0][0][0][0] << endl;\n\t \n\t }*/\n\t/*if ( k == 2 && l == 0 && sx%2 == 0 && sy%2 == 0 && gx%2 == 0 && gy%2 == 0 ) {\n\t cout << k << \" \" << l << \" \" << sx << \" \" << sy << \" \" << gx << \" \" << gy << endl;\t \n\t cout << pre_calc[k][l][sx%2][sy%2][gx%2][gy%2] << endl;\t \t \n\t }*/\t\n }\n }\n }\n\n int sx, sy, gx, gy;\n cin >> sx >> sy >> gx >> gy;\n\n /*cout << Sx[2][0] << \" \" << Sy[0][0] << \" \" << Gx[2][0] << \" \" << Gy[0][0] << endl;\n cout << pre_calc[2][0][0][0][0][0] << endl; */ \n\n int ans = abs(sx-gx)+abs(sy-gy); \n int k = 0, l = 0;\n if ( sx > gx ) k = 1;\n if ( sx < gx ) k = 2;\n if ( sy > gy ) l = 1;\n if ( sy < gy ) l = 2;\n ans += pre_calc[k][l][sx%2][sy%2][gx%2][gy%2];\n\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 0.6170212765957447, "time_ms": 50, "memory_kb": 3756, "score_of_the_acc": -0.2401, "final_rank": 11 }, { "submission_id": "aoj_3173_4845394", "code_snippet": "#pragma target(\"avx\")\n#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef long double ld;\ntypedef pair<ll, ll> P;\ntypedef vector<ll> V;\ntypedef unordered_map<ll, ll> U_MAP;\ntypedef priority_queue<ll> pq;\ntypedef priority_queue<ll, vector<ll>, greater<ll>> rpq;\nconstexpr ll INF = 1e9, MOD = 1e9 + 7, ohara = 1e6 + 10;\nconstexpr ll LINF = 1e18;\n\n#define rep(i, n) for (ll(i) = 0; (i) < (int)(n); (i)++)\n#define rrep(i, a, b) for (ll i = (a); i < (b); i++)\n#define rrrep(i, a, b) for (ll i = (a); i >= (b); i--)\n#define all(v) (v).begin(), (v).end()\n#define Size(n) (n).size()\n#define Cout(x) cout << (x) << endl\n#define doublecout(a) cout << fixed << setprecision(15) << a << endl;\n#define fi first\n#define se second\n#define m_p make_pair\n#define p_b push_back\nstring to_string(string s) { return '\"' + s + '\"'; }\nstring to_string(const char* s) { return to_string((string)s); }\nstring to_string(bool b) { return (b ? \"true\" : \"false\"); }\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p) {\n return \"(\" + to_string(p.first) + \", \" + to_string(p.second) + \")\";\n}\ntemplate <typename A>\nstring to_string(A v) {\n bool first = true;\n string res = \"{\";\n for (const auto& x : v) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(x);\n }\n res += \"}\";\n return res;\n}\nvoid debug_out() { cerr << endl; }\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n cerr << \" \" << to_string(H);\n debug_out(T...);\n}\n#define debug(...) cerr << \"[\" << #__VA_ARGS__ << \"]:\", debug_out(__VA_ARGS__)\n\n//------ Believe yourself as a genius!!!!!! ------\n\nint dy[] = {1, 0, -1, 0};\nint dx[] = {0, 1, 0, -1};\n// int dy[]={-1,0,1,-1,1,-1,0,1};int dx[]={-1,-1,-1,0,0,1,1,1};\nstring alph(\"abcdefghijklmnopqrstuvwxyz\"), s;\nll n, cnt, ans, a, b, c, d, tmp, m, h, w, x, y, sum, k, q, sx, sy, gx, gy;\nll dat[210][210][210];\n\nint main(void) {\n cin.tie(0);\n cout.tie(0);\n ios::sync_with_stdio(false);\n\n cin >> sx >> sy >> gx >> gy;\n if (abs(gy - sy) + abs(gx - sx) <= 50) {\n tmp = abs(sx - gx);\n if (min(sx, gx) % 2 == 1) {\n if (sx < gx) {\n sx = 1;\n gx = sx + tmp;\n } else {\n gx = 1;\n sx = gx + tmp;\n }\n } else {\n if (sx < gx) {\n sx = 0;\n gx = sx + tmp;\n } else {\n gx = 0;\n sx = gx + tmp;\n }\n }\n tmp = abs(sy - gy);\n if (min(sy, gy) % 2 == 1) {\n if (sy < gy) {\n sy = 1;\n gy = sy + tmp;\n } else {\n gy = 1;\n sy = gy + tmp;\n }\n } else {\n if (sy < gy) {\n sy = 0;\n gy = sy + tmp;\n } else {\n gy = 0;\n sy = gy + tmp;\n }\n }\n priority_queue<pair<P, P>, vector<pair<P, P>>, greater<pair<P, P>>> que;\n que.push({{0, 0}, {sy, sx}});\n ans = INF;\n rep(i, 200) rep(j, 200) rep(k, 200) dat[i][j][k] = INF;\n dat[0][sy][sx] = 0;\n\n while (1) {\n if (que.empty()) break;\n pair<P, P> X;\n X = que.top();\n que.pop();\n\n int time = X.fi.se, nowy = X.se.fi, nowx = X.se.se, cost = X.fi.fi;\n // cout << time << \" \" << nowx << \" \" << nowy << \"\\n\";\n\n if (dat[time][nowy][nowx] < cost) continue;\n\n if (time % 2 == 0) {\n if (dat[time + 1][nowy][nowx - 1] > cost + 1 && nowx - 1 >= 0) {\n que.push({{cost + 1, time + 1}, {nowy, nowx - 1}});\n dat[time + 1][nowy][nowx - 1] = cost + 1;\n }\n if (dat[time + 1][nowy][nowx + 1] > cost + 1 && nowx + 1 < 200) {\n que.push({{cost + 1, time + 1}, {nowy, nowx + 1}});\n dat[time + 1][nowy][nowx + 1] = cost + 1;\n }\n } else {\n if (dat[time + 1][nowy - 1][nowx] > cost + 1 && nowy - 1 >= 0) {\n que.push({{cost + 1, time + 1}, {nowy - 1, nowx}});\n dat[time + 1][nowy - 1][nowx] = cost + 1;\n }\n if (dat[time + 1][nowy + 1][nowx] > cost + 1 && nowy + 1 < 200) {\n que.push({{cost + 1, time + 1}, {nowy + 1, nowx}});\n dat[time + 1][nowy + 1][nowx] = cost + 1;\n }\n }\n if (nowx % 2 == 0) {\n if (dat[time + 1][nowy][nowx + 1] > cost + 1 && nowx + 1 < 200) {\n que.push({{cost + 1, time + 1}, {nowy, nowx + 1}});\n dat[time + 1][nowy][nowx + 1] = cost + 1;\n }\n } else {\n if (dat[time + 1][nowy][nowx - 1] > cost + 1 && nowx - 1 >= 0) {\n que.push({{cost + 1, time + 1}, {nowy, nowx - 1}});\n dat[time + 1][nowy][nowx - 1] = cost + 1;\n }\n }\n if (nowy % 2 == 0) {\n if (dat[time + 1][nowy + 1][nowx] > cost + 1 && nowy + 1 < 200) {\n que.push({{cost + 1, time + 1}, {nowy + 1, nowx}});\n dat[time + 1][nowy + 1][nowx] = cost + 1;\n }\n } else {\n if (dat[time + 1][nowy - 1][nowx] > cost + 1 && nowy - 1 >= 0) {\n que.push({{cost + 1, time + 1}, {nowy - 1, nowx}});\n dat[time + 1][nowy - 1][nowx] = cost + 1;\n }\n }\n if (dat[time + 1][nowy][nowx] > cost + 1) {\n que.push({{cost + 1, time + 1}, {nowy, nowx}});\n dat[time + 1][nowy][nowx] = cost + 1;\n }\n }\n rep(i, 200) ans = min(ans, dat[i][gy][gx]);\n Cout(ans);\n return 0;\n }\n if (sx == gx && sy == gy) {\n Cout(0);\n } else if (sx < gx && sy < gy) {\n Cout(abs(gy - sy) + abs(gx - sx));\n } else if (sx < gx && sy > gy) {\n Cout(abs(gy - sy) + abs(gx - sx));\n } else if (sx > gx && sy < gy) {\n Cout(abs(gy - sy) + abs(gx - sx));\n } else if (sx < gx && sy < gy) {\n Cout(abs(gy - sy) + abs(gx - sx)); //さぼった\n } else {\n if (sx == gx) {\n if (sy < gy) {\n if (sy % 2 == 1)\n Cout(abs(gy - sy) + abs(gx - sx) + 1);\n else\n Cout(abs(gy - sy) + abs(gx - sx));\n } else {\n if (sy % 2 == 0)\n Cout(abs(gy - sy) + abs(gx - sx) + 1);\n else\n Cout(abs(gy - sy) + abs(gx - sx));\n }\n } else {\n if (sx < gx) {\n if (sx % 2 == 0)\n Cout(abs(gy - sy) + abs(gx - sx) + 1);\n else\n Cout(abs(gy - sy) + abs(gx - sx));\n } else {\n if (sx % 2 == 1)\n Cout(abs(gy - sy) + abs(gx - sx) + 1);\n else\n Cout(abs(gy - sy) + abs(gx - sx));\n }\n }\n }\n return 0;\n}", "accuracy": 0.2765957446808511, "time_ms": 170, "memory_kb": 70352, "score_of_the_acc": -1.9367, "final_rank": 14 } ]
aoj_3174_cpp
C - No Palindromes 問題文 umg くんは長さ $N$ の英小文字からなる文字列 $S$ を持っています。 umg くんは回文が苦手なので、$S$ の文字を自由に並び替えて、次の条件を満たす文字列 $T$ を作ることにしました。 $T$ のどの長さ $2$ 以上の連続する部分文字列も回文ではない。 このような $T$ が存在するかどうか判定し、存在するならば $1$ つ求めてください。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $S$ 制約 $1 \leq N \leq 10^5$ $S$ は英小文字からなる長さ $N$ の文字列である。 出力 条件を満たす文字列 $T$ が存在しない場合は、 -1 を出力せよ。 そうでない場合は、$T$ を $1$ つ出力せよ。 条件を満たす $T$ は複数存在するかもしれないが、それらのうちのどれを出力しても正答となる。 入力例 1 3 aba 出力例 1 -1 $S =$ aba を並び替えて作れる文字列は次の $3$ つです。 aab 部分文字列 aa は回文である。 aba 部分文字列 aba は回文である。 baa 部分文字列 aa は回文である。 これらはすべて条件を満たさないので、$T$ は存在しません。 入力例 2 6 bamboo 出力例 2 boamob boamob のどの連続する長さ $2$ 以上の部分文字列も回文ではないので、これが $T$ の $1$ つとなります。 入力例 3 14 takeyabuyaketa 出力例 3 takeyabuyaketa
[ { "submission_id": "aoj_3174_4875827", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=Int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n Int n;\n cin>>n;\n string s;\n cin>>s;\n\n vector<Int> cnt(26,0);\n for(char c:s) cnt[c-'a']++;\n\n string ans;\n ans+='?';\n ans+='!';\n for(Int i=0;i<n;i++){\n using P = pair<Int, char>;\n vector<P> vp;\n for(Int j=0;j<26;j++)\n vp.emplace_back(cnt[j],'a'+j);\n sort(vp.rbegin(),vp.rend());\n for(auto p:vp){\n if(p.first==0) continue;\n if(ans[i+0]==p.second) continue;\n if(ans[i+1]==p.second) continue;\n ans+=p.second;\n cnt[p.second-'a']--;\n break;\n }\n if((Int)ans.size()!=i+3) drop(-1);\n }\n ans.erase(ans.begin());\n ans.erase(ans.begin());\n\n cout<<ans<<newl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3840, "score_of_the_acc": -0.1449, "final_rank": 11 }, { "submission_id": "aoj_3174_4846691", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\ntemplate<class T> ostream& operator << (ostream &s, vector<vector<T> > P)\n{ for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; }\ntemplate<class T> ostream& operator << (ostream &s, set<T> P)\n{ for(auto it : P) { s << \"<\" << it << \"> \"; } return s << endl; }\ntemplate<class T1, class T2> ostream& operator << (ostream &s, map<T1,T2> P)\n{ for(auto it : P) { s << \"<\" << it.first << \"->\" << it.second << \"> \"; } return s << endl; }\n\n\nstring solve(int N, const string &S) {\n map<char,int> ma;\n for (auto c : S) ma[c]++;\n if (ma.size() == 1) {\n if (N == 1) return S;\n else return \"-1\";\n }\n else if (ma.size() == 2) {\n if (N == 2) return S;\n else return \"-1\";\n }\n else {\n string res = \"\";\n while (!ma.empty()) {\n int vmax = -1;\n char pmax;\n for (auto it : ma) {\n if (res.size() > 0 && res.back() == it.first) continue;\n if (res.size() > 1 && res[res.size() - 2] == it.first) continue;\n if (chmax(vmax, it.second)) pmax = it.first;\n }\n if (vmax == -1) return \"-1\";\n res += pmax;\n ma[pmax]--;\n if (ma[pmax] == 0) ma.erase(pmax);\n }\n return res;\n }\n}\n\nint main() {\n int N;\n string S;\n cin >> N >> S;\n cout << solve(N, S) << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3440, "score_of_the_acc": -0.0051, "final_rank": 2 }, { "submission_id": "aoj_3174_4846656", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long long INF = 1e18;\n//const ll mod = 1000000007;\nll N;\nstring S;\nmap<char, ll> mp;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin >> N;\n cin >> S;\n for(int i = 0; i < N; i++) {\n mp[S[i]]++;\n }\n string ans;\n for(int i = 0; i < N; i++) {\n char tmp = '#';\n for(char a = 'a'; a <= 'z'; a++) {\n if(i >= 2 and ans[i-2] == a) continue;\n if(i >= 1 and ans[i-1] == a) continue;\n if(mp[tmp] < mp[a]) tmp = a;\n }\n if(tmp == '#') {\n cout << -1 << endl;\n return 0;\n }\n ans.push_back(tmp);\n mp[tmp]--;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3628, "score_of_the_acc": -0.0724, "final_rank": 7 }, { "submission_id": "aoj_3174_4846647", "code_snippet": "// Sに含まれるアルファベットのうち\n// 過半数以上のアルファベット文字があったらだめ\n// そうじゃなかったら絶対作れそう?\n#include <bits/stdc++.h>\nusing namespace std;\n\nint main() {\n int N;\n string S;\n cin >> N >> S;\n vector<int> alphabet('z' - 'a' + 1, 0);\n for(char ch: S) ++alphabet[ch - 'a'];\n // for(int num: alphabet) {\n // if(num > N/2) {\n // cout << -1 << endl;\n // return 0;\n // }\n // }\n\n // 構築\n // 同じ文字が隣りあってはダメ\n // 長さ3→両端同じはだめ\n string res = \"\";\n \n // int r = 0;\n // for(int i = 0; i < N; ++i) {\n // while(alphabet[r] == 0) {\n // r = (r + 1)%('z' - 'a' + 1);\n // }\n // res += (char)('a' + r);\n // --alphabet[r];\n // r = (r+1)%('z' - 'a' + 1);\n // }\n\n vector<pair<int,int>> alp('z' - 'a' + 1);\n for(int i = 0; i < 'z' - 'a' + 1; ++i) {\n alp[i].first = alphabet[i];\n alp[i].second = i;\n }\n sort(alp.rbegin(), alp.rend());\n for(int i = 0; i < N; ++i) {\n set<char> prev;\n if(i-1 >= 0) prev.insert(res[i-1]);\n if(i-2 >= 0) prev.insert(res[i-2]);\n bool flg = false;\n for(int r = 0; r < 'z' - 'a' + 1; ++r) {\n if(alp[r].first > 0 && prev.find((char)(alp[r].second + 'a')) == prev.end()) {\n res += (char)(alp[r].second + 'a');\n --alp[r].first;\n flg = true;\n break;\n }\n }\n if(!flg) {\n cout << -1 << endl;\n return 0;\n }\n sort(alp.rbegin(), alp.rend());\n }\n\n for(int i = 0; i < N-1; ++i) {\n if(res[i] == res[i+1]) {\n cout << -1 << endl;\n return 0;\n }\n }\n for(int i = 0; i < N-2; ++i) {\n if(res[i] == res[i+2]) {\n cout << -1 << endl;\n return 0;\n }\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3452, "score_of_the_acc": -0.0347, "final_rank": 5 }, { "submission_id": "aoj_3174_4845381", "code_snippet": "#pragma GCC optimize(\"Ofast\", \"unroll-loops\")\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n#define ll long long\n#define ld long double\n\nstruct info{\n\tchar c = ' ';\n\tint idx = 0;\n\tint cnt = 0;\n};\n\nint N;\nstring S;\n\nvoid input(void){\n\tcin >> N >> S;\n}\n\nint main(void){\n\tinput();\n\tstring res = \"\";\n\tvector<info> infos(26);\n\tfor (int i = 0; i < 26; ++i){\n\t\tinfos[i].c = (char)('a' + i);\n\t}\n\tfor (int i = 0; i < N; ++i){\n\t\tint idx = S[i] - 'a';\n\t\tinfos[idx].cnt++;\n\t}\n\n\tpriority_queue<info, vector<info>, function<bool(info, info)>> waiting(\n\t\t[](info i1, info i2){ return i1.idx > i2.idx; }\n\t);\n\tpriority_queue<info, vector<info>, function<bool(info, info)>> ok(\n\t\t[](info i1, info i2){ return i1.cnt < i2.cnt; }\n\t);\n\n\tfor (auto i : infos)\n\t\tif (i.cnt)\n\t\t\tok.push(i);\n\n\tfor (int i = 0; i < N; ++i){\n\t\twhile (waiting.size()){\n\t\t\tinfo t = waiting.top();\n\t\t\tif (t.idx <= i){\n\t\t\t\tok.push(t);\n\t\t\t\twaiting.pop();\n\t\t\t}\n\t\t\telse break;\n\t\t}\n\t\tif (ok.size() == 0){\n\t\t\tcout << -1 << endl;\n\t\t\treturn 0;\n\t\t}\n\t\tinfo t = ok.top();\n\t\tok.pop();\n\t\tres += t.c;\n\t\tt.cnt--;\n\t\tt.idx = i + 3;\n\t\tif (t.cnt)\n\t\t\twaiting.push(t);\n\t}\n\n\tcout << res << endl;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3440, "score_of_the_acc": -0.0051, "final_rank": 2 }, { "submission_id": "aoj_3174_4845155", "code_snippet": "#line 2 \"cpplib/util/template.hpp\"\n#pragma GCC optimize(\"Ofast\")\n#pragma GCC optimize(\"unroll-loops\")\n#pragma GCC target(\"avx\")\n#include<bits/stdc++.h>\nusing namespace std;\nstruct __INIT__{__INIT__(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}}__INIT__;\ntypedef long long lint;\n#define INF (1LL<<60)\n#define IINF (1<<30)\n#define EPS (1e-10)\n#define endl ('\\n')\ntypedef vector<lint> vec;\ntypedef vector<vector<lint>> mat;\ntypedef vector<vector<vector<lint>>> mat3;\ntypedef vector<string> svec;\ntypedef vector<vector<string>> smat;\ntemplate<typename T>inline void numout(T t){bool f=0;for(auto i:t){cout<<(f?\" \":\"\")<<i<INF/2?i:\"INF\";f=1;}cout<<endl;}\ntemplate<typename T>inline void numout2(T t){for(auto i:t)numout(i);}\ntemplate<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?\" \":\"\")<<i;f=1;}cout<<endl;}\ntemplate<typename T>inline void output2(T t){for(auto i:t)output(i);}\ntemplate<typename T>inline void _output(T t){bool f=0;for(lint i=0;i<t.size();i++){cout<<f?\"\":\" \"<<t[i];f=1;}cout<<endl;}\ntemplate<typename T>inline void _output2(T t){for(lint i=0;i<t.size();i++)output(t[i]);}\n#define rep(i,...) for(auto i:range(__VA_ARGS__)) \n#define rrep(i,...) for(auto i:reversed(range(__VA_ARGS__)))\n#define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i)\n#define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i)\n#define irep(i) for(lint i=0;;++i)\ninline vector<long long> range(long long n){vector<long long>v(n);iota(v.begin(),v.end(),0LL);return v;}\ninline vector<long long> range(long long a,long long b){vector<long long>v(b-a);iota(v.begin(),v.end(),a);return v;}\ninline vector<long long> range(long long a,long long b,long long c){if((b-a+c-1)/c<=0)return vector<long long>();vector<long long>v((b-a+c-1)/c);for(int i=0;i<(int)v.size();++i)v[i]=i?v[i-1]+c:a;return v;}\ntemplate<typename T>inline T reversed(T v){reverse(v.begin(),v.end());return v;}\n#define all(n) begin(n),end(n)\ntemplate<typename T,typename E>bool chmin(T& s,const E& t){bool res=s>t;s=min<T>(s,t);return res;}\ntemplate<typename T,typename E>bool chmax(T& s,const E& t){bool res=s<t;s=max<T>(s,t);return res;}\nconst vector<lint> dx={1,0,-1,0,1,1,-1,-1};\nconst vector<lint> dy={0,1,0,-1,1,-1,1,-1};\n#define SUM(v) accumulate(all(v),0LL)\ntemplate<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return vector(arg,make_vector<T>(x,args...));}\n#line 2 \"code.cpp\"\n\nint main(){\n lint n;\n cin>>n;\n string s;\n cin>>s;\n map<char,lint>m;\n rep(i,n){\n m[s[i]]++;\n }\n multiset<pair<char,lint>>v;\n sort(all(s),[&](auto s,auto t){return m[s]==m[t]?s>t:m[s]>m[t];});\n string ans(n,'#');\n vector<lint>b(n,0);\n lint now=0;\n rep(i,n){\n while(b[now%n])now++;\n ans[now%n]=s[i];\n b[now%n]=1;\n now+=3;\n }\n for(int i=0;i<n-1;++i){\n if(ans[i]==ans[i+1]){\n cout<<-1<<endl;\n return 0;\n }\n }\n for(int i=0;i<n-2;++i){\n if(ans[i]==ans[i+2]){\n cout<<-1<<endl;\n return 0;\n }\n }\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 4764, "score_of_the_acc": -0.3428, "final_rank": 12 }, { "submission_id": "aoj_3174_4844826", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n#define rep(i, n) for (int i = 0; i < (int) (n); i++)\n#define reps(i, n) for (int i = 1; i <= (int) (n); i++)\n#define all(x) (x).begin(), (x).end()\n#define uniq(x) (x).erase(unique(all(x)), (x).end())\n#define bit(n) (1LL << (n))\n#define dump(x) cerr << #x \" = \" << (x) << endl\nusing vint = vector<int>;\nusing vvint = vector<vint>;\nusing pint = pair<int, int>;\nusing vpint = vector<pint>;\ntemplate<typename T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;\nconstexpr double PI = 3.1415926535897932384626433832795028;\nconstexpr int DY[9] = {0, 1, 0, -1, 1, 1, -1, -1, 0};\nconstexpr int DX[9] = {1, 0, -1, 0, 1, -1, -1, 1, 0};\nint sign(int x) { return (x > 0) - (x < 0); }\nint gcd(int a, int b) {\n while (b) { swap(a %= b, b); }\n return a;\n}\nint lcm(int a, int b) { return a / gcd(a, b) * b; }\nint cdiv(int a, int b) { return (a - 1 + b) / b; }\ntemplate<typename T> void fin(T mes) {\n cout << mes << endl;\n exit(0);\n}\ntemplate<typename T> T sq(T x) { return x * x; }\ntemplate<typename T, typename U> bool chmax(T &a, const U &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<typename T, typename U> bool chmin(T &a, const U &b) {\n if (b < a) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &rhs) {\n os << \"(\" << rhs.first << \", \" << rhs.second << \")\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const vector<T> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const deque<T> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const set<T> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T> ostream &operator<<(ostream &os, const multiset<T> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\ntemplate<typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &rhs) {\n os << \"{\";\n for (auto itr = rhs.begin(); itr != rhs.end(); itr++) {\n os << *itr << (next(itr) != rhs.end() ? \", \" : \"\");\n }\n os << \"}\";\n return os;\n}\nstruct setup {\n static constexpr int PREC = 20;\n setup() {\n cout << fixed << setprecision(PREC);\n cerr << fixed << setprecision(PREC);\n };\n} setup;\n\nsigned main() {\n int N;\n string S;\n cin >> N >> S;\n vint ap(26);\n for (char c:S) { ap[c - 'a']++; }\n string T;\n while (N--) {\n vector<char> taboo;\n if (T.size() >= 1) { taboo.emplace_back(T[T.size() - 1]); }\n if (T.size() >= 2) { taboo.emplace_back(T[T.size() - 2]); }\n int m = 0, a = -1;\n rep(i, 26) {\n bool flg = false;\n for (char c:taboo) { if (i + 'a' == c) { flg = true; }}\n if (flg) { continue; }\n if (chmax(m, ap[i])) { a = i; }\n }\n if (a == -1) { fin(-1); }\n ap[a]--;\n T.push_back(a + 'a');\n }\n cout << T << endl;\n\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3812, "score_of_the_acc": -0.0848, "final_rank": 8 }, { "submission_id": "aoj_3174_4844802", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n//#pragma warning(disable : 4996)\n\n#ifdef _MSC_VER\n#include <intrin.h>\n\n#define __builtin_popcount __popcnt\n#define __builtin_popcountll __popcnt64\n#endif\n\n#include <limits.h>\n#include <math.h>\n#include <time.h>\n\n#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <complex>\n#include <cstdio>\n#include <cstring>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <iterator>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n\n//#include<atcoder/all>\n\nusing namespace std;\n\n//using namespace atcoder;\n\n#define REP(i, n) for (int i = 0; i < (n); ++i)\n#define REPR(i, n) for (int i = n - 1; i >= 0; --i)\n#define FOR(i, m, n) for (int i = m; i < n; ++i)\n#define FORR(i, m, n) for (int i = m - 1; i >= n; --i)\n#define SORT(v, n) sort(v, v + n);\n#define VSORT(v) sort(v.begin(), v.end());\n#define REVERSE(v, n) reverse(v, v + n);\n#define VREVERSE(v) reverse(v.begin(), v.end())\n#define ll long long\n#define print(x) cout << (x) << endl\n#define pe(x) cout << (x) << \" \"\n#define DEBUG(x) cout << #x << \": \" << x << endl\n#define lb(v, n) lower_bound(v.begin(), v.end(), (n))\n#define ub(v, n) upper_bound(v.begin(), v.end(), (n))\n#define int long long\n//#define double long double\n#define all(x) (x).begin(), (x).end()\n#define print_space(v) REP(i, v.size()) cout << v[i] << \" \\n\"[i==(int)v.size()-1]\ntemplate <typename T1, typename T2> inline void chmin(T1& a, T2 b) { if (a > b) a = b; }\ntemplate <typename T1, typename T2> inline void chmax(T1& a, T2 b) { if (a < b) a = b; }\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> pll;\nstd::random_device rd;\nstd::mt19937 mt(rd());\nconstexpr ll MOD = 1e9 + 7;\nconstexpr int MAX = 500050;\nconst double pi = acos(-1);\nconstexpr double EPS = 1e-8;\nconstexpr ll LINF = 1e18 + 1;\nconstexpr int INF = 1e9 + 1;\nvoid Yes(bool cond) { cout << (cond ? \"Yes\" : \"No\") << '\\n'; }\nvoid YES(bool cond) { cout << (cond ? \"YES\" : \"NO\") << '\\n'; }\n\n\n\nvoid solve() {\n\tint N; string S; cin >> N;\n\tcin >> S;\n\t//map<char, int>mp;\n\n\tvector<int>cnt(26);\n\tfor (char c : S)cnt[c-'a']++;\n\t//for (char i = 'a'; i <= 'z'; i++) {\n\t//\tcnt[i - 'a'] = mp[i];\n\t//}\n\tvector<pair<int, char>>v(26);\n\tREP(i, 26) {\n\t\t//cout << cnt[i] << \" \" << (char)('a' + i) << endl;\n\t\tv[i] = { cnt[i],(char)('a'+i) };\n\t}\n\tstring ans;\n\tREP(j, N) {\n\t\tsort(v.rbegin(), v.rend());\n\t\tbool ok = false;\n\t\tREP(i, 26) {\n\t\t\t//cout << v[i].first << \" \" << v[i].second << endl;\n\t\t}\n\t\tREP(i, 26) {\n\t\t\tif (v[i].first == 0)break;\n\t\t\tif (j - 1 >= 0 && ans[j - 1] == v[i].second)continue;\n\t\t\tif (j - 2 >= 0 && ans[j - 2] == v[i].second)continue;\n\t\t\tv[i].first--;\n\t\t\tans += v[i].second;\n\t\t\t//print(v[i].second);\n\t\t\tok = true;\n\t\t\tbreak;\n\t\t}\n\t\tif (!ok) {\n\t\t\tprint(-1); return;\n\t\t}\n\t}\n\tprint(ans);\n}\n\n\n\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\n\t//int q;\n\t//cin >> q;\n\t//while (q--)\n\tsolve();\n\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3616, "score_of_the_acc": -0.0699, "final_rank": 6 }, { "submission_id": "aoj_3174_4844799", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing i64 = long long;\nusing P = pair<i64, i64>;\n\n#define overload3(_1, _2, _3, name, ...) name\n#define rep1(i, n) for(i64 i = 0LL; i < (n); ++i)\n#define rep2(i, a, b) for(i64 i = (a); i < (b); ++i)\n#define rep(...) overload3(__VA_ARGS__, rep2, rep1)(__VA_ARGS__)\n#define all(v) v.begin(), v.end()\n\nstruct IoSetup {\n IoSetup() {\n // cin.tie(nullptr);\n // ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\nint main() {\n i64 N;\n cin >> N;\n string S;\n cin >> S;\n vector<i64> C(26);\n rep(i, N) C[S[i] - 'a']++;\n priority_queue<P> que, tmp;\n rep(i, 26) que.push(P(C[i], i));\n string ans = \"\";\n rep(i, N) {\n while(true) {\n P t = que.top();\n que.pop();\n if(i == 0) {\n t.first--;\n ans = ans + (char)(t.second + 'a');\n que.push(t);\n break;\n } else if(i == 1) {\n if(t.second + 'a' == ans[i - 1]) {\n tmp.push(t);\n continue;\n }\n } else {\n if(t.second + 'a' == ans[i - 1] || t.second + 'a' == ans[i - 2]) {\n tmp.push(t);\n continue;\n }\n }\n ans = ans + (char)(t.second + 'a');\n t.first--;\n que.push(t);\n while(!tmp.empty()) {\n que.push(tmp.top());\n tmp.pop();\n }\n break;\n }\n }\n string t = ans;\n sort(all(S));\n sort(all(t));\n if(S == t)\n cout << ans << endl;\n else\n cout << -1 << endl;\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 3592, "score_of_the_acc": -1.0377, "final_rank": 13 }, { "submission_id": "aoj_3174_4844775", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing uint = unsigned;\nusing pcc = pair<char, char>;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pdd = pair<ld, ld>;\nusing tuplis = array<ll, 3>;\ntemplate<class T> using pq = priority_queue<T, vector<T>, greater<T>>;\nconst ll LINF=0x1fffffffffffffff;\nconst ll MINF=0x7fffffffffff;\nconst int INF=0x3fffffff;\nconst int MOD=1000000007;\nconst int MODD=998244353;\nconst ld DINF=numeric_limits<ld>::infinity();\nconst ld EPS=1e-9;\nconst ld PI=3.1415926535897932;\nconst ll dx[] = {0, 1, 0, -1, 1, -1, 1, -1};\nconst ll dy[] = {1, 0, -1, 0, 1, 1, -1, -1};\n#define overload4(_1,_2,_3,_4,name,...) name\n#define overload3(_1,_2,_3,name,...) name\n#define rep1(n) for(ll i=0;i<n;++i)\n#define rep2(i,n) for(ll i=0;i<n;++i)\n#define rep3(i,a,b) for(ll i=a;i<b;++i)\n#define rep4(i,a,b,c) for(ll i=a;i<b;i+=c)\n#define rep(...) overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__)\n#define rrep1(n) for(ll i=n;i--;)\n#define rrep2(i,n) for(ll i=n;i--;)\n#define rrep3(i,a,b) for(ll i=b;i-->(a);)\n#define rrep4(i,a,b,c) for(ll i=(a)+((b)-(a)-1)/(c)*(c);i>=(a);i-=c)\n#define rrep(...) overload4(__VA_ARGS__,rrep4,rrep3,rrep2,rrep1)(__VA_ARGS__)\n#define each1(i,a) for(auto&&i:a)\n#define each2(x,y,a) for(auto&&[x,y]:a)\n#define each3(x,y,z,a) for(auto&&[x,y,z]:a)\n#define each(...) overload4(__VA_ARGS__,each3,each2,each1)(__VA_ARGS__)\n#define all1(i) begin(i),end(i)\n#define all2(i,a) begin(i),begin(i)+a\n#define all3(i,a,b) begin(i)+a,begin(i)+b\n#define all(...) overload3(__VA_ARGS__,all3,all2,all1)(__VA_ARGS__)\n#define rall1(i) (i).rbegin(),(i).rend()\n#define rall2(i,k) (i).rbegin(),(i).rbegin()+k\n#define rall3(i,a,b) (i).rbegin()+a,(i).rbegin()+b\n#define rall(...) overload3(__VA_ARGS__,rall3,rall2,rall1)(__VA_ARGS__)\n#define sum(...) accumulate(all(__VA_ARGS__),0LL)\n#define dsum(...) accumulate(all(__VA_ARGS__),0.0L)\n#define Msum(...) accumulate(all(__VA_ARGS__),0_M)\n#define elif else if\n#define unless(a) if(!(a))\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)\n#define Sort(a) sort(all(a))\n#define Rev(a) reverse(all(a))\n#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define vec(type,name,...) vector<type>name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type>name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ntemplate<class T> auto min(const T& a){ return *min_element(all(a)); }\ntemplate<class T> auto max(const T& a){ return *max_element(all(a)); }\ninline ll popcnt(ull a){ return __builtin_popcountll(a); }\nll gcd(ll a, ll b){ while(b){ ll c = b; b = a % b; a = c; } return a; }\nll lcm(ll a, ll b){ if(!a || !b) return 0; return a * b / gcd(a, b); }\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }\ntemplate<class T> bool chmin(T& a, const T& b){ if(a > b){ a = b; return 1; } return 0; }\ntemplate<class T> bool chmax(T& a, const T& b){ if(a < b){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmin(T& a, const U& b){ if(a > T(b)){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmax(T& a, const U& b){ if(a < T(b)){ a = b; return 1; } return 0; }\nvector<ll> iota(ll n){ vector<ll> a(n); iota(a.begin(), a.end(), 0); return a; }\nvector<pll> factor(ull x){ vector<pll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; }\nmap<ll,ll> factor_map(ull x){ map<ll,ll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans[i] = 1; while((x /= i) % i == 0) ans[i]++; } if(x != 1) ans[x] = 1; return ans; }\nvector<ll> divisor(ull x){ vector<ll> ans; for(ull i = 1; i * i <= x; i++) if(x % i == 0) ans.push_back(i); rrep(ans.size() - (ans.back() * ans.back() == x)) ans.push_back(x / ans[i]); return ans; }\ntemplate<class T> unordered_map<T, ll> press(vector<T> a){ Uniq(a); unordered_map<T, ll> ans; rep(a.size()) ans[a[i]] = i; return ans; }\ntemplate<class T> map<T, ll> press_map(vector<T> a){ Uniq(a); map<T, ll> ans; rep(a.size()) ans[a[i]] = i; return ans; }\nint scan(){ return getchar(); }\nvoid scan(int& a){ scanf(\"%d\", &a); }\nvoid scan(unsigned& a){ scanf(\"%u\", &a); }\nvoid scan(long& a){ scanf(\"%ld\", &a); }\nvoid scan(long long& a){ scanf(\"%lld\", &a); }\nvoid scan(unsigned long long& a){ scanf(\"%llu\", &a); }\nvoid scan(char& a){ do{ a = getchar(); }while(a == ' ' || a == '\\n'); }\nvoid scan(float& a){ scanf(\"%f\", &a); }\nvoid scan(double& a){ scanf(\"%lf\", &a); }\nvoid scan(long double& a){ scanf(\"%Lf\", &a); }\nvoid scan(vector<bool>& a){ for(unsigned i = 0; i < a.size(); i++){ int b; scan(b); a[i] = b; } }\nvoid scan(char a[]){ scanf(\"%s\", a); }\nvoid scan(string& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>&);\ntemplate<class T, size_t size> void scan(array<T, size>&);\ntemplate<class T, class L> void scan(pair<T, L>&);\ntemplate<class T, size_t size> void scan(T(&)[size]);\ntemplate<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(deque<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, class L> void scan(pair<T, L>& p){ scan(p.first); scan(p.second); }\ntemplate<class T, size_t size> void scan(T (&a)[size]){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(T& a){ cin >> a; }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ putchar(' '); }\nvoid print(bool a){ printf(\"%d\", a); }\nvoid print(int a){ printf(\"%d\", a); }\nvoid print(unsigned a){ printf(\"%u\", a); }\nvoid print(long a){ printf(\"%ld\", a); }\nvoid print(long long a){ printf(\"%lld\", a); }\nvoid print(unsigned long long a){ printf(\"%llu\", a); }\nvoid print(char a){ printf(\"%c\", a); }\nvoid print(char a[]){ printf(\"%s\", a); }\nvoid print(const char a[]){ printf(\"%s\", a); }\nvoid print(float a){ printf(\"%.15f\", a); }\nvoid print(double a){ printf(\"%.15f\", a); }\nvoid print(long double a){ printf(\"%.15Lf\", a); }\nvoid print(const string& a){ for(auto&& i : a) print(i); }\ntemplate<class T> void print(const complex<T>& a){ if(a.real() >= 0) print('+'); print(a.real()); if(a.imag() >= 0) print('+'); print(a.imag()); print('i'); }\ntemplate<class T> void print(const vector<T>&);\ntemplate<class T, size_t size> void print(const array<T, size>&);\ntemplate<class T, class L> void print(const pair<T, L>& p);\ntemplate<class T, size_t size> void print(const T (&)[size]);\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const deque<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, size_t size> void print(const array<T, size>& a){ print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, class L> void print(const pair<T, L>& p){ print(p.first); putchar(' '); print(p.second); }\ntemplate<class T, size_t size> void print(const T (&a)[size]){ print(a[0]); for(auto i = a; ++i != end(a); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const T& a){ cout << a; }\nint out(){ putchar('\\n'); return 0; }\ntemplate<class T> int out(const T& t){ print(t); putchar('\\n'); return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }\n#ifdef DEBUG\ninline ll __lg(ull __n){ return sizeof(ull) * __CHAR_BIT__ - 1 - __builtin_clzll(__n); }\n#define debug(...) { print(#__VA_ARGS__); print(\":\"); out(__VA_ARGS__); }\n#else\n#define debug(...) void(0)\n#endif\nint first(bool i = true){ return out(i?\"first\":\"second\"); }\nint First(bool i = true){ return out(i?\"First\":\"Second\"); }\nint yes(bool i = true){ return out(i?\"yes\":\"no\"); }\nint Yes(bool i = true){ return out(i?\"Yes\":\"No\"); }\nint No(){ return out(\"No\"); }\nint YES(bool i = true){ return out(i?\"YES\":\"NO\"); }\nint NO(){ return out(\"NO\"); }\nint Yay(bool i = true){ return out(i?\"Yay!\":\":(\"); }\nint possible(bool i = true){ return out(i?\"possible\":\"impossible\"); }\nint Possible(bool i = true){ return out(i?\"Possible\":\"Impossible\"); }\nint POSSIBLE(bool i = true){ return out(i?\"POSSIBLE\":\"IMPOSSIBLE\"); }\nvoid Case(ll i){ printf(\"Case #%lld: \", i); }\n\n\n\nsigned main(){\n LL(n);\n STR(s);\n vec(ll,cnt,26);\n each(i,s)cnt[i-'a']++;\n string ans=\"--\";\n auto p=iota(26);\n sort(all(p),[&](ll a,ll b){return cnt[a]>cnt[b];});\n rep(n){\n const ll x=p[0],y=p[1],z=p[2];\n if(ans.end()[-1]!=x+'a'&&ans.end()[-2]!=x+'a'){\n cnt[x]--;\n ans+=char(x+'a');\n }\n elif(ans.end()[-1]!=y+'a'&&ans.end()[-2]!=y+'a'){\n if(!cnt[y]--)return out(-1);\n ans+=char(y+'a');\n }\n else{\n if(!cnt[z]--)return out(-1);\n ans+=char(z+'a');\n }\n sort(all(p),[&](ll a,ll b){return cnt[a]>cnt[b];});\n }\n out(ans.substr(2));\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3916, "score_of_the_acc": -0.1071, "final_rank": 9 }, { "submission_id": "aoj_3174_4844751", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define INF_LL (int64)1e18\n#define INF (int32)1e9\n#define REP(i, n) for(int64 i = 0;i < (n);i++)\n#define FOR(i, a, b) for(int64 i = (a);i < (b);i++)\n#define all(x) x.begin(),x.end()\n#define fs first\n#define sc second\n\nusing int32 = int_fast32_t;\nusing uint32 = uint_fast32_t;\nusing int64 = int_fast64_t;\nusing uint64 = uint_fast64_t;\nusing PII = pair<int32, int32>;\nusing PLL = pair<int64, int64>;\n\nconst double eps = 1e-10;\n\ntemplate<typename A, typename B>inline void chmin(A &a, B b){if(a > b) a = b;}\ntemplate<typename A, typename B>inline void chmax(A &a, B b){if(a < b) a = b;}\n\ntemplate<typename T>\nvector<T> make_v(size_t a){return vector<T>(a);}\n\ntemplate<typename T,typename... Ts>\nauto make_v(size_t a,Ts... ts){\n\treturn vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));\n}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value!=0>::type\nfill_v(U &u,const V... v){u=U(v...);}\n\ntemplate<typename T,typename U,typename... V>\ntypename enable_if<is_same<T, U>::value==0>::type\nfill_v(U &u,const V... v){\n\tfor(auto &e:u) fill_v<T>(e,v...);\n}\n\nint main(void){\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\n\tint64 N;\n\tcin >> N;\n\tstring s;\n\tcin >> s;\n\tpriority_queue<pair<int, char>> pq;\n\tint cnt[26] = {};\n\tREP(i, N) {\n\t cnt[s[i] - 'a']++;\n\t}\n int last[26] = {};\n\tREP(i, 26) {\n\t if (cnt[i])\n \t pq.emplace(cnt[i], (char)(i + 'a'));\n\t last[i] = -INF;\n\t}\n\tbool ok = 1;\n\tstring res(\"\");\n\twhile (pq.size()) {\n\t ok = 0;\n\t vector<pair<int, char>> v;\n//\t cout << pq.size() << endl;\n\t while (pq.size()) {\n\t int num;\n\t char c;\n\t tie(num, c) = pq.top(); pq.pop();\n//\t cout << num << \" \" << c << \" \" << res.size() << \" \" << last[c-'a'] << endl;\n\t if (res.size() - last[c -'a'] > 1) {\n\t ok = 1;\n\t res += c;\n\t num--;\n\t last[c - 'a'] = res.size();\n\t if (num > 0)\n \t v.emplace_back(num, c);\n\t break;\n\t } else {\n\t v.emplace_back(num, c);\n\t }\n\t }\n\t if (!ok) break;\n\t for (auto& x : v) pq.push(x);\n\t}\n\tif (ok) {\n\t cout << res << endl;\n\t} else {\n\t cout << -1 << endl;\n\t}\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3416, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3174_4844731", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for(ll i=0;i<n;i++)\n#define repl(i,l,r) for(ll i=(l);i<(r);i++)\n#define per(i,n) for(ll i=n-1;i>=0;i--)\n#define perl(i,r,l) for(ll i=r-1;i>=l;i--)\n#define fi first\n#define se second\n#define pb push_back\n#define ins insert\n#define pqueue(x) priority_queue<x,vector<x>,greater<x>>\n#define all(x) (x).begin(),(x).end()\n#define CST(x) cout<<fixed<<setprecision(x)\n#define rev(x) reverse(x);\nusing ll=long long;\nusing vl=vector<ll>;\nusing vvl=vector<vector<ll>>;\nusing pl=pair<ll,ll>;\nusing vpl=vector<pl>;\nusing vvpl=vector<vpl>;\nconst ll MOD=1000000007;\nconst ll MOD9=998244353;\nconst int inf=1e9+10;\nconst ll INF=4e18;\nconst ll dy[8]={1,0,-1,0,1,1,-1,-1};\nconst ll dx[8]={0,-1,0,1,1,-1,1,-1};\ntemplate<class T> inline bool chmin(T& a, T b) {\n if (a >= b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<class T> inline bool chmax(T& a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\nint main(){\n ll n;cin >> n;\n string s;cin >> s;\n vl alp(26);rep(i,n){\n alp[s[i]-'a']++;\n }\n string ans;\n rep(i,n){\n priority_queue<pair<ll,char>,vector<pair<ll,char>>,less<pair<ll,char>>> que;\n rep(j,26){\n que.push({alp[j],'a'+j});\n }\n /*rep(j,26){\n cout << que.top().fi<<\" \"<< que.top().se <<endl;\n que.pop();\n }\n return 0;*/\n bool ok=false;\n rep(j,26){\n pair<ll,char> p=que.top();que.pop();\n if(i>=1)if(ans[i-1]==p.se)continue;\n if(i>=2)if(ans[i-2]==p.se)continue;\n if(p.fi==0)break;\n //cout << p.se <<endl;\n ans+=p.se;\n //cout << ans <<endl;\n alp[p.se-'a']--;\n ok=true;\n break;\n }\n if(!ok) cout << -1 <<endl,exit(0);\n }\n cout << ans <<endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3816, "score_of_the_acc": -0.1397, "final_rank": 10 }, { "submission_id": "aoj_3174_4844669", "code_snippet": "// #pragma GCC optimize(\"unroll-loops\", \"omit-frame-pointer\", \"inline\")\n// #pragma GCC option(\"arch=native\", \"tune=native\", \"no-zero-upper\")\n// #pragma GCC\n// target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native\")\n// #pragma GCC optimize(\"Ofast\")\n// #pragma GCC optimize(\"tree-vectorize\",\"openmp\",\"predictive-commoning\")\n// #pragma GCC option(\"D_GLIBCXX_PARALLEL\",\"openmp\")\n\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC target(\"avx2\")\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef pair<int, int> P;\ntypedef vector<int> vi;\ntypedef vector<ll> vll;\n// #define int long long\n#define pb push_back\n#define mp make_pair\n#define eps 1e-9\n#define INF 2000000000 // 2e9\n#define LLINF 2000000000000000000ll // 2e18 (llmax:9e18)\n#define fi first\n#define sec second\n#define all(x) (x).begin(), (x).end()\n#define sq(x) ((x) * (x))\n#define dmp(x) cerr << #x << \": \" << x << endl;\n\ntemplate <class T>\nvoid chmin(T &a, const T &b) {\n if (a > b) a = b;\n}\ntemplate <class T>\nvoid chmax(T &a, const T &b) {\n if (a < b) a = b;\n}\n\ntemplate <class T>\nusing MaxHeap = priority_queue<T>;\ntemplate <class T>\nusing MinHeap = priority_queue<T, vector<T>, greater<T>>;\ntemplate <class T>\nvector<T> vect(int len, T elem) {\n return vector<T>(len, elem);\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << p.fi << ',' << p.sec;\n return os;\n}\ntemplate <class T, class U>\nistream &operator>>(istream &is, pair<T, U> &p) {\n is >> p.fi >> p.sec;\n return is;\n}\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &vec) {\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i];\n if (i + 1 < vec.size()) os << ' ';\n }\n return os;\n}\ntemplate <class T>\nistream &operator>>(istream &is, vector<T> &vec) {\n for (int i = 0; i < vec.size(); i++) is >> vec[i];\n return is;\n}\nvoid fastio() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n cout << fixed << setprecision(20);\n}\n\n#define endl \"\\n\"\n\nvoid solve() {\n int n;\n string s;\n cin >> n >> s;\n vector<int> cnt(30);\n for (int i = 0; i < n; i++) { cnt[s[i] - 'a']++; }\n vector<pair<int, int>> occ;\n for (int i = 0; i < 30; i++) { occ.emplace_back(cnt[i], i); }\n sort(all(occ));\n reverse(all(occ));\n // dmp(occ);\n set<int> idx;\n for (int i = 0; i < n; i++) idx.insert(i);\n vector<int> ans(n);\n for (int i = 0; i < 30; i++) {\n int c = occ[i].second;\n int pre = -3;\n for (int j = 0; j < occ[i].first; j++) {\n auto it = idx.lower_bound(pre + 3);\n if (it == idx.end()) {\n cout << -1 << endl;\n return;\n }\n ans[*it] = c;\n pre = *it;\n idx.erase(it);\n }\n }\n for (int i = 0; i < n; i++) { cout << (char)(ans[i] + 'a'); }\n cout << endl;\n return;\n}\n\nsigned main() {\n fastio();\n solve();\n // int t; cin >> t; while(t--)solve();\n\n // int t; cin >> t;\n // for(int i=1;i<=t;i++){\n // cout << \"Case #\" << i << \": \";\n // solve();\n // }\n return 0;\n}", "accuracy": 0.7391304347826086, "time_ms": 20, "memory_kb": 8084, "score_of_the_acc": -1.027, "final_rank": 14 }, { "submission_id": "aoj_3174_4840854", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\ntemplate<class T> ostream& operator << (ostream &s, vector<vector<T> > P)\n{ for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; }\ntemplate<class T> ostream& operator << (ostream &s, set<T> P)\n{ for(auto it : P) { s << \"<\" << it << \"> \"; } return s << endl; }\ntemplate<class T1, class T2> ostream& operator << (ostream &s, map<T1,T2> P)\n{ for(auto it : P) { s << \"<\" << it.first << \"->\" << it.second << \"> \"; } return s << endl; }\n\n\nstring solve(int N, const string &S) {\n map<char,int> ma;\n for (auto c : S) ma[c]++;\n if (ma.size() == 1) {\n if (N == 1) return S;\n else return \"-1\";\n }\n else if (ma.size() == 2) {\n if (N == 2) return S;\n else return \"-1\";\n }\n else {\n string res = \"\";\n while (!ma.empty()) {\n int vmax = -1;\n char pmax;\n for (auto it : ma) {\n if (res.size() > 0 && res.back() == it.first) continue;\n if (res.size() > 1 && res[res.size() - 2] == it.first) continue;\n if (chmax(vmax, it.second)) pmax = it.first;\n }\n if (vmax == -1) return \"-1\";\n res += pmax;\n ma[pmax]--;\n if (ma[pmax] == 0) ma.erase(pmax);\n }\n return res;\n }\n}\n\nint main() {\n int N;\n string S;\n cin >> N >> S;\n cout << solve(N, S) << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3496, "score_of_the_acc": -0.0171, "final_rank": 4 } ]
aoj_3168_cpp
E: えびちゃんを捕獲せよ 問題 あ やせいの えびちゃんが とびだしてきた! 頂点数 $N$、辺数 $M$ の無向グラフで表されるフィールドがある。頂点は $1$ から $N$ まで、辺は $1$ から $M$ までで、それぞれ番号付けされている。また、各頂点には a から z の英小文字のいずれかが $1$ つ書かれている。 えびちゃんは任意の頂点に出現する可能性がある。 えびちゃんは、ある頂点に出現した後、すぐに別の頂点へワープして逃げてしまう。 えびちゃんは、次の条件をすべて満たすとき、頂点 $u$ から頂点 $v$ へワープすることができる。 $u$ から $v$ へ、$K$ 本以下の辺を辿って移動できる。 $u$ に書かれた文字と $v$ に書かれた文字が隣り合っている。 「英小文字 $c$ と隣り合っている文字」とは、英小文字のアルファベットを辞書順に並べ、 a と z をつなげて円環状に並べたものの中で $c$ と隣接している $2$ 文字を指す。たとえば、 b は a と c に隣り合っており、 z は y と a に隣り合っている。 あなたは、いくつかの頂点に罠を設置して、えびちゃんを捕獲する体制を整えることにした。 えびちゃんは罠のある頂点に侵入すると、即座に捕まってしまう。 えびちゃんがどの頂点に現れたとしても身動きが取れないようにするために必要な罠の個数の最小値を求めよ。ただし、身動きが取れないとは、「現れた頂点に罠がある」または「罠のない頂点にワープできない」のいずれかが成り立つことを指す。 入力形式 $N$ $M$ $K$ $c_1$ $c_2$ … $c_N$ $u_1$ $v_1$ … $u_M$ $v_M$ $1$ 行目には、頂点数 $N$、辺数 $M$、えびちゃんのワープに関する値 $K$ が与えられる。 $2$ 行目には、各頂点に書かれた文字がスペース区切りで与えられる。$c_i$ ($1\leq i\leq N$) は、$i$ 番目の頂点に書かれた文字を表す。 $2+i$ 行目 ($1\leq i\leq M$) には、$i$ 本目の辺の情報が与えられる。頂点 $u_i$ と $v_i$ を双方向に結ぶことを意味する。 制約 $2\leq N\leq 300$ $1\leq M\leq N(N-1)/2$ $1\leq K\leq 300$ $c_i$ ($1\leq i\leq N$) は英小文字である。 多重辺および自己ループは存在しない。 出力形式 答えを一行に出力せよ。 入力例1 5 3 2 a b c d z 1 2 1 3 3 5 出力例1 2 えびちゃんがワープできる頂点の組は $(1, 2)$、$(1, 5)$、$(2, 3)$ であり、例として頂点 $2$ と頂点 $5$ に設置することで目標を達成することができる。また、$1$ 個以下の罠で目標を達成することはできない。なお、頂点 $4$ からはどこにもワープできないため、罠を設置する必要はないことに注意せよ。 入力例2 5 5 1 a b c d z 1 2 1 3 1 4 1 5 3 4 出力例2 2 えびちゃんがワープできる頂点の組は $(1, 2)$、$(1, 5)$、$(3, 4)$ であり、例として頂点 $1$ と頂点 $3$ に設置することで目標を達成することができる。このケースにおいても、$1$ 個以下の罠では目標を達成することはできない。 入力例3 4 6 3 h u p c 1 2 1 3 1 4 2 3 2 4 3 4 出力例3 0 えびちゃんはどの頂点間もワープできないので、罠を用意する必要はない。
[ { "submission_id": "aoj_3168_10848645", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define INF 1e8\nvoid warshall_floyd(vector<vector<int>> &M) {\n int n = M.size();\n for (int i = 0; i < n; i++)\n for (int j = 0; j < n; j++)\n for (int k = 0; k < n; k++)\n M[j][k] = min(M[j][k], M[j][i] + M[i][k]);\n}\n\nstruct edge {\n int to, cap, rev;\n};\n\nvoid add_edge(vector<vector<edge>> &G, int from, int to, int cap) {\n G[from].emplace_back((edge) {to, cap, (int) G[to].size()});\n G[to].emplace_back((edge) {from, 0, (int) G[from].size() - 1});\n}\n\nint dfs_f(vector<vector<edge>> &G, vector<bool> &used, int v, int t, int f) {\n if (v == t) return f;\n used[v] = true;\n for (int i = 0; i < G[v].size(); i++) {\n edge &e = G[v][i];\n if (!used[e.to] && e.cap > 0) {\n int d = dfs_f(G, used, e.to, t, min(f, e.cap));\n if (d > 0) {\n e.cap -= d;\n G[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n}\n\nint max_flow(vector<vector<edge>> &G, int s, int t) {\n int flow = 0;\n while (true) {\n vector<bool> used(G.size(), false);\n int f = dfs_f(G, used, s, t, INF);\n if (f == 0) return flow;\n flow += f;\n }\n}\n#define FIO ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);\nint main(){\n FIO\n int n, m, k;\n cin >> n >> m >> k;\n\n vector<char> c(n);\n for (int i = 0; i < n; i++) cin >> c.at(i);\n\n vector<vector<int>> M(n, vector<int>(n, INF));\n\n for (int i = 0; i < m; i++) {\n int u, v;\n cin >> u >> v;\n u--;\n v--;\n M[u][v] = 1;\n M[v][u] = 1;\n }\n\n warshall_floyd(M);\n\n vector<vector<edge>> G(2 * n + 2);\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n if (i == j) continue;\n if (M[i][j] <= k && (c[i] + 1 == c[j] || c[j] + 1 == c[i] || (c[i] == 'a' && c[j] == 'z') || (c[i] == 'z' && c[j] == 'a'))) {\n add_edge(G, i, n + j, 1);\n add_edge(G, j, n + i, 1);\n }\n }\n }\n\n for (int i = 0; i < n; i++) add_edge(G, 2 * n, i, 1);\n for (int i = 0; i < n; i++) add_edge(G, n + i, 2 * n + 1, 1);\n\n cout << max_flow(G, 2 * n, 2 * n + 1) / 2 << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 7280, "score_of_the_acc": -1.0104, "final_rank": 11 }, { "submission_id": "aoj_3168_8704655", "code_snippet": "#line 1 \"3168.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3168\"\n\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Template/IOSetting.hpp\"\n\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Template/TypeAlias.hpp\"\n\n#include <cstdint>\n#include <cstddef>\n\nnamespace zawa {\n\nusing i16 = std::int16_t;\nusing i32 = std::int32_t;\nusing i64 = std::int64_t;\nusing i128 = __int128_t;\n\nusing u8 = std::uint8_t;\nusing u16 = std::uint16_t;\nusing u32 = std::uint32_t;\nusing u64 = std::uint64_t;\n\nusing usize = std::size_t;\n\n} // namespace zawa\n#line 4 \"/home/zawatin/compro/cp-documentation/Src/Template/IOSetting.hpp\"\n\n#include <iostream>\n#include <iomanip>\n\nnamespace zawa {\n\nvoid SetFastIO() {\n std::cin.tie(nullptr)->sync_with_stdio(false);\n}\n\nvoid SetPrecision(u32 dig) {\n std::cout << std::fixed << std::setprecision(dig);\n}\n\n} // namespace zawa\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Graph/Flow/Dinic.hpp\"\n\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Utility/U32Pair.hpp\"\n\n#line 4 \"/home/zawatin/compro/cp-documentation/Src/Utility/U32Pair.hpp\"\n\n#include <functional>\n#line 7 \"/home/zawatin/compro/cp-documentation/Src/Utility/U32Pair.hpp\"\n\nnamespace zawa {\n\nclass U32Pair {\nprivate:\n static constexpr u32 SHIFT{32};\n static constexpr u32 MASK{static_cast<u32>((1LL << SHIFT) - 1)};\n u64 value_{};\npublic:\n constexpr U32Pair() {}\n constexpr U32Pair(u32 first, u32 second) {\n value_ = (static_cast<u64>(first) << SHIFT) | second;\n }\n constexpr u32 first() const noexcept {\n return static_cast<u32>(value_ >> SHIFT);\n }\n constexpr u32 second() const noexcept {\n return static_cast<u32>(value_ & MASK);\n }\n constexpr u64 combined() const noexcept {\n return value_;\n }\n constexpr U32Pair& operator=(const U32Pair& rhs) {\n value_ = rhs.value_;\n return *this;\n }\n friend constexpr bool operator==(const U32Pair& lhs, const U32Pair& rhs) {\n return lhs.value_ == rhs.value_;\n }\n friend constexpr bool operator!=(const U32Pair& lhs, const U32Pair& rhs) {\n return lhs.value_ != rhs.value_;\n }\n friend constexpr bool operator<(const U32Pair& lhs, const U32Pair& rhs) {\n return lhs.value_ < rhs.value_;\n }\n friend constexpr bool operator<=(const U32Pair& lhs, const U32Pair& rhs) {\n return lhs.value_ <= rhs.value_;\n }\n friend constexpr bool operator>(const U32Pair& lhs, const U32Pair& rhs) {\n return lhs.value_ > rhs.value_;\n }\n friend constexpr bool operator>=(const U32Pair& lhs, const U32Pair& rhs) {\n return lhs.value_ >= rhs.value_;\n }\n friend std::ostream& operator<<(std::ostream& os, const U32Pair& pair) {\n os << '(' << pair.first() << ',' << pair.second() << ')';\n return os;\n }\n};\n\nstruct U32PairHash {\n usize operator()(const U32Pair& pair) const noexcept {\n return std::hash<u64>{}(pair.combined());\n }\n};\n\n} // namespace zawa\n#line 5 \"/home/zawatin/compro/cp-documentation/Src/Graph/Flow/Dinic.hpp\"\n\n#include <algorithm>\n#include <cassert>\n#include <limits>\n#include <type_traits>\n#include <vector>\n#include <queue>\n\nnamespace zawa {\n\ntemplate <class Cap> \nclass Dinic {\nprivate:\n static_assert(std::is_signed_v<Cap>, \"Cap must be signed\");\n usize n_{}, m_{};\n static constexpr u32 invalid() noexcept {\n return std::numeric_limits<u32>::max();\n }\npublic:\n inline usize size() const noexcept {\n return n_;\n }\n inline usize edgeNumber() const noexcept {\n return m_;\n }\nprivate:\n struct Edge {\n u32 to{}, rev{};\n Cap residual{};\n Edge() = default;\n Edge(u32 to, u32 rev, const Cap& residual) \n : to{to}, rev{rev}, residual{residual} {}\n };\n\n std::vector<std::vector<Edge>> g_;\n std::vector<U32Pair> edges_;\n std::vector<u32> label_, cur_;\n\n bool dualStep(u32 s, u32 t) {\n std::fill(label_.begin(), label_.end(), invalid());\n label_[s] = 0;\n std::queue<u32> queue{ { s } };\n while (queue.size()) {\n u32 v{queue.front()};\n queue.pop();\n for (const Edge& e : g_[v]) if (e.residual > 0) {\n if (label_[e.to] > label_[v] + 1) {\n label_[e.to] = label_[v] + 1;\n if (e.to == t) return true;\n queue.emplace(e.to);\n }\n }\n }\n return false;\n }\n\n bool admissible(u32 v, const Edge& e) const noexcept {\n return e.residual > 0 and label_[v] + 1 == label_[e.to];\n }\n\n inline void flow(Edge& e, Cap f) {\n e.residual -= f;\n g_[e.to][e.rev].residual += f;\n }\n\n Cap dfs(u32 v, u32 t, Cap up) {\n if (v == t) return up;\n Cap res{};\n for (u32& i{cur_[v]} ; i < g_[v].size() ; i++) {\n if (!admissible(v, g_[v][i])) continue;\n Cap f{dfs(g_[v][i].to, t, std::min(g_[v][i].residual, up - res))};\n if (f == 0) continue;\n flow(g_[v][i], f);\n res += f;\n if (res == up) return res;\n }\n return res;\n }\n\n Cap primalStep(u32 s, u32 t) {\n std::fill(cur_.begin(), cur_.end(), 0u);\n cur_[t] = g_[t].size();\n Cap res{};\n while (true) {\n Cap f{dfs(s, t, std::numeric_limits<Cap>::max())};\n if (f == 0) break;\n res += f;\n }\n return res;\n }\n\n const Edge& edge(u32 i) const noexcept {\n return g_[edges_[i].first()][edges_[i].second()];\n }\n const Edge& reverse(u32 i) const noexcept {\n const Edge& e{edge(i)};\n return g_[e.to][e.rev];\n }\n\npublic:\n Dinic() = default;\n Dinic(u32 n, u32 m = 0u) \n : n_{n}, m_{m}, g_(n), edges_{}, label_(n), cur_(n) {\n g_.shrink_to_fit();\n label_.shrink_to_fit();\n cur_.shrink_to_fit();\n edges_.reserve(m);\n }\n\n u32 addEdge(u32 u, u32 v, const Cap& cap) {\n assert(u < size());\n assert(v < size());\n u32 id{static_cast<u32>(g_[u].size())};\n u32 revId{u == v ? id + 1 : static_cast<u32>(g_[v].size())};\n u32 res{static_cast<u32>(edges_.size())};\n edges_.emplace_back(u, id);\n g_[u].emplace_back(v, revId, cap);\n g_[v].emplace_back(u, id, Cap{});\n return res;\n }\n\n const Cap& flowed(u32 id) const noexcept {\n assert(id < edgeNumber());\n return reverse(id).residual;\n }\n const Cap& residual(u32 id) const noexcept {\n assert(id < edgeNumber());\n return edge(id).residual;\n }\n const Cap& capacity(u32 id) const noexcept {\n assert(id < edgeNumber());\n return edge(id).residual + reverse(id).residual;\n }\n\n Cap flow(u32 s, u32 t) {\n assert(s < size());\n assert(t < size()); \n Cap res{};\n while (dualStep(s, t)) {\n res += primalStep(s, t);\n }\n return res;\n }\n\n std::vector<bool> cut(u32 s) {\n std::vector<bool> res(size());\n res[s] = true;\n std::queue<u32> queue{ { s } };\n while (queue.size()) {\n u32 v{queue.front()};\n queue.pop();\n for (const auto& e : g_[v]) if (e.cap > 0 and !res[e.to]) {\n res[e.to] = true;\n queue.emplace(e.to);\n }\n }\n return res;\n } \n};\n\n} // namespace zawa\n#line 5 \"3168.test.cpp\"\n\n#line 7 \"3168.test.cpp\"\n#include <utility>\n#line 9 \"3168.test.cpp\"\n\nbool adjust(char a, char b) {\n if (a > b) std::swap(a, b);\n if (a == 'a' and b == 'z') return true;\n return (int)(b - a) == 1;\n}\n\nint main() {\n using namespace zawa;\n int n, m, k; std::cin >> n >> m >> k;\n std::vector<char> s(n);\n for (auto& c : s) std::cin >> c;\n const int INF{(int)1e9};\n std::vector g(n, std::vector<int>(n, INF));\n for (int i{} ; i < n ; i++) g[i][i] = 0;\n for (int _{} ; _ < m ; _++) {\n int u, v; std::cin >> u >> v;\n u--; v--;\n g[u][v] = g[v][u] = 1;\n }\n for (int k{} ; k < n ; k++) {\n for (int i{} ; i < n ; i++) {\n for (int j{} ; j < n ; j++) {\n g[i][j] = std::min(g[i][j], g[i][k] + g[k][j]);\n }\n }\n }\n Dinic<int> solver(2 * n + 2);\n for (int i{} ; i < n ; i++) {\n solver.addEdge(2 * n, i, 1);\n solver.addEdge(n + i, 2 * n + 1, 1);\n }\n for (int i{} ; i < n ; i++) {\n for (int j{i + 1} ; j < n ; j++) {\n if (g[i][j] > k) continue;\n if (!adjust(s[i], s[j])) continue;\n if (s[i] % 2) {\n solver.addEdge(i, n + j, 1);\n }\n else {\n solver.addEdge(j, n + i, 1);\n }\n }\n }\n int ans{solver.flow(2 * n, 2 * n + 1)};\n std::cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4832, "score_of_the_acc": -0.3682, "final_rank": 3 }, { "submission_id": "aoj_3168_8652993", "code_snippet": "#line 1 \"3168.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3168\"\n\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Template/IOSetting.hpp\"\n\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Template/TypeAlias.hpp\"\n\n#include <cstdint>\n#include <cstddef>\n\nnamespace zawa {\n\nusing i16 = std::int16_t;\nusing i32 = std::int32_t;\nusing i64 = std::int64_t;\nusing i128 = __int128_t;\n\nusing u8 = std::uint8_t;\nusing u16 = std::uint16_t;\nusing u32 = std::uint32_t;\nusing u64 = std::uint64_t;\n\nusing usize = std::size_t;\n\n} // namespace zawa\n#line 4 \"/home/zawatin/compro/cp-documentation/Src/Template/IOSetting.hpp\"\n\n#include <iostream>\n#include <iomanip>\n\nnamespace zawa {\n\nvoid SetFastIO() {\n std::cin.tie(nullptr)->sync_with_stdio(false);\n}\n\nvoid SetPrecision(u32 dig) {\n std::cout << std::fixed << std::setprecision(dig);\n}\n\n} // namespace zawa\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Graph/Flow/Dinic.hpp\"\n\n#line 4 \"/home/zawatin/compro/cp-documentation/Src/Graph/Flow/Dinic.hpp\"\n\n#include <algorithm>\n#include <cassert>\n#include <type_traits>\n#include <utility>\n#include <vector>\n\nnamespace zawa {\n\ntemplate <class Cap>\nclass Dinic {\nprivate:\n static_assert(std::is_signed_v<Cap>, \"Cap must be signed\");\n static constexpr u32 INVALID{static_cast<u32>(-1)};\n using EdgePointer = std::pair<u32, u32>;\npublic:\n static constexpr u32 invalid() noexcept {\n return INVALID;\n }\nprivate:\n class ResidualGraph {\n public:\n struct Edge {\n u32 from{}, to{};\n Cap cap{};\n u32 rev{}, id{};\n Edge() = default;\n Edge(u32 from, u32 to, const Cap& cap, u32 rev, u32 id)\n : from{from}, to{to}, cap{cap}, rev{rev}, id{id} {}\n EdgePointer reverseEdgePointer() const {\n return EdgePointer{to, rev};\n }\n }; \n private:\n usize n_{}, m_{};\n std::vector<std::vector<Edge>> g_{};\n public:\n ResidualGraph() = default;\n ResidualGraph(usize n) : n_{n}, m_{}, g_(n) {\n g_.shrink_to_fit();\n }\n\n inline usize size() const noexcept {\n return n_;\n }\n inline usize edgeNumber() const noexcept {\n return m_;\n }\n u32 invalidEdgePointer(u32 v) const noexcept {\n return g_[v].size();\n }\n\n std::vector<Edge>& operator[](usize i) noexcept {\n return g_[i];\n }\n const std::vector<Edge>& operator[](usize i) const noexcept {\n return g_[i];\n }\n Edge& operator[](const EdgePointer& e) noexcept {\n return g_[e.first][e.second];\n }\n const Edge& operator[](const EdgePointer& e) const noexcept {\n return g_[e.first][e.second];\n }\n\n const Edge& reverseEdge(const EdgePointer& pos) {\n return g_[g_[pos].reverseEdgePointer()];\n }\n \n u32 addEdge(u32 from, u32 to, const Cap& cap, u32 id) {\n u32 i{static_cast<u32>(g_[from].size())};\n u32 j{static_cast<u32>(from == to ? i + 1 : g_[to].size())};\n g_[from].emplace_back(from, to, cap, j, id);\n g_[to].emplace_back(to, from, Cap{}, i, id);\n m_++;\n return i;\n }\n void update(Edge& e, const Cap& flow) {\n assert(e.cap >= flow);\n e.cap -= flow;\n (*this)[e.reverseEdgePointer()].cap += flow;\n }\n };\n\n using Edge = typename ResidualGraph::Edge;\n\n ResidualGraph graph_;\n std::vector<u32> label_;\n std::vector<EdgePointer> edges_;\n\npublic:\n inline usize size() const noexcept {\n return graph_.size();\n }\n inline usize edgeNumber() const noexcept { \n return graph_.edgeNumber();\n }\nprivate:\n\n bool admissible(const Edge& e) {\n return e.cap > 0 and label_[e.from] + 1 == label_[e.to];\n }\n\n bool dualStep(u32 s, u32 t) {\n std::fill(label_.begin(), label_.end(), invalid());\n label_[s] = 0;\n std::vector<u32> queue;\n queue.reserve(size());\n queue.emplace_back(s);\n for (u32 topQ{} ; topQ < queue.size() ; topQ++) {\n u32 v{queue[topQ]};\n for (const auto& e : graph_[v]) if (e.cap > 0) {\n if (label_[e.to] > label_[v] + 1) {\n label_[e.to] = label_[v] + 1;\n queue.emplace_back(e.to);\n }\n }\n }\n return label_[t] < size();\n }\n\n bool findAdmissiblePath(u32 s, u32 t, std::vector<EdgePointer>& path) {\n std::vector<u32> currentEdge(size());\n currentEdge[t] = graph_.invalidEdgePointer(t);\n u32 v{s};\n while (true) {\n while (currentEdge[v] != graph_.invalidEdgePointer(v)) {\n const Edge& now{graph_[v][currentEdge[v]]};\n if (admissible(now)) {\n path.emplace_back(v, currentEdge[v]);\n v = now.to;\n }\n else {\n currentEdge[v]++;\n }\n }\n if (v == s) return false;\n if (v == t) return true;\n if (v != t) {\n v = path.back().first;\n path.pop_back();\n currentEdge[v]++;\n }\n }\n assert(false);\n return false;\n }\n\n Cap flow(const std::vector<EdgePointer>& path) {\n auto min{std::min_element(path.begin(), path.end(), [&](const EdgePointer& l, const EdgePointer& r) -> bool {\n return graph_[l].cap < graph_[r].cap;\n })};\n Cap amount{graph_[*min].cap};\n assert(amount > 0);\n for (const auto& pos : path) {\n Edge& e{graph_[pos]};\n graph_.update(e, amount);\n }\n return amount;\n }\n\n Cap primalStep(u32 s, u32 t) {\n std::vector<EdgePointer> path;\n Cap res{};\n while (findAdmissiblePath(s, t, path)) {\n res += flow(path);\n path.clear();\n }\n return res;\n }\n\npublic:\n\n Dinic() = default;\n // @param m: 辺数をここに入れるとreserveしてくれる\n Dinic(usize n, usize m = usize{}) : graph_{n}, label_(n) {\n label_.shrink_to_fit();\n edges_.reserve(m);\n }\n\n u32 addEdge(u32 from, u32 to, const Cap& cap, u32 id = invalid()) {\n assert(from < size());\n assert(to < size());\n u32 res{static_cast<u32>(edges_.size())};\n edges_.emplace_back(from, graph_.addEdge(from, to, cap, id));\n return res;\n }\n\n Cap residual(u32 id) {\n assert(id < edgeNumber());\n return graph_[edges_[id]].cap;\n }\n\n Cap flowed(u32 id) {\n assert(id < edgeNumber());\n return graph_.reverseEdge(edges_[id]).cap;\n }\n\n Cap originCap(u32 id) {\n assert(id < edgeNumber());\n EdgePointer e{edges_[id]};\n return graph_[e].cap + graph_.reverseEdge(edges_[id]).cap;\n }\n\n Cap flow(u32 s, u32 t) {\n assert(s < size());\n assert(t < size());\n Cap res{};\n while (dualStep(s, t)) {\n res += primalStep(s, t);\n }\n return res;\n }\n};\n\n} // namespace zawa\n#line 5 \"3168.test.cpp\"\n\n#line 9 \"3168.test.cpp\"\n\nbool adjust(char a, char b) {\n if (a > b) std::swap(a, b);\n if (a == 'a' and b == 'z') return true;\n return (int)(b - a) == 1;\n}\n\nint main() {\n using namespace zawa;\n int n, m, k; std::cin >> n >> m >> k;\n std::vector<char> s(n);\n for (auto& c : s) std::cin >> c;\n const int INF{(int)1e9};\n std::vector g(n, std::vector<int>(n, INF));\n for (int i{} ; i < n ; i++) g[i][i] = 0;\n for (int _{} ; _ < m ; _++) {\n int u, v; std::cin >> u >> v;\n u--; v--;\n g[u][v] = g[v][u] = 1;\n }\n for (int k{} ; k < n ; k++) {\n for (int i{} ; i < n ; i++) {\n for (int j{} ; j < n ; j++) {\n g[i][j] = std::min(g[i][j], g[i][k] + g[k][j]);\n }\n }\n }\n Dinic<int> solver(2 * n + 2);\n for (int i{} ; i < n ; i++) {\n solver.addEdge(2 * n, i, 1);\n solver.addEdge(n + i, 2 * n + 1, 1);\n }\n for (int i{} ; i < n ; i++) {\n for (int j{i + 1} ; j < n ; j++) {\n if (g[i][j] > k) continue;\n if (!adjust(s[i], s[j])) continue;\n if (s[i] % 2) {\n solver.addEdge(i, n + j, 1);\n }\n else {\n solver.addEdge(j, n + i, 1);\n }\n }\n }\n int ans{solver.flow(2 * n, 2 * n + 1)};\n std::cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5384, "score_of_the_acc": -0.513, "final_rank": 9 }, { "submission_id": "aoj_3168_8652453", "code_snippet": "#line 1 \"3168.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3168\"\n\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Template/IOSetting.hpp\"\n\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Template/TypeAlias.hpp\"\n\n#include <cstdint>\n#include <cstddef>\n\nnamespace zawa {\n\nusing i16 = std::int16_t;\nusing i32 = std::int32_t;\nusing i64 = std::int64_t;\nusing i128 = __int128_t;\n\nusing u8 = std::uint8_t;\nusing u16 = std::uint16_t;\nusing u32 = std::uint32_t;\nusing u64 = std::uint64_t;\n\nusing usize = std::size_t;\n\n} // namespace zawa\n#line 4 \"/home/zawatin/compro/cp-documentation/Src/Template/IOSetting.hpp\"\n\n#include <iostream>\n#include <iomanip>\n\nnamespace zawa {\n\nvoid SetFastIO() {\n std::cin.tie(nullptr)->sync_with_stdio(false);\n}\n\nvoid SetPrecision(u32 dig) {\n std::cout << std::fixed << std::setprecision(dig);\n}\n\n} // namespace zawa\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Graph/Flow/Dinic.hpp\"\n\n#line 4 \"/home/zawatin/compro/cp-documentation/Src/Graph/Flow/Dinic.hpp\"\n\n#include <algorithm>\n#include <cassert>\n#include <type_traits>\n#include <utility>\n#include <vector>\n\nnamespace zawa {\n\ntemplate <class Cap>\nclass Dinic {\nprivate:\n static_assert(std::is_signed_v<Cap>, \"Cap must be signed\");\n static constexpr u32 INVALID{static_cast<u32>(-1)};\npublic:\n static constexpr u32 invalid() noexcept {\n return INVALID;\n }\nprivate:\n class ResidualGraph {\n public:\n struct Edge {\n u32 from{}, to{};\n Cap cap{};\n u32 rev{}, id{};\n Edge() = default;\n Edge(u32 from, u32 to, const Cap& cap, u32 rev, u32 id)\n : from{from}, to{to}, cap{cap}, rev{rev}, id{id} {}\n }; \n private:\n usize n_{}, m_{};\n std::vector<std::vector<Edge>> g_{};\n public:\n ResidualGraph() = default;\n ResidualGraph(usize n) : n_{n}, m_{}, g_(n) {\n g_.shrink_to_fit();\n }\n\n inline usize size() const noexcept {\n return n_;\n }\n inline usize edgeNumber() const noexcept {\n return m_;\n }\n\n std::vector<Edge>& operator[](usize i) noexcept {\n assert(i < size());\n return g_[i];\n }\n const std::vector<Edge>& operator[](usize i) const noexcept {\n assert(i < size());\n return g_[i];\n }\n\n void addEdge(u32 from, u32 to, const Cap& cap, u32 id) {\n u32 i{static_cast<u32>(g_[from].size())};\n u32 j{static_cast<u32>(from == to ? i + 1 : g_[to].size())};\n g_[from].emplace_back(from, to, cap, j, id);\n g_[to].emplace_back(to, from, Cap{}, i, id);\n m_++;\n }\n void update(Edge& e, const Cap& flow) {\n assert(e.cap >= flow);\n e.cap -= flow;\n g_[e.to][e.rev].cap += flow;\n }\n u32 invalidEdgePointer(u32 v) const noexcept {\n return g_[v].size();\n }\n };\n\n ResidualGraph graph_;\n std::vector<u32> label_;\n\npublic:\n using Edge = typename ResidualGraph::Edge;\n inline usize size() const noexcept {\n return graph_.size();\n }\nprivate:\n\n bool admissible(const Edge& e) {\n return e.cap > 0 and label_[e.from] + 1 == label_[e.to];\n }\n\n bool dualStep(u32 s, u32 t) {\n std::fill(label_.begin(), label_.end(), invalid());\n label_[s] = 0;\n std::vector<u32> queue;\n queue.reserve(size());\n queue.emplace_back(s);\n for (u32 topQ{} ; topQ < queue.size() ; topQ++) {\n u32 v{queue[topQ]};\n for (const auto& e : graph_[v]) if (e.cap > 0) {\n if (label_[e.to] > label_[v] + 1) {\n label_[e.to] = label_[v] + 1;\n queue.emplace_back(e.to);\n }\n }\n }\n return label_[t] < size();\n }\n\n using EdgePointer = std::pair<u32, u32>;\n\n bool findAdmissiblePath(u32 s, u32 t, std::vector<EdgePointer>& path) {\n std::vector<u32> currentEdge(size());\n currentEdge[t] = graph_.invalidEdgePointer(t);\n u32 v{s};\n while (true) {\n while (currentEdge[v] != graph_.invalidEdgePointer(v)) {\n const Edge& now{graph_[v][currentEdge[v]]};\n if (admissible(now)) {\n path.emplace_back(v, currentEdge[v]);\n v = now.to;\n }\n else {\n currentEdge[v]++;\n }\n }\n if (v == s) return false;\n if (v == t) return true;\n if (v != t) {\n v = path.back().first;\n path.pop_back();\n currentEdge[v]++;\n }\n }\n assert(false);\n return false;\n }\n\n Cap flow(const std::vector<EdgePointer>& path) {\n auto min{std::min_element(path.begin(), path.end(), [&](const EdgePointer& l, const EdgePointer& r) -> bool {\n return graph_[l.first][l.second].cap < graph_[r.first][r.second].cap;\n })};\n Cap amount{graph_[min->first][min->second].cap};\n assert(amount > 0);\n for (const auto& [x, y] : path) {\n Edge& e{graph_[x][y]};\n graph_.update(e, amount);\n }\n return amount;\n }\n\n Cap primalStep(u32 s, u32 t) {\n std::vector<EdgePointer> path;\n Cap res{};\n while (findAdmissiblePath(s, t, path)) {\n res += flow(path);\n path.clear();\n }\n return res;\n }\n\npublic:\n\n Dinic() = default;\n Dinic(usize n) : graph_{n}, label_(n) {\n label_.shrink_to_fit();\n }\n\n void addEdge(u32 from, u32 to, const Cap& cap, u32 id = invalid()) {\n assert(from < size());\n assert(to < size());\n graph_.addEdge(from, to, cap, id);\n }\n\n Cap flow(u32 s, u32 t) {\n assert(s < size());\n assert(t < size());\n Cap res{};\n while (dualStep(s, t)) {\n res += primalStep(s, t);\n }\n return res;\n }\n};\n\n} // namespace zawa\n#line 5 \"3168.test.cpp\"\n\n#line 9 \"3168.test.cpp\"\n\nbool adjust(char a, char b) {\n if (a > b) std::swap(a, b);\n if (a == 'a' and b == 'z') return true;\n return (int)(b - a) == 1;\n}\n\nint main() {\n using namespace zawa;\n int n, m, k; std::cin >> n >> m >> k;\n std::vector<char> s(n);\n for (auto& c : s) std::cin >> c;\n const int INF{(int)1e9};\n std::vector g(n, std::vector<int>(n, INF));\n for (int i{} ; i < n ; i++) g[i][i] = 0;\n for (int _{} ; _ < m ; _++) {\n int u, v; std::cin >> u >> v;\n u--; v--;\n g[u][v] = g[v][u] = 1;\n }\n for (int k{} ; k < n ; k++) {\n for (int i{} ; i < n ; i++) {\n for (int j{} ; j < n ; j++) {\n g[i][j] = std::min(g[i][j], g[i][k] + g[k][j]);\n }\n }\n }\n Dinic<int> solver(2 * n + 2);\n for (int i{} ; i < n ; i++) {\n solver.addEdge(2 * n, i, 1);\n solver.addEdge(n + i, 2 * n + 1, 1);\n }\n for (int i{} ; i < n ; i++) {\n for (int j{i + 1} ; j < n ; j++) {\n if (g[i][j] > k) continue;\n if (!adjust(s[i], s[j])) continue;\n if (s[i] % 2) {\n solver.addEdge(i, n + j, 1);\n }\n else {\n solver.addEdge(j, n + i, 1);\n }\n }\n }\n int ans{solver.flow(2 * n, 2 * n + 1)};\n std::cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5224, "score_of_the_acc": -0.4711, "final_rank": 7 }, { "submission_id": "aoj_3168_8652444", "code_snippet": "#line 1 \"3168.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3168\"\n\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Template/IOSetting.hpp\"\n\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Template/TypeAlias.hpp\"\n\n#include <cstdint>\n#include <cstddef>\n\nnamespace zawa {\n\nusing i16 = std::int16_t;\nusing i32 = std::int32_t;\nusing i64 = std::int64_t;\nusing i128 = __int128_t;\n\nusing u8 = std::uint8_t;\nusing u16 = std::uint16_t;\nusing u32 = std::uint32_t;\nusing u64 = std::uint64_t;\n\nusing usize = std::size_t;\n\n} // namespace zawa\n#line 4 \"/home/zawatin/compro/cp-documentation/Src/Template/IOSetting.hpp\"\n\n#include <iostream>\n#include <iomanip>\n\nnamespace zawa {\n\nvoid SetFastIO() {\n std::cin.tie(nullptr)->sync_with_stdio(false);\n}\n\nvoid SetPrecision(u32 dig) {\n std::cout << std::fixed << std::setprecision(dig);\n}\n\n} // namespace zawa\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Graph/Flow/Dinic.hpp\"\n\n#line 4 \"/home/zawatin/compro/cp-documentation/Src/Graph/Flow/Dinic.hpp\"\n\n#include <algorithm>\n#include <cassert>\n#include <type_traits>\n#include <utility>\n#include <vector>\n\n// #include <iostream>\n\nnamespace zawa {\n\ntemplate <class Cap>\nclass Dinic {\nprivate:\n static_assert(std::is_signed_v<Cap>, \"Cap must be signed\");\n static constexpr u32 INVALID{static_cast<u32>(-1)};\npublic:\n static constexpr u32 invalid() noexcept {\n return INVALID;\n }\nprivate:\n class ResidualGraph {\n public:\n struct Edge {\n u32 from{}, to{};\n Cap cap{};\n u32 rev{}, id{};\n Edge() = default;\n Edge(u32 from, u32 to, const Cap& cap, u32 rev, u32 id)\n : from{from}, to{to}, cap{cap}, rev{rev}, id{id} {}\n }; \n private:\n usize n_{}, m_{};\n std::vector<std::vector<Edge>> g_{};\n public:\n ResidualGraph() = default;\n ResidualGraph(usize n) : n_{n}, m_{}, g_(n) {\n g_.shrink_to_fit();\n }\n\n inline usize size() const noexcept {\n return n_;\n }\n inline usize edgeNumber() const noexcept {\n return m_;\n }\n\n std::vector<Edge>& operator[](usize i) noexcept {\n assert(i < size());\n return g_[i];\n }\n const std::vector<Edge>& operator[](usize i) const noexcept {\n assert(i < size());\n return g_[i];\n }\n\n void addEdge(u32 from, u32 to, const Cap& cap, u32 id) {\n u32 i{static_cast<u32>(g_[from].size())};\n u32 j{static_cast<u32>(from == to ? i + 1 : g_[to].size())};\n g_[from].emplace_back(from, to, cap, j, id);\n g_[to].emplace_back(to, from, Cap{}, i, id);\n m_++;\n }\n void update(Edge& e, const Cap& flow) {\n assert(e.cap >= flow);\n e.cap -= flow;\n g_[e.to][e.rev].cap += flow;\n }\n u32 invalidEdgePointer(u32 v) const noexcept {\n return g_[v].size();\n }\n };\n\n ResidualGraph graph_;\n std::vector<u32> label_;\n\npublic:\n using Edge = typename ResidualGraph::Edge;\n inline usize size() const noexcept {\n return graph_.size();\n }\nprivate:\n\n bool admissible(const Edge& e) {\n return e.cap > 0 and label_[e.from] + 1 == label_[e.to];\n }\n\n bool dualStep(u32 s, u32 t) {\n std::fill(label_.begin(), label_.end(), invalid());\n label_[s] = 0;\n std::vector<u32> queue;\n queue.reserve(size());\n queue.emplace_back(s);\n for (u32 topQ{} ; topQ < queue.size() ; topQ++) {\n u32 v{queue[topQ]};\n for (const auto& e : graph_[v]) if (e.cap > 0) {\n if (label_[e.to] > label_[v] + 1) {\n label_[e.to] = label_[v] + 1;\n queue.emplace_back(e.to);\n }\n }\n }\n return label_[t] < size();\n }\n\n using EdgePointer = std::pair<u32, u32>;\n\n bool findAdmissiblePath(u32 s, u32 t, std::vector<EdgePointer>& path) {\n std::vector<u32> currentEdge(size());\n currentEdge[t] = graph_.invalidEdgePointer(t);\n u32 v{s};\n while (true) {\n // for (auto [x, y] : path) {\n // std::cout << '(' << x << ',' << y << ',' << graph_[x][y].cap << ')' << ' ';\n // }\n // std::cout << std::endl;\n while (currentEdge[v] != graph_.invalidEdgePointer(v)) {\n const Edge& now{graph_[v][currentEdge[v]]};\n if (admissible(now)) {\n // std::cout << \"find edge \" << '(' << v << ',' << currentEdge[v] << ',' << now.cap << ')' << std::endl;\n path.emplace_back(v, currentEdge[v]);\n v = now.to;\n // std::cout << \"v become \" << v << std::endl;\n }\n else {\n currentEdge[v]++;\n }\n }\n if (v == s) return false;\n if (v == t) return true;\n if (v != t) {\n // std::cout << \"v rollback \" << std::endl;\n v = path.back().first;\n // std::cout << \"v become \" << v << std::endl;\n path.pop_back();\n currentEdge[v]++;\n }\n }\n assert(false);\n return false;\n }\n\n Cap flow(const std::vector<EdgePointer>& path) {\n // std::cout << \"flowing!!!\" << std::endl;\n // for (auto [x, y] : path) {\n // std::cout << '(' << x << ',' << y << ',' << graph_[x][y].cap << ')' << ' ';\n // }\n // std::cout << std::endl;\n auto min{std::min_element(path.begin(), path.end(), [&](const EdgePointer& l, const EdgePointer& r) -> bool {\n return graph_[l.first][l.second].cap < graph_[r.first][r.second].cap;\n })};\n Cap amount{graph_[min->first][min->second].cap};\n assert(amount > 0);\n for (const auto& [x, y] : path) {\n Edge& e{graph_[x][y]};\n graph_.update(e, amount);\n }\n return amount;\n }\n\n Cap primalStep(u32 s, u32 t) {\n std::vector<EdgePointer> path;\n Cap res{};\n while (findAdmissiblePath(s, t, path)) {\n res += flow(path);\n path.clear();\n }\n return res;\n }\n\npublic:\n\n Dinic() = default;\n Dinic(usize n) : graph_{n}, label_(n) {\n label_.shrink_to_fit();\n }\n\n void addEdge(u32 from, u32 to, const Cap& cap, u32 id = invalid()) {\n assert(from < size());\n assert(to < size());\n graph_.addEdge(from, to, cap, id);\n }\n\n Cap flow(u32 s, u32 t) {\n assert(s < size());\n assert(t < size());\n Cap res{};\n while (dualStep(s, t)) {\n res += primalStep(s, t);\n }\n return res;\n }\n};\n\n} // namespace zawa\n#line 5 \"3168.test.cpp\"\n\n#line 9 \"3168.test.cpp\"\n\nbool adjust(char a, char b) {\n if (a > b) std::swap(a, b);\n if (a == 'a' and b == 'z') return true;\n return (int)(b - a) == 1;\n}\n\nint main() {\n using namespace zawa;\n int n, m, k; std::cin >> n >> m >> k;\n std::vector<char> s(n);\n for (auto& c : s) std::cin >> c;\n const int INF{(int)1e9};\n std::vector g(n, std::vector<int>(n, INF));\n for (int i{} ; i < n ; i++) g[i][i] = 0;\n for (int _{} ; _ < m ; _++) {\n int u, v; std::cin >> u >> v;\n u--; v--;\n g[u][v] = g[v][u] = 1;\n }\n for (int k{} ; k < n ; k++) {\n for (int i{} ; i < n ; i++) {\n for (int j{} ; j < n ; j++) {\n g[i][j] = std::min(g[i][j], g[i][k] + g[k][j]);\n }\n }\n }\n Dinic<int> solver(2 * n + 2);\n for (int i{} ; i < n ; i++) {\n solver.addEdge(2 * n, i, 1);\n solver.addEdge(n + i, 2 * n + 1, 1);\n }\n for (int i{} ; i < n ; i++) {\n for (int j{i + 1} ; j < n ; j++) {\n if (g[i][j] > k) continue;\n if (!adjust(s[i], s[j])) continue;\n if (s[i] % 2) {\n solver.addEdge(i, n + j, 1);\n }\n else {\n solver.addEdge(j, n + i, 1);\n }\n }\n }\n int ans{solver.flow(2 * n, 2 * n + 1)};\n std::cout << ans << '\\n';\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5224, "score_of_the_acc": -0.4711, "final_rank": 7 }, { "submission_id": "aoj_3168_8652328", "code_snippet": "#line 1 \"3168.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3168\"\n\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Template/IOSetting.hpp\"\n\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Template/TypeAlias.hpp\"\n\n#include <cstdint>\n#include <cstddef>\n\nnamespace zawa {\n\nusing i16 = std::int16_t;\nusing i32 = std::int32_t;\nusing i64 = std::int64_t;\nusing i128 = __int128_t;\n\nusing u8 = std::uint8_t;\nusing u16 = std::uint16_t;\nusing u32 = std::uint32_t;\nusing u64 = std::uint64_t;\n\nusing usize = std::size_t;\n\n} // namespace zawa\n#line 4 \"/home/zawatin/compro/cp-documentation/Src/Template/IOSetting.hpp\"\n\n#include <iostream>\n#include <iomanip>\n\nnamespace zawa {\n\nvoid SetFastIO() {\n std::cin.tie(nullptr)->sync_with_stdio(false);\n}\n\nvoid SetPrecision(u32 dig) {\n std::cout << std::fixed << std::setprecision(dig);\n}\n\n} // namespace zawa\n#line 2 \"/home/zawatin/compro/cp-documentation/Src/Graph/Flow/Dinic.hpp\"\n\n#line 4 \"/home/zawatin/compro/cp-documentation/Src/Graph/Flow/Dinic.hpp\"\n\n#include <algorithm>\n#include <cassert>\n#include <type_traits>\n#include <utility>\n#include <vector>\n\n// #include <iostream>\n\nnamespace zawa {\n\ntemplate <class Cap>\nclass Dinic {\nprivate:\n static_assert(std::is_signed_v<Cap>, \"Cap must be signed\");\n static constexpr u32 INVALID{static_cast<u32>(-1)};\npublic:\n static constexpr u32 invalid() noexcept {\n return INVALID;\n }\nprivate:\n class ResidualGraph {\n public:\n struct Edge {\n u32 from{}, to{};\n Cap cap{};\n u32 rev{}, id{};\n Edge() = default;\n Edge(u32 from, u32 to, const Cap& cap, u32 rev, u32 id)\n : from{from}, to{to}, cap{cap}, rev{rev}, id{id} {}\n }; \n private:\n usize n_{}, m_{};\n std::vector<std::vector<Edge>> g_{};\n public:\n ResidualGraph() = default;\n ResidualGraph(usize n) : n_{n}, m_{}, g_(n) {\n g_.shrink_to_fit();\n }\n\n inline usize size() const noexcept {\n return n_;\n }\n inline usize edgeNumber() const noexcept {\n return m_;\n }\n\n std::vector<Edge>& operator[](usize i) noexcept {\n assert(i < size());\n return g_[i];\n }\n const std::vector<Edge>& operator[](usize i) const noexcept {\n assert(i < size());\n return g_[i];\n }\n\n void addEdge(u32 from, u32 to, const Cap& cap, u32 id) {\n u32 i{static_cast<u32>(g_[from].size())};\n u32 j{static_cast<u32>(from == to ? i + 1 : g_[to].size())};\n g_[from].emplace_back(from, to, cap, j, id);\n g_[to].emplace_back(to, from, Cap{}, j, id);\n m_++;\n }\n void update(Edge& e, const Cap& flow) {\n assert(e.cap >= flow);\n e.cap -= flow;\n g_[e.to][e.rev].cap += flow;\n }\n u32 invalidEdgePointer(u32 v) const noexcept {\n return g_[v].size();\n }\n };\n\n ResidualGraph graph_;\n std::vector<u32> label_;\n\npublic:\n using Edge = typename ResidualGraph::Edge;\n inline usize size() const noexcept {\n return graph_.size();\n }\nprivate:\n\n bool admissible(const Edge& e) {\n return e.cap > 0 and label_[e.from] + 1 == label_[e.to];\n }\n\n bool dualStep(u32 s, u32 t) {\n std::fill(label_.begin(), label_.end(), invalid());\n label_[s] = 0;\n std::vector<u32> queue;\n queue.reserve(size());\n queue.emplace_back(s);\n for (u32 topQ{} ; topQ < queue.size() ; topQ++) {\n u32 v{queue[topQ]};\n for (const auto& e : graph_[v]) if (e.cap > 0) {\n if (label_[e.to] > label_[v] + 1) {\n label_[e.to] = label_[v] + 1;\n queue.emplace_back(e.to);\n }\n }\n }\n return label_[t] < size();\n }\n\n using EdgePointer = std::pair<u32, u32>;\n\n bool findAdmissiblePath(u32 s, u32 t, std::vector<EdgePointer>& path) {\n std::vector<u32> currentEdge(size());\n currentEdge[t] = graph_.invalidEdgePointer(t);\n u32 v{s};\n while (true) {\n // for (auto [x, y] : path) {\n // std::cout << '(' << x << ',' << y << ',' << graph_[x][y].cap << ')' << ' ';\n // }\n // std::cout << std::endl;\n while (currentEdge[v] != graph_.invalidEdgePointer(v)) {\n const Edge& now{graph_[v][currentEdge[v]]};\n if (admissible(now)) {\n // std::cout << \"find edge \" << '(' << v << ',' << currentEdge[v] << ',' << now.cap << ')' << std::endl;\n path.emplace_back(v, currentEdge[v]);\n v = now.to;\n // std::cout << \"v become \" << v << std::endl;\n }\n else {\n currentEdge[v]++;\n }\n }\n if (v == s) return false;\n if (v == t) return true;\n if (v != t) {\n // std::cout << \"v rollback \" << std::endl;\n v = path.back().first;\n // std::cout << \"v become \" << v << std::endl;\n path.pop_back();\n currentEdge[v]++;\n }\n }\n assert(false);\n return false;\n }\n\n Cap flow(const std::vector<EdgePointer>& path) {\n // std::cout << \"flowing!!!\" << std::endl;\n // for (auto [x, y] : path) {\n // std::cout << '(' << x << ',' << y << ',' << graph_[x][y].cap << ')' << ' ';\n // }\n // std::cout << std::endl;\n auto min{std::min_element(path.begin(), path.end(), [&](const EdgePointer& l, const EdgePointer& r) -> bool {\n return graph_[l.first][l.second].cap < graph_[r.first][r.second].cap;\n })};\n Cap amount{graph_[min->first][min->second].cap};\n assert(amount > 0);\n for (const auto& [x, y] : path) {\n Edge& e{graph_[x][y]};\n graph_.update(e, amount);\n }\n return amount;\n }\n\n Cap primalStep(u32 s, u32 t) {\n std::vector<EdgePointer> path;\n Cap res{};\n while (findAdmissiblePath(s, t, path)) {\n res += flow(path);\n path.clear();\n }\n return res;\n }\n\npublic:\n\n Dinic() = default;\n Dinic(usize n) : graph_{n}, label_(n) {\n label_.shrink_to_fit();\n }\n\n void addEdge(u32 from, u32 to, const Cap& cap, u32 id = invalid()) {\n assert(from < size());\n assert(to < size());\n graph_.addEdge(from, to, cap, id);\n }\n\n Cap flow(u32 s, u32 t) {\n assert(s < size());\n assert(t < size());\n Cap res{};\n while (dualStep(s, t)) {\n res += primalStep(s, t);\n }\n return res;\n }\n};\n\n} // namespace zawa\n#line 5 \"3168.test.cpp\"\n\n#line 9 \"3168.test.cpp\"\n\nbool adjust(char a, char b) {\n if (a > b) std::swap(a, b);\n if (a == 'a' and b == 'z') return true;\n return (int)(b - a) == 1;\n}\n\nint main() {\n using namespace zawa;\n int n, m, k; std::cin >> n >> m >> k;\n std::vector<char> s(n);\n for (auto& c : s) std::cin >> c;\n const int INF{(int)1e9};\n std::vector g(n, std::vector<int>(n, INF));\n for (int i{} ; i < n ; i++) g[i][i] = 0;\n for (int _{} ; _ < m ; _++) {\n int u, v; std::cin >> u >> v;\n u--; v--;\n g[u][v] = g[v][u] = 1;\n }\n for (int k{} ; k < n ; k++) {\n for (int i{} ; i < n ; i++) {\n for (int j{} ; j < n ; j++) {\n g[i][j] = std::min(g[i][j], g[i][k] + g[k][j]);\n }\n }\n }\n Dinic<int> solver(2 * n + 2);\n for (int i{} ; i < n ; i++) {\n solver.addEdge(2 * n, i, 1);\n solver.addEdge(n + i, 2 * n + 1, 1);\n }\n for (int i{} ; i < n ; i++) {\n for (int j{i + 1} ; j < n ; j++) {\n if (g[i][j] > k) continue;\n if (!adjust(s[i], s[j])) continue;\n if (s[i] % 2) {\n solver.addEdge(i, n + j, 1);\n }\n else {\n solver.addEdge(j, n + i, 1);\n }\n }\n }\n int ans{solver.flow(2 * n, 2 * n + 1)};\n std::cout << ans << '\\n';\n}", "accuracy": 0.6909090909090909, "time_ms": 20, "memory_kb": 5228, "score_of_the_acc": -0.4721, "final_rank": 14 }, { "submission_id": "aoj_3168_8538376", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#define repd(i,a,b) for (ll i=(a);i<(b);i++)\n#define rep(i,n) repd(i,0,n)\n#define all(x) (x).begin(),(x).end()\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }\ntypedef long long ll;\ntypedef pair<int,int> P;\ntypedef vector<ll> vec;\ntypedef vector<vec> Graph;\nconst long long INF = 1LL<<60;\nconst long long MOD = 1000000007;\n\n//https://github.com/atcoder/ac-library/tree/master/atcoder\n#ifndef ATCODER_INTERNAL_QUEUE_HPP\n#define ATCODER_INTERNAL_QUEUE_HPP 1\n\n#include <vector>\n\nnamespace atcoder {\n\nnamespace internal {\n\ntemplate <class T> struct simple_queue {\n std::vector<T> payload;\n int pos = 0;\n void reserve(int n) { payload.reserve(n); }\n int size() const { return int(payload.size()) - pos; }\n bool empty() const { return pos == int(payload.size()); }\n void push(const T& t) { payload.push_back(t); }\n T& front() { return payload[pos]; }\n void clear() {\n payload.clear();\n pos = 0;\n }\n void pop() { pos++; }\n};\n\n} // namespace internal\n\n} // namespace atcoder\n\n#endif // ATCODER_INTERNAL_QUEUE_HPP\n\n#ifndef ATCODER_MAXFLOW_HPP\n#define ATCODER_MAXFLOW_HPP 1\n\n#include <algorithm>\n#include <cassert>\n#include <limits>\n#include <queue>\n#include <vector>\n\n\nnamespace atcoder {\n\ntemplate <class Cap> struct mf_graph {\n public:\n mf_graph() : _n(0) {}\n explicit mf_graph(int n) : _n(n), g(n) {}\n\n int add_edge(int from, int to, Cap cap) {\n assert(0 <= from && from < _n);\n assert(0 <= to && to < _n);\n assert(0 <= cap);\n int m = int(pos.size());\n pos.push_back({from, int(g[from].size())});\n int from_id = int(g[from].size());\n int to_id = int(g[to].size());\n if (from == to) to_id++;\n g[from].push_back(_edge{to, to_id, cap});\n g[to].push_back(_edge{from, from_id, 0});\n return m;\n }\n\n struct edge {\n int from, to;\n Cap cap, flow;\n };\n\n edge get_edge(int i) {\n int m = int(pos.size());\n assert(0 <= i && i < m);\n auto _e = g[pos[i].first][pos[i].second];\n auto _re = g[_e.to][_e.rev];\n return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};\n }\n std::vector<edge> edges() {\n int m = int(pos.size());\n std::vector<edge> result;\n for (int i = 0; i < m; i++) {\n result.push_back(get_edge(i));\n }\n return result;\n }\n void change_edge(int i, Cap new_cap, Cap new_flow) {\n int m = int(pos.size());\n assert(0 <= i && i < m);\n assert(0 <= new_flow && new_flow <= new_cap);\n auto& _e = g[pos[i].first][pos[i].second];\n auto& _re = g[_e.to][_e.rev];\n _e.cap = new_cap - new_flow;\n _re.cap = new_flow;\n }\n\n Cap flow(int s, int t) {\n return flow(s, t, std::numeric_limits<Cap>::max());\n }\n Cap flow(int s, int t, Cap flow_limit) {\n assert(0 <= s && s < _n);\n assert(0 <= t && t < _n);\n assert(s != t);\n\n std::vector<int> level(_n), iter(_n);\n internal::simple_queue<int> que;\n\n auto bfs = [&]() {\n std::fill(level.begin(), level.end(), -1);\n level[s] = 0;\n que.clear();\n que.push(s);\n while (!que.empty()) {\n int v = que.front();\n que.pop();\n for (auto e : g[v]) {\n if (e.cap == 0 || level[e.to] >= 0) continue;\n level[e.to] = level[v] + 1;\n if (e.to == t) return;\n que.push(e.to);\n }\n }\n };\n auto dfs = [&](auto self, int v, Cap up) {\n if (v == s) return up;\n Cap res = 0;\n int level_v = level[v];\n for (int& i = iter[v]; i < int(g[v].size()); i++) {\n _edge& e = g[v][i];\n if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;\n Cap d =\n self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));\n if (d <= 0) continue;\n g[v][i].cap += d;\n g[e.to][e.rev].cap -= d;\n res += d;\n if (res == up) return res;\n }\n level[v] = _n;\n return res;\n };\n\n Cap flow = 0;\n while (flow < flow_limit) {\n bfs();\n if (level[t] == -1) break;\n std::fill(iter.begin(), iter.end(), 0);\n Cap f = dfs(dfs, t, flow_limit - flow);\n if (!f) break;\n flow += f;\n }\n return flow;\n }\n\n std::vector<bool> min_cut(int s) {\n std::vector<bool> visited(_n);\n internal::simple_queue<int> que;\n que.push(s);\n while (!que.empty()) {\n int p = que.front();\n que.pop();\n visited[p] = true;\n for (auto e : g[p]) {\n if (e.cap && !visited[e.to]) {\n visited[e.to] = true;\n que.push(e.to);\n }\n }\n }\n return visited;\n }\n\n private:\n int _n;\n struct _edge {\n int to, rev;\n Cap cap;\n };\n std::vector<std::pair<int, int>> pos;\n std::vector<std::vector<_edge>> g;\n};\n\n} // namespace atcoder\n\n#endif // ATCODER_MAXFLOW_HPP\n\nusing namespace atcoder;\n \n\nint main()\n{ \n ios::sync_with_stdio(false);\n cin.tie(0);\n ll n,m,k;\n cin>>n>>m>>k;\n vector<char> c(n);\n rep(i,n)cin>>c[i];\n mf_graph<ll> g(n*2+2);\n Graph G(n);\n rep(i,m){\n ll a,b;\n cin>>a>>b;\n a--;b--;\n G[a].push_back(b);\n G[b].push_back(a);\n }\n rep(i,n){\n vec dist(n,-1);\n dist[i]=0;\n queue<ll> que;\n que.push(i);\n while(que.size()){\n ll x=que.front();\n que.pop();\n for(ll nx:G[x]){\n if(dist[nx]>=0)continue;\n que.push(nx);\n dist[nx]=dist[x]+1;\n }\n }\n rep(j,n){\n if(dist[j]==-1)continue;\n if(dist[j]<=k){\n ll x=c[i]-'a';\n ll y=c[j]-'a';\n ll sub=abs(x-y);\n if(sub==1||sub==25){\n if(x%2==0)g.add_edge(2+i,2+n+j,1e6);\n else g.add_edge(2+j,2+i+n,1e6);\n }\n }\n }\n }\n rep(i,n){\n g.add_edge(0,2+i,1);\n g.add_edge(2+n+i,1,1);\n }\n ll ans=g.flow(0,1);\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6940, "score_of_the_acc": -0.9108, "final_rank": 10 }, { "submission_id": "aoj_3168_7976864", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// テンプレート引数: 距離の型TとT型の無効値(十分大きな値)INF\n// 引数: Nは頂点数、次に辺の情報(u, v, cost)\n// directedをtrueにすると有向辺として扱う(u -> v)向き\n// INFはオーバーフロー注意!!(2倍してもオーバーフローしない値である必要がある)\ntemplate <class T, T INF>\nvector<vector<T>> WF(int N, vector<tuple<int, int, T>> E, bool directed) {\n vector G(N, vector(N, INF));\n for (int i = 0 ; i < N ; i++) G[i][i] = 0;\n for (auto [u, v, c] : E) {\n G[u][v] = min(G[u][v], c);\n if (!directed) G[v][u] = min(G[v][u], c);\n }\n for (int k = 0 ; k < N ; k++) {\n for (int i = 0 ; i < N ; i++) {\n for (int j = 0 ; j < N ; j++) {\n G[i][j] = min(G[i][j], G[i][k] + G[k][j]);\n }\n }\n }\n return G;\n}\n\n\n// O(E V^2)\n// O(E \\min(E^{1/2}, V^{2/3})) if caps are constant\n// template param Flow: 流量の型\n// template param directed: 有向ならtrue\ntemplate<typename Flow,bool directed>\nstruct Dinic{\n // @member dst: 辺の向かう先\n // @member cap: 容量\n // @member rev: 逆辺の「識別番号」\n // @brief: 流量は管理していないっぽいので、流量が欲しい時は追加時の容量と現在の容量から流量を計算する必要がある。\n struct Edge {\n int dst;\n Flow cap;\n int rev;\n Edge(int dst,Flow cap,int rev):dst(dst),cap(cap),rev(rev){}\n };\n\n vector< vector<Edge> > G;\n vector<int> level,iter;\n\n // @param n: 頂点数\n Dinic(int n):G(n),level(n),iter(n){}\n\n // @brief srcからdstへ容量capの辺を追加する\n // @param src: 始点\n // @param dst: 終点\n // @param cap: 容量\n // @response: 追加した辺の識別番号(多分)\n int add_edge(int src,int dst,Flow cap){\n int e=G[src].size();\n int r=(src==dst?e+1:G[dst].size());\n G[src].emplace_back(dst,cap,r);\n G[dst].emplace_back(src,directed?0:cap,e);\n return e;\n }\n\n void bfs(int s){\n fill(level.begin(),level.end(),-1);\n queue<int> que;\n level[s]=0;\n que.emplace(s);\n while(!que.empty()){\n int v=que.front();que.pop();\n for(Edge &e : G[v]) {\n if(e.cap>0 and level[e.dst]<0){\n level[e.dst]=level[v]+1;\n que.emplace(e.dst);\n }\n }\n }\n }\n\n Flow dfs(int v,int t,Flow f){\n if(v==t) return f;\n for(int &i=iter[v];i<(int)G[v].size();i++){\n Edge &e=G[v][i];\n if(e.cap>0 and level[v]<level[e.dst]){\n Flow d=dfs(e.dst,t,min(f,e.cap));\n if(d==0) continue;\n e.cap-=d;\n G[e.dst][e.rev].cap+=d;\n return d;\n }\n }\n return 0;\n }\n\n // @brief: sからtへの最大フローを求める\n Flow flow(int s,int t){\n return flow(s,t,numeric_limits<Flow>::max()/2);\n }\n\n // @brief: sからtへの流量制限limの最大フローを流す(多分)\n Flow flow(int s,int t,Flow lim){\n Flow fl=0;\n while(1){\n bfs(s);\n if(level[t]<0 or lim==0) break;\n fill(iter.begin(),iter.end(),0);\n\n while(1){\n Flow f=dfs(s,t,lim);\n if(f==0) break;\n fl+=f;\n lim-=f;\n }\n }\n return fl;\n }\n\n // よくわからない\n Flow cut(int s,int t,int x,int a){\n static_assert(directed, \"must be directed\");\n auto &e=G[x][a];\n int y=e.dst;\n Flow cr=G[y][e.rev].cap;\n if(cr==0) return e.cap=0;\n e.cap=G[y][e.rev].cap=0;\n Flow cap=cr-flow(x,y,cr);\n if(x!=s and cap!=0) flow(x,s,cap);\n if(t!=y and cap!=0) flow(t,y,cap);\n return cap;\n }\n\n // @brief: 頂点xのa番目の辺に流量fを追加してs -> tへフローを流す\n // @condition: 頂点xにa個以上の辺が存在する\n // @param s: フローのsource\n // @param t: フローのsink\n // @param x: 流量を追加したい辺の始点がある頂点\n // @param a: 流量を追加した辺の識別番号\n // @param f: 追加したい流量\n Flow link(int s,int t,int x,int a,Flow f){\n auto &e=G[x][a];\n e.cap+=f;\n return flow(s,t,f);\n }\n};\n\nvector<int> BipJudge(vector<vector<int>> G) {\n size_t N = G.size();\n vector<int> col(N, -1);\n\n auto dfs = [&](auto dfs, int v, int c) -> bool {\n col[v] = c;\n for (auto x : G[v]) {\n if (col[x] == c) return false;\n if (col[x] == -1 and !dfs(dfs, x, 1 - c)) return false;\n }\n return true;\n };\n\n bool ok = true;\n for (size_t i = 0 ; i < N ; i++) {\n ok &= (col[i] != -1 or dfs(dfs, i, 0));\n }\n\n if (ok) return col;\n else return vector<int>(N, -1);\n}\n\nint main() {\n int N, M, K; cin >> N >> M >> K;\n vector<char> C(N);\n for (auto& c : C) cin >> c;\n \n vector<tuple<int, int, int>> E(M);\n for (auto& [u, v, c] : E) {\n cin >> u >> v;\n u--; v--;\n c = 1;\n }\n\n auto G = WF<int, (int)1e9>(N, E, false);\n\n vector<vector<int>> Ebi(N); \n for (int i = 0 ; i < N ; i++) {\n for (int j = 0 ; j < N ; j++) {\n if (G[i][j] > K) continue;\n int s = (C[i] - C[j] + 26) % 26;\n if (s == 1 or s == 25) {\n Ebi[i].push_back(j);\n }\n }\n }\n\n vector<int> col = BipJudge(Ebi);\n\n Dinic<int, true> din(N + 2);\n for (int i = 0 ; i < N ; i++) {\n if (col[i] == 0) {\n din.add_edge(N, i, 1);\n for (auto x : Ebi[i]) din.add_edge(i, x, 1);\n }\n else {\n din.add_edge(i, N + 1, 1);\n }\n }\n\n int ans = din.flow(N, N + 1);\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5172, "score_of_the_acc": -0.4574, "final_rank": 6 }, { "submission_id": "aoj_3168_7975975", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n// テンプレート引数: 距離の型TとT型の無効値(十分大きな値)INF\n// 引数: Nは頂点数、次に辺の情報(u, v, cost)\n// directedをtrueにすると有向辺として扱う(u -> v)向き\n// INFはオーバーフロー注意!!(2倍してもオーバーフローしない値である必要がある)\ntemplate <class T, T INF>\nvector<vector<T>> WF(int N, vector<tuple<int, int, T>> E, bool directed) {\n vector G(N, vector(N, INF));\n for (int i = 0 ; i < N ; i++) G[i][i] = 0;\n for (auto [u, v, c] : E) {\n G[u][v] = min(G[u][v], c);\n if (!directed) G[v][u] = min(G[v][u], c);\n }\n for (int k = 0 ; k < N ; k++) {\n for (int i = 0 ; i < N ; i++) {\n for (int j = 0 ; j < N ; j++) {\n G[i][j] = min(G[i][j], G[i][k] + G[k][j]);\n }\n }\n }\n return G;\n}\n\n// O(E V^2)\n// O(E \\min(E^{1/2}, V^{2/3})) if caps are constant\ntemplate<typename Flow,bool directed>\nstruct Dinic{\n struct Edge {\n int dst;\n Flow cap;\n int rev;\n Edge(int dst,Flow cap,int rev):dst(dst),cap(cap),rev(rev){}\n };\n\n vector< vector<Edge> > G;\n vector<int> level,iter;\n\n Dinic(int n):G(n),level(n),iter(n){}\n\n int add_edge(int src,int dst,Flow cap){\n int e=G[src].size();\n int r=(src==dst?e+1:G[dst].size());\n G[src].emplace_back(dst,cap,r);\n G[dst].emplace_back(src,directed?0:cap,e);\n return e;\n }\n\n void bfs(int s){\n fill(level.begin(),level.end(),-1);\n queue<int> que;\n level[s]=0;\n que.emplace(s);\n while(!que.empty()){\n int v=que.front();que.pop();\n for(Edge &e : G[v]) {\n if(e.cap>0 and level[e.dst]<0){\n level[e.dst]=level[v]+1;\n que.emplace(e.dst);\n }\n }\n }\n }\n\n Flow dfs(int v,int t,Flow f){\n if(v==t) return f;\n for(int &i=iter[v];i<(int)G[v].size();i++){\n Edge &e=G[v][i];\n if(e.cap>0 and level[v]<level[e.dst]){\n Flow d=dfs(e.dst,t,min(f,e.cap));\n if(d==0) continue;\n e.cap-=d;\n G[e.dst][e.rev].cap+=d;\n return d;\n }\n }\n return 0;\n }\n\n Flow flow(int s,int t,Flow lim){\n Flow fl=0;\n while(1){\n bfs(s);\n if(level[t]<0 or lim==0) break;\n fill(iter.begin(),iter.end(),0);\n\n while(1){\n Flow f=dfs(s,t,lim);\n if(f==0) break;\n fl+=f;\n lim-=f;\n }\n }\n return fl;\n }\n\n Flow flow(int s,int t){\n return flow(s,t,numeric_limits<Flow>::max()/2);\n }\n\n Flow cut(int s,int t,int x,int a){\n static_assert(directed, \"must be directed\");\n auto &e=G[x][a];\n int y=e.dst;\n Flow cr=G[y][e.rev].cap;\n if(cr==0) return e.cap=0;\n e.cap=G[y][e.rev].cap=0;\n Flow cap=cr-flow(x,y,cr);\n if(x!=s and cap!=0) flow(x,s,cap);\n if(t!=y and cap!=0) flow(t,y,cap);\n return cap;\n }\n\n Flow link(int s,int t,int x,int a,Flow f){\n auto &e=G[x][a];\n e.cap+=f;\n return flow(s,t,f);\n }\n};\n\nint main() {\n int N, M, K; cin >> N >> M >> K;\n vector<char> C(N);\n for (auto& c : C) cin >> c;\n \n vector<tuple<int, int, int>> E(M);\n for (auto& [u, v, c] : E) {\n cin >> u >> v;\n u--; v--;\n c = 1;\n }\n\n auto G = WF<int, (int)1e9>(N, E, false);\n\n vector<vector<int>> Ebi(N); \n for (int i = 0 ; i < N ; i++) {\n for (int j = 0 ; j < N ; j++) {\n if (G[i][j] > K) continue;\n int s = (C[i] - C[j] + 26) % 26;\n if (s == 1 or s == 25) {\n Ebi[i].push_back(j);\n }\n }\n }\n\n vector<int> col(N, -1);\n auto dfs = [&](auto dfs, int v, int c) -> void {\n col[v] = c;\n for (auto x : Ebi[v]) {\n if (col[x] == -1) dfs(dfs, x, 1 - c);\n }\n };\n\n for (int i = 0 ; i < N ; i++) {\n if (col[i] == -1) dfs(dfs, i, 0);\n }\n\n Dinic<int, true> din(N + 2);\n for (int i = 0 ; i < N ; i++) {\n if (col[i] == 0) {\n din.add_edge(N, i, 1);\n for (auto x : Ebi[i]) din.add_edge(i, x, 1);\n }\n else {\n din.add_edge(i, N + 1, 1);\n }\n }\n\n int ans = din.flow(N, N + 1);\n\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5152, "score_of_the_acc": -0.4522, "final_rank": 5 }, { "submission_id": "aoj_3168_7975574", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n//BEGIN CUT HERE\n// O(E V^2)\n// O(E \\min(E^{1/2}, V^{2/3})) if caps are constant\ntemplate<typename Flow,bool directed>\nstruct Dinic{\n struct Edge {\n int dst;\n Flow cap;\n int rev;\n Edge(int dst,Flow cap,int rev):dst(dst),cap(cap),rev(rev){}\n };\n\n vector< vector<Edge> > G;\n vector<int> level,iter;\n\n Dinic(int n):G(n),level(n),iter(n){}\n\n int add_edge(int src,int dst,Flow cap){\n int e=G[src].size();\n int r=(src==dst?e+1:G[dst].size());\n G[src].emplace_back(dst,cap,r);\n G[dst].emplace_back(src,directed?0:cap,e);\n return e;\n }\n\n void bfs(int s){\n fill(level.begin(),level.end(),-1);\n queue<int> que;\n level[s]=0;\n que.emplace(s);\n while(!que.empty()){\n int v=que.front();que.pop();\n for(Edge &e : G[v]) {\n if(e.cap>0 and level[e.dst]<0){\n level[e.dst]=level[v]+1;\n que.emplace(e.dst);\n }\n }\n }\n }\n\n Flow dfs(int v,int t,Flow f){\n if(v==t) return f;\n for(int &i=iter[v];i<(int)G[v].size();i++){\n Edge &e=G[v][i];\n if(e.cap>0 and level[v]<level[e.dst]){\n Flow d=dfs(e.dst,t,min(f,e.cap));\n if(d==0) continue;\n e.cap-=d;\n G[e.dst][e.rev].cap+=d;\n return d;\n }\n }\n return 0;\n }\n\n Flow flow(int s,int t,Flow lim){\n Flow fl=0;\n while(1){\n bfs(s);\n if(level[t]<0 or lim==0) break;\n fill(iter.begin(),iter.end(),0);\n\n while(1){\n Flow f=dfs(s,t,lim);\n if(f==0) break;\n fl+=f;\n lim-=f;\n }\n }\n return fl;\n }\n\n Flow flow(int s,int t){\n return flow(s,t,numeric_limits<Flow>::max()/2);\n }\n\n Flow cut(int s,int t,int x,int a){\n static_assert(directed, \"must be directed\");\n auto &e=G[x][a];\n int y=e.dst;\n Flow cr=G[y][e.rev].cap;\n if(cr==0) return e.cap=0;\n e.cap=G[y][e.rev].cap=0;\n Flow cap=cr-flow(x,y,cr);\n if(x!=s and cap!=0) flow(x,s,cap);\n if(t!=y and cap!=0) flow(t,y,cap);\n return cap;\n }\n\n Flow link(int s,int t,int x,int a,Flow f){\n auto &e=G[x][a];\n e.cap+=f;\n return flow(s,t,f);\n }\n};\n\nconst int INF = (int)1e9;\n\nint main() {\n int N, M, K; cin >> N >> M >> K;\n vector<int> C(N);\n for (auto& c : C) {\n char op; cin >> op;\n c = (int)op;\n }\n for (auto& c : C) c %= 26;\n\n vector G(N, vector(N, INF));\n for (int i = 0 ; i < N ; i++) G[i][i] = 0;\n\n for (int _ = 0 ; _ < M ; _++) {\n int u, v; cin >> u >> v;\n u--; v--;\n G[u][v] = G[v][u] = 1;\n }\n\n for (int k = 0 ; k < N ; k++) {\n for (int i = 0 ; i < N ; i++) {\n for (int j = 0 ; j < N ; j++) {\n G[i][j] = min(G[i][j], G[i][k] + G[k][j]);\n }\n }\n }\n\n vector<vector<int>> Ebi(N);\n\n for (int i = 0 ; i < N ; i++) {\n for (int j = i + 1 ; j < N ; j++) {\n if (G[i][j] > K) continue;\n int score = (C[i] - C[j] + 26) % 26;\n if (score == 1 or score == 25) {\n Ebi[i].push_back(j);\n Ebi[j].push_back(i);\n }\n }\n }\n\n\n vector<int> id(N, -1);\n int size = 0;\n \n auto dfsid = [&](auto dfsid, int v) -> void {\n id[v] = size;\n for (auto x : Ebi[v]) if (id[x] == -1) {\n dfsid(dfsid, x);\n }\n };\n\n for (int i = 0 ; i < N ; i++) {\n if (id[i] == -1) {\n dfsid(dfsid, i);\n size++;\n }\n }\n\n vector<int> col(N, -1); \n\n auto dfscol = [&](auto dfscol, int v, int c) -> void {\n col[v] = c;\n for (auto x : Ebi[v]) {\n if (col[x] != -1) {\n assert(col[x] == 1 - c);\n }\n else {\n dfscol(dfscol, x, 1 - c);\n }\n }\n };\n\n for (int i = 0 ; i < N ; i++) {\n if (col[i] == -1) {\n dfscol(dfscol, i, 0);\n }\n }\n\n Dinic<int, true> din(N + 2);\n vector<int> zero(size), one(size);\n for (int i = 0 ; i < N ; i++) {\n if (col[i] == 0) {\n din.add_edge(N, i, 1);\n for (auto x : Ebi[i]) {\n din.add_edge(i, x, 1);\n }\n zero[id[i]]++;\n }\n else {\n din.add_edge(i, N + 1, 1);\n one[id[i]]++;\n }\n }\n\n \n int ans = 0;\n for (int i = 0 ; i < size ; i++) {\n ans += min(zero[i], one[i]);\n }\n\n int f = din.flow(N, N + 1);\n\n cout << f << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 5136, "score_of_the_acc": -0.448, "final_rank": 4 }, { "submission_id": "aoj_3168_7975488", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef unsigned uint;\ntypedef long long ll;\ntypedef long long lint;\ntypedef unsigned long long ull;\ntypedef pair<int, int> pii;\ntypedef pair<ll, ll> pll;\n\ntypedef char chr;\ntypedef string str;\n\n#define REP(i, n) for (int i=0;i<(int)n;i++)\n#define ALL(x) x.begin() x.begin()\n#define SEP \" \"\n#define YES cout << \"Yes\" << endl\n#define NO cout << \"NO\" << endl\n#define OUT(x) cout << x << endl\n#define OUTF(x) cout << fixed << setprecision(10) << x << endl\n#define SIZE(v) v.size()\n#define PB push_back\n#define MP make_pair\n#define MT make_typle\n\nconst double pi = 3.141592653589793238;\n\nconst int large_a = 65;\nconst int small_a = 97;\n\nconst int INF = 2147483647;\nconst int INT_INF = 2147483647;\n\nconst int dy[4] = {-1, 0, 1, 0};\nconst int dx[4] = {0, 1, 0, -1};\n\ntemplate<class T> inline void print_vec(const vector<T>& v) {\n\tint last = SIZE(v);\n\tREP(i, last) {\n\t\tcout << v[i];\n\t\tif(i != last-1) cout << SEP;\n\t}\n\tcout << endl;\n}\n\nint main() {\n\tint n,m,k;\n\tcin>>n>>m>>k;\n\tvector<char> chara(n+1);\n\tfor(int i=1;i<=n;i++){\n\t\tcin>>chara[i];\n\t}\n\tvector<vector<int>> g(n+1);\n\tfor(int i=0;i<m;i++){\n\t\tint u,v;\n\t\tcin>>u>>v;\n\t\tg[u].push_back(v);\n\t\tg[v].push_back(u);\n\t}\n\tvector<set<int>> v(n+1);\n\t\n\tfor(int j=1;j<=n;j++){\n\t\tqueue<int> que;\n\t\tvector<int> dist(n+1,-1);\n\t\tque.push(j);\n\t\tchar nowc=chara[j];\n\t\tdist[j]=0;\n\t\twhile(!que.empty()){\n\t\t\tint pos=que.front();\n\t\t\tque.pop();\n\t\t\tfor(int i=0;i<g[pos].size();i++){\n\t\t\t\tint to=g[pos][i];\n\t\t\t\tif(dist[to]==-1){\n\t\t\t\t\tdist[to]=dist[pos]+1;\n\t\t\t\t\tchar nextc=chara[to];\n\t\t\t\t\tif(dist[to]<=k){\n\t\t\t\t\t\tif(nowc=='a'){\n\t\t\t\t\t\t\tif(nextc=='z' or nextc=='b'){\n\t\t\t\t\t\t\t\tv[j].insert(to);\n\t\t\t\t\t\t\t\tv[to].insert(j);\n\t\t\t\t\t\t\t}\n\n\t\t\t\t\t\t}else if(nowc=='z'){\n\t\t\t\t\t\t\tif(nextc=='a' or nextc=='y'){\n\t\t\t\t\t\t\t\tv[j].insert(to);\n\t\t\t\t\t\t\t\tv[to].insert(j);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}else if(abs(nextc-nowc)==1){\n\t\t\t\t\t\t\t\tv[j].insert(to);\n\t\t\t\t\t\t\t\tv[to].insert(j);\n\t\t\t\t\t\t}\n\t\t\t\t\t\tque.push(to);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tset<int> exist;\n\tfor(int i=1;i<=n;i++){\n\t\tif(v[i].size()>0){\n\t\t\texist.insert(i);\n\t\t}\n\t}\n\n\n\n\n\tint ans=0;\n\twhile(!exist.empty()){\n\n\n\n\t\tint ma=0;\n\t\tint ind=-1;\n\t\tfor(int i=1;i<=n;i++){\n\t\t\tif(v[i].size()>ma){\n\t\t\t\tind=i;\n\t\t\t\tma=v[i].size();\n\t\t\t}\n\t\t}\n\t\texist.erase(ind);\n\t\tfor(int i=0;i<ma;i++){\n\t\t\tfor(int j:v[ind]){\n\t\t\t\tv[j].erase(ind);\n\t\t\t\tif(v[j].empty()){\n\t\t\t\t\texist.erase(j);\t\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tv[ind].clear();\n\t\tans++;\n\t}\n\tOUT(ans);\n}", "accuracy": 0.14545454545454545, "time_ms": 20, "memory_kb": 4240, "score_of_the_acc": -0.2129, "final_rank": 19 }, { "submission_id": "aoj_3168_7975477", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,n) for(int i=0; i<(n); i++)\n\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod = 998244353;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,1,0};\n\nvector<vector<ll>> g(310,vector<ll>(310,310)); \nvector<int> c(310);\nvoid make_ebi(int n){\n for(int k =0; k<n; k++){\n for(int i = 0; i <n; i++){\n for(int j = 0; j<n; j++) g[i][j] = min(g[i][j],g[i][k]+g[k][j]);\n }\n }\n rep(i,n){\n rep(j,n){\n if((int)c[i] != ((int)c[j]+1)%26 && (int)c[i] != ((int)c[j]+25)%26){\n g[i][j] = 310;\n // cout<<\"***\"<<endl;\n }\n }\n }\n\n\n\n\n}\n\n// [lower, upper]\nint random(int lower, int upper) {\n return (rand() % (upper + 1)) + lower;\n}\n\nvector<int> make_random_permutation(int n) {\n vector<int> a(n);\n iota(a.begin(), a.end(), 0);\n\n random_device seed_gen;\n mt19937 engine(seed_gen());\n shuffle(a.begin(), a.end(), engine);\n\n return a;\n}\n\n\nint put_trap(int n,int k,vector<vector<ll>> g){\n int ans = 0;\n bool c = true;\n vector<int> x = make_random_permutation(n);\n while(c){\n c = false;\n int mg = 0;\n int a = -1;\n \n rep(i,n){\n //cout<<\"!!\"<<endl;\n int eg = 0;\n rep(j,n){\n if(g[x[i]][j] <= k) eg++;\n }\n if(eg > mg){\n // cout<<\"??\"<<endl;\n c = true;\n a = x[i];\n mg = eg;\n }\n }\n if(c == false) return ans;\n\n rep(i,n){\n g[a][i] = 310;\n g[i][a] = 310;\n }\n ans++;\n }\n\n return ans;\n}\n\n\nint main(){\n int n,m,k;\n cin>>n>>m>>k;\n rep(i,n){\n char p;\n cin>>p;\n c[i] = int(p-'a');\n }\n\n rep(i,m){\n int u,v; cin>>u>>v;\n u--;v--;\n g[u][v] = 1;\n g[v][u] = 1;\n }\n make_ebi(n);\n int ans = 310;\n rep(i,100){\n ans = min(ans,put_trap(n,k,g));\n }\n\n cout<<ans<<endl;\n}", "accuracy": 0.18181818181818182, "time_ms": 970, "memory_kb": 4672, "score_of_the_acc": -1.3158, "final_rank": 15 }, { "submission_id": "aoj_3168_7975147", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,n) for(int i=0; i<(n); i++)\n\nusing namespace std;\nusing ll = long long;\nusing P = pair<int,int>;\nconst int mod = 998244353;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,1,0};\n\nvector<vector<ll>> g(310,vector<ll>(310,310)); \nvector<int> c(310);\nvoid make_ebi(int n){\n for(int k =0; k<n; k++){\n for(int i = 0; i <n; i++){\n for(int j = 0; j<n; j++) g[i][j] = min(g[i][j],g[i][k]+g[k][j]);\n }\n }\n rep(i,n){\n rep(j,n){\n if((int)c[i] != ((int)c[j]+1)%26 && (int)c[i] != ((int)c[j]+25)%26){\n g[i][j] = 310;\n // cout<<\"***\"<<endl;\n }\n }\n }\n\n\n\n\n}\n\n\nint put_trap(int n,int k){\n int ans = 0;\n bool c = true;\n while(c){\n c = false;\n int mg = 0;\n int a = -1;\n\n rep(i,n){\n //cout<<\"!!\"<<endl;\n int eg = 0;\n rep(j,n){\n if(g[i][j] <= k) eg++;\n }\n if(eg > mg){\n // cout<<\"??\"<<endl;\n c = true;\n a = i;\n mg = eg;\n }\n }\n if(c == false) return ans;\n\n rep(i,n){\n g[a][i] = 310;\n g[i][a] = 310;\n }\n ans++;\n }\n\n return ans;\n}\n\n\n\n\n\n\n\nint main(){\n int n,m,k;\n cin>>n>>m>>k;\n rep(i,n){\n char p;\n cin>>p;\n c[i] = int(p-'a');\n }\n\n rep(i,m){\n int u,v; cin>>u>>v;\n u--;v--;\n g[u][v] = 1;\n g[v][u] = 1;\n }\n make_ebi(n);\n cout<<put_trap(n,k)<<endl;\n\n\n\n\n}", "accuracy": 0.14545454545454545, "time_ms": 20, "memory_kb": 4244, "score_of_the_acc": -0.214, "final_rank": 20 }, { "submission_id": "aoj_3168_7975074", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nint main() {\n int N, M, K; cin >> N >> M >> K;\n vector<int> C(N);\n for (auto& c : C) {\n char op; cin >> op;\n c = (int)op;\n }\n for (auto& c : C) c %= 26;\n\n const int INF = (int)1e9;\n vector G(N, vector(N, INF));\n for (int i = 0 ; i < N ; i++) G[i][i] = 0;\n\n for (int _ = 0 ; _ < M ; _++) {\n int u, v; cin >> u >> v;\n u--; v--;\n G[u][v] = G[v][u] = 1;\n }\n\n for (int k = 0 ; k < N ; k++) {\n for (int i = 0 ; i < N ; i++) {\n for (int j = 0 ; j < N ; j++) {\n G[i][j] = min(G[i][j], G[i][k] + G[k][j]);\n }\n }\n }\n\n vector<vector<int>> Ebi(N);\n for (int i = 0 ; i < N ; i++) {\n for (int j = i + 1 ; j < N ; j++) {\n if (G[i][j] > K) continue;\n // cout << C[i] << ' ' << C[j] << ' ' << (C[i] - C[j] + 26) % 26 << endl;\n int score = (C[i] - C[j] + 26) % 26;\n if (score == 1 or score == 25) {\n Ebi[i].push_back(j);\n Ebi[j].push_back(i);\n }\n }\n }\n\n\n vector<int> id(N, -1);\n int size = 0;\n \n auto dfsid = [&](auto dfsid, int v) -> void {\n id[v] = size;\n for (auto x : Ebi[v]) if (id[x] == -1) {\n dfsid(dfsid, x);\n }\n };\n\n for (int i = 0 ; i < N ; i++) {\n if (id[i] == -1) {\n dfsid(dfsid, i);\n size++;\n }\n }\n\n vector<int> col(N, -1); \n\n auto dfscol = [&](auto dfscol, int v, int c) -> void {\n col[v] = c;\n for (auto x : Ebi[v]) {\n if (col[x] != -1) {\n assert(col[x] == 1 - c);\n }\n else {\n dfscol(dfscol, x, 1 - c);\n }\n }\n };\n\n for (int i = 0 ; i < N ; i++) {\n if (col[i] == -1) {\n dfscol(dfscol, i, 0);\n }\n }\n\n vector<int> zero(size), one(size);\n for (int i = 0 ; i < N ; i++) {\n if (col[i] == 0) {\n zero[id[i]]++;\n }\n else {\n one[id[i]]++;\n }\n }\n \n int ans = 0;\n for (int i = 0 ; i < size ; i++) {\n ans += min(zero[i], one[i]);\n }\n\n cout << ans << endl;\n}", "accuracy": 0.14545454545454545, "time_ms": 20, "memory_kb": 3576, "score_of_the_acc": -0.0387, "final_rank": 17 }, { "submission_id": "aoj_3168_7010638", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3168.cc: Capture Ebichan\n */\n\n#include<cstdio>\n#include<vector>\n#include<queue>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 300;\n\n/* typedef */\n\ntypedef queue<int> qi;\ntypedef vector<int> vi;\ntypedef vector<bool> vb;\n\n/* global variables */\n\nint cs[MAX_N], ds[MAX_N], gids[MAX_N];\nvi nbrs[MAX_N], gnbrs[MAX_N], enbrs[MAX_N];\nbool used[MAX_N];\n\n/* subroutines */\n\nvoid bfs(int n, int k, int st) {\n int c1 = (cs[st] + 25) % 26, c2 = (cs[st] + 1) % 26;\n fill(ds, ds + n, -1);\n ds[st] = 0;\n\n qi q;\n q.push(st);\n\n while (! q.empty()) {\n int u = q.front(); q.pop();\n if (ds[u] >= k) continue;\n\n for (auto v: nbrs[u])\n if (ds[v] < 0) {\n\tds[v] = ds[u] + 1;\n\tq.push(v);\n\n\tif (ds[v] <= k && (cs[v] == c1 || cs[v] == c2))\n\t gnbrs[gids[st]].push_back(gids[v]);\n }\n }\n}\n\nbool max_match_rec(const vi *nbrs, int u, vi &matches, vb &visited) {\n if (u < 0) return true;\n for (const int v: nbrs[u]) {\n if (! visited[v]) {\n visited[v] = true;\n if (max_match_rec(nbrs, matches[v], matches, visited)) {\n\tmatches[u] = v;\n\tmatches[v] = u;\n\treturn true;\n }\n }\n }\n return false;\n}\n\nint max_match(const int n, int l, const vi *nbrs, vi &matches) {\n matches.assign(n, -1);\n int count = 0;\n \n for (int u = 0; u < l; u++) {\n vb visited(n, false);\n if (max_match_rec(nbrs, u, matches, visited)) count++;\n }\n\n return count;\n}\n\n/* main */\n\nint main() {\n int n, m, k;\n scanf(\"%d%d%d\", &n, &m, &k);\n\n for (int i = 0; i < n; i++) {\n char w[4];\n scanf(\"%s\", w);\n cs[i] = w[0] - 'a';\n }\n\n for (int i = 0; i < m; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n u--, v--;\n nbrs[u].push_back(v);\n nbrs[v].push_back(u);\n }\n\n int l = 0;\n for (int u = 0; u < n; u++)\n if (! (cs[u] & 1)) l++;\n\n for (int u = 0, i = 0, j = 0; u < n; u++) {\n if (! (cs[u] & 1)) gids[u] = i++;\n else gids[u] = l + j++;\n }\n //for (int u = 0; u < n; u++) printf(\"%d \", gids[u]); putchar('\\n');\n\n for (int u = 0; u < n; u++) bfs(n, k, u);\n\n vi matches;\n int mm = max_match(n, l, gnbrs, matches);\n //printf(\"mm=%d\\n\", mm);\n //for (int i = 0; i < l; i++) printf(\"%d->%d \", i, matches[i]);\n //putchar('\\n');\n\n qi q;\n for (int u = 0; u < l; u++) {\n for (auto v: gnbrs[u]) {\n if (matches[u] == v) enbrs[v].push_back(u);\n else enbrs[u].push_back(v);\n }\n if (matches[u] < 0)\n used[u] = true, q.push(u);\n }\n\n while (! q.empty()) {\n int u = q.front(); q.pop();\n for (auto v: nbrs[u])\n if (! used[v])\n\tused[v] = true, q.push(v);\n }\n\n int cnt = 0;\n for (int u = 0; u < l; u++)\n if (! gnbrs[u].empty() && ! used[u]) cnt++;\n for (int u = l; u < n; u++)\n if (! gnbrs[u].empty() && used[u]) cnt++;\n\n printf(\"%d\\n\", cnt);\n return 0;\n}", "accuracy": 0.14545454545454545, "time_ms": 10, "memory_kb": 3468, "score_of_the_acc": 0, "final_rank": 16 }, { "submission_id": "aoj_3168_7010376", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3168.cc: Capture Ebichan\n */\n\n#include<cstdio>\n#include<vector>\n#include<queue>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 300;\n\n/* typedef */\n\ntypedef queue<int> qi;\ntypedef vector<int> vi;\ntypedef vector<bool> vb;\n\n/* global variables */\n\nint cs[MAX_N], ds[MAX_N], gids[MAX_N];\nvi nbrs[MAX_N], gnbrs[MAX_N], enbrs[MAX_N];\nbool used[MAX_N];\n\n/* subroutines */\n\nvoid bfs(int n, int k, int st) {\n int c1 = (cs[st] + 25) % 26, c2 = (cs[st] + 1) % 26;\n fill(ds, ds + n, -1);\n ds[st] = 0;\n\n qi q;\n q.push(st);\n\n while (! q.empty()) {\n int u = q.front(); q.pop();\n if (ds[u] >= k) continue;\n\n for (auto v: nbrs[u])\n if (ds[v] < 0) {\n\tds[v] = ds[u] + 1;\n\tq.push(v);\n\n\tif (ds[v] <= k && (cs[v] == c1 || cs[v] == c2)) {\n\t gnbrs[gids[st]].push_back(gids[v]);\n\t gnbrs[gids[v]].push_back(gids[st]);\n\t}\n }\n }\n}\n\nbool max_match_rec(const vi *nbrs, int u, vi &matches, vb &visited) {\n if (u < 0) return true;\n for (const int v: nbrs[u]) {\n if (! visited[v]) {\n visited[v] = true;\n if (max_match_rec(nbrs, matches[v], matches, visited)) {\n\tmatches[u] = v;\n\tmatches[v] = u;\n\treturn true;\n }\n }\n }\n return false;\n}\n\nint max_match(const int n, int l, const vi *nbrs, vi &matches) {\n matches.assign(n, -1);\n int count = 0;\n \n for (int u = 0; u < l; u++) {\n vb visited(n, false);\n if (max_match_rec(nbrs, u, matches, visited)) count++;\n }\n\n return count;\n}\n\n/* main */\n\nint main() {\n int n, m, k;\n scanf(\"%d%d%d\", &n, &m, &k);\n\n for (int i = 0; i < n; i++) {\n char w[4];\n scanf(\"%s\", w);\n cs[i] = w[0] - 'a';\n }\n\n for (int i = 0; i < m; i++) {\n int u, v;\n scanf(\"%d%d\", &u, &v);\n u--, v--;\n nbrs[u].push_back(v);\n nbrs[v].push_back(u);\n }\n\n int l = 0;\n for (int u = 0; u < n; u++)\n if (! (cs[u] & 1)) l++;\n\n for (int u = 0, i = 0, j = 0; u < n; u++) {\n if (! (cs[u] & 1)) gids[u] = i++;\n else gids[u] = l + j++;\n }\n //for (int u = 0; u < n; u++) printf(\"%d \", gids[u]); putchar('\\n');\n\n for (int u = 0; u < n; u++) bfs(n, k, u);\n\n vi matches;\n int mm = max_match(n, l, gnbrs, matches);\n //printf(\"mm=%d\\n\", mm);\n //for (int i = 0; i < l; i++) printf(\"%d->%d \", i, matches[i]);\n //putchar('\\n');\n\n qi q;\n for (int u = 0; u < l; u++) {\n for (auto v: gnbrs[u]) {\n if (matches[u] == v) enbrs[v].push_back(u);\n else enbrs[u].push_back(v);\n }\n if (matches[u] < 0)\n used[u] = true, q.push(u);\n }\n\n while (! q.empty()) {\n int u = q.front(); q.pop();\n for (auto v: nbrs[u])\n if (! used[v])\n\tused[v] = true, q.push(v);\n }\n\n int cnt = 0;\n for (int u = 0; u < l; u++)\n if (! gnbrs[u].empty() && ! used[u]) cnt++;\n for (int u = l; u < n; u++)\n if (! gnbrs[u].empty() && used[u]) cnt++;\n\n printf(\"%d\\n\", cnt);\n return 0;\n}", "accuracy": 0.14545454545454545, "time_ms": 10, "memory_kb": 3628, "score_of_the_acc": -0.042, "final_rank": 18 }, { "submission_id": "aoj_3168_6928630", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=9167167167167167167;\nconst int INF=100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\nnamespace atcoder {\n \nnamespace internal {\n \ntemplate <class T> struct simple_queue {\n std::vector<T> payload;\n int pos = 0;\n void reserve(int n) { payload.reserve(n); }\n int size() const { return int(payload.size()) - pos; }\n bool empty() const { return pos == int(payload.size()); }\n void push(const T& t) { payload.push_back(t); }\n T& front() { return payload[pos]; }\n void clear() {\n payload.clear();\n pos = 0;\n }\n void pop() { pos++; }\n};\n \n} // namespace internal\n \n} // namespace atcoder\nnamespace atcoder {\n \ntemplate <class Cap> struct mf_graph {\n public:\n mf_graph() : _n(0) {}\n mf_graph(int n) : _n(n), g(n) {}\n \n int add_edge(int from, int to, Cap cap) {\n assert(0 <= from && from < _n);\n assert(0 <= to && to < _n);\n assert(0 <= cap);\n int m = int(pos.size());\n pos.push_back({from, int(g[from].size())});\n g[from].push_back(_edge{to, int(g[to].size()), cap});\n g[to].push_back(_edge{from, int(g[from].size()) - 1, 0});\n return m;\n }\n \n struct edge {\n int from, to;\n Cap cap, flow;\n };\n \n edge get_edge(int i) {\n int m = int(pos.size());\n assert(0 <= i && i < m);\n auto _e = g[pos[i].first][pos[i].second];\n auto _re = g[_e.to][_e.rev];\n return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};\n }\n std::vector<edge> edges() {\n int m = int(pos.size());\n std::vector<edge> result;\n for (int i = 0; i < m; i++) {\n result.push_back(get_edge(i));\n }\n return result;\n }\n void change_edge(int i, Cap new_cap, Cap new_flow) {\n int m = int(pos.size());\n assert(0 <= i && i < m);\n assert(0 <= new_flow && new_flow <= new_cap);\n auto& _e = g[pos[i].first][pos[i].second];\n auto& _re = g[_e.to][_e.rev];\n _e.cap = new_cap - new_flow;\n _re.cap = new_flow;\n }\n \n Cap flow(int s, int t) {\n return flow(s, t, std::numeric_limits<Cap>::max());\n }\n Cap flow(int s, int t, Cap flow_limit) {\n assert(0 <= s && s < _n);\n assert(0 <= t && t < _n);\n \n std::vector<int> level(_n), iter(_n);\n internal::simple_queue<int> que;\n \n auto bfs = [&]() {\n std::fill(level.begin(), level.end(), -1);\n level[s] = 0;\n que.clear();\n que.push(s);\n while (!que.empty()) {\n int v = que.front();\n que.pop();\n for (auto e : g[v]) {\n if (e.cap == 0 || level[e.to] >= 0) continue;\n level[e.to] = level[v] + 1;\n if (e.to == t) return;\n que.push(e.to);\n }\n }\n };\n auto dfs = [&](auto self, int v, Cap up) {\n if (v == s) return up;\n Cap res = 0;\n int level_v = level[v];\n for (int& i = iter[v]; i < int(g[v].size()); i++) {\n _edge& e = g[v][i];\n if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;\n Cap d =\n self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));\n if (d <= 0) continue;\n g[v][i].cap += d;\n g[e.to][e.rev].cap -= d;\n res += d;\n if (res == up) break;\n }\n return res;\n };\n \n Cap flow = 0;\n while (flow < flow_limit) {\n bfs();\n if (level[t] == -1) break;\n std::fill(iter.begin(), iter.end(), 0);\n while (flow < flow_limit) {\n Cap f = dfs(dfs, t, flow_limit - flow);\n if (!f) break;\n flow += f;\n }\n }\n return flow;\n }\n \n std::vector<bool> min_cut(int s) {\n std::vector<bool> visited(_n);\n internal::simple_queue<int> que;\n que.push(s);\n while (!que.empty()) {\n int p = que.front();\n que.pop();\n visited[p] = true;\n for (auto e : g[p]) {\n if (e.cap && !visited[e.to]) {\n visited[e.to] = true;\n que.push(e.to);\n }\n }\n }\n return visited;\n }\n \n private:\n int _n;\n struct _edge {\n int to, rev;\n Cap cap;\n };\n std::vector<std::pair<int, int>> pos;\n std::vector<std::vector<_edge>> g;\n};\n \n} // namespace atcoder\nusing namespace atcoder;\n\nvoid Warshall_Floyd(std::vector<std::vector<int>> &G){\n\tint N=G.size();\n\tassert(N==(int)G[0].size());\n\tfor(int k=0;k<N;k++){\n\t\tfor(int i=0;i<N;i++){\n\t\t\tfor(int j=0;j<N;j++){\n\t\t\t\tif(G[i][j]>G[i][k]+G[k][j]){\n\t\t\t\t\tG[i][j]=G[i][k]+G[k][j];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N,M,K;\n\tcin>>N>>M>>K;\n\tvector<char> p(N);\n\trep(i,N) cin>>p[i];\n\tvector<vector<int>> G(N,vector<int>(N,INF));\n\trep(i,N) G[i][i]=0;\n\trep(i,M){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\ta--,b--;\n\t\tG[a][b]=1;\n\t\tG[b][a]=1;\n\t}\n\tWarshall_Floyd(G);\n\tmf_graph<int> mfg(N+2);\n\trep(i,N){\n\t\tif((p[i]-'a')%2){\n\t\t\tmfg.add_edge(i,N+1,1);\n\t\t\tcontinue;\n\t\t}\n\t\tmfg.add_edge(N,i,1);\n\t\trep(j,N){\n\t\t\tif(G[i][j]<=K&&(abs(13-abs(p[i]-p[j]))==12)){\n\t\t\t\tmfg.add_edge(i,j,1);\n\t\t\t}\n\t\t}\n\t}\n\tint ans=mfg.flow(N,N+1);\n\tcout<<ans<<\"\\n\";\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4596, "score_of_the_acc": -0.3063, "final_rank": 2 }, { "submission_id": "aoj_3168_6928623", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=9167167167167167167;\nconst int INF=2100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\nnamespace atcoder {\n \nnamespace internal {\n \ntemplate <class T> struct simple_queue {\n std::vector<T> payload;\n int pos = 0;\n void reserve(int n) { payload.reserve(n); }\n int size() const { return int(payload.size()) - pos; }\n bool empty() const { return pos == int(payload.size()); }\n void push(const T& t) { payload.push_back(t); }\n T& front() { return payload[pos]; }\n void clear() {\n payload.clear();\n pos = 0;\n }\n void pop() { pos++; }\n};\n \n} // namespace internal\n \n} // namespace atcoder\nnamespace atcoder {\n \ntemplate <class Cap> struct mf_graph {\n public:\n mf_graph() : _n(0) {}\n mf_graph(int n) : _n(n), g(n) {}\n \n int add_edge(int from, int to, Cap cap) {\n assert(0 <= from && from < _n);\n assert(0 <= to && to < _n);\n assert(0 <= cap);\n int m = int(pos.size());\n pos.push_back({from, int(g[from].size())});\n g[from].push_back(_edge{to, int(g[to].size()), cap});\n g[to].push_back(_edge{from, int(g[from].size()) - 1, 0});\n return m;\n }\n \n struct edge {\n int from, to;\n Cap cap, flow;\n };\n \n edge get_edge(int i) {\n int m = int(pos.size());\n assert(0 <= i && i < m);\n auto _e = g[pos[i].first][pos[i].second];\n auto _re = g[_e.to][_e.rev];\n return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};\n }\n std::vector<edge> edges() {\n int m = int(pos.size());\n std::vector<edge> result;\n for (int i = 0; i < m; i++) {\n result.push_back(get_edge(i));\n }\n return result;\n }\n void change_edge(int i, Cap new_cap, Cap new_flow) {\n int m = int(pos.size());\n assert(0 <= i && i < m);\n assert(0 <= new_flow && new_flow <= new_cap);\n auto& _e = g[pos[i].first][pos[i].second];\n auto& _re = g[_e.to][_e.rev];\n _e.cap = new_cap - new_flow;\n _re.cap = new_flow;\n }\n \n Cap flow(int s, int t) {\n return flow(s, t, std::numeric_limits<Cap>::max());\n }\n Cap flow(int s, int t, Cap flow_limit) {\n assert(0 <= s && s < _n);\n assert(0 <= t && t < _n);\n \n std::vector<int> level(_n), iter(_n);\n internal::simple_queue<int> que;\n \n auto bfs = [&]() {\n std::fill(level.begin(), level.end(), -1);\n level[s] = 0;\n que.clear();\n que.push(s);\n while (!que.empty()) {\n int v = que.front();\n que.pop();\n for (auto e : g[v]) {\n if (e.cap == 0 || level[e.to] >= 0) continue;\n level[e.to] = level[v] + 1;\n if (e.to == t) return;\n que.push(e.to);\n }\n }\n };\n auto dfs = [&](auto self, int v, Cap up) {\n if (v == s) return up;\n Cap res = 0;\n int level_v = level[v];\n for (int& i = iter[v]; i < int(g[v].size()); i++) {\n _edge& e = g[v][i];\n if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;\n Cap d =\n self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));\n if (d <= 0) continue;\n g[v][i].cap += d;\n g[e.to][e.rev].cap -= d;\n res += d;\n if (res == up) break;\n }\n return res;\n };\n \n Cap flow = 0;\n while (flow < flow_limit) {\n bfs();\n if (level[t] == -1) break;\n std::fill(iter.begin(), iter.end(), 0);\n while (flow < flow_limit) {\n Cap f = dfs(dfs, t, flow_limit - flow);\n if (!f) break;\n flow += f;\n }\n }\n return flow;\n }\n \n std::vector<bool> min_cut(int s) {\n std::vector<bool> visited(_n);\n internal::simple_queue<int> que;\n que.push(s);\n while (!que.empty()) {\n int p = que.front();\n que.pop();\n visited[p] = true;\n for (auto e : g[p]) {\n if (e.cap && !visited[e.to]) {\n visited[e.to] = true;\n que.push(e.to);\n }\n }\n }\n return visited;\n }\n \n private:\n int _n;\n struct _edge {\n int to, rev;\n Cap cap;\n };\n std::vector<std::pair<int, int>> pos;\n std::vector<std::vector<_edge>> g;\n};\n \n} // namespace atcoder\nusing namespace atcoder;\n\nvoid Warshall_Floyd(std::vector<std::vector<int>> &G){\n\tint N=G.size();\n\tassert(N==(int)G[0].size());\n\tfor(int k=0;k<N;k++){\n\t\tfor(int i=0;i<N;i++){\n\t\t\tfor(int j=0;j<N;j++){\n\t\t\t\tif(G[i][j]>G[i][k]+G[k][j]){\n\t\t\t\t\tG[i][j]=G[i][k]+G[k][j];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N,M,K;\n\tcin>>N>>M>>K;\n\tvector<char> p(N);\n\trep(i,N) cin>>p[i];\n\tvector<vector<int>> G(N,vector<int>(N,INF));\n\trep(i,N) G[i][i]=0;\n\trep(i,M){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\ta--,b--;\n\t\tG[a][b]=1;\n\t\tG[b][a]=1;\n\t}\n\tWarshall_Floyd(G);\n\tmf_graph<int> mfg(N+2);\n\trep(i,N){\n\t\tif((p[i]-'a')%2){\n\t\t\tmfg.add_edge(i,N+1,1);\n\t\t\tcontinue;\n\t\t}\n\t\tmfg.add_edge(N,i,1);\n\t\trep(j,N){\n\t\t\tif(G[i][j]<=K&&(abs(13-abs(p[i]-p[j]))==12)){\n\t\t\t\tmfg.add_edge(i,j,1);\n\t\t\t}\n\t\t}\n\t}\n\tint ans=mfg.flow(N,N+1);\n\tcout<<ans<<\"\\n\";\n}", "accuracy": 0.6909090909090909, "time_ms": 20, "memory_kb": 4624, "score_of_the_acc": -0.3137, "final_rank": 13 }, { "submission_id": "aoj_3168_6928618", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=9167167167167167167;\nconst int INF=2100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (ll i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\nnamespace atcoder {\n \nnamespace internal {\n \ntemplate <class T> struct simple_queue {\n std::vector<T> payload;\n int pos = 0;\n void reserve(int n) { payload.reserve(n); }\n int size() const { return int(payload.size()) - pos; }\n bool empty() const { return pos == int(payload.size()); }\n void push(const T& t) { payload.push_back(t); }\n T& front() { return payload[pos]; }\n void clear() {\n payload.clear();\n pos = 0;\n }\n void pop() { pos++; }\n};\n \n} // namespace internal\n \n} // namespace atcoder\nnamespace atcoder {\n \ntemplate <class Cap> struct mf_graph {\n public:\n mf_graph() : _n(0) {}\n mf_graph(int n) : _n(n), g(n) {}\n \n int add_edge(int from, int to, Cap cap) {\n assert(0 <= from && from < _n);\n assert(0 <= to && to < _n);\n assert(0 <= cap);\n int m = int(pos.size());\n pos.push_back({from, int(g[from].size())});\n g[from].push_back(_edge{to, int(g[to].size()), cap});\n g[to].push_back(_edge{from, int(g[from].size()) - 1, 0});\n return m;\n }\n \n struct edge {\n int from, to;\n Cap cap, flow;\n };\n \n edge get_edge(int i) {\n int m = int(pos.size());\n assert(0 <= i && i < m);\n auto _e = g[pos[i].first][pos[i].second];\n auto _re = g[_e.to][_e.rev];\n return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};\n }\n std::vector<edge> edges() {\n int m = int(pos.size());\n std::vector<edge> result;\n for (int i = 0; i < m; i++) {\n result.push_back(get_edge(i));\n }\n return result;\n }\n void change_edge(int i, Cap new_cap, Cap new_flow) {\n int m = int(pos.size());\n assert(0 <= i && i < m);\n assert(0 <= new_flow && new_flow <= new_cap);\n auto& _e = g[pos[i].first][pos[i].second];\n auto& _re = g[_e.to][_e.rev];\n _e.cap = new_cap - new_flow;\n _re.cap = new_flow;\n }\n \n Cap flow(int s, int t) {\n return flow(s, t, std::numeric_limits<Cap>::max());\n }\n Cap flow(int s, int t, Cap flow_limit) {\n assert(0 <= s && s < _n);\n assert(0 <= t && t < _n);\n \n std::vector<int> level(_n), iter(_n);\n internal::simple_queue<int> que;\n \n auto bfs = [&]() {\n std::fill(level.begin(), level.end(), -1);\n level[s] = 0;\n que.clear();\n que.push(s);\n while (!que.empty()) {\n int v = que.front();\n que.pop();\n for (auto e : g[v]) {\n if (e.cap == 0 || level[e.to] >= 0) continue;\n level[e.to] = level[v] + 1;\n if (e.to == t) return;\n que.push(e.to);\n }\n }\n };\n auto dfs = [&](auto self, int v, Cap up) {\n if (v == s) return up;\n Cap res = 0;\n int level_v = level[v];\n for (int& i = iter[v]; i < int(g[v].size()); i++) {\n _edge& e = g[v][i];\n if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;\n Cap d =\n self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));\n if (d <= 0) continue;\n g[v][i].cap += d;\n g[e.to][e.rev].cap -= d;\n res += d;\n if (res == up) break;\n }\n return res;\n };\n \n Cap flow = 0;\n while (flow < flow_limit) {\n bfs();\n if (level[t] == -1) break;\n std::fill(iter.begin(), iter.end(), 0);\n while (flow < flow_limit) {\n Cap f = dfs(dfs, t, flow_limit - flow);\n if (!f) break;\n flow += f;\n }\n }\n return flow;\n }\n \n std::vector<bool> min_cut(int s) {\n std::vector<bool> visited(_n);\n internal::simple_queue<int> que;\n que.push(s);\n while (!que.empty()) {\n int p = que.front();\n que.pop();\n visited[p] = true;\n for (auto e : g[p]) {\n if (e.cap && !visited[e.to]) {\n visited[e.to] = true;\n que.push(e.to);\n }\n }\n }\n return visited;\n }\n \n private:\n int _n;\n struct _edge {\n int to, rev;\n Cap cap;\n };\n std::vector<std::pair<int, int>> pos;\n std::vector<std::vector<_edge>> g;\n};\n \n} // namespace atcoder\nusing namespace atcoder;\n\nvoid Warshall_Floyd(std::vector<std::vector<int>> &G){\n\tint N=G.size();\n\tassert(N==(int)G[0].size());\n\tfor(int k=0;k<N;k++){\n\t\tfor(int i=0;i<N;i++){\n\t\t\tfor(int j=0;j<N;j++){\n\t\t\t\tif(G[i][j]>G[i][k]+G[k][j]){\n\t\t\t\t\tG[i][j]=G[i][k]+G[k][j];\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n}\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N,M,K;\n\tcin>>N>>M>>K;\n\tvector<char> p(N);\n\trep(i,N) cin>>p[i];\n\tvector<vector<int>> G(N,vector<int>(N,INF));\n\trep(i,N) G[i][i]=0;\n\trep(i,M){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\ta--,b--;\n\t\tG[a][b]=1;\n\t\tG[b][a]=0;\n\t}\n\tWarshall_Floyd(G);\n\tmf_graph<int> mfg(N+2);\n\trep(i,N){\n\t\tif((p[i]-'a')%2){\n\t\t\tmfg.add_edge(i,N+1,1);\n\t\t\tcontinue;\n\t\t}\n\t\tmfg.add_edge(N,i,1);\n\t\trep(j,N){\n\t\t\tif(G[i][j]<=K&&(abs(13-abs(p[i]-p[j]))==12)){\n\t\t\t\tmfg.add_edge(i,j,1);\n\t\t\t}\n\t\t}\n\t}\n\tint ans=mfg.flow(N,N+1);\n\tcout<<ans<<\"\\n\";\n}", "accuracy": 0.6909090909090909, "time_ms": 20, "memory_kb": 4600, "score_of_the_acc": -0.3074, "final_rank": 12 }, { "submission_id": "aoj_3168_5067410", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Printer {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid print(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(bool v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(vector<bool>::reference v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid print(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid print(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid print(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void print(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void print(const pair<T, U>& v) const {\n\t\tprint(v.first);\n\t\tprint(D.d);\n\t\tprint(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid print_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) print(D.d);\n\t\t\tprint(*i);\n\t\t}\n\t}\n\ttemplate <class T> void print(const vector<T>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void print(const array<T, N>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void print(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) print(D.l);\n\t\t\tprint(v[i]);\n\t\t}\n\t}\n\n\tPrinter() = default;\n\tPrinter(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tPrinter& operator()() {\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Printer& operator()(H&& h) {\n\t\tprint(h);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Printer& operator()(H&& h, T&&... t) {\n\t\tprint(h);\n\t\tprint(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tPrinter& range(const InputIterator& begin, const InputIterator& end) {\n\t\tprint_range(begin, end);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Printer& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tPrinter& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tPrinter& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tPrinter& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tPrinter& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T> constexpr int BIT(T x, int i) {\n\treturn (x & (1 << i)) ? 1 : 0;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 4 \"/home/yuruhiya/programming/library/Graph/ShortestPath.cpp\"\n#include <optional>\n#line 6 \"/home/yuruhiya/programming/library/Graph/ShortestPath.cpp\"\nusing namespace std;\n\nvector<int> ShortestPath(const vector<vector<int>>& graph, int s,\n int inf = numeric_limits<int>::max()) {\n\tint V = graph.size();\n\tvector<int> dist(V, inf);\n\tdist[s] = 0;\n\tqueue<int> que;\n\tque.push(s);\n\twhile (!que.empty()) {\n\t\tint f = que.front();\n\t\tque.pop();\n\t\tfor (auto e : graph[f]) {\n\t\t\tif (dist[e] == inf) {\n\t\t\t\tque.push(e);\n\t\t\t\tdist[e] = dist[f] + 1;\n\t\t\t}\n\t\t}\n\t}\n\treturn dist;\n}\nint ShortestPathST(const vector<vector<int>>& graph, int s, int t,\n int inf = numeric_limits<int>::max()) {\n\tsize_t n = graph.size();\n\tvector<int> dist(n, inf);\n\tdist[s] = 0;\n\tqueue<int> que;\n\tque.push(s);\n\twhile (!que.empty()) {\n\t\tint v = que.front();\n\t\tif (v == t) return dist[t];\n\t\tque.pop();\n\t\tfor (auto u : graph[v]) {\n\t\t\tif (dist[u] == inf) {\n\t\t\t\tque.push(u);\n\t\t\t\tdist[u] = dist[v] + 1;\n\t\t\t}\n\t\t}\n\t}\n\treturn dist[t];\n}\n#line 6 \"/home/yuruhiya/programming/library/Graph/BipartiteMatching.cpp\"\nusing namespace std;\n\nclass BipartiteMatching {\n\tsize_t left, right;\n\tvector<vector<int>> graph;\n\tvector<bool> used;\n\tvector<int> left_match, right_match;\n\tbool dfs(int v) {\n\t\tif (used[v]) {\n\t\t\treturn false;\n\t\t}\n\t\tused[v] = true;\n\t\tfor (int u : graph[v]) {\n\t\t\tif (right_match[u] == -1 || dfs(right_match[u])) {\n\t\t\t\tleft_match[v] = u;\n\t\t\t\tright_match[u] = v;\n\t\t\t\treturn true;\n\t\t\t}\n\t\t}\n\t\treturn false;\n\t}\n\npublic:\n\tBipartiteMatching(size_t _left, size_t _right)\n\t : left(_left),\n\t right(_right),\n\t graph(left),\n\t used(left),\n\t left_match(left),\n\t right_match(right) {}\n\tBipartiteMatching(size_t _left, size_t _right, const vector<vector<int>>& _graph)\n\t : left(_left),\n\t right(_right),\n\t graph(_graph),\n\t used(left),\n\t left_match(left),\n\t right_match(right) {\n\t\tassert(graph.size() == left);\n\t}\n\tvoid add_edge(int l, int r) {\n\t\tgraph[l].push_back(r);\n\t}\n\tint solve() {\n\t\tint result = 0;\n\t\tfill(left_match.begin(), left_match.end(), -1);\n\t\tfill(right_match.begin(), right_match.end(), -1);\n\t\tfill(used.begin(), used.end(), false);\n\t\tfor (bool update = true; update;) {\n\t\t\tupdate = false;\n\t\t\tfor (size_t i = 0; i < left; ++i) {\n\t\t\t\tif (left_match[i] == -1 && dfs(i)) {\n\t\t\t\t\tupdate = true;\n\t\t\t\t\t++result;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (update) {\n\t\t\t\tfill(used.begin(), used.end(), false);\n\t\t\t}\n\t\t}\n\t\treturn result;\n\t}\n\tvector<pair<int, int>> edges() const {\n\t\tvector<pair<int, int>> result;\n\t\tfor (size_t i = 0; i < left; ++i) {\n\t\t\tif (left_match[i] != -1) {\n\t\t\t\tresult.emplace_back(i, left_match[i]);\n\t\t\t}\n\t\t}\n\t\treturn result;\n\t}\n};\n#line 4 \"a.cpp\"\n\nint main() {\n\tini(n, m, k);\n\tVI c = step(n) | Map([&](int i) { return in.read<char>() - 'a'; });\n\tdump(c);\n\tVVI g(n);\n\trep(i, m) {\n\t\tint u = in--, v = in--;\n\t\tg[u].push_back(v);\n\t\tg[v].push_back(u);\n\t}\n\tVVI d = step(n) | Map([&](int i) { return ShortestPath(g, i, inf); });\n\n\tBipartiteMatching bg(n, n);\n\trep(i, n) FOR(j, i + 1, n) {\n\t\tif (d[i][j] <= k && ((c[i] + 1) % 26 == c[j] || (c[j] + 1) % 26 == c[i])) {\n\t\t\tint a = i, b = j;\n\t\t\tif (c[a] % 2 == 1) swap(a, b);\n\t\t\tbg.add_edge(a, b);\n\t\t}\n\t}\n\tout(bg.solve());\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 4492, "score_of_the_acc": -0.279, "final_rank": 1 } ]
aoj_3175_cpp
D - Parallel Sort 問題文 これはインタラクティブな問題です。 $1$ 以上 $2^N$ 以下の整数を並び替えた順列 $P$ が隠されています。 あなたは以下の操作を $60$ 回だけ行うことができます。 操作によって $P$ を特定してください。 操作 長さ $2^N$ の整数列 $A$ を宣言する。 $A$ の要素は $1$ 以上 $2^N$ 以下の整数でなければならない。 長さ $2^N$ の整数列 $C$ が用意される。 $C$ の要素ははじめすべて $0$ である。 各 $i$ $(1 \le i \le 2^N)$ について、次が行われる。 $P_{A_i} > P_i$ のとき、$C_{A_i}$ に $1$ を足す。 そうでなければ何もしない。 その後、$C$ の内容があなたに伝えられる。 制約 $1 \leq N \leq 10$ $N$ は整数である。 $P$ は $1$ 以上 $2^N$ 以下の整数を並び替えた順列である。 入出力 最初に、$N$ が標準入力から与えられる。 $N$ その後、何回か操作を繰り返す。操作では次の形式で標準出力へ出力せよ。 ? $A_1$ $A_2$ $\ldots$ $A_{2^N}$ ここで、$A_i$ $(1 \le i \le 2^N)$ は $1$ 以上 $2^N$ 以下の整数でなければならない。 この操作に対する応答は、次の形式で標準入力から与えられる。 $C_1$ $C_2$ $\ldots$ $C_{2^N}$ 最後に、特定した順列 $P$ を以下の形式で標準出力へ出力せよ。 ! $P_1$ $P_2$ $\ldots$ $P_{2^N}$ 注意 出力の度に標準出力を flush せよ。そうしない場合、 TLE となる可能性がある。 順列 $P$ を出力した後は、プログラムをすぐに終了せよ。従わない場合のジャッジの挙動は未定義である。 出力形式が正しくない場合のジャッジの挙動は未定義である。 入出力例 $N = 2, P = (4, 1, 3, 2)$ としたときの入出力例を以下に示す。 入力 出力 備考 2 最初に $N$ が入力される。 ? 4 4 1 1 2 0 0 1 $P_4 > P_2$ だから、$C_4$ に $1$ が足される。 $P_1 > P_3$ だから、$C_1$ に $1$ が足される。 $P_1 > P_4$ だから、$C_1$ に $1$ が足される。 ? 1 3 3 3 0 0 2 0 $P_3 > P_2$ だから、$C_3$ に $1$ が足される。 $P_3 > P_4$ だから、$C_3$ に $1$ が足される。 ! 4 1 3 2 最後に順列 $P$ を出力する。
[ { "submission_id": "aoj_3175_4850876", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acos(-1.0);\n\n\nvector<int> query(vector<int> a) {\n\tcout << \"?\";\n\trep(i, a.size()) {\n\t cout << \" \";\n\t\tcout << a[i]+1;\n\t}\n\tcout << endl;\n\tvector<int> res(a.size());\n\trep(i, a.size())cin >> res[i];\n\treturn res;\n}\nvoid solve() {\n\tint n; cin >> n;\n\tvector<vector<int>> v;\n\trep(i, (1<<n)) {\n\t\tv.push_back({ i });\n\t}\n\tint tmp = 0;\n\twhile (v.size() > 1) {\n\t\ttmp++;\n\t\tvector<vector<int>> ups;\n\t\tvector<vector<vector<int>>> vs;\n\t\tvector<vector<vector<int>>> ts;\n\t\tvector<vector<int>> locs;\n\t\tlocs.resize(v.size() / 2);\n\t\trep(j, locs.size()) {\n\t\t\tlocs[j].resize(v[0].size());\n\t\t}\n\t\trep(i, v.size() / 2) {\n\t\t\tups.push_back({ -1 });\n\t\t\tvs.push_back({ v[2 * i] });\n\t\t\tts.push_back({ v[2 * i + 1] });\n\t\t}\n\t\tvector<bool> ist(1 << n);\n\t\tfor (int i = 1; i < v.size(); i += 2) {\n\t\t\tfor (int id : v[i]) {\n\t\t\t\tist[id] = true;\n\t\t\t}\n\t\t}\n\t\trep(aa, tmp) {\n\t\t\tvector<int> q(1 << n);\n\t\t\trep(i, (1 << n))if (ist[i])q[i] = i;\n\t\t\trep(i, v.size() / 2) {\n\t\t\t\trep(j, vs[i].size()) {\n\t\t\t\t\tif (ts[i][j].empty()) {\n\t\t\t\t\t\tfor (int id : vs[i][j]) {\n\t\t\t\t\t\t\tq[id] = ups[i][j];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tint mid = ts[i][j].size() / 2;\n\t\t\t\t\t\tfor (int id : vs[i][j]) {\n\t\t\t\t\t\t\tq[id] = ts[i][j][mid];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tvector<int> c = query(q);\n\t\t\tvector<vector<int>> nup(v.size() / 2);\n\t\t\trep(i, v.size() / 2) {\n\t\t\t\tint s = 0;\n\t\t\t\tint t = 0;\n\n\t\t\t\tvector<vector<int>> nv;\n\t\t\t\tvector<vector<int>> nt;\n\t\t\t\trep(j, vs[i].size()) {\n\t\t\t\t\tif (ts[i][j].empty()) {\n\t\t\t\t\t\tnv.push_back(vs[i][j]);\n\t\t\t\t\t\tnt.push_back(ts[i][j]);\n\t\t\t\t\t\tnup[i].push_back(ups[i][j]);\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tint mid = ts[i][j].size() / 2;\n\t\t\t\t\t\tint num = ts[i][j][mid];\n\t\t\t\t\t\tlocs[i][t + mid] = s + c[num];\n\t\t\t\t\t\tvector<int> vl;\n\t\t\t\t\t\tvector<int> vr;\n\t\t\t\t\t\trep(k, vs[i][j].size()) {\n\t\t\t\t\t\t\tif (k < c[num]) {\n\t\t\t\t\t\t\t\tvl.push_back(vs[i][j][k]);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\telse vr.push_back(vs[i][j][k]);\n\t\t\t\t\t\t}\n\t\t\t\t\t\tvector<int> tl, tr;\n\t\t\t\t\t\trep(k, ts[i][j].size()) {\n\t\t\t\t\t\t\tif (k < mid)tl.push_back(ts[i][j][k]);\n\t\t\t\t\t\t\telse if (k > mid)tr.push_back(ts[i][j][k]);\n\t\t\t\t\t\t}\n\t\t\t\t\t\tnv.push_back(vl); nv.push_back(vr);\n\t\t\t\t\t\tnt.push_back(tl); nt.push_back(tr);\n\t\t\t\t\t\tnup[i].push_back(num);\n\t\t\t\t\t\tnup[i].push_back(num);\n\t\t\t\t\t}\n\n\t\t\t\t\ts += vs[i][j].size();\n\t\t\t\t\tt += ts[i][j].size();\n\t\t\t\t\tif (ups[i][j] >= 0)t++;\n\t\t\t\t}\n\t\t\t\tswap(vs[i], nv);\n\t\t\t\tswap(ts[i], nt);\n\t\t\t}\n\t\t\tswap(ups, nup);\n\t\t}\n\t\tvector<vector<int>> nv;\n\t\trep(i, v.size() / 2) {\n\t\t\tint id = 0;\n\t\t\tvector<int> cv;\n\t\t\trep(j, v[2 * i].size()) {\n\t\t\t\twhile (id < v[2 * i + 1].size() && locs[i][id] <= j) {\n\t\t\t\t\tcv.push_back(v[2 * i + 1][id]);\n\t\t\t\t\tid++;\n\t\t\t\t}\n\t\t\t\tcv.push_back(v[2 * i][j]);\n\t\t\t}\n\t\t\twhile (id < v[2 * i + 1].size()) {\n\t\t\t\tcv.push_back(v[2 * i + 1][id]);\n\t\t\t\tid++;\n\t\t\t}\n\t\t\tnv.push_back(cv);\n\t\t}\n\t\tswap(v, nv);\n\t\t/*rep(i, v.size()) {\n\t\t\trep(j, v[i].size()) {\n\t\t\t\tcout << v[i][j] << \" \";\n\t\t\t}\n\t\t\tcout << \"\\n\";\n\t\t}*/\n\t}\n\t//cout << \"?? \" << v[0].size() << \"\\n\";\n\tvector<int> ans(1<<n);\n\trep(i, (1 << n)) {\n\t\tans[v[0][i]] = i;\n\t}\n\tcout << \"!\";\n\trep(i, (1 << n)) {\n\t\tcout << \" \" << ans[i] + 1;\n\t}\n\tcout << endl;\n}\n\n\n\n\n\nsigned main() {\n\t//ios::sync_with_stdio(false);\n\t//cin.tie(0);\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3436, "score_of_the_acc": -1.0256, "final_rank": 10 }, { "submission_id": "aoj_3175_4846649", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long long INF = 1e18;\n//const ll mod = 1000000007;\n\nconst ll LOCAL = 0;\nll N;\nll C[3000];\nll A[3000];\nvector<ll> ANS;\nvector<vector<ll>> v;\nvector<ll> ans;\nint Timer = 0;\n\nvoid printans() {\n assert(v.size() == 1);\n for(int i = 0; i < N; i++) {\n for(int j = 0; j < N; j++) {\n if(v[0][j] == i) ans.push_back(j);\n }\n }\n cout << \"!\";\n for(auto tmp : ans) {\n cout << \" \" << tmp + 1;\n }\n cout << endl;\n if(LOCAL) {\n for(int i = 0; i < N; i++) {\n cerr << ANS[v[0][i]] << \" \";\n }\n cerr << endl;\n for(int i = 0; i < N; i++) {\n assert(ANS[v[0][i]] == i);\n assert(ans[i] == ANS[i]);\n }\n }\n}\n\nvoid ask() {\n if(LOCAL) {\n Timer++;\n assert(Timer <= 60);\n for(int i = 0; i < N; i++) C[i] = 0;\n for(int i = 0; i < N; i++) {\n if(ANS[A[i]] > ANS[i]) C[A[i]]++;\n }\n } else {\n cout << \"?\";\n for(int i = 0; i < N; i++) {\n cout << \" \" << A[i] + 1;\n }\n cout << endl;\n for(int i = 0; i < N; i++) {\n cin >> C[i];\n }\n }\n}\n\ntypedef pair<vector<ll>, vector<ll>> V_V;\nint needed = 0;\n\nvector<ll> g(V_V V, vector<ll> ok) {\n vector<ll> ret;\n l_l idx = {0, 0};\n while(idx.first != V.first.size() or idx.second != V.second.size()) {\n if(idx.first == V.first.size()) {\n ret.push_back(V.second[idx.second]);\n idx.second++;\n continue;\n }\n if(idx.second == V.second.size()) {\n ret.push_back(V.first[idx.first]);\n idx.first++;\n continue;\n }\n if(ok[idx.first] <= idx.second) {\n ret.push_back(V.first[idx.first]);\n idx.first++;\n continue;\n }\n if(ok[idx.first] > idx.second) {\n ret.push_back(V.second[idx.second]);\n idx.second++;\n continue;\n }\n assert(0);\n }\n return ret;\n}\n\nvector<vector<ll>> f(vector<V_V> V) {\n /*\n for(auto tmp : V) {\n for(auto tmp2 : tmp.first) cerr << ANS[tmp2] << \" \";\n cerr << endl;\n for(auto tmp2 : tmp.second) cerr << ANS[tmp2] << \" \";\n cerr << endl;\n cerr << endl;\n }\n */\n vector<vector<ll>> ok, ng;\n ok.resize(V.size(), vector<ll>(V[0].first.size(), 0));\n ng.resize(V.size(), vector<ll>(V[0].first.size(), V[0].first.size() + 1));\n needed++;\n for(int _ = 0; _ < needed; _++) {\n vector<vector<ll>> mid;\n mid.resize(V.size());\n for(int i = 0; i < mid.size(); i++) {\n mid[i].resize(V[0].first.size());\n for(int j = 0; j < mid[i].size(); j++) {\n mid[i][j] = (ok[i][j] + ng[i][j]) / 2;\n chmax(mid[i][j], 1LL);\n A[V[i].first[j]] = V[i].second[mid[i][j]-1];\n }\n }\n for(int i = 0; i < mid.size(); i++) {\n for(int j = 0; j < mid[i].size(); j++) {\n A[V[i].second[j]] = V[i].second[j];\n }\n }\n ask();\n for(int i = 0; i < mid.size(); i++) {\n for(int j = 0; j < mid[i].size(); j++) {\n if(C[A[V[i].first[j]]]) {\n C[A[V[i].first[j]]]--;\n ng[i][j] = mid[i][j];\n } else {\n ok[i][j] = mid[i][j];\n }\n }\n }\n /*\n cerr << \"midsize: \" << mid.size() << endl;\n for(int i = 0; i < mid.size(); i++) {\n for(int j = 0; j < mid[i].size(); j++) {\n cerr << \"{\" << ok[i][j] << \", \" << ng[i][j] << \"} \";\n }\n cerr << endl;\n }\n */\n }\n vector<vector<ll>> ret;\n for(int i = 0; i < V.size(); i++) {\n auto tmp = g(V[i], ok[i]);\n ret.push_back(tmp);\n }\n return ret;\n}\n\nint main() {\n cin >> N;\n N = (1 << N);\n if(LOCAL) {\n ANS.resize(N);\n for(int i = 0; i < N; i++) {\n ANS[i] = i;\n }\n std::random_device seed_gen;\n std::mt19937 engine(seed_gen());\n std::shuffle(ANS.begin(), ANS.end(), engine);\n /*\n for(auto tmp : ANS) cerr << tmp << \" \";\n cerr << endl;\n */\n }\n for(int i = 0; i < N; i++) {\n v.push_back({i});\n }\n for(int _ = 0; ; _++) {\n if(v.size() == 1) break;\n vector<pair<vector<ll>, vector<ll>>> V;\n for(int i = 0; i < v.size(); i += 2) {\n V.push_back({v[i], v[i+1]});\n }\n v = f(V);\n }\n printans();\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3724, "score_of_the_acc": -0.5056, "final_rank": 9 }, { "submission_id": "aoj_3175_4846518", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef int_fast32_t int32;\ntypedef int_fast64_t int64;\n\nconst int32 inf = 1e9+7;\nconst int32 MOD = 1000000007;\nconst int64 llinf = 1e18;\n\n#define YES(n) cout << ((n) ? \"YES\\n\" : \"NO\\n\" )\n#define Yes(n) cout << ((n) ? \"Yes\\n\" : \"No\\n\" )\n#define POSSIBLE(n) cout << ((n) ? \"POSSIBLE\\n\" : \"IMPOSSIBLE\\n\" )\n#define ANS(n) cout << (n) << \"\\n\"\n#define REP(i,n) for(int64 i=0;i<(n);++i)\n#define FOR(i,a,b) for(int64 i=(a);i<(b);i++)\n#define FORR(i,a,b) for(int64 i=(a);i>=(b);i--)\n#define all(obj) (obj).begin(),(obj).end()\n#define rall(obj) (obj).rbegin(),(obj).rend()\n#define fi first\n#define se second\n#define pb(a) push_back(a)\ntypedef pair<int32,int32> pii;\ntypedef pair<int64,int64> pll;\n\ntemplate<class T> inline bool chmax(T& a, T b) {\n if (a < b) { a = b; return true; } return false;\n}\ntemplate<class T> inline bool chmin(T& a, T b) {\n if (a > b) { a = b; return true; } return false;\n}\n\nint32 n;\nvector<int32> a;\nvector<int32> c;\nvector<set<int32>> large;\nvector<int32> indeg;\n\nvector<int32> topological_sort(vector<set<int32>> G, vector<int32> indegree, int32 V) {\n // トポロジカルソートを記録する配列\n vector<int32> sorted_vertices;\n\n // 入次数が0の頂点を発見したら、処理待ち頂点としてキューに追加する\n queue<int> que;\n for (int i = 0; i < V; i++) {\n if (indegree[i] == 0) {\n que.push(i);\n }\n }\n\n // キューが空になるまで、操作1~3を繰り返す\n while (que.empty() == false) {\n // キューの先頭の頂点を取り出す\n int v = que.front();\n que.pop();\n\n // その頂点と隣接している頂点の入次数を減らし、0になればキューに追加\n for(auto u : G[v]){\n indegree[u] -= 1;\n if (indegree[u] == 0) que.push(u);\n }\n // 頂点vを配列の末尾に追加する \n sorted_vertices.push_back(v);\n }\n\n // トポロジカルソートを返す\n return sorted_vertices;\n}\n\nvoid query(){\n cout << \"?\";\n REP(i,n){\n cout << \" \" << a[i]+1;\n }\n cout << endl;\n REP(i,n)cin >> c[i];\n REP(i,n){\n if(i == a[i])continue;\n if(c[a[i]] == 1){\n if(large[i].count(a[i]) == 0){\n large[i].insert(a[i]);\n indeg[a[i]]++;\n }\n }else{\n if(large[a[i]].count(i) == 0){\n large[a[i]].insert(i);\n indeg[i]++;\n }\n }\n }\n}\n\nint32 pow2(int32 r){\n int32 ret = 1;\n REP(i,r)ret *= 2;\n return ret;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin >> n;\n n = pow2(n);\n a.resize(n);\n c.resize(n);\n large.resize(n);\n indeg.resize(n,0);\n REP(i,n)a[i] = (i+1)%n;\n while(true){\n query();\n vector<pii> notyet;\n vector<int32> topo = topological_sort(large,indeg,n);\n REP(i,n-1){\n if(large[topo[i]].count(topo[i+1]) == 0)notyet.emplace_back(topo[i],topo[i+1]);\n }\n // REP(v,n){\n // for(auto u : large[v])cout << v << \" \" << u << endl;\n // }\n // REP(i,n)ANS(indeg[i]);\n // REP(i,n)cout << \" \" << topo[i];\n // cout << endl;\n if(notyet.empty()){\n vector<int32> ans(n);\n REP(i,n){\n ans[topo[i]] = i;\n }\n cout << \"!\";\n REP(i,n)cout << \" \" << ans[i] + 1;\n cout << endl;\n return 0;\n }\n a = vector<int32>(n,-1);\n vector<bool> used(n,false);\n for(auto p : notyet){\n if(a[p.fi] == -1 && !used[p.se]){\n a[p.fi] = p.se;\n used[p.se] = true;\n }else if(a[p.se] == -1 && !used[p.fi]){\n a[p.se] = p.fi;\n used[p.fi] = true;\n }\n }\n int32 j = 0;\n REP(i,n){\n if(a[i] == -1){\n while(used[j])++j;\n a[i] = j;\n ++j;\n }\n }\n }\n return 0;\n}", "accuracy": 0.3191489361702128, "time_ms": 40, "memory_kb": 4656, "score_of_the_acc": -1, "final_rank": 12 }, { "submission_id": "aoj_3175_4845964", "code_snippet": "//#define NDEBUG\n\n#pragma region cp_template\n\n#include <algorithm>\n#include <cstddef>\n#include <cstdint>\n#include <iostream>\n#include <utility>\n#include <vector>\n\nnamespace n91 {\n\n using i32 = std::int32_t;\n using i64 = std::int64_t;\n using u32 = std::uint32_t;\n using u64 = std::uint64_t;\n using isize = std::ptrdiff_t;\n using usize = std::size_t;\n\n struct rep {\n struct itr {\n usize i;\n constexpr itr(const usize i) noexcept : i(i) {}\n void operator++() noexcept { ++i; }\n constexpr usize operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr x) const noexcept { return i != x.i; }\n };\n const itr f, l;\n constexpr rep(const usize f, const usize l) noexcept\n : f(std::min(f, l)), l(l) {}\n constexpr auto begin() const noexcept { return f; }\n constexpr auto end() const noexcept { return l; }\n };\n struct revrep {\n struct itr {\n usize i;\n constexpr itr(const usize i) noexcept : i(i) {}\n void operator++() noexcept { --i; }\n constexpr usize operator*() const noexcept { return i; }\n constexpr bool operator!=(const itr x) const noexcept { return i != x.i; }\n };\n const itr f, l;\n constexpr revrep(const usize f, const usize l) noexcept\n : f(l - 1), l(std::min(f, l) - 1) {}\n constexpr auto begin() const noexcept { return f; }\n constexpr auto end() const noexcept { return l; }\n };\n template <class T> auto md_vec(const usize n, const T& value) {\n return std::vector<T>(n, value);\n }\n template <class... Args> auto md_vec(const usize n, Args... args) {\n return std::vector<decltype(md_vec(args...))>(n, md_vec(args...));\n }\n template <class T> constexpr T difference(const T& a, const T& b) noexcept {\n return a < b ? b - a : a - b;\n }\n template <class T> void chmin(T& a, const T& b) noexcept {\n if (b < a)\n a = b;\n }\n template <class T> void chmax(T& a, const T& b) noexcept {\n if (a < b)\n a = b;\n }\n template <class F> class rec_lambda {\n F f;\n\n public:\n rec_lambda(F&& f) : f(std::move(f)) {}\n template <class... Args> auto operator()(Args&&... args) const {\n return f(*this, std::forward<Args>(args)...);\n }\n };\n template <class F> auto make_rec(F&& f) { return rec_lambda<F>(std::move(f)); }\n template <class T> T scan() {\n T ret;\n std::cin >> ret;\n return ret;\n }\n constexpr char eoln = '\\n';\n template <class T> T ceildiv(const T& l, const T& r) {\n return l / r + (l % r != 0 ? 1 : 0);\n }\n\n} // namespace n91\n\n#pragma endregion cp_template\n\nnamespace n91 {\n\n struct sorter {\n usize n;\n std::vector<usize> x;\n // x[i]: 今 i 番目の要素が p の何番目か\n std::vector<std::pair<usize, usize>> cp;\n // first < second になるように cas\n\n sorter(const usize m) : n(1 << m), x(n), cp() {\n for (const usize i : rep(0, n)) {\n x[i] = i;\n }\n }\n\n void cas(usize less, usize greater) { cp.push_back({ less, greater }); }\n void flush() {\n std::vector<usize> a(n);\n for (const auto& e : cp) {\n a[x[e.second]] = x[e.first];\n a[x[e.first]] = x[e.second];\n }\n std::cout << \"?\";\n for (auto e : a) {\n std::cout << \" \" << e + 1;\n }\n std::cout << std::endl;\n std::vector<usize> c(n);\n for (auto& e : c) {\n std::cin >> e;\n }\n for (const auto& e : cp) {\n if (c[x[e.first]] == 1) {\n std::swap(x[e.first], x[e.second]);\n }\n }\n cp.clear();\n }\n void print() {\n std::vector<usize> p(n);\n for (const usize i : rep(0, n)) {\n p[x[i]] = i;\n }\n std::cout << \"!\";\n for (auto e : p) {\n std::cout << \" \" << e + 1;\n }\n std::cout << std::endl;\n }\n };\n\n void main_() {\n /*\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n //*/\n const usize n = scan<usize>();\n sorter s(n);\n for (const usize i : rep(0, n)) {\n const usize swap_wi = 2 << i;\n for (const usize j : rep(0, i + 1)) {\n bool swap_f = true;\n const usize step = 1 << (i - j);\n for (const usize k : rep(0, 1 << n)) {\n if (k % swap_wi == 0) {\n swap_f = !swap_f;\n }\n if (k & step) {\n usize l = k & ~step;\n usize r = k;\n if (swap_f) {\n std::swap(l, r);\n }\n s.cas(l, r);\n }\n }\n s.flush();\n }\n }\n s.print();\n }\n\n} // namespace n91\n\nint main() {\n n91::main_();\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3640, "score_of_the_acc": -0.4385, "final_rank": 5 }, { "submission_id": "aoj_3175_4845701", "code_snippet": "#include <algorithm>\n#include <bitset>\n#include <cassert>\n#include <chrono>\n#include <climits>\n#include <cmath>\n#include <complex>\n#include <cstring>\n#include <deque>\n#include <functional>\n#include <iostream>\n#include <iomanip>\n#include <list>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n#include <cstdint>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<int> vi;\ntypedef pair<int,int> pii;\n#define MP make_pair\n#define PB push_back\n#define inf 1000000007\n#define rep(i,n) for(int i = 0; i < (int)(n); ++i)\n#define all(x) (x).begin(),(x).end()\n\ntemplate<typename A, size_t N, typename T>\nvoid Fill(A (&array)[N], const T &val){\n std::fill( (T*)array, (T*)(array+N), val );\n}\n \ntemplate<class T> inline bool chmax(T &a, T b){\n if(a<b){\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T> inline bool chmin(T &a, T b){\n if(a>b){\n a = b;\n return true;\n }\n return false;\n}\nint n;\nvector<int> question(vector<int> &a){\n cout << \"? \";\n rep(i,n){\n cout << a[i+1] << \" \";\n }\n cout << endl;\n vector<int> b(n+1);\n rep(i,n){\n cin >> b[i+1];\n }\n return b;\n}\nvoid answer(vector<int> &a){\n cout << \"! \";\n rep(i,n){\n cout << a[i+1] << \" \";\n }\n cout << endl;\n}\nint main(){\n int m;\n cin >> m;\n n = (1<<m);\n vector<int> p(n);\n vector<vector<int> > q;\n rep(i,n){\n p[i] = i+1;\n vector<int> t;\n t.push_back(i+1);\n q.push_back(t);\n }\n \n for(int zz=1;zz<=m;zz++){ \n vector<vector<int> > A;\n vector<vector<int> > B;\n for(int i=0;i<q.size();i+=2){\n A.push_back(q[i]);\n B.push_back(q[i+1]);\n }\n // cerr << A.size() << endl;\n // for(auto x:A){\n // for(auto y:x){\n // cerr << y << \" \" ;\n // }\n // cerr << endl;\n // }\n // cerr << endl;\n // cerr << B.size() << endl;\n // for(auto x:B){\n // for(auto y:x){\n // cerr << y << \" \" ;\n // }\n // cerr << endl;\n // }\n // cerr << endl;\n for(int j=0;j<zz;j++){\n vector<int> q(n+1);\n // sort列 A, B の比較\n \n for(int i=0;i<A.size();i++){\n int len = B[i].size();\n int Qid = B[i][len/2];\n for(auto x: A[i]){\n q[x] = Qid;\n }\n\n }\n for(int i=0;i<B.size();i++){\n for(auto x:B[i]){\n q[x] = x;\n }\n }\n auto X = question(q);\n \n vector<vector<int> > P;\n vector<vector<int> > Q;\n \n for(int i=0;i<A.size();i++){\n int len = B[i].size();\n int Qid = B[i][len/2];\n int cnt = X[Qid];\n vector<int> pp[2];\n for(int k = 0; k<A[i].size();k++){\n if(k < cnt){\n pp[0].push_back(A[i][k]);\n }else{\n pp[1].push_back(A[i][k]);\n }\n }\n vector<int> qq[2];\n for(int k=0;k<B[i].size();k++){\n if(k<len/2||len==1){\n qq[0].push_back(B[i][k]);\n }else{\n qq[1].push_back(B[i][k]);\n }\n }\n P.push_back(pp[0]);\n P.push_back(pp[1]); \n Q.push_back(qq[0]);\n Q.push_back(qq[1]);\n } \n swap(A,P);\n swap(B,Q);\n } \n // cerr << \"TEST\" << endl;\n // cerr << A.size() << endl;\n // for(auto x:A){\n // for(auto y:x){\n // cerr << y << \" \" ;\n // }\n // cerr << endl;\n // }\n // cerr << endl;\n // cerr << B.size() << endl;\n // for(auto x:B){\n // for(auto y:x){\n // cerr << y << \" \" ;\n // }\n // cerr << endl;\n // }\n // cerr << endl;\n \n vector<vector<int> > qqq;\n for(int k=0;k<(n)/(1<<zz);k++){\n vector<int> qq;\n for(int i=0;i<(1<<(zz));i++){\n // i + k*(1<<zz) \n for(auto x:A[i + k*(1<<(zz))]){\n qq.push_back(x);\n }\n for(auto x:B[i + k*(1<<(zz))]){\n qq.push_back(x);\n }\n }\n qqq.push_back(qq);\n }\n swap(q,qqq);\n }\n vector<int> pppp(n+1);\n for(int i=0;i<q[0].size();i++){\n pppp[q[0][i]] = i+ 1;\n }\n answer(pppp);\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3676, "score_of_the_acc": -0.4673, "final_rank": 7 }, { "submission_id": "aoj_3175_4845697", "code_snippet": "//#define _GLIBCXX_DEBUG\n//#include \"atcoder/all\"\n//using namespace atcoder;\n#include <bits/stdc++.h>\n#define int long long\n#define ll long long\nusing ull = unsigned long long;\nusing namespace std;\n#define dump(x) \\\n if (dbg) { \\\n cerr << #x << \" = \" << (x) << endl; \\\n }\n#define overload4(_1, _2, _3, _4, name, ...) name\n#define FOR1(n) for (ll i = 0; i < (n); ++i)\n#define FOR2(i, n) for (ll i = 0; i < (n); ++i)\n#define FOR3(i, a, b) for (ll i = (a); i < (b); ++i)\n#define FOR4(i, a, b, c) for (ll i = (a); i < (b); i += (c))\n#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)\n#define FORR(i, a, b) for (int i = (a); i <= (b); ++i)\n#define bit(n, k) (((n) >> (k)) & 1) /*nのk bit目*/\nnamespace mydef {\nconst int INF = 1ll << 60;\nconst int MOD = 1e9 + 7;\ntemplate <class T>\nbool chmin(T& a, const T& b) {\n if (a > b) {\n a = b;\n return 1;\n } else\n return 0;\n}\ntemplate <class T>\nbool chmax(T& a, const T& b) {\n if (a < b) {\n a = b;\n return 1;\n } else\n return 0;\n}\nvoid Yes(bool flag = true) {\n if (flag)\n cout << \"Yes\" << endl;\n else\n cout << \"No\" << endl;\n}\nvoid No(bool flag = true) {\n Yes(!flag);\n}\nvoid YES(bool flag = true) {\n if (flag)\n cout << \"YES\" << endl;\n else\n cout << \"NO\" << endl;\n}\nvoid NO(bool flag = true) {\n YES(!flag);\n}\ntemplate <typename A, size_t N, typename T>\nvoid Fill(A (&array)[N], const T& val) {\n std::fill((T*)array, (T*)(array + N), val);\n}\nbool dbg = true;\n} // namespace mydef\nusing namespace mydef;\n#define pb push_back\n//#define mp make_pair\n#define eb emplace_back\n#define lb lower_bound\n#define ub upper_bound\n#define all(v) (v).begin(), (v).end()\n#define SZ(x) ((int)(x).size())\n#define vi vector<int>\n#define vvi vector<vector<int>>\n#define vp vector<pair<int, int>>\n#define vvp vector<vector<pair<int, int>>>\n#define pi pair<int, int>\n//#define P pair<int, int>\n//#define V vector<int>\n//#define S set<int>\n#define asn ans\n\nvi query;\nint N;\n\ntemplate <typename T>\nstruct edge {\n int to, id;\n T cost;\n edge(int to) : to(to), id(-1), cost(1) {}\n edge(int to, T cost) : to(to), id(-1), cost(cost) {}\n edge(int to, T cost, int id) : to(to), id(id), cost(cost) {}\n operator int() const { return to; }\n /*\n edge& operator=(const int& x) {\n to = x;\n return *this;\n }\n */\n};\ntemplate <typename T>\nclass Graph : public vector<vector<edge<T>>> {\n //--------Basic--------\nprivate:\n using Edge = edge<T>;\n int M; //M:辺の数\n bool undirected = false;\n bool directed = false;\n bool unweighted = false;\n bool weighted = false;\n bool tree = false;\n //\npublic:\n vector<int> A, B;\n vector<T> C;\n //\npublic:\n Graph() = default;\n //unweighted\n void add_edge_undirected(int u, int v, int id = -1) {\n assert(!directed);\n assert(!weighted);\n undirected = true;\n unweighted = true;\n (*this)[u].emplace_back(Edge{v, 1, id});\n (*this)[v].emplace_back(Edge{u, 1, id});\n }\n void build_undirected(int m) {\n assert(!(*this).empty());\n assert(!directed);\n assert(!weighted);\n undirected = true;\n unweighted = true;\n M = m;\n A.resize(m);\n B.resize(m);\n for (int i = 0; i < m; i++) {\n int u, v;\n cin >> u >> v;\n u--;\n v--;\n A[i] = u;\n B[i] = v;\n (*this)[u].emplace_back(Edge{v, 1, i});\n (*this)[v].emplace_back(Edge{u, 1, i});\n }\n }\n void build_undirected(int n, int m) {\n (*this).resize(n);\n build_undirected(m);\n }\n void add_edge_directed(int u, int v, int id = -1) {\n assert(!undirected);\n assert(!weighted);\n directed = true;\n unweighted = true;\n (*this)[u].emplace_back(Edge{v, 1, id});\n }\n void build_directed(int m) {\n assert(!(*this).empty());\n assert(!undirected);\n assert(!weighted);\n directed = true;\n unweighted = true;\n M = m;\n A.resize(M);\n B.resize(M);\n for (int i = 0; i < m; i++) {\n int u, v;\n cin >> u >> v;\n u--;\n v--;\n A[i] = u;\n B[i] = v;\n (*this)[u].emplace_back(Edge{v, 1, i});\n }\n }\n void build_directed(int n, int m) {\n (*this).resize(n);\n build_directed(m);\n }\n //weighed\n void add_edge_undirected_weighed(int u, int v, T cost, int id = -1) {\n assert(!directed);\n assert(!unweighted);\n undirected = true;\n weighted = true;\n (*this)[u].emplace_back(Edge{v, cost, id});\n (*this)[v].emplace_back(Edge{u, cost, id});\n }\n void build_undirected_weighted(int m) {\n assert(!(*this).empty());\n assert(!directed);\n assert(!unweighted);\n undirected = true;\n weighted = true;\n M = m;\n A.resize(m);\n B.resize(m);\n C.resize(m);\n for (int i = 0; i < m; i++) {\n int u, v;\n T cost;\n cin >> u >> v >> cost;\n u--;\n v--;\n A[i] = u;\n B[i] = v;\n C[i] = cost;\n (*this)[u].emplace_back(Edge{v, cost, i});\n (*this)[v].emplace_back(Edge{u, cost, i});\n }\n }\n void build_undirected_weighted(int n, int m) {\n (*this).resize(n);\n build_undirected_weighted(m);\n }\n void add_edge_directed_weighted(int u, int v, T cost, int id = -1) {\n assert(!undirected);\n assert(!unweighted);\n directed = true;\n weighted = true;\n (*this)[u].emplace_back(Edge{v, cost, id});\n }\n void build_directed_weighted(int m) {\n assert(!(*this).empty());\n assert(!undirected);\n assert(!unweighted);\n directed = true;\n weighted = true;\n M = m;\n A.resize(m);\n B.resize(m);\n C.resize(m);\n for (int i = 0; i < m; i++) {\n int u, v;\n T cost;\n cin >> u >> v >> cost;\n u--;\n v--;\n A[i] = u;\n B[i] = v;\n C[i] = cost;\n (*this)[u].emplace_back(Edge{v, cost, i});\n }\n }\n void build_directed_weighted(int n, int m) {\n (*this).resize(n);\n build_directed_weighted(m);\n }\n void build(vector<vector<int>> G) {\n int N = G.size();\n (*this).resize(N);\n for (int i = 0; i < N; i++) {\n for (auto& x : G[i]) {\n add_edge_directed(i, x);\n }\n }\n }\n //tree\n void istree() {\n tree = true;\n }\n void build_tree(int n) {\n istree();\n build_undirected(n, n - 1);\n }\n void build_tree_weighted(int n) {\n istree();\n build_undirected_weighted(n, n - 1);\n }\n //print state\n void state() {\n cerr << endl\n << \"Print State\" << endl\n << \"Edge :\" << endl\n << \" Directed : \" << (directed ? \"Yes\" : \"No\") << endl\n << \" Undirected : \" << (undirected ? \"Yes\" : \"No\") << endl\n << \" Weighted : \" << (weighted ? \"Yes\" : \"No\") << endl\n << \" Unweighted : \" << (unweighted ? \"Yes\" : \"No\") << endl\n << \" Tree : \" << (tree ? \"Yes\" : \"No\") << endl\n << \"Test\" << endl\n << \" test_bipartite(verified) : Yes\" << endl\n << \"Usable Functions : Graph\" << endl\n << \" Dijkstra(verified) : Yes\" << endl\n << \" Warshall–Floyd(verified) : Yes\" << endl\n << \" Kruskal(verified) : Yes\" << endl\n << \" TopologicalSort(verified) : Yes\" << endl\n << \" StronglyConnectedComponent(unverified): \" << (StronglyConnectedComponent_ready ? \"Yes\" : \"No\") << endl\n << \"Usable Funcitons : Tree\" << endl\n << \" ReRooting(verified) : Yes\" << endl;\n }\n //\n //--------union-find tree--------\n struct UnionFind {\n vector<int> data;\n UnionFind(int n) {\n data.assign(n, -1);\n }\n bool unite(int x, int y) {\n x = root(x), y = root(y);\n if (x == y)\n return (false);\n if (data[x] > data[y])\n swap(x, y);\n data[x] += data[y];\n data[y] = x;\n return (true);\n }\n int root(int k) {\n if (data[k] < 0)\n return (k);\n return (data[k] = root(data[k]));\n }\n bool same(int x, int y) {\n return root(x) == root(y);\n }\n int size(int k) {\n return (-data[root(k)]);\n }\n };\n //\n //--------test_bipartite--------\n //verified\npublic:\n bool test_bipartite() {\n int N = (*this).size();\n UnionFind uf(N * 2);\n for (int i = 0; i < N; i++) {\n for (auto& e : (*this)[i]) {\n uf.unite(i, e.to + N);\n uf.unite(i + N, e.to);\n }\n }\n for (int i = 0; i < N; i++) {\n if (uf.same(i, i + N))\n return false;\n }\n return true;\n }\n //\n //--------reverse--------\npublic:\n void reverse() {\n int N = (*this).size();\n vector<pair<int, Edge>> V;\n V.reserve(M);\n for (int i = 0; i < N; i++) {\n for (auto& e : (*this)[i]) {\n V.emplace_back(make_pair(i, e));\n }\n }\n (*this).erase((*this).begin(), (*this).end());\n (*this).resize(N);\n for (auto& p : V)\n (*this)[p.second.to].emplace_back(Edge{p.first, p.second.cost, p.second.id});\n }\n //\n //--------Dijkstra--------\n //verified\npublic:\n //pair<vector<T>, vector<int>> Dijkstra(int s) {\n vector<T> Dijkstra(int s) {\n const T INF = numeric_limits<T>::max() / 5;\n using P = pair<T, int>;\n int N = (*this).size();\n vector<T> dist(N, INF);\n //vector<int> bef(N, -1);\n priority_queue<P, vector<P>, greater<P>> que;\n dist[s] = 0;\n que.emplace(dist[s], s);\n while (!que.empty()) {\n P p = que.top();\n que.pop();\n int now = p.second;\n if (dist[now] < p.first)\n continue;\n for (auto& p : (*this)[now]) {\n int nxt = p.to;\n T cost = p.cost;\n if (dist[nxt] > dist[now] + cost) {\n dist[nxt] = dist[now] + cost;\n //bef[nxt] = now;\n que.emplace(dist[nxt], nxt);\n }\n }\n }\n return dist;\n //return make_pair(dist, bef);\n }\n //\n //\n //--------Warshall–Floyd--------\n //verified\npublic:\n vector<vector<T>> WarshallFloyd() {\n int N = (*this).size();\n const T INF = numeric_limits<T>::max() / 3;\n vector<vector<T>> ret(N, vector<T>(N, INF));\n for (int i = 0; i < N; i++) {\n for (auto& e : (*this)[i]) {\n ret[i][e.to] = e.cost;\n }\n ret[i][i] = 0;\n }\n for (int k = 0; k < N; k++) {\n for (int i = 0; i < N; i++) {\n for (int j = 0; j < N; j++) {\n if (ret[i][j] > ret[i][k] + ret[k][j])\n ret[i][j] = ret[i][k] + ret[k][j];\n }\n }\n }\n return ret;\n }\n //\n //\n //--------Kruskal--------\n //verified\nprivate:\n vector<int> Kruskal_data;\n bool Kruskal_unite(int x, int y) {\n x = Kruskal_root(x), y = Kruskal_root(y);\n if (x == y)\n return (false);\n if (Kruskal_data[x] > Kruskal_data[y])\n swap(x, y);\n Kruskal_data[x] += Kruskal_data[y];\n Kruskal_data[y] = x;\n return (true);\n }\n int Kruskal_root(int k) {\n if (Kruskal_data[k] < 0)\n return (k);\n return (Kruskal_data[k] = Kruskal_root(Kruskal_data[k]));\n }\n bool Kruskal_same(int x, int y) {\n return Kruskal_root(x) == Kruskal_root(y);\n }\n int Kruskal_size(int k) {\n return (-Kruskal_data[Kruskal_root(k)]);\n }\n //\npublic:\n template <class Compare = less<T>>\n pair<T, vector<bool>> Kruskal(bool flag = false) {\n struct edge2 {\n int from, to;\n T cost;\n bool used;\n int id;\n edge2(int from, int to, T cost, int id) : from(from), to(to), cost(cost), used(false), id(id) {}\n };\n vector<edge2> edges;\n int N = (*this).size();\n Kruskal_data.assign(N, -1);\n for (int i = 0; i < (int)(*this).size(); i++) {\n auto& V = (*this)[i];\n for (auto& e : V) {\n edges.emplace_back(i, e.to, e.cost, e.id);\n }\n }\n sort(edges.begin(), edges.end(), [](const edge2& a, const edge2& b) {\n return Compare()(a.cost, b.cost);\n });\n T ret = 0;\n vector<bool> V;\n if (flag)\n V.resize(M, false);\n for (auto& e : edges) {\n if (Kruskal_unite(e.from, e.to)) {\n ret += e.cost;\n e.used = true;\n }\n }\n if (flag)\n for (auto& e : edges) {\n assert(e.id >= 0 && e.id < M);\n if (e.used)\n V[e.id] = true;\n }\n if (N == Kruskal_size(0))\n return make_pair(ret, V);\n else\n return make_pair(-1, V);\n }\n //\n //--------StronglyConnectedComponent--------\n //Unverified\npublic:\n vector<vector<int>> SCC_R, SCC_T;\n //\nprivate:\n bool StronglyConnectedComponent_ready = false;\n vector<int> SCC_cmp, SCC_ord;\n vector<bool> SCC_used;\n //\npublic:\n int Gbuild_SCC() {\n cerr << \"Please Verify\" << endl;\n assert(!undirected);\n assert(directed);\n int N = (*this).size();\n SCC_R.resize(N);\n for (int i = 0; i < N; i++) {\n for (auto& x : (*this)[i]) {\n SCC_R[x].emplace_back(i);\n }\n }\n SCC_cmp.resize(N);\n fill(SCC_cmp.begin(), SCC_cmp.end(), -1);\n SCC_used.resize(N);\n fill(SCC_used.begin(), SCC_used.end(), false);\n StronglyConnectedComponent_ready = true;\n return build_StronglyConnectedComponent_init();\n }\n int SCC(int k) {\n assert(StronglyConnectedComponent_ready);\n return SCC_cmp[k];\n }\n //\nprivate:\n void build_StronglyConnectedComponent_dfs(int now) {\n if (SCC_used[now])\n return;\n SCC_used[now] = true;\n for (auto nxt : (*this)[now])\n build_StronglyConnectedComponent_dfs(nxt);\n SCC_ord.emplace_back(now);\n }\n void build_StronglyConnectedComponent_rdfs(int now, int count) {\n if (SCC_cmp[now] != -1)\n return;\n SCC_cmp[now] = count;\n for (auto to : SCC_R[now])\n build_StronglyConnectedComponent_rdfs(to, count);\n }\n int build_StronglyConnectedComponent_init() {\n int n = (int)(*this).size();\n for (int i = 0; i < n; i++)\n build_StronglyConnectedComponent_dfs(i);\n std::reverse(SCC_ord.begin(), SCC_ord.end());\n int group = 0;\n for (auto& i : SCC_ord) {\n if (SCC_cmp[i] == -1) {\n build_StronglyConnectedComponent_rdfs(i, group);\n group++;\n }\n }\n SCC_T.resize(group);\n for (int i = 0; i < n; i++) {\n for (auto& to : (*this)[i]) {\n int s = SCC_cmp[i], t = SCC_cmp[to];\n if (s != t)\n SCC_T[s].emplace_back(t);\n }\n }\n return group;\n }\n //\n //\n //\n //--------TopologicalSort--------\n //verified\npublic:\n vector<int> TopologicalSort() {\n assert(!undirected);\n int N = (*this).size();\n vector<int> deg(N);\n for (auto& V : (*this))\n for (auto& e : V)\n deg[e.to]++;\n queue<int> st;\n for (int i = 0; i < N; i++)\n if (deg[i] == 0)\n st.push(i);\n vector<int> ret;\n ret.reserve(N);\n while (!st.empty()) {\n auto x = st.front();\n st.pop();\n ret.emplace_back(x);\n if (st.empty()) {\n query[x] = x;\n } else {\n query[x] = st.front();\n }\n for (auto& e : (*this)[x])\n if (--deg[e.to] == 0)\n st.push(e.to);\n }\n return ret;\n }\n //\n //\n //--------Tree--------\n //\n //\n //--------ReRooting--------\npublic:\n template <typename sum_t>\n pair<vector<sum_t>, vector<vector<sum_t>>>\n Tbuild_ReRooting(\n const function<sum_t(sum_t, sum_t)> f,\n const function<sum_t(sum_t, Edge)> gg,\n sum_t ident) {\n assert(tree);\n int N = (*this).size();\n vector<sum_t> subdp(N, ident), dp(N, ident);\n vector<vector<sum_t>> g_dp(N), g_ndp(N), memo(N);\n vector<vector<bool>> seen(N);\n for (int i = 0; i < N; i++) {\n int S = (*this)[i].size();\n g_dp[i].resize(S, ident);\n g_ndp[i].resize(S, ident);\n memo[i].resize(S);\n seen[i].resize(S, false);\n }\n stack<int> stk;\n stk.push(0);\n vector<int> par(N), ord(N);\n int index = 0;\n par[0] = -1;\n while (!stk.empty()) {\n int node = stk.top();\n stk.pop();\n ord[index++] = node;\n for (auto& e : (*this)[node]) {\n if (e.to == par[node])\n continue;\n stk.push(e.to);\n par[e.to] = node;\n }\n }\n for (int k = ord.size() - 1; k >= 0; k--) {\n int idx = ord[k];\n for (int i = 0; i < (int)((*this)[idx].size()); i++) {\n auto& e = (*this)[idx][i];\n if (e.to == par[idx])\n continue;\n if (!seen[idx][i]) {\n memo[idx][i] = gg(subdp[e.to], e);\n seen[idx][i] = true;\n }\n subdp[idx] = f(subdp[idx], memo[idx][i]);\n }\n }\n vector<sum_t> top(N, ident);\n for (int k = 0; k < (int)(ord.size()); k++) {\n int idx = ord[k];\n sum_t buff{ident};\n for (int i = 0; i < (int)((*this)[idx].size()); i++) {\n auto& e = (*this)[idx][i];\n g_ndp[idx][i] = buff;\n if (!seen[idx][i]) {\n memo[idx][i] = gg(par[idx] == e.to ? top[idx] : subdp[e.to], e);\n seen[idx][i] = true;\n }\n g_dp[idx][i] = memo[idx][i];\n buff = f(buff, g_dp[idx][i]);\n }\n dp[idx] = buff;\n buff = ident;\n for (int i = (*this)[idx].size() - 1; i >= 0; i--) {\n auto& e = (*this)[idx][i];\n if (e.to != par[idx])\n top[e.to] = f(g_ndp[idx][i], buff);\n g_ndp[idx][i] = f(g_ndp[idx][i], buff);\n buff = f(buff, g_dp[idx][i]);\n }\n }\n return make_pair(dp, memo);\n }\n //\n //\n //\n //TODO:lca,centroid,diameter,hl-decomposition\n};\n//グローバルでの使用のみ想定\n\nGraph<int> G;\nint NN;\n\nvoid solve() {\n NN = (1 << N);\n G.resize(NN);\n query.resize(NN);\n int TIME = 60;\n while (TIME--) {\n //queryを計算\n auto A = G.TopologicalSort();\n\n //queryをチェック\n bool flag = true;\n for (int i = 0; i < NN; i++) {\n if (query[i] != i)\n flag = false;\n }\n\n if (flag) {\n //答えを出力\n vi ans(NN);\n for (int i = 0; i < NN; i++) {\n ans[A[i]] = i;\n }\n cout << \"!\";\n for (auto& x : ans)\n cout << \" \" << x + 1;\n cout << endl;\n return;\n }\n\n cout << \"?\";\n for (auto& x : query)\n cout << \" \" << x + 1;\n cout << endl;\n\n vi C(NN);\n for (int i = 0; i < NN; i++) {\n cin >> C[i];\n }\n\n for (int i = 0; i < NN; i++) {\n if (i != query[i]) {\n if (C[query[i]] == 1) {\n G.add_edge_directed(i, query[i]);\n } else {\n G.add_edge_directed(query[i], i);\n }\n }\n }\n }\n assert(false);\n}\n\nsigned main() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n cin >> N;\n\n\n solve();\n return 0;\n}", "accuracy": 0.3191489361702128, "time_ms": 40, "memory_kb": 3404, "score_of_the_acc": 0, "final_rank": 11 }, { "submission_id": "aoj_3175_4845551", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing uint = unsigned;\nusing pcc = pair<char, char>;\nusing pii = pair<int, int>;\nusing pll = pair<ll, ll>;\nusing pdd = pair<ld, ld>;\nusing tuplis = array<ll, 3>;\ntemplate<class T> using pq = priority_queue<T, vector<T>, greater<T>>;\nconst ll LINF=0x1fffffffffffffff;\nconst ll MINF=0x7fffffffffff;\nconst int INF=0x3fffffff;\nconst int MOD=1000000007;\nconst int MODD=998244353;\nconst ld DINF=numeric_limits<ld>::infinity();\nconst ld EPS=1e-9;\nconst ld PI=3.1415926535897932;\nconst ll dx[] = {0, 1, 0, -1, 1, -1, 1, -1};\nconst ll dy[] = {1, 0, -1, 0, 1, 1, -1, -1};\n#define overload4(_1,_2,_3,_4,name,...) name\n#define overload3(_1,_2,_3,name,...) name\n#define rep1(n) for(ll i=0;i<n;++i)\n#define rep2(i,n) for(ll i=0;i<n;++i)\n#define rep3(i,a,b) for(ll i=a;i<b;++i)\n#define rep4(i,a,b,c) for(ll i=a;i<b;i+=c)\n#define rep(...) overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__)\n#define rrep1(n) for(ll i=n;i--;)\n#define rrep2(i,n) for(ll i=n;i--;)\n#define rrep3(i,a,b) for(ll i=b;i-->(a);)\n#define rrep4(i,a,b,c) for(ll i=(a)+((b)-(a)-1)/(c)*(c);i>=(a);i-=c)\n#define rrep(...) overload4(__VA_ARGS__,rrep4,rrep3,rrep2,rrep1)(__VA_ARGS__)\n#define each1(i,a) for(auto&&i:a)\n#define each2(x,y,a) for(auto&&[x,y]:a)\n#define each3(x,y,z,a) for(auto&&[x,y,z]:a)\n#define each(...) overload4(__VA_ARGS__,each3,each2,each1)(__VA_ARGS__)\n#define all1(i) begin(i),end(i)\n#define all2(i,a) begin(i),begin(i)+a\n#define all3(i,a,b) begin(i)+a,begin(i)+b\n#define all(...) overload3(__VA_ARGS__,all3,all2,all1)(__VA_ARGS__)\n#define rall1(i) (i).rbegin(),(i).rend()\n#define rall2(i,k) (i).rbegin(),(i).rbegin()+k\n#define rall3(i,a,b) (i).rbegin()+a,(i).rbegin()+b\n#define rall(...) overload3(__VA_ARGS__,rall3,rall2,rall1)(__VA_ARGS__)\n#define sum(...) accumulate(all(__VA_ARGS__),0LL)\n#define dsum(...) accumulate(all(__VA_ARGS__),0.0L)\n#define Msum(...) accumulate(all(__VA_ARGS__),0_M)\n#define elif else if\n#define unless(a) if(!(a))\n#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)\n#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)\n#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)\n#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)\n#define Sort(a) sort(all(a))\n#define Rev(a) reverse(all(a))\n#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))\n#define vec(type,name,...) vector<type>name(__VA_ARGS__)\n#define VEC(type,name,size) vector<type>name(size);in(name)\n#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))\n#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)\n#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))\ntemplate<class T> auto min(const T& a){ return *min_element(all(a)); }\ntemplate<class T> auto max(const T& a){ return *max_element(all(a)); }\ninline ll popcnt(ull a){ return __builtin_popcountll(a); }\nll gcd(ll a, ll b){ while(b){ ll c = b; b = a % b; a = c; } return a; }\nll lcm(ll a, ll b){ if(!a || !b) return 0; return a * b / gcd(a, b); }\nll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }\nll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }\ntemplate<class T> bool chmin(T& a, const T& b){ if(a > b){ a = b; return 1; } return 0; }\ntemplate<class T> bool chmax(T& a, const T& b){ if(a < b){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmin(T& a, const U& b){ if(a > T(b)){ a = b; return 1; } return 0; }\ntemplate<class T, class U> bool chmax(T& a, const U& b){ if(a < T(b)){ a = b; return 1; } return 0; }\nvector<ll> iota(ll n, ll begin = 0){ vector<ll> a(n); iota(a.begin(), a.end(), begin); return a; }\nvector<pll> factor(ull x){ vector<pll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; }\nmap<ll,ll> factor_map(ull x){ map<ll,ll> ans; for(ull i = 2; i * i <= x; i++) if(x % i == 0){ ans[i] = 1; while((x /= i) % i == 0) ans[i]++; } if(x != 1) ans[x] = 1; return ans; }\nvector<ll> divisor(ull x){ vector<ll> ans; for(ull i = 1; i * i <= x; i++) if(x % i == 0) ans.push_back(i); rrep(ans.size() - (ans.back() * ans.back() == x)) ans.push_back(x / ans[i]); return ans; }\ntemplate<class T> unordered_map<T, ll> press(vector<T> a){ Uniq(a); unordered_map<T, ll> ans; rep(a.size()) ans[a[i]] = i; return ans; }\ntemplate<class T> map<T, ll> press_map(vector<T> a){ Uniq(a); map<T, ll> ans; rep(a.size()) ans[a[i]] = i; return ans; }\nint scan(){ return getchar(); }\nvoid scan(int& a){ scanf(\"%d\", &a); }\nvoid scan(unsigned& a){ scanf(\"%u\", &a); }\nvoid scan(long& a){ scanf(\"%ld\", &a); }\nvoid scan(long long& a){ scanf(\"%lld\", &a); }\nvoid scan(unsigned long long& a){ scanf(\"%llu\", &a); }\nvoid scan(char& a){ do{ a = getchar(); }while(a == ' ' || a == '\\n'); }\nvoid scan(float& a){ scanf(\"%f\", &a); }\nvoid scan(double& a){ scanf(\"%lf\", &a); }\nvoid scan(long double& a){ scanf(\"%Lf\", &a); }\nvoid scan(vector<bool>& a){ for(unsigned i = 0; i < a.size(); i++){ int b; scan(b); a[i] = b; } }\nvoid scan(char a[]){ scanf(\"%s\", a); }\nvoid scan(string& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>&);\ntemplate<class T, size_t size> void scan(array<T, size>&);\ntemplate<class T, class L> void scan(pair<T, L>&);\ntemplate<class T, size_t size> void scan(T(&)[size]);\ntemplate<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(deque<T>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i); }\ntemplate<class T, class L> void scan(pair<T, L>& p){ scan(p.first); scan(p.second); }\ntemplate<class T, size_t size> void scan(T (&a)[size]){ for(auto&& i : a) scan(i); }\ntemplate<class T> void scan(T& a){ cin >> a; }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ putchar(' '); }\nvoid print(bool a){ printf(\"%d\", a); }\nvoid print(int a){ printf(\"%d\", a); }\nvoid print(unsigned a){ printf(\"%u\", a); }\nvoid print(long a){ printf(\"%ld\", a); }\nvoid print(long long a){ printf(\"%lld\", a); }\nvoid print(unsigned long long a){ printf(\"%llu\", a); }\nvoid print(char a){ printf(\"%c\", a); }\nvoid print(char a[]){ printf(\"%s\", a); }\nvoid print(const char a[]){ printf(\"%s\", a); }\nvoid print(float a){ printf(\"%.15f\", a); }\nvoid print(double a){ printf(\"%.15f\", a); }\nvoid print(long double a){ printf(\"%.15Lf\", a); }\nvoid print(const string& a){ for(auto&& i : a) print(i); }\ntemplate<class T> void print(const complex<T>& a){ if(a.real() >= 0) print('+'); print(a.real()); if(a.imag() >= 0) print('+'); print(a.imag()); print('i'); }\ntemplate<class T> void print(const vector<T>&);\ntemplate<class T, size_t size> void print(const array<T, size>&);\ntemplate<class T, class L> void print(const pair<T, L>& p);\ntemplate<class T, size_t size> void print(const T (&)[size]);\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const deque<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, size_t size> void print(const array<T, size>& a){ print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, class L> void print(const pair<T, L>& p){ print(p.first); putchar(' '); print(p.second); }\ntemplate<class T, size_t size> void print(const T (&a)[size]){ print(a[0]); for(auto i = a; ++i != end(a); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const T& a){ cout << a; }\nint out(){ putchar('\\n'); return 0; }\ntemplate<class T> int out(const T& t){ print(t); putchar('\\n'); return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }\n#ifdef DEBUG\ninline ll __lg(ull __n){ return sizeof(ull) * __CHAR_BIT__ - 1 - __builtin_clzll(__n); }\n#define debug(...) { print(#__VA_ARGS__); print(\":\"); out(__VA_ARGS__); }\n#else\n#define debug(...) void(0)\n#endif\nint first(bool i = true){ return out(i?\"first\":\"second\"); }\nint First(bool i = true){ return out(i?\"First\":\"Second\"); }\nint yes(bool i = true){ return out(i?\"yes\":\"no\"); }\nint Yes(bool i = true){ return out(i?\"Yes\":\"No\"); }\nint No(){ return out(\"No\"); }\nint YES(bool i = true){ return out(i?\"YES\":\"NO\"); }\nint NO(){ return out(\"NO\"); }\nint Yay(bool i = true){ return out(i?\"Yay!\":\":(\"); }\nint possible(bool i = true){ return out(i?\"possible\":\"impossible\"); }\nint Possible(bool i = true){ return out(i?\"Possible\":\"Impossible\"); }\nint POSSIBLE(bool i = true){ return out(i?\"POSSIBLE\":\"IMPOSSIBLE\"); }\nvoid Case(ll i){ printf(\"Case #%lld: \", i); }\n\n\nvector<ll>A;\nvector<ll> query(const vector<ll>&a,const vector<ll>&s){\n vector<ll>q(a.size());\n rep(a.size())q[s[i]]=s[a[i]]+1;\n print(\"? \");\n out(q);\n fflush(stdout);\n #ifdef DEBUG\n vec(ll,c,a.size());\n rep(a.size())if(A[i]<A[q[i]-1])c[q[i]-1]++;\n #else\n VEC(ll,c,a.size());\n #endif\n vec(ll,d,a.size());\n rep(a.size())d[i]=c[s[i]];\n return d;\n}\nvoid answer(vector<ll>a){\n vector<ll>ans(a.size());\n rep(a.size())ans[a[i]]=i+1;\n print(\"! \");\n out(ans);\n fflush(stdout);\n #ifdef DEBUG\n rep(a.size())assert(A[i]==ans[i]-1);\n #endif\n exit(0);\n}\nsigned main(){\n#ifdef DEBUG\nll n=10;\nA=iota(1<<n);\nshuffle(all(A),random_device{});\n#else\n LL(n);\n#endif\n auto a=iota(1<<n);\n rep(n){\n vec(ll,cnt,1<<n);\n rrep(j,i){\n vec(ll,q,1<<n);\n rep(begin,0,1<<n,2<<i){\n const ll end=begin+(2<<i),cen=begin+(1<<i);\n rep(at,cen,end){\n q[at]=at;\n if(at>>i&1&&(at&(2<<j)-1)==(1<<j)){\n const ll front=cnt[at-(1<<j)],back=at+(1<<j)==end?1<<i:cnt[at+(1<<j)];\n rep(i,front,back)q[begin+i]=at;\n }\n }\n }\n q=query(q,a);\n rep(begin,0,1<<n,2<<i){\n const ll end=begin+(2<<i),cen=begin+(1<<i);\n rep(at,cen,end){\n if(at>>i&1&&(at&(2<<j)-1)==(1<<j)){\n rep(i,at,at+(1<<j))cnt[i]+=q[at];\n }\n }\n }\n }\n vec(ll,q,1<<n);\n rep(j,1<<n)q[j]=(j>>i^1)<<i;\n q=query(q,a);\n rep(j,1<<i,1<<n,2<<i)cnt[j]=q[j];\n rep(begin,0,1<<n,2<<i){\n const ll end=begin+(2<<i),cen=begin+(1<<i);\n ll at=cen;\n vec(ll,b,0);\n rep(j,1<<i){\n while(at<end&&cnt[at]==j){\n b.push_back(a[at]);\n at++;\n }\n b.push_back(a[begin+j]);\n while(at<end&&cnt[at]==j+1){\n b.push_back(a[at]);\n at++;\n }\n }\n rep(j,2<<i)a[begin+j]=b[j];\n }\n }\n answer(a);\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3644, "score_of_the_acc": -0.4417, "final_rank": 6 }, { "submission_id": "aoj_3175_4845185", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll=long long;\n#define int ll\n\n#define rng(i,a,b) for(int i=int(a);i<int(b);i++)\n#define rep(i,b) rng(i,0,b)\n#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)\n#define per(i,b) gnr(i,0,b)\n#define pb push_back\n#define eb emplace_back\n#define a first\n#define b second\n#define bg begin()\n#define ed end()\n#define all(x) x.bg,x.ed\n#define si(x) int(x.size())\n#ifdef LOCAL\n#define dmp(x) cerr<<__LINE__<<\" \"<<#x<<\" \"<<x<<endl\n#else\n#define dmp(x) void(0)\n#endif\n\ntemplate<class t,class u> void chmax(t&a,u b){if(a<b)a=b;}\ntemplate<class t,class u> void chmin(t&a,u b){if(b<a)a=b;}\n\ntemplate<class t> using vc=vector<t>;\ntemplate<class t> using vvc=vc<vc<t>>;\n\nusing pi=pair<int,int>;\nusing vi=vc<int>;\n\ntemplate<class t,class u>\nostream& operator<<(ostream& os,const pair<t,u>& p){\n\treturn os<<\"{\"<<p.a<<\",\"<<p.b<<\"}\";\n}\n\ntemplate<class t> ostream& operator<<(ostream& os,const vc<t>& v){\n\tos<<\"{\";\n\tfor(auto e:v)os<<e<<\",\";\n\treturn os<<\"}\";\n}\n\n#define mp make_pair\n#define mt make_tuple\n#define one(x) memset(x,-1,sizeof(x))\n#define zero(x) memset(x,0,sizeof(x))\n#ifdef LOCAL\nvoid dmpr(ostream&os){os<<endl;}\ntemplate<class T,class... Args>\nvoid dmpr(ostream&os,const T&t,const Args&... args){\n\tos<<t<<\" \";\n\tdmpr(os,args...);\n}\n#define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__)\n#else\n#define dmp2(...) void(0)\n#endif\n\nusing uint=unsigned;\nusing ull=unsigned long long;\n\ntemplate<class t,size_t n>\nostream& operator<<(ostream&os,const array<t,n>&a){\n\treturn os<<vc<t>(all(a));\n}\n\ntemplate<int i,class T>\nvoid print_tuple(ostream&,const T&){\n}\n\ntemplate<int i,class T,class H,class ...Args>\nvoid print_tuple(ostream&os,const T&t){\n\tif(i)os<<\",\";\n\tos<<get<i>(t);\n\tprint_tuple<i+1,T,Args...>(os,t);\n}\n\ntemplate<class ...Args>\nostream& operator<<(ostream&os,const tuple<Args...>&t){\n\tos<<\"{\";\n\tprint_tuple<0,tuple<Args...>,Args...>(os,t);\n\treturn os<<\"}\";\n}\n\ntemplate<class t>\nvoid print(t x,int suc=1){\n\tcout<<x;\n\tif(suc==1)\n\t\tcout<<\"\\n\";\n\tif(suc==2)\n\t\tcout<<\" \";\n}\n\nll read(){\n\tll i;\n\tcin>>i;\n\treturn i;\n}\n\nvi readvi(int n,int off=0){\n\tvi v(n);\n\trep(i,n)v[i]=read()+off;\n\treturn v;\n}\n\npi readpi(int off=0){\n\tint a,b;cin>>a>>b;\n\treturn pi(a+off,b+off);\n}\n\ntemplate<class T>\nvoid print(const vector<T>&v,int suc=1){\n\trep(i,v.size())\n\t\tprint(v[i],i==int(v.size())-1?suc:2);\n}\n\nstring readString(){\n\tstring s;\n\tcin>>s;\n\treturn s;\n}\n\ntemplate<class T>\nT sq(const T& t){\n\treturn t*t;\n}\n\n//#define CAPITAL\nvoid yes(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"YES\"<<\"\\n\";\n\t#else\n\tcout<<\"Yes\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid no(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"NO\"<<\"\\n\";\n\t#else\n\tcout<<\"No\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid possible(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"POSSIBLE\"<<\"\\n\";\n\t#else\n\tcout<<\"Possible\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid impossible(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"IMPOSSIBLE\"<<\"\\n\";\n\t#else\n\tcout<<\"Impossible\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\n\nconstexpr ll ten(int n){\n\treturn n==0?1:ten(n-1)*10;\n}\n\nconst ll infLL=LLONG_MAX/3;\n\n#ifdef int\nconst int inf=infLL;\n#else\nconst int inf=INT_MAX/2-100;\n#endif\n\nint topbit(signed t){\n\treturn t==0?-1:31-__builtin_clz(t);\n}\nint topbit(ll t){\n\treturn t==0?-1:63-__builtin_clzll(t);\n}\nint botbit(signed a){\n\treturn a==0?32:__builtin_ctz(a);\n}\nint botbit(ll a){\n\treturn a==0?64:__builtin_ctzll(a);\n}\nint popcount(signed t){\n\treturn __builtin_popcount(t);\n}\nint popcount(ll t){\n\treturn __builtin_popcountll(t);\n}\nbool ispow2(int i){\n\treturn i&&(i&-i)==i;\n}\nll mask(int i){\n\treturn (ll(1)<<i)-1;\n}\n\nbool inc(int a,int b,int c){\n\treturn a<=b&&b<=c;\n}\n\ntemplate<class t> void mkuni(vc<t>&v){\n\tsort(all(v));\n\tv.erase(unique(all(v)),v.ed);\n}\n\nll rand_int(ll l, ll r) { //[l, r]\n\t#ifdef LOCAL\n\tstatic mt19937_64 gen;\n\t#else\n\tstatic mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());\n\t#endif\n\treturn uniform_int_distribution<ll>(l, r)(gen);\n}\n\ntemplate<class t>\nvoid myshuffle(vc<t>&a){\n\trep(i,si(a))swap(a[i],a[rand_int(0,i)]);\n}\n\ntemplate<class t>\nint lwb(const vc<t>&v,const t&a){\n\treturn lower_bound(all(v),a)-v.bg;\n}\n\nvvc<int> readGraph(int n,int m){\n\tvvc<int> g(n);\n\trep(i,m){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\t//sc.read(a,b);\n\t\ta--;b--;\n\t\tg[a].pb(b);\n\t\tg[b].pb(a);\n\t}\n\treturn g;\n}\n\nvvc<int> readTree(int n){\n\treturn readGraph(n,n-1);\n}\n\nsigned main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(0);\n\tcout<<fixed<<setprecision(20);\n\t\n\tint n;cin>>n;\n\tint s=1<<n;\n\tvi idx(s);iota(all(idx),0);\n\tvvc<pi> a;\n\t//x->small\n\t//y->large\n\tauto waf=[&](int i,int x,int y){\n\t\tif(si(a)<i+1)a.resize(i+1);\n\t\ta[i].eb(x,y);\n\t};\n\tfor(int w=2;w<=s;w*=2){\n\t\tint off=si(a);\n\t\tbool mode=false;\n\t\tfor(int i=0;i<s;i+=w){\n\t\t\tint head=off;\n\t\t\tfor(int h=w/2;h>=1;h/=2){\n\t\t\t\tfor(int j=i;j<i+w;j+=2*h){\n\t\t\t\t\tfor(int k=j;k<j+h;k++){\n\t\t\t\t\t\tif(!mode)waf(head,k,k+h);\n\t\t\t\t\t\telse waf(head,k+h,k);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\thead++;\n\t\t\t}\n\t\t\tmode^=1;\n\t\t}\n\t}\n\tint L=si(a);\n\trep(i,L){\n\t\tassert(si(a[i])==s/2);\n\t\tvi u(s);\n\t\tfor(auto w:a[i]){\n\t\t\tu[w.a]++;\n\t\t\tu[w.b]++;\n\t\t}\n\t\tassert(u==vi(s,1));\n\t}\n\t\n\t//cerr<<L<<endl;\n\t\n\t#ifdef LOCAL\n\trep(_,100){\n\t\tvi p(s);\n\t\tiota(all(p),0);\n\t\tmyshuffle(p);\n\t\trep(i,L){\n\t\t\tfor(auto w:a[i]){\n\t\t\t\tif(p[w.a]>p[w.b]){\n\t\t\t\t\tswap(p[w.a],p[w.b]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tassert(p==idx);\n\t}\n\t#endif\n\t\n\trep(i,L){\n\t\tvi val(s);iota(all(val),0);\n\t\tfor(auto w:a[i]){\n\t\t\tswap(val[idx[w.a]],val[idx[w.b]]);\n\t\t}\n\t\tfor(auto&v:val)v++;\n\t\tcout<<\"? \";\n\t\tprint(val);\n\t\tcout.flush();\n\t\tvi c=readvi(s);\n\t\tfor(auto w:a[i]){\n\t\t\tif(c[idx[w.a]]){\n\t\t\t\tswap(idx[w.a],idx[w.b]);\n\t\t\t}\n\t\t}\n\t}\n\t\n\tcout<<\"! \";\n\tvi ans(s);\n\trep(i,s)ans[idx[i]]=i+1;\n\tprint(ans);\n\tcout.flush();\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3696, "score_of_the_acc": -0.4832, "final_rank": 8 }, { "submission_id": "aoj_3175_4841139", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\n//typedef complex<D> P;\n#define F first\n#define S second\nconst ll MOD=1000000007;\n//const ll MOD=998244353;\n\ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){int i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T,typename U>T & chmax(T &a,const U &b){if(a<b){a=b;} return a;}\ntemplate<typename T,typename U>T & chmin(T &a,const U &b){if(b<a){a=b;} return a;}\n\nint middle(int lf,int rg){return (rg-lf)/2+lf;}\n\nint main(){\n \n int N;\n cin>>N;\n int sz=1<<N;\n vector<int> A(sz),C(sz),ans(sz),lw(sz),hg(sz),tmp(sz);\n auto ask=\n [&](){\n for(int i=0;i<sz;i++){tmp[ans[i]]=ans[A[i]]+1;}\n cout<<\"? \"<<tmp<<endl;\n cin>>tmp;\n for(int i=0;i<sz;i++){C[i]=tmp[ans[i]];}\n };\n for(int i=0;i<sz;i++){ans[i]=i;}\n for(int i=1,L=2;i<sz;i<<=1,L<<=1){\n for(int lf=0,mid=i,rg=L;lf<sz;lf+=L,mid+=L,rg+=L){\n for(int j=lf;j<mid;j++){lw[j]=mid; hg[j]=rg;}\n }\n for(int dif=i;dif>0;dif>>=1){\n for(int lf=0,mid=i,rg=L;lf<sz;lf+=L,mid+=L,rg+=L){\n for(int j=lf;j<mid;j++){\n A[j]=lw[j]+dif/2;\n A[j+i]=j;\n }\n }\n ask();\n for(int lf=0,mid=i,rg=L;lf<sz;lf+=L,mid+=L,rg+=L){\n for(int j=lf;j<mid;j++){\n if(C[A[j]]){C[A[j]]--; hg[j]=A[j];}\n else{lw[j]=A[j];}\n }\n }\n }\n for(int lf=0,mid=i,rg=L;lf<sz;lf+=L,mid+=L,rg+=L){\n for(int j=lf,k=mid,idx=lf;idx<rg;){\n while(j<mid && hg[j]<=k){tmp[idx++]=ans[j++];}\n if(k<rg){tmp[idx++]=ans[k++];}\n }\n }\n ans=tmp;\n }\n for(int i=0;i<sz;i++){tmp[ans[i]]=i+1;}\n cout<<\"! \"<<tmp<<endl;\ncout<<\"uku\";\ncout<<flush;\n \n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3628, "score_of_the_acc": -0.4289, "final_rank": 1 }, { "submission_id": "aoj_3175_4841136", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\n//typedef complex<D> P;\n#define F first\n#define S second\nconst ll MOD=1000000007;\n//const ll MOD=998244353;\n\ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){int i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T,typename U>T & chmax(T &a,const U &b){if(a<b){a=b;} return a;}\ntemplate<typename T,typename U>T & chmin(T &a,const U &b){if(b<a){a=b;} return a;}\n\nint middle(int lf,int rg){return (rg-lf)/2+lf;}\n\nint main(){\n \n int N;\n cin>>N;\n int sz=1<<N;\n vector<int> A(sz),C(sz),ans(sz),lw(sz),hg(sz),tmp(sz);\n auto ask=\n [&](){\n for(int i=0;i<sz;i++){tmp[ans[i]]=ans[A[i]]+1;}\n cout<<\"? \"<<tmp<<endl;\n cin>>tmp;\n for(int i=0;i<sz;i++){C[i]=tmp[ans[i]];}\n };\n for(int i=0;i<sz;i++){ans[i]=i;}\n for(int i=1,L=2;i<sz;i<<=1,L<<=1){\n for(int lf=0,mid=i,rg=L;lf<sz;lf+=L,mid+=L,rg+=L){\n for(int j=lf;j<mid;j++){lw[j]=mid; hg[j]=rg;}\n }\n for(int dif=i;dif>0;dif>>=1){\n for(int lf=0,mid=i,rg=L;lf<sz;lf+=L,mid+=L,rg+=L){\n for(int j=lf;j<mid;j++){\n A[j]=lw[j]+dif/2;\n A[j+i]=j;\n }\n }\n ask();\n for(int lf=0,mid=i,rg=L;lf<sz;lf+=L,mid+=L,rg+=L){\n for(int j=lf;j<mid;j++){\n if(C[A[j]]){C[A[j]]--; hg[j]=A[j];}\n else{lw[j]=A[j];}\n }\n }\n }\n for(int lf=0,mid=i,rg=L;lf<sz;lf+=L,mid+=L,rg+=L){\n for(int j=lf,k=mid,idx=lf;idx<rg;){\n while(j<mid && hg[j]<=k){tmp[idx++]=ans[j++];}\n if(k<rg){tmp[idx++]=ans[k++];}\n }\n }\n ans=tmp;\n }\n for(int i=0;i<sz;i++){tmp[ans[i]]=i+1;}\n cout<<\"! \"<<tmp<<endl;\ncout<<\"uku\";\n \n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3632, "score_of_the_acc": -0.4321, "final_rank": 3 }, { "submission_id": "aoj_3175_4841129", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\ntypedef unsigned long long int ull;\ntypedef long long int ll;\ntypedef pair<ll,ll> pll;\ntypedef long double D;\n//typedef complex<D> P;\n#define F first\n#define S second\nconst ll MOD=1000000007;\n//const ll MOD=998244353;\n\ntemplate<typename T,typename U>istream & operator >> (istream &i,pair<T,U> &A){i>>A.F>>A.S; return i;}\ntemplate<typename T>istream & operator >> (istream &i,vector<T> &A){for(auto &I:A){i>>I;} return i;}\ntemplate<typename T,typename U>ostream & operator << (ostream &o,const pair<T,U> &A){o<<A.F<<\" \"<<A.S; return o;}\ntemplate<typename T>ostream & operator << (ostream &o,const vector<T> &A){int i=A.size(); for(auto &I:A){o<<I<<(--i?\" \":\"\");} return o;}\ntemplate<typename T,typename U>T & chmax(T &a,const U &b){if(a<b){a=b;} return a;}\ntemplate<typename T,typename U>T & chmin(T &a,const U &b){if(b<a){a=b;} return a;}\n\nint middle(int lf,int rg){return (rg-lf)/2+lf;}\n\nint main(){\n \n int N;\n cin>>N;\n int sz=1<<N;\n vector<int> A(sz),C(sz),ans(sz),lw(sz),hg(sz),tmp(sz);\n auto ask=\n [&](){\n for(int i=0;i<sz;i++){tmp[ans[i]]=ans[A[i]]+1;}\n cout<<\"? \"<<tmp<<endl;\n cin>>tmp;\n for(int i=0;i<sz;i++){C[i]=tmp[ans[i]];}\n };\n for(int i=0;i<sz;i++){ans[i]=i;}\n for(int i=1,L=2;i<sz;i<<=1,L<<=1){\n for(int lf=0,mid=i,rg=L;lf<sz;lf+=L,mid+=L,rg+=L){\n for(int j=lf;j<mid;j++){lw[j]=mid; hg[j]=rg;}\n }\n for(int dif=i;dif>0;dif>>=1){\n for(int lf=0,mid=i,rg=L;lf<sz;lf+=L,mid+=L,rg+=L){\n for(int j=lf;j<mid;j++){\n A[j]=lw[j]+dif/2;\n A[j+i]=j;\n }\n }\n ask();\n for(int lf=0,mid=i,rg=L;lf<sz;lf+=L,mid+=L,rg+=L){\n for(int j=lf;j<mid;j++){\n if(C[A[j]]){C[A[j]]--; hg[j]=A[j];}\n else{lw[j]=A[j];}\n }\n }\n }\n for(int lf=0,mid=i,rg=L;lf<sz;lf+=L,mid+=L,rg+=L){\n for(int j=lf,k=mid,idx=lf;idx<rg;){\n while(j<mid && hg[j]<=k){tmp[idx++]=ans[j++];}\n if(k<rg){tmp[idx++]=ans[k++];}\n }\n }\n ans=tmp;\n }\n for(int i=0;i<sz;i++){tmp[ans[i]]=i+1;}\n cout<<\"! \"<<tmp<<endl;\n\n \n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3628, "score_of_the_acc": -0.4289, "final_rank": 1 }, { "submission_id": "aoj_3175_4841121", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nint n;\n\nvector<int> query(vector<int> &a) {\n cout << \"?\";\n for (int i = 0; i < (1 << n); i++) {\n cout << \" \" << a[i] + 1;\n }\n cout << endl;\n vector<int> c(1 << n);\n for (int i = 0; i < (1 << n); i++) {\n cin >> c[i];\n }\n return c;\n}\n\nvoid answer(vector<int> &p) {\n cout << \"!\";\n for (int i = 0; i < (1 << n); i++) {\n cout << \" \" << p[i] + 1;\n }\n cout << endl;\n}\n\nint main() {\n cin >> n;\n int sz = 1 << n;\n\n vector<vector<int>> v(sz, vector<int>(1));\n for (int i = 0; i < sz; i++) {\n v[i][0] = i;\n }\n\n for (int z = 0; z < n; z++) {\n vector<int> ref(1 << z, 0);\n int pre = 0;\n for (int b = 0; b < z; b++) {\n for (int i = pre; i < pre + (1 << b); i++) {\n if (b < z - 1) ref[2 * i + 1] = ref[i];\n ref[i] += 1 << (z - 1 - b);\n if (b < z - 1) ref[2 * i + 2] = ref[i];\n ref[i]--;\n }\n pre += (1 << b);\n }\n }\n\n vector<int> ret;\n for (int z = 0; z < n; z++) {\n vector<int> a(sz);\n int c = (1 << (n - 1 - z));\n\n for (int k = 0; k < c; k++) {\n vector<int> &s = v[2 * k], &t = v[2 * k + 1];\n for (auto &x : s) a[x] = s[0];\n for (auto &x : t) a[x] = s[0];\n a[t.back()] = s.back();\n }\n ret = query(a);\n for (int k = 0; k < c; k++) {\n if (ret[v[2 * k].back()]) swap(v[2 * k], v[2 * k + 1]);\n }\n\n vector<int> ref(1 << z, 0);\n int pre = 0;\n for (int b = 0; b < z; b++) {\n for (int i = pre; i < pre + (1 << b); i++) {\n if (b < z - 1) ref[2 * i + 1] = ref[i];\n ref[i] += 1 << (z - 1 - b);\n if (b < z - 1) ref[2 * i + 2] = ref[i];\n ref[i]--;\n }\n pre += (1 << b);\n }\n\n vector<vector<int>> num(c, vector<int>(1 << (z + 1)));\n for (int k = 0; k < c; k++) num[k][0] = 1 << z;\n\n pre = 0;\n for (int b = 0; b < z; b++) {\n for (int k = 0; k < c; k++) {\n int sum = 0;\n for (int i = pre; i < pre + (1 << b); i++) {\n for (int j = 0; j < num[k][i]; j++)\n a[v[2 * k][j + sum]] = v[2 * k + 1][ref[i]];\n sum += num[k][i];\n }\n for (auto &x : v[2 * k + 1]) a[x] = v[2 * k][0];\n }\n ret = query(a);\n for (int k = 0; k < c; k++) {\n int sum = 0;\n for (int i = pre; i < pre + (1 << b); i++) {\n int x = ret[v[2 * k + 1][ref[i]]];\n num[k][2 * i + 1] = x;\n num[k][2 * i + 2] = num[k][i] - x;\n }\n }\n pre += (1 << b);\n }\n\n vector<vector<int>> w(c);\n for (int k = 0; k < c; k++) {\n int sum = 0;\n for (int i = 0; i < (1 << z); i++) {\n for (int j = 0; j < num[k][i + (1 << z) - 1]; j++) {\n w[k].push_back(v[2 * k][j + sum]);\n }\n sum += num[k][i + (1 << z) - 1];\n w[k].push_back(v[2 * k + 1][i]);\n }\n }\n\n v = w;\n }\n\n vector<int> ans(sz);\n for (int i = 0; i < sz; i++) ans[v[0][i]] = i;\n answer(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 3632, "score_of_the_acc": -0.4321, "final_rank": 3 } ]
aoj_3171_cpp
H: Traditional Company 問題 あなたは Z 社の労働環境委員会の一員である。この役職たるもの、社員の出退勤時間や人間関係のモニタリングは欠かせないものだ。 Z 社には $N$ 人の社員がいる。それぞれの社員は $1$ から $N$ までの整数で番号付けられており、整数が小さいほど社員として新しいことを表す。社員が違えば仕事効率は十人十色だ。長時間の勤務もものともしない人もいれば、残業が嫌いな人や、そもそも仕事が苦手な人だっているのだ。具体的には、$i$ 番目の社員がすでに $t$ 単位時間働いているとき、単位時間 $\left[ t, t+1 \right)$ の間の仕事効率 $c_{i, t}$ は以下のように定められる。なお、$a_i \geq b_i$ が全ての $i$ について成立すると仮定してよい。 $c_{i, t} = \begin{cases} a_i & t < p_i \\ b_i & \text{otherwise} \end{cases}$ ここで、$i$ 番目の社員の出勤時間を $s_i$、退勤時間を $e_i$ とおこう ($s_i < e_i$)。$i$ 番目の社員の仕事量 $w_i$ は $w_i = \sum_{t=0}^{e_i-s_i-1} c_{i, t}$ と計算される。勤怠管理システムの都合上、それぞれの社員について出勤・退勤の単位時間 $s_i, e_i$ は 整数 でなければならないため、例えば $2.5$ 単位時間勤務したり、時刻 $3.5$ に出勤するなどは認められていない。また、勤務時間 $e_i - s_i$ は $1$ 単位時間以上 必要なので注意しなければならない。 当然といえば当然なのだが、この社内には仲が良い者同士もいれば悪い者同士もいるし、そのどちらの関係でもない社員の組もある。仲が良い者同士なら一緒に仕事をする時間が欲しいものだが、仲が悪い者同士なら一緒に仕事をしたいとは思わないだろう。具体的には、社員 $i, j$ $(i \neq j)$ について仲が良い者同士である場合、$1$ 単位時間以上は必ず同時に仕事をしなければならない。また、社員 $i, j$ $(i \neq j)$ について仲が悪い者同士である場合、同時に仕事をする時間が $1$ 単位時間以上発生しないようにしなければならない。どちらでもない場合に関しては制限はない。例えば社員 $1$ の勤務時間が $[s_1, e_1) = [3, 5)$、社員 $2$ の勤務時間が $[s_2, e_2) = [5, 9)$ であるとき、同時に仕事をした時間が $1$ 単位時間未満であるため、この 2 人が仲が良い者同士である場合はこのような勤務時間帯は採用できない。仲が悪い者同士、あるいはどちらでもない場合はこのような勤務時間帯を採用することができる。 また、Z 社は伝統的精神を重んじているため、社員として新しいほど早めに出勤しなければならないルールが確立されている。具体的には、任意の社員の組 $i, j$ $(i < j)$ について、$s_i \leq s_j$ でなければならない。退勤時刻まで同様の制約をつけると長時間労働の原因となるため、退勤時刻に関しては制限はない。 さて、労働環境委員会の一員であるあなたの仕事は、会社全体の仕事量、つまり $\sum_{i} w_i$ を一定以上の水準に保ちつつオフィスの開放時間 $T$ をできるだけ短くすることである。オフィスの開放時間 $T$ は、$\max_{i} e_i - \min_{j} s_j$ で定義される。 入力形式 以下の形式で与えられる。 $N$ $M$ $X$ $a_1$ $b_1$ $p_1$ $a_2$ $b_2$ $p_2$ ... $a_N$ $b_N$ $p_N$ $u_1$ $v_1$ $f_1$ $u_2$ $v_2$ $f_2$ ... $u_M$ $v_M$ $f_M$ $1$ 行目の $N$ は Z 社の社員数を表し、$M$ は仲が良い、または仲が悪い人間関係の総数を表す。また、$X$ は会社全体の仕事量の下限を表す。つまり、会社全体の仕事量は $X$ 以上でなければならない。 $2$ 行目以降 $N$ 行はそれぞれの社員に関する情報を表す。$a_i, b_i$ は問題文中で説明されたように、$i$ 番目の社員の仕事効率に関する値を表し、$p_i$ は $i$ 番目の社員の仕事効率が切り替わる時間を表す。 $2+N$ 行目以降 $M$ 行は人間関係を表す。$u_i, v_i$ は、$i$ 番目の人間関係が社員 $u_i, v_i$ に関するものであることを表し、$f_i = 1$ であるときは「$u_i, v_i$ は仲が良い者同士である」ことを、$f_i = -1$ であるときは「$u_i, v_i$ は仲が悪い者同士である」ことを表す。なお、この $M$ 個の人間関係で明示されなかった社員の組に関しては、仲が良くも悪くもないと仮定してよい。 制約 入力はすべて整数で与えられる $1 \leq N \leq 100$ $0 \leq M \leq 200$ $1 \leq X \leq 10^6$ $0 \leq |a_i|, |b_i| \leq 10^2$ $1 \leq p_i \leq 10^6$ $a_i \geq b_i$ $1 \leq u_i < v_i \leq N$ $(u_i, v_i) \neq (u_j, v_j)$ $(i \neq j)$ $f_i \in \left\{ -1, 1 \right\}$ 出力形式 人間関係による制約を満たしつつ、会社全体の仕事量を $X$ 以上にできない場合、 -1 を出力せよ。そうでない場合、会社全体の仕事量を $X$ 以上にするときのオフィスの開放時間の最小値を出力せよ。 入力例 1 3 1 100 5 3 5 2 -1 9 2 1 5 1 2 -1 出力例 1 29 例えば以下のようにすれば達成可能である。 社員 $1$ が時刻 $0 $ で出勤、時刻 $20 $ で退勤 (仕事量 $5 \times 5 + 3 \times 15 = 70$) 社員 $2$ が時刻 $20 $ で出勤、時刻 $29 $ で退勤 (仕事量 $2 \times 9 = 18$) 社員 $3$ が時刻 $20 $ で出勤、時刻 $29$ で退勤 (仕事量 $2 \times 5 + 1 \times 4 = 14$) 社員 $1, 2$ は仲が悪い者同士であるが、同時に勤務している時間は $1$ 単位時間未満であるので条件を満たしており、また仕事量の合計は $70 + 18 + 14 = 102 (\geq 100)$ となっている。$29 $ よりも短い時間での達成は不可能であるため、これが答えとなる。$i < j$ ならば $s_i \leq s_j$ でなければならないことに注意せよ。 入力例 2 2 1 50 -3 -5 3 2 1 10 1 2 1 出力例 2 43 例えば以下のようにすれば達 ...(truncated)
[ { "submission_id": "aoj_3171_6169756", "code_snippet": "//#define _GLIBCXX_DEBUG\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define endl '\\n'\n#define lfs cout<<fixed<<setprecision(10)\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n#define UNIQUE(a) (a).erase(unique((a).begin(),(a).end()),(a).end())\n#define spa << \" \" <<\n#define fi first\n#define se second\n#define MP make_pair\n#define MT make_tuple\n#define PB push_back\n#define EB emplace_back\n#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)\n#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)\nusing ll = long long;\nusing ld = long double;\nconst ll MOD1 = 1e9+7;\nconst ll MOD9 = 998244353;\nconst ll INF = 1e18;\nusing P = pair<ll, ll>;\ntemplate<typename T> using PQ = priority_queue<T>;\ntemplate<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}\ntemplate<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}\nll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}\nvoid ans1(bool x){if(x) cout<<\"Yes\"<<endl;else cout<<\"No\"<<endl;}\nvoid ans2(bool x){if(x) cout<<\"YES\"<<endl;else cout<<\"NO\"<<endl;}\nvoid ans3(bool x){if(x) cout<<\"Yay!\"<<endl;else cout<<\":(\"<<endl;}\ntemplate<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} \ntemplate<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);}; \ntemplate<typename T>void debug(const T &v,ll h,ll w,string sv=\" \"){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};\ntemplate<typename T>void debug(const T &v,ll n,string sv=\" \"){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};\ntemplate<typename T>void debug(const vector<T>&v){debug(v,v.size());}\ntemplate<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}\ntemplate<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<\" \";st.pop();}cout<<endl;}\ntemplate<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<\" \";st.pop();}cout<<endl;}\ntemplate<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<\" \";st.pop_front();}cout<<endl;}\ntemplate<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<\" \";st.pop();}cout<<endl;}\ntemplate<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<\" \";st.pop();}cout<<endl;}\ntemplate<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<\" \";cout<<endl;}\ntemplate<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<\" \";cout<<endl;}\ntemplate<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<\" \";cout<<endl;}\ntemplate<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<\"[\"<<z.first<<\"]=\"<<z.second<<\",\";cout<<endl;}\ntemplate<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}\nll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}\nvector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};\ntemplate<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}\ntemplate<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}\ntemplate<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << \" \" << p.second;}\ntemplate<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << \" \";cout<<\"|\"; return os;}\ntemplate<typename T>void rearrange(vector<int>&ord, vector<T>&v){\n auto tmp = v;\n for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];\n}\ntemplate<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){\n rearrange(ord, head);\n rearrange(ord, tail...);\n}\ntemplate<typename T> vector<int> ascend(const vector<T>&v){\n vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);\n sort(ord.begin(),ord.end(),[&](int i,int j){return v[i]<v[j];});\n return ord;\n}\ntemplate<typename T> vector<int> descend(const vector<T>&v){\n vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);\n sort(ord.begin(),ord.end(),[&](int i,int j){return v[i]>v[j];});\n return ord;\n}\nll FLOOR(ll n,ll div){assert(div>0);return n>=0?n/div:(n-div+1)/div;}\nll CEIL(ll n,ll div){assert(div>0);return n>=0?(n+div-1)/div:n/div;}\nll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;}\nll modulo(ll n,ll d){return (n%d+d)%d;};\ntemplate<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}\ntemplate<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}\ntemplate<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};\ntemplate<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};\n//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());\nint popcount(ll x){return __builtin_popcountll(x);};\nint poplow(ll x){return __builtin_ctzll(x);};\nint pophigh(ll x){return 63 - __builtin_clzll(x);};\ntemplate<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};\ntemplate<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};\ntemplate<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};\ntemplate<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};\nll MULT(ll x,ll y){if(LLONG_MAX/x<=y)return LLONG_MAX;return x*y;}\nll POW2(ll x, ll k){ll ret=1,mul=x;while(k){if(mul==LLONG_MAX)return LLONG_MAX;if(k&1)ret=MULT(ret,mul);mul=MULT(mul,mul);k>>=1;}return ret;}\nll POW(ll x, ll k){ll ret=1;for(int i=0;i<k;i++){if(LLONG_MAX/x<=ret)return LLONG_MAX;ret*=x;}return ret;}\ntemplate< typename T = int >\nstruct edge {\n int to;\n T cost;\n int id;\n edge():id(-1){};\n edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}\n operator int() const { return to; }\n};\n\ntemplate<typename T>\nusing Graph = vector<vector<edge<T>>>;\ntemplate<typename T>\nGraph<T>revgraph(const Graph<T> &g){\n Graph<T>ret(g.size());\n for(int i=0;i<g.size();i++){\n for(auto e:g[i]){\n int to = e.to;\n e.to = i;\n ret[to].push_back(e);\n }\n }\n return ret;\n}\ntemplate<typename T>\nGraph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){\n Graph<T> ret(n);\n for(int es = 0; es < m; es++){\n int u,v;\n T w=1;\n cin>>u>>v;u-=indexed,v-=indexed;\n if(weighted)cin>>w;\n ret[u].emplace_back(v,w,es);\n if(!directed)ret[v].emplace_back(u,w,es);\n }\n return ret;\n}\ntemplate<typename T>\nGraph<T> readParent(int n,int indexed=1,bool directed=true){\n Graph<T>ret(n);\n for(int i=1;i<n;i++){\n int p;cin>>p;\n p-=indexed;\n ret[p].emplace_back(i);\n if(!directed)ret[i].emplace_back(p);\n }\n return ret;\n}\n//https://github.com/beet-aizu/library/blob/master/bflow/capacityscaling.cpp\n\n// O(m^2 \\log m \\log U)\n// U: maximum capacity\nenum Objective{\n MINIMIZE = +1,\n MAXIMIZE = -1,\n};\ntemplate<typename Flow, typename Cost,\n Objective objective = Objective::MINIMIZE>\nstruct MinCostFlow{\n template<typename T> inline void chmin(T &x,T y){x=min(x,y);}\n\n struct Edge{\n int src,dst;\n Flow flow,cap;\n Cost cost;\n int rev;\n Edge(int src,int dst,Flow cap,Cost cost,int rev):\n src(src),dst(dst),flow(0),cap(cap),cost(cost),rev(rev){}\n Flow residual_cap()const{return cap-flow;}\n };\n\n struct EdgePtr{\n int v,e;\n EdgePtr(int v,int e):v(v),e(e){}\n };\n\n int n;\n vector<vector<Edge>> G;\n vector<Flow> b;\n vector<Cost> p;\n\n MinCostFlow(int n):n(n),G(n),b(n,0){}\n\n EdgePtr add_edge(int src,int dst,Flow lower,Flow upper,Cost cost){\n int e=G[src].size();\n int r=(src==dst?e+1:G[dst].size());\n assert(lower<=upper);\n G[src].emplace_back(src,dst,+upper,+cost*objective,r);\n G[dst].emplace_back(dst,src,-lower,-cost*objective,e);\n return EdgePtr(src,e);\n }\n\n const Edge &get_edge(EdgePtr ep)const{return G[ep.v][ep.e];}\n\n void push(Edge &e,Flow amount){\n e.flow+=amount;\n G[e.dst][e.rev].flow-=amount;\n }\n\n void add_supply(int v,Flow amount){b[v]+=amount;}\n void add_demand(int v,Flow amount){b[v]-=amount;}\n\n Cost residual_cost(const Edge &e){\n return e.cost+p[e.src]-p[e.dst];\n }\n\n vector<int> excess_vs,deficit_vs;\n void saturate_negative(const Flow delta){\n for(auto &es:G){\n for(auto &e:es){\n Flow cap=e.residual_cap();\n cap-=cap%delta;\n if(cap<0 or residual_cost(e)<0){\n push(e,cap);\n b[e.src]-=cap;\n b[e.dst]+=cap;\n }\n }\n }\n\n excess_vs.clear();\n deficit_vs.clear();\n for(int v=0;v<n;v++){\n if(b[v]>0) excess_vs.emplace_back(v);\n if(b[v]<0) deficit_vs.emplace_back(v);\n }\n }\n\n const Cost unreachable = std::numeric_limits<Cost>::max();\n Cost farthest;\n vector<Cost> dist;\n vector<Edge*> parent;\n\n struct P{\n Cost first;\n int second;\n P(Cost first,int second):first(first),second(second){}\n bool operator<(const P o)const{return first>o.first;}\n };\n\n priority_queue<P> pq;\n\n template<typename Predicate>\n void eliminate(vector<int> &vs,Predicate predicate){\n vs.erase(remove_if(begin(vs),end(vs),predicate),end(vs));\n }\n\n bool dual(const Flow delta){\n eliminate(excess_vs, [&](int v){return b[v]<+delta;});\n eliminate(deficit_vs,[&](int v){return b[v]>-delta;});\n\n dist.assign(n,unreachable);\n for(int v:excess_vs) pq.emplace(dist[v]=0,v);\n\n parent.assign(n,nullptr);\n auto emplace=[&](Edge& e){\n if(e.residual_cap()<delta) return;\n Cost nxt=dist[e.src]+residual_cost(e);\n if(nxt>=dist[e.dst]) return;\n pq.emplace(dist[e.dst]=nxt,e.dst);\n parent[e.dst]=&e;\n };\n\n farthest=0;\n int deficit_count=0;\n while(!pq.empty()){\n Cost d=pq.top().first;\n int v=pq.top().second;\n pq.pop();\n if(dist[v]<d) continue;\n farthest=d;\n\n if(b[v]<=-delta) deficit_count++;\n if(deficit_count>=(int)deficit_vs.size()) break;\n\n for(auto &e:G[v]) emplace(e);\n }\n pq=decltype(pq)();\n\n for(int v=0;v<n;v++)\n p[v]+=min(dist[v],farthest);\n\n return deficit_count>0;\n }\n\n void primal(const Flow delta){\n for(int t:deficit_vs){\n if(dist[t]>farthest) continue;\n Flow f=-b[t];\n int v;\n for(v=t;parent[v];v=parent[v]->src)\n chmin(f,parent[v]->residual_cap());\n chmin(f,b[v]);\n\n f-=f%delta;\n if(f<=0) continue;\n\n for(v=t;parent[v];){\n auto &e=*parent[v];\n push(e,f);\n int u=parent[v]->src;\n if(e.residual_cap()<=0) parent[v]=nullptr;\n v=u;\n }\n b[t]+=f;\n b[v]-=f;\n }\n }\n\n template<Flow SCALING_FACTOR=2>\n bool build(){\n p.resize(n);\n Flow max_flow=1;\n for(auto t:b) max_flow=max({max_flow,t,-t});\n for(auto &es:G)\n for(auto &e:es)\n max_flow=max({max_flow,e.residual_cap(),-e.residual_cap()});\n\n Flow delta=1;\n while(delta<max_flow) delta*=SCALING_FACTOR;\n for(;delta;delta/=SCALING_FACTOR){\n saturate_negative(delta);\n while(dual(delta)) primal(delta);\n }\n\n return excess_vs.empty() and deficit_vs.empty();\n }\n\n template<typename T=Cost>\n T get_cost(){\n T res=0;\n for(auto &es:G)\n for(auto &e:es)\n res+=T(e.flow)*T(e.cost)/T(objective);\n return res/T(2);\n }\n template<typename T=Cost> T get_gain(){return get_cost();}\n\n vector<Cost> get_potential(){\n fill(p.begin(),p.end(),0);\n for(int i=0;i<n;i++)\n for(auto &es:G)\n for(auto &e:es)\n if(e.residual_cap()>0)\n chmin(p[e.dst],p[e.src]+e.cost);\n return p;\n }\n};\n\ntemplate<typename Flow, typename Cost>\nusing MaxGainFlow = MinCostFlow<Flow, Cost, Objective::MAXIMIZE>;\nint main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n ll res=0,buf=0;\n bool judge = true;\n\tll n,m,x;cin>>n>>m>>x;\n\tvector<ll>a(n),b(n),p(n);\n\trep(i,0,n){\n\t\tcin>>a[i]>>b[i]>>p[i];\n\t}\n\tvector<ll>u(m),v(m),f(m);\n\trep(i,0,m)cin>>u[i]>>v[i]>>f[i],u[i]--,v[i]--;\n\tll inf=1e15;\n\tll tinf=1e7;\n\tll ok=tinf,ng=0;\n\twhile(ok-ng>=2){\n\t\tll mid=(ok+ng)/2;\n\t\tMinCostFlow<ll,ll>mcf(2*n);\n\t\trep(i,0,n){\n\t\t\tmcf.add_edge(0,i+n,0,inf,mid);\n\t\t}\n\t\trep(i,0,n-1){\n\t\t\tmcf.add_edge(i+1,i,0,inf,0);\n\t\t}\n\t\trep(i,0,m){\n\t\t\tif(f[i]==1)mcf.add_edge(u[i]+n,v[i],0,inf,-1);\n\t\t\telse{\n\t\t\t\tmcf.add_edge(v[i],u[i]+n,0,inf,0);\n\t\t\t}\n\t\t}\n\t\trep(i,0,n){\n\t\t\tmcf.add_edge(i+n,i,0,inf,-1);\n\t\t\tmcf.add_edge(i+n,i,a[i],inf,0);\n\t\t\tmcf.add_edge(i,i+n,0,a[i]-b[i],p[i]);\n\t\t}\n\t\tbool sw=mcf.build();\n\t\tif(mcf.build()&&mcf.get_cost()>=x)ok=mid;\n\t\telse ng=mid;\n\t\t//debug(mcf.get_potential());\n\t\t//cout<<sw spa mid spa mcf.get_cost()<<endl;\n\t}\n\t//debug(u);\n\t//debug(v);\n\t//debug(f);\n\tanss(ok,tinf,-1);\n return 0;\n}", "accuracy": 1, "time_ms": 140, "memory_kb": 3568, "score_of_the_acc": -0.76, "final_rank": 4 }, { "submission_id": "aoj_3171_4886075", "code_snippet": "#line 1 \"other/h.cpp\"\n#include <bits/extc++.h>\n#if __has_include(<bit>)\n#include <bit>\n#endif\n#line 7 \"Library/alias.hpp\"\nnamespace workspace {\nconstexpr char eol = '\\n';\nusing namespace std;\nusing i32 = int_least32_t;\nusing i64 = int_least64_t;\nusing i128 = __int128_t;\nusing u32 = uint_least32_t;\nusing u64 = uint_least64_t;\nusing u128 = __uint128_t;\ntemplate <class T, class Comp = less<T>>\nusing priority_queue = std::priority_queue<T, vector<T>, Comp>;\ntemplate <class T> using stack = std::stack<T, vector<T>>;\n} // namespace workspace\n#line 5 \"Library/config.hpp\"\nnamespace config {\nconst auto start_time{std::chrono::system_clock::now()};\nint64_t elapsed() {\n using namespace std::chrono;\n const auto end_time{system_clock::now()};\n return duration_cast<milliseconds>(end_time - start_time).count();\n}\n__attribute__((constructor)) void setup() {\n using namespace std;\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n#ifdef _buffer_check\n atexit([] {\n char bufc;\n if (cin >> bufc)\n cerr << \"\\n\\033[43m\\033[30mwarning: buffer not empty.\\033[0m\\n\\n\";\n });\n#endif\n}\nunsigned cases(), caseid = 1;\ntemplate <class F> void loop(F main) {\n for (const unsigned total = cases(); caseid <= total; ++caseid) main();\n}\n} // namespace config\n#line 2 \"Library/option.hpp\"\n#ifdef ONLINE_JUDGE\n #pragma GCC optimize(\"O3\")\n #pragma GCC target(\"avx,avx2\")\n #pragma GCC optimize(\"unroll-loops\")\n#endif\n#line 2 \"Library/utils/binary_search.hpp\"\n#if __cplusplus >= 201703L\n#include <cassert>\n#include <cmath>\n#include <vector>\nnamespace workspace {\n// binary search on a discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>,\n iter_type>\nbinary_search(iter_type ok, iter_type ng, pred_type pred) {\n assert(ok != ng);\n std::make_signed_t<decltype(ng - ok)> dist(ng - ok);\n while (1 < dist || dist < -1) {\n iter_type mid(ok + dist / 2);\n if (pred(mid))\n ok = mid, dist -= dist / 2;\n else\n ng = mid, dist /= 2;\n }\n return ok;\n}\n// parallel binary search on each discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<iter_type>>,\n std::vector<bool>>,\n std::vector<iter_type>>\nbinary_search(std::vector<std::pair<iter_type, iter_type>> ends,\n pred_type pred) {\n std::vector<iter_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n iter_type mid(ok + (ng - ok) / 2);\n if (mids[i] != mid) {\n all_found = false;\n mids[i] = mid;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n// binary search on a real number interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>,\n real_type>\nbinary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) {\n assert(ok != ng);\n while (ok + eps < ng || ng + eps < ok) {\n real_type mid{(ok + ng) / 2};\n (pred(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n// parallel binary search on each real interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<real_type>>,\n std::vector<bool>>,\n std::vector<real_type>>\nbinary_search(std::vector<std::pair<real_type, real_type>> ends,\n const real_type eps, pred_type pred) {\n std::vector<real_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n if (ok + eps < ng || ng + eps < ok) {\n all_found = false;\n mids[i] = (ok + ng) / 2;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/casefmt.hpp\"\nnamespace workspace {\nstd::ostream &casefmt(std::ostream& os) { return os << \"Case #\" << config::caseid << \": \"; }\n} // namespace workspace\n#line 3 \"Library/utils/chval.hpp\"\nnamespace workspace {\ntemplate <class T, class Comp = std::less<T>>\nbool chle(T &x, const T &y, Comp comp = Comp()) {\n return comp(y, x) ? x = y, true : false;\n}\ntemplate <class T, class Comp = std::less<T>>\nbool chge(T &x, const T &y, Comp comp = Comp()) {\n return comp(x, y) ? x = y, true : false;\n}\n} // namespace workspace\n#line 5 \"Library/utils/coordinate_compression.hpp\"\n\ntemplate <class T> class coordinate_compression {\n std::vector<T> uniquely;\n std::vector<size_t> compressed;\n\n public:\n coordinate_compression(const std::vector<T> &raw)\n : uniquely(raw), compressed(raw.size()) {\n std::sort(uniquely.begin(), uniquely.end());\n uniquely.erase(std::unique(uniquely.begin(), uniquely.end()),\n uniquely.end());\n for (size_t i = 0; i != size(); ++i)\n compressed[i] =\n std::lower_bound(uniquely.begin(), uniquely.end(), raw[i]) -\n uniquely.begin();\n }\n\n size_t operator[](const size_t idx) const {\n assert(idx < size());\n return compressed[idx];\n }\n\n size_t size() const { return compressed.size(); }\n\n size_t count() const { return uniquely.size(); }\n\n T value(const size_t ord) const {\n assert(ord < count());\n return uniquely[ord];\n }\n\n size_t order(const T &value) const {\n return std::lower_bound(uniquely.begin(), uniquely.end(), value) -\n uniquely.begin();\n }\n\n auto begin() { return compressed.begin(); }\n auto end() { return compressed.end(); }\n auto rbegin() { return compressed.rbegin(); }\n auto rend() { return compressed.rend(); }\n};\n#line 3 \"Library/utils/fixed_point.hpp\"\nnamespace workspace {\n// specify the return type of lambda.\ntemplate <class lambda_type> class fixed_point {\n lambda_type func;\n\n public:\n fixed_point(lambda_type &&f) : func(std::move(f)) {}\n template <class... Args> auto operator()(Args &&... args) const {\n return func(*this, std::forward<Args>(args)...);\n }\n};\n} // namespace workspace\n#line 6 \"Library/utils/hash.hpp\"\n\n#line 3 \"Library/utils/sfinae.hpp\"\n#include <type_traits>\n\ntemplate <class type, template <class> class trait>\nusing enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;\n\ntemplate <class Container>\nusing element_type = typename std::decay<decltype(\n *std::begin(std::declval<Container&>()))>::type;\n\ntemplate <class T, class = int> struct mapped_of {\n using type = element_type<T>;\n};\ntemplate <class T>\nstruct mapped_of<T,\n typename std::pair<int, typename T::mapped_type>::first_type> {\n using type = typename T::mapped_type;\n};\ntemplate <class T> using mapped_type = typename mapped_of<T>::type;\n\ntemplate <class T, class = void> struct is_integral_ext : std::false_type {};\ntemplate <class T>\nstruct is_integral_ext<\n T, typename std::enable_if<std::is_integral<T>::value>::type>\n : std::true_type {};\ntemplate <> struct is_integral_ext<__int128_t> : std::true_type {};\ntemplate <> struct is_integral_ext<__uint128_t> : std::true_type {};\n#if __cplusplus >= 201402\ntemplate <class T>\nconstexpr static bool is_integral_ext_v = is_integral_ext<T>::value;\n#endif\n\ntemplate <typename T, typename = void> struct multiplicable_uint {\n using type = uint_least32_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> {\n using type = uint_least64_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {\n using type = __uint128_t;\n};\n#line 8 \"Library/utils/hash.hpp\"\nnamespace workspace {\ntemplate <class T, class = void> struct hash : std::hash<T> {};\n#if __cplusplus >= 201703L\ntemplate <class Unique_bits_type>\nstruct hash<Unique_bits_type,\n enable_if_trait_type<Unique_bits_type,\n std::has_unique_object_representations>> {\n size_t operator()(uint64_t x) const {\n static const uint64_t m = std::random_device{}();\n x ^= x >> 23;\n x ^= m;\n x ^= x >> 47;\n return x - (x >> 32);\n }\n};\n#endif\ntemplate <class Key> size_t hash_combine(const size_t &seed, const Key &key) {\n return seed ^\n (hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */);\n}\ntemplate <class T1, class T2> struct hash<std::pair<T1, T2>> {\n size_t operator()(const std::pair<T1, T2> &pair) const {\n return hash_combine(hash<T1>()(pair.first), pair.second);\n }\n};\ntemplate <class... T> class hash<std::tuple<T...>> {\n template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1>\n struct tuple_hash {\n static uint64_t apply(const Tuple &t) {\n return hash_combine(tuple_hash<Tuple, index - 1>::apply(t),\n std::get<index>(t));\n }\n };\n template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> {\n static uint64_t apply(const Tuple &t) { return 0; }\n };\n\n public:\n uint64_t operator()(const std::tuple<T...> &t) const {\n return tuple_hash<std::tuple<T...>>::apply(t);\n }\n};\ntemplate <class hash_table> struct hash_table_wrapper : hash_table {\n using key_type = typename hash_table::key_type;\n size_t count(const key_type &key) const {\n return hash_table::find(key) != hash_table::end();\n }\n template <class... Args> auto emplace(Args &&... args) {\n return hash_table::insert(typename hash_table::value_type(args...));\n }\n};\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing cc_hash_table =\n hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing gp_hash_table =\n hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped>\nusing unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;\ntemplate <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>;\n} // namespace workspace\n#line 2 \"Library/utils/make_vector.hpp\"\n#if __cplusplus >= 201703L\n#include <vector>\nnamespace workspace {\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(size_t* sizes, T const& init = T()) {\n if constexpr (N)\n return std::vector(*sizes, make_vector<T, N - 1>(std::next(sizes), init));\n else\n return init;\n}\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(const size_t (&sizes)[N], T const& init = T()) {\n return make_vector<T, N>((size_t*)sizes, init);\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/random_number_generator.hpp\"\ntemplate <typename num_type> class random_number_generator {\n typename std::conditional<std::is_integral<num_type>::value,\n std::uniform_int_distribution<num_type>,\n std::uniform_real_distribution<num_type>>::type\n unif;\n\n std::mt19937 engine;\n\n public:\n random_number_generator(num_type min = std::numeric_limits<num_type>::min(),\n num_type max = std::numeric_limits<num_type>::max())\n : unif(min, max), engine(std::random_device{}()) {}\n\n num_type min() const { return unif.min(); }\n\n num_type max() const { return unif.max(); }\n\n // generate a random number in [min(), max()].\n num_type operator()() { return unif(engine); }\n};\n#line 3 \"Library/utils/read.hpp\"\nnamespace workspace {\n// read with std::cin.\ntemplate <class T = void>\nstruct read\n{\n typename std::remove_const<T>::type value;\n template <class... types>\n read(types... args) : value(args...) { std::cin >> value; }\n operator T() const { return value; }\n};\ntemplate <>\nstruct read<void>\n{\n template <class T>\n operator T() const { T value; std::cin >> value; return value; }\n};\n} // namespace workspace\n#line 4 \"Library/utils/stream.hpp\"\n\n#line 6 \"Library/utils/stream.hpp\"\nnamespace std {\ntemplate <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n return os << p.first << ' ' << p.second;\n}\ntemplate <class tuple_t, size_t index> struct tuple_is {\n static istream &apply(istream &is, tuple_t &t) {\n tuple_is<tuple_t, index - 1>::apply(is, t);\n return is >> get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_is<tuple_t, SIZE_MAX> {\n static istream &apply(istream &is, tuple_t &t) { return is; }\n};\ntemplate <class... T> istream &operator>>(istream &is, tuple<T...> &t) {\n return tuple_is<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is,\n t);\n}\ntemplate <class tuple_t, size_t index> struct tuple_os {\n static ostream &apply(ostream &os, const tuple_t &t) {\n tuple_os<tuple_t, index - 1>::apply(os, t);\n return os << ' ' << get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, 0> {\n static ostream &apply(ostream &os, const tuple_t &t) {\n return os << get<0>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {\n static ostream &apply(ostream &os, const tuple_t &t) { return os; }\n};\ntemplate <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) {\n return tuple_os<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os,\n t);\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n istream &>::type\noperator>>(istream &is, Container &cont) {\n for (auto &&e : cont) is >> e;\n return is;\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n ostream &>::type\noperator<<(ostream &os, const Container &cont) {\n bool head = true;\n for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;\n return os;\n}\n} // namespace std\n#line 4 \"Library/utils/trinary_search.hpp\"\n// trinary search on discrete range.\ntemplate <class iter_type, class comp_type>\niter_type trinary(iter_type first, iter_type last, comp_type comp)\n{\n assert(first < last);\n intmax_t dist(last - first);\n while(dist > 2)\n {\n iter_type left(first + dist / 3), right(first + dist * 2 / 3);\n if(comp(left, right)) last = right, dist = dist * 2 / 3;\n else first = left, dist -= dist / 3;\n }\n if(dist > 1 && comp(first + 1, first)) ++first;\n return first;\n}\n// trinary search on real numbers.\ntemplate <class comp_type>\nlong double trinary(long double first, long double last, const long double eps, comp_type comp)\n{\n assert(first < last);\n while(last - first > eps)\n {\n long double left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};\n if(comp(left, right)) last = right;\n else first = left;\n }\n return first;\n}\n#line 2 \"Library/utils/wrapper.hpp\"\ntemplate <class Container> class reversed {\n Container &ref, copy;\n\n public:\n reversed(Container &ref) : ref(ref) {}\n reversed(Container &&ref = Container()) : ref(copy), copy(ref) {}\n auto begin() const { return ref.rbegin(); }\n auto end() const { return ref.rend(); }\n};\n#line 9 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main();\n}\nint main() { config::loop(workspace::main); }\n\nunsigned config::cases() {\n // return -1; // unspecified\n // int t; std::cin >> t; return t; // given\n return 1;\n}\n\n#line 4 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n\n#line 4 \"Library/graph/directed/flow/base.hpp\"\n// the base class of flow algorithms.\ntemplate <class cap_t, class cost_t> struct flow_base {\n struct edge_t {\n size_t src, dst;\n cap_t cap;\n cost_t cost;\n edge_t *rev;\n edge_t() = default;\n edge_t(size_t src, size_t dst, const cap_t &cap, edge_t *rev)\n : src(src), dst(dst), cap(cap), rev(rev) {}\n edge_t(size_t src, size_t dst, const cap_t &cap, const cost_t &cost,\n edge_t *rev)\n : src(src), dst(dst), cap(cap), cost(cost), rev(rev) {}\n const cap_t &flow(const cap_t &f = 0) { return cap -= f, rev->cap += f; }\n bool avbl() const { return static_cast<cap_t>(0) < cap; }\n }; // class edge_t\n\n class adj_type {\n edge_t *fst, *lst, *clst;\n\n public:\n template <class... Args> edge_t *emplace(Args &&... args) {\n if (lst == clst) {\n size_t len(clst - fst);\n edge_t *nfst = lst = new edge_t[len << 1];\n for (edge_t *p{fst}; p != clst; ++p, ++lst)\n p->rev->rev = lst, *lst = *p;\n delete[] fst;\n fst = nfst;\n clst = lst + len;\n }\n *lst = edge_t(args...);\n return lst++;\n }\n adj_type() : fst(new edge_t[1]), lst(fst), clst(fst + 1) {}\n ~adj_type() { delete[] fst; }\n edge_t &operator[](size_t i) {\n assert(i < size());\n return *(fst + i);\n }\n size_t size() const { return lst - fst; }\n edge_t *begin() const { return fst; }\n edge_t *end() const { return lst; }\n }; // class adj_type\n\n flow_base(size_t n = 0) : adjs(n) {}\n\n flow_base(const flow_base &other) : adjs(other.size()) {\n for (size_t node{}; node != size(); ++node)\n for (const auto &[src, dst, cap, cost, rev] : other[node])\n if (src == node) {\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, rev->cap, -cost, ptr);\n rev->src = nil;\n } else {\n rev->rev->src = node;\n }\n }\n\n flow_base &operator=(const flow_base &rhs) {\n if (this != &rhs) adjs.swap(flow_base(rhs).adjs);\n return *this;\n }\n\n size_t size() const { return adjs.size(); }\n\n adj_type &operator[](size_t node) {\n assert(node < size());\n return adjs[node];\n }\n const adj_type &operator[](size_t node) const {\n assert(node < size());\n return adjs[node];\n }\n\n virtual edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) {\n assert(src < size());\n assert(dst < size());\n assert(!(cap < static_cast<cap_t>(0)));\n if (!(static_cast<cap_t>(0) < cap) || src == dst) return nullptr;\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, 0, -cost, ptr);\n return ptr;\n }\n\n protected:\n constexpr static size_t nil = -1;\n std::vector<adj_type> adjs;\n}; // class flow_base\n#line 6 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n// Successive shortest paths algorithm.\ntemplate <class cap_t, class cost_t, bool density_tag = false>\nclass min_cost_flow : public flow_base<cap_t, cost_t> {\n using base = flow_base<cap_t, cost_t>;\n using edge_t = typename base::edge_t;\n using base::adjs;\n using base::nil;\n\n cost_t min_cost, total_cost;\n std::vector<cap_t> supp;\n std::vector<cost_t> ptnl;\n\n void copy_member(const min_cost_flow &other) {\n min_cost = other.min_cost;\n total_cost = other.total_cost;\n supp = other.supp;\n ptnl = other.ptnl;\n }\n\n void Dijkstra(std::vector<edge_t *> &last) {\n const cost_t infty(total_cost + 1);\n std::vector<cost_t> nptnl(size(), infty);\n if constexpr (density_tag) {\n // O(V^2)\n std::vector<bool> used(size());\n for (size_t src{}; src != size(); ++src) {\n if (static_cast<cap_t>(0) < supp[src]) {\n used[src] = true;\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (static_cast<cap_t>(0) < supp[e.dst]) continue;\n if (e.avbl() && e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = e.cost;\n last[e.dst] = &e;\n }\n }\n }\n }\n for (;;) {\n size_t src{nil};\n cost_t sp{infty};\n for (size_t node{}; node != size(); ++node) {\n if (used[node] || nptnl[node] == infty) continue;\n cost_t dist{nptnl[node] - ptnl[node]};\n if (dist < sp) {\n sp = dist;\n src = node;\n }\n }\n if (src == nil) break;\n used[src] = true;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[src] + e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = nptnl[src] + e.cost;\n last[e.dst] = &e;\n }\n }\n }\n } else {\n // O((V + E)logV)\n struct node_t {\n size_t id;\n cost_t dist;\n node_t(size_t id, cost_t dist) : id(id), dist(dist) {}\n bool operator<(const node_t &rhs) const { return rhs.dist < dist; }\n };\n std::priority_queue<node_t> que;\n for (size_t src{}; src != size(); ++src) {\n if (supp[src] > static_cast<cap_t>(0)) {\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (supp[e.dst] > static_cast<cap_t>(0)) continue;\n if (e.avbl() && nptnl[e.dst] > e.cost) {\n que.emplace(e.dst, (nptnl[e.dst] = e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n while (!que.empty()) {\n auto [src, ndist] = que.top();\n que.pop();\n if (ndist + ptnl[src] != nptnl[src]) continue;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[e.dst] > nptnl[src] + e.cost) {\n que.emplace(e.dst,\n (nptnl[e.dst] = nptnl[src] + e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n ptnl.swap(nptnl);\n }\n\n public:\n using base::size;\n\n min_cost_flow(size_t n = 0)\n : base::flow_base(n), min_cost(0), total_cost(0), supp(n), ptnl(n) {}\n\n min_cost_flow(const min_cost_flow &other) : base::flow_base(other) {\n copy_member(other);\n }\n\n min_cost_flow &operator=(const min_cost_flow &other) {\n base::operator=(other);\n copy_member(other);\n return *this;\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cost_t &cost);\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) override {\n assert(src != dst);\n if (cost < static_cast<cost_t>(0)) {\n supp[src] -= cap;\n supp[dst] += cap;\n min_cost += cap * cost;\n total_cost -= cap * cost;\n return base::add_edge(dst, src, cap, -cost);\n }\n total_cost += cap * cost;\n return base::add_edge(src, dst, cap, cost);\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &lower,\n const cap_t &upper, const cost_t &cost) {\n assert(!(upper < lower));\n supp[src] -= lower;\n supp[dst] += lower;\n min_cost += lower * cost;\n return add_edge(src, dst, upper - lower, cost);\n }\n\n const cap_t &supply(size_t node, const cap_t &vol = 0) {\n assert(node < size());\n return supp[node] += vol;\n }\n\n const cap_t &demand(size_t node, const cap_t &vol) {\n return supply(node, -vol);\n }\n\n bool flow() {\n for (bool aug = true; aug;) {\n aug = false;\n std::vector<edge_t *> last(size());\n Dijkstra(last);\n std::vector<bool> shut(size());\n for (size_t dst{}; dst != size(); ++dst) {\n if (supp[dst] < static_cast<cap_t>(0) and last[dst]) {\n cap_t resid{-supp[dst]};\n size_t src{dst}, block{nil};\n while (last[src] && !shut[src]) {\n if (!(resid < last[src]->cap)) resid = last[block = src]->cap;\n src = last[src]->src;\n }\n if (shut[src])\n block = src;\n else {\n if (!(resid < supp[src])) {\n resid = supp[src];\n block = src;\n }\n for (edge_t *e{last[dst]}; e; e = last[e->src]) {\n e->cap -= resid;\n e->rev->cap += resid;\n }\n supp[src] -= resid;\n supp[dst] += resid;\n min_cost += ptnl[dst] * resid;\n aug = true;\n }\n if (~block) {\n for (size_t node{dst};; node = last[node]->src) {\n shut[node] = true;\n if (node == block) break;\n }\n }\n }\n }\n }\n return std::none_of(begin(supp), end(supp),\n [](const cap_t &s) { return s < 0 || 0 < s; });\n }\n\n cost_t optimal() {\n assert(flow());\n return min_cost;\n }\n}; // class min_cost_flow\n#line 22 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main() {\n // start here!\n const i64 inf = 1e10;\n int n, m, x;\n cin >> n >> m >> x;\n\n min_cost_flow<i64, i64> base(n * 3);\n // make\n {\n for (int i = 0; i < n; i++) {\n int a, b, p;\n cin >> a >> b >> p;\n base.add_edge(3 * i + 1, 3 * i, inf, p);\n base.add_edge(3 * i, 3 * i + 1, inf, -1);\n base.add_edge(3 * i + 1, 3 * i + 2, inf, 0);\n if (i) base.add_edge(3 * (i - 1), 3 * i, inf, 0);\n base.supply(3 * i, -a);\n base.supply(3 * i + 1, a - b);\n base.supply(3 * i + 2, b);\n }\n }\n for (auto j = 0; j < m; ++j) {\n int u, v, f;\n cin >> u >> v >> f;\n --u, --v;\n if (f > 0) {\n base.add_edge(3 * v, 3 * u + 2, inf, 1);\n } else {\n base.add_edge(3 * u + 2, 3 * v, inf, 0);\n }\n }\n\n auto ok = [&](int t) -> bool {\n auto mcf = base;\n for (int i = 0; i < n; i++) {\n mcf.add_edge(3 * i + 2, 0, inf, t);\n }\n if (mcf.flow()) {\n auto opt = mcf.optimal();\n return opt >= x;\n }\n return false;\n };\n \n const int tmax = x + 100 * n * (n - 1); \n\n auto ans = binary_search(tmax + 1, -1, ok);\n if (ans > tmax)\n cout << \"-1\\n\";\n else\n cout << ans << eol;\n}\n}", "accuracy": 0.4222222222222222, "time_ms": 40, "memory_kb": 3600, "score_of_the_acc": -0.6148, "final_rank": 14 }, { "submission_id": "aoj_3171_4886073", "code_snippet": "#line 1 \"other/h.cpp\"\n#include <bits/extc++.h>\n#if __has_include(<bit>)\n#include <bit>\n#endif\n#line 7 \"Library/alias.hpp\"\nnamespace workspace {\nconstexpr char eol = '\\n';\nusing namespace std;\nusing i32 = int_least32_t;\nusing i64 = int_least64_t;\nusing i128 = __int128_t;\nusing u32 = uint_least32_t;\nusing u64 = uint_least64_t;\nusing u128 = __uint128_t;\ntemplate <class T, class Comp = less<T>>\nusing priority_queue = std::priority_queue<T, vector<T>, Comp>;\ntemplate <class T> using stack = std::stack<T, vector<T>>;\n} // namespace workspace\n#line 5 \"Library/config.hpp\"\nnamespace config {\nconst auto start_time{std::chrono::system_clock::now()};\nint64_t elapsed() {\n using namespace std::chrono;\n const auto end_time{system_clock::now()};\n return duration_cast<milliseconds>(end_time - start_time).count();\n}\n__attribute__((constructor)) void setup() {\n using namespace std;\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n#ifdef _buffer_check\n atexit([] {\n char bufc;\n if (cin >> bufc)\n cerr << \"\\n\\033[43m\\033[30mwarning: buffer not empty.\\033[0m\\n\\n\";\n });\n#endif\n}\nunsigned cases(), caseid = 1;\ntemplate <class F> void loop(F main) {\n for (const unsigned total = cases(); caseid <= total; ++caseid) main();\n}\n} // namespace config\n#line 2 \"Library/option.hpp\"\n#ifdef ONLINE_JUDGE\n #pragma GCC optimize(\"O3\")\n #pragma GCC target(\"avx,avx2\")\n #pragma GCC optimize(\"unroll-loops\")\n#endif\n#line 2 \"Library/utils/binary_search.hpp\"\n#if __cplusplus >= 201703L\n#include <cassert>\n#include <cmath>\n#include <vector>\nnamespace workspace {\n// binary search on a discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>,\n iter_type>\nbinary_search(iter_type ok, iter_type ng, pred_type pred) {\n assert(ok != ng);\n std::make_signed_t<decltype(ng - ok)> dist(ng - ok);\n while (1 < dist || dist < -1) {\n iter_type mid(ok + dist / 2);\n if (pred(mid))\n ok = mid, dist -= dist / 2;\n else\n ng = mid, dist /= 2;\n }\n return ok;\n}\n// parallel binary search on each discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<iter_type>>,\n std::vector<bool>>,\n std::vector<iter_type>>\nbinary_search(std::vector<std::pair<iter_type, iter_type>> ends,\n pred_type pred) {\n std::vector<iter_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n iter_type mid(ok + (ng - ok) / 2);\n if (mids[i] != mid) {\n all_found = false;\n mids[i] = mid;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n// binary search on a real number interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>,\n real_type>\nbinary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) {\n assert(ok != ng);\n while (ok + eps < ng || ng + eps < ok) {\n real_type mid{(ok + ng) / 2};\n (pred(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n// parallel binary search on each real interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<real_type>>,\n std::vector<bool>>,\n std::vector<real_type>>\nbinary_search(std::vector<std::pair<real_type, real_type>> ends,\n const real_type eps, pred_type pred) {\n std::vector<real_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n if (ok + eps < ng || ng + eps < ok) {\n all_found = false;\n mids[i] = (ok + ng) / 2;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/casefmt.hpp\"\nnamespace workspace {\nstd::ostream &casefmt(std::ostream& os) { return os << \"Case #\" << config::caseid << \": \"; }\n} // namespace workspace\n#line 3 \"Library/utils/chval.hpp\"\nnamespace workspace {\ntemplate <class T, class Comp = std::less<T>>\nbool chle(T &x, const T &y, Comp comp = Comp()) {\n return comp(y, x) ? x = y, true : false;\n}\ntemplate <class T, class Comp = std::less<T>>\nbool chge(T &x, const T &y, Comp comp = Comp()) {\n return comp(x, y) ? x = y, true : false;\n}\n} // namespace workspace\n#line 5 \"Library/utils/coordinate_compression.hpp\"\n\ntemplate <class T> class coordinate_compression {\n std::vector<T> uniquely;\n std::vector<size_t> compressed;\n\n public:\n coordinate_compression(const std::vector<T> &raw)\n : uniquely(raw), compressed(raw.size()) {\n std::sort(uniquely.begin(), uniquely.end());\n uniquely.erase(std::unique(uniquely.begin(), uniquely.end()),\n uniquely.end());\n for (size_t i = 0; i != size(); ++i)\n compressed[i] =\n std::lower_bound(uniquely.begin(), uniquely.end(), raw[i]) -\n uniquely.begin();\n }\n\n size_t operator[](const size_t idx) const {\n assert(idx < size());\n return compressed[idx];\n }\n\n size_t size() const { return compressed.size(); }\n\n size_t count() const { return uniquely.size(); }\n\n T value(const size_t ord) const {\n assert(ord < count());\n return uniquely[ord];\n }\n\n size_t order(const T &value) const {\n return std::lower_bound(uniquely.begin(), uniquely.end(), value) -\n uniquely.begin();\n }\n\n auto begin() { return compressed.begin(); }\n auto end() { return compressed.end(); }\n auto rbegin() { return compressed.rbegin(); }\n auto rend() { return compressed.rend(); }\n};\n#line 3 \"Library/utils/fixed_point.hpp\"\nnamespace workspace {\n// specify the return type of lambda.\ntemplate <class lambda_type> class fixed_point {\n lambda_type func;\n\n public:\n fixed_point(lambda_type &&f) : func(std::move(f)) {}\n template <class... Args> auto operator()(Args &&... args) const {\n return func(*this, std::forward<Args>(args)...);\n }\n};\n} // namespace workspace\n#line 6 \"Library/utils/hash.hpp\"\n\n#line 3 \"Library/utils/sfinae.hpp\"\n#include <type_traits>\n\ntemplate <class type, template <class> class trait>\nusing enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;\n\ntemplate <class Container>\nusing element_type = typename std::decay<decltype(\n *std::begin(std::declval<Container&>()))>::type;\n\ntemplate <class T, class = int> struct mapped_of {\n using type = element_type<T>;\n};\ntemplate <class T>\nstruct mapped_of<T,\n typename std::pair<int, typename T::mapped_type>::first_type> {\n using type = typename T::mapped_type;\n};\ntemplate <class T> using mapped_type = typename mapped_of<T>::type;\n\ntemplate <class T, class = void> struct is_integral_ext : std::false_type {};\ntemplate <class T>\nstruct is_integral_ext<\n T, typename std::enable_if<std::is_integral<T>::value>::type>\n : std::true_type {};\ntemplate <> struct is_integral_ext<__int128_t> : std::true_type {};\ntemplate <> struct is_integral_ext<__uint128_t> : std::true_type {};\n#if __cplusplus >= 201402\ntemplate <class T>\nconstexpr static bool is_integral_ext_v = is_integral_ext<T>::value;\n#endif\n\ntemplate <typename T, typename = void> struct multiplicable_uint {\n using type = uint_least32_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> {\n using type = uint_least64_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {\n using type = __uint128_t;\n};\n#line 8 \"Library/utils/hash.hpp\"\nnamespace workspace {\ntemplate <class T, class = void> struct hash : std::hash<T> {};\n#if __cplusplus >= 201703L\ntemplate <class Unique_bits_type>\nstruct hash<Unique_bits_type,\n enable_if_trait_type<Unique_bits_type,\n std::has_unique_object_representations>> {\n size_t operator()(uint64_t x) const {\n static const uint64_t m = std::random_device{}();\n x ^= x >> 23;\n x ^= m;\n x ^= x >> 47;\n return x - (x >> 32);\n }\n};\n#endif\ntemplate <class Key> size_t hash_combine(const size_t &seed, const Key &key) {\n return seed ^\n (hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */);\n}\ntemplate <class T1, class T2> struct hash<std::pair<T1, T2>> {\n size_t operator()(const std::pair<T1, T2> &pair) const {\n return hash_combine(hash<T1>()(pair.first), pair.second);\n }\n};\ntemplate <class... T> class hash<std::tuple<T...>> {\n template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1>\n struct tuple_hash {\n static uint64_t apply(const Tuple &t) {\n return hash_combine(tuple_hash<Tuple, index - 1>::apply(t),\n std::get<index>(t));\n }\n };\n template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> {\n static uint64_t apply(const Tuple &t) { return 0; }\n };\n\n public:\n uint64_t operator()(const std::tuple<T...> &t) const {\n return tuple_hash<std::tuple<T...>>::apply(t);\n }\n};\ntemplate <class hash_table> struct hash_table_wrapper : hash_table {\n using key_type = typename hash_table::key_type;\n size_t count(const key_type &key) const {\n return hash_table::find(key) != hash_table::end();\n }\n template <class... Args> auto emplace(Args &&... args) {\n return hash_table::insert(typename hash_table::value_type(args...));\n }\n};\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing cc_hash_table =\n hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing gp_hash_table =\n hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped>\nusing unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;\ntemplate <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>;\n} // namespace workspace\n#line 2 \"Library/utils/make_vector.hpp\"\n#if __cplusplus >= 201703L\n#include <vector>\nnamespace workspace {\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(size_t* sizes, T const& init = T()) {\n if constexpr (N)\n return std::vector(*sizes, make_vector<T, N - 1>(std::next(sizes), init));\n else\n return init;\n}\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(const size_t (&sizes)[N], T const& init = T()) {\n return make_vector<T, N>((size_t*)sizes, init);\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/random_number_generator.hpp\"\ntemplate <typename num_type> class random_number_generator {\n typename std::conditional<std::is_integral<num_type>::value,\n std::uniform_int_distribution<num_type>,\n std::uniform_real_distribution<num_type>>::type\n unif;\n\n std::mt19937 engine;\n\n public:\n random_number_generator(num_type min = std::numeric_limits<num_type>::min(),\n num_type max = std::numeric_limits<num_type>::max())\n : unif(min, max), engine(std::random_device{}()) {}\n\n num_type min() const { return unif.min(); }\n\n num_type max() const { return unif.max(); }\n\n // generate a random number in [min(), max()].\n num_type operator()() { return unif(engine); }\n};\n#line 3 \"Library/utils/read.hpp\"\nnamespace workspace {\n// read with std::cin.\ntemplate <class T = void>\nstruct read\n{\n typename std::remove_const<T>::type value;\n template <class... types>\n read(types... args) : value(args...) { std::cin >> value; }\n operator T() const { return value; }\n};\ntemplate <>\nstruct read<void>\n{\n template <class T>\n operator T() const { T value; std::cin >> value; return value; }\n};\n} // namespace workspace\n#line 4 \"Library/utils/stream.hpp\"\n\n#line 6 \"Library/utils/stream.hpp\"\nnamespace std {\ntemplate <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n return os << p.first << ' ' << p.second;\n}\ntemplate <class tuple_t, size_t index> struct tuple_is {\n static istream &apply(istream &is, tuple_t &t) {\n tuple_is<tuple_t, index - 1>::apply(is, t);\n return is >> get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_is<tuple_t, SIZE_MAX> {\n static istream &apply(istream &is, tuple_t &t) { return is; }\n};\ntemplate <class... T> istream &operator>>(istream &is, tuple<T...> &t) {\n return tuple_is<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is,\n t);\n}\ntemplate <class tuple_t, size_t index> struct tuple_os {\n static ostream &apply(ostream &os, const tuple_t &t) {\n tuple_os<tuple_t, index - 1>::apply(os, t);\n return os << ' ' << get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, 0> {\n static ostream &apply(ostream &os, const tuple_t &t) {\n return os << get<0>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {\n static ostream &apply(ostream &os, const tuple_t &t) { return os; }\n};\ntemplate <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) {\n return tuple_os<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os,\n t);\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n istream &>::type\noperator>>(istream &is, Container &cont) {\n for (auto &&e : cont) is >> e;\n return is;\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n ostream &>::type\noperator<<(ostream &os, const Container &cont) {\n bool head = true;\n for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;\n return os;\n}\n} // namespace std\n#line 4 \"Library/utils/trinary_search.hpp\"\n// trinary search on discrete range.\ntemplate <class iter_type, class comp_type>\niter_type trinary(iter_type first, iter_type last, comp_type comp)\n{\n assert(first < last);\n intmax_t dist(last - first);\n while(dist > 2)\n {\n iter_type left(first + dist / 3), right(first + dist * 2 / 3);\n if(comp(left, right)) last = right, dist = dist * 2 / 3;\n else first = left, dist -= dist / 3;\n }\n if(dist > 1 && comp(first + 1, first)) ++first;\n return first;\n}\n// trinary search on real numbers.\ntemplate <class comp_type>\nlong double trinary(long double first, long double last, const long double eps, comp_type comp)\n{\n assert(first < last);\n while(last - first > eps)\n {\n long double left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};\n if(comp(left, right)) last = right;\n else first = left;\n }\n return first;\n}\n#line 2 \"Library/utils/wrapper.hpp\"\ntemplate <class Container> class reversed {\n Container &ref, copy;\n\n public:\n reversed(Container &ref) : ref(ref) {}\n reversed(Container &&ref = Container()) : ref(copy), copy(ref) {}\n auto begin() const { return ref.rbegin(); }\n auto end() const { return ref.rend(); }\n};\n#line 9 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main();\n}\nint main() { config::loop(workspace::main); }\n\nunsigned config::cases() {\n // return -1; // unspecified\n // int t; std::cin >> t; return t; // given\n return 1;\n}\n\n#line 4 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n\n#line 4 \"Library/graph/directed/flow/base.hpp\"\n// the base class of flow algorithms.\ntemplate <class cap_t, class cost_t> struct flow_base {\n struct edge_t {\n size_t src, dst;\n cap_t cap;\n cost_t cost;\n edge_t *rev;\n edge_t() = default;\n edge_t(size_t src, size_t dst, const cap_t &cap, edge_t *rev)\n : src(src), dst(dst), cap(cap), rev(rev) {}\n edge_t(size_t src, size_t dst, const cap_t &cap, const cost_t &cost,\n edge_t *rev)\n : src(src), dst(dst), cap(cap), cost(cost), rev(rev) {}\n const cap_t &flow(const cap_t &f = 0) { return cap -= f, rev->cap += f; }\n bool avbl() const { return static_cast<cap_t>(0) < cap; }\n }; // class edge_t\n\n class adj_type {\n edge_t *fst, *lst, *clst;\n\n public:\n template <class... Args> edge_t *emplace(Args &&... args) {\n if (lst == clst) {\n size_t len(clst - fst);\n edge_t *nfst = lst = new edge_t[len << 1];\n for (edge_t *p{fst}; p != clst; ++p, ++lst)\n p->rev->rev = lst, *lst = *p;\n delete[] fst;\n fst = nfst;\n clst = lst + len;\n }\n *lst = edge_t(args...);\n return lst++;\n }\n adj_type() : fst(new edge_t[1]), lst(fst), clst(fst + 1) {}\n ~adj_type() { delete[] fst; }\n edge_t &operator[](size_t i) {\n assert(i < size());\n return *(fst + i);\n }\n size_t size() const { return lst - fst; }\n edge_t *begin() const { return fst; }\n edge_t *end() const { return lst; }\n }; // class adj_type\n\n flow_base(size_t n = 0) : adjs(n) {}\n\n flow_base(const flow_base &other) : adjs(other.size()) {\n for (size_t node{}; node != size(); ++node)\n for (const auto &[src, dst, cap, cost, rev] : other[node])\n if (src == node) {\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, rev->cap, -cost, ptr);\n rev->src = nil;\n } else {\n rev->rev->src = node;\n }\n }\n\n flow_base &operator=(const flow_base &rhs) {\n if (this != &rhs) adjs.swap(flow_base(rhs).adjs);\n return *this;\n }\n\n size_t size() const { return adjs.size(); }\n\n adj_type &operator[](size_t node) {\n assert(node < size());\n return adjs[node];\n }\n const adj_type &operator[](size_t node) const {\n assert(node < size());\n return adjs[node];\n }\n\n virtual edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) {\n assert(src < size());\n assert(dst < size());\n assert(!(cap < static_cast<cap_t>(0)));\n if (!(static_cast<cap_t>(0) < cap) || src == dst) return nullptr;\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, 0, -cost, ptr);\n return ptr;\n }\n\n protected:\n constexpr static size_t nil = -1;\n std::vector<adj_type> adjs;\n}; // class flow_base\n#line 6 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n// Successive shortest paths algorithm.\ntemplate <class cap_t, class cost_t, bool density_tag = false>\nclass min_cost_flow : public flow_base<cap_t, cost_t> {\n using base = flow_base<cap_t, cost_t>;\n using edge_t = typename base::edge_t;\n using base::adjs;\n using base::nil;\n\n cost_t min_cost, total_cost;\n std::vector<cap_t> supp;\n std::vector<cost_t> ptnl;\n\n void copy_member(const min_cost_flow &other) {\n min_cost = other.min_cost;\n total_cost = other.total_cost;\n supp = other.supp;\n ptnl = other.ptnl;\n }\n\n void Dijkstra(std::vector<edge_t *> &last) {\n const cost_t infty(total_cost + 1);\n std::vector<cost_t> nptnl(size(), infty);\n if constexpr (density_tag) {\n // O(V^2)\n std::vector<bool> used(size());\n for (size_t src{}; src != size(); ++src) {\n if (static_cast<cap_t>(0) < supp[src]) {\n used[src] = true;\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (static_cast<cap_t>(0) < supp[e.dst]) continue;\n if (e.avbl() && e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = e.cost;\n last[e.dst] = &e;\n }\n }\n }\n }\n for (;;) {\n size_t src{nil};\n cost_t sp{infty};\n for (size_t node{}; node != size(); ++node) {\n if (used[node] || nptnl[node] == infty) continue;\n cost_t dist{nptnl[node] - ptnl[node]};\n if (dist < sp) {\n sp = dist;\n src = node;\n }\n }\n if (src == nil) break;\n used[src] = true;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[src] + e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = nptnl[src] + e.cost;\n last[e.dst] = &e;\n }\n }\n }\n } else {\n // O((V + E)logV)\n struct node_t {\n size_t id;\n cost_t dist;\n node_t(size_t id, cost_t dist) : id(id), dist(dist) {}\n bool operator<(const node_t &rhs) const { return rhs.dist < dist; }\n };\n std::priority_queue<node_t> que;\n for (size_t src{}; src != size(); ++src) {\n if (supp[src] > static_cast<cap_t>(0)) {\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (supp[e.dst] > static_cast<cap_t>(0)) continue;\n if (e.avbl() && nptnl[e.dst] > e.cost) {\n que.emplace(e.dst, (nptnl[e.dst] = e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n while (!que.empty()) {\n auto [src, ndist] = que.top();\n que.pop();\n if (ndist + ptnl[src] != nptnl[src]) continue;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[e.dst] > nptnl[src] + e.cost) {\n que.emplace(e.dst,\n (nptnl[e.dst] = nptnl[src] + e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n ptnl.swap(nptnl);\n }\n\n public:\n using base::size;\n\n min_cost_flow(size_t n = 0)\n : base::flow_base(n), min_cost(0), total_cost(0), supp(n), ptnl(n) {}\n\n min_cost_flow(const min_cost_flow &other) : base::flow_base(other) {\n copy_member(other);\n }\n\n min_cost_flow &operator=(const min_cost_flow &other) {\n base::operator=(other);\n copy_member(other);\n return *this;\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cost_t &cost);\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) override {\n assert(src != dst);\n if (cost < static_cast<cost_t>(0)) {\n supp[src] -= cap;\n supp[dst] += cap;\n min_cost += cap * cost;\n total_cost -= cap * cost;\n return base::add_edge(dst, src, cap, -cost);\n }\n total_cost += cap * cost;\n return base::add_edge(src, dst, cap, cost);\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &lower,\n const cap_t &upper, const cost_t &cost) {\n assert(!(upper < lower));\n supp[src] -= lower;\n supp[dst] += lower;\n min_cost += lower * cost;\n return add_edge(src, dst, upper - lower, cost);\n }\n\n const cap_t &supply(size_t node, const cap_t &vol = 0) {\n assert(node < size());\n return supp[node] += vol;\n }\n\n const cap_t &demand(size_t node, const cap_t &vol) {\n return supply(node, -vol);\n }\n\n bool flow() {\n for (bool aug = true; aug;) {\n aug = false;\n std::vector<edge_t *> last(size());\n Dijkstra(last);\n std::vector<bool> shut(size());\n for (size_t dst{}; dst != size(); ++dst) {\n if (supp[dst] < static_cast<cap_t>(0) and last[dst]) {\n cap_t resid{-supp[dst]};\n size_t src{dst}, block{nil};\n while (last[src] && !shut[src]) {\n if (!(resid < last[src]->cap)) resid = last[block = src]->cap;\n src = last[src]->src;\n }\n if (shut[src])\n block = src;\n else {\n if (!(resid < supp[src])) {\n resid = supp[src];\n block = src;\n }\n for (edge_t *e{last[dst]}; e; e = last[e->src]) {\n e->cap -= resid;\n e->rev->cap += resid;\n }\n supp[src] -= resid;\n supp[dst] += resid;\n min_cost += ptnl[dst] * resid;\n aug = true;\n }\n if (~block) {\n for (size_t node{dst};; node = last[node]->src) {\n shut[node] = true;\n if (node == block) break;\n }\n }\n }\n }\n }\n return std::none_of(begin(supp), end(supp),\n [](const cap_t &s) { return s < 0 || 0 < s; });\n }\n\n cost_t optimal() {\n assert(flow());\n return min_cost;\n }\n}; // class min_cost_flow\n#line 22 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main() {\n // start here!\n const i64 inf = 1e10;\n int n, m, x;\n cin >> n >> m >> x;\n\n min_cost_flow<i64, i64> base(n * 3);\n // make\n {\n for (int i = 0; i < n; i++) {\n int a, b, p;\n cin >> a >> b >> p;\n base.add_edge(3 * i + 1, 3 * i, inf, p);\n base.add_edge(3 * i, 3 * i + 1, inf, -1);\n base.add_edge(3 * i + 1, 3 * i + 2, inf, 0);\n if (i) base.add_edge(3 * (i - 1), 3 * i, inf, 0);\n base.supply(3 * i, -a);\n base.supply(3 * i + 1, a - b);\n base.supply(3 * i + 2, b);\n }\n }\n for (auto j = 0; j < m; ++j) {\n int u, v, f;\n cin >> u >> v >> f;\n --u, --v;\n if (f > 0) {\n base.add_edge(3 * v, 3 * u + 2, inf, 1);\n } else {\n base.add_edge(3 * u + 2, 3 * v, inf, 0);\n }\n }\n\n auto ok = [&](int t) -> bool {\n auto mcf = base;\n for (int i = 0; i < n; i++) {\n mcf.add_edge(3 * i + 2, 0, inf, t);\n }\n if (mcf.flow()) {\n auto opt = mcf.optimal();\n return opt >= x;\n }\n return false;\n };\n\n auto ans = binary_search(x + 200 * (m + n) + 1, -1, ok);\n if (ans > x + 200 * (m + n))\n cout << \"-1\\n\";\n else\n cout << ans << eol;\n}\n}", "accuracy": 0.4222222222222222, "time_ms": 40, "memory_kb": 3680, "score_of_the_acc": -0.7518, "final_rank": 18 }, { "submission_id": "aoj_3171_4886072", "code_snippet": "#line 1 \"other/h.cpp\"\n#include <bits/extc++.h>\n#if __has_include(<bit>)\n#include <bit>\n#endif\n#line 7 \"Library/alias.hpp\"\nnamespace workspace {\nconstexpr char eol = '\\n';\nusing namespace std;\nusing i32 = int_least32_t;\nusing i64 = int_least64_t;\nusing i128 = __int128_t;\nusing u32 = uint_least32_t;\nusing u64 = uint_least64_t;\nusing u128 = __uint128_t;\ntemplate <class T, class Comp = less<T>>\nusing priority_queue = std::priority_queue<T, vector<T>, Comp>;\ntemplate <class T> using stack = std::stack<T, vector<T>>;\n} // namespace workspace\n#line 5 \"Library/config.hpp\"\nnamespace config {\nconst auto start_time{std::chrono::system_clock::now()};\nint64_t elapsed() {\n using namespace std::chrono;\n const auto end_time{system_clock::now()};\n return duration_cast<milliseconds>(end_time - start_time).count();\n}\n__attribute__((constructor)) void setup() {\n using namespace std;\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n#ifdef _buffer_check\n atexit([] {\n char bufc;\n if (cin >> bufc)\n cerr << \"\\n\\033[43m\\033[30mwarning: buffer not empty.\\033[0m\\n\\n\";\n });\n#endif\n}\nunsigned cases(), caseid = 1;\ntemplate <class F> void loop(F main) {\n for (const unsigned total = cases(); caseid <= total; ++caseid) main();\n}\n} // namespace config\n#line 2 \"Library/option.hpp\"\n#ifdef ONLINE_JUDGE\n #pragma GCC optimize(\"O3\")\n #pragma GCC target(\"avx,avx2\")\n #pragma GCC optimize(\"unroll-loops\")\n#endif\n#line 2 \"Library/utils/binary_search.hpp\"\n#if __cplusplus >= 201703L\n#include <cassert>\n#include <cmath>\n#include <vector>\nnamespace workspace {\n// binary search on a discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>,\n iter_type>\nbinary_search(iter_type ok, iter_type ng, pred_type pred) {\n assert(ok != ng);\n std::make_signed_t<decltype(ng - ok)> dist(ng - ok);\n while (1 < dist || dist < -1) {\n iter_type mid(ok + dist / 2);\n if (pred(mid))\n ok = mid, dist -= dist / 2;\n else\n ng = mid, dist /= 2;\n }\n return ok;\n}\n// parallel binary search on each discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<iter_type>>,\n std::vector<bool>>,\n std::vector<iter_type>>\nbinary_search(std::vector<std::pair<iter_type, iter_type>> ends,\n pred_type pred) {\n std::vector<iter_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n iter_type mid(ok + (ng - ok) / 2);\n if (mids[i] != mid) {\n all_found = false;\n mids[i] = mid;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n// binary search on a real number interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>,\n real_type>\nbinary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) {\n assert(ok != ng);\n while (ok + eps < ng || ng + eps < ok) {\n real_type mid{(ok + ng) / 2};\n (pred(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n// parallel binary search on each real interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<real_type>>,\n std::vector<bool>>,\n std::vector<real_type>>\nbinary_search(std::vector<std::pair<real_type, real_type>> ends,\n const real_type eps, pred_type pred) {\n std::vector<real_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n if (ok + eps < ng || ng + eps < ok) {\n all_found = false;\n mids[i] = (ok + ng) / 2;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/casefmt.hpp\"\nnamespace workspace {\nstd::ostream &casefmt(std::ostream& os) { return os << \"Case #\" << config::caseid << \": \"; }\n} // namespace workspace\n#line 3 \"Library/utils/chval.hpp\"\nnamespace workspace {\ntemplate <class T, class Comp = std::less<T>>\nbool chle(T &x, const T &y, Comp comp = Comp()) {\n return comp(y, x) ? x = y, true : false;\n}\ntemplate <class T, class Comp = std::less<T>>\nbool chge(T &x, const T &y, Comp comp = Comp()) {\n return comp(x, y) ? x = y, true : false;\n}\n} // namespace workspace\n#line 5 \"Library/utils/coordinate_compression.hpp\"\n\ntemplate <class T> class coordinate_compression {\n std::vector<T> uniquely;\n std::vector<size_t> compressed;\n\n public:\n coordinate_compression(const std::vector<T> &raw)\n : uniquely(raw), compressed(raw.size()) {\n std::sort(uniquely.begin(), uniquely.end());\n uniquely.erase(std::unique(uniquely.begin(), uniquely.end()),\n uniquely.end());\n for (size_t i = 0; i != size(); ++i)\n compressed[i] =\n std::lower_bound(uniquely.begin(), uniquely.end(), raw[i]) -\n uniquely.begin();\n }\n\n size_t operator[](const size_t idx) const {\n assert(idx < size());\n return compressed[idx];\n }\n\n size_t size() const { return compressed.size(); }\n\n size_t count() const { return uniquely.size(); }\n\n T value(const size_t ord) const {\n assert(ord < count());\n return uniquely[ord];\n }\n\n size_t order(const T &value) const {\n return std::lower_bound(uniquely.begin(), uniquely.end(), value) -\n uniquely.begin();\n }\n\n auto begin() { return compressed.begin(); }\n auto end() { return compressed.end(); }\n auto rbegin() { return compressed.rbegin(); }\n auto rend() { return compressed.rend(); }\n};\n#line 3 \"Library/utils/fixed_point.hpp\"\nnamespace workspace {\n// specify the return type of lambda.\ntemplate <class lambda_type> class fixed_point {\n lambda_type func;\n\n public:\n fixed_point(lambda_type &&f) : func(std::move(f)) {}\n template <class... Args> auto operator()(Args &&... args) const {\n return func(*this, std::forward<Args>(args)...);\n }\n};\n} // namespace workspace\n#line 6 \"Library/utils/hash.hpp\"\n\n#line 3 \"Library/utils/sfinae.hpp\"\n#include <type_traits>\n\ntemplate <class type, template <class> class trait>\nusing enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;\n\ntemplate <class Container>\nusing element_type = typename std::decay<decltype(\n *std::begin(std::declval<Container&>()))>::type;\n\ntemplate <class T, class = int> struct mapped_of {\n using type = element_type<T>;\n};\ntemplate <class T>\nstruct mapped_of<T,\n typename std::pair<int, typename T::mapped_type>::first_type> {\n using type = typename T::mapped_type;\n};\ntemplate <class T> using mapped_type = typename mapped_of<T>::type;\n\ntemplate <class T, class = void> struct is_integral_ext : std::false_type {};\ntemplate <class T>\nstruct is_integral_ext<\n T, typename std::enable_if<std::is_integral<T>::value>::type>\n : std::true_type {};\ntemplate <> struct is_integral_ext<__int128_t> : std::true_type {};\ntemplate <> struct is_integral_ext<__uint128_t> : std::true_type {};\n#if __cplusplus >= 201402\ntemplate <class T>\nconstexpr static bool is_integral_ext_v = is_integral_ext<T>::value;\n#endif\n\ntemplate <typename T, typename = void> struct multiplicable_uint {\n using type = uint_least32_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> {\n using type = uint_least64_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {\n using type = __uint128_t;\n};\n#line 8 \"Library/utils/hash.hpp\"\nnamespace workspace {\ntemplate <class T, class = void> struct hash : std::hash<T> {};\n#if __cplusplus >= 201703L\ntemplate <class Unique_bits_type>\nstruct hash<Unique_bits_type,\n enable_if_trait_type<Unique_bits_type,\n std::has_unique_object_representations>> {\n size_t operator()(uint64_t x) const {\n static const uint64_t m = std::random_device{}();\n x ^= x >> 23;\n x ^= m;\n x ^= x >> 47;\n return x - (x >> 32);\n }\n};\n#endif\ntemplate <class Key> size_t hash_combine(const size_t &seed, const Key &key) {\n return seed ^\n (hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */);\n}\ntemplate <class T1, class T2> struct hash<std::pair<T1, T2>> {\n size_t operator()(const std::pair<T1, T2> &pair) const {\n return hash_combine(hash<T1>()(pair.first), pair.second);\n }\n};\ntemplate <class... T> class hash<std::tuple<T...>> {\n template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1>\n struct tuple_hash {\n static uint64_t apply(const Tuple &t) {\n return hash_combine(tuple_hash<Tuple, index - 1>::apply(t),\n std::get<index>(t));\n }\n };\n template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> {\n static uint64_t apply(const Tuple &t) { return 0; }\n };\n\n public:\n uint64_t operator()(const std::tuple<T...> &t) const {\n return tuple_hash<std::tuple<T...>>::apply(t);\n }\n};\ntemplate <class hash_table> struct hash_table_wrapper : hash_table {\n using key_type = typename hash_table::key_type;\n size_t count(const key_type &key) const {\n return hash_table::find(key) != hash_table::end();\n }\n template <class... Args> auto emplace(Args &&... args) {\n return hash_table::insert(typename hash_table::value_type(args...));\n }\n};\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing cc_hash_table =\n hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing gp_hash_table =\n hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped>\nusing unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;\ntemplate <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>;\n} // namespace workspace\n#line 2 \"Library/utils/make_vector.hpp\"\n#if __cplusplus >= 201703L\n#include <vector>\nnamespace workspace {\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(size_t* sizes, T const& init = T()) {\n if constexpr (N)\n return std::vector(*sizes, make_vector<T, N - 1>(std::next(sizes), init));\n else\n return init;\n}\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(const size_t (&sizes)[N], T const& init = T()) {\n return make_vector<T, N>((size_t*)sizes, init);\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/random_number_generator.hpp\"\ntemplate <typename num_type> class random_number_generator {\n typename std::conditional<std::is_integral<num_type>::value,\n std::uniform_int_distribution<num_type>,\n std::uniform_real_distribution<num_type>>::type\n unif;\n\n std::mt19937 engine;\n\n public:\n random_number_generator(num_type min = std::numeric_limits<num_type>::min(),\n num_type max = std::numeric_limits<num_type>::max())\n : unif(min, max), engine(std::random_device{}()) {}\n\n num_type min() const { return unif.min(); }\n\n num_type max() const { return unif.max(); }\n\n // generate a random number in [min(), max()].\n num_type operator()() { return unif(engine); }\n};\n#line 3 \"Library/utils/read.hpp\"\nnamespace workspace {\n// read with std::cin.\ntemplate <class T = void>\nstruct read\n{\n typename std::remove_const<T>::type value;\n template <class... types>\n read(types... args) : value(args...) { std::cin >> value; }\n operator T() const { return value; }\n};\ntemplate <>\nstruct read<void>\n{\n template <class T>\n operator T() const { T value; std::cin >> value; return value; }\n};\n} // namespace workspace\n#line 4 \"Library/utils/stream.hpp\"\n\n#line 6 \"Library/utils/stream.hpp\"\nnamespace std {\ntemplate <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n return os << p.first << ' ' << p.second;\n}\ntemplate <class tuple_t, size_t index> struct tuple_is {\n static istream &apply(istream &is, tuple_t &t) {\n tuple_is<tuple_t, index - 1>::apply(is, t);\n return is >> get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_is<tuple_t, SIZE_MAX> {\n static istream &apply(istream &is, tuple_t &t) { return is; }\n};\ntemplate <class... T> istream &operator>>(istream &is, tuple<T...> &t) {\n return tuple_is<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is,\n t);\n}\ntemplate <class tuple_t, size_t index> struct tuple_os {\n static ostream &apply(ostream &os, const tuple_t &t) {\n tuple_os<tuple_t, index - 1>::apply(os, t);\n return os << ' ' << get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, 0> {\n static ostream &apply(ostream &os, const tuple_t &t) {\n return os << get<0>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {\n static ostream &apply(ostream &os, const tuple_t &t) { return os; }\n};\ntemplate <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) {\n return tuple_os<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os,\n t);\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n istream &>::type\noperator>>(istream &is, Container &cont) {\n for (auto &&e : cont) is >> e;\n return is;\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n ostream &>::type\noperator<<(ostream &os, const Container &cont) {\n bool head = true;\n for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;\n return os;\n}\n} // namespace std\n#line 4 \"Library/utils/trinary_search.hpp\"\n// trinary search on discrete range.\ntemplate <class iter_type, class comp_type>\niter_type trinary(iter_type first, iter_type last, comp_type comp)\n{\n assert(first < last);\n intmax_t dist(last - first);\n while(dist > 2)\n {\n iter_type left(first + dist / 3), right(first + dist * 2 / 3);\n if(comp(left, right)) last = right, dist = dist * 2 / 3;\n else first = left, dist -= dist / 3;\n }\n if(dist > 1 && comp(first + 1, first)) ++first;\n return first;\n}\n// trinary search on real numbers.\ntemplate <class comp_type>\nlong double trinary(long double first, long double last, const long double eps, comp_type comp)\n{\n assert(first < last);\n while(last - first > eps)\n {\n long double left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};\n if(comp(left, right)) last = right;\n else first = left;\n }\n return first;\n}\n#line 2 \"Library/utils/wrapper.hpp\"\ntemplate <class Container> class reversed {\n Container &ref, copy;\n\n public:\n reversed(Container &ref) : ref(ref) {}\n reversed(Container &&ref = Container()) : ref(copy), copy(ref) {}\n auto begin() const { return ref.rbegin(); }\n auto end() const { return ref.rend(); }\n};\n#line 9 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main();\n}\nint main() { config::loop(workspace::main); }\n\nunsigned config::cases() {\n // return -1; // unspecified\n // int t; std::cin >> t; return t; // given\n return 1;\n}\n\n#line 4 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n\n#line 4 \"Library/graph/directed/flow/base.hpp\"\n// the base class of flow algorithms.\ntemplate <class cap_t, class cost_t> struct flow_base {\n struct edge_t {\n size_t src, dst;\n cap_t cap;\n cost_t cost;\n edge_t *rev;\n edge_t() = default;\n edge_t(size_t src, size_t dst, const cap_t &cap, edge_t *rev)\n : src(src), dst(dst), cap(cap), rev(rev) {}\n edge_t(size_t src, size_t dst, const cap_t &cap, const cost_t &cost,\n edge_t *rev)\n : src(src), dst(dst), cap(cap), cost(cost), rev(rev) {}\n const cap_t &flow(const cap_t &f = 0) { return cap -= f, rev->cap += f; }\n bool avbl() const { return static_cast<cap_t>(0) < cap; }\n }; // class edge_t\n\n class adj_type {\n edge_t *fst, *lst, *clst;\n\n public:\n template <class... Args> edge_t *emplace(Args &&... args) {\n if (lst == clst) {\n size_t len(clst - fst);\n edge_t *nfst = lst = new edge_t[len << 1];\n for (edge_t *p{fst}; p != clst; ++p, ++lst)\n p->rev->rev = lst, *lst = *p;\n delete[] fst;\n fst = nfst;\n clst = lst + len;\n }\n *lst = edge_t(args...);\n return lst++;\n }\n adj_type() : fst(new edge_t[1]), lst(fst), clst(fst + 1) {}\n ~adj_type() { delete[] fst; }\n edge_t &operator[](size_t i) {\n assert(i < size());\n return *(fst + i);\n }\n size_t size() const { return lst - fst; }\n edge_t *begin() const { return fst; }\n edge_t *end() const { return lst; }\n }; // class adj_type\n\n flow_base(size_t n = 0) : adjs(n) {}\n\n flow_base(const flow_base &other) : adjs(other.size()) {\n for (size_t node{}; node != size(); ++node)\n for (const auto &[src, dst, cap, cost, rev] : other[node])\n if (src == node) {\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, rev->cap, -cost, ptr);\n rev->src = nil;\n } else {\n rev->rev->src = node;\n }\n }\n\n flow_base &operator=(const flow_base &rhs) {\n if (this != &rhs) adjs.swap(flow_base(rhs).adjs);\n return *this;\n }\n\n size_t size() const { return adjs.size(); }\n\n adj_type &operator[](size_t node) {\n assert(node < size());\n return adjs[node];\n }\n const adj_type &operator[](size_t node) const {\n assert(node < size());\n return adjs[node];\n }\n\n virtual edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) {\n assert(src < size());\n assert(dst < size());\n assert(!(cap < static_cast<cap_t>(0)));\n if (!(static_cast<cap_t>(0) < cap) || src == dst) return nullptr;\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, 0, -cost, ptr);\n return ptr;\n }\n\n protected:\n constexpr static size_t nil = -1;\n std::vector<adj_type> adjs;\n}; // class flow_base\n#line 6 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n// Successive shortest paths algorithm.\ntemplate <class cap_t, class cost_t, bool density_tag = false>\nclass min_cost_flow : public flow_base<cap_t, cost_t> {\n using base = flow_base<cap_t, cost_t>;\n using edge_t = typename base::edge_t;\n using base::adjs;\n using base::nil;\n\n cost_t min_cost, total_cost;\n std::vector<cap_t> supp;\n std::vector<cost_t> ptnl;\n\n void copy_member(const min_cost_flow &other) {\n min_cost = other.min_cost;\n total_cost = other.total_cost;\n supp = other.supp;\n ptnl = other.ptnl;\n }\n\n void Dijkstra(std::vector<edge_t *> &last) {\n const cost_t infty(total_cost + 1);\n std::vector<cost_t> nptnl(size(), infty);\n if constexpr (density_tag) {\n // O(V^2)\n std::vector<bool> used(size());\n for (size_t src{}; src != size(); ++src) {\n if (static_cast<cap_t>(0) < supp[src]) {\n used[src] = true;\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (static_cast<cap_t>(0) < supp[e.dst]) continue;\n if (e.avbl() && e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = e.cost;\n last[e.dst] = &e;\n }\n }\n }\n }\n for (;;) {\n size_t src{nil};\n cost_t sp{infty};\n for (size_t node{}; node != size(); ++node) {\n if (used[node] || nptnl[node] == infty) continue;\n cost_t dist{nptnl[node] - ptnl[node]};\n if (dist < sp) {\n sp = dist;\n src = node;\n }\n }\n if (src == nil) break;\n used[src] = true;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[src] + e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = nptnl[src] + e.cost;\n last[e.dst] = &e;\n }\n }\n }\n } else {\n // O((V + E)logV)\n struct node_t {\n size_t id;\n cost_t dist;\n node_t(size_t id, cost_t dist) : id(id), dist(dist) {}\n bool operator<(const node_t &rhs) const { return rhs.dist < dist; }\n };\n std::priority_queue<node_t> que;\n for (size_t src{}; src != size(); ++src) {\n if (supp[src] > static_cast<cap_t>(0)) {\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (supp[e.dst] > static_cast<cap_t>(0)) continue;\n if (e.avbl() && nptnl[e.dst] > e.cost) {\n que.emplace(e.dst, (nptnl[e.dst] = e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n while (!que.empty()) {\n auto [src, ndist] = que.top();\n que.pop();\n if (ndist + ptnl[src] != nptnl[src]) continue;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[e.dst] > nptnl[src] + e.cost) {\n que.emplace(e.dst,\n (nptnl[e.dst] = nptnl[src] + e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n ptnl.swap(nptnl);\n }\n\n public:\n using base::size;\n\n min_cost_flow(size_t n = 0)\n : base::flow_base(n), min_cost(0), total_cost(0), supp(n), ptnl(n) {}\n\n min_cost_flow(const min_cost_flow &other) : base::flow_base(other) {\n copy_member(other);\n }\n\n min_cost_flow &operator=(const min_cost_flow &other) {\n base::operator=(other);\n copy_member(other);\n return *this;\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cost_t &cost);\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) override {\n assert(src != dst);\n if (cost < static_cast<cost_t>(0)) {\n supp[src] -= cap;\n supp[dst] += cap;\n min_cost += cap * cost;\n total_cost -= cap * cost;\n return base::add_edge(dst, src, cap, -cost);\n }\n total_cost += cap * cost;\n return base::add_edge(src, dst, cap, cost);\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &lower,\n const cap_t &upper, const cost_t &cost) {\n assert(!(upper < lower));\n supp[src] -= lower;\n supp[dst] += lower;\n min_cost += lower * cost;\n return add_edge(src, dst, upper - lower, cost);\n }\n\n const cap_t &supply(size_t node, const cap_t &vol = 0) {\n assert(node < size());\n return supp[node] += vol;\n }\n\n const cap_t &demand(size_t node, const cap_t &vol) {\n return supply(node, -vol);\n }\n\n bool flow() {\n for (bool aug = true; aug;) {\n aug = false;\n std::vector<edge_t *> last(size());\n Dijkstra(last);\n std::vector<bool> shut(size());\n for (size_t dst{}; dst != size(); ++dst) {\n if (supp[dst] < static_cast<cap_t>(0) and last[dst]) {\n cap_t resid{-supp[dst]};\n size_t src{dst}, block{nil};\n while (last[src] && !shut[src]) {\n if (!(resid < last[src]->cap)) resid = last[block = src]->cap;\n src = last[src]->src;\n }\n if (shut[src])\n block = src;\n else {\n if (!(resid < supp[src])) {\n resid = supp[src];\n block = src;\n }\n for (edge_t *e{last[dst]}; e; e = last[e->src]) {\n e->cap -= resid;\n e->rev->cap += resid;\n }\n supp[src] -= resid;\n supp[dst] += resid;\n min_cost += ptnl[dst] * resid;\n aug = true;\n }\n if (~block) {\n for (size_t node{dst};; node = last[node]->src) {\n shut[node] = true;\n if (node == block) break;\n }\n }\n }\n }\n }\n return std::none_of(begin(supp), end(supp),\n [](const cap_t &s) { return s < 0 || 0 < s; });\n }\n\n cost_t optimal() {\n assert(flow());\n return min_cost;\n }\n}; // class min_cost_flow\n#line 22 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main() {\n // start here!\n const i64 inf = 1e10;\n int n, m, x;\n cin >> n >> m >> x;\n\n min_cost_flow<i64, i64> base(n * 3);\n // make\n {\n for (int i = 0; i < n; i++) {\n int a, b, p;\n cin >> a >> b >> p;\n base.add_edge(3 * i + 1, 3 * i, inf, p);\n base.add_edge(3 * i, 3 * i + 1, inf, -1);\n base.add_edge(3 * i + 1, 3 * i + 2, inf, 0);\n if (i) base.add_edge(3 * (i - 1), 3 * i, inf, 0);\n base.supply(3 * i, -a);\n base.supply(3 * i + 1, a - b);\n base.supply(3 * i + 2, b);\n }\n }\n for (auto j = 0; j < m; ++j) {\n int u, v, f;\n cin >> u >> v >> f;\n --u, --v;\n if (f > 0) {\n base.add_edge(3 * v, 3 * u + 2, inf, 1);\n } else {\n base.add_edge(3 * u + 2, 3 * v, inf, 0);\n }\n }\n\n auto ok = [&](int t) -> bool {\n auto mcf = base;\n for (int i = 0; i < n; i++) {\n mcf.add_edge(3 * i + 2, 0, inf, t);\n }\n if (mcf.flow()) {\n auto opt = mcf.optimal();\n return opt >= x;\n }\n return false;\n };\n\n auto ans = binary_search(x + 100 * (m + n) + 1, -1, ok);\n if (ans > x + 100 * (m + n))\n cout << \"-1\\n\";\n else\n cout << ans << eol;\n}\n}", "accuracy": 0.4222222222222222, "time_ms": 40, "memory_kb": 3604, "score_of_the_acc": -0.6216, "final_rank": 15 }, { "submission_id": "aoj_3171_4886068", "code_snippet": "#line 1 \"other/h.cpp\"\n#include <bits/extc++.h>\n#if __has_include(<bit>)\n#include <bit>\n#endif\n#line 7 \"Library/alias.hpp\"\nnamespace workspace {\nconstexpr char eol = '\\n';\nusing namespace std;\nusing i32 = int_least32_t;\nusing i64 = int_least64_t;\nusing i128 = __int128_t;\nusing u32 = uint_least32_t;\nusing u64 = uint_least64_t;\nusing u128 = __uint128_t;\ntemplate <class T, class Comp = less<T>>\nusing priority_queue = std::priority_queue<T, vector<T>, Comp>;\ntemplate <class T> using stack = std::stack<T, vector<T>>;\n} // namespace workspace\n#line 5 \"Library/config.hpp\"\nnamespace config {\nconst auto start_time{std::chrono::system_clock::now()};\nint64_t elapsed() {\n using namespace std::chrono;\n const auto end_time{system_clock::now()};\n return duration_cast<milliseconds>(end_time - start_time).count();\n}\n__attribute__((constructor)) void setup() {\n using namespace std;\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n#ifdef _buffer_check\n atexit([] {\n char bufc;\n if (cin >> bufc)\n cerr << \"\\n\\033[43m\\033[30mwarning: buffer not empty.\\033[0m\\n\\n\";\n });\n#endif\n}\nunsigned cases(), caseid = 1;\ntemplate <class F> void loop(F main) {\n for (const unsigned total = cases(); caseid <= total; ++caseid) main();\n}\n} // namespace config\n#line 2 \"Library/option.hpp\"\n#ifdef ONLINE_JUDGE\n #pragma GCC optimize(\"O3\")\n #pragma GCC target(\"avx,avx2\")\n #pragma GCC optimize(\"unroll-loops\")\n#endif\n#line 2 \"Library/utils/binary_search.hpp\"\n#if __cplusplus >= 201703L\n#include <cassert>\n#include <cmath>\n#include <vector>\nnamespace workspace {\n// binary search on a discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>,\n iter_type>\nbinary_search(iter_type ok, iter_type ng, pred_type pred) {\n assert(ok != ng);\n std::make_signed_t<decltype(ng - ok)> dist(ng - ok);\n while (1 < dist || dist < -1) {\n iter_type mid(ok + dist / 2);\n if (pred(mid))\n ok = mid, dist -= dist / 2;\n else\n ng = mid, dist /= 2;\n }\n return ok;\n}\n// parallel binary search on each discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<iter_type>>,\n std::vector<bool>>,\n std::vector<iter_type>>\nbinary_search(std::vector<std::pair<iter_type, iter_type>> ends,\n pred_type pred) {\n std::vector<iter_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n iter_type mid(ok + (ng - ok) / 2);\n if (mids[i] != mid) {\n all_found = false;\n mids[i] = mid;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n// binary search on a real number interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>,\n real_type>\nbinary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) {\n assert(ok != ng);\n while (ok + eps < ng || ng + eps < ok) {\n real_type mid{(ok + ng) / 2};\n (pred(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n// parallel binary search on each real interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<real_type>>,\n std::vector<bool>>,\n std::vector<real_type>>\nbinary_search(std::vector<std::pair<real_type, real_type>> ends,\n const real_type eps, pred_type pred) {\n std::vector<real_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n if (ok + eps < ng || ng + eps < ok) {\n all_found = false;\n mids[i] = (ok + ng) / 2;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/casefmt.hpp\"\nnamespace workspace {\nstd::ostream &casefmt(std::ostream& os) { return os << \"Case #\" << config::caseid << \": \"; }\n} // namespace workspace\n#line 3 \"Library/utils/chval.hpp\"\nnamespace workspace {\ntemplate <class T, class Comp = std::less<T>>\nbool chle(T &x, const T &y, Comp comp = Comp()) {\n return comp(y, x) ? x = y, true : false;\n}\ntemplate <class T, class Comp = std::less<T>>\nbool chge(T &x, const T &y, Comp comp = Comp()) {\n return comp(x, y) ? x = y, true : false;\n}\n} // namespace workspace\n#line 5 \"Library/utils/coordinate_compression.hpp\"\n\ntemplate <class T> class coordinate_compression {\n std::vector<T> uniquely;\n std::vector<size_t> compressed;\n\n public:\n coordinate_compression(const std::vector<T> &raw)\n : uniquely(raw), compressed(raw.size()) {\n std::sort(uniquely.begin(), uniquely.end());\n uniquely.erase(std::unique(uniquely.begin(), uniquely.end()),\n uniquely.end());\n for (size_t i = 0; i != size(); ++i)\n compressed[i] =\n std::lower_bound(uniquely.begin(), uniquely.end(), raw[i]) -\n uniquely.begin();\n }\n\n size_t operator[](const size_t idx) const {\n assert(idx < size());\n return compressed[idx];\n }\n\n size_t size() const { return compressed.size(); }\n\n size_t count() const { return uniquely.size(); }\n\n T value(const size_t ord) const {\n assert(ord < count());\n return uniquely[ord];\n }\n\n size_t order(const T &value) const {\n return std::lower_bound(uniquely.begin(), uniquely.end(), value) -\n uniquely.begin();\n }\n\n auto begin() { return compressed.begin(); }\n auto end() { return compressed.end(); }\n auto rbegin() { return compressed.rbegin(); }\n auto rend() { return compressed.rend(); }\n};\n#line 3 \"Library/utils/fixed_point.hpp\"\nnamespace workspace {\n// specify the return type of lambda.\ntemplate <class lambda_type> class fixed_point {\n lambda_type func;\n\n public:\n fixed_point(lambda_type &&f) : func(std::move(f)) {}\n template <class... Args> auto operator()(Args &&... args) const {\n return func(*this, std::forward<Args>(args)...);\n }\n};\n} // namespace workspace\n#line 6 \"Library/utils/hash.hpp\"\n\n#line 3 \"Library/utils/sfinae.hpp\"\n#include <type_traits>\n\ntemplate <class type, template <class> class trait>\nusing enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;\n\ntemplate <class Container>\nusing element_type = typename std::decay<decltype(\n *std::begin(std::declval<Container&>()))>::type;\n\ntemplate <class T, class = int> struct mapped_of {\n using type = element_type<T>;\n};\ntemplate <class T>\nstruct mapped_of<T,\n typename std::pair<int, typename T::mapped_type>::first_type> {\n using type = typename T::mapped_type;\n};\ntemplate <class T> using mapped_type = typename mapped_of<T>::type;\n\ntemplate <class T, class = void> struct is_integral_ext : std::false_type {};\ntemplate <class T>\nstruct is_integral_ext<\n T, typename std::enable_if<std::is_integral<T>::value>::type>\n : std::true_type {};\ntemplate <> struct is_integral_ext<__int128_t> : std::true_type {};\ntemplate <> struct is_integral_ext<__uint128_t> : std::true_type {};\n#if __cplusplus >= 201402\ntemplate <class T>\nconstexpr static bool is_integral_ext_v = is_integral_ext<T>::value;\n#endif\n\ntemplate <typename T, typename = void> struct multiplicable_uint {\n using type = uint_least32_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> {\n using type = uint_least64_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {\n using type = __uint128_t;\n};\n#line 8 \"Library/utils/hash.hpp\"\nnamespace workspace {\ntemplate <class T, class = void> struct hash : std::hash<T> {};\n#if __cplusplus >= 201703L\ntemplate <class Unique_bits_type>\nstruct hash<Unique_bits_type,\n enable_if_trait_type<Unique_bits_type,\n std::has_unique_object_representations>> {\n size_t operator()(uint64_t x) const {\n static const uint64_t m = std::random_device{}();\n x ^= x >> 23;\n x ^= m;\n x ^= x >> 47;\n return x - (x >> 32);\n }\n};\n#endif\ntemplate <class Key> size_t hash_combine(const size_t &seed, const Key &key) {\n return seed ^\n (hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */);\n}\ntemplate <class T1, class T2> struct hash<std::pair<T1, T2>> {\n size_t operator()(const std::pair<T1, T2> &pair) const {\n return hash_combine(hash<T1>()(pair.first), pair.second);\n }\n};\ntemplate <class... T> class hash<std::tuple<T...>> {\n template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1>\n struct tuple_hash {\n static uint64_t apply(const Tuple &t) {\n return hash_combine(tuple_hash<Tuple, index - 1>::apply(t),\n std::get<index>(t));\n }\n };\n template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> {\n static uint64_t apply(const Tuple &t) { return 0; }\n };\n\n public:\n uint64_t operator()(const std::tuple<T...> &t) const {\n return tuple_hash<std::tuple<T...>>::apply(t);\n }\n};\ntemplate <class hash_table> struct hash_table_wrapper : hash_table {\n using key_type = typename hash_table::key_type;\n size_t count(const key_type &key) const {\n return hash_table::find(key) != hash_table::end();\n }\n template <class... Args> auto emplace(Args &&... args) {\n return hash_table::insert(typename hash_table::value_type(args...));\n }\n};\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing cc_hash_table =\n hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing gp_hash_table =\n hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped>\nusing unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;\ntemplate <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>;\n} // namespace workspace\n#line 2 \"Library/utils/make_vector.hpp\"\n#if __cplusplus >= 201703L\n#include <vector>\nnamespace workspace {\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(size_t* sizes, T const& init = T()) {\n if constexpr (N)\n return std::vector(*sizes, make_vector<T, N - 1>(std::next(sizes), init));\n else\n return init;\n}\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(const size_t (&sizes)[N], T const& init = T()) {\n return make_vector<T, N>((size_t*)sizes, init);\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/random_number_generator.hpp\"\ntemplate <typename num_type> class random_number_generator {\n typename std::conditional<std::is_integral<num_type>::value,\n std::uniform_int_distribution<num_type>,\n std::uniform_real_distribution<num_type>>::type\n unif;\n\n std::mt19937 engine;\n\n public:\n random_number_generator(num_type min = std::numeric_limits<num_type>::min(),\n num_type max = std::numeric_limits<num_type>::max())\n : unif(min, max), engine(std::random_device{}()) {}\n\n num_type min() const { return unif.min(); }\n\n num_type max() const { return unif.max(); }\n\n // generate a random number in [min(), max()].\n num_type operator()() { return unif(engine); }\n};\n#line 3 \"Library/utils/read.hpp\"\nnamespace workspace {\n// read with std::cin.\ntemplate <class T = void>\nstruct read\n{\n typename std::remove_const<T>::type value;\n template <class... types>\n read(types... args) : value(args...) { std::cin >> value; }\n operator T() const { return value; }\n};\ntemplate <>\nstruct read<void>\n{\n template <class T>\n operator T() const { T value; std::cin >> value; return value; }\n};\n} // namespace workspace\n#line 4 \"Library/utils/stream.hpp\"\n\n#line 6 \"Library/utils/stream.hpp\"\nnamespace std {\ntemplate <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n return os << p.first << ' ' << p.second;\n}\ntemplate <class tuple_t, size_t index> struct tuple_is {\n static istream &apply(istream &is, tuple_t &t) {\n tuple_is<tuple_t, index - 1>::apply(is, t);\n return is >> get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_is<tuple_t, SIZE_MAX> {\n static istream &apply(istream &is, tuple_t &t) { return is; }\n};\ntemplate <class... T> istream &operator>>(istream &is, tuple<T...> &t) {\n return tuple_is<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is,\n t);\n}\ntemplate <class tuple_t, size_t index> struct tuple_os {\n static ostream &apply(ostream &os, const tuple_t &t) {\n tuple_os<tuple_t, index - 1>::apply(os, t);\n return os << ' ' << get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, 0> {\n static ostream &apply(ostream &os, const tuple_t &t) {\n return os << get<0>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {\n static ostream &apply(ostream &os, const tuple_t &t) { return os; }\n};\ntemplate <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) {\n return tuple_os<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os,\n t);\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n istream &>::type\noperator>>(istream &is, Container &cont) {\n for (auto &&e : cont) is >> e;\n return is;\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n ostream &>::type\noperator<<(ostream &os, const Container &cont) {\n bool head = true;\n for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;\n return os;\n}\n} // namespace std\n#line 4 \"Library/utils/trinary_search.hpp\"\n// trinary search on discrete range.\ntemplate <class iter_type, class comp_type>\niter_type trinary(iter_type first, iter_type last, comp_type comp)\n{\n assert(first < last);\n intmax_t dist(last - first);\n while(dist > 2)\n {\n iter_type left(first + dist / 3), right(first + dist * 2 / 3);\n if(comp(left, right)) last = right, dist = dist * 2 / 3;\n else first = left, dist -= dist / 3;\n }\n if(dist > 1 && comp(first + 1, first)) ++first;\n return first;\n}\n// trinary search on real numbers.\ntemplate <class comp_type>\nlong double trinary(long double first, long double last, const long double eps, comp_type comp)\n{\n assert(first < last);\n while(last - first > eps)\n {\n long double left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};\n if(comp(left, right)) last = right;\n else first = left;\n }\n return first;\n}\n#line 2 \"Library/utils/wrapper.hpp\"\ntemplate <class Container> class reversed {\n Container &ref, copy;\n\n public:\n reversed(Container &ref) : ref(ref) {}\n reversed(Container &&ref = Container()) : ref(copy), copy(ref) {}\n auto begin() const { return ref.rbegin(); }\n auto end() const { return ref.rend(); }\n};\n#line 9 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main();\n}\nint main() { config::loop(workspace::main); }\n\nunsigned config::cases() {\n // return -1; // unspecified\n // int t; std::cin >> t; return t; // given\n return 1;\n}\n\n#line 4 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n\n#line 4 \"Library/graph/directed/flow/base.hpp\"\n// the base class of flow algorithms.\ntemplate <class cap_t, class cost_t> struct flow_base {\n struct edge_t {\n size_t src, dst;\n cap_t cap;\n cost_t cost;\n edge_t *rev;\n edge_t() = default;\n edge_t(size_t src, size_t dst, const cap_t &cap, edge_t *rev)\n : src(src), dst(dst), cap(cap), rev(rev) {}\n edge_t(size_t src, size_t dst, const cap_t &cap, const cost_t &cost,\n edge_t *rev)\n : src(src), dst(dst), cap(cap), cost(cost), rev(rev) {}\n const cap_t &flow(const cap_t &f = 0) { return cap -= f, rev->cap += f; }\n bool avbl() const { return static_cast<cap_t>(0) < cap; }\n }; // class edge_t\n\n class adj_type {\n edge_t *fst, *lst, *clst;\n\n public:\n template <class... Args> edge_t *emplace(Args &&... args) {\n if (lst == clst) {\n size_t len(clst - fst);\n edge_t *nfst = lst = new edge_t[len << 1];\n for (edge_t *p{fst}; p != clst; ++p, ++lst)\n p->rev->rev = lst, *lst = *p;\n delete[] fst;\n fst = nfst;\n clst = lst + len;\n }\n *lst = edge_t(args...);\n return lst++;\n }\n adj_type() : fst(new edge_t[1]), lst(fst), clst(fst + 1) {}\n ~adj_type() { delete[] fst; }\n edge_t &operator[](size_t i) {\n assert(i < size());\n return *(fst + i);\n }\n size_t size() const { return lst - fst; }\n edge_t *begin() const { return fst; }\n edge_t *end() const { return lst; }\n }; // class adj_type\n\n flow_base(size_t n = 0) : adjs(n) {}\n\n flow_base(const flow_base &other) : adjs(other.size()) {\n for (size_t node{}; node != size(); ++node)\n for (const auto &[src, dst, cap, cost, rev] : other[node])\n if (src == node) {\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, rev->cap, -cost, ptr);\n rev->src = nil;\n } else {\n rev->rev->src = node;\n }\n }\n\n flow_base &operator=(const flow_base &rhs) {\n if (this != &rhs) adjs.swap(flow_base(rhs).adjs);\n return *this;\n }\n\n size_t size() const { return adjs.size(); }\n\n adj_type &operator[](size_t node) {\n assert(node < size());\n return adjs[node];\n }\n const adj_type &operator[](size_t node) const {\n assert(node < size());\n return adjs[node];\n }\n\n virtual edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) {\n assert(src < size());\n assert(dst < size());\n assert(!(cap < static_cast<cap_t>(0)));\n if (!(static_cast<cap_t>(0) < cap) || src == dst) return nullptr;\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, 0, -cost, ptr);\n return ptr;\n }\n\n protected:\n constexpr static size_t nil = -1;\n std::vector<adj_type> adjs;\n}; // class flow_base\n#line 6 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n// Successive shortest paths algorithm.\ntemplate <class cap_t, class cost_t, bool density_tag = false>\nclass min_cost_flow : public flow_base<cap_t, cost_t> {\n using base = flow_base<cap_t, cost_t>;\n using edge_t = typename base::edge_t;\n using base::adjs;\n using base::nil;\n\n cost_t min_cost, total_cost;\n std::vector<cap_t> supp;\n std::vector<cost_t> ptnl;\n\n void copy_member(const min_cost_flow &other) {\n min_cost = other.min_cost;\n total_cost = other.total_cost;\n supp = other.supp;\n ptnl = other.ptnl;\n }\n\n void Dijkstra(std::vector<edge_t *> &last) {\n const cost_t infty(total_cost + 1);\n std::vector<cost_t> nptnl(size(), infty);\n if constexpr (density_tag) {\n // O(V^2)\n std::vector<bool> used(size());\n for (size_t src{}; src != size(); ++src) {\n if (static_cast<cap_t>(0) < supp[src]) {\n used[src] = true;\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (static_cast<cap_t>(0) < supp[e.dst]) continue;\n if (e.avbl() && e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = e.cost;\n last[e.dst] = &e;\n }\n }\n }\n }\n for (;;) {\n size_t src{nil};\n cost_t sp{infty};\n for (size_t node{}; node != size(); ++node) {\n if (used[node] || nptnl[node] == infty) continue;\n cost_t dist{nptnl[node] - ptnl[node]};\n if (dist < sp) {\n sp = dist;\n src = node;\n }\n }\n if (src == nil) break;\n used[src] = true;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[src] + e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = nptnl[src] + e.cost;\n last[e.dst] = &e;\n }\n }\n }\n } else {\n // O((V + E)logV)\n struct node_t {\n size_t id;\n cost_t dist;\n node_t(size_t id, cost_t dist) : id(id), dist(dist) {}\n bool operator<(const node_t &rhs) const { return rhs.dist < dist; }\n };\n std::priority_queue<node_t> que;\n for (size_t src{}; src != size(); ++src) {\n if (supp[src] > static_cast<cap_t>(0)) {\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (supp[e.dst] > static_cast<cap_t>(0)) continue;\n if (e.avbl() && nptnl[e.dst] > e.cost) {\n que.emplace(e.dst, (nptnl[e.dst] = e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n while (!que.empty()) {\n auto [src, ndist] = que.top();\n que.pop();\n if (ndist + ptnl[src] != nptnl[src]) continue;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[e.dst] > nptnl[src] + e.cost) {\n que.emplace(e.dst,\n (nptnl[e.dst] = nptnl[src] + e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n ptnl.swap(nptnl);\n }\n\n public:\n using base::size;\n\n min_cost_flow(size_t n = 0)\n : base::flow_base(n), min_cost(0), total_cost(0), supp(n), ptnl(n) {}\n\n min_cost_flow(const min_cost_flow &other) : base::flow_base(other) {\n copy_member(other);\n }\n\n min_cost_flow &operator=(const min_cost_flow &other) {\n base::operator=(other);\n copy_member(other);\n return *this;\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cost_t &cost);\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) override {\n assert(src != dst);\n if (cost < static_cast<cost_t>(0)) {\n supp[src] -= cap;\n supp[dst] += cap;\n min_cost += cap * cost;\n total_cost -= cap * cost;\n return base::add_edge(dst, src, cap, -cost);\n }\n total_cost += cap * cost;\n return base::add_edge(src, dst, cap, cost);\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &lower,\n const cap_t &upper, const cost_t &cost) {\n assert(!(upper < lower));\n supp[src] -= lower;\n supp[dst] += lower;\n min_cost += lower * cost;\n return add_edge(src, dst, upper - lower, cost);\n }\n\n const cap_t &supply(size_t node, const cap_t &vol = 0) {\n assert(node < size());\n return supp[node] += vol;\n }\n\n const cap_t &demand(size_t node, const cap_t &vol) {\n return supply(node, -vol);\n }\n\n bool flow() {\n for (bool aug = true; aug;) {\n aug = false;\n std::vector<edge_t *> last(size());\n Dijkstra(last);\n std::vector<bool> shut(size());\n for (size_t dst{}; dst != size(); ++dst) {\n if (supp[dst] < static_cast<cap_t>(0) and last[dst]) {\n cap_t resid{-supp[dst]};\n size_t src{dst}, block{nil};\n while (last[src] && !shut[src]) {\n if (!(resid < last[src]->cap)) resid = last[block = src]->cap;\n src = last[src]->src;\n }\n if (shut[src])\n block = src;\n else {\n if (!(resid < supp[src])) {\n resid = supp[src];\n block = src;\n }\n for (edge_t *e{last[dst]}; e; e = last[e->src]) {\n e->cap -= resid;\n e->rev->cap += resid;\n }\n supp[src] -= resid;\n supp[dst] += resid;\n min_cost += ptnl[dst] * resid;\n aug = true;\n }\n if (~block) {\n for (size_t node{dst};; node = last[node]->src) {\n shut[node] = true;\n if (node == block) break;\n }\n }\n }\n }\n }\n return std::none_of(begin(supp), end(supp),\n [](const cap_t &s) { return s < 0 || 0 < s; });\n }\n\n cost_t optimal() {\n assert(flow());\n return min_cost;\n }\n}; // class min_cost_flow\n#line 22 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main() {\n // start here!\n const i64 inf = 1e10;\n int n, m, x;\n cin >> n >> m >> x;\n\n min_cost_flow<i64, i64> base(n * 3);\n // make\n {\n for (int i = 0; i < n; i++) {\n int a, b, p;\n cin >> a >> b >> p;\n base.add_edge(3 * i + 1, 3 * i, inf, p);\n base.add_edge(3 * i, 3 * i + 1, inf, -1);\n base.add_edge(3 * i + 1, 3 * i + 2, inf, 0);\n if (i) base.add_edge(3 * (i - 1), 3 * i, inf, 0);\n base.supply(3 * i, -a);\n base.supply(3 * i + 1, a - b);\n base.supply(3 * i + 2, b);\n }\n }\n for (auto j = 0; j < m; ++j) {\n int u, v, f;\n cin >> u >> v >> f;\n --u, --v;\n if (f > 0) {\n base.add_edge(3 * v, 3 * u + 2, inf, 1);\n } else {\n base.add_edge(3 * u + 2, 3 * v, inf, 0);\n }\n }\n\n auto ok = [&](int t) -> bool {\n auto mcf = base;\n for (int i = 0; i < n; i++) {\n mcf.add_edge(3 * i + 2, 0, inf, t);\n }\n if (mcf.flow()) {\n auto opt = mcf.optimal();\n return opt >= x;\n }\n return false;\n };\n\n auto ans = binary_search(x + 100 * n + 1, -1, ok);\n if (ans > x + 100 * n)\n cout << \"-1\\n\";\n else\n cout << ans << eol;\n}\n}", "accuracy": 0.4222222222222222, "time_ms": 40, "memory_kb": 3580, "score_of_the_acc": -0.5805, "final_rank": 13 }, { "submission_id": "aoj_3171_4886065", "code_snippet": "#line 1 \"other/h.cpp\"\n#include <bits/extc++.h>\n#if __has_include(<bit>)\n#include <bit>\n#endif\n#line 7 \"Library/alias.hpp\"\nnamespace workspace {\nconstexpr char eol = '\\n';\nusing namespace std;\nusing i32 = int_least32_t;\nusing i64 = int_least64_t;\nusing i128 = __int128_t;\nusing u32 = uint_least32_t;\nusing u64 = uint_least64_t;\nusing u128 = __uint128_t;\ntemplate <class T, class Comp = less<T>>\nusing priority_queue = std::priority_queue<T, vector<T>, Comp>;\ntemplate <class T> using stack = std::stack<T, vector<T>>;\n} // namespace workspace\n#line 5 \"Library/config.hpp\"\nnamespace config {\nconst auto start_time{std::chrono::system_clock::now()};\nint64_t elapsed() {\n using namespace std::chrono;\n const auto end_time{system_clock::now()};\n return duration_cast<milliseconds>(end_time - start_time).count();\n}\n__attribute__((constructor)) void setup() {\n using namespace std;\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n#ifdef _buffer_check\n atexit([] {\n char bufc;\n if (cin >> bufc)\n cerr << \"\\n\\033[43m\\033[30mwarning: buffer not empty.\\033[0m\\n\\n\";\n });\n#endif\n}\nunsigned cases(), caseid = 1;\ntemplate <class F> void loop(F main) {\n for (const unsigned total = cases(); caseid <= total; ++caseid) main();\n}\n} // namespace config\n#line 2 \"Library/option.hpp\"\n#ifdef ONLINE_JUDGE\n #pragma GCC optimize(\"O3\")\n #pragma GCC target(\"avx,avx2\")\n #pragma GCC optimize(\"unroll-loops\")\n#endif\n#line 2 \"Library/utils/binary_search.hpp\"\n#if __cplusplus >= 201703L\n#include <cassert>\n#include <cmath>\n#include <vector>\nnamespace workspace {\n// binary search on a discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>,\n iter_type>\nbinary_search(iter_type ok, iter_type ng, pred_type pred) {\n assert(ok != ng);\n std::make_signed_t<decltype(ng - ok)> dist(ng - ok);\n while (1 < dist || dist < -1) {\n iter_type mid(ok + dist / 2);\n if (pred(mid))\n ok = mid, dist -= dist / 2;\n else\n ng = mid, dist /= 2;\n }\n return ok;\n}\n// parallel binary search on each discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<iter_type>>,\n std::vector<bool>>,\n std::vector<iter_type>>\nbinary_search(std::vector<std::pair<iter_type, iter_type>> ends,\n pred_type pred) {\n std::vector<iter_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n iter_type mid(ok + (ng - ok) / 2);\n if (mids[i] != mid) {\n all_found = false;\n mids[i] = mid;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n// binary search on a real number interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>,\n real_type>\nbinary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) {\n assert(ok != ng);\n while (ok + eps < ng || ng + eps < ok) {\n real_type mid{(ok + ng) / 2};\n (pred(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n// parallel binary search on each real interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<real_type>>,\n std::vector<bool>>,\n std::vector<real_type>>\nbinary_search(std::vector<std::pair<real_type, real_type>> ends,\n const real_type eps, pred_type pred) {\n std::vector<real_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n if (ok + eps < ng || ng + eps < ok) {\n all_found = false;\n mids[i] = (ok + ng) / 2;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/casefmt.hpp\"\nnamespace workspace {\nstd::ostream &casefmt(std::ostream& os) { return os << \"Case #\" << config::caseid << \": \"; }\n} // namespace workspace\n#line 3 \"Library/utils/chval.hpp\"\nnamespace workspace {\ntemplate <class T, class Comp = std::less<T>>\nbool chle(T &x, const T &y, Comp comp = Comp()) {\n return comp(y, x) ? x = y, true : false;\n}\ntemplate <class T, class Comp = std::less<T>>\nbool chge(T &x, const T &y, Comp comp = Comp()) {\n return comp(x, y) ? x = y, true : false;\n}\n} // namespace workspace\n#line 5 \"Library/utils/coordinate_compression.hpp\"\n\ntemplate <class T> class coordinate_compression {\n std::vector<T> uniquely;\n std::vector<size_t> compressed;\n\n public:\n coordinate_compression(const std::vector<T> &raw)\n : uniquely(raw), compressed(raw.size()) {\n std::sort(uniquely.begin(), uniquely.end());\n uniquely.erase(std::unique(uniquely.begin(), uniquely.end()),\n uniquely.end());\n for (size_t i = 0; i != size(); ++i)\n compressed[i] =\n std::lower_bound(uniquely.begin(), uniquely.end(), raw[i]) -\n uniquely.begin();\n }\n\n size_t operator[](const size_t idx) const {\n assert(idx < size());\n return compressed[idx];\n }\n\n size_t size() const { return compressed.size(); }\n\n size_t count() const { return uniquely.size(); }\n\n T value(const size_t ord) const {\n assert(ord < count());\n return uniquely[ord];\n }\n\n size_t order(const T &value) const {\n return std::lower_bound(uniquely.begin(), uniquely.end(), value) -\n uniquely.begin();\n }\n\n auto begin() { return compressed.begin(); }\n auto end() { return compressed.end(); }\n auto rbegin() { return compressed.rbegin(); }\n auto rend() { return compressed.rend(); }\n};\n#line 3 \"Library/utils/fixed_point.hpp\"\nnamespace workspace {\n// specify the return type of lambda.\ntemplate <class lambda_type> class fixed_point {\n lambda_type func;\n\n public:\n fixed_point(lambda_type &&f) : func(std::move(f)) {}\n template <class... Args> auto operator()(Args &&... args) const {\n return func(*this, std::forward<Args>(args)...);\n }\n};\n} // namespace workspace\n#line 6 \"Library/utils/hash.hpp\"\n\n#line 3 \"Library/utils/sfinae.hpp\"\n#include <type_traits>\n\ntemplate <class type, template <class> class trait>\nusing enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;\n\ntemplate <class Container>\nusing element_type = typename std::decay<decltype(\n *std::begin(std::declval<Container&>()))>::type;\n\ntemplate <class T, class = int> struct mapped_of {\n using type = element_type<T>;\n};\ntemplate <class T>\nstruct mapped_of<T,\n typename std::pair<int, typename T::mapped_type>::first_type> {\n using type = typename T::mapped_type;\n};\ntemplate <class T> using mapped_type = typename mapped_of<T>::type;\n\ntemplate <class T, class = void> struct is_integral_ext : std::false_type {};\ntemplate <class T>\nstruct is_integral_ext<\n T, typename std::enable_if<std::is_integral<T>::value>::type>\n : std::true_type {};\ntemplate <> struct is_integral_ext<__int128_t> : std::true_type {};\ntemplate <> struct is_integral_ext<__uint128_t> : std::true_type {};\n#if __cplusplus >= 201402\ntemplate <class T>\nconstexpr static bool is_integral_ext_v = is_integral_ext<T>::value;\n#endif\n\ntemplate <typename T, typename = void> struct multiplicable_uint {\n using type = uint_least32_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> {\n using type = uint_least64_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {\n using type = __uint128_t;\n};\n#line 8 \"Library/utils/hash.hpp\"\nnamespace workspace {\ntemplate <class T, class = void> struct hash : std::hash<T> {};\n#if __cplusplus >= 201703L\ntemplate <class Unique_bits_type>\nstruct hash<Unique_bits_type,\n enable_if_trait_type<Unique_bits_type,\n std::has_unique_object_representations>> {\n size_t operator()(uint64_t x) const {\n static const uint64_t m = std::random_device{}();\n x ^= x >> 23;\n x ^= m;\n x ^= x >> 47;\n return x - (x >> 32);\n }\n};\n#endif\ntemplate <class Key> size_t hash_combine(const size_t &seed, const Key &key) {\n return seed ^\n (hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */);\n}\ntemplate <class T1, class T2> struct hash<std::pair<T1, T2>> {\n size_t operator()(const std::pair<T1, T2> &pair) const {\n return hash_combine(hash<T1>()(pair.first), pair.second);\n }\n};\ntemplate <class... T> class hash<std::tuple<T...>> {\n template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1>\n struct tuple_hash {\n static uint64_t apply(const Tuple &t) {\n return hash_combine(tuple_hash<Tuple, index - 1>::apply(t),\n std::get<index>(t));\n }\n };\n template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> {\n static uint64_t apply(const Tuple &t) { return 0; }\n };\n\n public:\n uint64_t operator()(const std::tuple<T...> &t) const {\n return tuple_hash<std::tuple<T...>>::apply(t);\n }\n};\ntemplate <class hash_table> struct hash_table_wrapper : hash_table {\n using key_type = typename hash_table::key_type;\n size_t count(const key_type &key) const {\n return hash_table::find(key) != hash_table::end();\n }\n template <class... Args> auto emplace(Args &&... args) {\n return hash_table::insert(typename hash_table::value_type(args...));\n }\n};\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing cc_hash_table =\n hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing gp_hash_table =\n hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped>\nusing unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;\ntemplate <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>;\n} // namespace workspace\n#line 2 \"Library/utils/make_vector.hpp\"\n#if __cplusplus >= 201703L\n#include <vector>\nnamespace workspace {\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(size_t* sizes, T const& init = T()) {\n if constexpr (N)\n return std::vector(*sizes, make_vector<T, N - 1>(std::next(sizes), init));\n else\n return init;\n}\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(const size_t (&sizes)[N], T const& init = T()) {\n return make_vector<T, N>((size_t*)sizes, init);\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/random_number_generator.hpp\"\ntemplate <typename num_type> class random_number_generator {\n typename std::conditional<std::is_integral<num_type>::value,\n std::uniform_int_distribution<num_type>,\n std::uniform_real_distribution<num_type>>::type\n unif;\n\n std::mt19937 engine;\n\n public:\n random_number_generator(num_type min = std::numeric_limits<num_type>::min(),\n num_type max = std::numeric_limits<num_type>::max())\n : unif(min, max), engine(std::random_device{}()) {}\n\n num_type min() const { return unif.min(); }\n\n num_type max() const { return unif.max(); }\n\n // generate a random number in [min(), max()].\n num_type operator()() { return unif(engine); }\n};\n#line 3 \"Library/utils/read.hpp\"\nnamespace workspace {\n// read with std::cin.\ntemplate <class T = void>\nstruct read\n{\n typename std::remove_const<T>::type value;\n template <class... types>\n read(types... args) : value(args...) { std::cin >> value; }\n operator T() const { return value; }\n};\ntemplate <>\nstruct read<void>\n{\n template <class T>\n operator T() const { T value; std::cin >> value; return value; }\n};\n} // namespace workspace\n#line 4 \"Library/utils/stream.hpp\"\n\n#line 6 \"Library/utils/stream.hpp\"\nnamespace std {\ntemplate <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n return os << p.first << ' ' << p.second;\n}\ntemplate <class tuple_t, size_t index> struct tuple_is {\n static istream &apply(istream &is, tuple_t &t) {\n tuple_is<tuple_t, index - 1>::apply(is, t);\n return is >> get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_is<tuple_t, SIZE_MAX> {\n static istream &apply(istream &is, tuple_t &t) { return is; }\n};\ntemplate <class... T> istream &operator>>(istream &is, tuple<T...> &t) {\n return tuple_is<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is,\n t);\n}\ntemplate <class tuple_t, size_t index> struct tuple_os {\n static ostream &apply(ostream &os, const tuple_t &t) {\n tuple_os<tuple_t, index - 1>::apply(os, t);\n return os << ' ' << get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, 0> {\n static ostream &apply(ostream &os, const tuple_t &t) {\n return os << get<0>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {\n static ostream &apply(ostream &os, const tuple_t &t) { return os; }\n};\ntemplate <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) {\n return tuple_os<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os,\n t);\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n istream &>::type\noperator>>(istream &is, Container &cont) {\n for (auto &&e : cont) is >> e;\n return is;\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n ostream &>::type\noperator<<(ostream &os, const Container &cont) {\n bool head = true;\n for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;\n return os;\n}\n} // namespace std\n#line 4 \"Library/utils/trinary_search.hpp\"\n// trinary search on discrete range.\ntemplate <class iter_type, class comp_type>\niter_type trinary(iter_type first, iter_type last, comp_type comp)\n{\n assert(first < last);\n intmax_t dist(last - first);\n while(dist > 2)\n {\n iter_type left(first + dist / 3), right(first + dist * 2 / 3);\n if(comp(left, right)) last = right, dist = dist * 2 / 3;\n else first = left, dist -= dist / 3;\n }\n if(dist > 1 && comp(first + 1, first)) ++first;\n return first;\n}\n// trinary search on real numbers.\ntemplate <class comp_type>\nlong double trinary(long double first, long double last, const long double eps, comp_type comp)\n{\n assert(first < last);\n while(last - first > eps)\n {\n long double left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};\n if(comp(left, right)) last = right;\n else first = left;\n }\n return first;\n}\n#line 2 \"Library/utils/wrapper.hpp\"\ntemplate <class Container> class reversed {\n Container &ref, copy;\n\n public:\n reversed(Container &ref) : ref(ref) {}\n reversed(Container &&ref = Container()) : ref(copy), copy(ref) {}\n auto begin() const { return ref.rbegin(); }\n auto end() const { return ref.rend(); }\n};\n#line 9 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main();\n}\nint main() { config::loop(workspace::main); }\n\nunsigned config::cases() {\n // return -1; // unspecified\n // int t; std::cin >> t; return t; // given\n return 1;\n}\n\n#line 4 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n\n#line 4 \"Library/graph/directed/flow/base.hpp\"\n// the base class of flow algorithms.\ntemplate <class cap_t, class cost_t> struct flow_base {\n struct edge_t {\n size_t src, dst;\n cap_t cap;\n cost_t cost;\n edge_t *rev;\n edge_t() = default;\n edge_t(size_t src, size_t dst, const cap_t &cap, edge_t *rev)\n : src(src), dst(dst), cap(cap), rev(rev) {}\n edge_t(size_t src, size_t dst, const cap_t &cap, const cost_t &cost,\n edge_t *rev)\n : src(src), dst(dst), cap(cap), cost(cost), rev(rev) {}\n const cap_t &flow(const cap_t &f = 0) { return cap -= f, rev->cap += f; }\n bool avbl() const { return static_cast<cap_t>(0) < cap; }\n }; // class edge_t\n\n class adj_type {\n edge_t *fst, *lst, *clst;\n\n public:\n template <class... Args> edge_t *emplace(Args &&... args) {\n if (lst == clst) {\n size_t len(clst - fst);\n edge_t *nfst = lst = new edge_t[len << 1];\n for (edge_t *p{fst}; p != clst; ++p, ++lst)\n p->rev->rev = lst, *lst = *p;\n delete[] fst;\n fst = nfst;\n clst = lst + len;\n }\n *lst = edge_t(args...);\n return lst++;\n }\n adj_type() : fst(new edge_t[1]), lst(fst), clst(fst + 1) {}\n ~adj_type() { delete[] fst; }\n edge_t &operator[](size_t i) {\n assert(i < size());\n return *(fst + i);\n }\n size_t size() const { return lst - fst; }\n edge_t *begin() const { return fst; }\n edge_t *end() const { return lst; }\n }; // class adj_type\n\n flow_base(size_t n = 0) : adjs(n) {}\n\n flow_base(const flow_base &other) : adjs(other.size()) {\n for (size_t node{}; node != size(); ++node)\n for (const auto &[src, dst, cap, cost, rev] : other[node])\n if (src == node) {\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, rev->cap, -cost, ptr);\n rev->src = nil;\n } else {\n rev->rev->src = node;\n }\n }\n\n flow_base &operator=(const flow_base &rhs) {\n if (this != &rhs) adjs.swap(flow_base(rhs).adjs);\n return *this;\n }\n\n size_t size() const { return adjs.size(); }\n\n adj_type &operator[](size_t node) {\n assert(node < size());\n return adjs[node];\n }\n const adj_type &operator[](size_t node) const {\n assert(node < size());\n return adjs[node];\n }\n\n virtual edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) {\n assert(src < size());\n assert(dst < size());\n assert(!(cap < static_cast<cap_t>(0)));\n if (!(static_cast<cap_t>(0) < cap) || src == dst) return nullptr;\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, 0, -cost, ptr);\n return ptr;\n }\n\n protected:\n constexpr static size_t nil = -1;\n std::vector<adj_type> adjs;\n}; // class flow_base\n#line 6 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n// Successive shortest paths algorithm.\ntemplate <class cap_t, class cost_t, bool density_tag = false>\nclass min_cost_flow : public flow_base<cap_t, cost_t> {\n using base = flow_base<cap_t, cost_t>;\n using edge_t = typename base::edge_t;\n using base::adjs;\n using base::nil;\n\n cost_t min_cost, total_cost;\n std::vector<cap_t> supp;\n std::vector<cost_t> ptnl;\n\n void copy_member(const min_cost_flow &other) {\n min_cost = other.min_cost;\n total_cost = other.total_cost;\n supp = other.supp;\n ptnl = other.ptnl;\n }\n\n void Dijkstra(std::vector<edge_t *> &last) {\n const cost_t infty(total_cost + 1);\n std::vector<cost_t> nptnl(size(), infty);\n if constexpr (density_tag) {\n // O(V^2)\n std::vector<bool> used(size());\n for (size_t src{}; src != size(); ++src) {\n if (static_cast<cap_t>(0) < supp[src]) {\n used[src] = true;\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (static_cast<cap_t>(0) < supp[e.dst]) continue;\n if (e.avbl() && e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = e.cost;\n last[e.dst] = &e;\n }\n }\n }\n }\n for (;;) {\n size_t src{nil};\n cost_t sp{infty};\n for (size_t node{}; node != size(); ++node) {\n if (used[node] || nptnl[node] == infty) continue;\n cost_t dist{nptnl[node] - ptnl[node]};\n if (dist < sp) {\n sp = dist;\n src = node;\n }\n }\n if (src == nil) break;\n used[src] = true;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[src] + e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = nptnl[src] + e.cost;\n last[e.dst] = &e;\n }\n }\n }\n } else {\n // O((V + E)logV)\n struct node_t {\n size_t id;\n cost_t dist;\n node_t(size_t id, cost_t dist) : id(id), dist(dist) {}\n bool operator<(const node_t &rhs) const { return rhs.dist < dist; }\n };\n std::priority_queue<node_t> que;\n for (size_t src{}; src != size(); ++src) {\n if (supp[src] > static_cast<cap_t>(0)) {\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (supp[e.dst] > static_cast<cap_t>(0)) continue;\n if (e.avbl() && nptnl[e.dst] > e.cost) {\n que.emplace(e.dst, (nptnl[e.dst] = e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n while (!que.empty()) {\n auto [src, ndist] = que.top();\n que.pop();\n if (ndist + ptnl[src] != nptnl[src]) continue;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[e.dst] > nptnl[src] + e.cost) {\n que.emplace(e.dst,\n (nptnl[e.dst] = nptnl[src] + e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n ptnl.swap(nptnl);\n }\n\n public:\n using base::size;\n\n min_cost_flow(size_t n = 0)\n : base::flow_base(n), min_cost(0), total_cost(0), supp(n), ptnl(n) {}\n\n min_cost_flow(const min_cost_flow &other) : base::flow_base(other) {\n copy_member(other);\n }\n\n min_cost_flow &operator=(const min_cost_flow &other) {\n base::operator=(other);\n copy_member(other);\n return *this;\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cost_t &cost);\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) override {\n assert(src != dst);\n if (cost < static_cast<cost_t>(0)) {\n supp[src] -= cap;\n supp[dst] += cap;\n min_cost += cap * cost;\n total_cost -= cap * cost;\n return base::add_edge(dst, src, cap, -cost);\n }\n total_cost += cap * cost;\n return base::add_edge(src, dst, cap, cost);\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &lower,\n const cap_t &upper, const cost_t &cost) {\n assert(!(upper < lower));\n supp[src] -= lower;\n supp[dst] += lower;\n min_cost += lower * cost;\n return add_edge(src, dst, upper - lower, cost);\n }\n\n const cap_t &supply(size_t node, const cap_t &vol = 0) {\n assert(node < size());\n return supp[node] += vol;\n }\n\n const cap_t &demand(size_t node, const cap_t &vol) {\n return supply(node, -vol);\n }\n\n bool flow() {\n for (bool aug = true; aug;) {\n aug = false;\n std::vector<edge_t *> last(size());\n Dijkstra(last);\n std::vector<bool> shut(size());\n for (size_t dst{}; dst != size(); ++dst) {\n if (supp[dst] < static_cast<cap_t>(0) and last[dst]) {\n cap_t resid{-supp[dst]};\n size_t src{dst}, block{nil};\n while (last[src] && !shut[src]) {\n if (!(resid < last[src]->cap)) resid = last[block = src]->cap;\n src = last[src]->src;\n }\n if (shut[src])\n block = src;\n else {\n if (!(resid < supp[src])) {\n resid = supp[src];\n block = src;\n }\n for (edge_t *e{last[dst]}; e; e = last[e->src]) {\n e->cap -= resid;\n e->rev->cap += resid;\n }\n supp[src] -= resid;\n supp[dst] += resid;\n min_cost += ptnl[dst] * resid;\n aug = true;\n }\n if (~block) {\n for (size_t node{dst};; node = last[node]->src) {\n shut[node] = true;\n if (node == block) break;\n }\n }\n }\n }\n }\n return std::none_of(begin(supp), end(supp),\n [](const cap_t &s) { return s < 0 || 0 < s; });\n }\n\n cost_t optimal() {\n assert(flow());\n return min_cost;\n }\n}; // class min_cost_flow\n#line 22 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main() {\n // start here!\n const i64 inf = 1e11;\n int n, m, x;\n cin >> n >> m >> x;\n\n min_cost_flow<i64, i64> base(n * 3);\n // make\n {\n for (int i = 0; i < n; i++) {\n int a, b, p;\n cin >> a >> b >> p;\n base.add_edge(3 * i + 1, 3 * i, inf, p);\n base.add_edge(3 * i, 3 * i + 1, inf, -1);\n base.add_edge(3 * i + 1, 3 * i + 2, inf, 0);\n if (i) base.add_edge(3 * (i - 1), 3 * i, inf, 0);\n base.supply(3 * i, -a);\n base.supply(3 * i + 1, a - b);\n base.supply(3 * i + 2, b);\n }\n }\n for (auto j = 0; j < m; ++j) {\n int u, v, f;\n cin >> u >> v >> f;\n --u, --v;\n if (f > 0) {\n base.add_edge(3 * v, 3 * u + 2, inf, 1);\n } else {\n base.add_edge(3 * u + 2, 3 * v, inf, 0);\n }\n }\n\n auto ok = [&](int t) -> bool {\n auto mcf = base;\n for (int i = 0; i < n; i++) {\n mcf.add_edge(3 * i + 2, 0, inf, t);\n }\n if (mcf.flow()) {\n auto opt = mcf.optimal();\n return opt >= x;\n }\n return false;\n };\n\n auto ans = binary_search(x + 100 * n + 1, -1, ok);\n if (ans > x + 100 * n)\n cout << \"-1\\n\";\n else\n cout << ans << eol;\n}\n}", "accuracy": 0.4222222222222222, "time_ms": 20, "memory_kb": 3664, "score_of_the_acc": -0.6844, "final_rank": 16 }, { "submission_id": "aoj_3171_4886055", "code_snippet": "#line 1 \"other/h.cpp\"\n#include <bits/extc++.h>\n#if __has_include(<bit>)\n#include <bit>\n#endif\n#line 7 \"Library/alias.hpp\"\nnamespace workspace {\nconstexpr char eol = '\\n';\nusing namespace std;\nusing i32 = int_least32_t;\nusing i64 = int_least64_t;\nusing i128 = __int128_t;\nusing u32 = uint_least32_t;\nusing u64 = uint_least64_t;\nusing u128 = __uint128_t;\ntemplate <class T, class Comp = less<T>>\nusing priority_queue = std::priority_queue<T, vector<T>, Comp>;\ntemplate <class T> using stack = std::stack<T, vector<T>>;\n} // namespace workspace\n#line 5 \"Library/config.hpp\"\nnamespace config {\nconst auto start_time{std::chrono::system_clock::now()};\nint64_t elapsed() {\n using namespace std::chrono;\n const auto end_time{system_clock::now()};\n return duration_cast<milliseconds>(end_time - start_time).count();\n}\n__attribute__((constructor)) void setup() {\n using namespace std;\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n#ifdef _buffer_check\n atexit([] {\n char bufc;\n if (cin >> bufc)\n cerr << \"\\n\\033[43m\\033[30mwarning: buffer not empty.\\033[0m\\n\\n\";\n });\n#endif\n}\nunsigned cases(), caseid = 1;\ntemplate <class F> void loop(F main) {\n for (const unsigned total = cases(); caseid <= total; ++caseid) main();\n}\n} // namespace config\n#line 2 \"Library/option.hpp\"\n#ifdef ONLINE_JUDGE\n #pragma GCC optimize(\"O3\")\n #pragma GCC target(\"avx,avx2\")\n #pragma GCC optimize(\"unroll-loops\")\n#endif\n#line 2 \"Library/utils/binary_search.hpp\"\n#if __cplusplus >= 201703L\n#include <cassert>\n#include <cmath>\n#include <vector>\nnamespace workspace {\n// binary search on a discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>,\n iter_type>\nbinary_search(iter_type ok, iter_type ng, pred_type pred) {\n assert(ok != ng);\n std::make_signed_t<decltype(ng - ok)> dist(ng - ok);\n while (1 < dist || dist < -1) {\n iter_type mid(ok + dist / 2);\n if (pred(mid))\n ok = mid, dist -= dist / 2;\n else\n ng = mid, dist /= 2;\n }\n return ok;\n}\n// parallel binary search on each discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<iter_type>>,\n std::vector<bool>>,\n std::vector<iter_type>>\nbinary_search(std::vector<std::pair<iter_type, iter_type>> ends,\n pred_type pred) {\n std::vector<iter_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n iter_type mid(ok + (ng - ok) / 2);\n if (mids[i] != mid) {\n all_found = false;\n mids[i] = mid;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n// binary search on a real number interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>,\n real_type>\nbinary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) {\n assert(ok != ng);\n while (ok + eps < ng || ng + eps < ok) {\n real_type mid{(ok + ng) / 2};\n (pred(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n// parallel binary search on each real interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<real_type>>,\n std::vector<bool>>,\n std::vector<real_type>>\nbinary_search(std::vector<std::pair<real_type, real_type>> ends,\n const real_type eps, pred_type pred) {\n std::vector<real_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n if (ok + eps < ng || ng + eps < ok) {\n all_found = false;\n mids[i] = (ok + ng) / 2;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/casefmt.hpp\"\nnamespace workspace {\nstd::ostream &casefmt(std::ostream& os) { return os << \"Case #\" << config::caseid << \": \"; }\n} // namespace workspace\n#line 3 \"Library/utils/chval.hpp\"\nnamespace workspace {\ntemplate <class T, class Comp = std::less<T>>\nbool chle(T &x, const T &y, Comp comp = Comp()) {\n return comp(y, x) ? x = y, true : false;\n}\ntemplate <class T, class Comp = std::less<T>>\nbool chge(T &x, const T &y, Comp comp = Comp()) {\n return comp(x, y) ? x = y, true : false;\n}\n} // namespace workspace\n#line 5 \"Library/utils/coordinate_compression.hpp\"\n\ntemplate <class T> class coordinate_compression {\n std::vector<T> uniquely;\n std::vector<size_t> compressed;\n\n public:\n coordinate_compression(const std::vector<T> &raw)\n : uniquely(raw), compressed(raw.size()) {\n std::sort(uniquely.begin(), uniquely.end());\n uniquely.erase(std::unique(uniquely.begin(), uniquely.end()),\n uniquely.end());\n for (size_t i = 0; i != size(); ++i)\n compressed[i] =\n std::lower_bound(uniquely.begin(), uniquely.end(), raw[i]) -\n uniquely.begin();\n }\n\n size_t operator[](const size_t idx) const {\n assert(idx < size());\n return compressed[idx];\n }\n\n size_t size() const { return compressed.size(); }\n\n size_t count() const { return uniquely.size(); }\n\n T value(const size_t ord) const {\n assert(ord < count());\n return uniquely[ord];\n }\n\n size_t order(const T &value) const {\n return std::lower_bound(uniquely.begin(), uniquely.end(), value) -\n uniquely.begin();\n }\n\n auto begin() { return compressed.begin(); }\n auto end() { return compressed.end(); }\n auto rbegin() { return compressed.rbegin(); }\n auto rend() { return compressed.rend(); }\n};\n#line 3 \"Library/utils/fixed_point.hpp\"\nnamespace workspace {\n// specify the return type of lambda.\ntemplate <class lambda_type> class fixed_point {\n lambda_type func;\n\n public:\n fixed_point(lambda_type &&f) : func(std::move(f)) {}\n template <class... Args> auto operator()(Args &&... args) const {\n return func(*this, std::forward<Args>(args)...);\n }\n};\n} // namespace workspace\n#line 6 \"Library/utils/hash.hpp\"\n\n#line 3 \"Library/utils/sfinae.hpp\"\n#include <type_traits>\n\ntemplate <class type, template <class> class trait>\nusing enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;\n\ntemplate <class Container>\nusing element_type = typename std::decay<decltype(\n *std::begin(std::declval<Container&>()))>::type;\n\ntemplate <class T, class = int> struct mapped_of {\n using type = element_type<T>;\n};\ntemplate <class T>\nstruct mapped_of<T,\n typename std::pair<int, typename T::mapped_type>::first_type> {\n using type = typename T::mapped_type;\n};\ntemplate <class T> using mapped_type = typename mapped_of<T>::type;\n\ntemplate <class T, class = void> struct is_integral_ext : std::false_type {};\ntemplate <class T>\nstruct is_integral_ext<\n T, typename std::enable_if<std::is_integral<T>::value>::type>\n : std::true_type {};\ntemplate <> struct is_integral_ext<__int128_t> : std::true_type {};\ntemplate <> struct is_integral_ext<__uint128_t> : std::true_type {};\n#if __cplusplus >= 201402\ntemplate <class T>\nconstexpr static bool is_integral_ext_v = is_integral_ext<T>::value;\n#endif\n\ntemplate <typename T, typename = void> struct multiplicable_uint {\n using type = uint_least32_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> {\n using type = uint_least64_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {\n using type = __uint128_t;\n};\n#line 8 \"Library/utils/hash.hpp\"\nnamespace workspace {\ntemplate <class T, class = void> struct hash : std::hash<T> {};\n#if __cplusplus >= 201703L\ntemplate <class Unique_bits_type>\nstruct hash<Unique_bits_type,\n enable_if_trait_type<Unique_bits_type,\n std::has_unique_object_representations>> {\n size_t operator()(uint64_t x) const {\n static const uint64_t m = std::random_device{}();\n x ^= x >> 23;\n x ^= m;\n x ^= x >> 47;\n return x - (x >> 32);\n }\n};\n#endif\ntemplate <class Key> size_t hash_combine(const size_t &seed, const Key &key) {\n return seed ^\n (hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */);\n}\ntemplate <class T1, class T2> struct hash<std::pair<T1, T2>> {\n size_t operator()(const std::pair<T1, T2> &pair) const {\n return hash_combine(hash<T1>()(pair.first), pair.second);\n }\n};\ntemplate <class... T> class hash<std::tuple<T...>> {\n template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1>\n struct tuple_hash {\n static uint64_t apply(const Tuple &t) {\n return hash_combine(tuple_hash<Tuple, index - 1>::apply(t),\n std::get<index>(t));\n }\n };\n template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> {\n static uint64_t apply(const Tuple &t) { return 0; }\n };\n\n public:\n uint64_t operator()(const std::tuple<T...> &t) const {\n return tuple_hash<std::tuple<T...>>::apply(t);\n }\n};\ntemplate <class hash_table> struct hash_table_wrapper : hash_table {\n using key_type = typename hash_table::key_type;\n size_t count(const key_type &key) const {\n return hash_table::find(key) != hash_table::end();\n }\n template <class... Args> auto emplace(Args &&... args) {\n return hash_table::insert(typename hash_table::value_type(args...));\n }\n};\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing cc_hash_table =\n hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing gp_hash_table =\n hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped>\nusing unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;\ntemplate <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>;\n} // namespace workspace\n#line 2 \"Library/utils/make_vector.hpp\"\n#if __cplusplus >= 201703L\n#include <vector>\nnamespace workspace {\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(size_t* sizes, T const& init = T()) {\n if constexpr (N)\n return std::vector(*sizes, make_vector<T, N - 1>(std::next(sizes), init));\n else\n return init;\n}\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(const size_t (&sizes)[N], T const& init = T()) {\n return make_vector<T, N>((size_t*)sizes, init);\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/random_number_generator.hpp\"\ntemplate <typename num_type> class random_number_generator {\n typename std::conditional<std::is_integral<num_type>::value,\n std::uniform_int_distribution<num_type>,\n std::uniform_real_distribution<num_type>>::type\n unif;\n\n std::mt19937 engine;\n\n public:\n random_number_generator(num_type min = std::numeric_limits<num_type>::min(),\n num_type max = std::numeric_limits<num_type>::max())\n : unif(min, max), engine(std::random_device{}()) {}\n\n num_type min() const { return unif.min(); }\n\n num_type max() const { return unif.max(); }\n\n // generate a random number in [min(), max()].\n num_type operator()() { return unif(engine); }\n};\n#line 3 \"Library/utils/read.hpp\"\nnamespace workspace {\n// read with std::cin.\ntemplate <class T = void>\nstruct read\n{\n typename std::remove_const<T>::type value;\n template <class... types>\n read(types... args) : value(args...) { std::cin >> value; }\n operator T() const { return value; }\n};\ntemplate <>\nstruct read<void>\n{\n template <class T>\n operator T() const { T value; std::cin >> value; return value; }\n};\n} // namespace workspace\n#line 4 \"Library/utils/stream.hpp\"\n\n#line 6 \"Library/utils/stream.hpp\"\nnamespace std {\ntemplate <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n return os << p.first << ' ' << p.second;\n}\ntemplate <class tuple_t, size_t index> struct tuple_is {\n static istream &apply(istream &is, tuple_t &t) {\n tuple_is<tuple_t, index - 1>::apply(is, t);\n return is >> get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_is<tuple_t, SIZE_MAX> {\n static istream &apply(istream &is, tuple_t &t) { return is; }\n};\ntemplate <class... T> istream &operator>>(istream &is, tuple<T...> &t) {\n return tuple_is<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is,\n t);\n}\ntemplate <class tuple_t, size_t index> struct tuple_os {\n static ostream &apply(ostream &os, const tuple_t &t) {\n tuple_os<tuple_t, index - 1>::apply(os, t);\n return os << ' ' << get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, 0> {\n static ostream &apply(ostream &os, const tuple_t &t) {\n return os << get<0>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {\n static ostream &apply(ostream &os, const tuple_t &t) { return os; }\n};\ntemplate <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) {\n return tuple_os<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os,\n t);\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n istream &>::type\noperator>>(istream &is, Container &cont) {\n for (auto &&e : cont) is >> e;\n return is;\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n ostream &>::type\noperator<<(ostream &os, const Container &cont) {\n bool head = true;\n for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;\n return os;\n}\n} // namespace std\n#line 4 \"Library/utils/trinary_search.hpp\"\n// trinary search on discrete range.\ntemplate <class iter_type, class comp_type>\niter_type trinary(iter_type first, iter_type last, comp_type comp)\n{\n assert(first < last);\n intmax_t dist(last - first);\n while(dist > 2)\n {\n iter_type left(first + dist / 3), right(first + dist * 2 / 3);\n if(comp(left, right)) last = right, dist = dist * 2 / 3;\n else first = left, dist -= dist / 3;\n }\n if(dist > 1 && comp(first + 1, first)) ++first;\n return first;\n}\n// trinary search on real numbers.\ntemplate <class comp_type>\nlong double trinary(long double first, long double last, const long double eps, comp_type comp)\n{\n assert(first < last);\n while(last - first > eps)\n {\n long double left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};\n if(comp(left, right)) last = right;\n else first = left;\n }\n return first;\n}\n#line 2 \"Library/utils/wrapper.hpp\"\ntemplate <class Container> class reversed {\n Container &ref, copy;\n\n public:\n reversed(Container &ref) : ref(ref) {}\n reversed(Container &&ref = Container()) : ref(copy), copy(ref) {}\n auto begin() const { return ref.rbegin(); }\n auto end() const { return ref.rend(); }\n};\n#line 9 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main();\n}\nint main() { config::loop(workspace::main); }\n\nunsigned config::cases() {\n // return -1; // unspecified\n // int t; std::cin >> t; return t; // given\n return 1;\n}\n\n#line 4 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n\n#line 4 \"Library/graph/directed/flow/base.hpp\"\n// the base class of flow algorithms.\ntemplate <class cap_t, class cost_t> struct flow_base {\n struct edge_t {\n size_t src, dst;\n cap_t cap;\n cost_t cost;\n edge_t *rev;\n edge_t() = default;\n edge_t(size_t src, size_t dst, const cap_t &cap, edge_t *rev)\n : src(src), dst(dst), cap(cap), rev(rev) {}\n edge_t(size_t src, size_t dst, const cap_t &cap, const cost_t &cost,\n edge_t *rev)\n : src(src), dst(dst), cap(cap), cost(cost), rev(rev) {}\n const cap_t &flow(const cap_t &f = 0) { return cap -= f, rev->cap += f; }\n bool avbl() const { return static_cast<cap_t>(0) < cap; }\n }; // class edge_t\n\n class adj_type {\n edge_t *fst, *lst, *clst;\n\n public:\n template <class... Args> edge_t *emplace(Args &&... args) {\n if (lst == clst) {\n size_t len(clst - fst);\n edge_t *nfst = lst = new edge_t[len << 1];\n for (edge_t *p{fst}; p != clst; ++p, ++lst)\n p->rev->rev = lst, *lst = *p;\n delete[] fst;\n fst = nfst;\n clst = lst + len;\n }\n *lst = edge_t(args...);\n return lst++;\n }\n adj_type() : fst(new edge_t[1]), lst(fst), clst(fst + 1) {}\n ~adj_type() { delete[] fst; }\n edge_t &operator[](size_t i) {\n assert(i < size());\n return *(fst + i);\n }\n size_t size() const { return lst - fst; }\n edge_t *begin() const { return fst; }\n edge_t *end() const { return lst; }\n }; // class adj_type\n\n flow_base(size_t n = 0) : adjs(n) {}\n\n flow_base(const flow_base &other) : adjs(other.size()) {\n for (size_t node{}; node != size(); ++node)\n for (const auto &[src, dst, cap, cost, rev] : other[node])\n if (src == node) {\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, rev->cap, -cost, ptr);\n rev->src = nil;\n } else {\n rev->rev->src = node;\n }\n }\n\n flow_base &operator=(const flow_base &rhs) {\n if (this != &rhs) adjs.swap(flow_base(rhs).adjs);\n return *this;\n }\n\n size_t size() const { return adjs.size(); }\n\n adj_type &operator[](size_t node) {\n assert(node < size());\n return adjs[node];\n }\n const adj_type &operator[](size_t node) const {\n assert(node < size());\n return adjs[node];\n }\n\n virtual edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) {\n assert(src < size());\n assert(dst < size());\n assert(!(cap < static_cast<cap_t>(0)));\n if (!(static_cast<cap_t>(0) < cap) || src == dst) return nullptr;\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, 0, -cost, ptr);\n return ptr;\n }\n\n protected:\n constexpr static size_t nil = -1;\n std::vector<adj_type> adjs;\n}; // class flow_base\n#line 6 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n// Successive shortest paths algorithm.\ntemplate <class cap_t, class cost_t, bool density_tag = false>\nclass min_cost_flow : public flow_base<cap_t, cost_t> {\n using base = flow_base<cap_t, cost_t>;\n using edge_t = typename base::edge_t;\n using base::adjs;\n using base::nil;\n\n cost_t min_cost, total_cost;\n std::vector<cap_t> supp;\n std::vector<cost_t> ptnl;\n\n void copy_member(const min_cost_flow &other) {\n min_cost = other.min_cost;\n total_cost = other.total_cost;\n supp = other.supp;\n ptnl = other.ptnl;\n }\n\n void Dijkstra(std::vector<edge_t *> &last) {\n const cost_t infty(total_cost + 1);\n std::vector<cost_t> nptnl(size(), infty);\n if constexpr (density_tag) {\n // O(V^2)\n std::vector<bool> used(size());\n for (size_t src{}; src != size(); ++src) {\n if (static_cast<cap_t>(0) < supp[src]) {\n used[src] = true;\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (static_cast<cap_t>(0) < supp[e.dst]) continue;\n if (e.avbl() && e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = e.cost;\n last[e.dst] = &e;\n }\n }\n }\n }\n for (;;) {\n size_t src{nil};\n cost_t sp{infty};\n for (size_t node{}; node != size(); ++node) {\n if (used[node] || nptnl[node] == infty) continue;\n cost_t dist{nptnl[node] - ptnl[node]};\n if (dist < sp) {\n sp = dist;\n src = node;\n }\n }\n if (src == nil) break;\n used[src] = true;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[src] + e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = nptnl[src] + e.cost;\n last[e.dst] = &e;\n }\n }\n }\n } else {\n // O((V + E)logV)\n struct node_t {\n size_t id;\n cost_t dist;\n node_t(size_t id, cost_t dist) : id(id), dist(dist) {}\n bool operator<(const node_t &rhs) const { return rhs.dist < dist; }\n };\n std::priority_queue<node_t> que;\n for (size_t src{}; src != size(); ++src) {\n if (supp[src] > static_cast<cap_t>(0)) {\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (supp[e.dst] > static_cast<cap_t>(0)) continue;\n if (e.avbl() && nptnl[e.dst] > e.cost) {\n que.emplace(e.dst, (nptnl[e.dst] = e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n while (!que.empty()) {\n auto [src, ndist] = que.top();\n que.pop();\n if (ndist + ptnl[src] != nptnl[src]) continue;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[e.dst] > nptnl[src] + e.cost) {\n que.emplace(e.dst,\n (nptnl[e.dst] = nptnl[src] + e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n ptnl.swap(nptnl);\n }\n\n public:\n using base::size;\n\n min_cost_flow(size_t n = 0)\n : base::flow_base(n), min_cost(0), total_cost(0), supp(n), ptnl(n) {}\n\n min_cost_flow(const min_cost_flow &other) : base::flow_base(other) {\n copy_member(other);\n }\n\n min_cost_flow &operator=(const min_cost_flow &other) {\n base::operator=(other);\n copy_member(other);\n return *this;\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cost_t &cost);\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) override {\n assert(src != dst);\n if (cost < static_cast<cost_t>(0)) {\n supp[src] -= cap;\n supp[dst] += cap;\n min_cost += cap * cost;\n total_cost -= cap * cost;\n return base::add_edge(dst, src, cap, -cost);\n }\n total_cost += cap * cost;\n return base::add_edge(src, dst, cap, cost);\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &lower,\n const cap_t &upper, const cost_t &cost) {\n assert(!(upper < lower));\n supp[src] -= lower;\n supp[dst] += lower;\n min_cost += lower * cost;\n return add_edge(src, dst, upper - lower, cost);\n }\n\n const cap_t &supply(size_t node, const cap_t &vol = 0) {\n assert(node < size());\n return supp[node] += vol;\n }\n\n const cap_t &demand(size_t node, const cap_t &vol) {\n return supply(node, -vol);\n }\n\n bool flow() {\n for (bool aug = true; aug;) {\n aug = false;\n std::vector<edge_t *> last(size());\n Dijkstra(last);\n std::vector<bool> shut(size());\n for (size_t dst{}; dst != size(); ++dst) {\n if (supp[dst] < static_cast<cap_t>(0) and last[dst]) {\n cap_t resid{-supp[dst]};\n size_t src{dst}, block{nil};\n while (last[src] && !shut[src]) {\n if (!(resid < last[src]->cap)) resid = last[block = src]->cap;\n src = last[src]->src;\n }\n if (shut[src])\n block = src;\n else {\n if (!(resid < supp[src])) {\n resid = supp[src];\n block = src;\n }\n for (edge_t *e{last[dst]}; e; e = last[e->src]) {\n e->cap -= resid;\n e->rev->cap += resid;\n }\n supp[src] -= resid;\n supp[dst] += resid;\n min_cost += ptnl[dst] * resid;\n aug = true;\n }\n if (~block) {\n for (size_t node{dst};; node = last[node]->src) {\n shut[node] = true;\n if (node == block) break;\n }\n }\n }\n }\n }\n return std::none_of(begin(supp), end(supp),\n [](const cap_t &s) { return s < 0 || 0 < s; });\n }\n\n cost_t optimal() {\n assert(flow());\n return min_cost;\n }\n}; // class min_cost_flow\n#line 22 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main() {\n // start here!\n const i64 inf = 1e12;\n int n, m, x;\n cin >> n >> m >> x;\n\n min_cost_flow<i64, i64> base(n * 3);\n // make\n {\n for (int i = 0; i < n; i++) {\n int a, b, p;\n cin >> a >> b >> p;\n base.add_edge(3 * i + 1, 3 * i, inf, p);\n base.add_edge(3 * i, 3 * i + 1, inf, -1);\n base.add_edge(3 * i + 1, 3 * i + 2, inf, 0);\n if (i) base.add_edge(3 * (i - 1), 3 * i, inf, 0);\n base.supply(3 * i, -a);\n base.supply(3 * i + 1, a - b);\n base.supply(3 * i + 2, b);\n }\n }\n for (auto j = 0; j < m; ++j) {\n int u, v, f;\n cin >> u >> v >> f;\n --u, --v;\n if (f > 0) {\n base.add_edge(3 * v, 3 * u + 2, inf, 1);\n } else {\n base.add_edge(3 * u + 2, 3 * v, inf, 0);\n }\n }\n\n auto ok = [&](int t) -> bool {\n auto mcf = base;\n for (int i = 0; i < n; i++) {\n mcf.add_edge(3 * i + 2, 0, inf, t);\n }\n if (mcf.flow()) {\n auto opt = mcf.optimal();\n return opt >= x;\n }\n return false;\n };\n\n auto ans = binary_search(x + 100 * n + 1, -1, ok);\n if (ans > x + 100 * n)\n cout << \"-1\\n\";\n else\n cout << ans << eol;\n}\n}", "accuracy": 0.4222222222222222, "time_ms": 20, "memory_kb": 3592, "score_of_the_acc": -0.5611, "final_rank": 12 }, { "submission_id": "aoj_3171_4886053", "code_snippet": "#line 1 \"other/h.cpp\"\n#include <bits/extc++.h>\n#if __has_include(<bit>)\n#include <bit>\n#endif\n#line 7 \"Library/alias.hpp\"\nnamespace workspace {\nconstexpr char eol = '\\n';\nusing namespace std;\nusing i32 = int_least32_t;\nusing i64 = int_least64_t;\nusing i128 = __int128_t;\nusing u32 = uint_least32_t;\nusing u64 = uint_least64_t;\nusing u128 = __uint128_t;\ntemplate <class T, class Comp = less<T>>\nusing priority_queue = std::priority_queue<T, vector<T>, Comp>;\ntemplate <class T> using stack = std::stack<T, vector<T>>;\n} // namespace workspace\n#line 5 \"Library/config.hpp\"\nnamespace config {\nconst auto start_time{std::chrono::system_clock::now()};\nint64_t elapsed() {\n using namespace std::chrono;\n const auto end_time{system_clock::now()};\n return duration_cast<milliseconds>(end_time - start_time).count();\n}\n__attribute__((constructor)) void setup() {\n using namespace std;\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n#ifdef _buffer_check\n atexit([] {\n char bufc;\n if (cin >> bufc)\n cerr << \"\\n\\033[43m\\033[30mwarning: buffer not empty.\\033[0m\\n\\n\";\n });\n#endif\n}\nunsigned cases(), caseid = 1;\ntemplate <class F> void loop(F main) {\n for (const unsigned total = cases(); caseid <= total; ++caseid) main();\n}\n} // namespace config\n#line 2 \"Library/option.hpp\"\n#ifdef ONLINE_JUDGE\n #pragma GCC optimize(\"O3\")\n #pragma GCC target(\"avx,avx2\")\n #pragma GCC optimize(\"unroll-loops\")\n#endif\n#line 2 \"Library/utils/binary_search.hpp\"\n#if __cplusplus >= 201703L\n#include <cassert>\n#include <cmath>\n#include <vector>\nnamespace workspace {\n// binary search on a discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>,\n iter_type>\nbinary_search(iter_type ok, iter_type ng, pred_type pred) {\n assert(ok != ng);\n std::make_signed_t<decltype(ng - ok)> dist(ng - ok);\n while (1 < dist || dist < -1) {\n iter_type mid(ok + dist / 2);\n if (pred(mid))\n ok = mid, dist -= dist / 2;\n else\n ng = mid, dist /= 2;\n }\n return ok;\n}\n// parallel binary search on each discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<iter_type>>,\n std::vector<bool>>,\n std::vector<iter_type>>\nbinary_search(std::vector<std::pair<iter_type, iter_type>> ends,\n pred_type pred) {\n std::vector<iter_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n iter_type mid(ok + (ng - ok) / 2);\n if (mids[i] != mid) {\n all_found = false;\n mids[i] = mid;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n// binary search on a real number interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>,\n real_type>\nbinary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) {\n assert(ok != ng);\n while (ok + eps < ng || ng + eps < ok) {\n real_type mid{(ok + ng) / 2};\n (pred(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n// parallel binary search on each real interval.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<real_type>>,\n std::vector<bool>>,\n std::vector<real_type>>\nbinary_search(std::vector<std::pair<real_type, real_type>> ends,\n const real_type eps, pred_type pred) {\n std::vector<real_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n if (ok + eps < ng || ng + eps < ok) {\n all_found = false;\n mids[i] = (ok + ng) / 2;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/casefmt.hpp\"\nnamespace workspace {\nstd::ostream &casefmt(std::ostream& os) { return os << \"Case #\" << config::caseid << \": \"; }\n} // namespace workspace\n#line 3 \"Library/utils/chval.hpp\"\nnamespace workspace {\ntemplate <class T, class Comp = std::less<T>>\nbool chle(T &x, const T &y, Comp comp = Comp()) {\n return comp(y, x) ? x = y, true : false;\n}\ntemplate <class T, class Comp = std::less<T>>\nbool chge(T &x, const T &y, Comp comp = Comp()) {\n return comp(x, y) ? x = y, true : false;\n}\n} // namespace workspace\n#line 5 \"Library/utils/coordinate_compression.hpp\"\n\ntemplate <class T> class coordinate_compression {\n std::vector<T> uniquely;\n std::vector<size_t> compressed;\n\n public:\n coordinate_compression(const std::vector<T> &raw)\n : uniquely(raw), compressed(raw.size()) {\n std::sort(uniquely.begin(), uniquely.end());\n uniquely.erase(std::unique(uniquely.begin(), uniquely.end()),\n uniquely.end());\n for (size_t i = 0; i != size(); ++i)\n compressed[i] =\n std::lower_bound(uniquely.begin(), uniquely.end(), raw[i]) -\n uniquely.begin();\n }\n\n size_t operator[](const size_t idx) const {\n assert(idx < size());\n return compressed[idx];\n }\n\n size_t size() const { return compressed.size(); }\n\n size_t count() const { return uniquely.size(); }\n\n T value(const size_t ord) const {\n assert(ord < count());\n return uniquely[ord];\n }\n\n size_t order(const T &value) const {\n return std::lower_bound(uniquely.begin(), uniquely.end(), value) -\n uniquely.begin();\n }\n\n auto begin() { return compressed.begin(); }\n auto end() { return compressed.end(); }\n auto rbegin() { return compressed.rbegin(); }\n auto rend() { return compressed.rend(); }\n};\n#line 3 \"Library/utils/fixed_point.hpp\"\nnamespace workspace {\n// specify the return type of lambda.\ntemplate <class lambda_type> class fixed_point {\n lambda_type func;\n\n public:\n fixed_point(lambda_type &&f) : func(std::move(f)) {}\n template <class... Args> auto operator()(Args &&... args) const {\n return func(*this, std::forward<Args>(args)...);\n }\n};\n} // namespace workspace\n#line 6 \"Library/utils/hash.hpp\"\n\n#line 3 \"Library/utils/sfinae.hpp\"\n#include <type_traits>\n\ntemplate <class type, template <class> class trait>\nusing enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;\n\ntemplate <class Container>\nusing element_type = typename std::decay<decltype(\n *std::begin(std::declval<Container&>()))>::type;\n\ntemplate <class T, class = int> struct mapped_of {\n using type = element_type<T>;\n};\ntemplate <class T>\nstruct mapped_of<T,\n typename std::pair<int, typename T::mapped_type>::first_type> {\n using type = typename T::mapped_type;\n};\ntemplate <class T> using mapped_type = typename mapped_of<T>::type;\n\ntemplate <class T, class = void> struct is_integral_ext : std::false_type {};\ntemplate <class T>\nstruct is_integral_ext<\n T, typename std::enable_if<std::is_integral<T>::value>::type>\n : std::true_type {};\ntemplate <> struct is_integral_ext<__int128_t> : std::true_type {};\ntemplate <> struct is_integral_ext<__uint128_t> : std::true_type {};\n#if __cplusplus >= 201402\ntemplate <class T>\nconstexpr static bool is_integral_ext_v = is_integral_ext<T>::value;\n#endif\n\ntemplate <typename T, typename = void> struct multiplicable_uint {\n using type = uint_least32_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> {\n using type = uint_least64_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {\n using type = __uint128_t;\n};\n#line 8 \"Library/utils/hash.hpp\"\nnamespace workspace {\ntemplate <class T, class = void> struct hash : std::hash<T> {};\n#if __cplusplus >= 201703L\ntemplate <class Unique_bits_type>\nstruct hash<Unique_bits_type,\n enable_if_trait_type<Unique_bits_type,\n std::has_unique_object_representations>> {\n size_t operator()(uint64_t x) const {\n static const uint64_t m = std::random_device{}();\n x ^= x >> 23;\n x ^= m;\n x ^= x >> 47;\n return x - (x >> 32);\n }\n};\n#endif\ntemplate <class Key> size_t hash_combine(const size_t &seed, const Key &key) {\n return seed ^\n (hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */);\n}\ntemplate <class T1, class T2> struct hash<std::pair<T1, T2>> {\n size_t operator()(const std::pair<T1, T2> &pair) const {\n return hash_combine(hash<T1>()(pair.first), pair.second);\n }\n};\ntemplate <class... T> class hash<std::tuple<T...>> {\n template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1>\n struct tuple_hash {\n static uint64_t apply(const Tuple &t) {\n return hash_combine(tuple_hash<Tuple, index - 1>::apply(t),\n std::get<index>(t));\n }\n };\n template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> {\n static uint64_t apply(const Tuple &t) { return 0; }\n };\n\n public:\n uint64_t operator()(const std::tuple<T...> &t) const {\n return tuple_hash<std::tuple<T...>>::apply(t);\n }\n};\ntemplate <class hash_table> struct hash_table_wrapper : hash_table {\n using key_type = typename hash_table::key_type;\n size_t count(const key_type &key) const {\n return hash_table::find(key) != hash_table::end();\n }\n template <class... Args> auto emplace(Args &&... args) {\n return hash_table::insert(typename hash_table::value_type(args...));\n }\n};\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing cc_hash_table =\n hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing gp_hash_table =\n hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped>\nusing unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;\ntemplate <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>;\n} // namespace workspace\n#line 2 \"Library/utils/make_vector.hpp\"\n#if __cplusplus >= 201703L\n#include <vector>\nnamespace workspace {\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(size_t* sizes, T const& init = T()) {\n if constexpr (N)\n return std::vector(*sizes, make_vector<T, N - 1>(std::next(sizes), init));\n else\n return init;\n}\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(const size_t (&sizes)[N], T const& init = T()) {\n return make_vector<T, N>((size_t*)sizes, init);\n}\n} // namespace workspace\n#endif\n#line 3 \"Library/utils/random_number_generator.hpp\"\ntemplate <typename num_type> class random_number_generator {\n typename std::conditional<std::is_integral<num_type>::value,\n std::uniform_int_distribution<num_type>,\n std::uniform_real_distribution<num_type>>::type\n unif;\n\n std::mt19937 engine;\n\n public:\n random_number_generator(num_type min = std::numeric_limits<num_type>::min(),\n num_type max = std::numeric_limits<num_type>::max())\n : unif(min, max), engine(std::random_device{}()) {}\n\n num_type min() const { return unif.min(); }\n\n num_type max() const { return unif.max(); }\n\n // generate a random number in [min(), max()].\n num_type operator()() { return unif(engine); }\n};\n#line 3 \"Library/utils/read.hpp\"\nnamespace workspace {\n// read with std::cin.\ntemplate <class T = void>\nstruct read\n{\n typename std::remove_const<T>::type value;\n template <class... types>\n read(types... args) : value(args...) { std::cin >> value; }\n operator T() const { return value; }\n};\ntemplate <>\nstruct read<void>\n{\n template <class T>\n operator T() const { T value; std::cin >> value; return value; }\n};\n} // namespace workspace\n#line 4 \"Library/utils/stream.hpp\"\n\n#line 6 \"Library/utils/stream.hpp\"\nnamespace std {\ntemplate <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n return os << p.first << ' ' << p.second;\n}\ntemplate <class tuple_t, size_t index> struct tuple_is {\n static istream &apply(istream &is, tuple_t &t) {\n tuple_is<tuple_t, index - 1>::apply(is, t);\n return is >> get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_is<tuple_t, SIZE_MAX> {\n static istream &apply(istream &is, tuple_t &t) { return is; }\n};\ntemplate <class... T> istream &operator>>(istream &is, tuple<T...> &t) {\n return tuple_is<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is,\n t);\n}\ntemplate <class tuple_t, size_t index> struct tuple_os {\n static ostream &apply(ostream &os, const tuple_t &t) {\n tuple_os<tuple_t, index - 1>::apply(os, t);\n return os << ' ' << get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, 0> {\n static ostream &apply(ostream &os, const tuple_t &t) {\n return os << get<0>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {\n static ostream &apply(ostream &os, const tuple_t &t) { return os; }\n};\ntemplate <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) {\n return tuple_os<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os,\n t);\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n istream &>::type\noperator>>(istream &is, Container &cont) {\n for (auto &&e : cont) is >> e;\n return is;\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n ostream &>::type\noperator<<(ostream &os, const Container &cont) {\n bool head = true;\n for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;\n return os;\n}\n} // namespace std\n#line 4 \"Library/utils/trinary_search.hpp\"\n// trinary search on discrete range.\ntemplate <class iter_type, class comp_type>\niter_type trinary(iter_type first, iter_type last, comp_type comp)\n{\n assert(first < last);\n intmax_t dist(last - first);\n while(dist > 2)\n {\n iter_type left(first + dist / 3), right(first + dist * 2 / 3);\n if(comp(left, right)) last = right, dist = dist * 2 / 3;\n else first = left, dist -= dist / 3;\n }\n if(dist > 1 && comp(first + 1, first)) ++first;\n return first;\n}\n// trinary search on real numbers.\ntemplate <class comp_type>\nlong double trinary(long double first, long double last, const long double eps, comp_type comp)\n{\n assert(first < last);\n while(last - first > eps)\n {\n long double left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};\n if(comp(left, right)) last = right;\n else first = left;\n }\n return first;\n}\n#line 2 \"Library/utils/wrapper.hpp\"\ntemplate <class Container> class reversed {\n Container &ref, copy;\n\n public:\n reversed(Container &ref) : ref(ref) {}\n reversed(Container &&ref = Container()) : ref(copy), copy(ref) {}\n auto begin() const { return ref.rbegin(); }\n auto end() const { return ref.rend(); }\n};\n#line 9 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main();\n}\nint main() { config::loop(workspace::main); }\n\nunsigned config::cases() {\n // return -1; // unspecified\n // int t; std::cin >> t; return t; // given\n return 1;\n}\n\n#line 4 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n\n#line 4 \"Library/graph/directed/flow/base.hpp\"\n// the base class of flow algorithms.\ntemplate <class cap_t, class cost_t> struct flow_base {\n struct edge_t {\n size_t src, dst;\n cap_t cap;\n cost_t cost;\n edge_t *rev;\n edge_t() = default;\n edge_t(size_t src, size_t dst, const cap_t &cap, edge_t *rev)\n : src(src), dst(dst), cap(cap), rev(rev) {}\n edge_t(size_t src, size_t dst, const cap_t &cap, const cost_t &cost,\n edge_t *rev)\n : src(src), dst(dst), cap(cap), cost(cost), rev(rev) {}\n const cap_t &flow(const cap_t &f = 0) { return cap -= f, rev->cap += f; }\n bool avbl() const { return static_cast<cap_t>(0) < cap; }\n }; // class edge_t\n\n class adj_type {\n edge_t *fst, *lst, *clst;\n\n public:\n template <class... Args> edge_t *emplace(Args &&... args) {\n if (lst == clst) {\n size_t len(clst - fst);\n edge_t *nfst = lst = new edge_t[len << 1];\n for (edge_t *p{fst}; p != clst; ++p, ++lst)\n p->rev->rev = lst, *lst = *p;\n delete[] fst;\n fst = nfst;\n clst = lst + len;\n }\n *lst = edge_t(args...);\n return lst++;\n }\n adj_type() : fst(new edge_t[1]), lst(fst), clst(fst + 1) {}\n ~adj_type() { delete[] fst; }\n edge_t &operator[](size_t i) {\n assert(i < size());\n return *(fst + i);\n }\n size_t size() const { return lst - fst; }\n edge_t *begin() const { return fst; }\n edge_t *end() const { return lst; }\n }; // class adj_type\n\n flow_base(size_t n = 0) : adjs(n) {}\n\n flow_base(const flow_base &other) : adjs(other.size()) {\n for (size_t node{}; node != size(); ++node)\n for (const auto &[src, dst, cap, cost, rev] : other[node])\n if (src == node) {\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, rev->cap, -cost, ptr);\n rev->src = nil;\n } else {\n rev->rev->src = node;\n }\n }\n\n flow_base &operator=(const flow_base &rhs) {\n if (this != &rhs) adjs.swap(flow_base(rhs).adjs);\n return *this;\n }\n\n size_t size() const { return adjs.size(); }\n\n adj_type &operator[](size_t node) {\n assert(node < size());\n return adjs[node];\n }\n const adj_type &operator[](size_t node) const {\n assert(node < size());\n return adjs[node];\n }\n\n virtual edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) {\n assert(src < size());\n assert(dst < size());\n assert(!(cap < static_cast<cap_t>(0)));\n if (!(static_cast<cap_t>(0) < cap) || src == dst) return nullptr;\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, 0, -cost, ptr);\n return ptr;\n }\n\n protected:\n constexpr static size_t nil = -1;\n std::vector<adj_type> adjs;\n}; // class flow_base\n#line 6 \"Library/graph/directed/flow/min_cost_flow.hpp\"\n// Successive shortest paths algorithm.\ntemplate <class cap_t, class cost_t, bool density_tag = false>\nclass min_cost_flow : public flow_base<cap_t, cost_t> {\n using base = flow_base<cap_t, cost_t>;\n using edge_t = typename base::edge_t;\n using base::adjs;\n using base::nil;\n\n cost_t min_cost, total_cost;\n std::vector<cap_t> supp;\n std::vector<cost_t> ptnl;\n\n void copy_member(const min_cost_flow &other) {\n min_cost = other.min_cost;\n total_cost = other.total_cost;\n supp = other.supp;\n ptnl = other.ptnl;\n }\n\n void Dijkstra(std::vector<edge_t *> &last) {\n const cost_t infty(total_cost + 1);\n std::vector<cost_t> nptnl(size(), infty);\n if constexpr (density_tag) {\n // O(V^2)\n std::vector<bool> used(size());\n for (size_t src{}; src != size(); ++src) {\n if (static_cast<cap_t>(0) < supp[src]) {\n used[src] = true;\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (static_cast<cap_t>(0) < supp[e.dst]) continue;\n if (e.avbl() && e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = e.cost;\n last[e.dst] = &e;\n }\n }\n }\n }\n for (;;) {\n size_t src{nil};\n cost_t sp{infty};\n for (size_t node{}; node != size(); ++node) {\n if (used[node] || nptnl[node] == infty) continue;\n cost_t dist{nptnl[node] - ptnl[node]};\n if (dist < sp) {\n sp = dist;\n src = node;\n }\n }\n if (src == nil) break;\n used[src] = true;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[src] + e.cost < nptnl[e.dst]) {\n nptnl[e.dst] = nptnl[src] + e.cost;\n last[e.dst] = &e;\n }\n }\n }\n } else {\n // O((V + E)logV)\n struct node_t {\n size_t id;\n cost_t dist;\n node_t(size_t id, cost_t dist) : id(id), dist(dist) {}\n bool operator<(const node_t &rhs) const { return rhs.dist < dist; }\n };\n std::priority_queue<node_t> que;\n for (size_t src{}; src != size(); ++src) {\n if (supp[src] > static_cast<cap_t>(0)) {\n nptnl[src] = 0;\n for (edge_t &e : adjs[src]) {\n if (supp[e.dst] > static_cast<cap_t>(0)) continue;\n if (e.avbl() && nptnl[e.dst] > e.cost) {\n que.emplace(e.dst, (nptnl[e.dst] = e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n while (!que.empty()) {\n auto [src, ndist] = que.top();\n que.pop();\n if (ndist + ptnl[src] != nptnl[src]) continue;\n for (edge_t &e : adjs[src]) {\n if (e.avbl() && nptnl[e.dst] > nptnl[src] + e.cost) {\n que.emplace(e.dst,\n (nptnl[e.dst] = nptnl[src] + e.cost) - ptnl[e.dst]);\n last[e.dst] = &e;\n }\n }\n }\n }\n ptnl.swap(nptnl);\n }\n\n public:\n using base::size;\n\n min_cost_flow(size_t n = 0)\n : base::flow_base(n), min_cost(0), total_cost(0), supp(n), ptnl(n) {}\n\n min_cost_flow(const min_cost_flow &other) : base::flow_base(other) {\n copy_member(other);\n }\n\n min_cost_flow &operator=(const min_cost_flow &other) {\n base::operator=(other);\n copy_member(other);\n return *this;\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cost_t &cost);\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &cap,\n const cost_t &cost) override {\n assert(src != dst);\n if (cost < static_cast<cost_t>(0)) {\n supp[src] -= cap;\n supp[dst] += cap;\n min_cost += cap * cost;\n total_cost -= cap * cost;\n return base::add_edge(dst, src, cap, -cost);\n }\n total_cost += cap * cost;\n return base::add_edge(src, dst, cap, cost);\n }\n\n edge_t *add_edge(size_t src, size_t dst, const cap_t &lower,\n const cap_t &upper, const cost_t &cost) {\n assert(!(upper < lower));\n supp[src] -= lower;\n supp[dst] += lower;\n min_cost += lower * cost;\n return add_edge(src, dst, upper - lower, cost);\n }\n\n const cap_t &supply(size_t node, const cap_t &vol = 0) {\n assert(node < size());\n return supp[node] += vol;\n }\n\n const cap_t &demand(size_t node, const cap_t &vol) {\n return supply(node, -vol);\n }\n\n bool flow() {\n for (bool aug = true; aug;) {\n aug = false;\n std::vector<edge_t *> last(size());\n Dijkstra(last);\n std::vector<bool> shut(size());\n for (size_t dst{}; dst != size(); ++dst) {\n if (supp[dst] < static_cast<cap_t>(0) and last[dst]) {\n cap_t resid{-supp[dst]};\n size_t src{dst}, block{nil};\n while (last[src] && !shut[src]) {\n if (!(resid < last[src]->cap)) resid = last[block = src]->cap;\n src = last[src]->src;\n }\n if (shut[src])\n block = src;\n else {\n if (!(resid < supp[src])) {\n resid = supp[src];\n block = src;\n }\n for (edge_t *e{last[dst]}; e; e = last[e->src]) {\n e->cap -= resid;\n e->rev->cap += resid;\n }\n supp[src] -= resid;\n supp[dst] += resid;\n min_cost += ptnl[dst] * resid;\n aug = true;\n }\n if (~block) {\n for (size_t node{dst};; node = last[node]->src) {\n shut[node] = true;\n if (node == block) break;\n }\n }\n }\n }\n }\n return std::none_of(begin(supp), end(supp),\n [](const cap_t &s) { return s < 0 || 0 < s; });\n }\n\n cost_t optimal() {\n assert(flow());\n return min_cost;\n }\n}; // class min_cost_flow\n#line 22 \"other/h.cpp\"\n\nnamespace workspace {\nvoid main() {\n // start here!\n const int inf = 1e9;\n int n, m, x;\n cin >> n >> m >> x;\n\n min_cost_flow<i64, i64> base(n * 3);\n // make\n {\n for (int i = 0; i < n; i++) {\n int a, b, p;\n cin >> a >> b >> p;\n base.add_edge(3 * i + 1, 3 * i, inf, p);\n base.add_edge(3 * i, 3 * i + 1, inf, -1);\n base.add_edge(3 * i + 1, 3 * i + 2, inf, 0);\n if (i) base.add_edge(3 * (i - 1), 3 * i, inf, 0);\n base.supply(3 * i, -a);\n base.supply(3 * i + 1, a - b);\n base.supply(3 * i + 2, b);\n }\n }\n for (auto j = 0; j < m; ++j) {\n int u, v, f;\n cin >> u >> v >> f;\n --u, --v;\n if (f > 0) {\n base.add_edge(3 * v, 3 * u + 2, inf, 1);\n } else {\n base.add_edge(3 * u + 2, 3 * v, inf, 0);\n }\n }\n\n auto ok = [&](int t) -> bool {\n auto mcf = base;\n for (int i = 0; i < n; i++) {\n mcf.add_edge(3 * i + 2, 0, inf, t);\n }\n if (mcf.flow()) {\n auto opt = mcf.optimal();\n return opt >= x;\n }\n return false;\n };\n\n auto ans = binary_search(x + 100 * n + 1, -1, ok);\n if (ans > x + 100 * n)\n cout << \"-1\\n\";\n else\n cout << ans << eol;\n}\n}", "accuracy": 0.4222222222222222, "time_ms": 40, "memory_kb": 3676, "score_of_the_acc": -0.7449, "final_rank": 17 }, { "submission_id": "aoj_3171_4867711", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\n// O(m^2 \\log n \\log U)\n// U: maximum capacity\nenum Objective{\n MINIMIZE = +1,\n MAXIMIZE = -1,\n};\ntemplate<typename Flow, typename Cost,\n Objective objective = Objective::MINIMIZE>\nstruct MinCostFlow{\n template<typename T> inline void chmin(T &x,T y){x=min(x,y);}\n\n struct Edge{\n int src,dst;\n Flow flow,cap;\n Cost cost;\n int rev;\n Edge(int src,int dst,Flow cap,Cost cost,int rev):\n src(src),dst(dst),flow(0),cap(cap),cost(cost),rev(rev){}\n Flow residual_cap()const{return cap-flow;}\n };\n\n struct EdgePtr{\n int v,e;\n EdgePtr(int v,int e):v(v),e(e){}\n };\n\n int n;\n vector<vector<Edge>> G;\n vector<Flow> b;\n vector<Cost> p;\n\n MinCostFlow(int n):n(n),G(n),b(n,0){}\n\n EdgePtr add_edge(int src,int dst,Flow lower,Flow upper,Cost cost){\n int e=G[src].size();\n int r=(src==dst?e+1:G[dst].size());\n assert(lower<=upper);\n G[src].emplace_back(src,dst,+upper,+cost*objective,r);\n G[dst].emplace_back(dst,src,-lower,-cost*objective,e);\n return EdgePtr(src,e);\n }\n\n const Edge &get_edge(EdgePtr ep)const{return G[ep.v][ep.e];}\n\n void push(Edge &e,Flow amount){\n e.flow+=amount;\n G[e.dst][e.rev].flow-=amount;\n }\n\n void add_supply(int v,Flow amount){b[v]+=amount;}\n void add_demand(int v,Flow amount){b[v]-=amount;}\n\n Cost residual_cost(const Edge &e){\n return e.cost+p[e.src]-p[e.dst];\n }\n\n vector<int> excess_vs,deficit_vs;\n void saturate_negative(const Flow delta){\n for(auto &es:G){\n for(auto &e:es){\n Flow cap=e.residual_cap();\n cap-=cap%delta;\n if(cap<0 or residual_cost(e)<0){\n push(e,cap);\n b[e.src]-=cap;\n b[e.dst]+=cap;\n }\n }\n }\n\n excess_vs.clear();\n deficit_vs.clear();\n for(int v=0;v<n;v++){\n if(b[v]>0) excess_vs.emplace_back(v);\n if(b[v]<0) deficit_vs.emplace_back(v);\n }\n }\n\n const Cost unreachable = std::numeric_limits<Cost>::max();\n Cost farthest;\n vector<Cost> dist;\n vector<Edge*> parent;\n\n struct P{\n Cost first;\n int second;\n P(Cost first,int second):first(first),second(second){}\n bool operator<(const P o)const{return first>o.first;}\n };\n\n priority_queue<P> pq;\n\n template<typename Predicate>\n void eliminate(vector<int> &vs,Predicate predicate){\n vs.erase(remove_if(begin(vs),end(vs),predicate),end(vs));\n }\n\n bool dual(const Flow delta){\n eliminate(excess_vs, [&](int v){return b[v]<+delta;});\n eliminate(deficit_vs,[&](int v){return b[v]>-delta;});\n\n dist.assign(n,unreachable);\n for(int v:excess_vs) pq.emplace(dist[v]=0,v);\n\n parent.assign(n,nullptr);\n auto emplace=[&](Edge& e){\n if(e.residual_cap()<delta) return;\n Cost nxt=dist[e.src]+residual_cost(e);\n if(nxt>=dist[e.dst]) return;\n pq.emplace(dist[e.dst]=nxt,e.dst);\n parent[e.dst]=&e;\n };\n\n farthest=0;\n int deficit_count=0;\n while(!pq.empty()){\n Cost d=pq.top().first;\n int v=pq.top().second;\n pq.pop();\n if(dist[v]<d) continue;\n farthest=d;\n\n if(b[v]<=-delta) deficit_count++;\n if(deficit_count>=(int)deficit_vs.size()) break;\n\n for(auto &e:G[v]) emplace(e);\n }\n pq=decltype(pq)();\n\n for(int v=0;v<n;v++)\n p[v]+=min(dist[v],farthest);\n\n return deficit_count>0;\n }\n\n void primal(const Flow delta){\n for(int t:deficit_vs){\n if(dist[t]>farthest) continue;\n Flow f=-b[t];\n int v;\n for(v=t;parent[v];v=parent[v]->src)\n chmin(f,parent[v]->residual_cap());\n chmin(f,b[v]);\n\n f-=f%delta;\n if(f<=0) continue;\n\n for(v=t;parent[v];){\n auto &e=*parent[v];\n push(e,f);\n int u=parent[v]->src;\n if(e.residual_cap()<=0) parent[v]=nullptr;\n v=u;\n }\n b[t]+=f;\n b[v]-=f;\n }\n }\n\n template<Flow SCALING_FACTOR=2>\n bool build(){\n p.resize(n);\n Flow max_flow=1;\n for(auto t:b) max_flow=max({max_flow,t,-t});\n for(auto &es:G)\n for(auto &e:es)\n max_flow=max({max_flow,e.residual_cap(),-e.residual_cap()});\n\n Flow delta=1;\n while(delta<max_flow) delta*=SCALING_FACTOR;\n for(;delta;delta/=SCALING_FACTOR){\n saturate_negative(delta);\n while(dual(delta)) primal(delta);\n }\n\n return excess_vs.empty() and deficit_vs.empty();\n }\n\n template<typename T=Cost>\n T get_cost(){\n T res=0;\n for(auto &es:G)\n for(auto &e:es)\n res+=T(e.flow)*T(e.cost)/T(objective);\n return res/T(2);\n }\n template<typename T=Cost> T get_gain(){return get_cost();}\n\n vector<Cost> get_potential(){\n fill(p.begin(),p.end(),0);\n for(int i=0;i<n;i++)\n for(auto &es:G)\n for(auto &e:es)\n if(e.residual_cap()>0)\n chmin(p[e.dst],p[e.src]+e.cost);\n return p;\n }\n};\n\ntemplate<typename Flow, typename Cost>\nusing MaxGainFlow = MinCostFlow<Flow, Cost, Objective::MAXIMIZE>;\n\n\ntemplate<typename TV, const int N> void read_tuple_impl(TV&) {}\ntemplate<typename TV, const int N, typename Head, typename... Tail>\nvoid read_tuple_impl(TV& ts) {\n get<N>(ts).emplace_back(*(istream_iterator<Head>(cin)));\n read_tuple_impl<TV, N+1, Tail...>(ts);\n}\ntemplate<typename... Ts> decltype(auto) read_tuple(size_t n) {\n tuple<vector<Ts>...> ts;\n for(size_t i=0;i<n;i++) read_tuple_impl<decltype(ts), 0, Ts...>(ts);\n return ts;\n}\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n,m,need;\n cin>>n>>m>>need;\n auto [xs,ys,qs]=read_tuple<int, int, int>(n);\n auto [us,vs,fs]=read_tuple<int, int, int>(m);\n\n for(int i=0;i<m;i++) us[i]--,vs[i]--;\n\n auto st=[&](int i){return 0+i;};\n auto en=[&](int i){return n+i;};\n auto check=[&](ll T)->__int128_t{\n int Z=n+n;\n MinCostFlow<ll, ll> G(n+n+1);\n\n const ll INF = 1LL<<50;\n for(int i=0;i<n;i++){\n G.add_edge(st(i),Z,0,INF,0);\n G.add_edge(en(i),st(i),0,INF,-1);\n G.add_edge(Z,en(i),0,INF,T);\n }\n\n for(int i=0;i<m;i++){\n if(fs[i]==+1)\n G.add_edge(en(us[i]),st(vs[i]),0,INF,-1);\n if(fs[i]==-1)\n G.add_edge(st(vs[i]),en(us[i]),0,INF,0);\n }\n\n for(int i=0;i+1<n;i++)\n G.add_edge(st(i+1),st(i),0,INF,0);\n\n for(int i=0;i<n;i++){\n G.add_edge(st(i),en(i),0,xs[i]-ys[i],qs[i]);\n if(xs[i]>=0)\n G.add_edge(en(i),st(i),xs[i],INF,0);\n else\n G.add_edge(st(i),en(i),0,abs(xs[i]),0);\n }\n if(!G.build()) return -1;\n return G.get_cost<__int128_t>();\n };\n\n ll L=0,R=1e12;\n // check(L) < need\n // check(R) >= need\n if(check(R)<need) drop(-1);\n while(L+1<R){\n ll M=(L+R)>>1;\n if(check(M)>=need) R=M;\n else L=M;\n }\n cout<<R<<newl;\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 3592, "score_of_the_acc": -0.7611, "final_rank": 5 }, { "submission_id": "aoj_3171_4867708", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\n// O(m^2 \\log n \\log U)\n// U: maximum capacity\nenum Objective{\n MINIMIZE = +1,\n MAXIMIZE = -1,\n};\ntemplate<typename Flow, typename Cost,\n Objective objective = Objective::MINIMIZE>\nstruct MinCostFlow{\n template<typename T> inline void chmin(T &x,T y){x=min(x,y);}\n\n struct Edge{\n int src,dst;\n Flow flow,cap;\n Cost cost;\n int rev;\n Edge(int src,int dst,Flow cap,Cost cost,int rev):\n src(src),dst(dst),flow(0),cap(cap),cost(cost),rev(rev){}\n Flow residual_cap()const{return cap-flow;}\n };\n\n struct EdgePtr{\n int v,e;\n EdgePtr(int v,int e):v(v),e(e){}\n };\n\n int n;\n vector<vector<Edge>> G;\n vector<Flow> b;\n vector<Cost> p;\n\n MinCostFlow(int n):n(n),G(n),b(n,0){}\n\n EdgePtr add_edge(int src,int dst,Flow lower,Flow upper,Cost cost){\n int e=G[src].size();\n int r=(src==dst?e+1:G[dst].size());\n assert(lower<=upper);\n G[src].emplace_back(src,dst,+upper,+cost*objective,r);\n G[dst].emplace_back(dst,src,-lower,-cost*objective,e);\n return EdgePtr(src,e);\n }\n\n const Edge &get_edge(EdgePtr ep)const{return G[ep.v][ep.e];}\n\n void push(Edge &e,Flow amount){\n e.flow+=amount;\n G[e.dst][e.rev].flow-=amount;\n }\n\n void add_supply(int v,Flow amount){b[v]+=amount;}\n void add_demand(int v,Flow amount){b[v]-=amount;}\n\n Cost residual_cost(const Edge &e){\n return e.cost+p[e.src]-p[e.dst];\n }\n\n vector<int> excess_vs,deficit_vs;\n void saturate_negative(const Flow delta){\n for(auto &es:G){\n for(auto &e:es){\n Flow cap=e.residual_cap();\n cap-=cap%delta;\n if(cap<0 or residual_cost(e)<0){\n push(e,cap);\n b[e.src]-=cap;\n b[e.dst]+=cap;\n }\n }\n }\n\n excess_vs.clear();\n deficit_vs.clear();\n for(int v=0;v<n;v++){\n if(b[v]>0) excess_vs.emplace_back(v);\n if(b[v]<0) deficit_vs.emplace_back(v);\n }\n }\n\n const Cost unreachable = std::numeric_limits<Cost>::max();\n Cost farthest;\n vector<Cost> dist;\n vector<Edge*> parent;\n\n struct P{\n Cost first;\n int second;\n P(Cost first,int second):first(first),second(second){}\n bool operator<(const P o)const{return first>o.first;}\n };\n\n priority_queue<P> pq;\n\n template<typename Predicate>\n void eliminate(vector<int> &vs,Predicate predicate){\n vs.erase(remove_if(begin(vs),end(vs),predicate),end(vs));\n }\n\n bool dual(const Flow delta){\n eliminate(excess_vs, [&](int v){return b[v]<+delta;});\n eliminate(deficit_vs,[&](int v){return b[v]>-delta;});\n\n dist.assign(n,unreachable);\n for(int v:excess_vs) pq.emplace(dist[v]=0,v);\n\n parent.assign(n,nullptr);\n auto emplace=[&](Edge& e){\n if(e.residual_cap()<delta) return;\n Cost nxt=dist[e.src]+residual_cost(e);\n if(nxt>=dist[e.dst]) return;\n pq.emplace(dist[e.dst]=nxt,e.dst);\n parent[e.dst]=&e;\n };\n\n farthest=0;\n int deficit_count=0;\n while(!pq.empty()){\n Cost d=pq.top().first;\n int v=pq.top().second;\n pq.pop();\n if(dist[v]<d) continue;\n farthest=d;\n\n if(b[v]<=-delta) deficit_count++;\n if(deficit_count>=(int)deficit_vs.size()) break;\n\n for(auto &e:G[v]) emplace(e);\n }\n pq=decltype(pq)();\n\n for(int v=0;v<n;v++)\n p[v]+=min(dist[v],farthest);\n\n return deficit_count>0;\n }\n\n void primal(const Flow delta){\n for(int t:deficit_vs){\n if(dist[t]>farthest) continue;\n Flow f=-b[t];\n int v;\n for(v=t;parent[v];v=parent[v]->src)\n chmin(f,parent[v]->residual_cap());\n chmin(f,b[v]);\n\n f-=f%delta;\n if(f<=0) continue;\n\n for(v=t;parent[v];){\n auto &e=*parent[v];\n push(e,f);\n int u=parent[v]->src;\n if(e.residual_cap()<=0) parent[v]=nullptr;\n v=u;\n }\n b[t]+=f;\n b[v]-=f;\n }\n }\n\n template<Flow SCALING_FACTOR=2>\n bool build(){\n p.resize(n);\n Flow max_flow=1;\n for(auto t:b) max_flow=max({max_flow,t,-t});\n for(auto &es:G)\n for(auto &e:es)\n max_flow=max({max_flow,e.residual_cap(),-e.residual_cap()});\n\n Flow delta=1;\n while(delta<max_flow) delta*=SCALING_FACTOR;\n for(;delta;delta/=SCALING_FACTOR){\n saturate_negative(delta);\n while(dual(delta)) primal(delta);\n }\n\n return excess_vs.empty() and deficit_vs.empty();\n }\n\n template<typename T=Cost>\n T get_cost(){\n T res=0;\n for(auto &es:G)\n for(auto &e:es)\n res+=T(e.flow)*T(e.cost)/T(objective);\n return res/T(2);\n }\n template<typename T=Cost> T get_gain(){return get_cost();}\n\n vector<Cost> get_potential(){\n fill(p.begin(),p.end(),0);\n for(int i=0;i<n;i++)\n for(auto &es:G)\n for(auto &e:es)\n if(e.residual_cap()>0)\n chmin(p[e.dst],p[e.src]+e.cost);\n return p;\n }\n};\n\ntemplate<typename Flow, typename Cost>\nusing MaxGainFlow = MinCostFlow<Flow, Cost, Objective::MAXIMIZE>;\n\n\ntemplate<typename TV, const int N> void read_tuple_impl(TV&) {}\ntemplate<typename TV, const int N, typename Head, typename... Tail>\nvoid read_tuple_impl(TV& ts) {\n get<N>(ts).emplace_back(*(istream_iterator<Head>(cin)));\n read_tuple_impl<TV, N+1, Tail...>(ts);\n}\ntemplate<typename... Ts> decltype(auto) read_tuple(size_t n) {\n tuple<vector<Ts>...> ts;\n for(size_t i=0;i<n;i++) read_tuple_impl<decltype(ts), 0, Ts...>(ts);\n return ts;\n}\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n,m,need;\n cin>>n>>m>>need;\n auto [xs,ys,qs]=read_tuple<int, int, int>(n);\n auto [us,vs,fs]=read_tuple<int, int, int>(m);\n\n for(int i=0;i<m;i++) us[i]--,vs[i]--;\n\n auto st=[&](int i){return 0+i;};\n auto en=[&](int i){return n+i;};\n auto check=[&](ll T)->__int128_t{\n int Z=n+n;\n MinCostFlow<ll, ll> G(n+n+1);\n\n const ll INF = 1LL<<40;\n for(int i=0;i<n;i++){\n G.add_edge(st(i),Z,0,INF,0);\n G.add_edge(en(i),st(i),0,INF,-1);\n G.add_edge(Z,en(i),0,INF,T);\n }\n\n for(int i=0;i<m;i++){\n if(fs[i]==+1)\n G.add_edge(en(us[i]),st(vs[i]),0,INF,-1);\n if(fs[i]==-1)\n G.add_edge(st(vs[i]),en(us[i]),0,INF,0);\n }\n\n for(int i=0;i+1<n;i++)\n G.add_edge(st(i+1),st(i),0,INF,0);\n\n for(int i=0;i<n;i++){\n G.add_edge(st(i),en(i),0,xs[i]-ys[i],qs[i]);\n if(xs[i]>=0)\n G.add_edge(en(i),st(i),xs[i],INF,0);\n else\n G.add_edge(st(i),en(i),0,abs(xs[i]),0);\n }\n if(!G.build()) return -1;\n return G.get_cost<__int128_t>();\n };\n\n ll L=0,R=1e9;\n // check(L) < need\n // check(R) >= need\n if(check(R)<need) drop(-1);\n while(L+1<R){\n ll M=(L+R)>>1;\n if(check(M)>=need) R=M;\n else L=M;\n }\n cout<<R<<newl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 3592, "score_of_the_acc": -0.6811, "final_rank": 2 }, { "submission_id": "aoj_3171_4867690", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\n// O(m^2 \\log n \\log U)\n// U: maximum capacity\nenum Objective{\n MINIMIZE = +1,\n MAXIMIZE = -1,\n};\ntemplate<typename Flow, typename Cost,\n Objective objective = Objective::MINIMIZE>\nstruct MinCostFlow{\n template<typename T> inline void chmin(T &x,T y){x=min(x,y);}\n\n struct Edge{\n int src,dst;\n Flow flow,cap;\n Cost cost;\n int rev;\n Edge(int src,int dst,Flow cap,Cost cost,int rev):\n src(src),dst(dst),flow(0),cap(cap),cost(cost),rev(rev){}\n Flow residual_cap()const{return cap-flow;}\n };\n\n struct EdgePtr{\n int v,e;\n EdgePtr(int v,int e):v(v),e(e){}\n };\n\n int n;\n vector<vector<Edge>> G;\n vector<Flow> b;\n vector<Cost> p;\n\n MinCostFlow(int n):n(n),G(n),b(n,0){}\n\n EdgePtr add_edge(int src,int dst,Flow lower,Flow upper,Cost cost){\n int e=G[src].size();\n int r=(src==dst?e+1:G[dst].size());\n assert(lower<=upper);\n G[src].emplace_back(src,dst,+upper,+cost*objective,r);\n G[dst].emplace_back(dst,src,-lower,-cost*objective,e);\n return EdgePtr(src,e);\n }\n\n const Edge &get_edge(EdgePtr ep)const{return G[ep.v][ep.e];}\n\n void push(Edge &e,Flow amount){\n e.flow+=amount;\n G[e.dst][e.rev].flow-=amount;\n }\n\n void add_supply(int v,Flow amount){b[v]+=amount;}\n void add_demand(int v,Flow amount){b[v]-=amount;}\n\n Cost residual_cost(const Edge &e){\n return e.cost+p[e.src]-p[e.dst];\n }\n\n vector<int> excess_vs,deficit_vs;\n void saturate_negative(const Flow delta){\n for(auto &es:G){\n for(auto &e:es){\n Flow cap=e.residual_cap();\n cap-=cap%delta;\n if(cap<0 or residual_cost(e)<0){\n push(e,cap);\n b[e.src]-=cap;\n b[e.dst]+=cap;\n }\n }\n }\n\n excess_vs.clear();\n deficit_vs.clear();\n for(int v=0;v<n;v++){\n if(b[v]>0) excess_vs.emplace_back(v);\n if(b[v]<0) deficit_vs.emplace_back(v);\n }\n }\n\n const Cost unreachable = std::numeric_limits<Cost>::max();\n Cost farthest;\n vector<Cost> dist;\n vector<Edge*> parent;\n\n struct P{\n Cost first;\n int second;\n P(Cost first,int second):first(first),second(second){}\n bool operator<(const P o)const{return first>o.first;}\n };\n\n priority_queue<P> pq;\n\n template<typename Predicate>\n void eliminate(vector<int> &vs,Predicate predicate){\n vs.erase(remove_if(begin(vs),end(vs),predicate),end(vs));\n }\n\n bool dual(const Flow delta){\n eliminate(excess_vs, [&](int v){return b[v]<+delta;});\n eliminate(deficit_vs,[&](int v){return b[v]>-delta;});\n\n dist.assign(n,unreachable);\n for(int v:excess_vs) pq.emplace(dist[v]=0,v);\n\n parent.assign(n,nullptr);\n auto emplace=[&](Edge& e){\n if(e.residual_cap()<delta) return;\n Cost nxt=dist[e.src]+residual_cost(e);\n if(nxt>=dist[e.dst]) return;\n pq.emplace(dist[e.dst]=nxt,e.dst);\n parent[e.dst]=&e;\n };\n\n farthest=0;\n int deficit_count=0;\n while(!pq.empty()){\n Cost d=pq.top().first;\n int v=pq.top().second;\n pq.pop();\n if(dist[v]<d) continue;\n farthest=d;\n\n if(b[v]<=-delta) deficit_count++;\n if(deficit_count>=(int)deficit_vs.size()) break;\n\n for(auto &e:G[v]) emplace(e);\n }\n pq=decltype(pq)();\n\n for(int v=0;v<n;v++)\n p[v]+=min(dist[v],farthest);\n\n return deficit_count>0;\n }\n\n void primal(const Flow delta){\n for(int t:deficit_vs){\n if(dist[t]>farthest) continue;\n Flow f=-b[t];\n int v;\n for(v=t;parent[v];v=parent[v]->src)\n chmin(f,parent[v]->residual_cap());\n chmin(f,b[v]);\n\n f-=f%delta;\n if(f<=0) continue;\n\n for(v=t;parent[v];){\n auto &e=*parent[v];\n push(e,f);\n int u=parent[v]->src;\n if(e.residual_cap()<=0) parent[v]=nullptr;\n v=u;\n }\n b[t]+=f;\n b[v]-=f;\n }\n }\n\n template<Flow SCALING_FACTOR=2>\n bool build(){\n p.resize(n);\n Flow max_flow=1;\n for(auto t:b) max_flow=max({max_flow,t,-t});\n for(auto &es:G)\n for(auto &e:es)\n max_flow=max({max_flow,e.residual_cap(),-e.residual_cap()});\n\n Flow delta=1;\n while(delta<max_flow) delta*=SCALING_FACTOR;\n for(;delta;delta/=SCALING_FACTOR){\n saturate_negative(delta);\n while(dual(delta)) primal(delta);\n }\n\n return excess_vs.empty() and deficit_vs.empty();\n }\n\n template<typename T=Cost>\n T get_cost(){\n T res=0;\n for(auto &es:G)\n for(auto &e:es)\n res+=T(e.flow)*T(e.cost)/T(objective);\n return res/T(2);\n }\n template<typename T=Cost> T get_gain(){return get_cost();}\n\n vector<Cost> get_potential(){\n fill(p.begin(),p.end(),0);\n for(int i=0;i<n;i++)\n for(auto &es:G)\n for(auto &e:es)\n if(e.residual_cap()>0)\n chmin(p[e.dst],p[e.src]+e.cost);\n return p;\n }\n};\n\ntemplate<typename Flow, typename Cost>\nusing MaxGainFlow = MinCostFlow<Flow, Cost, Objective::MAXIMIZE>;\n\n\ntemplate<typename TV, const int N> void read_tuple_impl(TV&) {}\ntemplate<typename TV, const int N, typename Head, typename... Tail>\nvoid read_tuple_impl(TV& ts) {\n get<N>(ts).emplace_back(*(istream_iterator<Head>(cin)));\n read_tuple_impl<TV, N+1, Tail...>(ts);\n}\ntemplate<typename... Ts> decltype(auto) read_tuple(size_t n) {\n tuple<vector<Ts>...> ts;\n for(size_t i=0;i<n;i++) read_tuple_impl<decltype(ts), 0, Ts...>(ts);\n return ts;\n}\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n,m,need;\n cin>>n>>m>>need;\n auto [xs,ys,qs]=read_tuple<int, int, int>(n);\n auto [us,vs,fs]=read_tuple<int, int, int>(m);\n\n for(int i=0;i<m;i++) us[i]--,vs[i]--;\n\n auto st=[&](int i){return 0+i;};\n auto en=[&](int i){return n+i;};\n auto check=[&](ll T)->ll{\n int Z=n+n;\n MinCostFlow<ll, ll> G(n+n+1);\n\n const ll INF = 1LL<<60;\n for(int i=0;i<n;i++){\n G.add_edge(st(i),Z,0,INF,0);\n G.add_edge(en(i),st(i),0,INF,-1);\n G.add_edge(Z,en(i),0,INF,T);\n }\n\n for(int i=0;i<m;i++){\n if(fs[i]==+1)\n G.add_edge(en(us[i]),st(vs[i]),0,INF,-1);\n if(fs[i]==-1)\n G.add_edge(st(vs[i]),en(us[i]),0,INF,0);\n }\n\n for(int i=0;i+1<n;i++)\n G.add_edge(st(i+1),st(i),0,INF,0);\n\n for(int i=0;i<n;i++){\n G.add_edge(st(i),en(i),0,xs[i]-ys[i],qs[i]);\n if(xs[i]>=0)\n G.add_edge(en(i),st(i),xs[i],INF,0);\n else\n G.add_edge(st(i),en(i),0,abs(xs[i]),0);\n }\n if(!G.build()) return -1;\n return G.get_cost();\n };\n\n ll L=0,R=1e9;\n // check(L) < need\n // check(R) >= need\n if(check(R)<need) drop(-1);\n while(L+1<R){\n int M=(L+R)>>1;\n if(check(M)>=need) R=M;\n else L=M;\n }\n cout<<R<<newl;\n return 0;\n}", "accuracy": 0.13333333333333333, "time_ms": 10, "memory_kb": 3468, "score_of_the_acc": -0.3288, "final_rank": 20 }, { "submission_id": "aoj_3171_4867679", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\n// O(m^2 \\log n \\log U)\n// U: maximum capacity\nenum Objective{\n MINIMIZE = +1,\n MAXIMIZE = -1,\n};\ntemplate<typename Flow, typename Cost,\n Objective objective = Objective::MINIMIZE>\nstruct MinCostFlow{\n template<typename T> inline void chmin(T &x,T y){x=min(x,y);}\n\n struct Edge{\n int src,dst;\n Flow flow,cap;\n Cost cost;\n int rev;\n Edge(int src,int dst,Flow cap,Cost cost,int rev):\n src(src),dst(dst),flow(0),cap(cap),cost(cost),rev(rev){}\n Flow residual_cap()const{return cap-flow;}\n };\n\n struct EdgePtr{\n int v,e;\n EdgePtr(int v,int e):v(v),e(e){}\n };\n\n int n;\n vector<vector<Edge>> G;\n vector<Flow> b;\n vector<Cost> p;\n\n MinCostFlow(int n):n(n),G(n),b(n,0){}\n\n EdgePtr add_edge(int src,int dst,Flow lower,Flow upper,Cost cost){\n int e=G[src].size();\n int r=(src==dst?e+1:G[dst].size());\n assert(lower<=upper);\n G[src].emplace_back(src,dst,+upper,+cost*objective,r);\n G[dst].emplace_back(dst,src,-lower,-cost*objective,e);\n return EdgePtr(src,e);\n }\n\n const Edge &get_edge(EdgePtr ep)const{return G[ep.v][ep.e];}\n\n void push(Edge &e,Flow amount){\n e.flow+=amount;\n G[e.dst][e.rev].flow-=amount;\n }\n\n void add_supply(int v,Flow amount){b[v]+=amount;}\n void add_demand(int v,Flow amount){b[v]-=amount;}\n\n Cost residual_cost(const Edge &e){\n return e.cost+p[e.src]-p[e.dst];\n }\n\n vector<int> excess_vs,deficit_vs;\n void saturate_negative(const Flow delta){\n for(auto &es:G){\n for(auto &e:es){\n Flow cap=e.residual_cap();\n cap-=cap%delta;\n if(cap<0 or residual_cost(e)<0){\n push(e,cap);\n b[e.src]-=cap;\n b[e.dst]+=cap;\n }\n }\n }\n\n excess_vs.clear();\n deficit_vs.clear();\n for(int v=0;v<n;v++){\n if(b[v]>0) excess_vs.emplace_back(v);\n if(b[v]<0) deficit_vs.emplace_back(v);\n }\n }\n\n const Cost unreachable = std::numeric_limits<Cost>::max();\n Cost farthest;\n vector<Cost> dist;\n vector<Edge*> parent;\n\n struct P{\n Cost first;\n int second;\n P(Cost first,int second):first(first),second(second){}\n bool operator<(const P o)const{return first>o.first;}\n };\n\n priority_queue<P> pq;\n\n template<typename Predicate>\n void eliminate(vector<int> &vs,Predicate predicate){\n vs.erase(remove_if(begin(vs),end(vs),predicate),end(vs));\n }\n\n bool dual(const Flow delta){\n eliminate(excess_vs, [&](int v){return b[v]<+delta;});\n eliminate(deficit_vs,[&](int v){return b[v]>-delta;});\n\n dist.assign(n,unreachable);\n for(int v:excess_vs) pq.emplace(dist[v]=0,v);\n\n parent.assign(n,nullptr);\n auto emplace=[&](Edge& e){\n if(e.residual_cap()<delta) return;\n Cost nxt=dist[e.src]+residual_cost(e);\n if(nxt>=dist[e.dst]) return;\n pq.emplace(dist[e.dst]=nxt,e.dst);\n parent[e.dst]=&e;\n };\n\n farthest=0;\n int deficit_count=0;\n while(!pq.empty()){\n Cost d=pq.top().first;\n int v=pq.top().second;\n pq.pop();\n if(dist[v]<d) continue;\n farthest=d;\n\n if(b[v]<=-delta) deficit_count++;\n if(deficit_count>=(int)deficit_vs.size()) break;\n\n for(auto &e:G[v]) emplace(e);\n }\n pq=decltype(pq)();\n\n for(int v=0;v<n;v++)\n p[v]+=min(dist[v],farthest);\n\n return deficit_count>0;\n }\n\n void primal(const Flow delta){\n for(int t:deficit_vs){\n if(dist[t]>farthest) continue;\n Flow f=-b[t];\n int v;\n for(v=t;parent[v];v=parent[v]->src)\n chmin(f,parent[v]->residual_cap());\n chmin(f,b[v]);\n\n f-=f%delta;\n if(f<=0) continue;\n\n for(v=t;parent[v];){\n auto &e=*parent[v];\n push(e,f);\n int u=parent[v]->src;\n if(e.residual_cap()<=0) parent[v]=nullptr;\n v=u;\n }\n b[t]+=f;\n b[v]-=f;\n }\n }\n\n template<Flow SCALING_FACTOR=2>\n bool build(){\n p.resize(n);\n Flow max_flow=1;\n for(auto t:b) max_flow=max({max_flow,t,-t});\n for(auto &es:G)\n for(auto &e:es)\n max_flow=max({max_flow,e.residual_cap(),-e.residual_cap()});\n\n Flow delta=1;\n while(delta<max_flow) delta*=SCALING_FACTOR;\n for(;delta;delta/=SCALING_FACTOR){\n saturate_negative(delta);\n while(dual(delta)) primal(delta);\n }\n\n return excess_vs.empty() and deficit_vs.empty();\n }\n\n template<typename T=Cost>\n T get_cost(){\n T res=0;\n for(auto &es:G)\n for(auto &e:es)\n res+=T(e.flow)*T(e.cost)/T(objective);\n return res/T(2);\n }\n template<typename T=Cost> T get_gain(){return get_cost();}\n\n vector<Cost> get_potential(){\n fill(p.begin(),p.end(),0);\n for(int i=0;i<n;i++)\n for(auto &es:G)\n for(auto &e:es)\n if(e.residual_cap()>0)\n chmin(p[e.dst],p[e.src]+e.cost);\n return p;\n }\n};\n\ntemplate<typename Flow, typename Cost>\nusing MaxGainFlow = MinCostFlow<Flow, Cost, Objective::MAXIMIZE>;\n\n\ntemplate<typename TV, const int N> void read_tuple_impl(TV&) {}\ntemplate<typename TV, const int N, typename Head, typename... Tail>\nvoid read_tuple_impl(TV& ts) {\n get<N>(ts).emplace_back(*(istream_iterator<Head>(cin)));\n read_tuple_impl<TV, N+1, Tail...>(ts);\n}\ntemplate<typename... Ts> decltype(auto) read_tuple(size_t n) {\n tuple<vector<Ts>...> ts;\n for(size_t i=0;i<n;i++) read_tuple_impl<decltype(ts), 0, Ts...>(ts);\n return ts;\n}\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n using ll = long long;\n\n int n,m,need;\n cin>>n>>m>>need;\n auto [xs,ys,qs]=read_tuple<int, int, int>(n);\n auto [us,vs,fs]=read_tuple<int, int, int>(m);\n\n for(int i=0;i<m;i++) us[i]--,vs[i]--;\n\n auto st=[&](int i){return 0+i;};\n auto en=[&](int i){return n+i;};\n auto check=[&](ll T)->ll{\n int Z=n+n;\n MinCostFlow<ll, ll> G(n+n+1);\n\n const ll INF = 1LL<<40;\n for(int i=0;i<n;i++){\n G.add_edge(st(i),Z,0,INF,0);\n G.add_edge(en(i),st(i),0,INF,-1);\n G.add_edge(Z,en(i),0,INF,T);\n }\n\n for(int i=0;i<m;i++){\n if(fs[i]==+1)\n G.add_edge(en(us[i]),st(vs[i]),0,INF,-1);\n if(fs[i]==-1)\n G.add_edge(st(vs[i]),en(us[i]),0,INF,0);\n }\n\n for(int i=0;i+1<n;i++)\n G.add_edge(st(i+1),st(i),0,INF,0);\n\n for(int i=0;i<n;i++){\n G.add_edge(st(i),en(i),0,xs[i]-ys[i],qs[i]);\n if(xs[i]>=0)\n G.add_edge(en(i),st(i),xs[i],INF,0);\n else\n G.add_edge(st(i),en(i),0,abs(xs[i]),0);\n }\n if(!G.build()) return -1;\n return G.get_cost();\n };\n\n ll L=0,R=1e9;\n // check(L) < need\n // check(R) >= need\n if(check(R)<need) drop(-1);\n while(L+1<R){\n int M=(L+R)>>1;\n if(check(M)>=need) R=M;\n else L=M;\n }\n cout<<R<<newl;\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 3584, "score_of_the_acc": -0.6874, "final_rank": 3 }, { "submission_id": "aoj_3171_4853174", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n\n// Ford-Fulkerson 法による 最大流 O( F |E| )\n// Bellman-Ford 法による 最小費用流 O( F |V| |E| )\n// [条件に注意] Dijkstra 法による 最小費用流 O( F |E| log |V| )\n\ntemplate <typename CapTp=int, typename CostTp=int>\nstruct Edge {\n int to, rev;\n CapTp cap; CostTp cost;\n bool is_rev;\n Edge(int t, bool f, int r, CapTp ca, CostTp co=0)\n : to(t), rev(r), cap(ca), cost(co), is_rev(f) {}\n};\n\ntemplate <typename CapTp=int, typename CostTp=int>\nstruct Flow {\n using Graph = vector< vector< Edge<CapTp, CostTp> > >;\n Graph G; const CapTp IA; const CostTp IO, NIL;\n vector< pair<int, int> > r_edges;\n vector<CostTp> dist, pot;\n vector<int> prevv, preve;\n\n Flow(int N_, CapTp IA_=1<<29, CostTp IO_=1<<29, CostTp NIL_=-1)\n : G(N_), IA(IA_), IO(IO_), NIL(NIL_), r_edges(),\n dist(N_), pot(N_), prevv(N_), preve(N_) {}\n // 辺を追加 (from -> to に流量 ca, コスト co)\n void add_edge(int from, int to, CapTp ca, CostTp co=0) {\n G[from].emplace_back(to, false, G[to].size(), ca, co);\n G[to].emplace_back(from, true, G[from].size() - 1, 0, -co);\n r_edges.emplace_back(to, G[to].size() - 1);\n }\n // k 番目の辺にいくつ流れたか\n CapTp get_flowed_cap(size_t k) {\n if(r_edges.size() <= k) return -1;\n int v, i; tie(v, i) = r_edges[k];\n return G[v][i].cap;\n }\n // s -> t 最大流\n CapTp max_flow(int s, int t) {\n vector<bool> used(G.size());\n auto dfs = [&](auto &&func, int v, int t, CapTp f) -> CapTp {\n if(v == t) return f;\n used[v] = true;\n for(auto &e : G[v]) {\n if(used[e.to] or e.cap == 0) continue;\n CapTp d = func(func, e.to, t, min(f, e.cap));\n if(d == 0) continue;\n e.cap -= d; G[e.to][e.rev].cap += d;\n return d;\n }\n return 0;\n };\n\n CapTp res(0);\n while(true) {\n fill(used.begin(), used.end(), false);\n CapTp delta = dfs(dfs, s, t, IA);\n if(delta == 0) return res;\n res += delta;\n }\n }\n // ベルマンフォードをつかって最小費用流\n CostTp mincost_flow(int s, int t, CapTp f) {\n CostTp res(0);\n while(f > 0) {\n fill(dist.begin(), dist.end(), IO);\n dist[s] = 0;\n while(1) {\n bool upd = false;\n for(int v=0; v<(int)G.size(); v++) {\n if(dist[v] == IO) continue;\n for(size_t i=0; i<G[v].size(); i++) {\n auto &e = G[v][i];\n if(e.cap == 0 or dist[e.to] <= dist[v] + e.cost) continue;\n dist[e.to] = dist[v] + e.cost;\n prevv[e.to] = v, preve[e.to] = i;\n upd = true;\n }\n }\n if(!upd) break;\n }\n\n if(dist[t] == IO) return NIL;\n CapTp d = f;\n for(int v=t; v!=s; v=prevv[v]) d = min(d, G[prevv[v]][preve[v]].cap);\n f -= d; res += d * dist[t];\n for(int v=t; v!=s; v=prevv[v]) {\n auto &e = G[prevv[v]][preve[v]];\n e.cap -= d, G[v][e.rev].cap += d;\n }\n }\n return res;\n }\n // ポテンシャルの導入により、ダイクストラ法で最小費用流を解く\n // [仮定している条件]\n // 1. グラフに負の閉路が存在しない (流量の 0 初期化のため)\n // もし存在するならベルマンフォードで負の閉路を見つけ\n // そこに流せるだけ流してスタート\n // 2. グラフに負の辺が存在しない (pot_0 の計算可能性)\n // もし存在する場合は最初のみベルマンフォードを使う必要あり\n CostTp fast_mincost_flow(int s, int t, CapTp f) {\n CostTp res(0);\n fill(pot.begin(), pot.end(), CostTp(0));\n\n while(f > 0) {\n using PT = pair<CostTp, int>;\n priority_queue< PT, vector<PT>, greater<PT> > que;\n fill(dist.begin(), dist.end(), IO);\n\n dist[s] = 0;\n que.push(make_pair(0, s));\n while(!que.empty()) {\n PT cur = que.top(); que.pop();\n int v = cur.second;\n if(dist[v] < cur.first) continue;\n for(size_t i=0; i<G[v].size(); i++) {\n auto& e = G[v][i];\n if(e.cap > 0 and dist[e.to] > dist[v] + e.cost + pot[v] - pot[e.to]) {\n dist[e.to] = dist[v] + e.cost + pot[v] - pot[e.to];\n prevv[e.to] = v;\n preve[e.to] = i;\n que.push(make_pair(dist[e.to], e.to));\n }\n }\n }\n if(dist[t] == IO) {\n return NIL;\n }\n for(int v=0; v<(int)G.size(); v++) pot[v] += dist[v];\n\n CapTp d = f;\n for(int v=t; v!=s; v=prevv[v]) {\n d = min(d, G[prevv[v]][preve[v]].cap);\n }\n f -= d;\n res += d * pot[t];\n for(int v=t; v!=s; v=prevv[v]) {\n auto& e = G[prevv[v]][preve[v]];\n e.cap -= d;\n G[v][e.rev].cap += d;\n }\n }\n return res;\n }\n};\n\ntemplate <typename cap_tp=int, typename cost_tp=int,\n template<typename, typename> class flow_fw=Flow>\nstruct GeneralizedMincostFlow {\nprivate:\n flow_fw<cap_tp, cost_tp> fl;\n vector<cap_tp> D;\n int N, source, sink;\n cap_tp Z_cap;\n cost_tp Z_cost, ofs, ng;\n int edge_id;\n\npublic:\n GeneralizedMincostFlow(int N_,\n cost_tp ng_=-1,\n cap_tp IA=1<<29, cost_tp IO=1<<29,\n cap_tp zero_cap=0, cost_tp zero_cost=0)\n : fl(N_+2, IA, IO, ng_), D(N_), N(N_), source(N_), sink(N_+1),\n Z_cap(zero_cap), Z_cost(zero_cost), ofs(zero_cost), ng(ng_),\n edge_id(0) {}\n\n int add_edge(int u, int v, cap_tp low, cap_tp high, cost_tp cost) {\n assert(low <= high);\n if(low < Z_cap) {\n add_edge(v, u, -low, -low, -cost);\n add_edge(u, v, 0, high - low, +cost);\n return -1; // TODO ?\n }\n int id = -1;\n\n // コストが負の場合\n if(cost < Z_cost) {\n // 流すだけ得なので high 流れたことにする\n ofs += high * cost;\n D[u] -= high; D[v] += high;\n // 目一杯流したのを high - low 分だけキャンセル可能\n if(high - low > Z_cap) {\n id = edge_id++;\n fl.add_edge(v, u, high - low, -cost);\n }\n }\n else {\n // v 側に low 流れたことにする\n ofs += low * cost;\n D[u] -= low; D[v] += low;\n // high - low 分の辺を張る\n if(high - low > Z_cap) {\n id = edge_id++;\n fl.add_edge(u, v, high - low, cost);\n }\n }\n return id;\n }\n int add_edge(int u, int v, cap_tp cap, cost_tp cost) {\n return add_edge(u, v, Z_cap, cap, cost);\n }\n void change_d(int u, cap_tp delta) {\n D[u] += delta;\n }\n\n cost_tp mincost_flow() {\n cap_tp sum_d = 0;\n for(int i=0; i<N; i++) {\n if(D[i] > 0) {\n fl.add_edge(source, i, D[i], 0);\n sum_d += D[i];\n }\n else {\n fl.add_edge(i, sink, -D[i], 0);\n }\n }\n\n cost_tp res = fl.fast_mincost_flow(source, sink, sum_d);\n if(res == fl.NIL) return ng;\n else return ofs + res;\n }\n\n cap_tp get_flowed_cap(size_t k) {\n return fl.get_flowed_cap(k);\n }\n\n cap_tp operator[](size_t k) {\n return fl.pot[k];\n }\n};\n\nconst int INF=1e9;\n\nsigned main(){\n int n,m,x;cin>>n>>m>>x;\n vector<int> a(n),b(n),p(n),u(m),v(m),f(m);\n for(int i=0;i<n;i++){\n cin>>a[i]>>b[i]>>p[i];\n x-=a[i]*p[i];\n }\n for(int i=0;i<m;i++){\n cin>>u[i]>>v[i]>>f[i];\n u[i]--;v[i]--;\n }\n int ng=-1,ok=INF;//ok時間あれば仕事量xを達成できる\n while(ok-ng>1){\n int mid=(ok+ng)>>1;\n GeneralizedMincostFlow<> fl(n*2+1);//[0,n)がs[i]、[n,2n-1)がt[i]、2nがz\n int z=2*n;\n for(int i=0;i<n;i++){\n if(i)fl.add_edge(i,i-1,0,INF,0);\n fl.add_edge(i,z,0,INF,0);\n fl.add_edge(n+i,i,0,INF,-1);\n fl.add_edge(z,n+i,0,INF,mid);\n fl.add_edge(n+i,i,b[i],a[i],-p[i]);\n }\n for(int i=0;i<m;i++){\n if(~f[i])fl.add_edge(u[i]+n,v[i],0,INF,-1);\n else fl.add_edge(v[i],u[i]+n,0,INF,0);\n }\n if(x<=fl.mincost_flow())ok=mid;\n else ng=mid;\n }\n if(ng>1e7)cout<<-1<<endl;\n else cout<<ok<<endl;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 3276, "score_of_the_acc": -0.68, "final_rank": 1 }, { "submission_id": "aoj_3171_4850087", "code_snippet": "#include <vector>\n#include <utility>\n#include <tuple>\n#include <queue>\n#include <algorithm>\n#include <cassert>\n#include <iostream>\nusing namespace std;\nusing ll = long long int;\n\n// Ford-Fulkerson 法による 最大流 O( F |E| )\n// Bellman-Ford 法による 最小費用流 O( F |V| |E| )\n// [条件に注意] Dijkstra 法による 最小費用流 O( F |E| log |V| )\n\ntemplate <typename CapTp=int, typename CostTp=int>\nstruct Edge {\n int to, rev;\n CapTp cap; CostTp cost;\n bool is_rev;\n Edge(int t, bool f, int r, CapTp ca, CostTp co=0)\n : to(t), rev(r), cap(ca), cost(co), is_rev(f) {}\n};\n\ntemplate <typename CapTp=int, typename CostTp=int>\nstruct Flow {\n using Graph = vector< vector< Edge<CapTp, CostTp> > >;\n Graph G; const CapTp IA; const CostTp IO, NIL;\n vector< pair<int, int> > r_edges;\n vector<CostTp> dist, pot;\n vector<int> prevv, preve;\n \n Flow(int N_, CapTp IA_=1<<29, CostTp IO_=1<<29, CostTp NIL_=-1)\n : G(N_), IA(IA_), IO(IO_), NIL(NIL_), r_edges(),\n dist(N_), pot(N_), prevv(N_), preve(N_) {}\n // 辺を追加 (from -> to に流量 ca, コスト co)\n void add_edge(int from, int to, CapTp ca, CostTp co=0) {\n G[from].emplace_back(to, false, G[to].size(), ca, co);\n G[to].emplace_back(from, true, G[from].size() - 1, 0, -co);\n r_edges.emplace_back(to, G[to].size() - 1);\n }\n // k 番目の辺にいくつ流れたか\n CapTp get_flowed_cap(size_t k) {\n if(r_edges.size() <= k) return -1;\n int v, i; tie(v, i) = r_edges[k];\n return G[v][i].cap;\n }\n // s -> t 最大流\n CapTp max_flow(int s, int t) {\n vector<bool> used(G.size());\n auto dfs = [&](auto &&func, int v, int t, CapTp f) -> CapTp {\n if(v == t) return f;\n used[v] = true;\n for(auto &e : G[v]) {\n if(used[e.to] or e.cap == 0) continue;\n CapTp d = func(func, e.to, t, min(f, e.cap));\n if(d == 0) continue;\n e.cap -= d; G[e.to][e.rev].cap += d;\n return d;\n }\n return 0;\n };\n\n CapTp res(0);\n while(true) {\n fill(used.begin(), used.end(), false);\n CapTp delta = dfs(dfs, s, t, IA);\n if(delta == 0) return res;\n res += delta;\n }\n }\n // ベルマンフォードをつかって最小費用流\n CostTp mincost_flow(int s, int t, CapTp f) {\n CostTp res(0);\n while(f > 0) {\n fill(dist.begin(), dist.end(), IO);\n dist[s] = 0;\n while(1) {\n bool upd = false;\n for(int v=0; v<(int)G.size(); v++) {\n if(dist[v] == IO) continue;\n for(size_t i=0; i<G[v].size(); i++) {\n auto &e = G[v][i];\n if(e.cap == 0 or dist[e.to] <= dist[v] + e.cost) continue;\n dist[e.to] = dist[v] + e.cost;\n prevv[e.to] = v, preve[e.to] = i;\n upd = true;\n }\n }\n if(!upd) break;\n }\n\n if(dist[t] == IO) return NIL;\n CapTp d = f;\n for(int v=t; v!=s; v=prevv[v]) d = min(d, G[prevv[v]][preve[v]].cap);\n f -= d; res += d * dist[t];\n for(int v=t; v!=s; v=prevv[v]) {\n auto &e = G[prevv[v]][preve[v]];\n e.cap -= d, G[v][e.rev].cap += d;\n }\n }\n return res;\n }\n // ポテンシャルの導入により、ダイクストラ法で最小費用流を解く\n // [仮定している条件]\n // 1. グラフに負の閉路が存在しない (流量の 0 初期化のため)\n // もし存在するならベルマンフォードで負の閉路を見つけ\n // そこに流せるだけ流してスタート\n // 2. グラフに負の辺が存在しない (pot_0 の計算可能性)\n // もし存在する場合は最初のみベルマンフォードを使う必要あり\n CostTp fast_mincost_flow(int s, int t, CapTp f) {\n CostTp res(0);\n fill(pot.begin(), pot.end(), CostTp(0));\n\n while(f > 0) {\n using PT = pair<CostTp, int>;\n priority_queue< PT, vector<PT>, greater<PT> > que;\n fill(dist.begin(), dist.end(), IO);\n\n dist[s] = 0;\n que.push(make_pair(0, s));\n while(!que.empty()) {\n PT cur = que.top(); que.pop();\n int v = cur.second;\n if(dist[v] < cur.first) continue;\n for(size_t i=0; i<G[v].size(); i++) {\n auto& e = G[v][i];\n if(e.cap > 0 and dist[e.to] > dist[v] + e.cost + pot[v] - pot[e.to]) {\n dist[e.to] = dist[v] + e.cost + pot[v] - pot[e.to];\n prevv[e.to] = v;\n preve[e.to] = i;\n que.push(make_pair(dist[e.to], e.to));\n }\n }\n }\n if(dist[t] == IO) {\n return NIL;\n }\n for(int v=0; v<(int)G.size(); v++) pot[v] += dist[v];\n\n CapTp d = f;\n for(int v=t; v!=s; v=prevv[v]) {\n d = min(d, G[prevv[v]][preve[v]].cap);\n }\n f -= d;\n res += d * pot[t];\n for(int v=t; v!=s; v=prevv[v]) {\n auto& e = G[prevv[v]][preve[v]];\n e.cap -= d;\n G[v][e.rev].cap += d;\n }\n }\n return res;\n } \n};\n\ntemplate <typename cap_tp=int, typename cost_tp=int,\n template<typename, typename> class flow_fw=Flow>\nstruct GeneralizedMincostFlow {\nprivate:\n flow_fw<cap_tp, cost_tp> fl;\n vector<cap_tp> D;\n int N, source, sink;\n cap_tp Z_cap;\n cost_tp Z_cost, ofs, ng;\n int edge_id;\n\npublic:\n GeneralizedMincostFlow(int N_,\n cost_tp ng_=-1,\n cap_tp IA=1<<29, cost_tp IO=1<<29,\n cap_tp zero_cap=0, cost_tp zero_cost=0)\n : fl(N_+2, IA, IO, ng_), D(N_), N(N_), source(N_), sink(N_+1),\n Z_cap(zero_cap), Z_cost(zero_cost), ofs(zero_cost), ng(ng_),\n edge_id(0) {}\n\n int add_edge(int u, int v, cap_tp low, cap_tp high, cost_tp cost) {\n assert(low <= high);\n if(low < Z_cap) {\n add_edge(v, u, -low, -low, -cost);\n add_edge(u, v, 0, high - low, +cost);\n return -1; // TODO ?\n }\n int id = -1;\n \n // コストが負の場合\n if(cost < Z_cost) {\n // 流すだけ得なので high 流れたことにする\n ofs += high * cost;\n D[u] -= high; D[v] += high;\n // 目一杯流したのを high - low 分だけキャンセル可能\n if(high - low > Z_cap) {\n id = edge_id++;\n fl.add_edge(v, u, high - low, -cost);\n }\n }\n else {\n // v 側に low 流れたことにする\n ofs += low * cost;\n D[u] -= low; D[v] += low;\n // high - low 分の辺を張る\n if(high - low > Z_cap) {\n id = edge_id++;\n fl.add_edge(u, v, high - low, cost);\n }\n }\n return id;\n }\n int add_edge(int u, int v, cap_tp cap, cost_tp cost) {\n return add_edge(u, v, Z_cap, cap, cost);\n }\n void change_d(int u, cap_tp delta) {\n D[u] += delta;\n }\n \n cost_tp mincost_flow() {\n cap_tp sum_d = 0;\n for(int i=0; i<N; i++) {\n if(D[i] > 0) {\n fl.add_edge(source, i, D[i], 0);\n sum_d += D[i];\n }\n else {\n fl.add_edge(i, sink, -D[i], 0);\n }\n }\n\n cost_tp res = fl.fast_mincost_flow(source, sink, sum_d);\n if(res == fl.NIL) return ng;\n else return ofs + res;\n }\n\n cap_tp get_flowed_cap(size_t k) {\n return fl.get_flowed_cap(k);\n }\n\n cap_tp operator[](size_t k) {\n return fl.pot[k];\n }\n};\n\nint main() {\n ll N, M, X; scanf(\"%lld%lld%lld\", &N, &M, &X);\n vector<ll> a(N), b(N), p(N);\n ll ofs = 0;\n for(int i=0; i<N; i++) {\n scanf(\"%lld%lld%lld\", &a[i], &b[i], &p[i]);\n ofs += a[i] * p[i];\n }\n vector<ll> u(M), v(M), f(M);\n for(int i=0; i<M; i++) {\n scanf(\"%lld%lld%lld\", &u[i], &v[i], &f[i]);\n u[i]--; v[i]--;\n }\n\n auto s = [](int k) { return k<<1; };\n auto e = [](int k) { return k<<1|1; };\n\n auto calc = [&a, &b, &p](ll i, ll t) {\n ll res = 0;\n res += ll(1) * min(t, p[i]) * a[i];\n res += ll(1) * max(ll(0), t - p[i]) * b[i];\n return res;\n };\n \n using flow_tp = ll;\n const flow_tp INF = 1LL << 40;\n const flow_tp LONGINF = 1LL << 60;\n\n ll LIM = 2LL * (N*N*100 + X);\n flow_tp ub = LIM, lb = -1;\n while(ub - lb > 1) {\n flow_tp mid = (ub + lb) / 2;\n GeneralizedMincostFlow<flow_tp, flow_tp> fl(2*N + 1, -INF, +LONGINF, +LONGINF);\n int z = 2*N; // additional variable\n for(int i=0; i<N; i++) {\n fl.add_edge(s(i), z, 0, +INF, 0);\n fl.add_edge(e(i), s(i), 0, +INF, -1);\n fl.add_edge(z, e(i), 0, +INF, mid);\n fl.add_edge(e(i), s(i), b[i], a[i], -p[i]);\n }\n for(int i=0; i+1<N; i++) {\n fl.add_edge(s(i+1), s(i), 0, +INF, 0);\n }\n for(int i=0; i<M; i++) {\n if(f[i] == +1) {\n fl.add_edge(e(u[i]), s(v[i]), 0, +INF, -1);\n }\n if(f[i] == -1) {\n fl.add_edge(s(v[i]), e(u[i]), 0, +INF, 0);\n } \n }\n\n flow_tp result = fl.mincost_flow();\n if(result + ofs < X) lb = mid;\n else ub = mid;\n }\n\n if(ub == LIM) puts(\"-1\");\n else cout << ub << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 3676, "score_of_the_acc": -1.0849, "final_rank": 7 }, { "submission_id": "aoj_3171_4848740", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <iostream>\n#include <string>\n#include <cmath>\n#include <bitset>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <complex>\n#include <unordered_map>\n#include <unordered_set>\n#include <random>\n#include <cassert>\n#include <fstream>\n#include <utility>\n#include <functional>\n#include <time.h>\n#include <stack>\n#include <array>\n#include <list>\n#define popcount __builtin_popcount\nusing namespace std;\ntypedef long long ll;\ntypedef pair<int, int> P;\ntemplate<typename Flow, typename Cost>\nstruct MinCostFlow{\n\tstruct edge{\n\t\tint to, rev;\n\t\tint num;\n\t\tFlow flow;\n\t\tFlow cap;\n\t\tCost cost;\n\t\tedge(int to, Flow flow, Flow cap, Cost cost, int rev, int num):to(to), flow(flow), cap(cap), cost(cost), rev(rev), num(num){}\n\t};\n\tint n;\n\tvector<vector<edge>> g;\n\tvector<Flow> b;\n\tvector<Cost> h, dist;\n\tvector<int> prevv, preve;\n\tMinCostFlow(int n):n(n), b(n), g(n), h(n), dist(n), prevv(n), preve(n){}\n\tvoid add_edge(int from, int to, Flow lower, Flow upper, Cost cost, int num){\n\t\tint num1=g[to].size(), num2=g[from].size();\n\t\tif(to==from) num1++;\n\t\tg[from].push_back(edge(to, lower, upper, cost, num1, num));\n\t\tg[to].push_back(edge(from, -lower, -lower, -cost, num2, -num));\n\t\tb[from]-=lower;\n\t\tb[to]+=lower;\n\t}\n\tFlow mx;\n\tbool dual(){\n\t\tusing P=pair<Cost, int>;\n\t\tpriority_queue<P, vector<P>, greater<P>> que;\n\t\tconst Cost INF=1e18;\n\t\tfill(dist.begin(), dist.end(), INF);\n\t\tfill(prevv.begin(), prevv.end(), -1);\n\t\tfor(int x=0; x<n; x++){\n\t\t\tif(b[x]>0){\n\t\t\t\tque.push({0, x});\n\t\t\t\tdist[x]=0;\n\t\t\t}\n\t\t}\n\t\tmx=0;\n\t\tint cnt=0;\n\t\twhile(!que.empty()){\n\t\t\tauto p=que.top(); que.pop();\n\t\t\tint x=p.second;\n\t\t\tif(dist[x]<p.first) continue;\n\t\t\tmx=max(mx, dist[x]);\n\t\t\tif(b[x]<0) cnt++;\n\t\t\tfor(int i=0; i<g[x].size(); i++){\n\t\t\t\tedge e=g[x][i];\n\t\t\t\tif(e.cap-e.flow==0) continue;\n\t\t\t\tint y=e.to;\n\t\t\t\tif(dist[y]>dist[x]+e.cost+h[x]-h[y]){\n\t\t\t\t\tdist[y]=dist[x]+e.cost+h[x]-h[y];\n\t\t\t\t\tque.push({dist[y], y});\n\t\t\t\t\tprevv[y]=x;\n\t\t\t\t\tpreve[y]=i;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif(cnt==0) return false;\n\t\tfor(int x=0; x<n; x++){\n\t\t\th[x]+=min(dist[x], mx);\n\t\t}\n\t\treturn true;\n\t}\n\tvoid primal(){\n\t\tfor(int x=0; x<n; x++){\n\t\t\tif(!(b[x]<0)) continue;\n\t\t\tif(dist[x]>mx) continue;\n\t\t\tFlow f=-b[x];\n\t\t\tint v;\n\t\t\tfor(v=x; prevv[v]!=-1; v=prevv[v]){\n\t\t\t\tedge &e=g[prevv[v]][preve[v]];\n\t\t\t\tf=min(f, e.cap-e.flow);\n\t\t\t}\n\t\t\tf=min(f, b[v]);\n\t\t\tif(f==0) continue;\n\t\t\tfor(v=x; prevv[v]!=-1; v=prevv[v]){\n\t\t\t\tedge &e=g[prevv[v]][preve[v]];\n\t\t\t\te.flow+=f;\n\t\t\t\tg[v][e.rev].flow-=f;\n\t\t\t}\n\t\t\tb[v]-=f;\n\t\t\tb[x]+=f;\n\t\t}\n\t}\n\tbool solve(){\n\t\tfor(int x=0; x<n; x++){\n\t\t\tfor(auto &e:g[x]){\n\t\t\t\tif(e.cost<0 && e.cap-e.flow>0){\n\t\t\t\t\tb[x]-=(e.cap-e.flow);\n\t\t\t\t\tb[e.to]+=(e.cap-e.flow);\n\t\t\t\t\tg[e.to][e.rev].flow-=(e.cap-e.flow);\n\t\t\t\t\te.flow=e.cap;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\twhile(dual()) primal();\n\t\tfor(int x=0; x<n; x++){\n\t\t\tif(b[x]!=0) return false;\n\t\t}\n\t\treturn true;\n\t}\n\ttemplate<typename T>\n\tT calc(){\n\t\tT ans=0;\n\t\tfor(int x=0; x<n; x++){\n\t\t\tfor(auto e:g[x]){\n\t\t\t\tans+=T(e.flow)*T(e.cost);\n\t\t\t}\n\t\t}\n\t\tans/=2;\n\t\treturn ans;\n\t}\n};\nint main()\n{\n\tint n, m; ll x;\n cin>>n>>m>>x;\n int a[101], b[101];\n ll p[101];\n for(int i=0; i<n; i++){\n cin>>a[i]>>b[i]>>p[i];\n }\n int u[202], v[202], f[202];\n for(int i=0; i<m; i++){\n cin>>u[i]>>v[i]>>f[i];\n u[i]--; v[i]--;\n }\n const ll mx=1e9;\n ll tl=0, tr=mx;\n while(tr-tl>1){\n ll t=(tl+tr)/2;\n MinCostFlow<ll, ll> mcf(2*n);\n const ll INF=1e12;\n for(int i=0; i<n; i++){\n mcf.b[i]+=a[i];\n mcf.b[i+n]-=a[i];\n }\n for(int i=0; i<n; i++){\n mcf.add_edge(i, i+n, 0, a[i]-b[i], p[i], 0);\n mcf.add_edge(0, i+n, 0, INF, t, 0);\n mcf.add_edge(i+n, i, 0, INF, -1, 0);\n }\n for(int i=0; i<n; i++){\n for(int j=i+1; j<n; j++){\n mcf.add_edge(j, i, 0, INF, 0, 0);\n }\n }\n for(int i=0; i<m; i++){\n if(f[i]==1){\n mcf.add_edge(u[i]+n, v[i], 0, INF, -1, 0);\n }else{\n mcf.add_edge(v[i], u[i]+n, 0, INF, 0, 0);\n }\n }\n mcf.solve();\n ll res=mcf.calc<ll>();\n if(res>=x) tr=t;\n else tl=t;\n }\n if(tr==mx) cout<<-1<<endl;\n else cout<<tr<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 230, "memory_kb": 3860, "score_of_the_acc": -1.44, "final_rank": 10 }, { "submission_id": "aoj_3171_4839509", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n// const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\n//const int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\n\ntemplate< typename flow_t, typename cost_t >\nstruct edge {\n int src, to;\n flow_t low, high;\n cost_t cost;\n\n edge() = default;\n\n edge(int src, int to, flow_t high, cost_t cost) : src(src), to(to), low(0), high(high), cost(cost) {}\n\n edge(int src, int to, flow_t low, flow_t high, cost_t cost) : src(src), to(to), low(low), high(high), cost(cost) {}\n};\n\n\ntemplate< typename flow_t, typename cost_t, template< typename, typename > class MF >\ncost_t normalized_min_cost_flow(vector< flow_t > D, const vector< edge< flow_t, cost_t > > &E, cost_t NG = -1) {\n const int N = (int) D.size(), M = (int) E.size();\n MF< flow_t, cost_t > flow(N + 2);\n const int S = N, T = N + 1;\n\n cost_t sum = 0;\n for(auto &e : E) {\n if(e.cost < 0) {\n sum += e.cost * e.high;\n D[e.src] -= e.high;\n D[e.to] += e.high;\n flow.add_edge(e.to, e.src, e.high - e.low, -e.cost);\n } else {\n sum += e.cost * e.low;\n D[e.src] -= e.low;\n D[e.to] += e.low;\n flow.add_edge(e.src, e.to, e.high - e.low, e.cost);\n }\n }\n\n flow_t in = 0;\n for(int i = 0; i < N; i++) {\n if(D[i] > 0) {\n flow.add_edge(S, i, D[i], flow_t(0));\n in += D[i];\n } else if(D[i] < 0) {\n flow.add_edge(i, T, -D[i], flow_t(0));\n }\n }\n\n auto ret = flow.min_cost_flow(S, T, in);\n if(ret == -1) return NG;\n return ret + sum;\n}\n\ntemplate< typename flow_t, typename cost_t >\nstruct PrimalDual {\n const cost_t INF;\n\n struct edge {\n int to;\n flow_t cap;\n cost_t cost;\n int rev;\n bool isrev;\n };\n vector< vector< edge > > graph;\n vector< cost_t > potential, min_cost;\n vector< int > prevv, preve;\n\n PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {}\n\n void add_edge(int from, int to, flow_t cap, cost_t cost) {\n graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false});\n graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true});\n }\n\n cost_t min_cost_flow(int s, int t, flow_t f) {\n int V = (int) graph.size();\n cost_t ret = 0;\n using Pi = pair< cost_t, int >;\n priority_queue< Pi, vector< Pi >, greater< Pi > > que;\n potential.assign(V, 0);\n preve.assign(V, -1);\n prevv.assign(V, -1);\n\n while(f > 0) {\n min_cost.assign(V, INF);\n que.emplace(0, s);\n min_cost[s] = 0;\n while(!que.empty()) {\n Pi p = que.top();\n que.pop();\n if(min_cost[p.second] < p.first) continue;\n for(int i = 0; i < graph[p.second].size(); i++) {\n edge &e = graph[p.second][i];\n cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];\n if(e.cap > 0 && min_cost[e.to] > nextCost) {\n min_cost[e.to] = nextCost;\n prevv[e.to] = p.second, preve[e.to] = i;\n que.emplace(min_cost[e.to], e.to);\n }\n }\n }\n if(min_cost[t] == INF) return -1;\n for(int v = 0; v < V; v++) potential[v] += min_cost[v];\n flow_t addflow = f;\n for(int v = t; v != s; v = prevv[v]) {\n addflow = min(addflow, graph[prevv[v]][preve[v]].cap);\n }\n f -= addflow;\n ret += addflow * potential[t];\n for(int v = t; v != s; v = prevv[v]) {\n edge &e = graph[prevv[v]][preve[v]];\n e.cap -= addflow;\n graph[v][e.rev].cap += addflow;\n }\n }\n return ret;\n }\n\n void output() {\n for(int i = 0; i < graph.size(); i++) {\n for(auto &e : graph[i]) {\n if(e.isrev) continue;\n auto &rev_e = graph[e.to][e.rev];\n cout << i << \"->\" << e.to << \" (flow: \" << rev_e.cap << \"/\" << rev_e.cap + e.cap << \")\" << endl;\n }\n }\n }\n};\n\nint main() {\n int N, M, X;\n cin >> N >> M >> X;\n vector< int > A(N), B(N), P(N);\n for(int i = 0; i < N; i++) {\n cin >> A[i] >> B[i] >> P[i];\n }\n vector< int > U(M), V(M), F(M);\n for(int i = 0; i < M; i++) {\n cin >> U[i] >> V[i] >> F[i];\n --U[i], --V[i];\n }\n\n using flow_t = int64;\n using cost_t = int64;\n cost_t inf = 1e15;\n\n auto check = [&](int Y) {\n vector< flow_t > D(N + N + 1);\n int Z = N + N;\n vector< edge< flow_t, cost_t > > E;\n for(int i = 0; i < N; i++) {\n E.emplace_back(i, Z, 0, inf, 0);\n E.emplace_back(i + N, i, inf, -1);\n E.emplace_back(Z, i + N, inf, Y);\n if(i + 1 < N) E.emplace_back(i + 1, i, inf, 0);\n }\n for(int i = 0; i < M; i++) {\n if(F[i] == 1) E.emplace_back(U[i] + N, V[i], inf, -1);\n else E.emplace_back(V[i], U[i] + N, inf, 0);\n }\n for(int i = 0; i < N; i++) {\n E.emplace_back(i, i + N, A[i] - B[i], P[i]);\n if(A[i] >= 0) {\n D[i + N] -= A[i];\n D[i] += A[i];\n E.emplace_back(i + N, i, inf, 0);\n } else {\n E.emplace_back(i, i + N, -A[i], 0);\n }\n }\n return normalized_min_cost_flow< flow_t, cost_t, PrimalDual >(D, E);\n };\n int ok = 1e9, ng = -1;\n if(check(ok) < X) {\n cout << -1 << \"\\n\";\n exit(0);\n }\n while(ok - ng > 1) {\n int mid = (ok + ng) / 2;\n if(check(mid) >= X) ok = mid;\n else ng = mid;\n }\n cout << ok << \"\\n\";\n}", "accuracy": 1, "time_ms": 360, "memory_kb": 3368, "score_of_the_acc": -0.8575, "final_rank": 6 }, { "submission_id": "aoj_3171_4838894", "code_snippet": "#include<iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\n#include<iomanip>\n#include<math.h>\n#include<complex>\n#include<queue>\n#include<deque>\n#include<stack>\n#include<map>\n#include<set>\n#include<bitset>\n#include<functional>\n#include<assert.h>\n#include<numeric>\nusing namespace std;\n#define REP(i,m,n) for(int i=(int)(m) ; i < (int) (n) ; ++i )\n#define rep(i,n) REP(i,0,n)\nusing ll = long long;\nconstexpr ll mod=2e8+7 ;\n\nstruct PrimalDual{\n struct edge{\n int to;ll cap, cost;int rev;\n };\n int n;\n const ll INF = numeric_limits<ll>::max();\n vector<vector<edge>> v;\n vector<ll> pot, dist;\n vector<pair<int,int>> par;\n \n PrimalDual(int n):n(n),v(n),pot(n){}\n \n void add_edge(int from, int to, ll cap, ll cost) {\n v[from].emplace_back((edge) {to, cap, cost, (int) v[to].size()});\n v[to].emplace_back((edge) {from, 0, -cost, (int) v[from].size() - 1});\n }\n \n pair<ll,ll> minimum_road(int s,int t){\n par.assign(n,{-1,-1});\n dist.assign(n,INF);\n dist[s] = 0;\n using P = pair<ll,ll>;\n priority_queue<P,vector<P>,greater<P>> pq;\n pq.emplace(0,s);\n while(!pq.empty()){\n P p = pq.top();pq.pop();\n if(dist[p.second]<p.first)continue;\n rep(i,v[p.second].size()){\n edge& e = v[p.second][i];\n ll nd = dist[p.second]+e.cost+pot[p.second]-pot[e.to];\n if(e.cap>0 && dist[e.to]>nd){\n dist[e.to] = nd;\n par[e.to] = {p.second, i};\n pq.emplace(dist[e.to],e.to);\n }\n }\n }\n if(dist[t]==INF)return {-1,-1};\n rep(i,n)pot[i] += dist[i];\n ll f = INF;\n int cur = t;\n while(cur != s){\n int p = par[cur].first, j = par[cur].second;\n f = min(f, v[p][j].cap);\n cur = p;\n }\n cur = t;\n while(cur != s){\n int p = par[cur].first, j = par[cur].second;\n v[p][j].cap -= f;\n v[cur][v[p][j].rev].cap += f;\n cur = p;\n }\n return {pot[t],f};\n }\n \n ll minimum_cost_flow(int s, int t, ll k){\n ll ret = 0;\n while(k){\n pair<ll,ll> z = minimum_road(s, t);\n if (z.first < 0)return -1;\n if (k<=z.second){\n ret+=z.first*k;\n break;\n }\n k -= z.second;\n ret += z.first*z.second;\n }\n return ret;\n }\n};\n\nint main(){\n int n,m,x;\n cin>>n>>m>>x;\n vector<int> a(n),b(n),p(n);\n rep(i,n)cin>>a[i]>>b[i]>>p[i];\n vector<int> f(m),u(m),v(m);\n rep(i,m){\n cin>>u[i]>>v[i]>>f[i];\n --u[i];--v[i];\n if(u[i]<v[i])swap(u[i],v[i]);\n }\n ll ng = -1, ok = 2e8;\n while(ok-ng>1){\n int mid = (ok+ng)/2;\n PrimalDual pd(3*n+3);\n int s0=3*n, S = 3*n+1, T = 3*n+2;\n vector<ll> cost(3*n+3);\n rep(i,n){\n cost[3*i+0]+=a[i];\n cost[3*i+1]+=b[i]-a[i];\n cost[3*i+2]+=-b[i];\n }\n ll ret = 0;\n rep(i,n){\n pd.add_edge(3*i+2, 3*i+1, 2e8, 0);\n cost[3*i+0]+=2e8;\n cost[3*i+1]-=2e8;\n ret-=2e8;\n pd.add_edge(3*i+0, 3*i+1, 2e8, 1);\n pd.add_edge(3*i+0, 3*i+1, 2e8, p[i]);\n pd.add_edge(s0, 3*i+2, 2e8, mid);\n }\n rep(i,n-1){\n pd.add_edge(3*i+3, 3*i+0, 2e8, 0);\n }\n pd.add_edge(0, s0, 2e8, 0);\n rep(i,m){\n if(f[i]==1){\n ret += -2e8;\n cost[3*v[i]+2]-=2e8;\n cost[3*u[i]+0]+=2e8;\n pd.add_edge(3*u[i]+0, 3*v[i]+2, 2e8, 1);\n } else {\n pd.add_edge(3*u[i]+0, 3*v[i]+2, 2e8, 0);\n }\n }\n ll sum = 0;\n rep(i,3*n+1){\n if(cost[i]>0){\n pd.add_edge(S, i, cost[i], 0);\n sum += cost[i];\n } else {\n pd.add_edge(i, T, -cost[i], 0);\n }\n }\n ll ans = pd.minimum_cost_flow(S, T, sum)+ret;\n if(ans>=x)ok=mid;\n else ng = mid;\n }\n if(ok >= x + 1000000){\n cout<<-1<<endl;\n } else {\n cout << ok << endl;\n }\n\n \n return 0;\n}", "accuracy": 1, "time_ms": 510, "memory_kb": 3524, "score_of_the_acc": -1.4247, "final_rank": 9 }, { "submission_id": "aoj_3171_4838886", "code_snippet": "#include<iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\n#include<iomanip>\n#include<math.h>\n#include<complex>\n#include<queue>\n#include<deque>\n#include<stack>\n#include<map>\n#include<set>\n#include<bitset>\n#include<functional>\n#include<assert.h>\n#include<numeric>\nusing namespace std;\n#define REP(i,m,n) for(int i=(int)(m) ; i < (int) (n) ; ++i )\n#define rep(i,n) REP(i,0,n)\nusing ll = long long;\nconstexpr ll mod=1e8+7 ;\n\nstruct PrimalDual{\n struct edge{\n int to;ll cap, cost;int rev;\n };\n int n;\n const ll INF = numeric_limits<ll>::max();\n vector<vector<edge>> v;\n vector<ll> pot, dist;\n vector<pair<int,int>> par;\n \n PrimalDual(int n):n(n),v(n),pot(n){}\n \n void add_edge(int from, int to, ll cap, ll cost) {\n v[from].emplace_back((edge) {to, cap, cost, (int) v[to].size()});\n v[to].emplace_back((edge) {from, 0, -cost, (int) v[from].size() - 1});\n }\n \n pair<ll,ll> minimum_road(int s,int t){\n par.assign(n,{-1,-1});\n dist.assign(n,INF);\n dist[s] = 0;\n using P = pair<ll,ll>;\n priority_queue<P,vector<P>,greater<P>> pq;\n pq.emplace(0,s);\n while(!pq.empty()){\n P p = pq.top();pq.pop();\n if(dist[p.second]<p.first)continue;\n rep(i,v[p.second].size()){\n edge& e = v[p.second][i];\n ll nd = dist[p.second]+e.cost+pot[p.second]-pot[e.to];\n if(e.cap>0 && dist[e.to]>nd){\n dist[e.to] = nd;\n par[e.to] = {p.second, i};\n pq.emplace(dist[e.to],e.to);\n }\n }\n }\n if(dist[t]==INF)return {-1,-1};\n rep(i,n)pot[i] += dist[i];\n ll f = INF;\n int cur = t;\n while(cur != s){\n int p = par[cur].first, j = par[cur].second;\n f = min(f, v[p][j].cap);\n cur = p;\n }\n cur = t;\n while(cur != s){\n int p = par[cur].first, j = par[cur].second;\n v[p][j].cap -= f;\n v[cur][v[p][j].rev].cap += f;\n cur = p;\n }\n return {pot[t],f};\n }\n \n ll minimum_cost_flow(int s, int t, ll k){\n ll ret = 0;\n while(k){\n pair<ll,ll> z = minimum_road(s, t);\n if (z.first < 0)return -1;\n if (k<=z.second){\n ret+=z.first*k;\n break;\n }\n k -= z.second;\n ret += z.first*z.second;\n }\n return ret;\n }\n};\n\nint main(){\n int n,m,x;\n cin>>n>>m>>x;\n vector<int> a(n),b(n),p(n);\n rep(i,n)cin>>a[i]>>b[i]>>p[i];\n vector<int> f(m),u(m),v(m);\n rep(i,m){\n cin>>u[i]>>v[i]>>f[i];\n --u[i];--v[i];\n if(u[i]<v[i])swap(u[i],v[i]);\n }\n ll ng = -1, ok = 1e8;\n while(ok-ng>1){\n int mid = (ok+ng)/2;\n PrimalDual pd(3*n+3);\n int s0=3*n, S = 3*n+1, T = 3*n+2;\n vector<ll> cost(3*n+3);\n rep(i,n){\n cost[3*i+0]+=a[i];\n cost[3*i+1]+=b[i]-a[i];\n cost[3*i+2]+=-b[i];\n }\n ll ret = 0;\n rep(i,n){\n pd.add_edge(3*i+2, 3*i+1, 1e8, 0);\n cost[3*i+0]+=1e8;\n cost[3*i+1]-=1e8;\n ret-=1e8;\n pd.add_edge(3*i+0, 3*i+1, 1e8, 1);\n pd.add_edge(3*i+0, 3*i+1, 1e8, p[i]);\n pd.add_edge(s0, 3*i+2, 1e8, mid);\n }\n rep(i,n-1){\n pd.add_edge(3*i+3, 3*i+0, 1e8, 0);\n }\n pd.add_edge(0, s0, 1e8, 0);\n rep(i,m){\n if(f[i]==1){\n ret += -1e8;\n cost[3*v[i]+2]-=1e8;\n cost[3*u[i]+0]+=1e8;\n pd.add_edge(3*u[i]+0, 3*v[i]+2, 1e8, 1);\n } else {\n pd.add_edge(3*u[i]+0, 3*v[i]+2, 1e8, 0);\n }\n }\n ll sum = 0;\n rep(i,3*n+1){\n if(cost[i]>0){\n pd.add_edge(S, i, cost[i], 0);\n sum += cost[i];\n } else {\n pd.add_edge(i, T, -cost[i], 0);\n }\n }\n ll ans = pd.minimum_cost_flow(S, T, sum)+ret;\n if(ans>=x)ok=mid;\n else ng = mid;\n }\n if(ok >= x + 100000){\n cout<<-1<<endl;\n } else {\n cout << ok << endl;\n }\n return 0;\n}", "accuracy": 0.6888888888888889, "time_ms": 470, "memory_kb": 3568, "score_of_the_acc": -1.42, "final_rank": 11 }, { "submission_id": "aoj_3171_4838812", "code_snippet": "#include<iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\n#include<iomanip>\n#include<math.h>\n#include<complex>\n#include<queue>\n#include<deque>\n#include<stack>\n#include<map>\n#include<set>\n#include<bitset>\n#include<functional>\n#include<assert.h>\n#include<numeric>\nusing namespace std;\n#define REP(i,m,n) for(int i=(int)(m) ; i < (int) (n) ; ++i )\n#define rep(i,n) REP(i,0,n)\nusing ll = long long;\nconstexpr ll mod=1e7+7 ;\n\nstruct PrimalDual{\n struct edge{\n int to;ll cap, cost;int rev;\n };\n int n;\n const ll INF = numeric_limits<ll>::max();\n vector<vector<edge>> v;\n vector<ll> pot, dist;\n vector<pair<int,int>> par;\n \n PrimalDual(int n):n(n),v(n),pot(n){}\n \n void add_edge(int from, int to, ll cap, ll cost) {\n v[from].emplace_back((edge) {to, cap, cost, (int) v[to].size()});\n v[to].emplace_back((edge) {from, 0, -cost, (int) v[from].size() - 1});\n }\n \n pair<ll,ll> minimum_road(int s,int t){\n par.assign(n,{-1,-1});\n dist.assign(n,INF);\n dist[s] = 0;\n using P = pair<ll,ll>;\n priority_queue<P,vector<P>,greater<P>> pq;\n pq.emplace(0,s);\n while(!pq.empty()){\n P p = pq.top();pq.pop();\n if(dist[p.second]<p.first)continue;\n rep(i,v[p.second].size()){\n edge& e = v[p.second][i];\n ll nd = dist[p.second]+e.cost+pot[p.second]-pot[e.to];\n if(e.cap>0 && dist[e.to]>nd){\n dist[e.to] = nd;\n par[e.to] = {p.second, i};\n pq.emplace(dist[e.to],e.to);\n }\n }\n }\n if(dist[t]==INF)return {-1,-1};\n rep(i,n)pot[i] += dist[i];\n ll f = INF;\n int cur = t;\n while(cur != s){\n int p = par[cur].first, j = par[cur].second;\n f = min(f, v[p][j].cap);\n cur = p;\n }\n cur = t;\n while(cur != s){\n int p = par[cur].first, j = par[cur].second;\n v[p][j].cap -= f;\n v[cur][v[p][j].rev].cap += f;\n cur = p;\n }\n return {pot[t],f};\n }\n \n ll minimum_cost_flow(int s, int t, ll k){\n ll ret = 0;\n while(k){\n pair<ll,ll> z = minimum_road(s, t);\n if (z.first < 0)return -1;\n if (k<=z.second){\n ret+=z.first*k;\n break;\n }\n k -= z.second;\n ret += z.first*z.second;\n }\n return ret;\n }\n};\n\nint main(){\n int n,m,x;\n cin>>n>>m>>x;\n vector<int> a(n),b(n),p(n);\n rep(i,n)cin>>a[i]>>b[i]>>p[i];\n vector<int> f(m),u(m),v(m);\n rep(i,m){\n cin>>u[i]>>v[i]>>f[i];\n --u[i];--v[i];\n if(u[i]<v[i])swap(u[i],v[i]);\n }\n ll ng = -1, ok = 1e7;\n while(ok-ng>1){\n int mid = (ok+ng)/2;\n PrimalDual pd(3*n+3);\n int s0=3*n, S = 3*n+1, T = 3*n+2;\n vector<ll> cost(3*n+3);\n rep(i,n){\n cost[3*i+0]+=a[i];\n cost[3*i+1]+=b[i]-a[i];\n cost[3*i+2]+=-b[i];\n }\n ll ret = 0;\n rep(i,n){\n pd.add_edge(3*i+2, 3*i+1, 1e7, 0);\n cost[3*i+0]+=1e7;\n cost[3*i+1]-=1e7;\n ret-=1e7;\n pd.add_edge(3*i+0, 3*i+1, 1e7, 1);\n pd.add_edge(3*i+0, 3*i+1, 1e7, p[i]);\n pd.add_edge(s0, 3*i+2, 1e7, mid);\n }\n rep(i,n-1){\n pd.add_edge(3*i+3, 3*i+0, 1e7, 0);\n }\n pd.add_edge(0, s0, 1e7, 0);\n rep(i,m){\n if(f[i]==1){\n ret += -1e7;\n cost[3*v[i]+2]-=1e7;\n cost[3*u[i]+0]+=1e7;\n pd.add_edge(3*u[i]+0, 3*v[i]+2, 1e7, 1);\n } else {\n pd.add_edge(3*u[i]+0, 3*v[i]+2, 1e7, 0);\n }\n }\n ll sum = 0;\n rep(i,3*n+1){\n if(cost[i]>0){\n pd.add_edge(S, i, cost[i], 0);\n sum += cost[i];\n } else {\n pd.add_edge(i, T, -cost[i], 0);\n }\n }\n ll ans = pd.minimum_cost_flow(S, T, sum)+ret;\n if(ans>=x)ok=mid;\n else ng = mid;\n }\n if(ok >= x + 100000){\n cout<<-1<<endl;\n } else {\n cout << ok << endl;\n }\n\n \n return 0;\n}", "accuracy": 0.13333333333333333, "time_ms": 10, "memory_kb": 3364, "score_of_the_acc": -0.1507, "final_rank": 19 }, { "submission_id": "aoj_3171_4838785", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=Int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\ntemplate<typename TF,typename TC>\nstruct PrimalDual{\n struct edge{\n Int to;\n TF cap;\n TC cost;\n Int rev;\n edge(){}\n edge(Int to,TF cap,TC cost,Int rev):\n to(to),cap(cap),cost(cost),rev(rev){}\n };\n\n static const TC INF;\n vector<vector<edge>> G;\n vector<TC> h,dist;\n vector<Int> prevv,preve;\n\n PrimalDual(){}\n PrimalDual(Int n):G(n),h(n),dist(n),prevv(n),preve(n){}\n\n void add_edge(Int u,Int v,TF cap,TC cost){\n G[u].emplace_back(v,cap,cost,G[v].size());\n G[v].emplace_back(u,0,-cost,G[u].size()-1);\n }\n\n void dijkstra(Int s){\n struct P{\n TC first;\n Int second;\n P(TC first,Int second):first(first),second(second){}\n bool operator<(const P&a) const{return a.first<first;}\n };\n priority_queue<P> que;\n fill(dist.begin(),dist.end(),INF);\n\n dist[s]=0;\n que.emplace(dist[s],s);\n while(!que.empty()){\n P p=que.top();que.pop();\n Int v=p.second;\n if(dist[v]<p.first) continue;\n for(Int i=0;i<(Int)G[v].size();i++){\n edge &e=G[v][i];\n if(e.cap==0) continue;\n if(dist[v]+e.cost+h[v]-h[e.to]<dist[e.to]){\n dist[e.to]=dist[v]+e.cost+h[v]-h[e.to];\n prevv[e.to]=v;\n preve[e.to]=i;\n que.emplace(dist[e.to],e.to);\n }\n }\n }\n }\n\n TC flow(Int s,Int t,TF f,Int &ok){\n TC res=0;\n fill(h.begin(),h.end(),0);\n while(f>0){\n dijkstra(s);\n if(dist[t]==INF){\n ok=0;\n return res;\n }\n\n for(Int v=0;v<(Int)h.size();v++)\n if(dist[v]<INF) h[v]=h[v]+dist[v];\n\n TF d=f;\n for(Int v=t;v!=s;v=prevv[v])\n d=min(d,G[prevv[v]][preve[v]].cap);\n\n f-=d;\n res=res+h[t]*d;\n for(Int v=t;v!=s;v=prevv[v]){\n edge &e=G[prevv[v]][preve[v]];\n e.cap-=d;\n G[v][e.rev].cap+=d;\n }\n }\n ok=1;\n return res;\n }\n};\ntemplate<typename TF, typename TC>\nconst TC PrimalDual<TF, TC>::INF = numeric_limits<TC>::max()/2;\n\n\ntemplate<typename TF,typename TC>\nstruct NegativeEdge{\n PrimalDual<TF, TC> G;\n vector<TF> fs;\n TC sum;\n Int S,T;\n NegativeEdge(){}\n NegativeEdge(Int n):G(n+2),fs(n+2,0),sum(0),S(n),T(n+1){}\n\n void use_edge(Int u,Int v,TF cap,TC cost){\n fs[u]-=cap;\n fs[v]+=cap;\n sum=sum+cost*cap;\n }\n\n void add_edge(Int u,Int v,TF cap,TC cost){\n if(cost<TC(0)){\n use_edge(u,v,cap,cost);\n swap(u,v);\n cost=-cost;\n }\n G.add_edge(u,v,cap,cost);\n }\n\n TC flow(Int &ok){\n TF f=0;\n for(Int i=0;i<S;i++){\n if(fs[i]>0){\n f+=fs[i];\n G.add_edge(S,i,+fs[i],TC(0));\n }\n if(fs[i]<0){\n G.add_edge(i,T,-fs[i],TC(0));\n }\n }\n return sum+G.flow(S,T,f,ok);\n }\n\n TC flow(Int ts,Int tt,TF tf,Int &ok){\n fs[ts]+=tf;\n fs[tt]-=tf;\n return flow(ok);\n }\n};\n\n\ntemplate<typename TV, const Int N> void read_tuple_impl(TV&) {}\ntemplate<typename TV, const Int N, typename Head, typename... Tail>\nvoid read_tuple_impl(TV& ts) {\n get<N>(ts).emplace_back(*(istream_iterator<Head>(cin)));\n read_tuple_impl<TV, N+1, Tail...>(ts);\n}\ntemplate<typename... Ts> decltype(auto) read_tuple(size_t n) {\n tuple<vector<Ts>...> ts;\n for(size_t i=0;i<n;i++) read_tuple_impl<decltype(ts), 0, Ts...>(ts);\n return ts;\n}\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n Int n,m,need;\n cin>>n>>m>>need;\n auto [xs,ys,qs]=read_tuple<Int, Int, Int>(n);\n auto [us,vs,fs]=read_tuple<Int, Int, Int>(m);\n\n for(Int i=0;i<m;i++) us[i]--,vs[i]--;\n\n const Int INF = 1e15;\n auto st=[&](Int i){return 0+i;};\n auto en=[&](Int i){return n+i;};\n Int Z=n+n;\n auto check=[&](Int T)->Int{\n NegativeEdge<Int, Int> G(n+n+1);\n for(Int i=0;i<n;i++){\n G.add_edge(st(i),Z,INF,0);\n G.add_edge(en(i),st(i),INF,-1);\n G.add_edge(Z,en(i),INF,T);\n }\n for(Int i=0;i<m;i++){\n if(fs[i]==+1)\n G.add_edge(en(us[i]),st(vs[i]),INF,-1);\n if(fs[i]==-1)\n G.add_edge(st(vs[i]),en(us[i]),INF,0);\n }\n for(Int i=0;i+1<n;i++)\n G.add_edge(st(i+1),st(i),INF,0);\n\n for(Int i=0;i<n;i++){\n G.add_edge(st(i),en(i),xs[i]-ys[i],qs[i]);\n if(xs[i]>=0){\n G.use_edge(en(i),st(i),xs[i],0);\n G.add_edge(en(i),st(i),INF,0);\n }else{\n G.add_edge(st(i),en(i),abs(xs[i]),0);\n }\n }\n Int ok;\n Int res=G.flow(ok);\n if(!ok) return -1;\n return res;\n };\n\n Int L=0,R=1e9;\n // check(L) < need\n // check(R) >= need\n if(check(R)<need) drop(-1);\n while(L+1<R){\n Int M=(L+R)>>1;\n if(check(M)>=need) R=M;\n else L=M;\n }\n // cout<<need<<endl;\n // cout<<check(L)<<endl;\n // cout<<check(R)<<endl;\n cout<<R<<newl;\n return 0;\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 3640, "score_of_the_acc": -1.1033, "final_rank": 8 } ]
aoj_3177_cpp
F Painting 問題文 $N$ 個のマスが横一列に並んでいます。マスは左から順に $1, 2, \ldots N$ と番号がつけられています。 各マスは赤、青、黄、緑のいずれか $1$ 色で塗られています。 現在のマスの状態は長さ $N$ の文字列で表され、$S$ の $i$ 文字目がマス $i$ の色を表しています。( R 、 B 、 Y 、 G がそれぞれ赤、青、黄、緑に対応します。) heno 君はこのマス目に対して以下の操作を何度でも行うことができます。 操作 : $1\leq i \leq N-1$ かつマス $i$ とマス $i+1$ の色が異なるような $i$ を選ぶ。マス $i$ とマス $i+1$ を、どちらにも用いられていない $2$ 色で$1$ つずつ塗る。(マス $i$ とマス $i+1$ を同じ色で塗ることはできない。) (具体的な操作については入出力を参考にしてください。) (15:05 更新) heno 君の目標はマス目を文字列 $T$ で表される状態にすることです。これが可能か判定してください。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $S$ $T$ 制約 $2 \leq N \leq 10^6$ $S, T$ は R , B , Y , G のみからなる長さ $N$ の文字列 出力 heno くんが目標を達成することが可能ならば Yes 、不可能ならば No と $1$ 行に出力してください。 入力例1 4 RGRB YRGG 出力例1 Yes 例えば以下のように操作を行うとよいです。 RGRB → RGYG → YBYG → YRGG 入力例2 5 RRRRR YYYYY 出力例2 No 入力例3 10 RRGBYRBYYG BGRRYGGGGY 出力例3 Yes
[ { "submission_id": "aoj_3177_6452179", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline ll time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nint u(char c){\n if(c == 'R')return 0;\n else if(c == 'B')return 1;\n else if(c == 'Y')return 2;\n else return 3;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n; cin >> n;\n string s,t; cin >> s >> t;\n {\n auto r = s;\n sort(r.begin(), r.end());\n if(r[0] == r.back()){\n if(s == t){\n cout << \"Yes\" << \"\\n\";\n }\n else{\n cout << \"No\" << \"\\n\";\n }\n return 0;\n }\n r = t;\n sort(r.begin(), r.end());\n if(r[0] == r.back()){\n if(s == t){\n cout << \"Yes\" << \"\\n\";\n }\n else{\n cout << \"No\" << \"\\n\";\n }\n return 0;\n }\n }\n int g = 0, gg = 0;\n for(char c:s){\n g ^= u(c);\n }\n for(char c:t){\n gg ^= u(c);\n }\n if(g == gg){\n cout << \"Yes\" << \"\\n\";\n }\n else{\n cout << \"No\" << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6576, "score_of_the_acc": -0.6013, "final_rank": 9 }, { "submission_id": "aoj_3177_4875831", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n;\n cin>>n;\n string s,t;\n cin>>s>>t;\n if(s==t) drop(\"Yes\");\n if(s==string(n,s[0])) drop(\"No\");\n\n map<char,int> num;\n num['R']=0;\n num['B']=1;\n num['Y']=2;\n num['G']=3;\n\n int ss=0,st=0;\n for(char c:s) ss^=num[c];\n for(char c:t) st^=num[c];\n\n // cout<<ss<<' '<<st<<newl;\n cout<<((ss%4)==(st%4)?\"Yes\":\"No\")<<newl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6464, "score_of_the_acc": -0.5238, "final_rank": 7 }, { "submission_id": "aoj_3177_4864217", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\nvoid yes() {cout<<\"Yes\"<<endl; exit(0);}\nvoid no() {cout<<\"No\"<<endl; exit(0);}\n\nint main() {\n string T;\n cin>>N>>S>>T;\n if(S == T) yes();\n vec n1(4, 0), n2(4, 0);\n map<char, int> ci = {{'R', 0}, {'G', 1}, {'B', 2}, {'Y', 3}};\n rep(i, N){\n ++n1[ci[S[i]]];\n ++n2[ci[T[i]]];\n }\n if(*max_element(ALL(n1)) == N || *max_element(ALL(n2)) == N) no();\n int judge(0);\n rep(i, 4){\n if(abs(n1[i] - n2[i])&1) ++judge;\n }\n if(judge == 2) no();\n else yes();\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 5588, "score_of_the_acc": -0.024, "final_rank": 2 }, { "submission_id": "aoj_3177_4849988", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << '\\n';\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const T &a) {\n for (auto e : a) cout << e << ' ';\n cout << '\\n';\n}\n\n//------------------------- Libraries -------------------------//\n\n//--------------------------- Solve ---------------------------//\n\nint conv(char c) {\n if (c == 'R') return 0;\n if (c == 'B') return 1;\n if (c == 'Y') return 2;\n if (c == 'G') return 3;\n else return -1;\n}\n\nvoid solve() {\n int n; cin >> n;\n string s, t; cin >> s >> t;\n\n if (s == t) {\n cout << \"Yes\" << '\\n';\n return;\n }\n\n set<char> ss, st; \n int s_xor = 0, t_xor = 0;\n for (char c : s) {\n ss.insert(c);\n s_xor ^= conv(c);\n }\n for (char c : t) {\n st.insert(c);\n t_xor ^= conv(c);\n }\n\n if (ss.size() == 1 || st.size() == 1) {\n cout << \"No\" << '\\n';\n }\n else {\n if (s_xor == t_xor) cout << \"Yes\" << '\\n';\n else cout << \"No\" << '\\n';\n }\n}\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 6496, "score_of_the_acc": -0.5483, "final_rank": 8 }, { "submission_id": "aoj_3177_4849720", "code_snippet": "#include <iostream>\n#include <string>\nusing namespace std;\nint cnt[2][4] = {};\nint main(){\n int i,n; cin >> n;\n string s,t; cin >> s >> t;\n for(i=0;i<n;i++){\n if(s[i]=='R') cnt[0][0]++;\n if(s[i]=='B') cnt[0][1]++;\n if(s[i]=='G') cnt[0][2]++;\n if(s[i]=='Y') cnt[0][3]++;\n if(t[i]=='R') cnt[1][0]++;\n if(t[i]=='B') cnt[1][1]++;\n if(t[i]=='G') cnt[1][2]++;\n if(t[i]=='Y') cnt[1][3]++;\n }\n int a = 0,b = 0;\n for(i=0;i<4;i++){\n if(cnt[0][i]) a++;\n if(cnt[1][i]) b++;\n }\n if(a==1 || b==1){\n bool f = true;\n for(i=0;i<4;i++){\n if(cnt[0][i]!=cnt[1][i]) f = false; \n }\n if(f) cout << \"Yes\" << endl;\n else cout << \"No\" << endl;\n }else{\n int c = 0;\n for(i=0;i<4;i++){\n if((cnt[0][i] - cnt[1][i]) & 1) c++;\n }\n if(c==0 || c==4) cout << \"Yes\" << endl;\n else cout <<\"No\" << endl;\n }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6940, "score_of_the_acc": -0.818, "final_rank": 10 }, { "submission_id": "aoj_3177_4849718", "code_snippet": "#include <iostream>\n#include <string>\nusing namespace std;\nint cnt[2][4] = {};\nint main(){\n int i,n; cin >> n;\n string s,t; cin >> s >> t;\n for(i=0;i<n;i++){\n if(s[i]=='R') cnt[0][0]++;\n if(s[i]=='B') cnt[0][1]++;\n if(s[i]=='G') cnt[0][2]++;\n if(s[i]=='Y') cnt[0][3]++;\n if(t[i]=='R') cnt[1][0]++;\n if(t[i]=='B') cnt[1][1]++;\n if(t[i]=='G') cnt[1][2]++;\n if(t[i]=='Y') cnt[1][3]++;\n }\n int a = 0,b = 0;\n for(i=0;i<4;i++){\n if(cnt[0][i]) a++;\n if(cnt[1][i]) b++;\n }\n if(a==1 || b==1){\n bool f = true;\n for(i=0;i<n;i++){\n if(cnt[0][i]!=cnt[1][i]) f = false; \n }\n if(f) cout << \"Yes\" << endl;\n else cout << \"No\" << endl;\n }else{\n int c = 0;\n for(i=0;i<4;i++){\n if((cnt[0][i] - cnt[1][i]) & 1) c++;\n }\n if(c==0 || c==4) cout << \"Yes\" << endl;\n else cout <<\"No\" << endl;\n }\n}", "accuracy": 0.4716981132075472, "time_ms": 30, "memory_kb": 6972, "score_of_the_acc": -0.837, "final_rank": 20 }, { "submission_id": "aoj_3177_4849625", "code_snippet": "#pragma GCC optimize(\"O3\")\n#include<bits/stdc++.h> \nusing namespace std;\nusing ll=long long;\nusing P=pair<ll,ll>;\ntemplate<class T> using V=vector<T>; \n#define fi first\n#define se second\n#define all(v) (v).begin(),(v).end()\nconst ll inf=(1e18);\n//const ll mod=998244353;\nconst ll mod=1000000007;\nconst vector<int> dy={-1,0,1,0},dx={0,-1,0,1};\nll GCD(ll a,ll b) {return b ? GCD(b,a%b):a;}\nll LCM(ll c,ll d){return c/GCD(c,d)*d;}\nstruct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(20);}} __init;\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }\ntemplate<class T>void debag(const vector<T> &a){cerr<<\"debag :\";for(auto v:a)cerr<<v<<\" \";cerr<<\"\\n\";}\ntemplate<class T>void print(const vector<T> &a){for(auto v:a)cout<<v<<\" \";cout<<\"\\n\";}\nint main(){\n int n;\n string s,t;\n cin>>n;\n cin>>s>>t;\n map<char,int> mp;\n string str=\"RGBY\";\n for(int i=0;i<4;i++){\n mp[str[i]]=i;\n }\n V<int> d(4,0),e(4,0);\n for(int i=0;i<n;i++){\n d[mp[s[i]]]++;\n e[mp[t[i]]]++;\n }\n s.erase(unique(all(s)),s.end());\n t.erase(unique(all(t)),t.end());\n if(s.size()==1||t.size()==1){\n if(s==t){\n cout<<\"Yes\"<<\"\\n\";\n }else{\n cout<<\"No\"<<\"\\n\";\n }\n return 0;\n }\n V<ll> res(4,0);\n ll sum=0;\n for(int i=0;i<4;i++){\n res[i]=d[i]-e[i];\n sum+=res[i];\n }\n if(sum!=0){\n cout<<\"No\"<<\"\\n\";\n return 0;\n }\n V<int> cnt(2,0);\n for(int i=0;i<4;i++){\n cnt[abs(res[i])%2]++;\n }\n if(cnt[0]>0&&cnt[1]>0){\n cout<<\"No\"<<\"\\n\";\n }else{\n cout<<\"Yes\"<<\"\\n\";\n }\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 6292, "score_of_the_acc": -0.4268, "final_rank": 5 }, { "submission_id": "aoj_3177_4849501", "code_snippet": "#pragma GCC optimize (\"O3\")\n#include <iostream>\n#include <iomanip>\n#include <istream>\n#include <ostream>\n#include <sstream>\n#include <iterator>\n#include <vector>\n#include <algorithm>\n#include <queue>\n#include <deque>\n#include <list>\n#include <stack>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <bitset>\n#include <utility>\n#include <cmath>\n#include <cstdio>\n#include <cstring>\n#include <string>\n#include <ctime>\n#include <cctype>\n#include <cstdlib>\n#include <numeric>\n#define IINF 1000000000\n#define INF 3223372036854775807\n#define MOD 1000000007\n#define mod 1000000007\n#define INT_MAX_ 2147483647\n#define EPS (1e-10)\n#define REP(i, a, n) fo-r (ll i = a; i < (ll)(n); i++)\n#define REPE(i, a, n) for (ll i = a; i <= (ll)(n); i++)\n//#define rep(i,n)for (ll i = 0; i < (ll)(n); i++)\n#define rep(i,l,r)for(ll i=(l);i<(r);i++)\n#define rep1(i,n) for(int i=1;i<=(int)(n);i++)\n#define Endl endl\n#define fi first\n#define se second\n#define pb push_back\n#define mp make_pair\n#define mt make_tuple\n#define eb emplace_back\n#define mmax(x,y)(x>y?x:y)\n#define mmin(x,y)(x<y?x:y)\n#define chmax(x,y) x=mmax(x,y)\n#define chmin(x,y) x=mmin(x,y)\n#define all(x) (x).begin(),(x).end()\n#define siz(x) (ll)(x).size()\n#define PI acos(-1.0)\n#define me memset\n#define bit(n,k) ((n>>k)&1)\n#define lg length()\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\ntypedef long double ld;\ntypedef pair<int,int>Pin;\ntypedef pair<ll,ll>Pll;\ntemplate<class T> using V=vector<T>;\ntemplate<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T> >;\nlong long GCD(long long a, long long b) {return b?GCD(b,a%b):a;}\nlong long LCM(long long a, long long b) {return a/GCD(a,b)*b;}\nll pom(ll a,ll n,int m){ll x=1;for(a%=m;n;n/=2)n&1?x=x*a%m:0,a=a*a%m;return x;}\n#define invp(a,p)pom(a,p-2,p)\nint dx[4]={-1,0,1,0};\nint dy[4]={0,-1,0,1};\nint ddx[8]={-1,0,1,0,1,1,-1,-1};\nint ddy[8]={0,-1,0,1,1,-1,1,-1};\nll cmp1(pair<Pll,ll> a,pair<Pll,ll> b){\n return a.fi.se>b.fi.se;\n}\nll cmp2(pair<ll,ll> a,pair<ll,ll> b){\n if(a.fi!=b.fi)\n return a.se<b.se;\n else\n return a.se>b.se;\n}\n//----------------------------------------------------------------------\nll cal(char c){\n if(c=='R')return 0;\n else if(c=='G')return 1;\n else if(c=='B')return 2;\n else return 3;\n}\n//----------------------------------------------------------------------\nint main(int argc, char * argv[]){\n cin.tie(0);\n ios::sync_with_stdio(false);\n //------------------------------- \n //ll begin_t=clock();\n //freopen(\"big.txt\", \"r\", stdin);\n //freopen(\"out3.txt\", \"w\", stdout);\n //------------------------------\n ll n;cin>>n;\n string s,t;cin>>s>>t;\n bool a=1,b=1;\n for(ll i=1;i<n;i++){\n if(s[i]!=s[0])a=0;\n if(t[i]!=t[0])b=0;\n }\n if(a==1||b==1){\n if(s==t){\n cout<<\"Yes\"<<endl;\n }\n else cout<<\"No\"<<Endl;\n return 0;\n }\n\n ll axor=0,bxor=0;\n for(ll i=0;i<n;i++){\n axor^=cal(s[i]);\n bxor^=cal(t[i]);\n }\n if(axor==bxor){\n cout<<\"Yes\"<<endl;\n }\n else cout<<\"No\"<<Endl;\n //------------------------------\n //fclose(stdin);\n //fclose(stdout);\n //ll end_t=clock();cout<<\"time=\"<<end_t-begin_t<<\"ms\"<<endl;\n //------------------------------- \n return 0;\n}\n//----------------------------------------------------------------------", "accuracy": 1, "time_ms": 10, "memory_kb": 6040, "score_of_the_acc": -0.2714, "final_rank": 3 }, { "submission_id": "aoj_3177_4849497", "code_snippet": "#pragma GCC optimize (\"O3\")\n#include <iostream>\n#include <iomanip>\n#include <istream>\n#include <ostream>\n#include <sstream>\n#include <iterator>\n#include <vector>\n#include <algorithm>\n#include <queue>\n#include <deque>\n#include <list>\n#include <stack>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <bitset>\n#include <utility>\n#include <cmath>\n#include <cstdio>\n#include <cstring>\n#include <string>\n#include <ctime>\n#include <cctype>\n#include <cstdlib>\n#include <numeric>\n#define IINF 1000000000\n#define INF 3223372036854775807\n#define MOD 1000000007\n#define mod 1000000007\n#define INT_MAX_ 2147483647\n#define EPS (1e-10)\n#define REP(i, a, n) fo-r (ll i = a; i < (ll)(n); i++)\n#define REPE(i, a, n) for (ll i = a; i <= (ll)(n); i++)\n//#define rep(i,n)for (ll i = 0; i < (ll)(n); i++)\n#define rep(i,l,r)for(ll i=(l);i<(r);i++)\n#define rep1(i,n) for(int i=1;i<=(int)(n);i++)\n#define Endl endl\n#define fi first\n#define se second\n#define pb push_back\n#define mp make_pair\n#define mt make_tuple\n#define eb emplace_back\n#define mmax(x,y)(x>y?x:y)\n#define mmin(x,y)(x<y?x:y)\n#define chmax(x,y) x=mmax(x,y)\n#define chmin(x,y) x=mmin(x,y)\n#define all(x) (x).begin(),(x).end()\n#define siz(x) (ll)(x).size()\n#define PI acos(-1.0)\n#define me memset\n#define bit(n,k) ((n>>k)&1)\n#define lg length()\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\ntypedef long double ld;\ntypedef pair<int,int>Pin;\ntypedef pair<ll,ll>Pll;\ntemplate<class T> using V=vector<T>;\ntemplate<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T> >;\nlong long GCD(long long a, long long b) {return b?GCD(b,a%b):a;}\nlong long LCM(long long a, long long b) {return a/GCD(a,b)*b;}\nll pom(ll a,ll n,int m){ll x=1;for(a%=m;n;n/=2)n&1?x=x*a%m:0,a=a*a%m;return x;}\n#define invp(a,p)pom(a,p-2,p)\nint dx[4]={-1,0,1,0};\nint dy[4]={0,-1,0,1};\nint ddx[8]={-1,0,1,0,1,1,-1,-1};\nint ddy[8]={0,-1,0,1,1,-1,1,-1};\nll cmp1(pair<Pll,ll> a,pair<Pll,ll> b){\n return a.fi.se>b.fi.se;\n}\nll cmp2(pair<ll,ll> a,pair<ll,ll> b){\n if(a.fi!=b.fi)\n return a.se<b.se;\n else\n return a.se>b.se;\n}\n//----------------------------------------------------------------------\nll cal(char c){\n if(c=='R')return 0;\n else if(c=='G')return 1;\n else if(c=='B')return 2;\n else return 3;\n}\n//----------------------------------------------------------------------\nint main(int argc, char * argv[]){\n cin.tie(0);\n ios::sync_with_stdio(false);\n //------------------------------- \n //ll begin_t=clock();\n //freopen(\"big.txt\", \"r\", stdin);\n //freopen(\"out3.txt\", \"w\", stdout);\n //------------------------------\n ll n;cin>>n;\n string s,t;cin>>s>>t;\n bool a=1,b=1;\n for(ll i=1;i<n;i++){\n if(s[i]!=s[0])a=0;\n if(t[i]!=t[0])b=0;\n }\n if(a==1&&b==1){\n if(s[0]==t[0]){\n cout<<\"Yes\"<<endl;\n }\n else cout<<\"No\"<<Endl;\n return 0;\n }\n\n ll axor=0,bxor=0;\n for(ll i=0;i<n;i++){\n axor^=cal(s[i]);\n bxor^=cal(t[i]);\n }\n if(axor==bxor){\n cout<<\"Yes\"<<endl;\n }\n else cout<<\"No\"<<Endl;\n //------------------------------\n //fclose(stdin);\n //fclose(stdout);\n //ll end_t=clock();cout<<\"time=\"<<end_t-begin_t<<\"ms\"<<endl;\n //------------------------------- \n return 0;\n}\n//----------------------------------------------------------------------", "accuracy": 0.6792452830188679, "time_ms": 10, "memory_kb": 6044, "score_of_the_acc": -0.2738, "final_rank": 18 }, { "submission_id": "aoj_3177_4849243", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n#include <string>\n\nvoid solve() {\n int n;\n std::string s, t;\n std::cin >> n >> s >> t;\n\n if (std::all_of(s.begin(), s.end(),\n [&](char c) { return s.front() == c; })) {\n std::cout << (s == t ? \"Yes\" : \"No\") << \"\\n\";\n return;\n }\n\n int x = 0;\n s += t;\n for (char c : s) {\n for (int i = 0; i < 4; ++i) {\n if (c == \"RBYG\"[i]) x ^= i;\n }\n }\n\n std::cout << (x == 0 ? \"Yes\" : \"No\") << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 7264, "score_of_the_acc": -1, "final_rank": 14 }, { "submission_id": "aoj_3177_4847988", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acos(-1.0);\n\n\n\nstring c = \"RBYG\";\nvoid solve() {\n\tint n; string s, t; cin >> n >> s >> t;\n\tif (s == t) {\n\t\tcout << \"Yes\\n\"; return;\n\t}\n\tint xs = 0, xt = 0;\n\trep(i, n) {\n\t\txs ^= c.find(s[i]);\n\t\txt ^= c.find(t[i]);\n\t}\n\tif (xs != xt) {\n\t\tcout << \"No\\n\"; return;\n\t}\n\tbool sexi = false;\n\tbool texi = false;\n\trep(i, n-1) {\n\t\tif (s[i] != s[i + 1])sexi = true;\n\t\tif (t[i] != t[i + 1])texi = true;\n\t}\n\tif (!sexi||!texi) {\n\t\tcout << \"No\\n\";\n\t}\n\telse {\n\t\tcout << \"Yes\\n\";\n\t}\n}\n\n\n\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6396, "score_of_the_acc": -0.4833, "final_rank": 6 }, { "submission_id": "aoj_3177_4847986", "code_snippet": "#include <bits/stdc++.h>\n#define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i))\n#define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i))\n#define rep(i, n) For((i), 0, (n))\n#define rrep(i, n) rFor((i), (n), 0)\n#define fi first\n#define se second\nusing namespace std;\ntypedef long long lint;\ntypedef unsigned long long ulint;\ntypedef pair<int, int> pii;\ntypedef pair<lint, lint> pll;\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nT div_floor(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a >= 0 ? a / b : (a + 1) / b - 1;\n}\ntemplate <class T>\nT div_ceil(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a > 0 ? (a - 1) / b + 1 : a / b;\n}\n\nconstexpr lint mod = 1000000007;\nconstexpr lint INF = mod * mod;\nconstexpr int MAX = 100010;\n\nint char_to_int(char c) {\n if (c == 'R')\n return 0;\n else if (c == 'B')\n return 1;\n else if (c == 'Y')\n return 2;\n else\n return 3;\n}\n\nbool all_same(string &s) {\n rep(i, s.size() - 1) if (s[i] != s[i + 1]) return false;\n return true;\n}\n\nint main() {\n int n;\n string s, t;\n cin >> n >> s >> t;\n if (all_same(s) || all_same(t)) {\n puts(s == t ? \"Yes\" : \"No\");\n } else {\n int x = 0, y = 0;\n rep(i, n) x ^= char_to_int(s[i]), y ^= char_to_int(t[i]);\n puts(x == y ? \"Yes\" : \"No\");\n }\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6960, "score_of_the_acc": -0.8299, "final_rank": 11 }, { "submission_id": "aoj_3177_4847793", "code_snippet": "#include <iostream>\n#include <string>\n#include <sstream>\n#include <stack>\n#include <algorithm>\n#include <cmath>\n#include <queue>\n#include <bitset>\n#include <iomanip>\n#include <limits>\n#include <chrono>\n#include <random>\n#include <array>\n#include <unordered_map>\n#include <functional>\n#include <complex>\n#include <numeric>\n#include <cctype>\n#include <map>\n#include <set>\n#include <cstdlib>\n#include <bitset>\n#include <tuple>\n#include <assert.h>\n#include <deque>\n#include <utility>\n#include <fstream>\n\nusing namespace std;\ntypedef long long ll;\n\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\ntemplate<typename T> T gcd(T a, T b) { a = abs(a), b = abs(b); while (b > 0) { tie(a, b) = make_pair(b, a % b); } return a; }\n//mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());\n\nconstexpr long long INF = 1LL << 60;\nconstexpr int inf = 1000000007;\n//constexpr long long mod = 1000000007LL;\nconstexpr long long mod = 998244353;\nconstexpr int MAX = 5000000;\n\nint main()\n{\n\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\n\tint n; cin >> n;\n\tstring s; cin >> s;\n\tstring t; cin >> t;\n\n\t{\n\t\tstring ts = s;\n\t\tstring tt = t;\n\t\tsort(ts.begin(), ts.end());\n\t\tsort(tt.begin(), tt.end());\n\t\tif (ts[0] == ts.back() or tt[0] == tt.back()) {\n\t\t\tif (s == t) {\n\t\t\t\tcout << \"Yes\" << \"\\n\";\n\t\t\t}\n\t\t\telse {\n\t\t\t\tcout << \"No\" << \"\\n\";\n\t\t\t}\n\t\t\treturn 0;\n\t\t}\n\t}\n\n\tauto cnv = [](char c)->int {\n\t\tif (c == 'R') return 0;\n\t\tif (c == 'B') return 1;\n\t\tif (c == 'G') return 2;\n\t\tif (c == 'Y') return 3;\n\t\treturn -1;\n\t};\n\tint xs = 0;\n\tint ts = 0;\n\tfor (int i = 0; i < n; i++) xs ^= cnv(s[i]);\n\tfor (int i = 0; i < n; i++) ts ^= cnv(t[i]);\n\tif (xs != ts) cout << \"No\" << \"\\n\";\n\telse cout << \"Yes\" << \"\\n\";\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7240, "score_of_the_acc": -1.0019, "final_rank": 15 }, { "submission_id": "aoj_3177_4847773", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n//#pragma warning(disable : 4996)\n\n#ifdef _MSC_VER\n#include <intrin.h>\n\n#define __builtin_popcount __popcnt\n#define __builtin_popcountll __popcnt64\n#endif\n\n#include <limits.h>\n#include <math.h>\n#include <time.h>\n\n#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <complex>\n#include <cstdio>\n#include <cstring>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <iterator>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n\n//#include<atcoder/all>\n\nusing namespace std;\n\n//using namespace atcoder;\n\n#define REP(i, n) for (int i = 0; i < (n); ++i)\n#define REPR(i, n) for (int i = n - 1; i >= 0; --i)\n#define FOR(i, m, n) for (int i = m; i < n; ++i)\n#define FORR(i, m, n) for (int i = m - 1; i >= n; --i)\n#define SORT(v, n) sort(v, v + n);\n#define VSORT(v) sort(v.begin(), v.end());\n#define REVERSE(v, n) reverse(v, v + n);\n#define VREVERSE(v) reverse(v.begin(), v.end())\n#define ll long long\n#define print(x) cout << (x) << endl\n#define pe(x) cout << (x) << \" \"\n#define DEBUG(x) cout << #x << \": \" << x << endl\n#define lb(v, n) lower_bound(v.begin(), v.end(), (n))\n#define ub(v, n) upper_bound(v.begin(), v.end(), (n))\n#define int long long\n//#define double long double\n#define all(x) (x).begin(), (x).end()\n#define print_space(v) REP(i, v.size()) cout << v[i] << \" \\n\"[i==(int)v.size()-1]\ntemplate <typename T1, typename T2> inline void chmin(T1& a, T2 b) { if (a > b) a = b; }\ntemplate <typename T1, typename T2> inline void chmax(T1& a, T2 b) { if (a < b) a = b; }\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> pll;\nstd::random_device rd;\nstd::mt19937 mt(rd());\nconstexpr ll MOD = 1e9 + 7;\nconstexpr int MAX = 500050;\nconst double pi = acos(-1);\nconstexpr double EPS = 1e-8;\nconstexpr ll LINF = 1e18 + 1;\nconstexpr int INF = 1e9 + 1;\nvoid Yes(bool cond) { cout << (cond ? \"Yes\" : \"No\") << '\\n'; }\nvoid YES(bool cond) { cout << (cond ? \"YES\" : \"NO\") << '\\n'; }\n\n\nint id[300];\nvoid solve() {\n\tint N; cin >> N;\n\tstring S;\n\tstring T;\n\tcin >> S >> T;\n\tid['R'] = 0;\n\tid['B'] = 1;\n\tid['Y'] = 2;\n\tid['G'] = 3;\n\tint a = 0, b = 0;\n\tmap<char, int>mps, mpt;\n\tfor (auto c : S) {\n\t\tmps[c]++;\n\t}\n\tfor (auto c : T) {\n\t\tmpt[c]++;\n\t}\n\tif (mps.size() == 1 || mpt.size() == 1) {\n\t\tif (mps.size() > 1 || mpt.size() > 1) {\n\t\t\tprint(\"No\"); return;\n\t\t}\n\t\telse {\n\t\t\tYes(S[0] == T[0]);\n\t\t\treturn;\n\t\t}\n\t}\n\tfor (auto c : S)a ^= id[c];\n\tfor (auto c : T)b ^= id[c];\n\tif (a == b)print(\"Yes\");\n\telse print(\"No\");\n}\n\n\n\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\n\t//int q;\n\t//cin >> q;\n\t//while (q--)\n\tsolve();\n\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 6132, "score_of_the_acc": -0.3316, "final_rank": 4 }, { "submission_id": "aoj_3177_4847394", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << '\\n';\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const T &a) {\n for (auto e : a) cout << e << ' ';\n cout << '\\n';\n}\n\n//------------------------- Libraries -------------------------//\n\n//--------------------------- Solve ---------------------------//\n\nint conv(char c) {\n if (c == 'R') return 0;\n if (c == 'B') return 1;\n if (c == 'Y') return 2;\n if (c == 'G') return 3;\n else return -1;\n}\n\nvoid solve() {\n int n; cin >> n;\n string s, t; cin >> s >> t;\n set<char> ss, st; \n int s_xor = 0, t_xor = 0;\n for (char c : s) {\n ss.insert(c);\n s_xor ^= conv(c);\n }\n for (char c : t) {\n st.insert(c);\n t_xor ^= conv(c);\n }\n\n if (ss.size() == 1 || st.size() == 1) {\n cout << \"No\" << '\\n';\n }\n else {\n if (s_xor == t_xor) cout << \"Yes\" << '\\n';\n else cout << \"No\" << '\\n';\n }\n}\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 0.49056603773584906, "time_ms": 20, "memory_kb": 6320, "score_of_the_acc": -0.4435, "final_rank": 19 }, { "submission_id": "aoj_3177_4847217", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <queue>\n#include <stack>\n#include <numeric>\n#include <bitset>\n#include <cmath>\n\nstatic const int MOD = 1000000007;\nusing ll = long long;\nusing u32 = unsigned;\nusing u64 = unsigned long long;\nusing namespace std;\n\ntemplate<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;\n\nint main() {\n int n;\n cin >> n;\n string s, t;\n cin >> s >> t;\n int same1 = 1, same2 = 1;\n for (int i = 0; i+1 < n; ++i) {\n if(s[i] != s[i+1]) same1 = 0;\n if(t[i] != t[i+1]) same2 = 0;\n }\n array<int, 256> val{};\n val['B'] = 1, val['Y'] = 2; val['G'] = 3;\n if(same1 || same2){\n puts(s == t ? \"Yes\" : \"No\");\n }else {\n int k = 0;\n for (auto &&i : s) k ^= val[i];\n for (auto &&i : t) k ^= val[i];\n puts(k ? \"No\" : \"Yes\");\n }\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 5584, "score_of_the_acc": -0.0162, "final_rank": 1 }, { "submission_id": "aoj_3177_4847204", "code_snippet": "#define _USE_MATH_DEFINES\n#include <bits/stdc++.h>\nusing namespace std;\n#define FOR(i,m,n) for(int i=(m);i<(n);++i)\n#define REP(i,n) FOR(i,0,n)\n#define ALL(v) (v).begin(),(v).end()\nusing ll = long long;\nconstexpr int INF = 0x3f3f3f3f;\nconstexpr ll LINF = 0x3f3f3f3f3f3f3f3fLL;\nconstexpr double EPS = 1e-8;\nconstexpr int MOD = 1000000007;\n// constexpr int MOD = 998244353;\nconstexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};\nconstexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};\ntemplate <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }\ntemplate <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }\nstruct IOSetup {\n IOSetup() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n cout << fixed << setprecision(20);\n }\n} iosetup;\n\nbool has_one_color(string s) {\n sort(ALL(s));\n s.erase(unique(ALL(s)), s.end());\n return s.length() == 1;\n}\n\nint main() {\n int n; string s, t; cin >> n >> s >> t;\n if (has_one_color(s) || has_one_color(t)) {\n cout << (has_one_color(s) && has_one_color(t) && s[0] == t[0] ? \"Yes\\n\" : \"No\\n\");\n return 0;\n }\n map<char, int> mp{{'R', 0}, {'B', 1}, {'Y', 2}, {'G', 3}};\n int s_xor = 0, t_xor = 0;\n for (char c : s) s_xor ^= mp[c];\n for (char c : t) t_xor ^= mp[c];\n cout << (s_xor == t_xor ? \"Yes\\n\" : \"No\\n\");\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 7244, "score_of_the_acc": -1.0043, "final_rank": 16 }, { "submission_id": "aoj_3177_4847123", "code_snippet": "#include\"bits/stdc++.h\"\nusing namespace std;\n#define REP(k,m,n) for(int (k)=(m);(k)<(n);(k)++)\n#define rep(i,n) REP((i),0,(n))\nusing ll = long long;\n\nvector<int> counter(string s) {\n vector<int> count(4, 0);\n map<int, int> mp;\n mp['R'] = 0;\n mp['G'] = 1;\n mp['B'] = 2;\n mp['Y'] = 3;\n for (char c : s) count[mp[c]]++;\n return count;\n}\n\nvoid shrink(vector<int>& count) {\n if (count[0] > 1) {\n if (count[1] == 0 && count[2] == 0) {\n assert(count[3] > 0);\n count[0]--;\n count[1]++;\n count[2]++;\n count[3]--;\n }\n if (count[1] > 0 || count[2] > 0) {\n while (count[0] > 1) {\n count[0] -= 2;\n count[3] += 2;\n }\n }\n else {\n assert(false);\n }\n }\n if (count[1] > 1) {\n if (count[0] == 0 && count[2] == 0) {\n assert(count[3] > 0);\n count[0]++;\n count[1]--;\n count[2]++;\n count[3]--;\n }\n if (count[0] > 0 || count[2] > 0) {\n while (count[1] > 1) {\n count[1] -= 2;\n count[3] += 2;\n }\n }\n else {\n assert(false);\n }\n }\n if (count[2] > 1) {\n if (count[0] == 0 && count[1] == 0) {\n assert(count[3] > 0);\n count[0]++;\n count[1]++;\n count[2]--;\n count[3]--;\n }\n if (count[0] > 0 || count[1] > 0) {\n while (count[2] > 1) {\n count[2] -= 2;\n count[3] += 2;\n }\n }\n else {\n assert(false);\n }\n }\n /*\n rep(i, 3) {\n int mov = (count[i] / 2) * 2;\n count[i] -= mov;\n count[3] += mov;\n }\n */\n if (count[0] == 1) {\n if (count[1] == 1) {\n count[0] = 0;\n count[1] = 0;\n count[2]++;\n count[3]++;\n }\n else if (count[2] == 1) {\n count[0] = 0;\n count[1]++;\n count[2] = 0;\n count[3]++;\n }\n else if (count[3] > 0) {\n count[0] = 0;\n count[1]++;\n count[2]++;\n count[3]--;\n }\n }\n assert(count[0] == 0);\n assert(0 <= count[1] && count[1] <= 2);\n assert(0 <= count[2] && count[2] <= 2);\n}\n\nbool little_case(string& S, string& T) {\n using namespace chrono;\n const int N = S.size();\n random_device rnd;\n mt19937 mt(rnd());\n uniform_int_distribution<> rndN(0, N - 2), rnd2(0, 1);\n\n auto start = system_clock::now();\n while (duration_cast<milliseconds>(system_clock::now() - start).count() < 1800) {\n if (S == T)return true;\n // swap対象の検索\n int tgtIdx = rndN(mt);\n if (S[tgtIdx] == S[tgtIdx + 1])continue;\n\n set<char> color = { 'R','G','B', 'Y' };\n REP(i, tgtIdx, tgtIdx + 2)color.erase(S[i]);\n bool rev = rnd2(mt);\n if (!rev) {\n auto itr = color.begin();\n S[tgtIdx] = *itr;\n ++itr;\n S[tgtIdx + 1] = *itr;\n }\n else {\n auto itr = color.begin();\n S[tgtIdx + 1] = *itr;\n ++itr;\n S[tgtIdx] = *itr;\n }\n }\n return false;\n}\n\n\nint main()\n{\n int N;\n string S, T;\n cin >> N >> S >> T;\n {\n set<char> sts, stt;\n for (char c : S)sts.insert(c);\n for (char c : T)stt.insert(c);\n if (sts.size() == 1 || stt.size() == 1) {\n if (sts.size() == 1 && stt.size() == 1) {\n char s1 = *sts.begin();\n char s2 = *stt.begin();\n cout << (s1 == s2 ? \"Yes\" : \"No\") << endl;\n }\n else {\n cout << \"No\" << endl;\n }\n return 0;\n }\n }\n if (N <= 6) {\n cout << (little_case(S, T) ? \"Yes\" : \"No\") << endl;\n return 0;\n }\n auto countS = counter(S);\n auto countT = counter(T);\n shrink(countS);\n shrink(countT);\n cout << (countS == countT ? \"Yes\" : \"No\") << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 6996, "score_of_the_acc": -0.8675, "final_rank": 13 }, { "submission_id": "aoj_3177_4847032", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n#define REP(k, m, n) for (int(k) = (m); (k) < (n); (k)++)\n#define rep(i, n) REP((i), 0, (n))\nusing ll = long long;\n\nvector<int> counter(string s) {\n vector<int> count(4, 0);\n map<int, int> mp;\n mp['R'] = 0;\n mp['G'] = 1;\n mp['B'] = 2;\n mp['Y'] = 3;\n for (char c : s) count[mp[c]]++;\n return count;\n}\n\nbool fail(vector<int>& v) {\n for (auto num : v)\n if (num < 0) return true;\n return false;\n}\n\nvoid shrink(vector<int>& count) {\n if (count[0] > 1) {\n if (count[1] == 0 && count[2] == 0) {\n assert(count[3] > 0);\n count[0]--;\n count[1]++;\n count[2]++;\n count[3]--;\n }\n if (count[1] > 0 || count[2] > 0) {\n while (count[0] > 1) {\n count[0] -= 2;\n count[3] += 2;\n }\n } else {\n assert(false);\n }\n }\n if (count[1] > 1) {\n if (count[0] == 0 && count[2] == 0) {\n assert(count[3] > 0);\n count[0]++;\n count[1]--;\n count[2]++;\n count[3]--;\n }\n if (count[0] > 0 || count[2] > 0) {\n while (count[1] > 1) {\n count[1] -= 2;\n count[3] += 2;\n }\n } else {\n assert(false);\n }\n }\n if (count[2] > 1) {\n if (count[0] == 0 && count[1] == 0) {\n assert(count[3] > 0);\n count[0]++;\n count[1]++;\n count[2]--;\n count[3]--;\n }\n if (count[0] > 0 || count[1] > 0) {\n while (count[2] > 1) {\n count[2] -= 2;\n count[3] += 2;\n }\n } else {\n assert(false);\n }\n }\n}\n\nbool little_case(string& S, string& T) {\n using namespace chrono;\n const int N = S.size();\n random_device rnd;\n mt19937 mt(rnd());\n uniform_int_distribution<> rndN(0, N - 2), rnd2(0, 1);\n\n auto start = system_clock::now();\n while (duration_cast<milliseconds>(system_clock::now() - start).count() <\n 1800) {\n if (S == T) return true;\n // swap対象の検索\n int tgtIdx = rndN(mt);\n if (S[tgtIdx] == S[tgtIdx + 1]) continue;\n\n set<char> color = {'R', 'G', 'B', 'Y'};\n REP(i, tgtIdx, tgtIdx + 2) color.erase(S[i]);\n bool rev = rnd2(mt);\n if (!rev) {\n auto itr = color.begin();\n S[tgtIdx] = *itr;\n ++itr;\n S[tgtIdx + 1] = *itr;\n } else {\n auto itr = color.begin();\n S[tgtIdx + 1] = *itr;\n ++itr;\n S[tgtIdx] = *itr;\n }\n }\n return false;\n}\n\nstring parse(vector<int> count) {\n string s = \"\";\n rep(i, count[0]) s += \"R\";\n rep(i, count[1]) s += \"G\";\n rep(i, count[2]) s += \"B\";\n for (int i = 0; i < count[3]; ++i) s += \"Y\";\n return s;\n}\n\nint main() {\n int N;\n string S, T;\n cin >> N >> S >> T;\n {\n set<char> sts, stt;\n for (char c : S) sts.insert(c);\n for (char c : T) stt.insert(c);\n if (sts.size() == 1 || stt.size() == 1) {\n if (sts.size() == 1 && stt.size() == 1) {\n char s1 = *sts.begin();\n char s2 = *stt.begin();\n cout << (s1 == s2 ? \"Yes\" : \"No\") << endl;\n } else {\n cout << \"No\" << endl;\n }\n return 0;\n }\n }\n if (N <= 8) {\n cout << (little_case(S, T) ? \"Yes\" : \"No\") << endl;\n return 0;\n }\n auto countS = counter(S);\n auto countT = counter(T);\n shrink(countS);\n shrink(countT);\n {\n int now = min(countS[3], countT[3]);\n countS[3] -= now, countT[3] -= now;\n }\n S = parse(countS);\n T = parse(countT);\n assert(S.size() == T.size());\n\n cout << (little_case(S, T) ? \"Yes\" : \"No\") << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 1860, "memory_kb": 6980, "score_of_the_acc": -1.831, "final_rank": 17 }, { "submission_id": "aoj_3177_4847024", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\n\nint main() {\n int n;\n string s, t;\n cin >> n >> s >> t;\n {\n set<char> sts, stt;\n for (char c : s) sts.insert(c);\n for (char c : t) stt.insert(c);\n if (sts.size() == 1 || stt.size() == 1) {\n if (sts.size() == 1 && stt.size() == 1) {\n char s1 = *sts.begin();\n char s2 = *stt.begin();\n cout << (s1 == s2 ? \"Yes\" : \"No\") << endl;\n } else {\n cout << \"No\" << endl;\n }\n return 0;\n }\n }\n map<int, int> mp;\n mp['R'] = 0;\n mp['G'] = 1;\n mp['B'] = 2;\n mp['Y'] = 3;\n int res = 0;\n for (auto c : s) res ^= mp[c];\n for (auto c : t) res ^= mp[c];\n if (!res)\n cout << \"Yes\" << endl;\n else\n cout << \"No\" << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 6968, "score_of_the_acc": -0.8508, "final_rank": 12 } ]
aoj_3178_cpp
G Katsusando 問題文 お腹がすいたhenoくんは、カツサンドを食べることにしました。 直線上にカツが $N$ 個あります。 $i$ 個目のカツは位置 $X_i$ にあり、その重さは $W_i$ です。henoくんは、次のようにしてカツサンドを作ります。 パンを $1$ 個ずつ持ったやむなくくんとてんぷらくんを、直線上の好きな位置に配置する。 $2$ 人を同じ位置に配置してもよい。この操作にかかる時間は $1$ 秒である。カツのある位置に配置した場合、彼らはその場にあるカツを拾い、パンの上に載せる。 $2$ 人が同じ位置にいる場合は、やむなくくんがカツを拾う。カツを拾うのにかかる時間は無視できる。 やむなくくんとてんぷらくんが同じ位置にいる場合、 $2$ 人を回収し、彼らの持っているパンと(存在すれば)カツを合わせてカツサンドにし、食べる。この操作にかかる時間は $K$ 秒である。カツがもう直線上に存在しない場合は終了する。そうでない場合、1に戻る。 2でないとき、やむなくくんとてんぷらくんの好きな方を選び、左右好きな方に距離 $1$ だけ動かす。この操作にかかる時間は( $1+$ 移動させる人のパンの上に載っているカツの重さの総和 ) 秒である。移動先にカツがある場合、その場にあるカツを拾い、パンの上に載せる。カツを拾うのにかかる時間は無視できる。 henoくんが適切に操作を行ったとき、すべてのカツを食べきるのにかかる最短の時間は何秒でしょうか。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $K$ $X_1$ $W_1$ $X_2$ $W_2$ $\vdots$ $X_N$ $W_N$ 制約 入力はすべて整数である。 $1 \leq N \leq 2000$ $1 \leq K \leq 10^9$ $1 \leq X_1 \lt X_2 \lt \cdots \lt X_N \leq 10^5$ $1 \leq W_i \leq 10^5 \ (1 \leq i \leq N)$ 出力 答えを 1 行に出力せよ。 入力例1 3 10 3 8 10 3 12 2 出力例1 28 次のような行動が最適です。 位置 $3$ にやむなくくんとてんぷらくんを配置する。やむなくくんがカツ $1$ を拾う。 $2$ 人は同じ位置にいるので、カツサンドが完成し、henoくんがそれを食べる。これには $1+10=11$ 秒かかる。 位置$10$にやむなくくんを、位置 $12$ にてんぷらくんを配置する。 $2$ 人はそれぞれカツ $2$ 、カツ $3$ を拾う。これには $1$ 秒かかる。 その後、てんぷらくんを $(1+2) \times (12-10) = 6$ 秒かけて位置 $10$ に動かす。これでカツサンドが完成し、henoくんが $10$ 秒かけてそれを食べる。 全体でかかった時間は $28$ 秒となります。 入力例2 1 334 7 7 出力例2 335 入力例3 7 870894047 2163 41212 15706 26852 19284 72177 38949 13577 45702 69074 80014 45456 86152 80205 出力例3 3785073673
[ { "submission_id": "aoj_3178_10356303", "code_snippet": "// AOJ #3178 Katsu Sando\n// 2025.4.7\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst ll INF = 1LL << 60;\n#define gc() getchar_unlocked()\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nint main(){\n int n = Cin();\n ll K = Cin();\n\n vector<ll> X(n+1), W(n+1);\n for(int i = 1; i <= n; i++) X[i] = Cin(), W[i] = Cin();\n\n vector<ll> A(n+1,0);\n for(int i = 1; i <= n; i++) A[i] = A[i-1] + W[i];\n\n vector<ll> P(n+1, 0);\n for(int i = 1; i <= n-1; i++){\n ll d = X[i+1] - X[i];\n P[i] = P[i-1] + d * A[i];\n }\n P[n] = P[n-1];\n\n vector<vector<ll>> cost(n+1, vector<ll>(n+1, 0));\n for(int l = 1; l <= n; l++){\n cost[l][l] = 0;\n int m_opt = l;\n for(int r = l+1; r <= n; r++){\n auto f = [&](int m) -> ll {\n return (X[m] - X[l]) * (1 - A[l-1])\n + (X[r] - X[m]) * (1 + A[r])\n + 2 * P[m-1] - P[l-1] - P[r-1];\n };\n while(m_opt < r && f(m_opt+1) < f(m_opt)) m_opt++;\n cost[l][r] = f(m_opt);\n }\n }\n\n vector<ll> dp(n+1, INF);\n dp[0] = 0;\n for(int i = 1; i <= n; i++){\n for(int j = 0; j < i; j++){\n ll phase = 1 + cost[j+1][i] + K;\n dp[i] = min(dp[i], dp[j] + phase);\n }\n }\n printf(\"%lld\\n\", dp[n]);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 34996, "score_of_the_acc": -0.3793, "final_rank": 7 }, { "submission_id": "aoj_3178_10353484", "code_snippet": "#include \"bits/stdc++.h\"\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\n#define rep(i, m, n) for (ll i = (ll)m; i < (ll)n; i++)\n#define drep(i, m, n) for (ll i = m - 1; i >= n; i--)\n#define Endl endl\n#define all(a) a.begin(), a.end()\n#define pr(i, j) make_pair(i, j)\n#define isin(x, l, r) (l <= x && x < r)\n#define chmin(a, b) a = min(a, b)\n#define chmax(a, b) a = max(a, b)\n#define srt(ar) sort(ar.begin(), ar.end())\n#define rev(ar) reverse(ar.begin(), ar.end())\n#define jge(f, s, t) cout << (f ? s : t) << endl\n#pragma GCC target(\"avx2\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n\n#define printar(ar) \\\n do \\\n { \\\n for (auto dbg : ar) \\\n { \\\n cout << dbg << \" \"; \\\n } \\\n cout << endl; \\\n } while (0)\nconst ll inf = 1e18;\nconst ld pi = 3.14159265358979;\nconst ld eps = 1e-9;\ntemplate <class T, ll n, ll idx = 0>\nauto make_vec(const ll (&d)[n], const T &init) noexcept\n{\n if constexpr (idx < n)\n return std::vector(d[idx], make_vec<T, n, idx + 1>(d, init));\n else\n return init;\n}\n\ntemplate <class T, ll n>\nauto make_vec(const ll (&d)[n]) noexcept\n{\n return make_vec(d, T{});\n}\n//////////////// 以下を貼る ////////////////\ntemplate <class T>\nsize_t HashCombine(const size_t seed, const T &v)\n{\n return seed ^ (std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2));\n}\n/* pair用 */\ntemplate <class T, class S>\nstruct std::hash<std::pair<T, S>>\n{\n size_t operator()(const std::pair<T, S> &keyval) const noexcept\n {\n return HashCombine(std::hash<T>()(keyval.first), keyval.second);\n }\n};\n////////////////////////////////////////////\nint main()\n{\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n ll n, K;\n cin >> n >> K;\n vector<ll> x(n);\n vector<ll> w(n);\n rep(i, 0, n)\n {\n cin >> x[i] >> w[i];\n }\n vector<ll> dp(n + 1, inf);\n dp[0] = 0;\n vector<vector<ll>> dp2(n, vector<ll>(n, inf));\n vector<vector<ll>> dp3(n, vector<ll>(n, inf));\n rep(i, 0, n)\n {\n dp3[i][i] = 0;\n ll spd = 1 + w[i];\n ll t = 0;\n rep(j, i + 1, n)\n {\n t += (x[j] - x[j - 1]) * spd;\n dp3[i][j] = t;\n spd += w[j];\n }\n spd = 1 + w[i];\n t = 0;\n drep(j, i, 0)\n {\n t += (x[j + 1] - x[j]) * spd;\n dp3[i][j] = t;\n spd += w[j];\n }\n }\n rep(i, 0, n)\n {\n ll x = i;\n rep(j, i, n)\n {\n while (true)\n {\n if (x == j)\n {\n break;\n }\n if (dp3[i][x] + dp3[j][x] < dp3[i][x + 1] + dp3[j][x + 1])\n {\n break;\n }\n x++;\n }\n dp2[i][j] = dp3[i][x] + dp3[j][x];\n }\n }\n rep(i, 0, n)\n {\n rep(j, 0, i + 1)\n {\n chmin(dp[i + 1], dp[j] + 1 + dp2[j][i] + K);\n }\n }\n cout << dp[n] << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 66048, "score_of_the_acc": -0.7516, "final_rank": 15 }, { "submission_id": "aoj_3178_10199995", "code_snippet": "// AOJ #3178\n// Katsu Sando 2025.2.6\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n \nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n \n int N; \n ll K;\n cin >> N >> K;\n vector<int> X(N), W(N);\n for (int i = 0; i < N; i++){\n cin >> X[i] >> W[i];\n }\n // 前計算:P[i] = W[0] + W[1] + ... + W[i]\n vector<ll> P(N, 0);\n P[0] = W[0];\n for (int i = 1; i < N; i++){\n P[i] = P[i-1] + W[i];\n }\n \n vector<vector<ll>> Lcost(N, vector<ll>(N, 0));\n for (int i = 0; i < N; i++){\n Lcost[i][i] = 0;\n for (int j = i+1; j < N; j++){\n ll sumWeights = (i==0 ? P[j-1] : P[j-1] - P[i-1]);\n Lcost[i][j] = Lcost[i][j-1] + (ll)(X[j] - X[j-1]) * (1 + sumWeights);\n }\n }\n\n vector<vector<ll>> Rcost(N, vector<ll>(N, 0));\n for (int j = 0; j < N; j++){\n Rcost[j][j] = 0;\n for (int m = j-1; m >= 0; m--){\n ll sumWeights = (m==0 ? P[j] : P[j] - P[m]);\n Rcost[j][m] = Rcost[j][m+1] + (ll)(X[m+1]-X[m]) * (1 + sumWeights);\n }\n }\n \n const ll INF = 1LL << 60;\n vector<ll> dp(N, INF);\n\n auto bestForSegment = [&](int i, int j) -> ll {\n int lo = i, hi = j;\n while(hi - lo >= 3){\n int m1 = lo + (hi - lo) / 3;\n int m2 = hi - (hi - lo) / 3;\n ll f1 = Lcost[i][m1] + Rcost[j][m1];\n ll f2 = Lcost[i][m2] + Rcost[j][m2];\n if(f1 > f2)\n lo = m1;\n else\n hi = m2;\n }\n ll best = INF;\n for (int m = lo; m <= hi; m++){\n best = min(best, Lcost[i][m] + Rcost[j][m]);\n }\n return best;\n };\n\n for (int j = 0; j < N; j++){\n for (int i = 0; i <= j; i++){\n ll segTime = 1 + K + bestForSegment(i, j);\n ll prev = (i-1 >= 0 ? dp[i-1] : 0);\n dp[j] = min(dp[j], prev + segTime);\n }\n }\n cout << dp[N-1] << endl;\n return 0;\n}", "accuracy": 0.9166666666666666, "time_ms": 220, "memory_kb": 65908, "score_of_the_acc": -1.6549, "final_rank": 20 }, { "submission_id": "aoj_3178_5813478", "code_snippet": "#include<bits/stdc++.h>\nusing namespace std;\n//#include <atcoder/all>\n//using namespace atcoder;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 4000000000000000000 //オーバーフローに注意\n#define MOD 1000000007\n#define EPS 0.000000001\n\n\n\n#define SIZE 2005\n\nll N,K;\nll X[SIZE],W[SIZE],dp[SIZE];\nll SUM[SIZE],rui_W[SIZE];\nll COST[SIZE][SIZE];\n\nll to_R(int left,int right){\n\n\treturn SUM[right]-SUM[left]-rui_W[left]*(X[right]-X[left]);\n}\n\nll to_L(int left,int right){\n\n\treturn (rui_W[right+1]-rui_W[left])*(X[right]-X[left])-to_R(left,right);\n}\n\nll func(int left,int right,int k){\n\n\treturn to_R(left,k) + to_L(k,right);\n}\n\nint main(){\n\n\tscanf(\"%lld %lld\",&N,&K);\n\n\tfor(ll i = 0; i < N; i++){\n\n\t\tscanf(\"%lld %lld\",&X[i],&W[i]);\n\t}\n\n\tfor(int i = 0; i < N; i++){\n\n\t\trui_W[i+1] = rui_W[i]+W[i];\n\t\tSUM[i+1] = SUM[i] + rui_W[i+1]*(X[i+1]-X[i]);\n\t}\n\n\tfor(int left = 0; left < N; left++){\n\t\tint k = left;\n\t\tfor(int right = left; right < N; right++){\n\t\t\twhile(k < right && func(left,right,k) > func(left,right,k+1)){\n\n\t\t\t\tk++;\n\t\t\t}\n\t\t\tCOST[left][right] = func(left,right,k) + (X[right]-X[left]) + K+1;\n\t\t}\n\t}\n\n\tfor(int i = 0; i <= N; i++){\n\n\t\tdp[i] = HUGE_NUM;\n\t}\n\n\tdp[0] = 0;\n\tfor(int i = 1; i <= N; i++){\n\t\tfor(int j = 0; j < i; j++){\n\n\t\t\tdp[i] = min(dp[i],dp[j]+COST[j][i-1]);\n\t\t}\n\t}\n\n\tprintf(\"%lld\\n\",dp[N]);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 25904, "score_of_the_acc": -0.3318, "final_rank": 6 }, { "submission_id": "aoj_3178_4906139", "code_snippet": "//#define _GLIBCXX_DEBUG\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define endl '\\n'\n#define lfs cout<<fixed<<setprecision(10)\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n#define spa << \" \" <<\n#define fi first\n#define se second\n#define MP make_pair\n#define MT make_tuple\n#define PB push_back\n#define EB emplace_back\n#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)\n#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)\nusing ll = long long;\nusing ld = long double;\nconst ll MOD1 = 1e9+7;\nconst ll MOD9 = 998244353;\nconst ll INF = 1e18;\nusing P = pair<ll, ll>;\ntemplate<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}\ntemplate<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}\nll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}\nvoid ans1(bool x){if(x) cout<<\"Yes\"<<endl;else cout<<\"No\"<<endl;}\nvoid ans2(bool x){if(x) cout<<\"YES\"<<endl;else cout<<\"NO\"<<endl;}\nvoid ans3(bool x){if(x) cout<<\"Yay!\"<<endl;else cout<<\":(\"<<endl;}\ntemplate<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} \ntemplate<typename T>void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};\nvoid debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++){for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};\ntemplate<typename T>void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};\ntemplate<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}\nll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}\nvector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};\ntemplate<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}\ntemplate<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}\ntemplate<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << \" \" << p.second;}\ntemplate<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << \" \";cout<<\"|\"; return os;}\n//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());\n\nint main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n ll res=0,buf=0;\n bool judge = true;\n ll n,k;cin>>n>>k;\n vector<ll>x(n),w(n);\n rep(i,0,n)cin>>x[i]>>w[i];\n auto dp=vec(n+1,n+1,INF);\n dp[0][0]=0;\n vector<ll>y(n+1);\n rep(i,0,n)y[i+1]=y[i]+x[i];\n rep(i,0,n){\n ll mi=INF;\n rep(j,0,n+1){\n if(j<n)chmin(mi,dp[i][j]-x[j]);\n chmin(dp[i+1][j],dp[i][j]);\n if(j>0)chmin(dp[i+1][j],mi+k+x[j-1]+1);\n if(j<n)mi+=abs(x[j]-x[i])*w[j];\n }\n }\n //debug(dp,n+1,n+1);\n cout<<dp[n][n]<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 34320, "score_of_the_acc": -0.3246, "final_rank": 4 }, { "submission_id": "aoj_3178_4875832", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=Int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n//INSERT ABOVE HERE\nconst Int MAX = 2020;\nInt dpL[MAX][MAX]={};\nInt dpR[MAX][MAX]={};\nInt cst[MAX][MAX]={};\n\nInt dp[MAX]={};\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n Int n,k;\n cin>>n>>k;\n vector<Int> xs(n),ws(n);\n for(Int i=0;i<n;i++) cin>>xs[i]>>ws[i];\n\n // dpL: [i, j]\n for(Int i=0;i<n;i++){\n Int res=0,wei=1;\n dpL[i][i]=res;\n wei+=ws[i];\n for(Int j=i+1;j<n;j++){\n res+=wei*abs(xs[j]-xs[j-1]);\n dpL[i][j]=res;\n wei+=ws[j];\n }\n }\n\n // dpR: [i, j]\n for(Int j=n-1;j>=0;j--){\n Int res=0,wei=1;\n dpL[j][j]=res;\n wei+=ws[j];\n for(Int i=j-1;i>=0;i--){\n res+=wei*abs(xs[i]-xs[i+1]);\n dpR[i][j]=res;\n wei+=ws[i];\n }\n }\n\n for(Int i=0;i<n;i++){\n for(Int j=i;j<n;j++){\n if(i==j){\n cst[i][j]=0;\n continue;\n }\n auto calc=[&](Int m){return dpL[i][m]+dpR[m][j];};\n Int l=i,r=j;\n while(l+1<r){\n Int m=(l+r)>>1;\n if(calc(m)<calc(m+1)) r=m;\n else l=m;\n }\n cst[i][j]=min(calc(l),calc(r));\n }\n }\n\n const Int INF = 1e18;\n fill(dp,dp+MAX,INF);\n dp[0]=0;\n for(Int i=0;i<n;i++)\n for(Int j=i;j<n;j++)\n chmin(dp[j+1],dp[i]+(1+cst[i][j]+k));\n cout<<dp[n]<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 97988, "score_of_the_acc": -1.1808, "final_rank": 19 }, { "submission_id": "aoj_3178_4864963", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\ntemplate<class T> bool chmin(T &a, const T &b){\n if(a > b) {a = b; return true;}\n else return false;\n}\n\nvoid fill_memo(vec &x, vec &w, mat &memo){\n vec ws(N + 1), muls(N), muls_rev(N);\n ws[0] = muls[0] = muls_rev[N-1] = 0;\n rep(i, N) {\n ws[i+1] = ws[i] + w[i];\n if(i != N - 1) muls[i+1] = muls[i] + ws[i + 1] * (x[i+1] - x[i]);\n }\n Rrep(i, N - 1) muls_rev[i] = muls_rev[i+1] + (ws[N] - ws[i + 1]) * (x[i+1] - x[i]);\n rep(l, N){\n reps(r, l + 1, N + 1){\n int id = lower_bound(ALL(ws), (ws[l] + ws[r] + 1) / 2) - (ws.begin() + 1);\n //[l,id] : left, [id, r) : right\n memo[l][r] = K + 1 + (x[r-1] - x[l]) + (muls[id] - muls[l] - ws[l] * (x[id] - x[l])) + (muls_rev[id] - muls_rev[r-1] - (ws[N] - ws[r]) * (x[r-1] - x[id]));\n }\n }\n}\n\nint main() {\n cin>>N>>K;\n mat memo(N, vec(N + 1));\n vec x(N), w(N);\n rep(i, N) cin>>x[i]>>w[i];\n fill_memo(x, w, memo);\n vec dp(N + 1, INF);\n dp[0] = 0;\n reps(i, 1, N + 1){\n rep(j, i) chmin(dp[i], dp[j] + memo[j][i]);\n }\n cout<<dp[N]<<endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 34452, "score_of_the_acc": -0.6117, "final_rank": 13 }, { "submission_id": "aoj_3178_4864960", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\ntemplate<class T> bool chmin(T &a, const T &b){\n if(a > b) {a = b; return true;}\n else return false;\n}\ntemplate<class T> bool chmax(T &a, const T &b){\n if(a < b) {a = b; return true;}\n else return false;\n}\n\nvoid fill_memo(vec &x, vec &w, mat &memo){\n vec ws(N), muls(N), muls_rev(N);\n ws[0] = w[0];\n muls[0] = muls_rev[N-1] = 0;\n rep(i, N - 1) {\n ws[i+1] = ws[i] + w[i + 1];\n muls[i+1] = muls[i] + ws[i] * (x[i+1] - x[i]);\n }\n Rrep(i, N - 1) muls_rev[i] = muls_rev[i+1] + (ws[N-1] - ws[i]) * (x[i+1] - x[i]);\n rep(l, N){\n reps(r, l + 1, N + 1){\n int id = lower_bound(ALL(ws), ((l == 0 ? 0LL : ws[l-1]) + ws[r-1] + 1) / 2) - ws.begin();\n //[l,id] : left, [id, r) : right\n memo[l][r] = K + 1 + (x[r-1] - x[l]) + (muls[id] - muls[l] - (l==0 ? 0 : ws[l-1]) * (x[id] - x[l])) + (muls_rev[id] - muls_rev[r-1] - (ws[N-1] - ws[r-1]) * (x[r-1] - x[id]));\n //cout<<l<<' '<<r<<' '<<id<<' '<<memo[l][r]<<endl;\n }\n }\n}\n\nint main() {\n cin>>N>>K;\n mat memo(N, vec(N + 1));\n vec x(N), w(N);\n rep(i, N) cin>>x[i]>>w[i];\n fill_memo(x, w, memo);\n vec dp(N + 1, INF);\n dp[0] = 0;\n reps(i, 1, N + 1){\n rep(j, i) chmin(dp[i], dp[j] + memo[j][i]);\n }\n cout<<dp[N]<<endl;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 34452, "score_of_the_acc": -0.5641, "final_rank": 11 }, { "submission_id": "aoj_3178_4855066", "code_snippet": "#pragma region Macros\n#pragma GCC optimize(\"O3\")\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n#include <bits/stdc++.h>\n#define ll long long\n#define ld long double\n#define rep2(i, a, b) for(ll i = a; i <= b; ++i)\n#define rep(i, n) for(ll i = 0; i < n; ++i)\n#define rep3(i, a, b) for(ll i = a; i >= b; --i)\n#define pii pair<int, int>\n#define pll pair<ll, ll>\n#define pb push_back\n#define eb emplace_back\n#define vi vector<int>\n#define vll vector<ll>\n#define vpi vector<pii>\n#define vpll vector<pll>\n#define overload2(_1, _2, name, ...) name\n#define vec(type, name, ...) vector<type> name(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))\n#define VV(type, name, h, w) \\\n vector<vector<type>> name(h, vector<type>(w)); \\\n IN(name)\n#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))\n#define vvvv(type, name, a, b, c, ...) \\\n vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))\n#define fi first\n#define se second\n#define all(c) begin(c), end(c)\n#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))\n#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))\nusing namespace std;\nstring YES[2] = {\"NO\", \"YES\"};\nstring Yes[2] = {\"No\", \"Yes\"};\nstring yes[2] = {\"no\", \"yes\"};\ntemplate <class T> using pq = priority_queue<T>;\ntemplate <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;\n#define si(c) (int)(c).size()\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS)\n#define DBL(...) \\\n double __VA_ARGS__; \\\n IN(__VA_ARGS)\nint scan() { return getchar(); }\nvoid scan(int &a) { cin >> a; }\nvoid scan(long long &a) { cin >> a; }\nvoid scan(char &a) { cin >> a; }\nvoid scan(double &a) { cin >> a; }\nvoid scan(string &a) { cin >> a; }\ntemplate <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }\ntemplate <class T> void scan(vector<T> &);\ntemplate <class T> void scan(vector<T> &a) {\n for(auto &i : a) scan(i);\n}\ntemplate <class T> void scan(T &a) { cin >> a; }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head &head, Tail &... tail) {\n scan(head);\n IN(tail...);\n}\ntemplate <class T, class S> inline bool chmax(T &a, S b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T, class S> inline bool chmin(T &a, S b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\nvi iota(int n) {\n vi a(n);\n iota(all(a), 0);\n return a;\n}\n#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())\nvector<pll> factor(ll x) {\n vector<pll> ans;\n for(ll i = 2; i * i <= x; i++)\n if(x % i == 0) {\n ans.push_back({i, 1});\n while((x /= i) % i == 0) ans.back().second++;\n }\n if(x != 1) ans.push_back({x, 1});\n return ans;\n}\ntemplate <class T> vector<T> divisor(T x) {\n vector<T> ans;\n for(T i = 1; i * i <= x; i++)\n if(x % i == 0) {\n ans.pb(i);\n if(i * i != x) ans.pb(x / i);\n }\n return ans;\n}\ntemplate <typename T> void zip(vector<T> &x) {\n vector<T> y = x;\n sort(all(y));\n for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }\n}\nint popcount(ll x) { return __builtin_popcountll(x); }\nstruct Setup_io {\n Setup_io() {\n ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);\n cout << fixed << setprecision(15);\n }\n} setup_io;\nint in() {\n int x;\n cin >> x;\n return x;\n}\nll lin() {\n unsigned long long x;\n cin >> x;\n return x;\n}\n\ntemplate <typename T> struct edge {\n int from, to;\n T cost;\n int id;\n edge(int to, T cost) : from(-1), to(to), cost(cost) {}\n edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}\n edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}\n edge &operator=(const int &x) {\n to = x;\n return *this;\n }\n operator int() const { return to; }\n};\ntemplate <typename T> using Edges = vector<edge<T>>;\n\nusing Tree = vector<vector<int>>;\nusing Graph = vector<vector<int>>;\ntemplate <class T> using Wgraph = vector<vector<edge<T>>>;\nGraph getG(int n, int m = -1, bool directed = false, int margin = 1) {\n Tree res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n cin >> a >> b;\n a -= margin, b -= margin;\n res[a].emplace_back(b);\n if(!directed) res[b].emplace_back(a);\n }\n return move(res);\n}\ntemplate <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {\n Wgraph<T> res(n);\n if(m == -1) m = n - 1;\n while(m--) {\n int a, b;\n T c;\n cin >> a >> b >> c;\n a -= margin, b -= margin;\n res[a].emplace_back(b, c);\n if(!directed) res[b].emplace_back(a, c);\n }\n return move(res);\n}\n\n#define i128 __int128_t\n#define ull unsigned long long int\n#define TEST \\\n INT(testcases); \\\n while(testcases--)\ntemplate <class T> ostream &operator<<(ostream &os, const vector<T> &v) {\n for(auto &e : v) cout << e << \" \";\n cout << endl;\n return os;\n}\ntemplate <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {\n cout << \"(\" << p.fi << \", \" << p.se << \")\";\n return os;\n}\ntemplate <class S, class T> string to_string(pair<S, T> p) { return \"(\" + to_string(p.first) + \",\" + to_string(p.second) + \")\"; }\ntemplate <class A> string to_string(A v) {\n if(v.empty()) return \"{}\";\n string ret = \"{\";\n for(auto &x : v) ret += to_string(x) + \",\";\n ret.back() = '}';\n return ret;\n}\n\nvoid dump() { cerr << endl; }\ntemplate <class Head, class... Tail> void dump(Head head, Tail... tail) {\n cerr << to_string(head) << \" \";\n dump(tail...);\n}\n#define endl '\\n'\n#ifdef _LOCAL\n#undef endl\n#define debug(x) \\\n cout << #x << \": \"; \\\n dump(x)\n#else\n#define debug(x)\n#endif\n// mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());\n\n// int rnd(int n) { return uniform_int_distribution<int>(0, n - 1)(rng); }\n// ll rndll(ll n) { return uniform_int_distribution<ll>(0, n - 1)(rng); }\n\ntemplate <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;\n#pragma endregion\n\nint main() {\n INT(n);\n LL(k);\n vll x(n), w(n);\n rep(i, n) cin >> x[i] >> w[i];\n vll dp(n + 1, LLONG_MAX);\n dp[0] = 0;\n vll rui(n + 1), W(n + 1);\n rep(i, n) rui[i + 1] = rui[i] + x[i] * w[i];\n rep(i, n) W[i + 1] = w[i] + W[i];\n auto sum = [&](int l, int r) { return rui[r] - rui[l]; };\n auto wsum = [&](int l, int r) { return W[r] - W[l]; };\n rep(i, n) {\n int t = i;\n rep2(j, i + 1, n) {\n while(t < n and wsum(i, t + 1) < wsum(t + 1, j)) t++;\n ll cost = LLONG_MAX;\n chmin(cost, (x[j - 1] - x[i]) + (wsum(i, t + 1) * x[t] - sum(i, t + 1)) + (sum(t + 1, j) - wsum(t + 1, j) * x[t]) + k);\n chmin(dp[j], dp[i] + cost + 1);\n }\n }\n cout << dp[n] << endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3540, "score_of_the_acc": -0.0028, "final_rank": 2 }, { "submission_id": "aoj_3178_4849435", "code_snippet": "#include <iostream>\n#include <vector>\n\ntemplate <class T>\nstd::vector<T> vec(int len, T elem) { return std::vector<T>(len, elem); }\n\nusing lint = long long;\nconstexpr lint INF = 1LL << 60;\n\nvoid solve() {\n int n, k;\n std::cin >> n >> k;\n\n std::vector<lint> xs(n + 1), ws(n + 1);\n for (int i = 1; i <= n; ++i) std::cin >> xs[i] >> ws[i];\n\n // [i, j]を左から右へ移動するときのコスト\n auto lcost = vec(n + 1, vec(n + 1, 0LL));\n for (int l = 1; l <= n; ++l) {\n lint sum = ws[l] + 1;\n for (int r = l + 1; r <= n; ++r) {\n lcost[l][r] = lcost[l][r - 1] + sum * (xs[r] - xs[r - 1]);\n sum += ws[r];\n }\n }\n\n // [i, j]を右から左へ移動するときのコスト\n auto rcost = vec(n + 1, vec(n + 1, 0LL));\n for (int r = 1; r <= n; ++r) {\n lint sum = ws[r] + 1;\n for (int l = r - 1; l >= 1; --l) {\n rcost[l][r] = rcost[l + 1][r] + sum * (xs[l + 1] - xs[l]);\n sum += ws[l];\n }\n }\n\n std::vector<lint> bdp(n + 1, INF), rdp(n + 1, INF);\n // 文章中で定義したDPテーブル2つ\n bdp[0] = 0;\n\n for (int i = 1; i <= n; ++i) {\n for (int l = 0; l < i; ++l) {\n rdp[i] = std::min(rdp[i], bdp[l] + 1 + lcost[l + 1][i]);\n }\n\n for (int l = 1; l <= i; ++l) {\n bdp[i] = std::min(bdp[i], rdp[l] + rcost[l][i] + k);\n }\n }\n\n std::cout << bdp[n] << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 66016, "score_of_the_acc": -0.7989, "final_rank": 16 }, { "submission_id": "aoj_3178_4849244", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n\ntemplate <class T>\nstd::vector<T> vec(int len, T elem) { return std::vector<T>(len, elem); }\n\nusing lint = long long;\nconstexpr lint INF = 1LL << 60;\n\nvoid solve() {\n int n, k;\n std::cin >> n >> k;\n\n std::vector<lint> xs(n + 1), ws(n + 1);\n for (int i = 1; i <= n; ++i) std::cin >> xs[i] >> ws[i];\n\n auto lcost = vec(n + 1, vec(n + 1, 0LL));\n for (int l = 1; l <= n; ++l) {\n lint sum = ws[l] + 1;\n for (int r = l + 1; r <= n; ++r) {\n lcost[l][r] = lcost[l][r - 1] + sum * (xs[r] - xs[r - 1]);\n sum += ws[r];\n }\n }\n\n auto rcost = vec(n + 1, vec(n + 1, 0LL));\n for (int r = 1; r <= n; ++r) {\n lint sum = ws[r] + 1;\n for (int l = r - 1; l >= 1; --l) {\n rcost[l][r] = rcost[l + 1][r] + sum * (xs[l + 1] - xs[l]);\n sum += ws[l];\n }\n }\n\n std::vector<lint> dp0(n + 1, INF), dp1(n + 1, INF);\n dp0[0] = 0;\n\n for (int i = 1; i <= n; ++i) {\n for (int l = 0; l < i; ++l) {\n dp1[i] = std::min(dp1[i], dp0[l] + 1 + lcost[l + 1][i]);\n }\n\n for (int l = 1; l <= i; ++l) {\n dp0[i] = std::min(dp0[i], dp1[l] + rcost[l][i] + k);\n }\n }\n\n std::cout << dp0[n] << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 66016, "score_of_the_acc": -0.7989, "final_rank": 16 }, { "submission_id": "aoj_3178_4849140", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\nusing ll = long long;\ntemplate<class T> using vec = vector<T>;\ntemplate<class T> using vvec = vec<vec<T>>;\n\nconst ll inf = 1e18;\n\nint main() {\n int N,K;\n cin >> N >> K;\n vec<ll> X(N),W(N),WS(N+1),S(N+1);\n for(int i=0;i<N;i++){\n cin >> X[i] >> W[i];\n S[i+1] = S[i]+W[i]*X[i];\n WS[i+1] = WS[i]+W[i];\n }\n vvec<ll> cost(N+1,vec<ll>(N+1));\n \n auto val = [&](int l,int r,int id){\n assert(l<=id && id<r);\n ll res = (WS[id+1]-WS[l]+1)*X[id]-(S[id+1]-S[l]+X[l]);\n res += S[r]-S[id]+X[r-1]-(WS[r]-WS[id]+1)*X[id];\n return res;\n };\n\n for(int l=0;l<N;l++){\n int k = l;\n for(int r=l+1;r<=N;r++){\n while(k+1<r && val(l,r,k)>=val(l,r,k+1)) k++;\n cost[l][r] = val(l,r,k);\n }\n }\n\n vec<ll> dp(N+1,inf);\n dp[0] = 0;\n for(int i=0;i<N;i++){\n for(int j=0;j<=i;j++) dp[i+1] = min(dp[i+1],dp[j]+cost[j][i+1]+K+1);\n }\n cout << dp[N] << \"\\n\";\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 34856, "score_of_the_acc": -0.4254, "final_rank": 10 }, { "submission_id": "aoj_3178_4849080", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <unordered_map>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\n#include <unordered_map>\n#include <fstream>\n#include <ctime>\n#include <complex>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 1020000;\nll dy[8] = {1,-1,0,0,1,-1,1,-1};\nll dx[8] = {0,0,1,-1,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << \"debug: \" << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << \"debug: \" << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\nll cost[2020][2020];\n\nint main(){\n\tll n,k; cin >> n >> k;\n\tvl x(n), w(n);\n\trep(i,n) cin >> x[i] >> w[i];\n\tfor(int i=0; i<n; i++){\n\t\tll S = w[i] + 1;\n\t\tfor(int j=i+1; j<n; j++){\n\t\t\tcost[i][j] = cost[i][j-1] + S * (x[j] - x[j-1]);\n\t\t\tS += w[j];\n\t\t}\n\t\tS = w[i] + 1;\n\t\tfor(int j=i-1; j>=0; j--){\n\t\t\tcost[i][j] = cost[i][j+1] + S * (x[j+1] - x[j]);\n\t\t\tS += w[j];\n\t\t}\n\t}\n\tvl dp(n+1,linf);\n\tdp[0] = 0;\n\trep(i,n){\n\t\tll mn = dp[i];\n\t\tint m = i;\n\t\tfor(int j=i-1; j>=0; j--){\n\t\t\twhile(m > j && cost[j][m] + cost[i][m] > cost[j][m-1] + cost[i][m-1]) m--;\n\t\t\tchmin(mn, dp[j] + cost[j][m] + cost[i][m]);\n\t\t}\n\t\tchmin(dp[i+1], mn + k + 1);\n\t}\n\tcout << dp[n] << \"\\n\";\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 34732, "score_of_the_acc": -0.4242, "final_rank": 8 }, { "submission_id": "aoj_3178_4848980", "code_snippet": "#include <bits/stdc++.h>\n#define inf (long long)(1e17)\nusing namespace std;\n\nlong long n, k;\nvector<long long> x, w, dp;\nvector<vector<long long>> cost;\n\nlong long solve();\n\nint main() {\n cin >> n >> k;\n x.resize(n);\n w.resize(n);\n for (int i = 0; i < n; ++i) cin >> x[i] >> w[i];\n cout << solve() << endl;\n return 0;\n}\n\nlong long solve() {\n { // calc cost from i to j\n cost.assign(n, vector<long long>(n, inf));\n for (int i = 0; i < n; ++i) {\n long long now = 0;\n // i >= j(left)\n for (int j = i; j < n; ++j) {\n now += w[j] * (x[j] - x[i]);\n cost[j][i] = now + x[j] - x[i];\n }\n // i <= j(right)\n now = 0;\n for (int j = i; j >= 0; --j) {\n now += w[j] * (x[i] - x[j]);\n cost[j][i] = now + x[i] - x[j];\n }\n }\n }\n dp.assign(n + 1, inf);\n dp[0] = 0;\n for (int i = 0; i < n; ++i) {\n long long now = inf;\n for (int j = 0; j <= i; ++j) now = min(now, dp[j] + cost[j][i]);\n for (int j = i; j < n; ++j)\n dp[j + 1] = min(dp[j + 1], now + cost[j][i] + k + 1);\n }\n return dp[n];\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 34804, "score_of_the_acc": -0.4249, "final_rank": 9 }, { "submission_id": "aoj_3178_4848979", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <queue>\n#include <stack>\n#include <numeric>\n#include <bitset>\n#include <cmath>\n#include <cassert>\n\nstatic const int MOD = 1000000007;\nusing ll = long long;\nusing u32 = unsigned;\nusing u64 = unsigned long long;\nusing namespace std;\n\ntemplate<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;\n\ntemplate<class T> void chmin(T &a, const T &b){ a = (a < b ? a : b); }\ntemplate<class T> void chmax(T &a, const T &b){ a = (a > b ? a : b); }\n\nint main() {\n int n, k;\n cin >> n >> k;\n vector<int> X(n), W(n);\n for (int i = 0; i < n; ++i) {\n scanf(\"%d %d\", &X[i], &W[i]);\n }\n vector<ll> dp(n+1, INF<ll>);\n dp[0] = 0;\n vector<ll> sumW(n+1);\n for (int i = 0; i < n; ++i) sumW[i+1] = sumW[i]+ W[i];\n for (int i = 0; i < n; ++i) {\n int cur = i; ll val = k+1, d = 2*W[i];\n for (int j = i; j < n; ++j) {\n d -= W[j];\n val += (ll)(X[j] - X[cur])*W[j];\n if(j != i) val += (X[j]-X[j-1]);\n while(d < 0) {\n val += d*(X[cur+1]-X[cur]);\n d += W[++cur]*2;\n }\n chmin(dp[j+1], dp[i]+val);\n }\n }\n cout << dp.back() << \"\\n\";\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3276, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3178_4848744", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nll dp[2020][2020][3];\n\nint main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tint n; cin >> n;\n\tll K; cin >> K;\n\tvector<ll> x(n),w(n);\n\tvector<ll> s(n+1,0);\n\tfor(int i=0;i<n;i++){\n\t\tcin >> x[i] >> w[i];\n\t\ts[i+1]=s[i]+w[i];\n\t}\n\tfor(int i=0;i<2020;i++){\n\t\tfor(int j=0;j<2020;j++){\n\t\t\tfor(int k=0;k<3;k++){\n\t\t\t\tdp[i][j][k]=1e18;\n\t\t\t}\n\t\t}\n\t}\n\tdp[0][0][0]=1;\n\tdp[0][0][1]=1;\n\tdp[0][0][2]=K+1;\n\tfor(int i=1;i<n;i++){\n\t\tfor(int j=0;j<i;j++){\n\t\t\tfor(int k=0;k<3;k++){\n\t\t\t\tif(k==0){\n\t\t\t\t\tdp[i][j][0]=min(dp[i][j][0],dp[i-1][j][0]+(x[i]-x[i-1])*(s[i]-s[j]));\n\t\t\t\t\tdp[i][i][1]=min(dp[i][i][1],dp[i-1][j][0]+(x[i]-x[i-1])*(s[i]-s[j])+(x[i]-x[j]));\n\t\t\t\t\tdp[i][i][2]=min(dp[i][i][2],dp[i-1][j][0]+(x[i]-x[i-1])*(s[i]-s[j])+K+(x[i]-x[j]));\n\t\t\t\t}\n\t\t\t\telse if(k==1){\n\t\t\t\t\tdp[i][j][1]=min(dp[i][j][1],dp[i-1][j][1]+(w[i])*(x[i]-x[j]));\n\t\t\t\t\tdp[i][i][2]=min(dp[i][i][2],dp[i-1][j][1]+(w[i])*(x[i]-x[j])+K+(x[i]-x[j]));\n\t\t\t\t}\n\t\t\t\telse{\n\t\t\t\t\tif(i-1==j){\n\t\t\t\t\t\tdp[i][i][0]=min(dp[i][i][0],dp[i-1][j][k]+1);\n\t\t\t\t\t\tdp[i][i][1]=min(dp[i][i][1],dp[i-1][j][k]+1);\n\t\t\t\t\t\tdp[i][i][2]=min(dp[i][i][2],dp[i-1][j][k]+K+1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tcout << dp[n-1][n-1][2] << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 98912, "score_of_the_acc": -1.0952, "final_rank": 18 }, { "submission_id": "aoj_3178_4848331", "code_snippet": "#include <bits/stdc++.h>\n#define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i))\n#define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i))\n#define rep(i, n) For((i), 0, (n))\n#define rrep(i, n) rFor((i), (n), 0)\n#define fi first\n#define se second\nusing namespace std;\ntypedef long long lint;\ntypedef unsigned long long ulint;\ntypedef pair<int, int> pii;\ntypedef pair<lint, lint> pll;\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nT div_floor(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a >= 0 ? a / b : (a + 1) / b - 1;\n}\ntemplate <class T>\nT div_ceil(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a > 0 ? (a - 1) / b + 1 : a / b;\n}\n\nconstexpr lint mod = 1000000007;\nconstexpr lint INF = mod * mod;\nconstexpr int MAX = 100010;\n\nint n;\nlint K;\nint x[2020];\nlint w[2020];\nlint cost[2020][2020], dp[2020];\n\nint main() {\n scanf(\"%d%lld\", &n, &K);\n rep(i, n) scanf(\"%d%lld\", &x[i], &w[i]);\n\n rep(l, n) {\n lint lsum, rsum, tmp_cost;\n lsum = rsum = tmp_cost = 0;\n int pos = l;\n For(r, l, n) {\n if (pos == r)\n lsum += w[r];\n else\n rsum += w[r];\n tmp_cost += w[r] * (x[r] - x[pos]);\n while (pos + 1 <= r && (lsum - rsum) * (x[pos + 1] - x[pos]) < 0) {\n tmp_cost += (lsum - rsum) * (x[pos + 1] - x[pos]);\n rsum -= w[pos + 1];\n lsum += w[pos + 1];\n ++pos;\n }\n cost[l][r] = tmp_cost + x[r] - x[l];\n }\n }\n\n rep(i, n) {\n dp[i] = cost[0][i] + 1 + K;\n rep(j, i) chmin(dp[i], dp[j] + cost[j + 1][i] + 1 + K);\n }\n printf(\"%lld\\n\", dp[n - 1]);\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 34528, "score_of_the_acc": -0.3268, "final_rank": 5 }, { "submission_id": "aoj_3178_4848301", "code_snippet": "/**\n * author: otera \n**/\n#include<iostream>\n#include<string> \n#include<cstdio>\n#include<cstring>\n#include<vector>\n#include<cmath>\n#include<algorithm> \n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<deque>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\nusing namespace std;\n\n#define int long long\ntypedef long long ll;\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\ntypedef long double ld;\nconst int inf=1e9+7;\nconst ll INF=1LL<<60 ;\nconst ll mod=1e9+7 ;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef complex<ld> Point;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<int, int> P;\ntypedef pair<ld, ld> LDP;\ntypedef pair<ll, ll> LP;\n#define fr first\n#define sc second\n#define all(c) c.begin(),c.end()\n#define pb push_back\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\nvoid solve() {\n\tint n, k; cin >> n >> k;\n vector<int> x(n), w(n);\n rep(i, n) {\n cin >> x[i] >> w[i];\n }\n vector<int> left(n, 0), right(n + 1, 0);\n int sum = 0;\n vector<int> lsum(n + 1, 0), rsum(n + 1, 0);\n rep(i, n) {\n lsum[i + 1] = lsum[i] + w[i];\n }\n for(int i = n - 1; i >= 0; -- i) {\n rsum[i] = rsum[i + 1] + w[i];\n }\n for(int i = 1; i < n; ++ i) {\n sum += w[i - 1];\n left[i] = left[i - 1] + sum * abs(x[i] - x[i - 1]);\n }\n sum = 0;\n for(int i = n - 2; i >= 0; -- i) {\n sum += w[i + 1];\n right[i] = right[i + 1] + sum * abs(x[i + 1] - x[i]);\n }\n static int dp[2020];\n rep(i, 2020) dp[i] = INF;\n dp[0] = 0;\n for(int i = 0; i < n; ++ i) {\n for(int j = i + 1; j <= n; ++ j) {\n int ok = i, ng = j;\n while(ng - ok > 1) {\n int mid = (ok + ng) / 2;\n if(lsum[mid] - lsum[i] < lsum[j] - lsum[mid]) ok = mid;\n else ng = mid;\n }\n int ss = left[ok] - left[i] - (x[ok] - x[i]) * lsum[i];\n ss += right[ok] - right[j - 1] - (x[j - 1] - x[ok]) * rsum[j];\n chmin(dp[j],dp[i] + ss + 1 + k + x[j - 1] - x[i]);\n }\n }\n cout << dp[n] << endl;\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(10);\n\t//int t; cin >> t; rep(i, t)solve();\n\tsolve();\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 3348, "score_of_the_acc": -0.2388, "final_rank": 3 }, { "submission_id": "aoj_3178_4848018", "code_snippet": "#include <stdio.h>\n#include <bits/stdc++.h>\nusing namespace std;\n#define rep(i,n) for (int i = 0; i < (n); ++i)\n#define Inf 1000000000000000000\n\nstruct absolute_minima{\n\tusing ll = long long;\n\t\n\tpriority_queue<pair<ll,ll>> pQ;\n\tpriority_queue<pair<ll,ll>,vector<pair<ll,ll>>,greater<pair<ll,ll>>> sQ;\n\tll pSum=0,sSum=0,pCnt=0,sCnt=0;\n\t\n\tvoid add(long long x,long long w){\n\t\tsQ.emplace(x,w);\n\t\tsSum += x*w;\n\t\tsCnt += w;\n\t\twhile(true){\n\t\t\tif(pQ.size()>0&&sQ.size()>0){\n\t\t\t\tif(pQ.top().first>sQ.top().first){\n\t\t\t\t\tmove(pCnt > sCnt);\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t\telse if(pCnt > sCnt){\n\t\t\t\t\tmove(true);\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t\telse if(pCnt + sQ.top().second <= sCnt - sQ.top().second){\n\t\t\t\t\tmove(false);\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t}\n\t\t\telse{\n\t\t\t\tif(sQ.size()==0){\n\t\t\t\t\tmove(true);\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t\telse{\n\t\t\t\t\tif(sQ.top().second <= sCnt - sQ.top().second){\n\t\t\t\t\t\tmove(false);\n\t\t\t\t\t\tcontinue;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\tbreak;\n\t\t}\n\t}\n\t\n\tvoid add(ll x){\n\t\tadd(x,1LL);\n\t}\n\t\n\tll median(){\n\t\treturn sQ.top().first;\n\t}\n\t\n\tvector<ll> medians(){\n\t\tvector<ll> ret;\n\t\tif((pCnt+sCnt)%2==0){\n\t\t\tif(pCnt==sCnt)ret.push_back(pQ.top().first);\n\t\t\telse ret.push_back(sQ.top().first);\n\t\t}\n\t\tret.push_back(median());\n\t\treturn ret;\n\t}\n\t\n\tll distance_sum(){\n\t\tll ret = 0LL;\n\t\tret -= pSum;\n\t\tret += sSum;\n\t\tret += pCnt * median();\n\t\tret -= sCnt * median();\n\t\treturn ret;\n\t}\n\t\n\tvoid move(bool f){\n\t\tif(f){\n\t\t\tif(pQ.size()>0){\n\t\t\t\tpair<ll,ll> p = pQ.top();\n\t\t\t\tpQ.pop();\n\t\t\t\tpSum -= p.first*p.second;\n\t\t\t\tpCnt -= p.second;\n\t\t\t\tsQ.push(p);\n\t\t\t\tsSum += p.first*p.second;\n\t\t\t\tsCnt += p.second;\n\t\t\t}\n\t\t}\n\t\telse{\n\t\t\tif(sQ.size()>0){\n\t\t\t\tpair<ll,ll> p = sQ.top();\n\t\t\t\tsQ.pop();\n\t\t\t\tsSum -= p.first*p.second;\n\t\t\t\tsCnt -= p.second;\n\t\t\t\tpQ.push(p);\n\t\t\t\tpSum += p.first*p.second;\n\t\t\t\tpCnt += p.second;\n\t\t\t}\n\t\t}\n\t}\n\t\n};\n\nint main(){\n\t\n\tint N;\n\tcin>>N;\n\tlong long K;\n\tcin>>K;\n\t\n\tvector<long long> X(N),W(N);\n\trep(i,N){\n\t\tcin>>X[i]>>W[i];\n\t}\n\t\n\tvector<long long> dp(N+1,Inf);\n\tdp[0] = 0LL;\n\t\n\trep(i,N){\n\t\tabsolute_minima A;\n\t\tfor(int j=i+1;j>=1;j--){\n\t\t\tA.add(X[j-1],W[j-1]);\n\t\t\tdp[i+1] = min(dp[i+1],1LL + A.distance_sum() + dp[j-1] + K + abs(X[i]-A.median()) + abs(X[j-1]-A.median()));\n\t\t}\n\t}\n\t\n\tcout<<dp.back()<<endl;\n\t\n return 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 3544, "score_of_the_acc": -0.6695, "final_rank": 14 }, { "submission_id": "aoj_3178_4847795", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx\")\n#pragma GCC optimize(\"unroll-loops\")\n//#pragma warning(disable : 4996)\n\n#ifdef _MSC_VER\n#include <intrin.h>\n\n#define __builtin_popcount __popcnt\n#define __builtin_popcountll __popcnt64\n#endif\n\n#include <limits.h>\n#include <math.h>\n#include <time.h>\n\n#include <algorithm>\n#include <array>\n#include <bitset>\n#include <cassert>\n#include <complex>\n#include <cstdio>\n#include <cstring>\n#include <functional>\n#include <iomanip>\n#include <iostream>\n#include <iterator>\n#include <map>\n#include <numeric>\n#include <queue>\n#include <random>\n#include <set>\n#include <stack>\n#include <string>\n#include <unordered_map>\n#include <unordered_set>\n#include <vector>\n\n//#include<atcoder/all>\n\nusing namespace std;\n\n//using namespace atcoder;\n\n#define REP(i, n) for (int i = 0; i < (n); ++i)\n#define REPR(i, n) for (int i = n - 1; i >= 0; --i)\n#define FOR(i, m, n) for (int i = m; i < n; ++i)\n#define FORR(i, m, n) for (int i = m - 1; i >= n; --i)\n#define SORT(v, n) sort(v, v + n);\n#define VSORT(v) sort(v.begin(), v.end());\n#define REVERSE(v, n) reverse(v, v + n);\n#define VREVERSE(v) reverse(v.begin(), v.end())\n#define ll long long\n#define print(x) cout << (x) << endl\n#define pe(x) cout << (x) << \" \"\n#define DEBUG(x) cout << #x << \": \" << x << endl\n#define lb(v, n) lower_bound(v.begin(), v.end(), (n))\n#define ub(v, n) upper_bound(v.begin(), v.end(), (n))\n#define int long long\n//#define double long double\n#define all(x) (x).begin(), (x).end()\n#define print_space(v) REP(i, v.size()) cout << v[i] << \" \\n\"[i==(int)v.size()-1]\ntemplate <typename T1, typename T2> inline void chmin(T1& a, T2 b) { if (a > b) a = b; }\ntemplate <typename T1, typename T2> inline void chmax(T1& a, T2 b) { if (a < b) a = b; }\ntypedef pair<int, int> pii;\ntypedef pair<long long, long long> pll;\nstd::random_device rd;\nstd::mt19937 mt(rd());\nconstexpr ll MOD = 1e9 + 7;\nconstexpr int MAX = 500050;\nconst double pi = acos(-1);\nconstexpr double EPS = 1e-8;\nconstexpr ll LINF = 1e18 + 1;\nconstexpr int INF = 1e9 + 1;\nvoid Yes(bool cond) { cout << (cond ? \"Yes\" : \"No\") << '\\n'; }\nvoid YES(bool cond) { cout << (cond ? \"YES\" : \"NO\") << '\\n'; }\n\n\n\nint X[2020], W[2020];\nint ccl[2020], wcl[2020];//[0,i)\nint ccr[2020], wcr[2020];//[i,N)\nll dp[2020];\nint N, K;\nll f(int l, int r) {\n\tint sum = wcl[r+1] - wcl[l];\n\n\tint ok = r, ng = l-1;\n\twhile (abs(ok - ng) > 1) {\n\t\tint mid = (ok + ng) / 2;\n\t\tif (wcl[mid+1] - wcl[l] >= sum / 2)ok = mid;\n\t\telse ng = mid;\n\t}\n\t//DEBUG(l);\n\t//DEBUG(r);\n\t//DEBUG(sum);\n\t//DEBUG(ok);\n\t//DEBUG(ccl[ok]);\n\t//DEBUG(ccl[l]);\n\t//DEBUG(ccr[ok]);\n\t//DEBUG(ccr[r]);\n\tll lc = ccl[ok] - ccl[l] - (wcl[l] * (X[ok] - X[l]));\n\tll rc = ccr[ok] - ccr[r] - wcr[r+1] * (X[r] - X[ok]);\n\t//DEBUG(lc);\n\t//DEBUG(rc);\n\treturn lc+rc + X[r] - X[l] + K;\n}\nvoid solve() {\n\tcin >> N >> K;\n\tREP(i, N) {\n\t\tcin >> X[i] >> W[i];\n\t}\n\tX[N] = LINF;\n\tW[N] = LINF;\n\tREP(i, N) {\n\t\twcl[i + 1] =wcl[i] + W[i];\n\t\tccl[i + 1] =ccl[i]+wcl[i+1] * (X[i + 1] - X[i]);\n\t}\n\tREPR(i, N) {\n\t\twcr[i] = wcr[i + 1] + W[i];\n\t\tif (i < N - 1)ccr[i] = ccr[i + 1] + wcr[i + 1] * (X[i + 1] - X[i]);\n\t}\n\tREP(i, N + 1)dp[i] = LINF;\n\tdp[0] = 0;\n\tREP(i, N) {\n\t\tFOR(j, i, N + 1) {\n\t\t\tint res = f(i, j);\n\t\t\t//cerr << i << \" \" << j << \" \" << res<< endl;\n\t\t}\n\t}\n\tREP(i, N) {\n\t\tREP(j, i + 1) {\n\t\t\tchmin(dp[i + 1], dp[j] + f(j, i)+1);\n\t\t}\n\t}\n\tprint(dp[N]);\n}\n\n\n\nsigned main() {\n\tcin.tie(0);\n\tios::sync_with_stdio(false);\n\n\t//int q;\n\t//cin >> q;\n\t//while (q--)\n\tsolve();\n\n}", "accuracy": 1, "time_ms": 130, "memory_kb": 3368, "score_of_the_acc": -0.5724, "final_rank": 12 } ]
aoj_3179_cpp
H Tree Queries 問題文 umgくんは、 $N$ 頂点の木を持っています。頂点 $i \ (1\leq i \leq N)$ の重みは $v_i$ です。 $j \ (1 \leq j \leq N-1)$ 番目の辺は、頂点 $a_i$ と頂点 $b_i$ を結び、その重みは $w_i$ です。さらに、木全体の重みを「 $\sum_{1\leq a \lt b \leq N} \mathrm{dist}(a,b) v_a v_b$ を $998244353$ で割った余り」で定めます。 (15:05 更新) ここで、 $\mathrm{dist}(a,b)$ というのは、頂点 $a$ から頂点 $b$ の最短経路上に存在する辺の重みの和を表しています。 umgくんはまず、今持っている木全体の重みを知りたいです。さらに、 $Q$ 個の変更クエリが与えられます。クエリの種類は以下の2つです。 頂点クエリ : 頂点 $c \ (1\leq c \leq N)$ の重みを $x$ 増やす。その後、現在の木全体の重みを出力する。 辺クエリ : 辺 $e \ (1\leq e \leq N-1)$ の重みを $x$ 増やす。その後、現在の木全体の重みを出力する。 これらのクエリを処理してください。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $v_1$ $v_2$ $\cdots$ $v_N$ $a_1$ $b_1$ $w_1$ $a_2$ $b_2$ $w_2$ $\vdots$ $a_{N-1}$ $b_{N-1}$ $w_{N-1}$ $Q$ $query_1$ $query_2$ $\vdots$ $query_Q$ $query_i$の入力形式は以下の2つのいずれかである。 頂点クエリ $1$ $c$ $x$ 辺クエリ $2$ $e$ $x$ 制約 入力はすべて整数である。 $1 \leq N \leq 2 \times 10^5$ $1 \leq v_i \leq 10^8 \ (1\leq i \leq N)$ $1 \leq Q \leq 10^5$ $1 \leq a_i,b_i \leq N$ $1 \leq w_i \leq 10^8 \ (1\leq i \leq N-1)$ 与えられるグラフは木である。 クエリ1の$c$は$1\leq c \leq N$を満たす。 クエリ2の$e$は$1\leq e \leq N-1$を満たす。 クエリ1,2の$x$は$1\leq x \leq 10^8$を満たす。 クエリ1の数は20000以下である。 出力 答えを $Q+1$ 行に出力せよ。$1$行目には木の最初の状態で木全体の重み、$i+1$行目には、$i$番目の変更クエリ後の木全体の重みを出力せよ。 入力例1 3 1 2 4 1 2 1 2 3 2 2 1 1 1 2 2 2 出力例1 30 44 76 例えば、木の最初の状態の木全体の重みは、 $\mathrm{dist}(1,2) \times 1 \times 2 + \mathrm{dist}(1,3) \times 1 \times 4 + \mathrm{dist}(2,3) \times 2 \times 4 = 2+12+16=30$ です。 入力例2 4 2 2 3 3 1 2 4 1 3 3 1 4 1 3 2 3 4 1 4 1 2 1 10 出力例2 148 232 284 464
[ { "submission_id": "aoj_3179_5786720", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3179\n\n#include <bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\ntemplate<typename T, T MOD = 1000000007>\nstruct Mint{\n inline static constexpr T mod = MOD;\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n Mint pow(long long k){\n Mint res(1),tmp(v);\n while(k){\n if(k&1) res*=tmp;\n tmp*=tmp;\n k>>=1;\n }\n return res;\n }\n\n static Mint add_identity(){return Mint(0);}\n static Mint mul_identity(){return Mint(1);}\n\n Mint inv(){return pow(MOD-2);}\n\n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n Mint& operator/=(Mint a){return (*this)*=a.inv();}\n\n Mint operator+(Mint a) const{return Mint(v)+=a;}\n Mint operator-(Mint a) const{return Mint(v)-=a;}\n Mint operator*(Mint a) const{return Mint(v)*=a;}\n Mint operator/(Mint a) const{return Mint(v)/=a;}\n\n Mint operator+() const{return *this;}\n Mint operator-() const{return v?Mint(MOD-v):Mint(v);}\n\n bool operator==(const Mint a)const{return v==a.v;}\n bool operator!=(const Mint a)const{return v!=a.v;}\n\n static Mint comb(long long n,int k){\n Mint num(1),dom(1);\n for(int i=0;i<k;i++){\n num*=Mint(n-i);\n dom*=Mint(i+1);\n }\n return num/dom;\n }\n};\ntemplate<typename T, T MOD>\nostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}\n\ntemplate<typename Vertex, typename Cluster, size_t N>\nstruct TopTree{\n enum Type { Compress, Rake, Edge };\n struct Node{\n Vertex* vs[2];\n Cluster dat;\n Node* p;\n Node* q;\n Node* ch[2];\n bool rev,guard;\n Type type;\n Node():p(nullptr),q(nullptr),rev(false),guard(false){}\n };\n\n inline static array<Vertex, 2*N> pool_vertex;\n inline static size_t ptr_vertex = 0;\n\n inline static array<Node, 4*N> pool_node;\n inline static size_t ptr_node = 0;\n\n Cluster id;\n\n template<typename ...Args>\n inline Vertex* create(Args ...args){\n auto t=&pool_vertex[ptr_vertex++];\n auto dummy=&pool_vertex[ptr_vertex++];\n *t=Vertex(forward<Args>(args)...);\n link(t,id,dummy);\n return t;\n }\n\n Node* recycle=nullptr;\n inline void dispose_node(Node* t){\n t->p=recycle;\n recycle=t;\n }\n\n inline Node* get_new_node(){\n if(recycle) return new(exchange(recycle,recycle->p)) Node;\n return &(pool_node[ptr_node++]);\n }\n\n inline Node* edge(Vertex* u,Cluster w,Vertex* v){\n auto t=get_new_node();\n t->vs[0]=u;t->vs[1]=v;t->dat=w;t->type=Type::Edge;\n return pushup(t);\n }\n\n inline Node* compress(Node* l,Node* r){\n auto t=get_new_node();\n t->ch[0]=l;t->ch[1]=r;t->type=Type::Compress;\n return pushup(t);\n }\n\n inline Node* rake(Node* l,Node* r){\n auto t=get_new_node();\n t->ch[0]=l;t->ch[1]=r;t->type=Type::Rake;\n return pushup(t);\n }\n\n int parent_dir(Node* t){\n Node* p=t->p;\n if(!p) return -1;\n if(p->guard) return -1;\n if(p->ch[0]==t) return 0;\n if(p->ch[1]==t) return 1;\n return -1;\n }\n\n int parent_dir_ignore_guard(Node* t){\n Node* p=t->p;\n if(!p) return -1;\n if(p->ch[0]==t) return 0;\n if(p->ch[1]==t) return 1;\n return -1;\n }\n\n inline Node* pushup(Node* const t){\n Node* const l=t->ch[0];\n Node* const r=t->ch[1];\n\n if(t->type==Type::Compress){\n assert(l->vs[1]==r->vs[0]);\n t->vs[0]=l->vs[0];\n t->vs[1]=r->vs[1];\n\n Cluster lf=l->dat;\n if(t->q){\n assert(l->vs[1]==t->q->vs[1]);\n lf=Cluster::rake(l->dat,t->q->dat);\n }\n t->dat=Cluster::compress(lf,r->vs[0],r->dat);\n\n l->vs[1]->handle=t;\n }\n\n if(t->type==Type::Rake){\n propagate(t);\n assert(l->vs[1]==r->vs[1]);\n t->vs[0]=l->vs[0];\n t->vs[1]=l->vs[1];\n t->dat=Cluster::rake(l->dat,r->dat);\n }else{\n if(!t->p){\n t->vs[0]->handle=t;\n t->vs[1]->handle=t;\n }else if(t->p->type==Type::Compress){\n if(parent_dir(t)==-1)\n t->vs[0]->handle=t;\n }else if(t->p->type==Type::Rake){\n t->vs[0]->handle=t;\n }\n }\n return t;\n }\n\n inline void toggle(Node* t){\n if(t->type==Type::Edge){\n swap(t->vs[0],t->vs[1]);\n t->dat.toggle();\n }else if(t->type==Type::Compress){\n swap(t->vs[0],t->vs[1]);\n t->dat.toggle();\n t->rev^=true;\n }else if(t->type==Type::Rake){\n }else abort();\n }\n\n inline void propagate(Node* t){\n if(t->type==Type::Compress){\n if(t->rev){\n assert(t->ch[0] and t->ch[1]);\n swap(t->ch[0],t->ch[1]);\n toggle(t->ch[0]);\n toggle(t->ch[1]);\n t->rev=false;\n }\n }\n }\n\n void set_toggle(Node* v){\n toggle(v);propagate(v);\n }\n\n void pushdown(Node* t){\n if(!t) return;\n pushdown(t->p);\n propagate(t);\n }\n\n void rotate(Node* t,Node* x,size_t dir){\n Node* y=x->p;\n int par=parent_dir_ignore_guard(x);\n propagate(t->ch[dir]);\n x->ch[dir^1]=t->ch[dir];\n t->ch[dir]->p=x;\n t->ch[dir]=x;\n x->p=t;\n t->p=y;\n if(~par) y->ch[par]=t;\n else if(y and y->type==Type::Compress) y->q=t;\n pushup(x);pushup(t);\n if(y and !y->guard) pushup(y);\n }\n\n void splay(Node* t){\n assert(t->type!=Type::Edge);\n propagate(t);\n\n while(~parent_dir(t)){\n Node* q=t->p;\n if(q->type!=t->type) break;\n if(~parent_dir(q) and q->p and q->p->type==q->type){\n Node* r=q->p;\n if(r->p) propagate(r->p);\n propagate(r);propagate(q);propagate(t);\n int qt_dir=parent_dir(t);\n int rq_dir=parent_dir(q);\n if(rq_dir==qt_dir){\n rotate(q,r,rq_dir^1);\n rotate(t,q,qt_dir^1);\n }else{\n rotate(t,q,qt_dir^1);\n rotate(t,r,rq_dir^1);\n }\n }else{\n if(q->p) propagate(q->p);\n propagate(q);propagate(t);\n int qt_dir=parent_dir(t);\n rotate(t,q,qt_dir^1);\n }\n }\n }\n\n Node* expose(Node* t){\n pushdown(t);\n while(true){\n assert(t->type!=Type::Rake);\n if(t->type==Type::Compress) splay(t);\n Node* n=nullptr;\n {\n Node* p=t->p;\n if(!p) break;\n if(p->type==Type::Rake){\n propagate(p);\n splay(p);\n n=p->p;\n }\n if(p->type==Type::Compress){\n propagate(p);\n if(p->guard and ~parent_dir_ignore_guard(t)) break;\n n=p;\n }\n }\n splay(n);\n int dir=parent_dir_ignore_guard(n);\n if(dir==-1 or n->p->type==Type::Rake) dir=0;\n\n Node* const c=n->ch[dir];\n if(dir==1){\n set_toggle(c);\n set_toggle(t);\n }\n int n_dir=parent_dir(t);\n if(~n_dir){\n Node* const r=t->p;\n propagate(c);\n propagate(r);\n r->ch[n_dir]=c;\n c->p=r;\n n->ch[dir]=t;\n t->p=n;\n pushup(c);pushup(r);pushup(t);pushup(n);\n splay(r);\n }else{\n propagate(c);\n n->q=c;\n c->p=n;\n n->ch[dir]=t;\n t->p=n;\n pushup(c);pushup(t);pushup(n);\n }\n if(t->type==Type::Edge) t=n;\n }\n return t;\n }\n\n Node* expose(Vertex* v){\n return expose((Node*)(v->handle));\n }\n\n void soft_expose(Vertex* u,Vertex* v){\n pushdown((Node*)u->handle);\n pushdown((Node*)v->handle);\n Node* rt=expose(u);\n\n if(u->handle==v->handle){\n if(rt->vs[1]==u or rt->vs[0]==v)\n set_toggle(rt);\n return;\n }\n\n rt->guard=true;\n Node* soft=expose(v);\n rt->guard=false;\n\n pushup(rt);\n if(parent_dir(soft)==0) set_toggle(rt);\n }\n\n void bring(Node* rt){\n Node* rk=rt->q;\n if(!rk){\n Node* ll=rt->ch[0];\n dispose_node(ll->p);\n ll->p=nullptr;\n pushup(ll);\n }else if(rk->type==Type::Compress or rk->type==Type::Edge){\n Node* nr=rk;\n set_toggle(nr);\n rt->ch[1]=nr;\n nr->p=rt;\n rt->q=nullptr;\n\n pushup(nr);pushup(rt);\n }else if(rk->type==Type::Rake){\n propagate(rk);\n while(rk->ch[1]->type==Type::Rake){\n propagate(rk->ch[1]);\n rk=rk->ch[1];\n }\n pushdown(rk);\n\n rt->guard=true;\n splay(rk);\n rt->guard=false;\n\n Node* ll=rk->ch[0];\n Node* rr=rk->ch[1];\n propagate(ll);\n set_toggle(rr);\n\n rt->ch[1]=rr;\n rr->p=rt;\n\n rt->q=ll;\n ll->p=rt;\n\n dispose_node(rk);\n pushup(ll);pushup(rr);pushup(rt);\n }\n }\n\n Node* link(Vertex* u,Cluster w,Vertex* v){\n if(!u->handle and !v->handle) return edge(u,w,v);\n\n Node* nnu=(Node*)u->handle;\n Node* nnv=(Node*)v->handle;\n Node* ee=edge(u,w,v);\n Node* ll=nullptr;\n\n assert(nnv);\n Node* vv=expose(nnv);\n propagate(vv);\n if(vv->vs[1]==v) set_toggle(vv);\n if(vv->vs[0]==v){\n Node* nv=compress(ee,vv);\n ee->p=nv;\n pushup(ee);\n vv->p=nv;\n pushup(vv);pushup(nv);\n ll=nv;\n }else{\n Node* nv=vv;\n Node* ch=nv->ch[0];\n propagate(ch);\n nv->ch[0]=ee;\n ee->p=nv;\n pushup(ee);\n\n Node* bt=nv->q;\n Node* rk=nullptr;\n if(bt){\n propagate(bt);\n rk=rake(bt,ch);\n bt->p=rk;\n ch->p=rk;\n pushup(bt);pushup(ch);\n }else{\n rk=ch;\n }\n nv->q=rk;\n rk->p=nv;\n pushup(rk);pushup(nv);\n ll=nv;\n }\n\n assert(nnu);\n Node* uu=expose(nnu);\n propagate(uu);\n if(uu->vs[0]==u) set_toggle(uu);\n if(uu->vs[1]==u){\n Node* tp=compress(uu,ll);\n uu->p=tp;\n ll->p=tp;\n pushup(uu);pushup(ll);pushup(tp);\n }else{\n Node* nu=uu;\n Node* ch=nu->ch[1];\n toggle(ch);\n propagate(ch);\n\n nu->ch[1]=ll;\n ll->p=nu;\n pushup(ll);\n\n Node* al=nu->q;\n Node* rk=nullptr;\n if(al){\n propagate(al);\n rk=rake(al,ch);\n al->p=rk;\n ch->p=rk;\n pushup(al);pushup(ch);\n }else{\n rk=ch;\n }\n nu->q=rk;\n rk->p=nu;\n pushup(rk);pushup(nu);\n }\n return ee;\n }\n\n void cut(Vertex* u,Vertex *v){\n soft_expose(u,v);\n Node* rt=(Node*)u->handle;\n propagate(rt);\n Node* rr=rt->ch[1];\n rr->p=nullptr;\n set_toggle(rr);\n assert(rr->ch[1]->type==Type::Edge);\n dispose_node(rr->ch[1]);\n bring(rr);bring(rt);\n }\n\n Node* path(Vertex* u,Vertex* v){\n assert(u!=v);\n soft_expose(u,v);\n Node* rt=(Node*)u->handle;\n propagate(rt);\n propagate(rt->ch[1]);\n return rt->ch[1]->ch[0];\n }\n\n void set_vertex(Vertex* u,Vertex v){\n auto t=expose(u);\n *u=v;\n pushup(t);\n }\n\n void set_edge(Vertex* u,Vertex* v,const Cluster &w){\n auto t=path(u,v);\n assert(t->type==Type::Edge);\n t->dat=w;\n while(t) pushup(t),t=t->p;\n }\n\n Cluster get_path(Vertex* u,Vertex* v){\n return path(u,v)->dat;\n }\n\n Cluster get_subtree(Vertex* v){\n return expose(v)->dat;\n }\n\n // subtree of v when p is root\n Cluster get_subtree(Vertex* p,Vertex* v){\n Node* t=path(p,v);\n Cluster res=t->p->ch[1]->dat;\n res.toggle();\n Node* rk=t->p->q;\n if(t->p->q){\n assert(rk->vs[1]==t->p->ch[1]->vs[0]);\n res=Cluster::rake(res,rk->dat);\n }\n return res;\n }\n};\n\n#undef call_from_test\nusing M = Mint<int, 998244353>;\n\nstruct Vertex{\n M v;\n void* handle;\n Vertex():v(0),handle(nullptr){}\n Vertex(M v):v(v),handle(nullptr){}\n};\n\nstruct Cluster{\n M len;\n M sum_v;\n M sum_l,sum_r;\n M rake_v,rake_d;\n Cluster(M len=M(0)):len(len),sum_v(0),sum_l(0),sum_r(0),rake_v(0),rake_d(0){}\n void toggle(){\n swap(sum_l,sum_r);\n }\n static Cluster compress(Cluster x,Vertex *v,Cluster y){\n Cluster nxt(x.len+y.len);\n nxt.sum_v=x.sum_v+x.rake_v+(v->v)+y.sum_v;\n nxt.sum_l=x.sum_l+x.rake_d+y.sum_l+(x.sum_v+(v->v)+x.rake_v)*y.len;\n nxt.sum_r=x.sum_r+x.rake_d+y.sum_r+(y.sum_v+(v->v)+x.rake_v)*x.len;\n return nxt;\n }\n static Cluster rake(Cluster x,Cluster y){\n x.rake_v+=y.sum_v+y.rake_v;\n x.rake_d+=y.sum_l+y.rake_d;\n return x;\n }\n};\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n const char newl ='\\n';\n\n int n;\n cin>>n;\n\n vector<M> vs(n);\n for(int i=0;i<n;i++) cin>>vs[i].v;\n\n vector<int> as(n),bs(n);\n vector<M> ws(n);\n for(int i=1;i<n;i++){\n cin>>as[i]>>bs[i]>>ws[i].v;\n as[i]--;bs[i]--;\n }\n\n const size_t N = 2e5;\n TopTree<Vertex, Cluster, N> G;\n\n vector<Vertex*> ptr(n);\n for(int i=0;i<n;i++) ptr[i]=G.create(vs[i]);\n\n for(int i=1;i<n;i++)\n G.link(ptr[as[i]],Cluster(0),ptr[bs[i]]);\n\n M ans{0};\n for(int i=1;i<n;i++){\n Cluster x=G.get_subtree(ptr[bs[i]],ptr[as[i]]);\n Cluster y=G.get_subtree(ptr[as[i]],ptr[bs[i]]);\n ans+=ws[i]*(x.sum_v+x.rake_v+vs[as[i]])*(y.sum_v+y.rake_v+vs[bs[i]]);\n G.set_edge(ptr[as[i]],ptr[bs[i]],Cluster(ws[i]));\n }\n cout<<ans<<newl;\n\n Vertex* rt=G.create(Vertex(0));\n\n int q;\n cin>>q;\n for(int i=0;i<q;i++){\n int t;\n cin>>t;\n if(t==1){\n int c,a;\n cin>>c>>a;\n c--;\n G.link(rt,Cluster(0),ptr[c]);\n Cluster x=G.get_subtree(rt,ptr[c]);\n G.cut(rt,ptr[c]);\n ans+=M(a)*(x.sum_l+x.rake_d);\n vs[c]+=M(a);\n G.set_vertex(ptr[c],Vertex(vs[c]));\n }\n\n if(t==2){\n int e,a;\n cin>>e>>a;\n\n Cluster x=G.get_subtree(ptr[bs[e]],ptr[as[e]]);\n Cluster y=G.get_subtree(ptr[as[e]],ptr[bs[e]]);\n ans+=M(a)*(x.sum_v+x.rake_v+vs[as[e]])*(y.sum_v+y.rake_v+vs[bs[e]]);\n\n ws[e]+=M(a);\n G.set_edge(ptr[as[e]],ptr[bs[e]],Cluster(ws[e]));\n }\n cout<<ans<<newl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 1370, "memory_kb": 79596, "score_of_the_acc": -1.4468, "final_rank": 10 }, { "submission_id": "aoj_3179_5702994", "code_snippet": "//#define _GLIBCXX_DEBUG\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define endl '\\n'\n#define lfs cout<<fixed<<setprecision(10)\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n#define spa << \" \" <<\n#define fi first\n#define se second\n#define MP make_pair\n#define MT make_tuple\n#define PB push_back\n#define EB emplace_back\n#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)\n#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)\nusing ll = long long;\nusing ld = long double;\nconst ll MOD1 = 1e9+7;\nconst ll MOD9 = 998244353;\nconst ll INF = 1e18;\nusing P = pair<ll, ll>;\ntemplate<typename T> using PQ = priority_queue<T>;\ntemplate<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;\ntemplate<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}\ntemplate<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}\nll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}\nvoid ans1(bool x){if(x) cout<<\"Yes\"<<endl;else cout<<\"No\"<<endl;}\nvoid ans2(bool x){if(x) cout<<\"YES\"<<endl;else cout<<\"NO\"<<endl;}\nvoid ans3(bool x){if(x) cout<<\"Yay!\"<<endl;else cout<<\":(\"<<endl;}\ntemplate<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} \ntemplate<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);}; \ntemplate<typename T>void debug(const T &v,ll h,ll w,string sv=\" \"){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};\ntemplate<typename T>void debug(const T &v,ll n,string sv=\" \"){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};\ntemplate<typename T>void debug(const vector<T>&v){debug(v,v.size());}\ntemplate<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}\ntemplate<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<\" \";st.pop();}cout<<endl;}\ntemplate<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<\" \";st.pop();}cout<<endl;}\ntemplate<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<\" \";st.pop_front();}cout<<endl;}\ntemplate<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<\" \";st.pop();}cout<<endl;}\ntemplate<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<\" \";st.pop();}cout<<endl;}\ntemplate<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<\" \";cout<<endl;}\ntemplate<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<\" \";cout<<endl;}\ntemplate<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<\" \";cout<<endl;}\ntemplate<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<\"[\"<<z.first<<\"]=\"<<z.second<<\",\";cout<<endl;}\ntemplate<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}\nll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}\nvector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};\ntemplate<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}\ntemplate<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}\ntemplate<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << \" \" << p.second;}\ntemplate<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << \" \";cout<<\"|\"; return os;}\ntemplate<typename T>void rearrange(vector<int>&ord, vector<T>&v){\n auto tmp = v;\n for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];\n}\ntemplate<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){\n rearrange(ord, head);\n rearrange(ord, tail...);\n}\ntemplate<typename T> vector<int> ascend(const vector<T>&v){\n vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);\n sort(ord.begin(),ord.end(),[&](int i,int j){return v[i]<v[j];});\n return ord;\n}\ntemplate<typename T> vector<int> descend(const vector<T>&v){\n vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);\n sort(ord.begin(),ord.end(),[&](int i,int j){return v[i]>v[j];});\n return ord;\n}\nll FLOOR(ll n,ll div){return n>=0?n/div:(n-div+1)/div;}\nll CEIL(ll n,ll div){return n>=0?(n+div-1)/div:n/div;}\nll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;}\ntemplate<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}\ntemplate<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}\ntemplate<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};\ntemplate<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};\n//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());\nint popcount(ll x){return __builtin_popcountll(x);};\nint poplow(ll x){return __builtin_ctzll(x);};\nint pophigh(ll x){return 63 - __builtin_clzll(x);};\ntemplate<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};\ntemplate<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};\ntemplate<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};\ntemplate<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};\ntemplate< typename T = int >\nstruct edge {\n int to;\n T cost;\n int id;\n edge():id(-1){};\n edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}\n operator int() const { return to; }\n};\n\ntemplate<typename T>\nusing Graph = vector<vector<edge<T>>>;\ntemplate<typename T>\nGraph<T>revgraph(const Graph<T> &g){\n Graph<T>ret(g.size());\n for(int i=0;i<g.size();i++){\n for(auto e:g[i]){\n int to = e.to;\n e.to = i;\n ret[to].push_back(e);\n }\n }\n return ret;\n}\ntemplate<typename T>\nGraph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){\n Graph<T> ret(n);\n for(int es = 0; es < m; es++){\n int u,v;\n T w=1;\n cin>>u>>v;u-=indexed,v-=indexed;\n if(weighted)cin>>w;\n ret[u].emplace_back(v,w,es);\n if(!directed)ret[v].emplace_back(u,w,es);\n }\n return ret;\n}\ntemplate<typename T>\nGraph<T> readParent(int n,int indexed=1,bool directed=true){\n Graph<T>ret(n);\n for(int i=1;i<n;i++){\n int p;cin>>p;\n p-=indexed;\n ret[p].emplace_back(i);\n if(!directed)ret[i].emplace_back(p);\n }\n return ret;\n}\ntemplate< int mod >\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n\n friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) {\n return ModInt(lhs) += rhs;\n }\n friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) {\n return ModInt(lhs) -= rhs;\n }\n friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) {\n return ModInt(lhs) *= rhs;\n }\n friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) {\n return ModInt(lhs) /= rhs;\n }\n\n bool operator==(const ModInt &p) const { return x == p.x; }\n\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\nusing modint = ModInt< MOD9 >;modint pow(ll n, ll x){return modint(n).pow(x);}modint pow(modint n, ll x){return n.pow(x);}\n//using modint=ld;\ntemplate< typename Monoid, typename OperatorMonoid,typename F, typename G, typename H>\nstruct LazySegmentTree {\n ll sz, height, n;\n vector< Monoid > data;\n vector< OperatorMonoid > lazy;\n const F f;\n const G g;\n const H h;\n Monoid M1;\n OperatorMonoid OM0;\n LazySegmentTree(ll n, const F &f,const G &g, const H &h, Monoid M1, OperatorMonoid OM0):n(n),f(f),g(g),h(h),M1(M1),OM0(OM0){\n sz = 1;\n height = 0;\n while(sz < n) sz <<= 1, height++;\n data.assign(2 * sz, M1);\n lazy.assign(2 * sz, OM0);\n }\n\n void set(ll k, const Monoid &x) {\n data[k + sz] = x;\n }\n\n void build() {\n for(ll k = sz - 1; k > 0; k--) {\n data[k] = f(data[2 * k + 0], data[2 * k + 1]);\n }\n }\n\n inline void propagate(ll k) {\n if(lazy[k] != OM0) {\n lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);\n lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);\n data[k] = reflect(k);\n lazy[k] = OM0;\n }\n }\n\n inline Monoid reflect(ll k) {\n return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);\n }\n\n inline void recalc(ll k) {\n while(k >>= 1) data[k] = f(reflect(2 * k + 0), reflect(2 * k + 1));\n }\n\n inline void thrust(ll k) {\n for(ll i = height; i > 0; i--) propagate(k >> i);\n }\n\n void update(ll a, ll b, const OperatorMonoid &x) {\n\tif(a>=b)return;\n thrust(a += sz);\n thrust(b += sz - 1);\n for(ll l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {\n if(l & 1) lazy[l] = h(lazy[l], x), ++l;\n if(r & 1) --r, lazy[r] = h(lazy[r], x);\n }\n recalc(a);\n recalc(b);\n }\n \n void update(ll a,const Monoid &x){\n thrust(a += sz);\n data[a] = x;\n lazy[a] = OM0;\n recalc(a);\n }\n\n Monoid query(ll a, ll b) {\n\tif(a>=b)return M1;\n thrust(a += sz);\n thrust(b += sz - 1);\n Monoid L = M1, R = M1;\n for(ll l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {\n if(l & 1) L = f(L, reflect(l++));\n if(r & 1) R = f(reflect(--r), R);\n }\n return f(L, R);\n }\n\n Monoid operator[](const ll &k) {\n return query(k, k + 1);\n }\n\n template< typename C >\n ll find_subtree(ll a, const C &check, Monoid &M, bool type) {\n while(a < sz) {\n propagate(a);\n Monoid nxt = type ? f(reflect(2 * a + type), M) : f(M, reflect(2 * a + type));\n if(check(nxt)) a = 2 * a + type;\n else M = nxt, a = 2 * a + 1 - type;\n }\n return a - sz;\n }\n\n template< typename C >\n ll find_first(ll a, const C &check) {\n Monoid L = M1;\n if(a <= 0) {\n if(check(f(L, reflect(1)))) return find_subtree(1, check, L, false);\n return -1;\n }\n thrust(a + sz);\n ll b = sz;\n for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {\n if(a & 1) {\n Monoid nxt = f(L, reflect(a));\n if(check(nxt)) return find_subtree(a, check, L, false);\n L = nxt;\n ++a;\n }\n }\n return -1;\n }\n\n\n template< typename C >\n ll find_last(ll b, const C &check) {\n Monoid R = M1;\n if(b >= sz) {\n if(check(f(reflect(1), R))) return find_subtree(1, check, R, true);\n return -1;\n }\n thrust(b + sz - 1);\n ll a = sz;\n for(b += sz; a < b; a >>= 1, b >>= 1) {\n if(b & 1) {\n Monoid nxt = f(reflect(--b), R);\n if(check(nxt)) return find_subtree(b, check, R, true);\n R = nxt;\n }\n }\n return -1;\n }\n void print(){\n for(ll i=0;i<n;i++)if((*this)[i]==M1)cout<<\"x|\";else cout<<(*this)[i]<<\"|\";\n cout<<endl;\n }\n};\ntemplate<typename T>\nstruct HLD{\n using D=long long;\n int n;\n vector<int>sz;//部分木サイズ\n vector<D>dep;\n vector<int>par;\n vector<int>head;\n Graph<T> &g;//隣接リスト\n vector<edge<T>>edges;//データ構造に乗せるedge列\n vector<int>in,out;//[in,out)で部分木、[ina,inb]でa~bのパス(aが上)\n vector<int>comp;//連結成分の根\n //inは頂点のindexを表す。また、edge列の下側の頂点である\n HLD(Graph<T> &g,int r=-1):g(g),n(g.size()){\n hld_build(r);\n }\n void hld_build(int root = -1){\n in.assign(n,-1);out.assign(n,-1);dep.assign(n,0);\n par.assign(n,-1);head.assign(n,-1);sz.assign(n,-1);comp.assign(n,-1);\n edges.assign(n,edge<T>());\n if(root == -1){//根がどこでも良い場合(森でも可)\n for(int i=0;i<n;i++){\n if(sz[i] == -1){\n head[i] = i;\n dfs_sz(i, 0, i);\n dfs_hld(i);\n }\n }\n }\n else{\n head[root] = root;\n dfs_sz(root, 0, root);\n dfs_hld(root);\n }\n }\n void dfs_sz(int k, D d,int r){\n sz[k] = 1;\n comp[k] = r;\n\tdep[k] = d;\n for(auto &e: g[k]){\n if(e.to == par[k])continue;\n par[e.to] = k;\n dfs_sz(e.to, d+e.cost, r);\n sz[k] += sz[e.to];\n if(sz[e.to] > sz[g[k][0].to])swap(e, g[k][0]);\n }\n }\n int time = 0;\n void dfs_hld(int k){\n in[k] = time++;\n for(auto e:g[k]){\n if(e.to == par[k])continue;\n head[e.to] = (e.to == g[k][0].to ? head[k]: e.to);\n edges[time] = e;\n dfs_hld(e.to);\n }\n out[k] = time;\n }\n int lca(int p,int q){\n while(1){\n if(in[p] < in[q])swap(p,q);\n if(head[p] == head[q])return q;\n p = par[head[p]];\n }\n }\n vector<pair<int,int>>query_path(int p,int q,bool isEdge){\n int r=lca(p,q);\n vector<pair<int,int>>ret;\n for(int i=0;i<2;i++){\n if(i == 1)swap(p,q);\n while(1){\n if(isEdge&&p==r)break;\n if(head[p]==head[r]){\n ret.emplace_back(in[r]+(isEdge?1:i),in[p]+1);\n break;\n }\n ret.emplace_back(in[head[p]],in[p]+1);\n p = par[head[p]];\n }\n }\n return ret;\n }\n vector<vector<pair<int,int>>>query_order_path(int p,int q,bool isEdge){\n\t//非可換クエリ用、配列0を順番を反転したデータ構造に、配列1を通常のデータ構造に\n vector<vector<pair<int,int>>>ret(2);\n int r=lca(p,q);\n for(int i=0;i<2;i++){\n if(i == 1)swap(p,q);\n while(1){\n if(isEdge&&p==r)break;\n if(head[p]==head[r]){\n if(i==0) ret[i].emplace_back(n-(in[p]+1),n-(in[r]+(isEdge?1:i)));\n else ret[i].emplace_back(in[r]+(isEdge?1:i),in[p]+1);\n break;\n }\n if(i==0) ret[i].emplace_back(n-(in[p]+1),n-(in[head[p]]));\n else ret[i].emplace_back(in[head[p]],in[p]+1);\n p = par[head[p]];\n }\n }\n reverse(ret[1].begin(), ret[1].end());\n return ret;\n }\n pair<int,int>query_subtree(int p,bool isEdge){\n return make_pair(in[p]+isEdge,out[p]);\n }\n //uのv方向の子 子孫関係は前もって確認すること(in,outを見る)\n int child(int u,int v){\n while(1){\n if(head[u]==head[v]){\n v=g[u][0].to;\n break;\n }\n v=head[v];\n if(par[v]==u)break;\n v=par[v];\n }\n return v;\n }\n //uをv方向に一つ進めた頂点\n int move(int u,int v){\n assert(u!=v);\n if(in[u]<in[v]&&in[v]<out[u])return child(u,v);\n else return par[u];\n }\n D dist(int u,int v){\n return dep[u]+dep[v]-2*dep[lca(u,v)];\n }\n vector<int>rev_in;\n int climb(int u,int k){\n if(rev_in.empty()){\n rev_in.resize(n);\n for(int i=0;i<n;i++)rev_in[in[i]]=i;\n }\n int nd=max<int>(dep[u]-k, 0);\n while(dep[u]>nd){\n if(dep[head[u]]>nd){\n u=par[head[u]];\n }\n else{\n u=rev_in[in[head[u]]+nd-dep[head[u]]];\n }\n }\n return u;\n }\n template<typename I>\n Graph<T>lca_tree(vector<I>&v){\n auto compare=[&](int x,int y){return in[x]<in[y];};\n sort(v.begin(),v.end(),compare);\n int sz1=v.size();\n for(int i=0;i<sz1-1;i++)v.push_back(lca(v[i],v[i+1]));\n sort(v.begin(),v.end(),compare);\n v.erase(unique(v.begin(),v.end()),v.end());\n int sz2=v.size();\n Graph<T>ret(sz2);\n stack<int>st;\n for(int i=0;i<sz2;i++){\n while(!st.empty()&&out[v[st.top()]]<=in[v[i]])st.pop();\n if(!st.empty())ret[st.top()].emplace_back(i,dep[v[i]]-dep[v[st.top()]]);\n st.push(i);\n }\n return ret;\n }\n};\nnamespace add_sum{\n struct M{\n modint vs,es,sum,sz;\n };\n using PM=pair<modint,modint>;\n auto f=[](M x,M y)->M{\n return {x.vs+y.vs,x.es+y.es,x.sum+y.sum,x.sz+y.sz};\n };\n auto g=[](M x,PM y)->M{\n return {x.vs+x.sz*y.fi,\n x.es+x.sz*y.se,\n x.sum+x.vs*y.se+x.es*y.fi+x.sz*y.fi*y.se,\n x.sz};\n };\n auto h=[](PM x,PM y)->PM{\n return MP(x.fi+y.fi,x.se+y.se);\n };\n LazySegmentTree<M,PM,decltype(f),decltype(g),decltype(h)>make(int n){\n return {n,f,g,h,{0,0,0,0},MP(0,0)};\n }\n}\nint main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n ll res=0,buf=0;\n bool judge = true;\n ll n;cin>>n;\n vector<ll>vw(n);\n rep(i,0,n)cin>>vw[i];\n auto g=readGraph<int>(n,n-1,1,false,true);\n HLD hld(g);\n auto up=add_sum::make(n);\n auto down=add_sum::make(n);\n auto ord=ascend(hld.in);\n vector<ll>epos(n-1);\n up.build();\n down.build();\n modint ret=0;\n modint allsz=0;\n rep(i,0,n)allsz+=vw[i];\n vector<modint>subsz(n,0);\n {\n auto dfs=[&](auto &&f,ll k,ll par)->void{\n subsz[k]=vw[k];\n for(auto to:g[k]){\n if(to==par)continue;\n f(f,to,k);\n subsz[k]+=subsz[to];\n }\n };\n dfs(dfs,0,-1);\n }\n rep(i,1,n){\n modint sz=subsz[ord[i]];\n epos[hld.edges[i].id]=i;\n up.set(i,{allsz-sz,hld.edges[i].cost,(allsz-sz)*hld.edges[i].cost,1});\n down.set(i,{sz,hld.edges[i].cost,sz*hld.edges[i].cost,1});\n ret+=hld.edges[i].cost*sz*(allsz-sz);\n }\n up.build();\n down.build();\n cout<<ret<<endl;\n ll q;cin>>q;\n while(q--){\n ll t,k,w;cin>>t>>k>>w;k--;\n if(t==1){\n modint add=down.query(1,n).sum;\n auto tmp=hld.query_path(0,k,true);\n //cout<<q spa add spa k spa tmp.size()<<endl;\n for(auto z:tmp){\n add-=down.query(z.fi,z.se).sum;\n //cout<<q spa add<<endl;\n add+=up.query(z.fi,z.se).sum;\n //cout<<q spa add<<endl;\n }\n ret+=add*w;\n up.update(1,n,MP(w,0));\n for(auto z:tmp){\n up.update(z.fi,z.se,MP(-w,0));\n down.update(z.fi,z.se,MP(w,0));\n }\n vw[k]+=w;\n allsz+=w;\n }\n if(t==2){\n modint sz=down[epos[k]].vs;\n ret+=sz*(allsz-sz)*w;\n up.update(epos[k],epos[k]+1,MP(0,w));\n down.update(epos[k],epos[k]+1,MP(0,w));\n }\n cout<<ret<<endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 460, "memory_kb": 66772, "score_of_the_acc": -0.5258, "final_rank": 2 }, { "submission_id": "aoj_3179_4875833", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\ntemplate<typename Vertex, typename Cluster, size_t LIM>\nstruct TopTree{\n enum Type { Compress, Rake, Edge };\n struct Node{\n Vertex* vs[2];\n Cluster dat;\n Node* p;\n Node* q;\n Node* ch[2];\n bool rev,guard;\n Type type;\n Node():p(nullptr),q(nullptr),rev(false),guard(false){}\n };\n\n static array<Vertex, LIM> pool_v;\n static array<Node, LIM> pool_c;\n size_t ptr_v,ptr_c;\n\n Cluster id;\n TopTree():ptr_v(0),ptr_c(0),id(){}\n\n inline Vertex* create(Vertex v=Vertex()){\n auto t=&pool_v[ptr_v++];\n auto dummy=&pool_v[ptr_v++];\n *t=v;\n link(t,id,dummy);\n return t;\n }\n\n inline Node* edge(Vertex* u,Cluster w,Vertex* v){\n auto t=&(pool_c[ptr_c++]);\n t->vs[0]=u;t->vs[1]=v;t->dat=w;t->type=Type::Edge;\n return pushup(t);\n }\n\n inline Node* compress(Node* l,Node* r){\n auto t=&(pool_c[ptr_c++]);\n t->ch[0]=l;t->ch[1]=r;t->type=Type::Compress;\n return pushup(t);\n }\n\n inline Node* rake(Node* l,Node* r){\n auto t=&(pool_c[ptr_c++]);\n t->ch[0]=l;t->ch[1]=r;t->type=Type::Rake;\n return pushup(t);\n }\n\n int parent_dir(Node* t){\n Node* p=t->p;\n if(!p) return -1;\n if(p->guard) return -1;\n if(p->ch[0]==t) return 0;\n if(p->ch[1]==t) return 1;\n return -1;\n }\n\n int parent_dir_ignore_guard(Node* t){\n Node* p=t->p;\n if(!p) return -1;\n if(p->ch[0]==t) return 0;\n if(p->ch[1]==t) return 1;\n return -1;\n }\n\n inline Node* pushup(Node* const t){\n Node* const l=t->ch[0];\n Node* const r=t->ch[1];\n\n if(t->type==Type::Compress){\n assert(l->vs[1]==r->vs[0]);\n t->vs[0]=l->vs[0];\n t->vs[1]=r->vs[1];\n\n Cluster lf=l->dat;\n if(t->q){\n assert(l->vs[1]==t->q->vs[1]);\n lf=Cluster::rake(l->dat,t->q->dat);\n }\n t->dat=Cluster::compress(lf,r->vs[0],r->dat);\n\n l->vs[1]->handle=t;\n }\n\n if(t->type==Type::Rake){\n propagate(t);\n assert(l->vs[1]==r->vs[1]);\n t->vs[0]=l->vs[0];\n t->vs[1]=l->vs[1];\n t->dat=Cluster::rake(l->dat,r->dat);\n }else{\n if(!t->p){\n t->vs[0]->handle=t;\n t->vs[1]->handle=t;\n }else if(t->p->type==Type::Compress){\n if(parent_dir(t)==-1)\n t->vs[0]->handle=t;\n }else if(t->p->type==Type::Rake){\n t->vs[0]->handle=t;\n }\n }\n return t;\n }\n\n inline void toggle(Node* t){\n if(t->type==Type::Edge){\n swap(t->vs[0],t->vs[1]);\n t->dat.toggle();\n }else if(t->type==Type::Compress){\n swap(t->vs[0],t->vs[1]);\n t->dat.toggle();\n t->rev^=true;\n }else if(t->type==Type::Rake){\n }else abort();\n }\n\n inline void propagate(Node* t){\n if(t->type==Type::Compress){\n if(t->rev){\n assert(t->ch[0] and t->ch[1]);\n swap(t->ch[0],t->ch[1]);\n toggle(t->ch[0]);\n toggle(t->ch[1]);\n t->rev=false;\n }\n }\n }\n\n void set_toggle(Node* v){\n toggle(v);propagate(v);\n }\n\n void pushdown(Node* t){\n if(!t) return;\n pushdown(t->p);\n propagate(t);\n }\n\n void rotate(Node* t,Node* x,size_t dir){\n Node* y=x->p;\n int par=parent_dir_ignore_guard(x);\n propagate(t->ch[dir]);\n x->ch[dir^1]=t->ch[dir];\n t->ch[dir]->p=x;\n t->ch[dir]=x;\n x->p=t;\n t->p=y;\n if(~par) y->ch[par]=t;\n else if(y and y->type==Type::Compress) y->q=t;\n pushup(x);pushup(t);\n if(y and !y->guard) pushup(y);\n }\n\n void splay(Node* t){\n assert(t->type!=Type::Edge);\n propagate(t);\n\n while(~parent_dir(t)){\n Node* q=t->p;\n if(q->type!=t->type) break;\n if(~parent_dir(q) and q->p and q->p->type==q->type){\n Node* r=q->p;\n if(r->p) propagate(r->p);\n propagate(r);propagate(q);propagate(t);\n int qt_dir=parent_dir(t);\n int rq_dir=parent_dir(q);\n if(rq_dir==qt_dir){\n rotate(q,r,rq_dir^1);\n rotate(t,q,qt_dir^1);\n }else{\n rotate(t,q,qt_dir^1);\n rotate(t,r,rq_dir^1);\n }\n }else{\n if(q->p) propagate(q->p);\n propagate(q);propagate(t);\n int qt_dir=parent_dir(t);\n rotate(t,q,qt_dir^1);\n }\n }\n }\n\n Node* expose(Node* t){\n pushdown(t);\n while(true){\n assert(t->type!=Type::Rake);\n if(t->type==Type::Compress) splay(t);\n Node* n=nullptr;\n {\n Node* p=t->p;\n if(!p) break;\n if(p->type==Type::Rake){\n propagate(p);\n splay(p);\n n=p->p;\n }\n if(p->type==Type::Compress){\n propagate(p);\n if(p->guard and ~parent_dir_ignore_guard(t)) break;\n n=p;\n }\n }\n splay(n);\n int dir=parent_dir_ignore_guard(n);\n if(dir==-1 or n->p->type==Type::Rake) dir=0;\n\n Node* const c=n->ch[dir];\n if(dir==1){\n set_toggle(c);\n set_toggle(t);\n }\n int n_dir=parent_dir(t);\n if(~n_dir){\n Node* const r=t->p;\n propagate(c);\n propagate(r);\n r->ch[n_dir]=c;\n c->p=r;\n n->ch[dir]=t;\n t->p=n;\n pushup(c);pushup(r);pushup(t);pushup(n);\n splay(r);\n }else{\n propagate(c);\n n->q=c;\n c->p=n;\n n->ch[dir]=t;\n t->p=n;\n pushup(c);pushup(t);pushup(n);\n }\n if(t->type==Type::Edge) t=n;\n }\n return t;\n }\n\n Node* expose(Vertex* v){\n return expose((Node*)(v->handle));\n }\n\n void soft_expose(Vertex* u,Vertex* v){\n pushdown((Node*)u->handle);\n pushdown((Node*)v->handle);\n Node* rt=expose(u);\n\n if(u->handle==v->handle){\n if(rt->vs[1]==u or rt->vs[0]==v)\n set_toggle(rt);\n return;\n }\n\n rt->guard=true;\n Node* soft=expose(v);\n rt->guard=false;\n\n pushup(rt);\n if(parent_dir(soft)==0) set_toggle(rt);\n }\n\n void bring(Node* rt){\n Node* rk=rt->q;\n if(!rk){\n Node* ll=rt->ch[0];\n ll->p=nullptr;\n pushup(ll);\n }else if(rk->type==Type::Compress or rk->type==Type::Edge){\n propagate(rk);\n\n Node* nr=rk;\n set_toggle(nr);\n rt->ch[1]=nr;\n nr->p=rt;\n rt->q=nullptr;\n\n pushup(nr);pushup(rt);\n }else if(rk->type==Type::Rake){\n propagate(rk);\n while(rk->ch[1]->type==Type::Rake){\n propagate(rk->ch[1]);\n rk=rk->ch[1];\n }\n pushdown(rk);\n\n rt->guard=true;\n splay(rk);\n rt->guard=false;\n\n Node* ll=rk->ch[0];\n Node* rr=rk->ch[1];\n propagate(ll);\n set_toggle(rr);\n\n rt->ch[1]=rr;\n rr->p=rt;\n\n rt->q=ll;\n ll->p=rt;\n\n pushup(ll);pushup(rr);pushup(rt);\n }\n }\n\n Node* link(Vertex* u,Cluster w,Vertex* v){\n if(!u->handle and !v->handle) return edge(u,w,v);\n\n Node* nnu=(Node*)u->handle;\n Node* nnv=(Node*)v->handle;\n Node* ee=edge(u,w,v);\n Node* ll=nullptr;\n\n if(!nnv) ll=ee;\n else{\n Node* vv=expose(nnv);\n propagate(vv);\n if(vv->vs[1]==v) set_toggle(vv);\n if(vv->vs[0]==v){\n Node* nv=compress(ee,vv);\n ee->p=nv;\n pushup(ee);\n vv->p=nv;\n pushup(vv);pushup(nv);\n ll=nv;\n }else{\n Node* nv=vv;\n Node* ch=nv->ch[0];\n propagate(ch);\n nv->ch[0]=ee;\n ee->p=nv;\n pushup(ee);\n\n Node* bt=nv->q;\n Node* rk=nullptr;\n if(bt){\n propagate(bt);\n rk=rake(bt,ch);\n bt->p=rk;\n ch->p=rk;\n pushup(bt);pushup(ch);\n }else{\n rk=ch;\n }\n nv->q=rk;\n rk->p=nv;\n pushup(rk);pushup(nv);\n ll=nv;\n }\n }\n\n if(nnu){\n Node* uu=expose(nnu);\n propagate(uu);\n if(uu->vs[0]==u) set_toggle(uu);\n if(uu->vs[1]==u){\n Node* tp=compress(uu,ll);\n uu->p=tp;\n ll->p=tp;\n pushup(uu);pushup(ll);pushup(tp);\n }else{\n Node* nu=uu;\n Node* ch=nu->ch[1];\n toggle(ch);\n propagate(ch);\n\n nu->ch[1]=ll;\n ll->p=nu;\n pushup(ll);\n\n Node* al=nu->q;\n Node* rk=nullptr;\n if(al){\n propagate(al);\n rk=rake(al,ch);\n al->p=rk;\n ch->p=rk;\n pushup(al);pushup(ch);\n }else{\n rk=ch;\n }\n nu->q=rk;\n rk->p=nu;\n pushup(rk);pushup(nu);\n }\n }\n return ee;\n }\n\n void cut(Vertex* u,Vertex *v){\n soft_expose(u,v);\n Node* rt=(Node*)u->handle;\n propagate(rt);\n Node* rr=rt->ch[1];\n rr->p=nullptr;\n set_toggle(rr);\n bring(rr);bring(rt);\n }\n\n Node* path(Vertex* u,Vertex* v){\n assert(u!=v);\n soft_expose(u,v);\n Node* rt=(Node*)u->handle;\n propagate(rt);\n propagate(rt->ch[1]);\n return rt->ch[1]->ch[0];\n }\n\n void set_vertex(Vertex* u,Vertex v){\n auto t=expose(u);\n *u=v;\n pushup(t);\n }\n\n void set_edge(Vertex* u,Vertex* v,const Cluster &w){\n auto t=path(u,v);\n assert(t->type==Type::Edge);\n t->dat=w;\n while(t) pushup(t),t=t->p;\n }\n\n Cluster get_path(Vertex* u,Vertex* v){\n return path(u,v)->dat;\n }\n\n Cluster get_subtree(Vertex* v){\n return expose(v)->dat;\n }\n\n // subtree of v when p is root\n Cluster get_subtree(Vertex* p,Vertex* v){\n Node* t=path(p,v);\n Cluster res=t->p->ch[1]->dat;\n res.toggle();\n Node* rk=t->p->q;\n if(t->p->q){\n assert(rk->vs[1]==t->p->ch[1]->vs[0]);\n res=Cluster::rake(res,rk->dat);\n }\n return res;\n }\n};\ntemplate<typename Vertex, typename Cluster, size_t LIM>\narray<Vertex, LIM> TopTree<Vertex, Cluster, LIM>::pool_v;\ntemplate<typename Vertex, typename Cluster, size_t LIM>\narray<typename TopTree<Vertex, Cluster, LIM>::Node, LIM>\nTopTree<Vertex, Cluster, LIM>::pool_c;\n\n\n\ntemplate<typename T,T MOD = 1000000007>\nstruct Mint{\n static constexpr T mod = MOD;\n T v;\n Mint():v(0){}\n Mint(signed v):v(v){}\n Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}\n\n Mint pow(long long k){\n Mint res(1),tmp(v);\n while(k){\n if(k&1) res*=tmp;\n tmp*=tmp;\n k>>=1;\n }\n return res;\n }\n\n static Mint add_identity(){return Mint(0);}\n static Mint mul_identity(){return Mint(1);}\n\n Mint inv(){return pow(MOD-2);}\n\n Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}\n Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}\n Mint& operator/=(Mint a){return (*this)*=a.inv();}\n\n Mint operator+(Mint a) const{return Mint(v)+=a;}\n Mint operator-(Mint a) const{return Mint(v)-=a;}\n Mint operator*(Mint a) const{return Mint(v)*=a;}\n Mint operator/(Mint a) const{return Mint(v)/=a;}\n\n Mint operator-() const{return v?Mint(MOD-v):Mint(v);}\n\n bool operator==(const Mint a)const{return v==a.v;}\n bool operator!=(const Mint a)const{return v!=a.v;}\n bool operator <(const Mint a)const{return v <a.v;}\n\n static Mint comb(long long n,int k){\n Mint num(1),dom(1);\n for(int i=0;i<k;i++){\n num*=Mint(n-i);\n dom*=Mint(i+1);\n }\n return num/dom;\n }\n};\ntemplate<typename T,T MOD> constexpr T Mint<T, MOD>::mod;\ntemplate<typename T,T MOD>\nostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}\n\nusing M = Mint<int, 998244353>;\n\nstruct Vertex{\n M v;\n void* handle;\n Vertex():v(0),handle(nullptr){}\n Vertex(M v):v(v),handle(nullptr){}\n};\n\nstruct Cluster{\n M len;\n M sum_v;\n M sum_l,sum_r;\n M rake_v,rake_d;\n Cluster(M len=M(0)):len(len),sum_v(0),sum_l(0),sum_r(0),rake_v(0),rake_d(0){}\n void toggle(){\n swap(sum_l,sum_r);\n }\n static Cluster compress(Cluster x,Vertex *v,Cluster y){\n Cluster nxt(x.len+y.len);\n nxt.sum_v=x.sum_v+x.rake_v+(v->v)+y.sum_v;\n nxt.sum_l=x.sum_l+x.rake_d+y.sum_l+(x.sum_v+(v->v)+x.rake_v)*y.len;\n nxt.sum_r=x.sum_r+x.rake_d+y.sum_r+(y.sum_v+(v->v)+x.rake_v)*x.len;\n return nxt;\n }\n static Cluster rake(Cluster x,Cluster y){\n x.rake_v+=y.sum_v+y.rake_v;\n x.rake_d+=y.sum_l+y.rake_d;\n return x;\n }\n};\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n;\n cin>>n;\n\n vector<M> vs(n);\n for(int i=0;i<n;i++) cin>>vs[i].v;\n\n vector<int> as(n),bs(n);\n vector<M> ws(n);\n for(int i=1;i<n;i++){\n cin>>as[i]>>bs[i]>>ws[i].v;\n as[i]--;bs[i]--;\n }\n\n const size_t LIM = 1e6;\n TopTree<Vertex, Cluster, LIM> G;\n\n vector<Vertex*> ptr(n);\n for(int i=0;i<n;i++) ptr[i]=G.create(Vertex(vs[i]));\n\n for(int i=1;i<n;i++)\n G.link(ptr[as[i]],Cluster(0),ptr[bs[i]]);\n\n M ans{0};\n for(int i=1;i<n;i++){\n Cluster x=G.get_subtree(ptr[bs[i]],ptr[as[i]]);\n Cluster y=G.get_subtree(ptr[as[i]],ptr[bs[i]]);\n ans+=ws[i]*(x.sum_v+x.rake_v+vs[as[i]])*(y.sum_v+y.rake_v+vs[bs[i]]);\n G.set_edge(ptr[as[i]],ptr[bs[i]],Cluster(ws[i]));\n }\n cout<<ans<<newl;\n\n Vertex* rt=G.create(Vertex(0));\n\n int q;\n cin>>q;\n for(int i=0;i<q;i++){\n int t;\n cin>>t;\n if(t==1){\n int c,a;\n cin>>c>>a;\n c--;\n G.link(rt,Cluster(0),ptr[c]);\n Cluster x=G.get_subtree(rt,ptr[c]);\n G.cut(rt,ptr[c]);\n // cout<<x.sum_l<<' '<<x.sum_r<<' '<<x.rake_d<<newl;\n ans+=M(a)*(x.sum_l+x.rake_d);\n vs[c]+=M(a);\n G.set_vertex(ptr[c],Vertex(vs[c]));\n }\n\n if(t==2){\n int e,a;\n cin>>e>>a;\n\n Cluster x=G.get_subtree(ptr[bs[e]],ptr[as[e]]);\n Cluster y=G.get_subtree(ptr[as[e]],ptr[bs[e]]);\n ans+=M(a)*(x.sum_v+x.rake_v+vs[as[e]])*(y.sum_v+y.rake_v+vs[bs[e]]);\n\n ws[e]+=M(a);\n G.set_edge(ptr[as[e]],ptr[bs[e]],Cluster(ws[e]));\n }\n cout<<ans<<newl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 1400, "memory_kb": 104672, "score_of_the_acc": -1.7651, "final_rank": 11 }, { "submission_id": "aoj_3179_4849270", "code_snippet": "#include <cstdio>\n#include <cstring>\n#include <iostream>\n#include <string>\n#include <cmath>\n#include <bitset>\n#include <vector>\n#include <map>\n#include <set>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <complex>\n#include <unordered_map>\n#include <unordered_set>\n#include <random>\n#include <cassert>\n#include <fstream>\n#include <utility>\n#include <functional>\n#include <time.h>\n#include <stack>\n#include <array>\n#include <list>\n#define popcount __builtin_popcount\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> P;\ntemplate<int MOD>\nstruct ModInt{\n\tint x;\n\tModInt(): x(0){}\n\tModInt(ll y): x(y>=0 ? y%MOD : (MOD-(-y)%MOD)%MOD){}\n\n\tModInt &operator+=(const ModInt &p){\n\t\tif((x+=p.x)>=MOD) x-=MOD;\n\t\treturn *this;\n\t}\n\tModInt &operator-=(const ModInt &p){\n\t\tif((x+=MOD-p.x)>=MOD) x-=MOD;\n\t\treturn *this;\n\t}\n\tModInt &operator*=(const ModInt &p){\n\t\tx=(int)(1ll*x*p.x%MOD);\n\t\treturn *this;\n\t}\n\tModInt &operator/=(const ModInt &p){\n\t\t*this*=p.inv();\n\t\treturn *this;\n\t}\n\n\tModInt operator-() const{ return ModInt(-x);}\n\tModInt operator+(const ModInt &p) const{ return ModInt(*this)+=p;}\n\tModInt operator-(const ModInt &p) const{ return ModInt(*this)-=p;}\n\tModInt operator*(const ModInt &p) const{ return ModInt(*this)*=p;}\n\tModInt operator/(const ModInt &p) const{ return ModInt(*this)/=p;}\n\tbool operator==(const ModInt &p) const{ return x==p.x;}\n\tbool operator!=(const ModInt &p) const{ return x!=p.x;}\n\n\tModInt pow(ll n) const{\n\t\tModInt ret(1), p(x);\n\t\twhile(n){\n\t\t\tif(n&1) ret*=p;\n\t\t\tp*=p;\n\t\t\tn>>=1;\n\t\t}\n\t\treturn ret;\n\t}\n\tModInt inv() const{\n\t\treturn pow(MOD-2);\n\t}\n};\nconst int MOD=998244353;\nusing mint=ModInt<MOD>;\nstruct LinkCutTree{\n\tstruct Node{\n\t\tNode *l, *r, *p;\n\t\tbool rev;\n\t\tint idx;\n\t\tmint val, sz, szl;\n\t\tmint cost, sum, suml, costs, sum2;\n\t\tNode(mint val, int idx, mint cost):cost(cost), costs(cost), sum(0), sum2(0), suml(0), idx(idx), val(val), sz(val), szl(0), rev(false), l(nullptr), r(nullptr), p(nullptr){}\n\t\tbool is_root(){\n\t\t\treturn !p || (p->l!=this && p->r!=this);\n\t\t}\n\t};\n\tvector<Node*> v;\n\tLinkCutTree(int n){\n\t\tv.resize(n);\n\t\tfor(int i=0; i<n; i++) v[i]=new Node(mint(0), i, mint(0));\n\t}\n\tvoid toggle(Node *t){\n\t\tif(!t) return;\n\t\tswap(t->sum, t->sum2);\n\t\tswap(t->l, t->r);\n\t\tt->rev^=true;\n\t}\n\tvoid push(Node *t){\n\t\tif(!t) return;\n\t\tif(t->rev){\n\t\t\ttoggle(t->l);\n\t\t\ttoggle(t->r);\n\t\t\tt->rev=false;\n\t\t}\n\t}\n\tvoid update(Node *t){\n\t\tt->sz=t->val+t->szl, t->costs=t->cost;\n\t\tif(t->l) t->sz+=t->l->sz, t->costs+=t->l->costs;\n\t\tif(t->r) t->sz+=t->r->sz, t->costs+=t->r->costs;\n\t\tt->sum=t->suml+t->cost*t->szl;\n\t\tt->sum2=t->suml+t->cost*t->szl;\n\t\tif(t->l) t->sum+=t->l->sum, t->sum2+=t->l->sum2, t->sum+=t->l->costs*(t->val+t->szl), t->sum2+=t->l->sz*t->cost;\n\t\tif(t->r) t->sum+=t->r->sum, t->sum2+=t->r->sum2, t->sum+=t->r->sz*t->cost, t->sum2+=t->r->costs*(t->val+t->szl);\n\t\tif(t->l && t->r) t->sum+=t->l->costs*t->r->sz, t->sum2+=t->r->costs*t->l->sz;\n\t}\n\tvoid rotate(Node *t){\n\t\tNode *p=t->p, *pp=p->p, *ch;\n\t\tif(p->l==t) ch=t->r;\n\t\telse ch=t->l;\n\t\tif(pp){\n\t\t\tif(pp->l==p) pp->l=t;\n\t\t\telse if(pp->r==p) pp->r=t;\n\t\t}\n\t\tt->p=pp;\n\t\tif(p->l==t) t->r=p;\n\t\telse t->l=p;\n\t\tp->p=t;\n\t\tif(p->l==t) p->l=ch;\n\t\telse p->r=ch;\n\t\tif(ch) ch->p=p;\n\t\tupdate(p);\n\t\tupdate(t);\n\t}\n\tint state(Node *t){\n\t\tif(t->is_root()) return 0;\n\t\telse if(t->p->l==t) return 1;\n\t\telse return -1;\n\t}\n\tvoid splay(Node *t){\n\t\tpush(t);\n\t\twhile(state(t)){\n\t\t\tif(!state(t->p)){\n\t\t\t\tpush(t->p); push(t);\n\t\t\t\trotate(t);\n\t\t\t}else{\n\t\t\t\tpush(t->p->p); push(t->p); push(t);\n\t\t\t\tif(state(t->p)==state(t)){\n\t\t\t\t\trotate(t->p);\n\t\t\t\t\trotate(t);\n\t\t\t\t}else{\n\t\t\t\t\trotate(t);\n\t\t\t\t\trotate(t);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tNode *expose(Node *t){\n\t\tNode *rp=nullptr;\n\t\tfor(Node *now=t; now; now=now->p){\n\t\t\tsplay(now);\n\t\t\tif(rp){\n\t\t\t\tnow->szl-=rp->sz;\n\t\t\t\tnow->suml-=rp->sum;\n\t\t\t}\n\t\t\tif(now->r){\n\t\t\t\tnow->szl+=now->r->sz;\n\t\t\t\tnow->suml+=now->r->sum;\n\t\t\t}\n\t\t\tnow->r=rp;\n\t\t\tupdate(now);\n\t\t\trp=now;\n\t\t}\n\t\tsplay(t);\n\t\treturn rp;\n\t}\n\tvoid link(Node *c, Node *p){\n\t\texpose(c);\n\t\texpose(p);\n\t\tp->r=c;\n\t\tc->p=p;\n\t\tupdate(p);\n\t}\n\tvoid cut(Node *c){\n\t\texpose(c);\n\t\tc->l->p=nullptr;\n\t\tc->l=nullptr;\n\t\tupdate(c);\n\t}\n\tvoid evert(Node *t){\n\t\texpose(t);\n\t\ttoggle(t);\n\t\tpush(t);\n\t}\n};\nint main()\n{\n\tint n; cin>>n;\n\tLinkCutTree lct(n);\n\tusing node=LinkCutTree::Node;\n\tfor(int i=0; i<n; i++){\n\t\tint v; cin>>v;\n\t\tlct.v[i]->val=mint(v);\n\t}\n\tint a[200020], b[200020];\n for(int i=0; i<n-1; i++){\n int w;\n\t\tcin>>a[i]>>b[i]>>w;\n a[i]--; b[i]--;\n node *e=new node(mint(0), i+n, mint(w));\n lct.v.push_back(e);\n\t\tlct.link(e, lct.v[a[i]]);\n\t\tlct.evert(e);\n\t\tlct.link(e, lct.v[b[i]]);\n }\n\tmint sum(0), sv(0);\n\tfor(int i=0; i<n; i++){\n\t\tsv+=lct.v[i]->val;\n\t\tlct.evert(lct.v[i]);\n\t\tsum+=lct.v[i]->val*lct.v[i]->sum;\n\t}\n\tsum/=mint(2);\n\tprintf(\"%d\\n\", sum.x);\n\tint q; cin>>q;\n while(q--){\n int t, c, x; cin>>t>>c>>x;\n\t\tc--;\n if(t==1){\n\t\t\tlct.evert(lct.v[c]);\n\t\t\tsum+=mint(x)*lct.v[c]->sum;\n\t\t\tlct.v[c]->val+=mint(x);\n\t\t\tsv+=mint(x);\n }else{\n\t\t\tlct.evert(lct.v[a[c]]);\n\t\t\tlct.cut(lct.v[c+n]);\n\t\t\tmint sl=lct.v[a[c]]->sz;\n\t\t\tlct.v[c+n]->cost+=mint(x);\n\t\t\tlct.link(lct.v[c+n], lct.v[a[c]]);\n sum+=sl*(sv-sl)*mint(x);\n }\n\t\tprintf(\"%d\\n\", sum.x);\n }\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1140, "memory_kb": 39164, "score_of_the_acc": -0.7797, "final_rank": 5 }, { "submission_id": "aoj_3179_4849134", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate<class T> using vec = vector<T>;\ntemplate<class T> using vvec = vec<vec<T>>;\n\nconstexpr ll mod = 998244353;\nstruct mint {\n ll x;\n mint(ll x=0):x((x%mod+mod)%mod){}\n \n friend ostream &operator<<(ostream& os,const mint& a){\n return os << a.x;\n }\n\n friend istream &operator>>(istream& is,mint& a){\n ll t;\n is >> t;\n a = mint(t);\n return (is);\n }\n\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) {\n (x *= a.x) %= mod;\n return *this;\n }\n mint operator+(const mint a) const {\n mint res(*this);\n return res+=a;\n }\n mint operator-(const mint a) const {\n mint res(*this);\n return res-=a;\n }\n mint operator*(const mint a) const {\n mint res(*this);\n return res*=a;\n }\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n // for prime mod\n mint inv() const {\n return pow(mod-2);\n }\n mint& operator/=(const mint a) {\n return (*this) *= a.inv();\n }\n mint operator/(const mint a) const {\n mint res(*this);\n return res/=a;\n }\n bool operator==(const mint& a)const{\n return x==a.x;\n }\n};\n\n\ntemplate<typename Monoid,typename OperatorMonoid,typename F,typename G,typename H>\nclass LazySegmentTree {\nprivate:\n int sz,height;\n vec<Monoid> data;\n vec<OperatorMonoid> lazy;\n const F op;\n const G homo;\n const H comp;\n const Monoid e;\n const OperatorMonoid Oe;\npublic:\n LazySegmentTree(int n,const F op,const G homo,const H comp,\n const Monoid &e,const OperatorMonoid Oe)\n : op(op),homo(homo),comp(comp),e(e),Oe(Oe) {\n sz = 1;\n height = 0;\n while(sz<=n) sz <<= 1,height++;\n data.assign(2*sz,e);\n lazy.assign(2*sz,Oe);\n }\n\n void set(int k,const Monoid &x) {\n data[k+sz] = x;\n }\n\n void build() {\n for(int k=sz-1;k>0;k--) {\n data[k] = op(data[2*k], data[2*k+1]);\n }\n }\n\n inline void propagate(int k) {\n if(lazy[k]!=Oe) {\n lazy[2*k] = comp(lazy[2*k], lazy[k]);\n lazy[2*k+1] = comp(lazy[2*k+1], lazy[k]);\n data[k] = reflect(k);\n lazy[k] = Oe;\n }\n }\n\n inline Monoid reflect(int k) {\n return lazy[k] == Oe? data[k]:homo(data[k],lazy[k]);\n }\n\n inline void recalc(int k) {\n while(k>>=1) data[k] = op(reflect(2*k), reflect(2*k+1));\n }\n\n inline void thrust(int k) {\n for(int i=height;i>0;i--) propagate(k>>i);\n }\n\n void update(int a, int b, const OperatorMonoid &x) {\n thrust(a+=sz);\n thrust(b+=sz-1);\n for(int l=a,r=b+1;l<r;l>>=1,r>>=1) {\n if(l&1) lazy[l] = comp(lazy[l],x),++l;\n if(r&1) --r, lazy[r] = comp(lazy[r],x);\n }\n recalc(a);\n recalc(b);\n }\n\n Monoid query(int a, int b) {\n thrust(a+=sz);\n thrust(b+=sz-1);\n Monoid L = e, R = e;\n for(int l=a, r=b+1;l<r;l>>= 1,r>>=1) {\n if(l&1) L = op(L,reflect(l++));\n if(r&1) R = op(reflect(--r),R);\n }\n return op(L,R);\n }\n\n Monoid operator[](const int &k) {\n return query(k,k+1);\n }\n};\n\nstruct edge{\n int to,id;\n ll dist;\n edge(int to,ll dist=1,int id=1):to(to),id(id),dist(dist){};\n};\n\nclass HeavLightDecomposition{\nprivate:\n vvec<edge> g;\n vec<int> sz,in,out,head,par,depth;\n int pos;\n\n void dfs_sz(int cur,int p){\n sz[cur] = 1;\n par[cur] = p;\n for(auto& e:g[cur]) if(e.to!=p){\n depth[e.to] = depth[cur]+1;\n dfs_sz(e.to,cur);\n sz[cur] += sz[e.to];\n if(sz[e.to]>sz[g[cur][0].to]) swap(e,g[cur][0]);\n }\n }\n\n void dfs_hld(int cur,int p){\n in[cur] = pos++;\n for(auto& e:g[cur]) if(e.to!=p){\n head[e.to] = (e.to==g[cur][0].to? head[cur]:e.to);\n dfs_hld(e.to,cur);\n }\n out[cur] = pos;\n }\npublic:\n HeavLightDecomposition(){}\n HeavLightDecomposition(int N,int root,vvec<edge> tree):\n g(tree),sz(N),in(N),out(N),head(N),par(N),depth(N){\n pos = 0;\n depth[root] = 0;\n dfs_sz(root,-1);\n dfs_hld(root,-1);\n }\n\n int lca(int u,int v){\n while(true){\n if(in[u]>in[v]) swap(u,v);\n if(head[u]==head[v]) return u;\n v = par[head[v]];\n }\n }\n\n template<class T,class G>\n void update(int u,int v,const T& x,const G& g, bool isedge=false){\n while(true){\n if(in[u]>in[v]) swap(u,v);\n if(head[u]==head[v]) break;\n g(in[head[v]],in[v]+1,x);\n v = par[head[v]];\n }\n g(in[u]+isedge,in[v]+1,x);\n }\n\n\n template<class T,class F,class Q>\n T query(int u,int v,const T &e,const F& f,const Q& q,bool isedge=false){\n T l = e,r = e;\n while(true){\n if(in[u]>in[v]){\n swap(u,v); swap(l,r);\n }\n if(head[u]==head[v]) break;\n l = f(q(in[head[v]],in[v]+1),l);\n v = par[head[v]];\n }\n //非可換演算のときは左を反転!\n //f(rev(f(q(a,b),l),r);\n return f(f(q(in[u]+isedge,in[v]+1),l),r);\n }\n\n int dep(int n){return depth[n];}\n int get_in(int n){return in[n];}\n};\n\nstruct state{\n mint e,c,cc,ec,ecc;\n int len;\n};\n\nauto op = [](state L,state R)->state{\n mint e = L.e+R.e;\n mint c = L.c+R.c;\n mint cc = L.cc+R.cc;\n mint ec = L.ec+R.ec;\n mint ecc = L.ecc+R.ecc;\n int len = L.len+R.len;\n return {e,c,cc,ec,ecc,len};\n};\n\nauto func = [](state S,pair<mint,mint> p)->state{\n mint dc = p.first,de = p.second;\n //update by dc\n S.cc += dc*dc*S.len+S.c*dc*2;\n S.c += dc*S.len;\n S.ecc += S.e*dc*dc+S.ec*dc*2;\n S.ec += S.e*dc;\n // update by de;\n S.e += de*S.len;\n S.ec += S.c*de;\n S.ecc += S.cc*de;\n return S;\n};\n\nauto comp = [](pair<mint,mint> p,pair<mint,mint> q)->pair<mint,mint>{\n return {p.first+q.first,p.second+q.second};\n};\n\nint main() {\n int N;\n cin >> N;\n mint sum = 0;\n vec<mint> V(N);\n for(auto& x:V){\n cin >> x;\n sum += x;\n }\n vvec<edge> g(N);\n vec<int> A(N-1),B(N-1);\n vec<ll> W(N-1);\n for(int i=0;i<N-1;i++){\n int a,b;\n cin >> a >> b >> W[i];\n a--; b--;\n g[a].emplace_back(b,W[i],i);\n g[b].emplace_back(a,W[i],i);\n A[i] = a,B[i] = b;\n }\n LazySegmentTree<state,pair<mint,mint>,decltype(op),decltype(func),decltype(comp)>\n seg(N,op,func,comp,(state){0,0,0,0,0,0},(pair<mint,mint>){0,0});\n HeavLightDecomposition HLD(N,0,g);\n vec<mint> c(N);\n {\n auto dfs = [&](auto&& self,int cur,int par)->void{\n c[cur] = V[cur];\n for(auto& e:g[cur]) if(e.to!=par){\n self(self,e.to,cur);\n c[cur] += c[e.to];\n }\n };\n dfs(dfs,0,-1);\n }\n\n auto make_state = [&](mint E,mint C)->state{\n mint e = E;\n mint c = C;\n mint cc = C*C;\n mint ec = E*C;\n mint ecc = E*C*C;\n int len = 1;\n return {e,c,cc,ec,ecc,len};\n };\n\n for(int i=0;i<N-1;i++){\n if(HLD.dep(A[i])>HLD.dep(B[i])) swap(A[i],B[i]);\n seg.set(HLD.get_in(B[i]),make_state(W[i],c[B[i]]));\n }\n seg.build();\n auto calc = [&]()->mint{\n state S = seg.query(0,N);\n return S.ec*sum-S.ecc;\n };\n\n auto update = [&](int l,int r,pair<mint,mint> p){\n seg.update(l,r,p);\n };\n\n int Q;\n cin >> Q;\n cout << calc() << \"\\n\";\n for(int i=0;i<Q;i++){\n int t;\n cin >> t;\n if(t==1){\n int v,x;\n cin >> v >> x;\n v--;\n HLD.update(0,v,(pair<mint,mint>){x,0},update,true);\n sum += x;\n }else if(t==2){\n int v,x;\n cin >> v >> x;\n v--;\n HLD.update(B[v],A[v],(pair<mint,mint>){0,x},update,true);\n }\n cout << calc() << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 520, "memory_kb": 102296, "score_of_the_acc": -0.9916, "final_rank": 7 }, { "submission_id": "aoj_3179_4847412", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\n#include<array>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 998244353;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef long double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acosl(-1.0);\n\nll mod_pow(ll x, ll n, ll m) {\n\tll res = 1;\n\twhile (n) {\n\t\tif (n & 1)res = res * x % m;\n\t\tx = x * x % m; n >>= 1;\n\t}\n\treturn res;\n}\nstruct modint {\n\tll n;\n\tmodint() :n(0) { ; }\n\tmodint(ll m) :n(m) {\n\t\tif (n >= mod)n %= mod;\n\t\telse if (n < 0)n = (n % mod + mod) % mod;\n\t}\n\toperator int() { return n; }\n};\nbool operator==(modint a, modint b) { return a.n == b.n; }\nmodint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }\nmodint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }\nmodint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }\nmodint operator+(modint a, modint b) { return a += b; }\nmodint operator-(modint a, modint b) { return a -= b; }\nmodint operator*(modint a, modint b) { return a *= b; }\nmodint operator^(modint a, ll n) {\n\tif (n == 0)return modint(1);\n\tmodint res = (a * a) ^ (n / 2);\n\tif (n % 2)res = res * a;\n\treturn res;\n}\n\nll inv(ll a, ll p) {\n\treturn (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);\n}\nmodint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }\n\nconst int max_n = 1 << 18;\nmodint fact[max_n], factinv[max_n];\nvoid init_f() {\n\tfact[0] = modint(1);\n\tfor (int i = 0; i < max_n - 1; i++) {\n\t\tfact[i + 1] = fact[i] * modint(i + 1);\n\t}\n\tfactinv[max_n - 1] = modint(1) / fact[max_n - 1];\n\tfor (int i = max_n - 2; i >= 0; i--) {\n\t\tfactinv[i] = factinv[i + 1] * modint(i + 1);\n\t}\n}\nmodint comb(int a, int b) {\n\tif (a < 0 || b < 0 || a < b)return 0;\n\treturn fact[a] * factinv[b] * factinv[a - b];\n}\nusing mP = pair<modint, modint>;\n\nstruct BIT {\nprivate:\n\tvector<modint> node, node2; int n;\npublic:\n\tBIT(int n_) {\n\t\tn = n_; node.resize(n, 0); node2.resize(n, 0);\n\t}\n\t//0-indexed\n\tvoid add(int a, int b, modint w) {\n\t\tfor (int i = a; i < n; i |= i + 1)node[i] += (modint)-a * w;\n\t\tfor (int i = b; i < n; i |= i + 1)node[i] += (modint)b * w;\n\t\tfor (int i = a; i < n; i |= i + 1)node2[i] += w;\n\t\tfor (int i = b; i < n; i |= i + 1)node2[i] += -w;\n\t}\n\tmodint sum(int a) {\n\t\tll ret = 0;\n\t\tfor (int i = a - 1; i >= 0; i = (i & (i + 1)) - 1)ret += node[i];\n\t\tfor (int i = a - 1; i >= 0; i = (i & (i + 1)) - 1)ret += (modint)a * node2[i];\n\t\treturn ret;\n\t}\n\tmodint sum(int a, int b) {\n\t\treturn sum(b) - sum(a);\n\t}\n};\n\n\nvector<mP> ori;\nstruct SegT {\nprivate:\n\tint n; vector<mP> node;\n\tvector<modint> lazy;\n\tconst mP init_c = { 0,0 };\npublic:\n\tSegT(vector<int> v) {\n\t\tint sz = v.size();\n\t\tn = 1;\n\t\twhile (n < sz)n <<= 1;\n\t\tnode.resize(2 * n - 1, init_c);\n\t\tlazy.resize(2 * n - 1, 0);\n\t\trep(i, sz) {\n\t\t\tmodint e = ori[v[i]].first;\n\t\t\tmodint c = ori[v[i]].second;\n\t\t\tnode[i + n - 1] = { e * c,e };\n\t\t}\n\t\tper(i, n - 1) {\n\t\t\tnode[i] = f(node[2 * i + 1], node[2 * i + 2]);\n\t\t}\n\t}\n\tmP f(mP a, mP b) {\n\t\treturn { a.first + b.first,a.second + b.second };\n\t}\n\tvoid eval(int k, int l, int r) {\n\t\tif (lazy[k] == (modint)0)return;\n\t\tnode[k].first += node[k].second * lazy[k];\n\t\tif (r - l > 1) {\n\t\t\tlazy[2 * k + 1] += lazy[k];\n\t\t\tlazy[2 * k + 2] += lazy[k];\n\t\t}\n\t\tlazy[k] = 0;\n\t}\n\tvoid add(modint x, int a, int b, int k = 0, int l = 0, int r = -1) {\n\t\tif (r < 0)r = n;\n\t\teval(k, l, r);\n\t\tif (r <= a || b <= l)return;\n\t\tif (a <= l && r <= b) {\n\t\t\tlazy[k] += x; eval(k, l, r);\n\t\t}\n\t\telse {\n\t\t\tadd(x, a, b, k * 2 + 1, l, (l + r) / 2);\n\t\t\tadd(x, a, b, k * 2 + 2, (l + r) / 2, r);\n\t\t\tnode[k] = f(node[k * 2 + 1], node[k * 2 + 2]);\n\t\t}\n\t}\n\tmP query(int a, int b, int k = 0, int l = 0, int r = -1) {\n\t\tif (r < 0)r = n;\n\t\teval(k, l, r);\n\t\tif (r <= a || b <= l)return init_c;\n\t\tif (a <= l && r <= b)return node[k];\n\t\telse {\n\t\t\tmP vl = query(a, b, k * 2 + 1, l, (l + r) / 2);\n\t\t\tmP vr = query(a, b, k * 2 + 2, (l + r) / 2, r);\n\t\t\treturn f(vl, vr);\n\t\t}\n\t}\n\tvoid update(int loc, mP x) {\n\t\tint k = 0, l = 0, r = n;\n\t\tvector<P> st;\n\t\twhile (k < n - 1) {\n\t\t\teval(k, l, r);\n\t\t\tst.push_back({ l,r });\n\t\t\tif (loc < (l + r) / 2) {\n\t\t\t\tk = 2 * k + 1;\n\t\t\t\tr = (l + r) / 2;\n\t\t\t}\n\t\t\telse {\n\t\t\t\tk = 2 * k + 2;\n\t\t\t\tl = (l + r) / 2;\n\t\t\t}\n\t\t}\n\t\teval(k, l, r);\n\t\tst.push_back({ l,r });\n\t\tmodint e = x.first, c = x.second;\n\t\tnode[k] = { e * c,e };\n\t\twhile (k > 0) {\n\t\t\tk = (k - 1) / 2;\n\t\t\tst.pop_back();\n\t\t\tl = st.back().first, r = st.back().second;\n\t\t\teval(2 * k + 1, l, (l + r) / 2);\n\t\t\teval(2 * k + 2, (l + r) / 2, r);\n\t\t\tnode[k] = f(node[2 * k + 1], node[2 * k + 2]);\n\t\t}\n\t}\n};\n\n\nstruct edge {\n\tint to;\n};\nusing edges = vector<edge>;\nusing Graph = vector<edges>;\nstruct HLDecomposition {\n\tstruct Chain {\n\t\tint depth;\n\t\tP parent;//chain number,index\n\t\tvector<P> child;//child chain number,parent index\n\t\tvector<int> mapfrom;\n\t\tSegT stree;\n\n\t\t//Chain() { ; }\n\t\tChain(vector<int> seq) :stree(seq) { ; }\n\t};\n\tGraph baseG;\n\tvector<Chain> chains;\n\tvector<P> mapto;//raw index->chain number &index\n\tvector<vector<int>> mapfrom;//chain number & index ->raw index\n\n\tHLDecomposition() { ; }\n\tHLDecomposition(const Graph& g) {\n\t\tbaseG = g;\n\t\tconst int n = baseG.size();\n\t\tmapto = vector<P>(n, P{ -1,-1 });\n\t\tmapfrom.clear();\n\t\tvector<int> sz(n, 0);\n\t\tint start = 0;\n\t\t//assert(start != -1);\n\t\tsize_check_bfs(start, sz);\n\t\tdecomposition(start, start, 0, 0, 0, sz);\n\t}\n\tint depth(int t) {\n\t\treturn chains[mapto[t].first].depth;\n\t}\n\nprivate:\n\tvoid size_check_bfs(int start, vector<int>& sz) {\n\t\tconst int n = baseG.size();\n\t\tqueue<P> que;\n\t\tque.push({ start,start });\n\t\tint cnt = 0; vector<int> ord(n, -1);\n\t\twhile (!que.empty()) {\n\t\t\tint from, parent;\n\t\t\ttie(from, parent) = que.front(); que.pop();\n\t\t\tord[cnt++] = from;\n\t\t\tfor (edge e : baseG[from]) {\n\t\t\t\tif (e.to == parent)continue;\n\t\t\t\tque.push({ e.to,from });\n\t\t\t}\n\t\t}\n\t\t//assert(cnt == n);\n\t\treverse(all(ord));\n\t\trep(i, n) {\n\t\t\tint from = ord[i];\n\t\t\tsz[from] = 1; for (edge e : baseG[from])sz[from] += sz[e.to];\n\t\t}\n\t}\n\tint decomposition(int from, int parent, int depth, int pnumber, int pindex, const vector<int>& sz) {\n\t\tvector<int> seq;\n\t\tbfs(from, parent, seq, sz);\n\t\tconst int c = chains.size();\n\t\tchains.push_back(Chain(seq));\n\t\t//chains.push_back(Chain());\n\t\tchains[c].depth = depth;\n\t\tchains[c].parent = { pnumber,pindex };\n\t\trep(i, seq.size()) {\n\t\t\tmapto[seq[i]] = { c,i };\n\t\t\tchains[c].mapfrom.push_back(seq[i]);\n\t\t}\n\t\tmapfrom.push_back(chains[c].mapfrom);\n\t\trep(i, seq.size()) {\n\t\t\tfor (edge e : baseG[seq[i]]) {\n\t\t\t\tif (mapto[e.to].first != -1)continue;\n\t\t\t\tint nc = decomposition(e.to, seq[i], depth + 1, c, i, sz);\n\t\t\t\tchains[c].child.push_back({ nc,i });\n\t\t\t}\n\t\t}\n\t\treturn c;\n\t}\n\tvoid bfs(int from, int parent, vector<int>& seq, const vector<int>& sz) {\n\t\tfor (;;) {\n\t\t\tseq.push_back(from);\n\t\t\tint best = -1, next = -1;\n\t\t\tfor (edge e : baseG[from]) {\n\t\t\t\tif (e.to == parent)continue;\n\t\t\t\tif (best < sz[e.to]) {\n\t\t\t\t\tbest = sz[e.to]; next = e.to;\n\t\t\t\t}\n\t\t\t}\n\t\t\tif (next == -1)break;\n\t\t\tparent = from; from = next;\n\t\t}\n\t}\n\tvector<pair<int, P>> all_edge(int u, int v) {\n\t\tvector<pair<int, P>> res;\n\t\tif (depth(u) > depth(v))swap(u, v);\n\t\twhile (depth(v) > depth(u)) {\n\t\t\tres.push_back({ mapto[v].first,{ 0,mapto[v].second + 1 } });\n\t\t\tP par = chains[mapto[v].first].parent;\n\t\t\tv = mapfrom[par.first][par.second];\n\t\t}\n\t\twhile (mapto[v].first != mapto[u].first) {\n\t\t\tres.push_back({ mapto[v].first,{ 0,mapto[v].second + 1 } });\n\t\t\tP par = chains[mapto[v].first].parent;\n\t\t\tv = mapfrom[par.first][par.second];\n\t\t\tres.push_back({ mapto[u].first,{ 0,mapto[u].second + 1 } });\n\t\t\tpar = chains[mapto[u].first].parent;\n\t\t\tu = mapfrom[par.first][par.second];\n\t\t}\n\t\tP p = minmax(mapto[v].second, mapto[u].second);\n\t\tres.push_back({ mapto[v].first,{ p.first + 1,p.second + 1 } });\n\t\treturn res;\n\t}\n\npublic:\n\n\tvoid edge_add(int u, int v, int a) {\n\t\tvector<pair<int, P>> es = all_edge(u, v);\n\t\trep(i, es.size()) {\n\t\t\tint id = es[i].first;\n\t\t\tint l = es[i].second.first; int r = es[i].second.second;\n\t\t\tchains[id].stree.add(a, l, r);\n\t\t}\n\t}\n\tvoid edge_update(int u, mP a) {\n\t\tchains[mapto[u].first].stree.update(mapto[u].second, a);\n\t}\n\tmodint edge_sum(int u, int v) {\n\t\tvector<pair<int, P>> es = all_edge(u, v);\n\t\tmodint res = 0;\n\t\trep(i, es.size()) {\n\t\t\tint id = es[i].first;\n\t\t\tint l = es[i].second.first; int r = es[i].second.second;\n\t\t\tres += chains[id].stree.query(l, r).first;\n\t\t}\n\t\treturn res;\n\t}\n\n\n};\n\nstruct edge2 {\n\tint to; modint cost; int id;\n};\nvector<vector<edge2>> G;\nvoid solve() {\n\tint n; cin >> n; G.resize(n); ori.resize(n);\n\tvector<ll> v(n);\n\trep(i, n)cin >> v[i];\n\tvector<modint> costs(n);\n\trep(i, n - 1) {\n\t\tint a, b, c; cin >> a >> b >> c; a--; b--;\n\t\tG[a].push_back({ b,c,i });\n\t\tG[b].push_back({ a,c,i });\n\t}\n\tvector<int> trans(n);\n\tvector<int> ri(n);\n\n\tvector<int> edgeloc(n - 1);\n\n\tBIT fromcost(n);\n\tBIT vsum(n);\n\n\tGraph g(n);\n\n\tmodint ans = 0;\n\tmodint al = 0; rep(i, n)al += v[i];\n\tint tmp = 0;\n\tfunction<void(int, int)> dfs = [&](int id, int fr) {\n\t\ttrans[id] = tmp; tmp++;\n\t\tfor (edge2 e : G[id])if (e.to != fr) {\n\t\t\tdfs(e.to, id);\n\t\t\tedgeloc[e.id] = trans[e.to];\n\t\t\tcosts[trans[e.to]] = e.cost;\n\n\t\t\tfromcost.add(trans[e.to], ri[trans[e.to]], e.cost);\n\n\t\t\tg[trans[id]].push_back({ trans[e.to] });\n\t\t\tg[trans[e.to]].push_back({ trans[id] });\n\n\t\t\tmodint tosum = vsum.sum(trans[e.to], ri[trans[e.to]]);\n\t\t\tori[trans[e.to]] = { e.cost,tosum };\n\t\t\tans += e.cost * tosum * (al - tosum);\n\t\t}\n\t\tvsum.add(trans[id], trans[id] + 1, v[id]);\n\t\tri[trans[id]] = tmp;\n\t};\n\tdfs(0, -1);\n\n\tHLDecomposition hld(g);\n\n\tmodint fromsum = 0;\n\trep(i, n) {\n\t\tfromsum += fromcost.sum(trans[i], trans[i] + 1) * (modint)v[i];\n\t}\n\n\t//infolist\n\t//hld.add:v\n\t//hld.update:e\n\t//fromcost:e\n\t//fromsum:e,v\n\t//vsum:v\n\t//al :v\n\t//costs:e\n\tcout << ans << \"\\n\";\n\tint q; cin >> q;\n\trep(i, q) {\n\t\tint t; cin >> t;\n\t\tif (t == 1) {\n\t\t\tint a; modint x; ll in; cin >> a >> in; a--; x = in;\n\t\t\ta = trans[a];\n\n\t\t\t//update answer\n\t\t\tmodint d = fromcost.sum(a, a + 1);\n\t\t\tans += d * x * al;\n\t\t\tans += x * fromsum;\n\t\t\tans -= (modint)2 * x * hld.edge_sum(0, a);\n\n\t\t\t//update info\n\t\t\thld.edge_add(0, a, x);\n\t\t\tfromsum += d * x;\n\t\t\tvsum.add(a, a + 1, x);\n\t\t\tal += x;\n\t\t}\n\t\telse if (t == 2) {\n\t\t\tint a; modint x; ll in; cin >> a >> in; a--; x = in;\n\t\t\ta = edgeloc[a];\n\n\t\t\t//update answer\n\t\t\tmodint b = vsum.sum(a, ri[a]);\n\t\t\tans += (al - b) * b * x;\n\n\t\t\t//update info\n\t\t\tcosts[a] += x;\n\t\t\thld.edge_update(a, { costs[a],b });\n\t\t\tfromcost.add(a, ri[a], x);\n\t\t\tfromsum += x * b;\n\t\t}\n\t\tcout << ans << \"\\n\";\n\t}\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(15);\n\t//init_f();\n\t//expr();\n\t//int t; cin >> t; rep(i, t)\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 124784, "score_of_the_acc": -1.0847, "final_rank": 8 }, { "submission_id": "aoj_3179_4846550", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <queue>\n#include <stack>\n#include <numeric>\n#include <bitset>\n#include <cmath>\n\nstatic const int MOD = 998244353;\nusing ll = long long;\nusing u32 = unsigned;\nusing u64 = unsigned long long;\nusing namespace std;\n\ntemplate<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;\n\ntemplate <u32 M>\nstruct modint {\n u32 val;\npublic:\n static modint raw(int v) { modint x; x.val = v; return x; }\n modint() : val(0) {}\n template <class T>\n modint(T v) { ll x = (ll)(v%(ll)(M)); if (x < 0) x += M; val = u32(x); }\n modint(bool v) { val = ((unsigned int)(v) % M); }\n modint& operator++() { val++; if (val == M) val = 0; return *this; }\n modint& operator--() { if (val == 0) val = M; val--; return *this; }\n modint operator++(int) { modint result = *this; ++*this; return result; }\n modint operator--(int) { modint result = *this; --*this; return result; }\n modint& operator+=(const modint& b) { val += b.val; if (val >= M) val -= M; return *this; }\n modint& operator-=(const modint& b) { val -= b.val; if (val >= M) val += M; return *this; }\n modint& operator*=(const modint& b) { u64 z = val; z *= b.val; val = (u32)(z % M); return *this; }\n modint& operator/=(const modint& b) { return *this = *this * b.inv(); }\n modint operator+() const { return *this; }\n modint operator-() const { return modint() - *this; }\n modint pow(long long n) const { modint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; }\n modint inv() const { return pow(M-2); }\n friend modint operator+(const modint& a, const modint& b) { return modint(a) += b; }\n friend modint operator-(const modint& a, const modint& b) { return modint(a) -= b; }\n friend modint operator*(const modint& a, const modint& b) { return modint(a) *= b; }\n friend modint operator/(const modint& a, const modint& b) { return modint(a) /= b; }\n friend bool operator==(const modint& a, const modint& b) { return a.val == b.val; }\n friend bool operator!=(const modint& a, const modint& b) { return a.val != b.val; }\n};\nusing mint = modint<MOD>;\n\nclass HeavyLightDecomposition {\n void dfs_sz(int v){\n for (auto &&u : G[v]) {\n if(u == par[v]) continue;\n par[u] = v; dep[u] = dep[v] + 1;\n dfs_sz(u);\n sub_size[v] += sub_size[u];\n if(sub_size[u] > sub_size[G[v][0]]) swap(u, G[v][0]);\n }\n }\n\n void dfs_hld(int v, int c, int &pos){\n id[v] = pos++;\n id_inv[id[v]]= v;\n tree_id[v] = c;\n for (auto &&u : G[v]) {\n if(u == par[v]) continue;\n head[u] = (u == G[v][0] ? head[v] : u);\n dfs_hld(u, c, pos);\n }\n }\n\npublic:\n int n;\n vector<vector<int>> G;\n vector<int> par, dep, sub_size, id, id_inv, tree_id, head;\n explicit HeavyLightDecomposition(int n) : n(n), G(n), par(n), dep(n), sub_size(n, 1),\n id(n), id_inv(n), tree_id(n), head(n){}\n explicit HeavyLightDecomposition(vector<vector<int>> &G) :\n G(G), n(G.size()), par(n), dep(n) , sub_size(n, 1), id(n), id_inv(n), tree_id(n), head(n) {}\n\n void add_edge(int u, int v){\n G[u].emplace_back(v);\n G[v].emplace_back(u);\n }\n\n void build(vector<int> roots = {0}){\n int c = 0, pos = 0;\n for (auto &&i : roots) {\n dfs_sz(i);\n head[i] = i;\n dfs_hld(i, c++, pos);\n }\n }\n\n int lca(int u, int v){\n while(true){\n if(id[u] > id[v]) swap(u, v);\n if(head[u] == head[v]) return u;\n v = par[head[v]];\n }\n }\n\n int distance(int u, int v){\n return dep[u] + dep[v] - 2*dep[lca(u, v)];\n }\n\n\n template<typename F>\n void query(int u, int v, const F &f){\n while(true){\n if(id[u] > id[v]) swap(u, v);\n f(max(id[head[v]], id[u]), id[v]+1);\n if(head[u] == head[v]) break;\n v = par[head[v]];\n }\n }\n\n template<typename F>\n void query_edge(int u, int v, const F &f){\n while(true){\n if(id[u] > id[v]) swap(u, v);\n if(head[u] != head[v]) {\n f(id[head[v]], id[v]+1);\n v = par[head[v]];\n }else {\n if(u != v) f(id[u]+1, id[v]+1);\n break;\n }\n }\n }\n\n template<typename T, typename Q, typename F>\n T query(int u, int v, const T &e, const Q &q, const F &f){\n T l = e, r = e;\n while(true){\n if(id[u] > id[v]) swap(u, v), swap(l, r);\n l = f(l, q(max(id[head[v]], id[u]), id[v]+1));\n if(head[u] != head[v]) v = par[head[v]];\n else break;\n }\n return f(l, r);\n }\n\n};\n\ntemplate <class M>\nstruct LazySegmentTree{\n using T = typename M::T;\n using L = typename M::L;\n int sz, n, height{};\n vector<T> seg; vector<L> lazy;\n explicit LazySegmentTree(int n) : n(n) {\n sz = 1; while(sz < n) sz <<= 1, height++;\n seg.assign(2*sz, M::e());\n lazy.assign(2*sz, M::l());\n }\n\n void set(int k, const T &x){ seg[k + sz] = x; }\n\n void build(){\n for (int i = sz-1; i > 0; --i) seg[i] = M::f(seg[i<<1], seg[(i<<1)|1]);\n }\n\n T reflect(int k){ return lazy[k] == M::l() ? seg[k] : M::g(seg[k], lazy[k]); }\n\n void eval(int k){\n if(lazy[k] == M::l()) return;\n if(k < sz){\n lazy[(k<<1)|0] = M::h(lazy[(k<<1)|0], lazy[k]);\n lazy[(k<<1)|1] = M::h(lazy[(k<<1)|1], lazy[k]);\n }\n seg[k] = reflect(k);\n lazy[k] = M::l();\n }\n void thrust(int k){ for (int i = height; i; --i) eval(k>>i); }\n void recalc(int k) { while(k >>= 1) seg[k] = M::f(reflect((k<<1)|0), reflect((k<<1)|1));}\n\n void update(int a, const T &x){\n thrust(a += sz);\n seg[a] = x;\n recalc(a);\n }\n\n void update(int a, int b, const L &x){\n thrust(a += sz); thrust(b += sz-1);\n for (int l = a, r = b+1;l < r; l >>=1, r >>= 1) {\n if(l&1) lazy[l] = M::h(lazy[l], x), l++;\n if(r&1) --r, lazy[r] = M::h(lazy[r], x);\n }\n recalc(a);\n recalc(b);\n }\n\n T query(int a, int b){ // [l, r)\n thrust(a += sz);\n thrust(b += sz-1);\n T ll = M::e(), rr = M::e();\n for(int l = a, r = b+1; l < r; l >>=1, r>>=1) {\n if (l & 1) ll = M::f(ll, reflect(l++));\n if (r & 1) rr = M::f(reflect(--r), rr);\n }\n return M::f(ll, rr);\n }\n\n template<class F>\n int search_right(int l, F cond){\n if(l == n) return n;\n thrust(l += sz);\n T val = M::e();\n do {\n while(!(l&1)) l >>= 1;\n if(!cond(M::f(val, seg[l]))){\n while(l < sz) {\n eval(l); l <<= 1;\n if (cond(M::f(val, reflect(l)))){\n val = M::f(val, reflect(l++));\n }\n }\n return l - sz;\n }\n val = M::f(val, reflect(l++));\n } while((l & -l) != l);\n return n;\n }\n\n template<class F>\n int search_left(int r, F cond){\n if(r <= 0) return 0;\n thrust((r += sz)-1);\n T val = M::e();\n do {\n r--;\n while(r > 1 && r&1) r >>= 1;\n if(!cond(M::f(reflect(r), val))){\n while(r < sz) {\n eval(r);\n r = ((r << 1)|1);\n if (cond(M::f(reflect(r), val))){\n val = M::f(reflect(r--), val);\n }\n }\n return r + 1 - sz;\n }\n val = M::f(reflect(r), val);\n } while((r & -r) != r);\n return 0;\n }\n};\n\nstruct Monoid{\n\n using T = array<mint, 6>; // len, x, y, xy, y^2, xy^2\n using L = array<mint, 2>; // dx, dy;\n static T f(T a, T b) {\n T ret{};\n for (int i = 0; i < 6; ++i) ret[i] = a[i]+b[i];\n return ret;\n }\n static T g(T a, L b) {\n T ret = {\n a[0],\n a[1]+b[0],\n a[2]+b[1],\n a[3] + a[1]*b[1] + a[2]*b[0] + b[0]*b[1]*a[0],\n a[4] + a[2]*b[1]*2 + b[1]*b[1]*a[0],\n a[5] + b[1]*(b[1]*(a[0]*b[0]+a[1])+(b[0]*a[2]+a[3])*2) + b[0]*a[4]\n };\n return ret;\n }\n static L h(L a, L b) {\n return {a[0]+b[0], a[1]+b[1]};\n }\n static T e() { return {}; }\n static L l() { return {}; }\n};\n\nint main() {\n int n;\n cin >> n;\n mint s = 0;\n vector<int> v(n);\n for (auto &&i : v) scanf(\"%d\", &i), s += i;\n HeavyLightDecomposition hld(n);\n vector<int> a(n-1), b(n-1), w(n-1);\n vector<vector<pair<int, int>>> G(n);\n for (int i = 0; i < n-1; ++i) {\n cin >> a[i] >> b[i] >> w[i];\n a[i]--; b[i]--;\n hld.add_edge(a[i], b[i]);\n G[a[i]].emplace_back(b[i], i*2);\n G[b[i]].emplace_back(a[i], i*2+1);\n }\n vector<int> to(n-1); // どの頂点に辺を任せるか\n hld.build();\n vector<mint> dp(n);\n for (int i = 0; i < n; ++i) dp[i] = v[i];\n LazySegmentTree<Monoid> seg(n);\n auto dfs = [&](int x, int par, auto &&f) -> void {\n for (auto &&i : G[x]) {\n if(i.first != par){\n to[i.second/2] = i.first;\n f(i.first, x, f);\n dp[x] += dp[i.first];\n seg.set(hld.id[i.first], {1, w[i.second/2], dp[i.first], w[i.second/2]*dp[i.first], dp[i.first]*dp[i.first],w[i.second/2]*dp[i.first]*dp[i.first]});\n }\n }\n };\n dfs(0, -1, dfs);\n seg.build();\n int q;\n cin >> q;\n auto ans = [&](){\n auto res = seg.query(0, n);\n printf(\"%d\\n\", (s*res[3]-res[5]).val);\n };\n ans();\n while(q--){\n int t, x, y;\n scanf(\"%d %d %d\", &t, &x, &y);\n x--;\n if(t == 2){\n seg.update(hld.id[to[x]], hld.id[to[x]]+1, {y, 0});\n }else {\n s += y;\n hld.query_edge(0, x, [&](int l, int r){ seg.update(l, r, {0, y}); });\n }\n ans();\n }\n return 0;\n}", "accuracy": 1, "time_ms": 570, "memory_kb": 59652, "score_of_the_acc": -0.5359, "final_rank": 3 }, { "submission_id": "aoj_3179_4845769", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing ll=long long;\n#define int ll\n\n#define rng(i,a,b) for(int i=int(a);i<int(b);i++)\n#define rep(i,b) rng(i,0,b)\n#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)\n#define per(i,b) gnr(i,0,b)\n#define pb push_back\n#define eb emplace_back\n#define a first\n#define b second\n#define bg begin()\n#define ed end()\n#define all(x) x.bg,x.ed\n#define si(x) int(x.size())\n#ifdef LOCAL\n#define dmp(x) cerr<<__LINE__<<\" \"<<#x<<\" \"<<x<<endl\n#else\n#define dmp(x) void(0)\n#endif\n\ntemplate<class t,class u> void chmax(t&a,u b){if(a<b)a=b;}\ntemplate<class t,class u> void chmin(t&a,u b){if(b<a)a=b;}\n\ntemplate<class t> using vc=vector<t>;\ntemplate<class t> using vvc=vc<vc<t>>;\n\nusing pi=pair<int,int>;\nusing vi=vc<int>;\n\ntemplate<class t,class u>\nostream& operator<<(ostream& os,const pair<t,u>& p){\n\treturn os<<\"{\"<<p.a<<\",\"<<p.b<<\"}\";\n}\n\ntemplate<class t> ostream& operator<<(ostream& os,const vc<t>& v){\n\tos<<\"{\";\n\tfor(auto e:v)os<<e<<\",\";\n\treturn os<<\"}\";\n}\n\n#define mp make_pair\n#define mt make_tuple\n#define one(x) memset(x,-1,sizeof(x))\n#define zero(x) memset(x,0,sizeof(x))\n#ifdef LOCAL\nvoid dmpr(ostream&os){os<<endl;}\ntemplate<class T,class... Args>\nvoid dmpr(ostream&os,const T&t,const Args&... args){\n\tos<<t<<\" \";\n\tdmpr(os,args...);\n}\n#define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__)\n#else\n#define dmp2(...) void(0)\n#endif\n\nusing uint=unsigned;\nusing ull=unsigned long long;\n\ntemplate<class t,size_t n>\nostream& operator<<(ostream&os,const array<t,n>&a){\n\treturn os<<vc<t>(all(a));\n}\n\ntemplate<int i,class T>\nvoid print_tuple(ostream&,const T&){\n}\n\ntemplate<int i,class T,class H,class ...Args>\nvoid print_tuple(ostream&os,const T&t){\n\tif(i)os<<\",\";\n\tos<<get<i>(t);\n\tprint_tuple<i+1,T,Args...>(os,t);\n}\n\ntemplate<class ...Args>\nostream& operator<<(ostream&os,const tuple<Args...>&t){\n\tos<<\"{\";\n\tprint_tuple<0,tuple<Args...>,Args...>(os,t);\n\treturn os<<\"}\";\n}\n\ntemplate<class t>\nvoid print(t x,int suc=1){\n\tcout<<x;\n\tif(suc==1)\n\t\tcout<<\"\\n\";\n\tif(suc==2)\n\t\tcout<<\" \";\n}\n\nll read(){\n\tll i;\n\tcin>>i;\n\treturn i;\n}\n\nvi readvi(int n,int off=0){\n\tvi v(n);\n\trep(i,n)v[i]=read()+off;\n\treturn v;\n}\n\npi readpi(int off=0){\n\tint a,b;cin>>a>>b;\n\treturn pi(a+off,b+off);\n}\n\ntemplate<class T>\nvoid print(const vector<T>&v,int suc=1){\n\trep(i,v.size())\n\t\tprint(v[i],i==int(v.size())-1?suc:2);\n}\n\nstring readString(){\n\tstring s;\n\tcin>>s;\n\treturn s;\n}\n\ntemplate<class T>\nT sq(const T& t){\n\treturn t*t;\n}\n\n//#define CAPITAL\nvoid yes(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"YES\"<<\"\\n\";\n\t#else\n\tcout<<\"Yes\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid no(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"NO\"<<\"\\n\";\n\t#else\n\tcout<<\"No\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid possible(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"POSSIBLE\"<<\"\\n\";\n\t#else\n\tcout<<\"Possible\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\nvoid impossible(bool ex=true){\n\t#ifdef CAPITAL\n\tcout<<\"IMPOSSIBLE\"<<\"\\n\";\n\t#else\n\tcout<<\"Impossible\"<<\"\\n\";\n\t#endif\n\tif(ex)exit(0);\n\t#ifdef LOCAL\n\tcout.flush();\n\t#endif\n}\n\nconstexpr ll ten(int n){\n\treturn n==0?1:ten(n-1)*10;\n}\n\nconst ll infLL=LLONG_MAX/3;\n\n#ifdef int\nconst int inf=infLL;\n#else\nconst int inf=INT_MAX/2-100;\n#endif\n\nint topbit(signed t){\n\treturn t==0?-1:31-__builtin_clz(t);\n}\nint topbit(ll t){\n\treturn t==0?-1:63-__builtin_clzll(t);\n}\nint botbit(signed a){\n\treturn a==0?32:__builtin_ctz(a);\n}\nint botbit(ll a){\n\treturn a==0?64:__builtin_ctzll(a);\n}\nint popcount(signed t){\n\treturn __builtin_popcount(t);\n}\nint popcount(ll t){\n\treturn __builtin_popcountll(t);\n}\nbool ispow2(int i){\n\treturn i&&(i&-i)==i;\n}\nll mask(int i){\n\treturn (ll(1)<<i)-1;\n}\n\nbool inc(int a,int b,int c){\n\treturn a<=b&&b<=c;\n}\n\ntemplate<class t> void mkuni(vc<t>&v){\n\tsort(all(v));\n\tv.erase(unique(all(v)),v.ed);\n}\n\nll rand_int(ll l, ll r) { //[l, r]\n\t#ifdef LOCAL\n\tstatic mt19937_64 gen;\n\t#else\n\tstatic mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());\n\t#endif\n\treturn uniform_int_distribution<ll>(l, r)(gen);\n}\n\ntemplate<class t>\nvoid myshuffle(vc<t>&a){\n\trep(i,si(a))swap(a[i],a[rand_int(0,i)]);\n}\n\ntemplate<class t>\nint lwb(const vc<t>&v,const t&a){\n\treturn lower_bound(all(v),a)-v.bg;\n}\n\nvvc<int> readGraph(int n,int m){\n\tvvc<int> g(n);\n\trep(i,m){\n\t\tint a,b;\n\t\tcin>>a>>b;\n\t\t//sc.read(a,b);\n\t\ta--;b--;\n\t\tg[a].pb(b);\n\t\tg[b].pb(a);\n\t}\n\treturn g;\n}\n\nvvc<int> readTree(int n){\n\treturn readGraph(n,n-1);\n}\n\nstruct modinfo{uint mod,root;};\ntemplate<modinfo const&ref>\nstruct modular{\n\tstatic constexpr uint const &mod=ref.mod;\n\tstatic modular root(){return modular(ref.root);}\n\tuint v;\n\t//modular(initializer_list<uint>ls):v(*ls.bg){}\n\tmodular(ll vv=0){s(vv%mod+mod);}\n\tmodular& s(uint vv){\n\t\tv=vv<mod?vv:vv-mod;\n\t\treturn *this;\n\t}\n\tmodular operator-()const{return modular()-*this;}\n\tmodular& operator+=(const modular&rhs){return s(v+rhs.v);}\n\tmodular&operator-=(const modular&rhs){return s(v+mod-rhs.v);}\n\tmodular&operator*=(const modular&rhs){\n\t\tv=ull(v)*rhs.v%mod;\n\t\treturn *this;\n\t}\n\tmodular&operator/=(const modular&rhs){return *this*=rhs.inv();}\n\tmodular operator+(const modular&rhs)const{return modular(*this)+=rhs;}\n\tmodular operator-(const modular&rhs)const{return modular(*this)-=rhs;}\n\tmodular operator*(const modular&rhs)const{return modular(*this)*=rhs;}\n\tmodular operator/(const modular&rhs)const{return modular(*this)/=rhs;}\n\tmodular pow(int n)const{\n\t\tmodular res(1),x(*this);\n\t\twhile(n){\n\t\t\tif(n&1)res*=x;\n\t\t\tx*=x;\n\t\t\tn>>=1;\n\t\t}\n\t\treturn res;\n\t}\n\tmodular inv()const{return pow(mod-2);}\n\t/*modular inv()const{\n\t\tint x,y;\n\t\tint g=extgcd<ll>(v,mod,x,y);\n\t\tassert(g==1);\n\t\tif(x<0)x+=mod;\n\t\treturn modular(x);\n\t}*/\n\tfriend modular operator+(int x,const modular&y){\n\t\treturn modular(x)+y;\n\t}\n\tfriend modular operator-(int x,const modular&y){\n\t\treturn modular(x)-y;\n\t}\n\tfriend modular operator*(int x,const modular&y){\n\t\treturn modular(x)*y;\n\t}\n\tfriend modular operator/(int x,const modular&y){\n\t\treturn modular(x)/y;\n\t}\n\tfriend ostream& operator<<(ostream&os,const modular&m){\n\t\treturn os<<m.v;\n\t}\n\tfriend istream& operator>>(istream&is,modular&m){\n\t\tll x;is>>x;\n\t\tm=modular(x);\n\t\treturn is;\n\t}\n\tbool operator<(const modular&r)const{return v<r.v;}\n\tbool operator==(const modular&r)const{return v==r.v;}\n\tbool operator!=(const modular&r)const{return v!=r.v;}\n\texplicit operator bool()const{\n\t\treturn v;\n\t}\n};\n\nextern constexpr modinfo base{998244353,3};\n//extern constexpr modinfo base{1000000007,0};\n//modinfo base{1,0};\nusing mint=modular<base>;\n\n//内部でグラフをいじるから in,out を使うときは注意\n//VERIFY: yosupo\n//CF530F\n//CodeChef Persistent Oak\n//AOJ GRL5C\ntemplate<class E>\nstruct HLD{\n\tvvc<E> g;\n\tint n,rt,cnt;\n\tvi sub,in,out,par,head,dep;\n\tvc<E> pare;\n\tint dfs1(int v,int p,E pe,int d){\n\t\tpar[v]=p;\n\t\tpare[v]=pe;\n\t\tdep[v]=d;\n\t\tg[v].erase(remove(all(g[v]),p),g[v].ed);\n\t\tfor(auto&e:g[v]){\n\t\t\tsub[v]+=dfs1(e,v,e,d+1);\n\t\t\tif(sub[g[v][0]]<sub[e])\n\t\t\t\tswap(g[v][0],e);\n\t\t}\n\t\treturn sub[v];\n\t}\n\tvoid dfs2(int v,int h){\n\t\tin[v]=cnt++;\n\t\thead[v]=h;\n\t\tfor(int to:g[v])\n\t\t\tdfs2(to,to==g[v][0]?h:to);\n\t\tout[v]=cnt;\n\t}\n\tHLD(){}\n\tHLD(const vvc<E>&gg,int rr):g(gg),n(g.size()),rt(rr),cnt(0),\n\t\tsub(n,1),in(n),out(n),par(n,-1),head(n),dep(n),pare(n){\n\t\tdfs1(rt,-1,E(),0);\n\t\tdfs2(rt,rt);\n\t}\n\tint lca(int a,int b){\n\t\twhile(head[a]!=head[b]){\n\t\t\tif(dep[head[a]]>dep[head[b]])\n\t\t\t\tswap(a,b);\n\t\t\tb=par[head[b]];\n\t\t}\n\t\tif(dep[a]>dep[b])\n\t\t\tswap(a,b);\n\t\treturn a;\n\t}\n\tint len(int a,int b){\n\t\treturn dep[a]+dep[b]-dep[lca(a,b)]*2;\n\t}\n\tbool asde(int a,int b){\n\t\treturn in[a]<=in[b]&&out[b]<=out[a];\n\t}\n\t//XX Opencup GP of Korea\n\t//CF625 F\n\t//2020 Multi-Uni Contest Day5 G\n\t//CF415E\n\tvi index;\n\t//vs を含む virtual tree を返す\n\t//返すのは virtual tree に使われた頂点と,辺の集合\n\t//辺の端点は,virtual tree における番号\n\t//元の木における番号を virtual tree の頂点番号に写すのが,index という変数\n\t//辺は ch->par の順\n\t//virtual tree は行き掛け順で番号がついている\n\t//特に,頂点 0 が根になるようにできている\n\tpair<vi,vc<pi>> tree_compress(vi vs){\n\t\tif(si(index)==0)index.resize(n);\n\t\tassert(index.size());\n\t\tauto comp = [&](int x,int y){\n\t\t\treturn in[x] < in[y];\n\t\t};\n\t\tsort(all(vs),comp);\n\t\tvs.erase(unique(all(vs)),vs.ed);\n\t\tint k = vs.size();\n\t\trep(i,k-1){\n\t\t\tvs.pb(lca(vs[i],vs[i+1]));\n\t\t}\n\t\tsort(all(vs),comp);\n\t\tvs.erase(unique(all(vs)),vs.ed);\n\t\tk = vs.size();\n\t\trep(i,k) index[vs[i]] = i;\n\t\tvc<pi> es;\n\t\trng(i,1,k){\n\t\t\tint p = lca(vs[i-1],vs[i]);\n\t\t\tes.eb(i,index[p]);\n\t\t}\n\t\treturn mp(vs,es);\n\t}\n};\n\n//merge で片方が inactive のときはもう片方をそのまま返す,\n//といったときに,lazy の情報までコピーして渡さないようにする\n\n//get の最後の引数は単位元と口では言いつつ・・・?\n//たとえば min で最後の引数を 0 にしても 1 とかが返ってくることはある(一敗)\n\n//VERIFY: yosupo\n//KUPC2017I\n//HDU 5306 Gorgeous Sequence\n//findmin/max CF458E\ntemplate<class N>\nstruct segbeats{\n\tvc<N> x;\n\tint s;\n\tsegbeats(){}\n\ttemplate<class T>\n\tsegbeats(const vc<T>& a){\n\t\tint n=a.size();\n\t\ts=1;\n\t\twhile(s<n)s*=2;\n\t\tx.resize(s*2);\n\t\trep(i,n)\n\t\t\tx[s+i]=N(a[i]);\n\t\tgnr(i,1,s)\n\t\t\tupd(i);\n\t}\n\tvoid push(int i){\n\t\tx[i].push(x[i*2],x[i*2+1]);\n\t}\n\tvoid upd(int i){\n\t\tx[i]=N::merge(x[i*2],x[i*2+1]);\n\t}\n\ttemplate<class F,class... Args>\n\tvoid chr(int l,int r,int i,int b,int e,F f,Args&&... args){\n\t\tif(e<=l||r<=b)\n\t\t\treturn;\n\t\tif(b<=l&&r<=e&&(x[i].*f)(forward<Args>(args)...))\n\t\t\treturn;\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\tchr(l,m,i*2,b,e,f,forward<Args>(args)...);\n\t\tchr(m,r,i*2+1,b,e,f,forward<Args>(args)...);\n\t\tupd(i);\n\t}\n\ttemplate<class F,class... Args>\n\tvoid ch(int b,int e,F f,Args&&... args){\n\t\tassert(b<=e);\n\t\tchr(0,s,1,b,e,f,forward<Args>(args)...);\n\t}\n\t//use decltype((declval<N>().*F())()) for old-fashioned judges\n\ttemplate<class F,class G,class H>\n\tauto getr(int l,int r,int i,int b,int e,F f,G g,H h){\n\t\tif(e<=l||r<=b)\n\t\t\treturn h;\n\t\tif(b<=l&&r<=e)\n\t\t\treturn (x[i].*f)();\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\treturn g(getr(l,m,i*2,b,e,f,g,h),getr(m,r,i*2+1,b,e,f,g,h));\n\t}\n\ttemplate<class F,class G,class H>\n\tauto get(int b,int e,F f,G g,H h){\n\t\tassert(b<=e);\n\t\treturn getr(0,s,1,b,e,f,g,h);\n\t}\n\tauto compositer(int l,int r,int i,int b,int e){\n\t\tif(e<=l||r<=b)assert(0);\n\t\tif(b<=l&&r<=e)\n\t\t\treturn x[i];\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\tif(e<=m)return compositer(l,m,i*2,b,e);\n\t\tif(m<=b)return compositer(m,r,i*2+1,b,e);\n\t\treturn N::merge(compositer(l,m,i*2,b,e),compositer(m,r,i*2+1,b,e));\n\t}\n\t//work without identity node\n\tauto composite(int b,int e){\n\t\tassert(b<e);\n\t\treturn compositer(0,s,1,b,e);\n\t}\n\tN getall(){return x[1];}\n\t//return minimum index\n\ttemplate<class F,class...Args>\n\tpair<int,N> findminr(int i,int l,int r,int b,int e,F f,Args&&...args){\n\t\tif(e<=l||r<=b)return {e,N()};\n\t\tif(b<=l&&r<=e){\n\t\t\tif(!(x[i].*f)(forward<Args>(args)...))return {e,N()};\n\t\t\tif(r-l==1)return {l,x[i]};\n\t\t}\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\tauto a=findminr(i*2,l,m,b,e,f,forward<Args>(args)...);\n\t\tif(a.a<e)return a;\n\t\treturn findminr(i*2+1,m,r,b,e,f,forward<Args>(args)...);\n\t}\n\ttemplate<class F,class...Args>\n\tpair<int,N> findmin(int b,int e,F f,Args&&...args){\n\t\tassert(b<=e);\n\t\treturn findminr(1,0,s,b,e,f,forward<Args>(args)...);\n\t}\n\t//return maximum index\n\ttemplate<class F,class...Args>\n\tpair<int,N> findmaxr(int i,int l,int r,int b,int e,F f,Args&&...args){\n\t\tif(e<=l||r<=b)return {b-1,N()};\n\t\tif(b<=l&&r<=e){\n\t\t\tif(!(x[i].*f)(forward<Args>(args)...))return {b-1,N()};\n\t\t\tif(r-l==1)return {l,x[i]};\n\t\t}\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\tauto a=findmaxr(i*2+1,m,r,b,e,f,forward<Args>(args)...);\n\t\tif(a.a>=b)return a;\n\t\treturn findmaxr(i*2,l,m,b,e,f,forward<Args>(args)...);\n\t}\n\ttemplate<class F,class...Args>\n\tpair<int,N> findmax(int b,int e,F f,Args&&...args){\n\t\tassert(b<=e);\n\t\treturn findmaxr(1,0,s,b,e,f,forward<Args>(args)...);\n\t}\n\tvoid enumerater(int l,int r,int i,int b,int e,vc<N>&dst){\n\t\tif(e<=l||r<=b)\n\t\t\treturn;\n\t\tif(l+1==r){\n\t\t\tdst.pb(x[i]);\n\t\t\treturn;\n\t\t}\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\tenumerater(l,m,i*2,b,e,dst);\n\t\tenumerater(m,r,i*2+1,b,e,dst);\n\t}\n\tvoid enumerate(int b,int e,vc<N>&dst){\n\t\tassert(b<=e);\n\t\treturn enumerater(0,s,1,b,e,dst);\n\t}\n\t\n\t//KUPC 2020 G\n\ttemplate<class F,class...Args>\n\tvoid enumerate_by_findr(int l,int r,int i,int b,int e,vc<pair<int,N>>&dst,F f,Args&&...args){\n\t\tif(e<=l||r<=b||!(x[i].*f)(forward<Args>(args)...))\n\t\t\treturn;\n\t\tif(l+1==r){\n\t\t\tdst.eb(l,x[i]);\n\t\t\treturn;\n\t\t}\n\t\tpush(i);\n\t\tint m=(l+r)/2;\n\t\tenumerate_by_findr(l,m,i*2,b,e,dst,f,forward<Args>(args)...);\n\t\tenumerate_by_findr(m,r,i*2+1,b,e,dst,f,forward<Args>(args)...);\n\t}\n\ttemplate<class F,class...Args>\n\tvoid enumerate_by_find(int b,int e,vc<pair<int,N>>&dst,F f,Args&&...args){\n\t\tassert(b<=e);\n\t\tenumerate_by_findr(0,s,1,b,e,dst,f,forward<Args>(args)...);\n\t}\n\tvoid prepare(int i){\n\t\tif(i/=2){\n\t\t\tprepare(i);\n\t\t\tpush(i);\n\t\t}\n\t}\n\t//point_update と lazy を組み合わせたらどうなるかは,わからない・・・\n\tvoid point_update(int i,N w){\n\t\ti+=s;\n\t\tprepare(i);\n\t\tx[i]=w;\n\t\twhile(i/=2)\n\t\t\tupd(i);\n\t}\n};\n\n//N::push\n//pushしたあとはclearする\n//N::merge\n\n//simple range max\nstruct N{\n\tmint w,sum,lz;\n\tN(mint v=0):w(v),sum(0),lz(0){}\n\tbool addw(mint v){\n\t\tw+=v;\n\t\tsum+=lz*v;\n\t\treturn true;\n\t}\n\tbool addlz(mint v){\n\t\tsum+=w*v;\n\t\tlz+=v;\n\t\treturn true;\n\t}\n\tvoid push(N&x,N&y){\n\t\tx.addlz(lz);\n\t\ty.addlz(lz);\n\t\tlz=0;\n\t}\n\tstatic N merge(N x,N y){\n\t\tN res;\n\t\tres.w=x.w+y.w;\n\t\tres.sum=x.sum+y.sum;\n\t\treturn res;\n\t}\n\tmint getsum(){\n\t\treturn sum;\n\t}\n};\n\ntemplate<class t>\nstruct BIT{\n\tvc<t> buf;\n\tint s;\n\tBIT(int n=0){init(n);}\n\tvoid init(int n){buf.assign(s=n,0);}\n\tvoid add(int i,t v){\n\t\tfor(;i<s;i+=(i+1)&(-i-1))\n\t\t\tbuf[i]+=v;\n\t}\n\tt get(int i){\n\t\tt res=0;\n\t\tfor(;i>=0;i-=(i+1)&(-i-1))\n\t\t\tres+=buf[i];\n\t\treturn res;\n\t}\n\tt sum(int b,int e){\n\t\treturn get(e-1)-get(b-1);\n\t}\n\tint kth(int k){\n\t\tint res=0;\n\t\tfor(int i=topbit(s);i>=0;i--){\n\t\t\tint w=res+(1<<i);\n\t\t\tif(w<=s&&buf[w-1]<=k){\n\t\t\t\tk-=buf[w-1];\n\t\t\t\tres=w;\n\t\t\t}\n\t\t}\n\t\treturn res;\n\t}\n\t//yukicoder No.1024\n\tint kth_helper(int k,int i){\n\t\treturn kth(k+get(i-1));\n\t}\n};\n\nstruct E{\n\tint to,idx;\n\toperator int()const{return to;}\n};\n\nsigned main(){\n\tcin.tie(0);\n\tios::sync_with_stdio(0);\n\tcout<<fixed<<setprecision(20);\n\t\n\tint n;cin>>n;\n\tvc<mint> rwv(n);\n\trep(i,n)cin>>rwv[i];\n\tvc<mint> rwe(n-1);\n\tvvc<E> t(n);\n\trep(i,n-1){\n\t\tint a,b;cin>>a>>b;\n\t\ta--;b--;\n\t\tt[a].pb({b,i});\n\t\tt[b].pb({a,i});\n\t\tmint c;cin>>c;\n\t\trwe[i]=c;\n\t}\n\tBIT<mint> cur(n),dep(n);\n\tHLD<E> hld(t,0);\n\tsegbeats<N> seg(vc<mint>(n,0));\n\tmint ans=0,sum=0,tot=0;\n\tauto add_vert=[&](int i,mint w){\n\t\tmint d=dep.get(hld.in[i]);\n\t\tmint g=0;\n\t\t{\n\t\t\tint x=i;\n\t\t\twhile(x!=-1){\n\t\t\t\tint h=hld.head[x];\n\t\t\t\tint p=hld.par[h];\n\t\t\t\tint l=hld.in[h]+(p==-1),r=hld.in[x]+1;\n\t\t\t\tif(l<r){\n\t\t\t\t\tg+=seg.get(l,r,&N::getsum,\n\t\t\t\t\t[](mint a,mint b){return a+b;},mint(0));\n\t\t\t\t}\n\t\t\t\tx=p;\n\t\t\t}\n\t\t}\n\t\tmint a=cur.sum(hld.in[i],hld.in[i]+1);\n\t\tdmp2(d,a,g,sum,tot);\n\t\tans+=(sum+tot*d-g*2)*w;\n\t\tsum+=d*w;\n\t\tcur.add(hld.in[i],w);\n\t\ttot+=w;\n\t\t{\n\t\t\tint x=i;\n\t\t\twhile(x!=-1){\n\t\t\t\tint h=hld.head[x];\n\t\t\t\tint p=hld.par[h];\n\t\t\t\tint l=hld.in[h]+(p==-1),r=hld.in[x]+1;\n\t\t\t\tif(l<r)seg.ch(l,r,&N::addlz,w);\n\t\t\t\tx=p;\n\t\t\t}\n\t\t}\n\t};\n\tvi cv(n-1);\n\trng(i,1,n)cv[hld.pare[i].idx]=i;\n\tauto add_edge=[&](int i,mint w){\n\t\tint v=cv[i],u=hld.par[v];\n\t\tmint sub=cur.sum(hld.in[v],hld.out[v]);\n\t\tdmp2(sub,tot,w);\n\t\tans+=sub*(tot-sub)*w;\n\t\tdep.add(hld.in[v],w);\n\t\tdep.add(hld.out[v],-w);\n\t\tseg.ch(hld.in[v],hld.in[v]+1,&N::addw,w);\n\t\tsum+=w*sub;\n\t};\n\trep(i,n)add_vert(i,rwv[i]);\n\tdmp(ans);\n\trep(i,n-1)add_edge(i,rwe[i]);\n\tint q;cin>>q;\n\tprint(ans);\n\trep(_,q){\n\t\tint tp;cin>>tp;\n\t\tint i;cin>>i;i--;\n\t\tmint x;cin>>x;\n\t\tif(tp==1){\n\t\t\tadd_vert(i,x);\n\t\t}else{\n\t\t\tadd_edge(i,x);\n\t\t}\n\t\tprint(ans);\n\t}\n}", "accuracy": 1, "time_ms": 850, "memory_kb": 69240, "score_of_the_acc": -0.8852, "final_rank": 6 }, { "submission_id": "aoj_3179_4845651", "code_snippet": "#include <bits/extc++.h>\n\nstruct graph {\n struct edge {\n int src, dst;\n int64_t cost;\n\n int operator-(int v) const {\n assert(v == src or v == dst);\n return src ^ dst ^ v;\n }\n };\n\n int n, m;\n std::vector<edge> edges;\n std::vector<std::vector<std::pair<int, int>>> adj;\n std::function<bool(int)> ignore;\n\n graph(int _n = 0) : n(_n), m(0), adj(n), ignore([](int) { return false; }) {}\n\n int add(const edge& e, bool directed) {\n assert(0 <= e.src), assert(e.src < n);\n assert(0 <= e.dst), assert(e.dst < n);\n edges.push_back(e);\n adj[e.src].emplace_back(m, e.dst);\n if (not directed) adj[e.dst].emplace_back(m, e.src);\n return m++;\n }\n};\n\nstruct dfs_forest : graph {\n using cost_t = decltype(edge::cost);\n\n std::vector<int> root, pv, pe, sz, depth, min_depth, last, order, in, out;\n std::vector<cost_t> dist;\n int trials;\n\n dfs_forest(int _n = 0) : graph(_n), dist(n), trials(0) {\n for (auto p : {&root, &pv, &pe, &sz, &depth, &min_depth, &last, &in, &out})\n p->assign(n, -1);\n }\n\n int add(const edge& e) { return graph::add(e, false); }\n void build(int r, bool clear_order = true) {\n assert(0 <= r), assert(r < n);\n root[r] = r, pv[r] = pe[r] = -1, depth[r] = 0, dist[r] = cost_t{};\n if (clear_order) order.clear();\n dfs(r);\n ++trials;\n }\n void build() {\n fill(begin(root), end(root), -1);\n for (int v = 0; v < n; ++v)\n if (root[v] == -1) build(v, v == 0);\n }\n int deeper(int id) const {\n assert(0 <= id), assert(id < m), assert(not ignore(id));\n int u = edges[id].src, v = edges[id].dst;\n return depth[u] < depth[v] ? v : u;\n }\n bool is_tree_edge(int id) const {\n assert(0 <= id), assert(id < m), assert(not ignore(id));\n return id == pe[deeper(id)];\n }\n bool is_ancestor(int u, int v) const {\n assert(0 <= u), assert(u < n);\n assert(0 <= v), assert(v < n);\n return in[u] <= in[v] and out[v] <= out[u];\n }\n\n private:\n void dfs(int v) {\n sz[v] = 1, min_depth[v] = depth[v], last[v] = trials;\n in[v] = size(order), order.push_back(v);\n for (auto [id, u] : adj[v]) {\n if (ignore(id) or id == pe[v]) continue;\n if (last[u] == trials) {\n min_depth[v] = std::min(min_depth[v], depth[u]);\n continue;\n }\n root[u] = root[v], pv[u] = v, pe[u] = id, depth[u] = depth[v] + 1;\n dist[u] = dist[v] + edges[id].cost;\n dfs(u);\n sz[v] += sz[u], min_depth[v] = std::min(min_depth[v], min_depth[u]);\n }\n out[v] = size(order);\n }\n};\n\nstruct hld_forest : dfs_forest {\n std::vector<int> head;\n\n hld_forest(int _n = 0) : dfs_forest(_n), head(n) {}\n\n void build_hld(int r, bool clear_order = true) {\n assert(0 <= r), assert(r < n);\n build(r, clear_order);\n order.erase(end(order) - sz[r], end(order));\n head[r] = r;\n dfs_hld(r);\n }\n void build_hld() {\n fill(begin(root), end(root), -1);\n for (int v = 0; v < n; ++v)\n if (root[v] == -1) build_hld(v, v == 0);\n }\n int lca(int u, int v) const {\n assert(0 <= u), assert(u < n);\n assert(0 <= v), assert(v < n);\n assert(root[u] == root[v]);\n while (true) {\n if (in[u] > in[v]) std::swap(u, v);\n if (head[u] == head[v]) return u;\n v = pv[head[v]];\n }\n }\n int d(int u, int v) const {\n assert(0 <= u), assert(u < n);\n assert(0 <= v), assert(v < n);\n assert(root[u] == root[v]);\n return depth[u] + depth[v] - 2 * depth[lca(u, v)];\n }\n cost_t distance(int u, int v) const {\n assert(0 <= u), assert(u < n);\n assert(0 <= v), assert(v < n);\n assert(root[u] == root[v]);\n return dist[u] + dist[v] - 2 * dist[lca(u, v)];\n }\n int la(int v, int d) const {\n assert(0 <= v), assert(v < n);\n assert(0 <= d), assert(d <= depth[v]);\n while (depth[head[v]] > d) v = pv[head[v]];\n return order[in[head[v]] + (d - depth[head[v]])];\n }\n int next(int src, int dst) const {\n assert(0 <= src), assert(src < n);\n assert(0 <= dst), assert(dst < n);\n assert(root[src] == root[dst]);\n assert(src != dst);\n if (not is_ancestor(src, dst)) return pv[src];\n return la(dst, depth[src] + 1);\n }\n int next(int src, int dst, int k) const {\n assert(0 <= src), assert(src < n);\n assert(0 <= dst), assert(dst < n);\n assert(root[src] == root[dst]);\n assert(k >= 0);\n int v = lca(src, dst);\n if (k <= depth[src] - depth[v]) return la(src, depth[src] - k);\n k -= depth[src] - depth[v];\n assert(k <= depth[dst] - depth[v]);\n return la(dst, depth[v] + k);\n }\n template <class Function>\n void apply(int src, int dst, bool vertex, Function func) const {\n assert(0 <= src), assert(src < n);\n assert(0 <= dst), assert(dst < n);\n assert(root[src] == root[dst]);\n int v = lca(src, dst);\n for (auto [a, b] : ascend(src, v)) func(a + 1, b);\n if (vertex) func(in[v], in[v] + 1);\n for (auto [a, b] : descend(v, dst)) func(a, b + 1);\n }\n\n private:\n void dfs_hld(int v) {\n in[v] = size(order), order.push_back(v);\n sort(begin(adj[v]), end(adj[v]), [&](auto a, auto b) {\n int au = a.second, bu = b.second;\n return (a.first == pe[au]) * sz[au] > (b.first == pe[bu]) * sz[bu];\n });\n for (auto [id, u] : adj[v]) {\n if (ignore(id) or id == pe[v] or not is_tree_edge(id)) continue;\n head[u] = u == adj[v][0].second ? head[v] : u;\n dfs_hld(u);\n }\n out[v] = size(order);\n }\n auto ascend(int src, int dst) const {\n std::vector<std::pair<int, int>> res;\n while (head[src] != head[dst]) {\n res.emplace_back(in[src], in[head[src]]);\n src = pv[head[src]];\n }\n if (src != dst) res.emplace_back(in[src], in[dst] + 1);\n return res;\n }\n std::vector<std::pair<int, int>> descend(int src, int dst) const {\n if (src == dst) return {};\n if (head[src] == head[dst]) return {{in[src] + 1, in[dst]}};\n auto res = descend(src, pv[head[dst]]);\n res.emplace_back(in[head[dst]], in[dst]);\n return res;\n }\n};\n\ntemplate <uint32_t Modulus>\nstruct modular {\n static_assert(int(Modulus) > 0, \"Modulus must be in the range [1, 2^31)\");\n static constexpr int modulus() { return Modulus; }\n\n modular() : v(0) {}\n modular(int64_t x) : v(x % Modulus) {\n if (int(v) < 0) v += Modulus;\n }\n\n explicit operator int() const { return v; }\n modular& operator++() { return ++v == Modulus ? v = 0 : 0, *this; }\n modular& operator--() { return --(v ? v : v = Modulus), *this; }\n modular operator+() const { return *this; }\n modular operator-() const {\n modular res;\n res.v = v ? Modulus - v : 0;\n return res;\n }\n modular& operator*=(modular b) {\n v = uint64_t(v) * b.v % Modulus;\n return *this;\n }\n modular& operator/=(modular b) {\n auto [x, gcd] = extgcd(b.v, Modulus);\n assert(gcd == 1);\n return *this *= x;\n }\n modular& operator+=(modular b) {\n v += b.v - Modulus;\n if (int(v) < 0) v += Modulus;\n return *this;\n }\n modular& operator-=(modular b) {\n v -= b.v;\n if (int(v) < 0) v += Modulus;\n return *this;\n }\n\n friend modular operator++(modular& a, int) {\n return std::exchange(a, ++modular(a));\n }\n friend modular operator--(modular& a, int) {\n return std::exchange(a, --modular(a));\n }\n friend modular operator*(modular a, modular b) { return a *= b; }\n friend modular operator/(modular a, modular b) { return a /= b; }\n friend modular operator+(modular a, modular b) { return a += b; }\n friend modular operator-(modular a, modular b) { return a -= b; }\n friend std::istream& operator>>(std::istream& is, modular& b) {\n int64_t x;\n return is >> x, b = x, is;\n }\n friend std::ostream& operator<<(std::ostream& os, modular b) {\n return os << b.v;\n }\n friend bool operator==(modular a, modular b) { return a.v == b.v; }\n friend bool operator!=(modular a, modular b) { return a.v != b.v; }\n\n private:\n static std::pair<int, int> extgcd(int a, int b) {\n std::array x{1, 0};\n while (b) {\n int q = a / b;\n std::swap(x[0] -= q * x[1], x[1]);\n std::swap(a -= q * b, b);\n }\n return {x[0], a};\n }\n\n uint32_t v;\n};\n\ntemplate <class T>\nstruct fenwick {\n fenwick() {}\n template <class Generator>\n fenwick(int n, Generator gen) : tree(n) {\n for (int i = 0; i < n; ++i) tree[i] = gen(i);\n for (int i = 0; i < n; ++i)\n if (int j = i | (i + 1); j < n) tree[j] += tree[i];\n }\n\n int size() const { return std::size(tree); }\n void add(int i, T a) {\n assert(0 <= i), assert(i < size());\n for (; i < size(); i |= i + 1) tree[i] += a;\n }\n T sum(int i) const {\n assert(0 <= i), assert(i <= size());\n T res{};\n for (; i; i &= i - 1) res += tree[i - 1];\n return res;\n }\n T sum(int l, int r) const {\n assert(0 <= l), assert(l <= r), assert(r <= size());\n return sum(r) - sum(l);\n }\n T get(int i) const {\n assert(0 <= i), assert(i < size());\n return sum(i, i + 1);\n }\n\n private:\n std::vector<T> tree;\n};\n\nstruct segment_tree_base {\n virtual int size() const = 0;\n\n protected:\n template <class F>\n void forward(int l, int r, F f) const {\n int h = h1(l += size() - 1, r += size());\n for (int s = 0; s < h; ++s)\n if (int i = l >> s; ~i & 1) f(i + 1);\n for (int s = h; s--;)\n if (int i = r >> s; i & 1) f(i - 1);\n }\n template <class F>\n void forward(int l, int r, F f) {\n const_cast<const segment_tree_base*>(this)->forward(l, r, f);\n }\n template <class F>\n void backward(int l, int r, F f) const {\n int h = h1(l += size() - 1, r += size());\n for (int s = 0; s < h; ++s)\n if (int i = r >> s; i & 1) f(i - 1);\n for (int s = h; s--;)\n if (int i = l >> s; ~i & 1) f(i + 1);\n }\n template <class F>\n void backward(int l, int r, F f) {\n const_cast<const segment_tree_base*>(this)->backward(l, r, f);\n }\n template <class F>\n void downward(int l, int r, F f) const {\n if (l == r or (l == 0 and r == size())) return;\n int h = h2(l += size(), r += size());\n for (int s = std::__lg(l); s > h; --s) f(l >> s);\n for (int s = h; s > __builtin_ctz(l); --s) f(l >> s);\n for (int s = h; s > __builtin_ctz(r); --s) f(r >> s);\n }\n template <class F>\n void downward(int l, int r, F f) {\n const_cast<const segment_tree_base*>(this)->downward(l, r, f);\n }\n template <class F>\n void upward(int l, int r, F f) const {\n if (l == r or (l == 0 and r == size())) return;\n int h = h2(l += size(), r += size());\n for (int s = __builtin_ctz(r); s++ < h;) f(r >> s);\n for (int s = __builtin_ctz(l); s++ < h;) f(l >> s);\n for (int s = h; s++ < std::__lg(l);) f(l >> s);\n }\n template <class F>\n void upward(int l, int r, F f) {\n const_cast<const segment_tree_base*>(this)->upward(l, r, f);\n }\n\n private:\n static int h1(int l, int r) {\n for (int h = 0;; ++h)\n if ((r >> h) - (l >> h) == 1) return h;\n }\n static int h2(int l, int r) {\n l <<= std::__lg(l) < std::__lg(r);\n return std::__lg(l ^ r);\n }\n};\n\ntemplate <class T, class Action>\nstruct lazy_segment_tree : segment_tree_base {\n lazy_segment_tree() {}\n template <class Generator>\n lazy_segment_tree(int n, Generator gen) : tree(2 * n), lazy(n) {\n for (int i = 0; i < n; ++i) tree[n + i] = gen(i);\n for (int i = n; i-- > 1;) pull(i);\n }\n\n int size() const override { return std::size(lazy); }\n T fold(int l, int r) {\n assert(0 <= l), assert(l <= r), assert(r <= size());\n downward(l, r, [&](int i) { push(i); });\n T res{};\n forward(l, r, [&](int i) { res = res * tree[i]; });\n return res;\n }\n T get(int i) {\n assert(0 <= i), assert(i < size());\n return fold(i, i + 1);\n }\n T fold_all_rotated() const { return size() ? tree[1] : T{}; }\n template <class Function>\n void update(int i, Function func) {\n assert(0 <= i), assert(i < size());\n downward(i, i + 1, [&](int j) { push(j); });\n tree[size() + i] = func(tree[size() + i]);\n upward(i, i + 1, [&](int j) { pull(j); });\n }\n void act(int l, int r, const Action& f) {\n assert(0 <= l), assert(l <= r), assert(r <= size());\n downward(l, r, [&](int i) { push(i); });\n forward(l, r, [&](int i) { apply(i, f); });\n upward(l, r, [&](int i) { pull(i); });\n }\n template <class Predicate>\n int forward_search(int l, int r, Predicate pred) {\n assert(0 <= l), assert(l <= r), assert(r <= size());\n downward(l, r, [&](int i) { push(i); });\n T a{};\n assert(pred(a));\n int res = r;\n forward(l, r, [&](int i) {\n if (res < r) return;\n if (T na = a * tree[i]; pred(na)) {\n a = na;\n return;\n }\n while (i < size()) {\n push(i);\n if (T na = a * tree[i *= 2]; pred(na)) a = na, ++i;\n }\n res = i - size();\n });\n return res;\n }\n template <class Predicate>\n int backward_search(int l, int r, Predicate pred) {\n assert(0 <= l), assert(l <= r), assert(r <= size());\n downward(l, r, [&](int i) { push(i); });\n T a{};\n assert(pred(a));\n int res = l - 1;\n backward(l, r, [&](int i) {\n if (res >= l) return;\n if (T na = a * tree[i]; pred(na)) {\n a = na;\n return;\n }\n while (i < size()) {\n push(i);\n if (T na = a * tree[i = 2 * i + 1]; pred(na)) a = na, --i;\n }\n res = i - size();\n });\n return res;\n }\n\n private:\n std::vector<T> tree;\n std::vector<Action> lazy;\n\n void apply(int i, const Action& f) {\n tree[i] = f(tree[i]);\n if (i < size()) lazy[i] = lazy[i] * f;\n }\n void push(int i) {\n apply(2 * i, lazy[i]), apply(2 * i + 1, lazy[i]);\n lazy[i] = Action{};\n }\n void pull(int i) { tree[i] = tree[2 * i] * tree[2 * i + 1]; }\n};\n\nusing mint = modular<998244353>;\n\nstruct node {\n mint sum, coeff;\n friend node operator*(const node& a, const node& b) {\n return {a.sum + b.sum, a.coeff + b.coeff};\n }\n};\nstruct action {\n mint v;\n node operator()(node x) const {\n x.sum += x.coeff * v;\n return x;\n }\n friend action operator*(const action& f, const action& g) {\n return {f.v + g.v};\n }\n};\n\nint main() {\n using namespace std;\n cin.tie(nullptr)->sync_with_stdio(false);\n int n;\n cin >> n;\n vector<int> initial_v(n);\n for (auto&& e : initial_v) cin >> e;\n hld_forest g(n);\n for (int _ = n - 1; _--;) {\n int u, v, w;\n cin >> u >> v >> w;\n --u, --v;\n g.add({u, v, w});\n }\n g.build_hld();\n\n fenwick<mint> fv(n, [&](int i) -> mint { return initial_v[g.order[i]]; });\n fenwick<mint> fe(\n n, [&](int i) -> mint { return i ? g.edges[g.pe[g.order[i]]].cost : 0; });\n lazy_segment_tree<node, action> seg(n, [&](int i) -> node {\n if (i == 0) return {};\n int v = g.order[i];\n int temp = g.edges[g.pe[v]].cost;\n return {fv.sum(g.in[v], g.out[v]) * temp, temp};\n });\n\n mint ans;\n for (int id = 0; id < n - 1; ++id) {\n int v = g.deeper(id);\n auto temp = fv.sum(g.in[v], g.out[v]);\n ans += g.edges[id].cost * temp * (fv.sum(n) - temp);\n }\n cout << ans << '\\n';\n\n int q;\n cin >> q;\n while (q--) {\n int type;\n cin >> type;\n if (type == 1) {\n int v, x;\n cin >> v >> x;\n --v;\n ans += seg.fold_all_rotated().sum * x;\n mint path;\n g.apply(0, v, false, [&](int l, int r) {\n if (l > r) swap(l, r);\n ans -= seg.fold(l, r).sum * x * 2;\n path += fe.sum(l, r);\n });\n ans += fv.sum(n) * path * x;\n fv.add(g.in[v], x);\n g.apply(0, v, false, [&](int l, int r) {\n if (l > r) swap(l, r);\n seg.act(l, r, {x});\n });\n } else if (type == 2) {\n int id, x;\n cin >> id >> x;\n --id;\n int v = g.deeper(id);\n auto temp = fv.sum(g.in[v], g.out[v]);\n ans += x * temp * (fv.sum(n) - temp);\n fe.add(g.in[v], x);\n seg.update(g.in[v], [&](node e) -> node {\n e.sum += temp * x;\n e.coeff += x;\n return e;\n });\n } else\n assert(false);\n cout << ans << '\\n';\n }\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 52340, "score_of_the_acc": -0.1539, "final_rank": 1 }, { "submission_id": "aoj_3179_4845289", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\n// const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename SUM, typename KEY >\nstruct LinkCutTreeSubtree {\n\n struct Node {\n Node *l, *r, *p;\n\n KEY key;\n SUM sum;\n\n bool rev;\n int sz;\n\n bool is_root() const {\n return !p || (p->l != this && p->r != this);\n }\n\n Node(const KEY &key, const SUM &sum) :\n key(key), sum(sum), rev(false), sz(1),\n l(nullptr), r(nullptr), p(nullptr) {}\n };\n\n const SUM ident;\n\n LinkCutTreeSubtree(const SUM &ident) : ident(ident) {}\n\n Node *make_node(const KEY &key) {\n auto ret = new Node(key, ident);\n update(ret);\n return ret;\n }\n\n Node *set_key(Node *t, const KEY &key) {\n expose(t);\n t->key = key;\n update(t);\n return t;\n }\n\n void toggle(Node *t) {\n swap(t->l, t->r);\n t->sum.toggle();\n t->rev ^= true;\n }\n\n void push(Node *t) {\n if(t->rev) {\n if(t->l) toggle(t->l);\n if(t->r) toggle(t->r);\n t->rev = false;\n }\n }\n\n\n void update(Node *t) {\n t->sz = 1;\n if(t->l) t->sz += t->l->sz;\n if(t->r) t->sz += t->r->sz;\n t->sum.merge(t->key, t->l ? t->l->sum : ident, t->r ? t->r->sum : ident);\n }\n\n void rotr(Node *t) {\n auto *x = t->p, *y = x->p;\n if((x->l = t->r)) t->r->p = x;\n t->r = x, x->p = t;\n update(x), update(t);\n if((t->p = y)) {\n if(y->l == x) y->l = t;\n if(y->r == x) y->r = t;\n update(y);\n }\n }\n\n void rotl(Node *t) {\n auto *x = t->p, *y = x->p;\n if((x->r = t->l)) t->l->p = x;\n t->l = x, x->p = t;\n update(x), update(t);\n if((t->p = y)) {\n if(y->l == x) y->l = t;\n if(y->r == x) y->r = t;\n update(y);\n }\n }\n\n\n void splay(Node *t) {\n push(t);\n while(!t->is_root()) {\n auto *q = t->p;\n if(q->is_root()) {\n push(q), push(t);\n if(q->l == t) rotr(t);\n else rotl(t);\n } else {\n auto *r = q->p;\n push(r), push(q), push(t);\n if(r->l == q) {\n if(q->l == t) rotr(q), rotr(t);\n else rotl(t), rotr(t);\n } else {\n if(q->r == t) rotl(q), rotl(t);\n else rotr(t), rotl(t);\n }\n }\n }\n }\n\n\n Node *expose(Node *t) {\n Node *rp = nullptr;\n for(auto *cur = t; cur; cur = cur->p) {\n splay(cur);\n if(cur->r) cur->sum.add(cur->r->sum);\n cur->r = rp;\n if(cur->r) cur->sum.erase(cur->r->sum);\n update(cur);\n rp = cur;\n }\n splay(t);\n return rp;\n }\n\n void link(Node *child, Node *parent) {\n expose(child);\n expose(parent);\n child->p = parent;\n parent->r = child;\n }\n\n void cut(Node *child) {\n expose(child);\n auto *parent = child->l;\n child->l = nullptr;\n parent->p = nullptr;\n update(child);\n }\n\n void evert(Node *t) {\n expose(t);\n toggle(t);\n push(t);\n }\n\n Node *lca(Node *u, Node *v) {\n if(get_root(u) != get_root(v)) return nullptr;\n expose(u);\n return expose(v);\n }\n\n\n Node *get_kth(Node *x, int k) {\n expose(x);\n while(x) {\n push(x);\n if(x->r && x->r->sz > k) {\n x = x->r;\n } else {\n if(x->r) k -= x->r->sz;\n if(k == 0) return x;\n k -= 1;\n x = x->l;\n }\n }\n return nullptr;\n }\n\n Node *get_root(Node *x) {\n expose(x);\n while(x->l) {\n push(x);\n x = x->l;\n }\n return x;\n }\n};\n\ntemplate< int mod >\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n\n ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n\n ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n\n ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n\n ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n\n bool operator==(const ModInt &p) const { return x == p.x; }\n\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\n\nusing modint = ModInt< mod >;\n\n\nint main() {\n\n\n struct Sum {\n modint all, pdist, cdist, sz, mdist, msz;\n modint v_sum, m_sum;\n\n Sum() : all(0), pdist(0), cdist(0), sz(0), mdist(0), msz(0), v_sum(0), m_sum(0) {}\n\n void toggle() {\n swap(pdist, cdist);\n }\n\n void merge(int64 key, const Sum &parent, const Sum &child) {\n int64 sw = 0;\n v_sum = parent.v_sum + child.v_sum + m_sum;\n if(key < 0) {\n sw = -key;\n v_sum += sw;\n key = 0;\n }\n all = parent.all + key + child.all;\n pdist = parent.pdist + (child.all + key) * (parent.sz + sw + msz) + child.pdist + mdist;\n cdist = child.cdist + (parent.all + key) * (child.sz + sw + msz) + parent.cdist + mdist;\n sz = parent.sz + child.sz + msz + sw;\n }\n\n void add(const Sum &chsum) {\n mdist += chsum.cdist;\n msz += chsum.sz;\n m_sum += chsum.v_sum;\n }\n\n void erase(const Sum &chsum) {\n mdist -= chsum.cdist;\n msz -= chsum.sz;\n m_sum -= chsum.v_sum;\n }\n } e;\n int N;\n cin >> N;\n vector< int64 > V(N);\n cin >> V;\n using LCT = LinkCutTreeSubtree< Sum, int64 >;\n LCT lct(e);\n vector< LCT::Node * > vs(N), es(N);\n for(int i = 0; i < N; i++) {\n vs[i] = lct.make_node(-V[i]);\n }\n vector< int > S(N), T(N);\n for(int i = 0; i + 1 < N; i++) {\n int a, b, w;\n cin >> a >> b >> w;\n --a, --b;\n lct.evert(vs[a]);\n lct.evert(vs[b]);\n es[i] = lct.make_node(w);\n lct.link(vs[a], es[i]);\n lct.link(vs[b], es[i]);\n S[i] = a;\n T[i] = b;\n }\n modint all = 0;\n // v[i]を増やすとv[i]からの全点間なんとかを求めれば良い\n for(int i = 0; i < N; i++) {\n lct.evert(vs[i]);\n all += vs[i]->sum.cdist * V[i];\n }\n all /= 2;\n cout << all << \"\\n\";\n int Q;\n cin >> Q;\n while(Q--) {\n int t, a, b;\n cin >> t >> a >> b;\n --a;\n if(t == 1) {\n lct.evert(vs[a]);\n all -= vs[a]->sum.cdist * -vs[a]->key;\n vs[a]->key -= b;\n lct.update(vs[a]);\n all += vs[a]->sum.cdist * -vs[a]->key;\n } else {\n lct.evert(es[a]);\n lct.cut(vs[S[a]]);\n lct.cut(vs[T[a]]);\n modint latte = vs[S[a]]->sum.v_sum;\n modint malta = vs[T[a]]->sum.v_sum;\n all += latte * malta * b;\n es[a]->key += b;\n lct.link(vs[S[a]], es[a]);\n lct.link(vs[T[a]], es[a]);\n }\n cout << all << \"\\n\";\n }\n}", "accuracy": 1, "time_ms": 840, "memory_kb": 40580, "score_of_the_acc": -0.542, "final_rank": 4 }, { "submission_id": "aoj_3179_4840436", "code_snippet": "#include<iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\n#include<iomanip>\n#include<math.h>\n#include<complex>\n#include<queue>\n#include<deque>\n#include<stack>\n#include<map>\n#include<set>\n#include<bitset>\nusing namespace std;\n#define REP(i,m,n) for(int i=(int)m ; i < (int) n ; ++i )\n#define rep(i,n) REP(i,0,n)\ntypedef long long ll;\ntypedef pair<int,int> pint;\ntypedef pair<ll,int> pli;\nconst int inf=1e9+7;\nconst ll longinf=1LL<<60 ;\nconst ll mod=998244353 ;\nint dx[4]={1,0,-1,0} , dy[4]={0,1,0,-1} ;\n\nstruct Node {\n ll abc,ab,ac,bc,a,b,c;\n Node(ll a,ll b, ll c):a(a),b(b),c(c) {\n ab = a * b % mod;\n ac = a * c % mod;\n bc = b * c % mod;\n abc = ab * c % mod;\n }\n};\n\nstruct Op {\n ll a, b, c;\n};\n\ntemplate<typename T, typename S>\nstruct LazySegmentTree{\n int n;\n vector<T> node;\n vector<S> lazy;\n T E0;\n S E1;\n\n inline void updatef(S& lazy,S& value){\n //lazy += value;\n lazy.a += value.a;\n if(lazy.a >= mod) lazy.a -= mod;\n lazy.b += value.b;\n if(lazy.b >= mod) lazy.b -= mod;\n lazy.c += value.c;\n if(lazy.c >= mod) lazy.c -= mod;\n //lazy = max(lazy, value);\n //lazy = min(lazy, value);\n }\n inline void calculatef(T& node,S& lazy,int len){\n //node += lazy * len; //区間sumはこっち\n // node += lazy ; //区間maxとか\n if(lazy.a) {\n node.abc = (node.abc + node.bc * lazy.a) % mod;\n node.ab = (node.ab + node.b * lazy.a) % mod;\n node.ac = (node.ac + node.c * lazy.a) % mod;\n node.a += lazy.a;\n if(node.a >= mod)node.a -= mod;\n }\n if(lazy.b) {\n node.abc = (node.abc + node.ac * lazy.b) % mod;\n node.bc = (node.bc + node.c * lazy.b) % mod;\n node.ab = (node.ab + node.a * lazy.b) % mod;\n node.b += lazy.b;\n if(node.b >= mod)node.b -= mod;\n }\n if(lazy.c) {\n node.abc = (node.abc + node.ab * lazy.c) % mod;\n node.ac = (node.ac + node.a * lazy.c) % mod;\n node.bc = (node.bc + node.b * lazy.c) % mod;\n node.c += lazy.c;\n if(node.c >= mod)node.c -= mod;\n }\n }\n inline T queryf(T& x,T& y){\n //return x + y;\n //return x * y;\n //return max(x, y);\n Node z(0,0,0);\n z.abc = x.abc + y.abc;\n if(z.abc>=mod)z.abc -= mod;\n z.ab = x.ab + y.ab;\n if(z.ab>=mod)z.ab -= mod;\n z.ac = x.ac + y.ac;\n if(z.ac>=mod)z.ac -= mod;\n z.bc = x.bc + y.bc;\n if(z.bc>=mod)z.bc -= mod;\n z.a = x.a + y.a;\n if(z.a>=mod)z.a -= mod;\n z.b = x.b + y.b;\n if(z.b>=mod)z.b -= mod;\n z.c = x.c + y.c;\n if(z.c>=mod)z.c -= mod;\n return z;\n }\npublic:\n LazySegmentTree(int sz,T nodeE,S lazyE ):E0(nodeE), E1(lazyE){\n n=1;\n while(n<sz)n<<=1;\n node.resize(2*n-1,E0);\n lazy.resize(2*n-1,E1);\n }\n\n LazySegmentTree(vector<T>& v,T E0,S E1 ):E0(E0),E1(E1){\n n=1;\n int sz=v.size();\n while(n<sz)n<<=1;\n node.resize(2*n-1,E0);\n lazy.resize(2*n-1,E1);\n rep(i,sz)node[i+n-1] = v[i];\n for(int i=n-2; i>=0; --i){\n node[i] = queryf(node[2*i+1],node[2*i+2]);\n }\n }\n\n void eval(int k,int l,int r){\n if(!lazy[k].a && !lazy[k].b && !lazy[k].c )return ;\n calculatef(node[k], lazy[k], r-l);\n if(r-l>1){\n updatef(lazy[2*k+1], lazy[k]);\n updatef(lazy[2*k+2], lazy[k]);\n }\n lazy[k]=E1;\n }\n\n void update(int a, int b, S x,int k=0,int l=0,int r=-1){\n if(r<0)r=n;\n eval(k,l,r);\n if(r<=a||b<=l)return;\n if(a<=l&&r<=b){\n updatef(lazy[k], x);\n eval(k,l,r);\n }\n else {\n update(a,b,x,2*k+1,l,(l+r)/2);\n update(a,b,x,2*k+2,(l+r)/2,r);\n node[k]=queryf(node[2*k+1], node[2*k+2]);\n }\n }\n\n T query(int a,int b,int k=0,int l=0,int r=-1){\n if(r<0)r=n;\n eval(k,l,r);\n if(r<=a||b<=l)return E0;\n if(a<=l&&r<=b)return node[k];\n T xl=query(a,b,2*k+1,l,(l+r)/2);\n T xr=query(a,b,2*k+2,(l+r)/2,r);\n return queryf(xl, xr);\n }\n};\nLazySegmentTree<Node, Op> sg(1,Node(0,0,0), {0,0,0});\n\nstruct HLDecomposition{\n int n,pos;\n vector<vector<int>> v;\n vector<int> idx,head,sz,hvy,par,depth,inv,type;\n \n HLDecomposition(){};\n HLDecomposition(int s):\n n(s),pos(0),v(n),idx(n,-1),head(n),sz(n,1),\n hvy(n,-1),par(n),depth(n),inv(n),type(n){}\n \n void addedge(int x,int y){\n v[x].push_back(y);\n v[y].push_back(x);\n }\n \n void dfs1(int rt){\n par[rt]=-1;\n depth[rt]=0;\n stack<pint> st;\n st.push({rt,0});\n while(!st.empty()){\n int x=st.top().first;\n int& i=st.top().second;\n if(i<(int)v[x].size()){\n int to=v[x][i++];\n if(to==par[x])continue;\n par[to]=x;\n depth[to]=depth[x]+1;\n st.push({to,0});\n }\n else {\n st.pop();\n int res=0;\n for(int to:v[x]){\n if(to==par[x])continue;\n sz[x]+=sz[to];\n if(sz[to]>res)res=sz[to],hvy[x]=to;\n }\n }\n }\n }\n void dfs2(int r,int c){\n int &k=pos;\n stack<int> st;\n st.push(r);\n while(!st.empty()){\n int h=st.top();st.pop();\n for(int x=h;x!=-1;x=hvy[x]){\n type[x]=c;\n head[x]=h;\n idx[x]=k++;\n inv[idx[x]]=x;\n for(int to:v[x])\n if(to!=par[x]&&to!=hvy[x])st.push(to);\n }\n }\n }\n \n void build(vector<int> rs=vector<int>(1,0)){\n int c=0;\n for(int r:rs){\n dfs1(r);\n dfs2(r,c++);\n }\n }\n void f(int x,int y, ll z){\n //ここに何か書く!!!\n sg.update(x,y+1, {0,z,mod-z});\n }\n \n /*void for_v(int x,int y){\n while(1){\n if(idx[x]>idx[y])swap(x,y);\n f(max(idx[head[y]],idx[x]),idx[y]);\n if(head[x]!=head[y])y=par[head[y]];\n else break;\n }\n }*/\n \n void for_edge(int x,int y, ll z){\n ll ret=0;\n while(1){\n if(idx[x]>idx[y])swap(x,y);\n if(head[x]!=head[y]){\n f(idx[head[y]],idx[y], z);\n y=par[head[y]];\n }\n else{\n if(x!=y)f(idx[x]+1,idx[y], z);\n break;\n }\n }\n }\n int lca(int x,int y){\n while(1){\n if(idx[x]>idx[y])swap(x,y);\n if(head[x]==head[y])return x;\n y=par[head[y]];\n }\n }\n \n int dist(int x,int y){\n return depth[x]+depth[y]-2*depth[lca(x,y)];\n }\n};\n\nvector<vector<pair<int,int>>> v(202020);\nvector<ll> w(202020);\nvoid dfs(int x, int p) {\n for(auto to : v[x]){\n if(to.first == p) continue;\n dfs(to.first, x);\n w[x] += w[to.first];\n if(w[x]>=mod)w[x]-=mod;\n }\n}\nint main(){\n int n;\n cin>>n;\n rep(i,n)cin>>w[i];\n HLDecomposition hl(n);\n vector<int> a(n-1), b(n-1), u(n-1);\n rep(i,n-1){\n int x,y,z;\n cin>>x>>y>>z;\n --x;--y;\n v[x].emplace_back(y,z);\n v[y].emplace_back(x,z);\n hl.addedge(x,y);\n a[i] = x;\n b[i] = y;\n u[i] = z;\n }\n dfs(0, -1);\n hl.build();\n vector<Node> node(n, Node(0,0,0));\n rep(i,n-1){\n if(hl.idx[a[i]]>hl.idx[b[i]])swap(a[i],b[i]);\n int id = hl.idx[b[i]];\n node[id] = Node(u[i],w[b[i]], (w[0]+mod-w[b[i]])%mod);\n }\n sg = LazySegmentTree<Node, Op>(node, Node(0,0,0), {0,0,0});\n int size = sg.n;\n cout << sg.query(0, size).abc << endl;\n int q;\n cin >> q;\n while(q--){\n int t, x, z;\n cin >> t >> x >> z;\n --x;\n if(t == 1) {\n sg.update(0,size, {0,0,z});\n hl.for_edge(0, x, z);\n\n } else {\n int id = hl.idx[b[x]];\n sg.update(id, id + 1, {z,0,0});\n }\n cout << sg.query(0,size).abc << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 690, "memory_kb": 98820, "score_of_the_acc": -1.0951, "final_rank": 9 }, { "submission_id": "aoj_3179_4840423", "code_snippet": "#include<iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\n#include<iomanip>\n#include<math.h>\n#include<complex>\n#include<queue>\n#include<deque>\n#include<stack>\n#include<map>\n#include<set>\n#include<bitset>\nusing namespace std;\n#define REP(i,m,n) for(int i=(int)m ; i < (int) n ; ++i )\n#define rep(i,n) REP(i,0,n)\ntypedef long long ll;\ntypedef pair<int,int> pint;\ntypedef pair<ll,int> pli;\nconst int inf=1e9+7;\nconst ll longinf=1LL<<60 ;\nconst ll mod=998244353 ;\nint dx[4]={1,0,-1,0} , dy[4]={0,1,0,-1} ;\n\nstruct Node {\n ll abc,ab,ac,bc,a,b,c;\n Node(ll a,ll b, ll c):a(a),b(b),c(c) {\n ab = a * b % mod;\n ac = a * c % mod;\n bc = b * c % mod;\n abc = ab * c % mod;\n }\n};\n\nstruct Op {\n ll a, b, c;\n};\n\ntemplate<typename T, typename S>\nstruct LazySegmentTree{\n int n;\n vector<T> node;\n vector<S> lazy;\n T E0;\n S E1;\n\n inline void updatef(S& lazy,S& value){\n //lazy += value;\n lazy.a += value.a;\n if(lazy.a >= mod) lazy.a -= mod;\n lazy.b += value.b;\n if(lazy.b >= mod) lazy.b -= mod;\n lazy.c += value.c;\n if(lazy.c >= mod) lazy.c -= mod;\n //lazy = max(lazy, value);\n //lazy = min(lazy, value);\n }\n inline void calculatef(T& node,S& lazy,int len){\n //node += lazy * len; //区間sumはこっち\n // node += lazy ; //区間maxとか\n if(lazy.a) {\n node.abc = (node.abc + node.bc * lazy.a) % mod;\n node.ab = (node.ab + node.b * lazy.a) % mod;\n node.ac = (node.ac + node.c * lazy.a) % mod;\n node.a += lazy.a;\n if(node.a >= mod)node.a -= mod;\n }\n if(lazy.b) {\n node.abc = (node.abc + node.ac * lazy.b) % mod;\n node.bc = (node.bc + node.c * lazy.b) % mod;\n node.ab = (node.ab + node.a * lazy.b) % mod;\n node.b += lazy.b;\n if(node.b >= mod)node.b -= mod;\n }\n if(lazy.c) {\n node.abc = (node.abc + node.ab * lazy.c) % mod;\n node.ac = (node.ac + node.a * lazy.c) % mod;\n node.bc = (node.bc + node.b * lazy.c) % mod;\n node.c += lazy.c;\n if(node.c >= mod)node.c -= mod;\n }\n }\n inline T queryf(T& x,T& y){\n //return x + y;\n //return x * y;\n //return max(x, y);\n Node z(0,0,0);\n z.abc = x.abc + y.abc;\n if(z.abc>=mod)z.abc -= mod;\n z.ab = x.ab + y.ab;\n if(z.ab>=mod)z.ab -= mod;\n z.ac = x.ac + y.ac;\n if(z.ac>=mod)z.ac -= mod;\n z.bc = x.bc + y.bc;\n if(z.bc>=mod)z.bc -= mod;\n z.a = x.a + y.a;\n if(z.a>=mod)z.a -= mod;\n z.b = x.b + y.b;\n if(z.b>=mod)z.b -= mod;\n z.c = x.c + y.c;\n if(z.c>=mod)z.c -= mod;\n return z;\n }\npublic:\n LazySegmentTree(int sz,T nodeE,S lazyE ):E0(nodeE), E1(lazyE){\n n=1;\n while(n<sz)n<<=1;\n node.resize(2*n-1,E0);\n lazy.resize(2*n-1,E1);\n }\n\n LazySegmentTree(vector<T>& v,T E0,S E1 ):E0(E0),E1(E1){\n n=1;\n int sz=v.size();\n while(n<sz)n<<=1;\n node.resize(2*n-1,E0);\n lazy.resize(2*n-1,E1);\n rep(i,sz)node[i+n-1] = v[i];\n for(int i=n-2; i>=0; --i){\n node[i] = queryf(node[2*i+1],node[2*i+2]);\n }\n }\n\n void eval(int k,int l,int r){\n if(!lazy[k].a && !lazy[k].b && !lazy[k].c )return ;\n calculatef(node[k], lazy[k], r-l);\n if(r-l>1){\n updatef(lazy[2*k+1], lazy[k]);\n updatef(lazy[2*k+2], lazy[k]);\n }\n lazy[k]=E1;\n }\n\n void update(int a, int b, S x,int k=0,int l=0,int r=-1){\n if(r<0)r=n;\n eval(k,l,r);\n if(r<=a||b<=l)return;\n if(a<=l&&r<=b){\n updatef(lazy[k], x);\n eval(k,l,r);\n }\n else {\n update(a,b,x,2*k+1,l,(l+r)/2);\n update(a,b,x,2*k+2,(l+r)/2,r);\n node[k]=queryf(node[2*k+1], node[2*k+2]);\n }\n }\n\n T query(int a,int b,int k=0,int l=0,int r=-1){\n if(r<0)r=n;\n eval(k,l,r);\n if(r<=a||b<=l)return E0;\n if(a<=l&&r<=b)return node[k];\n T xl=query(a,b,2*k+1,l,(l+r)/2);\n T xr=query(a,b,2*k+2,(l+r)/2,r);\n return queryf(xl, xr);\n }\n};\nLazySegmentTree<Node, Op> sg(1,Node(0,0,0), {0,0,0});\n\nstruct HLDecomposition{\n int n,pos;\n vector<vector<int>> v;\n vector<int> idx,head,sz,hvy,par,depth,inv,type;\n \n HLDecomposition(){};\n HLDecomposition(int s):\n n(s),pos(0),v(n),idx(n,-1),head(n),sz(n,1),\n hvy(n,-1),par(n),depth(n),inv(n),type(n){}\n \n void addedge(int x,int y){\n v[x].push_back(y);\n v[y].push_back(x);\n }\n \n void dfs1(int rt){\n par[rt]=-1;\n depth[rt]=0;\n stack<pint> st;\n st.push({rt,0});\n while(!st.empty()){\n int x=st.top().first;\n int& i=st.top().second;\n if(i<(int)v[x].size()){\n int to=v[x][i++];\n if(to==par[x])continue;\n par[to]=x;\n depth[to]=depth[x]+1;\n st.push({to,0});\n }\n else {\n st.pop();\n int res=0;\n for(int to:v[x]){\n if(to==par[x])continue;\n sz[x]+=sz[to];\n if(sz[to]>res)res=sz[to],hvy[x]=to;\n }\n }\n }\n }\n void dfs2(int r,int c){\n int &k=pos;\n stack<int> st;\n st.push(r);\n while(!st.empty()){\n int h=st.top();st.pop();\n for(int x=h;x!=-1;x=hvy[x]){\n type[x]=c;\n head[x]=h;\n idx[x]=k++;\n inv[idx[x]]=x;\n for(int to:v[x])\n if(to!=par[x]&&to!=hvy[x])st.push(to);\n }\n }\n }\n \n void build(vector<int> rs=vector<int>(1,0)){\n int c=0;\n for(int r:rs){\n dfs1(r);\n dfs2(r,c++);\n }\n }\n void f(int x,int y, ll z){\n //ここに何か書く!!!\n sg.update(x,y+1, {0,z,mod-z});\n }\n \n /*void for_v(int x,int y){\n while(1){\n if(idx[x]>idx[y])swap(x,y);\n f(max(idx[head[y]],idx[x]),idx[y]);\n if(head[x]!=head[y])y=par[head[y]];\n else break;\n }\n }*/\n \n void for_edge(int x,int y, ll z){\n ll ret=0;\n while(1){\n if(idx[x]>idx[y])swap(x,y);\n if(head[x]!=head[y]){\n f(idx[head[y]],idx[y], z);\n y=par[head[y]];\n }\n else{\n if(x!=y)f(idx[x]+1,idx[y], z);\n break;\n }\n }\n }\n int lca(int x,int y){\n while(1){\n if(idx[x]>idx[y])swap(x,y);\n if(head[x]==head[y])return x;\n y=par[head[y]];\n }\n }\n \n int dist(int x,int y){\n return depth[x]+depth[y]-2*depth[lca(x,y)];\n }\n};\n\nvector<vector<pair<int,int>>> v(202020);\nvector<ll> w(202020);\nvoid dfs(int x, int p) {\n for(auto to : v[x]){\n if(to.first == p) continue;\n dfs(to.first, x);\n w[x] += w[to.first];\n if(w[x]>=mod)w[x]-=mod;\n }\n}\nint main(){\n int n;\n cin>>n;\n rep(i,n)cin>>w[i];\n HLDecomposition hl(n);\n vector<int> a(n-1), b(n-1), u(n-1);\n rep(i,n-1){\n int x,y,z;\n cin>>x>>y>>z;\n --x;--y;\n v[x].emplace_back(y,z);\n v[y].emplace_back(x,z);\n hl.addedge(x,y);\n a[i] = x;\n b[i] = y;\n u[i] = z;\n }\n dfs(0, -1);\n hl.build();\n vector<Node> node(n, Node(0,0,0));\n rep(i,n-1){\n if(hl.idx[a[i]]>hl.idx[b[i]])swap(a[i],b[i]);\n int id = hl.idx[b[i]];\n node[id] = Node(u[i],w[b[i]]%mod, (w[0]-w[b[i]])%mod);\n }\n sg = LazySegmentTree<Node, Op>(node, Node(0,0,0), {0,0,0});\n int size = sg.n;\n cout << sg.query(0, size).abc << endl;\n int q;\n cin >> q;\n while(q--){\n int t, x, z;\n cin >> t >> x >> z;\n --x;\n if(t == 1) {\n sg.update(0,size, {0,0,z});\n hl.for_edge(0, x, z);\n\n } else {\n int id = hl.idx[b[x]];\n sg.update(id, id + 1, {z,0,0});\n }\n cout << sg.query(0,size).abc << endl;\n }\n return 0;\n}", "accuracy": 0.07692307692307693, "time_ms": 670, "memory_kb": 88424, "score_of_the_acc": -0.9567, "final_rank": 12 }, { "submission_id": "aoj_3179_4840406", "code_snippet": "#include<iostream>\n#include<string>\n#include<algorithm>\n#include<vector>\n#include<iomanip>\n#include<math.h>\n#include<complex>\n#include<queue>\n#include<deque>\n#include<stack>\n#include<map>\n#include<set>\n#include<bitset>\nusing namespace std;\n#define REP(i,m,n) for(int i=(int)m ; i < (int) n ; ++i )\n#define rep(i,n) REP(i,0,n)\ntypedef long long ll;\ntypedef pair<int,int> pint;\ntypedef pair<ll,int> pli;\nconst int inf=1e9+7;\nconst ll longinf=1LL<<60 ;\nconst ll mod=998244353 ;\nint dx[4]={1,0,-1,0} , dy[4]={0,1,0,-1} ;\n\nstruct Node {\n ll abc,ab,ac,bc,a,b,c;\n Node(ll a,ll b, ll c):a(a),b(b),c(c) {\n ab = a * b % mod;\n ac = a * c % mod;\n bc = b * c % mod;\n abc = ab * c % mod;\n }\n};\n\nstruct Op {\n ll a, b, c;\n};\n\ntemplate<typename T, typename S>\nstruct LazySegmentTree{\n int n;\n vector<T> node;\n vector<S> lazy;\n T E0;\n S E1;\n\n inline void updatef(S& lazy,S& value){\n //lazy += value;\n lazy.a += value.a;\n if(lazy.a >= mod) lazy.a -= mod;\n lazy.b += value.b;\n if(lazy.b >= mod) lazy.b -= mod;\n lazy.c += value.c;\n if(lazy.c >= mod) lazy.c -= mod;\n //lazy = max(lazy, value);\n //lazy = min(lazy, value);\n }\n inline void calculatef(T& node,S& lazy,int len){\n //node += lazy * len; //区間sumはこっち\n // node += lazy ; //区間maxとか\n if(lazy.a) {\n node.abc = (node.abc + node.bc * lazy.a) % mod;\n node.ab = (node.ab + node.b * lazy.a) % mod;\n node.ac = (node.ac + node.c * lazy.a) % mod;\n node.a += lazy.a;\n if(node.a >= mod)node.a -= mod;\n }\n if(lazy.b) {\n node.abc = (node.abc + node.ac * lazy.b) % mod;\n node.bc = (node.bc + node.c * lazy.b) % mod;\n node.ab = (node.ab + node.a * lazy.b) % mod;\n node.b += lazy.b;\n if(node.b >= mod)node.b -= mod;\n }\n if(lazy.c) {\n node.abc = (node.abc + node.ab * lazy.c) % mod;\n node.ac = (node.ac + node.a * lazy.c) % mod;\n node.bc = (node.bc + node.b * lazy.c) % mod;\n node.c += lazy.c;\n if(node.c >= mod)node.c -= mod;\n }\n }\n inline T queryf(T& x,T& y){\n //return x + y;\n //return x * y;\n //return max(x, y);\n Node z(0,0,0);\n z.abc = x.abc + y.abc;\n if(z.abc>=mod)z.abc -= mod;\n z.ab = x.ab + y.ab;\n if(z.ab>=mod)z.ab -= mod;\n z.ac = x.ac + y.ac;\n if(z.ac>=mod)z.ac -= mod;\n z.bc = x.bc + y.bc;\n if(z.bc>=mod)z.bc -= mod;\n z.a = x.a + y.a;\n if(z.a>=mod)z.a -= mod;\n z.b = x.b + y.b;\n if(z.b>=mod)z.b -= mod;\n z.c = x.c + y.c;\n if(z.c>=mod)z.c -= mod;\n return z;\n }\npublic:\n LazySegmentTree(int sz,T nodeE,S lazyE ):E0(nodeE), E1(lazyE){\n n=1;\n while(n<sz)n<<=1;\n node.resize(2*n-1,E0);\n lazy.resize(2*n-1,E1);\n }\n\n LazySegmentTree(vector<T>& v,T E0,S E1 ):E0(E0),E1(E1){\n n=1;\n int sz=v.size();\n while(n<sz)n<<=1;\n node.resize(2*n-1,E0);\n lazy.resize(2*n-1,E1);\n rep(i,sz)node[i+n-1] = v[i];\n for(int i=n-2; i>=0; --i){\n node[i] = queryf(node[2*i+1],node[2*i+2]);\n }\n }\n\n void eval(int k,int l,int r){\n if(!lazy[k].a && !lazy[k].b && !lazy[k].c )return ;\n calculatef(node[k], lazy[k], r-l);\n if(r-l>1){\n updatef(lazy[2*k+1], lazy[k]);\n updatef(lazy[2*k+2], lazy[k]);\n }\n lazy[k]=E1;\n }\n\n void update(int a, int b, S x,int k=0,int l=0,int r=-1){\n if(r<0)r=n;\n eval(k,l,r);\n if(r<=a||b<=l)return;\n if(a<=l&&r<=b){\n updatef(lazy[k], x);\n eval(k,l,r);\n }\n else {\n update(a,b,x,2*k+1,l,(l+r)/2);\n update(a,b,x,2*k+2,(l+r)/2,r);\n node[k]=queryf(node[2*k+1], node[2*k+2]);\n }\n }\n\n T query(int a,int b,int k=0,int l=0,int r=-1){\n if(r<0)r=n;\n eval(k,l,r);\n if(r<=a||b<=l)return E0;\n if(a<=l&&r<=b)return node[k];\n T xl=query(a,b,2*k+1,l,(l+r)/2);\n T xr=query(a,b,2*k+2,(l+r)/2,r);\n return queryf(xl, xr);\n }\n};\nLazySegmentTree<Node, Op> sg(1,Node(0,0,0), {0,0,0});\n\nstruct HLDecomposition{\n int n,pos;\n vector<vector<int>> v;\n vector<int> idx,head,sz,hvy,par,depth,inv,type;\n \n HLDecomposition(){};\n HLDecomposition(int s):\n n(s),pos(0),v(n),idx(n,-1),head(n),sz(n,1),\n hvy(n,-1),par(n),depth(n),inv(n),type(n){}\n \n void addedge(int x,int y){\n v[x].push_back(y);\n v[y].push_back(x);\n }\n \n void dfs1(int rt){\n par[rt]=-1;\n depth[rt]=0;\n stack<pint> st;\n st.push({rt,0});\n while(!st.empty()){\n int x=st.top().first;\n int& i=st.top().second;\n if(i<(int)v[x].size()){\n int to=v[x][i++];\n if(to==par[x])continue;\n par[to]=x;\n depth[to]=depth[x]+1;\n st.push({to,0});\n }\n else {\n st.pop();\n int res=0;\n for(int to:v[x]){\n if(to==par[x])continue;\n sz[x]+=sz[to];\n if(sz[to]>res)res=sz[to],hvy[x]=to;\n }\n }\n }\n }\n void dfs2(int r,int c){\n int &k=pos;\n stack<int> st;\n st.push(r);\n while(!st.empty()){\n int h=st.top();st.pop();\n for(int x=h;x!=-1;x=hvy[x]){\n type[x]=c;\n head[x]=h;\n idx[x]=k++;\n inv[idx[x]]=x;\n for(int to:v[x])\n if(to!=par[x]&&to!=hvy[x])st.push(to);\n }\n }\n }\n \n void build(vector<int> rs=vector<int>(1,0)){\n int c=0;\n for(int r:rs){\n dfs1(r);\n dfs2(r,c++);\n }\n }\n void f(int x,int y, ll z){\n //ここに何か書く!!!\n sg.update(x,y+1, {0,z,mod-z});\n }\n \n /*void for_v(int x,int y){\n while(1){\n if(idx[x]>idx[y])swap(x,y);\n f(max(idx[head[y]],idx[x]),idx[y]);\n if(head[x]!=head[y])y=par[head[y]];\n else break;\n }\n }*/\n \n void for_edge(int x,int y, ll z){\n ll ret=0;\n while(1){\n if(idx[x]>idx[y])swap(x,y);\n if(head[x]!=head[y]){\n f(idx[head[y]],idx[y], z);\n y=par[head[y]];\n }\n else{\n if(x!=y)f(idx[x]+1,idx[y], z);\n break;\n }\n }\n }\n int lca(int x,int y){\n while(1){\n if(idx[x]>idx[y])swap(x,y);\n if(head[x]==head[y])return x;\n y=par[head[y]];\n }\n }\n \n int dist(int x,int y){\n return depth[x]+depth[y]-2*depth[lca(x,y)];\n }\n};\n\nvector<vector<pair<int,int>>> v(202020);\nvector<ll> w(202020);\nvoid dfs(int x, int p) {\n for(auto to : v[x]){\n if(to.first == p) continue;\n dfs(to.first, x);\n w[x] += w[to.first];\n if(w[x]>=mod)w[x]-=mod;\n }\n}\nint main(){\n int n;\n cin>>n;\n rep(i,n)cin>>w[i];\n HLDecomposition hl(n);\n vector<int> a(n-1), b(n-1), u(n-1);\n rep(i,n-1){\n int x,y,z;\n cin>>x>>y>>z;\n --x;--y;\n v[x].emplace_back(y,z);\n v[y].emplace_back(x,z);\n hl.addedge(x,y);\n a[i] = x;\n b[i] = y;\n u[i] = z;\n }\n dfs(0, -1);\n hl.build();\n vector<Node> node(n, Node(0,0,0));\n rep(i,n-1){\n if(hl.idx[a[i]]>hl.idx[b[i]])swap(a[i],b[i]);\n int id = hl.idx[b[i]];\n node[id] = Node(u[i],w[b[i]], w[0]-w[b[i]]);\n }\n sg = LazySegmentTree<Node, Op>(node, Node(0,0,0), {0,0,0});\n int size = sg.n;\n cout << sg.query(0, size).abc << endl;\n int q;\n cin >> q;\n while(q--){\n int t, x, z;\n cin >> t >> x >> z;\n --x;\n if(t == 1) {\n sg.update(0,size, {0,0,z});\n hl.for_edge(0, x, z);\n\n } else {\n int id = hl.idx[b[x]];\n sg.update(id, id + 1, {z,0,0});\n }\n cout << sg.query(0,size).abc << endl;\n }\n return 0;\n}", "accuracy": 0.07692307692307693, "time_ms": 750, "memory_kb": 88384, "score_of_the_acc": -1.024, "final_rank": 13 } ]
aoj_3181_cpp
J Proper Instructions 問題文 umgくんは $1$ 次元上の座標 $0$ にいます。今は時刻 $0$ です。時刻が $1$ 進むごとに、今いる座標より $1$ 大きい座標に移動するか、 $1$ 小さい座標に移動するか、その座標にとどまるかという行動ができます。 $N$ 個の指示が与えられます。 $i$ 個目の指示は、「時刻 $T_i$ には $L_i\leq x \leq R_i$ を満たす座標 $x$ にいなければならない」という指示です。 $N$個の指示の空でない部分集合 $S$ が「適切」であるとは、umgくんが上手く動くことで、 $S$ に含まれるすべての指示に従うことができることをいいます。 適切である指示の集合としてあり得るものの個数を求めてください。ただし、 $2$ つの指示の集合が異なるとは、一方には含まれるが他方には含まれない指示が存在することをいいます。答えは非常に大きくなることがあるので、 $998244353$ で割った余りを求めてください。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $T_1$ $L_1$ $R_1$ $T_2$ $L_2$ $R_2$ $\vdots$ $T_N$ $L_N$ $R_N$ 制約 入力はすべて整数である。 $1 \leq N \leq 300$ $1 \leq T_1 \lt T_2 \lt \cdots \lt T_N \leq 10^9$ $-10^9 \leq L_i \leq R_i \leq 10^9$ 出力 答えを 1 行に出力せよ。 入力例1 3 1 0 2 2 -4 -2 4 2 10 出力例1 4 適切な指示の集合は $\{1\},\{2\},\{3\},\{1,3\}$ の4つです。 入力例2 3 1 100 200 40 100 200 60 100 200 出力例2 0 umgくんはどう頑張ってもいずれの指示も達成することができません。 入力例3 9 6 -64 84 7 39 99 37 -53 64 42 19 32 46 -86 -37 79 57 64 85 -96 -31 87 -10 79 91 -80 86 出力例3 95
[ { "submission_id": "aoj_3181_10355871", "code_snippet": "// AOJ #3181 Proper Instructions\n// 2025.4.7\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nconst ll MOD = 998244353;\n\nstruct Instr { ll t, L, R; };\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int n;\n cin >> n;\n vector<Instr> a(n);\n for(int i=0; i<n; i++) cin >> a[i].t >> a[i].L >> a[i].R;\n\n vector<map<pair<ll,ll>, ll>> dp(n);\n ll ans = 0;\n for (int i = 0; i < n; i++){\n ll lo = max(a[i].L, -a[i].t);\n ll hi = min(a[i].R, a[i].t);\n if(lo <= hi) dp[i][{lo, hi}] = (dp[i][{lo, hi}] + 1) % MOD;\n for (int j = 0; j < i; j++){\n ll d = a[i].t - a[j].t;\n for(auto &st : dp[j]){\n ll l = st.first.first, r = st.first.second;\n ll cnt = st.second;\n ll nl = max(a[i].L, l - d);\n ll nh = min(a[i].R, r + d);\n if(nl <= nh) dp[i][{nl, nh}] = (dp[i][{nl, nh}] + cnt) % MOD;\n }\n }\n for(auto &st: dp[i]) ans = (ans + st.second) % MOD;\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 11680, "score_of_the_acc": -0.3703, "final_rank": 7 }, { "submission_id": "aoj_3181_4906170", "code_snippet": "//#define _GLIBCXX_DEBUG\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define endl '\\n'\n#define lfs cout<<fixed<<setprecision(10)\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n#define spa << \" \" <<\n#define fi first\n#define se second\n#define MP make_pair\n#define MT make_tuple\n#define PB push_back\n#define EB emplace_back\n#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)\n#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)\nusing ll = long long;\nusing ld = long double;\nconst ll MOD1 = 1e9+7;\nconst ll MOD9 = 998244353;\nconst ll INF = 1e18;\nusing P = pair<ll, ll>;\ntemplate<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}\ntemplate<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}\nll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}\nvoid ans1(bool x){if(x) cout<<\"Yes\"<<endl;else cout<<\"No\"<<endl;}\nvoid ans2(bool x){if(x) cout<<\"YES\"<<endl;else cout<<\"NO\"<<endl;}\nvoid ans3(bool x){if(x) cout<<\"Yay!\"<<endl;else cout<<\":(\"<<endl;}\ntemplate<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} \ntemplate<typename T>void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};\nvoid debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++){for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};\ntemplate<typename T>void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};\ntemplate<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}\nll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}\nvector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};\ntemplate<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}\ntemplate<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}\ntemplate<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << \" \" << p.second;}\ntemplate<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << \" \";cout<<\"|\"; return os;}\n//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());\ntemplate< int mod >\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n\n friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) {\n return ModInt(lhs) += rhs;\n }\n friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) {\n return ModInt(lhs) -= rhs;\n }\n friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) {\n return ModInt(lhs) *= rhs;\n }\n friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) {\n return ModInt(lhs) /= rhs;\n }\n\n bool operator==(const ModInt &p) const { return x == p.x; }\n\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\nusing modint = ModInt< MOD9 >;modint pow(ll n, ll x){return modint(n).pow(x);}modint pow(modint n, ll x){return n.pow(x);}\n//using modint=ld;\nint main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n ll res=0,buf=0;\n bool judge = true;\n ll n;cin>>n;\n vector<ll>t(n+1),l(n+1),r(n+1);\n rep(i,1,n+1)cin>>t[i]>>l[i]>>r[i];\n auto dp=vec(n+1,n+1,modint(0));\n dp[0][0]=1;\n rep(i,1,n+1){\n auto ndp=vec(n+1,n+1,modint(0));\n rep(j,0,i)rep(o,0,i){\n ndp[j][o]+=dp[j][o];\n ll nl=l[j]-(t[i]-t[j]);\n ll nr=r[o]+(t[i]-t[o]);\n if(nr<l[i]||r[i]<nl)continue;\n ll tx=j,ty=o;\n if(nl<l[i])tx=i;\n if(nr>r[i])ty=i;\n ndp[tx][ty]+=dp[j][o];\n }\n dp.swap(ndp);\n //debug(dp,n+1,n+1);cout<<endl;\n }\n modint ret=0;\n rep(i,0,n+1)rep(j,0,n+1)ret+=dp[i][j];\n cout<<ret-1<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3700, "score_of_the_acc": -0.0333, "final_rank": 2 }, { "submission_id": "aoj_3181_4879596", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, m, n) for(int(i) = (int)(m); i < (int)(n); ++i)\n#define rep2(i, m, n) for(int(i) = (int)(n)-1; i >= (int)(m); --i)\n#define REP(i, n) rep(i, 0, n)\n#define REP2(i, n) rep2(i, 0, n)\n#define all(hoge) (hoge).begin(), (hoge).end()\n#define en '\\n'\nusing ll = long long;\nusing ull = unsigned long long;\ntemplate <class T>\nusing vec = vector<T>;\ntemplate <class T>\nusing vvec = vector<vec<T>>;\ntypedef pair<ll, ll> P;\nusing tp = tuple<ll, ll, ll>;\nconstexpr long long INF = 1LL << 60;\nconstexpr int INF_INT = 1 << 25;\n//constexpr long long MOD = (ll)1e9 + 7;\nconstexpr long long MOD = 998244353LL;\nusing ld = long double;\nstatic const ld pi = 3.141592653589793L;\ntypedef vector<ll> Array;\ntypedef vector<Array> Matrix;\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\n//グラフ関連\nstruct Edge {\n ll to, cap, rev;\n Edge(ll _to, ll _cap, ll _rev) {\n to = _to;\n cap = _cap;\n rev = _rev;\n }\n};\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\n\nvoid add_edge(Graph &G, ll from, ll to, ll cap, bool revFlag, ll revCap) {\n G[from].push_back(Edge(to, cap, (ll)G[to].size()));\n if(revFlag)\n G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1));\n}\nvoid solve() {\n ll n;\n cin >> n;\n vec<ll> t(n + 1, 0), l(n + 1, 0), r(n + 1, 0);\n rep(i, 1, n + 1) {\n cin >> t[i] >> l[i] >> r[i];\n }\n\n priority_queue<tp, vec<tp>, greater<tp>> que;\n que.push({0, 0, 0});\n map<tp, ll> mp;\n mp[{0, 0, 0}] = 1;\n ll ans = 0;\n while(que.size()) {\n auto [i, pl, pr] = que.top();\n que.pop();\n //cout << i << \" \" << pl << \" \" << pr << en;\n ll tmp = mp[{i, pl, pr}];\n (ans += tmp) %= MOD;\n rep(j, i + 1, n + 1) {\n ll d = t[j] - t[i];\n ll nl = max(pl - d, l[j]);\n ll nr = min(pr + d, r[j]);\n //cout << i << \" \" << j << \" \" << nl << \" \" << nr << en;\n if(nl > nr)\n continue;\n if(!mp.count({j, nl, nr}))\n que.push({j, nl, nr});\n (mp[{j, nl, nr}] += tmp) %= MOD;\n }\n }\n ans += MOD - 1;\n ans %= MOD;\n cout << ans << en;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout.tie(0);\n /*\n ll t;\n cin >> t;\n while(t--)*/\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 910, "memory_kb": 14440, "score_of_the_acc": -1.0498, "final_rank": 10 }, { "submission_id": "aoj_3181_4867757", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<58);\n\ntemplate <unsigned long long mod > class modint{\npublic:\n ll x;\n constexpr modint(){x = 0;}\n constexpr modint(ll _x) : x((_x < 0 ? ((_x += (LLONG_MAX / mod) * mod) < 0 ? _x + (LLONG_MAX / mod) * mod : _x) : _x)%mod){}\n constexpr void set_raw(ll _x){\n //_x in [0, mod)\n x = _x;\n }\n constexpr modint operator-(){\n return x == 0 ? 0 : mod - x;\n }\n constexpr modint& operator+=(const modint& a){\n if((x += a.x) >= mod) x -= mod;\n return *this;\n }\n constexpr modint operator+(const modint& a) const{\n return modint(*this) += a;\n }\n constexpr modint& operator-=(const modint& a){\n if((x -= a.x) < 0) x += mod;\n return *this;\n }\n constexpr modint operator-(const modint& a) const{\n return modint(*this) -= a;\n }\n constexpr modint& operator*=(const modint& a){\n (x *= a.x)%=mod;\n return *this;\n }\n constexpr modint operator*(const modint& a) const{\n return modint(*this) *= a;\n }\n constexpr modint pow(unsigned long long pw) const{\n modint res(1), comp(*this);\n while(pw){\n if(pw&1) res *= comp;\n comp *= comp;\n pw >>= 1;\n }\n return res;\n }\n //以下、modが素数のときのみ\n constexpr modint inv() const{\n return modint(*this).pow(mod - 2);\n }\n constexpr modint& operator/=(const modint &a){\n (x *= a.inv().x)%=mod;\n return *this;\n }\n constexpr modint operator/(const modint &a) const{\n return modint(*this) /= a;\n }\n};\n#define mod1 998244353\nusing mint = modint<mod1>;\n\nostream& operator<<(ostream& os, const mint& a){\n os << a.x;\n return os;\n}\nusing vm = vector<mint>;\n\nint main() {\n cin>>N;\n vec t(N + 1), l(N + 1), r(N + 1);\n t[0] = l[0] = r[0] = 0;\n reps(i, 1, N + 1) cin>>t[i]>>l[i]>>r[i];\n vector<vm> dp(N + 1, vm(N + 1, 0));\n dp[0][0] = 1;\n struct query{ int j, k; mint a; query(int _j, int _k, mint _a) : j(_j), k(_k), a(_a) {}};\n reps(i, 1, N + 1){\n queue<query> que;\n rep(j, i){\n rep(k, i){\n if(dp[j][k].x != 0 && r[i] >= l[j] - (t[i] - t[j]) && l[i] <= r[k] + (t[i] - t[k])){\n que.emplace(l[i] <= l[j] - (t[i] - t[j]) ? j : i, r[k] + (t[i] - t[k]) <= r[i] ? k : i, dp[j][k]);\n }\n }\n }\n while(!que.empty()){\n query q = que.front(); que.pop();\n dp[q.j][q.k] += q.a;\n }\n }\n mint res(0);\n rep(i, N + 1) res += accumulate(ALL(dp[i]), mint(0));\n cout<<res - 1<<endl;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3856, "score_of_the_acc": -0.0007, "final_rank": 1 }, { "submission_id": "aoj_3181_4849774", "code_snippet": "// #ifdef LOCAL\n// #define _GLIBCXX_DEBUG\n// #endif\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region aliases\n\n#define rep(i, n) for(long long i = 0; i < (n); i++)\n#define rrep(i, n) for(long long i = (n)-1; i > -1; i--)\n#define Rep(i, m, n) for(long long i = (m); i < (n); i++)\n#define rRep(i, m, n) for(long long i = (n)-1; i >= (m); i--)\n#define REP(i, m, n, p) for(long long i = m; i < n; i += p)\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define bcnt(n) __builtin_popcountll(n)\n#define endk endl\n#define ednl endl\n#define enld endl\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vb = vector<bool>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing mll = map<long long, long long>;\nusing pll = pair<long long, long long>;\nusing qll = queue<long long>;\nusing sll = set<long long>;\nusing vpll = vector<pair<long long, long long>>;\ntemplate <class T = ll>\nusing V = vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\n//昇順pq(小さい方から取り出す)\ntemplate <class T = ll>\nusing pqup = priority_queue<T, vector<T>, greater<T>>;\n//降順pq(大きい方から取り出す)\ntemplate <class T = ll>\nusing pqdn = priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nlong long const limLL = 9223372036854775807; // POW(2,63)-1 ~ 9.22e18\nlong long const dekai = 3e16;\nconst long double pi = acos(-1);\nconst char dl = '\\n';\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\nint ddx[8] = {-1, -1, -1, 0, 0, 1, 1, 1};\nint ddy[8] = {-1, 0, 1, -1, 1, -1, 0, 1};\n\n// const int mod = 1000000007;\nconst int mod = 998244353;\n\n#pragma endregion\n\n#pragma region basic_procedure\n\ntemplate <class T>\ninline bool isin(T x, T lef, T rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { cout << (f ? \"Yes\" : \"No\") << \"\\n\"; }\nvoid No() { cout << \"No\\n\"; }\nvoid YES(bool f = 1) { cout << (f ? \"YES\" : \"NO\") << \"\\n\"; }\nvoid NO() { cout << \"NO\\n\"; }\ntemplate <class T>\nvoid drop(T answer) {\n\tcout << answer << \"\\n\";\n\texit(0);\n}\nvoid err() {\n\tcout << -1 << \"\\n\";\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(vector<T> &v, bool tate = 0) {\n\tif(v.size() > 0) {\n\t\tfor(auto it = v.begin(); it < v.end(); it++) {\n\t\t\tcout << *it;\n\t\t\tif(it != v.end() - 1) {\n\t\t\t\tif(tate)\n\t\t\t\t\tcout << endl;\n\t\t\t\telse\n\t\t\t\t\tcout << \" \";\n\t\t\t}\n\t\t}\n\t}\n\tcout << endl;\n}\n\ntemplate <class T>\nvoid add(vector<T> &v, T val) {\t //ベクトルの各要素に加算\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\n// vectorの中身を数える map<要素,個数>を返す\ntemplate <class T>\nmap<T, long long> cntv(vector<T> v) {\n\tmap<T, long long> m;\n\tfor(auto &g : v) {\n\t\tif(m.count(g))\n\t\t\tm[g]++;\n\t\telse\n\t\t\tm[g] = 1;\n\t}\n\treturn m;\n}\n\n//配列圧縮\n//{1,36,1,3,8,-2,-92}を\n//{2, 5,2,3,4, 1, 0}にする\ntemplate <class T>\nvector<long long> press(vector<T> &v) {\n\tlong long n = v.size();\n\tvector<long long> w(n);\n\tmap<T, long long> m;\n\tfor(T &p : v) m[p] = 0;\n\tlong long i = 0;\n\tfor(auto &p : m) {\n\t\tp.second = i;\n\t\ti++;\n\t}\n\tfor(long long i = 0; i < n; i++) w.at(i) = m[v.at(i)];\n\treturn w;\n}\n\n// 切り上げ除算\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b != 0);\n\tT x = abs(a);\n\tT y = abs(b);\n\tT z = (x + y - 1) / y;\n\tif((a < 0 && b > 0) || (a > 0 && b < 0))\n\t\treturn -z;\n\telse if(a == 0)\n\t\treturn 0;\n\telse\n\t\treturn z;\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\n// a * x % mod == __gcd(a,mod)なるxを返す\n// a が modの倍数でないことが条件\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tswap(a, b);\n\t\tu -= t * v;\n\t\tswap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\nvvll comb(100, vll(100, -1));\nlong long com(long long n, long long k) { //普通の二項計数(overflowに注意)\n\tassert(n < 100 && k < 100);\n\tif(n < k || k < 0 || n < 0) return 0;\n\tif(comb[n][k] != -1) return comb[n][k];\n\tll res;\n\tif(n - k < k)\n\t\tres = com(n, n - k);\n\telse if(k == 0)\n\t\tres = 1;\n\telse\n\t\tres = com(n - 1, k - 1) + com(n - 1, k);\n\tcomb[n][k] = res;\n\treturn res;\n}\n\n// nCk modを求める\nconst int MAX = 5100000;\n// この値は求める二項計数の値に応じて変える\n// MAX=3*10^7のとき1900msほど、ほぼ比例\n// MAX=5*10^6程度ならそれほど気にしなくてよい(300ms程)\nlong long fac[MAX], finv[MAX], inv[MAX];\n\nvoid cominit() {\n\t// テーブルを作る前処理\n\tfac[0] = fac[1] = 1;\n\tfinv[0] = finv[1] = 1;\n\tinv[1] = 1;\n\tfor(int i = 2; i < MAX; i++) {\n\t\tfac[i] = fac[i - 1] * i % mod;\n\t\tinv[i] = mod - inv[mod % i] * (mod / i) % mod;\n\t\tfinv[i] = finv[i - 1] * inv[i] % mod;\n\t}\n}\nlong long commod(long long n, long long k) { // 二項係数\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * (finv[k] * finv[n - k] % mod) % mod;\n}\nlong long pmod(long long n, long long k) {\t// 順列\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * finv[n - k] % mod;\n}\n// n個の区別しないボールを区別するk個の箱に入れる方法の総数\nlong long hmod(long long n, long long k) {\t// 重複組み合わせ\n\treturn commod(n + k - 1, n);\n}\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tINPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tINPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define CHAR(...) \\\n\tchar __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define DOUBLE(...) \\\n\tdouble __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n\ntemplate <class T>\nvoid scan(T &a) {\n\tcin >> a;\n}\ntemplate <class T>\nvoid scan(vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\ntemplate <class T, class L>\nvoid scan(pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\ntemplate <class T>\ninline void print(T x) {\n\tcout << x << '\\n';\n}\n\ntemplate <typename T1, typename T2>\nistream &operator>>(istream &is, pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &os, const pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tcerr << \", \";\n\tview(p.second);\n\tcerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(std::set<T> &s) {\n\tif(s.empty()) {\n\t\tcerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tcerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tstd::cerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tcerr << \", \";\n\t\tview(c.second);\n\t\tcerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tcerr << \"] : \";\n\t\tview(t.second);\n\t\tcerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tview(H);\n\tcerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tcerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tview(x); \\\n\t\tcerr << \"\\n\"; \\\n\t} while(0)\n\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\n#pragma region modint\n\ntemplate <int mod>\nstruct ModInt {\n\tint x;\n\tModInt() : x(0) {}\n\tModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\tModInt &operator+=(const ModInt &p) {\n\t\tif((x += p.x) >= mod) x -= mod;\n\t\treturn *this;\n\t}\n\tModInt &operator-=(const ModInt &p) {\n\t\tif((x += mod - p.x) >= mod) x -= mod;\n\t\treturn *this;\n\t}\n\tModInt &operator*=(const ModInt &p) {\n\t\tx = (int)(1LL * x * p.x % mod);\n\t\treturn *this;\n\t}\n\tModInt &operator/=(const ModInt &p) {\n\t\t*this *= p.inverse();\n\t\treturn *this;\n\t}\n\tModInt operator-() const { return ModInt(-x); }\n\tModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n\tModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n\tModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n\tModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n\tbool operator==(const ModInt &p) const { return x == p.x; }\n\tbool operator!=(const ModInt &p) const { return x != p.x; }\n\tModInt inverse() const {\n\t\tint a = x, b = mod, u = 1, v = 0, t;\n\t\twhile(b > 0) {\n\t\t\tt = a / b;\n\t\t\tswap(a -= t * b, b);\n\t\t\tswap(u -= t * v, v);\n\t\t}\n\t\treturn ModInt(u);\n\t}\n\tModInt pow(long long n) const {\n\t\tModInt ret(1), mul(x);\n\t\twhile(n > 0) {\n\t\t\tif(n & 1) ret *= mul;\n\t\t\tmul *= mul;\n\t\t\tn >>= 1;\n\t\t}\n\t\treturn ret;\n\t}\n\tfriend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; }\n\tfriend istream &operator>>(istream &is, ModInt &a) {\n\t\tlong long t;\n\t\tis >> t;\n\t\ta = ModInt<mod>(t);\n\t\treturn (is);\n\t}\n\tstatic int get_mod() { return mod; }\n};\nusing mint = ModInt<mod>;\n\n#pragma endregion\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\tcout << fixed << setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tINT(n);\n\tvector<int> t(n + 1), l(n + 1), r(n + 1);\n\trep(i, n) { cin >> t[i + 1] >> l[i + 1] >> r[i + 1]; }\n\n\tvector<vector<mint>> dp(n + 1, vector<mint>(n + 1, 0));\n\tdp[0][0] = 1;\n\n\tusing tup = tuple<int, int, mint>;\n\tqueue<tup> q;\n\n\trep(i, n) {\n\t\tint now = i + 1;\n\t\trep(j, now) {\n\t\t\trep(k, now) {\n\t\t\t\tif(r[k] + (t[now] - t[k]) < l[now]) continue;\n\t\t\t\tif(r[now] < l[j] - (t[now] - t[j])) continue;\n\t\t\t\tint a, b;\n\t\t\t\ta = j, b = k;\n\t\t\t\tif(l[j] - (t[now] - t[j]) < l[now]) {\n\t\t\t\t\ta = now;\n\t\t\t\t}\n\t\t\t\tif(r[k] + (t[now] - t[k]) > r[now]) {\n\t\t\t\t\tb = now;\n\t\t\t\t}\n\t\t\t\t// debug(a, b, dp[j][k]);\n\t\t\t\t//if(l[a] > r[b]) continue;\n\t\t\t\tq.push((tup){a, b, dp[j][k]});\n\t\t\t}\n\t\t}\n\t\twhile(!q.empty()) {\n\t\t\tint a, b;\n\t\t\tmint r;\n\t\t\ttie(a, b, r) = q.front();\n\t\t\tq.pop();\n\t\t\tdp[a][b] += r;\n\t\t}\n\t}\n\n\tmint ans = -1;\n\trep(i, n + 1) rep(j, n + 1) { ans += dp[i][j]; }\n\n\tdrop(ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 5020, "score_of_the_acc": -0.0394, "final_rank": 4 }, { "submission_id": "aoj_3181_4849743", "code_snippet": "// #ifdef LOCAL\n// #define _GLIBCXX_DEBUG\n// #endif\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region aliases\n\n#define rep(i, n) for(long long i = 0; i < (n); i++)\n#define rrep(i, n) for(long long i = (n)-1; i > -1; i--)\n#define Rep(i, m, n) for(long long i = (m); i < (n); i++)\n#define rRep(i, m, n) for(long long i = (n)-1; i >= (m); i--)\n#define REP(i, m, n, p) for(long long i = m; i < n; i += p)\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define bcnt(n) __builtin_popcountll(n)\n#define endk endl\n#define ednl endl\n#define enld endl\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vb = vector<bool>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing mll = map<long long, long long>;\nusing pll = pair<long long, long long>;\nusing qll = queue<long long>;\nusing sll = set<long long>;\nusing vpll = vector<pair<long long, long long>>;\ntemplate <class T = ll>\nusing V = vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\n//昇順pq(小さい方から取り出す)\ntemplate <class T = ll>\nusing pqup = priority_queue<T, vector<T>, greater<T>>;\n//降順pq(大きい方から取り出す)\ntemplate <class T = ll>\nusing pqdn = priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nlong long const limLL = 9223372036854775807; // POW(2,63)-1 ~ 9.22e18\nlong long const dekai = 3e16;\nconst long double pi = acos(-1);\nconst char dl = '\\n';\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\nint ddx[8] = {-1, -1, -1, 0, 0, 1, 1, 1};\nint ddy[8] = {-1, 0, 1, -1, 1, -1, 0, 1};\n\n// const int mod = 1000000007;\nconst int mod = 998244353;\n\n#pragma endregion\n\n#pragma region basic_procedure\n\ntemplate <class T>\ninline bool isin(T x, T lef, T rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { cout << (f ? \"Yes\" : \"No\") << \"\\n\"; }\nvoid No() { cout << \"No\\n\"; }\nvoid YES(bool f = 1) { cout << (f ? \"YES\" : \"NO\") << \"\\n\"; }\nvoid NO() { cout << \"NO\\n\"; }\ntemplate <class T>\nvoid drop(T answer) {\n\tcout << answer << \"\\n\";\n\texit(0);\n}\nvoid err() {\n\tcout << -1 << \"\\n\";\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(vector<T> &v, bool tate = 0) {\n\tif(v.size() > 0) {\n\t\tfor(auto it = v.begin(); it < v.end(); it++) {\n\t\t\tcout << *it;\n\t\t\tif(it != v.end() - 1) {\n\t\t\t\tif(tate)\n\t\t\t\t\tcout << endl;\n\t\t\t\telse\n\t\t\t\t\tcout << \" \";\n\t\t\t}\n\t\t}\n\t}\n\tcout << endl;\n}\n\ntemplate <class T>\nvoid add(vector<T> &v, T val) {\t //ベクトルの各要素に加算\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\n// vectorの中身を数える map<要素,個数>を返す\ntemplate <class T>\nmap<T, long long> cntv(vector<T> v) {\n\tmap<T, long long> m;\n\tfor(auto &g : v) {\n\t\tif(m.count(g))\n\t\t\tm[g]++;\n\t\telse\n\t\t\tm[g] = 1;\n\t}\n\treturn m;\n}\n\n//配列圧縮\n//{1,36,1,3,8,-2,-92}を\n//{2, 5,2,3,4, 1, 0}にする\ntemplate <class T>\nvector<long long> press(vector<T> &v) {\n\tlong long n = v.size();\n\tvector<long long> w(n);\n\tmap<T, long long> m;\n\tfor(T &p : v) m[p] = 0;\n\tlong long i = 0;\n\tfor(auto &p : m) {\n\t\tp.second = i;\n\t\ti++;\n\t}\n\tfor(long long i = 0; i < n; i++) w.at(i) = m[v.at(i)];\n\treturn w;\n}\n\n// 切り上げ除算\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b != 0);\n\tT x = abs(a);\n\tT y = abs(b);\n\tT z = (x + y - 1) / y;\n\tif((a < 0 && b > 0) || (a > 0 && b < 0))\n\t\treturn -z;\n\telse if(a == 0)\n\t\treturn 0;\n\telse\n\t\treturn z;\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\n// a * x % mod == __gcd(a,mod)なるxを返す\n// a が modの倍数でないことが条件\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tswap(a, b);\n\t\tu -= t * v;\n\t\tswap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\nvvll comb(100, vll(100, -1));\nlong long com(long long n, long long k) { //普通の二項計数(overflowに注意)\n\tassert(n < 100 && k < 100);\n\tif(n < k || k < 0 || n < 0) return 0;\n\tif(comb[n][k] != -1) return comb[n][k];\n\tll res;\n\tif(n - k < k)\n\t\tres = com(n, n - k);\n\telse if(k == 0)\n\t\tres = 1;\n\telse\n\t\tres = com(n - 1, k - 1) + com(n - 1, k);\n\tcomb[n][k] = res;\n\treturn res;\n}\n\n// nCk modを求める\nconst int MAX = 5100000;\n// この値は求める二項計数の値に応じて変える\n// MAX=3*10^7のとき1900msほど、ほぼ比例\n// MAX=5*10^6程度ならそれほど気にしなくてよい(300ms程)\nlong long fac[MAX], finv[MAX], inv[MAX];\n\nvoid cominit() {\n\t// テーブルを作る前処理\n\tfac[0] = fac[1] = 1;\n\tfinv[0] = finv[1] = 1;\n\tinv[1] = 1;\n\tfor(int i = 2; i < MAX; i++) {\n\t\tfac[i] = fac[i - 1] * i % mod;\n\t\tinv[i] = mod - inv[mod % i] * (mod / i) % mod;\n\t\tfinv[i] = finv[i - 1] * inv[i] % mod;\n\t}\n}\nlong long commod(long long n, long long k) { // 二項係数\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * (finv[k] * finv[n - k] % mod) % mod;\n}\nlong long pmod(long long n, long long k) {\t// 順列\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * finv[n - k] % mod;\n}\n// n個の区別しないボールを区別するk個の箱に入れる方法の総数\nlong long hmod(long long n, long long k) {\t// 重複組み合わせ\n\treturn commod(n + k - 1, n);\n}\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tINPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tINPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define CHAR(...) \\\n\tchar __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define DOUBLE(...) \\\n\tdouble __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n\ntemplate <class T>\nvoid scan(T &a) {\n\tcin >> a;\n}\ntemplate <class T>\nvoid scan(vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\ntemplate <class T, class L>\nvoid scan(pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\ntemplate <class T>\ninline void print(T x) {\n\tcout << x << '\\n';\n}\n\ntemplate <typename T1, typename T2>\nistream &operator>>(istream &is, pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &os, const pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tcerr << \", \";\n\tview(p.second);\n\tcerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(std::set<T> &s) {\n\tif(s.empty()) {\n\t\tcerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tcerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tstd::cerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tcerr << \", \";\n\t\tview(c.second);\n\t\tcerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tcerr << \"] : \";\n\t\tview(t.second);\n\t\tcerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tview(H);\n\tcerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tcerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tview(x); \\\n\t\tcerr << \"\\n\"; \\\n\t} while(0)\n\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\n#pragma region modint\n\ntemplate <int mod>\nstruct ModInt {\n\tint x;\n\tModInt() : x(0) {}\n\tModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\tModInt &operator+=(const ModInt &p) {\n\t\tif((x += p.x) >= mod) x -= mod;\n\t\treturn *this;\n\t}\n\tModInt &operator-=(const ModInt &p) {\n\t\tif((x += mod - p.x) >= mod) x -= mod;\n\t\treturn *this;\n\t}\n\tModInt &operator*=(const ModInt &p) {\n\t\tx = (int)(1LL * x * p.x % mod);\n\t\treturn *this;\n\t}\n\tModInt &operator/=(const ModInt &p) {\n\t\t*this *= p.inverse();\n\t\treturn *this;\n\t}\n\tModInt operator-() const { return ModInt(-x); }\n\tModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n\tModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n\tModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n\tModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n\tbool operator==(const ModInt &p) const { return x == p.x; }\n\tbool operator!=(const ModInt &p) const { return x != p.x; }\n\tModInt inverse() const {\n\t\tint a = x, b = mod, u = 1, v = 0, t;\n\t\twhile(b > 0) {\n\t\t\tt = a / b;\n\t\t\tswap(a -= t * b, b);\n\t\t\tswap(u -= t * v, v);\n\t\t}\n\t\treturn ModInt(u);\n\t}\n\tModInt pow(long long n) const {\n\t\tModInt ret(1), mul(x);\n\t\twhile(n > 0) {\n\t\t\tif(n & 1) ret *= mul;\n\t\t\tmul *= mul;\n\t\t\tn >>= 1;\n\t\t}\n\t\treturn ret;\n\t}\n\tfriend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; }\n\tfriend istream &operator>>(istream &is, ModInt &a) {\n\t\tlong long t;\n\t\tis >> t;\n\t\ta = ModInt<mod>(t);\n\t\treturn (is);\n\t}\n\tstatic int get_mod() { return mod; }\n};\nusing mint = ModInt<mod>;\n\n#pragma endregion\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\tcout << fixed << setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tINT(n);\n\tvector<int> t(n + 1), l(n + 1), r(n + 1);\n\trep(i, n) { cin >> t[i + 1] >> l[i + 1] >> r[i + 1]; }\n\n\tvector<vector<mint>> dp(n + 1, vector<mint>(n + 1, 0));\n\tdp[0][0] = 1;\n\n\tusing tup = tuple<int, int, mint>;\n\tqueue<tup> q;\n\n\trep(i, n) {\n\t\tint now = i + 1;\n\t\trep(j, now) {\n\t\t\trep(k, now) {\n\t\t\t\tif(r[k] + (t[now] - t[k]) < l[now]) continue;\n\t\t\t\tif(r[now] < l[j] - (t[now] - t[j])) continue;\n\t\t\t\tint a, b;\n\t\t\t\ta = j, b = k;\n\t\t\t\tif(l[j] - (t[now] - t[j]) < l[now]) {\n\t\t\t\t\ta = now;\n\t\t\t\t}\n\t\t\t\tif(r[k] + (t[now] - t[k]) > r[now]) {\n\t\t\t\t\tb = now;\n\t\t\t\t}\n\t\t\t\t// debug(a, b, dp[j][k]);\n\t\t\t\t// if(l[a] > r[b]) continue;\n\t\t\t\tq.push((tup){a, b, dp[j][k]});\n\t\t\t}\n\t\t}\n\t\twhile(!q.empty()) {\n\t\t\tint a, b;\n\t\t\tmint r;\n\t\t\ttie(a, b, r) = q.front();\n\t\t\tq.pop();\n\t\t\tdp[a][b] += r;\n\t\t}\n\t\t// dump(dp);\n\t}\n\n\tmint ans = -1;\n\trep(i, n + 1) rep(j, n + 1) { ans += dp[i][j]; }\n\n\tdrop(ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 5016, "score_of_the_acc": -0.0394, "final_rank": 3 }, { "submission_id": "aoj_3181_4849732", "code_snippet": "// #ifdef LOCAL\n// #define _GLIBCXX_DEBUG\n// #endif\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region aliases\n\n#define rep(i, n) for(long long i = 0; i < (n); i++)\n#define rrep(i, n) for(long long i = (n)-1; i > -1; i--)\n#define Rep(i, m, n) for(long long i = (m); i < (n); i++)\n#define rRep(i, m, n) for(long long i = (n)-1; i >= (m); i--)\n#define REP(i, m, n, p) for(long long i = m; i < n; i += p)\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define bcnt(n) __builtin_popcountll(n)\n#define endk endl\n#define ednl endl\n#define enld endl\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vb = vector<bool>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing mll = map<long long, long long>;\nusing pll = pair<long long, long long>;\nusing qll = queue<long long>;\nusing sll = set<long long>;\nusing vpll = vector<pair<long long, long long>>;\ntemplate <class T = ll>\nusing V = vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\n//昇順pq(小さい方から取り出す)\ntemplate <class T = ll>\nusing pqup = priority_queue<T, vector<T>, greater<T>>;\n//降順pq(大きい方から取り出す)\ntemplate <class T = ll>\nusing pqdn = priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nlong long const limLL = 9223372036854775807; // POW(2,63)-1 ~ 9.22e18\nlong long const dekai = 3e16;\nconst long double pi = acos(-1);\nconst char dl = '\\n';\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\nint ddx[8] = {-1, -1, -1, 0, 0, 1, 1, 1};\nint ddy[8] = {-1, 0, 1, -1, 1, -1, 0, 1};\n\n// const int mod = 1000000007;\nconst int mod = 998244353;\n\n#pragma endregion\n\n#pragma region basic_procedure\n\ntemplate <class T>\ninline bool isin(T x, T lef, T rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { cout << (f ? \"Yes\" : \"No\") << \"\\n\"; }\nvoid No() { cout << \"No\\n\"; }\nvoid YES(bool f = 1) { cout << (f ? \"YES\" : \"NO\") << \"\\n\"; }\nvoid NO() { cout << \"NO\\n\"; }\ntemplate <class T>\nvoid drop(T answer) {\n\tcout << answer << \"\\n\";\n\texit(0);\n}\nvoid err() {\n\tcout << -1 << \"\\n\";\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(vector<T> &v, bool tate = 0) {\n\tif(v.size() > 0) {\n\t\tfor(auto it = v.begin(); it < v.end(); it++) {\n\t\t\tcout << *it;\n\t\t\tif(it != v.end() - 1) {\n\t\t\t\tif(tate)\n\t\t\t\t\tcout << endl;\n\t\t\t\telse\n\t\t\t\t\tcout << \" \";\n\t\t\t}\n\t\t}\n\t}\n\tcout << endl;\n}\n\ntemplate <class T>\nvoid add(vector<T> &v, T val) {\t //ベクトルの各要素に加算\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\n// vectorの中身を数える map<要素,個数>を返す\ntemplate <class T>\nmap<T, long long> cntv(vector<T> v) {\n\tmap<T, long long> m;\n\tfor(auto &g : v) {\n\t\tif(m.count(g))\n\t\t\tm[g]++;\n\t\telse\n\t\t\tm[g] = 1;\n\t}\n\treturn m;\n}\n\n//配列圧縮\n//{1,36,1,3,8,-2,-92}を\n//{2, 5,2,3,4, 1, 0}にする\ntemplate <class T>\nvector<long long> press(vector<T> &v) {\n\tlong long n = v.size();\n\tvector<long long> w(n);\n\tmap<T, long long> m;\n\tfor(T &p : v) m[p] = 0;\n\tlong long i = 0;\n\tfor(auto &p : m) {\n\t\tp.second = i;\n\t\ti++;\n\t}\n\tfor(long long i = 0; i < n; i++) w.at(i) = m[v.at(i)];\n\treturn w;\n}\n\n// 切り上げ除算\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b != 0);\n\tT x = abs(a);\n\tT y = abs(b);\n\tT z = (x + y - 1) / y;\n\tif((a < 0 && b > 0) || (a > 0 && b < 0))\n\t\treturn -z;\n\telse if(a == 0)\n\t\treturn 0;\n\telse\n\t\treturn z;\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\n// a * x % mod == __gcd(a,mod)なるxを返す\n// a が modの倍数でないことが条件\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tswap(a, b);\n\t\tu -= t * v;\n\t\tswap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\nvvll comb(100, vll(100, -1));\nlong long com(long long n, long long k) { //普通の二項計数(overflowに注意)\n\tassert(n < 100 && k < 100);\n\tif(n < k || k < 0 || n < 0) return 0;\n\tif(comb[n][k] != -1) return comb[n][k];\n\tll res;\n\tif(n - k < k)\n\t\tres = com(n, n - k);\n\telse if(k == 0)\n\t\tres = 1;\n\telse\n\t\tres = com(n - 1, k - 1) + com(n - 1, k);\n\tcomb[n][k] = res;\n\treturn res;\n}\n\n// nCk modを求める\nconst int MAX = 5100000;\n// この値は求める二項計数の値に応じて変える\n// MAX=3*10^7のとき1900msほど、ほぼ比例\n// MAX=5*10^6程度ならそれほど気にしなくてよい(300ms程)\nlong long fac[MAX], finv[MAX], inv[MAX];\n\nvoid cominit() {\n\t// テーブルを作る前処理\n\tfac[0] = fac[1] = 1;\n\tfinv[0] = finv[1] = 1;\n\tinv[1] = 1;\n\tfor(int i = 2; i < MAX; i++) {\n\t\tfac[i] = fac[i - 1] * i % mod;\n\t\tinv[i] = mod - inv[mod % i] * (mod / i) % mod;\n\t\tfinv[i] = finv[i - 1] * inv[i] % mod;\n\t}\n}\nlong long commod(long long n, long long k) { // 二項係数\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * (finv[k] * finv[n - k] % mod) % mod;\n}\nlong long pmod(long long n, long long k) {\t// 順列\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * finv[n - k] % mod;\n}\n// n個の区別しないボールを区別するk個の箱に入れる方法の総数\nlong long hmod(long long n, long long k) {\t// 重複組み合わせ\n\treturn commod(n + k - 1, n);\n}\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tINPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tINPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define CHAR(...) \\\n\tchar __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define DOUBLE(...) \\\n\tdouble __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n\ntemplate <class T>\nvoid scan(T &a) {\n\tcin >> a;\n}\ntemplate <class T>\nvoid scan(vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\ntemplate <class T, class L>\nvoid scan(pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\ntemplate <class T>\ninline void print(T x) {\n\tcout << x << '\\n';\n}\n\ntemplate <typename T1, typename T2>\nistream &operator>>(istream &is, pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &os, const pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tcerr << \", \";\n\tview(p.second);\n\tcerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(std::set<T> &s) {\n\tif(s.empty()) {\n\t\tcerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tcerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tstd::cerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tcerr << \", \";\n\t\tview(c.second);\n\t\tcerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tcerr << \"] : \";\n\t\tview(t.second);\n\t\tcerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tview(H);\n\tcerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tcerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tview(x); \\\n\t\tcerr << \"\\n\"; \\\n\t} while(0)\n\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\n#pragma region modint\n\ntemplate <int mod>\nstruct ModInt {\n\tint x;\n\tModInt() : x(0) {}\n\tModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\tModInt &operator+=(const ModInt &p) {\n\t\tif((x += p.x) >= mod) x -= mod;\n\t\treturn *this;\n\t}\n\tModInt &operator-=(const ModInt &p) {\n\t\tif((x += mod - p.x) >= mod) x -= mod;\n\t\treturn *this;\n\t}\n\tModInt &operator*=(const ModInt &p) {\n\t\tx = (int)(1LL * x * p.x % mod);\n\t\treturn *this;\n\t}\n\tModInt &operator/=(const ModInt &p) {\n\t\t*this *= p.inverse();\n\t\treturn *this;\n\t}\n\tModInt operator-() const { return ModInt(-x); }\n\tModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }\n\tModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }\n\tModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }\n\tModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }\n\tbool operator==(const ModInt &p) const { return x == p.x; }\n\tbool operator!=(const ModInt &p) const { return x != p.x; }\n\tModInt inverse() const {\n\t\tint a = x, b = mod, u = 1, v = 0, t;\n\t\twhile(b > 0) {\n\t\t\tt = a / b;\n\t\t\tswap(a -= t * b, b);\n\t\t\tswap(u -= t * v, v);\n\t\t}\n\t\treturn ModInt(u);\n\t}\n\tModInt pow(long long n) const {\n\t\tModInt ret(1), mul(x);\n\t\twhile(n > 0) {\n\t\t\tif(n & 1) ret *= mul;\n\t\t\tmul *= mul;\n\t\t\tn >>= 1;\n\t\t}\n\t\treturn ret;\n\t}\n\tfriend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; }\n\tfriend istream &operator>>(istream &is, ModInt &a) {\n\t\tlong long t;\n\t\tis >> t;\n\t\ta = ModInt<mod>(t);\n\t\treturn (is);\n\t}\n\tstatic int get_mod() { return mod; }\n};\nusing mint = ModInt<mod>;\n\n#pragma endregion\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\tcout << fixed << setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tINT(n);\n\tvector<int> t(n + 1), l(n + 1), r(n + 1);\n\trep(i, n) { cin >> t[i + 1] >> l[i + 1] >> r[i + 1]; }\n\n\tvector<vector<mint>> dp(n + 1, vector<mint>(n + 1, 0));\n\tdp[0][0] = 1;\n\n\tusing tup = tuple<int, int, mint>;\n\tqueue<tup> q;\n\n\trep(i, n) {\n\t\tint now = i + 1;\n\t\trep(j, n + 1) {\n\t\t\tif(j >= now) break;\n\t\t\trep(k, n + 1) {\n\t\t\t\tif(k >= now) break;\n\t\t\t\tif(r[k] + (t[now] - t[k]) < l[now]) continue;\n\t\t\t\tif(r[now] < l[j] - (t[now] - t[j])) continue;\n\t\t\t\tint a, b;\n\t\t\t\ta = j, b = k;\n\t\t\t\tif(l[j] - (t[now] - t[j]) < l[now]) {\n\t\t\t\t\ta = now;\n\t\t\t\t}\n\t\t\t\tif(r[j] + (t[now] - t[j]) > r[now]) {\n\t\t\t\t\tb = now;\n\t\t\t\t}\n\t\t\t\tdebug(a, b, dp[j][k]);\n\t\t\t\t// if(l[a] > r[b]) continue;\n\t\t\t\tq.push((tup){a, b, dp[j][k]});\n\t\t\t}\n\t\t}\n\t\twhile(!q.empty()) {\n\t\t\tint a, b;\n\t\t\tmint r;\n\t\t\ttie(a, b, r) = q.front();\n\t\t\tq.pop();\n\t\t\tdp[a][b] += r;\n\t\t}\n\t\tdump(dp);\n\t}\n\n\tmint ans = -1;\n\trep(i, n + 1) rep(j, n + 1) { ans += dp[i][j]; }\n\n\tdrop(ans);\n\n\treturn 0;\n}", "accuracy": 0.02564102564102564, "time_ms": 40, "memory_kb": 4940, "score_of_the_acc": -0.0391, "final_rank": 19 }, { "submission_id": "aoj_3181_4849563", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\nstruct dat {\n long long t, l, r;\n dat(long long x = 0, long long y = 0, long long z = 0) : t(x), l(y), r(z) {}\n bool operator==(const dat &d) const {\n return t == d.t && l == d.l && r == d.r;\n }\n bool operator<(const dat &d) const {\n if (t != d.t) return t < d.t;\n if (l != d.l) return l < d.l;\n return r < d.r;\n }\n dat operator*(const dat &d) const {\n dat res(d.t, max(d.l, l - (d.t - t)), min(d.r, r + (d.t - t)));\n if (res.l > res.r) res = dat(-1, 0, 0);\n return res;\n }\n};\n\nint n;\nvector<dat> v;\nmap<dat, ModInt<>> dp;\n\nModInt<> solve();\n\nint main() {\n cin >> n;\n v.resize(n);\n for (auto &p : v) cin >> p.t >> p.l >> p.r;\n cout << solve() << endl;\n return 0;\n}\n\nModInt<> solve() {\n dp[dat()] = 1;\n for (int i = 0; i < n; ++i) {\n vector<dat> memod;\n vector<ModInt<>> memoc;\n for (auto [d, c] : dp) {\n dat now = d * v[i];\n if (now.t >= 0) {\n memod.push_back(now);\n memoc.push_back(c);\n }\n }\n int len = memod.size();\n for (int j = 0; j < len; ++j) dp[memod[j]] += memoc[j];\n }\n ModInt<> res = -1;\n for (auto [d, c] : dp) res += c;\n\n return res;\n}", "accuracy": 1, "time_ms": 370, "memory_kb": 19508, "score_of_the_acc": -0.4732, "final_rank": 8 }, { "submission_id": "aoj_3181_4849561", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\nstruct dat {\n long long t, l, r;\n dat(long long x = 0, long long y = 0, long long z = 0) : t(x), l(y), r(z) {}\n bool operator==(const dat &d) const {\n return t == d.t && l == d.l && r == d.r;\n }\n bool operator<(const dat &d) const {\n if (t != d.t) return t < d.t;\n if (l != d.l) return l < d.l;\n return r < d.r;\n }\n dat operator*(const dat &d) const {\n assert(0 <= t && t < d.t && l <= r && d.l <= d.r);\n dat res(d.t, max(d.l, l - (d.t - t)), min(d.r, r + (d.t - t)));\n if (res.l > res.r) res = dat(-1, 0, 0);\n return res;\n }\n};\n\nint n;\nvector<dat> v;\nmap<dat, ModInt<>> dp;\n\nModInt<> solve();\n\nint main() {\n cin >> n;\n v.resize(n);\n for (auto &p : v) cin >> p.t >> p.l >> p.r;\n cout << solve() << endl;\n return 0;\n}\n\nModInt<> solve() {\n dp[dat()] = 1;\n for (int i = 0; i < n; ++i) {\n vector<dat> memod;\n vector<ModInt<>> memoc;\n for (auto [d, c] : dp) {\n dat now = d * v[i];\n if (now.t >= 0) {\n memod.push_back(now);\n memoc.push_back(c);\n }\n }\n int len = memod.size();\n for (int j = 0; j < len; ++j) {\n if (!dp.count(memod[j]))\n dp[memod[j]] = memoc[j];\n else\n dp[memod[j]] += memoc[j];\n }\n }\n ModInt<> res = -1;\n for (auto [d, c] : dp) {\n assert(d.t >= 0);\n res += c;\n }\n return res;\n}", "accuracy": 1, "time_ms": 610, "memory_kb": 19508, "score_of_the_acc": -0.7399, "final_rank": 9 }, { "submission_id": "aoj_3181_4849554", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\nstruct dat {\n long long t, l, r;\n dat(long long x = 0, long long y = 0, long long z = 0) : t(x), l(y), r(z) {}\n bool operator==(const dat &d) const {\n return t == d.t && l == d.l && r == d.r;\n }\n bool operator<(const dat &d) const {\n if (t != d.t) return t < d.t;\n if (l != d.r) return l < d.l;\n return r < d.r;\n }\n dat operator*(const dat &d) const {\n assert(0 <= t && t < d.t && l <= r && d.l <= d.r);\n dat res(d.t, max(d.l, l - (d.t - t)), min(d.r, r + (d.t - t)));\n if (res.l > res.r) res = dat(-1, 0, 0);\n return res;\n }\n};\n\nint n;\nvector<dat> v;\nmap<dat, ModInt<>> dp;\n\nModInt<> solve();\n\nint main() {\n cin >> n;\n v.resize(n);\n for (auto &p : v) cin >> p.t >> p.l >> p.r;\n cout << solve() << endl;\n return 0;\n}\n\nModInt<> solve() {\n dp[dat()] = 1;\n for (int i = 0; i < n; ++i) {\n vector<dat> memod;\n vector<ModInt<>> memoc;\n for (auto [d, c] : dp) {\n dat now = d * v[i];\n if (now.t >= 0) {\n memod.push_back(now);\n memoc.push_back(c);\n }\n }\n int len = memod.size();\n for (int j = 0; j < len; ++j) {\n if (!dp.count(memod[j]))\n dp[memod[j]] = memoc[j];\n else\n dp[memod[j]] += memoc[j];\n }\n }\n ModInt<> res = -1;\n for (auto [d, c] : dp) {\n assert(d.t >= 0);\n res += c;\n }\n return res;\n}", "accuracy": 0.02564102564102564, "time_ms": 20, "memory_kb": 3880, "score_of_the_acc": -0.0119, "final_rank": 17 }, { "submission_id": "aoj_3181_4849549", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\nstruct dat {\n long long t, l, r;\n dat(long long x = 0, long long y = 0, long long z = 0) : t(x), l(y), r(z) {}\n bool operator==(const dat &d) const {\n return t == d.t && l == d.l && r == d.r;\n }\n bool operator<(const dat &d) const {\n if (t != d.t) return t < d.t;\n if (l != d.r) return l < d.l;\n return r < d.r;\n }\n dat operator*(const dat &d) const {\n assert(0 <= t && t < d.t && l <= r && d.l <= d.r);\n dat res(d.t, max(d.l, l - (d.t - t)), min(d.r, r + (d.t - t)));\n if (res.l > res.r) res = dat(-1, 0, 0);\n return res;\n }\n};\n\nint n;\nvector<dat> v;\nmap<dat, ModInt<>> dp;\n\nModInt<> solve();\n\nint main() {\n cin >> n;\n v.resize(n);\n for (int i = 0; i < n; ++i) cin >> v[i].t >> v[i].l >> v[i].r;\n cout << solve() << endl;\n return 0;\n}\n\nModInt<> solve() {\n dp[dat()] = 1;\n for (int i = 0; i < n; ++i) {\n vector<dat> memod;\n vector<ModInt<>> memoc;\n for (auto [d, c] : dp) {\n dat now = d * v[i];\n if (now.t >= 0) {\n memod.push_back(now);\n memoc.push_back(c);\n }\n }\n int len = memod.size();\n for (int j = 0; j < len; ++j) dp[memod[j]] += memoc[j];\n }\n ModInt<> res = -1;\n for (auto [d, c] : dp) {\n assert(d.t >= 0);\n res += c;\n }\n return res;\n}", "accuracy": 0.02564102564102564, "time_ms": 10, "memory_kb": 3960, "score_of_the_acc": -0.0012, "final_rank": 13 }, { "submission_id": "aoj_3181_4849540", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\nstruct dat {\n long long t, l, r;\n dat(long long x = 0, long long y = 0, long long z = 0) : t(x), l(y), r(z) {}\n bool operator==(const dat &d) const {\n return t == d.t && l == d.l && r == d.r;\n }\n bool operator<(const dat &d) const {\n if (t != d.t) return t < d.t;\n if (l != d.r) return l < d.l;\n return r < d.r;\n }\n dat operator*(const dat &d) const {\n if (t < 0) return dat(-1, 0, 0);\n assert(t < d.t && l <= r && d.l <= d.r);\n dat res(d.t, max(d.l, l - (d.t - t)), min(d.r, r + (d.t - t)));\n if (res.l > res.r) res = dat(-1, 0, 0);\n return res;\n }\n};\n\nint n;\nvector<dat> v;\nmap<dat, ModInt<>> dp;\n\nModInt<> solve();\n\nint main() {\n cin >> n;\n v.resize(n);\n for (int i = 0; i < n; ++i) cin >> v[i].t >> v[i].l >> v[i].r;\n cout << solve() << endl;\n return 0;\n}\n\nModInt<> solve() {\n dp[dat()] = 1;\n for (int i = 0; i < n; ++i) {\n vector<dat> memod;\n vector<ModInt<>> memoc;\n for (auto [d, c] : dp) {\n dat now = d * v[i];\n if (now.t >= 0) {\n memod.push_back(now);\n memoc.push_back(c);\n }\n }\n int len = memod.size();\n for (int j = 0; j < len; ++j) dp[memod[j]] += memoc[j];\n }\n ModInt<> res = -1;\n for (auto [d, c] : dp) {\n assert(d.t >= 0);\n res += c;\n }\n return res;\n}", "accuracy": 0.02564102564102564, "time_ms": 10, "memory_kb": 4004, "score_of_the_acc": -0.0014, "final_rank": 15 }, { "submission_id": "aoj_3181_4849519", "code_snippet": "#include <iostream>\n#include <map>\n\ntemplate <int MOD>\nstruct ModInt {\n using lint = long long;\n int val;\n\n // constructor\n ModInt(lint v = 0) : val(v % MOD) {\n if (val < 0) val += MOD;\n };\n\n // unary operator\n ModInt operator+() const { return ModInt(val); }\n ModInt operator-() const { return ModInt(MOD - val); }\n ModInt inv() const { return this->pow(MOD - 2); }\n\n // arithmetic\n ModInt operator+(const ModInt& x) const { return ModInt(*this) += x; }\n ModInt operator-(const ModInt& x) const { return ModInt(*this) -= x; }\n ModInt operator*(const ModInt& x) const { return ModInt(*this) *= x; }\n ModInt operator/(const ModInt& x) const { return ModInt(*this) /= x; }\n ModInt pow(lint n) const {\n auto x = ModInt(1);\n auto b = *this;\n while (n > 0) {\n if (n & 1) x *= b;\n n >>= 1;\n b *= b;\n }\n return x;\n }\n\n // compound assignment\n ModInt& operator+=(const ModInt& x) {\n if ((val += x.val) >= MOD) val -= MOD;\n return *this;\n }\n ModInt& operator-=(const ModInt& x) {\n if ((val -= x.val) < 0) val += MOD;\n return *this;\n }\n ModInt& operator*=(const ModInt& x) {\n val = lint(val) * x.val % MOD;\n return *this;\n }\n ModInt& operator/=(const ModInt& x) { return *this *= x.inv(); }\n\n // compare\n bool operator==(const ModInt& b) const { return val == b.val; }\n bool operator!=(const ModInt& b) const { return val != b.val; }\n bool operator<(const ModInt& b) const { return val < b.val; }\n bool operator<=(const ModInt& b) const { return val <= b.val; }\n bool operator>(const ModInt& b) const { return val > b.val; }\n bool operator>=(const ModInt& b) const { return val >= b.val; }\n\n // I/O\n friend std::istream& operator>>(std::istream& is, ModInt& x) noexcept {\n lint v;\n is >> v;\n x = v;\n return is;\n }\n friend std::ostream& operator<<(std::ostream& os, const ModInt& x) noexcept { return os << x.val; }\n};\n\nconstexpr int MOD = 998244353;\nusing mint = ModInt<MOD>;\n\nvoid solve() {\n int n;\n std::cin >> n;\n\n // [L, R]に自由に移動できるときの通り数\n std::map<std::pair<int, int>, mint> dp;\n dp[std::make_pair(0, 0)] = 1;\n\n int pt = 0; // 前の命令の時刻\n while (n--) {\n int t, l, r;\n std::cin >> t >> l >> r;\n\n std::map<std::pair<int, int>, mint> ndp;\n for (auto [p, v] : dp) {\n auto [pl, pr] = p;\n\n // 左右に引き伸ばす\n pl -= t - pt;\n pr += t - pt;\n\n {\n // 守らない場合\n auto q = std::make_pair(pl, pr);\n if (!ndp.count(q)) ndp[q] = 0;\n ndp[q] += v;\n }\n\n // 守る場合\n pl = std::max(pl, l);\n pr = std::min(pr, r);\n if (pr < pl) continue;\n\n {\n auto q = std::make_pair(pl, pr);\n if (!ndp.count(q)) ndp[q] = 0;\n ndp[q] += v;\n }\n }\n\n std::swap(dp, ndp);\n pt = t;\n }\n\n mint ans = 0;\n for (auto [p, v] : dp) ans += v;\n std::cout << ans - 1 << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 4416, "score_of_the_acc": -0.1255, "final_rank": 5 }, { "submission_id": "aoj_3181_4849514", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\nstruct dat {\n long long t, l, r;\n dat(long long x = 0, long long y = 0, long long z = 0) : t(x), l(y), r(z) {}\n bool operator==(const dat &d) const {\n return t == d.t && l == d.l && r == d.r;\n }\n bool operator<(const dat &d) const {\n if (t != d.t) return t < d.t;\n if (l != d.r) return l < d.l;\n return r < d.r;\n }\n dat operator*(const dat &d) const {\n if (t < 0) return dat(-1, 0, 0);\n assert(t < d.t);\n dat res(d.t, max(d.l, l - (d.t - t)), min(d.r, r + (d.t - t)));\n if (res.l > res.r) res = dat(-1, 0, 0);\n return res;\n }\n};\n\nint n;\nvector<dat> v;\nmap<dat, ModInt<>> dp;\n\nModInt<> solve();\n\nint main() {\n cin >> n;\n v.resize(n);\n for (int i = 0; i < n; ++i) cin >> v[i].t >> v[i].l >> v[i].r;\n cout << solve() << endl;\n return 0;\n}\n\nModInt<> solve() {\n dp[dat()] = 1;\n for (int i = 0; i < n; ++i) {\n vector<dat> memod;\n vector<ModInt<>> memoc;\n for (auto [d, c] : dp) {\n dat now = d * v[i];\n if (now.t >= 0) {\n memod.push_back(now);\n memoc.push_back(c);\n }\n }\n int len = memod.size();\n for (int j = 0; j < len; ++j) dp[memod[j]] += memoc[j];\n }\n ModInt<> res = -1;\n for (auto [d, c] : dp) res += c;\n return res;\n}", "accuracy": 0.02564102564102564, "time_ms": 10, "memory_kb": 3880, "score_of_the_acc": -0.0008, "final_rank": 12 }, { "submission_id": "aoj_3181_4849500", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\nstruct dat {\n int t, l, r;\n dat(int x = 0, int y = 0, int z = 0) : t(x), l(y), r(z) {}\n bool operator==(const dat &d) const {\n return t == d.t && l == d.l && r == d.r;\n }\n bool operator<(const dat &d) const {\n if (t != d.t) return t < d.t;\n if (l != d.r) return l < d.l;\n return r < d.r;\n }\n dat operator*(const dat &d) const {\n if (t < 0) return dat(-1, 0, 0);\n dat res(d.t, max(d.l, l - (d.t - t)), min(d.r, r + (d.t - t)));\n if (res.l > res.r || res.r < d.l || d.r < res.l) res = dat(-1, 0, 0);\n return res;\n }\n};\n\nint n;\nvector<dat> v;\nmap<dat, ModInt<>> dp;\n\nModInt<> solve();\n\nint main() {\n cin >> n;\n v.resize(n);\n for (int i = 0; i < n; ++i) cin >> v[i].t >> v[i].l >> v[i].r;\n cout << solve() << endl;\n return 0;\n}\n\nModInt<> solve() {\n dp[dat()] = 1;\n for (int i = 0; i < n; ++i) {\n vector<dat> memod;\n vector<ModInt<>> memoc;\n for (auto [d, c] : dp) {\n dat now = d * v[i];\n if (now.t >= 0) {\n memod.push_back(now);\n memoc.push_back(c);\n }\n }\n int len = memod.size();\n for (int j = 0; j < len; ++j) dp[memod[j]] += memoc[j];\n }\n ModInt<> res = -1;\n for (auto [d, c] : dp) res += c;\n return res;\n}", "accuracy": 0.02564102564102564, "time_ms": 10, "memory_kb": 3964, "score_of_the_acc": -0.0012, "final_rank": 14 }, { "submission_id": "aoj_3181_4849414", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\nstruct dat {\n int t, l, r;\n dat(int x = 0, int y = 0, int z = 0) : t(x), l(y), r(z) {}\n bool operator==(const dat &d) const {\n return t == d.t && l == d.l && r == d.r;\n }\n dat operator*(const dat &d) const {\n if (t < 0) return dat(-1, 0, 0);\n dat res(d.t, max(d.l, l - (d.t - t)), min(d.r, r + (d.t - t)));\n if (res.l > res.r || res.r < d.l || d.r < res.l) res = dat(-1, 0, 0);\n return res;\n }\n};\n\nint n;\nvector<dat> v;\nvector<vector<dat>> memo;\nvector<vector<ModInt<>>> dp;\n\nModInt<> solve();\n\nint main() {\n cin >> n;\n v.resize(n + 1);\n for (int i = 1; i <= n; ++i) cin >> v[i].t >> v[i].l >> v[i].r;\n cout << solve() << endl;\n return 0;\n}\n\nModInt<> solve() {\n { // pre calc\n memo.resize(n + 1, vector<dat>(n + 1));\n for (int i = 0; i <= n; ++i)\n for (int j = i; j <= n; ++j) memo[i][j] = v[i] * v[j];\n }\n dp.assign(n + 1, vector<ModInt<>>(n + 1, 0));\n dp[0][0] = 1;\n for (int i = 1; i <= n; ++i) {\n for (int j = 0; j < i; ++j)\n for (int k = j; k < i; ++k)\n if (memo[j][k].t >= 0) {\n dat now = memo[j][k] * v[i];\n if (now.t < 0) continue;\n if (now == v[i])\n dp[i][i] += dp[j][k];\n else if (now == memo[j][i])\n dp[j][i] += dp[j][k];\n else if (now == memo[k][i])\n dp[k][i] += dp[j][k];\n else\n assert(0);\n }\n }\n ModInt<> res = -1;\n for (int i = 0; i <= n; ++i)\n for (int j = i; j <= n; ++j) res += dp[i][j];\n return res;\n}", "accuracy": 0.02564102564102564, "time_ms": 10, "memory_kb": 4768, "score_of_the_acc": -0.0049, "final_rank": 16 }, { "submission_id": "aoj_3181_4849410", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\nstruct dat {\n int t, l, r;\n dat(int x = 0, int y = 0, int z = 0) : t(x), l(y), r(z) {}\n bool operator==(const dat &d) const {\n return t == d.t && l == d.l && r == d.r;\n }\n dat operator*(const dat &d) const {\n if (t < 0) return dat(-1, 0, 0);\n dat res(d.t, max(d.l, l - (d.t - t)), min(d.r, r + (d.t - t)));\n if (res.l > res.r || res.r < d.l || d.r < res.l) res = dat(-1, 0, 0);\n return res;\n }\n};\n\nint n;\nvector<dat> v;\nvector<vector<dat>> memo;\nvector<vector<ModInt<>>> dp;\n\nModInt<> solve();\n\nint main() {\n cin >> n;\n v.resize(n + 1);\n for (int i = 1; i <= n; ++i) cin >> v[i].t >> v[i].l >> v[i].r;\n cout << solve() << endl;\n return 0;\n}\n\nModInt<> solve() {\n { // pre calc\n memo.resize(n + 1, vector<dat>(n + 1));\n for (int i = 0; i <= n; ++i)\n for (int j = i; j <= n; ++j) memo[i][j] = v[i] * v[j];\n }\n dp.assign(n + 1, vector<ModInt<>>(n + 1, 0));\n dp[0][0] = 1;\n for (int i = 1; i <= n; ++i) {\n for (int j = 0; j < i; ++j)\n for (int k = j; k < i; ++k)\n if (memo[j][k].t >= 0) {\n dat now = memo[j][k] * v[i];\n if (now.t < 0) continue;\n if (now == v[i])\n dp[i][i] += dp[j][k];\n else if (now == memo[j][i])\n dp[j][i] += dp[j][k];\n else\n dp[k][i] += dp[j][k];\n }\n }\n ModInt<> res = -1;\n for (int i = 0; i <= n; ++i)\n for (int j = i; j <= n; ++j) res += dp[i][j];\n return res;\n}", "accuracy": 0.02564102564102564, "time_ms": 20, "memory_kb": 4884, "score_of_the_acc": -0.0166, "final_rank": 18 }, { "submission_id": "aoj_3181_4849384", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\n\nstruct dat {\n int t, l, r;\n dat(int x = 0, int y = 0, int z = 0) : t(x), l(y), r(z) {}\n bool operator==(const dat &d) const {\n return t == d.t && l == d.l && r == d.r;\n }\n dat operator*(const dat &d) const {\n if (t < 0) return dat(-1, 0, 0);\n dat res(d.t, max(d.l, l - (d.t - t)), min(d.r, r + (d.t - t)));\n if (res.l > res.r || res.r < d.l || d.r < res.l) res = dat(-1, 0, 0);\n return res;\n }\n};\n\nint n;\nvector<dat> v;\nvector<vector<dat>> memo;\nvector<vector<vector<ModInt<>>>> dp;\n\nModInt<> solve();\n\nint main() {\n cin >> n;\n v.resize(n + 1);\n for (int i = 1; i <= n; ++i) cin >> v[i].t >> v[i].l >> v[i].r;\n cout << solve() << endl;\n return 0;\n}\n\nModInt<> solve() {\n { // pre calc\n memo.resize(n + 1, vector<dat>(n + 1));\n for (int i = 0; i <= n; ++i)\n for (int j = i; j <= n; ++j) memo[i][j] = v[i] * v[j];\n }\n dp.assign(n + 1, vector(n + 1, vector<ModInt<>>(n + 1, 0)));\n dp[0][0][0] = 1;\n for (int i = 1; i <= n; ++i) {\n dp[i] = dp[i - 1];\n for (int j = 0; j < i; ++j)\n for (int k = j; k < i; ++k) {\n dat now = memo[j][k] * v[i];\n if (now.t < 0) continue;\n if (now == v[i])\n dp[i][i][i] += dp[i - 1][j][k];\n else\n dp[i][j][i] += dp[i - 1][j][k];\n }\n }\n ModInt<> res = -1;\n for (int i = 0; i <= n; ++i)\n for (int j = i; j <= n; ++j) res += dp[n][i][j];\n return res;\n}", "accuracy": 0.02564102564102564, "time_ms": 60, "memory_kb": 114152, "score_of_the_acc": -0.5672, "final_rank": 20 }, { "submission_id": "aoj_3181_4849342", "code_snippet": "#include <iostream>\n#include <cstdio>\n#include <cmath>\n#include <ctime>\n#include <cstdlib>\n#include <cassert>\n#include <vector>\n#include <list>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <set>\n#include <bitset>\n#include <string>\n#include <algorithm>\n#include <utility>\n#define llint long long\n#define inf 1e18\n#define PI 3.14159265358979323846264338327950\n#define eps 1e-8\n#define rep(x, s, t) for(llint (x) = (s); (x) < (t); (x)++)\n#define Rep(x, s, t) for(llint (x) = (s); (x) <= (t); (x)++)\n#define chmin(x, y) (x) = min((x), (y))\n#define chmax(x, y) (x) = max((x), (y))\n#define mod 998244353\n\nusing namespace std;\ntypedef pair<llint, llint> P;\n\nllint n;\nllint t[305], l[305], r[305];\nllint dp[305][305][305];\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n;\n\tfor(int i = 1; i <= n; i++) cin >> t[i] >> l[i] >> r[i];\n\t\n\tdp[0][0][0] = 1;\n\tfor(int i = 0; i < n; i++){\n\t\tfor(int j = 0; j <= n; j++){\n\t\t\tfor(int k = 0; k <= n; k++){\n\t\t\t\t(dp[i+1][j][k] += dp[i][j][k]) %= mod;\n\t\t\t\tllint nj = j, nk = k;\n\t\t\t\tllint L = l[j] - (t[i+1] - t[j]), R = r[k] + (t[i+1] - t[k]);\n\t\t\t\tif(R < l[i+1] || L > r[i+1]) continue;\n\t\t\t\tif(L <= l[i+1]) nj = i+1;\n\t\t\t\tif(R >= r[i+1]) nk = i+1;\n\t\t\t\t(dp[i+1][nj][nk] += dp[i][j][k]) %= mod;\n\t\t\t}\n\t\t}\n\t}\n\t\n\tllint ans = 0;\n\tfor(int j = 0; j <= n; j++){\n\t\tfor(int k = 0; k <= n; k++){\n\t\t\tans += dp[n][j][k], ans %= mod;\n\t\t}\n\t}\n\tans += mod - 1, ans %= mod;\n\tcout << ans << endl;\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 150, "memory_kb": 219556, "score_of_the_acc": -1.1556, "final_rank": 11 }, { "submission_id": "aoj_3181_4849247", "code_snippet": "#include <iostream>\n#include <map>\n#include <vector>\n\ntemplate <int MOD>\nstruct ModInt {\n using lint = long long;\n int val;\n\n // constructor\n ModInt(lint v = 0) : val(v % MOD) {\n if (val < 0) val += MOD;\n };\n\n // unary operator\n ModInt operator+() const { return ModInt(val); }\n ModInt operator-() const { return ModInt(MOD - val); }\n ModInt inv() const { return this->pow(MOD - 2); }\n\n // arithmetic\n ModInt operator+(const ModInt& x) const { return ModInt(*this) += x; }\n ModInt operator-(const ModInt& x) const { return ModInt(*this) -= x; }\n ModInt operator*(const ModInt& x) const { return ModInt(*this) *= x; }\n ModInt operator/(const ModInt& x) const { return ModInt(*this) /= x; }\n ModInt pow(lint n) const {\n auto x = ModInt(1);\n auto b = *this;\n while (n > 0) {\n if (n & 1) x *= b;\n n >>= 1;\n b *= b;\n }\n return x;\n }\n\n // compound assignment\n ModInt& operator+=(const ModInt& x) {\n if ((val += x.val) >= MOD) val -= MOD;\n return *this;\n }\n ModInt& operator-=(const ModInt& x) {\n if ((val -= x.val) < 0) val += MOD;\n return *this;\n }\n ModInt& operator*=(const ModInt& x) {\n val = lint(val) * x.val % MOD;\n return *this;\n }\n ModInt& operator/=(const ModInt& x) { return *this *= x.inv(); }\n\n // compare\n bool operator==(const ModInt& b) const { return val == b.val; }\n bool operator!=(const ModInt& b) const { return val != b.val; }\n bool operator<(const ModInt& b) const { return val < b.val; }\n bool operator<=(const ModInt& b) const { return val <= b.val; }\n bool operator>(const ModInt& b) const { return val > b.val; }\n bool operator>=(const ModInt& b) const { return val >= b.val; }\n\n // I/O\n friend std::istream& operator>>(std::istream& is, ModInt& x) noexcept {\n lint v;\n is >> v;\n x = v;\n return is;\n }\n friend std::ostream& operator<<(std::ostream& os, const ModInt& x) noexcept { return os << x.val; }\n};\n\nconstexpr int MOD = 998244353;\nusing mint = ModInt<MOD>;\n\nvoid solve() {\n int n;\n std::cin >> n;\n\n std::map<std::pair<int, int>, mint> dp;\n dp[std::make_pair(0, 0)] = 1;\n\n int pt = 0;\n while (n--) {\n int t, l, r;\n std::cin >> t >> l >> r;\n\n std::map<std::pair<int, int>, mint> ndp;\n for (auto [p, v] : dp) {\n auto [pl, pr] = p;\n\n pl -= t - pt;\n pr += t - pt;\n\n {\n auto q = std::make_pair(pl, pr);\n if (!ndp.count(q)) ndp[q] = 0;\n ndp[q] += v;\n }\n\n pl = std::max(pl, l);\n pr = std::min(pr, r);\n if (pr < pl) continue;\n\n {\n auto q = std::make_pair(pl, pr);\n if (!ndp.count(q)) ndp[q] = 0;\n ndp[q] += v;\n }\n }\n\n std::swap(dp, ndp);\n pt = t;\n }\n\n mint ans = 0;\n for (auto [p, v] : dp) ans += v;\n std::cout << ans - 1 << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 120, "memory_kb": 4472, "score_of_the_acc": -0.1258, "final_rank": 6 } ]
aoj_3182_cpp
K Umg Kart 問題文 umgくんは車のレース大会を主催することにしました。このレースでは、距離が $L$ のコース上を走って競います。スタート位置を位置 $0$ とし、スタート位置からゴールに向かって $x$ だけ離れた位置を位置 $x$ と呼ぶことにします。 てんぷらくんはこのレース大会に参加することにしました。今回のレースではてんぷらくんを含め $N$ 人の選手が参加することになっており、 $N$ 人の選手には$1$から$N$までの番号がついています。てんぷらくんは選手$1$です。 さて、レースが始まると、各選手はスタート位置から一斉に走り出します。選手 $i$ の車は距離 $1$ 進むのに $t_i$ 秒かかります。umgくんはこのままではレースが面白くないと思い、 $M$ 個のアイテムボックスをコース上に配置することにしました。アイテムボックス $j$ の概要は次の通りです。 位置 $x_j$ (整数)にある。 各選手は、位置 $x_j$ に来たら、必ずアイテムボックス $j$ を取得する。アイテムボックス $j$ は各選手について $1$ つずつ用意されている。 アイテムボックス $j$ には確率 $\frac{p_j}{100}$ が定められている。選手 $i$ がアイテムボックス $j$ をとると、次のアイテムボックスを取るまで(またはゴール位置まで)、 $\frac{p_j}{100}$ の確率で距離 $1$ 進むのにかかる時間が $t_i+D$ 秒になり(減速する)、 $1-\frac{p_j}{100}$ の確率で距離 $1$ 進むのにかかる時間が $t_i-D$ 秒になる(加速する)。 ただし、 $D$ は $ D \lt \min _ i (t_i)$ を満たす。 レースの順位は、ゴールである位置 $L$ にたどり着いた順番で決まります。最初にゴールについた選手が $1$ 位で、最後にゴールについた選手が $N$ 位です。同着の場合は番号の小さい選手から順に先に到着したとみなします。 てんぷらくん(選手 $1$ )の順位の期待値を求めてください。答えが有理数になることが問題の制約から証明できるので、答えは${\rm modulo} \ 998244353$ で出力してください。正確には、期待値が既約分数 $\frac{P}{Q}$ で表されるとき、 $R \times Q = P, 0\leq R \lt 998244353$ を満たす $R$ が一意に定まるので、その $R$ を出力してください。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $L$ $t_1$ $t_2$ $\cdots$ $t_N$ $M$ $D$ $x_1$ $p_1$ $x_2$ $p_2$ $\vdots$ $x_M$ $p_M$ 制約 入力はすべて整数である。 $2 \leq N \leq 10^5$ $2 \leq L \leq 10^5$ $2 \leq t_i \leq 10^5$ $1 \leq M \leq L-1$ $1 \leq D \lt \min _ i (t_i)$ $0 \leq X_1 \lt X_2 \lt \cdots \lt X_M \leq L-1$ $0 \leq p_j \leq 100$ 入力はすべて整数である。 出力 答えを 1 行に出力せよ。 入力例1 2 2 5 4 1 2 1 50 出力例1 249561090 てんぷらくん(選手 $1$ )の順位は、てんぷらくんがアイテムボックス $1$ で加速し、選手 $2$ がアイテムボックス $1$ で減速したときのみ $1$ 、それ以外のときは $2$ です。 よって、順位の期待値は $1 \times \frac{1}{4} + 2 \times \frac{3}{4} = \frac{7}{4}$ です。 $249561090 \times 4 = 7 \ (\mathrm{mod}\ 998244353)$ なので、 $249561090$ を出力します。 入力例2 5 20 224 2 3 4 5 3 1 3 50 11 25 17 75 出力例2 5 レースにおいては適切なマシンを選ぶことも大切です。 入力例3 2 2 10 10 1 1 0 0 出力例3 1 同時刻にゴールした場合は、番号の小さい選手が順位が上になることに注意してください。 入力例4 8 22 19 18 13 10 12 10 20 17 10 3 1 50 2 19 3 17 4 79 5 54 6 76 7 64 8 69 9 98 10 9 出力例4 410169619
[ { "submission_id": "aoj_3182_5823737", "code_snippet": "#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <cmath>\n#include <ctime>\n#include <cstdlib>\n#include <cassert>\n#include <vector>\n#include <list>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <map>\n#include <set>\n#include <bitset>\n#include <string>\n#include <algorithm>\n#include <utility>\n#include <complex>\n#include <unordered_set>\n#include <unordered_map>\n#define rep(x, s, t) for(ll x = (s); (x) <= (t); (x)++)\n#define per(x, s, t) for(ll x = (s); (x) >= (t); (x)--)\n#define reps(x, s) for(ll x = 0; (x) < (ll)(s).size(); (x)++)\n#define chmin(x, y) (x) = min((x), (y))\n#define chmax(x, y) (x) = max((x), (y))\n#define sz(x) ((ll)(x).size())\n#define ceil(x, y) (((x)+(y)-1) / (y))\n#define all(x) (x).begin(),(x).end()\n#define outl(...) dump_func(__VA_ARGS__)\n#define outf(x) cout << fixed << setprecision(16) << (x) << endl\n#define inf 1e18\nconst double PI = 3.1415926535897932384626433;\n\nusing namespace std;\n\ntypedef long long llint;\ntypedef long long ll;\ntypedef pair<ll, ll> P;\n\nstruct edge{\n\tll to, cost;\n\tedge(){}\n\tedge(ll a, ll b){ to = a, cost = b;}\n};\nconst int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1};\n\n//const int mod = 1000000007;\nconst int mod = 998244353;\n\nstruct mint{\n\tint x;\n\tmint(ll y = 0){x = y; if(x < 0 || x >= mod) x = (x%mod+mod)%mod;}\n\tmint(const mint &ope) {x = ope.x;}\n\t\n\tmint operator-(){return mint(-x);}\n\tmint operator+(const mint &ope){return mint(x) += ope;}\n\tmint operator-(const mint &ope){return mint(x) -= ope;}\n\tmint operator*(const mint &ope){return mint(x) *= ope;}\n\tmint operator/(const mint &ope){return mint(x) /= ope;}\n\tmint& operator+=(const mint &ope){\n\t\tx += ope.x;\n\t\tif(x >= mod) x -= mod;\n\t\treturn *this;\n\t}\n\tmint& operator-=(const mint &ope){\n\t\tx += mod - ope.x;\n\t\tif(x >= mod) x -= mod;\n\t\treturn *this;\n\t}\n\tmint& operator*=(const mint &ope){\n\t\tll tmp = x;\n\t\ttmp *= ope.x, tmp %= mod;\n\t\tx = tmp;\n\t\treturn *this;\n\t}\n\tmint& operator/=(const mint &ope){\n\t\tll n = mod-2; mint mul = ope;\n\t\twhile(n){\n\t\t\tif(n & 1) *this *= mul;\n\t\t\tmul *= mul;\n\t\t\tn >>= 1;\n\t\t}\n\t\treturn *this;\n\t}\n\tmint inverse(){return mint(1) / *this;}\n\tbool operator ==(const mint &ope){return x == ope.x;}\n\tbool operator !=(const mint &ope){return x != ope.x;}\n\tbool operator <(const mint &ope){return x < ope.x;}\n};\nmint modpow(mint a, ll n){\n\tif(n == 0) return mint(1);\n\tif(n % 2) return a * modpow(a, n-1);\n\telse return modpow(a*a, n/2);\n}\nistream& operator >>(istream &is, mint &ope){\n\tll t; is >> t, ope.x = t;\n\treturn is;\n}\nostream& operator <<(ostream &os, mint &ope){return os << ope.x;}\nostream& operator <<(ostream &os, const mint &ope){return os << ope.x;}\n\nvector<mint> fact, fact_inv;\nvoid make_fact(int n){\n\tfact.resize(n+1), fact_inv.resize(n+1);\n\tfact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i);\n\tfact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1);\n}\nmint comb(int n, int k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];}\nmint perm(int n, int k){ return comb(n, k) * fact[k]; }\n\nvector<int> prime, pvec;\nvoid make_prime(int n){\n\tprime.resize(n+1);\n\trep(i, 2, n){\n\t\tif(prime[i]) continue;\n\t\tfor(int j = i; j <= n; j+=i) prime[j] = i;\n\t}\n\trep(i, 2, n) if(prime[i] == i) pvec.push_back(i);\n}\n\nbool exceed(ll x, ll y, ll m){return x >= m / y + 1;}\nvoid mark(){ cout << \"*\" << endl; }\nvoid yes(){ cout << \"YES\" << endl; }\nvoid no(){ cout << \"NO\" << endl; }\nll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;}\nll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);}\nll lcm(ll a, ll b){return a/gcd(a, b)*b;}\nll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;}\nll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;}\nstring lltos(ll x){string ret; for(;x;x/=10) ret += x % 10 + '0'; reverse(ret.begin(), ret.end()); return ret;}\nll stoll(string &s){ll ret = 0; for(auto c : s) ret *= 10, ret += c - '0'; return ret;}\ntemplate<typename T>\nvoid uniq(T &vec){ sort(vec.begin(), vec.end()); vec.erase(unique(vec.begin(), vec.end()), vec.end());}\n\ntemplate<class S, class T> pair<S, T>& operator+=(pair<S,T> &s, const pair<S,T> &t){\n\ts.first += t.first, s.second += t.second;\n\treturn s;\n}\ntemplate<class S, class T> pair<S, T>& operator-=(pair<S,T> &s, const pair<S,T> &t){\n\ts.first -= t.first, s.second -= t.second;\n\treturn s;\n}\ntemplate<class S, class T> pair<S, T> operator+(const pair<S,T> &s, const pair<S,T> &t){\n\treturn pair<S,T>(s.first+t.first, s.second+t.second);\n}\ntemplate<class S, class T> pair<S, T> operator-(const pair<S,T> &s, const pair<S,T> &t){\n\treturn pair<S,T>(s.first-t.first, s.second-t.second);\n}\ntemplate<typename T>\nostream& operator << (ostream& os, vector<T>& vec) {\n\tfor(int i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? \"\" : \" \");\n\treturn os;\n}\ntemplate<typename T>\nostream& operator << (ostream& os, deque<T>& deq) {\n\tfor(int i = 0; i < deq.size(); i++) os << deq[i] << (i + 1 == deq.size() ? \"\" : \" \");\n\treturn os;\n}\ntemplate<typename T, typename U>\nostream& operator << (ostream& os, pair<T, U>& pair_var) {\n\tos << \"(\" << pair_var.first << \", \" << pair_var.second << \")\";\n\treturn os;\n}\ntemplate<typename T, typename U>\nostream& operator << (ostream& os, const pair<T, U>& pair_var) {\n\tos << \"(\" << pair_var.first << \", \" << pair_var.second << \")\";\n\treturn os;\n}\ntemplate<typename T, typename U>\nostream& operator << (ostream& os, map<T, U>& map_var) {\n\tfor(typename map<T, U>::iterator itr = map_var.begin(); itr != map_var.end(); itr++) {\n\t\tos << \"(\" << itr->first << \", \" << itr->second << \")\";\n\t\titr++; if(itr != map_var.end()) os << \",\"; itr--;\n\t}\n\treturn os;\n}\ntemplate<typename T>\nostream& operator << (ostream& os, set<T>& set_var) {\n\tfor(typename set<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) {\n\t\tos << *itr; ++itr; if(itr != set_var.end()) os << \" \"; itr--;\n\t}\n\treturn os;\n}\ntemplate<typename T>\nostream& operator << (ostream& os, multiset<T>& set_var) {\n\tfor(typename multiset<T>::iterator itr = set_var.begin(); itr != set_var.end(); itr++) {\n\t\tos << *itr; ++itr; if(itr != set_var.end()) os << \" \"; itr--;\n\t}\n\treturn os;\n}\ntemplate<typename T>\nvoid outa(T a[], ll s, ll t){rep(i, s, t){ cout << a[i]; if(i < t) cout << \" \";}cout << endl;}\nvoid dump_func(){cout << endl;}\ntemplate <class Head, class... Tail>\nvoid dump_func(Head &&head, Tail &&... tail) {\n\tcout << head;\n\tif(sizeof...(Tail) > 0) cout << \" \";\n\tdump_func(std::move(tail)...);\n}\n\n/*\n{1224736769, 3}, // 2^24 * 73 + 1,\n{1053818881, 7}, // 2^20 * 3 * 5 * 67 + 1\n{1051721729, 6}, // 2^20 * 17 * 59 + 1\n{1045430273, 3}, // 2^20 * 997 + 1\n{1012924417, 5}, // 2^21 * 3 * 7 * 23 + 1\n{1007681537, 3}, // 2^20 * 31^2 + 1\n{1004535809, 3}, // 2^21 * 479 + 1\n{998244353, 3}, // 2^23 * 7 * 17 + 1\n{985661441, 3}, // 2^22 * 5 * 47 + 1\n{976224257, 3}, // 2^20 * 7^2 * 19 + 1\n{975175681, 17}, // 2^21 * 3 * 5 * 31 + 1\n{962592769, 7}, // 2^21 * 3^3 * 17 + 1\n{950009857, 7}, // 2^21 * 4 * 151 + 1\n{943718401, 7}, // 2^22 * 3^2 * 5^2 + 1\n{935329793, 3}, // 2^22 * 223 + 1\n{924844033, 5}, // 2^21 * 3^2 * 7^2 + 1\n{469762049, 3}, // 2^26 * 7 + 1\n{167772161, 3}, // 2^25 * 5 + 1\n*/\n\nstruct FFT_Convolution{\n\ttypedef complex<double> C;\n\t\n\tFFT_Convolution(){};\n\tstatic int rev(int x, int n){\n\t\tint ret = 0;\n\t\tfor(int i = 0; i < n; i++) ret <<= 1, ret |= (x>>i) & 1;\n\t\treturn ret;\n\t}\n\t\n\tstatic void DFT(vector<C> &f, vector<C> &F, int n)\n\t{\n\t\tint N = 1<<n;\n\t\tF.resize(N);\n\t\tfor(int i = 0; i < N; i++) F[rev(i, n)] = f[i];\n\t\t\n\t\tC a, b, x, z;\n\t\tfor(int i = 1; i <= n; i++){\n\t\t\tint l = 1<<i;\n\t\t\tz = C(cos(2*PI/l), sin(2*PI/l));\n\t\t\tfor(int j = 0; j < N/l; j++){\n\t\t\t\tx = C(1, 0);\n\t\t\t\tfor(int k = 0; k < l/2; k++){\n\t\t\t\t\ta = F[j*l+k], b = F[j*l+k+l/2];\n\t\t\t\t\tF[j*l+k] = a + x * b;\n\t\t\t\t\tF[j*l+k+l/2] = a - x * b;\n\t\t\t\t\tx *= z;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tstatic void IDFT(vector<C> &F, vector<C> &f, int n)\n\t{\n\t\tint N = 1<<n;\n\t\tfor(int i = 0; i < N; i++) f[rev(i, n)] = F[i];\n\t\t\n\t\tC a, b, x, z;\n\t\tfor(int i = 1; i <= n; i++){\n\t\t\tint l = 1<<i;\n\t\t\tz = C(cos(2*PI/l), -sin(2*PI/l));\n\t\t\tfor(int j = 0; j < N/l; j++){\n\t\t\t\tx = C(1, 0);\n\t\t\t\tfor(int k = 0; k < l/2; k++){\n\t\t\t\t\ta = f[j*l+k], b = f[j*l+k+l/2];\n\t\t\t\t\tf[j*l+k] = a + x * b;\n\t\t\t\t\tf[j*l+k+l/2] = a - x * b;\n\t\t\t\t\tx *= z;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor(int i = 0; i < N; i++) f[i] /= N;\n\t}\n\tstatic ll round(C c){return (ll)(c.real()+0.5);}\n\t\n\tstatic void conv(vector<ll> f, vector<ll> g, vector<ll> &dest)\n\t{\n\t\tll logf = 0, logg = 0, len = f.size() + g.size();\n\t\tfor(int i = f.size(); i; i /= 2) logf++;\n\t\tfor(int i = g.size(); i; i /= 2) logg++;\n\t\t\n\t\tll n = max(logf, logg)+1, N = 1<<n;\n\t\tvector<C> f2(N), g2(N);\n\t\tfor(int i = 0; i < N; i++){\n\t\t\tif(i < f.size()) f2[i] = C(f[i], 0);\n\t\t\telse f2[i] = C(0, 0);\n\t\t}\n\t\tfor(int i = 0; i < N; i++){\n\t\t\tif(i < g.size()) g2[i] = C(g[i], 0);\n\t\t\telse g2[i] = C(0, 0);\n\t\t}\n\t\t\n\t\tvector<C> F, G;\n\t\tDFT(f2, F, n), DFT(g2, G, n);\n\t\tfor(int i = 0; i < N; i++) F[i] *= G[i];\n\t\tIDFT(F, f2, n);\n\t\t\n\t\tdest.resize(len-1);\n\t\tfor(int i = 0; i < dest.size(); i++) dest[i] = round(f2[i]);\n\t}\n};\n\nstruct NTT_Convolution{\n\tNTT_Convolution(){};\n\tstatic int rev(int x, int n){\n\t\tint ret = 0;\n\t\tfor(int i = 0; i < n; i++) ret <<= 1, ret |= (x>>i) & 1;\n\t\treturn ret;\n\t}\n\tstatic void DFT(vector<mint> &f, vector<mint> &F, int n, mint root, bool inv = false)\n\t{\n\t\tint N = 1<<n;\n\t\tF.resize(N);\n\t\tfor(int i = 0; i < N; i++) F[rev(i, n)] = f[i];\n\t\tif(inv) root = root.inverse();\n\t\t\n\t\tmint a, b, x, z;\n\t\tfor(int i = 0; i < n; i++){\n\t\t\tint l = 1<<i;\n\t\t\tz = modpow(root, 1<<(n-(i+1)));\n\t\t\tfor(int j = 0; j < N; j+=l*2){\n\t\t\t\tx = 1;\n\t\t\t\tfor(int k = j; k < j+l; k++){\n\t\t\t\t\ta = F[k], b = F[k+l] * x;\n\t\t\t\t\tF[k] = a + b, F[k+l] = a - b, x *= z;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif(inv){\n\t\t\tmint Ninv = mint(N).inverse();\n\t\t\tfor(int i = 0; i < N; i++) F[i] *= Ninv;\n\t\t}\n\t}\n\tstatic void conv(vector<mint> f, vector<mint> g, vector<mint> &dest)\n\t{\n\t\tll logf = 0, logg = 0, len = f.size() + g.size();\n\t\tfor(int i = f.size(); i; i /= 2) logf++;\n\t\tfor(int i = g.size(); i; i /= 2) logg++;\n\t\t\n\t\tll n = max(logf, logg)+1, N = 1<<n;\n\t\tf.resize(N), g.resize(N);\n\t\tmint root = modpow(mint(3), 119 * (1<<23-n));\n\t\t\n\t\tvector<mint> F, G;\n\t\tDFT(f, F, n, root), DFT(g, G, n, root);\n\t\tfor(int i = 0; i < N; i++) F[i] *= G[i];\n\t\tDFT(F, f, n, root, true);\n\t\t\n\t\tf.resize(len-1);\n\t\tdest = f;\n\t}\n};\n\nstruct ConvolutionMerge{\n\tint id;\n\tvector<vector<mint> > vec;\n\tpriority_queue<P, vector<P>, greater<P> >Q;\n\t\n\tConvolutionMerge(){init();}\n\tvoid init(){\n\t\tid = 0;\n\t\tvec.clear();\n\t\twhile(Q.size()) Q.pop();\n\t\tvector<mint> f;\n\t\tf.push_back(mint(1));\n\t\tadd(f);\n\t}\n\tvoid add(vector<mint> &f){\n\t\tQ.push(P(f.size(), id++));\n\t\tvec.push_back(f);\n\t}\n\tvoid calc(vector<mint> &dest){\n\t\twhile(Q.size() >= 2){\n\t\t\tll u = Q.top().second; Q.pop();\n\t\t\tll v = Q.top().second; Q.pop();\n\t\t\tNTT_Convolution::conv(vec[u], vec[v], vec[u]);\n\t\t\tQ.push(P(vec[u].size(), u));\n\t\t}\n\t\tdest = vec[Q.top().second];\n\t}\n};\n\nllint n, L;\nllint t[100005];\nllint m, d;\nllint x[100005], w[100005];\nmint p[100005], sum[200005];\nConvolutionMerge cm;\n\nint main(void)\n{\n\tios::sync_with_stdio(0);\n\tcin.tie(0);\n\t\n\tcin >> n >> L;\n\tfor(int i = 1; i <= n; i++) cin >> t[i];\n\tcin >> m >> d;\n\tfor(int i = 1; i <= m; i++) cin >> x[i] >> p[i];\n\t\n\tmint inv100 = mint(100).inverse();\n\t\n\tx[m+1] = L;\n\tfor(int i = 1; i <= m; i++){\n\t\tw[i] = x[i+1] - x[i];\n\t\tp[i] *= inv100;\n\t}\n\t\n\tvector<mint> vec;\n\tfor(int i = 1; i <= m; i++){\n\t\tvec.clear(), vec.resize(w[i]+1);\n\t\tvec[0] = mint(1) - p[i];\n\t\tvec[w[i]] = p[i];\n\t\tcm.add(vec);\n\t}\n\tcm.calc(vec);\n\t\n\tvector<mint> f(L+1), g(L+1);\n\treps(i, vec) f[i] = vec[i], g[L-i] = vec[i];\n\tNTT_Convolution::conv(f, g, f);\n\tfor(int i = 2*L; i >= 0; i--) sum[i] = sum[i+1] + f[i];\n\t\n\tmint ans = 1;\n\tfor(int i = 2; i <= n; i++){\n\t\tllint b = (L*(t[1]-t[i])+2*d-1)/(2*d);\n\t\tif(L*(t[1]-t[i]) < 0) b = L*(t[1]-t[i])/(2*d);\n\t\t\n\t\tmint p = 0;\n\t\tif(b <= -L) p = 1;\n\t\telse if(b <= L) p = sum[b+L];\n\t\tans += mint(1) - p;\n\t}\n\toutl(ans);\n\t\n\treturn 0;\n}", "accuracy": 1, "time_ms": 380, "memory_kb": 26196, "score_of_the_acc": -0.4237, "final_rank": 8 }, { "submission_id": "aoj_3182_5304761", "code_snippet": "#include <bits/stdc++.h>\n\n\n#include <algorithm>\n#include <array>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param n `0 <= n`\n// @return minimum non-negative `x` s.t. `n <= 2**x`\nint ceil_pow2(int n) {\n int x = 0;\n while ((1U << x) < (unsigned int)(n)) x++;\n return x;\n}\n\n// @param n `1 <= n`\n// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\nint bsf(unsigned int n) {\n#ifdef _MSC_VER\n unsigned long index;\n _BitScanForward(&index, n);\n return index;\n#else\n return __builtin_ctz(n);\n#endif\n}\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n\n#include <utility>\n\nnamespace atcoder {\n\nnamespace internal {\n\n// @param m `1 <= m`\n// @return x mod m\nconstexpr long long safe_mod(long long x, long long m) {\n x %= m;\n if (x < 0) x += m;\n return x;\n}\n\n// Fast moduler by barrett reduction\n// Reference: https://en.wikipedia.org/wiki/Barrett_reduction\n// NOTE: reconsider after Ice Lake\nstruct barrett {\n unsigned int _m;\n unsigned long long im;\n\n // @param m `1 <= m`\n barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}\n\n // @return m\n unsigned int umod() const { return _m; }\n\n // @param a `0 <= a < m`\n // @param b `0 <= b < m`\n // @return `a * b % m`\n unsigned int mul(unsigned int a, unsigned int b) const {\n // [1] m = 1\n // a = b = im = 0, so okay\n\n // [2] m >= 2\n // im = ceil(2^64 / m)\n // -> im * m = 2^64 + r (0 <= r < m)\n // let z = a*b = c*m + d (0 <= c, d < m)\n // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im\n // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2\n // ((ab * im) >> 64) == c or c + 1\n unsigned long long z = a;\n z *= b;\n#ifdef _MSC_VER\n unsigned long long x;\n _umul128(z, im, &x);\n#else\n unsigned long long x =\n (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n#endif\n unsigned int v = (unsigned int)(z - x * _m);\n if (_m <= v) v += _m;\n return v;\n }\n};\n\n// @param n `0 <= n`\n// @param m `1 <= m`\n// @return `(x ** n) % m`\nconstexpr long long pow_mod_constexpr(long long x, long long n, int m) {\n if (m == 1) return 0;\n unsigned int _m = (unsigned int)(m);\n unsigned long long r = 1;\n unsigned long long y = safe_mod(x, m);\n while (n) {\n if (n & 1) r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\n\n// Reference:\n// M. Forisek and J. Jancina,\n// Fast Primality Testing for Integers That Fit into a Machine Word\n// @param n `0 <= n`\nconstexpr bool is_prime_constexpr(int n) {\n if (n <= 1) return false;\n if (n == 2 || n == 7 || n == 61) return true;\n if (n % 2 == 0) return false;\n long long d = n - 1;\n while (d % 2 == 0) d /= 2;\n for (long long a : {2, 7, 61}) {\n long long t = d;\n long long y = pow_mod_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1) {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0) {\n return false;\n }\n }\n return true;\n}\ntemplate <int n> constexpr bool is_prime = is_prime_constexpr(n);\n\n// @param b `1 <= b`\n// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\nconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {\n a = safe_mod(a, b);\n if (a == 0) return {b, 0};\n\n // Contracts:\n // [1] s - m0 * a = 0 (mod b)\n // [2] t - m1 * a = 0 (mod b)\n // [3] s * |m1| + t * |m0| <= b\n long long s = b, t = a;\n long long m0 = 0, m1 = 1;\n\n while (t) {\n long long u = s / t;\n s -= t * u;\n m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b\n\n // [3]:\n // (s - t * u) * |m1| + t * |m0 - m1 * u|\n // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)\n // = s * |m1| + t * |m0| <= b\n\n auto tmp = s;\n s = t;\n t = tmp;\n tmp = m0;\n m0 = m1;\n m1 = tmp;\n }\n // by [3]: |m0| <= b/g\n // by g != b: |m0| < b/g\n if (m0 < 0) m0 += b / s;\n return {s, m0};\n}\n\n// Compile time primitive root\n// @param m must be prime\n// @return primitive root (and minimum in now)\nconstexpr int primitive_root_constexpr(int m) {\n if (m == 2) return 1;\n if (m == 167772161) return 3;\n if (m == 469762049) return 3;\n if (m == 754974721) return 11;\n if (m == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n int x = (m - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (int i = 3; (long long)(i)*i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) {\n x /= i;\n }\n }\n }\n if (x > 1) {\n divs[cnt++] = x;\n }\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n}\ntemplate <int m> constexpr int primitive_root = primitive_root_constexpr(m);\n\n} // namespace internal\n\n} // namespace atcoder\n\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\nnamespace atcoder {\n\nnamespace internal {\n\n#ifndef _MSC_VER\ntemplate <class T>\nusing is_signed_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value ||\n std::is_same<T, __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int128 =\n typename std::conditional<std::is_same<T, __uint128_t>::value ||\n std::is_same<T, unsigned __int128>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing make_unsigned_int128 =\n typename std::conditional<std::is_same<T, __int128_t>::value,\n __uint128_t,\n unsigned __int128>;\n\ntemplate <class T>\nusing is_integral = typename std::conditional<std::is_integral<T>::value ||\n is_signed_int128<T>::value ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_signed_int = typename std::conditional<(is_integral<T>::value &&\n std::is_signed<T>::value) ||\n is_signed_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<(is_integral<T>::value &&\n std::is_unsigned<T>::value) ||\n is_unsigned_int128<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<\n is_signed_int128<T>::value,\n make_unsigned_int128<T>,\n typename std::conditional<std::is_signed<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type>::type;\n\n#else\n\ntemplate <class T> using is_integral = typename std::is_integral<T>;\n\ntemplate <class T>\nusing is_signed_int =\n typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing is_unsigned_int =\n typename std::conditional<is_integral<T>::value &&\n std::is_unsigned<T>::value,\n std::true_type,\n std::false_type>::type;\n\ntemplate <class T>\nusing to_unsigned = typename std::conditional<is_signed_int<T>::value,\n std::make_unsigned<T>,\n std::common_type<T>>::type;\n\n#endif\n\ntemplate <class T>\nusing is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n\ntemplate <class T>\nusing is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n\ntemplate <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n\n} // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <numeric>\n#include <type_traits>\n\n#ifdef _MSC_VER\n#include <intrin.h>\n#endif\n\nnamespace atcoder {\n\nnamespace internal {\n\nstruct modint_base {};\nstruct static_modint_base : modint_base {};\n\ntemplate <class T> using is_modint = std::is_base_of<modint_base, T>;\ntemplate <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;\n\n} // namespace internal\n\ntemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>\nstruct static_modint : internal::static_modint_base {\n using mint = static_modint;\n\n public:\n static constexpr int mod() { return m; }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n static_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n static_modint(T v) {\n long long x = (long long)(v % (long long)(umod()));\n if (x < 0) x += umod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n static_modint(T v) {\n _v = (unsigned int)(v % umod());\n }\n static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v -= rhs._v;\n if (_v >= umod()) _v += umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n unsigned long long z = _v;\n z *= rhs._v;\n _v = (unsigned int)(z % umod());\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n if (prime) {\n assert(_v);\n return pow(umod() - 2);\n } else {\n auto eg = internal::inv_gcd(_v, m);\n assert(eg.first == 1);\n return eg.second;\n }\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static constexpr unsigned int umod() { return m; }\n static constexpr bool prime = internal::is_prime<m>;\n};\n\ntemplate <int id> struct dynamic_modint : internal::modint_base {\n using mint = dynamic_modint;\n\n public:\n static int mod() { return (int)(bt.umod()); }\n static void set_mod(int m) {\n assert(1 <= m);\n bt = internal::barrett(m);\n }\n static mint raw(int v) {\n mint x;\n x._v = v;\n return x;\n }\n\n dynamic_modint() : _v(0) {}\n template <class T, internal::is_signed_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n long long x = (long long)(v % (long long)(mod()));\n if (x < 0) x += mod();\n _v = (unsigned int)(x);\n }\n template <class T, internal::is_unsigned_int_t<T>* = nullptr>\n dynamic_modint(T v) {\n _v = (unsigned int)(v % mod());\n }\n dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }\n\n unsigned int val() const { return _v; }\n\n mint& operator++() {\n _v++;\n if (_v == umod()) _v = 0;\n return *this;\n }\n mint& operator--() {\n if (_v == 0) _v = umod();\n _v--;\n return *this;\n }\n mint operator++(int) {\n mint result = *this;\n ++*this;\n return result;\n }\n mint operator--(int) {\n mint result = *this;\n --*this;\n return result;\n }\n\n mint& operator+=(const mint& rhs) {\n _v += rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator-=(const mint& rhs) {\n _v += mod() - rhs._v;\n if (_v >= umod()) _v -= umod();\n return *this;\n }\n mint& operator*=(const mint& rhs) {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }\n\n mint operator+() const { return *this; }\n mint operator-() const { return mint() - *this; }\n\n mint pow(long long n) const {\n assert(0 <= n);\n mint x = *this, r = 1;\n while (n) {\n if (n & 1) r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n mint inv() const {\n auto eg = internal::inv_gcd(_v, mod());\n assert(eg.first == 1);\n return eg.second;\n }\n\n friend mint operator+(const mint& lhs, const mint& rhs) {\n return mint(lhs) += rhs;\n }\n friend mint operator-(const mint& lhs, const mint& rhs) {\n return mint(lhs) -= rhs;\n }\n friend mint operator*(const mint& lhs, const mint& rhs) {\n return mint(lhs) *= rhs;\n }\n friend mint operator/(const mint& lhs, const mint& rhs) {\n return mint(lhs) /= rhs;\n }\n friend bool operator==(const mint& lhs, const mint& rhs) {\n return lhs._v == rhs._v;\n }\n friend bool operator!=(const mint& lhs, const mint& rhs) {\n return lhs._v != rhs._v;\n }\n\n private:\n unsigned int _v;\n static internal::barrett bt;\n static unsigned int umod() { return bt.umod(); }\n};\ntemplate <int id> internal::barrett dynamic_modint<id>::bt = 998244353;\n\nusing modint998244353 = static_modint<998244353>;\nusing modint1000000007 = static_modint<1000000007>;\nusing modint = dynamic_modint<-1>;\n\nnamespace internal {\n\ntemplate <class T>\nusing is_static_modint = std::is_base_of<internal::static_modint_base, T>;\n\ntemplate <class T>\nusing is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;\n\ntemplate <class> struct is_dynamic_modint : public std::false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};\n\ntemplate <class T>\nusing is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;\n\n} // namespace internal\n\n} // namespace atcoder\n\n#include <cassert>\n#include <type_traits>\n#include <vector>\n\nnamespace atcoder {\n\nnamespace internal {\n\ntemplate <class mint, internal::is_static_modint_t<mint>* = nullptr>\nvoid butterfly(std::vector<mint>& a) {\n static constexpr int g = internal::primitive_root<mint::mod()>;\n int n = int(a.size());\n int h = internal::ceil_pow2(n);\n\n static bool first = true;\n static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]\n if (first) {\n first = false;\n mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1\n int cnt2 = bsf(mint::mod() - 1);\n mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();\n for (int i = cnt2; i >= 2; i--) {\n // e^(2^i) == 1\n es[i - 2] = e;\n ies[i - 2] = ie;\n e *= e;\n ie *= ie;\n }\n mint now = 1;\n for (int i = 0; i < cnt2 - 2; i++) {\n sum_e[i] = es[i] * now;\n now *= ies[i];\n }\n }\n for (int ph = 1; ph <= h; ph++) {\n int w = 1 << (ph - 1), p = 1 << (h - ph);\n mint now = 1;\n for (int s = 0; s < w; s++) {\n int offset = s << (h - ph + 1);\n for (int i = 0; i < p; i++) {\n auto l = a[i + offset];\n auto r = a[i + offset + p] * now;\n a[i + offset] = l + r;\n a[i + offset + p] = l - r;\n }\n now *= sum_e[bsf(~(unsigned int)(s))];\n }\n }\n}\n\ntemplate <class mint, internal::is_static_modint_t<mint>* = nullptr>\nvoid butterfly_inv(std::vector<mint>& a) {\n static constexpr int g = internal::primitive_root<mint::mod()>;\n int n = int(a.size());\n int h = internal::ceil_pow2(n);\n\n static bool first = true;\n static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]\n if (first) {\n first = false;\n mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1\n int cnt2 = bsf(mint::mod() - 1);\n mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();\n for (int i = cnt2; i >= 2; i--) {\n // e^(2^i) == 1\n es[i - 2] = e;\n ies[i - 2] = ie;\n e *= e;\n ie *= ie;\n }\n mint now = 1;\n for (int i = 0; i < cnt2 - 2; i++) {\n sum_ie[i] = ies[i] * now;\n now *= es[i];\n }\n }\n\n for (int ph = h; ph >= 1; ph--) {\n int w = 1 << (ph - 1), p = 1 << (h - ph);\n mint inow = 1;\n for (int s = 0; s < w; s++) {\n int offset = s << (h - ph + 1);\n for (int i = 0; i < p; i++) {\n auto l = a[i + offset];\n auto r = a[i + offset + p];\n a[i + offset] = l + r;\n a[i + offset + p] =\n (unsigned long long)(mint::mod() + l.val() - r.val()) *\n inow.val();\n }\n inow *= sum_ie[bsf(~(unsigned int)(s))];\n }\n }\n}\n\n} // namespace internal\n\ntemplate <class mint, internal::is_static_modint_t<mint>* = nullptr>\nstd::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {\n int n = int(a.size()), m = int(b.size());\n if (!n || !m) return {};\n if (std::min(n, m) <= 60) {\n if (n < m) {\n std::swap(n, m);\n std::swap(a, b);\n }\n std::vector<mint> ans(n + m - 1);\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < m; j++) {\n ans[i + j] += a[i] * b[j];\n }\n }\n return ans;\n }\n int z = 1 << internal::ceil_pow2(n + m - 1);\n a.resize(z);\n internal::butterfly(a);\n b.resize(z);\n internal::butterfly(b);\n for (int i = 0; i < z; i++) {\n a[i] *= b[i];\n }\n internal::butterfly_inv(a);\n a.resize(n + m - 1);\n mint iz = mint(z).inv();\n for (int i = 0; i < n + m - 1; i++) a[i] *= iz;\n return a;\n}\n\ntemplate <unsigned int mod = 998244353,\n class T,\n std::enable_if_t<internal::is_integral<T>::value>* = nullptr>\nstd::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {\n int n = int(a.size()), m = int(b.size());\n if (!n || !m) return {};\n\n using mint = static_modint<mod>;\n std::vector<mint> a2(n), b2(m);\n for (int i = 0; i < n; i++) {\n a2[i] = mint(a[i]);\n }\n for (int i = 0; i < m; i++) {\n b2[i] = mint(b[i]);\n }\n auto c2 = convolution(move(a2), move(b2));\n std::vector<T> c(n + m - 1);\n for (int i = 0; i < n + m - 1; i++) {\n c[i] = c2[i].val();\n }\n return c;\n}\n\nstd::vector<long long> convolution_ll(const std::vector<long long>& a,\n const std::vector<long long>& b) {\n int n = int(a.size()), m = int(b.size());\n if (!n || !m) return {};\n\n static constexpr unsigned long long MOD1 = 754974721; // 2^24\n static constexpr unsigned long long MOD2 = 167772161; // 2^25\n static constexpr unsigned long long MOD3 = 469762049; // 2^26\n static constexpr unsigned long long M2M3 = MOD2 * MOD3;\n static constexpr unsigned long long M1M3 = MOD1 * MOD3;\n static constexpr unsigned long long M1M2 = MOD1 * MOD2;\n static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;\n\n static constexpr unsigned long long i1 =\n internal::inv_gcd(MOD2 * MOD3, MOD1).second;\n static constexpr unsigned long long i2 =\n internal::inv_gcd(MOD1 * MOD3, MOD2).second;\n static constexpr unsigned long long i3 =\n internal::inv_gcd(MOD1 * MOD2, MOD3).second;\n\n auto c1 = convolution<MOD1>(a, b);\n auto c2 = convolution<MOD2>(a, b);\n auto c3 = convolution<MOD3>(a, b);\n\n std::vector<long long> c(n + m - 1);\n for (int i = 0; i < n + m - 1; i++) {\n unsigned long long x = 0;\n x += (c1[i] * i1) % MOD1 * M2M3;\n x += (c2[i] * i2) % MOD2 * M1M3;\n x += (c3[i] * i3) % MOD3 * M1M2;\n // B = 2^63, -B <= x, r(real value) < B\n // (x, x - M, x - 2M, or x - 3M) = r (mod 2B)\n // r = c1[i] (mod MOD1)\n // focus on MOD1\n // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)\n // r = x,\n // x - M' + (0 or 2B),\n // x - 2M' + (0, 2B or 4B),\n // x - 3M' + (0, 2B, 4B or 6B) (without mod!)\n // (r - x) = 0, (0)\n // - M' + (0 or 2B), (1)\n // -2M' + (0 or 2B or 4B), (2)\n // -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)\n // we checked that\n // ((1) mod MOD1) mod 5 = 2\n // ((2) mod MOD1) mod 5 = 3\n // ((3) mod MOD1) mod 5 = 4\n long long diff =\n c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));\n if (diff < 0) diff += MOD1;\n static constexpr unsigned long long offset[5] = {\n 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};\n x -= offset[diff % 5];\n c[i] = x;\n }\n\n return c;\n}\n\n} // namespace atcoder\n\n\n#define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i))\n#define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i))\n#define rep(i, n) For((i), 0, (n))\n#define rrep(i, n) rFor((i), (n), 0)\n#define fi first\n#define se second\n\nusing namespace std;\n\ntypedef long long lint;\ntypedef unsigned long long ulint;\ntypedef pair<int, int> pii;\ntypedef pair<lint, lint> pll;\n\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T>\nT div_floor(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a >= 0 ? a / b : (a + 1) / b - 1;\n}\ntemplate <class T>\nT div_ceil(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a > 0 ? (a - 1) / b + 1 : a / b;\n}\n\ntemplate <typename T>\nstruct coord_comp {\n vector<T> v;\n bool sorted = false;\n\n coord_comp() {}\n\n int size() { return v.size(); }\n\n void add(T x) { v.push_back(x); }\n\n void build() {\n sort(v.begin(), v.end());\n v.erase(unique(v.begin(), v.end()), v.end());\n sorted = true;\n }\n\n int get_idx(T x) {\n assert(sorted);\n return lower_bound(v.begin(), v.end(), x) - v.begin();\n }\n};\n\nconstexpr lint mod = 1000000007;\nconstexpr lint INF = mod * mod;\nconstexpr int MAX = 200010;\n\nusing namespace atcoder;\nusing mint = modint998244353;\nusing poly = vector<mint>;\n\nint main() {\n int n;\n lint L;\n scanf(\"%d%lld\", &n, &L);\n lint t[n];\n rep(i, n) scanf(\"%lld\", &t[i]);\n int m;\n lint D;\n scanf(\"%d%lld\", &m, &D);\n int x[m + 1];\n mint p[m];\n mint inv100 = mint(100).inv();\n rep(i, m) {\n int tmp;\n scanf(\"%d%d\", &x[i], &tmp);\n p[i] = mint(tmp) * inv100;\n }\n x[m] = L;\n\n auto cmp = [&](const poly &a, const poly &b) {\n return a.size() > b.size();\n };\n priority_queue<poly, vector<poly>, decltype(cmp)> que(cmp);\n rep(i, m) {\n mint a = p[i] * (mint(1) - p[i]);\n mint b = p[i].pow(2) + (mint(1) - p[i]).pow(2);\n poly v(2 * (x[i + 1] - x[i]) + 1);\n v[0] = v[2 * (x[i + 1] - x[i])] = a;\n v[x[i + 1] - x[i]] = b;\n que.push(v);\n }\n while (que.size() >= 2) {\n auto a = que.top();\n que.pop();\n auto b = que.top();\n que.pop();\n que.push(convolution(a, b));\n }\n auto a = que.top();\n rrep(i, a.size() - 1) a[i] += a[i + 1];\n\n mint ans = 1;\n For(i, 1, n) {\n lint k = div_floor(L * (t[i] - t[0]), 2 * D) + 1 + L - x[0];\n if (k < (int)a.size()) ans += a[max(0LL, k)];\n }\n printf(\"%u\\n\", ans.val());\n}", "accuracy": 1, "time_ms": 220, "memory_kb": 14212, "score_of_the_acc": -0.0126, "final_rank": 1 }, { "submission_id": "aoj_3182_4951247", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\nusing mint = ModInt<>;\n\ntemplate <int mod = 998244353>\nstruct NTT {\n int base, maxb, root;\n vector<int> rv, roots, invr;\n NTT() : base(1), rv({0, 1}), roots({0, 1}), invr({0, 1}) {\n assert(mod >= 3 && mod & 1);\n int tmp = mod - 1;\n maxb = 0;\n while (!(tmp & 1)) tmp >>= 1, ++maxb;\n root = 2;\n while (mpow(root, (mod - 1) >> 1) == 1) ++root;\n assert(mpow(root, mod - 1) == 1);\n root = mpow(root, (mod - 1) >> maxb);\n }\n\n inline int mpow(int x, int n) {\n int res = 1;\n while (n) {\n if (n & 1) res = mul(res, x);\n x = mul(x, x);\n n >>= 1;\n }\n return res;\n }\n\n inline int inv(int x) {\n assert(x != 0);\n return mpow(x, mod - 2);\n }\n\n inline int add(int x, int y) {\n if ((x += y) >= mod) x -= mod;\n return x;\n }\n\n inline int mul(int x, int y) { return (int)(1LL * x * y % mod); }\n\n void ensure_base(int nb) {\n if (nb <= base) return;\n rv.resize(1 << nb);\n roots.resize(1 << nb);\n invr.resize(1 << nb);\n for (int i = 0; i < (1 << nb); ++i)\n rv[i] = (rv[i >> 1] >> 1) + ((i & 1) << (nb - 1));\n assert(nb <= maxb);\n while (base < nb) {\n int z = mpow(root, 1 << (maxb - 1 - base)), invz = inv(z);\n for (int i = 1 << (base - 1); i < (1 << base); ++i) {\n roots[i << 1] = roots[i];\n roots[(i << 1) + 1] = mul(roots[i], z);\n invr[i << 1] = invr[i];\n invr[(i << 1) + 1] = mul(invr[i], invz);\n }\n ++base;\n }\n }\n void ntt(vector<int> &a, int n, bool sg = 0) {\n assert((n & (n - 1)) == 0);\n int dif = base - __builtin_ctz(n);\n for (int i = 0; i < n; ++i)\n if (i < (rv[i] >> dif)) swap(a[i], a[rv[i] >> dif]);\n for (int k = 1; k < n; k <<= 1)\n for (int i = 0; i < n; i += 2 * k)\n for (int j = 0; j < k; ++j) {\n int z = mul(a[i + j + k], (sg ? roots[j + k] : invr[j + k]));\n a[i + j + k] = add(a[i + j], mod - z);\n a[i + j] = add(a[i + j], z);\n }\n int invn = inv(n);\n if (sg)\n for (int i = 0; i < n; ++i) a[i] = mul(a[i], invn);\n }\n template <class T>\n vector<T> multiply(const vector<T> &a, const vector<T> &b) {\n int need = a.size() + b.size() - 1;\n int nb = 1;\n while ((1 << nb) < need) ++nb;\n ensure_base(nb);\n int sz = 1 << nb;\n vector<int> fa(sz, 0), fb(sz, 0);\n for (int i = 0; i < sz; ++i) {\n if (i < a.size()) fa[i] = a[i];\n if (i < b.size()) fb[i] = b[i];\n }\n ntt(fa, sz);\n ntt(fb, sz);\n for (int i = 0; i < sz; ++i) fa[i] = mul(fa[i], fb[i]);\n ntt(fa, sz, 1);\n vector<T> res(need);\n for (int i = 0; i < need; ++i) res[i] = fa[i];\n return res;\n }\n};\n\nint n, l, m, d;\nvector<int> t, x, p;\nvector<mint> sum;\nNTT ntt;\n\nmint solve();\n\nint main() {\n cin >> n >> l;\n t.resize(n);\n for (auto &i : t) cin >> i;\n cin >> m >> d;\n x.resize(m);\n p.resize(m);\n for (int i = 0; i < m; ++i) cin >> x[i] >> p[i];\n x.push_back(l);\n cout << solve() << endl;\n return 0;\n}\n\nmint solve() {\n { // pre\n queue<vector<int>> qu;\n for (int i = 0; i < m; ++i) {\n int len = x[i + 1] - x[i];\n vector<int> v(2 * len + 1, 0);\n mint np = mint(p[i]) / 100, revp = -np + 1;\n v[0] = v[2 * len] = (np * revp).x;\n v[len] = mint(1 - 2 * v[0]).x;\n qu.push(v);\n }\n while (qu.size() > 1) {\n auto lv = qu.front();\n qu.pop();\n qu.push(ntt.multiply(lv, qu.front()));\n qu.pop();\n }\n auto v = qu.front();\n int len = v.size();\n sum.resize(len);\n for (int i = 0; i < len; ++i) {\n sum[i] = v[i];\n if (i) sum[i] += sum[i - 1];\n }\n }\n mint res = n;\n int len = sum.size();\n for (int i = 1; i < n; ++i) {\n long long time = 1LL * (t[i] - t[0]) * l + 2LL * d * (l - x[0]);\n if (time >= 0) res -= sum[min(time / (2 * d), len - 1LL)];\n }\n return res;\n}", "accuracy": 1, "time_ms": 310, "memory_kb": 15812, "score_of_the_acc": -0.1446, "final_rank": 3 }, { "submission_id": "aoj_3182_4950800", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\nusing mint = ModInt<>;\n\ntemplate <int mod = 998244353>\nstruct NTT {\n int base, maxb, root;\n vector<int> rv, roots, invr;\n NTT() : base(1), rv({0, 1}), roots({0, 1}), invr({0, 1}) {\n assert(mod >= 3 && mod & 1);\n int tmp = mod - 1;\n maxb = 0;\n while (!(tmp & 1)) tmp >>= 1, ++maxb;\n root = 2;\n while (mpow(root, (mod - 1) >> 1) == 1) ++root;\n assert(mpow(root, mod - 1) == 1);\n root = mpow(root, (mod - 1) >> maxb);\n }\n\n inline int mpow(int x, int n) {\n int res = 1;\n while (n) {\n if (n & 1) res = mul(res, x);\n x = mul(x, x);\n n >>= 1;\n }\n return res;\n }\n\n inline int inv(int x) { return mpow(x, mod - 2); }\n\n inline int add(int x, int y) {\n if ((x += y) >= mod) x -= mod;\n return x;\n }\n\n inline int mul(int x, int y) { return (int)(1LL * x * y % mod); }\n\n void ensure_base(int nb) {\n if (nb <= base) return;\n rv.resize(1 << nb);\n roots.resize(1 << nb);\n invr.resize(1 << nb);\n for (int i = 0; i < (1 << nb); ++i)\n rv[i] = (rv[i >> 1] >> 1) + ((i & 1) << (nb - 1));\n assert(nb <= maxb);\n while (base < nb) {\n int z = mpow(root, 1 << (maxb - 1 - base)), invz = inv(z);\n for (int i = 1 << (base - 1); i < (1 << base); ++i) {\n roots[i << 1] = roots[i];\n roots[(i << 1) + 1] = mul(roots[i], z);\n invr[i << 1] = invr[i];\n invr[(i << 1) + 1] = mul(invr[i], invz);\n }\n ++base;\n }\n }\n void ntt(vector<int> &a, int n, bool sg = 0) {\n assert((n & (n - 1)) == 0);\n for (int i = 0; i < n; ++i)\n if (i < rv[i]) swap(a[i], a[rv[i]]);\n for (int k = 1; k < n; k <<= 1)\n for (int i = 0; i < n; i += 2 * k)\n for (int j = 0; j < k; ++j) {\n int z = mul(a[i + j + k], (sg ? roots[j + k] : invr[j + k]));\n a[i + j + k] = add(a[i + j], mod - z);\n a[i + j] = add(a[i + j], z);\n }\n int invn = inv(n);\n if (sg)\n for (int i = 0; i < n; ++i) a[i] = mul(a[i], invn);\n }\n template <class T>\n vector<T> multiply(const vector<T> &a, const vector<T> &b) {\n int need = a.size() + b.size() - 1;\n int nb = 1;\n while ((1 << nb) < need) ++nb;\n ensure_base(nb);\n int sz = 1 << nb;\n vector<int> fa(sz, 0), fb(sz, 0);\n for (int i = 0; i < sz; ++i) {\n if (i < a.size()) fa[i] = a[i];\n if (i < b.size()) fb[i] = b[i];\n }\n ntt(fa, sz);\n ntt(fb, sz);\n for (int i = 0; i < sz; ++i) fa[i] = mul(fa[i], fb[i]);\n ntt(fa, sz, 1);\n vector<T> res(need);\n for (int i = 0; i < need; ++i) res[i] = fa[i];\n mint x = 0;\n for (auto p : res) x += p;\n cout << x << endl;\n x = 0;\n for (auto p : a) x += p;\n cout << x << endl;\n x = 0;\n for (auto p : b) x += p;\n cout << x << endl;\n return res;\n }\n};\n\ntemplate <int mod>\nstruct NumberTheoreticTransform {\n vector<int> rev, rts;\n int base, max_base, root;\n\n NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} {\n assert(mod >= 3 && mod % 2 == 1);\n auto tmp = mod - 1;\n max_base = 0;\n while (tmp % 2 == 0) tmp >>= 1, max_base++;\n root = 2;\n while (mod_pow(root, (mod - 1) >> 1) == 1) ++root;\n assert(mod_pow(root, mod - 1) == 1);\n root = mod_pow(root, (mod - 1) >> max_base);\n }\n\n inline int mod_pow(int x, int n) {\n int ret = 1;\n while (n > 0) {\n if (n & 1) ret = mul(ret, x);\n x = mul(x, x);\n n >>= 1;\n }\n return ret;\n }\n\n inline int inverse(int x) { return mod_pow(x, mod - 2); }\n\n inline unsigned add(unsigned x, unsigned y) {\n x += y;\n if (x >= mod) x -= mod;\n return x;\n }\n\n inline unsigned mul(unsigned a, unsigned b) {\n return 1ull * a * b % (unsigned long long)mod;\n }\n\n void ensure_base(int nbase) {\n if (nbase <= base) return;\n rev.resize(1 << nbase);\n rts.resize(1 << nbase);\n for (int i = 0; i < (1 << nbase); i++) {\n rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));\n }\n assert(nbase <= max_base);\n while (base < nbase) {\n int z = mod_pow(root, 1 << (max_base - 1 - base));\n for (int i = 1 << (base - 1); i < (1 << base); i++) {\n rts[i << 1] = rts[i];\n rts[(i << 1) + 1] = mul(rts[i], z);\n }\n ++base;\n }\n }\n\n void ntt(vector<int> &a) {\n const int n = (int)a.size();\n assert((n & (n - 1)) == 0);\n int zeros = __builtin_ctz(n);\n ensure_base(zeros);\n int shift = base - zeros;\n for (int i = 0; i < n; i++) {\n if (i < (rev[i] >> shift)) {\n swap(a[i], a[rev[i] >> shift]);\n }\n }\n for (int k = 1; k < n; k <<= 1) {\n for (int i = 0; i < n; i += 2 * k) {\n for (int j = 0; j < k; j++) {\n int z = mul(a[i + j + k], rts[j + k]);\n a[i + j + k] = add(a[i + j], mod - z);\n a[i + j] = add(a[i + j], z);\n }\n }\n }\n }\n\n vector<int> multiply(vector<int> a, vector<int> b) {\n int need = a.size() + b.size() - 1;\n int nbase = 1;\n while ((1 << nbase) < need) nbase++;\n ensure_base(nbase);\n int sz = 1 << nbase;\n a.resize(sz, 0);\n b.resize(sz, 0);\n ntt(a);\n ntt(b);\n int inv_sz = inverse(sz);\n for (int i = 0; i < sz; i++) {\n a[i] = mul(a[i], mul(b[i], inv_sz));\n }\n reverse(a.begin() + 1, a.end());\n ntt(a);\n a.resize(need);\n return a;\n }\n};\n\nint n, l, m, d;\nvector<int> t, x, p;\nvector<mint> sum;\nNTT ntt;\n\nmint solve();\n\nint main() {\n cin >> n >> l;\n t.resize(n);\n for (auto &i : t) cin >> i;\n cin >> m >> d;\n x.resize(m);\n p.resize(m);\n for (int i = 0; i < m; ++i) cin >> x[i] >> p[i];\n x.push_back(l);\n cout << solve() << endl;\n return 0;\n}\n\nmint solve() {\n { // pre\n queue<vector<int>> qu;\n for (int i = 0; i < m; ++i) {\n int len = x[i + 1] - x[i];\n vector<int> v(2 * len + 1, 0);\n mint np = mint(p[i]) / 100, revp = -np + 1;\n v[0] = v[2 * len] = (np * revp).x;\n v[len] = mint(1 - 2 * v[0]).x;\n qu.push(v);\n }\n NumberTheoreticTransform<998244353> ntt2;\n while (qu.size() > 1) {\n auto lv = qu.front();\n qu.pop();\n auto rv = qu.front();\n qu.pop();\n auto v = ntt2.multiply(lv, rv);\n qu.push(v);\n }\n auto v = qu.front();\n int len = v.size();\n sum.resize(len);\n for (int i = 0; i < len; ++i) {\n sum[i] = v[i];\n if (i) sum[i] += sum[i - 1];\n }\n }\n mint res = n;\n int len = sum.size();\n for (int i = 1; i < n; ++i) {\n long long time = 1LL * (t[i] - t[0]) * l + 2LL * d * (l - x[0]);\n if (time >= 0) res -= sum[min(time / (2 * d), len - 1LL)];\n }\n return res;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 14480, "score_of_the_acc": -0.1301, "final_rank": 2 }, { "submission_id": "aoj_3182_4950763", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntemplate <int mod = (int)(998244353)>\nstruct ModInt {\n int x;\n constexpr ModInt() : x(0) {}\n constexpr ModInt(int64_t y)\n : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n constexpr ModInt &operator+=(const ModInt &p) noexcept {\n if ((x += p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator-=(const ModInt &p) noexcept {\n if ((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n constexpr ModInt &operator*=(const ModInt &p) noexcept {\n x = (int)(1LL * x * p.x % mod);\n return *this;\n }\n constexpr ModInt &operator/=(const ModInt &p) noexcept {\n *this *= p.inverse();\n return *this;\n }\n constexpr ModInt operator-() const { return ModInt(-x); }\n constexpr ModInt operator+(const ModInt &p) const noexcept {\n return ModInt(*this) += p;\n }\n constexpr ModInt operator-(const ModInt &p) const noexcept {\n return ModInt(*this) -= p;\n }\n constexpr ModInt operator*(const ModInt &p) const noexcept {\n return ModInt(*this) *= p;\n }\n constexpr ModInt operator/(const ModInt &p) const noexcept {\n return ModInt(*this) /= p;\n }\n constexpr bool operator==(const ModInt &p) const noexcept { return x == p.x; }\n constexpr bool operator!=(const ModInt &p) const noexcept { return x != p.x; }\n constexpr ModInt inverse() const noexcept {\n int a = x, b = mod, u = 1, v = 0, t = 0;\n while (b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n constexpr ModInt pow(int64_t n) const {\n ModInt res(1), mul(x);\n while (n) {\n if (n & 1) res *= mul;\n mul *= mul;\n n >>= 1;\n }\n return res;\n }\n friend constexpr ostream &operator<<(ostream &os, const ModInt &p) noexcept {\n return os << p.x;\n }\n friend constexpr istream &operator>>(istream &is, ModInt &a) noexcept {\n int64_t t = 0;\n is >> t;\n a = ModInt<mod>(t);\n return (is);\n }\n constexpr int get_mod() { return mod; }\n};\nusing mint = ModInt<>;\n\ntemplate <int mod = 998244353>\nstruct NTT {\n int base, maxb, root;\n vector<int> rv, roots, invr;\n NTT() : base(1), rv({0, 1}), roots({0, 1}), invr({0, 1}) {\n assert(mod >= 3 && mod & 1);\n int tmp = mod - 1;\n maxb = 0;\n while (!(tmp & 1)) tmp >>= 1, ++maxb;\n root = 2;\n while (mpow(root, (mod - 1) >> 1) == 1) ++root;\n assert(mpow(root, mod - 1) == 1);\n root = mpow(root, (mod - 1) >> maxb);\n }\n\n inline int mpow(int x, int n) {\n int res = 1;\n while (n) {\n if (n & 1) res = mul(res, x);\n x = mul(x, x);\n n >>= 1;\n }\n return res;\n }\n\n inline int inv(int x) { return mpow(x, mod - 2); }\n\n inline int add(int x, int y) {\n if ((x += y) >= mod) x -= mod;\n return x;\n }\n\n inline int mul(int x, int y) { return (int)(1LL * x * y % mod); }\n\n void ensure_base(int nb) {\n if (nb <= base) return;\n rv.resize(1 << nb);\n roots.resize(1 << nb);\n invr.resize(1 << nb);\n for (int i = 0; i < (1 << nb); ++i)\n rv[i] = (rv[i >> 1] >> 1) + ((i & 1) << (nb - 1));\n assert(nb <= maxb);\n while (base < nb) {\n int z = mpow(root, 1 << (maxb - 1 - base)), invz = inv(z);\n for (int i = 1 << (base - 1); i < (1 << base); ++i) {\n roots[i << 1] = roots[i];\n roots[(i << 1) + 1] = mul(roots[i], z);\n invr[i << 1] = invr[i];\n invr[(i << 1) + 1] = mul(invr[i], invz);\n }\n ++base;\n }\n }\n void ntt(vector<int> &a, int n, bool sg = 0) {\n assert((n & (n - 1)) == 0);\n for (int i = 0; i < n; ++i)\n if (i < rv[i]) swap(a[i], a[rv[i]]);\n for (int k = 1; k < n; k <<= 1)\n for (int i = 0; i < n; i += 2 * k)\n for (int j = 0; j < k; ++j) {\n int z = mul(a[i + j + k], (sg ? roots[j + k] : invr[j + k]));\n a[i + j + k] = add(a[i + j], mod - z);\n a[i + j] = add(a[i + j], z);\n }\n int invn = inv(n);\n if (sg)\n for (int i = 0; i < n; ++i) a[i] = mul(a[i], invn);\n }\n template <class T>\n vector<T> multiply(const vector<T> &a, const vector<T> &b) {\n int need = a.size() + b.size() - 1;\n int nb = 1;\n while ((1 << nb) < need) ++nb;\n ensure_base(nb);\n int sz = 1 << nb;\n vector<int> fa(sz, 0), fb(sz, 0);\n for (int i = 0; i < sz; ++i) {\n if (i < a.size()) fa[i] = a[i];\n if (i < b.size()) fb[i] = b[i];\n }\n ntt(fa, sz);\n ntt(fb, sz);\n for (int i = 0; i < sz; ++i) fa[i] = mul(fa[i], fb[i]);\n ntt(fa, sz, 1);\n vector<T> res(need);\n for (int i = 0; i < need; ++i) res[i] = fa[i];\n mint x = 0;\n for (auto p : res) x += p;\n cout << x << endl;\n x = 0;\n for (auto p : a) x += p;\n cout << x << endl;\n x = 0;\n for (auto p : b) x += p;\n cout << x << endl;\n return res;\n }\n};\n\ntemplate <int mod>\nstruct NumberTheoreticTransform {\n vector<int> rev, rts;\n int base, max_base, root;\n\n NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} {\n assert(mod >= 3 && mod % 2 == 1);\n auto tmp = mod - 1;\n max_base = 0;\n while (tmp % 2 == 0) tmp >>= 1, max_base++;\n root = 2;\n while (mod_pow(root, (mod - 1) >> 1) == 1) ++root;\n assert(mod_pow(root, mod - 1) == 1);\n root = mod_pow(root, (mod - 1) >> max_base);\n }\n\n inline int mod_pow(int x, int n) {\n int ret = 1;\n while (n > 0) {\n if (n & 1) ret = mul(ret, x);\n x = mul(x, x);\n n >>= 1;\n }\n return ret;\n }\n\n inline int inverse(int x) { return mod_pow(x, mod - 2); }\n\n inline unsigned add(unsigned x, unsigned y) {\n x += y;\n if (x >= mod) x -= mod;\n return x;\n }\n\n inline unsigned mul(unsigned a, unsigned b) {\n return 1ull * a * b % (unsigned long long)mod;\n }\n\n void ensure_base(int nbase) {\n if (nbase <= base) return;\n rev.resize(1 << nbase);\n rts.resize(1 << nbase);\n for (int i = 0; i < (1 << nbase); i++) {\n rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));\n }\n assert(nbase <= max_base);\n while (base < nbase) {\n int z = mod_pow(root, 1 << (max_base - 1 - base));\n for (int i = 1 << (base - 1); i < (1 << base); i++) {\n rts[i << 1] = rts[i];\n rts[(i << 1) + 1] = mul(rts[i], z);\n }\n ++base;\n }\n }\n\n void ntt(vector<int> &a) {\n const int n = (int)a.size();\n assert((n & (n - 1)) == 0);\n int zeros = __builtin_ctz(n);\n ensure_base(zeros);\n int shift = base - zeros;\n for (int i = 0; i < n; i++) {\n if (i < (rev[i] >> shift)) {\n swap(a[i], a[rev[i] >> shift]);\n }\n }\n for (int k = 1; k < n; k <<= 1) {\n for (int i = 0; i < n; i += 2 * k) {\n for (int j = 0; j < k; j++) {\n int z = mul(a[i + j + k], rts[j + k]);\n a[i + j + k] = add(a[i + j], mod - z);\n a[i + j] = add(a[i + j], z);\n }\n }\n }\n }\n\n vector<int> multiply(vector<int> a, vector<int> b) {\n int need = a.size() + b.size() - 1;\n int nbase = 1;\n while ((1 << nbase) < need) nbase++;\n ensure_base(nbase);\n int sz = 1 << nbase;\n a.resize(sz, 0);\n b.resize(sz, 0);\n ntt(a);\n ntt(b);\n int inv_sz = inverse(sz);\n for (int i = 0; i < sz; i++) {\n a[i] = mul(a[i], mul(b[i], inv_sz));\n }\n reverse(a.begin() + 1, a.end());\n ntt(a);\n a.resize(need);\n return a;\n }\n};\n\nint n, l, m, d;\nvector<int> t, x, p;\nvector<mint> sum;\nNTT ntt;\n\nmint solve();\n\nint main() {\n cin >> n >> l;\n t.resize(n);\n for (auto &i : t) cin >> i;\n cin >> m >> d;\n x.resize(m);\n p.resize(m);\n for (int i = 0; i < m; ++i) cin >> x[i] >> p[i];\n x.push_back(l);\n cout << solve() << endl;\n return 0;\n}\n\nmint solve() {\n { // pre\n queue<vector<int>> qu;\n for (int i = 0; i < m; ++i) {\n int len = x[i + 1] - x[i];\n vector<int> v(2 * len + 1, 0);\n mint np = mint(p[i]) / 100, revp = -np + 1;\n v[0] = v[2 * len] = (np * revp).x;\n v[len] = mint(1 - 2 * v[0]).x;\n qu.push(v);\n }\n NumberTheoreticTransform<998244353> ntt2;\n while (qu.size() > 1) {\n auto lv = qu.front();\n qu.pop();\n auto rv = qu.front();\n qu.pop();\n auto v = ntt2.multiply(lv, rv);\n qu.push(v);\n }\n auto v = qu.front();\n int len = v.size();\n sum.resize(len);\n for (int i = 0; i < len; ++i) {\n sum[i] = v[i];\n if (i) sum[i] += sum[i - 1];\n }\n }\n mint res = n;\n for (int i = 1; i < n; ++i) {\n long long time = 1LL * (t[i] - t[0]) * l + 2LL * d * (l - x[0]);\n if (time >= 0) res -= sum[time / (2 * d)];\n }\n return res;\n}", "accuracy": 0.075, "time_ms": 320, "memory_kb": 13560, "score_of_the_acc": -0.1124, "final_rank": 16 }, { "submission_id": "aoj_3182_4906211", "code_snippet": "//#define _GLIBCXX_DEBUG\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define endl '\\n'\n#define lfs cout<<fixed<<setprecision(10)\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n#define spa << \" \" <<\n#define fi first\n#define se second\n#define MP make_pair\n#define MT make_tuple\n#define PB push_back\n#define EB emplace_back\n#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)\n#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)\nusing ll = long long;\nusing ld = long double;\nconst ll MOD1 = 1e9+7;\nconst ll MOD9 = 998244353;\nconst ll INF = 1e18;\nusing P = pair<ll, ll>;\ntemplate<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}\ntemplate<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}\nll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}\nvoid ans1(bool x){if(x) cout<<\"Yes\"<<endl;else cout<<\"No\"<<endl;}\nvoid ans2(bool x){if(x) cout<<\"YES\"<<endl;else cout<<\"NO\"<<endl;}\nvoid ans3(bool x){if(x) cout<<\"Yay!\"<<endl;else cout<<\":(\"<<endl;}\ntemplate<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} \ntemplate<typename T>void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};\nvoid debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++){for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};\ntemplate<typename T>void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};\ntemplate<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}\nll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}\nvector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};\ntemplate<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}\ntemplate<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}\ntemplate<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << \" \" << p.second;}\ntemplate<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << \" \";cout<<\"|\"; return os;}\n//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());\ntemplate< int mod >\nstruct ModInt {\n int x;\n\n ModInt() : x(0) {}\n\n ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}\n\n ModInt &operator+=(const ModInt &p) {\n if((x += p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator-=(const ModInt &p) {\n if((x += mod - p.x) >= mod) x -= mod;\n return *this;\n }\n\n ModInt &operator*=(const ModInt &p) {\n x = (int) (1LL * x * p.x % mod);\n return *this;\n }\n\n ModInt &operator/=(const ModInt &p) {\n *this *= p.inverse();\n return *this;\n }\n\n ModInt operator-() const { return ModInt(-x); }\n\n friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) {\n return ModInt(lhs) += rhs;\n }\n friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) {\n return ModInt(lhs) -= rhs;\n }\n friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) {\n return ModInt(lhs) *= rhs;\n }\n friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) {\n return ModInt(lhs) /= rhs;\n }\n\n bool operator==(const ModInt &p) const { return x == p.x; }\n\n bool operator!=(const ModInt &p) const { return x != p.x; }\n\n ModInt inverse() const {\n int a = x, b = mod, u = 1, v = 0, t;\n while(b > 0) {\n t = a / b;\n swap(a -= t * b, b);\n swap(u -= t * v, v);\n }\n return ModInt(u);\n }\n\n ModInt pow(int64_t n) const {\n ModInt ret(1), mul(x);\n while(n > 0) {\n if(n & 1) ret *= mul;\n mul *= mul;\n n >>= 1;\n }\n return ret;\n }\n\n friend ostream &operator<<(ostream &os, const ModInt &p) {\n return os << p.x;\n }\n\n friend istream &operator>>(istream &is, ModInt &a) {\n int64_t t;\n is >> t;\n a = ModInt< mod >(t);\n return (is);\n }\n\n static int get_mod() { return mod; }\n};\nusing modint = ModInt< MOD9 >;modint pow(ll n, ll x){return modint(n).pow(x);}modint pow(modint n, ll x){return n.pow(x);}\n//using modint=ld;\ntemplate< typename Mint >\nstruct NumberTheoreticTransformFriendlyModInt {\n\n vector< Mint > dw, idw;\n int max_base;\n Mint root;\n\n NumberTheoreticTransformFriendlyModInt() {\n const unsigned mod = Mint::get_mod();\n assert(mod >= 3 && mod % 2 == 1);\n auto tmp = mod - 1;\n max_base = 0;\n while(tmp % 2 == 0) tmp >>= 1, max_base++;\n root = 2;\n while(root.pow((mod - 1) >> 1) == 1) root += 1;\n assert(root.pow(mod - 1) == 1);\n dw.resize(max_base);\n idw.resize(max_base);\n for(int i = 0; i < max_base; i++) {\n dw[i] = -root.pow((mod - 1) >> (i + 2));\n idw[i] = Mint(1) / dw[i];\n }\n }\n\n void ntt(vector< Mint > &a) {\n const int n = (int) a.size();\n assert((n & (n - 1)) == 0);\n assert(__builtin_ctz(n) <= max_base);\n for(int m = n; m >>= 1;) {\n Mint w = 1;\n for(int s = 0, k = 0; s < n; s += 2 * m) {\n for(int i = s, j = s + m; i < s + m; ++i, ++j) {\n auto x = a[i], y = a[j] * w;\n a[i] = x + y, a[j] = x - y;\n }\n w *= dw[__builtin_ctz(++k)];\n }\n }\n }\n\n void intt(vector< Mint > &a, bool f = true) {\n const int n = (int) a.size();\n assert((n & (n - 1)) == 0);\n assert(__builtin_ctz(n) <= max_base);\n for(int m = 1; m < n; m *= 2) {\n Mint w = 1;\n for(int s = 0, k = 0; s < n; s += 2 * m) {\n for(int i = s, j = s + m; i < s + m; ++i, ++j) {\n auto x = a[i], y = a[j];\n a[i] = x + y, a[j] = (x - y) * w;\n }\n w *= idw[__builtin_ctz(++k)];\n }\n }\n if(f) {\n Mint inv_sz = Mint(1) / n;\n for(int i = 0; i < n; i++) a[i] *= inv_sz;\n }\n }\n\n vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {\n int need = a.size() + b.size() - 1;\n int nbase = 1;\n while((1 << nbase) < need) nbase++;\n int sz = 1 << nbase;\n a.resize(sz, 0);\n b.resize(sz, 0);\n ntt(a);\n ntt(b);\n Mint inv_sz = Mint(1) / sz;\n for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;\n intt(a, false);\n a.resize(need);\n return a;\n }\n};\nint main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n ll res=0,buf=0;\n bool judge = true;\n ll n,l;cin>>n>>l;\n vector<ll>t(n);\n rep(i,0,n)cin>>t[i];\n ll m,d;cin>>m>>d;\n vector<ll>x(m),p(m);\n rep(i,0,m)cin>>x[i]>>p[i];\n x.PB(l);\n vector<vector<modint>>f(m);\n ll geta=0;\n queue<ll>que;\n rep(i,0,m){\n modint prob=(modint)p[i]/100;\n ll sz=x[i+1]-x[i];\n f[i].assign(4*sz+1,0);\n geta+=2*sz;\n f[i][0]=(1-prob)*prob;\n f[i][2*sz]=prob*prob+(1-prob)*(1-prob);\n f[i][4*sz]=(1-prob)*prob;\n que.push(i);\n }\n NumberTheoreticTransformFriendlyModInt<modint>ntt;\n while(que.size()>=2){\n auto l=que.front();que.pop();\n auto r=que.front();que.pop();\n f[l]=ntt.multiply(f[l],f[r]);\n //debug(f[l],f[l].size());\n que.push(l);\n }\n ll r=que.front();\n vector<modint>fb(f[r].size()+1);\n rep(i,0,f[r].size())fb[i+1]=fb[i]+f[r][i];\n ll sz=f[r].size();\n //cout<<f[r][0]*4<<endl;\n //cout<<f<<endl;\n //debug(fb,sz+1);\n //debug(f[r],sz);\n modint ret=1;\n rep(i,1,n){\n ll dif=(t[0]-t[i])*l;\n if(dif>0)dif=(dif+d-1)/d;\n else dif/=d;\n //cout<<dif spa geta spa clamp(dif+geta,0LL,sz)<<endl;\n ret+=fb[clamp(dif+geta,0LL,sz)];\n }\n cout<<ret<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 550, "memory_kb": 65356, "score_of_the_acc": -1.3708, "final_rank": 11 }, { "submission_id": "aoj_3182_4877008", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <unordered_map>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\n#include <unordered_map>\n#include <fstream>\n#include <ctime>\n#include <complex>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 2020000;\nll dy[8] = {1,-1,0,0,1,-1,1,-1};\nll dx[8] = {0,0,1,-1,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << \"debug: \" << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << \"debug: \" << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\n#define MOD 998244353\n#define root 3\n \nunsigned int add(const unsigned int x, const unsigned int y)\n{\n return (x + y < MOD) ? x + y : x + y - MOD;\n}\n \nunsigned int sub(const unsigned int x, const unsigned int y)\n{\n return (x >= y) ? (x - y) : (MOD - y + x);\n}\n \nunsigned int mul(const unsigned int x, const unsigned int y)\n{\n return (unsigned long long)x * y % MOD;\n}\n \nunsigned int mod_pow(unsigned int x, unsigned int n)\n{\n unsigned int res = 1;\n while(n > 0){\n if(n & 1){ res = mul(res, x); }\n x = mul(x, x);\n n >>= 1;\n }\n return res;\n}\n \nunsigned int inverse(const unsigned int x)\n{\n return mod_pow(x, MOD - 2);\n}\n \nvoid ntt(vector<int>& a, const bool rev = false)\n{\n unsigned int i, j, k, l, p, q, r, s;\n const unsigned int size = a.size();\n if(size == 1) return;\n vector<int> b(size);\n r = rev ? (MOD - 1 - (MOD - 1) / size) : (MOD - 1) / size;\n s = mod_pow(root, r);\n vector<unsigned int> kp(size / 2 + 1, 1);\n for(i = 0; i < size / 2; ++i) kp[i + 1] = mul(kp[i], s);\n for(i = 1, l = size / 2; i < size; i <<= 1, l >>= 1){\n for(j = 0, r = 0; j < l; ++j, r += i){\n for(k = 0, s = kp[i * j]; k < i; ++k){\n p = a[k + r], q = a[k + r + size / 2];\n b[k + 2 * r] = add(p, q);\n b[k + 2 * r + i] = mul(sub(p, q), s);\n }\n }\n swap(a, b);\n }\n if(rev){\n s = inverse(size);\n for(i = 0; i < size; i++){ a[i] = mul(a[i], s); }\n }\n}\n \nvector<int> convolute(const vector<int>& a, const vector<int>& b)\n{\n const int size = (int)a.size() + (int)b.size() - 1;\n int t = 1;\n while(t < size){ t <<= 1; }\n vector<int> A(t, 0), B(t, 0);\n for(int i = 0; i < (int)a.size(); i++){ A[i] = a[i]; }\n for(int i = 0; i < (int)b.size(); i++){ B[i] = b[i]; }\n ntt(A), ntt(B);\n for (int i = 0; i < t; i++){ A[i] = mul(A[i], B[i]); }\n ntt(A, true);\n A.resize(size);\n return A;\n}\n\nll modpow(ll x, ll n, ll mod){\n\tll res = 1;\n\twhile(n > 0){\n\t\tif(n & 1) res = res * x % mod;\n\t\tx = x * x % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nint main(){\n\tll n,L; cin >> n >> L;\n\tvector<int> t(n); rep(i,n) cin >> t[i];\n\tint m,d; cin >> m >> d;\n\tvector<int> x(m+1),p(m);\n\trep(i,m) cin >> x[i] >> p[i];\n\tx[m] = L;\n\tvector<vector<int>> v;\n\tint id = 0;\n\tpriority_queue<P,vector<P>,greater<P>> pq;\n\tint inv = modpow(100,mod-2,mod);\n\trep(i,m){\n\t\tll dist = x[i+1] - x[i];\n\t\tvector<int> vec(dist+1,0);\n\t\tpq.emplace(dist+1,id);\n\t\tvec[0] = (ll)p[i] * inv % mod;\n\t\tvec[dist] = (1 - (ll)p[i] * inv % mod + mod) % mod;\n\t\tv.push_back(vec);\n\t\tid++;\n\t}\n\twhile(pq.size() > 1){\n\t\tint w = pq.top().second; pq.pop();\n\t\tint y = pq.top().second; pq.pop();\n\t\tv[y] = convolute(v[w], v[y]);\n\t\tpq.emplace(v[y].size(), y);\n\t}\n\tint z = pq.top().second;\n\tauto b = v[z];\n\treverse(all(b));\n\tauto c = convolute(v[z], b);\n\tvector<int> acc(2*L+1, 0);\n\trep(i,c.size()) acc[i+1] = (acc[i] + c[i]) % mod;\n\tfor(int i=c.size(); i<2*L; i++) acc[i+1] = acc[i];\n\tll ans = 1;\n\tREP(i,1,n){\n\t\tll lim;\n\t\tif(t[0] > t[i]){\n\t\t\tlim = (L * (t[0] - t[i]) + 2*d - 1) / (2*d);\n\t\t}else{\n\t\t\tlim = (L * (t[0] - t[i])) / (2*d);\n\t\t}\n\t\tans += acc[min(2*L,max(0LL,lim+L-x[0]))];\n\t}\n\tans %= mod;\n\tcout << ans << \"\\n\";\n}", "accuracy": 1, "time_ms": 440, "memory_kb": 27452, "score_of_the_acc": -0.5154, "final_rank": 9 }, { "submission_id": "aoj_3182_4877007", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <unordered_map>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\n#include <unordered_map>\n#include <fstream>\n#include <ctime>\n#include <complex>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 2020000;\nll dy[8] = {1,-1,0,0,1,-1,1,-1};\nll dx[8] = {0,0,1,-1,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << \"debug: \" << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << \"debug: \" << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\n#define MOD 998244353\n#define root 3\n \nunsigned int add(const unsigned int x, const unsigned int y)\n{\n return (x + y < MOD) ? x + y : x + y - MOD;\n}\n \nunsigned int sub(const unsigned int x, const unsigned int y)\n{\n return (x >= y) ? (x - y) : (MOD - y + x);\n}\n \nunsigned int mul(const unsigned int x, const unsigned int y)\n{\n return (unsigned long long)x * y % MOD;\n}\n \nunsigned int mod_pow(unsigned int x, unsigned int n)\n{\n unsigned int res = 1;\n while(n > 0){\n if(n & 1){ res = mul(res, x); }\n x = mul(x, x);\n n >>= 1;\n }\n return res;\n}\n \nunsigned int inverse(const unsigned int x)\n{\n return mod_pow(x, MOD - 2);\n}\n \nvoid ntt(vector<int>& a, const bool rev = false)\n{\n unsigned int i, j, k, l, p, q, r, s;\n const unsigned int size = a.size();\n if(size == 1) return;\n vector<int> b(size);\n r = rev ? (MOD - 1 - (MOD - 1) / size) : (MOD - 1) / size;\n s = mod_pow(root, r);\n vector<unsigned int> kp(size / 2 + 1, 1);\n for(i = 0; i < size / 2; ++i) kp[i + 1] = mul(kp[i], s);\n for(i = 1, l = size / 2; i < size; i <<= 1, l >>= 1){\n for(j = 0, r = 0; j < l; ++j, r += i){\n for(k = 0, s = kp[i * j]; k < i; ++k){\n p = a[k + r], q = a[k + r + size / 2];\n b[k + 2 * r] = add(p, q);\n b[k + 2 * r + i] = mul(sub(p, q), s);\n }\n }\n swap(a, b);\n }\n if(rev){\n s = inverse(size);\n for(i = 0; i < size; i++){ a[i] = mul(a[i], s); }\n }\n}\n \nvector<int> convolute(const vector<int>& a, const vector<int>& b)\n{\n const int size = (int)a.size() + (int)b.size() - 1;\n int t = 1;\n while(t < size){ t <<= 1; }\n vector<int> A(t, 0), B(t, 0);\n for(int i = 0; i < (int)a.size(); i++){ A[i] = a[i]; }\n for(int i = 0; i < (int)b.size(); i++){ B[i] = b[i]; }\n ntt(A), ntt(B);\n for (int i = 0; i < t; i++){ A[i] = mul(A[i], B[i]); }\n ntt(A, true);\n A.resize(size);\n return A;\n}\n\nll modpow(ll x, ll n, ll mod){\n\tll res = 1;\n\twhile(n > 0){\n\t\tif(n & 1) res = res * x % mod;\n\t\tx = x * x % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nint main(){\n\tint n,L; cin >> n >> L;\n\tvector<int> t(n); rep(i,n) cin >> t[i];\n\tint m,d; cin >> m >> d;\n\tvector<int> x(m+1),p(m);\n\trep(i,m) cin >> x[i] >> p[i];\n\tx[m] = L;\n\tvector<vector<int>> v;\n\tint id = 0;\n\tpriority_queue<P,vector<P>,greater<P>> pq;\n\tint inv = modpow(100,mod-2,mod);\n\trep(i,m){\n\t\tll dist = x[i+1] - x[i];\n\t\tvector<int> vec(dist+1,0);\n\t\tpq.emplace(dist+1,id);\n\t\tvec[0] = (ll)p[i] * inv % mod;\n\t\tvec[dist] = (1 - (ll)p[i] * inv % mod + mod) % mod;\n\t\tv.push_back(vec);\n\t\tid++;\n\t}\n\twhile(pq.size() > 1){\n\t\tint w = pq.top().second; pq.pop();\n\t\tint y = pq.top().second; pq.pop();\n\t\tv[y] = convolute(v[w], v[y]);\n\t\tpq.emplace(v[y].size(), y);\n\t}\n\tint z = pq.top().second;\n\tauto b = v[z];\n\treverse(all(b));\n\tauto c = convolute(v[z], b);\n\tvector<int> acc(2*L+1, 0);\n\trep(i,c.size()) acc[i+1] = (acc[i] + c[i]) % mod;\n\tfor(int i=c.size(); i<2*L; i++) acc[i+1] = acc[i];\n\tll ans = 1;\n\tREP(i,1,n){\n\t\tint lim;\n\t\tif(t[0] > t[i]){\n\t\t\tlim = ((ll)L * (t[0] - t[i]) + 2*d - 1) / (2*d);\n\t\t}else{\n\t\t\tlim = ((ll)L * (t[0] - t[i])) / (2*d);\n\t\t}\n\t\tans += (mod + acc[min(2*L,max(0,lim+L-x[0]))]) % mod;\n\t\tans %= mod;\n\t}\n\tcout << ans << \"\\n\";\n}", "accuracy": 0.6, "time_ms": 400, "memory_kb": 27444, "score_of_the_acc": -0.4703, "final_rank": 14 }, { "submission_id": "aoj_3182_4877002", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <unordered_map>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\n#include <unordered_map>\n#include <fstream>\n#include <ctime>\n#include <complex>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 2020000;\nll dy[8] = {1,-1,0,0,1,-1,1,-1};\nll dx[8] = {0,0,1,-1,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << \"debug: \" << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << \"debug: \" << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\n//const int mod = 1e9 + 7;\nconst int mod = 998244353;\n\n#define MOD 998244353\n#define root 3\n \nunsigned int add(const unsigned int x, const unsigned int y)\n{\n return (x + y < MOD) ? x + y : x + y - MOD;\n}\n \nunsigned int sub(const unsigned int x, const unsigned int y)\n{\n return (x >= y) ? (x - y) : (MOD - y + x);\n}\n \nunsigned int mul(const unsigned int x, const unsigned int y)\n{\n return (unsigned long long)x * y % MOD;\n}\n \nunsigned int mod_pow(unsigned int x, unsigned int n)\n{\n unsigned int res = 1;\n while(n > 0){\n if(n & 1){ res = mul(res, x); }\n x = mul(x, x);\n n >>= 1;\n }\n return res;\n}\n \nunsigned int inverse(const unsigned int x)\n{\n return mod_pow(x, MOD - 2);\n}\n \nvoid ntt(vector<int>& a, const bool rev = false)\n{\n unsigned int i, j, k, l, p, q, r, s;\n const unsigned int size = a.size();\n if(size == 1) return;\n vector<int> b(size);\n r = rev ? (MOD - 1 - (MOD - 1) / size) : (MOD - 1) / size;\n s = mod_pow(root, r);\n vector<unsigned int> kp(size / 2 + 1, 1);\n for(i = 0; i < size / 2; ++i) kp[i + 1] = mul(kp[i], s);\n for(i = 1, l = size / 2; i < size; i <<= 1, l >>= 1){\n for(j = 0, r = 0; j < l; ++j, r += i){\n for(k = 0, s = kp[i * j]; k < i; ++k){\n p = a[k + r], q = a[k + r + size / 2];\n b[k + 2 * r] = add(p, q);\n b[k + 2 * r + i] = mul(sub(p, q), s);\n }\n }\n swap(a, b);\n }\n if(rev){\n s = inverse(size);\n for(i = 0; i < size; i++){ a[i] = mul(a[i], s); }\n }\n}\n \nvector<int> convolute(const vector<int>& a, const vector<int>& b)\n{\n const int size = (int)a.size() + (int)b.size() - 1;\n int t = 1;\n while(t < size){ t <<= 1; }\n vector<int> A(t, 0), B(t, 0);\n for(int i = 0; i < (int)a.size(); i++){ A[i] = a[i]; }\n for(int i = 0; i < (int)b.size(); i++){ B[i] = b[i]; }\n ntt(A), ntt(B);\n for (int i = 0; i < t; i++){ A[i] = mul(A[i], B[i]); }\n ntt(A, true);\n A.resize(size);\n return A;\n}\n\nll modpow(ll x, ll n, ll mod){\n\tll res = 1;\n\twhile(n > 0){\n\t\tif(n & 1) res = res * x % mod;\n\t\tx = x * x % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nint main(){\n\tint n,L; cin >> n >> L;\n\tvector<int> t(n); rep(i,n) cin >> t[i];\n\tint m,d; cin >> m >> d;\n\tvector<int> x(m+1),p(m);\n\trep(i,m) cin >> x[i] >> p[i];\n\tx[m] = L;\n\tvector<vector<int>> v;\n\tint id = 0;\n\tpriority_queue<P,vector<P>,greater<P>> pq;\n\tint inv = modpow(100,mod-2,mod);\n\trep(i,m){\n\t\tll dist = x[i+1] - x[i];\n\t\tvector<int> vec(dist+1,0);\n\t\tpq.emplace(dist+1,id);\n\t\tvec[0] = (ll)p[i] * inv % mod;\n\t\tvec[dist] = (1 - (ll)p[i] * inv % mod + mod) % mod;\n\t\tv.push_back(vec);\n\t\tid++;\n\t}\n\twhile(pq.size() > 1){\n\t\tint w = pq.top().second; pq.pop();\n\t\tint y = pq.top().second; pq.pop();\n\t\tv[y] = convolute(v[w], v[y]);\n\t\tpq.emplace(v[y].size(), y);\n\t}\n\tint z = pq.top().second;\n\tauto b = v[z];\n\treverse(all(b));\n\tauto c = convolute(v[z], b);\n\tvector<int> acc(2*L+1, 0);\n\trep(i,c.size()) acc[i+1] = (acc[i] + c[i]) % mod;\n\tfor(int i=c.size(); i<2*L; i++) acc[i+1] = acc[i];\n\tll ans = 1;\n\tREP(i,1,n){\n\t\tint lim;\n\t\tif(t[0] > t[i]){\n\t\t\tlim = (L * (t[0] - t[i]) + 2*d - 1) / (2*d);\n\t\t}else{\n\t\t\tlim = (L * (t[0] - t[i])) / (2*d);\n\t\t}\n\t\tans += (mod + acc[min(2*L,max(0,lim+L-x[0]))]) % mod;\n\t\tans %= mod;\n\t}\n\tcout << ans << \"\\n\";\n}", "accuracy": 0.125, "time_ms": 400, "memory_kb": 27360, "score_of_the_acc": -0.4687, "final_rank": 15 }, { "submission_id": "aoj_3182_4868134", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<58);\n\ntemplate<class T> bool chmin(T &a, const T &b){\n if(a > b) {a = b; return true;}\n else return false;\n}\ntemplate<class T> bool chmax(T &a, const T &b){\n if(a < b) {a = b; return true;}\n else return false;\n}\n\ntemplate <unsigned long long mod > class modint{\npublic:\n ll x;\n constexpr modint(){x = 0;}\n constexpr modint(ll _x) : x((_x < 0 ? ((_x += (LLONG_MAX / mod) * mod) < 0 ? _x + (LLONG_MAX / mod) * mod : _x) : _x)%mod){}\n constexpr void set_raw(ll _x){\n //_x in [0, mod)\n x = _x;\n }\n constexpr modint operator-(){\n return x == 0 ? 0 : mod - x;\n }\n constexpr modint& operator+=(const modint& a){\n if((x += a.x) >= mod) x -= mod;\n return *this;\n }\n constexpr modint operator+(const modint& a) const{\n return modint(*this) += a;\n }\n constexpr modint& operator-=(const modint& a){\n if((x -= a.x) < 0) x += mod;\n return *this;\n }\n constexpr modint operator-(const modint& a) const{\n return modint(*this) -= a;\n }\n constexpr modint& operator*=(const modint& a){\n (x *= a.x)%=mod;\n return *this;\n }\n constexpr modint operator*(const modint& a) const{\n return modint(*this) *= a;\n }\n constexpr modint pow(unsigned long long pw) const{\n modint res(1), comp(*this);\n while(pw){\n if(pw&1) res *= comp;\n comp *= comp;\n pw >>= 1;\n }\n return res;\n }\n //以下、modが素数のときのみ\n constexpr modint inv() const{\n return modint(*this).pow(mod - 2);\n }\n constexpr modint& operator/=(const modint &a){\n (x *= a.inv().x)%=mod;\n return *this;\n }\n constexpr modint operator/(const modint &a) const{\n return modint(*this) /= a;\n }\n};\n#define mod1 998244353\nusing mint = modint<mod1>;\n\nostream& operator<<(ostream& os, const mint& a){\n os << a.x;\n return os;\n}\nusing vm = vector<mint>;\nclass NTT{\n const int root;\n\n void make_root_pow(int n, vm &root_pow){\n root_pow.resize(n + 1);\n mint new_root = mint(root).pow((mod1 - 1) / n);\n root_pow[0].x = 1;\n rep(i,n){\n root_pow[i + 1] = root_pow[i] * new_root;\n }\n }\n static void make_bit_reverse(int n, vector<int> &v){\n v.resize(n);\n iota(ALL(v), 0);\n for(int i = 1; (1<<i) <= n; ++i){\n int l = 1<<(i - 1), r = 1<<i;\n int plus = n >> i;\n for(int j = l; j < r; ++j){\n int temp = v[j - l] + plus;\n if(j < temp) swap(v[j], v[temp]);\n }\n }\n }\n static void dft(int n, vm &f, bool inv, vm &root_pow, vector<int> &id){\n vm g(n);\n rep(i,n) g[i] = f[id[i]];\n swap(f, g);\n for(int l = n / 2, len = 1; l >= 1; l /= 2, len *= 2){\n for(int i = 0; i < n; i += len * 2){\n rep(j, len){\n mint z_f = (inv ? root_pow[n - l * j] : root_pow[l * j]) * f[i + len + j];\n g[i + j] = f[i + j] + z_f;\n g[i + len + j] = f[i + j] - z_f;\n }\n }\n swap(f, g);\n }\n if(inv) {\n mint n_inv = mint(n).inv();\n rep(i, n) f[i] *= n_inv;\n }\n }\npublic:\n NTT(int _x = 3) : root(_x){}\n vm convolution(vm &a, vm &b, int size_a = INT_MAX, int size_b = INT_MAX){\n chmin(size_a, (int)a.size());\n chmin(size_b, (int)b.size());\n int sz = size_a + size_b - 1, n = 1;\n while(sz > n) n *= 2;\n vm g(n), h(n), root_pow, gh(n);\n vector<int> id;\n copy(a.begin(), a.begin() + size_a, g.begin());\n copy(b.begin(), b.begin() + size_b, h.begin());\n make_root_pow(n, root_pow);\n make_bit_reverse(n, id);\n dft(n, g, false, root_pow, id);\n dft(n, h, false, root_pow, id);\n rep(i, n) gh[i] = g[i] * h[i];\n dft(n, gh, true, root_pow, id);\n gh.resize(sz);\n return gh;\n }\n};\n\nvm polynomial_product(vector<vm> &polys){\n //time complexity : O(N log^2 N) (N : sum of polys[i].size())\n struct _cmp{\n int sz;\n vm a;\n _cmp(int _sz, vm _a) : sz(_sz), a(_a){}\n bool operator > (const _cmp &b){ return sz > b.sz;}\n };\n priority_queue<_cmp, vector<_cmp>, greater<> > pque;\n for(vm &a : polys) pque.emplace((int)a.size(), a);\n NTT ntt;\n while(pque.size() > 1){\n _cmp c = pque.top(); pque.pop();\n _cmp d = pque.top(); pque.pop();\n vm res = ntt.convolution(c.a, d.a);\n pque.emplace(res.size(), res);\n }\n return pque.top().a;\n}\n\nint main() {\n ll L, D;\n cin>>N>>L;\n vec t(N);\n rep(i, N) cin>>t[i];\n cin>>M>>D;\n vec x(M), p(M);\n rep(i, M) cin>>x[i]>>p[i];\n x.push_back(L);\n vector<vm> polys(0);\n rep(i, M){\n int d = x[i+1] - x[i];\n vm temp(d + 1);\n temp[d] = mint(p[i]) / 100;\n temp[0] = mint(1) - temp[d];\n polys.push_back(temp);\n }\n vm plus = polynomial_product(polys), plus_rev(plus);\n reverse(ALL(plus_rev));\n NTT ntt;\n vm diff = ntt.convolution(plus, plus_rev);\n ll n = (L - x[0]) * 2;\n rep(i, n) diff[i + 1] += diff[i];\n if(diff[n].x != 1) cout<<diff[n]<<endl;\n mint res(N);\n reps(i, 1, N){\n ll base_adv = L * (t[i] - t[0]);\n if(n * D <= base_adv) res -= 1;\n else if(base_adv >= - n * D) res -= diff[(base_adv + n * D) / (D * 2)];\n }\n cout<<res<<endl;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 23548, "score_of_the_acc": -0.3389, "final_rank": 6 }, { "submission_id": "aoj_3182_4868117", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<58);\n\ntemplate<class T> bool chmin(T &a, const T &b){\n if(a > b) {a = b; return true;}\n else return false;\n}\ntemplate<class T> bool chmax(T &a, const T &b){\n if(a < b) {a = b; return true;}\n else return false;\n}\n\ntemplate <unsigned long long mod > class modint{\npublic:\n ll x;\n constexpr modint(){x = 0;}\n constexpr modint(ll _x) : x((_x < 0 ? ((_x += (LLONG_MAX / mod) * mod) < 0 ? _x + (LLONG_MAX / mod) * mod : _x) : _x)%mod){}\n constexpr void set_raw(ll _x){\n //_x in [0, mod)\n x = _x;\n }\n constexpr modint operator-(){\n return x == 0 ? 0 : mod - x;\n }\n constexpr modint& operator+=(const modint& a){\n if((x += a.x) >= mod) x -= mod;\n return *this;\n }\n constexpr modint operator+(const modint& a) const{\n return modint(*this) += a;\n }\n constexpr modint& operator-=(const modint& a){\n if((x -= a.x) < 0) x += mod;\n return *this;\n }\n constexpr modint operator-(const modint& a) const{\n return modint(*this) -= a;\n }\n constexpr modint& operator*=(const modint& a){\n (x *= a.x)%=mod;\n return *this;\n }\n constexpr modint operator*(const modint& a) const{\n return modint(*this) *= a;\n }\n constexpr modint pow(unsigned long long pw) const{\n modint res(1), comp(*this);\n while(pw){\n if(pw&1) res *= comp;\n comp *= comp;\n pw >>= 1;\n }\n return res;\n }\n //以下、modが素数のときのみ\n constexpr modint inv() const{\n return modint(*this).pow(mod - 2);\n }\n constexpr modint& operator/=(const modint &a){\n (x *= a.inv().x)%=mod;\n return *this;\n }\n constexpr modint operator/(const modint &a) const{\n return modint(*this) /= a;\n }\n};\n#define mod1 998244353\nusing mint = modint<mod1>;\n\nostream& operator<<(ostream& os, const mint& a){\n os << a.x;\n return os;\n}\nusing vm = vector<mint>;\nclass NTT{\n const int root;\n\n void make_root_pow(int n, vm &root_pow){\n root_pow.resize(n + 1);\n mint new_root = mint(root).pow((mod1 - 1) / n);\n root_pow[0].x = 1;\n rep(i,n){\n root_pow[i + 1] = root_pow[i] * new_root;\n }\n }\n static void make_bit_reverse(int n, vector<int> &v){\n v.resize(n);\n iota(ALL(v), 0);\n for(int i = 1; (1<<i) <= n; ++i){\n int l = 1<<(i - 1), r = 1<<i;\n int plus = n >> i;\n for(int j = l; j < r; ++j){\n int temp = v[j - l] + plus;\n if(j < temp) swap(v[j], v[temp]);\n }\n }\n }\n static void dft(int n, vm &f, bool inv, vm &root_pow, vector<int> &id){\n vm g(n);\n rep(i,n) g[i] = f[id[i]];\n swap(f, g);\n for(int l = n / 2, len = 1; l >= 1; l /= 2, len *= 2){\n for(int i = 0; i < n; i += len * 2){\n rep(j, len){\n mint z_f = (inv ? root_pow[n - l * j] : root_pow[l * j]) * f[i + len + j];\n g[i + j] = f[i + j] + z_f;\n g[i + len + j] = f[i + j] - z_f;\n }\n }\n swap(f, g);\n }\n if(inv) {\n mint n_inv = mint(n).inv();\n rep(i, n) f[i] *= n_inv;\n }\n }\npublic:\n NTT(int _x = 3) : root(_x){}\n vm convolution(vm &a, vm &b, int size_a = INT_MAX, int size_b = INT_MAX){\n chmin(size_a, (int)a.size());\n chmin(size_b, (int)b.size());\n int sz = size_a + size_b - 1, n = 1;\n while(sz > n) n *= 2;\n vm g(n), h(n), root_pow, gh(n);\n vector<int> id;\n copy(a.begin(), a.begin() + size_a, g.begin());\n copy(b.begin(), b.begin() + size_b, h.begin());\n make_root_pow(n, root_pow);\n make_bit_reverse(n, id);\n dft(n, g, false, root_pow, id);\n dft(n, h, false, root_pow, id);\n rep(i, n) gh[i] = g[i] * h[i];\n dft(n, gh, true, root_pow, id);\n gh.resize(sz);\n return gh;\n }\n};\n\nvm polynomial_product(vector<vm> polys){\n //time complexity : O(N log^2 N) (N : sum of polys[i].size())\n struct _cmp{\n int sz;\n vm a;\n _cmp(int _sz, vm _a) : sz(_sz), a(_a){}\n bool operator > (const _cmp &b){ return sz > b.sz;}\n };\n priority_queue<_cmp, vector<_cmp>, greater<> > pque;\n for(vm a : polys) pque.emplace((int)a.size(), a);\n NTT ntt;\n while(pque.size() > 1){\n _cmp c = pque.top(); pque.pop();\n _cmp d = pque.top(); pque.pop();\n vm res = ntt.convolution(c.a, d.a);\n pque.emplace(res.size(), res);\n }\n return pque.top().a;\n}\n\nint main() {\n ll L, D;\n cin>>N>>L;\n vec t(N);\n rep(i, N) cin>>t[i];\n cin>>M>>D;\n vec x(M), p(M);\n rep(i, M) cin>>x[i]>>p[i];\n x.push_back(L);\n vector<vm> polys(0);\n rep(i, M){\n int d = x[i+1] - x[i];\n vm temp(d + 1);\n temp[d] = mint(p[i]) / 100;\n temp[0] = mint(1) - temp[d];\n polys.push_back(temp);\n }\n vm plus = polynomial_product(polys), plus_rev(plus);\n reverse(ALL(plus_rev));\n NTT ntt;\n vm diff = ntt.convolution(plus, plus_rev);\n ll n = (L - x[0]) * 2;\n rep(i, n) diff[i + 1] += diff[i];\n if(diff[n].x != 1) cout<<diff[n]<<endl;\n mint res(N);\n reps(i, 1, N){\n ll base_adv = L * (t[i] - t[0]);\n if(n * D <= base_adv) res -= 1;\n else if(base_adv >= - n * D) res -= diff[(base_adv + n * D) / (D * 2)];\n }\n cout<<res<<endl;\n}", "accuracy": 1, "time_ms": 350, "memory_kb": 26124, "score_of_the_acc": -0.3886, "final_rank": 7 }, { "submission_id": "aoj_3182_4858043", "code_snippet": "#include<iostream>\n#include<vector>\n#include<set>\n#include<queue>\n#include<map>\n#include<algorithm>\n#include<cstring>\n#include<string>\n#include<cassert>\n#include<cmath>\n#include<climits>\n#include<iomanip>\n#include<stack>\n#include<unordered_map>\n#include<bitset>\n#include<limits>\n#include<complex>\n#include<array>\n#include<numeric>\n#include<functional>\n#include<random>\n\n\nusing namespace std;\n#define ll long long\n#define ull unsigned long long\n#define rep(i,m,n) for(ll (i)=(ll)(m);i<(ll)(n);i++)\n#define REP(i,n) rep(i,0,n)\n#define all(hoge) (hoge).begin(),(hoge).end()\ntypedef pair<ll, ll> P;\nconstexpr long double m_pi = 3.1415926535897932L;\nconstexpr ll MOD = 1000000007;\nconstexpr ll INF = 1LL << 61;\nconstexpr long double EPS = 1e-10;\ntemplate<typename T> using vector2 = vector<vector<T>>;\ntemplate<typename T> using vector3 = vector<vector2<T>>;\ntypedef vector<ll> Array;\ntypedef vector<Array> Matrix;\nstring operator*(const string& s, int k) {\n\tif (k == 0) return \"\";\n\tstring p = (s + s) * (k / 2);\n\tif (k % 2 == 1) p += s;\n\treturn p;\n}\n\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; }return false; }\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; }return false; }\n\nstruct Edge {//グラフ\n\tint to, rev; ll cap;\n\tEdge(int _to, ll _cap, int _rev) {\n\t\tto = _to; cap = _cap; rev = _rev;\n\t}\n};\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\nvoid add_edge(Graph& G, int from, int to, ll cap, bool revFlag, ll revCap) {//最大フロー求める Ford-fulkerson\n\tG[from].push_back(Edge(to, cap, (ll)G[to].size() + (from == to)));\n\tif (revFlag)G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1));//最小カットの場合逆辺は0にする\n}\n\nll max_flow_dfs(Graph& G, ll v, ll t, ll f, vector<bool>& used)\n{\n\tif (v == t)\n\t\treturn f;\n\tused[v] = true;\n\tfor (int i = 0; i < G[v].size(); ++i) {\n\t\tEdge& e = G[v][i];\n\t\tif (!used[e.to] && e.cap > 0) {\n\t\t\tll d = max_flow_dfs(G, e.to, t, min(f, e.cap), used);\n\t\t\tif (d > 0) {\n\t\t\t\te.cap -= d;\n\t\t\t\tG[e.to][e.rev].cap += d;\n\t\t\t\treturn d;\n\t\t\t}\n\t\t}\n\t}\n\treturn 0;\n}\n//二分グラフの最大マッチングを求めたりも出来る また二部グラフの最大独立集合は頂点数-最大マッチングのサイズ\nll max_flow(Graph& G, ll s, ll t)//O(V(V+E))\n{\n\tll flow = 0;\n\tfor (;;) {\n\t\tvector<bool> used(G.size());\n\t\tREP(i, used.size())used[i] = false;\n\t\tll f = max_flow_dfs(G, s, t, INF, used);\n\t\tif (f == 0) {\n\t\t\treturn flow;\n\t\t}\n\t\tflow += f;\n\t}\n}\n\nvoid BellmanFord(Graph& G, ll s, Array& d, Array& negative) {//O(|E||V|)\n\td.resize(G.size());\n\tnegative.resize(G.size());\n\tREP(i, d.size())d[i] = INF;\n\tREP(i, d.size())negative[i] = false;\n\td[s] = 0;\n\tREP(k, G.size() - 1) {\n\t\tREP(i, G.size()) {\n\t\t\tREP(j, G[i].size()) {\n\t\t\t\tif (d[i] != INF && d[G[i][j].to] > d[i] + G[i][j].cap) {\n\t\t\t\t\td[G[i][j].to] = d[i] + G[i][j].cap;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tREP(k, G.size() - 1) {\n\t\tREP(i, G.size()) {\n\t\t\tREP(j, G[i].size()) {\n\t\t\t\tif (d[i] != INF && d[G[i][j].to] > d[i] + G[i][j].cap) {\n\t\t\t\t\td[G[i][j].to] = d[i] + G[i][j].cap;\n\t\t\t\t\tnegative[G[i][j].to] = true;\n\t\t\t\t}\n\t\t\t\tif (negative[i] == true)negative[G[i][j].to] = true;\n\t\t\t}\n\t\t}\n\t}\n}\nvoid Dijkstra(Graph& G, ll s, Array& d) {//O(|E|log|V|)\n\td.resize(G.size());\n\tREP(i, d.size())d[i] = INF;\n\td[s] = 0;\n\tpriority_queue<P, vector<P>, greater<P>> q;\n\tq.push(make_pair(0, s));\n\twhile (!q.empty()) {\n\t\tP a = q.top();\n\t\tq.pop();\n\t\tif (d[a.second] < a.first)continue;\n\t\tREP(i, G[a.second].size()) {\n\t\t\tEdge e = G[a.second][i];\n\t\t\tif (d[e.to] > d[a.second] + e.cap) {\n\t\t\t\td[e.to] = d[a.second] + e.cap;\n\t\t\t\tq.push(make_pair(d[e.to], e.to));\n\t\t\t}\n\t\t}\n\t}\n}\nvoid WarshallFloyd(Graph& G, Matrix& d) {//O(V^3)\n\td.resize(G.size());\n\tREP(i, d.size())d[i].resize(G.size());\n\tREP(i, d.size()) {\n\t\tREP(j, d[i].size()) {\n\t\t\td[i][j] = ((i != j) ? INF : 0);\n\t\t}\n\t}\n\tREP(i, G.size()) {\n\t\tREP(j, G[i].size()) {\n\t\t\tchmin(d[i][G[i][j].to], G[i][j].cap);\n\t\t}\n\t}\n\tREP(i, G.size()) {\n\t\tREP(j, G.size()) {\n\t\t\tREP(k, G.size()) {\n\t\t\t\tif (d[j][i] != INF && d[i][k] != INF)chmin(d[j][k], d[j][i] + d[i][k]);\n\t\t\t}\n\t\t}\n\t}\n}\nbool tsort(Graph& graph, vector<int>& order) {//トポロジカルソートO(E+V)\n\tint n = graph.size(), k = 0;\n\tvector<int> in(n);\n\tfor (auto& es : graph)\n\t\tfor (auto& e : es)in[e.to]++;\n\tpriority_queue<int, vector<int>, greater<int>> que;\n\tREP(i, n)\n\t\tif (in[i] == 0)que.push(i);\n\twhile (que.size()) {\n\t\tint v = que.top();\n\t\tque.pop();\n\t\torder.push_back(v);\n\t\tfor (auto& e : graph[v])\n\t\t\tif (--in[e.to] == 0)que.push(e.to);\n\t}\n\tif (order.size() != n)return false;\n\telse return true;\n}\nclass Lca {\npublic:\n\tconst int n = 0;\n\tconst int log2_n = 0;\n\tstd::vector<std::vector<int>> parent;\n\tstd::vector<int> depth;\n\n\tLca() {}\n\n\tLca(const Graph& g, int root)\n\t\t: n(g.size()), log2_n(log2(n) + 1), parent(log2_n, std::vector<int>(n)), depth(n) {\n\t\tdfs(g, root, -1, 0);\n\t\tfor (int k = 0; k + 1 < log2_n; k++) {\n\t\t\tfor (int v = 0; v < (int)g.size(); v++) {\n\t\t\t\tif (parent[k][v] < 0)\n\t\t\t\t\tparent[k + 1][v] = -1;\n\t\t\t\telse\n\t\t\t\t\tparent[k + 1][v] = parent[k][parent[k][v]];\n\t\t\t}\n\t\t}\n\t}\n\n\tvoid dfs(const Graph& g, int v, int p, int d) {\n\t\tparent[0][v] = p;\n\t\tdepth[v] = d;\n\t\tfor (auto& e : g[v]) {\n\t\t\tif (e.to != p) dfs(g, e.to, v, d + 1);\n\t\t}\n\t}\n\n\tint get(int u, int v) {\n\t\tif (depth[u] > depth[v]) std::swap(u, v);\n\t\tfor (int k = 0; k < log2_n; k++) {\n\t\t\tif ((depth[v] - depth[u]) >> k & 1) {\n\t\t\t\tv = parent[k][v];\n\t\t\t}\n\t\t}\n\t\tif (u == v) return u;\n\t\tfor (int k = log2_n - 1; k >= 0; k--) {\n\t\t\tif (parent[k][u] != parent[k][v]) {\n\t\t\t\tu = parent[k][u];\n\t\t\t\tv = parent[k][v];\n\t\t\t}\n\t\t}\n\t\treturn parent[0][u];\n\t}\n};\n\nclass UnionFind {\n\tvector<int> data;\n\tint n;\npublic:\n\tUnionFind(int size) : data(size, -1), n(size) { }\n\tbool merge(int x, int y) {//xとyの集合を統合する\n\t\tx = root(x); y = root(y);\n\t\tif (x != y) {\n\t\t\tif (data[y] < data[x]) swap(x, y);\n\t\t\tdata[x] += data[y]; data[y] = x;\n\t\t}\n\t\tn -= (x != y);\n\t\treturn x != y;\n\t}\n\tbool same(int x, int y) {//xとyが同じ集合か返す\n\t\treturn root(x) == root(y);\n\t}\n\tint root(int x) {//xのルートを返す\n\t\treturn data[x] < 0 ? x : data[x] = root(data[x]);\n\t}\n\tint size(int x) {//xの集合のサイズを返す\n\t\treturn -data[root(x)];\n\t}\n\tint num() {//集合の数を返す\n\t\treturn n;\n\t}\n};\n\ntemplate<typename T, typename F>\nclass SegmentTree {\nprivate:\n\tT identity;\n\tF merge;\n\tll n;\n\tvector<T> dat;\npublic:\n\tSegmentTree(F f, T id, vector<T> v) :merge(f), identity(id) {\n\t\tint _n = v.size();\n\t\tn = 1;\n\t\twhile (n < _n)n *= 2;\n\t\tdat.resize(2 * n - 1, identity);\n\t\tREP(i, _n)dat[n + i - 1] = v[i];\n\t\tfor (int i = n - 2; i >= 0; i--)dat[i] = merge(dat[i * 2 + 1], dat[i * 2 + 2]);\n\t}\n\tSegmentTree(F f, T id, int _n) :merge(f), identity(id) {\n\t\tn = 1;\n\t\twhile (n < _n)n *= 2;\n\t\tdat.resize(2 * n - 1, identity);\n\t}\n\tvoid set_val(int i, T x) {\n\t\ti += n - 1;\n\t\tdat[i] = x;\n\t\twhile (i > 0) {\n\t\t\ti = (i - 1) / 2;\n\t\t\tdat[i] = merge(dat[i * 2 + 1], dat[i * 2 + 2]);\n\t\t}\n\t}\n\tT query(int l, int r) {\n\t\tT left = identity, right = identity;\n\t\tl += n - 1; r += n - 1;\n\t\twhile (l < r) {\n\t\t\tif ((l & 1) == 0)left = merge(left, dat[l]);\n\t\t\tif ((r & 1) == 0)right = merge(dat[r - 1], right);\n\t\t\tl = l / 2;\n\t\t\tr = (r - 1) / 2;\n\t\t}\n\t\treturn merge(left, right);\n\t}\n};\n\ntemplate< typename T >\nclass FenwickTree {\n\tvector< T > data;\n\tint n;\n\tint p;\npublic:\n\tFenwickTree(int n) :n(n) {\n\t\tdata.resize(n + 1LL, 0);\n\t\tp = 1;\n\t\twhile (p < data.size())p *= 2;\n\t}\n\tT sum(int k) {\n\t\tT ret = 0;\n\t\tfor (; k > 0; k -= k & -k) ret += data[k];\n\t\treturn (ret);\n\t}\n\n\tT sum(int a, int b) { return sum(b) - sum(a); }//[a,b)\n\n\tvoid add(int k, T x) {\n\t\tfor (++k; k <= n; k += k & -k) data[k] += x;\n\t}\n\n\tint lower_bound(ll w) {\n\t\tif (w <= 0)return -1;\n\t\tint x = 0;\n\t\tfor (int k = p / 2; k > 0; k /= 2) {\n\t\t\tif (x + k <= n && data[x + k] < w)w -= data[x + k], x += k;\n\t\t}\n\t\treturn x;\n\t}\n};\n\n\n\n//約数求める //約数\nvoid divisor(ll n, vector<ll>& ret) {\n\tfor (ll i = 1; i * i <= n; i++) {\n\t\tif (n % i == 0) {\n\t\t\tret.push_back(i);\n\t\t\tif (i * i != n) ret.push_back(n / i);\n\t\t}\n\t}\n\tsort(ret.begin(), ret.end());\n}\n\nvoid prime_factorization(ll n, vector<P>& ret) {\n\tfor (ll i = 2; i * i <= n; i++) {\n\t\tif (n % i == 0) {\n\t\t\tret.push_back({ i,0 });\n\t\t\twhile (n % i == 0) {\n\t\t\t\tn /= i;\n\t\t\t\tret[ret.size() - 1].second++;\n\t\t\t}\n\t\t}\n\t}\n\tif (n != 1)ret.push_back({ n,1 });\n}\n\n\ninline ll mod_pow(ll x, ll n, ll mod) {\n\tll res = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) res = res * x % mod;\n\t\tx = x * x % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\ninline ll mod_inv(ll x, ll mod) {\n\treturn mod_pow(x, mod - 2, mod);\n}\n\nclass Combination {\npublic:\n\tArray fact;\n\tArray fact_inv;\n\tll mod;\n\t//if n >= mod use lucas \n\tll nCr(ll n, ll r) {\n\t\tif (n < r)return 0;\n\t\tif (n < mod)return ((fact[n] * fact_inv[r] % mod) * fact_inv[n - r]) % mod;\n\n\t\tll ret = 1;\n\t\twhile (n || r) {\n\t\t\tll _n = n % mod, _r = r % mod;\n\t\t\tn /= mod; r /= mod;\n\t\t\t(ret *= nCr(_n, _r)) %= mod;\n\t\t}\n\t\treturn ret;\n\t}\n\tll nPr(ll n, ll r) {\n\t\treturn (fact[n] * fact_inv[n - r]) % mod;\n\t}\n\tll nHr(ll n, ll r) {\n\t\treturn nCr(r + n - 1, r);\n\t}\n\tCombination(ll _n, ll _mod) {\n\t\tmod = _mod;\n\t\tll n = min(_n + 1, mod);\n\t\tfact.resize(n);\n\t\tfact[0] = 1;\n\t\tREP(i, n - 1) {\n\t\t\tfact[i + 1] = (fact[i] * (i + 1LL)) % mod;\n\t\t}\n\t\tfact_inv.resize(n);\n\t\tfact_inv[n - 1] = mod_inv(fact[n - 1], mod);\n\t\tfor (int i = n - 1; i > 0; i--) {\n\t\t\tfact_inv[i - 1] = fact_inv[i] * i % mod;\n\t\t}\n\t}\n};\n\nll popcount(ll x) {\n\tx = (x & 0x5555555555555555) + (x >> 1 & 0x5555555555555555);\n\tx = (x & 0x3333333333333333) + (x >> 2 & 0x3333333333333333);\n\tx = (x & 0x0F0F0F0F0F0F0F0F) + (x >> 4 & 0x0F0F0F0F0F0F0F0F);\n\tx = (x & 0x00FF00FF00FF00FF) + (x >> 8 & 0x00FF00FF00FF00FF);\n\tx = (x & 0x0000FFFF0000FFFF) + (x >> 16 & 0x0000FFFF0000FFFF);\n\tx = (x & 0x00000000FFFFFFFF) + (x >> 32 & 0x00000000FFFFFFFF);\n\n\treturn x;\n}\n\n\n\ntemplate<ll mod, ll root>//特殊な素数と原始根 998244353のとき3\nclass NTT {\nprivate:\n\ttemplate<typename T>\n\tinline void bit_reverse(vector<T>& a) {\n\t\tint n = a.size();\n\t\tint i = 0;\n\t\tfor (int j = 1; j < n - 1; ++j) {\n\t\t\tfor (int k = n >> 1; k > (i ^= k); k >>= 1);\n\t\t\tif (j < i) swap(a[i], a[j]);\n\t\t}\n\t}\n\tvoid _ntt(vector<long long>& a, int sign) {\n\t\tconst int n = a.size();\n\t\tassert((n ^ (n & -n)) == 0); //n = 2^k\n\n\t\tlong long tmp = (mod - 1) * mod_pow((ll)n, mod - 2, mod) % mod; // -1/n\n\t\tlong long h = mod_pow(root, tmp, mod); // ^n√g\n\t\tif (sign == -1) h = mod_pow(h, mod - 2, mod);\n\n\t\tbit_reverse(a);\n\n\t\tfor (ll m = 1; m < n; m <<= 1) {\n\t\t\tconst ll m2 = 2 * m;\n\t\t\tlong long _base = mod_pow((ll)h, (ll)(n / m2), mod);\n\t\t\tlong long _w = 1;\n\t\t\tfor (int x = 0; x < m; ++x) {//計算量わからない\n\t\t\t\tfor (ll s = x; s < n; s += m2) {\n\t\t\t\t\tlong long u = a[s];\n\t\t\t\t\tlong long d = (a[s + m] * _w) % mod;\n\t\t\t\t\ta[s] = (u + d) % mod;\n\t\t\t\t\ta[s + m] = (u - d + mod) % mod;\n\t\t\t\t}\n\t\t\t\t_w = (_w * _base) % mod;\n\t\t\t}\n\t\t}\n\t}\n\n\tvoid ntt(vector<long long>& input) { _ntt(input, 1); }//フーリエ変換\n\n\tvoid intt(vector<long long>& input) {//フーリエ逆変換\n\t\t_ntt(input, -1);\n\t\tconst long long n_inv = mod_pow((ll)input.size(), mod - 2, mod);\n\t\tfor (auto& x : input) x = (x * n_inv) % mod;\n\t}\npublic:\n\t// 畳み込み演算を行う\n\tvector<long long> convolution(const vector<long long>& a, const vector<long long>& b) {\n\t\tint result_size = a.size() + b.size() - 1;\n\t\tint n = 1; while (n < result_size) n <<= 1;\n\n\t\tvector<long long> _a = a, _b = b;\n\t\t_a.resize(n, 0);\n\t\t_b.resize(n, 0);\n\n\t\tntt(_a);\n\t\tntt(_b);\n\t\tfor (int i = 0; i < n; ++i) _a[i] = (_a[i] * _b[i]) % mod;\n\t\tintt(_a);\n\n\t\t_a.resize(result_size);\n\t\treturn _a;\n\t}\n\tvector<long long> convolution(const vector<long long>& a, ll m, ll mx_sz) {//多項式に落とし込めるdpが解ける\n\t\tint result_size = mx_sz;\n\t\tint n = 1; while (n < result_size) n <<= 1;\n\n\t\tvector<long long> _a = a;\n\t\t_a.resize(n, 0);\n\n\t\tntt(_a);\n\t\tfor (int i = 0; i < n; ++i) _a[i] = mod_pow(_a[i], m, mod);\n\t\tintt(_a);\n\n\t\t_a.resize(result_size);\n\t\treturn _a;\n\t}\n};\n\nint main() {\n\tios::sync_with_stdio(false);\n\tstd::cin.tie(0);\n\tstd::cout.tie(0);\n\n\tconstexpr ll mod = 998244353;\n\tll n, l;\n\tcin >> n >> l;\n\tArray t(n);\n\tfor (auto& e : t)cin >> e;\n\tll m, d;\n\tcin >> m >> d;\n\tArray x(m), p(m);\n\tx.push_back(l);\n\tREP(i, m)cin >> x[i] >> p[i];\n\tdeque<Array> c;\n\tREP(i, m) {\n\t\tArray tmp(2 * (x[i + 1] - x[i]) + 1, 0);\n\t\ttmp[0] = p[i];\n\t\ttmp.back() = 100 - p[i];\n\t\tc.emplace_back(tmp);\n\t}\n\tNTT<998244353, 3> ntt;\n\twhile (c.size() > 1) {\n\t\tauto a = c.front();\n\t\tc.pop_front();\n\t\tauto b = c.front();\n\t\tc.pop_front();\n\t\tc.emplace_back(ntt.convolution(a, b));\n\t}\n\tArray u(4 * l + 4, 0), v(4 * l + 4, 0);\n\tu[2 * l + 1] = 1;\n\trep(i, 1, n) {\n\t\tll dif = (t[0] - t[i]) * l;\n\t\tif (dif >= 0) {\n\t\t\tdif = min((dif + d - 1) / d, 2 * l + 1);\n\t\t\tv[2 * l + 1 - dif]++;\n\t\t}\n\t\telse {\n\t\t\tdif *= -1;\n\t\t\tdif = min(dif / d + (dif%(2*d)==0?1:0), 2 * l + 1);\n\t\t\tv[2 * l + 1 + dif]++;\n\t\t}\n\t}\n\t//for (auto e : u)cout << e << \" \";\n\t//cout << endl;\n\t//for (auto e : v)cout << e << \" \";\n\t//cout << endl;\n\tu = ntt.convolution(u, c.front());\n\tv = ntt.convolution(v, c.front());\n\t//for (auto e : u)cout << e << \" \";\n\t//cout << endl;\n\t//for (auto e : v)cout << e << \" \";\n\t//cout << endl;\n\n\tll ans = 0;\n\tll total = accumulate(all(u), 0LL, [&](ll a, ll b) {return (a + b) % mod; });\n\tll now = 0;\n\tREP(i, u.size()) {\n\t\tif (u[i] != 0) (ans += (now * mod_inv(total, mod) % mod) % mod * u[i] % mod) %= mod;\n\t\t(now += v[i]) %= mod;\n\t}\n//\tcout << ans << \"\\n\";\n\tcout << (1 + ans * mod_inv(total, mod) % mod) % mod << \"\\n\";\n\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1110, "memory_kb": 46324, "score_of_the_acc": -1.6326, "final_rank": 12 }, { "submission_id": "aoj_3182_4855205", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n// modint\ntemplate<int MOD> struct Fp {\n long long val;\n constexpr Fp(long long v = 0) noexcept : val(v % MOD) {\n if (val < 0) val += MOD;\n }\n constexpr int getmod() const { return MOD; }\n constexpr Fp operator - () const noexcept {\n return val ? MOD - val : 0;\n }\n constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }\n constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }\n constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }\n constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }\n constexpr Fp& operator += (const Fp& r) noexcept {\n val += r.val;\n if (val >= MOD) val -= MOD;\n return *this;\n }\n constexpr Fp& operator -= (const Fp& r) noexcept {\n val -= r.val;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr Fp& operator *= (const Fp& r) noexcept {\n val = val * r.val % MOD;\n return *this;\n }\n constexpr Fp& operator /= (const Fp& r) noexcept {\n long long a = r.val, b = MOD, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b, swap(a, b);\n u -= t * v, swap(u, v);\n }\n val = val * u % MOD;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr bool operator == (const Fp& r) const noexcept {\n return this->val == r.val;\n }\n constexpr bool operator != (const Fp& r) const noexcept {\n return this->val != r.val;\n }\n constexpr bool operator < (const Fp& r) const noexcept {\n return this->val < r.val;\n }\n friend constexpr istream& operator >> (istream &is, Fp<MOD>& x) noexcept {\n is >> x.val;\n x.val %= MOD;\n if (x.val < 0) x.val += MOD;\n return is;\n }\n friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {\n return os << x.val;\n }\n friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {\n if (n == 0) return 1;\n auto t = modpow(a, n / 2);\n t = t * t;\n if (n & 1) t = t * a;\n return t;\n }\n};\n\nnamespace NTT {\n long long modpow(long long a, long long n, int mod) {\n long long res = 1;\n while (n > 0) {\n if (n & 1) res = res * a % mod;\n a = a * a % mod;\n n >>= 1;\n }\n return res;\n }\n\n long long modinv(long long a, int mod) {\n long long b = mod, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b, swap(a, b);\n u -= t * v, swap(u, v);\n }\n u %= mod;\n if (u < 0) u += mod;\n return u;\n }\n\n int calc_primitive_root(int mod) {\n if (mod == 2) return 1;\n if (mod == 167772161) return 3;\n if (mod == 469762049) return 3;\n if (mod == 754974721) return 11;\n if (mod == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n long long x = (mod - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (long long i = 3; i * i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) x /= i;\n }\n }\n if (x > 1) divs[cnt++] = x;\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (modpow(g, (mod - 1) / divs[i], mod) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n }\n\n int get_fft_size(int N, int M) {\n int size_a = 1, size_b = 1;\n while (size_a < N) size_a <<= 1;\n while (size_b < M) size_b <<= 1;\n return max(size_a, size_b) << 1;\n }\n\n // number-theoretic transform\n template<class mint> void trans(vector<mint> &v, bool inv = false) {\n if (v.empty()) return;\n int N = (int)v.size();\n int MOD = v[0].getmod();\n int PR = calc_primitive_root(MOD);\n static bool first = true;\n static vector<long long> vbw(30), vibw(30);\n if (first) {\n first = false;\n for (int k = 0; k < 30; ++k) {\n vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);\n vibw[k] = modinv(vbw[k], MOD);\n }\n }\n for (int i = 0, j = 1; j < N - 1; j++) {\n for (int k = N >> 1; k > (i ^= k); k >>= 1);\n if (i > j) swap(v[i], v[j]);\n }\n for (int k = 0, t = 2; t <= N; ++k, t <<= 1) {\n long long bw = vbw[k];\n if (inv) bw = vibw[k];\n for (int i = 0; i < N; i += t) {\n mint w = 1;\n for (int j = 0; j < t/2; ++j) {\n int j1 = i + j, j2 = i + j + t/2;\n mint c1 = v[j1], c2 = v[j2] * w;\n v[j1] = c1 + c2;\n v[j2] = c1 - c2;\n w *= bw;\n }\n }\n }\n if (inv) {\n long long invN = modinv(N, MOD);\n for (int i = 0; i < N; ++i) v[i] = v[i] * invN;\n }\n }\n\n // small case (T = mint, long long)\n template<class T> vector<T> naive_mul \n (const vector<T> &A, const vector<T> &B) {\n if (A.empty() || B.empty()) return {};\n int N = (int)A.size(), M = (int)B.size();\n vector<T> res(N + M - 1);\n for (int i = 0; i < N; ++i)\n for (int j = 0; j < M; ++j)\n res[i + j] += A[i] * B[j];\n return res;\n }\n\n // mint\n template<class mint> vector<mint> operator * \n (const vector<mint> &A, const vector<mint> &B) {\n if (A.empty() || B.empty()) return {};\n int N = (int)A.size(), M = (int)B.size();\n if (min(N, M) < 30) return naive_mul(A, B);\n int MOD = A[0].getmod();\n int size_fft = get_fft_size(N, M);\n vector<mint> a(size_fft), b(size_fft), c(size_fft);\n for (int i = 0; i < N; ++i) a[i] = A[i];\n for (int i = 0; i < M; ++i) b[i] = B[i];\n trans(a), trans(b);\n vector<mint> res(size_fft);\n for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];\n trans(res, true);\n res.resize(N + M - 1);\n return res;\n }\n};\n\nconst int MOD = 998244353;\nusing mint = Fp<MOD>;\nusing namespace NTT;\n\n\nint main() {\n long long N, L, M, D;\n cin >> N >> L;\n vector<long long> t(N);\n for (int i = 0; i < N; ++i) cin >> t[i];\n cin >> M >> D;\n vector<long long> x(M + 1, L);\n vector<mint> p(M);\n for (int i = 0; i < M; ++i) cin >> x[i] >> p[i], p[i] /= 100;\n\n priority_queue<pair<int,vector<mint>>, vector<pair<int,vector<mint>>>, greater<pair<int,vector<mint>>>> que;\n for (int i = 0; i < M; ++i) {\n long long l = x[i+1] - x[i];\n vector<mint> v(l+1, 0);\n v[0] = mint(1) - p[i];\n v[l] = p[i];\n que.push({l+1, v});\n }\n while (que.size() >= 2) {\n auto left = que.top(); que.pop();\n auto right = que.top(); que.pop();\n auto mul = left.second * right.second;\n que.push({mul.size(), mul});\n }\n auto f = que.top().second;\n long long deg = f.size() - 1;\n auto g = f;\n reverse(g.begin(), g.end());\n auto fg = f * g;\n vector<mint> sum(fg.size()+1, 0);\n for (int i = 0; i < fg.size(); ++i) sum[i+1] = sum[i] + fg[i];\n\n mint res = 1;\n for (int i = 1; i < N; ++i) {\n long long lim = deg + (L * (t[0] - t[i]) + D * 20000000 + D * 2 - 1) / (D * 2) - 10000000;\n chmax(lim, 0LL);\n chmin(lim, (long long)sum.size() - 1);\n res += sum[lim];\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 360, "memory_kb": 20028, "score_of_the_acc": -0.2822, "final_rank": 4 }, { "submission_id": "aoj_3182_4855175", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\ntemplate<class T> ostream& operator << (ostream &s, vector<vector<T> > P)\n{ for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; }\ntemplate<class T> ostream& operator << (ostream &s, set<T> P)\n{ for(auto it : P) { s << \"<\" << it << \"> \"; } return s << endl; }\ntemplate<class T1, class T2> ostream& operator << (ostream &s, map<T1,T2> P)\n{ for(auto it : P) { s << \"<\" << it.first << \"->\" << it.second << \"> \"; } return s << endl; }\n\n\n// modint\ntemplate<int MOD> struct Fp {\n long long val;\n constexpr Fp(long long v = 0) noexcept : val(v % MOD) {\n if (val < 0) val += MOD;\n }\n constexpr int getmod() const { return MOD; }\n constexpr Fp operator - () const noexcept {\n return val ? MOD - val : 0;\n }\n constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }\n constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }\n constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }\n constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }\n constexpr Fp& operator += (const Fp& r) noexcept {\n val += r.val;\n if (val >= MOD) val -= MOD;\n return *this;\n }\n constexpr Fp& operator -= (const Fp& r) noexcept {\n val -= r.val;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr Fp& operator *= (const Fp& r) noexcept {\n val = val * r.val % MOD;\n return *this;\n }\n constexpr Fp& operator /= (const Fp& r) noexcept {\n long long a = r.val, b = MOD, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b, swap(a, b);\n u -= t * v, swap(u, v);\n }\n val = val * u % MOD;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr bool operator == (const Fp& r) const noexcept {\n return this->val == r.val;\n }\n constexpr bool operator != (const Fp& r) const noexcept {\n return this->val != r.val;\n }\n constexpr bool operator < (const Fp& r) const noexcept {\n return this->val < r.val;\n }\n friend constexpr istream& operator >> (istream &is, Fp<MOD>& x) noexcept {\n is >> x.val;\n x.val %= MOD;\n if (x.val < 0) x.val += MOD;\n return is;\n }\n friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {\n return os << x.val;\n }\n friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {\n if (n == 0) return 1;\n auto t = modpow(a, n / 2);\n t = t * t;\n if (n & 1) t = t * a;\n return t;\n }\n};\n\nnamespace NTT {\n long long modpow(long long a, long long n, int mod) {\n long long res = 1;\n while (n > 0) {\n if (n & 1) res = res * a % mod;\n a = a * a % mod;\n n >>= 1;\n }\n return res;\n }\n\n long long modinv(long long a, int mod) {\n long long b = mod, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b, swap(a, b);\n u -= t * v, swap(u, v);\n }\n u %= mod;\n if (u < 0) u += mod;\n return u;\n }\n\n int calc_primitive_root(int mod) {\n if (mod == 2) return 1;\n if (mod == 167772161) return 3;\n if (mod == 469762049) return 3;\n if (mod == 754974721) return 11;\n if (mod == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n long long x = (mod - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (long long i = 3; i * i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) x /= i;\n }\n }\n if (x > 1) divs[cnt++] = x;\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (modpow(g, (mod - 1) / divs[i], mod) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n }\n\n int get_fft_size(int N, int M) {\n int size_a = 1, size_b = 1;\n while (size_a < N) size_a <<= 1;\n while (size_b < M) size_b <<= 1;\n return max(size_a, size_b) << 1;\n }\n\n // number-theoretic transform\n template<class mint> void trans(vector<mint> &v, bool inv = false) {\n if (v.empty()) return;\n int N = (int)v.size();\n int MOD = v[0].getmod();\n int PR = calc_primitive_root(MOD);\n static bool first = true;\n static vector<long long> vbw(30), vibw(30);\n if (first) {\n first = false;\n for (int k = 0; k < 30; ++k) {\n vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);\n vibw[k] = modinv(vbw[k], MOD);\n }\n }\n for (int i = 0, j = 1; j < N - 1; j++) {\n for (int k = N >> 1; k > (i ^= k); k >>= 1);\n if (i > j) swap(v[i], v[j]);\n }\n for (int k = 0, t = 2; t <= N; ++k, t <<= 1) {\n long long bw = vbw[k];\n if (inv) bw = vibw[k];\n for (int i = 0; i < N; i += t) {\n mint w = 1;\n for (int j = 0; j < t/2; ++j) {\n int j1 = i + j, j2 = i + j + t/2;\n mint c1 = v[j1], c2 = v[j2] * w;\n v[j1] = c1 + c2;\n v[j2] = c1 - c2;\n w *= bw;\n }\n }\n }\n if (inv) {\n long long invN = modinv(N, MOD);\n for (int i = 0; i < N; ++i) v[i] = v[i] * invN;\n }\n }\n\n // for garner\n static constexpr int MOD0 = 754974721;\n static constexpr int MOD1 = 167772161;\n static constexpr int MOD2 = 469762049;\n using mint0 = Fp<MOD0>;\n using mint1 = Fp<MOD1>;\n using mint2 = Fp<MOD2>;\n static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1);\n static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2);\n static const mint2 imod01 = 187290749; // imod1 / MOD0;\n\n // small case (T = mint, long long)\n template<class T> vector<T> naive_mul \n (const vector<T> &A, const vector<T> &B) {\n if (A.empty() || B.empty()) return {};\n int N = (int)A.size(), M = (int)B.size();\n vector<T> res(N + M - 1);\n for (int i = 0; i < N; ++i)\n for (int j = 0; j < M; ++j)\n res[i + j] += A[i] * B[j];\n return res;\n }\n\n // mint\n template<class mint> vector<mint> operator * \n (const vector<mint> &A, const vector<mint> &B) {\n if (A.empty() || B.empty()) return {};\n int N = (int)A.size(), M = (int)B.size();\n if (min(N, M) < 30) return naive_mul(A, B);\n int MOD = A[0].getmod();\n int size_fft = get_fft_size(N, M);\n if (MOD == 998244353) {\n vector<mint> a(size_fft), b(size_fft), c(size_fft);\n for (int i = 0; i < N; ++i) a[i] = A[i];\n for (int i = 0; i < M; ++i) b[i] = B[i];\n trans(a), trans(b);\n vector<mint> res(size_fft);\n for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];\n trans(res, true);\n res.resize(N + M - 1);\n return res;\n }\n vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);\n vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);\n vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);\n for (int i = 0; i < N; ++i)\n a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val;\n for (int i = 0; i < M; ++i)\n b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val;\n trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);\n for (int i = 0; i < size_fft; ++i) {\n c0[i] = a0[i] * b0[i];\n c1[i] = a1[i] * b1[i];\n c2[i] = a2[i] * b2[i];\n }\n trans(c0, true), trans(c1, true), trans(c2, true);\n static const mint mod0 = MOD0, mod01 = mod0 * MOD1;\n vector<mint> res(N + M - 1);\n for (int i = 0; i < N + M - 1; ++i) {\n int y0 = c0[i].val;\n int y1 = (imod0 * (c1[i] - y0)).val;\n int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;\n res[i] = mod01 * y2 + mod0 * y1 + y0;\n }\n return res;\n }\n\n // long long\n vector<long long> mul\n (const vector<long long> &A, const vector<long long> &B) {\n if (A.empty() || B.empty()) return {};\n int N = (int)A.size(), M = (int)B.size();\n if (min(N, M) < 30) return naive_mul(A, B);\n int size_fft = get_fft_size(N, M);\n vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);\n vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);\n vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);\n for (int i = 0; i < N; ++i)\n a0[i] = A[i], a1[i] = A[i], a2[i] = A[i];\n for (int i = 0; i < M; ++i)\n b0[i] = B[i], b1[i] = B[i], b2[i] = B[i];\n trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);\n for (int i = 0; i < size_fft; ++i) {\n c0[i] = a0[i] * b0[i];\n c1[i] = a1[i] * b1[i];\n c2[i] = a2[i] * b2[i];\n }\n trans(c0, true), trans(c1, true), trans(c2, true);\n static const long long mod0 = MOD0, mod01 = mod0 * MOD1;\n vector<long long> res(N + M - 1);\n for (int i = 0; i < N + M - 1; ++i) {\n int y0 = c0[i].val;\n int y1 = (imod0 * (c1[i] - y0)).val;\n int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;\n res[i] = mod01 * y2 + mod0 * y1 + y0;\n }\n return res;\n }\n};\n\nconst int MOD = 998244353;\nusing mint = Fp<MOD>;\nusing namespace NTT;\n\n\nint main() {\n long long N, L, M, D;\n cin >> N >> L;\n vector<long long> t(N);\n for (int i = 0; i < N; ++i) cin >> t[i];\n cin >> M >> D;\n vector<long long> x(M + 1, L);\n vector<mint> p(M);\n for (int i = 0; i < M; ++i) cin >> x[i] >> p[i], p[i] /= 100;\n\n priority_queue<pair<int,vector<mint>>, vector<pair<int,vector<mint>>>, greater<pair<int,vector<mint>>>> que;\n for (int i = 0; i < M; ++i) {\n long long l = x[i+1] - x[i];\n vector<mint> v(l+1, 0);\n v[0] = mint(1) - p[i];\n v[l] = p[i];\n que.push({l+1, v});\n }\n while (que.size() >= 2) {\n auto left = que.top(); que.pop();\n auto right = que.top(); que.pop();\n auto mul = left.second * right.second;\n que.push({mul.size(), mul});\n }\n auto f = que.top().second;\n long long deg = f.size() - 1;\n auto g = f;\n reverse(g.begin(), g.end());\n auto fg = f * g;\n int size = fg.size();\n vector<mint> sum(size+1, 0);\n for (int i = 0; i < size; ++i) sum[i+1] = sum[i] + fg[i];\n\n mint res = 1;\n for (int i = 1; i < N; ++i) {\n long long lim = deg + (L * (t[0] - t[i]) + D * 20000000 + D * 2 - 1) / (D * 2) - 10000000;\n chmax(lim, 0LL);\n chmin(lim, (long long)sum.size() - 1);\n res += sum[lim];\n\n //cout << i << \": \" << lim << endl;\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 400, "memory_kb": 20024, "score_of_the_acc": -0.327, "final_rank": 5 }, { "submission_id": "aoj_3182_4855128", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\ntemplate<class T> ostream& operator << (ostream &s, vector<vector<T> > P)\n{ for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; }\ntemplate<class T> ostream& operator << (ostream &s, set<T> P)\n{ for(auto it : P) { s << \"<\" << it << \"> \"; } return s << endl; }\ntemplate<class T1, class T2> ostream& operator << (ostream &s, map<T1,T2> P)\n{ for(auto it : P) { s << \"<\" << it.first << \"->\" << it.second << \"> \"; } return s << endl; }\n\n\n// modint\ntemplate<int MOD> struct Fp {\n long long val;\n constexpr Fp(long long v = 0) noexcept : val(v % MOD) {\n if (val < 0) val += MOD;\n }\n constexpr int getmod() const { return MOD; }\n constexpr Fp operator - () const noexcept {\n return val ? MOD - val : 0;\n }\n constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }\n constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }\n constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }\n constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }\n constexpr Fp& operator += (const Fp& r) noexcept {\n val += r.val;\n if (val >= MOD) val -= MOD;\n return *this;\n }\n constexpr Fp& operator -= (const Fp& r) noexcept {\n val -= r.val;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr Fp& operator *= (const Fp& r) noexcept {\n val = val * r.val % MOD;\n return *this;\n }\n constexpr Fp& operator /= (const Fp& r) noexcept {\n long long a = r.val, b = MOD, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b, swap(a, b);\n u -= t * v, swap(u, v);\n }\n val = val * u % MOD;\n if (val < 0) val += MOD;\n return *this;\n }\n constexpr bool operator == (const Fp& r) const noexcept {\n return this->val == r.val;\n }\n constexpr bool operator != (const Fp& r) const noexcept {\n return this->val != r.val;\n }\n constexpr bool operator < (const Fp& r) const noexcept {\n return this->val < r.val;\n }\n friend constexpr istream& operator >> (istream &is, Fp<MOD>& x) noexcept {\n is >> x.val;\n x.val %= MOD;\n if (x.val < 0) x.val += MOD;\n return is;\n }\n friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {\n return os << x.val;\n }\n friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {\n if (n == 0) return 1;\n auto t = modpow(a, n / 2);\n t = t * t;\n if (n & 1) t = t * a;\n return t;\n }\n};\n\nnamespace NTT {\n long long modpow(long long a, long long n, int mod) {\n long long res = 1;\n while (n > 0) {\n if (n & 1) res = res * a % mod;\n a = a * a % mod;\n n >>= 1;\n }\n return res;\n }\n\n long long modinv(long long a, int mod) {\n long long b = mod, u = 1, v = 0;\n while (b) {\n long long t = a / b;\n a -= t * b, swap(a, b);\n u -= t * v, swap(u, v);\n }\n u %= mod;\n if (u < 0) u += mod;\n return u;\n }\n\n int calc_primitive_root(int mod) {\n if (mod == 2) return 1;\n if (mod == 167772161) return 3;\n if (mod == 469762049) return 3;\n if (mod == 754974721) return 11;\n if (mod == 998244353) return 3;\n int divs[20] = {};\n divs[0] = 2;\n int cnt = 1;\n long long x = (mod - 1) / 2;\n while (x % 2 == 0) x /= 2;\n for (long long i = 3; i * i <= x; i += 2) {\n if (x % i == 0) {\n divs[cnt++] = i;\n while (x % i == 0) x /= i;\n }\n }\n if (x > 1) divs[cnt++] = x;\n for (int g = 2;; g++) {\n bool ok = true;\n for (int i = 0; i < cnt; i++) {\n if (modpow(g, (mod - 1) / divs[i], mod) == 1) {\n ok = false;\n break;\n }\n }\n if (ok) return g;\n }\n }\n\n int get_fft_size(int N, int M) {\n int size_a = 1, size_b = 1;\n while (size_a < N) size_a <<= 1;\n while (size_b < M) size_b <<= 1;\n return max(size_a, size_b) << 1;\n }\n\n // number-theoretic transform\n template<class mint> void trans(vector<mint> &v, bool inv = false) {\n if (v.empty()) return;\n int N = (int)v.size();\n int MOD = v[0].getmod();\n int PR = calc_primitive_root(MOD);\n static bool first = true;\n static vector<long long> vbw(30), vibw(30);\n if (first) {\n first = false;\n for (int k = 0; k < 30; ++k) {\n vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);\n vibw[k] = modinv(vbw[k], MOD);\n }\n }\n for (int i = 0, j = 1; j < N - 1; j++) {\n for (int k = N >> 1; k > (i ^= k); k >>= 1);\n if (i > j) swap(v[i], v[j]);\n }\n for (int k = 0, t = 2; t <= N; ++k, t <<= 1) {\n long long bw = vbw[k];\n if (inv) bw = vibw[k];\n for (int i = 0; i < N; i += t) {\n mint w = 1;\n for (int j = 0; j < t/2; ++j) {\n int j1 = i + j, j2 = i + j + t/2;\n mint c1 = v[j1], c2 = v[j2] * w;\n v[j1] = c1 + c2;\n v[j2] = c1 - c2;\n w *= bw;\n }\n }\n }\n if (inv) {\n long long invN = modinv(N, MOD);\n for (int i = 0; i < N; ++i) v[i] = v[i] * invN;\n }\n }\n\n // for garner\n static constexpr int MOD0 = 754974721;\n static constexpr int MOD1 = 167772161;\n static constexpr int MOD2 = 469762049;\n using mint0 = Fp<MOD0>;\n using mint1 = Fp<MOD1>;\n using mint2 = Fp<MOD2>;\n static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1);\n static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2);\n static const mint2 imod01 = 187290749; // imod1 / MOD0;\n\n // small case (T = mint, long long)\n template<class T> vector<T> naive_mul \n (const vector<T> &A, const vector<T> &B) {\n if (A.empty() || B.empty()) return {};\n int N = (int)A.size(), M = (int)B.size();\n vector<T> res(N + M - 1);\n for (int i = 0; i < N; ++i)\n for (int j = 0; j < M; ++j)\n res[i + j] += A[i] * B[j];\n return res;\n }\n\n // mint\n template<class mint> vector<mint> operator * \n (const vector<mint> &A, const vector<mint> &B) {\n if (A.empty() || B.empty()) return {};\n int N = (int)A.size(), M = (int)B.size();\n if (min(N, M) < 30) return naive_mul(A, B);\n int MOD = A[0].getmod();\n int size_fft = get_fft_size(N, M);\n if (MOD == 998244353) {\n vector<mint> a(size_fft), b(size_fft), c(size_fft);\n for (int i = 0; i < N; ++i) a[i] = A[i];\n for (int i = 0; i < M; ++i) b[i] = B[i];\n trans(a), trans(b);\n vector<mint> res(size_fft);\n for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];\n trans(res, true);\n res.resize(N + M - 1);\n return res;\n }\n vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);\n vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);\n vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);\n for (int i = 0; i < N; ++i)\n a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val;\n for (int i = 0; i < M; ++i)\n b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val;\n trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);\n for (int i = 0; i < size_fft; ++i) {\n c0[i] = a0[i] * b0[i];\n c1[i] = a1[i] * b1[i];\n c2[i] = a2[i] * b2[i];\n }\n trans(c0, true), trans(c1, true), trans(c2, true);\n static const mint mod0 = MOD0, mod01 = mod0 * MOD1;\n vector<mint> res(N + M - 1);\n for (int i = 0; i < N + M - 1; ++i) {\n int y0 = c0[i].val;\n int y1 = (imod0 * (c1[i] - y0)).val;\n int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;\n res[i] = mod01 * y2 + mod0 * y1 + y0;\n }\n return res;\n }\n\n // long long\n vector<long long> mul\n (const vector<long long> &A, const vector<long long> &B) {\n if (A.empty() || B.empty()) return {};\n int N = (int)A.size(), M = (int)B.size();\n if (min(N, M) < 30) return naive_mul(A, B);\n int size_fft = get_fft_size(N, M);\n vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);\n vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);\n vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);\n for (int i = 0; i < N; ++i)\n a0[i] = A[i], a1[i] = A[i], a2[i] = A[i];\n for (int i = 0; i < M; ++i)\n b0[i] = B[i], b1[i] = B[i], b2[i] = B[i];\n trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);\n for (int i = 0; i < size_fft; ++i) {\n c0[i] = a0[i] * b0[i];\n c1[i] = a1[i] * b1[i];\n c2[i] = a2[i] * b2[i];\n }\n trans(c0, true), trans(c1, true), trans(c2, true);\n static const long long mod0 = MOD0, mod01 = mod0 * MOD1;\n vector<long long> res(N + M - 1);\n for (int i = 0; i < N + M - 1; ++i) {\n int y0 = c0[i].val;\n int y1 = (imod0 * (c1[i] - y0)).val;\n int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;\n res[i] = mod01 * y2 + mod0 * y1 + y0;\n }\n return res;\n }\n};\n\nconst int MOD = 998244353;\nusing mint = Fp<MOD>;\nusing namespace NTT;\n\n\nint main() {\n long long N, L, M, D;\n cin >> N >> L;\n vector<long long> t(N);\n for (int i = 0; i < N; ++i) cin >> t[i];\n cin >> M >> D;\n vector<long long> x(M + 1, L);\n vector<mint> p(M);\n for (int i = 0; i < M; ++i) cin >> x[i] >> p[i], p[i] /= 100;\n\n priority_queue<pair<int,vector<mint>>, vector<pair<int,vector<mint>>>, greater<pair<int,vector<mint>>>> que;\n for (int i = 0; i < M; ++i) {\n long long l = x[i+1] - x[i];\n vector<mint> v(l+1, 0);\n v[0] = mint(1) - p[i];\n v[l] = p[i];\n que.push({l+1, v});\n }\n while (que.size() >= 2) {\n auto left = que.top(); que.pop();\n auto right = que.top(); que.pop();\n auto mul = left.second * right.second;\n que.push({mul.size(), mul});\n }\n auto f = que.top().second;\n int deg = f.size() - 1;\n auto g = f;\n reverse(g.begin(), g.end());\n auto fg = f * g;\n int size = fg.size();\n vector<mint> sum(size+1, 0);\n for (int i = 0; i < size; ++i) sum[i+1] = sum[i] + fg[i];\n\n mint res = 1;\n for (int i = 1; i < N; ++i) {\n int lim = deg + (L * (t[0] - t[i]) + D * 20000000 + D * 2 - 1) / (D * 2) - 10000000;\n chmax(lim, 0);\n chmin(lim, (int)sum.size() - 1);\n res += sum[lim];\n }\n cout << res << endl;\n}", "accuracy": 0.6, "time_ms": 370, "memory_kb": 19960, "score_of_the_acc": -0.2921, "final_rank": 13 }, { "submission_id": "aoj_3182_4852327", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\n#define all(v) v.begin(),v.end()\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=998244353;\ntemplate<class T> void chmin(T &a,const T &b){if(a>b) a=b;}\ntemplate<class T> void chmax(T &a,const T &b){if(a<b) a=b;}\n\nll mod_pow(ll x,ll n){\n x%=MOD;\n ll res=1;\n while(n>0){\n if(n&1) res=res*x%MOD;\n x=x*x%MOD;\n n>>=1;\n }\n return res;\n}\n\nll mod_inverse(ll x){\n return mod_pow(x,MOD-2);\n}\n\nvoid add(ll &a,ll b){\n a=(a+b)%MOD;\n}\n\nvoid mul(ll &a,ll b){\n a%=MOD;b%=MOD;\n a=a*b%MOD;\n}\n\n//const ll MOD=998244353; // MOD == 119*2^23+1\n//depends on mod_pow,mod_inverse\n\nll root[24],invroot[24];\n\nvoid NTT_init(){\n for(int i=0;i<24;++i){\n root[i]=mod_pow(3,(MOD-1)/(1<<i));\n invroot[i]=mod_inverse(root[i]);\n }\n}\n\nvector<ll> NTT(vector<ll> a,bool inverse=false){\n int n=a.size();\n int high=0;\n for(int i=0;(1<<i)<n;++i) high++;\n\n for(int i=0;i<n;++i){\n int mask=0;\n for(int k=0;k<high;++k){\n if(i>>k&1) mask|=(1<<(high-1-k));\n }\n if(i<mask) swap(a[i],a[mask]);\n }\n\n for(int j=1;(1<<j)<=n;++j){\n int m=(1<<j);\n ll zeta=root[j];\n if(inverse) zeta=invroot[j];\n for(int i=0;i<n;i+=m){\n ll powzeta=1;\n for(int k=i;k<i+m/2;++k){\n ll s=a[k];\n ll t=a[k+m/2]*powzeta%MOD;\n\n a[k]=(s+t)%MOD;\n a[k+m/2]=(s-t+MOD)%MOD;\n powzeta=powzeta*zeta%MOD;\n }\n }\n }\n\n if(inverse){\n ll invn=mod_inverse(n);\n for(int i=0;i<n;++i) a[i]=a[i]*invn%MOD;\n }\n return a;\n}\n\nvector<ll> convolute(const vector<ll> &a,const vector<ll> &b){\n int size=a.size()+b.size()-1;\n int n=1;\n while(n<size) n<<=1;\n\n vector<ll> A(n,0),B(n,0);\n for(int i=0;i<a.size();i++) A[i]=a[i];\n for(int i=0;i<b.size();i++) B[i]=b[i];\n\n A=NTT(A);\n B=NTT(B);\n\n for(int i=0;i<n;++i) A[i]=A[i]*B[i]%MOD;\n A=NTT(A,true);\n\n A.resize(size);\n return A;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int N;\n ll L;\n cin>>N>>L;\n vector<ll> T(N);\n rep(i,N) cin>>T[i];\n int M;\n ll D;\n cin>>M>>D;\n vector<ll> X(M+1),P(M+1);\n rep(i,M) cin>>X[i]>>P[i];\n X[M]=L;\n\n NTT_init();\n\n ll inv100=mod_inverse(100);\n vector<vector<ll>> B(M);\n rep(i,M){\n int diff=X[i+1]-X[i];\n B[i].resize(diff+1,0);\n B[i][0]=P[i]*inv100%MOD;\n B[i][diff]=(100-P[i])*inv100%MOD;\n }\n\n priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>> PQ;\n rep(i,M) PQ.push(mkp(B[i].size(),i));\n while(PQ.size()>1){\n auto f=PQ.top();\n PQ.pop();\n auto s=PQ.top();\n PQ.pop();\n\n int ft=f.second;\n int st=s.second;\n B[ft]=convolute(B[ft],B[st]);\n B[st].clear();\n\n PQ.push(mkp(B[ft].size(),ft));\n }\n\n auto f=PQ.top();PQ.pop();\n vector<ll> dist=B[f.second];\n int SZ=dist.size();\n\n vector<ll> revd=dist;\n reverse(all(revd));\n dist=convolute(dist,revd);\n\n int V=dist.size();\n vector<ll> rsum(V+1,0);\n for(int i=V-1;i>=0;i--) rsum[i]=(rsum[i+1]+dist[i])%MOD;\n\n ll ans=0;\n for(int i=1;i<N;i++){\n ll border=(L*abs(T[0]-T[i])+2*D-1)/(2*D);\n if(T[0]-T[i]<0) border*=(-1);\n if(T[0]-T[i]<0&&(L*abs(T[0]-T[i]))%(2*D)) ++border;\n if(border+SZ-1>V) continue;\n add(ans,rsum[max(0ll,border+SZ-1)]);\n }\n ans=(N-ans+MOD)%MOD;\n add(ans,MOD);\n cout<<ans<<endl;\n\n\n return 0;\n}", "accuracy": 1, "time_ms": 540, "memory_kb": 45732, "score_of_the_acc": -0.9807, "final_rank": 10 }, { "submission_id": "aoj_3182_4852232", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\n#define all(v) v.begin(),v.end()\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=998244353;\ntemplate<class T> void chmin(T &a,const T &b){if(a>b) a=b;}\ntemplate<class T> void chmax(T &a,const T &b){if(a<b) a=b;}\n\nll mod_pow(ll x,ll n){\n x%=MOD;\n ll res=1;\n while(n>0){\n if(n&1) res=res*x%MOD;\n x=x*x%MOD;\n n>>=1;\n }\n return res;\n}\n\nll mod_inverse(ll x){\n return mod_pow(x,MOD-2);\n}\n\nvoid add(ll &a,ll b){\n a=(a+b)%MOD;\n}\n\nvoid mul(ll &a,ll b){\n a%=MOD;b%=MOD;\n a=a*b%MOD;\n}\n\n//const ll MOD=998244353; // MOD == 119*2^23+1\n//depends on mod_pow,mod_inverse\n\nll root[24],invroot[24];\n\nvoid NTT_init(){\n for(int i=0;i<24;++i){\n root[i]=mod_pow(3,(MOD-1)/(1<<i));\n invroot[i]=mod_inverse(root[i]);\n }\n}\n\nvector<ll> NTT(vector<ll> a,bool inverse=false){\n int n=a.size();\n int high=0;\n for(int i=0;(1<<i)<n;++i) high++;\n\n for(int i=0;i<n;++i){\n int mask=0;\n for(int k=0;k<high;++k){\n if(i>>k&1) mask|=(1<<(high-1-k));\n }\n if(i<mask) swap(a[i],a[mask]);\n }\n\n for(int j=1;(1<<j)<=n;++j){\n int m=(1<<j);\n ll zeta=root[j];\n if(inverse) zeta=invroot[j];\n for(int i=0;i<n;i+=m){\n ll powzeta=1;\n for(int k=i;k<i+m/2;++k){\n ll s=a[k];\n ll t=a[k+m/2]*powzeta%MOD;\n\n a[k]=(s+t)%MOD;\n a[k+m/2]=(s-t+MOD)%MOD;\n powzeta=powzeta*zeta%MOD;\n }\n }\n }\n\n if(inverse){\n ll invn=mod_inverse(n);\n for(int i=0;i<n;++i) a[i]=a[i]*invn%MOD;\n }\n return a;\n}\n\nvector<ll> convolute(const vector<ll> &a,const vector<ll> &b){\n int size=a.size()+b.size()-1;\n int n=1;\n while(n<size) n<<=1;\n\n vector<ll> A(n,0),B(n,0);\n for(int i=0;i<a.size();i++) A[i]=a[i];\n for(int i=0;i<b.size();i++) B[i]=b[i];\n\n A=NTT(A);\n B=NTT(B);\n\n for(int i=0;i<n;++i) A[i]=A[i]*B[i]%MOD;\n A=NTT(A,true);\n\n A.resize(size);\n return A;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int N;\n ll L;\n cin>>N>>L;\n vector<ll> T(N);\n rep(i,N) cin>>T[i];\n int M;\n ll D;\n cin>>M>>D;\n vector<ll> X(M+1),P(M+1);\n rep(i,M) cin>>X[i]>>P[i];\n X[M]=L;\n\n NTT_init();\n\n ll inv100=mod_inverse(100);\n vector<vector<ll>> B(M);\n rep(i,M){\n int diff=X[i+1]-X[i];\n B[i].resize(diff+1,0);\n B[i][0]=P[i]*inv100%MOD;\n B[i][diff]=(100-P[i])*inv100%MOD;\n }\n\n priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>> PQ;\n rep(i,M) PQ.push(mkp(B[i].size(),i));\n while(PQ.size()>1){\n auto f=PQ.top();\n PQ.pop();\n auto s=PQ.top();\n PQ.pop();\n\n int ft=f.second;\n int st=s.second;\n B[ft]=convolute(B[ft],B[st]);\n B[st].clear();\n\n PQ.push(mkp(B[ft].size(),ft));\n }\n\n auto f=PQ.top();PQ.pop();\n vector<ll> dist=B[f.second];\n vector<ll> revd=dist;\n reverse(all(revd));\n dist=convolute(dist,revd);\n\n int V=dist.size();\n vector<ll> rsum(V+1,0);\n for(int i=V-1;i>=0;i--) rsum[i]=(rsum[i+1]+dist[i])%MOD;\n\n ll ans=0;\n for(int i=1;i<N;i++){\n ll border=L*(T[0]-T[i])/(2*D);\n if(T[0]-T[i]<0&&(L*abs(T[0]-T[i]))%(2*D)) --border;\n if(border+L>V) continue;\n ans+=rsum[max(0ll,border+L)];\n ans=(ans+MOD)%MOD;\n }\n ans=(N-ans+MOD)%MOD;\n cout<<ans<<endl;\n\n\n return 0;\n}", "accuracy": 0.075, "time_ms": 600, "memory_kb": 45444, "score_of_the_acc": -1.0425, "final_rank": 20 }, { "submission_id": "aoj_3182_4852229", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\n#define all(v) v.begin(),v.end()\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=998244353;\ntemplate<class T> void chmin(T &a,const T &b){if(a>b) a=b;}\ntemplate<class T> void chmax(T &a,const T &b){if(a<b) a=b;}\n\nll mod_pow(ll x,ll n){\n x%=MOD;\n ll res=1;\n while(n>0){\n if(n&1) res=res*x%MOD;\n x=x*x%MOD;\n n>>=1;\n }\n return res;\n}\n\nll mod_inverse(ll x){\n return mod_pow(x,MOD-2);\n}\n\nvoid add(ll &a,ll b){\n a=(a+b)%MOD;\n}\n\nvoid mul(ll &a,ll b){\n a%=MOD;b%=MOD;\n a=a*b%MOD;\n}\n\n//const ll MOD=998244353; // MOD == 119*2^23+1\n//depends on mod_pow,mod_inverse\n\nll root[24],invroot[24];\n\nvoid NTT_init(){\n for(int i=0;i<24;++i){\n root[i]=mod_pow(3,(MOD-1)/(1<<i));\n invroot[i]=mod_inverse(root[i]);\n }\n}\n\nvector<ll> NTT(vector<ll> a,bool inverse=false){\n int n=a.size();\n int high=0;\n for(int i=0;(1<<i)<n;++i) high++;\n\n for(int i=0;i<n;++i){\n int mask=0;\n for(int k=0;k<high;++k){\n if(i>>k&1) mask|=(1<<(high-1-k));\n }\n if(i<mask) swap(a[i],a[mask]);\n }\n\n for(int j=1;(1<<j)<=n;++j){\n int m=(1<<j);\n ll zeta=root[j];\n if(inverse) zeta=invroot[j];\n for(int i=0;i<n;i+=m){\n ll powzeta=1;\n for(int k=i;k<i+m/2;++k){\n ll s=a[k];\n ll t=a[k+m/2]*powzeta%MOD;\n\n a[k]=(s+t)%MOD;\n a[k+m/2]=(s-t+MOD)%MOD;\n powzeta=powzeta*zeta%MOD;\n }\n }\n }\n\n if(inverse){\n ll invn=mod_inverse(n);\n for(int i=0;i<n;++i) a[i]=a[i]*invn%MOD;\n }\n return a;\n}\n\nvector<ll> convolute(const vector<ll> &a,const vector<ll> &b){\n int size=a.size()+b.size()-1;\n int n=1;\n while(n<size) n<<=1;\n\n vector<ll> A(n,0),B(n,0);\n for(int i=0;i<a.size();i++) A[i]=a[i];\n for(int i=0;i<b.size();i++) B[i]=b[i];\n\n A=NTT(A);\n B=NTT(B);\n\n for(int i=0;i<n;++i) A[i]=A[i]*B[i]%MOD;\n A=NTT(A,true);\n\n A.resize(size);\n return A;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int N;\n ll L;\n cin>>N>>L;\n vector<ll> T(N);\n rep(i,N) cin>>T[i];\n int M;\n ll D;\n cin>>M>>D;\n vector<ll> X(M+1),P(M+1);\n rep(i,M) cin>>X[i]>>P[i];\n X[M]=L;\n\n NTT_init();\n\n ll inv100=mod_inverse(100);\n vector<vector<ll>> B(M);\n rep(i,M){\n int diff=X[i+1]-X[i];\n B[i].resize(diff+1,0);\n B[i][0]=P[i]*inv100%MOD;\n B[i][diff]=(100-P[i])*inv100%MOD;\n }\n\n priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>> PQ;\n rep(i,M) PQ.push(mkp(B[i].size(),i));\n while(PQ.size()>1){\n auto f=PQ.top();\n PQ.pop();\n auto s=PQ.top();\n PQ.pop();\n\n int ft=f.second;\n int st=s.second;\n B[ft]=convolute(B[ft],B[st]);\n B[st].clear();\n\n PQ.push(mkp(B[ft].size(),ft));\n }\n\n auto f=PQ.top();PQ.pop();\n vector<ll> dist=B[f.second];\n vector<ll> revd=dist;\n reverse(all(revd));\n dist=convolute(dist,revd);\n\n int V=dist.size();\n vector<ll> rsum(V+1,0);\n for(int i=V-1;i>=0;i--) rsum[i]=rsum[i+1]+dist[i];\n\n ll ans=0;\n for(int i=1;i<N;i++){\n ll border=L*(T[0]-T[i])/(2*D);\n if(T[0]-T[i]<0&&(L*abs(T[0]-T[i]))%(2*D)) --border;\n if(border+L>V) continue;\n ans+=rsum[max(0ll,border+L)];\n ans=(ans+MOD)%MOD;\n }\n ans=(N-ans+MOD)%MOD;\n cout<<ans<<endl;\n\n\n return 0;\n}", "accuracy": 0.075, "time_ms": 570, "memory_kb": 45464, "score_of_the_acc": -1.0092, "final_rank": 19 }, { "submission_id": "aoj_3182_4852227", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\n#define all(v) v.begin(),v.end()\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=998244353;\ntemplate<class T> void chmin(T &a,const T &b){if(a>b) a=b;}\ntemplate<class T> void chmax(T &a,const T &b){if(a<b) a=b;}\n\nll mod_pow(ll x,ll n){\n x%=MOD;\n ll res=1;\n while(n>0){\n if(n&1) res=res*x%MOD;\n x=x*x%MOD;\n n>>=1;\n }\n return res;\n}\n\nll mod_inverse(ll x){\n return mod_pow(x,MOD-2);\n}\n\nvoid add(ll &a,ll b){\n a=(a+b)%MOD;\n}\n\nvoid mul(ll &a,ll b){\n a%=MOD;b%=MOD;\n a=a*b%MOD;\n}\n\n//const ll MOD=998244353; // MOD == 119*2^23+1\n//depends on mod_pow,mod_inverse\n\nll root[24],invroot[24];\n\nvoid NTT_init(){\n for(int i=0;i<24;++i){\n root[i]=mod_pow(3,(MOD-1)/(1<<i));\n invroot[i]=mod_inverse(root[i]);\n }\n}\n\nvector<ll> NTT(vector<ll> a,bool inverse=false){\n int n=a.size();\n int high=0;\n for(int i=0;(1<<i)<n;++i) high++;\n\n for(int i=0;i<n;++i){\n int mask=0;\n for(int k=0;k<high;++k){\n if(i>>k&1) mask|=(1<<(high-1-k));\n }\n if(i<mask) swap(a[i],a[mask]);\n }\n\n for(int j=1;(1<<j)<=n;++j){\n int m=(1<<j);\n ll zeta=root[j];\n if(inverse) zeta=invroot[j];\n for(int i=0;i<n;i+=m){\n ll powzeta=1;\n for(int k=i;k<i+m/2;++k){\n ll s=a[k];\n ll t=a[k+m/2]*powzeta%MOD;\n\n a[k]=(s+t)%MOD;\n a[k+m/2]=(s-t+MOD)%MOD;\n powzeta=powzeta*zeta%MOD;\n }\n }\n }\n\n if(inverse){\n ll invn=mod_inverse(n);\n for(int i=0;i<n;++i) a[i]=a[i]*invn%MOD;\n }\n return a;\n}\n\nvector<ll> convolute(const vector<ll> &a,const vector<ll> &b){\n int size=a.size()+b.size()-1;\n int n=1;\n while(n<size) n<<=1;\n\n vector<ll> A(n,0),B(n,0);\n for(int i=0;i<a.size();i++) A[i]=a[i];\n for(int i=0;i<b.size();i++) B[i]=b[i];\n\n A=NTT(A);\n B=NTT(B);\n\n for(int i=0;i<n;++i) A[i]=A[i]*B[i]%MOD;\n A=NTT(A,true);\n\n A.resize(size);\n return A;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int N;\n ll L;\n cin>>N>>L;\n vector<ll> T(N);\n rep(i,N) cin>>T[i];\n int M;\n ll D;\n cin>>M>>D;\n vector<ll> X(M+1),P(M+1);\n rep(i,M) cin>>X[i]>>P[i];\n X[M]=L;\n\n NTT_init();\n\n ll inv100=mod_inverse(100);\n vector<vector<ll>> B(M);\n rep(i,M){\n int diff=X[i+1]-X[i];\n B[i].resize(diff+1,0);\n B[i][0]=P[i]*inv100%MOD;\n B[i][diff]=(100-P[i])*inv100%MOD;\n }\n\n priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>> PQ;\n rep(i,M) PQ.push(mkp(B[i].size(),i));\n while(PQ.size()>1){\n auto f=PQ.top();\n PQ.pop();\n auto s=PQ.top();\n PQ.pop();\n\n int ft=f.second;\n int st=s.second;\n B[ft]=convolute(B[ft],B[st]);\n B[st].clear();\n\n PQ.push(mkp(B[ft].size(),ft));\n }\n\n auto f=PQ.top();PQ.pop();\n vector<ll> dist=B[f.second];\n vector<ll> revd=dist;\n reverse(all(revd));\n dist=convolute(dist,revd);\n\n int V=dist.size();\n vector<ll> rsum(V+1,0);\n for(int i=V-1;i>=0;i--) rsum[i]=rsum[i+1]+dist[i];\n\n ll ans=0;\n for(int i=1;i<N;i++){\n ll border=L*(T[0]-T[i])/(2*D);\n if(T[0]-T[i]<0&&(L*abs(T[0]-T[i]))%(2*D)) --border;\n if(border+L<0||border+L>V) continue;\n ans+=rsum[border+L];\n ans=(ans+MOD)%MOD;\n }\n ans=(N-ans+MOD)%MOD;\n cout<<ans<<endl;\n\n\n return 0;\n}", "accuracy": 0.075, "time_ms": 530, "memory_kb": 45696, "score_of_the_acc": -0.9687, "final_rank": 18 }, { "submission_id": "aoj_3182_4852226", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <string>\n#include <vector>\n#include <cmath>\n#include <map>\n#include <queue>\n#include <iomanip>\n#include <set>\n#include <tuple>\n#define mkp make_pair\n#define mkt make_tuple\n#define rep(i,n) for(int i = 0; i < (n); ++i)\n#define all(v) v.begin(),v.end()\nusing namespace std;\ntypedef long long ll;\nconst ll MOD=998244353;\ntemplate<class T> void chmin(T &a,const T &b){if(a>b) a=b;}\ntemplate<class T> void chmax(T &a,const T &b){if(a<b) a=b;}\n\nll mod_pow(ll x,ll n){\n x%=MOD;\n ll res=1;\n while(n>0){\n if(n&1) res=res*x%MOD;\n x=x*x%MOD;\n n>>=1;\n }\n return res;\n}\n\nll mod_inverse(ll x){\n return mod_pow(x,MOD-2);\n}\n\nvoid add(ll &a,ll b){\n a=(a+b)%MOD;\n}\n\nvoid mul(ll &a,ll b){\n a%=MOD;b%=MOD;\n a=a*b%MOD;\n}\n\n//const ll MOD=998244353; // MOD == 119*2^23+1\n//depends on mod_pow,mod_inverse\n\nll root[24],invroot[24];\n\nvoid NTT_init(){\n for(int i=0;i<24;++i){\n root[i]=mod_pow(3,(MOD-1)/(1<<i));\n invroot[i]=mod_inverse(root[i]);\n }\n}\n\nvector<ll> NTT(vector<ll> a,bool inverse=false){\n int n=a.size();\n int high=0;\n for(int i=0;(1<<i)<n;++i) high++;\n\n for(int i=0;i<n;++i){\n int mask=0;\n for(int k=0;k<high;++k){\n if(i>>k&1) mask|=(1<<(high-1-k));\n }\n if(i<mask) swap(a[i],a[mask]);\n }\n\n for(int j=1;(1<<j)<=n;++j){\n int m=(1<<j);\n ll zeta=root[j];\n if(inverse) zeta=invroot[j];\n for(int i=0;i<n;i+=m){\n ll powzeta=1;\n for(int k=i;k<i+m/2;++k){\n ll s=a[k];\n ll t=a[k+m/2]*powzeta%MOD;\n\n a[k]=(s+t)%MOD;\n a[k+m/2]=(s-t+MOD)%MOD;\n powzeta=powzeta*zeta%MOD;\n }\n }\n }\n\n if(inverse){\n ll invn=mod_inverse(n);\n for(int i=0;i<n;++i) a[i]=a[i]*invn%MOD;\n }\n return a;\n}\n\nvector<ll> convolute(const vector<ll> &a,const vector<ll> &b){\n int size=a.size()+b.size()-1;\n int n=1;\n while(n<size) n<<=1;\n\n vector<ll> A(n,0),B(n,0);\n for(int i=0;i<a.size();i++) A[i]=a[i];\n for(int i=0;i<b.size();i++) B[i]=b[i];\n\n A=NTT(A);\n B=NTT(B);\n\n for(int i=0;i<n;++i) A[i]=A[i]*B[i]%MOD;\n A=NTT(A,true);\n\n A.resize(size);\n return A;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int N;\n ll L;\n cin>>N>>L;\n vector<ll> T(N);\n rep(i,N) cin>>T[i];\n int M;\n ll D;\n cin>>M>>D;\n vector<ll> X(M+1),P(M+1);\n rep(i,M) cin>>X[i]>>P[i];\n X[M]=L;\n\n NTT_init();\n\n ll inv100=mod_inverse(100);\n vector<vector<ll>> B(M);\n rep(i,M){\n int diff=X[i+1]-X[i];\n B[i].resize(diff+1,0);\n B[i][0]=P[i]*inv100%MOD;\n B[i][diff]=(100-P[i])*inv100%MOD;\n }\n\n priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>> PQ;\n rep(i,M) PQ.push(mkp(B[i].size(),i));\n while(PQ.size()>1){\n auto f=PQ.top();\n PQ.pop();\n auto s=PQ.top();\n PQ.pop();\n\n int ft=f.second;\n int st=s.second;\n B[ft]=convolute(B[ft],B[st]);\n B[st].clear();\n\n PQ.push(mkp(B[ft].size(),ft));\n }\n\n auto f=PQ.top();PQ.pop();\n vector<ll> dist=B[f.second];\n vector<ll> revd=dist;\n reverse(all(revd));\n dist=convolute(dist,revd);\n\n int V=dist.size();\n vector<ll> rsum(V+1,0);\n for(int i=V-1;i>=0;i--) rsum[i]=rsum[i+1]+dist[i];\n\n ll ans=0;\n for(int i=1;i<N;i++){\n ll border=L*(T[0]-T[i])/(2*D);\n if(T[0]-T[i]<0&&(L*abs(T[0]-T[i]))%(2*D)) --border;\n ans+=rsum[min((ll)V,border+L)];\n ans=(ans+MOD)%MOD;\n }\n ans=(N-ans+MOD)%MOD;\n cout<<ans<<endl;\n\n\n return 0;\n}", "accuracy": 0.075, "time_ms": 460, "memory_kb": 45924, "score_of_the_acc": -0.8945, "final_rank": 17 } ]
aoj_3180_cpp
I GCDMST 問題文 $1,\ldots,N$ の番号を振られた $N$ 個の頂点があります。 最初、これらを繋ぐ辺はありません。 あなたはいくつかの辺を追加してこのグラフを連結にしたいと思いました。 頂点 $i$ と $j$ を繋ぐ辺を追加するには $A_{\gcd(i,j)}$ のコストがかかります。 このグラフを連結にするように辺を追加するとき、かかるコストの和の最小値を求めてください。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $A_1$ $\cdots$ $A_N$ 制約 入力はすべて整数である。 $2 \leq N \leq 2\times10^5$ $1 \leq A_i \leq 10^9$ 出力 答えを 1 行に出力せよ。 入力例1 5 9 7 3 4 8 出力例1 34 例えば $\{1,2\},\{2,4\},\{3,4\},\{4,5\}$ をつなぐ辺をはることで、コスト $34$ でグラフを連結にすることができます。 $\mathrm{gcd}(2,4)$ つまり $2$ と $4$ の最大公約数は $2$ なので $\{2,4\}$ を結ぶ辺のコストは $A_2=7$ です。 入力例2 10 10 8 9 7 6 1 6 7 2 1 出力例2 75
[ { "submission_id": "aoj_3180_9552743", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n//make -f ../makefile SRC=\n\n/*\nbrute force => RE or TLE\nfrom index or rather k(th) infers v and w\n*/\n//------------------------------------------------------------------------------\nbool DEBUG = false;\nconst int INF = 1000000000;\n\nconst int MAX_N = 200000;\n//static int vect[MAX_N];\n\n//------------------------------------------------------------------------------\nstruct Element\n{\n int i, v;\n\n Element(): i(-1), v(-INF) {}\n Element(int idx, int val): i(idx), v(val) {}\n bool operator<(const Element& e1) const\n {\n if (v == e1.v) return i < e1.i;\n return v < e1.v;\n }\n void debug() const { printf(\"i=%d, v=%d\\n\", i, v); }\n};\n\ntypedef vector<Element> Elements;\n//------------------------------------------------------------------------------\nclass QuickUnion\n{\n public:\n int N;\n int M; // no. of edges\n int* parent;\n int* count_; // no. of nodes rooted at n\n QuickUnion(int num): N(num), M(0)\n {\n parent = new int[N]; // 0-based nodes\n count_ = new int[N];\n for (int n=0; n<N; n++) { parent[n]=n; count_[n]=1; }\n }\n\n ~QuickUnion() { delete[] parent; delete[] count_; }\n\n int size(int n) //<--------------------\n {\n int p = root(n);\n return count_[p];\n }\n\n bool connected()\n {\n return M+1 >= N;\n }\n\n bool unite(int n1, int n2) //<---------- return true if action is successful\n {\n int r1 = root(n1);\n int r2 = root(n2);\n if (r1==r2) return false;\n M++; //<---------- for checking whether all are connected\n\n if (count_[r1] < count_[r2]) { parent[r1] = r2; count_[r2] += count_[r1]; }\n else { parent[r2] = r1; count_[r1] += count_[r2]; }\n return true;\n }\n\n bool find(int n1, int n2)\n {\n return root(n1)==root(n2);\n }\n\n int root(int node)\n {\n int n = node;\n while (n != parent[n])\n {\n parent[n] = parent[parent[n]]; // vs compression\n n = parent[n];\n }\n parent[node] = n;\n return n;\n }\n\n void debug() const\n {\n for (int n=0; n<N; n++) printf(\"node=%d, root=%d\\n\", n, parent[n]);\n printf(\"\\n\");\n }\n};\n\n//------------------------------------------------------------------------------\nint64_t kruskal(int N, Elements& E)\n{\n int64_t res = 0;\n QuickUnion QU(N);\n sort(E.begin(), E.end());\n for (Element e: E)\n {\n if (QU.connected()) break;\n for (int k=1; (e.i+1)*k-1<N; ++k)\n {\n if (QU.unite(e.i, (e.i+1)*k-1))\n {\n res += e.v;\n }\n }\n }\n return res;\n}\n\n\n//------------------------------------------------------------------------------\nvoid test()\n{\n}\n\n//------------------------------------------------------------------------------\nint main()\n{\n //DEBUG = true;\n //test(); return 0;\n //--------------------------------------------------------------------------\n int N, K, L, R, v, num;\n num = scanf(\"%d \", &N);\n Elements E(N);\n for (int n=0; n<N; ++n)\n {\n num = scanf(\"%d \", &v);\n E[n] = Element(n, v);\n }\n int64_t res = kruskal(N, E);\n printf(\"%ld\\n\", res);\n return 0;\n}\n\n//------------------------------------------------------------------------------", "accuracy": 1, "time_ms": 30, "memory_kb": 6276, "score_of_the_acc": -0.0448, "final_rank": 6 }, { "submission_id": "aoj_3180_9488088", "code_snippet": "// competitive-verifier: PROBLEM\n#ifdef ATCODER\n#pragma GCC target(\"sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2\")\n#endif\n#pragma GCC optimize(\"Ofast,fast-math,unroll-all-loops\")\n#include <bits/stdc++.h>\n#ifndef ATCODER\n#pragma GCC target(\"sse4.2,avx2,bmi2\")\n#endif\ntemplate <class T, class U>\nconstexpr bool chmax(T &a, const U &b) {\n return a < (T)b ? a = (T)b, true : false;\n}\ntemplate <class T, class U>\nconstexpr bool chmin(T &a, const U &b) {\n return (T)b < a ? a = (T)b, true : false;\n}\nconstexpr std::int64_t INF = 1000000000000000003;\nconstexpr int Inf = 1000000003;\nconstexpr double EPS = 1e-7;\nconstexpr double PI = 3.14159265358979323846;\n#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)\n#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)\n#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)\n#define rep(i, n) FOR (i, 0, n)\n#define repn(i, n) FOR (i, 1, n + 1)\n#define repr(i, n) FORR (i, n, 0)\n#define repnr(i, n) FORR (i, n + 1, 1)\n#define all(s) (s).begin(), (s).end()\nstruct Sonic {\n Sonic() {\n std::ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n std::cout << std::fixed << std::setprecision(20);\n }\n constexpr void operator()() const {}\n} sonic;\nusing namespace std;\nusing ll = std::int64_t;\nusing ld = long double;\ntemplate <class T, class U>\nstd::istream &operator>>(std::istream &is, std::pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T>\nstd::istream &operator>>(std::istream &is, std::vector<T> &v) {\n for (T &i : v) is >> i;\n return is;\n}\ntemplate <class T, class U>\nstd::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {\n return os << '(' << p.first << ',' << p.second << ')';\n}\ntemplate <class T>\nstd::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {\n for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? \"\" : \" \") << *it;\n return os;\n}\ntemplate <class Head, class... Tail>\nvoid co(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cout << head << '\\n';\n else std::cout << head << ' ', co(std::forward<Tail>(tail)...);\n}\ntemplate <class Head, class... Tail>\nvoid ce(Head &&head, Tail &&...tail) {\n if constexpr (sizeof...(tail) == 0) std::cerr << head << '\\n';\n else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);\n}\nvoid Yes(bool is_correct = true) { std::cout << (is_correct ? \"Yes\\n\" : \"No\\n\"); }\nvoid No(bool is_not_correct = true) { Yes(!is_not_correct); }\nvoid YES(bool is_correct = true) { std::cout << (is_correct ? \"YES\\n\" : \"NO\\n\"); }\nvoid NO(bool is_not_correct = true) { YES(!is_not_correct); }\nvoid Takahashi(bool is_correct = true) { std::cout << (is_correct ? \"Takahashi\" : \"Aoki\") << '\\n'; }\nvoid Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }\n/**\n * @brief 素集合データ構造\n * @details Implement (union by size) + (path compression)\n * @see https://github.com/atcoder/ac-library/blob/master/atcoder/dsu.hpp\n */\nstruct union_find {\n union_find() = default;\n explicit union_find(int _n) : _rank(_n), data(_n, -1) {}\n const int &operator[](std::size_t x) const { return data[x]; }\n int &operator[](std::size_t x) { return data[x]; }\n int root(int x) { return data[x] < 0 ? x : data[x] = root(data[x]); }\n int get_root(int x) { return root(x); }\n bool is_root(int x) const { return data[x] < 0; }\n bool same(int x, int y) { return root(x) == root(y); }\n bool is_same(int x, int y) { return same(x, y); }\n int rank() { return _rank; }\n int size(int x) { return -(data[root(x)]); }\n int get_size(int x) { return size(x); }\n std::vector<int> leaders() {\n std::vector<int> res;\n for (int i = 0; i < (int)data.size(); ++i) {\n if (is_root(i)) res.emplace_back(i);\n }\n return res;\n }\n bool unite(int x, int y) {\n x = root(x), y = root(y);\n if (x == y) return false;\n --_rank;\n if (data[x] > data[y]) std::swap(x, y);\n data[x] += data[y];\n data[y] = x;\n return true;\n }\n template <class F>\n bool unite(int x, int y, F f) {\n x = root(x), y = root(y);\n if (x != y) {\n if (data[x] > data[y]) std::swap(x, y);\n data[x] += data[y];\n data[y] = x;\n }\n f(x, y);\n return x != y;\n }\n private:\n int _rank;\n std::vector<int> data;\n};\nint main(void) {\n int n;\n cin >> n;\n vector<ll> a(n);\n cin >> a;\n vector<pair<ll, ll>> b(n);\n rep (i, n) b[i] = {a[i], i + 1};\n sort(all(b));\n union_find uf(n);\n ll ans = 0;\n for (auto [x, y] : b) {\n ll p = y - 1;\n while (p + y < n) {\n if (uf.unite(p, p + y))\n ans += x;\n p += y;\n }\n }\n co(ans);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 8888, "score_of_the_acc": -0.0334, "final_rank": 3 }, { "submission_id": "aoj_3180_8514126", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3180.cc: GCDMST\n */\n\n#include<cstdio>\n#include<vector>\n#include<algorithm>\n#include<utility>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 200000;\n\n/* typedef */\n\ntypedef long long ll;\ntypedef pair<int,int> pii;\n\nstruct UFT {\n vector<int> links, ranks, sizes;\n UFT() {}\n\n void init(int n) {\n links.resize(n);\n for (int i = 0; i < n; i++) links[i] = i;\n ranks.assign(n, 1);\n sizes.assign(n, 1);\n }\n\n int root(int i) {\n int i0 = i;\n while (links[i0] != i0) i0 = links[i0];\n return (links[i] = i0);\n }\n\n int rank(int i) { return ranks[root(i)]; }\n int size(int i) { return sizes[root(i)]; }\n bool same(int i, int j) { return root(i) == root(j); }\n\n int merge(int i0, int i1) {\n int r0 = root(i0), r1 = root(i1), mr;\n if (r0 == r1) return r0;\n if (ranks[r0] == ranks[r1]) {\n links[r1] = r0;\n sizes[r0] += sizes[r1];\n ranks[r0]++;\n mr = r0;\n }\n else if (ranks[r0] > ranks[r1]) {\n links[r1] = r0;\n sizes[r0] += sizes[r1];\n mr = r0;\n }\n else {\n links[r0] = r1;\n sizes[r1] += sizes[r0];\n mr = r1;\n }\n return mr;\n }\n};\n\n/* global variables */\n\nint as[MAX_N + 1];\npii ps[MAX_N];\nUFT uft;\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n;\n scanf(\"%d\", &n);\n for (int i = 1; i <= n; i++) scanf(\"%d\", as + i);\n\n int hn = n / 2;\n for (int i = 1; i <= hn; i++) ps[i - 1] = pii(as[i], i);\n sort(ps, ps + hn);\n\n uft.init(n + 1);\n ll sum = 0;\n\n for (int i = 0; i < hn; i++) {\n int aj = ps[i].first, j = ps[i].second;\n\n for (int k = j * 2; k <= n; k += j) {\n if (! uft.same(j, k)) {\n\tuft.merge(j, k);\n\tsum += aj;\n }\n }\n }\n\n printf(\"%lld\\n\", sum);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 6512, "score_of_the_acc": -0.0101, "final_rank": 2 }, { "submission_id": "aoj_3180_8002441", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\nusing vvvb = vector<vvb>;\n#define all(A) A.begin(),A.end()\n#define rep(i, n) for (ll i = 0; i < (ll) (n); i++)\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll N;\n cin>>N;\n vector<pair<ll,ll>> P(N);\n rep(i,N){\n cin>>P[i].first;\n P[i].second=i+1;\n }\n sort(all(P));\n vll L(N+1,0);\n vvll D(N+1);\n rep(i,N){\n L[i+1]=i+1;\n D[i+1].push_back(i+1);\n }\n ll an=0;\n rep(i,N){\n ll a=P[i].first;\n ll b=P[i].second;\n for(ll j=b*2;j<=N;j+=b){\n if(L[j]==L[b])continue;\n //cout<<j<<\" \"<<b<<endl;\n an+=a;\n if(D[L[j]].size()<D[L[b]].size()){\n for(auto d:D[L[j]]){\n L[d]=L[b];\n D[L[b]].push_back(d);\n }\n }\n else{\n for(auto d:D[L[b]]){\n L[d]=L[j];\n D[L[j]].push_back(d);\n }\n }\n }\n }\n cout<<an<<endl;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 24076, "score_of_the_acc": -0.2562, "final_rank": 16 }, { "submission_id": "aoj_3180_7011359", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3180.cc: GCDMST\n */\n\n#include<cstdio>\n#include<vector>\n#include<algorithm>\n#include<utility>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 200000;\n\n/* typedef */\n\ntypedef long long ll;\ntypedef pair<int,int> pii;\n\nstruct UFT {\n vector<int> links, ranks, sizes;\n UFT() {}\n\n void init(int n) {\n links.resize(n);\n for (int i = 0; i < n; i++) links[i] = i;\n ranks.assign(n, 1);\n sizes.assign(n, 1);\n }\n\n int root(int i) {\n int i0 = i;\n while (links[i0] != i0) i0 = links[i0];\n return (links[i] = i0);\n }\n\n int rank(int i) { return ranks[root(i)]; }\n int size(int i) { return sizes[root(i)]; }\n bool same(int i, int j) { return root(i) == root(j); }\n\n int merge(int i0, int i1) {\n int r0 = root(i0), r1 = root(i1), mr;\n if (r0 == r1) return r0;\n if (ranks[r0] == ranks[r1]) {\n links[r1] = r0;\n sizes[r0] += sizes[r1];\n ranks[r0]++;\n mr = r0;\n }\n else if (ranks[r0] > ranks[r1]) {\n links[r1] = r0;\n sizes[r0] += sizes[r1];\n mr = r0;\n }\n else {\n links[r0] = r1;\n sizes[r1] += sizes[r0];\n mr = r1;\n }\n return mr;\n }\n};\n\n/* global variables */\n\nint as[MAX_N + 1];\npii ps[MAX_N];\nUFT uft;\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n;\n scanf(\"%d\", &n);\n for (int i = 1; i <= n; i++) scanf(\"%d\", as + i);\n\n int hn = n / 2;\n for (int i = 1; i <= hn; i++) ps[i - 1] = pii(as[i], i);\n sort(ps, ps + hn);\n\n uft.init(n + 1);\n ll sum = 0;\n\n for (int i = 0; i < hn; i++) {\n int aj = ps[i].first, j = ps[i].second;\n\n for (int k = 2; k * j <= n; k++) {\n int u = (k - 1) * j, v = k * j;\n if (! uft.same(u, v)) {\n\tuft.merge(u, v);\n\tsum += aj;\n }\n }\n }\n\n printf(\"%lld\\n\", sum);\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 6492, "score_of_the_acc": -0.0099, "final_rank": 1 }, { "submission_id": "aoj_3180_6740047", "code_snippet": "#include <iostream>\n#include <vector>\n#include <string>\n#include <queue>\n#include <array>\n#include <algorithm>\n#include <numeric>\n#include <unordered_map>\n#include <unordered_set>\n#include <map>\n#include <set>\n#include <cassert>\n#include <iterator>\n#include <random>\n#include <stack>\n#include <climits>\n#include <chrono>\n#include <iomanip>\n\n\nint gcd(const int a, const int b) {\n\treturn (b == 0) ? a : gcd(b, a % b);\n}\nclass UnionFind {\n\tstd::vector<int> vec;\npublic:\n\tUnionFind(const int size) : vec(size, -1) {};\n\tint find(const int a) {\n\t\treturn vec[a] < 0 ? a : vec[a] = find(vec[a]);\n\t}\n\tbool same(const int a, const int b) {\n\t\treturn find(a) == find(b);\n\t}\n\tvoid unite(int a, int b) {\n\t\ta = find(a);\n\t\tb = find(b);\n\t\tif (a == b) return;\n\t\tif (vec[a] > vec[b]) std::swap(a, b);\n\t\tvec[a] += vec[b];\n\t\tvec[b] = a;\n\t}\n};\nint main() {\n\tint n; std::cin >> n;\n\tstd::vector<int> cost(n);\n\tfor (auto& a : cost) {\n\t\tstd::cin >> a;\n\t}\n\tstd::vector<int> order_by_cost(n); std::iota(order_by_cost.begin(), order_by_cost.end(), 0);\n\tstd::sort(order_by_cost.begin(), order_by_cost.end(), [&](const auto i, const auto j) {return cost[i] < cost[j]; });\n\tlong long int result{ 0 };\n\tUnionFind uft(n);\n\tfor (const auto g : order_by_cost) {\n\t\tfor (auto i = g; i + g + 1 < n; i += g + 1) {\n\t\t\tif (uft.same(i, i + g + 1)) continue;\n\t\t\tuft.unite(i, i + g + 1);\n\t\t\tresult += cost[g];\n\t\t}\n\t}\n\tstd::cout << result << '\\n';\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 5480, "score_of_the_acc": -0.1481, "final_rank": 14 }, { "submission_id": "aoj_3180_6452177", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline ll time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nstruct UnionFind{\n vector<int> par,num;\n UnionFind(int n):par(n),num(n,1){\n iota(par.begin(),par.end(),0); //include<numeric>\n }\n int find(int v){\n return (par[v]==v)?v:(par[v]=find(par[v]));\n }\n void unite(int u,int v){\n u=find(u),v=find(v);\n if(u==v)return;\n if(num[u]<num[v])swap(u,v);\n num[u]+=num[v];\n par[v]=u;\n }\n bool same(int u,int v){\n return find(u) == find(v);\n }\n int size(int v){\n return num[find(v)];\n }\n};\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n; cin >> n;\n UnionFind uf(n+1);\n vector<pair<int,int>> v(n);\n for(int i=0;i<n;i++){\n cin >> v[i].first;\n v[i].second = i+1;\n }\n sort(v.begin(), v.end());\n ll res = 0;\n for(auto p:v){\n int i = p.second;\n for(int j=i+i;j<=n;j+=i){\n if(!uf.same(i,j)){\n uf.unite(i, j);\n res += p.first;\n }\n }\n }\n cout << res << endl;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6280, "score_of_the_acc": -0.0449, "final_rank": 7 }, { "submission_id": "aoj_3180_4918600", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 1000000000000000000\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 200005\n\nstruct Info{\n\tInfo(ll arg_value,ll arg_index){\n\t\tvalue = arg_value;\n\t\tindex = arg_index;\n\t}\n\tbool operator<(const struct Info &arg) const{\n\n\t\treturn value < arg.value;\n\t}\n\tll value,index;\n};\n\nint N;\nint boss[SIZE],height[SIZE];\nvector<Info> info;\n\nint get_boss(int id){\n\tif(boss[id] == id)return id;\n\telse{\n\t\treturn boss[id] = get_boss(boss[id]);\n\t}\n}\n\nint isSame(int x,int y){\n\treturn get_boss(x) == get_boss(y);\n}\n\nvoid unite(int x,int y){\n\tint boss_x = get_boss(x);\n\tint boss_y = get_boss(y);\n\n\tif(boss_x == boss_y)return;\n\n\tif(height[boss_x] > height[boss_y]){\n\n\t\tboss[boss_y] = boss_x;\n\n\t}else if(height[boss_x] < height[boss_y]){\n\n\t\tboss[boss_x] = boss_y;\n\n\t}else{ //height[boss_x] == height[boss_y]\n\n\t\tboss[boss_y] = boss_x;\n\t\theight[x]++;\n\t}\n}\n\nint main(){\n\n\tint N;\n\tscanf(\"%d\",&N);\n\n\tfor(int i = 1; i <= N; i++){\n\t\tboss[i] = i;\n\t\theight[i] = 0;\n\t}\n\n\tll tmp;\n\n\tfor(int i = 1; i <= N; i++){\n\n\t\tscanf(\"%lld\",&tmp);\n\t\tinfo.push_back(Info(tmp,i));\n\t}\n\tsort(info.begin(),info.end());\n\n\tll ans = 0;\n\tfor(int i = 0; i < info.size(); i++){\n\n\t\tfor(ll k = 2*(info[i].index); k <= N; k += info[i].index){\n\t\t\tif(isSame(info[i].index,k))continue;\n\n\t\t\tunite(info[i].index,k);\n\n\t\t\tans += info[i].value;\n\t\t}\n\t}\n\n\tprintf(\"%lld\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 8552, "score_of_the_acc": -0.1042, "final_rank": 12 }, { "submission_id": "aoj_3180_4894815", "code_snippet": "#ifdef ONLINE_JUDGE\n#pragma GCC target(\"avx2,avx\")\n#pragma GCC optimize(\"O3\")\n#pragma GCC optimize(\"unroll-loops\")\n#endif\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\n#define rep(i, n) for(int i = 0; i < (n); ++i)\n#define all(x) (x).begin(),(x).end()\nconstexpr char ln = '\\n';\nistream& operator>>(istream& is, __int128_t &x) {\n x = 0;\n string s;\n is >> s;\n int n = int(s.size()), it = 0;\n if (s[0] == '-') it++;\n for (; it < n; it++) x = (x * 10 + s[it] - '0');\n if (s[0] == '-') x = -x;\n return is;\n}\nostream& operator<<(ostream& os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n deque<int> deq;\n while (x) deq.emplace_front(x % 10), x /= 10;\n for (int e : deq) os << e;\n return os;\n}\ntemplate<class T1, class T2>\nostream& operator<<(ostream& os, const pair<T1, T2>& p) {\n return os << \"(\" << p.first << \", \" << p.second << \")\";\n}\ntemplate<class T> \nostream& operator<<(ostream& os, const vector<T>& v) {\n os << \"[\";\n for(auto e : v) os << e << \", \";\n return os << \"]\";\n}\ntemplate<class Container> inline int SZ(Container& v) {return int(v.size());}\ntemplate<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}\ntemplate<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}\ninline int topbit(int x) {return x == 0 ? -1 : 31 - __builtin_clz(x);}\ninline int topbit(long long x) {return x == 0 ? -1 : 63 - __builtin_clzll(x);}\ninline int botbit(int x) {return x == 0 ? 32 : __builtin_ctz(x);}\ninline int botbit(long long x) {return x == 0 ? 64 : __builtin_ctzll(x);}\ninline int popcount(int x) {return __builtin_popcount(x);}\ninline int popcount(long long x) {return __builtin_popcountll(x);}\ninline int kthbit(long long x, int k) {return (x>>k)&1;}\ninline constexpr long long TEN(int x) {return x == 0 ? 1 : TEN(x-1) * 10;}\nnamespace detail {\n template<typename Tp, int Nb>\n auto make_vector(vector<int>& sizes, Tp const& x) {\n if constexpr (Nb == 1) {\n return vector(sizes[0], x);\n } else {\n int size = sizes[Nb-1];\n sizes.pop_back();\n return vector(size, make_vector<Tp, Nb-1>(sizes, x));\n }\n }\n}\ntemplate<typename Tp, int Nb>\nauto make_vector(int const(&sizes)[Nb], Tp const& x = Tp()) {\n vector<int> s(Nb);\n for (int i = 0; i < Nb; i++) s[i] = sizes[Nb-i-1];\n return detail::make_vector<Tp, Nb>(s, x);\n}\ninline void print() {cout << \"\\n\";}\ntemplate<class T>\ninline void print(const vector<T>& v) {\n for (auto itr = v.begin(); itr != v.end(); ++itr) cout << *itr << \" \";\n print();\n}\ntemplate<class T, class... Args>\ninline void print(const T &x, const Args &... args) {\n cout << x << \" \";\n print(args...);\n}\n#ifdef MINATO_LOCAL\n#define dump(x) cerr << __LINE__ << \" : \" << #x << \" = \" << (x) << endl;\ninline void debug() {cerr << endl;}\ntemplate<class T>\ninline void debug(const vector<T> &v) {\n for (auto itr = v.begin(); itr != v.end(); ++itr) cerr << *itr << \" \";\n debug();\n}\ntemplate<class T, class... Args>\ninline void debug(const T &x, const Args &... args) {\n cerr << x << \" \";\n debug(args...);\n}\n#else\n#define dump(x) void(0)\ninline void debug() {}\ntemplate<class T> inline void debug(const vector<T> &v) {}\ntemplate<class T, class... Args> inline void debug(const T &x, const Args &... args) {}\n#endif\nstruct Fast_ios {Fast_ios() {cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20);};} fast_ios;\n////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n\nstruct UnionFind {\n int N;\n vector<int> node;\n\n UnionFind(){}\n UnionFind(int N) : N(N), node(N,-1) {}\n\n void init(int x) {\n node.assign(x,-1);\n N = x;\n }\n\n bool merge(int x, int y) {\n x = root(x); y = root(y);\n if (x == y) return false;\n if (node[x] > node[y]) swap(x,y);\n node[x] += node[y];\n node[y] = x;\n N--;\n return true; \n }\n\n bool same(int x, int y) {return root(x) == root(y);}\n\n int root(int x) {\n if (node[x] < 0) return x;\n return node[x] = root(node[x]);\n }\n\n int size(int x) {return -node[root(x)];}\n\n int count() const {return N;}\n};\n\nint main() {\n int N; cin >> N;\n vector<ll> A(N+1,1e18);\n rep(i,N) cin >> A[i+1];\n\n vector<int> idx(N+1);\n iota(all(idx),0);\n sort(all(idx),[&](int i, int j){return A[i] < A[j];});\n UnionFind uf(N+1);\n ll ans = 0;\n rep(i,N) {\n int u = idx[i];\n for (int j = 2*u; j <= N; j += u) {\n if (uf.merge(j,j-u)) {\n ans += A[u];\n }\n }\n }\n\n cout << ans << ln;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 6248, "score_of_the_acc": -0.0446, "final_rank": 5 }, { "submission_id": "aoj_3180_4879538", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define rep(i, m, n) for(int(i) = (int)(m); i < (int)(n); ++i)\n#define rep2(i, m, n) for(int(i) = (int)(n)-1; i >= (int)(m); --i)\n#define REP(i, n) rep(i, 0, n)\n#define REP2(i, n) rep2(i, 0, n)\n#define all(hoge) (hoge).begin(), (hoge).end()\n#define en '\\n'\nusing ll = long long;\nusing ull = unsigned long long;\ntemplate <class T>\nusing vec = vector<T>;\ntemplate <class T>\nusing vvec = vector<vec<T>>;\ntypedef pair<ll, ll> P;\nusing tp = tuple<ll, ll, ll>;\nconstexpr long long INF = 1LL << 60;\nconstexpr int INF_INT = 1 << 25;\n//constexpr long long MOD = (ll)1e9 + 7;\nconstexpr long long MOD = 998244353LL;\nusing ld = long double;\nstatic const ld pi = 3.141592653589793L;\ntypedef vector<ll> Array;\ntypedef vector<Array> Matrix;\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\n//グラフ関連\nstruct Edge {\n ll to, cap, rev;\n Edge(ll _to, ll _cap, ll _rev) {\n to = _to;\n cap = _cap;\n rev = _rev;\n }\n};\ntypedef vector<Edge> Edges;\ntypedef vector<Edges> Graph;\n\nvoid add_edge(Graph &G, ll from, ll to, ll cap, bool revFlag, ll revCap) {\n G[from].push_back(Edge(to, cap, (ll)G[to].size()));\n if(revFlag)\n G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1));\n}\n\nclass UnionFind {\n vector<int> data;\n int num;\n\n public:\n UnionFind(int size) : data(size, -1), num(size) {}\n bool unionSet(int x, int y) {\n x = root(x);\n y = root(y);\n if(x != y) {\n if(data[y] < data[x])\n swap(x, y);\n data[x] += data[y];\n data[y] = x;\n num--;\n }\n return x != y;\n }\n bool findSet(int x, int y) {\n return root(x) == root(y);\n }\n int root(int x) {\n return data[x] < 0 ? x : data[x] = root(data[x]);\n }\n int size(int x) {\n return -data[root(x)];\n }\n int numSet() {\n return num;\n }\n};\n\nvoid solve() {\n ll n;\n cin >> n;\n vec<P> a(n);\n\n REP(i, n) {\n cin >> a[i].first;\n a[i].second = i + 1;\n }\n sort(all(a));\n\n UnionFind uni(n + 1);\n ll ans = 0;\n REP(i, n) {\n auto [cost, k] = a[i];\n for(int j = 2; j * k <= n; j++) {\n if(uni.unionSet(k, j * k)) {\n ans += cost;\n }\n }\n }\n cout << ans << en;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0);\n cout.tie(0);\n /*\n ll t;\n cin >> t;\n while(t--)*/\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 7032, "score_of_the_acc": -0.0522, "final_rank": 9 }, { "submission_id": "aoj_3180_4878957", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n#define int long long\n//BEGIN CUT HERE\nstruct UnionFind{\n int num;//連結成分の数\n vector<int> r,p;//そのグループのサイズ,自分の親っぽいやつ\n UnionFind(){}\n UnionFind(int n):num(n),r(n,1),p(n,0){iota(p.begin(),p.end(),0);}\n\n int find(int x){//どのグループに所属するか\n return (x==p[x]?x:p[x]=find(p[x]));//xがグループの名前と一致するまでxを親にする\n }\n\n bool same(int x,int y){//同じグループかどうか\n return find(x)==find(y);\n }\n\n void unite(int x,int y){//xとyを同じグループにする\n x=find(x);y=find(y);//xとyのグループの名前をどっちかが変える\n if(x==y) return;\n if(r[x]<r[y]) swap(x,y);//サイズが大きい方をxとする\n r[x]+=r[y];//yの親をxにする(今までyだったグループ名がxになる)\n p[y]=x;\n num--;\n }\n\n int size(int x){//グループの大きさ\n return r[find(x)];\n }\n\n int count() const{//グループの数\n return num;\n }\n};\n //END CUT HERE\ntypedef pair<int,int> P;\n\nsigned main(){\n int n;cin>>n;\n vector<P> v(n);\n UnionFind uf(n);\n for(int i=0;i<n;i++){\n int a;cin>>a;v[i]=P(a,i+1);\n }\n int ans=0;\n sort(v.begin(),v.end());\n for(int i=0;i<n;i++){\n int p=v[i].second;\n for(int j=2*p;j<=n;j+=p){\n if(uf.same(p-1,j-1))continue;\n uf.unite(p-1,j-1);\n ans+=v[i].first;\n }\n }\n cout<<ans<<endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 9168, "score_of_the_acc": -0.2213, "final_rank": 15 }, { "submission_id": "aoj_3180_4875834", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=Int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\nstruct UnionFind{\n Int num;\n vector<Int> rs,ps;\n UnionFind(){}\n UnionFind(Int n):num(n),rs(n,1),ps(n,0){iota(ps.begin(),ps.end(),0);}\n Int find(Int x){\n return (x==ps[x]?x:ps[x]=find(ps[x]));\n }\n bool same(Int x,Int y){\n return find(x)==find(y);\n }\n void unite(Int x,Int y){\n x=find(x);y=find(y);\n if(x==y) return;\n if(rs[x]<rs[y]) swap(x,y);\n rs[x]+=rs[y];\n ps[y]=x;\n num--;\n }\n Int size(Int x){\n return rs[find(x)];\n }\n Int count() const{\n return num;\n }\n};\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n Int n;\n cin>>n;\n\n auto as=read(n);\n as.emplace(as.begin(),0);\n using P = pair<Int, Int>;\n vector<P> vp;\n for(Int i=1;i<=n;i++)\n vp.emplace_back(as[i],i);\n\n sort(vp.begin(),vp.end());\n\n UnionFind uf(n+1);\n\n Int ans=0;\n for(auto[c,i]:vp){\n set<Int> ss;\n for(Int j=i;j<=n;j+=i)\n ss.emplace(uf.find(j));\n ans+=c*(ss.size()-1);\n for(Int j=i;j<=n;j+=i)\n uf.unite(i,j);\n }\n cout<<ans<<newl;\n return 0;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 20668, "score_of_the_acc": -0.371, "final_rank": 18 }, { "submission_id": "aoj_3180_4868336", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate <class T> inline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return 1;\n }\n return 0;\n}\ntemplate <class T> inline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return 1;\n }\n return 0;\n}\n#define DEBUG\n#ifdef DEBUG\nvoid debug_out() { cerr << endl; }\ntemplate <typename Head, typename... Tail> void debug_out(Head H, Tail... T) {\n cerr << \" \" << H;\n debug_out(T...);\n}\n#define debug(...) \\\n cerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"]: \", debug_out(__VA_ARGS__)\n#define dump(x) cerr << __LINE__ << \" \" << #x << \" = \" << (x) << endl\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\nstruct Setup {\n Setup() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(15);\n }\n} __Setup;\n\nusing ll = long long;\n#define ALL(v) (v).begin(), (v).end()\n#define RALL(v) (v).rbegin(), (v).rend()\nconst double EPS = 1e-7;\nconst int INF = 1 << 30;\nconst ll LLINF = 1LL << 60;\nconstexpr int MOD = 1000000007;\nconst int dx[4] = {1, 0, -1, 0};\nconst int dy[4] = {0, 1, 0, -1};\n\n//-------------------------------------\n\nstruct UnionFind {\n vector<int> par;\n\n UnionFind(int n) : par(n, -1) {}\n void init(int n) { par.assign(n, -1); }\n\n int root(int x) {\n if(par[x] < 0)\n return x;\n else\n return par[x] = root(par[x]);\n }\n\n bool issame(int x, int y) { return root(x) == root(y); }\n\n bool merge(int x, int y) {\n x = root(x);\n y = root(y);\n if(x == y)\n return false;\n if(par[x] > par[y])\n swap(x, y); // merge technique\n par[x] += par[y];\n par[y] = x;\n return true;\n }\n\n int size(int x) { return -par[root(x)]; }\n};\n\nstruct edge {\n int from, to;\n ll cost;\n edge() = default;\n edge(int from, int to, ll cost) : from(from), to(to), cost(cost) {}\n};\n\nint main() {\n int n;\n cin >> n;\n vector<ll> a(n);\n for(auto &i : a) {\n cin >> i;\n }\n\n vector<edge> edges;\n for(int i = 1; i <= n; i++) {\n for(int j = 2 * i; j <= n; j += i) {\n edges.emplace_back(edge(i - 1, j - 1, a[i - 1]));\n }\n }\n\n sort(ALL(edges),\n [](const edge &l, const edge &r) { return (l.cost < r.cost); });\n UnionFind uf(n);\n\n ll ans = 0;\n for(auto e : edges) {\n if(!uf.issame(e.from, e.to)) {\n uf.merge(e.from, e.to);\n ans += e.cost;\n }\n }\n\n cout << ans << \"\\n\";\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 72280, "score_of_the_acc": -0.8765, "final_rank": 19 }, { "submission_id": "aoj_3180_4863532", "code_snippet": "#include <bits/stdc++.h>\n//#include <chrono>\n//#pragma GCC optimize(\"Ofast\")\nusing namespace std;\n#define reps(i,s,n) for(int i = s; i < n; i++)\n#define rep(i,n) reps(i,0,n)\n#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)\n#define Rrep(i,n) Rreps(i,n,0)\n#define ALL(a) a.begin(), a.end()\n#define fi first\n#define se second\n\nusing ll = long long;\nusing vec = vector<ll>;\nusing mat = vector<vec>;\n\nll N,M,H,W,Q,K,A,B;\nstring S;\ntypedef pair<ll, ll> P;\nconst ll INF = (1LL<<60);\n\nint main() {\n class union_find {\n vector<long> parent, tree_size;\n public:\n union_find(unsigned long _n) : parent(_n), tree_size(_n, 1) {\n for (unsigned long i = 0; i < _n; ++i) parent[i] = i;\n }\n\n ll find(ll x) {\n while (parent[x] != x)x = parent[x] = parent[parent[x]];\n return x;\n }\n\n void merge(ll a, ll b) {\n a = find(a);\n b = find(b);\n if (a == b) return;\n if (tree_size[a] < tree_size[b])swap(a, b);\n tree_size[a] += tree_size[b];\n parent[b] = a;\n }\n\n bool same(ll a, ll b) {\n a = find(a);\n b = find(b);\n return a == b;\n }\n };\n cin>>N;\n vec a(N + 1, INF), ord(N + 1);\n rep(i, N) cin>>a[i + 1];\n iota(ALL(ord), 0);\n sort(ALL(ord), [&](int x, int y){\n return a[x] < a[y];\n });\n union_find uf(N + 1);\n ll res(0);\n rep(i, N){\n int id = ord[i];\n for(int j = id * 2; j <= N; j += id){\n if(!uf.same(id, j)){\n res += a[id];\n uf.merge(j, id);\n }\n }\n }\n cout<<res<<endl;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 9232, "score_of_the_acc": -0.259, "final_rank": 17 }, { "submission_id": "aoj_3180_4849658", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1LL << 29;\nconst ll LONGINF = 1LL << 60;\nconst ll MOD = 1000000007LL;\n\n/**\n * @brief Union-Find\n * @docs ./docs/union_find.md\n */\n\n#include <algorithm>\n#include <vector>\n\nstruct UnionFind {\nprivate:\n const int n;\n int size_;\n vector<int> uf;\npublic:\n // 初期化 UnionFind uni(n) のように宣言すれば良い\n UnionFind(int _n) : n(_n), size_(_n), uf(_n, -1) {}\n // find (木の根を求める)\n int find(int x) {return (uf[x] < 0) ? x : uf[x] = find(uf[x]);}\n // x と y が同じ集合に属するかどうか\n bool same(int x, int y) {return find(x) == find(y);}\n // x が属する集合の要素数\n int size(int x) {return -uf[find(x)];}\n // 集合はいくつあるか\n int size() {return size_;}\n // x と y の属する集合を併合\n bool unite(int x, int y) {\n x = find(x); y = find(y);\n if(x == y) return false;\n size_--;\n if(-uf[x] < -uf[y]) swap(x, y);\n uf[x] += uf[y]; uf[y] = x;\n return true;\n }\n};\n\nint main() {\n int N; scanf(\"%d\", &N);\n vector<int> A(N), ord(N);\n for(int i=0; i<N; i++) {\n scanf(\"%d\", &A[i]);\n ord[i] = i;\n }\n sort(ord.begin(), ord.end(), [&](auto x, auto y) {\n return A[x] < A[y];\n });\n\n ll ans = 0;\n UnionFind uf(N);\n for(int i=0; i<N; i++) {\n int v = A[ ord[i] ], k = ord[i];\n for(int j=k; j<N; j+=k+1) {\n if(!uf.same(k, j)) {\n uf.unite(k, j);\n ans += v;\n }\n }\n }\n printf(\"%lld\\n\", ans);\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 5504, "score_of_the_acc": -0.0373, "final_rank": 4 }, { "submission_id": "aoj_3180_4849246", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <numeric>\n#include <vector>\n\nstruct UnionFind {\n std::vector<int> par, sz;\n int gnum;\n\n explicit UnionFind(int n)\n : par(n), sz(n, 1), gnum(n) {\n std::iota(par.begin(), par.end(), 0);\n }\n\n int find(int v) {\n return (par[v] == v) ? v : (par[v] = find(par[v]));\n }\n\n void unite(int u, int v) {\n u = find(u), v = find(v);\n if (u == v) return;\n\n if (sz[u] < sz[v]) std::swap(u, v);\n sz[u] += sz[v];\n par[v] = u;\n --gnum;\n }\n\n bool same(int u, int v) { return find(u) == find(v); }\n bool ispar(int v) { return v == find(v); }\n int size(int v) { return sz[find(v)]; }\n};\n\nusing lint = long long;\n\nvoid solve() {\n int n;\n std::cin >> n;\n\n std::vector<std::pair<lint, int>> ps(n);\n for (int i = 0; i < n; ++i) {\n auto& [x, j] = ps[i];\n std::cin >> x;\n j = i + 1;\n }\n std::sort(ps.begin(), ps.end());\n\n UnionFind uf(n + 1);\n lint ans = 0;\n for (auto [x, g] : ps) {\n for (int i = g * 2; i <= n; i += g) {\n if (uf.same(g, i)) continue;\n uf.unite(g, i);\n ans += x;\n }\n }\n\n std::cout << ans << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 7824, "score_of_the_acc": -0.06, "final_rank": 11 }, { "submission_id": "aoj_3180_4849167", "code_snippet": "// #ifdef LOCAL\n// #define _GLIBCXX_DEBUG\n// #endif\n#include <bits/stdc++.h>\nusing namespace std;\n\n#pragma region aliases\n\n#define rep(i, n) for(long long i = 0; i < (n); i++)\n#define rrep(i, n) for(long long i = (n)-1; i > -1; i--)\n#define Rep(i, m, n) for(long long i = (m); i < (n); i++)\n#define rRep(i, m, n) for(long long i = (n)-1; i >= (m); i--)\n#define REP(i, m, n, p) for(long long i = m; i < n; i += p)\n#define foa(s, v) for(auto &s : v)\n#define all(v) (v).begin(), (v).end()\n#define rall(v) (v).rbegin(), (v).rend()\n#define bcnt(n) __builtin_popcountll(n)\n#define endk endl\n#define ednl endl\n#define enld endl\n\nusing ll = long long;\nusing ld = long double;\nusing ull = unsigned long long;\nusing vb = vector<bool>;\nusing vi = vector<int>;\nusing vvi = vector<vector<int>>;\nusing vvvi = vector<vector<vector<int>>>;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\nusing vvvll = vector<vvll>;\nusing mll = map<long long, long long>;\nusing pll = pair<long long, long long>;\nusing qll = queue<long long>;\nusing sll = set<long long>;\nusing vpll = vector<pair<long long, long long>>;\ntemplate <class T = ll>\nusing V = vector<T>;\ntemplate <class T = ll>\nusing VV = V<V<T>>;\ntemplate <class T = ll>\nusing VVV = V<V<V<T>>>;\n//昇順pq(小さい方から取り出す)\ntemplate <class T = ll>\nusing pqup = priority_queue<T, vector<T>, greater<T>>;\n//降順pq(大きい方から取り出す)\ntemplate <class T = ll>\nusing pqdn = priority_queue<T>;\n\n#pragma endregion\n\n#pragma region constants\n\nlong long const limLL = 9223372036854775807; // POW(2,63)-1 ~ 9.22e18\nlong long const dekai = 3e16;\nconst long double pi = acos(-1);\nconst char dl = '\\n';\nint dx[4] = {1, 0, -1, 0};\nint dy[4] = {0, 1, 0, -1};\nint ddx[8] = {-1, -1, -1, 0, 0, 1, 1, 1};\nint ddy[8] = {-1, 0, 1, -1, 1, -1, 0, 1};\n\nconst int mod = 1000000007;\n// const int mod = 998244353;\n\n#pragma endregion\n\n#pragma region basic_procedure\n\ntemplate <class T>\ninline bool isin(T x, T lef, T rig) {\n\treturn ((lef <= x) && (x < rig));\n}\n\ntemplate <class T>\ninline bool chmin(T &a, T b) {\n\tif(a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T>\ninline bool chmax(T &a, T b) {\n\tif(a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\n\nvoid Yes(bool f = 1) { cout << (f ? \"Yes\" : \"No\") << \"\\n\"; }\nvoid No() { cout << \"No\\n\"; }\nvoid YES(bool f = 1) { cout << (f ? \"YES\" : \"NO\") << \"\\n\"; }\nvoid NO() { cout << \"NO\\n\"; }\ntemplate <class T>\nvoid drop(T answer) {\n\tcout << answer << \"\\n\";\n\texit(0);\n}\nvoid err() {\n\tcout << -1 << \"\\n\";\n\texit(0);\n}\n\ntemplate <class T>\nvoid vout(vector<T> &v, bool tate = 0) {\n\tif(v.size() > 0) {\n\t\tfor(auto it = v.begin(); it < v.end(); it++) {\n\t\t\tcout << *it;\n\t\t\tif(it != v.end() - 1) {\n\t\t\t\tif(tate)\n\t\t\t\t\tcout << endl;\n\t\t\t\telse\n\t\t\t\t\tcout << \" \";\n\t\t\t}\n\t\t}\n\t}\n\tcout << endl;\n}\n\ntemplate <class T>\nvoid add(vector<T> &v, T val) {\t //ベクトルの各要素に加算\n\tfor(auto &a : v) a += val;\n\treturn;\n}\n\n// vectorの中身を数える map<要素,個数>を返す\ntemplate <class T>\nmap<T, long long> cntv(vector<T> v) {\n\tmap<T, long long> m;\n\tfor(auto &g : v) {\n\t\tif(m.count(g))\n\t\t\tm[g]++;\n\t\telse\n\t\t\tm[g] = 1;\n\t}\n\treturn m;\n}\n\n//配列圧縮\n//{1,36,1,3,8,-2,-92}を\n//{2, 5,2,3,4, 1, 0}にする\ntemplate <class T>\nvector<long long> press(vector<T> &v) {\n\tlong long n = v.size();\n\tvector<long long> w(n);\n\tmap<T, long long> m;\n\tfor(T &p : v) m[p] = 0;\n\tlong long i = 0;\n\tfor(auto &p : m) {\n\t\tp.second = i;\n\t\ti++;\n\t}\n\tfor(long long i = 0; i < n; i++) w.at(i) = m[v.at(i)];\n\treturn w;\n}\n\n// 切り上げ除算\ntemplate <class T>\nT dup(T a, T b) {\n\tassert(b != 0);\n\tT x = abs(a);\n\tT y = abs(b);\n\tT z = (x + y - 1) / y;\n\tif((a < 0 && b > 0) || (a > 0 && b < 0))\n\t\treturn -z;\n\telse if(a == 0)\n\t\treturn 0;\n\telse\n\t\treturn z;\n}\n\nlong long POW(long long a, long long n) {\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a;\n\t\ta = a * a;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\nlong long modpow(long long a, long long n, long long mod) {\t // a^n mod\n\tif(mod == 1) return 0LL;\n\tlong long res = 1;\n\twhile(n > 0) {\n\t\tif(n & 1) res = res * a % mod;\n\t\ta = a * a % mod;\n\t\tn >>= 1;\n\t}\n\treturn res;\n}\n\n// a * x % mod == __gcd(a,mod)なるxを返す\n// a が modの倍数でないことが条件\nlong long modinv(long long a, long long mod) {\n\tlong long b = mod, u = 1, v = 0;\n\twhile(b) {\n\t\tlong long t = a / b;\n\t\ta -= t * b;\n\t\tswap(a, b);\n\t\tu -= t * v;\n\t\tswap(u, v);\n\t}\n\tu %= mod;\n\tif(u < 0) u += mod;\n\treturn u;\n}\n\nvector<vector<long long>> comb(100, vector<long long>(100, -1));\nlong long com(long long n, long long k) { //普通の二項計数(overflowに注意)\n\tassert(n < 100 && k < 100);\n\tif(n < k || k < 0 || n < 0) return 0;\n\tif(comb[n][k] != -1) return comb[n][k];\n\tll res;\n\tif(n - k < k)\n\t\tres = com(n, n - k);\n\telse if(k == 0)\n\t\tres = 1;\n\telse\n\t\tres = com(n - 1, k - 1) + com(n - 1, k);\n\tcomb[n][k] = res;\n\treturn res;\n}\n\n// nCk modを求める\nconst int MAX = 5100000;\n// この値は求める二項計数の値に応じて変える\n// MAX=3*10^7のとき1900msほど、ほぼ比例\n// MAX=5*10^6程度ならそれほど気にしなくてよい(300ms程)\nlong long fac[MAX], finv[MAX], inv[MAX];\n\nvoid cominit() {\n\t// テーブルを作る前処理\n\tfac[0] = fac[1] = 1;\n\tfinv[0] = finv[1] = 1;\n\tinv[1] = 1;\n\tfor(int i = 2; i < MAX; i++) {\n\t\tfac[i] = fac[i - 1] * i % mod;\n\t\tinv[i] = mod - inv[mod % i] * (mod / i) % mod;\n\t\tfinv[i] = finv[i - 1] * inv[i] % mod;\n\t}\n}\nlong long commod(long long n, long long k) { // 二項係数\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * (finv[k] * finv[n - k] % mod) % mod;\n}\nlong long pmod(long long n, long long k) {\t// 順列\n\tif(n < k) return 0;\n\tif(n < 0 || k < 0) return 0;\n\treturn fac[n] * finv[n - k] % mod;\n}\n// n個の区別しないボールを区別するk個の箱に入れる方法の総数\nlong long hmod(long long n, long long k) {\t// 重複組み合わせ\n\treturn commod(n + k - 1, n);\n}\n#pragma endregion\n\n#pragma region input\n#define VEC(type, name, size) \\\n\tvector<type> name(size); \\\n\tINPUT(name)\n#define VVEC(type, name, h, w) \\\n\tvector<vector<type>> name(h, vector<type>(w)); \\\n\tINPUT(name)\n#define INT(...) \\\n\tint __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define LL(...) \\\n\tlong long __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define STR(...) \\\n\tstring __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define CHAR(...) \\\n\tchar __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define DOUBLE(...) \\\n\tdouble __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n#define LD(...) \\\n\tlong double __VA_ARGS__; \\\n\tINPUT(__VA_ARGS__)\n\ntemplate <class T>\nvoid scan(T &a) {\n\tcin >> a;\n}\ntemplate <class T>\nvoid scan(vector<T> &a) {\n\tfor(auto &i : a) scan(i);\n}\ntemplate <class T, class L>\nvoid scan(pair<T, L> &p) {\n\tscan(p.first);\n\tscan(p.second);\n}\nvoid INPUT() {}\ntemplate <class Head, class... Tail>\nvoid INPUT(Head &head, Tail &... tail) {\n\tscan(head);\n\tINPUT(tail...);\n}\ntemplate <class T>\ninline void print(T x) {\n\tcout << x << '\\n';\n}\n\ntemplate <typename T1, typename T2>\nistream &operator>>(istream &is, pair<T1, T2> &p) {\n\tis >> p.first >> p.second;\n\treturn is;\n}\n#pragma endregion\n\n#pragma region debug\n\n#pragma region output\ntemplate <typename T1, typename T2>\nostream &operator<<(ostream &os, const pair<T1, T2> &p) {\n\tos << p.first << \" \" << p.second;\n\treturn os;\n}\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &v) {\n\tfor(int i = 0; i < (int)v.size(); i++) {\n\t\tif(i) os << \" \";\n\t\tos << v[i];\n\t}\n\treturn os;\n}\n#pragma endregion\n\n#pragma region view\n\ntemplate <typename T>\nvoid view(const T e) {\n\tstd::cerr << e;\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::pair<T, U> &p) {\n\tstd::cerr << \"(\";\n\tview(p.first);\n\tcerr << \", \";\n\tview(p.second);\n\tcerr << \")\";\n}\n\ntemplate <typename T>\nvoid view(std::set<T> &s) {\n\tif(s.empty()) {\n\t\tcerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(auto &t : s) {\n\t\tview(t);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<T> &v) {\n\tif(v.empty()) {\n\t\tcerr << \"{ }\";\n\t\treturn;\n\t}\n\tstd::cerr << \"{ \";\n\tfor(const auto &e : v) {\n\t\tview(e);\n\t\tstd::cerr << \", \";\n\t}\n\tstd::cerr << \"\\b\\b }\";\n}\n\ntemplate <typename T>\nvoid view(const std::vector<std::vector<T>> &vv) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &v : vv) {\n\t\tstd::cerr << \"\\t\";\n\t\tview(v);\n\t\tstd::cerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::vector<std::pair<T, U>> &v) {\n\tstd::cerr << \"{\\n\";\n\tfor(const auto &c : v) {\n\t\tstd::cerr << \"\\t(\";\n\t\tview(c.first);\n\t\tcerr << \", \";\n\t\tview(c.second);\n\t\tcerr << \")\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\ntemplate <typename T, typename U>\nvoid view(const std::map<T, U> &m) {\n\tstd::cerr << \"{\\n\";\n\tfor(auto &t : m) {\n\t\tstd::cerr << \"\\t[\";\n\t\tview(t.first);\n\t\tcerr << \"] : \";\n\t\tview(t.second);\n\t\tcerr << \"\\n\";\n\t}\n\tstd::cerr << \"}\";\n}\n\n#pragma endregion\n\n// when debugging : g++ foo.cpp -DLOCAL\n#ifdef LOCAL\nvoid debug_out() {}\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n\tview(H);\n\tcerr << \", \";\n\tdebug_out(T...);\n}\n#define debug(...) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" [\" << #__VA_ARGS__ << \"] : [\"; \\\n\t\tdebug_out(__VA_ARGS__); \\\n\t\tcerr << \"\\b\\b]\\n\"; \\\n\t} while(0)\n#define dump(x) \\\n\tdo { \\\n\t\tcerr << __LINE__ << \" \" << #x << \" : \"; \\\n\t\tview(x); \\\n\t\tcerr << \"\\n\"; \\\n\t} while(0)\n\n#else\n#define debug(...) (void(0))\n#define dump(x) (void(0))\n#endif\n\n#pragma endregion\n\nstruct UF {\t\t\t // Union_Find木 (平衡操作あり)\n\tvector<int> data; // data[root] = -size, data[not_root] = parent\n\tUF(int N) : data(N) {\n\t\tfor(int i = 0; i < N; i++) {\n\t\t\tdata[i] = -1;\n\t\t}\n\t}\n\tint root(int x) {\n\t\tif(data[x] < 0) return x;\n\t\treturn data[x] = root(data[x]);\n\t}\n\t// 2つのデータx, yが属する木が同じならtrueを返す\n\tbool same(int x, int y) { return root(x) == root(y); }\n\tbool unite(int x, int y) {\t// xとyの木を併合\n\t\tx = root(x);\n\t\ty = root(y);\n\t\tif(x == y) return false;\n\t\tif(data[x] > data[y]) swap(x, y); // 平衡操作 sizeは-1倍なのでこれで正しい\n\t\tdata[x] += data[y];\n\t\tdata[y] = x;\n\t\treturn true;\n\t}\n\tint size(int x) { return -data[root(x)]; }\n};\n\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\tcout << fixed << setprecision(15);\n\tsrand((unsigned)time(NULL));\n\n\tINT(n);\n\tVEC(ll, a, n);\n\n\tpqup<pll> q;\n\trep(i, n) { q.push({a[i], i + 1}); }\n\n\tUF uf(n);\n\tll ans = 0;\n\n\twhile(!q.empty()) {\n\t\tll sa, cost;\n\t\ttie(cost, sa) = q.top();\n\t\tq.pop();\n\t\tll b = sa - 1;\n\t\tll c = sa + sa - 1;\n\t\twhile(c < n) {\n\t\t\tif(uf.unite(b, c)) {\n\t\t\t\tans += cost;\n\t\t\t}\n\t\t\tc += sa;\n\t\t}\n\t}\n\tdrop(ans);\n\t;\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 10572, "score_of_the_acc": -0.1239, "final_rank": 13 }, { "submission_id": "aoj_3180_4848384", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <unordered_map>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\n#include <unordered_map>\n#include <fstream>\n#include <ctime>\n#include <complex>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 1020000;\nll dy[8] = {1,-1,0,0,1,-1,1,-1};\nll dx[8] = {0,0,1,-1,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << \"debug: \" << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << \"debug: \" << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\nstruct UnionFind{\n\tvl p;\n\tvl rank;\n\tvl cnt;\n\n\tUnionFind(ll n){\n\t\trank.resize(n,0);\n\t\tp.resize(n,0);\n\t\tcnt.resize(n,0);\n\t\trep(i,n){\n\t\t\tp[i] = i;\n\t\t\trank[i] = 0;\n\t\t\tcnt[i] = 1;\n\t\t}\n\t}\n\n\tll find(ll x){\n\t\tif(x != p[x]) p[x] = find(p[x]);\n\t\treturn p[x];\n\t}\n\n\tbool same(ll x, ll y){\n\t\treturn find(x) == find(y);\n\t}\n\n\tvoid unite(ll x, ll y){\n\t\tx = find(x);\n\t\ty = find(y);\n\t\tif(x == y) return;\n\t\tif(rank[x] > rank[y]){\n\t\t\tp[y] = x;\n\t\t\tcnt[x] += cnt[y];\n\t\t}else{\n\t\t\tp[x] = y;\n\t\t\tcnt[y] += cnt[x];\n\t\t\tif(rank[x] == rank[y]) rank[y]++;\n\t\t}\n\t}\n\n\tll size(ll x){\n\t\treturn cnt[find(x)];\n\t}\n};\n\nint main(){\n\tint n; cin >> n;\n\tvl a(n); rep(i,n) cin >> a[i];\n\tUnionFind uf(n);\n\tvector<tapu> edges;\n\tfor(int i=1; i<=n; i++){\n\t\tfor(int j=i; j+i<=n; j+=i){\n\t\t\tedges.emplace_back(a[i-1],j-1,j+i-1);\n\t\t}\n\t}\n\tsort(all(edges));\n\tll ans = 0;\n\tfor(auto e : edges){\n\t\tll cost, u, v;\n\t\ttie(cost, u, v) = e;\n\t\tif(uf.same(u,v)) continue;\n\t\tuf.unite(u,v);\n\t\tans += cost;\n\t}\n\tcout << ans << \"\\n\";\n}", "accuracy": 1, "time_ms": 290, "memory_kb": 107580, "score_of_the_acc": -2, "final_rank": 20 }, { "submission_id": "aoj_3180_4847972", "code_snippet": "#include <bits/stdc++.h>\n#define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i))\n#define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i))\n#define rep(i, n) For((i), 0, (n))\n#define rrep(i, n) rFor((i), (n), 0)\n#define fi first\n#define se second\nusing namespace std;\ntypedef long long lint;\ntypedef unsigned long long ulint;\ntypedef pair<int, int> pii;\ntypedef pair<lint, lint> pll;\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nT div_floor(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a >= 0 ? a / b : (a + 1) / b - 1;\n}\ntemplate <class T>\nT div_ceil(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a > 0 ? (a - 1) / b + 1 : a / b;\n}\n\nconstexpr lint mod = 1000000007;\nconstexpr lint INF = mod * mod;\nconstexpr int MAX = 100010;\n\ntypedef struct UnionFindTree {\n vector<int> par;\n\n UnionFindTree(int n) { par.resize(n, -1); }\n\n bool is_root(int x) { return par[x] < 0; }\n\n int find(int x) {\n if (is_root(x)) return x;\n return par[x] = find(par[x]);\n }\n\n int size(int x) { return -par[find(x)]; }\n\n bool unite(int x, int y) {\n x = find(x);\n y = find(y);\n if (x == y) return false;\n if (size(x) < size(y)) swap(x, y);\n par[x] += par[y];\n par[y] = x;\n return true;\n }\n\n bool same(int x, int y) { return find(x) == find(y); }\n} UF;\n\nint main() {\n int n;\n scanf(\"%d\", &n);\n vector<pair<lint, int>> a(n);\n rep(i, n) {\n scanf(\"%lld\", &a[i].fi);\n a[i].se = i + 1;\n }\n sort(a.begin(), a.end());\n lint ans = 0;\n UF uf(n + 1);\n for (auto &p : a) {\n for (int k = 1; p.se * k <= n; ++k) {\n if (uf.unite(p.se, p.se * k)) ans += p.fi;\n }\n }\n printf(\"%lld\\n\", ans);\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 7024, "score_of_the_acc": -0.0522, "final_rank": 8 }, { "submission_id": "aoj_3180_4847680", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acos(-1.0);\n\nstruct uf {\nprivate:\n\tvector<int> par, ran;\npublic:\n\tuf(int n) {\n\t\tpar.resize(n, 0);\n\t\tran.resize(n, 0);\n\t\trep(i, n) {\n\t\t\tpar[i] = i;\n\t\t}\n\t}\n\tint find(int x) {\n\t\tif (par[x] == x)return x;\n\t\telse return par[x] = find(par[x]);\n\t}\n\tvoid unite(int x, int y) {\n\t\tx = find(x), y = find(y);\n\t\tif (x == y)return;\n\t\tif (ran[x] < ran[y]) {\n\t\t\tpar[x] = y;\n\t\t}\n\t\telse {\n\t\t\tpar[y] = x;\n\t\t\tif (ran[x] == ran[y])ran[x]++;\n\t\t}\n\t}\n\tbool same(int x, int y) {\n\t\treturn find(x) == find(y);\n\t}\n};\nint gcd(int a, int b) {\n\tif (a < b)swap(a, b);\n\twhile (b) {\n\t\tint r = a % b; a = b; b = r;\n\t}\n\treturn a;\n}\n\n\nvoid solve() {\n\tint n; cin >> n;\n\tvector<ll> a(n + 1);\n\trep1(i, n)cin >> a[i];\n\tvector<P> pairs;\n\trep1(i, n)pairs.push_back({ a[i],i });\n\tsort(all(pairs));\n\tuf u(n + 1);\n\tll ans = 0;\n\tfor (P p : pairs) {\n\t\tint val = p.first;\n\t\tint g = p.second;\n\t\tfor (int i = 2 * g; i <= n; i += g) {\n\t\t\tif (!u.same(i, g)) {\n\t\t\t\tu.unite(i, g);\n\t\t\t\tans += val;\n\t\t\t}\n\t\t}\n\t}\n\tcout << ans << \"\\n\";\n}\n\n\n\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 7520, "score_of_the_acc": -0.057, "final_rank": 10 } ]
aoj_3183_cpp
L - Flipping a Path 問題文 $N$ 頂点 $M$ 辺の単純有向グラフが与えられます。​ このグラフの頂点には $1$ から $N$ までの番号がついていて、辺には $1$ から $M$ までの番号がついています。​ 辺 $i$ $(1 \le i \le M)$ は、頂点 $u_i$ から頂点 $v_i$ へ向かう辺です。​ 次の条件を満たす辺素パスが存在するか判定し、存在する場合はそのようなパスの長さの最小値を求めてください。​ パスに含まれるすべての辺の向きを逆にすると、グラフ全体が強連結になる。​ ここで長さ $K$ $(K \ge 0)$ の辺素パスとは、次の条件を満たす辺の番号の列 $(e_1, e_2, \ldots, e_K)$ のことです。​ $1 \le i \le K-1$ について $v_{e_i} = u_{e_{i+1}}$ である。 どのような $1 \le i < j \le K$ についても、$e_i \ne e_j$ である。​ 特にこの問題では、長さ $K$ が $0$ となるものも辺素パスとして認めることにします。 また、「グラフが強連結である」とは、「そのグラフのどのような $2$ 頂点 $s, t$ $(s \ne t)$ についても、$s$ から $t$ への辺素パス、つまり、$u_{e_0} = s$ かつ $v_{e_K} = t$ を満たす辺素パスが存在する」ということです。 入力 入力は以下の形式で標準入力から与えられる。 $N$ $M$ $u_1$ $v_1$ $u_2$ $v_2$ $\vdots$ $u_M$ $v_M$ 制約 $2 \le N \le 10^5$ $1 \le M \le \min (10^5, N(N-1))$ $1 \le u_i \le N$ $1 \le v_i \le N$ $u_i \ne v_i$ どのような $(i, j)$ $(1 \le i < j \le M)$ についても、$(u_i, v_i) \ne (u_j, v_j)$ 出力 条件を満たす辺素パスが存在しない場合は -1 を出力せよ。 そうでない場合は、条件を満たすパスの長さの最小値を出力せよ。 入力例 1 4 5 1 2 1 3 2 3 2 4 3 4 出力例 1 2 与えられるグラフは次のようになります。 例えば長さ $2$ の辺素パス $(e_1, e_2) = (2, 5)$ を逆にすると、次の図のようにグラフ全体を強連結にすることができます。 $1$ 本の辺を逆にしても強連結にはできないので、条件を満たすパスの長さの最小値は $2$ となります。 入力例 2 4 5 1 2 3 1 2 3 2 4 4 3 出力例 2 0 与えられるグラフは次のようになります。 グラフはすでに強連結なので、辺を逆にする必要がありません。 入力例 3 2 1 1 2 出力例 3 -1 辺を逆にしてもしなくても、グラフは強連結になりません。
[ { "submission_id": "aoj_3183_8041018", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline double time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nstruct SCC{\n vector<vector<int> > gg,rg;\n vector<int> comp,order;\n vector<bool> used;\n vector<vector<int> > ng,vs;\n int n,nn;\n SCC(){}\n SCC(int v):gg(v),rg(v),comp(v,-1),used(v,0),n(v){}\n void add_edge(int x,int y){\n gg[x].push_back(y);\n rg[y].push_back(x);\n }\n void dfs(int v){\n used[v]=1;\n for(int i:gg[v]){\n if(!used[i])dfs(i);\n }\n order.push_back(v);\n }\n void rdfs(int v,int k){\n used[v]=1;\n comp[v]=k;\n for(int i:rg[v]){\n if(!used[i])rdfs(i,k);\n }\n }\n int build(){\n for(int i=0;i<n;i++){\n if(!used[i])dfs(i);\n }\n for(int i=0;i<n;i++){\n used[i]=0;\n }\n int k=0;\n for(int i=order.size()-1;i>=0;i--){\n if(!used[order[i]])rdfs(order[i],k++);\n }\n nn=k;\n // それぞれの強連結成分に含まれる頂点の番号\n vs.resize(k,vector<int>());\n for(int i=0;i<n;i++){\n vs[comp[i]].push_back(i);\n }\n // 強連結成分をまとめた後のグラフ\n ng.resize(k,vector<int>());\n for(int i=0;i<n;i++){\n for(int j:gg[i]){\n if(comp[i]!=comp[j]){\n ng[comp[i]].push_back(comp[j]);\n }\n }\n }\n for(int i=0;i<nn;i++){\n sort(ng[i].begin(),ng[i].end());\n ng[i].erase(unique(ng[i].begin(),ng[i].end()),ng[i].end());\n }\n return k;\n }\n};\n\ntemplate<typename T>\nstruct dinic{\n struct edge{\n int to;\n T c,f;\n };\n T eps;\n const T inf=numeric_limits<T>::max();\n int n,m = 0;\n vector<edge> e;\n vector<vector<int>> g;\n vector<int> level, ptr;\n dinic(int n): n(n), g(n), level(n), ptr(n) {\n eps = (T)1 / (T)1e9;\n }\n void add_edge(int s, int t, T c){\n e.push_back({t, c, 0});\n e.push_back({s, 0, 0});\n g[s].push_back(m++);\n g[t].push_back(m++);\n }\n bool bfs(int s, int t){\n fill(level.begin(), level.end(), -1);\n level[s] = 0;\n for(queue<int> q({s});q.size();q.pop()){\n int s = q.front();\n for(int i:g[s]){\n int t = e[i].to;\n if(level[t] == -1 and (e[i].c - e[i].f) > eps){\n level[t] = level[s] + 1;\n q.push(t);\n }\n }\n }\n return (level[t] != -1);\n }\n T dfs(int s, int t, T psh){\n if(!(psh > eps) or s == t) return psh;\n for(int &i = ptr[s]; i < (int)g[s].size(); ++i){\n auto &eg = e[g[s][i]];\n if(level[eg.to] != level[s] + 1 or !(eg.c - eg.f > eps)) continue;\n T f = dfs(eg.to, t, min(psh, eg.c-eg.f));\n if(f > eps){\n eg.f += f;\n e[g[s][i]^1].f -= f;\n return f;\n }\n }\n return 0;\n }\n T max_flow(int s, int t){\n T f = 0;\n while(bfs(s,t)){\n fill(ptr.begin(), ptr.end(), 0);\n while(1){\n T c = dfs(s, t, inf);\n if(c > eps){\n f += c;\n }\n else{\n break;\n }\n }\n }\n return f;\n }\n // ABC239-G\n vector<bool> min_cut(int s){\n vector<bool> visited(n);\n queue<int> q; q.push(s);\n while(q.size()){\n int p = q.front(); q.pop();\n visited[p] = true;\n for(auto idx:g[p]){\n auto eg = e[idx];\n if(eg.c - eg.f > eps and !visited[eg.to]){\n visited[eg.to] = true;\n q.push(eg.to);\n }\n }\n }\n return visited;\n }\n};\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n,m; cin >> n >> m;\n SCC G(n);\n for (int i = 0; i < m; ++i) {\n int x,y; cin >> x >> y;\n x--; y--;\n G.add_edge(x, y);\n }\n int sz = G.build();\n if (sz == 1) {\n cout << 0 << endl;\n return 0;\n }\n auto ng = G.ng;\n int s = -1, t = -1;\n {\n vector<int> deg(sz);\n for (int i = 0; i < sz; ++i) {\n for (int j : ng[i]) {\n deg[j]++;\n }\n }\n for (int i = 0; i < sz; ++i) {\n if (deg[i] == 0) {\n if (s == -1) s = i;\n else {\n cout << -1 << endl;\n return 0;\n }\n }\n }\n for (int i = 0; i < sz; ++i) {\n if (ng[i].size() == 0) {\n if (t == -1) t = i;\n else {\n cout << -1 << endl;\n return 0;\n }\n }\n }\n }\n vector<vector<int>> g(n+2);\n dinic<int> dc(n+2);\n for (int i = 0; i < n; ++i) {\n int u = (G.comp[i] == s ? n : i);\n for (int j : G.gg[i]) {\n int v = (G.comp[j] == t ? n+1 : j);\n g[u].push_back(v);\n dc.add_edge(u, v, 1);\n }\n }\n if (dc.max_flow(n, n+1) == 1) {\n cout << -1 << endl;\n return 0;\n }\n vector<int> d(n+2, -1);\n queue<int> q;\n q.push(n); d[n] = 0;\n while (q.size()) {\n int p = q.front(); q.pop();\n for (int pp : g[p]) {\n if (d[pp] == -1) {\n d[pp] = d[p] + 1;\n q.push(pp);\n }\n }\n }\n cout << d[n+1] << endl;\n}", "accuracy": 1, "time_ms": 80, "memory_kb": 49784, "score_of_the_acc": -1.3333, "final_rank": 7 }, { "submission_id": "aoj_3183_8041004", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline double time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nstruct SCC{\n vector<vector<int> > gg,rg;\n vector<int> comp,order;\n vector<bool> used;\n vector<vector<int> > ng,vs;\n int n,nn;\n SCC(){}\n SCC(int v):gg(v),rg(v),comp(v,-1),used(v,0),n(v){}\n void add_edge(int x,int y){\n gg[x].push_back(y);\n rg[y].push_back(x);\n }\n void dfs(int v){\n used[v]=1;\n for(int i:gg[v]){\n if(!used[i])dfs(i);\n }\n order.push_back(v);\n }\n void rdfs(int v,int k){\n used[v]=1;\n comp[v]=k;\n for(int i:rg[v]){\n if(!used[i])rdfs(i,k);\n }\n }\n int build(){\n for(int i=0;i<n;i++){\n if(!used[i])dfs(i);\n }\n for(int i=0;i<n;i++){\n used[i]=0;\n }\n int k=0;\n for(int i=order.size()-1;i>=0;i--){\n if(!used[order[i]])rdfs(order[i],k++);\n }\n nn=k;\n // それぞれの強連結成分に含まれる頂点の番号\n vs.resize(k,vector<int>());\n for(int i=0;i<n;i++){\n vs[comp[i]].push_back(i);\n }\n // 強連結成分をまとめた後のグラフ\n ng.resize(k,vector<int>());\n for(int i=0;i<n;i++){\n for(int j:gg[i]){\n if(comp[i]!=comp[j]){\n ng[comp[i]].push_back(comp[j]);\n }\n }\n }\n for(int i=0;i<nn;i++){\n sort(ng[i].begin(),ng[i].end());\n ng[i].erase(unique(ng[i].begin(),ng[i].end()),ng[i].end());\n }\n return k;\n }\n};\n\ntemplate<typename T>\nstruct dinic{\n struct edge{\n int to;\n T c,f;\n };\n T eps;\n const T inf=numeric_limits<T>::max();\n int n,m = 0;\n vector<edge> e;\n vector<vector<int>> g;\n vector<int> level, ptr;\n dinic(int n): n(n), g(n), level(n), ptr(n) {\n eps = (T)1 / (T)1e9;\n }\n void add_edge(int s, int t, T c){\n e.push_back({t, c, 0});\n e.push_back({s, 0, 0});\n g[s].push_back(m++);\n g[t].push_back(m++);\n }\n bool bfs(int s, int t){\n fill(level.begin(), level.end(), -1);\n level[s] = 0;\n for(queue<int> q({s});q.size();q.pop()){\n int s = q.front();\n for(int i:g[s]){\n int t = e[i].to;\n if(level[t] == -1 and (e[i].c - e[i].f) > eps){\n level[t] = level[s] + 1;\n q.push(t);\n }\n }\n }\n return (level[t] != -1);\n }\n T dfs(int s, int t, T psh){\n if(!(psh > eps) or s == t) return psh;\n for(int &i = ptr[s]; i < (int)g[s].size(); ++i){\n auto &eg = e[g[s][i]];\n if(level[eg.to] != level[s] + 1 or !(eg.c - eg.f > eps)) continue;\n T f = dfs(eg.to, t, min(psh, eg.c-eg.f));\n if(f > eps){\n eg.f += f;\n e[g[s][i]^1].f -= f;\n return f;\n }\n }\n return 0;\n }\n T max_flow(int s, int t){\n T f = 0;\n while(bfs(s,t)){\n fill(ptr.begin(), ptr.end(), 0);\n while(1){\n T c = dfs(s, t, inf);\n if(c > eps){\n f += c;\n }\n else{\n break;\n }\n }\n }\n return f;\n }\n // ABC239-G\n vector<bool> min_cut(int s){\n vector<bool> visited(n);\n queue<int> q; q.push(s);\n while(q.size()){\n int p = q.front(); q.pop();\n visited[p] = true;\n for(auto idx:g[p]){\n auto eg = e[idx];\n if(eg.c - eg.f > eps and !visited[eg.to]){\n visited[eg.to] = true;\n q.push(eg.to);\n }\n }\n }\n return visited;\n }\n};\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n,m; cin >> n >> m;\n SCC G(n);\n for (int i = 0; i < m; ++i) {\n int x,y; cin >> x >> y;\n x--; y--;\n G.add_edge(x, y);\n }\n int sz = G.build();\n if (sz == 1) {\n cout << 0 << endl;\n return 0;\n }\n auto ng = G.ng;\n int s = -1, t = -1;\n {\n vector<int> deg(sz);\n for (int i = 0; i < sz; ++i) {\n for (int j : ng[i]) {\n deg[j]++;\n }\n }\n for (int i = 0; i < sz; ++i) {\n if (deg[i] == 0) {\n if (s == -1) s = i;\n else {\n cout << -1 << endl;\n return 0;\n }\n }\n }\n for (int i = 0; i < sz; ++i) {\n if (ng[i].size() == 0) {\n if (t == -1) t = i;\n else {\n cout << -1 << endl;\n return 0;\n }\n }\n }\n }\n vector<vector<int>> g(n+2);\n dinic<int> dc(n+2);\n for (int i = 0; i < n; ++i) {\n int u = (i == s ? n : i);\n for (int j : G.gg[i]) {\n int v = (j == t ? n+1 : j);\n g[u].push_back(v);\n dc.add_edge(u, v, 1);\n }\n }\n if (dc.max_flow(n, n+1) == 1) {\n cout << -1 << endl;\n return 0;\n }\n vector<int> d(n+2, -1);\n queue<int> q;\n q.push(n); d[n] = 0;\n while (q.size()) {\n int p = q.front(); q.pop();\n for (int pp : g[p]) {\n if (d[pp] == -1) {\n d[pp] = d[p] + 1;\n q.push(pp);\n }\n }\n }\n cout << d[n+1] << endl;\n}", "accuracy": 0.3783783783783784, "time_ms": 30, "memory_kb": 21464, "score_of_the_acc": 0, "final_rank": 16 }, { "submission_id": "aoj_3183_4878836", "code_snippet": "// verification-helper: PROBLEM http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3183\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define call_from_test\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\n//END CUT HERE\n#ifndef call_from_test\n//INSERT ABOVE HERE\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\nstruct SCC{\n vector< vector<int> > G,R,H,C;\n vector<int> vs,used,blg;\n SCC(){}\n SCC(int n):G(n),R(n),used(n),blg(n){}\n\n void add_edge(int u,int v){\n G[u].emplace_back(v);\n R[v].emplace_back(u);\n }\n\n void dfs(int v){\n used[v]=1;\n for(int u:G[v])\n if(!used[u]) dfs(u);\n vs.emplace_back(v);\n }\n\n void rdfs(int v,int k){\n used[v]=1;\n blg[v]=k;\n C[k].emplace_back(v);\n for(int u:R[v])\n if(!used[u]) rdfs(u,k);\n }\n\n int build(bool uniq=true){\n int n=G.size();\n for(int v=0;v<n;v++)\n if(!used[v]) dfs(v);\n\n fill(used.begin(),used.end(),0);\n int k=0;\n for(int i=n-1;i>=0;i--){\n if(!used[vs[i]]){\n H.emplace_back();\n C.emplace_back();\n rdfs(vs[i],k++);\n }\n }\n\n for(int v=0;v<n;v++)\n for(int u:G[v])\n if(blg[v]!=blg[u])\n H[blg[v]].push_back(blg[u]);\n\n if(uniq){\n for(int i=0;i<k;i++){\n sort(H[i].begin(),H[i].end());\n H[i].erase(unique(H[i].begin(),H[i].end()),H[i].end());\n }\n }\n return k;\n }\n\n int operator[](int k) const{return blg[k];}\n};\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include <bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\ntemplate<typename T>\nstruct Dijkstra{\n struct Edge{\n int to;\n T cost;\n Edge(int to,T cost):to(to),cost(cost){}\n bool operator<(const Edge &o)const{return cost>o.cost;}\n };\n\n vector< vector<Edge> > G;\n vector<T> ds;\n vector<int> bs;\n Dijkstra(int n):G(n){}\n\n void add_edge(int u,int v,T c){\n G[u].emplace_back(v,c);\n }\n\n void build(int s){\n int n=G.size();\n ds.assign(n,numeric_limits<T>::max());\n bs.assign(n,-1);\n\n priority_queue<Edge> pq;\n ds[s]=0;\n pq.emplace(s,ds[s]);\n\n while(!pq.empty()){\n auto p=pq.top();pq.pop();\n int v=p.to;\n if(ds[v]<p.cost) continue;\n for(auto e:G[v]){\n if(ds[e.to]>ds[v]+e.cost){\n ds[e.to]=ds[v]+e.cost;\n bs[e.to]=v;\n pq.emplace(e.to,ds[e.to]);\n }\n }\n }\n }\n\n T operator[](int k){return ds[k];}\n\n vector<int> restore(int to){\n vector<int> res;\n if(bs[to]<0) return res;\n while(~to) res.emplace_back(to),to=bs[to];\n reverse(res.begin(),res.end());\n return res;\n }\n};\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#ifndef call_from_test\n#include<bits/stdc++.h>\nusing namespace std;\n#endif\n//BEGIN CUT HERE\n// O(F E \\log V)\ntemplate<typename Flow, bool directed>\nstruct FordFulkerson{\n struct edge{\n int dst;\n Flow cap;\n int rev;\n edge(){}\n edge(int dst,Flow cap,int rev):dst(dst),cap(cap),rev(rev){}\n };\n\n vector< vector<edge> > G;\n vector<int> used;\n\n FordFulkerson(){}\n FordFulkerson(int n):G(n),used(n){}\n\n int add_edge(int src,int dst,Flow cap){\n int e=G[src].size();\n int r=(src==dst?e+1:G[dst].size());\n G[src].emplace_back(dst,cap,r);\n G[dst].emplace_back(src,directed?0:cap,e);\n return e;\n }\n\n Flow dfs(int v,int t,Flow f){\n if(v==t) return f;\n used[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n edge &e=G[v][i];\n if(!used[e.dst]&&e.cap>0){\n Flow d=dfs(e.dst,t,min(f,e.cap));\n if(d==0) continue;\n e.cap-=d;\n G[e.dst][e.rev].cap+=d;\n return d;\n }\n }\n return 0;\n }\n\n Flow flow(int s,int t,Flow lim){\n Flow fl=0;\n while(1){\n fill(used.begin(),used.end(),0);\n Flow f=dfs(s,t,lim);\n if(f==0) break;\n fl+=f;\n lim-=f;\n }\n return fl;\n }\n\n Flow flow(int s,int t){\n return flow(s,t,numeric_limits<Flow>::max()/2);\n }\n};\n//END CUT HERE\n#ifndef call_from_test\nsigned main(){\n return 0;\n}\n#endif\n\n#undef call_from_test\n\nconst int MAX = 303;\nint G[MAX][MAX]={};\n\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m;\n cin>>n>>m;\n SCC G(n);\n\n int S=n,T=n+1;\n Dijkstra<int> D(n+2);\n FordFulkerson<int, true> F(n+2);\n for(int i=0;i<m;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n G.add_edge(u,v);\n D.add_edge(u,v,1);\n F.add_edge(u,v,1);\n }\n int k=G.build();\n\n vector<int> indeg(n,0);\n vector<int> outdeg(n,0);\n\n for(int i=0;i<k;i++)\n for(int j:G.H[i])\n outdeg[i]++,indeg[j]++;\n\n for(int i=0;i<k;i++){\n if(i!=0 and indeg[i]==0) drop(-1);\n if(i!=k-1 and outdeg[i]==0) drop(-1);\n }\n\n for(int i=0;i<n;i++){\n if(G.blg[i]==0){\n D.add_edge(S,i,0);\n F.add_edge(S,i,2);\n }\n if(G.blg[i]==k-1){\n D.add_edge(i,T,0);\n F.add_edge(i,T,2);\n }\n }\n\n int res=F.flow(S,T,2);\n if(res!=2) drop(-1);\n\n D.build(S);\n if(~D.bs[T]) drop(D[T]);\n drop(-1);\n return 0;\n}", "accuracy": 1, "time_ms": 90, "memory_kb": 47928, "score_of_the_acc": -1.3345, "final_rank": 8 }, { "submission_id": "aoj_3183_4875839", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nusing Int = long long;\nconst char newl = '\\n';\n\ntemplate<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}\ntemplate<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}\ntemplate<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}\ntemplate<typename T=int>\nvector<T> read(size_t n){\n vector<T> ts(n);\n for(size_t i=0;i<n;i++) cin>>ts[i];\n return ts;\n}\n\n\nstruct SCC{\n vector< vector<int> > G,R,T,C;\n vector<int> vs,used,blg;\n SCC(){}\n SCC(int n):G(n),R(n),used(n),blg(n){}\n\n void add_edge(int u,int v){\n G[u].emplace_back(v);\n R[v].emplace_back(u);\n }\n\n void dfs(int v){\n used[v]=1;\n for(int u:G[v])\n if(!used[u]) dfs(u);\n vs.emplace_back(v);\n }\n\n void rdfs(int v,int k){\n used[v]=1;\n blg[v]=k;\n C[k].emplace_back(v);\n for(int u:R[v])\n if(!used[u]) rdfs(u,k);\n }\n\n int build(){\n int n=G.size();\n for(int v=0;v<n;v++)\n if(!used[v]) dfs(v);\n\n fill(used.begin(),used.end(),0);\n int k=0;\n for(int i=n-1;i>=0;i--){\n if(!used[vs[i]]){\n T.emplace_back();\n C.emplace_back();\n rdfs(vs[i],k++);\n }\n }\n\n for(int v=0;v<n;v++)\n for(int u:G[v])\n if(blg[v]!=blg[u])\n T[blg[v]].push_back(blg[u]);\n/*\n for(int i=0;i<k;i++){\n sort(T[i].begin(),T[i].end());\n T[i].erase(unique(T[i].begin(),T[i].end()),T[i].end());\n }\n*/\n return k;\n }\n\n int operator[](int k) const{return blg[k];}\n};\n\n\ntemplate<typename T,bool directed>\nstruct FordFulkerson{\n struct edge{\n int to;\n T cap;\n int rev;\n edge(){}\n edge(int to,T cap,int rev):to(to),cap(cap),rev(rev){}\n };\n\n vector< vector<edge> > G;\n vector<int> used;\n\n FordFulkerson(){}\n FordFulkerson(int n):G(n),used(n){}\n\n void add_edge(int from,int to,T cap){\n G[from].emplace_back(to,cap,G[to].size());\n G[to].emplace_back(from,directed?0:cap,G[from].size()-1);\n }\n\n T dfs(int v,int t,T f){\n if(v==t) return f;\n used[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n edge &e=G[v][i];\n if(!used[e.to]&&e.cap>0){\n T d=dfs(e.to,t,min(f,e.cap));\n if(d==0) continue;\n e.cap-=d;\n G[e.to][e.rev].cap+=d;\n return d;\n }\n }\n return 0;\n }\n\n T flow(int s,int t,T lim){\n T fl=0;\n while(1){\n fill(used.begin(),used.end(),0);\n T f=dfs(s,t,lim);\n if(f==0) break;\n fl+=f;\n lim-=f;\n }\n return fl;\n }\n\n T flow(int s,int t){\n return flow(s,t,numeric_limits<T>::max()/2);\n }\n};\n\n\ntemplate<typename T>\nstruct Dijkstra{\n struct Edge{\n int to;\n T cost;\n Edge(int to,T cost):to(to),cost(cost){}\n bool operator<(const Edge &o)const{return cost>o.cost;}\n };\n\n vector< vector<Edge> > G;\n vector<T> ds;\n vector<int> bs;\n Dijkstra(int n):G(n){}\n\n void add_edge(int u,int v,T c){\n G[u].emplace_back(v,c);\n }\n\n void build(int s){\n int n=G.size();\n ds.assign(n,numeric_limits<T>::max());\n bs.assign(n,-1);\n\n priority_queue<Edge> pq;\n ds[s]=0;\n pq.emplace(s,ds[s]);\n\n while(!pq.empty()){\n auto p=pq.top();pq.pop();\n int v=p.to;\n if(ds[v]<p.cost) continue;\n for(auto e:G[v]){\n if(ds[e.to]>ds[v]+e.cost){\n ds[e.to]=ds[v]+e.cost;\n bs[e.to]=v;\n pq.emplace(e.to,ds[e.to]);\n }\n }\n }\n }\n\n T operator[](int k){return ds[k];}\n\n vector<int> restore(int to){\n vector<int> res;\n if(bs[to]<0) return res;\n while(~to) res.emplace_back(to),to=bs[to];\n reverse(res.begin(),res.end());\n return res;\n }\n};\n\n//INSERT ABOVE HERE\nsigned main(){\n cin.tie(0);\n ios::sync_with_stdio(0);\n\n int n,m;\n cin>>n>>m;\n SCC G(n);\n\n int S=n,T=n+1;\n Dijkstra<int> D(n+2);\n FordFulkerson<int, true> F(n+2);\n for(int i=0;i<m;i++){\n int u,v;\n cin>>u>>v;\n u--;v--;\n G.add_edge(u,v);\n D.add_edge(u,v,1);\n F.add_edge(u,v,1);\n }\n int k=G.build();\n\n vector<int> indeg(n,0);\n vector<int> outdeg(n,0);\n\n for(int i=0;i<k;i++)\n for(int j:G.T[i])\n outdeg[i]++,indeg[j]++;\n\n for(int i=0;i<k;i++){\n if(i!=0 and indeg[i]==0) drop(-1);\n if(i!=k-1 and outdeg[i]==0) drop(-1);\n }\n\n for(int i=0;i<n;i++){\n if(G.blg[i]==0){\n D.add_edge(S,i,0);\n F.add_edge(S,i,2);\n }\n if(G.blg[i]==k-1){\n D.add_edge(i,T,0);\n F.add_edge(i,T,2);\n }\n }\n\n int res=F.flow(S,T,2);\n // cout<<res<<endl;\n if(res!=2) drop(-1);\n\n D.build(S);\n if(~D.bs[T]) drop(D[T]);\n drop(-1);\n return 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 47256, "score_of_the_acc": -1.3774, "final_rank": 10 }, { "submission_id": "aoj_3183_4850510", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<ll, ll> P;\n\n#define fi first\n#define se second\n#define repl(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define all(x) (x).begin(),(x).end()\n#define dbg(x) cout<<#x\"=\"<<x<<endl\n#define mmax(x,y) (x>y?x:y)\n#define mmin(x,y) (x<y?x:y)\n#define maxch(x,y) x=mmax(x,y)\n#define minch(x,y) x=mmin(x,y)\n#define uni(x) x.erase(unique(all(x)),x.end())\n#define exist(x,y) (find(all(x),y)!=x.end())\n#define bcnt __builtin_popcountll\n\n#define INF INT_MAX/3\n#define mod 1000000007\n\n#define MAX_V 100010\n\nstruct edge{ int to,cap,rev; };\nvector<edge> g[MAX_V];\nint level[MAX_V];\nint iter[MAX_V];\n\nvoid add_edge_f(int from,int to,int cap){\n g[from].push_back((edge){to,cap,(int)g[to].size()});\n g[to].push_back((edge){from,0,(int)g[from].size()-1});\n}\n\nvoid bfs_f(int s){\n memset(level,-1,sizeof(level));\n queue<int> que;\n level[s]=0;\n que.push(s);\n while(!que.empty()){\n int v=que.front(); que.pop();\n for(int i=0;i<(int)g[v].size();i++){\n edge &e=g[v][i];\n if(e.cap>0&&level[e.to]<0){\n level[e.to]=level[v]+1;\n que.push(e.to);\n }\n }\n }\n}\n\nint min_dist_f(int s, int t){\n memset(level,-1,sizeof(level));\n queue<int> que;\n level[s]=0;\n que.push(s);\n while(!que.empty()){\n int v=que.front(); que.pop();\n for(int i=0;i<(int)g[v].size();i++){\n edge &e=g[v][i];\n if(e.cap>0&&level[e.to]<0){\n level[e.to]=level[v]+1;\n que.push(e.to);\n }\n }\n }\n return level[t];\n}\n\nint dfs_f(int v,int t,int f){\n if(v==t)return f;\n for(int &i=iter[v];i<(int)g[v].size();i++){\n edge &e=g[v][i];\n if(e.cap>0&&level[v]<level[e.to]){\n int d=dfs_f(e.to,t,min(f,e.cap));\n if(d>0){\n e.cap-=d;\n g[e.to][e.rev].cap+=d;\n return d;\n }\n }\n }\n return 0;\n}\n\nint max_flow(int s,int t){\n int flow=0;\n while(1){\n bfs_f(s);\n if(level[t]<0)return flow;\n memset(iter,0,sizeof(iter));\n int f;\n while((f=dfs_f(s,t,INF))>0){\n flow+=f;\n }\n }\n}\n\nint V;\nvector<int> G[MAX_V];\nvector<int> rG[MAX_V];\nvector<int> vs;\nbool used[MAX_V];\nint cmp[MAX_V];\n\nvoid add_edge(int from,int to){\n G[from].push_back(to);\n rG[to].push_back(from);\n}\n\nvoid dfs(int v){\n used[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n if(!used[G[v][i]])dfs(G[v][i]);\n }\n vs.push_back(v);\n}\n\nvoid rdfs(int v,int k){\n used[v]=true;\n cmp[v]=k;\n for(int i=0;i<(int)rG[v].size();i++){\n if(!used[rG[v][i]])rdfs(rG[v][i],k);\n }\n}\n\nint scc(){\n memset(used,0,sizeof(used));\n vs.clear();\n for(int v=0;v<V;v++){\n if(!used[v])dfs(v);\n }\n memset(used,0,sizeof(used));\n int k=0;\n for(int i=(int)vs.size()-1;i>=0;i--){\n if(!used[vs[i]])rdfs(vs[i],k++);\n }\n return k;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int N,M;\n cin>>N>>M;\n rep(i,M){\n int a,b;\n cin>>a>>b;\n a--;b--;\n add_edge(a,b);\n }\n V=N;\n int K=scc();\n if(K==1){\n cout<<0<<endl;\n return 0;\n }\n\n vector<int> ideg(K,0),odeg(K,0);\n rep(i,N){\n for(int v : G[i]){\n if(cmp[i]==cmp[v])continue;\n odeg[cmp[i]]++;\n ideg[cmp[v]]++;\n }\n }\n\n int izcnt=0,ozcnt=0;\n int icmp=-1,ocmp=-1;\n rep(i,K){\n if(ideg[i]==0){\n izcnt++;\n icmp=i;\n }\n if(odeg[i]==0){\n ozcnt++;\n ocmp=i;\n }\n }\n if(izcnt>1||ozcnt>1){\n cout<<-1<<endl;\n return 0;\n }\n\n int source=N,sink=N+1;\n rep(i,N){\n if(cmp[i]==icmp){\n for(int v : G[i]){\n if(cmp[v]==icmp)continue;\n if(cmp[v]==ocmp){\n add_edge_f(source,sink,1);\n }else{\n add_edge_f(source,v,1);\n }\n }\n }else if(cmp[i]==ocmp){\n\n }else{\n for(int v : G[i]){\n if(cmp[v]==ocmp){\n add_edge_f(i,sink,1);\n }else{\n add_edge_f(i,v,1);\n }\n }\n }\n }\n\n int min_d = min_dist_f(source,sink);\n int max_f = max_flow(source,sink);\n if(max_f>1) cout<<min_d<<endl;\n else cout<<-1<<endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 25028, "score_of_the_acc": -0.3258, "final_rank": 1 }, { "submission_id": "aoj_3183_4850419", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<ll, ll> P;\n\n#define fi first\n#define se second\n#define repl(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define all(x) (x).begin(),(x).end()\n#define dbg(x) cout<<#x\"=\"<<x<<endl\n#define mmax(x,y) (x>y?x:y)\n#define mmin(x,y) (x<y?x:y)\n#define maxch(x,y) x=mmax(x,y)\n#define minch(x,y) x=mmin(x,y)\n#define uni(x) x.erase(unique(all(x)),x.end())\n#define exist(x,y) (find(all(x),y)!=x.end())\n#define bcnt __builtin_popcountll\n\n#define INF INT_MAX/3\n#define mod 1000000007\n\n#define MAX_V 100010\n\nstruct edge{ int to,cap,rev; };\nvector<edge> g[MAX_V];\nint level[MAX_V];\nint iter[MAX_V];\n\nvoid add_edge_f(int from,int to,int cap){\n g[from].push_back((edge){to,cap,(int)g[to].size()});\n g[to].push_back((edge){from,0,(int)g[from].size()-1});\n}\n\nvoid bfs_f(int s){\n memset(level,-1,sizeof(level));\n queue<int> que;\n level[s]=0;\n que.push(s);\n while(!que.empty()){\n int v=que.front(); que.pop();\n for(int i=0;i<(int)g[v].size();i++){\n edge &e=g[v][i];\n if(e.cap>0&&level[e.to]<0){\n level[e.to]=level[v]+1;\n que.push(e.to);\n }\n }\n }\n}\n\nint min_dist_f(int s, int t){\n memset(level,-1,sizeof(level));\n queue<int> que;\n level[s]=0;\n que.push(s);\n while(!que.empty()){\n int v=que.front(); que.pop();\n for(int i=0;i<(int)g[v].size();i++){\n edge &e=g[v][i];\n if(e.cap>0&&level[e.to]<0){\n level[e.to]=level[v]+1;\n que.push(e.to);\n }\n }\n }\n return level[t];\n}\n\nint dfs_f(int v,int t,int f){\n if(v==t)return f;\n for(int &i=iter[v];i<(int)g[v].size();i++){\n edge &e=g[v][i];\n if(e.cap>0&&level[v]<level[e.to]){\n int d=dfs_f(e.to,t,min(f,e.cap));\n if(d>0){\n e.cap-=d;\n g[e.to][e.rev].cap+=d;\n return d;\n }\n }\n }\n return 0;\n}\n\nint max_flow(int s,int t){\n int flow=0;\n while(1){\n bfs_f(s);\n if(level[t]<0)return flow;\n memset(iter,0,sizeof(iter));\n int f;\n while((f=dfs_f(s,t,INF))>0){\n flow+=f;\n }\n }\n}\n\nint V;\nvector<int> G[MAX_V];\nvector<int> rG[MAX_V];\nvector<int> vs;\nbool used[MAX_V];\nint cmp[MAX_V];\n\nvoid add_edge(int from,int to){\n G[from].push_back(to);\n rG[to].push_back(from);\n}\n\nvoid dfs(int v){\n used[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n if(!used[G[v][i]])dfs(G[v][i]);\n }\n vs.push_back(v);\n}\n\nvoid rdfs(int v,int k){\n used[v]=true;\n cmp[v]=k;\n for(int i=0;i<(int)rG[v].size();i++){\n if(!used[rG[v][i]])rdfs(rG[v][i],k);\n }\n}\n\nint scc(){\n memset(used,0,sizeof(used));\n vs.clear();\n for(int v=0;v<V;v++){\n if(!used[v])dfs(v);\n }\n memset(used,0,sizeof(used));\n int k=0;\n for(int i=(int)vs.size()-1;i>=0;i--){\n if(!used[vs[i]])rdfs(vs[i],k++);\n }\n return k;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int N,M;\n cin>>N>>M;\n rep(i,M){\n int a,b;\n cin>>a>>b;\n a--;b--;\n add_edge(a,b);\n }\n V=N;\n int K=scc();\n if(K==1){\n cout<<0<<endl;\n return 0;\n }\n\n vector<int> ideg(K,0),odeg(K,0);\n rep(i,N){\n for(int v : G[i]){\n odeg[cmp[i]]++;\n ideg[cmp[v]]++;\n }\n }\n\n int izcnt=0,ozcnt=0;\n int icmp=-1,ocmp=-1;\n rep(i,K){\n if(ideg[i]==0){\n izcnt++;\n icmp=i;\n }\n if(odeg[i]==0){\n ozcnt++;\n ocmp=i;\n }\n }\n if(izcnt>1||ozcnt>1){\n cout<<-1<<endl;\n return 0;\n }\n\n int source=N,sink=N+1;\n rep(i,N){\n if(cmp[i]==icmp){\n for(int v : G[i]){\n if(cmp[v]==icmp)continue;\n if(cmp[v]==ocmp){\n add_edge_f(source,sink,1);\n }else{\n add_edge_f(source,v,1);\n }\n }\n }else if(cmp[i]==ocmp){\n\n }else{\n for(int v : G[i]){\n if(cmp[v]==ocmp){\n add_edge_f(i,sink,1);\n }else{\n add_edge_f(i,v,1);\n }\n }\n }\n }\n\n int min_d = min_dist_f(source,sink);\n int max_f = max_flow(source,sink);\n if(max_f>1)cout<<min_d<<endl;\n else cout<<-1<<endl;\n\n return 0;\n}", "accuracy": 0.5, "time_ms": 40, "memory_kb": 22612, "score_of_the_acc": -0.1072, "final_rank": 11 }, { "submission_id": "aoj_3183_4850412", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\ntypedef long long ll;\ntypedef unsigned long long ull;\ntypedef pair<ll, ll> P;\n\n#define fi first\n#define se second\n#define repl(i,a,b) for(ll i=(ll)(a);i<(ll)(b);i++)\n#define rep(i,n) repl(i,0,n)\n#define all(x) (x).begin(),(x).end()\n#define dbg(x) cout<<#x\"=\"<<x<<endl\n#define mmax(x,y) (x>y?x:y)\n#define mmin(x,y) (x<y?x:y)\n#define maxch(x,y) x=mmax(x,y)\n#define minch(x,y) x=mmin(x,y)\n#define uni(x) x.erase(unique(all(x)),x.end())\n#define exist(x,y) (find(all(x),y)!=x.end())\n#define bcnt __builtin_popcountll\n\n#define INF INT_MAX/3\n#define mod 1000000007\n\n#define MAX_V 100010\n\nstruct edge{ int to,cap,rev; };\nvector<edge> g[MAX_V];\nint level[MAX_V];\nint iter[MAX_V];\n\nvoid add_edge_f(int from,int to,int cap){\n g[from].push_back((edge){to,cap,(int)g[to].size()});\n g[to].push_back((edge){from,0,(int)g[from].size()-1});\n}\n\nvoid bfs_f(int s){\n memset(level,-1,sizeof(level));\n queue<int> que;\n level[s]=0;\n que.push(s);\n while(!que.empty()){\n int v=que.front(); que.pop();\n for(int i=0;i<(int)g[v].size();i++){\n edge &e=g[v][i];\n if(e.cap>0&&level[e.to]<0){\n level[e.to]=level[v]+1;\n que.push(e.to);\n }\n }\n }\n}\n\nint min_dist_f(int s, int t){\n memset(level,-1,sizeof(level));\n queue<int> que;\n level[s]=0;\n que.push(s);\n while(!que.empty()){\n int v=que.front(); que.pop();\n for(int i=0;i<(int)g[v].size();i++){\n edge &e=g[v][i];\n if(e.cap>0&&level[e.to]<0){\n level[e.to]=level[v]+1;\n que.push(e.to);\n }\n }\n }\n return level[t];\n}\n\nint dfs_f(int v,int t,int f){\n if(v==t)return f;\n for(int &i=iter[v];i<(int)g[v].size();i++){\n edge &e=g[v][i];\n if(e.cap>0&&level[v]<level[e.to]){\n int d=dfs_f(e.to,t,min(f,e.cap));\n if(d>0){\n e.cap-=d;\n g[e.to][e.rev].cap+=d;\n return d;\n }\n }\n }\n return 0;\n}\n\nint max_flow(int s,int t){\n int flow=0;\n while(1){\n bfs_f(s);\n if(level[t]<0)return flow;\n memset(iter,0,sizeof(iter));\n int f;\n while((f=dfs_f(s,t,INF))>0){\n flow+=f;\n }\n }\n}\n\nint V;\nvector<int> G[MAX_V];\nvector<int> rG[MAX_V];\nvector<int> vs;\nbool used[MAX_V];\nint cmp[MAX_V];\n\nvoid add_edge(int from,int to){\n G[from].push_back(to);\n rG[to].push_back(from);\n}\n\nvoid dfs(int v){\n used[v]=true;\n for(int i=0;i<(int)G[v].size();i++){\n if(!used[G[v][i]])dfs(G[v][i]);\n }\n vs.push_back(v);\n}\n\nvoid rdfs(int v,int k){\n used[v]=true;\n cmp[v]=k;\n for(int i=0;i<(int)rG[v].size();i++){\n if(!used[rG[v][i]])rdfs(rG[v][i],k);\n }\n}\n\nint scc(){\n memset(used,0,sizeof(used));\n vs.clear();\n for(int v=0;v<V;v++){\n if(!used[v])dfs(v);\n }\n memset(used,0,sizeof(used));\n int k=0;\n for(int i=(int)vs.size()-1;i>=0;i--){\n if(!used[vs[i]])rdfs(vs[i],k++);\n }\n return k;\n}\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n int N,M;\n cin>>N>>M;\n rep(i,M){\n int a,b;\n cin>>a>>b;\n a--;b--;\n add_edge(a,b);\n }\n V=N;\n int K=scc();\n if(K==1){\n cout<<0<<endl;\n return 0;\n }\n\n vector<int> ideg(K,0),odeg(K,0);\n rep(i,N){\n for(int v : G[i]){\n odeg[cmp[i]]++;\n ideg[cmp[v]]++;\n }\n }\n\n int izcnt=0,ozcnt=0;\n int icmp=-1,ocmp=-1;\n rep(i,K){\n if(ideg[i]==0){\n izcnt++;\n icmp=i;\n }\n if(odeg[i]==0){\n ozcnt++;\n ocmp=i;\n }\n }\n if(izcnt>1||ozcnt>1){\n cout<<-1<<endl;\n }\n\n int source=N,sink=N+1;\n rep(i,N){\n if(cmp[i]==icmp){\n for(int v : G[i]){\n if(cmp[v]==icmp)continue;\n if(cmp[v]==ocmp){\n add_edge_f(source,sink,1);\n }else{\n add_edge_f(source,v,1);\n }\n }\n }else if(cmp[i]==ocmp){\n\n }else{\n for(int v : G[i]){\n if(cmp[v]==ocmp){\n add_edge_f(i,sink,1);\n }else{\n add_edge_f(i,v,1);\n }\n }\n }\n }\n\n int min_d = min_dist_f(source,sink);\n int max_f = max_flow(source,sink);\n if(max_f>1)cout<<min_d<<endl;\n else cout<<-1<<endl;\n\n return 0;\n}", "accuracy": 0.28378378378378377, "time_ms": 30, "memory_kb": 22692, "score_of_the_acc": -0.0434, "final_rank": 20 }, { "submission_id": "aoj_3183_4849188", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate<class T,class U> using P = pair<T,U>;\ntemplate<class T> using vec = vector<T>;\ntemplate<class T> using vvec = vector<vec<T>>;\n\nclass strong_components{\npublic:\n\tvector<vector<int>> v,rv,nv;\n\tvector<int> rs,visited,cmp,cmp_size;\n\tvoid dfs(int n){\n\t\tvisited[n] = 1;\n\t\tfor(auto x:v[n]) if(!visited[x]) dfs(x);\n\t\trs.push_back(n);\n\t}\n\tvoid rdfs(int n,int cnt){\n\t\tvisited[n] = 1;\n\t\tcmp[n] = cnt;\n\t\tfor(auto x:rv[n]) if(!visited[x]) rdfs(x,cnt);\n\t}\n\tstrong_components(int N,vector<vector<int>>& graph){\n\t\tv = graph;\n\t\trv = vector<vector<int>>(N);\n\t\tvisited = cmp = cmp_size = vector<int>(N,0);\n\t\tfor(int i=0;i<N;i++) for(auto x:v[i]) rv[x].push_back(i);\n\t\tfor(int i=0;i<N;i++) if(!visited[i]) dfs(i);\n\t\tfor(int i=0;i<N;i++) visited[i] = 0;\n\t\tint now = 0;\n\t\tfor(int i=rs.size()-1;i>=0;i--) if(!visited[rs[i]]) rdfs(rs[i],now++);\n\t\tnv = vector<vector<int>>(now);\n\t\tfor(int i=0;i<N;i++){\n\t\t\tfor(auto x:v[i]){\n\t\t\t\tif(cmp[i]!=cmp[x]){\n\t\t\t\t\tnv[cmp[i]].push_back(cmp[x]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor(int i=0;i<N;i++) cmp_size[cmp[i]]++;\n\t}\n\tint find(int n){return cmp[n];}\n\tint size(int n){return cmp_size[cmp[n]];}\n\tbool is_same_group(int a,int b){return cmp[a]==cmp[b];}\n};\n\nconstexpr int inf = 1e9;\nclass network_flow{\nprivate:\n\tstruct edge{int to, cap, rev;};\n\tvector<vector<edge>> G;\n\tvector<bool> used;\npublic:\n\tnetwork_flow(int N){\n\t\tG = vector<vector<edge>>(N+1);\n\t\tused = vector<bool>(N+1,0); \n\t}\n\tvoid add_edge(int from, int to, int cap){\n\t\tG[from].push_back((edge){to,cap,(int) G[to].size()});\n\t\tG[to].push_back((edge){from,0,(int) G[from].size()-1});\n\t}\n\tint dfs(int v,int t,int f){\n\t\tif(v==t) return f;\n\t\tused[v] = true;\n\t\tfor(int i=0;i<G[v].size();i++){\n\t\t\tedge &e = G[v][i];\n\t\t\tif(!used[e.to] && e.cap>0){\n\t\t\t\tint d = dfs(e.to,t,min(f,e.cap));\n\t\t\t\tif(d>0){\n\t\t\t\t\te.cap -= d;\n\t\t\t\t\tG[e.to][e.rev].cap += d;\n\t\t\t\t\treturn d;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn 0;\n\t}\n\tint max_flow(int s,int t){\n\t\tint flow = 0;\n\t\tfor(;;){\n\t\t\tif(flow>1) return flow;\n\t\t\tfor(int i=0;i<(int)used.size();i++) used[i] = 0;\n\t\t\tint f = dfs(s,t,inf);\n\t\t\tif(f==0) return flow;\n\t\t\tflow += f;\n\t\t}\n\t}\n};\n\nint main(){\n\tint N,M;\n\tcin >> N >> M;\n\tvvec<int> g(N);\n\tfor(int i=0;i<M;i++){\n\t\tint a,b;\n\t\tcin >> a >> b;\n\t\ta--; b--;\n\t\tg[a].push_back(b);\n\t}\n\tstrong_components SCC(N,g);\n\tvvec<int> cmp_g = SCC.nv;\n\tint n = cmp_g.size();\n\tif(n==1){\n\t\tcout << 0 << \"\\n\";\n\t\treturn 0;\n\t}\n\tvec<int> indeg(n);\n\tint c = 0,t = 0;\n\tfor(int i=0;i<n;i++){\n\t\tif(cmp_g[i].size()==0){\n\t\t\tt = i;\n\t\t\tc++;\n\t\t}\n\t\tfor(auto& x:cmp_g[i]) indeg[x]++;\n\t}\n\tif(c>1 || count(indeg.begin(),indeg.end(),0)>1){\n\t\tcout << -1 << \"\\n\";\n\t\treturn 0;\n\t}\n\tint s = find(indeg.begin(),indeg.end(),0)-indeg.begin();\n\tvec<int> dist(N,inf);\n\tqueue<int> Q;\n\tfor(int i=0;i<N;i++){\n\t\tif(SCC.find(i)==s){\n\t\t\tdist[i] = 0;\n\t\t\tQ.push(i);\n\t\t}\n\t}\n\twhile(!Q.empty()){\n\t\tint cur = Q.front(); Q.pop();\n\t\tfor(auto& to:g[cur]){\n\t\t\tif(dist[to]>dist[cur]+1){\n\t\t\t\tdist[to] = dist[cur]+1;\n\t\t\t\tQ.push(to);\n\t\t\t}\n\t\t}\n\t}\n\tint ans = inf;\n\tfor(int i=0;i<N;i++) if(SCC.find(i)==t) ans = min(ans,dist[i]);\n\tnetwork_flow flow(N+2);\n\tint S = N,T = N+1;\n\tfor(int i=0;i<N;i++){\n\t\tfor(auto& x:g[i]) flow.add_edge(i,x,1);\n\t\tif(SCC.find(i)==s) flow.add_edge(S,i,2);\n\t\tif(SCC.find(i)==t) flow.add_edge(i,T,2);\n\t}\n\tif(flow.max_flow(S,T)<2){\n\t\tcout << -1 << \"\\n\";\n\t}else{\n\t\tcout << ans << \"\\n\";\n\t}\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 42040, "score_of_the_acc": -0.9932, "final_rank": 5 }, { "submission_id": "aoj_3183_4849185", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\ntemplate<class T,class U> using P = pair<T,U>;\ntemplate<class T> using vec = vector<T>;\ntemplate<class T> using vvec = vector<vec<T>>;\n\nclass strong_components{\npublic:\n\tvector<vector<int>> v,rv,nv;\n\tvector<int> rs,visited,cmp,cmp_size;\n\tvoid dfs(int n){\n\t\tvisited[n] = 1;\n\t\tfor(auto x:v[n]) if(!visited[x]) dfs(x);\n\t\trs.push_back(n);\n\t}\n\tvoid rdfs(int n,int cnt){\n\t\tvisited[n] = 1;\n\t\tcmp[n] = cnt;\n\t\tfor(auto x:rv[n]) if(!visited[x]) rdfs(x,cnt);\n\t}\n\tstrong_components(int N,vector<vector<int>>& graph){\n\t\tv = graph;\n\t\trv = vector<vector<int>>(N);\n\t\tvisited = cmp = cmp_size = vector<int>(N,0);\n\t\tfor(int i=0;i<N;i++) for(auto x:v[i]) rv[x].push_back(i);\n\t\tfor(int i=0;i<N;i++) if(!visited[i]) dfs(i);\n\t\tfor(int i=0;i<N;i++) visited[i] = 0;\n\t\tint now = 0;\n\t\tfor(int i=rs.size()-1;i>=0;i--) if(!visited[rs[i]]) rdfs(rs[i],now++);\n\t\tnv = vector<vector<int>>(now);\n\t\tfor(int i=0;i<N;i++){\n\t\t\tfor(auto x:v[i]){\n\t\t\t\tif(cmp[i]!=cmp[x]){\n\t\t\t\t\tnv[cmp[i]].push_back(cmp[x]);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tfor(int i=0;i<N;i++) cmp_size[cmp[i]]++;\n\t}\n\tint find(int n){return cmp[n];}\n\tint size(int n){return cmp_size[cmp[n]];}\n\tbool is_same_group(int a,int b){return cmp[a]==cmp[b];}\n};\n\nconstexpr int inf = 1e9;\nclass network_flow{\nprivate:\n\tstruct edge{int to, cap, rev;};\n\tvector<vector<edge>> G;\n\tvector<bool> used;\npublic:\n\tnetwork_flow(int N){\n\t\tG = vector<vector<edge>>(N+1);\n\t\tused = vector<bool>(N+1,0); \n\t}\n\tvoid add_edge(int from, int to, int cap){\n\t\tG[from].push_back((edge){to,cap,(int) G[to].size()});\n\t\tG[to].push_back((edge){from,0,(int) G[from].size()-1});\n\t}\n\tint dfs(int v,int t,int f){\n\t\tif(v==t) return f;\n\t\tused[v] = true;\n\t\tfor(int i=0;i<G[v].size();i++){\n\t\t\tedge &e = G[v][i];\n\t\t\tif(!used[e.to] && e.cap>0){\n\t\t\t\tint d = dfs(e.to,t,min(f,e.cap));\n\t\t\t\tif(d>0){\n\t\t\t\t\te.cap -= d;\n\t\t\t\t\tG[e.to][e.rev].cap += d;\n\t\t\t\t\treturn d;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn 0;\n\t}\n\tint max_flow(int s,int t){\n\t\tint flow = 0;\n\t\tfor(;;){\n\t\t\tif(flow>1) return flow;\n\t\t\tfor(int i=0;i<(int)used.size();i++) used[i] = 0;\n\t\t\tint f = dfs(s,t,inf);\n\t\t\tif(f==0) return flow;\n\t\t\tflow += f;\n\t\t}\n\t}\n};\n\nint main(){\n\tint N,M;\n\tcin >> N >> M;\n\tvvec<int> g(N);\n\tfor(int i=0;i<M;i++){\n\t\tint a,b;\n\t\tcin >> a >> b;\n\t\ta--; b--;\n\t\tg[a].push_back(b);\n\t}\n\tstrong_components SCC(N,g);\n\tvvec<int> cmp_g = SCC.nv;\n\tint n = cmp_g.size();\n\tif(n==1){\n\t\tcout << 0 << \"\\n\";\n\t\treturn 0;\n\t}\n\tvec<int> indeg(n);\n\tint c = 0,t = 0;\n\tfor(int i=0;i<n;i++){\n\t\tif(cmp_g[i].size()==0){\n\t\t\tt = i;\n\t\t\tc++;\n\t\t}\n\t\tfor(auto& x:cmp_g[i]) indeg[x]++;\n\t}\n\tif(c>1 || count(indeg.begin(),indeg.end(),0)>1){\n\t\tcout << -1 << \"\\n\";\n\t\treturn 0;\n\t}\n\tint s = find(indeg.begin(),indeg.end(),0)-indeg.begin();\n\tvec<int> dist(N,inf);\n\tqueue<int> Q;\n\tfor(int i=0;i<N;i++){\n\t\tif(SCC.find(i)==s){\n\t\t\tdist[i] = 0;\n\t\t\tQ.push(i);\n\t\t}\n\t}\n\twhile(!Q.empty()){\n\t\tint cur = Q.front(); Q.pop();\n\t\tfor(auto& to:g[cur]){\n\t\t\tif(dist[to]>dist[cur]+1){\n\t\t\t\tdist[to] = dist[cur]+1;\n\t\t\t\tQ.push(to);\n\t\t\t}\n\t\t}\n\t}\n\tint ans = inf;\n\tfor(int i=0;i<N;i++) if(SCC.find(i)==t) ans = min(ans,dist[i]);\n\tnetwork_flow flow(n);\n\tfor(int i=0;i<n;i++){\n\t\tfor(auto& x:cmp_g[i]) flow.add_edge(i,x,1);\n\t}\n\tif(flow.max_flow(s,t)<2){\n\t\tcout << -1 << \"\\n\";\n\t}else{\n\t\tcout << ans << \"\\n\";\n\t}\n}", "accuracy": 0.35135135135135137, "time_ms": 50, "memory_kb": 25896, "score_of_the_acc": -0.2898, "final_rank": 19 }, { "submission_id": "aoj_3183_4847727", "code_snippet": "#include<iostream>\n#include<string>\n#include<cstdio>\n#include<vector>\n#include<cmath>\n#include<algorithm>\n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<utility>\n#include<cassert>\n#include<complex>\n#include<numeric>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\n\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\nconstexpr ll mod = 1000000007;\nconst ll INF = mod * mod;\ntypedef pair<int, int>P;\n#define stop char nyaa;cin>>nyaa;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\n#define all(v) (v).begin(),(v).end()\ntypedef pair<ll, ll> LP;\ntypedef double ld;\ntypedef pair<ld, ld> LDP;\nconst ld eps = 1e-12;\nconst ld pi = acos(-1.0);\n\n\nstruct graph {\nprivate:\n\tint n;\n\tvector<vector<int>> G, rG;\n\tvector<bool> used;\n\tvector<int> vs;\n\n\tint mk;\n\tvector<vector<int>> fG;\n\tvector<vector<int>> ori;\n\tvector<int> trans;\npublic:\n\tgraph(int sz) {\n\t\tn = sz;\n\t\tG.resize(n);\n\t\trG.resize(n);\n\t\tused.resize(n);\n\n\t\tfG.resize(n);\n\t\ttrans.resize(n, -1);\n\t\tori.resize(n);\n\t}\n\tvoid add_edge(int a, int b) {\n\t\tG[a].push_back(b);\n\t\trG[b].push_back(a);\n\t}\n\tvoid dfs(int v) {\n\t\tused[v] = true;\n\t\trep(i, G[v].size()) {\n\t\t\tif (!used[G[v][i]])dfs(G[v][i]);\n\t\t}\n\t\tvs.push_back(v);\n\t}\n\tvoid rdfs(int v, int k) {\n\t\tused[v] = true;\n\t\tqueue<int> q; q.push(v);\n\t\tvector<int> c;\n\t\twhile (!q.empty()) {\n\t\t\tint id = q.front(); q.pop();\n\t\t\tori[k].push_back(id);\n\t\t\trep(j, rG[id].size()) {\n\t\t\t\tint to = rG[id][j];\n\t\t\t\tif (used[to]) {\n\t\t\t\t\tif (trans[to] >= 0)c.push_back(trans[to]);\n\t\t\t\t\tcontinue;\n\t\t\t\t}\n\t\t\t\tused[to] = true; q.push(to);\n\t\t\t}\n\t\t}\n\t\tsort(c.begin(), c.end());\n\t\tint len = unique(c.begin(), c.end()) - c.begin();\n\t\trep(i, len) {\n\t\t\tfG[c[i]].push_back(k);\n\t\t}\n\t\trep(i, ori[k].size()) {\n\t\t\ttrans[ori[k][i]] = k;\n\t\t}\n\t}\n\tvoid scc() {\n\t\tfill(used.begin(), used.end(), false);\n\t\trep(i, n) {\n\t\t\tif (!used[i])dfs(i);\n\t\t}\n\t\tfill(used.begin(), used.end(), false);\n\t\tint k = 0;\n\t\tper(i, (int)vs.size()) {\n\t\t\tif (!used[vs[i]]) {\n\t\t\t\trdfs(vs[i], k); k++;\n\t\t\t}\n\t\t}\n\t\tmk = k;\n\t}\n\tvoid query() {\n\t\tif (mk == 1) {\n\t\t\tcout << 0 << \"\\n\"; return;\n\t\t}\n\t\tvector<int> cnt(mk);\n\t\trep(i, mk)for (int to : fG[i])cnt[to]++;\n\t\tvector<int> sta, goa;\n\t\trep(i, mk) {\n\t\t\tif (fG[i].empty())goa.push_back(i);\n\t\t\tif (cnt[i] == 0)sta.push_back(i);\n\t\t}\n\t\tif (sta.size() > 1 || goa.size() > 1) {\n\t\t\tcout << -1 << \"\\n\"; return;\n\t\t}\n\t\tvector<int> pre(n);\n\t\tvector<int> dist(n, mod);\n\t\tqueue<int> q;\n\t\tfor (int id : ori[sta[0]]) {\n\t\t\tdist[id] = 0; pre[id] = -1;\n\t\t\tq.push(id);\n\t\t}\n\t\twhile (!q.empty()) {\n\t\t\tint v = q.front(); q.pop();\n\t\t\tfor (int to : G[v]) {\n\t\t\t\tif (dist[v] + 1 < dist[to]) {\n\t\t\t\t\tdist[to] = dist[v] + 1;\n\t\t\t\t\tpre[to] = v;\n\t\t\t\t\tq.push(to);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tvector<vector<int>> g(n);\n\t\tvector<int> ban(n,-1);\n\t\tint ans = mod;\n\t\tint las = 0;\n\t\tfor (int id : ori[goa[0]]) {\n\t\t\tif (ans > dist[id]) {\n\t\t\t\tans = dist[id]; las = id;\n\t\t\t}\n\t\t}\n\t\twhile (pre[las]>= 0) {\n\t\t\tint p = pre[las];\n\t\t\tg[las].push_back(p);\n\t\t\tban[p] = las;\n\t\t\tlas = p;\n\t\t}\n\t\trep(i, n)for (int to : G[i])if (ban[i] != to) {\n\t\t\tg[i].push_back(to);\n\t\t}\n\t\tvector<bool> exi(n, false);\n\t\tq.push(las);\n\t\twhile (!q.empty()) {\n\t\t\tint v = q.front(); q.pop();\n\t\t\tfor (int to : g[v])if (!exi[to]) {\n\t\t\t\texi[to] = true;\n\t\t\t\tq.push(to);\n\t\t\t}\n\t\t}\n\t\trep(i, n)if (!exi[i]) {\n\t\t\tcout << -1 << \"\\n\"; return;\n\t\t}\n\t\tcout << ans << \"\\n\";\n\t}\n};\n\n\nvoid solve() {\n\tint n, m; cin >> n >> m;\n\tgraph g(n);\n\trep(i, m) {\n\t\tint a, b; cin >> a >> b; a--; b--;\n\t\tg.add_edge(a, b);\n\t}\n\n\tg.scc();\n\tg.query();\n}\n\n\n\n\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\tsolve();\n\treturn 0;\n}", "accuracy": 1, "time_ms": 100, "memory_kb": 33484, "score_of_the_acc": -0.8911, "final_rank": 3 }, { "submission_id": "aoj_3183_4847565", "code_snippet": "#line 1 \"other/l2.cpp\"\n#include <bits/extc++.h>\n\n#line 5 \"Library/config.hpp\"\nnamespace config {\nconst auto start_time{std::chrono::system_clock::now()};\nint64_t elapsed() {\n using namespace std::chrono;\n const auto end_time{system_clock::now()};\n return duration_cast<milliseconds>(end_time - start_time).count();\n}\n__attribute__((constructor)) void setup() {\n using namespace std;\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(15);\n#ifdef _buffer_check\n atexit([] {\n char bufc;\n if (cin >> bufc)\n cerr << \"\\n\\033[43m\\033[30mwarning: buffer not empty.\\033[0m\\n\\n\";\n });\n#endif\n}\nunsigned cases(void), caseid = 1;\ntemplate <class C> void main() {\n for (const unsigned total = cases(); caseid <= total; ++caseid) C();\n}\n} // namespace config\n#line 3 \"Library/gcc_builtin.hpp\"\nnamespace workspace {\nconstexpr int clz32(const uint32_t &n) noexcept { return __builtin_clz(n); }\nconstexpr int clz64(const uint64_t &n) noexcept{ return __builtin_clzll(n); }\nconstexpr int ctz(const uint64_t &n) noexcept { return __builtin_ctzll(n); }\nconstexpr int popcnt(const uint64_t &n) noexcept { return __builtin_popcountll(n); }\n} // namespace workspace\n#line 2 \"Library/gcc_option.hpp\"\n#ifdef ONLINE_JUDGE\n #pragma GCC optimize(\"O3\")\n #pragma GCC target(\"avx,avx2\")\n #pragma GCC optimize(\"unroll-loops\")\n#endif\n#line 5 \"Library/utils/binary_search.hpp\"\nnamespace workspace {\n// binary search on discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>,\n iter_type>\nbinary_search(iter_type ok, iter_type ng, pred_type pred) {\n assert(ok != ng);\n __int128_t dist(ng - ok);\n while (dist > 1 || dist < -1) {\n iter_type mid(ok + dist / 2);\n if (pred(mid))\n ok = mid, dist -= dist / 2;\n else\n ng = mid, dist /= 2;\n }\n return ok;\n}\n// parallel binary search on discrete range.\ntemplate <class iter_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<iter_type>>,\n std::vector<bool>>,\n std::vector<iter_type>>\nbinary_search(std::vector<std::pair<iter_type, iter_type>> ends,\n pred_type pred) {\n std::vector<iter_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n iter_type mid(ok + (ng - ok) / 2);\n if (mids[i] != mid) {\n all_found = false;\n mids[i] = mid;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n// binary search on real numbers.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<\n std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>,\n real_type>\nbinary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) {\n assert(ok != ng);\n while (ok + eps < ng || ng + eps < ok) {\n real_type mid{(ok + ng) / 2};\n (pred(mid) ? ok : ng) = mid;\n }\n return ok;\n}\n// parallel binary search on real numbers.\ntemplate <class real_type, class pred_type>\nstd::enable_if_t<std::is_convertible_v<\n std::invoke_result_t<pred_type, std::vector<real_type>>,\n std::vector<bool>>,\n std::vector<real_type>>\nbinary_search(std::vector<std::pair<real_type, real_type>> ends,\n const real_type eps, pred_type pred) {\n std::vector<real_type> mids(ends.size());\n for (;;) {\n bool all_found = true;\n for (size_t i{}; i != ends.size(); ++i) {\n auto [ok, ng] = ends[i];\n if (ok + eps < ng || ng + eps < ok) {\n all_found = false;\n mids[i] = (ok + ng) / 2;\n }\n }\n if (all_found) break;\n auto res = pred(mids);\n for (size_t i{}; i != ends.size(); ++i) {\n (res[i] ? ends[i].first : ends[i].second) = mids[i];\n }\n }\n return mids;\n}\n} // namespace workspace\n#line 3 \"Library/utils/casefmt.hpp\"\nnamespace workspace {\nstd::ostream &casefmt(std::ostream& os) { return os << \"Case #\" << config::caseid << \": \"; }\n} // namespace workspace\n#line 3 \"Library/utils/chval.hpp\"\nnamespace workspace {\ntemplate <class T, class Comp = std::less<T>> bool chle(T &x, const T &y, Comp comp = Comp()) { return comp(y, x) ? x = y, true : false; }\ntemplate <class T, class Comp = std::less<T>> bool chge(T &x, const T &y, Comp comp = Comp()) { return comp(x, y) ? x = y, true : false; }\n} // namespace workspace\n#line 3 \"Library/utils/fixed_point.hpp\"\nnamespace workspace {\n// specify the return type of lambda.\ntemplate <class lambda_type>\nclass fixed_point\n{\n lambda_type func;\npublic:\n fixed_point(lambda_type &&f) : func(std::move(f)) {}\n template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); }\n};\n} // namespace workspace\n#line 3 \"Library/utils/sfinae.hpp\"\n#include <type_traits>\n\ntemplate <class type, template <class> class trait>\nusing enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;\n\ntemplate <class Container>\nusing element_type = typename std::decay<decltype(\n *std::begin(std::declval<Container&>()))>::type;\n\ntemplate <class T, class = void> struct is_integral_ext : std::false_type {};\ntemplate <class T>\nstruct is_integral_ext<\n T, typename std::enable_if<std::is_integral<T>::value>::type>\n : std::true_type {};\ntemplate <> struct is_integral_ext<__int128_t> : std::true_type {};\ntemplate <> struct is_integral_ext<__uint128_t> : std::true_type {};\n#if __cplusplus >= 201402\ntemplate <class T>\nconstexpr static bool is_integral_ext_v = is_integral_ext<T>::value;\n#endif\n\ntemplate <typename T, typename = void> struct multiplicable_uint {\n using type = uint_least32_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> {\n using type = uint_least64_t;\n};\ntemplate <typename T>\nstruct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {\n using type = __uint128_t;\n};\n#line 7 \"Library/utils/hash.hpp\"\nnamespace workspace {\ntemplate <class T, class = void>\nstruct hash : std::hash<T> {};\ntemplate <class Unique_bits_type>\nstruct hash<Unique_bits_type, enable_if_trait_type<Unique_bits_type, std::has_unique_object_representations>>\n{\n size_t operator()(uint64_t x) const\n {\n static const uint64_t m = std::random_device{}();\n x ^= x >> 23;\n // x *= 0x2127599bf4325c37ULL;\n x ^= m;\n x ^= x >> 47;\n return x - (x >> 32);\n }\n};\ntemplate <class Key>\nsize_t hash_combine(const size_t &seed, const Key &key)\n{\n return seed ^ (hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */ );\n}\ntemplate <class T1, class T2>\nstruct hash<std::pair<T1, T2>>\n{\n size_t operator()(const std::pair<T1, T2> &pair) const\n {\n return hash_combine(hash<T1>()(pair.first), pair.second);\n }\n};\ntemplate <class... T>\nclass hash<std::tuple<T...>>\n{\n template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1> struct tuple_hash { static uint64_t apply(const Tuple &t) { return hash_combine(tuple_hash<Tuple, index - 1>::apply(t), std::get<index>(t)); } };\n template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> { static uint64_t apply(const Tuple &t) { return 0; } };\npublic:\n uint64_t operator()(const std::tuple<T...> &t) const { return tuple_hash<std::tuple<T...>>::apply(t); }\n};\ntemplate <class hash_table>\nstruct hash_table_wrapper : hash_table\n{\n using key_type = typename hash_table::key_type;\n size_t count(const key_type &key) const { return hash_table::find(key) != hash_table::end(); }\n template <class... Args> auto emplace(Args&&... args) { return hash_table::insert(typename hash_table::value_type(args...)); }\n};\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing cc_hash_table = hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped = __gnu_pbds::null_type>\nusing gp_hash_table = hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;\ntemplate <class Key, class Mapped>\nusing unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;\ntemplate <class Key>\nusing unordered_set = std::unordered_set<Key, hash<Key>>;\n} // namespace workspace\n#line 3 \"Library/utils/make_vector.hpp\"\nnamespace workspace {\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(size_t* sizes, T const& init = T()) {\n if constexpr (N)\n return std::vector(*sizes, make_vector<T, N - 1>(std::next(sizes), init));\n else\n return init;\n}\ntemplate <typename T, size_t N>\nconstexpr auto make_vector(const size_t (&sizes)[N], T const& init = T()) {\n return make_vector<T, N>((size_t*)sizes, init);\n}\n} // namespace workspace\n#line 3 \"Library/utils/read.hpp\"\nnamespace workspace {\n// read with std::cin.\ntemplate <class T = void>\nstruct read\n{\n typename std::remove_const<T>::type value;\n template <class... types>\n read(types... args) : value(args...) { std::cin >> value; }\n operator T() const { return value; }\n};\ntemplate <>\nstruct read<void>\n{\n template <class T>\n operator T() const { T value; std::cin >> value; return value; }\n};\n} // namespace workspace\n#line 4 \"Library/utils/stream.hpp\"\n\n#line 6 \"Library/utils/stream.hpp\"\nnamespace std {\ntemplate <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) {\n return is >> p.first >> p.second;\n}\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n return os << p.first << ' ' << p.second;\n}\ntemplate <class tuple_t, size_t index> struct tuple_is {\n static istream &apply(istream &is, tuple_t &t) {\n tuple_is<tuple_t, index - 1>::apply(is, t);\n return is >> get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_is<tuple_t, SIZE_MAX> {\n static istream &apply(istream &is, tuple_t &t) { return is; }\n};\ntemplate <class... T> istream &operator>>(istream &is, tuple<T...> &t) {\n return tuple_is<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is,\n t);\n}\ntemplate <class tuple_t, size_t index> struct tuple_os {\n static ostream &apply(ostream &os, const tuple_t &t) {\n tuple_os<tuple_t, index - 1>::apply(os, t);\n return os << ' ' << get<index>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, 0> {\n static ostream &apply(ostream &os, const tuple_t &t) {\n return os << get<0>(t);\n }\n};\ntemplate <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {\n static ostream &apply(ostream &os, const tuple_t &t) { return os; }\n};\ntemplate <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) {\n return tuple_os<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os,\n t);\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n istream &>::type\noperator>>(istream &is, Container &cont) {\n for (auto &&e : cont) is >> e;\n return is;\n}\ntemplate <class Container, typename Value = element_type<Container>>\ntypename enable_if<!is_same<typename decay<Container>::type, string>::value &&\n !is_same<typename decay<Container>::type, char *>::value,\n ostream &>::type\noperator<<(ostream &os, const Container &cont) {\n bool head = true;\n for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;\n return os;\n}\n} // namespace std\n#line 14 \"other/l2.cpp\"\nnamespace workspace {\nconstexpr char eol = '\\n';\nusing namespace std;\nusing i32 = int_least32_t;\nusing i64 = int_least64_t;\nusing i128 = __int128_t;\nusing u32 = uint_least32_t;\nusing u64 = uint_least64_t;\nusing u128 = __uint128_t;\ntemplate <class T, class Comp = std::less<T>>\nusing priority_queue = std::priority_queue<T, std::vector<T>, Comp>;\ntemplate <class T> using stack = std::stack<T, std::vector<T>>;\nstruct solver;\n} // namespace workspace\nint main() { config::main<workspace::solver>(); }\nunsigned config::cases() {\n // return -1; // not specified\n // int t; std::cin >> t; return t; // given\n return 1;\n}\n\n#line 4 \"Library/graph/directed/flow/base.hpp\"\n// the base class of flow algorithms.\ntemplate <class cap_t, class cost_t> struct flow_base {\n struct edge_t {\n size_t src, dst;\n cap_t cap;\n cost_t cost;\n edge_t *rev;\n edge_t() = default;\n edge_t(size_t src, size_t dst, cap_t cap, edge_t *rev)\n : src(src), dst(dst), cap(cap), rev(rev) {}\n edge_t(size_t src, size_t dst, cap_t cap, cost_t cost, edge_t *rev)\n : src(src), dst(dst), cap(cap), cost(cost), rev(rev) {}\n void flow(cap_t f) { cap -= f, rev->cap += f; }\n bool avbl() const { return cap > 0; }\n }; // class edge_t\n\n class adj_type {\n edge_t *fst, *lst, *clst;\n\n public:\n template <class... Args> edge_t *emplace(Args &&... args) {\n if (lst == clst) {\n size_t len(clst - fst);\n edge_t *nfst = lst = new edge_t[len << 1];\n for (edge_t *p{fst}; p != clst; ++p, ++lst)\n p->rev->rev = lst, *lst = *p;\n delete[] fst;\n fst = nfst;\n clst = lst + len;\n }\n *lst = edge_t(args...);\n return lst++;\n }\n adj_type() : fst(new edge_t[1]), lst(fst), clst(fst + 1) {}\n ~adj_type() { delete[] fst; }\n edge_t &operator[](size_t i) {\n assert(i < size());\n return *(fst + i);\n }\n size_t size() const { return lst - fst; }\n edge_t *begin() const { return fst; }\n edge_t *end() const { return lst; }\n }; // class adj_type\n\n flow_base(size_t n = 0) : adjs(n) {}\n\n flow_base(const flow_base &other) : adjs(other.size()) {\n for (size_t node{}; node != size(); ++node)\n for (const auto &[src, dst, cap, cost, rev] : other[node])\n if (src == node) {\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, rev->cap, -cost, ptr);\n rev->src = -1;\n } else {\n rev->rev->src = node;\n }\n }\n\n flow_base &operator=(const flow_base &rhs) {\n if (this != &rhs) adjs.swap(flow_base(rhs).adjs);\n return *this;\n }\n\n size_t size() const { return adjs.size(); }\n\n adj_type &operator[](size_t node) {\n assert(node < size());\n return adjs[node];\n }\n const adj_type &operator[](size_t node) const {\n assert(node < size());\n return adjs[node];\n }\n\n virtual void add_edge(size_t src, size_t dst, cap_t cap, cost_t cost) {\n assert(src < size());\n assert(dst < size());\n if (!(cap > 0) || src == dst) return;\n edge_t *ptr = adjs[src].emplace(src, dst, cap, cost, nullptr);\n ptr->rev = adjs[dst].emplace(dst, src, 0, -cost, ptr);\n }\n\n protected:\n std::vector<adj_type> adjs;\n}; // class flow_base\n#line 36 \"other/l2.cpp\"\n\ntemplate <class cap_t = int> class Dinic : public flow_base<cap_t, bool> {\n using base = flow_base<cap_t, bool>;\n using edge_t = typename base::edge_t;\n using base::adjs;\n\n std::vector<size_t> level;\n std::vector<edge_t *> itr;\n constexpr static size_t level_infty = -1;\n\n cap_t dfs(const size_t &src, const size_t &dst, cap_t bound) {\n if (src == dst || bound == 0) return bound;\n cap_t flow(0);\n for (edge_t *&e{itr[dst]}; e != adjs[dst].end(); ++e)\n if (e->rev->avbl() && level[e->dst] < level[dst])\n if (cap_t achv = dfs(src, e->dst, std::min(bound, e->rev->cap));\n achv > 0) {\n e->rev->flow(achv);\n flow += achv, bound -= achv;\n if (bound == 0) break;\n }\n return flow;\n }\n\n public:\n using base::size;\n\n Dinic(size_t n = 0) : base::flow_base(n), level(n, level_infty), itr(n) {}\n\n Dinic(const Dinic &other)\n : base::flow_base(other), level(other.level), itr(other.itr) {}\n\n Dinic &operator=(const Dinic &rhs) {\n if (this != &rhs) base::operator=(rhs), level = rhs.level, itr = rhs.itr;\n return *this;\n }\n\n void add_edge(size_t src, size_t dst, cap_t cap) {\n base::add_edge(src, dst, cap, false);\n }\n\n void add_undirected_edge(size_t src, size_t dst, cap_t cap) {\n base::add_undirected_edge(src, dst, cap, false);\n }\n\n int ans = -1, loop = 0;\n\n cap_t max_flow(size_t src, size_t dst) {\n assert(src < size());\n assert(dst < size());\n cap_t flow(0), bound(0);\n for (const edge_t &e : adjs[src]) bound += e.cap;\n for (std::vector<size_t> que(size());;\n std::fill(level.begin(), level.end(), level_infty)) {\n level[que.front() = src] = 0;\n for (auto ql{que.begin()}, qr{std::next(ql)};\n level[dst] == level_infty && ql != qr; ++ql)\n for (const edge_t &e : adjs[*ql])\n if (e.avbl() && level[e.dst] == level_infty)\n level[ *qr++ = e.dst] = level[*ql] + 1;\n if (level[dst] == level_infty) break;\n for (size_t node{}; node != size(); ++node)\n itr[node] = adjs[node].begin();\n flow += dfs(src, dst, bound);\n if (ans < 0 || (int)level[dst] < ans) ans = level[dst];\n loop++;\n }\n return flow;\n }\n}; // class Dinic\n\n#line 5 \"Library/graph/directed/strongly_connected_components.hpp\"\nstruct strongly_connected_components {\n strongly_connected_components(size_t n) : graph(n), low(n), made() {}\n\n // add an edge from the vertex s to the vertex t.\n void add_edge(size_t src, size_t dst) {\n assert(src < size());\n assert(dst < size());\n graph[src].emplace_back(dst);\n made = false;\n }\n\n // the number of the components.\n size_t count() {\n make();\n return comp_cnt;\n }\n\n size_t size() const { return graph.size(); }\n\n // the component which the vertex v belongs to.\n size_t operator[](size_t v) {\n make();\n return low[v];\n }\n\n // the directed acyclic graph consisting of the components.\n const std::vector<std::vector<size_t>> &shrinked_dag() {\n make();\n return dag;\n }\n\n protected:\n std::vector<std::vector<size_t>> graph, dag;\n std::vector<size_t> low;\n size_t comp_cnt;\n bool made;\n\n void make() {\n if (made) return;\n made = true, comp_cnt = 0;\n low.assign(size(), 0);\n size_t *itr = new size_t[size()];\n bool *const used = new bool[size()];\n for (size_t v{}, c{}; v != size(); ++v) affix(v, c, itr, used + size());\n delete[] itr;\n delete[] used;\n for (auto &e : low) e += comp_cnt;\n reverse(begin(dag), end(dag));\n for (auto &arcs : dag)\n for (auto &to : arcs) to += comp_cnt;\n }\n\n size_t affix(size_t src, size_t &c, size_t *&itr, bool *used) {\n if (low[src]) return low[src];\n size_t idx = ++c;\n low[src] = idx;\n *itr++ = src;\n for (size_t dst : graph[src])\n low[src] = std::min(low[src], affix(dst, c, itr, used));\n if (low[src] == idx) {\n ++comp_cnt;\n used[-comp_cnt] = true;\n dag.emplace_back(0);\n auto srcp = itr;\n do {\n low[*--srcp] = -comp_cnt;\n } while (*srcp != src);\n while (itr != srcp) {\n auto now = *--itr;\n for (auto to : graph[now]) {\n if (!used[(int)low[to]]) {\n dag.back().emplace_back(low[to]);\n used[(int)low[to]] = true;\n }\n }\n }\n for (int c : dag.back()) used[c] = false;\n used[-comp_cnt] = false;\n return idx;\n }\n return low[src];\n }\n}; // class strongly_connected_components\n#line 108 \"other/l2.cpp\"\n\nstruct workspace::solver {\n solver() {\n // start here!\n int n, m;\n cin >> n >> m;\n Dinic<int> dinic(n + 2);\n strongly_connected_components scc(n);\n for (int i = 0; i < m; i++) {\n int a, b;\n cin >> a >> b;\n --a, --b;\n scc.add_edge(a, b);\n dinic.add_edge(a, b, 1);\n }\n\n const auto &dag = scc.shrinked_dag();\n const int cn = dag.size();\n vector<int> ind(cn), oud(cn);\n int src = -1, dst = -1;\n for (int i = 0; i < cn; i++) {\n if (dag[i].empty()) {\n if (~dst) {\n cout << -1 << eol;\n return;\n }\n dst = i;\n }\n for (int j : dag[i]) ind[j]++;\n }\n for (int i = 0; i < cn; i++) {\n if (!ind[i]) {\n if (~src) {\n cout << -1 << eol;\n return;\n }\n src = i;\n }\n }\n\n if (scc.count() == 1) {\n cout << \"0\\n\";\n return;\n }\n\n const int fsrc = n + 1, fdst = n;\n for (int i = 0; i < n; i++) {\n if (scc[i] == src) {\n dinic.add_edge(fsrc, i, 2);\n } else if (scc[i] == dst) {\n dinic.add_edge(i, fdst, 2);\n }\n }\n\n if (dinic.max_flow(fsrc, fdst) < 2) {\n cout << \"-1\\n\";\n } else {\n cout << dinic.ans - 2 << eol;\n }\n }\n};", "accuracy": 1, "time_ms": 50, "memory_kb": 34532, "score_of_the_acc": -0.5948, "final_rank": 2 }, { "submission_id": "aoj_3183_4846707", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\n// arg : S, state : T, ret : U\n// void pre(int id, S &arg, T &state)\n// pair<int, S> in(int id, int prechild, U ret, S &arg, T &state)\n// U post(int id, S &arg, T &state)\ntemplate <typename S, typename T, typename U>\nU non_rec_dfs(int n, int start, S start_arg, function<void(int, S &, T &)> pre,\n function<pair<int, S>(int, int, U, S &, T &)> in,\n function<U(int, S &, T &)> post) {\n stack<pair<int, int>> st;\n vector<int> prech(n, -1);\n vector<S> arg(n);\n vector<T> state(n);\n vector<U> ret(n);\n st.emplace(start, 0);\n arg[start] = start_arg;\n while (!st.empty()) {\n auto p = st.top();\n int now = p.first;\n int mode = p.second;\n st.pop();\n if (mode == 0) {\n pre(now, arg[now], state[now]);\n st.emplace(now, 1);\n } else if (mode == 1) {\n pair<int, S> call =\n in(now, prech[now], ret[prech[now]], arg[now], state[now]);\n int nxt = call.first;\n arg[nxt] = call.second;\n if (nxt != -1) {\n prech[now] = nxt;\n st.emplace(now, 1);\n st.emplace(nxt, 0);\n } else {\n st.emplace(now, 2);\n }\n } else {\n ret[now] = post(now, arg[now], state[now]);\n }\n }\n return ret[start];\n}\n\nint n, m;\nvector<vector<int>> e, re;\nvector<int> num;\n\nvoid assign(vector<vector<int>> &edge) {\n struct sta {\n int idx;\n };\n num = vector<int>(n, -2);\n int tmp = 0;\n for (int i = 0; i < n; i++) {\n if (num[i] == -2) {\n tmp = non_rec_dfs<int, sta, int>(\n n, i, tmp,\n [&](int x, int &arg, sta &state) {\n num[x] = -1;\n state.idx = 0;\n return;\n },\n [&](int x, int prech, int ret, int &arg, sta &state) {\n if (prech != -1) arg = ret;\n for (; state.idx < edge[x].size(); state.idx++) {\n if (num[edge[x][state.idx]] == -2)\n return pair<int, int>(edge[x][state.idx++], arg);\n }\n return pair<int, int>(-1, 0);\n },\n [&](int x, int &arg, sta &state) {\n num[x] = arg;\n return arg + 1;\n });\n }\n }\n}\n\nint main() {\n cin >> n >> m;\n e = re = vector<vector<int>>(n);\n for (int i = 0; i < m; i++) {\n int u, v;\n cin >> u >> v;\n u--, v--;\n e[u].push_back(v);\n re[v].push_back(u);\n }\n\n vector<int> d(n, -1);\n\n assign(e);\n vector<int> v(n);\n iota(v.begin(), v.end(), 0);\n sort(v.begin(), v.end(),\n [&](const int &l, const int &r) { return num[l] > num[r]; });\n queue<int> q, bfs;\n int start = v[0];\n d[v[0]] = 0;\n q.push(v[0]);\n bfs.push(v[0]);\n while (!q.empty()) {\n int now = q.front();\n q.pop();\n for (auto x : re[now]) {\n if (d[x] != -1) continue;\n d[x] = 0;\n q.push(x);\n bfs.push(x);\n }\n }\n\n if (bfs.size() == n) {\n cout << 0 << endl;\n return 0;\n }\n\n assign(re);\n sort(v.begin(), v.end(),\n [&](const int &l, const int &r) { return num[l] > num[r]; });\n d[v[0]] = -2;\n q.push(v[0]);\n while (!q.empty()) {\n int now = q.front();\n q.pop();\n for (auto x : e[now]) {\n if (d[x] != -1) continue;\n d[x] = -2;\n q.push(x);\n }\n }\n\n vector<int> par(n, -1);\n int g = -1;\n while (!bfs.empty()) {\n int now = bfs.front();\n bfs.pop();\n for (auto x : e[now]) {\n if (d[x] >= 0) continue;\n par[x] = now;\n if (d[x] == -2) {\n d[x] = d[now] + 1;\n g = x;\n goto found;\n }\n d[x] = d[now] + 1;\n bfs.push(x);\n }\n }\n\n cout << -1 << endl;\n return 0;\n\nfound:;\n int ans = d[g];\n set<pair<int, int>> st;\n while (par[g] != -1) {\n st.emplace(par[g], g);\n g = par[g];\n }\n\n vector<vector<int>> ne, nre;\n ne = nre = vector<vector<int>>(n);\n for (int u = 0; u < n; u++) {\n for (auto &v : e[u]) {\n if (st.find({u, v}) == st.end()) {\n ne[u].push_back(v);\n nre[v].push_back(u);\n } else {\n ne[v].push_back(u);\n nre[u].push_back(v);\n }\n }\n }\n\n assign(ne);\n sort(v.begin(), v.end(),\n [&](const int &l, const int &r) { return num[l] > num[r]; });\n int count = 1;\n d = vector<int>(n, false);\n d[v[0]] = true;\n q.push(v[0]);\n while (!q.empty()) {\n int now = q.front();\n q.pop();\n for (auto x : nre[now]) {\n if (d[x]) continue;\n count++;\n d[x] = true;\n q.push(x);\n }\n }\n\n if (count == n)\n cout << ans << endl;\n else\n cout << -1 << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 31084, "score_of_the_acc": -1.3397, "final_rank": 9 }, { "submission_id": "aoj_3183_4846588", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n// const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T = int >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge() = default;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n int es;\n\n Graph() = default;\n\n explicit Graph(int n) : g(n), es(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es++);\n }\n\n void add_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es);\n g[to].emplace_back(to, from, cost, es++);\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_directed_edge(a, b, c);\n else add_edge(a, b, c);\n }\n }\n};\n\ntemplate< typename T = int >\nusing Edges = vector< Edge< T > >;\n\n/**\n * @brief Strongly-Connected-Components(強連結成分分解)\n */\ntemplate< typename T = int >\nstruct StronglyConnectedComponents : Graph< T > {\npublic:\n using Graph< T >::Graph;\n using Graph< T >::g;\n vector< int > comp;\n Graph< T > dag;\n vector< vector< int > > group;\n\n void build() {\n rg = Graph< T >(g.size());\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n rg.add_directed_edge(e.to, e.from, e.cost);\n }\n }\n comp.assign(g.size(), -1);\n used.assign(g.size(), 0);\n for(int i = 0; i < g.size(); i++) dfs(i);\n reverse(begin(order), end(order));\n int ptr = 0;\n for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;\n dag = Graph< T >(ptr);\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n int x = comp[e.from], y = comp[e.to];\n if(x == y) continue;\n dag.add_directed_edge(x, y, e.cost);\n }\n }\n group.resize(ptr);\n for(int i = 0; i < g.size(); i++) {\n group[comp[i]].emplace_back(i);\n }\n }\n\n int operator[](int k) const {\n return comp[k];\n }\n\nprivate:\n vector< int > order, used;\n Graph< T > rg;\n\n void dfs(int idx) {\n if(exchange(used[idx], true)) return;\n for(auto &to : g[idx]) dfs(to);\n order.push_back(idx);\n }\n\n void rdfs(int idx, int cnt) {\n if(comp[idx] != -1) return;\n comp[idx] = cnt;\n for(auto &to : rg.g[idx]) rdfs(to, cnt);\n }\n};\n\n\n/**\n * @brief Ford-Fulkerson(最大流)\n * @docs docs/ford-fulkerson.md\n */\ntemplate< typename flow_t >\nstruct FordFulkerson {\n struct edge {\n int to;\n flow_t cap;\n int rev;\n bool isrev;\n int idx;\n };\n\n vector< vector< edge > > graph;\n vector< int > used;\n const flow_t INF;\n int timestamp;\n\n explicit FordFulkerson(int V) : INF(numeric_limits< flow_t >::max()), graph(V), used(V, -1), timestamp(0) {}\n\n void add_edge(int from, int to, flow_t cap, int idx = -1) {\n graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx});\n graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx});\n }\n\n flow_t find_augment_path(int idx, const int t, flow_t flow) {\n if(idx == t) return flow;\n used[idx] = timestamp;\n for(auto &e : graph[idx]) {\n if(e.cap > 0 && used[e.to] != timestamp) {\n flow_t d = find_augment_path(e.to, t, min(flow, e.cap));\n if(d > 0) {\n e.cap -= d;\n graph[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n\n flow_t max_flow(int s, int t) {\n flow_t flow = 0;\n for(flow_t f; (f = find_augment_path(s, t, INF)) > 0; timestamp++) {\n flow += f;\n if(flow >= 2) break;\n }\n return flow;\n }\n\n void output() {\n for(int i = 0; i < graph.size(); i++) {\n for(auto &e : graph[i]) {\n if(e.isrev) continue;\n auto &rev_e = graph[e.to][e.rev];\n cout << i << \"->\" << e.to << \" (flow: \" << rev_e.cap << \"/\" << e.cap + rev_e.cap << \")\" << endl;\n }\n }\n }\n};\n\n/**\n * @brief Dijkstra(単一始点最短路)\n * @docs docs/dijkstra.md\n */\ntemplate< typename T >\nstruct ShortestPath {\n vector< T > dist;\n vector< int > from, id;\n};\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector< int > A(M), B(M);\n Graph<> rg(N);\n StronglyConnectedComponents<> scc(N);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i];\n --A[i], --B[i];\n scc.add_directed_edge(A[i], B[i]);\n rg.add_directed_edge(B[i], A[i]);\n }\n scc.build();\n if(scc.dag.size() == 1) {\n cout << 0 << \"\\n\";\n exit(0);\n }\n vector< int > in(N), out(N);\n for(int i = 0; i < scc.dag.size(); i++) {\n if(scc.dag.g[i].size()) {\n in[i] = true;\n }\n for(auto &t : scc.dag.g[i]) {\n out[t] = true;\n }\n }\n\n vector< int > latte, malta;\n for(int i = 0; i < scc.dag.size(); i++) {\n if(!in[i]) {\n latte.emplace_back(i);\n }\n if(!out[i]) {\n malta.emplace_back(i);\n }\n }\n if(latte.size() != 1 && malta.size() != 1) {\n cout << -1 << \"\\n\";\n exit(0);\n }\n\n\n FordFulkerson< int > flow(N + 2);\n for(int i = 0; i < M; i++) {\n flow.add_edge(A[i], B[i], 1);\n }\n for(auto &p : scc.group[malta[0]]) {\n flow.add_edge(N, p, inf);\n }\n for(auto &p : scc.group[latte[0]]) {\n flow.add_edge(p, N + 1, inf);\n }\n if(flow.max_flow(N, N + 1) <= 1) {\n cout << \"-1\\n\";\n exit(0);\n }\n\n\n using T = int;\n const auto INF = numeric_limits< T >::max();\n vector< T > dist(scc.size(), INF);\n vector< int > from(scc.size(), -1), id(scc.size(), -1);\n using Pi = pair< T, int >;\n priority_queue< Pi, vector< Pi >, greater<> > que;\n for(auto &p : scc.group[latte[0]]) {\n dist[p] = 0;\n que.emplace(0, p);\n }\n while(!que.empty()) {\n T cost;\n int idx;\n tie(cost, idx) = que.top();\n que.pop();\n if(dist[idx] < cost) continue;\n for(auto &e : rg.g[idx]) {\n auto next_cost = cost + e.cost;\n if(dist[e.to] <= next_cost) continue;\n dist[e.to] = next_cost;\n from[e.to] = idx;\n id[e.to] = e.idx;\n que.emplace(dist[e.to], e.to);\n }\n }\n int ans = inf;\n for(auto &p : scc.group[malta[0]]) {\n chmin(ans, dist[p]);\n }\n if(ans >= inf) ans = -1;\n cout << ans << \"\\n\";\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 46852, "score_of_the_acc": -1.1631, "final_rank": 6 }, { "submission_id": "aoj_3183_4846582", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n// const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T = int >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge() = default;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n int es;\n\n Graph() = default;\n\n explicit Graph(int n) : g(n), es(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es++);\n }\n\n void add_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es);\n g[to].emplace_back(to, from, cost, es++);\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_directed_edge(a, b, c);\n else add_edge(a, b, c);\n }\n }\n};\n\ntemplate< typename T = int >\nusing Edges = vector< Edge< T > >;\n\n/**\n * @brief Strongly-Connected-Components(強連結成分分解)\n */\ntemplate< typename T = int >\nstruct StronglyConnectedComponents : Graph< T > {\npublic:\n using Graph< T >::Graph;\n using Graph< T >::g;\n vector< int > comp;\n Graph< T > dag;\n vector< vector< int > > group;\n\n void build() {\n rg = Graph< T >(g.size());\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n rg.add_directed_edge(e.to, e.from, e.cost);\n }\n }\n comp.assign(g.size(), -1);\n used.assign(g.size(), 0);\n for(int i = 0; i < g.size(); i++) dfs(i);\n reverse(begin(order), end(order));\n int ptr = 0;\n for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;\n dag = Graph< T >(ptr);\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n int x = comp[e.from], y = comp[e.to];\n if(x == y) continue;\n dag.add_directed_edge(x, y, e.cost);\n }\n }\n group.resize(ptr);\n for(int i = 0; i < g.size(); i++) {\n group[comp[i]].emplace_back(i);\n }\n }\n\n int operator[](int k) const {\n return comp[k];\n }\n\nprivate:\n vector< int > order, used;\n Graph< T > rg;\n\n void dfs(int idx) {\n if(exchange(used[idx], true)) return;\n for(auto &to : g[idx]) dfs(to);\n order.push_back(idx);\n }\n\n void rdfs(int idx, int cnt) {\n if(comp[idx] != -1) return;\n comp[idx] = cnt;\n for(auto &to : rg.g[idx]) rdfs(to, cnt);\n }\n};\n\n\n/**\n * @brief Ford-Fulkerson(最大流)\n * @docs docs/ford-fulkerson.md\n */\ntemplate< typename flow_t >\nstruct FordFulkerson {\n struct edge {\n int to;\n flow_t cap;\n int rev;\n bool isrev;\n int idx;\n };\n\n vector< vector< edge > > graph;\n vector< int > used;\n const flow_t INF;\n int timestamp;\n\n explicit FordFulkerson(int V) : INF(numeric_limits< flow_t >::max()), graph(V), used(V, -1), timestamp(0) {}\n\n void add_edge(int from, int to, flow_t cap, int idx = -1) {\n graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx});\n graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx});\n }\n\n flow_t find_augment_path(int idx, const int t, flow_t flow) {\n if(idx == t) return flow;\n used[idx] = timestamp;\n for(auto &e : graph[idx]) {\n if(e.cap > 0 && used[e.to] != timestamp) {\n flow_t d = find_augment_path(e.to, t, min(flow, e.cap));\n if(d > 0) {\n e.cap -= d;\n graph[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n\n flow_t max_flow(int s, int t) {\n flow_t flow = 0;\n for(flow_t f; (f = find_augment_path(s, t, INF)) > 0; timestamp++) {\n flow += f;\n }\n return flow;\n }\n\n void output() {\n for(int i = 0; i < graph.size(); i++) {\n for(auto &e : graph[i]) {\n if(e.isrev) continue;\n auto &rev_e = graph[e.to][e.rev];\n cout << i << \"->\" << e.to << \" (flow: \" << rev_e.cap << \"/\" << e.cap + rev_e.cap << \")\" << endl;\n }\n }\n }\n};\n\n/**\n * @brief Dijkstra(単一始点最短路)\n * @docs docs/dijkstra.md\n */\ntemplate< typename T >\nstruct ShortestPath {\n vector< T > dist;\n vector< int > from, id;\n};\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector< int > A(M), B(M);\n Graph<> rg(N);\n StronglyConnectedComponents<> scc(N);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i];\n --A[i], --B[i];\n scc.add_directed_edge(A[i], B[i]);\n rg.add_directed_edge(B[i], A[i]);\n }\n scc.build();\n if(scc.dag.size() == 1) {\n cout << 0 << \"\\n\";\n exit(0);\n }\n vector< int > in(N), out(N);\n for(int i = 0; i < scc.dag.size(); i++) {\n if(scc.dag.g[i].size()) {\n in[i] = true;\n }\n for(auto &t : scc.dag.g[i]) {\n out[t] = true;\n }\n }\n\n vector< int > latte, malta;\n for(int i = 0; i < scc.dag.size(); i++) {\n if(!in[i]) {\n latte.emplace_back(i);\n }\n if(!out[i]) {\n malta.emplace_back(i);\n }\n }\n if(latte.size() != 1 && malta.size() != 1) {\n cout << -1 << \"\\n\";\n exit(0);\n }\n\n\n FordFulkerson< int > flow(scc.dag.size());\n for(int i = 0; i < scc.dag.size(); i++) {\n for(auto &p : scc.dag.g[i]) {\n flow.add_edge(i, p, 1);\n }\n }\n if(flow.max_flow(malta[0], latte[0]) <= 1) {\n cout << \"-1\\n\";\n exit(0);\n }\n\n\n using T = int;\n const auto INF = numeric_limits< T >::max();\n vector< T > dist(scc.size(), INF);\n vector< int > from(scc.size(), -1), id(scc.size(), -1);\n using Pi = pair< T, int >;\n priority_queue< Pi, vector< Pi >, greater<> > que;\n for(auto &p : scc.group[latte[0]]) {\n dist[p] = 0;\n que.emplace(0, p);\n }\n while(!que.empty()) {\n T cost;\n int idx;\n tie(cost, idx) = que.top();\n que.pop();\n if(dist[idx] < cost) continue;\n for(auto &e : rg.g[idx]) {\n auto next_cost = cost + e.cost;\n if(dist[e.to] <= next_cost) continue;\n dist[e.to] = next_cost;\n from[e.to] = idx;\n id[e.to] = e.idx;\n que.emplace(dist[e.to], e.to);\n }\n }\n int ans = inf;\n for(auto &p : scc.group[malta[0]]) {\n chmin(ans, dist[p]);\n }\n cout << ans << \"\\n\";\n}", "accuracy": 0.35135135135135137, "time_ms": 30, "memory_kb": 26864, "score_of_the_acc": -0.1907, "final_rank": 18 }, { "submission_id": "aoj_3183_4846573", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n// const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T = int >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge() = default;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n int es;\n\n Graph() = default;\n\n explicit Graph(int n) : g(n), es(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es++);\n }\n\n void add_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es);\n g[to].emplace_back(to, from, cost, es++);\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_directed_edge(a, b, c);\n else add_edge(a, b, c);\n }\n }\n};\n\ntemplate< typename T = int >\nusing Edges = vector< Edge< T > >;\n\n/**\n * @brief Strongly-Connected-Components(強連結成分分解)\n */\ntemplate< typename T = int >\nstruct StronglyConnectedComponents : Graph< T > {\npublic:\n using Graph< T >::Graph;\n using Graph< T >::g;\n vector< int > comp;\n Graph< T > dag;\n vector< vector< int > > group;\n\n void build() {\n rg = Graph< T >(g.size());\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n rg.add_directed_edge(e.to, e.from, e.cost);\n }\n }\n comp.assign(g.size(), -1);\n used.assign(g.size(), 0);\n for(int i = 0; i < g.size(); i++) dfs(i);\n reverse(begin(order), end(order));\n int ptr = 0;\n for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;\n dag = Graph< T >(ptr);\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n int x = comp[e.from], y = comp[e.to];\n if(x == y) continue;\n dag.add_directed_edge(x, y, e.cost);\n }\n }\n group.resize(ptr);\n for(int i = 0; i < g.size(); i++) {\n group[comp[i]].emplace_back(i);\n }\n }\n\n int operator[](int k) const {\n return comp[k];\n }\n\nprivate:\n vector< int > order, used;\n Graph< T > rg;\n\n void dfs(int idx) {\n if(exchange(used[idx], true)) return;\n for(auto &to : g[idx]) dfs(to);\n order.push_back(idx);\n }\n\n void rdfs(int idx, int cnt) {\n if(comp[idx] != -1) return;\n comp[idx] = cnt;\n for(auto &to : rg.g[idx]) rdfs(to, cnt);\n }\n};\n\n\n/**\n * @brief Ford-Fulkerson(最大流)\n * @docs docs/ford-fulkerson.md\n */\ntemplate< typename flow_t >\nstruct FordFulkerson {\n struct edge {\n int to;\n flow_t cap;\n int rev;\n bool isrev;\n int idx;\n };\n\n vector< vector< edge > > graph;\n vector< int > used;\n const flow_t INF;\n int timestamp;\n\n explicit FordFulkerson(int V) : INF(numeric_limits< flow_t >::max()), graph(V), used(V, -1), timestamp(0) {}\n\n void add_edge(int from, int to, flow_t cap, int idx = -1) {\n graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx});\n graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx});\n }\n\n flow_t find_augment_path(int idx, const int t, flow_t flow) {\n if(idx == t) return flow;\n used[idx] = timestamp;\n for(auto &e : graph[idx]) {\n if(e.cap > 0 && used[e.to] != timestamp) {\n flow_t d = find_augment_path(e.to, t, min(flow, e.cap));\n if(d > 0) {\n e.cap -= d;\n graph[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n\n flow_t max_flow(int s, int t) {\n flow_t flow = 0;\n for(flow_t f; (f = find_augment_path(s, t, INF)) > 0; timestamp++) {\n flow += f;\n }\n return flow;\n }\n\n void output() {\n for(int i = 0; i < graph.size(); i++) {\n for(auto &e : graph[i]) {\n if(e.isrev) continue;\n auto &rev_e = graph[e.to][e.rev];\n cout << i << \"->\" << e.to << \" (flow: \" << rev_e.cap << \"/\" << e.cap + rev_e.cap << \")\" << endl;\n }\n }\n }\n};\n\n/**\n * @brief Dijkstra(単一始点最短路)\n * @docs docs/dijkstra.md\n */\ntemplate< typename T >\nstruct ShortestPath {\n vector< T > dist;\n vector< int > from, id;\n};\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector< int > A(M), B(M);\n Graph<> rg(N);\n StronglyConnectedComponents<> scc(N);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i];\n --A[i], --B[i];\n scc.add_directed_edge(A[i], B[i]);\n rg.add_directed_edge(B[i], A[i]);\n }\n scc.build();\n if(scc.dag.size() == 1) {\n cout << 0 << \"\\n\";\n exit(0);\n }\n vector< int > in(N), out(N);\n for(int i = 0; i < scc.dag.size(); i++) {\n if(scc.dag.g[i].size()) {\n in[i] = true;\n }\n for(auto &t : scc.dag.g[i]) {\n out[t] = true;\n }\n }\n\n vector< int > latte, malta;\n for(int i = 0; i < scc.size(); i++) {\n if(!in[i]) {\n latte.emplace_back(i);\n }\n if(!out[i]) {\n malta.emplace_back(i);\n }\n }\n if(latte.size() != 1 && malta.size() != 1) {\n cout << -1 << \"\\n\";\n exit(0);\n }\n\n\n FordFulkerson< int > flow(scc.size());\n for(int i = 0; i < scc.size(); i++) {\n for(auto &p : scc.dag.g[i]) {\n flow.add_edge(i, p, 1);\n }\n }\n if(flow.max_flow(malta[0], latte[0]) <= 1) {\n cout << \"-1\\n\";\n exit(0);\n }\n\n\n using T = int;\n const auto INF = numeric_limits< T >::max();\n vector< T > dist(scc.size(), INF);\n vector< int > from(scc.size(), -1), id(scc.size(), -1);\n using Pi = pair< T, int >;\n priority_queue< Pi, vector< Pi >, greater<> > que;\n for(auto &p : scc.group[latte[0]]) {\n dist[p] = 0;\n que.emplace(0, p);\n }\n while(!que.empty()) {\n T cost;\n int idx;\n tie(cost, idx) = que.top();\n que.pop();\n if(dist[idx] < cost) continue;\n for(auto &e : rg.g[idx]) {\n auto next_cost = cost + e.cost;\n if(dist[e.to] <= next_cost) continue;\n dist[e.to] = next_cost;\n from[e.to] = idx;\n id[e.to] = e.idx;\n que.emplace(dist[e.to], e.to);\n }\n }\n int ans = inf;\n for(auto &p : scc.group[malta[0]]) {\n chmin(ans, dist[p]);\n }\n cout << ans << \"\\n\";\n}", "accuracy": 0.5, "time_ms": 40, "memory_kb": 30020, "score_of_the_acc": -0.3688, "final_rank": 12 }, { "submission_id": "aoj_3183_4846558", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n// const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T = int >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge() = default;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n int es;\n\n Graph() = default;\n\n explicit Graph(int n) : g(n), es(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es++);\n }\n\n void add_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es);\n g[to].emplace_back(to, from, cost, es++);\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_directed_edge(a, b, c);\n else add_edge(a, b, c);\n }\n }\n};\n\ntemplate< typename T = int >\nusing Edges = vector< Edge< T > >;\n\n/**\n * @brief Strongly-Connected-Components(強連結成分分解)\n */\ntemplate< typename T = int >\nstruct StronglyConnectedComponents : Graph< T > {\npublic:\n using Graph< T >::Graph;\n using Graph< T >::g;\n vector< int > comp;\n Graph< T > dag;\n vector< vector< int > > group;\n\n void build() {\n rg = Graph< T >(g.size());\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n rg.add_directed_edge(e.to, e.from, e.cost);\n }\n }\n comp.assign(g.size(), -1);\n used.assign(g.size(), 0);\n for(int i = 0; i < g.size(); i++) dfs(i);\n reverse(begin(order), end(order));\n int ptr = 0;\n for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;\n dag = Graph< T >(ptr);\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n int x = comp[e.from], y = comp[e.to];\n if(x == y) continue;\n dag.add_directed_edge(x, y, e.cost);\n }\n }\n group.resize(ptr);\n for(int i = 0; i < g.size(); i++) {\n group[comp[i]].emplace_back(i);\n }\n }\n\n int operator[](int k) const {\n return comp[k];\n }\n\nprivate:\n vector< int > order, used;\n Graph< T > rg;\n\n void dfs(int idx) {\n if(exchange(used[idx], true)) return;\n for(auto &to : g[idx]) dfs(to);\n order.push_back(idx);\n }\n\n void rdfs(int idx, int cnt) {\n if(comp[idx] != -1) return;\n comp[idx] = cnt;\n for(auto &to : rg.g[idx]) rdfs(to, cnt);\n }\n};\n\n\n/**\n * @brief Ford-Fulkerson(最大流)\n * @docs docs/ford-fulkerson.md\n */\ntemplate< typename flow_t >\nstruct FordFulkerson {\n struct edge {\n int to;\n flow_t cap;\n int rev;\n bool isrev;\n int idx;\n };\n\n vector< vector< edge > > graph;\n vector< int > used;\n const flow_t INF;\n int timestamp;\n\n explicit FordFulkerson(int V) : INF(numeric_limits< flow_t >::max()), graph(V), used(V, -1), timestamp(0) {}\n\n void add_edge(int from, int to, flow_t cap, int idx = -1) {\n graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx});\n graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx});\n }\n\n flow_t find_augment_path(int idx, const int t, flow_t flow) {\n if(idx == t) return flow;\n used[idx] = timestamp;\n for(auto &e : graph[idx]) {\n if(e.cap > 0 && used[e.to] != timestamp) {\n flow_t d = find_augment_path(e.to, t, min(flow, e.cap));\n if(d > 0) {\n e.cap -= d;\n graph[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n\n flow_t max_flow(int s, int t) {\n flow_t flow = 0;\n for(flow_t f; (f = find_augment_path(s, t, INF)) > 0; timestamp++) {\n flow += f;\n if(flow >= 2) break;\n }\n return flow;\n }\n\n void output() {\n for(int i = 0; i < graph.size(); i++) {\n for(auto &e : graph[i]) {\n if(e.isrev) continue;\n auto &rev_e = graph[e.to][e.rev];\n cout << i << \"->\" << e.to << \" (flow: \" << rev_e.cap << \"/\" << e.cap + rev_e.cap << \")\" << endl;\n }\n }\n }\n};\n\n/**\n * @brief Dijkstra(単一始点最短路)\n * @docs docs/dijkstra.md\n */\ntemplate< typename T >\nstruct ShortestPath {\n vector< T > dist;\n vector< int > from, id;\n};\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector< int > A(M), B(M);\n Graph<> rg(N);\n StronglyConnectedComponents<> scc(N);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i];\n --A[i], --B[i];\n scc.add_directed_edge(A[i], B[i]);\n rg.add_directed_edge(B[i], A[i]);\n }\n scc.build();\n if(scc.dag.size() == 1) {\n cout << 0 << \"\\n\";\n exit(0);\n }\n vector< int > in(N), out(N);\n for(int i = 0; i < scc.dag.size(); i++) {\n if(scc.dag.g[i].size()) {\n in[i] = true;\n }\n for(auto &t : scc.dag.g[i]) {\n out[t] = true;\n }\n }\n\n vector< int > latte, malta;\n for(int i = 0; i < N; i++) {\n if(!in[i]) {\n latte.emplace_back(i);\n }\n if(!out[i]) {\n malta.emplace_back(i);\n }\n }\n if(latte.size() != 1 && malta.size() != 1) {\n cout << -1 << \"\\n\";\n exit(0);\n }\n\n\n FordFulkerson< int > flow(N + 2);\n for(int i = 0; i < M; i++) {\n flow.add_edge(A[i], B[i], 1);\n }\n for(auto &p : scc.group[malta[0]]) {\n flow.add_edge(N, p, inf);\n }\n for(auto &p : scc.group[latte[0]]) {\n flow.add_edge(p, N + 1, inf);\n }\n if(flow.max_flow(N, N + 1) <= 1) {\n cout << \"-1\\n\";\n exit(0);\n }\n\n\n using T = int;\n const auto INF = numeric_limits< T >::max();\n vector< T > dist(scc.size(), INF);\n vector< int > from(scc.size(), -1), id(scc.size(), -1);\n using Pi = pair< T, int >;\n priority_queue< Pi, vector< Pi >, greater<> > que;\n for(auto &p : scc.group[latte[0]]) {\n dist[p] = 0;\n que.emplace(0, p);\n }\n while(!que.empty()) {\n T cost;\n int idx;\n tie(cost, idx) = que.top();\n que.pop();\n if(dist[idx] < cost) continue;\n for(auto &e : rg.g[idx]) {\n auto next_cost = cost + e.cost;\n if(dist[e.to] <= next_cost) continue;\n dist[e.to] = next_cost;\n from[e.to] = idx;\n id[e.to] = e.idx;\n que.emplace(dist[e.to], e.to);\n }\n }\n int ans = inf;\n for(auto &p : scc.group[malta[0]]) {\n chmin(ans, dist[p]);\n }\n if(ans >= inf) ans = -1;\n cout << ans << \"\\n\";\n}", "accuracy": 0.5, "time_ms": 50, "memory_kb": 30508, "score_of_the_acc": -0.4527, "final_rank": 15 }, { "submission_id": "aoj_3183_4846412", "code_snippet": "#include <bits/stdc++.h>\n\n// #include <atcoder/all>\n\nusing namespace std;\n// using namespace atcoder;\n \n#define DEBUG(x) cerr<<#x<<\": \"<<x<<endl;\n#define DEBUG_VEC(v) cerr<<#v<<\":\";for(int i=0;i<v.size();i++) cerr<<\" \"<<v[i]; cerr<<endl;\n#define DEBUG_MAT(v) cerr<<#v<<endl;for(int i=0;i<v.size();i++){for(int j=0;j<v[i].size();j++) {cerr<<v[i][j]<<\" \";}cerr<<endl;}\ntypedef long long ll;\n// #define int ll\n \n#define vi vector<int>\n#define vl vector<ll>\n#define vii vector< vector<int> >\n#define vll vector< vector<ll> >\n#define vs vector<string>\n#define pii pair<int,int>\n#define pis pair<int,string>\n#define psi pair<string,int>\n#define pll pair<ll,ll>\ntemplate<class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first + t.first, s.second + t.second); }\ntemplate<class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first - t.first, s.second - t.second); }\ntemplate<class S, class T> ostream& operator<<(ostream& os, pair<S, T> p) { os << \"(\" << p.first << \", \" << p.second << \")\"; return os; }\n#define X first\n#define Y second\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define rep1(i,n) for(int i=1;i<=(int)(n);i++)\n#define rrep(i,n) for(int i=(int)(n)-1;i>=0;i--)\n#define rrep1(i,n) for(int i=(int)(n);i>0;i--)\n#define REP(i,a,b) for(int i=a;i<b;i++)\n#define in(x, a, b) (a <= x && x < b)\n#define all(c) c.begin(),c.end()\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a = b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a = b; return 1; } return 0; }\n#define UNIQUE(v) v.erase(std::unique(v.begin(), v.end()), v.end());\nconst ll inf = 1000000001;\nconst ll INF = (ll)1e18 + 1;\nconst long double pi = 3.1415926535897932384626433832795028841971L;\n#define Sp(p) cout<<setprecision(25)<< fixed<<p<<endl;\n// int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};\n// int dx2[8] = { 1,1,0,-1,-1,-1,0,1 }, dy2[8] = { 0,1,1,1,0,-1,-1,-1 };\nvi dx = {1, 0, -1, 0}, dy = {0, 1, 0, -1};\n// vi dx2 = { 1,1,0,-1,-1,-1,0,1 }, dy2 = { 0,1,1,1,0,-1,-1,-1 };\n#define fio() cin.tie(0); ios::sync_with_stdio(false);\n// const ll MOD = 1000000007;\nconst ll MOD = 998244353;\n// #define mp make_pair\n//#define endl '\\n'\n\n\nnamespace internal {\n\ntemplate <class E> struct csr {\n std::vector<int> start;\n std::vector<E> elist;\n csr(int n, const std::vector<std::pair<int, E>>& edges)\n : start(n + 1), elist(edges.size()) {\n for (auto e : edges) {\n start[e.first + 1]++;\n }\n for (int i = 1; i <= n; i++) {\n start[i] += start[i - 1];\n }\n auto counter = start;\n for (auto e : edges) {\n elist[counter[e.first]++] = e.second;\n }\n }\n};\n\n// Reference:\n// R. Tarjan,\n// Depth-First Search and Linear Graph Algorithms\nstruct scc_graph {\n public:\n scc_graph(int n) : _n(n) {}\n\n int num_vertices() { return _n; }\n\n void add_edge(int from, int to) { edges.push_back({from, {to}}); }\n\n // @return pair of (# of scc, scc id)\n std::pair<int, std::vector<int>> scc_ids() {\n auto g = csr<edge>(_n, edges);\n int now_ord = 0, group_num = 0;\n std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);\n visited.reserve(_n);\n auto dfs = [&](auto self, int v) -> void {\n low[v] = ord[v] = now_ord++;\n visited.push_back(v);\n for (int i = g.start[v]; i < g.start[v + 1]; i++) {\n auto to = g.elist[i].to;\n if (ord[to] == -1) {\n self(self, to);\n low[v] = std::min(low[v], low[to]);\n } else {\n low[v] = std::min(low[v], ord[to]);\n }\n }\n if (low[v] == ord[v]) {\n while (true) {\n int u = visited.back();\n visited.pop_back();\n ord[u] = _n;\n ids[u] = group_num;\n if (u == v) break;\n }\n group_num++;\n }\n };\n for (int i = 0; i < _n; i++) {\n if (ord[i] == -1) dfs(dfs, i);\n }\n for (auto& x : ids) {\n x = group_num - 1 - x;\n }\n return {group_num, ids};\n }\n\n std::vector<std::vector<int>> scc() {\n auto ids = scc_ids();\n int group_num = ids.first;\n std::vector<int> counts(group_num);\n for (auto x : ids.second) counts[x]++;\n std::vector<std::vector<int>> groups(ids.first);\n for (int i = 0; i < group_num; i++) {\n groups[i].reserve(counts[i]);\n }\n for (int i = 0; i < _n; i++) {\n groups[ids.second[i]].push_back(i);\n }\n return groups;\n }\n\n private:\n int _n;\n struct edge {\n int to;\n };\n std::vector<std::pair<int, edge>> edges;\n};\n\n} // namespace internal\n\nstruct scc_graph {\n public:\n scc_graph() : internal(0) {}\n scc_graph(int n) : internal(n) {}\n\n void add_edge(int from, int to) {\n int n = internal.num_vertices();\n assert(0 <= from && from < n);\n assert(0 <= to && to < n);\n internal.add_edge(from, to);\n }\n\n std::vector<std::vector<int>> scc() { return internal.scc(); }\n\n private:\n internal::scc_graph internal;\n};\n\nvi group;\nint first_group, last_group;\n\n// bool dfs(int now, int target, vector<vector<pii>>& G, set<int>& used_edges, vector<bool> visited) {\n// if (now == target) return true;\n// visited[now] = true;\n// for (pii temp: G[now]) {\n// int v = temp.first;\n// if (visited[v]) continue;\n// int edge_idx = temp.second;\n// if (used_edges.count(edge_idx)) continue;\n// used_edges.insert(edge_idx);\n// if (dfs(v, target, G, used_edges, visited)) return true;\n// used_edges.erase(edge_idx);\n// }\n// return false;\n// }\n\n\n\n// �ӂ�\\���\\���� {�s��A�e�ʁA�t��}\nstruct edge { int to; ll cap; int rev; };\n#define V 101000\nint s, t; //s��start, t��goal\nvector< vector<edge> > G(V, vector<edge>());; //�O���t�̗אڃ��X�g�\\��\nvector<bool> used(V); //DEF�Œ��ׂ����̃t���O\n\n\t\t\t\t\t //from����to�֌������e��cap�̕ӂ��O���t�ɒlj�����\nvoid add_edge(int from, int to, ll cap) {\n\tedge a;\n\ta.to = to; a.cap = cap; a.rev = G[to].size();\n\tG[from].push_back(a);\n\ta.to = from; a.cap = 0; a.rev = G[from].size() - 1;\n\tG[to].push_back(a);\n}\n\nll dfs(int v, int t, ll f) {\n\tif (v == t) {\n\t\treturn f;\n\t}\n\tused[v] = true;\n\tfor (int i = 0; i < G[v].size(); i++) {\n\t\tedge &e = G[v][i];\n\t\tif (!used[e.to] && e.cap > 0) {\n\t\t\tll d = dfs(e.to, t, min(f, e.cap));\n\t\t\tif (d > 0) {\n\t\t\t\te.cap -= d;\n\t\t\t\tG[e.to][e.rev].cap += d;\n\t\t\t\treturn d;\n\t\t\t}\n\t\t}\n\t}\n\treturn 0;\n}\n\nll max_flow(int s, int t) {\n\tll flow = 0;\n\twhile (true) {\n\t\tfill(used.begin(), used.end(), false);\n\t\tll f = dfs(s, t, INF);\n\t\tif (f == 0) return flow;\n\t\tflow += f;\n if (flow >= 2) return flow;\n\t}\n}\n\n\nsigned main() {\n fio();\n int n, m;\n cin >> n >> m;\n scc_graph scc(n);\n\n vii G(n);\n rep (i, m) {\n int u, v;\n cin >> u >> v;\n u--; v--;\n G[u].push_back(v);\n scc.add_edge(u, v);\n add_edge(u, v, 1);\n }\n\n vii res = scc.scc();\n int k = res.size();\n if (k == 1) {\n cout << 0 << endl;\n return 0;\n }\n\n group.resize(n);\n rep (i, res.size()) {\n for (int u: res[i]) {\n group[u] = i;\n }\n }\n\n vii G2(k);\n vii rG2(k);\n rep (u, n) {\n for (int v: G[u]) {\n if (group[u] == group[v]) continue;\n G2[group[u]].push_back(group[v]);\n rG2[group[v]].push_back(group[u]);\n // add_edge(group[u], group[v], 1);\n }\n }\n // vector<vector<pii>> G3(k);\n // int edge_num = 0;\n // rep (u, k) {\n // for (int v: G2[u]) {\n // G3[u].push_back(pii(v, edge_num++));\n // }\n // }\n\n rep (u, k) {\n sort(all(G2[u]));\n UNIQUE(G2[u]);\n sort(all(rG2[u]));\n UNIQUE(rG2[u]);\n }\n\n vi in0, out0;\n rep (i, k) {\n if (G2[i].size() == 0) {\n out0.push_back(i);\n }\n if (rG2[i].size() == 0) {\n in0.push_back(i);\n }\n }\n\n if (in0.size() > 1 or out0.size() > 1) {\n cout << -1 << endl;\n return 0;\n }\n\n first_group = in0[0];\n last_group = out0[0];\n // int F = max_flow(first_group, last_group);\n int s = n, t = n + 1;\n rep (i, n) {\n if (group[i] == first_group) add_edge(s, i, 2);\n if (group[i] == last_group) add_edge(i, t, 2);\n }\n int F = max_flow(s, t);\n if (F < 2) {\n cout << -1 << endl;\n return 0;\n }\n\n // set<int> used_edges;\n // DEBUG_MAT(res);\n // DEBUG_MAT(G3);\n // vector<bool> visited(k);\n // if (not dfs(first_group, last_group, G3, used_edges, visited)) {\n // cout << -1 << endl;\n // return 0;\n // }\n // fill(all(visited), false);\n // if (not dfs(first_group, last_group, G3, used_edges, visited)) {\n // cout << -1 << endl;\n // return 0;\n // }\n\n vi dist(n, inf);\n queue<int> qu;\n for (int u: res[first_group]) {\n dist[u] = 0;\n qu.push(u);\n }\n // DEBUG_VEC(dist);\n // DEBUG_MAT(G); \n\n int ans = inf;\n while (qu.size()) {\n int u = qu.front();\n qu.pop();\n if (group[u] == last_group) {\n chmin(ans, dist[u]);\n }\n\n for (int v: G[u]) {\n if (dist[v] > dist[u] + 1) {\n dist[v] = dist[u] + 1;\n qu.push(v);\n }\n }\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 70, "memory_kb": 41268, "score_of_the_acc": -0.966, "final_rank": 4 }, { "submission_id": "aoj_3183_4846394", "code_snippet": "#include <bits/stdc++.h>\n\n// #include <atcoder/all>\n\nusing namespace std;\n// using namespace atcoder;\n \n#define DEBUG(x) cerr<<#x<<\": \"<<x<<endl;\n#define DEBUG_VEC(v) cerr<<#v<<\":\";for(int i=0;i<v.size();i++) cerr<<\" \"<<v[i]; cerr<<endl;\n#define DEBUG_MAT(v) cerr<<#v<<endl;for(int i=0;i<v.size();i++){for(int j=0;j<v[i].size();j++) {cerr<<v[i][j]<<\" \";}cerr<<endl;}\ntypedef long long ll;\n// #define int ll\n \n#define vi vector<int>\n#define vl vector<ll>\n#define vii vector< vector<int> >\n#define vll vector< vector<ll> >\n#define vs vector<string>\n#define pii pair<int,int>\n#define pis pair<int,string>\n#define psi pair<string,int>\n#define pll pair<ll,ll>\ntemplate<class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first + t.first, s.second + t.second); }\ntemplate<class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first - t.first, s.second - t.second); }\ntemplate<class S, class T> ostream& operator<<(ostream& os, pair<S, T> p) { os << \"(\" << p.first << \", \" << p.second << \")\"; return os; }\n#define X first\n#define Y second\n#define rep(i,n) for(int i=0;i<(int)(n);i++)\n#define rep1(i,n) for(int i=1;i<=(int)(n);i++)\n#define rrep(i,n) for(int i=(int)(n)-1;i>=0;i--)\n#define rrep1(i,n) for(int i=(int)(n);i>0;i--)\n#define REP(i,a,b) for(int i=a;i<b;i++)\n#define in(x, a, b) (a <= x && x < b)\n#define all(c) c.begin(),c.end()\ntemplate<class T> bool chmax(T &a, const T &b) { if (a<b) { a = b; return 1; } return 0; }\ntemplate<class T> bool chmin(T &a, const T &b) { if (a>b) { a = b; return 1; } return 0; }\n#define UNIQUE(v) v.erase(std::unique(v.begin(), v.end()), v.end());\nconst ll inf = 1000000001;\nconst ll INF = (ll)1e18 + 1;\nconst long double pi = 3.1415926535897932384626433832795028841971L;\n#define Sp(p) cout<<setprecision(25)<< fixed<<p<<endl;\n// int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};\n// int dx2[8] = { 1,1,0,-1,-1,-1,0,1 }, dy2[8] = { 0,1,1,1,0,-1,-1,-1 };\nvi dx = {1, 0, -1, 0}, dy = {0, 1, 0, -1};\n// vi dx2 = { 1,1,0,-1,-1,-1,0,1 }, dy2 = { 0,1,1,1,0,-1,-1,-1 };\n#define fio() cin.tie(0); ios::sync_with_stdio(false);\n// const ll MOD = 1000000007;\nconst ll MOD = 998244353;\n// #define mp make_pair\n//#define endl '\\n'\n\n\nnamespace internal {\n\ntemplate <class E> struct csr {\n std::vector<int> start;\n std::vector<E> elist;\n csr(int n, const std::vector<std::pair<int, E>>& edges)\n : start(n + 1), elist(edges.size()) {\n for (auto e : edges) {\n start[e.first + 1]++;\n }\n for (int i = 1; i <= n; i++) {\n start[i] += start[i - 1];\n }\n auto counter = start;\n for (auto e : edges) {\n elist[counter[e.first]++] = e.second;\n }\n }\n};\n\n// Reference:\n// R. Tarjan,\n// Depth-First Search and Linear Graph Algorithms\nstruct scc_graph {\n public:\n scc_graph(int n) : _n(n) {}\n\n int num_vertices() { return _n; }\n\n void add_edge(int from, int to) { edges.push_back({from, {to}}); }\n\n // @return pair of (# of scc, scc id)\n std::pair<int, std::vector<int>> scc_ids() {\n auto g = csr<edge>(_n, edges);\n int now_ord = 0, group_num = 0;\n std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);\n visited.reserve(_n);\n auto dfs = [&](auto self, int v) -> void {\n low[v] = ord[v] = now_ord++;\n visited.push_back(v);\n for (int i = g.start[v]; i < g.start[v + 1]; i++) {\n auto to = g.elist[i].to;\n if (ord[to] == -1) {\n self(self, to);\n low[v] = std::min(low[v], low[to]);\n } else {\n low[v] = std::min(low[v], ord[to]);\n }\n }\n if (low[v] == ord[v]) {\n while (true) {\n int u = visited.back();\n visited.pop_back();\n ord[u] = _n;\n ids[u] = group_num;\n if (u == v) break;\n }\n group_num++;\n }\n };\n for (int i = 0; i < _n; i++) {\n if (ord[i] == -1) dfs(dfs, i);\n }\n for (auto& x : ids) {\n x = group_num - 1 - x;\n }\n return {group_num, ids};\n }\n\n std::vector<std::vector<int>> scc() {\n auto ids = scc_ids();\n int group_num = ids.first;\n std::vector<int> counts(group_num);\n for (auto x : ids.second) counts[x]++;\n std::vector<std::vector<int>> groups(ids.first);\n for (int i = 0; i < group_num; i++) {\n groups[i].reserve(counts[i]);\n }\n for (int i = 0; i < _n; i++) {\n groups[ids.second[i]].push_back(i);\n }\n return groups;\n }\n\n private:\n int _n;\n struct edge {\n int to;\n };\n std::vector<std::pair<int, edge>> edges;\n};\n\n} // namespace internal\n\nstruct scc_graph {\n public:\n scc_graph() : internal(0) {}\n scc_graph(int n) : internal(n) {}\n\n void add_edge(int from, int to) {\n int n = internal.num_vertices();\n assert(0 <= from && from < n);\n assert(0 <= to && to < n);\n internal.add_edge(from, to);\n }\n\n std::vector<std::vector<int>> scc() { return internal.scc(); }\n\n private:\n internal::scc_graph internal;\n};\n\nvi group;\nint first_group, last_group;\n\n// bool dfs(int now, int target, vector<vector<pii>>& G, set<int>& used_edges, vector<bool> visited) {\n// if (now == target) return true;\n// visited[now] = true;\n// for (pii temp: G[now]) {\n// int v = temp.first;\n// if (visited[v]) continue;\n// int edge_idx = temp.second;\n// if (used_edges.count(edge_idx)) continue;\n// used_edges.insert(edge_idx);\n// if (dfs(v, target, G, used_edges, visited)) return true;\n// used_edges.erase(edge_idx);\n// }\n// return false;\n// }\n\n\n\n// �ӂ�\\���\\���� {�s��A�e�ʁA�t��}\nstruct edge { int to; ll cap; int rev; };\n#define V 101000\nint s, t; //s��start, t��goal\nvector< vector<edge> > G(V, vector<edge>());; //�O���t�̗אڃ��X�g�\\��\nvector<bool> used(V); //DEF�Œ��ׂ����̃t���O\n\n\t\t\t\t\t //from����to�֌������e��cap�̕ӂ��O���t�ɒlj�����\nvoid add_edge(int from, int to, ll cap) {\n\tedge a;\n\ta.to = to; a.cap = cap; a.rev = G[to].size();\n\tG[from].push_back(a);\n\ta.to = from; a.cap = 0; a.rev = G[from].size() - 1;\n\tG[to].push_back(a);\n}\n\nll dfs(int v, int t, ll f) {\n\tif (v == t) {\n\t\treturn f;\n\t}\n\tused[v] = true;\n\tfor (int i = 0; i < G[v].size(); i++) {\n\t\tedge &e = G[v][i];\n\t\tif (!used[e.to] && e.cap > 0) {\n\t\t\tll d = dfs(e.to, t, min(f, e.cap));\n\t\t\tif (d > 0) {\n\t\t\t\te.cap -= d;\n\t\t\t\tG[e.to][e.rev].cap += d;\n\t\t\t\treturn d;\n\t\t\t}\n\t\t}\n\t}\n\treturn 0;\n}\n\nll max_flow(int s, int t) {\n\tll flow = 0;\n\twhile (true) {\n\t\tfill(used.begin(), used.end(), false);\n\t\tll f = dfs(s, t, INF);\n\t\tif (f == 0) return flow;\n\t\tflow += f;\n if (flow >= 2) return flow;\n\t}\n}\n\n\nsigned main() {\n fio();\n int n, m;\n cin >> n >> m;\n scc_graph scc(n);\n\n vii G(n);\n rep (i, m) {\n int u, v;\n cin >> u >> v;\n u--; v--;\n G[u].push_back(v);\n scc.add_edge(u, v);\n }\n\n vii res = scc.scc();\n int k = res.size();\n if (k == 1) {\n cout << 0 << endl;\n return 0;\n }\n\n group.resize(n);\n rep (i, res.size()) {\n for (int u: res[i]) {\n group[u] = i;\n }\n }\n\n vii G2(k);\n vii rG2(k);\n rep (u, n) {\n for (int v: G[u]) {\n if (group[u] == group[v]) continue;\n G2[group[u]].push_back(group[v]);\n rG2[group[v]].push_back(group[u]);\n add_edge(group[u], group[v], 1);\n }\n }\n // vector<vector<pii>> G3(k);\n // int edge_num = 0;\n // rep (u, k) {\n // for (int v: G2[u]) {\n // G3[u].push_back(pii(v, edge_num++));\n // }\n // }\n\n rep (u, k) {\n sort(all(G2[u]));\n UNIQUE(G2[u]);\n sort(all(rG2[u]));\n UNIQUE(rG2[u]);\n }\n\n vi in0, out0;\n rep (i, k) {\n if (G2[i].size() == 0) {\n out0.push_back(i);\n }\n if (rG2[i].size() == 0) {\n in0.push_back(i);\n }\n }\n\n if (in0.size() > 1 or out0.size() > 1) {\n cout << -1 << endl;\n return 0;\n }\n\n first_group = in0[0];\n last_group = out0[0];\n int F = max_flow(first_group, last_group);\n if (F < 2) {\n cout << -1 << endl;\n return 0;\n }\n\n // set<int> used_edges;\n // DEBUG_MAT(res);\n // DEBUG_MAT(G3);\n // vector<bool> visited(k);\n // if (not dfs(first_group, last_group, G3, used_edges, visited)) {\n // cout << -1 << endl;\n // return 0;\n // }\n // fill(all(visited), false);\n // if (not dfs(first_group, last_group, G3, used_edges, visited)) {\n // cout << -1 << endl;\n // return 0;\n // }\n\n vi dist(n, inf);\n queue<int> qu;\n for (int u: res[first_group]) {\n dist[u] = 0;\n qu.push(u);\n }\n // DEBUG_VEC(dist);\n // DEBUG_MAT(G); \n\n int ans = inf;\n while (qu.size()) {\n int u = qu.front();\n qu.pop();\n if (group[u] == last_group) {\n chmin(ans, dist[u]);\n }\n\n for (int v: G[u]) {\n if (dist[v] > dist[u] + 1) {\n dist[v] = dist[u] + 1;\n qu.push(v);\n }\n }\n }\n cout << ans << endl;\n}", "accuracy": 0.35135135135135137, "time_ms": 30, "memory_kb": 26632, "score_of_the_acc": -0.1825, "final_rank": 17 }, { "submission_id": "aoj_3183_4846389", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n// const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T = int >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge() = default;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n int es;\n\n Graph() = default;\n\n explicit Graph(int n) : g(n), es(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es++);\n }\n\n void add_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es);\n g[to].emplace_back(to, from, cost, es++);\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_directed_edge(a, b, c);\n else add_edge(a, b, c);\n }\n }\n};\n\ntemplate< typename T = int >\nusing Edges = vector< Edge< T > >;\n\n/**\n * @brief Strongly-Connected-Components(強連結成分分解)\n */\ntemplate< typename T = int >\nstruct StronglyConnectedComponents : Graph< T > {\npublic:\n using Graph< T >::Graph;\n using Graph< T >::g;\n vector< int > comp;\n Graph< T > dag;\n vector< vector< int > > group;\n\n void build() {\n rg = Graph< T >(g.size());\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n rg.add_directed_edge(e.to, e.from, e.cost);\n }\n }\n comp.assign(g.size(), -1);\n used.assign(g.size(), 0);\n for(int i = 0; i < g.size(); i++) dfs(i);\n reverse(begin(order), end(order));\n int ptr = 0;\n for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;\n dag = Graph< T >(ptr);\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n int x = comp[e.from], y = comp[e.to];\n if(x == y) continue;\n dag.add_directed_edge(x, y, e.cost);\n }\n }\n group.resize(ptr);\n for(int i = 0; i < g.size(); i++) {\n group[comp[i]].emplace_back(i);\n }\n }\n\n int operator[](int k) const {\n return comp[k];\n }\n\nprivate:\n vector< int > order, used;\n Graph< T > rg;\n\n void dfs(int idx) {\n if(exchange(used[idx], true)) return;\n for(auto &to : g[idx]) dfs(to);\n order.push_back(idx);\n }\n\n void rdfs(int idx, int cnt) {\n if(comp[idx] != -1) return;\n comp[idx] = cnt;\n for(auto &to : rg.g[idx]) rdfs(to, cnt);\n }\n};\n\n\n/**\n * @brief Ford-Fulkerson(最大流)\n * @docs docs/ford-fulkerson.md\n */\ntemplate< typename flow_t >\nstruct FordFulkerson {\n struct edge {\n int to;\n flow_t cap;\n int rev;\n bool isrev;\n int idx;\n };\n\n vector< vector< edge > > graph;\n vector< int > used;\n const flow_t INF;\n int timestamp;\n\n explicit FordFulkerson(int V) : INF(numeric_limits< flow_t >::max()), graph(V), used(V, -1), timestamp(0) {}\n\n void add_edge(int from, int to, flow_t cap, int idx = -1) {\n graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx});\n graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx});\n }\n\n flow_t find_augment_path(int idx, const int t, flow_t flow) {\n if(idx == t) return flow;\n used[idx] = timestamp;\n for(auto &e : graph[idx]) {\n if(e.cap > 0 && used[e.to] != timestamp) {\n flow_t d = find_augment_path(e.to, t, min(flow, e.cap));\n if(d > 0) {\n e.cap -= d;\n graph[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n\n flow_t max_flow(int s, int t) {\n flow_t flow = 0;\n for(flow_t f; (f = find_augment_path(s, t, INF)) > 0; timestamp++) {\n flow += f;\n if(flow >= 2) break;\n }\n return flow;\n }\n\n void output() {\n for(int i = 0; i < graph.size(); i++) {\n for(auto &e : graph[i]) {\n if(e.isrev) continue;\n auto &rev_e = graph[e.to][e.rev];\n cout << i << \"->\" << e.to << \" (flow: \" << rev_e.cap << \"/\" << e.cap + rev_e.cap << \")\" << endl;\n }\n }\n }\n};\n\n/**\n * @brief Dijkstra(単一始点最短路)\n * @docs docs/dijkstra.md\n */\ntemplate< typename T >\nstruct ShortestPath {\n vector< T > dist;\n vector< int > from, id;\n};\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector< int > A(M), B(M);\n Graph<> rg(N);\n StronglyConnectedComponents<> scc(N);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i];\n --A[i], --B[i];\n scc.add_directed_edge(A[i], B[i]);\n rg.add_directed_edge(B[i], A[i]);\n }\n scc.build();\n if(scc.dag.size() == 1) {\n cout << 0 << \"\\n\";\n exit(0);\n }\n vector< int > in(N), out(N);\n for(int i = 0; i < scc.dag.size(); i++) {\n if(scc.dag.g[i].size()) {\n in[i] = true;\n }\n for(auto &t : scc.dag.g[i]) {\n out[t] = true;\n }\n }\n\n vector< int > latte, malta;\n for(int i = 0; i < N; i++) {\n if(!in[i]) {\n latte.emplace_back(i);\n }\n if(!out[i]) {\n malta.emplace_back(i);\n }\n }\n if(latte.size() != 1 && malta.size() != 1) {\n cout << -1 << \"\\n\";\n exit(0);\n }\n\n\n FordFulkerson< int > flow(scc.size() + 2);\n for(int i = 0; i < M; i++) {\n flow.add_edge(A[i], B[i], 1);\n }\n for(auto &p : scc.group[malta[0]]) {\n flow.add_edge(scc.size(), p, inf);\n }\n for(auto &p : scc.group[latte[0]]) {\n flow.add_edge(p, scc.size() + 1, inf);\n }\n if(flow.max_flow(scc.size(), scc.size() + 1) <= 1) {\n cout << \"-1\\n\";\n exit(0);\n }\n\n\n using T = int;\n const auto INF = numeric_limits< T >::max();\n vector< T > dist(scc.size(), INF);\n vector< int > from(scc.size(), -1), id(scc.size(), -1);\n using Pi = pair< T, int >;\n priority_queue< Pi, vector< Pi >, greater<> > que;\n for(auto &p : scc.group[latte[0]]) {\n dist[p] = 0;\n que.emplace(0, p);\n }\n while(!que.empty()) {\n T cost;\n int idx;\n tie(cost, idx) = que.top();\n que.pop();\n if(dist[idx] < cost) continue;\n for(auto &e : rg.g[idx]) {\n auto next_cost = cost + e.cost;\n if(dist[e.to] <= next_cost) continue;\n dist[e.to] = next_cost;\n from[e.to] = idx;\n id[e.to] = e.idx;\n que.emplace(dist[e.to], e.to);\n }\n }\n int ans = inf;\n for(auto &p : scc.group[malta[0]]) {\n chmin(ans, dist[p]);\n }\n if(ans >= inf) ans = -1;\n cout << ans << \"\\n\";\n}", "accuracy": 0.5, "time_ms": 40, "memory_kb": 30508, "score_of_the_acc": -0.386, "final_rank": 13 }, { "submission_id": "aoj_3183_4846354", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n\nusing int64 = long long;\nconst int mod = 1e9 + 7;\n// const int mod = 998244353;\n\nconst int64 infll = (1LL << 62) - 1;\nconst int inf = (1 << 30) - 1;\n\nstruct IoSetup {\n IoSetup() {\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n cout << fixed << setprecision(10);\n cerr << fixed << setprecision(10);\n }\n} iosetup;\n\n\ntemplate< typename T1, typename T2 >\nostream &operator<<(ostream &os, const pair< T1, T2 > &p) {\n os << p.first << \" \" << p.second;\n return os;\n}\n\ntemplate< typename T1, typename T2 >\nistream &operator>>(istream &is, pair< T1, T2 > &p) {\n is >> p.first >> p.second;\n return is;\n}\n\ntemplate< typename T >\nostream &operator<<(ostream &os, const vector< T > &v) {\n for(int i = 0; i < (int) v.size(); i++) {\n os << v[i] << (i + 1 != v.size() ? \" \" : \"\");\n }\n return os;\n}\n\ntemplate< typename T >\nistream &operator>>(istream &is, vector< T > &v) {\n for(T &in : v) is >> in;\n return is;\n}\n\ntemplate< typename T1, typename T2 >\ninline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }\n\ntemplate< typename T1, typename T2 >\ninline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }\n\ntemplate< typename T = int64 >\nvector< T > make_v(size_t a) {\n return vector< T >(a);\n}\n\ntemplate< typename T, typename... Ts >\nauto make_v(size_t a, Ts... ts) {\n return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {\n t = v;\n}\n\ntemplate< typename T, typename V >\ntypename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {\n for(auto &e : t) fill_v(e, v);\n}\n\ntemplate< typename F >\nstruct FixPoint : F {\n FixPoint(F &&f) : F(forward< F >(f)) {}\n\n template< typename... Args >\n decltype(auto) operator()(Args &&... args) const {\n return F::operator()(*this, forward< Args >(args)...);\n }\n};\n\ntemplate< typename F >\ninline decltype(auto) MFP(F &&f) {\n return FixPoint< F >{forward< F >(f)};\n}\n\ntemplate< typename T = int >\nstruct Edge {\n int from, to;\n T cost;\n int idx;\n\n Edge() = default;\n\n Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}\n\n operator int() const { return to; }\n};\n\ntemplate< typename T = int >\nstruct Graph {\n vector< vector< Edge< T > > > g;\n int es;\n\n Graph() = default;\n\n explicit Graph(int n) : g(n), es(0) {}\n\n size_t size() const {\n return g.size();\n }\n\n void add_directed_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es++);\n }\n\n void add_edge(int from, int to, T cost = 1) {\n g[from].emplace_back(from, to, cost, es);\n g[to].emplace_back(to, from, cost, es++);\n }\n\n void read(int M, int padding = -1, bool weighted = false, bool directed = false) {\n for(int i = 0; i < M; i++) {\n int a, b;\n cin >> a >> b;\n a += padding;\n b += padding;\n T c = T(1);\n if(weighted) cin >> c;\n if(directed) add_directed_edge(a, b, c);\n else add_edge(a, b, c);\n }\n }\n};\n\ntemplate< typename T = int >\nusing Edges = vector< Edge< T > >;\n\n/**\n * @brief Strongly-Connected-Components(強連結成分分解)\n */\ntemplate< typename T = int >\nstruct StronglyConnectedComponents : Graph< T > {\npublic:\n using Graph< T >::Graph;\n using Graph< T >::g;\n vector< int > comp;\n Graph< T > dag;\n vector< vector< int > > group;\n\n void build() {\n rg = Graph< T >(g.size());\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n rg.add_directed_edge(e.to, e.from, e.cost);\n }\n }\n comp.assign(g.size(), -1);\n used.assign(g.size(), 0);\n for(int i = 0; i < g.size(); i++) dfs(i);\n reverse(begin(order), end(order));\n int ptr = 0;\n for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;\n dag = Graph< T >(ptr);\n for(int i = 0; i < g.size(); i++) {\n for(auto &e : g[i]) {\n int x = comp[e.from], y = comp[e.to];\n if(x == y) continue;\n dag.add_directed_edge(x, y, e.cost);\n }\n }\n group.resize(ptr);\n for(int i = 0; i < g.size(); i++) {\n group[comp[i]].emplace_back(i);\n }\n }\n\n int operator[](int k) const {\n return comp[k];\n }\n\nprivate:\n vector< int > order, used;\n Graph< T > rg;\n\n void dfs(int idx) {\n if(exchange(used[idx], true)) return;\n for(auto &to : g[idx]) dfs(to);\n order.push_back(idx);\n }\n\n void rdfs(int idx, int cnt) {\n if(comp[idx] != -1) return;\n comp[idx] = cnt;\n for(auto &to : rg.g[idx]) rdfs(to, cnt);\n }\n};\n\n\n/**\n * @brief Ford-Fulkerson(最大流)\n * @docs docs/ford-fulkerson.md\n */\ntemplate< typename flow_t >\nstruct FordFulkerson {\n struct edge {\n int to;\n flow_t cap;\n int rev;\n bool isrev;\n int idx;\n };\n\n vector< vector< edge > > graph;\n vector< int > used;\n const flow_t INF;\n int timestamp;\n\n explicit FordFulkerson(int V) : INF(numeric_limits< flow_t >::max()), graph(V), used(V, -1), timestamp(0) {}\n\n void add_edge(int from, int to, flow_t cap, int idx = -1) {\n graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx});\n graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx});\n }\n\n flow_t find_augment_path(int idx, const int t, flow_t flow) {\n if(idx == t) return flow;\n used[idx] = timestamp;\n for(auto &e : graph[idx]) {\n if(e.cap > 0 && used[e.to] != timestamp) {\n flow_t d = find_augment_path(e.to, t, min(flow, e.cap));\n if(d > 0) {\n e.cap -= d;\n graph[e.to][e.rev].cap += d;\n return d;\n }\n }\n }\n return 0;\n }\n\n flow_t max_flow(int s, int t) {\n flow_t flow = 0;\n for(flow_t f; (f = find_augment_path(s, t, INF)) > 0; timestamp++) {\n flow += f;\n }\n return flow;\n }\n\n void output() {\n for(int i = 0; i < graph.size(); i++) {\n for(auto &e : graph[i]) {\n if(e.isrev) continue;\n auto &rev_e = graph[e.to][e.rev];\n cout << i << \"->\" << e.to << \" (flow: \" << rev_e.cap << \"/\" << e.cap + rev_e.cap << \")\" << endl;\n }\n }\n }\n};\n\n/**\n * @brief Dijkstra(単一始点最短路)\n * @docs docs/dijkstra.md\n */\ntemplate< typename T >\nstruct ShortestPath {\n vector< T > dist;\n vector< int > from, id;\n};\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector< int > A(M), B(M);\n Graph<> rg(N);\n StronglyConnectedComponents<> scc(N);\n for(int i = 0; i < M; i++) {\n cin >> A[i] >> B[i];\n --A[i], --B[i];\n scc.add_directed_edge(A[i], B[i]);\n rg.add_directed_edge(B[i], A[i]);\n }\n scc.build();\n if(scc.dag.size() == 1) {\n cout << 0 << \"\\n\";\n exit(0);\n }\n vector< int > in(N), out(N);\n for(int i = 0; i < scc.dag.size(); i++) {\n if(scc.dag.g[i].size()) {\n in[i] = true;\n }\n for(auto &t : scc.dag.g[i]) {\n out[t] = true;\n }\n }\n\n vector< int > latte, malta;\n for(int i = 0; i < N; i++) {\n if(!in[i]) {\n latte.emplace_back(i);\n }\n if(!out[i]) {\n malta.emplace_back(i);\n }\n }\n if(latte.size() != 1 && malta.size() != 1) {\n cout << -1 << \"\\n\";\n exit(0);\n }\n\n\n FordFulkerson< int > flow(scc.size());\n for(int i = 0; i < scc.size(); i++) {\n for(auto &p : scc.dag.g[i]) {\n flow.add_edge(i, p, 1);\n }\n }\n if(flow.max_flow(malta[0], latte[0]) <= 1) {\n cout << \"-1\\n\";\n exit(0);\n }\n\n\n using T = int;\n const auto INF = numeric_limits< T >::max();\n vector< T > dist(scc.size(), INF);\n vector< int > from(scc.size(), -1), id(scc.size(), -1);\n using Pi = pair< T, int >;\n priority_queue< Pi, vector< Pi >, greater<> > que;\n for(auto &p : scc.group[latte[0]]) {\n dist[p] = 0;\n que.emplace(0, p);\n }\n while(!que.empty()) {\n T cost;\n int idx;\n tie(cost, idx) = que.top();\n que.pop();\n if(dist[idx] < cost) continue;\n for(auto &e : rg.g[idx]) {\n auto next_cost = cost + e.cost;\n if(dist[e.to] <= next_cost) continue;\n dist[e.to] = next_cost;\n from[e.to] = idx;\n id[e.to] = e.idx;\n que.emplace(dist[e.to], e.to);\n }\n }\n int ans = inf;\n for(auto &p : scc.group[malta[0]]) {\n chmin(ans, dist[p]);\n }\n if(ans >= inf) ans = -1;\n cout << ans << \"\\n\";\n}", "accuracy": 0.5, "time_ms": 50, "memory_kb": 29876, "score_of_the_acc": -0.4304, "final_rank": 14 } ]
aoj_3170_cpp
G: Freqs 問題 長さ $N$ の数列 $A = (a_1, a_2, ..., a_N)$ が与えられます。以下で説明されるクエリを $Q$ 回処理してください。クエリは $4$ 種類あります。 クエリ 1: $l, r, x$ が与えられるので、$a_i$ ($l \leq i \leq r$) を $\min(a_i, x)$ に更新する。 クエリ 2: $l, r, x$ が与えられるので、$a_i$ ($l \leq i \leq r$) を $\max(a_i, x)$ に更新する。 クエリ 3: $l, r, x$ が与えられるので、$a_i$ ($l \leq i \leq r$) を $a_i + x$ に更新する。 クエリ 4: $l, r, x, y$ が与えられるので、$l \leq i \leq r$ かつ $x \leq a_i \leq y$ を満たす $i$ の個数を報告する。 入力形式 $N$ $Q$ $a_1$ $a_2$ ... $a_N$ $q_1$ ... $q_Q$ ただし、$q_j$ ($1\leq j \leq Q$) の形式は次のいずれかです。 クエリ 1: 1 $l$ $r$ $x$ クエリ 2: 2 $l$ $r$ $x$ クエリ 3: 3 $l$ $r$ $x$ クエリ 4: 4 $l$ $r$ $x$ $y$ 制約 入力は全て整数で与えられる $1 \leq N \leq 10^5$ $1 \leq Q \leq 10^5$ $-10^9 \leq a_i \leq 10^9$ ($1 \leq i \leq N$) $1 \leq l_i \leq r_i \leq N$ ($1 \leq i \leq Q$) クエリ 1, 2, 3 において $-10^9 \leq x_i \leq 10^9$ ($1 \leq i \leq Q$) クエリ 4 において $-10^{15} \leq x_i \leq y_i \leq 10^{15}$ ($1 \leq i \leq Q$) 出力形式 各クエリ 4 に対して、その答えを一行ずつ出力してください。 入力例1 6 8 3 1 4 1 5 9 4 2 5 3 6 2 2 5 3 3 4 6 3 4 2 5 4 7 3 3 6 -10 4 2 5 -5 5 1 1 6 1 4 1 6 -10 0 出力例1 2 2 3 3 $q_1$ のクエリ 4 について、条件を満たす $i$ は $3$ と $5$ なので、その個数 $2$ を出力します。クエリ 1, 2, 3 の更新により、数列 $A$ は次のように変化していきます。 $q_2$ の直後: 3 3 4 3 5 9 $q_3$ の直後: 3 3 4 6 8 12 $q_5$ の直後: 3 3 -6 -4 -2 2 $q_7$ の直後: 1 1 -6 -4 -2 1 入力例2 10 12 1 -1 -3 9 0 1 -3 7 5 -8 1 1 6 4 4 2 10 3 9 2 4 9 7 3 5 8 -2 2 1 3 1 4 8 10 -10 1 3 2 5 3 4 1 3 3 7 1 2 2 5 4 1 9 1 5 1 3 10 2 4 5 7 -2 4 出力例2 3 1 2 6 3
[ { "submission_id": "aoj_3170_10536492", "code_snippet": "// AOJ #3170 Freqs\n// 2025.5.28\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nll Cinll() {\n\tll n = 0, c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(int n) {\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n pc('\\n');\n}\n\nconst int MAXN = 100000;\nconst int BSZ = 200;\nconst ll INF = (ll)4e18;\n\nint N, Q;\nll A[MAXN];\nint nb;\nint szb[MAXN/BSZ+5];\n\nll cm[MAXN/BSZ+5], cM[MAXN/BSZ+5], addv[MAXN/BSZ+5];\n\nll V[MAXN/BSZ+5][BSZ];\n\ninline void flush_block(int b, bool f_sort){\n int start = b*BSZ;\n ll cap_max = cm[b], cap_min = cM[b], ad = addv[b];\n int s = szb[b];\n for(int i=0;i<s;i++){\n int idx = start + i;\n ll v = A[idx];\n if(v > cap_max) v = cap_max;\n if(v < cap_min) v = cap_min;\n v += ad;\n A[idx] = v;\n V[b][i] = v;\n }\n if(f_sort) sort(V[b], V[b]+s);\n cm[b] = INF;\n cM[b] = -INF;\n addv[b] = 0;\n}\n\nint main(){\n N = Cin(), Q = Cin();\n for(int i=0;i<N;i++) A[i] = Cin();\n\n nb = (N + BSZ - 1) / BSZ;\n for(int b=0;b<nb;b++){\n int start = b*BSZ;\n int s = min(BSZ, N - start);\n szb[b] = s;\n for(int i=0;i<s;i++) V[b][i] = A[start + i];\n sort(V[b], V[b]+s);\n cm[b] = INF;\n cM[b] = -INF;\n addv[b] = 0;\n }\n\n while(Q--){\n int t = Cin(), l = Cin()-1, r = Cin()-1;\n ll x = Cinll();\n ll y;\n if(t==4) y = Cinll();\n\n int bL = l/BSZ, bR = r/BSZ;\n int ans = 0;\n if(bL == bR){\n flush_block(bL, true);\n for(int i=l;i<=r;i++){\n if(t==1) A[i] = min(A[i], x);\n else if(t==2) A[i] = max(A[i], x);\n else if(t==3) A[i] += x;\n else if(t==4) if(A[i]>=x && A[i]<=y) ans++;\n }\n int start=bL*BSZ, s=szb[bL];\n for(int i=0;i<s;i++) V[bL][i] = A[start+i];\n sort(V[bL], V[bL]+s);\n } else {\n flush_block(bL, false);\n flush_block(bR, false);\n\n int endL = (bL+1)*BSZ;\n for(int i=l;i<endL;i++){\n if(t==1) A[i] = min(A[i], x);\n else if(t==2) A[i] = max(A[i], x);\n else if(t==3) A[i] += x;\n else if(t==4) if(A[i]>=x && A[i]<=y) ans++;\n }\n int startR = bR*BSZ;\n for(int i=startR;i<=r;i++){\n if(t==1) A[i] = min(A[i], x);\n else if(t==2) A[i] = max(A[i], x);\n else if(t==3) A[i] += x;\n else if(t==4) if(A[i]>=x && A[i]<=y) ans++;\n }\n\n for(int b=bL+1; b<bR; b++){\n if(t==1){\n ll lim = x - addv[b];\n if(lim < cm[b]) cm[b] = lim;\n if(cM[b] > cm[b]) cM[b] = cm[b];\n }\n else if(t==2){\n ll lim = x - addv[b];\n if(lim > cM[b]) cM[b] = lim;\n if(cM[b] > cm[b]) cm[b] = cM[b];\n }\n else if(t==3) addv[b] += x;\n else {\n ll tl = x - addv[b], tr = y - addv[b];\n if(tl > cm[b] || tr < cM[b]) continue;\n ll lo = tl, hi = tr;\n if(cM[b] >= tl) lo = -INF;\n if(cm[b] <= tr) hi = +INF;\n int cnt = upper_bound(V[b], V[b]+szb[b], hi)\n - lower_bound(V[b], V[b]+szb[b], lo);\n ans += cnt;\n }\n }\n\n flush_block(bL, true);\n flush_block(bR, true);\n }\n if(t==4) Cout(ans);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 1200, "memory_kb": 4940, "score_of_the_acc": -0.802, "final_rank": 8 }, { "submission_id": "aoj_3170_10315691", "code_snippet": "// AOJ #3170 Freqs\n// 2025.3.21\n\n#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\n#define gc() getchar_unlocked()\n#define pc(c) putchar_unlocked(c)\n\nint Cin() {\n\tint n = 0; int c = gc();\n\tif (c == '-') {\tc = gc();\n\t\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\t\treturn -n;\n\t}\n\tdo n = 10*n + (c & 0xf), c = gc(); while (c >= '0');\n\treturn n;\n}\n\nvoid Cout(ll n) { // 整数の表示(出力)\n\tchar b[30];\n\tif (!n) pc('0');\n\telse {\n\t\tif (n < 0) pc('-'), n = -n;\n\t\tint i = 0; while (n) b[i++] = n % 10 + '0', n /= 10;\n\t\twhile (i--) pc(b[i]);\n\t}\n\tpc('\\n');\n}\n\nstruct Block {\n int L, R;\n vector<ll> a;\n vector<ll> s;\n ll lz;\n ll mn, mx;\n\n void init(int L, int R, const vector<ll>& arr) {\n this->L = L; this->R = R;\n a.resize(R - L + 1);\n for (int i = L; i <= R; i++) a[i - L] = arr[i];\n lz = 0;\n rebuild();\n }\n void rebuild() {\n s = a;\n sort(s.begin(), s.end());\n if(!s.empty()){\n mn = s.front() + lz;\n mx = s.back() + lz;\n } else mn = mx = 0;\n }\n void push(){\n if(lz){\n for(auto &v : a) v += lz;\n lz = 0;\n rebuild();\n }\n }\n void add(ll x) {\n lz += x;\n mn += x;\n mx += x;\n }\n void chmin(ll x) {\n if(mx <= x) return;\n if(mn >= x){\n lz = 0;\n for(auto &v : a) v = x;\n rebuild();\n return;\n }\n push();\n for(auto &v : a) if(v > x) v = x;\n rebuild();\n }\n void chmax(ll x) {\n if(mn >= x) return;\n if(mx <= x){\n lz = 0;\n for(auto &v : a) v = x;\n rebuild();\n return;\n }\n push();\n for(auto &v : a) if(v < x) v = x;\n rebuild();\n }\n void add_range(int l, int r, ll x){\n push();\n for (int i = l; i <= r; i++) a[i] += x;\n rebuild();\n }\n void chmin_range(int l, int r, ll x){\n push();\n for (int i = l; i <= r; i++) if(a[i] > x) a[i] = x;\n rebuild();\n }\n void chmax_range(int l, int r, ll x){\n push();\n for (int i = l; i <= r; i++) if(a[i] < x) a[i] = x;\n rebuild();\n }\n int count_range(int l, int r, ll x, ll y){\n int cnt = 0;\n push();\n for (int i = l; i <= r; i++){\n ll v = a[i];\n if(v >= x && v <= y) cnt++;\n }\n return cnt;\n }\n int query(ll x, ll y){\n ll Lbound = x - lz, Rbound = y - lz;\n return (int)(upper_bound(s.begin(), s.end(), Rbound) - lower_bound(s.begin(), s.end(), Lbound));\n }\n};\n\nint main(){\n int n = Cin(), q = Cin();\n vector<ll> arr(n);\n for (int i = 0; i < n; i++) arr[i] = Cin();\n\n int bs = max(1, (int)sqrt(n));\n vector<Block> B;\n for (int i = 0; i < n; i += bs) {\n int r = min(n - 1, i + bs - 1);\n Block b;\n b.init(i, r, arr);\n B.push_back(b);\n }\n\n while(q--){\n int t = gc() & 0xf; gc();\n if(t == 1){\n int l = Cin()-1, r = Cin()-1;\n ll x = Cin();\n for(auto &b : B){\n if(b.R < l || b.L > r) continue;\n if(l <= b.L && b.R <= r) b.chmin(x);\n else {\n int li = max(l, b.L) - b.L, ri = min(r, b.R) - b.L;\n b.chmin_range(li, ri, x);\n }\n }\n } else if(t == 2){\n int l = Cin()-1, r = Cin()-1;\n ll x = Cin();\n for(auto &b : B){\n if(b.R < l || b.L > r) continue;\n if(l <= b.L && b.R <= r) b.chmax(x);\n else {\n int li = max(l, b.L) - b.L, ri = min(r, b.R) - b.L;\n b.chmax_range(li, ri, x);\n }\n }\n } else if(t == 3){\n int l = Cin()-1, r = Cin()-1;\n ll x = Cin();\n for(auto &b : B){\n if(b.R < l || b.L > r) continue;\n if(l <= b.L && b.R <= r) b.add(x);\n else {\n int li = max(l, b.L) - b.L, ri = min(r, b.R) - b.L;\n b.add_range(li, ri, x);\n }\n }\n } else if(t == 4){\n int l = Cin()-1, r = Cin()-1;\n ll x = Cin(), y= Cin();\n ll ans = 0;\n for(auto &b : B){\n if(b.R < l || b.L > r) continue;\n if(l <= b.L && b.R <= r)\n ans += b.query(x, y);\n else {\n int li = max(l, b.L) - b.L, ri = min(r, b.R) - b.L;\n ans += b.count_range(li, ri, x, y);\n }\n }\n Cout(ans);\n }\n }\n return 0;\n}", "accuracy": 0.09523809523809523, "time_ms": 1290, "memory_kb": 5308, "score_of_the_acc": -0.9079, "final_rank": 20 }, { "submission_id": "aoj_3170_9983927", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <tuple>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <unordered_set>\n#include <unordered_map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <climits>\n#include <iomanip>\n#include <numeric>\n#include <memory>\n#include <random>\n#include <thread>\n#include <chrono>\n#define allof(obj) (obj).begin(), (obj).end()\n#define range(i, l, r) for(int i=l;i<r;i++)\n#define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S)\n#define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit))\n#define bit_kth(i, k) ((i >> k)&1)\n#define bit_highest(i) (i?63-__builtin_clzll(i):-1)\n#define bit_lowest(i) (i?__builtin_ctzll(i):-1)\nusing ll = long long;\nusing ld = long double;\nusing ul = uint64_t;\nusing pi = std::pair<int, int>;\nusing pl = std::pair<ll, ll>;\nusing namespace std;\n\ntemplate<typename F, typename S>\nstd::ostream &operator << (std::ostream &dest, const std::pair<F, S> &p) {\n dest << p.first << ' ' << p.second;\n return dest;\n}\n\ntemplate<typename A, typename B>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t);\n return dest;\n}\n\ntemplate<typename A, typename B, typename C>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B, C> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t);\n return dest;\n}\n\ntemplate<typename A, typename B, typename C, typename D>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B, C, D> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t) << ' ' << std::get<3>(t);\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::vector<std::vector<T>> &v) {\n int sz = v.size();\n if (!sz) return dest;\n for (int i = 0; i < sz; i++) {\n int m = v[i].size();\n for (int j = 0; j < m; j++) dest << v[i][j] << (i != sz - 1 && j == m - 1 ? '\\n' : ' ');\n }\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::vector<T> &v) {\n int sz = v.size();\n if (!sz) return dest;\n for (int i = 0; i < sz - 1; i++) dest << v[i] << ' ';\n dest << v[sz - 1];\n return dest;\n}\n\ntemplate<typename T, size_t sz>\nstd::ostream &operator << (std::ostream &dest, const std::array<T, sz> &v) {\n if (!sz) return dest;\n for (int i = 0; i < sz - 1; i++) dest << v[i] << ' ';\n dest << v[sz - 1];\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::set<T> &v) {\n for (auto itr = v.begin(); itr != v.end();) {\n dest << *itr;\n itr++;\n if (itr != v.end()) dest << ' ';\n }\n return dest;\n}\n\ntemplate<typename T, typename E>\nstd::ostream &operator << (std::ostream &dest, const std::map<T, E> &v) {\n for (auto itr = v.begin(); itr != v.end(); ) {\n dest << '(' << itr->first << \", \" << itr->second << ')';\n itr++;\n if (itr != v.end()) dest << '\\n';\n }\n return dest;\n}\n\ntemplate<typename T>\nstd::vector<T> make_vec(size_t sz, T val) { return std::vector<T>(sz, val); }\n\ntemplate<typename T, typename... Tail>\nauto make_vec(size_t sz, Tail ...tail) {\n return std::vector<decltype(make_vec<T>(tail...))>(sz, make_vec<T>(tail...));\n}\n\ntemplate<typename T>\nstd::vector<T> read_vec(size_t sz) {\n std::vector<T> v(sz);\n for (int i = 0; i < (int)sz; i++) std::cin >> v[i];\n return v;\n}\n\ntemplate<typename T, typename... Tail>\nauto read_vec(size_t sz, Tail ...tail) {\n auto v = std::vector<decltype(read_vec<T>(tail...))>(sz);\n for (int i = 0; i < (int)sz; i++) v[i] = read_vec<T>(tail...);\n return v;\n}\n\ntemplate<typename T, size_t size>\nauto make_array(T x) { \n std::array<T, size> res;\n res.fill(x);\n return res;\n}\n\ntemplate<typename T, size_t size, size_t size2, size_t... Tail>\nauto make_array(T x) {\n std::array<decltype(make_array<T, size2, Tail...>(x)), size> res;\n res.fill(make_array<T, size2, Tail...>(x));\n return res;\n}\n\n\n// x / y以上の最小の整数\nll ceil_div(ll x, ll y) {\n assert(y > 0);\n return (x + (x > 0 ? y - 1 : 0)) / y;\n}\n\n// x / y以下の最大の整数\nll floor_div(ll x, ll y) {\n assert(y > 0);\n return (x + (x > 0 ? 0 : -y + 1)) / y;\n}\n\nvoid io_init() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n}\n\n\n\n#include <limits>\n\ntemplate<typename T>\nstruct add_min_function{\n using F = add_min_function<T>;\n T add, upper;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n add_min_function(): add(0), upper(inf){}\n add_min_function(T _add, T _upper): add(_add), upper(_upper){}\n // g(f(x))\n static F merge(const F &f, const F &g){return {f.add + g.add, std::min(g.upper, f.upper + g.add)};}\n T fx(T x){return std::min(x + add, upper);}\n bool operator == (const F &r)const{return add == r.add && upper == r.upper;}\n};\n\n// f(x) = min(max(x + a, b), c)\ntemplate<typename T>\nstruct clamp_function{\n T add, lower, upper;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n static constexpr T minf = std::numeric_limits<T>::min() / 2;\n clamp_function(): add(0), lower(minf), upper(inf){}\n clamp_function(T _add, T _lower, T _upper): add(_add), lower(_lower), upper(_upper){lower = std::min(_lower, _upper);}\n // g(f(x))\n static clamp_function<T> merge(const clamp_function<T> &f, const clamp_function<T> &g){\n return {f.add + g.add, std::max(g.lower, std::min(f.upper, f.lower) + g.add), std::min(g.upper, std::max(g.lower, f.upper + g.add))};\n }\n T fx(T x){\n return std::min(std::max(x + add, lower), upper);\n }\n bool operator == (const clamp_function<T> &r)const{return add == r.add && lower == r.lower && upper == r.upper;}\n};\n// f(x) = min(max(x + a, b), c)\n// min部分によって減少した値をスコアとする\ntemplate<typename T, typename Tsum>\nstruct clamp_function_score{\npublic:\n T add, lower, upper, score_upper;\n Tsum score_sum;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n static constexpr T minf = std::numeric_limits<T>::min() / 2;\n clamp_function_score(): add(0), lower(minf), upper(inf), score_upper(inf), score_sum(0){}\n clamp_function_score(T _add, T _lower, T _upper): add(_add), lower(_lower), upper(_upper), score_upper(_upper), score_sum(0){lower = std::min(_lower, _upper);}\nprivate:\n clamp_function_score(T _add, T _lower, T _upper, T _supper, Tsum _ssum): add(_add), lower(_lower), upper(_upper), score_upper(_supper), score_sum(_ssum){}\npublic:\n // g(f(x))\n static clamp_function_score<T, Tsum> merge(const clamp_function_score<T, Tsum> &f, const clamp_function_score<T, Tsum> &g){\n T _add = f.add + g.add;\n T _lower = std::max(g.lower, std::min(f.upper, f.lower) + g.add);\n T _upper = std::min(g.upper, std::max(g.lower, f.upper + g.add));\n _lower = std::min(_lower, _upper);\n Tsum _ssum = f.score_sum + g.score_sum;\n if(f.lower == f.upper){\n _ssum += std::max((T)0, f.lower + g.add - g.score_upper);\n return {_add, _lower, _upper, f.score_upper + g.add, _ssum};\n }else if(f.lower + g.add >= g.score_upper){\n assert(_lower == _upper);\n _ssum += std::max((T)0, f.lower + g.add - g.score_upper);\n return {_add, _lower, _upper, f.lower + g.add, _ssum};\n }else{\n return {_add, _lower, _upper, std::min(f.score_upper + g.add, g.score_upper), _ssum};\n }\n }\n T fx(T x){\n return std::min(std::max(x + add, lower), upper);\n }\n Tsum fx_score(T x){\n return score_sum + std::max((T)0, x + add - score_upper);\n }\n bool operator == (const clamp_function_score<T, Tsum> &r)const{return add == r.add && lower == r.lower && upper == r.upper && score_upper == r.score_upper && score_sum == r.score_sum;}\n};\n\n\n\ntemplate<typename T>\nstruct prefixsum_min{\n T sum, pmin;\n static prefixsum_min<T> id(){\n return {0, std::numeric_limits<T>::max() / 2};\n }\n static prefixsum_min<T> merge(prefixsum_min<T> a, prefixsum_min<T> b){\n if(b.pmin == std::numeric_limits<T>::max() / 2) return a;\n return {a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin)};\n }\n};\ntemplate<typename T>\nstruct prefixsum_max{\n T sum, pmax;\n static prefixsum_max<T> id(){\n return {0, std::numeric_limits<T>::min() / 2};\n }\n static prefixsum_max<T> merge(prefixsum_max<T> a, prefixsum_max<T> b){\n if(b.pmax == std::numeric_limits<T>::min() / 2) return a;\n return {a.sum + b.sum, std::max(a.pmax, a.sum + b.pmax)};\n }\n};\ntemplate<typename T>\nstruct suffixsum_min{\n T sum, smin;\n static suffixsum_min<T> id(){\n return {0, std::numeric_limits<T>::max() / 2};\n }\n static suffixsum_min<T> merge(suffixsum_min<T> a, suffixsum_min<T> b){\n if(a.smin == std::numeric_limits<T>::max() / 2) return b;\n return {a.sum + b.sum, std::min(b.smin, b.sum + a.smin)};\n }\n};\ntemplate<typename T>\nstruct suffixsum_max{\n T sum, smax;\n static suffixsum_max<T> id(){\n return {0, std::numeric_limits<T>::min() / 2};\n }\n static suffixsum_max<T> merge(suffixsum_max<T> a, suffixsum_max<T> b){\n if(a.smax == std::numeric_limits<T>::min() / 2) return b;\n return {a.sum + b.sum, std::max(b.smax, b.sum + a.smax)};\n }\n};\ntemplate<typename T>\nstruct substringsum_max{\n T sum, pmax, smax, ssmax; // {区間全体のsum, prefixsumのmax, suffixsumのmax, substringsumのmax}\n static substringsum_max<T> id(){\n return {0, std::numeric_limits<T>::min(), 0, 0};\n }\n static substringsum_max<T> merge(substringsum_max<T> a, substringsum_max<T> b){\n if(b.pmax == std::numeric_limits<T>::min()) return a;\n if(a.pmax == std::numeric_limits<T>::min()) return b;\n T sum = a.sum + b.sum;\n T pmax = std::max(a.pmax, a.sum + b.pmax);\n T smax = std::max(a.smax + b.sum, b.smax);\n return {sum, pmax, smax, std::max({a.ssmax, b.ssmax, pmax, smax})};\n }\n};\n// 01列の0を-1として扱う\n// 1の数, 合計, 接頭辞のmin, 接頭辞のmax\nstruct excess_value{\npublic:\n int rank, sum, pmin, pmax;\n static constexpr int inf = 1 << 30;\n excess_value(): rank(inf), pmin(inf), pmax(-inf){}\n excess_value(bool f): rank(f), sum(f ? 1 : -1), pmin(sum), pmax(sum){}\nprivate:\n excess_value(int a, int b, int c, int d): rank(a), sum(b), pmin(c), pmax(d){}\npublic:\n static excess_value merge(excess_value a, excess_value b){\n if(a.rank == inf) return b;\n if(b.rank == inf) return a;\n return {a.rank + b.rank, a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin), std::max(a.pmax, a.sum + b.pmax)};\n }\n};\n// 01列の0を-1として扱う\n// 1の数, 合計, 接頭辞のmin, 接頭辞のmax, 接尾辞のmin, 接尾辞のmax\nstruct excess_value2{\npublic:\n int rank, sum, pmin, pmax, smin, smax;\n static constexpr int inf = 1 << 30;\n excess_value2(): rank(inf), pmin(inf), pmax(-inf), smin(inf), smax(-inf){}\n excess_value2(bool f): rank(f), sum(f ? 1 : -1), pmin(sum), pmax(sum), smin(sum), smax(sum){}\nprivate:\n excess_value2(int a, int b, int c, int d, int e, int f): rank(a), sum(b), pmin(c), pmax(d), smin(e), smax(f){}\npublic:\n static excess_value2 merge(excess_value2 a, excess_value2 b){\n if(a.rank == inf) return b;\n if(b.rank == inf) return a;\n return {a.rank + b.rank, a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin), \n std::max(a.pmax, a.sum + b.pmax), std::min(a.smin + b.sum, b.smin), std::max(a.smax + b.sum, b.smax)};\n }\n};\n\n\n// https://probablydance.com/2016/12/27/i-wrote-a-faster-sorting-algorithm/\nstruct PartitionInfo\n{\n PartitionInfo()\n : count(0)\n {\n }\n \n union\n {\n size_t count;\n size_t offset;\n };\n size_t next_offset;\n};\n \ntemplate<typename It, typename ExtractKey>\nvoid ska_byte_sort(It begin, It end, ExtractKey & extract_key)\n{\n PartitionInfo partitions[256];\n for (It it = begin; it != end; ++it)\n {\n ++partitions[extract_key(*it)].count;\n }\n uint8_t remaining_partitions[256];\n size_t total = 0;\n int num_partitions = 0;\n for (int i = 0; i < 256; ++i)\n {\n size_t count = partitions[i].count;\n if (count)\n {\n partitions[i].offset = total;\n total += count;\n remaining_partitions[num_partitions] = i;\n ++num_partitions;\n }\n partitions[i].next_offset = total;\n }\n for (uint8_t * last_remaining = remaining_partitions + num_partitions, * end_partition = remaining_partitions + 1; last_remaining > end_partition;)\n {\n last_remaining = custom_std_partition(remaining_partitions, last_remaining, [&](uint8_t partition)\n {\n size_t & begin_offset = partitions[partition].offset;\n size_t & end_offset = partitions[partition].next_offset;\n if (begin_offset == end_offset)\n return false;\n \n unroll_loop_four_times(begin + begin_offset, end_offset - begin_offset, [partitions = partitions, begin, &extract_key](It it)\n {\n uint8_t this_partition = extract_key(*it);\n size_t offset = partitions[this_partition].offset++;\n std::iter_swap(it, begin + offset);\n });\n return begin_offset != end_offset;\n });\n }\n}\n\ntemplate<typename T>\nstruct range_add_chmin_chmax_range_freq {\n private:\n static constexpr T inf = std::numeric_limits<T>::max();\n static constexpr T minf = std::numeric_limits<T>::min();\n using F = clamp_function<T>;\n int N;\n std::vector<T> V, B;\n std::vector<F> lz;\n std::vector<bool> is_sorted;\n static constexpr int sq = 128;\n \n public:\n range_add_chmin_chmax_range_freq(int _N) : range_add_chmin_chmax_range_freq(std::vector<T>(_N, 0)) {}\n range_add_chmin_chmax_range_freq(const std::vector<T> &_V) : N(_V.size()), V(_V), lz((N + sq - 1) / sq, F()), is_sorted((N + sq - 1) / sq, true) {\n B = V;\n for (int i = 0; i < (N + sq - 1) / sq; i++) {\n int L = i * sq;\n int R = std::min(L + sq, N);\n std::sort(B.begin() + L, B.begin() + R);\n }\n }\n\n // [l, r)の x <- min(max(x + add, lower), upper)\n void apply(int l, int r, T add, T lower, T upper) {\n assert(l <= r && lower <= upper);\n int lb = (l + sq - 1) / sq, rb = r / sq;\n F f{add, lower, upper};\n if (l < lb * sq) is_sorted[lb - 1] = false;\n if (rb * sq < r) is_sorted[rb] = false;\n if (lb > rb) {\n int L = rb * sq, R = std::min(N, L + sq);\n for (int i = L; i < R; i++) {\n V[i] = lz[rb].fx(V[i]);\n if (l <= i && i < r) V[i] = f.fx(V[i]);\n }\n lz[rb] = F{};\n return;\n }\n if (l < lb * sq) {\n int L = (lb - 1) * sq, R = std::min(N, L + sq);\n for (int i = L; i < l; i++) {\n V[i] = lz[lb - 1].fx(V[i]);\n }\n for (int i = l; i < R; i++) {\n V[i] = f.fx(lz[lb - 1].fx(V[i]));\n }\n lz[lb - 1] = F{};\n }\n if (rb * sq < r) {\n int L = rb * sq, R = std::min(N, L + sq);\n for (int i = L; i < r; i++) {\n V[i] = f.fx(lz[rb].fx(V[i]));\n }\n for (int i = r; i < R; i++) {\n V[i] = lz[rb].fx(V[i]);\n }\n lz[rb] = F{};\n }\n for (int i = lb; i < rb; i++) {\n lz[i] = F::merge(lz[i], f);\n }\n }\n\n // [l, r)のx以上の最小要素\n T lower_bound(int l, int r, T x) {\n assert(l <= r);\n int lb = (l + sq - 1) / sq, rb = r / sq;\n T res = inf;\n if (lb > rb) {\n for (int i = l; i < r; i++) {\n T y = lz[rb].fx(V[i]);\n if (y >= x) res = std::min(res, y);\n }\n return res;\n }\n for (int i = l; i < lb * sq; i++) {\n T y = lz[lb - 1].fx(V[i]);\n if (y >= x) res = std::min(res, y);\n }\n for (int i = rb * sq; i < r; i++) {\n T y = lz[rb].fx(V[i]);\n if (y >= x) res = std::min(res, y);\n }\n for (int i = lb; i < rb; i++) {\n if (lz[i].upper < x) continue;\n int L = i * sq, R = std::min(N, L + sq);\n if (!is_sorted[i]) {\n for (int j = L; j < R; j++) B[j] = V[j];\n std::sort(B.begin() + L, B.begin() + R);\n is_sorted[i] = true;\n }\n auto itr = std::lower_bound(B.begin() + L, B.begin() + R, x - lz[i].add);\n if (lz[i].lower >= x && itr != B.begin() + L) {\n res = std::min(res, lz[i].lower);\n }\n if (itr != B.begin() + R) {\n res = std::min(res, lz[i].fx(*itr));\n }\n }\n return res;\n }\n\n // [l, r)のrx未満の要素数\n int range_freq(int l, int r, T rx) {\n assert(l <= r);\n int lb = (l + sq - 1) / sq, rb = r / sq;\n int res = 0;\n if (lb > rb) {\n for (int i = l; i < r; i++) {\n T y = lz[rb].fx(V[i]);\n if (y < rx) res++;\n }\n return res;\n }\n for (int i = l; i < lb * sq; i++) {\n T y = lz[lb - 1].fx(V[i]);\n if (y < rx) res++;\n }\n for (int i = rb * sq; i < r; i++) {\n T y = lz[rb].fx(V[i]);\n if (y < rx) res++;\n }\n for (int i = lb; i < rb; i++) {\n if (lz[i].lower >= rx) continue;\n int L = i * sq, R = std::min(N, L + sq);\n if (lz[i].upper < rx) {\n res += R - L;\n continue;\n }\n if (!is_sorted[i]) {\n for (int j = L; j < R; j++) B[j] = V[j];\n std::sort(B.begin() + L, B.begin() + R);\n is_sorted[i] = true;\n }\n res += std::lower_bound(B.begin() + L, B.begin() + R, rx - lz[i].add) - (B.begin() + L);\n }\n return res;\n }\n};\n\nint main() {\n io_init();\n int N, Q;\n std::cin >> N >> Q;\n auto A = read_vec<ll>(N);\n range_add_chmin_chmax_range_freq<ll> F(A);\n\n static constexpr ll inf = 1LL << 60, minf = -inf;\n for (int i = 0; i < Q; i++) {\n int t, l, r;\n ll x;\n std::cin >> t >> l >> r >> x;\n l--;\n if (t == 1) {\n F.apply(l, r, 0, minf, x);\n } else if (t == 2) {\n F.apply(l, r, 0, x, inf);\n } else if (t == 3) {\n F.apply(l, r, x, minf, inf);\n } else {\n ll y;\n std::cin >> y;\n ll ans = F.range_freq(l, r, y + 1) - F.range_freq(l, r, x);\n std::cout << ans << '\\n';\n }\n }\n}", "accuracy": 1, "time_ms": 1010, "memory_kb": 5468, "score_of_the_acc": -0.7467, "final_rank": 6 }, { "submission_id": "aoj_3170_9983676", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <tuple>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <unordered_set>\n#include <unordered_map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <climits>\n#include <iomanip>\n#include <numeric>\n#include <memory>\n#include <random>\n#include <thread>\n#include <chrono>\n#define allof(obj) (obj).begin(), (obj).end()\n#define range(i, l, r) for(int i=l;i<r;i++)\n#define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S)\n#define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit))\n#define bit_kth(i, k) ((i >> k)&1)\n#define bit_highest(i) (i?63-__builtin_clzll(i):-1)\n#define bit_lowest(i) (i?__builtin_ctzll(i):-1)\nusing ll = long long;\nusing ld = long double;\nusing ul = uint64_t;\nusing pi = std::pair<int, int>;\nusing pl = std::pair<ll, ll>;\nusing namespace std;\n\ntemplate<typename F, typename S>\nstd::ostream &operator << (std::ostream &dest, const std::pair<F, S> &p) {\n dest << p.first << ' ' << p.second;\n return dest;\n}\n\ntemplate<typename A, typename B>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t);\n return dest;\n}\n\ntemplate<typename A, typename B, typename C>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B, C> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t);\n return dest;\n}\n\ntemplate<typename A, typename B, typename C, typename D>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B, C, D> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t) << ' ' << std::get<3>(t);\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::vector<std::vector<T>> &v) {\n int sz = v.size();\n if (!sz) return dest;\n for (int i = 0; i < sz; i++) {\n int m = v[i].size();\n for (int j = 0; j < m; j++) dest << v[i][j] << (i != sz - 1 && j == m - 1 ? '\\n' : ' ');\n }\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::vector<T> &v) {\n int sz = v.size();\n if (!sz) return dest;\n for (int i = 0; i < sz - 1; i++) dest << v[i] << ' ';\n dest << v[sz - 1];\n return dest;\n}\n\ntemplate<typename T, size_t sz>\nstd::ostream &operator << (std::ostream &dest, const std::array<T, sz> &v) {\n if (!sz) return dest;\n for (int i = 0; i < sz - 1; i++) dest << v[i] << ' ';\n dest << v[sz - 1];\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::set<T> &v) {\n for (auto itr = v.begin(); itr != v.end();) {\n dest << *itr;\n itr++;\n if (itr != v.end()) dest << ' ';\n }\n return dest;\n}\n\ntemplate<typename T, typename E>\nstd::ostream &operator << (std::ostream &dest, const std::map<T, E> &v) {\n for (auto itr = v.begin(); itr != v.end(); ) {\n dest << '(' << itr->first << \", \" << itr->second << ')';\n itr++;\n if (itr != v.end()) dest << '\\n';\n }\n return dest;\n}\n\ntemplate<typename T>\nstd::vector<T> make_vec(size_t sz, T val) { return std::vector<T>(sz, val); }\n\ntemplate<typename T, typename... Tail>\nauto make_vec(size_t sz, Tail ...tail) {\n return std::vector<decltype(make_vec<T>(tail...))>(sz, make_vec<T>(tail...));\n}\n\ntemplate<typename T>\nstd::vector<T> read_vec(size_t sz) {\n std::vector<T> v(sz);\n for (int i = 0; i < (int)sz; i++) std::cin >> v[i];\n return v;\n}\n\ntemplate<typename T, typename... Tail>\nauto read_vec(size_t sz, Tail ...tail) {\n auto v = std::vector<decltype(read_vec<T>(tail...))>(sz);\n for (int i = 0; i < (int)sz; i++) v[i] = read_vec<T>(tail...);\n return v;\n}\n\ntemplate<typename T, size_t size>\nauto make_array(T x) { \n std::array<T, size> res;\n res.fill(x);\n return res;\n}\n\ntemplate<typename T, size_t size, size_t size2, size_t... Tail>\nauto make_array(T x) {\n std::array<decltype(make_array<T, size2, Tail...>(x)), size> res;\n res.fill(make_array<T, size2, Tail...>(x));\n return res;\n}\n\n\n// x / y以上の最小の整数\nll ceil_div(ll x, ll y) {\n assert(y > 0);\n return (x + (x > 0 ? y - 1 : 0)) / y;\n}\n\n// x / y以下の最大の整数\nll floor_div(ll x, ll y) {\n assert(y > 0);\n return (x + (x > 0 ? 0 : -y + 1)) / y;\n}\n\nvoid io_init() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n}\n\n\n\n#include <limits>\n\ntemplate<typename T>\nstruct add_min_function{\n using F = add_min_function<T>;\n T add, upper;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n add_min_function(): add(0), upper(inf){}\n add_min_function(T _add, T _upper): add(_add), upper(_upper){}\n // g(f(x))\n static F merge(const F &f, const F &g){return {f.add + g.add, std::min(g.upper, f.upper + g.add)};}\n T fx(T x){return std::min(x + add, upper);}\n bool operator == (const F &r)const{return add == r.add && upper == r.upper;}\n};\n\n// f(x) = min(max(x + a, b), c)\ntemplate<typename T>\nstruct clamp_function{\n T add, lower, upper;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n static constexpr T minf = std::numeric_limits<T>::min() / 2;\n clamp_function(): add(0), lower(minf), upper(inf){}\n clamp_function(T _add, T _lower, T _upper): add(_add), lower(_lower), upper(_upper){lower = std::min(_lower, _upper);}\n // g(f(x))\n static clamp_function<T> merge(const clamp_function<T> &f, const clamp_function<T> &g){\n return {f.add + g.add, std::max(g.lower, std::min(f.upper, f.lower) + g.add), std::min(g.upper, std::max(g.lower, f.upper + g.add))};\n }\n T fx(T x){\n return std::min(std::max(x + add, lower), upper);\n }\n bool operator == (const clamp_function<T> &r)const{return add == r.add && lower == r.lower && upper == r.upper;}\n};\n// f(x) = min(max(x + a, b), c)\n// min部分によって減少した値をスコアとする\ntemplate<typename T, typename Tsum>\nstruct clamp_function_score{\npublic:\n T add, lower, upper, score_upper;\n Tsum score_sum;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n static constexpr T minf = std::numeric_limits<T>::min() / 2;\n clamp_function_score(): add(0), lower(minf), upper(inf), score_upper(inf), score_sum(0){}\n clamp_function_score(T _add, T _lower, T _upper): add(_add), lower(_lower), upper(_upper), score_upper(_upper), score_sum(0){lower = std::min(_lower, _upper);}\nprivate:\n clamp_function_score(T _add, T _lower, T _upper, T _supper, Tsum _ssum): add(_add), lower(_lower), upper(_upper), score_upper(_supper), score_sum(_ssum){}\npublic:\n // g(f(x))\n static clamp_function_score<T, Tsum> merge(const clamp_function_score<T, Tsum> &f, const clamp_function_score<T, Tsum> &g){\n T _add = f.add + g.add;\n T _lower = std::max(g.lower, std::min(f.upper, f.lower) + g.add);\n T _upper = std::min(g.upper, std::max(g.lower, f.upper + g.add));\n _lower = std::min(_lower, _upper);\n Tsum _ssum = f.score_sum + g.score_sum;\n if(f.lower == f.upper){\n _ssum += std::max((T)0, f.lower + g.add - g.score_upper);\n return {_add, _lower, _upper, f.score_upper + g.add, _ssum};\n }else if(f.lower + g.add >= g.score_upper){\n assert(_lower == _upper);\n _ssum += std::max((T)0, f.lower + g.add - g.score_upper);\n return {_add, _lower, _upper, f.lower + g.add, _ssum};\n }else{\n return {_add, _lower, _upper, std::min(f.score_upper + g.add, g.score_upper), _ssum};\n }\n }\n T fx(T x){\n return std::min(std::max(x + add, lower), upper);\n }\n Tsum fx_score(T x){\n return score_sum + std::max((T)0, x + add - score_upper);\n }\n bool operator == (const clamp_function_score<T, Tsum> &r)const{return add == r.add && lower == r.lower && upper == r.upper && score_upper == r.score_upper && score_sum == r.score_sum;}\n};\n\n\n\ntemplate<typename T>\nstruct prefixsum_min{\n T sum, pmin;\n static prefixsum_min<T> id(){\n return {0, std::numeric_limits<T>::max() / 2};\n }\n static prefixsum_min<T> merge(prefixsum_min<T> a, prefixsum_min<T> b){\n if(b.pmin == std::numeric_limits<T>::max() / 2) return a;\n return {a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin)};\n }\n};\ntemplate<typename T>\nstruct prefixsum_max{\n T sum, pmax;\n static prefixsum_max<T> id(){\n return {0, std::numeric_limits<T>::min() / 2};\n }\n static prefixsum_max<T> merge(prefixsum_max<T> a, prefixsum_max<T> b){\n if(b.pmax == std::numeric_limits<T>::min() / 2) return a;\n return {a.sum + b.sum, std::max(a.pmax, a.sum + b.pmax)};\n }\n};\ntemplate<typename T>\nstruct suffixsum_min{\n T sum, smin;\n static suffixsum_min<T> id(){\n return {0, std::numeric_limits<T>::max() / 2};\n }\n static suffixsum_min<T> merge(suffixsum_min<T> a, suffixsum_min<T> b){\n if(a.smin == std::numeric_limits<T>::max() / 2) return b;\n return {a.sum + b.sum, std::min(b.smin, b.sum + a.smin)};\n }\n};\ntemplate<typename T>\nstruct suffixsum_max{\n T sum, smax;\n static suffixsum_max<T> id(){\n return {0, std::numeric_limits<T>::min() / 2};\n }\n static suffixsum_max<T> merge(suffixsum_max<T> a, suffixsum_max<T> b){\n if(a.smax == std::numeric_limits<T>::min() / 2) return b;\n return {a.sum + b.sum, std::max(b.smax, b.sum + a.smax)};\n }\n};\ntemplate<typename T>\nstruct substringsum_max{\n T sum, pmax, smax, ssmax; // {区間全体のsum, prefixsumのmax, suffixsumのmax, substringsumのmax}\n static substringsum_max<T> id(){\n return {0, std::numeric_limits<T>::min(), 0, 0};\n }\n static substringsum_max<T> merge(substringsum_max<T> a, substringsum_max<T> b){\n if(b.pmax == std::numeric_limits<T>::min()) return a;\n if(a.pmax == std::numeric_limits<T>::min()) return b;\n T sum = a.sum + b.sum;\n T pmax = std::max(a.pmax, a.sum + b.pmax);\n T smax = std::max(a.smax + b.sum, b.smax);\n return {sum, pmax, smax, std::max({a.ssmax, b.ssmax, pmax, smax})};\n }\n};\n// 01列の0を-1として扱う\n// 1の数, 合計, 接頭辞のmin, 接頭辞のmax\nstruct excess_value{\npublic:\n int rank, sum, pmin, pmax;\n static constexpr int inf = 1 << 30;\n excess_value(): rank(inf), pmin(inf), pmax(-inf){}\n excess_value(bool f): rank(f), sum(f ? 1 : -1), pmin(sum), pmax(sum){}\nprivate:\n excess_value(int a, int b, int c, int d): rank(a), sum(b), pmin(c), pmax(d){}\npublic:\n static excess_value merge(excess_value a, excess_value b){\n if(a.rank == inf) return b;\n if(b.rank == inf) return a;\n return {a.rank + b.rank, a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin), std::max(a.pmax, a.sum + b.pmax)};\n }\n};\n// 01列の0を-1として扱う\n// 1の数, 合計, 接頭辞のmin, 接頭辞のmax, 接尾辞のmin, 接尾辞のmax\nstruct excess_value2{\npublic:\n int rank, sum, pmin, pmax, smin, smax;\n static constexpr int inf = 1 << 30;\n excess_value2(): rank(inf), pmin(inf), pmax(-inf), smin(inf), smax(-inf){}\n excess_value2(bool f): rank(f), sum(f ? 1 : -1), pmin(sum), pmax(sum), smin(sum), smax(sum){}\nprivate:\n excess_value2(int a, int b, int c, int d, int e, int f): rank(a), sum(b), pmin(c), pmax(d), smin(e), smax(f){}\npublic:\n static excess_value2 merge(excess_value2 a, excess_value2 b){\n if(a.rank == inf) return b;\n if(b.rank == inf) return a;\n return {a.rank + b.rank, a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin), \n std::max(a.pmax, a.sum + b.pmax), std::min(a.smin + b.sum, b.smin), std::max(a.smax + b.sum, b.smax)};\n }\n};\n\n\ntemplate<typename T>\nstruct range_add_chmin_chmax_range_freq {\n private:\n static constexpr T inf = std::numeric_limits<T>::max();\n static constexpr T minf = std::numeric_limits<T>::min();\n using F = clamp_function<T>;\n int N;\n std::vector<T> V, B;\n std::vector<F> lz;\n std::vector<bool> is_sorted;\n static constexpr int sq = 256;\n \n public:\n range_add_chmin_chmax_range_freq(int _N) : range_add_chmin_chmax_range_freq(std::vector<T>(_N, 0)) {}\n range_add_chmin_chmax_range_freq(const std::vector<T> &_V) : N(_V.size()), V(_V), lz((N + sq - 1) / sq, F()), is_sorted((N + sq - 1) / sq, true) {\n B = V;\n for (int i = 0; i < (N + sq - 1) / sq; i++) {\n int L = i * sq;\n int R = std::min(L + sq, N);\n std::sort(B.begin() + L, B.begin() + R);\n }\n }\n\n // [l, r)の x <- min(max(x + add, lower), upper)\n void apply(int l, int r, T add, T lower, T upper) {\n assert(l <= r && lower <= upper);\n int lb = (l + sq - 1) / sq, rb = r / sq;\n F f{add, lower, upper};\n if (l < lb * sq) is_sorted[lb - 1] = false;\n if (rb * sq < r) is_sorted[rb] = false;\n if (lb > rb) {\n int L = rb * sq, R = std::min(N, L + sq);\n for (int i = L; i < R; i++) {\n V[i] = lz[rb].fx(V[i]);\n if (l <= i && i < r) V[i] = f.fx(V[i]);\n }\n lz[rb] = F{};\n return;\n }\n if (l < lb * sq) {\n int L = (lb - 1) * sq, R = std::min(N, L + sq);\n for (int i = L; i < l; i++) {\n V[i] = lz[lb - 1].fx(V[i]);\n }\n for (int i = l; i < R; i++) {\n V[i] = f.fx(lz[lb - 1].fx(V[i]));\n }\n lz[lb - 1] = F{};\n }\n if (rb * sq < r) {\n int L = rb * sq, R = std::min(N, L + sq);\n for (int i = L; i < r; i++) {\n V[i] = f.fx(lz[rb].fx(V[i]));\n }\n for (int i = r; i < R; i++) {\n V[i] = lz[rb].fx(V[i]);\n }\n lz[rb] = F{};\n }\n for (int i = lb; i < rb; i++) {\n lz[i] = F::merge(lz[i], f);\n }\n }\n\n /*\n // [l, r)のx以上の最小要素\n T lower_bound(int l, int r, T x) {\n assert(l <= r);\n int lb = (l + sq - 1) / sq, rb = r / sq;\n T res = inf;\n if (lb >= rb) {\n for (int i = l; i < r; i++) {\n if (V[i] >= x) res = std::min(res, V[i]);\n }\n return res;\n }\n //\n return res;\n }\n */\n\n // [l, r)のrx未満の要素数\n int range_freq(int l, int r, T rx) {\n assert(l <= r);\n int lb = (l + sq - 1) / sq, rb = r / sq;\n int res = 0;\n if (lb > rb) {\n for (int i = l; i < r; i++) {\n T y = lz[rb].fx(V[i]);\n if (y < rx) res++;\n }\n return res;\n }\n for (int i = l; i < lb * sq; i++) {\n T y = lz[lb - 1].fx(V[i]);\n if (y < rx) res++;\n }\n for (int i = rb * sq; i < r; i++) {\n T y = lz[rb].fx(V[i]);\n if (y < rx) res++;\n }\n for (int i = lb; i < rb; i++) {\n if (lz[i].lower >= rx) continue;\n int L = i * sq, R = std::min(N, L + sq);\n if (lz[i].upper < rx) {\n res += R - L;\n continue;\n }\n if (!is_sorted[i]) {\n for (int j = L; j < R; j++) B[j] = V[j];\n std::sort(B.begin() + L, B.begin() + R);\n is_sorted[i] = true;\n }\n res += std::lower_bound(B.begin() + L, B.begin() + R, rx - lz[i].add) - (B.begin() + L);\n }\n return res;\n }\n /*\n\n // [l, r)のrx未満の要素の和\n T range_freq_sum(int l, int r, T rx) {\n assert(l <= r);\n int lb = (l + sq - 1) / sq, rb = r / sq;\n T res = 0;\n if (lb >= rb) {\n for (int i = l; i < r; i++) {\n if (V[i] < rx) res += V[i];\n }\n return res;\n }\n //\n return res;\n }\n */\n};\n\nint main() {\n io_init();\n int N, Q;\n std::cin >> N >> Q;\n auto A = read_vec<ll>(N);\n range_add_chmin_chmax_range_freq<ll> F(A);\n\n static constexpr ll inf = 1LL << 60, minf = -inf;\n for (int i = 0; i < Q; i++) {\n int t, l, r;\n ll x;\n std::cin >> t >> l >> r >> x;\n l--;\n if (t == 1) {\n F.apply(l, r, 0, minf, x);\n } else if (t == 2) {\n F.apply(l, r, 0, x, inf);\n } else if (t == 3) {\n F.apply(l, r, x, minf, inf);\n } else {\n ll y;\n std::cin >> y;\n ll ans = F.range_freq(l, r, y + 1) - F.range_freq(l, r, x);\n std::cout << ans << '\\n';\n }\n }\n}", "accuracy": 1, "time_ms": 1080, "memory_kb": 5464, "score_of_the_acc": -0.7917, "final_rank": 7 }, { "submission_id": "aoj_3170_9983653", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <tuple>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <unordered_set>\n#include <unordered_map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <climits>\n#include <iomanip>\n#include <numeric>\n#include <memory>\n#include <random>\n#include <thread>\n#include <chrono>\n#define allof(obj) (obj).begin(), (obj).end()\n#define range(i, l, r) for(int i=l;i<r;i++)\n#define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S)\n#define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit))\n#define bit_kth(i, k) ((i >> k)&1)\n#define bit_highest(i) (i?63-__builtin_clzll(i):-1)\n#define bit_lowest(i) (i?__builtin_ctzll(i):-1)\nusing ll = long long;\nusing ld = long double;\nusing ul = uint64_t;\nusing pi = std::pair<int, int>;\nusing pl = std::pair<ll, ll>;\nusing namespace std;\n\ntemplate<typename F, typename S>\nstd::ostream &operator << (std::ostream &dest, const std::pair<F, S> &p) {\n dest << p.first << ' ' << p.second;\n return dest;\n}\n\ntemplate<typename A, typename B>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t);\n return dest;\n}\n\ntemplate<typename A, typename B, typename C>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B, C> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t);\n return dest;\n}\n\ntemplate<typename A, typename B, typename C, typename D>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B, C, D> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t) << ' ' << std::get<3>(t);\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::vector<std::vector<T>> &v) {\n int sz = v.size();\n if (!sz) return dest;\n for (int i = 0; i < sz; i++) {\n int m = v[i].size();\n for (int j = 0; j < m; j++) dest << v[i][j] << (i != sz - 1 && j == m - 1 ? '\\n' : ' ');\n }\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::vector<T> &v) {\n int sz = v.size();\n if (!sz) return dest;\n for (int i = 0; i < sz - 1; i++) dest << v[i] << ' ';\n dest << v[sz - 1];\n return dest;\n}\n\ntemplate<typename T, size_t sz>\nstd::ostream &operator << (std::ostream &dest, const std::array<T, sz> &v) {\n if (!sz) return dest;\n for (int i = 0; i < sz - 1; i++) dest << v[i] << ' ';\n dest << v[sz - 1];\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::set<T> &v) {\n for (auto itr = v.begin(); itr != v.end();) {\n dest << *itr;\n itr++;\n if (itr != v.end()) dest << ' ';\n }\n return dest;\n}\n\ntemplate<typename T, typename E>\nstd::ostream &operator << (std::ostream &dest, const std::map<T, E> &v) {\n for (auto itr = v.begin(); itr != v.end(); ) {\n dest << '(' << itr->first << \", \" << itr->second << ')';\n itr++;\n if (itr != v.end()) dest << '\\n';\n }\n return dest;\n}\n\ntemplate<typename T>\nstd::vector<T> make_vec(size_t sz, T val) { return std::vector<T>(sz, val); }\n\ntemplate<typename T, typename... Tail>\nauto make_vec(size_t sz, Tail ...tail) {\n return std::vector<decltype(make_vec<T>(tail...))>(sz, make_vec<T>(tail...));\n}\n\ntemplate<typename T>\nstd::vector<T> read_vec(size_t sz) {\n std::vector<T> v(sz);\n for (int i = 0; i < (int)sz; i++) std::cin >> v[i];\n return v;\n}\n\ntemplate<typename T, typename... Tail>\nauto read_vec(size_t sz, Tail ...tail) {\n auto v = std::vector<decltype(read_vec<T>(tail...))>(sz);\n for (int i = 0; i < (int)sz; i++) v[i] = read_vec<T>(tail...);\n return v;\n}\n\ntemplate<typename T, size_t size>\nauto make_array(T x) { \n std::array<T, size> res;\n res.fill(x);\n return res;\n}\n\ntemplate<typename T, size_t size, size_t size2, size_t... Tail>\nauto make_array(T x) {\n std::array<decltype(make_array<T, size2, Tail...>(x)), size> res;\n res.fill(make_array<T, size2, Tail...>(x));\n return res;\n}\n\n\n// x / y以上の最小の整数\nll ceil_div(ll x, ll y) {\n assert(y > 0);\n return (x + (x > 0 ? y - 1 : 0)) / y;\n}\n\n// x / y以下の最大の整数\nll floor_div(ll x, ll y) {\n assert(y > 0);\n return (x + (x > 0 ? 0 : -y + 1)) / y;\n}\n\nvoid io_init() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n}\n\n\n\n#include <limits>\n\ntemplate<typename T>\nstruct add_min_function{\n using F = add_min_function<T>;\n T add, upper;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n add_min_function(): add(0), upper(inf){}\n add_min_function(T _add, T _upper): add(_add), upper(_upper){}\n // g(f(x))\n static F merge(const F &f, const F &g){return {f.add + g.add, std::min(g.upper, f.upper + g.add)};}\n T fx(T x){return std::min(x + add, upper);}\n bool operator == (const F &r)const{return add == r.add && upper == r.upper;}\n};\n\n// f(x) = min(max(x + a, b), c)\ntemplate<typename T>\nstruct clamp_function{\n T add, lower, upper;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n static constexpr T minf = std::numeric_limits<T>::min() / 2;\n clamp_function(): add(0), lower(minf), upper(inf){}\n clamp_function(T _add, T _lower, T _upper): add(_add), lower(_lower), upper(_upper){lower = std::min(_lower, _upper);}\n // g(f(x))\n static clamp_function<T> merge(const clamp_function<T> &f, const clamp_function<T> &g){\n return {f.add + g.add, std::max(g.lower, std::min(f.upper, f.lower) + g.add), std::min(g.upper, std::max(g.lower, f.upper + g.add))};\n }\n T fx(T x){\n return std::min(std::max(x + add, lower), upper);\n }\n bool operator == (const clamp_function<T> &r)const{return add == r.add && lower == r.lower && upper == r.upper;}\n};\n// f(x) = min(max(x + a, b), c)\n// min部分によって減少した値をスコアとする\ntemplate<typename T, typename Tsum>\nstruct clamp_function_score{\npublic:\n T add, lower, upper, score_upper;\n Tsum score_sum;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n static constexpr T minf = std::numeric_limits<T>::min() / 2;\n clamp_function_score(): add(0), lower(minf), upper(inf), score_upper(inf), score_sum(0){}\n clamp_function_score(T _add, T _lower, T _upper): add(_add), lower(_lower), upper(_upper), score_upper(_upper), score_sum(0){lower = std::min(_lower, _upper);}\nprivate:\n clamp_function_score(T _add, T _lower, T _upper, T _supper, Tsum _ssum): add(_add), lower(_lower), upper(_upper), score_upper(_supper), score_sum(_ssum){}\npublic:\n // g(f(x))\n static clamp_function_score<T, Tsum> merge(const clamp_function_score<T, Tsum> &f, const clamp_function_score<T, Tsum> &g){\n T _add = f.add + g.add;\n T _lower = std::max(g.lower, std::min(f.upper, f.lower) + g.add);\n T _upper = std::min(g.upper, std::max(g.lower, f.upper + g.add));\n _lower = std::min(_lower, _upper);\n Tsum _ssum = f.score_sum + g.score_sum;\n if(f.lower == f.upper){\n _ssum += std::max((T)0, f.lower + g.add - g.score_upper);\n return {_add, _lower, _upper, f.score_upper + g.add, _ssum};\n }else if(f.lower + g.add >= g.score_upper){\n assert(_lower == _upper);\n _ssum += std::max((T)0, f.lower + g.add - g.score_upper);\n return {_add, _lower, _upper, f.lower + g.add, _ssum};\n }else{\n return {_add, _lower, _upper, std::min(f.score_upper + g.add, g.score_upper), _ssum};\n }\n }\n T fx(T x){\n return std::min(std::max(x + add, lower), upper);\n }\n Tsum fx_score(T x){\n return score_sum + std::max((T)0, x + add - score_upper);\n }\n bool operator == (const clamp_function_score<T, Tsum> &r)const{return add == r.add && lower == r.lower && upper == r.upper && score_upper == r.score_upper && score_sum == r.score_sum;}\n};\n\n\n\ntemplate<typename T>\nstruct prefixsum_min{\n T sum, pmin;\n static prefixsum_min<T> id(){\n return {0, std::numeric_limits<T>::max() / 2};\n }\n static prefixsum_min<T> merge(prefixsum_min<T> a, prefixsum_min<T> b){\n if(b.pmin == std::numeric_limits<T>::max() / 2) return a;\n return {a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin)};\n }\n};\ntemplate<typename T>\nstruct prefixsum_max{\n T sum, pmax;\n static prefixsum_max<T> id(){\n return {0, std::numeric_limits<T>::min() / 2};\n }\n static prefixsum_max<T> merge(prefixsum_max<T> a, prefixsum_max<T> b){\n if(b.pmax == std::numeric_limits<T>::min() / 2) return a;\n return {a.sum + b.sum, std::max(a.pmax, a.sum + b.pmax)};\n }\n};\ntemplate<typename T>\nstruct suffixsum_min{\n T sum, smin;\n static suffixsum_min<T> id(){\n return {0, std::numeric_limits<T>::max() / 2};\n }\n static suffixsum_min<T> merge(suffixsum_min<T> a, suffixsum_min<T> b){\n if(a.smin == std::numeric_limits<T>::max() / 2) return b;\n return {a.sum + b.sum, std::min(b.smin, b.sum + a.smin)};\n }\n};\ntemplate<typename T>\nstruct suffixsum_max{\n T sum, smax;\n static suffixsum_max<T> id(){\n return {0, std::numeric_limits<T>::min() / 2};\n }\n static suffixsum_max<T> merge(suffixsum_max<T> a, suffixsum_max<T> b){\n if(a.smax == std::numeric_limits<T>::min() / 2) return b;\n return {a.sum + b.sum, std::max(b.smax, b.sum + a.smax)};\n }\n};\ntemplate<typename T>\nstruct substringsum_max{\n T sum, pmax, smax, ssmax; // {区間全体のsum, prefixsumのmax, suffixsumのmax, substringsumのmax}\n static substringsum_max<T> id(){\n return {0, std::numeric_limits<T>::min(), 0, 0};\n }\n static substringsum_max<T> merge(substringsum_max<T> a, substringsum_max<T> b){\n if(b.pmax == std::numeric_limits<T>::min()) return a;\n if(a.pmax == std::numeric_limits<T>::min()) return b;\n T sum = a.sum + b.sum;\n T pmax = std::max(a.pmax, a.sum + b.pmax);\n T smax = std::max(a.smax + b.sum, b.smax);\n return {sum, pmax, smax, std::max({a.ssmax, b.ssmax, pmax, smax})};\n }\n};\n// 01列の0を-1として扱う\n// 1の数, 合計, 接頭辞のmin, 接頭辞のmax\nstruct excess_value{\npublic:\n int rank, sum, pmin, pmax;\n static constexpr int inf = 1 << 30;\n excess_value(): rank(inf), pmin(inf), pmax(-inf){}\n excess_value(bool f): rank(f), sum(f ? 1 : -1), pmin(sum), pmax(sum){}\nprivate:\n excess_value(int a, int b, int c, int d): rank(a), sum(b), pmin(c), pmax(d){}\npublic:\n static excess_value merge(excess_value a, excess_value b){\n if(a.rank == inf) return b;\n if(b.rank == inf) return a;\n return {a.rank + b.rank, a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin), std::max(a.pmax, a.sum + b.pmax)};\n }\n};\n// 01列の0を-1として扱う\n// 1の数, 合計, 接頭辞のmin, 接頭辞のmax, 接尾辞のmin, 接尾辞のmax\nstruct excess_value2{\npublic:\n int rank, sum, pmin, pmax, smin, smax;\n static constexpr int inf = 1 << 30;\n excess_value2(): rank(inf), pmin(inf), pmax(-inf), smin(inf), smax(-inf){}\n excess_value2(bool f): rank(f), sum(f ? 1 : -1), pmin(sum), pmax(sum), smin(sum), smax(sum){}\nprivate:\n excess_value2(int a, int b, int c, int d, int e, int f): rank(a), sum(b), pmin(c), pmax(d), smin(e), smax(f){}\npublic:\n static excess_value2 merge(excess_value2 a, excess_value2 b){\n if(a.rank == inf) return b;\n if(b.rank == inf) return a;\n return {a.rank + b.rank, a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin), \n std::max(a.pmax, a.sum + b.pmax), std::min(a.smin + b.sum, b.smin), std::max(a.smax + b.sum, b.smax)};\n }\n};\n\n\n/*\ntemplate<typename T>\nstruct range_add_chmin_chmax_range_freq {\n private:\n using F = clamp_function<T>;\n struct query {\n int type, l, r;\n F f;\n };\n int N;\n std::vector<T> V;\n std::vector<query> Qs;\n \n public:\n range_add_chmin_chmax_range_freq(int _N) : range_add_chmin_chmax_range_freq(std::vector<T>(_N, 0)) {}\n range_add_chmin_chmax_range_freq(const std::vector<T> &_V) : N(_V.size()), V(_V) {}\n\n // [l, r)の x <- min(max(x + add, lower), upper)\n void apply(int l, int r, T add, T lower, T upper) {\n assert(lower <= upper);\n Qs.push_back({0, l, r, F{add, lower, upper}});\n }\n\n // [l, r)のx以上の最小要素\n void lower_bound(int l, int r, T x) {\n Qs.push_back({1, l, r, F{x, x, x}});\n }\n\n // [l, r)のrx未満の要素数\n void range_freq(int l, int r, T rx) {\n Qs.push_back({2, l, r, F{rx, rx, rx}});\n }\n\n std::vector<T> solve() {\n int Q = Qs.size(), K = 2 * sqrt(N);\n std::vector<int> Bbegin{0};\n std::vector<F> lz{F{}};\n std::vector<T> B;\n\n auto propagate = [&]() -> void {\n for (int i = 0; i < (int)Bbegin.size(); i++) {\n if (lz[i] == F()) continue;\n int l = Bbegin[i];\n int r = (i + 1 == Bbegin.size() ? N : Bbegin[i + 1]);\n for (int j = l; j < r; j++) V[j] = lz[i].fx(V[j]);\n }\n };\n\n auto make_block = [&](int lq, int rq) -> void {\n Bbegin = {0};\n for (int i = lq; i < rq; i++) {\n Bbegin.push_back(Qs[i].l);\n Bbegin.push_back(Qs[i].r);\n }\n std::sort(Bbegin.begin(), Bbegin.end());\n Bbegin.erase(std::unique(Bbegin.begin(), Bbegin.end()), Bbegin.end());\n lz = std::vector<F>(Bbegin.size(), F());\n B = V;\n for (int i = 0; i < Bbegin.size(); i++) {\n int l = Bbegin[i];\n int r = (i + 1 == Bbegin.size() ? N : Bbegin[i + 1]);\n std::sort(B.begin() + l, B.begin() + r);\n }\n };\n\n std::vector<T> ans;\n\n for (int i = 0; i < Q; i++) {\n if (i % K == 0) {\n propagate();\n make_block(i, std::min(Q, i + K));\n }\n int l = std::lower_bound(Bbegin.begin(), Bbegin.end(), Qs[i].l) - Bbegin.begin();\n int r = std::lower_bound(Bbegin.begin(), Bbegin.end(), Qs[i].r) - Bbegin.begin();\n if (Qs[i].type == 0) {\n for (int j = l; j < r; j++) {\n lz[j] = F::merge(lz[j], Qs[i].f);\n }\n } else if (Qs[i].type == 1) {\n T lb = std::numeric_limits<T>::max();\n T x = Qs[i].f.add;\n for (int j = l; j < r; j++) { \n T y = x - lz[j].add;\n auto itr = std::lower_bound(B.begin() + Bbegin[j], B.begin() + Bbegin[j + 1], y);\n if (itr != B.begin() + Bbegin[j + 1]) {\n lb = std::min(lb, lz[j].fx(*itr));\n }\n if (itr != B.begin() + Bbegin[j] && lz[j].lower >= x) {\n lb = std::min(lb, lz[j].lower);\n }\n }\n ans.push_back(lb);\n } else if (Qs[i].type == 2) {\n T cnt = 0, rx = Qs[i].f.add;\n for (int j = l; j < r; j++) { \n if (lz[j].lower >= rx) continue;\n if (lz[j].upper < rx) {\n cnt += Bbegin[j + 1] - Bbegin[j];\n continue;\n }\n T y = rx - lz[j].add;\n auto itr = std::lower_bound(B.begin() + Bbegin[j], B.begin() + Bbegin[j + 1], y);\n cnt += itr - (B.begin() + Bbegin[j]);\n }\n ans.push_back(cnt);\n }\n }\n return ans;\n }\n};\n*/\n\ntemplate<typename T>\nstruct range_add_chmin_chmax_range_freq {\n private:\n static constexpr T inf = std::numeric_limits<T>::max();\n static constexpr T minf = std::numeric_limits<T>::min();\n using F = clamp_function<T>;\n int N;\n std::vector<T> V, B;\n std::vector<F> lz;\n std::vector<bool> is_sorted;\n static constexpr int sq = 128;\n \n public:\n range_add_chmin_chmax_range_freq(int _N) : range_add_chmin_chmax_range_freq(std::vector<T>(_N, 0)) {}\n range_add_chmin_chmax_range_freq(const std::vector<T> &_V) : N(_V.size()), V(_V), lz((N + sq - 1) / sq, F()), is_sorted((N + sq - 1) / sq, true) {\n B = V;\n for (int i = 0; i < (N + sq - 1) / sq; i++) {\n int L = i * sq;\n int R = std::min(L + sq, N);\n std::sort(B.begin() + L, B.begin() + R);\n }\n }\n\n // [l, r)の x <- min(max(x + add, lower), upper)\n void apply(int l, int r, T add, T lower, T upper) {\n assert(l <= r && lower <= upper);\n int lb = (l + sq - 1) / sq, rb = r / sq;\n F f{add, lower, upper};\n if (l < lb * sq) is_sorted[lb - 1] = false;\n if (rb * sq < r) is_sorted[rb] = false;\n if (lb > rb) {\n int L = rb * sq, R = std::min(N, L + sq);\n for (int i = L; i < R; i++) {\n V[i] = lz[rb].fx(V[i]);\n if (l <= i && i < r) V[i] = f.fx(V[i]);\n }\n lz[rb] = F{};\n return;\n }\n if (l < lb * sq) {\n int L = (lb - 1) * sq, R = std::min(N, L + sq);\n for (int i = L; i < l; i++) {\n V[i] = lz[lb - 1].fx(V[i]);\n }\n for (int i = l; i < R; i++) {\n V[i] = f.fx(lz[lb - 1].fx(V[i]));\n }\n lz[lb - 1] = F{};\n }\n if (rb * sq < r) {\n int L = rb * sq, R = std::min(N, L + sq);\n for (int i = L; i < r; i++) {\n V[i] = f.fx(lz[rb].fx(V[i]));\n }\n for (int i = r; i < R; i++) {\n V[i] = lz[rb].fx(V[i]);\n }\n lz[rb] = F{};\n }\n for (int i = lb; i < rb; i++) {\n lz[i] = F::merge(lz[i], f);\n }\n }\n\n /*\n // [l, r)のx以上の最小要素\n T lower_bound(int l, int r, T x) {\n assert(l <= r);\n int lb = (l + sq - 1) / sq, rb = r / sq;\n T res = inf;\n if (lb >= rb) {\n for (int i = l; i < r; i++) {\n if (V[i] >= x) res = std::min(res, V[i]);\n }\n return res;\n }\n //\n return res;\n }\n */\n\n // [l, r)のrx未満の要素数\n int range_freq(int l, int r, T rx) {\n assert(l <= r);\n int lb = (l + sq - 1) / sq, rb = r / sq;\n int res = 0;\n if (lb > rb) {\n for (int i = l; i < r; i++) {\n T y = lz[rb].fx(V[i]);\n if (y < rx) res++;\n }\n return res;\n }\n for (int i = l; i < lb * sq; i++) {\n T y = lz[lb - 1].fx(V[i]);\n if (y < rx) res++;\n }\n for (int i = rb * sq; i < r; i++) {\n T y = lz[rb].fx(V[i]);\n if (y < rx) res++;\n }\n for (int i = lb; i < rb; i++) {\n if (lz[i].lower >= rx) continue;\n int L = i * sq, R = std::min(N, L + sq);\n if (lz[i].upper < rx) {\n res += R - L;\n continue;\n }\n if (!is_sorted[i]) {\n for (int j = L; j < R; j++) B[j] = V[j];\n std::sort(B.begin() + L, B.begin() + R);\n is_sorted[i] = true;\n }\n res += std::lower_bound(B.begin() + L, B.begin() + R, rx - lz[i].add) - (B.begin() + L);\n }\n return res;\n }\n /*\n\n // [l, r)のrx未満の要素の和\n T range_freq_sum(int l, int r, T rx) {\n assert(l <= r);\n int lb = (l + sq - 1) / sq, rb = r / sq;\n T res = 0;\n if (lb >= rb) {\n for (int i = l; i < r; i++) {\n if (V[i] < rx) res += V[i];\n }\n return res;\n }\n //\n return res;\n }\n */\n};\n\nint main() {\n io_init();\n int N, Q;\n std::cin >> N >> Q;\n auto A = read_vec<ll>(N);\n range_add_chmin_chmax_range_freq<ll> F(A);\n\n static constexpr ll inf = 1LL << 60, minf = -inf;\n for (int i = 0; i < Q; i++) {\n int t, l, r;\n ll x;\n std::cin >> t >> l >> r >> x;\n l--;\n if (t == 1) {\n F.apply(l, r, 0, minf, x);\n } else if (t == 2) {\n F.apply(l, r, 0, x, inf);\n } else if (t == 3) {\n F.apply(l, r, x, minf, inf);\n } else {\n ll y;\n std::cin >> y;\n ll ans = F.range_freq(l, r, y + 1) - F.range_freq(l, r, x);\n std::cout << ans << '\\n';\n }\n }\n}", "accuracy": 1, "time_ms": 1000, "memory_kb": 5468, "score_of_the_acc": -0.7402, "final_rank": 5 }, { "submission_id": "aoj_3170_9983016", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <tuple>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <unordered_set>\n#include <unordered_map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <climits>\n#include <iomanip>\n#include <numeric>\n#include <memory>\n#include <random>\n#include <thread>\n#include <chrono>\n#define allof(obj) (obj).begin(), (obj).end()\n#define range(i, l, r) for(int i=l;i<r;i++)\n#define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S)\n#define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit))\n#define bit_kth(i, k) ((i >> k)&1)\n#define bit_highest(i) (i?63-__builtin_clzll(i):-1)\n#define bit_lowest(i) (i?__builtin_ctzll(i):-1)\nusing ll = long long;\nusing ld = long double;\nusing ul = uint64_t;\nusing pi = std::pair<int, int>;\nusing pl = std::pair<ll, ll>;\nusing namespace std;\n\ntemplate<typename F, typename S>\nstd::ostream &operator << (std::ostream &dest, const std::pair<F, S> &p) {\n dest << p.first << ' ' << p.second;\n return dest;\n}\n\ntemplate<typename A, typename B>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t);\n return dest;\n}\n\ntemplate<typename A, typename B, typename C>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B, C> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t);\n return dest;\n}\n\ntemplate<typename A, typename B, typename C, typename D>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B, C, D> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t) << ' ' << std::get<3>(t);\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::vector<std::vector<T>> &v) {\n int sz = v.size();\n if (!sz) return dest;\n for (int i = 0; i < sz; i++) {\n int m = v[i].size();\n for (int j = 0; j < m; j++) dest << v[i][j] << (i != sz - 1 && j == m - 1 ? '\\n' : ' ');\n }\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::vector<T> &v) {\n int sz = v.size();\n if (!sz) return dest;\n for (int i = 0; i < sz - 1; i++) dest << v[i] << ' ';\n dest << v[sz - 1];\n return dest;\n}\n\ntemplate<typename T, size_t sz>\nstd::ostream &operator << (std::ostream &dest, const std::array<T, sz> &v) {\n if (!sz) return dest;\n for (int i = 0; i < sz - 1; i++) dest << v[i] << ' ';\n dest << v[sz - 1];\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::set<T> &v) {\n for (auto itr = v.begin(); itr != v.end();) {\n dest << *itr;\n itr++;\n if (itr != v.end()) dest << ' ';\n }\n return dest;\n}\n\ntemplate<typename T, typename E>\nstd::ostream &operator << (std::ostream &dest, const std::map<T, E> &v) {\n for (auto itr = v.begin(); itr != v.end(); ) {\n dest << '(' << itr->first << \", \" << itr->second << ')';\n itr++;\n if (itr != v.end()) dest << '\\n';\n }\n return dest;\n}\n\ntemplate<typename T>\nstd::vector<T> make_vec(size_t sz, T val) { return std::vector<T>(sz, val); }\n\ntemplate<typename T, typename... Tail>\nauto make_vec(size_t sz, Tail ...tail) {\n return std::vector<decltype(make_vec<T>(tail...))>(sz, make_vec<T>(tail...));\n}\n\ntemplate<typename T>\nstd::vector<T> read_vec(size_t sz) {\n std::vector<T> v(sz);\n for (int i = 0; i < (int)sz; i++) std::cin >> v[i];\n return v;\n}\n\ntemplate<typename T, typename... Tail>\nauto read_vec(size_t sz, Tail ...tail) {\n auto v = std::vector<decltype(read_vec<T>(tail...))>(sz);\n for (int i = 0; i < (int)sz; i++) v[i] = read_vec<T>(tail...);\n return v;\n}\n\ntemplate<typename T, size_t size>\nauto make_array(T x) { \n std::array<T, size> res;\n res.fill(x);\n return res;\n}\n\ntemplate<typename T, size_t size, size_t size2, size_t... Tail>\nauto make_array(T x) {\n std::array<decltype(make_array<T, size2, Tail...>(x)), size> res;\n res.fill(make_array<T, size2, Tail...>(x));\n return res;\n}\n\n\n// x / y以上の最小の整数\nll ceil_div(ll x, ll y) {\n assert(y > 0);\n return (x + (x > 0 ? y - 1 : 0)) / y;\n}\n\n// x / y以下の最大の整数\nll floor_div(ll x, ll y) {\n assert(y > 0);\n return (x + (x > 0 ? 0 : -y + 1)) / y;\n}\n\nvoid io_init() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n}\n\n\n\n#include <limits>\n\ntemplate<typename T>\nstruct add_min_function{\n using F = add_min_function<T>;\n T add, upper;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n add_min_function(): add(0), upper(inf){}\n add_min_function(T _add, T _upper): add(_add), upper(_upper){}\n // g(f(x))\n static F merge(const F &f, const F &g){return {f.add + g.add, std::min(g.upper, f.upper + g.add)};}\n T fx(T x){return std::min(x + add, upper);}\n bool operator == (const F &r)const{return add == r.add && upper == r.upper;}\n};\n\n// f(x) = min(max(x + a, b), c)\ntemplate<typename T>\nstruct clamp_function{\n T add, lower, upper;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n static constexpr T minf = std::numeric_limits<T>::min() / 2;\n clamp_function(): add(0), lower(minf), upper(inf){}\n clamp_function(T _add, T _lower, T _upper): add(_add), lower(_lower), upper(_upper){lower = std::min(_lower, _upper);}\n // g(f(x))\n static clamp_function<T> merge(const clamp_function<T> &f, const clamp_function<T> &g){\n return {f.add + g.add, std::max(g.lower, std::min(f.upper, f.lower) + g.add), std::min(g.upper, std::max(g.lower, f.upper + g.add))};\n }\n T fx(T x){\n return std::min(std::max(x + add, lower), upper);\n }\n bool operator == (const clamp_function<T> &r)const{return add == r.add && lower == r.lower && upper == r.upper;}\n};\n// f(x) = min(max(x + a, b), c)\n// min部分によって減少した値をスコアとする\ntemplate<typename T, typename Tsum>\nstruct clamp_function_score{\npublic:\n T add, lower, upper, score_upper;\n Tsum score_sum;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n static constexpr T minf = std::numeric_limits<T>::min() / 2;\n clamp_function_score(): add(0), lower(minf), upper(inf), score_upper(inf), score_sum(0){}\n clamp_function_score(T _add, T _lower, T _upper): add(_add), lower(_lower), upper(_upper), score_upper(_upper), score_sum(0){lower = std::min(_lower, _upper);}\nprivate:\n clamp_function_score(T _add, T _lower, T _upper, T _supper, Tsum _ssum): add(_add), lower(_lower), upper(_upper), score_upper(_supper), score_sum(_ssum){}\npublic:\n // g(f(x))\n static clamp_function_score<T, Tsum> merge(const clamp_function_score<T, Tsum> &f, const clamp_function_score<T, Tsum> &g){\n T _add = f.add + g.add;\n T _lower = std::max(g.lower, std::min(f.upper, f.lower) + g.add);\n T _upper = std::min(g.upper, std::max(g.lower, f.upper + g.add));\n _lower = std::min(_lower, _upper);\n Tsum _ssum = f.score_sum + g.score_sum;\n if(f.lower == f.upper){\n _ssum += std::max((T)0, f.lower + g.add - g.score_upper);\n return {_add, _lower, _upper, f.score_upper + g.add, _ssum};\n }else if(f.lower + g.add >= g.score_upper){\n assert(_lower == _upper);\n _ssum += std::max((T)0, f.lower + g.add - g.score_upper);\n return {_add, _lower, _upper, f.lower + g.add, _ssum};\n }else{\n return {_add, _lower, _upper, std::min(f.score_upper + g.add, g.score_upper), _ssum};\n }\n }\n T fx(T x){\n return std::min(std::max(x + add, lower), upper);\n }\n Tsum fx_score(T x){\n return score_sum + std::max((T)0, x + add - score_upper);\n }\n bool operator == (const clamp_function_score<T, Tsum> &r)const{return add == r.add && lower == r.lower && upper == r.upper && score_upper == r.score_upper && score_sum == r.score_sum;}\n};\n\n\n\ntemplate<typename T>\nstruct prefixsum_min{\n T sum, pmin;\n static prefixsum_min<T> id(){\n return {0, std::numeric_limits<T>::max() / 2};\n }\n static prefixsum_min<T> merge(prefixsum_min<T> a, prefixsum_min<T> b){\n if(b.pmin == std::numeric_limits<T>::max() / 2) return a;\n return {a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin)};\n }\n};\ntemplate<typename T>\nstruct prefixsum_max{\n T sum, pmax;\n static prefixsum_max<T> id(){\n return {0, std::numeric_limits<T>::min() / 2};\n }\n static prefixsum_max<T> merge(prefixsum_max<T> a, prefixsum_max<T> b){\n if(b.pmax == std::numeric_limits<T>::min() / 2) return a;\n return {a.sum + b.sum, std::max(a.pmax, a.sum + b.pmax)};\n }\n};\ntemplate<typename T>\nstruct suffixsum_min{\n T sum, smin;\n static suffixsum_min<T> id(){\n return {0, std::numeric_limits<T>::max() / 2};\n }\n static suffixsum_min<T> merge(suffixsum_min<T> a, suffixsum_min<T> b){\n if(a.smin == std::numeric_limits<T>::max() / 2) return b;\n return {a.sum + b.sum, std::min(b.smin, b.sum + a.smin)};\n }\n};\ntemplate<typename T>\nstruct suffixsum_max{\n T sum, smax;\n static suffixsum_max<T> id(){\n return {0, std::numeric_limits<T>::min() / 2};\n }\n static suffixsum_max<T> merge(suffixsum_max<T> a, suffixsum_max<T> b){\n if(a.smax == std::numeric_limits<T>::min() / 2) return b;\n return {a.sum + b.sum, std::max(b.smax, b.sum + a.smax)};\n }\n};\ntemplate<typename T>\nstruct substringsum_max{\n T sum, pmax, smax, ssmax; // {区間全体のsum, prefixsumのmax, suffixsumのmax, substringsumのmax}\n static substringsum_max<T> id(){\n return {0, std::numeric_limits<T>::min(), 0, 0};\n }\n static substringsum_max<T> merge(substringsum_max<T> a, substringsum_max<T> b){\n if(b.pmax == std::numeric_limits<T>::min()) return a;\n if(a.pmax == std::numeric_limits<T>::min()) return b;\n T sum = a.sum + b.sum;\n T pmax = std::max(a.pmax, a.sum + b.pmax);\n T smax = std::max(a.smax + b.sum, b.smax);\n return {sum, pmax, smax, std::max({a.ssmax, b.ssmax, pmax, smax})};\n }\n};\n// 01列の0を-1として扱う\n// 1の数, 合計, 接頭辞のmin, 接頭辞のmax\nstruct excess_value{\npublic:\n int rank, sum, pmin, pmax;\n static constexpr int inf = 1 << 30;\n excess_value(): rank(inf), pmin(inf), pmax(-inf){}\n excess_value(bool f): rank(f), sum(f ? 1 : -1), pmin(sum), pmax(sum){}\nprivate:\n excess_value(int a, int b, int c, int d): rank(a), sum(b), pmin(c), pmax(d){}\npublic:\n static excess_value merge(excess_value a, excess_value b){\n if(a.rank == inf) return b;\n if(b.rank == inf) return a;\n return {a.rank + b.rank, a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin), std::max(a.pmax, a.sum + b.pmax)};\n }\n};\n// 01列の0を-1として扱う\n// 1の数, 合計, 接頭辞のmin, 接頭辞のmax, 接尾辞のmin, 接尾辞のmax\nstruct excess_value2{\npublic:\n int rank, sum, pmin, pmax, smin, smax;\n static constexpr int inf = 1 << 30;\n excess_value2(): rank(inf), pmin(inf), pmax(-inf), smin(inf), smax(-inf){}\n excess_value2(bool f): rank(f), sum(f ? 1 : -1), pmin(sum), pmax(sum), smin(sum), smax(sum){}\nprivate:\n excess_value2(int a, int b, int c, int d, int e, int f): rank(a), sum(b), pmin(c), pmax(d), smin(e), smax(f){}\npublic:\n static excess_value2 merge(excess_value2 a, excess_value2 b){\n if(a.rank == inf) return b;\n if(b.rank == inf) return a;\n return {a.rank + b.rank, a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin), \n std::max(a.pmax, a.sum + b.pmax), std::min(a.smin + b.sum, b.smin), std::max(a.smax + b.sum, b.smax)};\n }\n};\n\n\ntemplate<typename T>\nstruct range_add_chmin_chmax_range_freq {\n private:\n using F = clamp_function<T>;\n struct query {\n int type, l, r;\n F f;\n };\n int N;\n std::vector<T> V;\n std::vector<query> Qs;\n \n public:\n range_add_chmin_chmax_range_freq(int _N) : range_add_chmin_chmax_range_freq(std::vector<T>(_N, 0)) {}\n range_add_chmin_chmax_range_freq(const std::vector<T> &_V) : N(_V.size()), V(_V) {}\n\n // [l, r)の x <- min(max(x + add, lower), upper)\n void apply(int l, int r, T add, T lower, T upper) {\n assert(lower <= upper);\n Qs.push_back({0, l, r, F{add, lower, upper}});\n }\n\n // [l, r)のx以上の最小要素\n void lower_bound(int l, int r, T x) {\n Qs.push_back({1, l, r, F{x, x, x}});\n }\n\n // [l, r)のrx未満の要素数\n void range_freq(int l, int r, T rx) {\n Qs.push_back({2, l, r, F{rx, rx, rx}});\n }\n\n /*\n // [l, r)のrx未満の要素の和\n void range_freq_sum(int l, int r, T rx) {\n //\n }\n */\n\n std::vector<T> solve() {\n int Q = Qs.size(), K = 2 * sqrt(N);\n std::vector<int> Bbegin{0};\n std::vector<F> lz{F{}};\n std::vector<T> B;\n\n auto propagate = [&]() -> void {\n for (int i = 0; i < (int)Bbegin.size(); i++) {\n if (lz[i] == F()) continue;\n int l = Bbegin[i];\n int r = (i + 1 == Bbegin.size() ? N : Bbegin[i + 1]);\n for (int j = l; j < r; j++) V[j] = lz[i].fx(V[j]);\n }\n };\n\n auto make_block = [&](int lq, int rq) -> void {\n Bbegin = {0};\n for (int i = lq; i < rq; i++) {\n Bbegin.push_back(Qs[i].l);\n Bbegin.push_back(Qs[i].r);\n }\n std::sort(Bbegin.begin(), Bbegin.end());\n Bbegin.erase(std::unique(Bbegin.begin(), Bbegin.end()), Bbegin.end());\n lz = std::vector<F>(Bbegin.size(), F());\n B = V;\n for (int i = 0; i < Bbegin.size(); i++) {\n int l = Bbegin[i];\n int r = (i + 1 == Bbegin.size() ? N : Bbegin[i + 1]);\n std::sort(B.begin() + l, B.begin() + r);\n }\n };\n\n std::vector<T> ans;\n\n for (int i = 0; i < Q; i++) {\n if (i % K == 0) {\n propagate();\n make_block(i, std::min(Q, i + K));\n }\n int l = std::lower_bound(Bbegin.begin(), Bbegin.end(), Qs[i].l) - Bbegin.begin();\n int r = std::lower_bound(Bbegin.begin(), Bbegin.end(), Qs[i].r) - Bbegin.begin();\n if (Qs[i].type == 0) {\n for (int j = l; j < r; j++) {\n lz[j] = F::merge(lz[j], Qs[i].f);\n }\n } else if (Qs[i].type == 1) {\n T lb = std::numeric_limits<T>::max();\n T x = Qs[i].f.add;\n for (int j = l; j < r; j++) { \n T y = x - lz[j].add;\n auto itr = std::lower_bound(B.begin() + Bbegin[j], B.begin() + Bbegin[j + 1], y);\n if (itr != B.begin() + Bbegin[j + 1]) {\n lb = std::min(lb, lz[j].fx(*itr));\n }\n if (itr != B.begin() + Bbegin[j] && lz[j].lower >= x) {\n lb = std::min(lb, lz[j].lower);\n }\n }\n ans.push_back(lb);\n } else if (Qs[i].type == 2) {\n T cnt = 0, rx = Qs[i].f.add;\n for (int j = l; j < r; j++) { \n if (lz[j].lower >= rx) continue;\n if (lz[j].upper < rx) {\n cnt += Bbegin[j + 1] - Bbegin[j];\n continue;\n }\n T y = rx - lz[j].add;\n auto itr = std::lower_bound(B.begin() + Bbegin[j], B.begin() + Bbegin[j + 1], y);\n cnt += itr - (B.begin() + Bbegin[j]);\n }\n ans.push_back(cnt);\n }\n }\n return ans;\n }\n};\n\nint main() {\n io_init();\n int N, Q;\n std::cin >> N >> Q;\n auto A = read_vec<ll>(N);\n range_add_chmin_chmax_range_freq<ll> F(A);\n\n static constexpr ll inf = 1LL << 60, minf = -inf;\n for (int i = 0; i < Q; i++) {\n int t, l, r;\n ll x;\n std::cin >> t >> l >> r >> x;\n l--;\n if (t == 1) {\n F.apply(l, r, 0, minf, x);\n } else if (t == 2) {\n F.apply(l, r, 0, x, inf);\n } else if (t == 3) {\n F.apply(l, r, x, minf, inf);\n } else {\n ll y;\n std::cin >> y;\n F.range_freq(l, r, x);\n F.range_freq(l, r, y + 1);\n }\n }\n\n auto ans = F.solve();\n\n for (int i = 0; i < ans.size(); i += 2) {\n std::cout << ans[i + 1] - ans[i] << '\\n';\n }\n\n}", "accuracy": 1, "time_ms": 970, "memory_kb": 11908, "score_of_the_acc": -1.5519, "final_rank": 15 }, { "submission_id": "aoj_3170_9982954", "code_snippet": "#include <iostream>\n#include <string>\n#include <vector>\n#include <array>\n#include <tuple>\n#include <stack>\n#include <queue>\n#include <deque>\n#include <algorithm>\n#include <set>\n#include <map>\n#include <unordered_set>\n#include <unordered_map>\n#include <bitset>\n#include <cmath>\n#include <functional>\n#include <cassert>\n#include <climits>\n#include <iomanip>\n#include <numeric>\n#include <memory>\n#include <random>\n#include <thread>\n#include <chrono>\n#define allof(obj) (obj).begin(), (obj).end()\n#define range(i, l, r) for(int i=l;i<r;i++)\n#define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S)\n#define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit))\n#define bit_kth(i, k) ((i >> k)&1)\n#define bit_highest(i) (i?63-__builtin_clzll(i):-1)\n#define bit_lowest(i) (i?__builtin_ctzll(i):-1)\nusing ll = long long;\nusing ld = long double;\nusing ul = uint64_t;\nusing pi = std::pair<int, int>;\nusing pl = std::pair<ll, ll>;\nusing namespace std;\n\ntemplate<typename F, typename S>\nstd::ostream &operator << (std::ostream &dest, const std::pair<F, S> &p) {\n dest << p.first << ' ' << p.second;\n return dest;\n}\n\ntemplate<typename A, typename B>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t);\n return dest;\n}\n\ntemplate<typename A, typename B, typename C>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B, C> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t);\n return dest;\n}\n\ntemplate<typename A, typename B, typename C, typename D>\nstd::ostream &operator << (std::ostream &dest, const std::tuple<A, B, C, D> &t) {\n dest << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t) << ' ' << std::get<3>(t);\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::vector<std::vector<T>> &v) {\n int sz = v.size();\n if (!sz) return dest;\n for (int i = 0; i < sz; i++) {\n int m = v[i].size();\n for (int j = 0; j < m; j++) dest << v[i][j] << (i != sz - 1 && j == m - 1 ? '\\n' : ' ');\n }\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::vector<T> &v) {\n int sz = v.size();\n if (!sz) return dest;\n for (int i = 0; i < sz - 1; i++) dest << v[i] << ' ';\n dest << v[sz - 1];\n return dest;\n}\n\ntemplate<typename T, size_t sz>\nstd::ostream &operator << (std::ostream &dest, const std::array<T, sz> &v) {\n if (!sz) return dest;\n for (int i = 0; i < sz - 1; i++) dest << v[i] << ' ';\n dest << v[sz - 1];\n return dest;\n}\n\ntemplate<typename T>\nstd::ostream &operator << (std::ostream &dest, const std::set<T> &v) {\n for (auto itr = v.begin(); itr != v.end();) {\n dest << *itr;\n itr++;\n if (itr != v.end()) dest << ' ';\n }\n return dest;\n}\n\ntemplate<typename T, typename E>\nstd::ostream &operator << (std::ostream &dest, const std::map<T, E> &v) {\n for (auto itr = v.begin(); itr != v.end(); ) {\n dest << '(' << itr->first << \", \" << itr->second << ')';\n itr++;\n if (itr != v.end()) dest << '\\n';\n }\n return dest;\n}\n\ntemplate<typename T>\nstd::vector<T> make_vec(size_t sz, T val) { return std::vector<T>(sz, val); }\n\ntemplate<typename T, typename... Tail>\nauto make_vec(size_t sz, Tail ...tail) {\n return std::vector<decltype(make_vec<T>(tail...))>(sz, make_vec<T>(tail...));\n}\n\ntemplate<typename T>\nstd::vector<T> read_vec(size_t sz) {\n std::vector<T> v(sz);\n for (int i = 0; i < (int)sz; i++) std::cin >> v[i];\n return v;\n}\n\ntemplate<typename T, typename... Tail>\nauto read_vec(size_t sz, Tail ...tail) {\n auto v = std::vector<decltype(read_vec<T>(tail...))>(sz);\n for (int i = 0; i < (int)sz; i++) v[i] = read_vec<T>(tail...);\n return v;\n}\n\ntemplate<typename T, size_t size>\nauto make_array(T x) { \n std::array<T, size> res;\n res.fill(x);\n return res;\n}\n\ntemplate<typename T, size_t size, size_t size2, size_t... Tail>\nauto make_array(T x) {\n std::array<decltype(make_array<T, size2, Tail...>(x)), size> res;\n res.fill(make_array<T, size2, Tail...>(x));\n return res;\n}\n\n\n// x / y以上の最小の整数\nll ceil_div(ll x, ll y) {\n assert(y > 0);\n return (x + (x > 0 ? y - 1 : 0)) / y;\n}\n\n// x / y以下の最大の整数\nll floor_div(ll x, ll y) {\n assert(y > 0);\n return (x + (x > 0 ? 0 : -y + 1)) / y;\n}\n\nvoid io_init() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n}\n\n\n\n#include <limits>\n\ntemplate<typename T>\nstruct add_min_function{\n using F = add_min_function<T>;\n T add, upper;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n add_min_function(): add(0), upper(inf){}\n add_min_function(T _add, T _upper): add(_add), upper(_upper){}\n // g(f(x))\n static F merge(const F &f, const F &g){return {f.add + g.add, std::min(g.upper, f.upper + g.add)};}\n T fx(T x){return std::min(x + add, upper);}\n bool operator == (const F &r)const{return add == r.add && upper == r.upper;}\n};\n\n// f(x) = min(max(x + a, b), c)\ntemplate<typename T>\nstruct clamp_function{\n T add, lower, upper;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n static constexpr T minf = std::numeric_limits<T>::min() / 2;\n clamp_function(): add(0), lower(minf), upper(inf){}\n clamp_function(T _add, T _lower, T _upper): add(_add), lower(_lower), upper(_upper){lower = std::min(_lower, _upper);}\n // g(f(x))\n static clamp_function<T> merge(const clamp_function<T> &f, const clamp_function<T> &g){\n return {f.add + g.add, std::max(g.lower, std::min(f.upper, f.lower) + g.add), std::min(g.upper, std::max(g.lower, f.upper + g.add))};\n }\n T fx(T x){\n return std::min(std::max(x + add, lower), upper);\n }\n bool operator == (const clamp_function<T> &r)const{return add == r.add && lower == r.lower && upper == r.upper;}\n};\n// f(x) = min(max(x + a, b), c)\n// min部分によって減少した値をスコアとする\ntemplate<typename T, typename Tsum>\nstruct clamp_function_score{\npublic:\n T add, lower, upper, score_upper;\n Tsum score_sum;\n static constexpr T inf = std::numeric_limits<T>::max() / 2;\n static constexpr T minf = std::numeric_limits<T>::min() / 2;\n clamp_function_score(): add(0), lower(minf), upper(inf), score_upper(inf), score_sum(0){}\n clamp_function_score(T _add, T _lower, T _upper): add(_add), lower(_lower), upper(_upper), score_upper(_upper), score_sum(0){lower = std::min(_lower, _upper);}\nprivate:\n clamp_function_score(T _add, T _lower, T _upper, T _supper, Tsum _ssum): add(_add), lower(_lower), upper(_upper), score_upper(_supper), score_sum(_ssum){}\npublic:\n // g(f(x))\n static clamp_function_score<T, Tsum> merge(const clamp_function_score<T, Tsum> &f, const clamp_function_score<T, Tsum> &g){\n T _add = f.add + g.add;\n T _lower = std::max(g.lower, std::min(f.upper, f.lower) + g.add);\n T _upper = std::min(g.upper, std::max(g.lower, f.upper + g.add));\n _lower = std::min(_lower, _upper);\n Tsum _ssum = f.score_sum + g.score_sum;\n if(f.lower == f.upper){\n _ssum += std::max((T)0, f.lower + g.add - g.score_upper);\n return {_add, _lower, _upper, f.score_upper + g.add, _ssum};\n }else if(f.lower + g.add >= g.score_upper){\n assert(_lower == _upper);\n _ssum += std::max((T)0, f.lower + g.add - g.score_upper);\n return {_add, _lower, _upper, f.lower + g.add, _ssum};\n }else{\n return {_add, _lower, _upper, std::min(f.score_upper + g.add, g.score_upper), _ssum};\n }\n }\n T fx(T x){\n return std::min(std::max(x + add, lower), upper);\n }\n Tsum fx_score(T x){\n return score_sum + std::max((T)0, x + add - score_upper);\n }\n bool operator == (const clamp_function_score<T, Tsum> &r)const{return add == r.add && lower == r.lower && upper == r.upper && score_upper == r.score_upper && score_sum == r.score_sum;}\n};\n\n\n\ntemplate<typename T>\nstruct prefixsum_min{\n T sum, pmin;\n static prefixsum_min<T> id(){\n return {0, std::numeric_limits<T>::max() / 2};\n }\n static prefixsum_min<T> merge(prefixsum_min<T> a, prefixsum_min<T> b){\n if(b.pmin == std::numeric_limits<T>::max() / 2) return a;\n return {a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin)};\n }\n};\ntemplate<typename T>\nstruct prefixsum_max{\n T sum, pmax;\n static prefixsum_max<T> id(){\n return {0, std::numeric_limits<T>::min() / 2};\n }\n static prefixsum_max<T> merge(prefixsum_max<T> a, prefixsum_max<T> b){\n if(b.pmax == std::numeric_limits<T>::min() / 2) return a;\n return {a.sum + b.sum, std::max(a.pmax, a.sum + b.pmax)};\n }\n};\ntemplate<typename T>\nstruct suffixsum_min{\n T sum, smin;\n static suffixsum_min<T> id(){\n return {0, std::numeric_limits<T>::max() / 2};\n }\n static suffixsum_min<T> merge(suffixsum_min<T> a, suffixsum_min<T> b){\n if(a.smin == std::numeric_limits<T>::max() / 2) return b;\n return {a.sum + b.sum, std::min(b.smin, b.sum + a.smin)};\n }\n};\ntemplate<typename T>\nstruct suffixsum_max{\n T sum, smax;\n static suffixsum_max<T> id(){\n return {0, std::numeric_limits<T>::min() / 2};\n }\n static suffixsum_max<T> merge(suffixsum_max<T> a, suffixsum_max<T> b){\n if(a.smax == std::numeric_limits<T>::min() / 2) return b;\n return {a.sum + b.sum, std::max(b.smax, b.sum + a.smax)};\n }\n};\ntemplate<typename T>\nstruct substringsum_max{\n T sum, pmax, smax, ssmax; // {区間全体のsum, prefixsumのmax, suffixsumのmax, substringsumのmax}\n static substringsum_max<T> id(){\n return {0, std::numeric_limits<T>::min(), 0, 0};\n }\n static substringsum_max<T> merge(substringsum_max<T> a, substringsum_max<T> b){\n if(b.pmax == std::numeric_limits<T>::min()) return a;\n if(a.pmax == std::numeric_limits<T>::min()) return b;\n T sum = a.sum + b.sum;\n T pmax = std::max(a.pmax, a.sum + b.pmax);\n T smax = std::max(a.smax + b.sum, b.smax);\n return {sum, pmax, smax, std::max({a.ssmax, b.ssmax, pmax, smax})};\n }\n};\n// 01列の0を-1として扱う\n// 1の数, 合計, 接頭辞のmin, 接頭辞のmax\nstruct excess_value{\npublic:\n int rank, sum, pmin, pmax;\n static constexpr int inf = 1 << 30;\n excess_value(): rank(inf), pmin(inf), pmax(-inf){}\n excess_value(bool f): rank(f), sum(f ? 1 : -1), pmin(sum), pmax(sum){}\nprivate:\n excess_value(int a, int b, int c, int d): rank(a), sum(b), pmin(c), pmax(d){}\npublic:\n static excess_value merge(excess_value a, excess_value b){\n if(a.rank == inf) return b;\n if(b.rank == inf) return a;\n return {a.rank + b.rank, a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin), std::max(a.pmax, a.sum + b.pmax)};\n }\n};\n// 01列の0を-1として扱う\n// 1の数, 合計, 接頭辞のmin, 接頭辞のmax, 接尾辞のmin, 接尾辞のmax\nstruct excess_value2{\npublic:\n int rank, sum, pmin, pmax, smin, smax;\n static constexpr int inf = 1 << 30;\n excess_value2(): rank(inf), pmin(inf), pmax(-inf), smin(inf), smax(-inf){}\n excess_value2(bool f): rank(f), sum(f ? 1 : -1), pmin(sum), pmax(sum), smin(sum), smax(sum){}\nprivate:\n excess_value2(int a, int b, int c, int d, int e, int f): rank(a), sum(b), pmin(c), pmax(d), smin(e), smax(f){}\npublic:\n static excess_value2 merge(excess_value2 a, excess_value2 b){\n if(a.rank == inf) return b;\n if(b.rank == inf) return a;\n return {a.rank + b.rank, a.sum + b.sum, std::min(a.pmin, a.sum + b.pmin), \n std::max(a.pmax, a.sum + b.pmax), std::min(a.smin + b.sum, b.smin), std::max(a.smax + b.sum, b.smax)};\n }\n};\n\n\ntemplate<typename T>\nstruct range_add_chmin_chmax_range_freq {\n private:\n using F = clamp_function<T>;\n struct query {\n int type, l, r;\n F f;\n };\n int N;\n std::vector<T> V;\n std::vector<query> Qs;\n \n public:\n range_add_chmin_chmax_range_freq(int _N) : range_add_chmin_chmax_range_freq(std::vector<T>(_N, 0)) {}\n range_add_chmin_chmax_range_freq(const std::vector<T> &_V) : N(_V.size()), V(_V) {}\n\n // [l, r)の x <- min(max(x + add, lower), upper)\n void apply(int l, int r, T add, T lower, T upper) {\n assert(lower <= upper);\n Qs.push_back({0, l, r, F{add, lower, upper}});\n }\n\n // [l, r)のx以上の最小要素\n void lower_bound(int l, int r, T x) {\n Qs.push_back({1, l, r, F{x, x, x}});\n }\n\n // [l, r)のrx未満の要素数\n void range_freq(int l, int r, T rx) {\n Qs.push_back({2, l, r, F{rx, rx, rx}});\n }\n\n /*\n // [l, r)のrx未満の要素の和\n void range_freq_sum(int l, int r, T rx) {\n //\n }\n */\n\n std::vector<T> solve() {\n int Q = Qs.size(), K = 2 * sqrt(N);\n std::vector<int> Bbegin{0};\n std::vector<F> lz{F{}};\n std::vector<T> B;\n\n auto propagate = [&]() -> void {\n for (int i = 0; i < (int)Bbegin.size(); i++) {\n if (lz[i] == F()) continue;\n int l = Bbegin[i];\n int r = (i + 1 == Bbegin.size() ? N : Bbegin[i + 1]);\n for (int j = l; j < r; j++) V[j] = lz[i].fx(V[j]);\n }\n };\n\n auto make_block = [&](int lq, int rq) -> void {\n Bbegin = {0};\n for (int i = lq; i < rq; i++) {\n Bbegin.push_back(Qs[i].l);\n Bbegin.push_back(Qs[i].r);\n }\n std::sort(Bbegin.begin(), Bbegin.end());\n Bbegin.erase(std::unique(Bbegin.begin(), Bbegin.end()), Bbegin.end());\n lz = std::vector<F>(Bbegin.size(), F());\n B = V;\n for (int i = 0; i < Bbegin.size(); i++) {\n int l = Bbegin[i];\n int r = (i + 1 == Bbegin.size() ? N : Bbegin[i + 1]);\n std::sort(B.begin() + l, B.begin() + r);\n }\n };\n\n std::vector<T> ans;\n\n for (int i = 0; i < Q; i++) {\n if (i % K == 0) {\n propagate();\n make_block(i, std::min(Q, i + K));\n }\n int l = std::lower_bound(Bbegin.begin(), Bbegin.end(), Qs[i].l) - Bbegin.begin();\n int r = std::lower_bound(Bbegin.begin(), Bbegin.end(), Qs[i].r) - Bbegin.begin();\n if (Qs[i].type == 0) {\n for (int j = l; j < r; j++) {\n lz[j] = F::merge(lz[j], Qs[i].f);\n }\n } else if (Qs[i].type == 1) {\n T lb = std::numeric_limits<T>::max();\n T x = Qs[i].f.add;\n for (int j = l; j < r; j++) { \n T y = x - lz[j].add;\n auto itr = std::lower_bound(B.begin() + Bbegin[j], B.begin() + Bbegin[j + 1], y);\n if (itr != B.begin() + Bbegin[j + 1]) {\n lb = std::min(lb, lz[j].fx(*itr));\n }\n if (itr != B.begin() + Bbegin[j] && lz[j].lower >= x) {\n lb = std::min(lb, lz[j].lower);\n }\n }\n ans.push_back(lb);\n } else if (Qs[i].type == 2) {\n T cnt = 0, rx = Qs[i].f.add;\n for (int j = l; j < r; j++) { \n if (lz[j].lower >= rx) continue;\n if (lz[j].upper < rx) {\n cnt += Bbegin[j + 1] - Bbegin[j];\n continue;\n }\n T y = rx - lz[j].add;\n auto itr = std::lower_bound(B.begin() + Bbegin[j], B.begin() + Bbegin[j + 1], y);\n cnt += itr - (B.begin() + Bbegin[j]);\n }\n ans.push_back(cnt);\n }\n }\n return ans;\n }\n};\n\nint main() {\n io_init();\n int N, Q;\n std::cin >> N >> Q;\n auto A = read_vec<ll>(N);\n range_add_chmin_chmax_range_freq<ll> F(A);\n\n static constexpr ll inf = 1LL << 60, minf = -inf;\n for (int i = 0; i < Q; i++) {\n int t, l, r, x;\n std::cin >> t >> l >> r >> x;\n l--;\n if (t == 1) {\n F.apply(l, r, 0, minf, x);\n } else if (t == 2) {\n F.apply(l, r, 0, x, inf);\n } else if (t == 3) {\n F.apply(l, r, x, minf, inf);\n } else {\n int y;\n std::cin >> y;\n F.range_freq(l, r, x);\n F.range_freq(l, r, y + 1);\n }\n }\n\n auto ans = F.solve();\n\n for (int i = 0; i < ans.size(); i += 2) {\n std::cout << ans[i + 1] - ans[i] << '\\n';\n }\n\n}", "accuracy": 0.09523809523809523, "time_ms": 350, "memory_kb": 8288, "score_of_the_acc": -0.6821, "final_rank": 19 }, { "submission_id": "aoj_3170_9230140", "code_snippet": "#pragma region Macros\n \n#pragma GCC optimize(\"O3,unroll-loops\")\n#pragma GCC target(\"sse,sse2,sse3,ssse3,sse4,fma,abm,mmx,avx,avx2\")\n \n#include <bits/extc++.h>\n// #include <atcoder/all>\n// using namespace atcoder;\nusing namespace std;\nusing namespace __gnu_pbds;\n \n// #include <boost/multiprecision/cpp_dec_float.hpp>\n// #include <boost/multiprecision/cpp_int.hpp>\n// namespace mp = boost::multiprecision;\n// using Bint = mp::cpp_int;\n// using Bdouble = mp::number<mp::cpp_dec_float<256>>;\n// Bdouble Beps = 0.00000000000000000000000000000001; // 1e-32\n// const bool equals(Bdouble a, Bdouble b) { return mp::fabs(a - b) < Beps; }\n \n#define pb emplace_back\n#define int ll\n#define endl '\\n'\n// #define unordered_map<int, int> gp_hash_table<int, int, custom_hash> \n \n#define sqrt __builtin_sqrtl\n#define cbrt __builtin_cbrtl\n#define hypot __builtin_hypotl\n \n#define next asdnext\n#define prev asdprev\n \nusing ll = long long;\nusing ld = long double;\nconst ld PI = acosl(-1);\nconst int INF = 1 << 30;\nconst ll INFL = 1LL << 61;\nconst int MOD = 998244353;\n// const int MOD = 1000000007;\n \nconst ld EPS = 1e-10;\nconst bool equals(ld a, ld b) { return fabs((a) - (b)) < EPS; }\n \nconst vector<int> dx = {0, 1, 0, -1, 1, 1, -1, -1}; // → ↓ ← ↑ ↘ ↙ ↖ ↗\nconst vector<int> dy = {1, 0, -1, 0, 1, -1, -1, 1};\n \n#define EC int\nstruct Edge {\n int from, to;\n EC cost;\n Edge() : from(-1), to(-1), cost(-1) {}\n Edge(int to, EC cost) : to(to), cost(cost) {}\n Edge(int from, int to, EC cost) : from(from), to(to), cost(cost) {}\n bool operator ==(const Edge& e) {\n return this->from == e.from && this->to == e.to && this->cost == e.cost;\n }\n bool operator !=(const Edge& e) {\n return this->from != e.from or this->to != e.to or this->cost != e.cost;\n }\n bool operator <(const Edge& e) { return this->cost < e.cost; }\n bool operator >(const Edge& e) { return this->cost > e.cost; }\n};\n \nchrono::system_clock::time_point start;\n__attribute__((constructor))\nvoid constructor() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n cout << fixed << setprecision(10);\n start = chrono::system_clock::now();\n}\n \nrandom_device seed_gen;\nmt19937_64 rng(seed_gen());\nuniform_int_distribution<int> dist_x(0, 1e9);\nstruct RNG {\n unsigned Int(unsigned l, unsigned r) {\n return dist_x(rng) % (r - l + 1) + l;\n }\n ld Double() {\n return ld(dist_x(rng)) / 1e9;\n }\n} rnd;\n \nusing i64 = ll;\n// using i64 = uint64_t;\n// bit演算, x==0の場合は例外処理した方がよさそう. 区間は [l, r)\ni64 lrmask(i64 l, i64 r) { return (1LL << r) - (1LL << l); }\ni64 sub_bit(i64 x, i64 l, i64 r) { i64 b = x & ((1LL << r) - (1LL << l)); return b >> l; } // r溢れ可\ni64 bit_width(i64 x) { return 64 - __builtin_clzll(x) + (x == 0); }\n \ni64 popcount(i64 x) { return __builtin_popcountll(x); }\ni64 popcount(i64 x, i64 l, i64 r) { return __builtin_popcountll(sub_bit(x, l, r)); }\ni64 unpopcount(i64 x) { return bit_width(x) - __builtin_popcountll(x); }\ni64 unpopcount(i64 x, i64 l, i64 r) { return r - l - __builtin_popcountll(sub_bit(x, l, r)); }\nbool is_pow2(i64 x) { return __builtin_popcountll(x) == 1; } // xが負のときは常にfalse\nbool is_pow4(i64 x) { return __builtin_popcount(x) == 1 && __builtin_ctz(x) % 2 == 0; }\n \ni64 top_bit(i64 x) { return 63 - __builtin_clzll(x);} // 2^kの位 (x > 0)\ni64 bot_bit(i64 x) { return __builtin_ctzll(x);} // 2^kの位 (x > 0)\n// i64 next_bit(i64 x, i64 k) { return 0; }\n// i64 prev_bit(i64 x, i64 k) { return 0; }\n// i64 kth_bit(i64 x, i64 k) { return 0; }\ni64 MSB(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // mask\ni64 LSB(i64 x) { return (x & -x); } // mask\n \ni64 countl_zero(i64 x) { return __builtin_clzll(x); }\ni64 countl_one(i64 x) {\n i64 ret = 0, k = 63 - __builtin_clzll(x);\n while (k != -1 && (x & (1LL << k))) { k--; ret++; }\n return ret;\n}\ni64 countr_zero(i64 x) { return __builtin_ctzll(x); } // x==0のとき64が返ることに注意\ni64 countr_one(i64 x) { i64 ret = 0; while (x & 1) { x >>= 1; ret++; } return ret; }\n \ni64 floor_log2(i64 x) { if (x == 0) return 0; return 63 - __builtin_clzll(x); }\ni64 bit_floor(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // MSBと同じ\ni64 ceil_log2(i64 x) { if (x == 0) return 0; return 64 - __builtin_clzll(x - 1); }\ni64 bit_ceil(i64 x) { if (x == 0) return 0; return 1LL << (64 - __builtin_clzll(x - 1)); }\n \ni64 rotl(i64 x, i64 k) { // 有効bit内でrotate. オーバーフロー注意\n i64 w = bit_width(x); k %= w;\n return ((x << k) | (x >> (w - k))) & ((1LL << w) - 1);\n}\n// i64 rotl(i64 x, i64 l, i64 m, i64 r) {}\ni64 rotr(i64 x, i64 k) {\n i64 w = bit_width(x); k %= w;\n return ((x >> k) | (x << (w - k))) & ((1LL << w) - 1);\n}\n// i64 rotr(i64 x, i64 l, i64 m, i64 r) {}\ni64 bit_reverse(i64 x) { // 有効bit内で左右反転\n i64 r = 0, w = bit_width(x);\n for (i64 i = 0; i < w; i++) r |= ((x >> i) & 1) << (w - i - 1);\n return r;\n}\n// i64 bit_reverse(i64 x, i64 l, i64 r) { return 0; }\n \nbool is_palindrome(i64 x) { return x == bit_reverse(x); }\nbool is_palindrome(i64 x, i64 l, i64 r) { i64 b = sub_bit(x, l, r); return b == bit_reverse(b); }\ni64 concat(i64 a, i64 b) { return (a << bit_width(b)) | b; } // オーバーフロー注意\ni64 erase(i64 x, i64 l, i64 r) { return x>>r<<l | x&(1LL<<l - 1); } // [l, r) をカット\n \ni64 hamming(i64 a, i64 b) { return __builtin_popcountll(a ^ b); }\ni64 hamming(i64 a, i64 b, i64 l, i64 r) { return __builtin_popcountll(sub_bit(a, l, r) ^ sub_bit(b, l, r)); }\ni64 compcount(i64 x) { return (__builtin_popcountll(x ^ (x >> 1)) + (x & 1)) / 2; }\ni64 compcount2(i64 x) { return compcount(x & (x >> 1)); } // 長さ2以上の連結成分の個数\ni64 adjacount(i64 x) { return __builtin_popcountll(x & (x >> 1)); } // 隣接する1のペアの個数\n \ni64 next_combination(i64 x) {\n i64 t = x | (x - 1); return (t + 1) | (((~t & -~t) - 1) >> (__builtin_ctzll(x) + 1));\n}\n \n \n__int128_t POW(__int128_t x, int n) {\n __int128_t ret = 1;\n assert(n >= 0);\n if (x == 1 or n == 0) ret = 1;\n else if (x == -1 && n % 2 == 0) ret = 1; \n else if (x == -1) ret = -1; \n else if (n % 2 == 0) {\n assert(x < INFL);\n ret = POW(x * x, n / 2);\n } else {\n assert(x < INFL);\n ret = x * POW(x, n - 1);\n }\n return ret;\n}\nint per(int x, int y) { // x = qy + r (0 <= r < y) を満たすq\n assert(y != 0);\n if (x >= 0 && y > 0) return x / y;\n if (x >= 0 && y < 0) return x / y - (x % y < 0);\n if (x < 0 && y < 0) return x / y + (x % y < 0);\n return x / y - (x % y < 0); // (x < 0 && y > 0) \n}\nint mod(int x, int y) { // x = qy + r (0 <= r < y) を満たすr\n assert(y != 0);\n if (x >= 0) return x % y;\n __int128_t ret = x % y; // (x < 0)\n ret += (__int128_t)abs(y) * INFL;\n ret %= abs(y);\n return ret;\n}\nint floor(int x, int y) { // (ld)x / y 以下の最大の整数\n assert(y != 0);\n if (y < 0) x = -x, y = -y;\n return x >= 0 ? x / y : (x + 1) / y - 1;\n}\nint ceil(int x, int y) { // (ld)x / y 以上の最小の整数\n assert(y != 0);\n if (y < 0) x = -x, y = -y;\n return x > 0 ? (x - 1) / y + 1 : x / y;\n}\nint round(int x, int y) {\n assert(y != 0);\n return (x * 2 + y) / (y * 2);\n}\nint round(int x, int y, int k) { // (ld)(x/y)を10^kの位に関して四捨五入\n assert(y != 0); // TODO\n return INF;\n}\nint round2(int x, int y) { // 五捨五超入 // 未verify\n assert(y != 0);\n if (y < 0) y = -y, x = -x;\n int z = x / y;\n if ((z * 2 + 1) * y <= y * 2) z++;\n return z;\n}\n// int round(ld x, int k) { // xを10^kの位に関して四捨五入\n// }\n// int floor(ld x, int k) { // xを10^kの位に関してflooring\n// }\n// int ceil(ld x, int k) { // xを10^kの位に関してceiling\n// }\n// int kth(int x, int y, int k) { // x / yの10^kの位の桁\n// }\nint floor(ld x, ld y) { // 誤差対策TODO\n assert(!equals(y, 0));\n return floor(x / y);\n // floor(x) = ceil(x - 1) という話も\n}\nint ceil(ld x, ld y) { // 誤差対策TODO // ceil(p/q) = -floor(-(p/q))らしい\n assert(!equals(y, 0));\n return ceil(x / y);\n // ceil(x) = floor(x + 1)\n}\nint perl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす q\n // 未verify. 誤差対策TODO. EPS外してもいいかも。\n assert(!equals(y, 0));\n if (x >= 0 && y > 0) return floor(x / y)+EPS;\n if (x >= 0 && y < 0) return -floor(x / fabs(y));\n if (x < 0 && y < 0) return floor(x / y) + (x - floor(x/y)*y < -EPS);\n return floor(x / y) - (x - floor(x/y)*y < -EPS); // (x < 0 && y > 0) \n}\nld modl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす r\n // 未verify. 誤差対策TODO. -0.0が返りうる。\n assert(!equals(y, 0));\n if (x >= 0) return x - fabs(y)*fabs(per(x, y));\n return x - fabs(y)*floor(x, fabs(y));\n}\nint seisuu(ld x) { return (int)x; } // 整数部分. 誤差対策TODO\nint modf(ld x) {\n\tif (x < 0) return ceill(x);\n\telse return floorl(x);\n}\n// 正なら+EPS, 負なら-EPSしてから、文字列に直して小数点以下を捨てる?\nint seisuu(int x, int y) {\n assert(y != 0);\n return x / y;\n}\nint seisuu(ld x, ld y) { // 誤差対策TODO\n assert(!equals(y, 0));\n return (int)(x / y);\n}\n \ntemplate <class T> pair<T, T> max(const pair<T, T> &a, const pair<T, T> &b) {\n if (a.first > b.first or a.first == b.first && a.second > b.second) return a;\n return b;\n}\ntemplate <class T> pair<T, T> min(const pair<T, T> &a, const pair<T, T> &b) {\n if (a.first < b.first or a.first == b.first && a.second < b.second) return a;\n return b;\n}\n \ntemplate <class T> bool chmax(T &a, const T& b) {\n if (a < b) { a = b; return true; } return false;\n}\ntemplate <class T> bool chmin(T &a, const T& b) {\n if (a > b) { a = b; return true; } return false;\n}\ntemplate <class T> T mid(T a, T b, T c) { // 誤差対策TODO\n return a + b + c - max({a, b, c}) - min({a, b, c});\n}\ntemplate <class T> void Sort(T &a, T &b, bool rev = false) { \n if (rev == false) { // TODO テンプレート引数\n if (a > b) swap(a, b);\n } else {\n if (b > a) swap(b, a);\n }\n}\ntemplate <class T> void Sort(T &a, T &b, T &c, bool rev = false) {\n if (rev == false) { \n if (a > b) swap(a, b); if (a > c) swap(a, c); if (b > c) swap(b, c);\n } else {\n if (c > b) swap(c, b); if (c > a) swap(c, a); if (b > a) swap(b, a);\n }\n}\ntemplate <class T> void Sort(T &a, T &b, T &c, T &d, bool rev = false) {\n if (rev == false) { \n if (a > b) swap(a, b); if (a > c) swap(a, c); if (a > d) swap(a, d);\n if (b > c) swap(b, c); if (b > d) swap(b, d); if (c > d) swap(c, d);\n } else {\n if (d > c) swap(d, c); if (d > b) swap(d, b); if (d > a) swap(d, a);\n if (c > b) swap(c, b); if (c > a) swap(c, a); if (b > a) swap(b, a);\n }\n}\n \nstruct custom_hash {\n static uint64_t splitmix64(uint64_t x) {\n x += 0x9e3779b97f4a7c15;\n x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;\n x = (x ^ (x >> 27)) * 0x94d049bb133111eb;\n return x ^ (x >> 31);\n }\n \n size_t operator()(uint64_t x) const {\n static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();\n return splitmix64(x + FIXED_RANDOM);\n }\n};\n \nclass Compress {\npublic:\n int sz = 0;\n // gp_hash_table<int, int, custom_hash> Z, UZ;\n unordered_map<int, int> Z; // 元の値 -> 圧縮した値\n unordered_map<int, int> UZ; // 圧縮した値 -> 元の値\n \n Compress(const vector<int> &V, int base = 0) {\n this->sz = base;\n set<int> s(V.begin(), V.end());\n \n for (int x : s) {\n this->Z[x] = this->sz;\n this->UZ[this->sz] = x;\n this->sz++;\n }\n }\n \n Compress(const vector<int> &V1, const vector<int> &V2, int base = 0) {\n this->sz = base;\n vector<int> V3 = V2;\n V3.insert(V3.end(), V1.begin(), V1.end());\n set<int> s(V3.begin(), V3.end());\n \n for (int x : s) {\n this->Z[x] = this->sz;\n this->UZ[this->sz] = x;\n this->sz++;\n }\n }\n \n Compress(const vector<int> &V1, const vector<int> &V2, const vector<int> &V3, int base = 0) {\n this->sz = base;\n vector<int> V4 = V1;\n V4.insert(V4.end(), V2.begin(), V2.end());\n V4.insert(V4.end(), V3.begin(), V3.end());\n set<int> s(V4.begin(), V4.end());\n \n for (int x : s) {\n this->Z[x] = this->sz;\n this->UZ[this->sz] = x;\n this->sz++;\n }\n }\n \n Compress(const vector<int> &V1, const vector<int> &V2,\n const vector<int> &V3, const vector<int> &V4, int base = 0) {\n this->sz = base;\n vector<int> V5 = V1;\n V5.insert(V5.end(), V2.begin(), V2.end());\n V5.insert(V5.end(), V3.begin(), V3.end());\n V5.insert(V5.end(), V4.begin(), V4.end());\n set<int> s(V5.begin(), V5.end());\n \n for (int x : s) {\n this->Z[x] = this->sz;\n this->UZ[this->sz] = x;\n this->sz++;\n }\n }\n \n vector<int> zip(const vector<int> &V) {\n vector<int> ret = V;\n for (int i = 0; i < (int)V.size(); i++) {\n ret[i] = Z[ret[i]];\n }\n return ret;\n }\n \n vector<int> unzip(const vector<int> &V) {\n vector<int> ret = V;\n for (int i = 0; i < (int)V.size(); i++) {\n ret[i] = UZ[ret[i]];\n }\n return ret;\n }\n \n int size() { return sz; }\n \n int encode(int x) { return Z[x]; }\n int decode(int x) {\n if (UZ.find(x) == UZ.end()) return -1; // xが元の配列に存在しないとき\n return UZ[x];\n }\n};\n \nclass UnionFind {\npublic:\n\tUnionFind() = default;\n UnionFind(int N) : par(N), sz(N, 1) {\n iota(par.begin(), par.end(), 0);\n }\n\tint root(int x) {\n\t\tif (par[x] == x) return x;\n\t\treturn (par[x] = root(par[x]));\n\t}\n\tbool unite(int x, int y) {\n\t\tint rx = root(x);\n\t\tint ry = root(y);\n if (rx == ry) return false;\n\t\tif (sz[rx] < sz[ry]) swap(rx, ry);\n\t\tsz[rx] += sz[ry];\n\t\tpar[ry] = rx;\n return true;\n\t}\n\tbool issame(int x, int y) { return (root(x) == root(y)); }\n\tint size(int x) { return sz[root(x)]; }\n vector<vector<int>> groups(int N) {\n vector<vector<int>> G(N);\n for (int x = 0; x < N; x++) {\n G[root(x)].push_back(x);\n }\n\t\tG.erase( remove_if(G.begin(), G.end(),\n [&](const vector<int>& V) { return V.empty(); }), G.end());\n return G;\n }\nprivate:\n\tvector<int> par, sz;\n};\n \ntemplate<typename T>\nstruct BIT {\n int N; // 要素数\n vector<T> bit[2]; // データの格納先\n BIT(int N_, int x = 0) {\n N = N_ + 1;\n bit[0].assign(N, 0); bit[1].assign(N, 0);\n if (x != 0) {\n for (int i = 0; i < N; i++) add(i, x);\n }\n }\n BIT(const vector<T> &A) {\n N = A.size() + 1;\n bit[0].assign(N, 0); bit[1].assign(N, 0);\n for (int i = 0; i < (int)A.size(); i++) add(i, A[i]);\n }\n void add_sub(int p, int i, T x) {\n while (i < N) { bit[p][i] += x; i += (i & -i); }\n }\n void add(int l, int r, T x) {\n add_sub(0, l + 1, -x * l); add_sub(0, r + 1, x * r);\n add_sub(1, l + 1, x); add_sub(1, r + 1, -x);\n }\n void add(int i, T x) { add(i, i + 1, x); }\n T sum_sub(int p, int i) {\n T ret = 0;\n while (i > 0) { ret += bit[p][i]; i -= (i & -i); }\n return ret;\n }\n T sum(int i) { return sum_sub(0, i) + sum_sub(1, i) * i; }\n T sum(int l, int r) { return sum(r) - sum(l); }\n T get(int i) { return sum(i, i + 1); }\n void set(int i, T x) { T s = get(i); add(i, -s + x); }\n};\n \ntemplate<int mod> class Modint {\npublic:\n int val = 0;\n Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }\n Modint(const Modint &r) { val = r.val; }\n \n Modint operator -() { return Modint(-val); } // 単項\n Modint operator +(const Modint &r) { return Modint(*this) += r; }\n Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; }\n Modint operator -(const Modint &r) { return Modint(*this) -= r; }\n Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; }\n Modint operator *(const Modint &r) { return Modint(*this) *= r; }\n Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; }\n Modint operator /(const Modint &r) { return Modint(*this) /= r; }\n Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; }\n \n Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置\n Modint operator ++(signed) { ++*this; return *this; } // 後置\n Modint& operator --() { val--; if (val < 0) val += mod; return *this; }\n Modint operator --(signed) { --*this; return *this; }\n Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; }\n Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; }\n Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; }\n Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; }\n Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; }\n Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; }\n Modint &operator /=(const Modint &r) {\n int a = r.val, b = mod, u = 1, v = 0;\n while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}\n val = val * u % mod; if (val < 0) val += mod;\n return *this;\n }\n Modint &operator /=(const int &q) {\n Modint r(q); int a = r.val, b = mod, u = 1, v = 0;\n while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}\n val = val * u % mod; if (val < 0) val += mod;\n return *this;\n }\n bool operator ==(const Modint& r) { return this -> val == r.val; }\n bool operator <(const Modint& r) { return this -> val < r.val; }\n bool operator >(const Modint& r) { return this -> val > r.val; }\n bool operator !=(const Modint& r) { return this -> val != r.val; }\n};\n \nusing mint = Modint<MOD>;\n \nistream &operator >>(istream &is, mint& x) {\n int t; is >> t; x = t; return (is);\n}\nostream &operator <<(ostream &os, const mint& x) {\n return os << x.val;\n}\nmint modpow(const mint &x, int n) {\n if (n < 0) return (mint)1 / modpow(x, -n); // 未verify\n assert(n >= 0);\n if (n == 0) return 1;\n mint t = modpow(x, n / 2);\n t = t * t;\n if (n & 1) t = t * x;\n return t;\n}\n \nint modpow(__int128_t x, int n, int mod) {\n assert(n >= 0 && mod > 0); // TODO: n <= -1\n __int128_t ret = 1;\n while (n > 0) {\n if (n % 2 == 1) ret = ret * x % mod;\n x = x * x % mod;\n n /= 2;\n }\n return ret;\n}\nint modinv(__int128_t x, int mod) {\n assert(mod > 0);\n // assert(x > 0);\n if (x == 1 or x == 0) return 1;\n return mod - modinv(mod % x, mod) * (mod / x) % mod;\n}\n \nistream &operator >>(istream &is, __int128_t& x) {\n string S; is >> S;\n __int128_t ret = 0;\n int f = 1;\n if (S[0] == '-') f = -1; \n for (int i = 0; i < S.length(); i++)\n if ('0' <= S[i] && S[i] <= '9')\n ret = ret * 10 + S[i] - '0';\n x = ret * f;\n return (is);\n}\nostream &operator <<(ostream &os, __int128_t x) {\n ostream::sentry s(os);\n if (s) {\n __uint128_t tmp = x < 0 ? -x : x;\n char buffer[128]; char *d = end(buffer);\n do {\n --d; *d = \"0123456789\"[tmp % 10]; tmp /= 10;\n } while (tmp != 0);\n if (x < 0) { --d; *d = '-'; }\n int len = end(buffer) - d;\n if (os.rdbuf()->sputn(d, len) != len) os.setstate(ios_base::badbit);\n }\n return os;\n}\n \n__int128_t stoll(string &S) {\n __int128_t ret = 0; int f = 1;\n if (S[0] == '-') f = -1; \n for (int i = 0; i < S.length(); i++)\n if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0';\n return ret * f;\n}\n__int128_t gcd(__int128_t a, __int128_t b) { return b ? gcd(b, a % b) : a; }\n__int128_t lcm(__int128_t a, __int128_t b) {\n return a / gcd(a, b) * b;\n // lcmが__int128_tに収まる必要あり\n}\n \nstring to_string(ld x, int k) { // xの小数第k位までをstring化する\n assert(k >= 0);\n stringstream ss;\n ss << setprecision(k + 2) << x;\n string s = ss.str();\n if (s.find('.') == string::npos) s += '.';\n int pos = s.find('.');\n for (int i = 0; k >= (int)s.size() - 1 - pos; i++) s += '0';\n s.pop_back();\n if (s.back() == '.') s.pop_back();\n return s;\n \n // stringstream ss; // 第k+1位を四捨五入して第k位まで返す\n // ss << setprecision(k + 1) << x;\n // string s = ss.str();\n // if (s.find('.') == string::npos) s += '.';\n // int pos = s.find('.');\n // for (int i = 0; k > (int)s.size() - 1 - pos; i++) s += '0';\n // if (s.back() == '.') s.pop_back();\n // return s;\n}\nstring to_string(__int128_t x) {\n string ret = \"\";\n if (x < 0) { ret += \"-\"; x *= -1; }\n while (x) { ret += (char)('0' + x % 10); x /= 10; }\n reverse(ret.begin(), ret.end());\n return ret;\n}\nstring to_string(char c) { string s = \"\"; s += c; return s; }\n \ntemplate<class T> size_t HashCombine(const size_t seed,const T &v) {\n return seed^(hash<T>()(v)+0x9e3779b9+(seed<<6)+(seed>>2));\n}\ntemplate<class T,class S> struct hash<pair<T,S>>{\n size_t operator()(const pair<T,S> &keyval) const noexcept {\n return HashCombine(hash<T>()(keyval.first), keyval.second);\n }\n};\ntemplate<class T> struct hash<vector<T>>{\n size_t operator()(const vector<T> &keyval) const noexcept {\n size_t s=0;\n for (auto&& v: keyval) s=HashCombine(s,v);\n return s;\n }\n};\ntemplate<int N> struct HashTupleCore{\n template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{\n size_t s=HashTupleCore<N-1>()(keyval);\n return HashCombine(s,get<N-1>(keyval));\n }\n};\ntemplate <> struct HashTupleCore<0>{\n template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ return 0; }\n};\ntemplate<class... Args> struct hash<tuple<Args...>>{\n size_t operator()(const tuple<Args...> &keyval) const noexcept {\n return HashTupleCore<tuple_size<tuple<Args...>>::value>()(keyval);\n }\n};\n \nvector<mint> _fac, _finv, _inv;\nvoid COMinit(int N) {\n _fac.resize(N + 1); _finv.resize(N + 1); _inv.resize(N + 1);\n _fac[0] = _fac[1] = 1; _finv[0] = _finv[1] = 1; _inv[1] = 1;\n for (int i = 2; i <= N; i++) {\n _fac[i] = _fac[i-1] * mint(i);\n _inv[i] = -_inv[MOD % i] * mint(MOD / i);\n _finv[i] = _finv[i - 1] * _inv[i];\n }\n}\n \nmint FAC(int N) {\n if (N < 0) return 0; return _fac[N];\n}\nmint COM(int N, int K) {\n if (N < K) return 0; if (N < 0 or K < 0) return 0;\n return _fac[N] * _finv[K] * _finv[N - K];\n}\nmint PERM(int N, int K) {\n if (N < K) return 0; if (N < 0 or K < 0) return 0;\n return _fac[N] * _finv[N - K];\n}\nmint NHK(int N, int K) { // initのサイズに注意\n if (N == 0 && K == 0) return 1;\n return COM(N + K - 1, K);\n}\n \n#pragma endregion\n\n// https://hashiryo.github.io/Library/src/DataStructure/SortedPerBucket.hpp\ntemplate <class T, int B= 700> class SortedPerBucket {\n static constexpr T INF= numeric_limits<T>::max() / 2;\n struct Dat {\n const int n;\n T a[B], sorted[B], acc[B + 1];\n T add, lb, ub;\n Dat(int b): n(b), a{0}, sorted{0}, acc{0}, add(0), lb(-INF), ub(INF) {}\n Dat(const T *bg, int b): n(b), a{0}, acc{0}, add(0), lb(-INF), ub(INF) {\n for (int i= n; i--;) a[i]= *(bg + i);\n build();\n }\n inline bool eval() {\n if (add == 0 && lb == -INF && ub == INF) return false;\n for (auto &x: a) x= clamp(x, lb, ub) + add;\n return add= 0, lb= -INF, ub= INF, true;\n }\n inline void build() { copy_n(a, B, sorted), sort(sorted, sorted + n), partial_sum(sorted, sorted + n, acc + 1); }\n inline int idx(T x) const { return lower_bound(sorted, sorted + n, x) - sorted; }\n inline int count(T x) const { return x-= add, (x <= lb ? 0 : ub < x ? n : idx(x)); }\n inline T sum() const {\n int l= idx(lb), u= idx(ub);\n return acc[u] - acc[l] + lb * l + ub * (n - u) + add * n;\n }\n inline T sum(T x) const {\n if (x-= add; x <= lb) return 0;\n if (ub < x) return sum();\n int l= idx(lb), u= idx(x);\n return acc[u] - acc[l] + lb * l + add * u;\n }\n inline T get(int k) const { return clamp(a[k], lb, ub) + add; }\n };\n const int n;\n vector<Dat> dat;\n template <class U, class All, class One> inline U fold(int l, int r, const All &all, const One &one) const {\n U ret= 0;\n if (int i= l / B, j= r / B, k= l % B, m= r % B; i < j) {\n if (k) {\n for (; k < dat[i].n; ++k) ret+= one(dat[i].get(k));\n ++i;\n }\n for (; i < j; ++i) ret+= all(dat[i]);\n for (; m--;) ret+= one(dat[j].get(m));\n } else\n for (; k < m; ++k) ret+= one(dat[i].get(k));\n return ret;\n }\n template <class All, class One> inline void update(int l, int r, const All &all, const One &one) {\n if (int i= l / B, j= r / B, k= l % B, m= r % B; i < j) {\n if (k) {\n for (dat[i].eval(); k < dat[i].n; k++) one(dat[i].a[k]);\n dat[i].build(), ++i;\n }\n for (; i < j; ++i) all(dat[i]);\n if (m) {\n for (dat[j].eval(); m--;) one(dat[j].a[m]);\n dat[j].build();\n }\n } else {\n for (dat[i].eval(); k < m; ++k) one(dat[i].a[k]);\n dat[i].build();\n }\n }\npublic:\n SortedPerBucket(int n): n(n) {\n for (int l= 0, r; l < n; l= r) r= min(l + B, n), dat.emplace_back(r - l);\n }\n SortedPerBucket(const vector<T> &a): n(a.size()) {\n for (int l= 0, r; l < n; l= r) r= min(l + B, n), dat.emplace_back(a.data() + l, r - l);\n }\n // count i s.t. (l <= i < r) && (a[i] < ub)\n int count(int l, int r, T ub) const {\n return fold<int>(\n l, r, [&](const Dat &d) { return d.count(ub); }, [&](T x) { return x < ub; });\n }\n // count i s.t. (l <= i < r) && (lb <= a[i] < ub)\n int count(int l, int r, T lb, T ub) const { return count(l, r, ub) - count(l, r, lb); }\n // sum a[i] s.t. (l <= i < r)\n T sum(int l, int r) const {\n return fold<T>(\n l, r, [&](const Dat &d) { return d.sum(); }, [&](T x) { return x; });\n }\n // sum a[i] s.t. (l <= i < r) && (a[i] < ub)\n T sum(int l, int r, T ub) const {\n return fold<T>(\n l, r, [&](const Dat &d) { return d.sum(ub); }, [&](T x) { return x < ub ? x : 0; });\n }\n // sum a[i] s.t. (l <= i < r) && (lb <= a[i] < ub)\n T sum(int l, int r, T lb, T ub) const { return sum(l, r, ub) - sum(l, r, lb); }\n void set(int k, T x) {\n int i= k / B, j= k % B;\n dat[i].eval(), dat[i].a[j]= x, dat[i].build();\n }\n T get(int k) const { return dat[k / B].get(k % B); }\n T operator[](int k) const { return get(k); }\n void add(int l, int r, T v) {\n update(\n l, r, [&](Dat &d) { d.add+= v; }, [&](T &x) { x+= v; });\n }\n void chmin(int l, int r, T ub) {\n auto f= [&](Dat &d) {\n T b= ub - d.add;\n d.ub= min(d.ub, b), d.lb= min(d.lb, b);\n };\n update(l, r, f, [&](T &x) { x= min(x, ub); });\n }\n void chmax(int l, int r, T lb) {\n auto f= [&](Dat &d) {\n T a= lb - d.add;\n d.lb= max(d.lb, a), d.ub= max(d.ub, a);\n };\n update(l, r, f, [&](T &x) { x= max(x, lb); });\n }\n void chclamp(int l, int r, T lb, T ub) {\n auto f= [&](Dat &d) {\n T a= lb - d.add, b= ub - d.add;\n d.ub= clamp(d.ub, a, b), d.lb= clamp(d.lb, a, b);\n };\n update(l, r, f, [&](T &x) { x= clamp(x, lb, ub); });\n }\n};\n\nsigned main() {\n int N, Q;\n cin >> N >> Q;\n vector<int> A(N);\n for (int i = 0; i < N; i++) cin >> A[i];\n\n SortedPerBucket<long long, 100> seg(A);\n for (int i = 0; i < Q; i++) {\n int t;\n cin >> t;\n if (t == 1) {\n int l, r, x;\n cin >> l >> r >> x;\n l--; r--; \n seg.chmin(l, r + 1, x);\n }\n if (t == 2) {\n int l, r, x;\n cin >> l >> r >> x;\n l--; r--; \n seg.chmax(l, r + 1, x);\n }\n if (t == 3) {\n int l, r, x;\n cin >> l >> r >> x;\n l--; r--; \n seg.add(l, r + 1, x);\n }\n if (t == 4) {\n int l, r, a, b;\n cin >> l >> r >> a >> b;\n l--; r--; \n cout << seg.count(l, r + 1, a, b + 1) << endl;\n }\n }\n}", "accuracy": 1, "time_ms": 1060, "memory_kb": 7632, "score_of_the_acc": -1.0585, "final_rank": 13 }, { "submission_id": "aoj_3170_7517934", "code_snippet": "#line 1 \"library-cpp/other/template.hpp\"\n// clang-format off\n#include <bits/stdc++.h>\nusing namespace std;\nusing uint = unsigned int;\nusing ll = long long;\nusing ull = unsigned long long;\nusing i128 = __int128_t;\nusing ld = long double;\nusing pii = pair<int, int>;\nusing pll = pair<long long, long long>;\ntemplate <class T> using maxheap = priority_queue<T>;\ntemplate <class T> using minheap = priority_queue<T, vector<T>, greater<T>>;\ntemplate <class T> using vec = vector<T>;\ntemplate <class T> using vvec = vector<vector<T>>;\n#define OVERLOAD_REP(_1, _2, _3, name, ...) name\n#define REP0(n) for (auto minato = decay_t<decltype(n)>{}; minato < (n); ++minato)\n#define REP1(i, n) for (auto i = decay_t<decltype(n)>{}; (i) < (n); (i)++)\n#define REP2(i, l, r) for (auto i = (l); (i) < (r); (i)++)\n#define rep(...) OVERLOAD_REP(__VA_ARGS__, REP2, REP1, REP0)(__VA_ARGS__)\n#define OVERLOAD_RREP(_1, _2, _3, name, ...) name\n#define RREP1(i, n) for (auto i = (n) - 1; (i) >= decay_t<decltype(n)>{}; (i)--)\n#define RREP2(i, l, r) for (auto i = (r) - 1; (i) >= (l); (i)--)\n#define rrep(...) OVERLOAD_RREP(__VA_ARGS__, RREP2, RREP1)(__VA_ARGS__)\n#define all(x) begin(x), end(x)\ntemplate <class Container> int SZ(const Container& v) { return int(v.size()); }\ntemplate <class T> void UNIQUE(vector<T>& v) { v.erase(unique(v.begin(), v.end()), v.end()); }\ntemplate <class T> T MAX(const vector<T>& v) { return *max_element(v.begin(), v.end()); }\ntemplate <class T> T MIN(const vector<T>& v) { return *min_element(v.begin(), v.end()); }\ntemplate <class T> T SUM(const vector<T>& v) { return accumulate(v.begin(), v.end(), T(0)); }\ntemplate <class T> T ABS(T x) { return max(x, -x); }\ntemplate <class T1, class T2> bool chmax(T1& a, T2 b) { if (a < b) { a = b; return true; } return false; }\ntemplate <class T1, class T2> bool chmin(T1& a, T2 b) { if (a > b) { a = b; return true; } return false; }\nint topbit(ull x) { return x == 0 ? -1 : 63 - __builtin_clzll(x); }\nint botbit(ull x) { return x == 0 ? 64 : __builtin_ctzll(x); }\nint popcount(ull x) { return __builtin_popcountll(x); }\nint kthbit(ull x, int k) { return (x >> k) & 1; }\nconstexpr long long TEN(int x) { return x == 0 ? 1 : TEN(x - 1) * 10; }\ntemplate <typename S> void rearrange(const vector<S>& id) { (void)id; }\ntemplate <typename S, typename T> void rearrange_exec(const vector<S>& id, vector<T>& v) { vector<T> w(v.size()); for (size_t i = 0; i < id.size(); i++) { w[i] = v[id[i]]; } v.swap(w); }\ntemplate <typename S, typename Head, typename... Tail> void rearrange(const vector<S>& id, Head& a, Tail& ...tail) { rearrange_exec(id, a); rearrange(id, tail...); }\nistream& operator>>(istream& is, __int128_t& x) {\n x = 0;\n string s;\n is >> s;\n int n = int(s.size()), it = 0;\n if (s[0] == '-') it++;\n for (; it < n; it++) x = (x * 10 + s[it] - '0');\n if (s[0] == '-') x = -x;\n return is;\n}\nostream& operator<<(ostream& os, __int128_t x) {\n if (x == 0) return os << 0;\n if (x < 0) os << '-', x = -x;\n deque<int> deq;\n while (x) deq.emplace_front(x % 10), x /= 10;\n for (int e : deq) os << e;\n return os;\n}\ntemplate <class T> vector<T> &operator++(vector<T>& v) { for (auto& e : v) { e++; } return v;} \ntemplate <class T> vector<T> operator++(vector<T>& v, int) { auto res = v; for (auto& e : v) { e++; } return res; }\ntemplate <class T> vector<T> &operator--(vector<T>& v) { for (auto& e : v) { e--; } return v; }\ntemplate <class T> vector<T> operator--(vector<T>& v, int) { auto res = v; for (auto& e : v) { e--; } return res; }\ntemplate <class T1, class T2> pair<T1, T2> operator-(const pair<T1, T2>& x) { return pair<T1, T2>(-x.first, -x.second); }\ntemplate <class T1, class T2> pair<T1, T2> operator-(const pair<T1, T2>& x, const pair<T1, T2>& y) { return pair<T1, T2>(x.first - y.first, x.second - y.second); }\ntemplate <class T1, class T2> pair<T1, T2> operator+(const pair<T1, T2>& x, const pair<T1, T2>& y) { return pair<T1, T2>(x.first + y.first, x.second + y.second); }\ntemplate <class T1, class T2> pair<T1, T2> operator+=(pair<T1, T2>& l, const pair<T1, T2>& r) { return l = l + r; }\ntemplate <class T1, class T2> pair<T1, T2> operator-=(pair<T1, T2>& l, const pair<T1, T2>& r) { return l = l - r; }\nconstexpr char ln = '\\n';\nconst string YESNO[2] = {\"NO\", \"YES\"};\nconst string YesNo[2] = {\"No\", \"Yes\"};\nvoid YES(bool t = true) { cout << YESNO[t] << \"\\n\"; }\nvoid NO(bool t = 1) { YES(!t); }\nvoid Yes(bool t = true) { cout << YesNo[t] << \"\\n\"; }\nvoid No(bool t = 1) { Yes(!t); }\ntemplate <class T> void drop(T x) { cout << x << \"\\n\"; exit(0); }\n#define INT(...) \\\n int __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LL(...) \\\n ll __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define STR(...) \\\n string __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define CHR(...) \\\n char __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define LDB(...) \\\n long double __VA_ARGS__; \\\n IN(__VA_ARGS__)\n#define VEC(type, name, size) \\\n vector<type> name(size); \\\n IN(name)\n#define VEC2(type, name1, name2, size) \\\n vector<type> name1(size), name2(size); \\\n for (int i = 0; i < size; i++) IN(name1[i], name2[i])\n#define VEC3(type, name1, name2, name3, size) \\\n vector<type> name1(size), name2(size), name3(size); \\\n for (int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i])\n#define VEC4(type, name1, name2, name3, name4, size) \\\n vector<type> name1(size), name2(size), name3(size), name4(size); \\\n for (int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i], name4[i]);\n#define VV(type, name, N, M) \\\n vector<vector<type>> name(N, vector<type>(M)); \\\n IN(name)\ntemplate <class T> void scan(T& a) { cin >> a; }\ntemplate <class T> void scan(vector<T>& a) { for (auto& i : a) scan(i); }\nvoid IN() {}\ntemplate <class Head, class... Tail> void IN(Head& head, Tail&... tail) { scan(head); IN(tail...); }\nvoid print() { cout << \"\\n\"; }\ntemplate <class T> void print(const vector<T>& v) { for (auto it = v.begin(); it != v.end(); ++it) { if (it != v.begin()) { cout << \" \"; } cout << *it; } print(); }\ntemplate <class T, class... Args> void print(const T& x, const Args& ... args) { cout << x; if (sizeof...(Args)) cout << \" \"; print(args...); }\n#ifdef MINATO_LOCAL\ntemplate <class T1, class T2> ostream& operator<<(ostream& os, pair<T1, T2> p) { return os << \"(\" << p.first << \", \" << p.second << \")\"; }\ntemplate <size_t N, class TUPLE> void debug_tuple(ostream& os, TUPLE _) { (void)os; (void)_; }\ntemplate <size_t N, class TUPLE, class T, class ...Args> void debug_tuple(ostream &os, TUPLE t) { os << (N == 0 ? \"\" : \", \") << get<N>(t); debug_tuple<N + 1, TUPLE, Args...>(os, t); }\ntemplate <class ...Args> ostream& operator<<(ostream& os, tuple<Args...> t) { os << \"(\"; debug_tuple<0, tuple<Args...>, Args...>(os, t); return os << \")\"; }\nstring debug_delim(int& i) { return i++ == 0 ? \"\" : \", \"; }\n#define debug_embrace(x) { int i = 0; os << \"{\"; { x } return os << \"}\"; }\ntemplate <class T> ostream& operator<<(ostream& os, vector<T> v) { debug_embrace( for (T e : v) { os << debug_delim(i) << e; } ) }\ntemplate <class T, size_t N> ostream& operator<<(ostream& os, array<T, N> a) { debug_embrace( for (T e : a) { os << debug_delim(i) << e; } ) }\ntemplate <class T, size_t N> enable_if_t<!is_same_v<char, remove_cv_t<T>>, ostream>& operator<<(ostream& os, T(&a)[N]) { debug_embrace( for (T e : a) { os << debug_delim(i) << e; } ) }\ntemplate <class Key> ostream& operator<<(ostream& os, set<Key> s) { debug_embrace( for (Key e : s) { os << debug_delim(i) << e; }) }\ntemplate <class Key, class T> ostream& operator<<(ostream& os, map<Key, T> mp) { debug_embrace( for (auto e : mp) { os << debug_delim(i) << e; }) }\ntemplate <class Key> ostream& operator<<(ostream& os, multiset<Key> s) { debug_embrace( for (Key e : s) { os << debug_delim(i) << e; }) }\ntemplate <class T> ostream& operator<<(ostream& os, queue<T> q) { debug_embrace( for (; !q.empty(); q.pop()) { os << debug_delim(i) << q.front(); } ) }\ntemplate <class T> ostream& operator<<(ostream& os, deque<T> q) { debug_embrace( for (T e : q) { os << debug_delim(i) << e; } ) }\ntemplate <class T> ostream& operator<<(ostream& os, priority_queue<T> q) { debug_embrace( for (; !q.empty(); q.pop()) { os << debug_delim(i) << q.top(); } ) }\ntemplate <class T> ostream& operator<<(ostream& os, priority_queue<T, vector<T>, greater<T>> q) { debug_embrace( for (; !q.empty(); q.pop()) { os << debug_delim(i) << q.top(); } ) }\nvoid debug_out() { cerr << endl; }\ntemplate <class T, class... Args> void debug_out(const T& x, const Args& ... args) { cerr << \" \" << x; debug_out(args...); }\n#define debug(...) cerr << __LINE__ << \" : [\" << #__VA_ARGS__ << \"] =\", debug_out(__VA_ARGS__)\n#else\n#define debug(...) (void(0))\n#endif\nstruct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); cerr << fixed << setprecision(7); }; } fast_ios_;\n///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////\n// clang-format on\n#line 2 \"E.cpp\"\n\ntemplate <int W> struct SquareRootDecomposition {\n struct Ranges {\n optional<pair<int, int>> left_overflow_range;\n optional<pair<int, int>> bucket_range;\n optional<pair<int, int>> right_overflow_range;\n Ranges()\n : left_overflow_range(nullopt),\n bucket_range(nullopt),\n right_overflow_range(nullopt) {\n }\n };\n\n int n;\n\n SquareRootDecomposition() {\n }\n SquareRootDecomposition(int n) : n(n) {\n }\n\n int bucket_size() const {\n return (n + W - 1) / W;\n }\n\n /**\n * @brief クエリの範囲を分割する\n * @param l 左端\n * @param r 右端\n * @return 分割された範囲\n * @note [l, r) の範囲を分割する\n */\n Ranges query(int l, int r) const {\n assert(0 <= l && l < r && r <= n);\n Ranges ret;\n int l_bucket_id = bucket_id(l);\n int r_bucket_id = bucket_id(r - 1);\n auto [l_bucket_l, l_bucket_r] = bucket_range(l_bucket_id);\n auto [r_bucket_l, r_bucket_r] = bucket_range(r_bucket_id);\n if (l_bucket_id == r_bucket_id) {\n if (l == l_bucket_l && r == r_bucket_r) {\n ret.bucket_range = {l_bucket_id, l_bucket_id + 1};\n } else {\n ret.left_overflow_range = {l, r};\n }\n } else {\n if (l_bucket_id + 1 < r_bucket_id) {\n ret.bucket_range = {l_bucket_id + 1, r_bucket_id};\n }\n if (l == l_bucket_l) {\n if (ret.bucket_range) {\n ret.bucket_range->first--;\n } else {\n ret.bucket_range = {l_bucket_id, l_bucket_id + 1};\n }\n } else {\n ret.left_overflow_range = {l, l_bucket_r};\n }\n if (r == r_bucket_r) {\n if (ret.bucket_range) {\n ret.bucket_range->second++;\n } else {\n ret.bucket_range = {r_bucket_id, r_bucket_id + 1};\n }\n } else {\n ret.right_overflow_range = {r_bucket_l, r};\n }\n }\n return ret;\n }\n\n int bucket_id(int i) const {\n assert(0 <= i && i < n);\n return i / W;\n }\n\n pair<int, int> bucket_range(int i) const {\n assert(0 <= i && i < bucket_size());\n int l = i * W;\n int r = min((i + 1) * W, n);\n return {l, r};\n }\n};\n\nvoid solve() {\n constexpr ll INF = TEN(18);\n INT(N, Q);\n VEC(ll, A, N);\n\n SquareRootDecomposition<128> decomp(N);\n auto B = A;\n vec<ll> add(decomp.bucket_size(), 0);\n vec<ll> mn(decomp.bucket_size(), -INF);\n vec<ll> mx(decomp.bucket_size(), INF);\n // 足したあと切り詰める\n auto upd = [&](int k) {\n auto [l, r] = decomp.bucket_range(k);\n rep(i, l, r) A[i] += add[k];\n add[k] = 0;\n rep(i, l, r) A[i] = clamp(A[i], mn[k], mx[k]);\n rep(i, l, r) B[i] = A[i];\n sort(B.begin() + l, B.begin() + r);\n mn[k] = -INF;\n mx[k] = INF;\n };\n auto lazy = [&](int k, int t, ll x) {\n if (t == 1) {\n chmin(mn[k], x);\n chmin(mx[k], x);\n } else if (t == 2) {\n chmax(mn[k], x);\n chmax(mx[k], x);\n } else {\n add[k] += x;\n mn[k] += x;\n mx[k] += x;\n }\n };\n rep(i, decomp.bucket_size()) upd(i);\n rep(Q) {\n INT(t);\n if (t == 1) {\n LL(l, r, x);\n l--;\n auto ranges = decomp.query(l, r);\n if (ranges.left_overflow_range) {\n auto [p, q] = ranges.left_overflow_range.value();\n upd(decomp.bucket_id(p));\n rep(j, p, q) chmin(A[j], x);\n upd(decomp.bucket_id(p));\n }\n if (ranges.bucket_range) {\n auto [p, q] = ranges.bucket_range.value();\n rep(j, p, q) {\n lazy(j, t, x);\n }\n }\n if (ranges.right_overflow_range) {\n auto [p, q] = ranges.right_overflow_range.value();\n debug(p, q);\n upd(decomp.bucket_id(p));\n rep(j, p, q) chmin(A[j], x);\n upd(decomp.bucket_id(p));\n }\n } else if (t == 2) {\n LL(l, r, x);\n l--;\n auto ranges = decomp.query(l, r);\n if (ranges.left_overflow_range) {\n auto [p, q] = ranges.left_overflow_range.value();\n upd(decomp.bucket_id(p));\n rep(j, p, q) chmax(A[j], x);\n upd(decomp.bucket_id(p));\n }\n if (ranges.bucket_range) {\n auto [p, q] = ranges.bucket_range.value();\n rep(j, p, q) {\n lazy(j, t, x);\n }\n }\n if (ranges.right_overflow_range) {\n auto [p, q] = ranges.right_overflow_range.value();\n upd(decomp.bucket_id(p));\n rep(j, p, q) chmax(A[j], x);\n upd(decomp.bucket_id(p));\n }\n\n } else if (t == 3) {\n LL(l, r, x);\n l--;\n auto ranges = decomp.query(l, r);\n if (ranges.left_overflow_range) {\n auto [p, q] = ranges.left_overflow_range.value();\n upd(decomp.bucket_id(p));\n rep(j, p, q) A[j] += x;\n upd(decomp.bucket_id(p));\n }\n if (ranges.bucket_range) {\n auto [p, q] = ranges.bucket_range.value();\n rep(j, p, q) {\n lazy(j, t, x);\n }\n }\n if (ranges.right_overflow_range) {\n auto [p, q] = ranges.right_overflow_range.value();\n upd(decomp.bucket_id(p));\n rep(j, p, q) A[j] += x;\n upd(decomp.bucket_id(p));\n }\n\n } else {\n LL(l, r, x, y);\n l--;\n auto ranges = decomp.query(l, r);\n int ans = 0;\n if (ranges.left_overflow_range) {\n auto [p, q] = ranges.left_overflow_range.value();\n upd(decomp.bucket_id(p));\n rep(j, p, q) {\n if (x <= A[j] && A[j] <= y) ans++;\n }\n }\n if (ranges.bucket_range) {\n auto [p, q] = ranges.bucket_range.value();\n rep(j, p, q) {\n if (mn[j] > y || mx[j] < x) continue;\n auto [a, b] = decomp.bucket_range(j);\n int lb =\n lower_bound(B.begin() + a, B.begin() + b, x - add[j]) -\n B.begin();\n int ub =\n upper_bound(B.begin() + a, B.begin() + b, y - add[j]) -\n B.begin();\n if (mn[j] >= x) lb = a;\n if (mx[j] <= y) ub = b;\n ans += ub - lb;\n }\n }\n if (ranges.right_overflow_range) {\n auto [p, q] = ranges.right_overflow_range.value();\n upd(decomp.bucket_id(p));\n rep(j, p, q) {\n if (x <= A[j] && A[j] <= y) ans++;\n }\n }\n print(ans);\n }\n }\n}\n\nint main() {\n int T = 1;\n // cin >> T;\n for (int i = 0; i < T; i++) {\n solve();\n }\n}", "accuracy": 1, "time_ms": 1320, "memory_kb": 4684, "score_of_the_acc": -0.8469, "final_rank": 10 }, { "submission_id": "aoj_3170_6377836", "code_snippet": "// #pragma GCC optimize (\"O3\")\n// #pragma GCC target(\"avx512f\")\n// #pragma GCC optimize(\"unroll-loops\")\n// #ifndef ONLINE_JUDGE\n// #define _GLIBCXX_DEBUG\n// #endif\n#include<bits/stdc++.h>\n// #include <boost/multiprecision/cpp_dec_float.hpp>\n// #include <boost/multiprecision/cpp_int.hpp>\n// #include <boost/rational.hpp>\n// namespace mp = boost::multiprecision;\n// using Bint=mp::cpp_int;\n// using Real = mp::number<mp::cpp_dec_float<64>>;\n// #include<atcoder/all>\nusing namespace std;\n// using namespace atcoder;\n#define rep(i, n) for (ll i = 0; i < (ll)(n); i++)\n#define rep1(n) for(ll i = 0; i < (n); ++i)\n#define rep2(i, n) for(ll i = 0; i < (n); ++i)\n#define rep3(i, a, b) for(ll i = (a); i < (b); ++i)\n#define rep4(i, a, b, c) for(ll i = (a); i < (b); i += (c))\n#define rrep(i, a, b) for(ll i = (b); i --> (a); )\nint scan(){ return getchar(); }\nvoid scan(int& a){ scanf(\"%d\", &a); }\nvoid scan(unsigned& a){ scanf(\"%u\", &a); }\nvoid scan(long long& a){ scanf(\"%lld\", &a); }\nvoid scan(unsigned long long& a){ scanf(\"%llu\", &a); }\nvoid scan(char& a){ do{ a = getchar(); }while(a == ' ' || a == '\\n'); }\nvoid scan(float& a){ scanf(\"%f\", &a); }\nvoid scan(double& a){ scanf(\"%lf\", &a); }\nvoid scan(long double& a){ scanf(\"%Lf\", &a); }\nvoid scan(vector<bool>& a){ for(unsigned i = 0; i < a.size(); i++) { int b; scan(b); a[i] = b; } }\nvoid scan(char a[]){ scanf(\"%s\", a); }\nvoid scan(string& a){ cin >> a; }\ntemplate<class T> void scan(vector<T>&);\ntemplate<class T> void scan(deque<T>&);\ntemplate<class T, size_t size> void scan(array<T, size>&);\ntemplate<class T, class L> void scan(pair<T, L>&);\ntemplate<class T, size_t size> void scan(T(&)[size]);\ntemplate<class T> void scan(vector<T>& a){ for(auto& i : a) scan(i); }\ntemplate<class T> void scan(deque<T>& a){ for(auto& i : a) scan(i); }\ntemplate<class T, size_t size> void scan(array<T, size>& a){ for(auto& i : a) scan(i); }\ntemplate<class T, class L> void scan(pair<T, L>& p){ scan(p.first); scan(p.second); }\ntemplate<class T, size_t size> void scan(T (&a)[size]){ for(auto& i : a) scan(i); }\ntemplate<class T> void scan(T& a){ cin >> a; }\nvoid in(){}\ntemplate <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }\nvoid print(){ putchar(' '); }\nvoid print(bool a){ printf(\"%d\", a); }\nvoid print(int a){ printf(\"%d\", a); }\nvoid print(unsigned a){ printf(\"%u\", a); }\nvoid print(long long a){ printf(\"%lld\", a); }\nvoid print(unsigned long long a){ printf(\"%llu\", a); }\nvoid print(char a){ printf(\"%c\", a); }\nvoid print(char a[]){ printf(\"%s\", a); }\nvoid print(float a){ printf(\"%.15f\", a); }\nvoid print(double a){ printf(\"%.15f\", a); }\nvoid print(long double a){ printf(\"%.15Lf\", a); }\nvoid print(const string& a){ for(auto&& i : a) print(i); }\ntemplate<class T> void print(const vector<T>&);\ntemplate<class T, size_t size> void print(const array<T, size>&);\ntemplate<class T, class L> void print(const pair<T, L>& p);\ntemplate<class T, size_t size> void print(const T (&)[size]);\ntemplate<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const deque<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, size_t size> void print(const array<T, size>& a){ print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ putchar(' '); print(*i); } }\ntemplate<class T, class L> void print(const pair<T, L>& p){ print(p.first); putchar(' '); print(p.second); }\ntemplate<class T, size_t size> void print(const T (&a)[size]){ print(a[0]); for(auto i = a; ++i != end(a); ){ putchar(' '); print(*i); } }\ntemplate<class T> void print(const T& a){ cout << a; }\nint out(){ putchar('\\n'); return 0; }\ntemplate<class T> int out(const T& t){ print(t); putchar('\\n'); return 0; }\ntemplate<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }\n#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)\n#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)\n#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)\n#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)\n#define VEC(type,name,size) vector<type> name(size); in(name)\n#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)\n#define bit(n,k) (((ll)n>>(ll)k)&1) /*nのk bit目*/\n#define pb push_back\n#define pf push_front\n#define fi first\n#define se second\n#define eb emplace_back\n#define endl '\\n'\n#define SZ(x) ((int)(x).size())\n#define all(x) (x).begin(),(x).end()\n#define rall(x) (x).rbegin(),(x).rend()\n#define debug(v) cout<<#v<<\":\";for(auto x:v){cout<<x<<' ';}cout<<endl;\n#define pi 3.14159265359\nconst double eps = 1e-12;\nconst long long INF= (long long)1e18+20;\nconst int inf= 1010101010;\ntypedef long double D; // 座標値の型。doubleかlong doubleを想定\ntypedef complex<D> Point; // Point\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl>vvl;\ntypedef vector<vvl>vvvl;\ntypedef vector<vvvl>vvvvl;\ntypedef vector<vvvvl>vvvvvl;\ntypedef vector<int>vi;\ntypedef vector<vi>vvi;\ntypedef vector<vvi>vvvi;\ntypedef vector<vvvi>vvvvi;\ntypedef vector<vvvvi>vvvvvi;\ntypedef pair<ll,ll> P;\n#define __builtin_popcount __builtin_popcountll\n// typedef double D; \ntemplate<class T> using minpq=priority_queue<T,vector<T>,greater<T>>;\n// const ll MOD=1000000007LL;\nconst ll MOD=998244353LL;\n// using mint=modint998244353;\n// using mint=modint1000000007;\n// using mint=modint;\n// typedef vector<mint> vm;\n// typedef vector<vector<mint> >vvm;\n// typedef vector<vector<vector<mint> > >vvvm;\n//上下右左\nvl dx={-1,1,0,0,1,1,-1,-1};\nvl dy={0,-0,1,-1,-1,1,-1,1};\n\n\ntemplate<class T> vector<T> make_vec(size_t a) { return vector<T>(a); }\ntemplate<class T, class... Ts> auto make_vec(size_t a, Ts... ts) {\n return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));\n}\n\ntemplate<class T>bool chmax(T &a,const T &b){if(a<b){a=b;return true;}return false;}\ntemplate<class T>bool chmin(T &a,const T &b){if(b<a){a=b;return true;}return false;}\ntemplate<class T> ll sum(const T& a){ return accumulate(all(a), 0LL); }\ntemplate<class T> auto min(const T& a){ return *min_element(all(a)); }\ntemplate<class T> auto max(const T& a){ return *max_element(all(a)); }\n\n//素因数分解O(√n)\nmap<ll,ll>prime_factor(ll n){\n map<ll,ll>res;\n for(ll i=2;i*i<=n;i++){\n while(n%i==0){\n res[i]++;\n n/=i;\n }\n }\n if(n!=1)res[n]=1;\n return res;\n}\n\nconst ll MAX = 5000010;//5*10^6\nlong long fac[MAX], finv[MAX], inv[MAX];\n//finvが階乗の逆元\n\n// テーブルを作る前処理\nvoid COMinit() {\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for (ll i = 2; i < MAX; i++){\n fac[i] = fac[i - 1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n\n// 二項係数計算\nlong long COM(ll n, ll k){\n if (n < k) return 0;\n if (n < 0 || k < 0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;\n}\n\n\n//素数判定O(√n)\nbool is_prime(ll n){\n for(ll i=2;i*i<=n;i++){\n if(n%i==0)return false;\n }\n return n!=1;\n}\n\n//約数の列挙O(√n)\nvector<ll>divisor(ll n){\n vector<ll>res;\n for(ll i=1;i*i<=n;i++){\n if(n%i==0){\n res.push_back(i);\n if(i != n/i) res.push_back(n/i);\n }\n }\n return res;\n}\n\n\nll exp(ll n,ll r){\n if(r==0)return 1;\n return n*exp(n,r-1);\n}\n\nll factorial(int n){\n if(n==0)return 1;\n return n*factorial(n-1);\n}\n\n\npair<long long,long long>roop_search(vl next_index,ll first_point){\n\tll idx=first_point;\n\tmap<ll,ll>mp;\n\tmp[idx]=0;\n\tll cur=1;\n\tll roop_begin=-1;\n\tll roop_size=-1;\n\twhile(true){\n\t\tidx=next_index[idx];\n\t\tif(mp.count(idx)){\n\t\t\troop_begin=mp[idx];\n\t\t\troop_size=cur-roop_begin;\n\t\t\tbreak;\n\t\t}\n\t\tmp[idx]=cur++;\n\t}\n\treturn {roop_begin,roop_size};\n}\n\n\ntemplate< typename T >\nstruct Compress {\n vector< T > xs;\n\n Compress() = default;\n\n Compress(const vector< T > &vs) {\n add(vs);\n }\n\n Compress(const initializer_list< vector< T > > &vs) {\n for(auto &p : vs) add(p);\n }\n\n void add(const vector< T > &vs) {\n copy(begin(vs), end(vs), back_inserter(xs));\n }\n\n void add(const T &x) {\n xs.emplace_back(x);\n }\n\n void build() {\n sort(begin(xs), end(xs));\n xs.erase(unique(begin(xs), end(xs)), end(xs));\n }\n\n vector< int > get(const vector< T > &vs) const {\n vector< int > ret;\n transform(begin(vs), end(vs), back_inserter(ret), [&](const T &x) {\n return lower_bound(begin(xs), end(xs), x) - begin(xs);\n });\n return ret;\n }\n\n int get(const T &x) const {\n return lower_bound(begin(xs), end(xs), x) - begin(xs);\n }\n\n const T &operator[](int k) const {\n return xs[k];\n }\n};\n\n\ntemplate<class T>\nvoid rotate90(ll &h,ll &w,vector<vector<T>>&vec){\n vector<vector<T>>vec2(w,vector<T>(h));\n for(int i=0;i<h;i++){\n for(int j=0;j<w;j++){\n vec2[j][h-1-i]=vec[i][j];\n }\n }\n vec=vec2;\n swap(h,w);\n}\n\nstruct RandomNumberGenerator {\n mt19937 mt;\n\n RandomNumberGenerator() : mt(chrono::steady_clock::now().time_since_epoch().count()) {}\n\n int operator()(int a, int b) { // [a, b)\n uniform_int_distribution< int > dist(a, b - 1);\n return dist(mt);\n }\n\n int operator()(int b) { // [0, b)\n return (*this)(0, b);\n }\n};\n\n\n\nint main(){\n ios::sync_with_stdio(false);\n std::cin.tie(nullptr);\n cout << fixed << setprecision(12);\n //主客転倒!二重和のときは一番内側の物が何回使われるか\n //√Nで分けるテク\n //絶対値は外して2通りの式にした後、変数ごとにまとめる\n //組み合わせが少ないそうなものはdfsで実行してみる(典型25)\n //DはDPのD\n //pow_mod,prime_factor,divisor,is_prime\n // g++ -fsanitize=undefined code.cpp -I.\n // valgrind ./a.out\n /*--------------------------------*/\n\n ll n,q;cin>>n>>q;\n vl a(n);\n rep(i,n)cin>>a[i];\n \n ll b=ceil(sqrt(n));//パケットのサイズ\n ll cnt=(n+b-1)/b;//パケットの個数\n \n vector<tuple<ll,ll,ll>>vec(cnt,{INF,-INF,0});//遅延評価するminmaxadd\n vvl sort_vec(cnt);//パケットごとにソート\n rep(i,n){\n sort_vec[i/b].pb(a[i]);\n }\n rep(i,b)sort(all(sort_vec));\n \n //両端の愚直更新\n auto f=[&](ll l,ll r,ll c1,ll b1,ll a1)->void{\n //l,rの属するパケットを遅延評価\n ll num=r/b;//numがパケットの番号\n ll dmin,dmax,dadd;\n tie(dmin,dmax,dadd)=vec[num];\n for(ll i=num*b;i<(num+1)*b;i++){\n a[i]+=dadd;\n chmax(a[i],dmax); \n chmin(a[i],dmin); \n }\n vec[num]={INF,-INF,0};\n for(ll i=l;i<=r;i++){\n a[i]+=a1;\n chmax(a[i],b1);\n chmin(a[i],c1);\n }\n vl new_sort_vec;\n for(ll i=num*b;i<(num+1)*b;i++){\n new_sort_vec.pb(a[i]);\n }\n sort(all(new_sort_vec));\n sort_vec[num]=new_sort_vec;\n };\n\n //パケット更新\n auto f2=[&](ll num,ll c2,ll b2,ll a2)->void{\n //numはパケット番号\n ll c1,b1,a1;\n tie(c1,b1,a1)=vec[num];\n ll na=a1+a2;\n ll nb=max(b2,min(c1+a2,b1+a2));\n ll nc=min(c2,max(b2,c1+a2));\n vec[num]={nc,nb,na};\n };\n\n //両端の愚直取得\n auto f3=[&](ll l,ll r,ll x)->ll {\n //l,rの属するパケットを遅延評価\n ll num=r/b;//numがパケットの番号\n ll dmin,dmax,dadd;\n tie(dmin,dmax,dadd)=vec[num];\n for(ll i=num*b;i<(num+1)*b;i++){\n a[i]+=dadd;\n chmax(a[i],dmax); \n chmin(a[i],dmin); \n }\n // if(l==8 and r==9 and (x==-10||x==1)){\n // cout<<\"OK\"<<endl;\n // cout<<a[8]<<\" \"<<a[9]<<endl;\n // }\n\n vec[num]={INF,-INF,0};\n vl new_sort_vec;\n for(ll i=num*b;i<(num+1)*b;i++){\n new_sort_vec.pb(a[i]);\n }\n sort(all(new_sort_vec));\n sort_vec[num]=new_sort_vec;\n \n //x以上の個数を取得\n \n ll res=0;\n for(ll i=l;i<=r;i++){\n if(a[i]>=x)res++;\n }\n return res;\n };\n \n //パケット取得\n auto f4=[&](ll num,ll x)->ll{\n //パケット番号numにおいて、x以上の個数\n ll c1,b1,a1;\n tie(c1,b1,a1)=vec[num];\n if(x>c1)return 0;\n if(x<=b1)return sort_vec[num].size();\n ll nx=x-a1;\n //sort_vecの中でnx以上の個数を求めればよい\n ll res=sort_vec[num].size();\n res-=lower_bound(all(sort_vec[num]),nx)-sort_vec[num].begin();\n return res;\n };\n\n while(q--){\n ll t;cin>>t;\n // debug(a);\n if(t==1){\n //chminクエリ\n ll l,r,x;cin>>l>>r>>x;\n l--;r--;\n if(l%b!=0){\n //左端愚直更新発生\n if((l+b-1)/b*b-1<=r){\n f(l,(l+b-1)/b*b-1,x,-INF,0);\n l=(l+b-1)/b*b;\n }\n else {\n f(l,r,x,-INF,0);\n l=r+1;\n }\n }\n if(r%b!=b-1){\n //右端愚直更新発生\n if(l<=r/b*b)f(r/b*b,r,x,-INF,0);\n r=r/b*b-1;\n }\n if(l<=r){\n for(ll i=l/b;i<=r/b;i++){\n //パケット更新\n f2(i,x,-INF,0);\n }\n }\n }\n if(t==2){\n //chmaxクエリ\n ll l,r,x;cin>>l>>r>>x;\n l--;r--;\n \n if(l%b!=0){\n //左端愚直更新発生\n if((l+b-1)/b*b-1<=r){\n f(l,(l+b-1)/b*b-1,INF,x,0);\n l=(l+b-1)/b*b;\n }\n else {\n f(l,r,INF,x,0);\n l=r+1;\n }\n }\n // if(check)cout<<l<<\" \"<<r<<endl;\n if(r%b!=b-1){\n //右端愚直更新発生\n if(l<=r/b*b)f(r/b*b,r,INF,x,0);\n r=r/b*b-1;\n }\n // if(check)cout<<l<<\" \"<<r<<endl;\n if(l<=r){\n for(ll i=l/b;i<=r/b;i++){\n //パケット更新\n f2(i,INF,x,0);\n }\n }\n // if(check)cout<<l<<\" \"<<r<<endl;\n }\n if(t==3){\n //addクエリ\n ll l,r,x;cin>>l>>r>>x;\n l--;r--;\n if(l%b!=0){\n //左端愚直更新発生\n if((l+b-1)/b*b-1<=r){\n f(l,(l+b-1)/b*b-1,INF,-INF,x);\n l=(l+b-1)/b*b;\n }\n else {\n f(l,r,INF,-INF,x);\n l=r+1;\n }\n }\n if(r%b!=b-1){\n //右端愚直更新発生\n if(l<=r/b*b)f(r/b*b,r,INF,-INF,x);\n r=r/b*b-1;\n }\n if(l<=r){\n for(ll i=l/b;i<=r/b;i++){\n //パケット更新\n f2(i,INF,-INF,x);\n }\n }\n }\n if(t==4){\n //取得クエリ\n ll l,r,x,y;cin>>l>>r>>x>>y;\n l--;r--;\n bool check=false;\n if(r==8){\n check=true;\n // debug(a);\n }\n // cout<<b<<endl;\n ll ans=0;\n if(l%b!=0){\n //左端愚直更新発生\n //x以上からy+1以上を引けばよい\n if((l+b-1)/b*b-1<=r){\n ans+=f3(l,(l+b-1)/b*b-1,x);\n ans-=f3(l,(l+b-1)/b*b-1,y+1);\n l=(l+b-1)/b*b;\n }\n else {\n ans+=f3(l,r,x);\n ans-=f3(l,r,y+1);\n l=r+1;\n }\n }\n // if(check)cout<<ans<<\" \"<<l<<\" \"<<r<<endl;\n if(r%b!=b-1){\n //右端愚直更新発生\n if(l<=r/b*b){\n ans+=f3(r/b*b,r,x);\n //引く方がホントは1になるはず\n // cout<<f3(r/b*b,r,x)<<\" \"<<f3(r/b*b,r,y+1)<<endl;\n ans-=f3(r/b*b,r,y+1);\n }\n r=r/b*b-1;\n }\n // if(check)cout<<ans<<\" \"<<l<<\" \"<<r<<endl;\n \n // if(l>r){\n // cout<<ans<<endl;\n // continue;\n // }\n // cout<<ans<<\" \"<<l<<\" \"<<r<<endl;\n if(l<=r){\n for(ll i=l/b;i<=r/b;i++){\n //パケット更新\n // if(l==0 and r==7){\n // cout<<\"OK\"<<endl;\n \n // }\n // if(check)cout<<i<<endl;\n ans+=f4(i,x);\n // cout<<ans<<endl;\n ans-=f4(i,y+1);\n // cout<<ans<<endl;\n }\n }\n cout<<ans<<endl;\n }\n // debug(a);\n // cout<<get<0>(vec[0])<<\" \"<<get<1>(vec[0])<<\" \"<<get<2>(vec[0])<<endl;\n // debug(a);\n }\n\n}", "accuracy": 0.09523809523809523, "time_ms": 140, "memory_kb": 5152, "score_of_the_acc": -0.141, "final_rank": 16 }, { "submission_id": "aoj_3170_5454384", "code_snippet": "#line 1 \"test/aizu-online-judge/3170.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3170\"\n\n#include <algorithm>\n#include <cstdio>\n\n#line 2 \"src/data_structure/buckets.hpp\"\n\n/**\n * @file buckets.hpp\n * @brief Buckets\n */\n\n#include <cmath>\n#include <vector>\n\nnamespace workspace {\n\n/**\n * @brief Buckets on a sequence.\n */\ntemplate <class _Iterator, class _Pack, class _Unpack> struct buckets {\n // Require random access.\n static_assert(\n std::is_same<typename std::iterator_traits<_Iterator>::iterator_category,\n std::random_access_iterator_tag>::value);\n\n using difference_type =\n typename std::iterator_traits<_Iterator>::difference_type;\n\n _Iterator __begin, __end;\n\n using value_type = decltype(std::declval<_Pack>()(std::declval<_Iterator>(),\n std::declval<_Iterator>()));\n\n struct bucket {\n value_type __data;\n _Iterator __begin;\n _Iterator __end;\n };\n\n _Pack __pack;\n _Unpack __unpack;\n difference_type __unit;\n std::vector<bucket> __buckets;\n\n void prepare() {\n if (!__unit) __unit = round(sqrt(std::distance(__begin, __end)));\n\n for (auto __l = __begin, __r = __l; __r != __end; __l = __r) {\n for (auto __n = __unit; __r != __end && __n; --__n) ++__r;\n __buckets.push_back({__pack(__l, __r), __l, __r});\n }\n }\n\n public:\n /**\n * @brief Constuct a new buckets object.\n */\n buckets(_Iterator __first, _Iterator __last, _Pack __pack, _Unpack __unpack,\n difference_type __unit = 0)\n : __begin(__first),\n __end(__last),\n __pack(__pack),\n __unpack(__unpack),\n __unit(__unit) {\n prepare();\n }\n\n /**\n * @brief Number of buckets.\n */\n auto size() const { return __buckets.size(); }\n\n bool empty() const { return __begin == __end; }\n\n /**\n * @brief Operate on a subsegment.\n *\n * @param __first\n * @param __last\n * @param __oper\n */\n template <class _Operator>\n void operator()(_Iterator __first, _Iterator __last, _Operator __oper) {\n if (__first == __last) return;\n\n auto __index = std::distance(__begin, __first);\n auto __b = std::next(__buckets.begin(), __index / __unit);\n\n if (__index % __unit) {\n __unpack(__b->__data, __b->__begin, __b->__end);\n\n auto __mid = std::distance(__last, __b->__end) > 0 ? __last : __b->__end;\n\n auto __tmp = __pack(__first, __mid);\n __oper(__tmp);\n __unpack(__tmp, __first, __mid);\n\n __b->__data = __pack(__b->__begin, __b->__end);\n ++__b;\n }\n\n while (true) {\n if (__b == __buckets.end()) return;\n if (std::distance(__b->__end, __last) < 0) break;\n\n __oper(__b->__data);\n ++__b;\n }\n\n if (std::distance(__b->__begin, __last) > 0) {\n __unpack(__b->__data, __b->__begin, __b->__end);\n\n auto __tmp = __pack(__b->__begin, __last);\n __oper(__tmp);\n __unpack(__tmp, __b->__begin, __last);\n\n __b->__data = __pack(__b->__begin, __b->__end);\n }\n }\n\n /**\n * @brief Operate on a subsegment.\n *\n * @param __i\n * @param __j\n * @param __oper\n */\n template <class _Operator>\n void operator()(difference_type __i, difference_type __j, _Operator __oper) {\n operator()(std::next(__begin, __i), std::next(__begin, __j), __oper);\n }\n};\n\n} // namespace workspace\n#line 7 \"test/aizu-online-judge/3170.test.cpp\"\n\nint main() {\n using namespace workspace;\n using i64 = int64_t;\n\n int n, q;\n scanf(\"%d%d\", &n, &q);\n std::vector<i64> a(n);\n for (auto&& x : a) {\n scanf(\"%lld\", &x);\n }\n\n struct data {\n i64 min, max, add;\n std::vector<i64> v;\n };\n\n constexpr auto inf = __INT64_MAX__;\n\n buckets b(\n begin(a), end(a),\n [](auto l, auto r) {\n data d;\n d.add = 0;\n d.min = inf;\n d.max = -inf;\n d.v = std::vector(l, r);\n sort(d.v.begin(), d.v.end());\n return d;\n },\n [](const auto& d, auto l, auto r) {\n while (l != r) {\n *l = std::min(d.min, std::max(d.max, *l)) + d.add;\n ++l;\n }\n },\n 128);\n\n for (int t, l, r; q--;) {\n i64 x, y;\n scanf(\"%d%d%d%lld\", &t, &l, &r, &x);\n --l;\n\n switch (--t) {\n case 0:\n b(l, r, [&](auto& d) {\n auto c = x - d.add;\n if (d.min < c) return;\n d.min = c;\n if (d.max > c) d.max = c;\n });\n break;\n\n case 1:\n b(l, r, [&](auto& d) {\n auto c = x - d.add;\n if (d.max > c) return;\n d.max = c;\n if (d.min < c) d.min = c;\n });\n break;\n\n case 2:\n b(l, r, [&](auto& d) { d.add += x; });\n break;\n\n case 3:\n scanf(\"%lld\", &y);\n int num = 0;\n b(l, r, [&](const auto& d) {\n int sign = 1;\n for (auto z : {x - 1 - d.add, y - d.add}) {\n sign *= -1;\n if (z < d.max) continue;\n if (z < d.min)\n num += sign * (std::upper_bound(d.v.begin(), d.v.end(), z) -\n d.v.begin());\n else\n num += sign * (int)d.v.size();\n }\n });\n printf(\"%d\\n\", num);\n break;\n }\n }\n}", "accuracy": 1, "time_ms": 1200, "memory_kb": 4160, "score_of_the_acc": -0.7013, "final_rank": 3 }, { "submission_id": "aoj_3170_5454380", "code_snippet": "#line 1 \"test/aizu-online-judge/3170.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3170\"\n\n#include <algorithm>\n#include <cstdio>\n\n#line 2 \"src/data_structure/buckets.hpp\"\n\n/**\n * @file buckets.hpp\n * @brief Buckets\n */\n\n#include <cmath>\n#include <vector>\n\nnamespace workspace {\n\n/**\n * @brief Buckets on a sequence.\n */\ntemplate <class _Iterator, class _Pack, class _Unpack> struct buckets {\n // Require random access.\n static_assert(\n std::is_same<typename std::iterator_traits<_Iterator>::iterator_category,\n std::random_access_iterator_tag>::value);\n\n using difference_type =\n typename std::iterator_traits<_Iterator>::difference_type;\n\n _Iterator __begin, __end;\n\n using value_type = decltype(std::declval<_Pack>()(std::declval<_Iterator>(),\n std::declval<_Iterator>()));\n\n struct bucket {\n value_type __data;\n _Iterator __begin;\n _Iterator __end;\n };\n\n _Pack __pack;\n _Unpack __unpack;\n difference_type __unit;\n std::vector<bucket> __buckets;\n\n void prepare() {\n if (!__unit) __unit = round(sqrt(std::distance(__begin, __end)));\n\n for (auto __l = __begin, __r = __l; __r != __end; __l = __r) {\n for (auto __n = __unit; __r != __end && __n; --__n) ++__r;\n __buckets.push_back({__pack(__l, __r), __l, __r});\n }\n }\n\n public:\n /**\n * @brief Constuct a new buckets object.\n */\n buckets(_Iterator __first, _Iterator __last, _Pack __pack, _Unpack __unpack,\n difference_type __unit = 0)\n : __begin(__first),\n __end(__last),\n __pack(__pack),\n __unpack(__unpack),\n __unit(__unit) {\n prepare();\n }\n\n /**\n * @brief Number of buckets.\n */\n auto size() const { return __buckets.size(); }\n\n bool empty() const { return __begin == __end; }\n\n /**\n * @brief Operate on a subsegment.\n *\n * @param __first\n * @param __last\n * @param __oper\n */\n template <class _Operator>\n void operator()(_Iterator __first, _Iterator __last, _Operator __oper) {\n if (__first == __last) return;\n\n auto __index = std::distance(__begin, __first);\n auto __b = std::next(__buckets.begin(), __index / __unit);\n\n if (__index % __unit) {\n __unpack(__b->__data, __b->__begin, __b->__end);\n\n auto __mid = std::distance(__last, __b->__end) > 0 ? __last : __b->__end;\n\n auto __tmp = __pack(__first, __mid);\n __oper(__tmp);\n __unpack(__tmp, __first, __mid);\n\n __b->__data = __pack(__b->__begin, __b->__end);\n ++__b;\n }\n\n while (true) {\n if (__b == __buckets.end()) return;\n if (std::distance(__b->__end, __last) < 0) break;\n\n __oper(__b->__data);\n ++__b;\n }\n\n if (std::distance(__b->__begin, __last) > 0) {\n __unpack(__b->__data, __b->__begin, __b->__end);\n\n auto __tmp = __pack(__b->__begin, __last);\n __oper(__tmp);\n __unpack(__tmp, __b->__begin, __last);\n\n __b->__data = __pack(__b->__begin, __b->__end);\n }\n }\n\n /**\n * @brief Operate on a subsegment.\n *\n * @param __i\n * @param __j\n * @param __oper\n */\n template <class _Operator>\n void operator()(difference_type __i, difference_type __j, _Operator __oper) {\n operator()(std::next(__begin, __i), std::next(__begin, __j), __oper);\n }\n};\n\n} // namespace workspace\n#line 7 \"test/aizu-online-judge/3170.test.cpp\"\n\nint main() {\n using namespace workspace;\n using i64 = int64_t;\n\n int n, q;\n scanf(\"%d%d\", &n, &q);\n std::vector<i64> a(n);\n for (auto&& x : a) {\n scanf(\"%lld\", &x);\n }\n\n struct data {\n i64 min, max, add;\n std::vector<i64> v;\n };\n\n constexpr auto inf = __INT64_MAX__;\n\n buckets b(\n begin(a), end(a),\n [](auto l, auto r) {\n data d;\n d.add = 0;\n d.min = inf;\n d.max = -inf;\n d.v = std::vector(l, r);\n sort(d.v.begin(), d.v.end());\n return d;\n },\n [](const auto& d, auto l, auto r) {\n while (l != r) {\n *l = std::min(d.min, std::max(d.max, *l)) + d.add;\n ++l;\n }\n },\n 100);\n\n for (int t, l, r; q--;) {\n i64 x, y;\n scanf(\"%d%d%d%lld\", &t, &l, &r, &x);\n --l;\n\n switch (--t) {\n case 0:\n b(l, r, [&](auto& d) {\n auto c = x - d.add;\n if (d.min < c) return;\n d.min = c;\n if (d.max > c) d.max = c;\n });\n break;\n\n case 1:\n b(l, r, [&](auto& d) {\n auto c = x - d.add;\n if (d.max > c) return;\n d.max = c;\n if (d.min < c) d.min = c;\n });\n break;\n\n case 2:\n b(l, r, [&](auto& d) { d.add += x; });\n break;\n\n case 3:\n scanf(\"%lld\", &y);\n int num = 0;\n b(l, r, [&](const auto& d) {\n int sign = 1;\n for (auto z : {x - 1 - d.add, y - d.add}) {\n sign *= -1;\n if (z < d.max) continue;\n if (z < d.min)\n num += sign * (std::upper_bound(d.v.begin(), d.v.end(), z) -\n d.v.begin());\n else\n num += sign * (int)d.v.size();\n }\n });\n printf(\"%d\\n\", num);\n break;\n }\n }\n}", "accuracy": 1, "time_ms": 1090, "memory_kb": 4196, "score_of_the_acc": -0.6345, "final_rank": 2 }, { "submission_id": "aoj_3170_5454377", "code_snippet": "#line 1 \"test/aizu-online-judge/3170.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3170\"\n\n#include <algorithm>\n#include <cstdio>\n\n#line 2 \"src/data_structure/buckets.hpp\"\n\n/**\n * @file buckets.hpp\n * @brief Buckets\n */\n\n#include <cmath>\n#include <vector>\n\nnamespace workspace {\n\n/**\n * @brief Buckets on a sequence.\n */\ntemplate <class _Iterator, class _Pack, class _Unpack> struct buckets {\n // Require random access.\n static_assert(\n std::is_same<typename std::iterator_traits<_Iterator>::iterator_category,\n std::random_access_iterator_tag>::value);\n\n using difference_type =\n typename std::iterator_traits<_Iterator>::difference_type;\n\n _Iterator __begin, __end;\n\n using value_type = decltype(std::declval<_Pack>()(std::declval<_Iterator>(),\n std::declval<_Iterator>()));\n\n struct bucket {\n value_type __data;\n _Iterator __begin;\n _Iterator __end;\n };\n\n _Pack __pack;\n _Unpack __unpack;\n difference_type __unit;\n std::vector<bucket> __buckets;\n\n void prepare() {\n if (!__unit) __unit = round(sqrt(std::distance(__begin, __end)));\n\n for (auto __l = __begin, __r = __l; __r != __end; __l = __r) {\n for (auto __n = __unit; __r != __end && __n; --__n) ++__r;\n __buckets.push_back({__pack(__l, __r), __l, __r});\n }\n }\n\n public:\n /**\n * @brief Constuct a new buckets object.\n */\n buckets(_Iterator __first, _Iterator __last, _Pack __pack, _Unpack __unpack,\n difference_type __unit = 0)\n : __begin(__first),\n __end(__last),\n __pack(__pack),\n __unpack(__unpack),\n __unit(__unit) {\n prepare();\n }\n\n /**\n * @brief Number of buckets.\n */\n auto size() const { return __buckets.size(); }\n\n bool empty() const { return __begin == __end; }\n\n /**\n * @brief Operate on a subsegment.\n *\n * @param __first\n * @param __last\n * @param __oper\n */\n template <class _Operator>\n void operator()(_Iterator __first, _Iterator __last, _Operator __oper) {\n if (__first == __last) return;\n\n auto __index = std::distance(__begin, __first);\n auto __b = std::next(__buckets.begin(), __index / __unit);\n\n if (__index % __unit) {\n __unpack(__b->__data, __b->__begin, __b->__end);\n\n auto __mid = std::distance(__last, __b->__end) > 0 ? __last : __b->__end;\n\n auto __tmp = __pack(__first, __mid);\n __oper(__tmp);\n __unpack(__tmp, __first, __mid);\n\n __b->__data = __pack(__b->__begin, __b->__end);\n ++__b;\n }\n\n while (true) {\n if (__b == __buckets.end()) return;\n if (std::distance(__b->__end, __last) < 0) break;\n\n __oper(__b->__data);\n ++__b;\n }\n\n if (std::distance(__b->__begin, __last) > 0) {\n __unpack(__b->__data, __b->__begin, __b->__end);\n\n auto __tmp = __pack(__b->__begin, __last);\n __oper(__tmp);\n __unpack(__tmp, __b->__begin, __last);\n\n __b->__data = __pack(__b->__begin, __b->__end);\n }\n }\n\n /**\n * @brief Operate on a subsegment.\n *\n * @param __i\n * @param __j\n * @param __oper\n */\n template <class _Operator>\n void operator()(difference_type __i, difference_type __j, _Operator __oper) {\n operator()(std::next(__begin, __i), std::next(__begin, __j), __oper);\n }\n};\n\n} // namespace workspace\n#line 7 \"test/aizu-online-judge/3170.test.cpp\"\n\nint main() {\n using namespace workspace;\n using i64 = int64_t;\n\n int n, q;\n scanf(\"%d%d\", &n, &q);\n std::vector<i64> a(n);\n for (auto&& x : a) {\n scanf(\"%lld\", &x);\n }\n\n struct data {\n i64 min, max, add;\n std::vector<i64> v;\n };\n\n constexpr auto inf = __INT64_MAX__;\n\n buckets b(\n begin(a), end(a),\n [](auto l, auto r) {\n data d;\n d.add = 0;\n d.min = inf;\n d.max = -inf;\n d.v = std::vector(l, r);\n sort(d.v.begin(), d.v.end());\n return d;\n },\n [](const auto& d, auto l, auto r) {\n while (l != r) {\n *l = std::min(d.min, std::max(d.max, *l)) + d.add;\n ++l;\n }\n },\n 30);\n\n for (int t, l, r; q--;) {\n i64 x, y;\n scanf(\"%d%d%d%lld\", &t, &l, &r, &x);\n --l;\n\n switch (--t) {\n case 0:\n b(l, r, [&](auto& d) {\n auto c = x - d.add;\n if (d.min < c) return;\n d.min = c;\n if (d.max > c) d.max = c;\n });\n break;\n\n case 1:\n b(l, r, [&](auto& d) {\n auto c = x - d.add;\n if (d.max > c) return;\n d.max = c;\n if (d.min < c) d.min = c;\n });\n break;\n\n case 2:\n b(l, r, [&](auto& d) { d.add += x; });\n break;\n\n case 3:\n scanf(\"%lld\", &y);\n int num = 0;\n b(l, r, [&](const auto& d) {\n int sign = 1;\n for (auto z : {x - 1 - d.add, y - d.add}) {\n sign *= -1;\n if (z < d.max) continue;\n if (z < d.min)\n num += sign * (std::upper_bound(d.v.begin(), d.v.end(), z) -\n d.v.begin());\n else\n num += sign * (int)d.v.size();\n }\n });\n printf(\"%d\\n\", num);\n break;\n }\n }\n}", "accuracy": 1, "time_ms": 1210, "memory_kb": 4404, "score_of_the_acc": -0.7393, "final_rank": 4 }, { "submission_id": "aoj_3170_5454376", "code_snippet": "#line 1 \"test/aizu-online-judge/3170.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3170\"\n\n#include <algorithm>\n#include <cstdio>\n\n#line 2 \"src/data_structure/buckets.hpp\"\n\n/**\n * @file buckets.hpp\n * @brief Buckets\n */\n\n#include <cmath>\n#include <vector>\n\nnamespace workspace {\n\n/**\n * @brief Buckets on a sequence.\n */\ntemplate <class _Iterator, class _Pack, class _Unpack> struct buckets {\n // Require random access.\n static_assert(\n std::is_same<typename std::iterator_traits<_Iterator>::iterator_category,\n std::random_access_iterator_tag>::value);\n\n using difference_type =\n typename std::iterator_traits<_Iterator>::difference_type;\n\n _Iterator __begin, __end;\n\n using value_type = decltype(std::declval<_Pack>()(std::declval<_Iterator>(),\n std::declval<_Iterator>()));\n\n struct bucket {\n value_type __data;\n _Iterator __begin;\n _Iterator __end;\n };\n\n _Pack __pack;\n _Unpack __unpack;\n difference_type __unit;\n std::vector<bucket> __buckets;\n\n void prepare() {\n if (!__unit) __unit = round(sqrt(std::distance(__begin, __end)));\n\n for (auto __l = __begin, __r = __l; __r != __end; __l = __r) {\n for (auto __n = __unit; __r != __end && __n; --__n) ++__r;\n __buckets.push_back({__pack(__l, __r), __l, __r});\n }\n }\n\n public:\n /**\n * @brief Constuct a new buckets object.\n */\n buckets(_Iterator __first, _Iterator __last, _Pack __pack, _Unpack __unpack,\n difference_type __unit = 0)\n : __begin(__first),\n __end(__last),\n __pack(__pack),\n __unpack(__unpack),\n __unit(__unit) {\n prepare();\n }\n\n /**\n * @brief Number of buckets.\n */\n auto size() const { return __buckets.size(); }\n\n bool empty() const { return __begin == __end; }\n\n /**\n * @brief Operate on a subsegment.\n *\n * @param __first\n * @param __last\n * @param __oper\n */\n template <class _Operator>\n void operator()(_Iterator __first, _Iterator __last, _Operator __oper) {\n if (__first == __last) return;\n\n auto __index = std::distance(__begin, __first);\n auto __b = std::next(__buckets.begin(), __index / __unit);\n\n if (__index % __unit) {\n __unpack(__b->__data, __b->__begin, __b->__end);\n\n auto __mid = std::distance(__last, __b->__end) > 0 ? __last : __b->__end;\n\n auto __tmp = __pack(__first, __mid);\n __oper(__tmp);\n __unpack(__tmp, __first, __mid);\n\n __b->__data = __pack(__b->__begin, __b->__end);\n ++__b;\n }\n\n while (true) {\n if (__b == __buckets.end()) return;\n if (std::distance(__b->__end, __last) < 0) break;\n\n __oper(__b->__data);\n ++__b;\n }\n\n if (std::distance(__b->__begin, __last) > 0) {\n __unpack(__b->__data, __b->__begin, __b->__end);\n\n auto __tmp = __pack(__b->__begin, __last);\n __oper(__tmp);\n __unpack(__tmp, __b->__begin, __last);\n\n __b->__data = __pack(__b->__begin, __b->__end);\n }\n }\n\n /**\n * @brief Operate on a subsegment.\n *\n * @param __i\n * @param __j\n * @param __oper\n */\n template <class _Operator>\n void operator()(difference_type __i, difference_type __j, _Operator __oper) {\n operator()(std::next(__begin, __i), std::next(__begin, __j), __oper);\n }\n};\n\n} // namespace workspace\n#line 7 \"test/aizu-online-judge/3170.test.cpp\"\n\nint main() {\n using namespace workspace;\n using i64 = int64_t;\n\n int n, q;\n scanf(\"%d%d\", &n, &q);\n std::vector<i64> a(n);\n for (auto&& x : a) {\n scanf(\"%lld\", &x);\n }\n\n struct data {\n i64 min, max, add;\n std::vector<i64> v;\n };\n\n constexpr auto inf = __INT64_MAX__;\n\n buckets b(\n begin(a), end(a),\n [](auto l, auto r) {\n data d;\n d.add = 0;\n d.min = inf;\n d.max = -inf;\n d.v = std::vector(l, r);\n sort(d.v.begin(), d.v.end());\n return d;\n },\n [](const auto& d, auto l, auto r) {\n while (l != r) {\n *l = std::min(d.min, std::max(d.max, *l)) + d.add;\n ++l;\n }\n },\n 50);\n\n for (int t, l, r; q--;) {\n i64 x, y;\n scanf(\"%d%d%d%lld\", &t, &l, &r, &x);\n --l;\n\n switch (--t) {\n case 0:\n b(l, r, [&](auto& d) {\n auto c = x - d.add;\n if (d.min < c) return;\n d.min = c;\n if (d.max > c) d.max = c;\n });\n break;\n\n case 1:\n b(l, r, [&](auto& d) {\n auto c = x - d.add;\n if (d.max > c) return;\n d.max = c;\n if (d.min < c) d.min = c;\n });\n break;\n\n case 2:\n b(l, r, [&](auto& d) { d.add += x; });\n break;\n\n case 3:\n scanf(\"%lld\", &y);\n int num = 0;\n b(l, r, [&](const auto& d) {\n int sign = 1;\n for (auto z : {x - 1 - d.add, y - d.add}) {\n sign *= -1;\n if (z < d.max) continue;\n if (z < d.min)\n num += sign * (std::upper_bound(d.v.begin(), d.v.end(), z) -\n d.v.begin());\n else\n num += sign * (int)d.v.size();\n }\n });\n printf(\"%d\\n\", num);\n break;\n }\n }\n}", "accuracy": 1, "time_ms": 990, "memory_kb": 4384, "score_of_the_acc": -0.5938, "final_rank": 1 }, { "submission_id": "aoj_3170_5454371", "code_snippet": "#line 1 \"test/aizu-online-judge/3170.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3170\"\n\n#include <algorithm>\n#include <cstdio>\n\n#line 2 \"src/data_structure/buckets.hpp\"\n\n/**\n * @file buckets.hpp\n * @brief Buckets\n */\n\n#include <cmath>\n#include <vector>\n\nnamespace workspace {\n\n/**\n * @brief Buckets on a sequence.\n */\ntemplate <class _Iterator, class _Pack, class _Unpack> struct buckets {\n // Require random access.\n static_assert(\n std::is_same<typename std::iterator_traits<_Iterator>::iterator_category,\n std::random_access_iterator_tag>::value);\n\n using difference_type =\n typename std::iterator_traits<_Iterator>::difference_type;\n\n _Iterator __begin, __end;\n\n using value_type = decltype(std::declval<_Pack>()(std::declval<_Iterator>(),\n std::declval<_Iterator>()));\n\n struct bucket {\n value_type __data;\n _Iterator __begin;\n _Iterator __end;\n };\n\n _Pack __pack;\n _Unpack __unpack;\n difference_type __unit;\n std::vector<bucket> __buckets;\n\n void prepare() {\n if (!__unit) __unit = round(sqrt(std::distance(__begin, __end)));\n\n for (auto __l = __begin, __r = __l; __r != __end; __l = __r) {\n for (auto __n = __unit; __r != __end && __n; --__n) ++__r;\n __buckets.push_back({__pack(__l, __r), __l, __r});\n }\n }\n\n public:\n /**\n * @brief Constuct a new buckets object.\n */\n buckets(_Iterator __first, _Iterator __last, _Pack __pack, _Unpack __unpack,\n difference_type __unit = 0)\n : __begin(__first),\n __end(__last),\n __pack(__pack),\n __unpack(__unpack),\n __unit(__unit) {\n prepare();\n }\n\n /**\n * @brief Number of buckets.\n */\n auto size() const { return __buckets.size(); }\n\n bool empty() const { return __begin == __end; }\n\n /**\n * @brief Operate on a subsegment.\n *\n * @param __first\n * @param __last\n * @param __oper\n */\n template <class _Operator>\n void operator()(_Iterator __first, _Iterator __last, _Operator __oper) {\n if (__first == __last) return;\n\n auto __index = std::distance(__begin, __first);\n auto __b = std::next(__buckets.begin(), __index / __unit);\n\n if (__index % __unit) {\n __unpack(__b->__data, __b->__begin, __b->__end);\n\n auto __mid = std::distance(__last, __b->__end) > 0 ? __last : __b->__end;\n\n auto __tmp = __pack(__first, __mid);\n __oper(__tmp);\n __unpack(__tmp, __first, __mid);\n\n __b->__data = __pack(__b->__begin, __b->__end);\n ++__b;\n }\n\n while (true) {\n if (__b == __buckets.end()) return;\n if (std::distance(__b->__end, __last) < 0) break;\n\n __oper(__b->__data);\n ++__b;\n }\n\n if (std::distance(__b->__begin, __last) > 0) {\n __unpack(__b->__data, __b->__begin, __b->__end);\n\n auto __tmp = __pack(__b->__begin, __last);\n __oper(__tmp);\n __unpack(__tmp, __b->__begin, __last);\n\n __b->__data = __pack(__b->__begin, __b->__end);\n }\n }\n\n /**\n * @brief Operate on a subsegment.\n *\n * @param __i\n * @param __j\n * @param __oper\n */\n template <class _Operator>\n void operator()(difference_type __i, difference_type __j, _Operator __oper) {\n operator()(std::next(__begin, __i), std::next(__begin, __j), __oper);\n }\n};\n\n} // namespace workspace\n#line 7 \"test/aizu-online-judge/3170.test.cpp\"\n\nint main() {\n using namespace workspace;\n using i64 = int64_t;\n\n int n, q;\n scanf(\"%d%d\", &n, &q);\n std::vector<i64> a(n);\n for (auto&& x : a) {\n scanf(\"%lld\", &x);\n }\n\n struct data {\n i64 min, max, add;\n std::vector<i64> v;\n };\n\n constexpr auto inf = __INT64_MAX__;\n\n buckets b(\n begin(a), end(a),\n [](auto l, auto r) {\n data d;\n d.add = 0;\n d.min = inf;\n d.max = -inf;\n d.v = std::vector(l, r);\n sort(d.v.begin(), d.v.end());\n return d;\n },\n [](const auto& d, auto l, auto r) {\n while (l != r) {\n *l = std::min(d.min, std::max(d.max, *l)) + d.add;\n ++l;\n }\n },\n 150);\n\n for (int t, l, r; q--;) {\n i64 x, y;\n scanf(\"%d%d%d%lld\", &t, &l, &r, &x);\n --l;\n\n switch (--t) {\n case 0:\n b(l, r, [&](auto& d) {\n auto c = x - d.add;\n if (d.min < c) return;\n d.min = c;\n if (d.max > c) d.max = c;\n });\n break;\n\n case 1:\n b(l, r, [&](auto& d) {\n auto c = x - d.add;\n if (d.max > c) return;\n d.max = c;\n if (d.min < c) d.min = c;\n });\n break;\n\n case 2:\n b(l, r, [&](auto& d) { d.add += x; });\n break;\n\n case 3:\n scanf(\"%lld\", &y);\n int num = 0;\n b(l, r, [&](const auto& d) {\n int sign = 1;\n for (auto z : {x - 1 - d.add, y - d.add}) {\n sign *= -1;\n if (z < d.max) continue;\n if (z < d.min)\n num += sign * (std::upper_bound(d.v.begin(), d.v.end(), z) -\n d.v.begin());\n else\n num += sign * (int)d.v.size();\n }\n });\n printf(\"%d\\n\", num);\n break;\n }\n }\n}", "accuracy": 1, "time_ms": 1350, "memory_kb": 4196, "score_of_the_acc": -0.8033, "final_rank": 9 }, { "submission_id": "aoj_3170_5454366", "code_snippet": "#line 1 \"test/aizu-online-judge/3170.test.cpp\"\n#define PROBLEM \"https://onlinejudge.u-aizu.ac.jp/problems/3170\"\n\n#include <algorithm>\n#include <cstdio>\n\n#line 2 \"src/data_structure/buckets.hpp\"\n\n/**\n * @file buckets.hpp\n * @brief Buckets\n */\n\n#include <cmath>\n#include <vector>\n\nnamespace workspace {\n\n/**\n * @brief Buckets on a sequence.\n */\ntemplate <class _Iterator, class _Pack, class _Unpack> struct buckets {\n // Require random access.\n static_assert(\n std::is_same<typename std::iterator_traits<_Iterator>::iterator_category,\n std::random_access_iterator_tag>::value);\n\n using difference_type =\n typename std::iterator_traits<_Iterator>::difference_type;\n\n _Iterator __begin, __end;\n\n using value_type = decltype(std::declval<_Pack>()(std::declval<_Iterator>(),\n std::declval<_Iterator>()));\n\n struct bucket {\n value_type __data;\n _Iterator __begin;\n _Iterator __end;\n };\n\n _Pack __pack;\n _Unpack __unpack;\n difference_type __unit;\n std::vector<bucket> __buckets;\n\n void prepare() {\n if (!__unit) __unit = round(sqrt(std::distance(__begin, __end)));\n\n for (auto __l = __begin, __r = __l; __r != __end; __l = __r) {\n for (auto __n = __unit; __r != __end && __n; --__n) ++__r;\n __buckets.push_back({__pack(__l, __r), __l, __r});\n }\n }\n\n public:\n /**\n * @brief Constuct a new buckets object.\n */\n buckets(_Iterator __first, _Iterator __last, _Pack __pack, _Unpack __unpack,\n difference_type __unit = 0)\n : __begin(__first),\n __end(__last),\n __pack(__pack),\n __unpack(__unpack),\n __unit(__unit) {\n prepare();\n }\n\n /**\n * @brief Number of buckets.\n */\n auto size() const { return __buckets.size(); }\n\n bool empty() const { return __begin == __end; }\n\n /**\n * @brief Operate on a subsegment.\n *\n * @param __first\n * @param __last\n * @param __oper\n */\n template <class _Operator>\n void operator()(_Iterator __first, _Iterator __last, _Operator __oper) {\n if (__first == __last) return;\n\n auto __index = std::distance(__begin, __first);\n auto __b = std::next(__buckets.begin(), __index / __unit);\n\n if (__index % __unit) {\n __unpack(__b->__data, __b->__begin, __b->__end);\n\n auto __mid = std::distance(__last, __b->__end) > 0 ? __last : __b->__end;\n\n auto __tmp = __pack(__first, __mid);\n __oper(__tmp);\n __unpack(__tmp, __first, __mid);\n\n __b->__data = __pack(__b->__begin, __b->__end);\n ++__b;\n }\n\n while (true) {\n if (__b == __buckets.end()) return;\n if (std::distance(__b->__end, __last) < 0) break;\n\n __oper(__b->__data);\n ++__b;\n }\n\n if (std::distance(__b->__begin, __last) > 0) {\n __unpack(__b->__data, __b->__begin, __b->__end);\n\n auto __tmp = __pack(__b->__begin, __last);\n __oper(__tmp);\n __unpack(__tmp, __b->__begin, __last);\n\n __b->__data = __pack(__b->__begin, __b->__end);\n }\n }\n\n /**\n * @brief Operate on a subsegment.\n *\n * @param __i\n * @param __j\n * @param __oper\n */\n template <class _Operator>\n void operator()(difference_type __i, difference_type __j, _Operator __oper) {\n operator()(std::next(__begin, __i), std::next(__begin, __j), __oper);\n }\n};\n\n} // namespace workspace\n#line 7 \"test/aizu-online-judge/3170.test.cpp\"\n\nint main() {\n using namespace workspace;\n using i64 = int64_t;\n\n int n, q;\n scanf(\"%d%d\", &n, &q);\n std::vector<i64> a(n);\n for (auto&& x : a) {\n scanf(\"%lld\", &x);\n }\n\n struct data {\n i64 min, max, add;\n std::vector<i64> v;\n };\n\n constexpr auto inf = __INT64_MAX__;\n\n buckets b(\n begin(a), end(a),\n [](auto l, auto r) {\n data d;\n d.add = 0;\n d.min = inf;\n d.max = -inf;\n d.v = std::vector(l, r);\n sort(d.v.begin(), d.v.end());\n return d;\n },\n [](const auto& d, auto l, auto r) {\n while (l != r) {\n *l = std::min(d.min, std::max(d.max, *l)) + d.add;\n ++l;\n }\n },\n 200);\n\n for (int t, l, r; q--;) {\n i64 x, y;\n scanf(\"%d%d%d%lld\", &t, &l, &r, &x);\n --l;\n\n switch (--t) {\n case 0:\n b(l, r, [&](auto& d) {\n auto c = x - d.add;\n if (d.min < c) return;\n d.min = c;\n if (d.max > c) d.max = c;\n });\n break;\n\n case 1:\n b(l, r, [&](auto& d) {\n auto c = x - d.add;\n if (d.max > c) return;\n d.max = c;\n if (d.min < c) d.min = c;\n });\n break;\n\n case 2:\n b(l, r, [&](auto& d) { d.add += x; });\n break;\n\n case 3:\n scanf(\"%lld\", &y);\n int num = 0;\n b(l, r, [&](const auto& d) {\n int sign = 1;\n for (auto z : {x - 1 - d.add, y - d.add}) {\n sign *= -1;\n if (z < d.max) continue;\n if (z < d.min)\n num += sign * (std::upper_bound(d.v.begin(), d.v.end(), z) -\n d.v.begin());\n else\n num += sign * (int)d.v.size();\n }\n });\n printf(\"%d\\n\", num);\n break;\n }\n }\n}", "accuracy": 1, "time_ms": 1660, "memory_kb": 4432, "score_of_the_acc": -1.0351, "final_rank": 12 }, { "submission_id": "aoj_3170_5383506", "code_snippet": "#include <cmath>\n#include <vector>\n#include <iostream>\n#include <iomanip>\n#include <fstream>\n#include <algorithm>\n#include <set>\n#include <queue>\n#include <string>\n#include <map>\n#include <stack>\n#include <climits>\n#include <array>\n#include <unordered_set>\n#include <unordered_map>\n#include <memory>\n#include <functional>\n#include <cfloat>\n#include <numeric>\n#include <random>\n#include <sstream>\n#include <bitset>\n#include <complex>\n#include <chrono>\n#include <cassert>\nclass SqrtSegment {\n\tint sqrt;\n\tstd::vector<std::vector<std::pair<long long int, int>>> segments;\n\tstd::vector<long long int> min, max, add;\n\tvoid change_min_partial(const int from, const int until, const long long int x) {\n\t\tconst auto added = add[from / sqrt];\n\t\tconst auto upper_limit = min[from / sqrt];\n\t\tconst auto lower_limit = max[from / sqrt];\n\t\tfor (auto& [value, pos] : segments[from / sqrt]) {\n\t\t\tvalue = std::min(upper_limit, std::max(lower_limit, value));\n\t\t\tvalue += added;\n\t\t\tif (pos < from || until <= pos) continue;\n\t\t\tvalue = std::min(value, x);\n\t\t}\n\t\tstd::sort(segments[from / sqrt].begin(), segments[from / sqrt].end());\n\t\tadd[from / sqrt] = 0;\n\t\tmin[from / sqrt] = LLONG_MAX;\n\t\tmax[from / sqrt] = LLONG_MIN;\n\t}\n\tvoid change_max_partial(const int from, const int until, const long long int x) {\n\t\tconst auto added = add[from / sqrt];\n\t\tconst auto upper_limit = min[from / sqrt];\n\t\tconst auto lower_limit = max[from / sqrt];\n\t\tfor (auto& [value, pos] : segments[from / sqrt]) {\n\t\t\tvalue = std::min(upper_limit, std::max(lower_limit, value));\n\t\t\tvalue += added;\n\t\t\tif (pos < from || until <= pos) continue;\n\t\t\tvalue = std::max(value, x);\n\t\t}\n\t\tstd::sort(segments[from / sqrt].begin(), segments[from / sqrt].end());\n\t\tadd[from / sqrt] = 0;\n\t\tmin[from / sqrt] = LLONG_MAX;\n\t\tmax[from / sqrt] = LLONG_MIN;\n\t}\n\tvoid change_add_partial(const int from, const int until, const long long int x) {\n\t\tconst auto added = add[from / sqrt];\n\t\tconst auto upper_limit = min[from / sqrt];\n\t\tconst auto lower_limit = max[from / sqrt];\n\t\tfor (auto& [value, pos] : segments[from / sqrt]) {\n\t\t\tvalue = std::min(upper_limit, std::max(lower_limit, value));\n\t\t\tvalue += added;\n\t\t\tif (pos < from || until <= pos) continue;\n\t\t\tvalue += x;\n\t\t}\n\t\tstd::sort(segments[from / sqrt].begin(), segments[from / sqrt].end());\n\t\tadd[from / sqrt] = 0;\n\t\tmin[from / sqrt] = LLONG_MAX;\n\t\tmax[from / sqrt] = LLONG_MIN;\n\t}\n\tvoid change_min_segment(const int segment, const long long int x) {\n\t\tmin[segment] = std::min(min[segment], x - add[segment]);\n\t}\n\tvoid change_max_segment(const int segment, const long long int x) {\n\t\tmax[segment] = std::max(max[segment], x - add[segment]);\n\t}\n\tvoid change_add_segment(const int segment, const long long int x) {\n\t\tadd[segment] += x;\n\t}\n\tint count_partial(const int from, const int until, const long long int lower, const long long int upper) {\n\t\tint result{ 0 };\n\t\tconst auto added = add[from / sqrt];\n\t\tconst auto upper_limit = min[from / sqrt];\n\t\tconst auto lower_limit = max[from / sqrt];\n\t\tfor (auto& [value, pos] : segments[from / sqrt]) {\n\t\t\tvalue = std::min(upper_limit, std::max(lower_limit, value));\n\t\t\tvalue += added;\n\t\t\tif (pos < from || until <= pos) continue;\n\t\t\tif (lower <= value && value <= upper) ++result;\n\t\t}\n\t\tadd[from / sqrt] = 0;\n\t\tmin[from / sqrt] = LLONG_MAX;\n\t\tmax[from / sqrt] = LLONG_MIN;\n\t\treturn result;\n\t}\n\tint count_segment(const int segment, const long long int lower, const long long int upper) {\n\t\tconst auto upper_limit = std::min(upper - add[segment], min[segment]);\n\t\tconst auto lower_limit = std::max(lower - add[segment], max[segment]);\n\t\treturn std::distance(std::lower_bound(segments[segment].begin(), segments[segment].end(), std::make_pair(lower_limit, -1)), std::upper_bound(segments[segment].begin(), segments[segment].end(), std::make_pair(upper_limit, INT_MAX)));\n\t}\n\npublic:\n\tSqrtSegment(const std::vector<int>& initial) : sqrt{ (int)std::ceil(std::sqrt(initial.size() * std::log2(initial.size()))) }, segments((initial.size() + sqrt - 1) / sqrt), min(segments.size(), LLONG_MAX), max(segments.size(), LLONG_MIN), add(segments.size(), 0) {\n\t\tfor (auto i = 0; i < segments.size(); ++i) {\n\t\t\tconst auto offset = i * sqrt;\n\t\t\tfor (auto j = 0; j < sqrt; ++j) {\n\t\t\t\tif (offset + j >= initial.size()) break;\n\t\t\t\tsegments[i].emplace_back(initial[offset + j], offset + j);\n\t\t\t}\n\t\t\tstd::sort(segments[i].begin(), segments[i].end());\n\t\t}\n\t}\n\tstd::vector<long long int> show_value() const {\n\t\tstd::vector<std::pair<long long int, int>> values;\n\t\tfor (auto i = 0; i < segments.size(); ++i) {\n\t\t\tconst auto added = add[i];\n\t\t\tconst auto upper_limit = min[i];\n\t\t\tconst auto lower_limit = max[i];\n\t\t\tfor (const auto [value, pos]: segments[i]) {\n\t\t\t\tvalues.emplace_back(std::max(lower_limit, std::min(upper_limit, value)) + added, pos);\n\t\t\t}\n\t\t}\n\t\tstd::vector<long long int >result(values.size());\n\t\tfor (const auto [value, pos] : values) {\n\t\t\tresult[pos] = value;\n\t\t}\n\t\treturn result;\n\t}\n\tvoid change_min(const int left, const int right, const int x) {\n\t\tconst auto from = (left + sqrt - 1) / sqrt;\n\t\tconst auto until = right / sqrt;\n\t\tif (from > until) {\n\t\t\treturn change_min_partial(left, right + 1, x);\n\t\t}\n\t\tchange_min_partial(left, from * sqrt, x);\n\t\tfor (auto i = from; i < until; ++i) {\n\t\t\tchange_min_segment(i, x);\n\t\t}\n\t\tchange_min_partial(until * sqrt, right + 1, x);\n\t}\n\tvoid change_max(const int left, const int right, const int x) {\n\t\tconst auto from = (left + sqrt - 1) / sqrt;\n\t\tconst auto until = right / sqrt;\n\t\tif (from > until) {\n\t\t\treturn change_max_partial(left, right + 1, x);\n\t\t}\n\t\tchange_max_partial(left, from * sqrt, x);\n\t\tfor (auto i = from; i < until; ++i) {\n\t\t\tchange_max_segment(i, x);\n\t\t}\n\t\tchange_max_partial(until * sqrt, right + 1, x);\n\t}\n\tvoid change_add(const int left, const int right, const int x) {\n\t\tconst auto from = (left + sqrt - 1) / sqrt;\n\t\tconst auto until = right / sqrt;\n\t\tif (from > until) {\n\t\t\treturn change_add_partial(left, right + 1, x);\n\t\t}\n\t\tchange_add_partial(left, from * sqrt, x);\n\t\tfor (auto i = from; i < until; ++i) {\n\t\t\tchange_add_segment(i, x);\n\t\t}\n\t\tchange_add_partial(until * sqrt, right + 1, x);\n\t}\n\tint count(const int left, const int right, const long long int x, const long long int y) {\n\t\tconst auto from = (left + sqrt - 1) / sqrt;\n\t\tconst auto until = right / sqrt;\n\t\tif (from > until) {\n\t\t\treturn count_partial(left, right + 1, x, y);\n\t\t}\n\t\tlong long int result{ count_partial(left, from * sqrt, x, y) };\n\t\tfor (auto i = from; i < until; ++i) {\n\t\t\tresult += count_segment(i, x, y);\n\t\t}\n\t\tresult += count_partial(until * sqrt, right + 1, x, y);\n\t\treturn result;\n\t}\n};\n\nint main() {\n\tstd::cin.tie(nullptr); std::cin.sync_with_stdio(false);\n\tint n, q; std::cin >> n >> q;\n\tstd::vector<int> initial(n);\n\tfor (auto& a : initial) std::cin >> a;\n\tSqrtSegment seg(initial);\n\tfor (auto i = 0; i < q; ++i) {\n\t\tint type; std::cin >> type;\n\t\tif (type == 1) {\n\t\t\tint l, r, x; std::cin >> l >> r >> x; --l; --r;\n\t\t\tseg.change_min(l, r, x);\n\t\t}\n\t\telse if (type == 2) {\n\t\t\tint l, r, x; std::cin >> l >> r >> x; --l; --r;\n\t\t\tseg.change_max(l, r, x);\n\t\t}\n\t\telse if (type == 3) {\n\t\t\tint l, r, x; std::cin >> l >> r >> x; --l; --r;\n\t\t\tseg.change_add(l, r, x);\n\t\t}\n\t\telse {\n\t\t\tint l, r; long long int x, y; std::cin >> l >> r >> x >> y; --l; --r;\n\t\t\tstd::cout << seg.count(l, r, x, y) << '\\n';\n\t\t}\n\t}\n}\n\n\n/*\nhttps://onlinejudge.u-aizu.ac.jp/challenges/sources/VPC/HUPC/3170\n\n\n\n\n.*/", "accuracy": 0.09523809523809523, "time_ms": 900, "memory_kb": 5164, "score_of_the_acc": -0.6361, "final_rank": 18 }, { "submission_id": "aoj_3170_5199970", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n__attribute__((constructor))\nvoid fast_io() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n}\n\ntemplate<class S,\n class F,\n S (*mapping)(F, S),\n F (*composition)(F, F),\n F (*id)(),\n class I,\n I (*precalculate)(const vector<S>&),\n class P,\n P (*op)(P, P),\n P (*e)()>\nclass sqrt_decomposition {\n using Calc_from_S = function<P(S)>;\n using Calc_from_I = function<P(const I&, F, int, int)>;\n \n class bucket {\n int l, r;\n vector<S> vs;\n F lazy_f;\n I info;\n\n void reflect_apply() {\n if (lazy_f == id()) return;\n for_each(vs.begin(), vs.end(), [&](S& v) { v = mapping(lazy_f, v); });\n lazy_f = id();\n }\n\n void reflect_prod() {\n info = precalculate(vs);\n }\n\n void partial_apply(int l, int r, F f) {\n reflect_apply();\n for_each(vs.begin() + l, vs.begin() + r, [&](S& v) { v = mapping(f, v); });\n reflect_prod();\n }\n\n void all_apply(F f) {\n lazy_f = composition(f, lazy_f);\n }\n\n P partial_prod(int l, int r, const Calc_from_S& cs) {\n reflect_apply();\n reflect_prod();\n P res = e();\n for_each(vs.begin() + l, vs.begin() + r, [&](S& v) { res = op(res, cs(v)); });\n return res;\n }\n\n P all_prod(const Calc_from_I& ci) {\n return ci(info, lazy_f, l, r);\n }\n \n public:\n bucket(const vector<S>& a, int l, int r)\n : l(l), r(r), vs(a.begin() + l, a.begin() + r), lazy_f(id()) { reflect_prod(); }\n\n void apply(int s, int t, F f) {\n if (t <= l || r <= s) return;\n if (s <= l && r <= t) {\n all_apply(f);\n } else {\n partial_apply(max(l, s) - l, min(r, t) - l, f);\n }\n }\n\n P prod(int s, int t, const Calc_from_S& cs, const Calc_from_I& ci) {\n if (t <= l || r <= s) return e();\n if (s <= l && r <= t) {\n return all_prod(ci);\n } else {\n return partial_prod(max(l, s) - l, min(r, t) - l, cs);\n }\n }\n };\n\n vector<bucket> bs;\n\npublic:\n sqrt_decomposition(const vector<S>& a, int bucket_size) {\n for (int i = 0; i < (int)a.size(); i += bucket_size) {\n bs.emplace_back(a, i, min(i + bucket_size, (int)a.size()));\n }\n }\n\n void apply(int l, int r, F f) {\n for_each(bs.begin(), bs.end(), [&](bucket& b) { b.apply(l, r, f); });\n }\n\n P prod(int l, int r, const Calc_from_S& cs, const Calc_from_I& ci) {\n P res = e();\n for_each(bs.begin(), bs.end(), [&](bucket& b) { res = op(res, b.prod(l, r, cs, ci)); });\n return res;\n }\n};\n\nusing S = long long;\nusing F = tuple<long long, long long, long long>;\nS mapping(F f, S x) {\n auto [chmin, chmax, add] = f;\n x = min(x, chmin);\n x = max(x, chmax);\n x += add;\n return x;\n}\nF composition(F f, F g) {\n auto [fchmin, fchmax, fadd] = f;\n auto [gchmin, gchmax, gadd] = g;\n long long chmin = min(gchmin, fchmin - gadd);\n long long chmax = max(min(gchmax, fchmin - gadd), fchmax - gadd);\n long long add = gadd + fadd;\n return {chmin, chmax, add};\n}\nF id() { return {LLONG_MAX / 2, LLONG_MIN / 2, 0}; }\nusing I = vector<long long>;\nI precalculate(const vector<S>& vs) {\n I res = vs;\n sort(res.begin(), res.end());\n return res;\n}\nusing P = int;\nP op(P a, P b) { return a + b; }\nP e() { return 0; }\n\nint main() {\n int n, q;\n cin >> n >> q;\n vector<S> a(n);\n for (auto& ai : a) cin >> ai;\n sqrt_decomposition<S, F, mapping, composition, id, I, precalculate, P, op, e> sqd(a, 128);\n\n while (q--) {\n int com, l, r;\n long long x, y;\n cin >> com >> l >> r >> x;\n l--;\n if (com == 4) {\n cin >> y;\n auto cs = [&](S s) { return x <= s && s <= y; };\n auto ci = [&](const I& info, F f, int l, int r) {\n auto [chmin, chmax, add] = f;\n auto calc = [&](long long ub) {\n if (chmax > ub - add) return 0;\n if (chmin <= ub - add) return r - l;\n return (int)distance(info.begin(), upper_bound(info.begin(), info.end(), ub - add));\n };\n return calc(y) - calc(x - 1);\n };\n cout << sqd.prod(l, r, cs, ci) << '\\n';\n } else {\n F f = id();\n auto& [chmin, chmax, add] = f;\n if (com == 1) chmin = x;\n if (com == 2) chmax = x;\n if (com == 3) add = x;\n sqd.apply(l, r, f);\n }\n }\n}", "accuracy": 1, "time_ms": 1140, "memory_kb": 5648, "score_of_the_acc": -0.8544, "final_rank": 11 }, { "submission_id": "aoj_3170_5199942", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\n__attribute__((constructor))\nvoid fast_io() {\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n}\n\ntemplate<class S,\n class F,\n S (*mapping)(F, S),\n F (*composition)(F, F),\n F (*id)(),\n class I,\n I (*precalculate)(const vector<S>&),\n class P,\n P (*op)(P, P),\n P (*e)()>\nclass sqrt_decomposition {\n using Calc_from_S = function<P(S)>;\n using Calc_from_I = function<P(const I&, const F&, int, int)>;\n \n class bucket {\n int l, r;\n vector<S> vs;\n F lazy_f;\n I info;\n\n void reflect_apply() {\n if (lazy_f == id()) return;\n for_each(vs.begin(), vs.end(), [&](S& v) { v = mapping(lazy_f, v); });\n lazy_f = id();\n }\n\n void reflect_prod() {\n info = precalculate(vs);\n }\n\n void partial_apply(int l, int r, const F& f) {\n reflect_apply();\n for_each(vs.begin() + l, vs.begin() + r, [&](S& v) { v = mapping(f, v); });\n reflect_prod();\n }\n\n void all_apply(const F& f) {\n lazy_f = composition(f, lazy_f);\n }\n\n P partial_prod(int l, int r, const Calc_from_S& cs) {\n reflect_apply();\n reflect_prod();\n P res = e();\n for_each(vs.begin() + l, vs.begin() + r, [&](S& v) { res = op(res, cs(v)); });\n return res;\n }\n\n P all_prod(const Calc_from_I& ci) {\n return ci(info, lazy_f, l, r);\n }\n \n public:\n bucket(const vector<S>& a, int l, int r)\n : l(l), r(r), vs(a.begin() + l, a.begin() + r), lazy_f(id()) { reflect_prod(); }\n\n void apply(int s, int t, const F& f) {\n if (t <= l || r <= s) return;\n if (s <= l && r <= t) {\n all_apply(f);\n } else {\n partial_apply(max(l, s) - l, min(r, t) - l, f);\n }\n }\n\n P prod(int s, int t, const Calc_from_S& cs, const Calc_from_I& ci) {\n if (t <= l || r <= s) return e();\n if (s <= l && r <= t) {\n return all_prod(ci);\n } else {\n return partial_prod(max(l, s) - l, min(r, t) - l, cs);\n }\n }\n };\n\n vector<bucket> bs;\n\npublic:\n sqrt_decomposition(const vector<S>& a, int bucket_size) {\n for (int i = 0; i < (int)a.size(); i += bucket_size) {\n bs.emplace_back(a, i, min(i + bucket_size, (int)a.size()));\n }\n }\n\n void apply(int l, int r, const F& f) {\n for_each(bs.begin(), bs.end(), [&](bucket& b) { b.apply(l, r, f); });\n }\n\n P prod(int l, int r, const Calc_from_S& cs, const Calc_from_I& ci) {\n P res = e();\n for_each(bs.begin(), bs.end(), [&](bucket& b) { res = op(res, b.prod(l, r, cs, ci)); });\n return res;\n }\n};\n\nusing S = long long;\nusing F = tuple<long long, long long, long long>;\nS mapping(F f, S x) {\n auto [chmin, chmax, add] = f;\n x = min(x, chmin);\n x = max(x, chmax);\n x += add;\n return x;\n}\nF composition(F f, F g) {\n auto [fchmin, fchmax, fadd] = f;\n auto [gchmin, gchmax, gadd] = g;\n long long chmin = min(gchmin, fchmin - gadd);\n long long chmax = max(min(gchmax, fchmin - gadd), fchmax - gadd);\n long long add = gadd + fadd;\n return {chmin, chmax, add};\n}\nF id() { return {LLONG_MAX / 10, LLONG_MIN / 10, 0}; }\nusing I = vector<long long>;\nI precalculate(const vector<S>& vs) {\n I res = vs;\n sort(res.begin(), res.end());\n return res;\n}\nusing P = int;\nP op(P a, P b) { return a + b; }\nP e() { return 0; }\n\nint main() {\n int n, q;\n cin >> n >> q;\n vector<S> a(n);\n for (auto& ai : a) cin >> ai;\n sqrt_decomposition<S, F, mapping, composition, id, I, precalculate, P, op, e> sqd(a, 256);\n\n while (q--) {\n int com, l, r;\n long long x, y;\n cin >> com >> l >> r >> x;\n l--;\n if (com == 4) {\n cin >> y;\n auto cs = [&](S s) { return x <= s && s <= y; };\n auto ci = [&](const I& info, const F& f, int l, int r) {\n auto [chmin, chmax, add] = f;\n auto calc = [&](long long border) {\n if (chmax > border - add) return 0;\n if (chmin <= border - add) return r - l;\n return (int)distance(info.begin(), upper_bound(info.begin(), info.end(), border - add));\n };\n return calc(y) - calc(x - 1);\n };\n cout << sqd.prod(l, r, cs, ci) << '\\n';\n } else {\n F f = id();\n auto& [chmin, chmax, add] = f;\n if (com == 1) chmin = x;\n if (com == 2) chmax = x;\n if (com == 3) add = x;\n sqd.apply(l, r, f);\n }\n }\n}", "accuracy": 1, "time_ms": 1500, "memory_kb": 5492, "score_of_the_acc": -1.068, "final_rank": 14 }, { "submission_id": "aoj_3170_5141724", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream> // cout, endl, cin\n#include <string> // string, to_string, stoi\n#include <vector> // vector\n#include <algorithm> // min, max, swap, sort, reverse, lower_bound, upper_bound\n#include <utility> // pair, make_pair\n#include <tuple> // tuple, make_tuple\n#include <cstdint> // int64_t, int*_t\n#include <cstdio> // printf\n#include <map> // map\n#include <queue> // queue, priority_queue\n#include <set> // set\n#include <stack> // stack\n#include <deque> // deque\n#include <unordered_map> // unordered_map\n#include <unordered_set> // unordered_set\n#include <bitset> // bitset\n#include <cctype> // isupper, islower, isdigit, toupper, tolower\n#include <iomanip> // setprecision\n#include <complex> // complex\n#include <math.h> \n#include <cmath>\n#include <functional>\n#include <cassert>\nusing namespace std;\nusing ll = long long;\nusing P = pair<ll,ll>;\nconstexpr ll INF = 1e18;\nconstexpr int inf = 1e9;\n// constexpr ll mod = 1000000007;\nconstexpr ll mod = 998244353;\nconst int dx[8] = {1, 0, -1, 0,1,1,-1,-1};\nconst int dy[8] = {0, 1, 0, -1,1,-1,1,-1};\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\nconst char eol = '\\n';\n// --------------------------------------------------------------------------\n\nstruct SqrtDecomposition{\n const int sqrtN = 256;\n int N,K;\n vector<ll> data;\n vector<ll> bucketMin;\n vector<ll> bucketMax;\n vector<ll> bucketAdd;\n vector<vector<ll>> sortedBucket;\n SqrtDecomposition(vector<ll> A): data(A){\n N = data.size();\n K = (N + sqrtN - 1)/sqrtN;\n bucketMin.assign(K,INF);\n bucketMax.assign(K,-INF);\n bucketAdd.assign(K,0);\n sortedBucket = vector<vector<ll>>(K);\n for(int k=0; k<K; k++){\n int l = k * sqrtN;\n int r = (k+1) * sqrtN;\n chmin(r,N);\n for(int j=l; j<r; j++){\n sortedBucket[k].emplace_back(data[j]);\n }\n sort(sortedBucket[k].begin(),sortedBucket[k].end());\n }\n }\n void eval(int k){\n int l = k * sqrtN;\n int r = (k+1) * sqrtN;\n chmin(r,N);\n for(int i=l; i<r; i++){\n chmin(data[i],bucketMin[k]);\n chmax(data[i],bucketMax[k]);\n data[i] += bucketAdd[k];\n }\n bucketAdd[k] = 0;\n bucketMin[k] = INF;\n bucketMax[k] = -INF;\n }\n // [s,t)\n void update(int id,int s,int t,ll x){\n for(int k=0; k<K; k++){\n int l = k * sqrtN;\n int r = (k+1) * sqrtN;\n chmin(r,N);\n if(r <= s || t <= l) continue;\n if(s <= l && r <= t){\n if(id == 1){ // min \n x -= bucketAdd[k];\n chmin(bucketMin[k],x);\n if(bucketMin[k] < bucketMax[k]) bucketMax[k] = bucketMin[k];\n x += bucketAdd[k];\n }else if(id == 2){ // max\n x -= bucketAdd[k];\n chmax(bucketMax[k],x);\n if(bucketMin[k] < bucketMax[k]) bucketMin[k] = bucketMax[k];\n x += bucketAdd[k];\n }else{ // add\n bucketAdd[k] += x;\n }\n }else{\n eval(k);\n for(int i=max(l,s); i<min(r,t); i++){\n if(id == 1) chmin(data[i],x);\n else if(id == 2) chmax(data[i],x);\n else data[i] += x;\n }\n vector<ll> temp;\n for(int i=l; i<r; i++){\n temp.emplace_back(data[i]);\n }\n sort(temp.begin(),temp.end());\n sortedBucket[k] = temp;\n }\n }\n }\n\n // [s,t) [x,y]\n int query(int s,int t,ll x,ll y){\n int res = 0;\n for(int k=0; k<K; k++){\n int l = k * sqrtN;\n int r = (k+1) * sqrtN;\n chmin(r,N);\n if(r <= s || t <= l) continue;\n if(s <= l && r <= t){\n x -= bucketAdd[k];\n y -= bucketAdd[k];\n int sz = r - l;\n // [0,y]\n int posY = upper_bound(sortedBucket[k].begin(),sortedBucket[k].end(),y) - sortedBucket[k].begin();\n // [0,x) \n int posX = lower_bound(sortedBucket[k].begin(),sortedBucket[k].end(),x) - sortedBucket[k].begin();\n if(x <= bucketMax[k] && bucketMin[k] <= y){\n res += sz;\n }else if(x <= bucketMax[k] && bucketMax[k] <= y){\n res += posY;\n }else if(x <= bucketMin[k] && bucketMin[k] <= y){\n res += sz - posX;\n }else{\n res += posY - posX;\n }\n x += bucketAdd[k];\n y += bucketAdd[k];\n }else{\n eval(k);\n vector<ll> temp;\n for(int i=l; i<r; i++){\n temp.emplace_back(data[i]);\n }\n sort(temp.begin(),temp.end());\n sortedBucket[k] = temp;\n for(int i=max(l,s); i<min(r,t); i++){\n if(x <= data[i] && data[i] <= y) res++;\n }\n }\n } \n return res;\n }\n};\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n int N,Q;\n cin >> N >> Q;\n vector<ll> A(N);\n for(int i=0; i<N; i++) cin >> A[i];\n SqrtDecomposition SD(A);\n vector<int> ans;\n for(int i=0; i<Q; i++){\n int id;\n cin >> id;\n if(id == 4){\n int l,r;\n ll x,y;\n cin >> l >> r >> x >> y;\n l--;\n ans.emplace_back(SD.query(l,r,x,y));\n }else{\n int l,r;\n ll x;\n cin >> l >> r >> x;\n l--;\n SD.update(id,l,r,x);\n }\n }\n for(auto x: ans){\n cout << x << eol;\n }\n return 0;\n}", "accuracy": 0.09523809523809523, "time_ms": 120, "memory_kb": 6200, "score_of_the_acc": -0.2633, "final_rank": 17 } ]
aoj_3186_cpp
B: 累積差 問題 えびちゃんは最近「るいせきわ」のお勉強をして、数列 $(a_1, a_2, \dots, a_N)$ およびある整数 $L$, $R$ に対して $a_L+a_{L+1}+\dots+a_R$ を高速に求められるようになりました。 ここで、和ではなく差を求めることはできないか気になってきたえびちゃんのために、それを高速に処理するプログラムを書いてあげてください。より形式的には、数列 $(a_1, a_2, \dots, a_N)$ と整数 $L$, $R$ に対して $a_L-a_{L+1}-\dots-a_R$ を求めてください。 入力形式 $N$ $Q$ $a_1$ $a_2$ ... $a_N$ $L_1$ $R_1$ ... $L_Q$ $R_Q$ 数列の長さ $N$ とクエリの個数 $Q$ が一行目に与えられ、数列 $a_i$ が二行目に与えられる。 続く $Q$ 行では一行あたり一組の $L$, $R$ が与えられる。 制約 $2 \leq N \leq 2\times 10^5$ $1 \leq Q \leq 2\times 10^5$ $1 \leq L_i < R_i \leq N$ ($1 \leq i \leq Q$) $1 \leq a_i \leq 10^9$ ($1 \leq i \leq N$) 入力は全て整数である 出力形式 各クエリ $L$, $R$ に対して $a_L-a_{L+1}-\dots-a_R$ を一行ずつ出力してください。 入力例 1 5 2 1 4 3 5 2 1 4 2 3 出力例 1 -11 1 $1-4-3-5 = -11$ および $4-3 = 1$ です。 入力例 2 8 9 1 9 2 3 7 3 6 5 1 5 5 6 1 8 2 5 4 8 1 6 2 4 3 4 7 8 出力例 2 -20 4 -34 -3 -18 -23 4 -1 1
[ { "submission_id": "aoj_3186_9652237", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\n\nvoid acc() {\n int n, q;\n cin >> n >> q;\n vector<long long > pref(n + 1),v(n+1);\n for (int i = 1; i <= n; i++) {\n cin >>v[i] ;\n }\n for (int i = 1 ; i<=n ; i++){\n pref[i]+=pref[i-1]+v[i] ;\n }\n while (q--) {\n int l, r;\n cin >> l >> r;\n cout <<v[l]-pref[r]+pref[l] <<'\\n';\n }\n\n}\n\nint main() {\n ios_base::sync_with_stdio(false);\n cin.tie(NULL);\n acc();\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 6212, "score_of_the_acc": -0.5362, "final_rank": 6 }, { "submission_id": "aoj_3186_9552399", "code_snippet": "#include <bits/stdc++.h>\n\nusing namespace std;\n//make -f ../makefile SRC=\n\n/*\n*/\n//------------------------------------------------------------------------------\nbool DEBUG = false;\n\nconst int MAX_N = 200000;\nstatic int64_t vect[MAX_N];\nstatic int64_t P[MAX_N];\n\n\n//------------------------------------------------------------------------------\nvoid init(int N)\n{ \n P[0] = vect[0];\n for (int i=1; i<N; i++) P[i] = vect[i] + P[i-1];\n if (DEBUG) {printf(\"vect: \"); for (int i=0; i<N; ++i) printf(\"%ld \",vect[i]); printf(\"\\n\");}\n if (DEBUG) {printf(\"P: \"); for (int i=0; i<N; ++i) printf(\"%ld \",P[i]); printf(\"\\n\");}\n}\n\n//------------------------------------------------------------------------------\nint64_t query(int N, int L, int R)\n{ \n if (L == R) return vect[L];\n return vect[L] - P[R] + P[L];\n}\n\n//------------------------------------------------------------------------------\nint main()\n{\n //DEBUG = true;\n //--------------------------------------------------------------------------\n int N, K, L, R, num;\n num = scanf(\"%d %d \", &N, &K);\n for (int n=0; n<N; ++n) num = scanf(\"%ld \", &vect[n]);\n init(N);\n\n for (int k=0; k<K; ++k)\n {\n num = scanf(\"%d %d \", &L, &R);\n int64_t res = query(N, L-1, R-1);\n printf(\"%ld\\n\", res);\n }\n \n return 0;\n}\n\n//------------------------------------------------------------------------------", "accuracy": 1, "time_ms": 50, "memory_kb": 6692, "score_of_the_acc": -0.6949, "final_rank": 8 }, { "submission_id": "aoj_3186_7993016", "code_snippet": "#include<iostream>\nusing namespace std;\n\ntypedef long long ll;\n\nll sa[200001];\nll a[200001];\n\nint main(){\n ll n,q,l,r;\n ll i,ans;\n\n cin >> n >> q;\n\n sa[0] = 0;\n\n for(i=1;i<=n;i++){\n cin >> a[i];\n sa[i] = a[i] + sa[i-1];\n }\n\n for(i=0;i<q;i++){\n cin >> l >> r;\n\n ans = a[l] - (sa[r] - sa[l]);\n\n cout << ans << endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 320, "memory_kb": 6216, "score_of_the_acc": -1.4405, "final_rank": 19 }, { "submission_id": "aoj_3186_7992927", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nvoid func(){\n int n;\n int q;\n cin >> n >> q;\n using ll = long long;\n vector<ll> line(n);\n for(auto &i:line)cin >> i;\n vector<ll> sums(n+1,0);\n for(int i=0;i<n;++i){\n sums[i+1] = sums[i] + line[i];\n }\n for(int i=0;i<q;++i){\n int l;\n int r;\n cin >> l >> r;\n --l;\n --r;\n ll ans = line[l] - (sums[r+1] - sums[l+1]);\n cout << ans << endl;\n }\n}\n\nint main(){\n func();\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 6280, "score_of_the_acc": -1.2315, "final_rank": 16 }, { "submission_id": "aoj_3186_7992923", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,n) for(int i=0; i<(n); i++)\n\nusing namespace std;\nusing ll = long long ;\nusing P = pair<int,int>;\nconst int mod = 998244353;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,1,0};\n\nint main(){\n int n,q;cin>>n>>q;\n vector<long long> A(n), B(n+1);\n for(int i = 0; n > i; i++){\n cin>>A[i]; \n }\n for(int i = 1; n >= i; i++){\n B[i] = B[i-1]+A[i-1]; \n }\n for(int i = 0; q > i; i++){\n int l,r;cin>>l>>r;l--;r--;\n cout << A[l] - (B[r+1]-B[l+1]) << endl;\n }\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 6252, "score_of_the_acc": -1.2241, "final_rank": 15 }, { "submission_id": "aoj_3186_7992910", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nint main() {\n int N, Q; cin >> N >> Q;\n vector<ll> A(N);\n for (auto& a : A) cin >> a;\n vector<ll> S(N + 1);\n for (int i = 0 ; i < N ; i++) {\n S[i + 1] = S[i] - A[i];\n }\n for (int i = 0 ; i < Q ; i++) {\n int l, r; cin >> l >> r;\n l--;\n ll ans = S[r] - S[l] + 2 * A[l];\n cout << ans << endl; \n }\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 6280, "score_of_the_acc": -1.2315, "final_rank": 16 }, { "submission_id": "aoj_3186_7011882", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3186.cc: Cumulative Difference\n */\n\n#include<cstdio>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 200000;\n\n/* typedef */\n\ntypedef long long ll;\n\n/* global variables */\n\nint as[MAX_N];\nll ass[MAX_N + 1];\n\n/* subroutines */\n\n/* main */\n\nint main() {\n int n, qn;\n scanf(\"%d%d\", &n, &qn);\n for (int i = 0; i < n; i++) scanf(\"%d\", as + i);\n\n for (int i = 0; i < n; i++) ass[i + 1] = ass[i] + as[i];\n\n while (qn--) {\n int l, r;\n scanf(\"%d%d\", &l, &r); l--;\n\n ll v = as[l] - (ass[r] - ass[l + 1]);\n printf(\"%lld\\n\", v);\n }\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 5296, "score_of_the_acc": -0.2949, "final_rank": 3 }, { "submission_id": "aoj_3186_6929929", "code_snippet": "#include <bits/stdc++.h>\n#pragma GCC optimize(\"Ofast\")\nusing namespace std;\nusing std::cout;\nusing std::cin;\nusing std::endl;\nusing ll=long long;\nusing ld=long double;\nll ILL=9167167167167167167;\nconst int INF=100000000;\nconst ll mod=998244353;\n#define rep(i,a) for (int i=0;i<a;i++)\n#define all(p) p.begin(),p.end()\ntemplate<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;\ntemplate<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}\ntemplate<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;}\ntemplate<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}else return 0;}\ntemplate<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}\ntemplate<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}\nvoid yneos(bool a){if(a) cout<<\"Yes\\n\"; else cout<<\"No\\n\";}\ntemplate<class T> void vec_out(vector<T> &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<\" \";cout<<p[i];}cout<<\"\\n\";}\n\n\n\nvoid solve();\n// oddloop\nint main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(nullptr);\n\t\n\tint t=1;\n\t//cin>>t;\n\trep(i,t) solve();\n}\n\nvoid solve(){\n\tint N,Q;\n\tcin>>N>>Q;\n\tvector<ll> A(N+1);\n\trep(i,N) cin>>A[i+1];\n\trep(i,N) A[i+1]=A[i]+A[i+1];\n\trep(i,Q){\n\t\tint l,r;\n\t\tcin>>l>>r;\n\t\tcout<<A[l]-A[l-1]-A[r]+A[l]<<\"\\n\";\n\t}\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 4544, "score_of_the_acc": -0.0968, "final_rank": 1 }, { "submission_id": "aoj_3186_5894995", "code_snippet": "#pragma region header\n#include <bits/stdc++.h>\nusing namespace std;\n// #include <atcoder/all>\n// using namespace atcoder;\n\n/* alias */\nusing ull = unsigned long long;\nusing ll = long long;\nusing vi = vector<int>;\nusing vl = vector<long>;\nusing vll = vector<long long>;\nusing vf = vector<float>;\nusing vvf = vector<vf>;\nusing vvi = vector<vi>;\nusing vvl = vector<vl>;\nusing vvll = vector<vll>;\nusing vs = vector<string>;\nusing vvs = vector<vs>;\nusing vc = vector<char>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\nusing vvc = vector<vc>;\nusing pll = pair<ll, ll>;\nusing vpll = vector<pll>;\nusing qll = queue<ll>;\n//仮想配列map<> https://code-database.com/knowledges/100\n//優先度付きque https://atcoder.jp/contests/apg4b/tasks/APG4b_aa\n\n/* define short */\n#define MOD 1000000007\n#define INF LLONG_MAX/32\n#define elif else if\n#define pb push_back\n#define pf push_front\n#define fi first\n#define se second\n#define mp make_pair\n#define all(obj) (obj).begin(), (obj).end()\n#define YESNO(bool) if(bool){cout<<\"YES\"<<endl;}else{cout<<\"NO\"<<endl;}\n#define yesno(bool) if(bool){cout<<\"yes\"<<endl;}else{cout<<\"no\"<<endl;}\n#define YesNo(bool) if(bool){cout<<\"Yes\"<<endl;}else{cout<<\"No\"<<endl;}\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\n\n/* REP macro */\n#define reps(i, a, n) for (ll i = (a); i < (ll)(n); ++i)\n#define rep(i, n) reps(i, 0, n)\n#define rrep(i, n) reps(i, 1, n + 1)\n#define repd(i,n) for(ll i=n-1;i>=0;i--)\n#define rrepd(i,n) for(ll i=n;i>=1;i--)\n\n//小数点以下出力の時にmainに書く\n// cout << fixed << setprecision(10);\n\n#pragma endregion header\n\nll N;\n\n\nvvll Graph;/*グラフ*/\n// struct edge{ll to, cost;};\n// vector<vector<edge>> Graph;\nll H, W; vs HW;/*HW .#*/\n\n\n\n#pragma region fanction\n#pragma region First Search\n/*幅優先探索 vll dist(N,-1); Graphは隣接リスト*/\nvoid bfs(vll &dist, ll fq, vvll Graph){\n dist[fq] = 0;\n deque<ll> que;que.pb(fq);\n ll v;\n while(!que.empty()){\n v = que.front();que.pop_front();\n\n for(ll nv:Graph[v]){\n if(dist[nv] != -1) continue;\n dist[nv] = dist[v] + 1;\n que.pb(nv);\n }\n }\n}\n\n\n/*distにsysxからの距離が入る 各重み1*/\n/*HW幅優先探索 https://pyteyon.hatenablog.com/entry/2019/03/01/211133#%E6%B7%B1%E3%81%95%E5%84%AA%E5%85%88%E6%8E%A2%E7%B4%A2*/\n/*vvll dist(H vll(W)); rep(h,H) rep(w,W) dist[h][w] = INF;*/\nvoid HW_bfs(vvll &dist, ll sy, ll sx, vs HW){\n dist[sy][sx] = 0;\n deque<vll> que;\n que.pb({sy,sx});\n\n vll v;\n ll nowy, nowx, nexty,nextx;\n vvll dydx = {{1,0},{0,1},{-1,0},{0,-1}};\n\n //重み1ならpbしてd++ 重み0ならpfしてそのままdiseにd入れれば01bfs\n //que.back();que.pop_back()で深さ優先探索\n\n while(!que.empty()){\n v = que.front();que.pop_front();\n nowy = v[0]; nowx = v[1];\n for(vll dyx:dydx){\n nexty = nowy+dyx[0]; nextx = nowx+dyx[1];\n if(!(0 <= nexty && nexty < H && 0 <= nextx && nextx < W)) continue;\n if(HW[nexty][nextx] == '.' && dist[nexty][nextx] == INF){\n que.pb({nexty,nextx});\n dist[nexty][nextx] = dist[nowy][nowx] + 1;\n }\n }\n }\n}\n\n/*深さ優先探索 vll dist(N,-1); Graphは隣接リスト スタートのdistを0にすること!*/\nvoid dfs(vll &dist, ll v, vvll &Graph){\n for(ll nv:Graph[v]){\n if(dist[nv] != -1) continue;\n dist[nv] = dist[v] + 1;\n dfs(dist,nv,Graph);\n }\n}\n\n//単一始点最短経路 ダイクストラ O(MlogN)\n//vector<vector<pll>> //Graph; fi:to se:cost\n// Graph.resize(N);\n// rep(i,M){\n// ll a,b,c; cin >> a >> b >> c;\n// a--;b--;\n// Graph[a].pb(pll(b,c));\n// Graph[b].pb(pll(a,c));\n// }\n\nvll dijkstra(ll start,vector<vector<pll>> &Graph){\n vll dist(N,INF);\n priority_queue<pll,vector<pll>,greater<pll>> que;\n dist[start] = 0;\n que.push(pll(dist[start],start));\n while (!que.empty()){\n pll p = que.top(); que.pop();\n ll v = p.second;\n if(dist[v] < p.first) continue;\n for(auto &e:Graph[v]){\n if(dist[e.first] > dist[v] + e.second){\n dist[e.first] = dist[v] + e.second;\n que.push(pll(dist[e.first],e.first));\n }\n }\n }\n\n return dist;\n}\n\n#pragma endregion First Search\n#pragma region MOD\nconst ll nCkMax = 1e6;\nvll fac(1,0),finv(1,0),inv(1,0);\n\nvoid COMinit(){\n fac.resize(nCkMax);\n finv.resize(nCkMax);\n inv.resize(nCkMax);\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for(ll i=2;i<nCkMax;i++){\n fac[i] = fac[i-1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n/*a^n % mod p O(log N)*/\nll modpow(ll a, ll n) {\n ll res = 1;\n while (n > 0) {\n if (n & 1) res = res * a % MOD;\n a = a * a % MOD;\n n >>= 1;\n }\n return res;\n}\n/*a! mod p O(N)*/\nll modfac(ll n){\n ll ret = 1;\n rrep(i,n){\n ret *= i;\n ret %= MOD;\n }\n return ret;\n}\n\n/*nCk % mod 前処理O(N) クエリ処理O(1)*/\nll nCk(ll n, ll k){\n if(fac[0] != 1) COMinit();//初期化 O(N)\n if(n<k) return 0;\n if(n<0 || k<0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;\n}\n\nll factorial(ll n){\n ll ans = 1;\n for (ll i = 1;i<=n;i++){\n ans = ans * i % MOD;\n }\n return ans;\n}\n\nll nHk(ll n, ll k){\n return nCk(n+k-1,k);\n}\n#pragma endregion MOD\n#pragma region enumeration\nvvll make_n(vll v){\n vvll ret;\n vll tmp;\n ll n = v.size();\n do{\n tmp = {};\n rep(i,n) tmp.pb(v[i]);\n ret.pb(tmp);\n }while(next_permutation(all(v)));\n return ret;\n}\n/*nCk列挙 vvllなのに注意!*/\nvvll make_C(ll n, ll r){\n vvll ret;\n vll tmp;\n vector<bool> v(n);\n fill(v.end() - r, v.end(), true);\n do {\n tmp = {};\n for (int i = 0; i < n; ++i) { \n if (v[i]) tmp.pb(i);\n }\n ret.pb(tmp);\n } while (next_permutation(v.begin(), v.end()));\n //reverse(all(ret));\n return ret;\n}\n/*nPk列挙 nPnでn!列挙 この時順番通りになってる*/\nvvll make_P(ll n, ll r){\n vvll C = make_C(n,r);\n vvll ret;\n vvll tmp;\n vll v;\n rep(i,C.size()){\n v = C[i];\n tmp = make_n(v);\n for(vll t:tmp) ret.pb(t);\n }\n return ret;\n}\n\n#pragma endregion enumeration\n#pragma region array\n\n/*一次元配列最大最小総和*/\nll vmax(vll array){\n ll Max = -INF;\n for(ll a:array) chmax(Max,a);\n return Max;\n}\n\nll vmin(vll array){\n ll Min = INF;\n for(ll a:array) chmin(Min,a);\n return Min;\n}\n\nll sum(vll &array){\n ll Sum = 0;\n for(ll a:array) Sum += a;\n return Sum;\n}\n\n/*累積和 先頭に0が追加されてる lからrまではret[r+1]-ret[l]*/\nvll cumulatice_sum(vll &array){\n vll ret(array.size()+1,0);\n rep(i,array.size()) ret[i+1] = ret[i] + array[i];\n return ret;\n}\n\n/*重複消し*/\nvoid list_set(vll &array){\n sort(all(array));\n array.erase(unique(all(array)),array.end());\n}\n\n/*vvllで格納されてる配列をkey番目の要素でソート*/\nvoid vvllsort(vvll &array, ll key){\n sort(all(array),[&key](vll a,vll b){return a[key] < b[key];});\n}\n\n/*string Sに何個string Kが含まれるか 一文字でもいいけどcharじゃなくてstringにしてね*/\nll stringinstring(string &S,string K){\n ll ret = 0;\n rep(i,S.size()-K.size()+1){\n bool f = true;\n rep(j,K.size()) if(S[i+j] != K[j]) f=false;\n if(f) ret++;\n }\n return ret;\n}\n#pragma endregion array\n#pragma region UnionFind\nclass UnionFind{\npublic:\n vector<ll> parent; //parent[i]はiの親\n vector<ll> siz; //素集合のサイズを表す配列(1で初期化)\n map<ll,vector<ll>> group; //集合ごとに管理する(key:集合の代表元、value:集合の要素の配列)\n ll n; //要素数\n \n //コンストラクタ\n UnionFind(ll n_):n(n_),parent(n_),siz(n_,1){ \n //全ての要素の根が自身であるとして初期化\n for(ll i=0;i<n;i++){parent[i]=i;}\n }\n \n //データxの属する木の根を取得(経路圧縮も行う)\n ll root(ll x){\n if(parent[x]==x) return x;\n return parent[x]=root(parent[x]);//代入式の値は代入した変数の値なので、経路圧縮できる\n }\n \n //xとyの木を併合\n void unite(ll x,ll y){\n ll rx=root(x);//xの根\n ll ry=root(y);//yの根\n if(rx==ry) return;//同じ木にある時\n //小さい集合を大きい集合へと併合(ry→rxへ併合)\n if(siz[rx]<siz[ry]) swap(rx,ry);\n siz[rx]+=siz[ry];\n parent[ry]=rx;//xとyが同じ木にない時はyの根ryをxの根rxにつける\n }\n \n //xとyが属する木が同じかを判定\n bool same(ll x,ll y){\n ll rx=root(x);\n ll ry=root(y);\n return rx==ry;\n }\n \n //xの素集合のサイズを取得\n ll size(ll x){\n return siz[root(x)];\n }\n \n //素集合をそれぞれグループ化\n void grouping(){\n //経路圧縮を先に行う\n rep(i,n)root(i);\n //mapで管理する(デフォルト構築を利用)\n rep(i,n)group[parent[i]].pb(i);\n }\n \n //素集合系を削除して初期化\n void clear(){\n rep(i,n){parent[i]=i;}\n siz=vector<ll>(n,1);\n group.clear();\n }\n};\n#pragma endregion UnionFind\n#pragma region bisect\n/*二分探索*/\nll bisect_left(vll &array, ll key){\n return lower_bound(all(array),key) - array.begin();\n}\n\nll bisect_right(vll &array, ll key){\n return upper_bound(all(array),key) - array.begin();\n}\n\n/*最長増加部分列*/\nll LIS(vll a){\n vll dp(a.size(),INF);\n rep(i,a.size()){\n dp[bisect_right(dp,a[i])] = a[i];\n }\n return bisect_left(dp,INF);\n}\n/*条件を満たす最大のokを返す 最小にしたいならokng逆にする solveを書き換えること!*/\nbool solve(ll n){\n return true;\n}\n\nll meguru_bisect(ll ok, ll ng){\n ll mid;\n while(abs(ok-ng) > 1){\n mid = (ok + ng) / 2;\n if(solve(mid)) ok = mid;\n else ng = mid;\n }\n return ok;\n}\n#pragma endregion bisect\n#pragma region others\n\n/* memo\n\n二次元配列の90度回転\n// i:j \n// j:N - i - 1\n\n\n*/\n\n\n\n/*普通のa^n*/\nll pow(ll a, ll n){\n ll res = 1;\n while (n > 0) {\n if (n & 1) res *= a;\n a *= a;\n n >>= 1;\n }\n return res;\n}\n/*最大公約数*/\nll gcd(ll x,ll y){\n if (x < y) swap(x,y);\n while (y > 0){\n ll r = x % y;\n x = y;\n y = r;\n }\n return x;\n}\n\n/*最小公倍数*/\nll lcm(ll x,ll y){\n return x * y / (gcd(x,y));\n}\n\n/*約数列挙*/\nvll divisor(ll n){\n vll ret;\n for (ll i = 1; i * i <= n; i++){\n if (n % i == 0){\n ret.pb(i);\n if (i * i != n) ret.pb(n / i);\n }\n }\n sort(all(ret));\n return ret;\n}\n\n/*素因数分解*/\nvll factorize(ll n){\n vll ret;\n while (n % 2 == 0){\n ret.pb(2);\n n /= 2;\n }\n ll f = 3;\n while (f * f <= n){\n if (n % f == 0){\n ret.pb(f);\n n /= f;\n }else f += 2;\n }\n if (n != 1) ret.pb(n);\n return ret;\n}\nconst ll Eramax = 1e6+1;\nvll Eratos(1,1);\nvoid Erainit(){\n Eratos.resize(Eramax+1);\n rep(i,Eramax+1) Eratos[i] = i;\n for(ll i=2;i<Eramax;i++){\n if(Eratos[i] != i) continue;\n for(ll j=2*i;j<Eramax;j+=i) Eratos[j] = i;\n }\n Eratos[1] = -1;\n}\n//前処理型素因数分解 1e6以下を複数回やるならこっち\nvll Era_factorize(ll n){\n if(Eratos[0] != 0) Erainit();\n vll ret = {};\n if(n==1) return ret;\n while(n!=1){\n ret.pb(Eratos[n]);\n n /= Eratos[n];\n }\n return ret;\n}\n\n#pragma endregion others\n#pragma endregion fanction\n\n\n\n\nint main() {\n ll Q; cin >> N >> Q;\n vll A(N); rep(i,N) cin >> A[i];\n vll Sum = cumulatice_sum(A);\n \n rep(i,Q){\n ll l,r; cin >> l >> r;\n r--;\n cout << A[l-1] - (Sum[r+1] - Sum[l]) << endl;\n }\n \n}", "accuracy": 1, "time_ms": 250, "memory_kb": 6300, "score_of_the_acc": -1.2368, "final_rank": 18 }, { "submission_id": "aoj_3186_5263075", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\nint main(){\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\tint n; cin >> n;\n\tint q; cin >> q;\n\tvector<ll> a(n);\n\tvector<ll> sum(n+1);\n\tfor(int i=0;i<n;i++){\n\t\tcin >> a[i];\n\t\tsum[i+1]=sum[i]+a[i];\n\t}\n\twhile(q--){\n\t\tint l,r; cin >> l >> r;\n\t\tl--;\n\t\tprintf(\"%lld\\n\",a[l]-(sum[r]-sum[l+1]));\n\t}\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 5984, "score_of_the_acc": -0.5406, "final_rank": 7 }, { "submission_id": "aoj_3186_5150318", "code_snippet": "#include <iostream>\n#include <vector>\n#include <algorithm>\nusing namespace std;\n\nint main(){\n int n,q;\n cin >> n >> q;\n vector<int> a(n);\n for(int i=0; i<n; i++){\n cin >> a[i];\n }\n vector<long long int> csum(n+1, 0);\n for(int i=0; i<n; i++){\n csum[i+1] = csum[i]+a[i];\n }\n for(int i=0; i<q; i++){\n int l,r;\n cin >> l >> r;\n l--; r--;\n cout << a[l] -(csum[r+1]-csum[l+1]) << endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 5472, "score_of_the_acc": -1.0187, "final_rank": 10 }, { "submission_id": "aoj_3186_5067504", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Printer {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid print(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(bool v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(vector<bool>::reference v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid print(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid print(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid print(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void print(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void print(const pair<T, U>& v) const {\n\t\tprint(v.first);\n\t\tprint(D.d);\n\t\tprint(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid print_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) print(D.d);\n\t\t\tprint(*i);\n\t\t}\n\t}\n\ttemplate <class T> void print(const vector<T>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void print(const array<T, N>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void print(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) print(D.l);\n\t\t\tprint(v[i]);\n\t\t}\n\t}\n\n\tPrinter() = default;\n\tPrinter(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tPrinter& operator()() {\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Printer& operator()(H&& h) {\n\t\tprint(h);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Printer& operator()(H&& h, T&&... t) {\n\t\tprint(h);\n\t\tprint(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tPrinter& range(const InputIterator& begin, const InputIterator& end) {\n\t\tprint_range(begin, end);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Printer& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tPrinter& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tPrinter& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tPrinter& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tPrinter& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T> constexpr int BIT(T x, int i) {\n\treturn (x & (1 << i)) ? 1 : 0;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 3 \"/home/yuruhiya/programming/library/Utility/CulSum.cpp\"\n#include <type_traits>\n#line 5 \"/home/yuruhiya/programming/library/Utility/CulSum.cpp\"\nusing namespace std;\n\ntemplate <class T> class CulSum {\npublic:\n\tusing value_type = T;\n\tusing data_type = vector<value_type>;\n\nprivate:\n\tsize_t n;\n\tdata_type data;\n\npublic:\n\tCulSum() = default;\n\tCulSum(const data_type& a) : n(a.size()), data(n + 1) {\n\t\tfor (size_t i = 0; i < n; ++i) {\n\t\t\tdata[i + 1] = data[i] + a[i];\n\t\t}\n\t}\n\ttemplate <class U, class F, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\n\tCulSum(const U& _n, F f) : n(_n), data(n + 1) {\n\t\tfor (size_t i = 0; i < n; ++i) {\n\t\t\tdata[i + 1] = data[i] + static_cast<value_type>(f(i));\n\t\t}\n\t}\n\ttemplate <class U, class F, enable_if_t<!is_integral_v<U>, nullptr_t> = nullptr>\n\tCulSum(const U& a, F f)\n\t : CulSum(a.size(), [a, f](size_t i) -> value_type { return f(a[i]); }) {}\n\tsize_t size() const {\n\t\treturn n;\n\t}\n\tvalue_type at(size_t i) const {\n\t\treturn operator()(i, i + 1);\n\t}\n\t// [l, r)\n\tvalue_type operator()(size_t l, size_t r) const {\n\t\tl = min(l, n);\n\t\tr = min(r, n);\n\t\treturn l > r ? 0 : data[r] - data[l];\n\t}\n\t// [0, r)\n\tvalue_type operator()(size_t r) const {\n\t\tr = min(r, n);\n\t\treturn data[r];\n\t}\n\tconst data_type& get_data() const {\n\t\treturn data;\n\t}\n};\n#line 3 \"a.cpp\"\n\nint main() {\n\tini(n, q);\n\tVL a = in[n];\n\tCulSum<ll> sum(a);\n\trep(i, q) {\n\t\tint l = in--, r = in;\n\t\tout(a[l] - sum(l + 1, r));\n\t}\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 6148, "score_of_the_acc": -0.4226, "final_rank": 4 }, { "submission_id": "aoj_3186_5043902", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(int)n;++i)\n#define irep(i,a,b) for(int i=int(a);i<(int)b;++i)\n#define rrep(i,a,b) for(int i=int(a);i>=(int)b;--i)\n#define vi vector<int>\n#define vvi vector<vector<int>>\n#define vl vector<ll>\n#define vvl vector<vector<ll>>\n#define vvp vector<vector<pair<ll,ll>>>\n#define vpl vector<pair<ll,ll>>\n#define vpi vector<pair<int,int>>\n#define pb push_back\n#define se second\n#define fi first\n#define all(v) v.begin(),v.end()\n#define v(T) vector<T>\n#define vv(T) vector<vector<T>>\n\nusing namespace std;\n\ntemplate<typename T> istream& operator>>(istream&i,v(T)&v){rep(j,v.size())i>>v[j];return i;}\ntemplate<typename T> string join(const v(T)&v){stringstream s;rep(i,v.size())s<<' '<<v[i];return s.str().substr(1);}\ntemplate<typename T> ostream& operator<<(ostream&o,const v(T)&v){if(v.size())o<<join(v);return o;}\n\n\n\nusing ll = long long;\nconst ll INF = 1e18;\nconst double PI = acos(-1);\n\nconst ll mod = 1e9 + 7; //998244353;\n\ntemplate<class T> inline bool chmin(T& a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<class T> inline bool chmax(T& a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\n\nll modpow(ll a,ll b){\n if(b == 0){\n return 1;\n }\n if(b%2 == 0){\n ll tmp = modpow(a,b/2);\n return tmp*tmp%mod;\n }else{\n return modpow(a,b-1)*a%mod;\n }\n\n}\n\n\n\nint main(void)\n{\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n int n,q;\n cin >> n >> q;\n vl a(n),asum(n+1);\n rep(i,n){\n cin >> a[i];\n asum[i+1] = asum[i] + a[i];\n }\n\n vl ans;\n rep(i,q){\n int l,r;\n cin >> l >> r;\n ll s = -asum[r]+asum[l] + a[l-1];\n ans.pb(s);\n }\n\n rep(i,ans.size())cout << ans[i] << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 180, "memory_kb": 8340, "score_of_the_acc": -1.5484, "final_rank": 20 }, { "submission_id": "aoj_3186_4985584", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#include <math.h>\n#include <iomanip>\n#include <cstdint>\n#include <string>\n#include <sstream>\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n#define rep(i,n) for (int i = 0; i < (n); ++i)\ntypedef long long ll;\nusing P = pair<int,int>;\nconst int INF=1001001001;\nconst int mod =1e9+7;\n\nint main() {\n int N,Q;cin>>N>>Q;\n vector<int>a(N+1);\n for(int i=1;i<=N;i++){cin>>a[i];}\n vector<ll>sum(N+1);\n for(int i=1;i<=N;i++){sum[i]=sum[i-1]+a[i];}\n for(int i=0;i<Q;i++){\n int L,R;cin>>L>>R;\n cout<<a[L]-(sum[R]-sum[L])<<endl;\n }\n return 0;\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 5492, "score_of_the_acc": -1.0239, "final_rank": 11 }, { "submission_id": "aoj_3186_4944013", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 200005\n\nint N,num_query;\nll A[SIZE];\n\nint main(){\n\n\tscanf(\"%d %d\",&N,&num_query);\n\n\tA[0] = 0;\n\tfor(int i = 1; i <= N; i++){\n\n\t\tscanf(\"%lld\",&A[i]);\n\t\tA[i] += A[i-1];\n\t}\n\n\tint left,right;\n\n\tfor(int loop = 0; loop < num_query; loop++){\n\n\t\tscanf(\"%d %d\",&left,&right);\n\n\t\tprintf(\"%lld\\n\",(A[left]-A[left-1])-(A[right]-A[left]));\n\t}\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 4776, "score_of_the_acc": -0.1901, "final_rank": 2 }, { "submission_id": "aoj_3186_4874327", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i, n) for(int i=0; i<(n); ++i)\n\nusing namespace std;\ntypedef long long ll;\n\nconst int INTINF = INT_MAX >> 1;\n\nint main(){\n\n\tint N, Q;\n\tcin >> N >> Q;\n\tvector<ll> v(N), H(N+1);\n\trep(i, N){\n\t\tcin >> v[i];\n\t\tH[i+1] = H[i] - v[i];\n\n\t}\n\trep(i, Q){\n\t\tint a, b; cin >> a >> b;\n\t\tcout << - H[a-1] + H[b] + v[a-1] * 2 << endl;\n\t}\n\n return 0;\n}", "accuracy": 1, "time_ms": 240, "memory_kb": 6204, "score_of_the_acc": -1.1792, "final_rank": 13 }, { "submission_id": "aoj_3186_4871195", "code_snippet": "#include <bits/stdc++.h>\n#define rep3(i, s, n, a) for (int i = (s); i < (int)(n); i += a)\n#define rep2(i, s, n) rep3(i, s, n, 1)\n#define rep(i, n) rep2(i, 0, n)\n\nusing namespace std;\nusing ll = long long;\nusing ull = unsigned long long;\nusing P = pair<int, int>;\n\nint main() { \n int n, q;\n cin >> n >> q;\n vector<ll> rui;\n ll total = 0;\n rui.push_back(0);\n rep(i, n){\n ll a;\n cin >> a;\n total += a;\n rui.push_back(total);\n }\n rep(i, q){\n ll l, r;\n cin >> l >> r;\n cout << rui[l] - rui[l-1] - (rui[r] - rui[l]) << endl;\n }\n return 0; \n}", "accuracy": 1, "time_ms": 240, "memory_kb": 5212, "score_of_the_acc": -0.9179, "final_rank": 9 }, { "submission_id": "aoj_3186_4866123", "code_snippet": "#include<iostream>\n#include<vector>\n#include<string>\n\nusing namespace std;\n\n#define int long long\n#define endl \"\\n\"\n\nsigned main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n\n int N, Q;\n vector<int> a, sum;\n\n cin>>N>>Q;\n\n a.resize(N);\n sum.resize(N+1);\n\n for(int i = 0; i < N; i++){\n cin>>a[i];\n\n sum[i+1] += sum[i] + a[i];\n }\n\n for(int i =0; i < Q; i++){\n int L, R;\n\n cin>>L>>R;\n\n L--, R--;\n\n int s = sum[R+1] - sum[L+1];\n\n cout<<a[L]-s<<endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 6000, "score_of_the_acc": -0.5126, "final_rank": 5 }, { "submission_id": "aoj_3186_4862671", "code_snippet": "#include <bits/stdc++.h>\n#ifdef _DEBUG\n#include \"_DEBUG.hpp\"\n#endif\n#define int long long\nusing namespace std;\nusing P = pair<int, int>;\nconst int inf = 1LL << 60;\nconst int mod = 1e9 + 7;\n\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v) {\n for (T &in : v) is >> in;\n return is;\n}\n\ntemplate <class T>\nvector<T> make_vec(size_t a) {\n return vector<T>(a);\n}\n\ntemplate <class T, class... Ts>\nauto make_vec(size_t a, Ts... ts) {\n return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));\n}\n\ntemplate <class T, class V>\ntypename enable_if<is_class<T>::value == 0>::type fill(T &t, const V &v) {\n t = v;\n}\n\ntemplate <class T, class V>\ntypename enable_if<is_class<T>::value != 0>::type fill(T &t, const V &v) {\n for (auto &e : t) fill(e, v);\n}\n\nsigned main() {\n \n int n, q;\n cin >> n >> q;\n vector<int> a(n);\n cin >> a;\n\n vector<int> imos(n + 1, 0);\n for (int i = 1; i <= n; i++) {\n imos[i] = imos[i-1] + a[i-1];\n }\n\n for(int i = 0; i < q; i++){\n int l, r;\n cin >> l >> r;\n int ans = a[l-1] - (imos[r] - imos[l]);\n cout << ans << endl;\n }\n\n return 0;\n}", "accuracy": 1, "time_ms": 250, "memory_kb": 6240, "score_of_the_acc": -1.221, "final_rank": 14 }, { "submission_id": "aoj_3186_4861891", "code_snippet": "/**\n * author: otera \n**/\n#include<iostream>\n#include<string> \n#include<cstdio>\n#include<cstring>\n#include<vector>\n#include<cmath>\n#include<algorithm> \n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<deque>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\nusing namespace std;\n\n#define int long long\ntypedef long long ll;\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\ntypedef long double ld;\nconst int inf=1e9+7;\nconst ll INF=1LL<<60 ;\nconst ll mod=1e9+7 ;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef complex<ld> Point;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<int, int> P;\ntypedef pair<ld, ld> LDP;\ntypedef pair<ll, ll> LP;\n#define fr first\n#define sc second\n#define all(c) c.begin(),c.end()\n#define pb push_back\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\nvoid solve() {\n\tint n, q; cin >> n >> q;\n vector<int> a(n);\n vector<int> sum(n + 1, 0);\n rep(i, n) {\n cin >> a[i];\n sum[i + 1] = sum[i] + a[i];\n }\n rep(_, q) {\n int l, r; cin >> l >> r;\n -- l;\n cout << a[l] - (sum[r] - sum[l + 1]) << endl;\n }\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(10);\n\t//int t; cin >> t; rep(i, t)solve();\n\tsolve();\n return 0;\n}", "accuracy": 1, "time_ms": 210, "memory_kb": 6000, "score_of_the_acc": -1.0287, "final_rank": 12 } ]
aoj_3184_cpp
M Hokkaido High School 問題文 北海道高校には $M$ 個の科目があり、それぞれ $1, 2, 3$ の $3$ 段階で成績がつけられます。 各生徒の成績は長さ $M$ の文字列で表され、$i$ 文字目が科目 $i$ の成績を表します。 生徒 $X$ が生徒 $Y$ の「上位互換」であるとは すべての科目 $i$ について ($X$ の科目 $i$ の成績) $\geq$ ($Y$ の科目 $i$ の成績) ある科目 $i$ が存在して。($X$ の科目 $i$ の成績) $>$ ($Y$ の科目 $i$ の成績) の両方がみたされることをいいます。 今、教室には誰もいません。これから $Q$ 人の生徒が順に教室に入ってきます。$i$ 番目の生徒の成績は文字列 $S_i$ で表されます。各生徒は、自分が教室に入ったときに教室に自分の上位互換が存在していると悲しくなります。 $Q$ 人それぞれの生徒について、悲しくなるかどうかを判定してください。 入力 入力は以下の形式で標準入力から与えられる。 $Q$ $M$ $S_1$ $S_2$ $\vdots$ $S_Q$ 制約 $1 \leq Q \leq 5\times 10^5$ $1 \leq M \leq 15$ $|S_i| = M$ $S_i$ は 1 、 2 、 3 からなる文字列 出力 長さ $Q$ の文字列 $T$ を $1$ 行に出力せよ。 $T$ の $i$ 文字目は生徒 $i$ が悲しくなるなら 1 、そうでないなら 0 とせよ。 入力例1 5 3 123 321 112 221 333 出力例1 00110 生徒 $1$ が生徒 $3$ の上位互換であるため生徒 $3$ は悲しいです。 生徒 $2$ が生徒 $4$ の上位互換であるため生徒 $4$ は悲しいです。 生徒 $5$ は生徒 $1$ の上位互換ですが、生徒 $1$ が教室に入ったときには生徒 $5$ はいないので生徒 $1$ は悲しくなりません。
[ { "submission_id": "aoj_3184_10422733", "code_snippet": "#define INF 4'000'000'000'000'000'037LL\n#include <bits/stdc++.h>\nusing namespace std;\nnamespace {\nusing ll = long long;\nusing uint = unsigned int;\nusing ull = unsigned long long;\nusing pll = pair<ll, ll>;\n#define vc vector\ntemplate <class T>\nusing vvc = vc<vc<T>>;\nusing vl = vc<ll>;\nusing vpll = vc<pll>;\n#ifdef __SIZEOF_INT128__\nusing i128 = __int128_t;\nusing u128 = __uint128_t;\n#endif\n#define cauto const auto\n#define overload4(_1, _2, _3, _4, name, ...) name\n#define rep1(i, n) for (ll i = 0, nnnnn = ll(n); i < nnnnn; i++)\n#define rep(...) overload4(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__)\n#define repi1(i, n) for (int i = 0, nnnnn = int(n); i < nnnnn; i++)\n#define repi2(i, l, r) for (int i = int(l), rrrrr = int(r); i < rrrrr; i++)\n#define repi3(i, l, r, d) for (int i = int(l), rrrrr = int(r), ddddd = int(d); ddddd > 0 ? i < rrrrr : i > rrrrr; i += d)\n#define repi(...) overload4(__VA_ARGS__, repi3, repi2, repi1)(__VA_ARGS__)\n#define fem(...) for (auto &__VA_ARGS__)\ntemplate <class T, class U>\ninline bool chmin(T &a, U b) { return a > b ? a = b, true : false; }\ntemplate <class T = ll, class U, class V>\ninline constexpr T divfloor(U a, V b) { return T(a) / T(b) - (T(a) % T(b) && (T(a) ^ T(b)) < 0); }\ntemplate <class T = ll, class U, class V>\ninline constexpr T safemod(U a, V b) { return T(a) - T(b) * divfloor<T>(a, b); }\ntemplate <class T = ll, class U, class V>\nconstexpr T ipow(U a, V b)\n{\n assert(b >= 0);\n if (b == 0)\n return 1;\n if (a == 0 || a == 1)\n return a;\n if (a < 0 && a == -1)\n return b & 1 ? -1 : 1;\n T res = 1, tmp = a;\n while (true)\n {\n if (b & 1)\n res *= tmp;\n b >>= 1;\n if (b == 0)\n break;\n tmp *= tmp;\n }\n return res;\n}\ntemplate <class T = ll, class A, class B, class M>\nT mul_limited(A a, B b, M m)\n{\n assert(a >= 0 && b >= 0 && m >= 0);\n if (b == 0)\n return 0;\n return T(a) > T(m) / T(b) ? T(m) : T(a) * T(b);\n}\ntemplate <class T = ll, class A, class B>\nT mul_limited(A a, B b) { return mul_limited<T>(a, b, INF); }\ntemplate <class T = ll, class A, class B, class M>\nT pow_limited(A a, B b, M m)\n{\n assert(a >= 0 && b >= 0 && m >= 0);\n if (a <= 1 || b == 0)\n return min(ipow<T>(a, b), T(m));\n T res = 1, tmp = a;\n while (true)\n {\n if (b & 1)\n {\n if (res > T(m) / tmp)\n return m;\n res *= tmp;\n }\n b >>= 1;\n if (b == 0)\n break;\n if (tmp > T(m) / tmp)\n return m;\n tmp *= tmp;\n }\n return res;\n}\ntemplate <class T = ll, class A, class B>\nT pow_limited(A a, B b) { return pow_limited<T>(a, b, INF); }\ntemplate <class T = ll, class U, class V>\nvc<T> base_repr(U val, V base)\n{\n assert(val >= 0);\n assert(base >= 2);\n if (val == 0)\n return {0};\n vc<T> a;\n while (val > 0)\n {\n a.emplace_back(val % base);\n val /= base;\n }\n reverse(a.begin(), a.end());\n return a;\n}\ntemplate <class T = ll, class U, class V>\nvc<T> base_repr(U val, V base, int n)\n{\n assert(val >= 0);\n assert(base >= 2);\n assert(n >= 0);\n vc<T> a(n);\n repi(i, n)\n {\n a[i] = val % base;\n val /= base;\n }\n reverse(a.begin(), a.end());\n return a;\n}\n#define ALL(a) (a).begin(), (a).end()\ntemplate <class T, size_t d, size_t i = 0, class V>\nauto dvec(const V (&sz)[d], const T &init)\n{\n if constexpr (i < d)\n return vc(sz[i], dvec<T, d, i + 1>(sz, init));\n else\n return init;\n}\ntemplate <class V>\nV reversed(const V &v) { return V(v.rbegin(), v.rend()); }\n#if __cplusplus < 202002L\n#else\n#endif\ntemplate <class V>\nvoid unique(V &v) { v.erase(std::unique(ALL(v)), v.end()); }\ntemplate <class V, class U>\nvoid rotate(V &v, U k)\n{ \n const U n = v.size();\n k = (k % n + n) % n;\n std::rotate(v.begin(), v.begin() + k, v.end());\n}\ntemplate <class T, const T infty = INF>\nstruct MonoidMin\n{\n using S = T;\n static constexpr S op(S a, S b) { return min(a, b); }\n};\nconst vpll DRULgrid = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};\nconst vpll DRULplane = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}};\ntemplate <class T>\nstruct is_random_access_iterator\n{\n static constexpr bool value = is_same_v<\n typename iterator_traits<T>::iterator_category,\n random_access_iterator_tag\n >;\n};\ntemplate <class T>\nconstexpr bool is_random_access_iterator_v = is_random_access_iterator<T>::value;\n#if __cplusplus < 202002L\nnamespace internal\n{\n};\n#else\n#endif\n#if __cplusplus < 202002L\n#else\ninline constexpr ll bit_width(ll x) { return std::bit_width((ull)x); }\ninline constexpr ll bit_floor(ll x) { return std::bit_floor((ull)x); }\ninline constexpr ll bit_ceil(ll x) { return std::bit_ceil((ull)x); }\ninline constexpr ll countr_zero(ll x) { assert(x != 0); return std::countr_zero((ull)x); }\ninline constexpr ll popcount(ll x) { return std::popcount((ull)x); }\ninline constexpr bool has_single_bit(ll x) { return std::has_single_bit((ull)x); }\n#endif\n#define dump(...)\n#define oj(...) __VA_ARGS__\nnamespace fastio {\nstatic constexpr uint32_t SIZ = 1 << 17;\nchar ibuf[SIZ];\nchar obuf[SIZ];\nchar out[100];\nuint32_t pil = 0, pir = 0, por = 0;\nstruct Pre {\n char num[10000][4];\n constexpr Pre() : num() {\n for (int i = 0; i < 10000; i++) {\n int n = i;\n for (int j = 3; j >= 0; j--) {\n num[i][j] = n % 10 | '0';\n n /= 10;\n }\n }\n }\n} constexpr pre;\ninline void load() {\n memcpy(ibuf, ibuf + pil, pir - pil);\n pir = pir - pil + fread(ibuf + pir - pil, 1, SIZ - pir + pil, stdin);\n pil = 0;\n if (pir < SIZ) ibuf[pir++] = '\\n';\n}\ninline void flush() {\n fwrite(obuf, 1, por, stdout);\n por = 0;\n}\nvoid rd1(string &x) {\n x.clear();\n char c;\n do {\n if (pil + 1 > pir) load();\n c = ibuf[pil++];\n } while (isspace(c));\n do {\n x += c;\n if (pil == pir) load();\n c = ibuf[pil++];\n } while (!isspace(c));\n}\ntemplate <typename T>\nvoid rd1_integer(T &x) {\n if (pil + 100 > pir) load();\n char c;\n do\n c = ibuf[pil++];\n while (c < '-');\n bool minus = 0;\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (c == '-') { minus = 1, c = ibuf[pil++]; }\n }\n x = 0;\n while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }\n if constexpr (is_signed<T>::value || is_same_v<T, i128>) {\n if (minus) x = -x;\n }\n}\nvoid rd1(ll &x) { rd1_integer(x); }\ntemplate <class T, class U>\nvoid rd1(pair<T, U> &p) {\n return rd1(p.first), rd1(p.second);\n}\ntemplate <size_t N = 0, typename T>\nvoid rd1_tuple(T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n auto &x = std::get<N>(t);\n rd1(x);\n rd1_tuple<N + 1>(t);\n }\n}\ntemplate <class... T>\nvoid rd1(tuple<T...> &tpl) {\n rd1_tuple(tpl);\n}\ntemplate <size_t N = 0, typename T>\nvoid rd1(array<T, N> &x) {\n for (auto &d: x) rd1(d);\n}\ntemplate <class T>\nvoid rd1(vc<T> &x) {\n for (auto &d: x) rd1(d);\n}\nvoid read() {}\ntemplate <class H, class... T>\nvoid read(H &h, T &... t) {\n rd1(h), read(t...);\n}\nvoid wt1(const char c) {\n if (por == SIZ) flush();\n obuf[por++] = c;\n}\nvoid wt1(const string s) {\n for (char c: s) wt1(c);\n}\ntemplate <typename T>\nvoid wt1_integer(T x) {\n if (por > SIZ - 100) flush();\n if (x < 0) { obuf[por++] = '-', x = -x; }\n int outi;\n for (outi = 96; x >= 10000; outi -= 4) {\n memcpy(out + outi, pre.num[x % 10000], 4);\n x /= 10000;\n }\n if (x >= 1000) {\n memcpy(obuf + por, pre.num[x], 4);\n por += 4;\n } else if (x >= 100) {\n memcpy(obuf + por, pre.num[x] + 1, 3);\n por += 3;\n } else if (x >= 10) {\n int q = (x * 103) >> 10;\n obuf[por] = q | '0';\n obuf[por + 1] = (x - q * 10) | '0';\n por += 2;\n } else\n obuf[por++] = x | '0';\n memcpy(obuf + por, out + outi + 4, 96 - outi);\n por += 96 - outi;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, int> = 0>\nvoid wt1(T x) { wt1_integer(x); }\ntemplate <class T, class U>\nvoid wt1(const pair<T, U> &val) {\n wt1(val.first);\n wt1(' ');\n wt1(val.second);\n}\ntemplate <size_t N = 0, typename T>\nvoid wt1_tuple(const T &t) {\n if constexpr (N < std::tuple_size<T>::value) {\n if constexpr (N > 0) { wt1(' '); }\n const auto x = std::get<N>(t);\n wt1(x);\n wt1_tuple<N + 1>(t);\n }\n}\ntemplate <class... T>\nvoid wt1(const tuple<T...> &tpl) {\n wt1_tuple(tpl);\n}\ntemplate <class T, size_t S>\nvoid wt1(const array<T, S> &val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i) wt1(' ');\n wt1(val[i]);\n }\n}\ntemplate <class T>\nvoid wt1(const vector<T> &val) {\n auto n = val.size();\n for (size_t i = 0; i < n; i++) {\n if (i) wt1(' ');\n wt1(val[i]);\n }\n}\nvoid print() { wt1('\\n'); }\ntemplate <class Head, class... Tail>\nvoid print(Head &&head, Tail &&... tail) {\n wt1(head);\n if (sizeof...(Tail)) wt1(' ');\n print(forward<Tail>(tail)...);\n}\n} // namespace fastio\nstruct Dummy {\n Dummy() { atexit(fastio::flush); }\n} dummy;\nnamespace internal\n{\ntemplate <class... Ts>\nvoid READnodump(Ts &...a) { fastio::read(a...); }\ntemplate <class T>\nvoid READVECnodump(int n, vc<T> &v)\n{\n v.resize(n);\n READnodump(v);\n}\ntemplate <class T, class... Ts>\nvoid READVECnodump(int n, vc<T> &v, vc<Ts> &...vs)\n{ READVECnodump(n, v), READVECnodump(n, vs...); }\ntemplate <class T>\nvoid READVEC2nodump(int n, int m, vvc<T> &v)\n{\n v.assign(n, vc<T>(m));\n READnodump(v);\n}\ntemplate <class T, class... Ts>\nvoid READVEC2nodump(int n, int m, vvc<T> &v, vvc<Ts> &...vs)\n{ READVEC2nodump(n, m, v), READVEC2nodump(n, m, vs...); }\ntemplate <class T>\nvoid READJAGnodump(int n, vvc<T> &v)\n{\n v.resize(n);\n repi(i, n)\n {\n int k;\n READnodump(k);\n READVECnodump(k, v[i]);\n }\n}\ntemplate <class T, class... Ts>\nvoid READJAGnodump(int n, vvc<T> &v, vvc<Ts> &...vs)\n{ READJAGnodump(n, v), READJAGnodump(n, vs...); }\n}; // namespace internal\n#define READ(...) internal::READnodump(__VA_ARGS__); dump(__VA_ARGS__)\n#define IN(T, ...) T __VA_ARGS__; READ(__VA_ARGS__)\n#define LL(...) IN(ll, __VA_ARGS__)\n#define READVEC(...) internal::READVECnodump(__VA_ARGS__); dump(__VA_ARGS__)\n#define VEC(T, n, ...) vc<T> __VA_ARGS__; READVEC(n, __VA_ARGS__)\n#define PRINT fastio::print\ntemplate <class T, class U, class P>\npair<T, U> operator+=(pair<T, U> &a, const P &b)\n{\n a.first += b.first;\n a.second += b.second;\n return a;\n}\ntemplate <class T, class U, class P>\npair<T, U> operator+(pair<T, U> &a, const P &b) { return a += b; }\ntemplate <class T, size_t n, class A>\narray<T, n> operator+=(array<T, n> &a, const A &b)\n{\n for (size_t i = 0; i < n; i++)\n a[i] += b[i];\n return a;\n}\ntemplate <class T, size_t n, class A>\narray<T, n> operator+(array<T, n> &a, const A &b) { return a += b; }\nnamespace internal\n{\ntemplate <size_t... I, class A, class B>\nauto tuple_add_impl(A &a, const B &b, const index_sequence<I...>)\n{\n ((get<I>(a) += get<I>(b)), ...);\n return a;\n}\n}; // namespace internal\ntemplate <class... Ts, class Tp>\ntuple<Ts...> operator+=(tuple<Ts...> &a, const Tp &b)\n{ return internal::tuple_add_impl(a, b, make_index_sequence<tuple_size_v<tuple<Ts...>>>{}); }\ntemplate <class... Ts, class Tp>\ntuple<Ts...> operator+(tuple<Ts...> &a, const Tp &b) { return a += b; }\nnamespace internal\n{\n};\nmt19937_64 mt;\nnamespace internal\n{\nconstexpr ll powmod32_constexpr(ll x, ll n, int m)\n{\n if (m == 1)\n return 0;\n uint _m = (uint)m;\n ull r = 1;\n ull y = safemod(x, m);\n while (n)\n {\n if (n & 1)\n r = (r * y) % _m;\n y = (y * y) % _m;\n n >>= 1;\n }\n return r;\n}\nconstexpr bool isprime32_constexpr(int n)\n{\n if (n <= 1)\n return false;\n if (n == 2 || n == 7 || n == 61)\n return true;\n if (n % 2 == 0)\n return false;\n ll d = n - 1;\n while (d % 2 == 0)\n d /= 2;\n constexpr ll bases[3] = {2, 7, 61};\n for (ll a : bases)\n {\n ll t = d;\n ll y = powmod32_constexpr(a, t, n);\n while (t != n - 1 && y != 1 && y != n - 1)\n {\n y = y * y % n;\n t <<= 1;\n }\n if (y != n - 1 && t % 2 == 0)\n return false;\n }\n return true;\n}\ntemplate <int n>\nconstexpr bool isprime32 = isprime32_constexpr(n);\nstruct barrett32\n{\n uint m;\n ull im;\n explicit barrett32(uint m) : m(m), im((ull)(-1) / m + 1) {}\n uint umod() const { return m; }\n uint mul(uint a, uint b) const\n {\n ull z = a;\n z *= b;\n ull x = (ull)((u128(z)*im) >> 64);\n ull y = x * m;\n return (uint)(z - y + (z < y ? m : 0));\n }\n};\n}\nnamespace internal\n{\n#define REF static_cast<mint &>(*this)\n#define CREF static_cast<const mint &>(*this)\n#define VAL *static_cast<const mint *>(this)\ntemplate <class mint>\nstruct modint_base\n{\n mint &operator+=(const mint &rhs)\n {\n mint &self = REF;\n self._v += rhs._v;\n if (self._v >= self.umod())\n self._v -= self.umod();\n return self;\n }\n mint &operator-=(const mint &rhs)\n {\n mint &self = REF;\n self._v -= rhs._v;\n if (self._v >= self.umod())\n self._v += self.umod();\n return self;\n }\n mint &operator/=(const mint &rhs)\n {\n mint &self = REF;\n return self = self * rhs.inv();\n }\n mint &operator++()\n {\n mint &self = REF;\n self._v++;\n if (self._v == self.umod())\n self._v = 0;\n return self;\n }\n mint &operator--()\n {\n mint &self = REF;\n if (self._v == 0)\n self._v = self.umod();\n self._v--;\n return self;\n }\n mint operator++(int)\n {\n mint res = VAL;\n ++REF;\n return res;\n }\n mint operator--(int)\n {\n mint res = VAL;\n --REF;\n return res;\n }\n mint operator+() const { return VAL; }\n mint operator-() const { return mint() - VAL; }\n mint pow(ll n) const\n {\n assert(n >= 0);\n mint x = VAL, r = 1;\n while (n)\n {\n if (n & 1)\n r *= x;\n x *= x;\n n >>= 1;\n }\n return r;\n }\n friend mint operator+(const mint &lhs, const mint &rhs)\n { return mint(lhs) += rhs; }\n friend mint operator-(const mint &lhs, const mint &rhs)\n { return mint(lhs) -= rhs; }\n friend mint operator*(const mint &lhs, const mint &rhs)\n { return mint(lhs) *= rhs; }\n friend mint operator/(const mint &lhs, const mint &rhs)\n { return mint(lhs) /= rhs; }\n friend bool operator==(const mint &lhs, const mint &rhs)\n { return mint(lhs).eq(rhs); }\n friend bool operator!=(const mint &lhs, const mint &rhs)\n { return mint(lhs).neq(rhs); }\nprivate:\n bool eq(const mint &rhs) { return REF._v == rhs._v; }\n bool neq(const mint &rhs) { return REF._v != rhs._v; }\n};\n}\ntemplate <typename T, std::enable_if_t<std::is_base_of_v<internal::modint_base<T>, T>, int> = 0>\nvoid rd1(T &x)\n{\n ll a;\n fastio::rd1(a);\n x = a;\n}\ntemplate <typename T, std::enable_if_t<std::is_base_of_v<internal::modint_base<T>, T>, int> = 0>\nvoid wt1(const T &x) { fastio::wt1(x.val()); }\ntemplate <class T = ll>\nconstexpr tuple<T, T, T> extgcd(const T &a, const T &b)\n{\n if (a == 0 && b == 0)\n return {0, 0, 0};\n T x1 = 1, y1 = 0, z1 = a;\n T x2 = 0, y2 = 1, z2 = b;\n while (z2 != 0)\n {\n T q = z1 / z2;\n tie(x1, x2) = make_pair(x2, x1 - q * x2);\n tie(y1, y2) = make_pair(y2, y1 - q * y2);\n tie(z1, z2) = make_pair(z2, z1 - q * z2);\n }\n if (z1 < 0)\n x1 = -x1, y1 = -y1, z1 = -z1;\n return {z1, x1, y1};\n}\ntemplate <int m>\nstruct static_modint : internal::modint_base<static_modint<m>>\n{\n using mint = static_modint;\nprivate:\n friend struct internal::modint_base<static_modint<m>>;\n uint _v;\n static constexpr uint umod() { return m; }\n static constexpr bool prime = internal::isprime32<m>;\npublic:\n static constexpr int mod() { return m; }\n static mint raw(int v)\n {\n mint x;\n x._v = v;\n return x;\n }\n static_modint() : _v(0) {}\n template <class T>\n static_modint(T v)\n {\n if constexpr (is_signed_v<T>)\n {\n ll x = (ll)(v % (ll)(umod()));\n if (x < 0)\n x += umod();\n _v = (uint)x;\n }\n else if constexpr (is_unsigned_v<T>)\n {\n _v = (uint)(v % umod());\n }\n else\n {\n static_assert(is_signed_v<T> || is_unsigned_v<T>, \"Unsupported Type\");\n }\n }\n int val() const { return (int)_v; }\n mint& operator*=(const mint &rhs)\n {\n ull z = _v;\n z *= rhs._v;\n _v = (uint)(z % umod());\n return *this;\n }\n mint inv() const\n {\n if (prime)\n {\n assert(_v != 0);\n return CREF.pow(umod() - 2);\n }\n else\n {\n auto [g, x, y] = extgcd<int>(_v, m);\n assert(g == 1);\n return x;\n }\n }\n};\ntemplate <int id>\nstruct dynamic_modint : internal::modint_base<dynamic_modint<id>>\n{\n using mint = dynamic_modint;\nprivate:\n friend struct internal::modint_base<dynamic_modint<id>>;\n uint _v;\n static internal::barrett32 bt;\n static uint umod() { return bt.umod(); }\npublic:\n static int mod() { return (int)(bt.umod()); }\n static mint raw(int v)\n {\n mint x;\n x._v = v;\n return x;\n }\n dynamic_modint() : _v(0) {}\n template <class T>\n dynamic_modint(T v)\n {\n if constexpr (is_signed_v<T>)\n {\n ll x = (ll)(v % (ll)(umod()));\n if (x < 0)\n x += umod();\n _v = (uint)x;\n }\n else if constexpr (is_unsigned_v<T>)\n {\n _v = (uint)(v % umod());\n }\n else\n {\n static_assert(is_signed_v<T> || is_unsigned_v<T>, \"Unsupported Type\");\n }\n }\n int val() const { return (int)_v; }\n mint& operator*=(const mint &rhs)\n {\n _v = bt.mul(_v, rhs._v);\n return *this;\n }\n mint inv() const\n {\n auto [g, x, y] = extgcd<int>(_v, mod());\n assert(g == 1);\n return x;\n }\n};\ntemplate <int id>\ninternal::barrett32 dynamic_modint<id>::bt(998244353);\nusing modint = dynamic_modint<-1>;\ntemplate <class T>\nstruct is_static_modint : false_type {};\ntemplate <int m>\nstruct is_static_modint<static_modint<m>> : true_type {};\ntemplate <class T>\ninline constexpr bool is_static_modint_v = is_static_modint<T>::value;\ntemplate <class T>\nstruct is_dynamic_modint : false_type {};\ntemplate <int id>\nstruct is_dynamic_modint<dynamic_modint<id>> : true_type {};\ntemplate <class T>\ninline constexpr bool is_dynamic_modint_v = is_dynamic_modint<T>::value;\ntemplate <class T>\nstruct PowerTable\n{\nprivate:\n decltype(T::mod()) mod;\n T base;\n vc<T> pw;\npublic:\n PowerTable() {}\n PowerTable(T base) : mod(T::mod()), base(base), pw(1, 1) {}\n void reserve(int n)\n {\n if (mod != T::mod())\n {\n mod = T::mod();\n pw = {1};\n }\n int i = pw.size();\n if (n < i)\n return;\n pw.resize(n + 1);\n for (; i <= n; i++)\n pw[i] = pw[i - 1] * base;\n }\n T pow(int n)\n {\n reserve(n);\n return pw[n];\n }\n};\ntemplate <class T>\nstruct Binomial\n{\nprivate:\n static decltype(T::mod()) mod;\n static vc<T> fac_, finv_, inv_;\npublic:\n static void reserve(int n)\n {\n if (mod != T::mod())\n {\n mod = T::mod();\n fac_ = {1, 1}, finv_ = {1, 1}, inv_ = {0, 1};\n }\n int i = fac_.size();\n chmin(n, T::mod() - 1);\n if (n < i)\n return;\n fac_.resize(n + 1), finv_.resize(n + 1), inv_.resize(n + 1);\n for (; i <= n; i++)\n {\n fac_[i] = fac_[i - 1] * T::raw(i);\n inv_[i] = -inv_[T::mod() % i] * T::raw(T::mod() / i);\n finv_[i] = finv_[i - 1] * inv_[i];\n }\n }\n static T inv(T n)\n {\n assert(n != 0);\n reserve(n.val());\n return inv_[n.val()];\n }\n};\ntemplate <class T> decltype(T::mod()) Binomial<T>::mod{};\ntemplate <class T> vc<T> Binomial<T>::fac_{};\ntemplate <class T> vc<T> Binomial<T>::finv_{};\ntemplate <class T> vc<T> Binomial<T>::inv_{};\nusing mint = modint;\ntemplate <int k, class F, class T>\nvoid tensor_power_array_destructive(const F &linear_map, vc<T> &v)\n{\n const int len = v.size();\n if (len == 0)\n return;\n {\n int len_ = len;\n while (len_ % k == 0)\n len_ /= k;\n assert(len_ == 1 && \"v.size() must be a power of k\");\n }\n for (int d = 1; d < len; d *= k)\n {\n repi(iu, 0, len, d * k) repi(i, iu, iu + d)\n {\n array<T, k> tmp;\n repi(j, k) tmp[j] = v[i + j * d];\n tmp = linear_map(tmp);\n repi(j, k) v[i + j * d] = tmp[j];\n }\n }\n}\ntemplate <class M, int k>\nvoid zeta_supset_general_destructive(vc<typename M::S> &a)\n{\n using S = typename M::S;\n auto linear_map = [&](array<S, k> &arr) -> array<S, k>\n {\n repi(i, k - 2, -1, -1) arr[i] = M::op(arr[i], arr[i + 1]);\n return arr;\n };\n tensor_power_array_destructive<k>(linear_map, a);\n}\ntemplate <class M, int k>\nvc<typename M::S> zeta_supset_general(vc<typename M::S> a)\n{\n zeta_supset_general_destructive<M, k>(a);\n return a;\n}\nvoid init()\n{\n oj(mt.seed(random_device()()));\n}\nvoid main2()\n{\n LL(Q, M);\n VEC(string, Q, S);\n fem(s : S) rep(i, M) s.at(i)--;\n vl A(Q);\n rep(i, Q) A.at(i) = stol(S.at(i), nullptr, 3);\n dump(S, A);\n vl f(ipow(3, M), INF);\n rep(i, Q) chmin(f.at(A.at(i)), i);\n auto g = zeta_supset_general<MonoidMin<ll>, 3>(f);\n dump(g | cp::index());\n string ans(Q, '0');\n rep(i, Q)\n {\n vl s = reversed(base_repr(A.at(i), 3, M));\n rep(j, M)\n {\n if (s.at(j) == 2)\n continue;\n ll na = A.at(i) + ipow(3, j);\n dump(s, A.at(i), na);\n if (g.at(na) < i)\n ans.at(i) = '1';\n }\n }\n PRINT(ans);\n}\nvoid test()\n{\n}\ntemplate <auto init, auto main2, auto test>\nstruct Main\n{\n Main()\n {\n cauto CERR = [](string val, string color)\n {\n string s = \"\\033[\" + color + \"m\" + val + \"\\033[m\";\n /* コードテストで確認する際にコメントアウトを外す\n cerr << val;\n //*/\n };\n CERR(\"\\n[FAST_IO]\\n\\n\", \"32\");\n cout << fixed << setprecision(20);\n test();\n init();\n CERR(\"\\n[SINGLE_TESTCASE]\\n\\n\", \"36\");\n main2();\n }\n};\nMain<init, main2, test> main_dummy;\n}\nint main() {}", "accuracy": 1, "time_ms": 460, "memory_kb": 248120, "score_of_the_acc": -1.0717, "final_rank": 16 }, { "submission_id": "aoj_3184_10270988", "code_snippet": "// AOJ #3184 Hokkaido High School\n// 2025.3.6\n\n#include <bits/stdc++.h>\nusing namespace std;\n\nint M;\n\nstruct Node {\n int c[3];\n int sub;\n bool end;\n};\n\nvector<Node> tr;\n\nint newNode(){\n Node nd;\n for(int i = 0; i < 3; i++) nd.c[i] = -1;\n nd.sub = 0;\n nd.end = false;\n tr.push_back(nd);\n return (int)tr.size() - 1;\n}\n\nbool queryDom(int idx, int d, bool str, const int *v){\n if(d == M) return (str && tr[idx].end);\n for(int i = v[d]; i < 3; i++){\n int nxt = tr[idx].c[i];\n if(nxt == -1) continue;\n bool nstr = str || (i > v[d]);\n if(queryDom(nxt, d+1, nstr, v)) return true;\n }\n return false;\n}\n\nvoid insertTrie(const int *v){\n int idx = 0;\n tr[idx].sub++;\n for (int d = 0; d < M; d++){\n int s = v[d];\n if(tr[idx].c[s] == -1){\n int nxt = newNode();\n tr[idx].c[s] = nxt;\n }\n idx = tr[idx].c[s];\n tr[idx].sub++;\n }\n if(!tr[idx].end) tr[idx].end = true;\n}\n\nint removeDom(int idx, int d, bool str, const int *v){\n int rem = 0;\n if(d == M){\n if(str && tr[idx].end){\n tr[idx].end = false;\n rem = 1;\n }\n tr[idx].sub = (tr[idx].end ? 1 : 0);\n return rem;\n }\n for(int i = 0; i <= v[d] && i < 3; i++){\n int nxt = tr[idx].c[i];\n if(nxt == -1) continue;\n bool nstr = str || (i < v[d]);\n rem += removeDom(nxt, d+1, nstr, v);\n if(tr[nxt].sub == 0) tr[idx].c[i] = -1;\n }\n int sum = (tr[idx].end ? 1 : 0);\n for(int i = 0; i < 3; i++){\n int nxt = tr[idx].c[i];\n if(nxt != -1) sum += tr[nxt].sub;\n }\n tr[idx].sub = sum;\n return rem;\n}\n\nint main(){\n ios::sync_with_stdio(0);\n cin.tie(0);\n\n int Q;\n cin >> Q >> M;\n tr.reserve(1000000);\n newNode();\n\n string ans; ans.resize(Q);\n int v[20];\n\n for (int qi = 0; qi < Q; qi++){\n string s;\n cin >> s;\n for (int i = 0; i < M; i++) v[i] = s[i] - '1';\n bool sad = false;\n if(tr[0].sub > 0 && queryDom(0, 0, false, v)) sad = true;\n ans[qi] = sad ? '1' : '0';\n\n if(!sad){\n removeDom(0, 0, false, v);\n int idx = 0; bool found = true;\n for (int i = 0; i < M; i++){\n int d = v[i];\n if(tr[idx].c[d] == -1){ found = false; break; }\n idx = tr[idx].c[d];\n }\n if(found && tr[idx].end);\n else insertTrie(v);\n }\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 300, "memory_kb": 7624, "score_of_the_acc": -0.0111, "final_rank": 1 }, { "submission_id": "aoj_3184_10116573", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nbool mark[14348908];\nint st[15];\n\nvoid less_mark(int num) {\n if (mark[num]) return;\n mark[num] = true;\n int c = num;\n int i = 0;\n while (c) {\n if (c % 3) less_mark(num - st[i]);\n i++;\n c /= 3;\n }\n}\n\nint main() {\n int q, m;\n cin >> q >> m;\n st[0] = 1;\n for (int i = 1; i < 15; i++) st[i] = st[i - 1] * 3;\n while (q--) {\n string s;\n cin >> s;\n int num = 0;\n for (int i = 0; i < m; i++) {\n num *= 3;\n num += s[i] - '1';\n }\n if (mark[num]) cout << 1;\n else {\n less_mark(num);\n mark[num] = false;\n cout << 0;\n }\n }\n cout << endl;\n}", "accuracy": 1, "time_ms": 1210, "memory_kb": 17432, "score_of_the_acc": -0.4595, "final_rank": 2 }, { "submission_id": "aoj_3184_6452181", "code_snippet": "#pragma GCC optimize(\"Ofast\")\n#include <iostream>\n#include <vector>\n#include <algorithm>\n#include <map>\n#include <queue>\n#include <cstdio>\n#include <ctime>\n#include <assert.h>\n#include <chrono>\n#include <random>\n#include <numeric>\n#include <set>\n#include <deque>\n#include <stack>\n#include <sstream>\n#include <utility>\n#include <cstring>\n#include <unordered_map>\n#include <unordered_set>\n#include <tuple>\n#include <array>\n#include <bitset>\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long ull;\n\nmt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());\nll myRand(ll B) {\n return (ull)rng() % B;\n}\ninline ll time() {\n return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;\n}\n\nconst int N = 14348907; // 3^15\nconst int inf = (1<<30);\nint a[N],dp[N];\n\nint s3toi(string s){\n int res = 0;\n for(char c:s){\n res = res*3 + (c-'1');\n }\n return res;\n}\n\nint main(){\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n int n,m; cin >> n >> m;\n for(int i=0;i<N;i++){\n a[i] = dp[i] = inf;\n }\n vector<string> s(n);\n for(int i=0;i<n;i++){\n cin >> s[i];\n int u = s3toi(s[i]);\n a[u] = min(a[u],i);\n }\n for(int i=N-1;i>=0;i--){\n int base = 1;\n int k = i;\n int p = 0;\n for(int j=0;j<m;j++){\n int bit = k%3;\n if(bit != 2){\n int c = (k+1)*base + p;\n if(c<N)dp[i] = min(dp[i], a[c]);\n if(c<N)dp[i] = min(dp[i], dp[c]);\n }\n p += base*bit;\n base *= 3;\n k /= 3;\n }\n }\n for(int i=0;i<n;i++){\n int u = s3toi(s[i]);\n if(dp[u] < i){\n cout << \"1\";\n }\n else{\n cout << \"0\";\n }\n }\n cout << \"\\n\";\n}", "accuracy": 1, "time_ms": 610, "memory_kb": 130804, "score_of_the_acc": -0.6566, "final_rank": 4 }, { "submission_id": "aoj_3184_5306157", "code_snippet": "#include <bits/stdc++.h>\n\n#define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i))\n#define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i))\n#define rep(i, n) For((i), 0, (n))\n#define rrep(i, n) rFor((i), (n), 0)\n#define fi first\n#define se second\n\nusing namespace std;\n\ntypedef long long lint;\ntypedef unsigned long long ulint;\ntypedef pair<int, int> pii;\ntypedef pair<lint, lint> pll;\n\ntemplate <class T>\nbool chmax(T &a, const T &b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate <class T>\nbool chmin(T &a, const T &b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate <class T>\nT div_floor(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a >= 0 ? a / b : (a + 1) / b - 1;\n}\ntemplate <class T>\nT div_ceil(T a, T b) {\n if (b < 0) a *= -1, b *= -1;\n return a > 0 ? (a - 1) / b + 1 : a / b;\n}\n\ntemplate <typename T>\nstruct coord_comp {\n vector<T> v;\n bool sorted = false;\n\n coord_comp() {}\n\n int size() { return v.size(); }\n\n void add(T x) { v.push_back(x); }\n\n void build() {\n sort(v.begin(), v.end());\n v.erase(unique(v.begin(), v.end()), v.end());\n sorted = true;\n }\n\n int get_idx(T x) {\n assert(sorted);\n return lower_bound(v.begin(), v.end(), x) - v.begin();\n }\n};\n\nconstexpr lint mod = 1000000007;\nconstexpr lint INF = mod * mod;\nconstexpr int MAX = 200010;\n\nint high[15000000], same[15000000], pow3[16];\n\nint get_bit(int S, int i) { return S / pow3[i] % 3; }\n\nint main() {\n pow3[0] = 1;\n For(i, 1, 16) pow3[i] = pow3[i - 1] * 3;\n\n int q, m;\n scanf(\"%d%d\", &q, &m);\n rep(S, pow3[m]) high[S] = same[S] = mod;\n int s[q];\n rep(i, q) {\n string t;\n cin >> t;\n s[i] = 0;\n rep(j, m) s[i] += pow3[j] * (t[j] - '1');\n chmin(same[s[i]], i);\n }\n\n rrep(S, pow3[m]) {\n chmin(same[S], high[S]);\n if (same[S] < mod) {\n rep(i, m) if (get_bit(S, i)) {\n int T = S - pow3[i];\n chmin(high[T], same[S]);\n }\n }\n }\n\n rep(i, q) printf(\"%d\", high[s[i]] < i);\n printf(\"\\n\");\n}", "accuracy": 1, "time_ms": 1050, "memory_kb": 120168, "score_of_the_acc": -0.8102, "final_rank": 11 }, { "submission_id": "aoj_3184_4964791", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 500005\n\nint Q,M;\nint dp[14348907];\nint POW[16];\nint CODE[SIZE];\nstring input_str[SIZE];\n\n\nint makeCode(string tmp_str){\n\n\tint ret = 0;\n\n\tfor(int i = 0; i < M; i++){\n\n\t\tret = 3*ret+(tmp_str[i]-'1');\n\t}\n\n\treturn ret;\n}\n\n\nint main(){\n\n\tPOW[0] = 1;\n\tfor(int i = 1; i <= 15; i++){\n\n\t\tPOW[i] = POW[i-1]*3;\n\t}\n\n\tscanf(\"%d %d\",&Q,&M);\n\n\tfor(int i = 0; i < POW[M]; i++){\n\n\t\tdp[i] = BIG_NUM;\n\t}\n\n\tfor(int i = 0; i < Q; i++){\n\n\t\tcin >> input_str[i];\n\t\tCODE[i] = makeCode(input_str[i]);\n\n\t\tdp[CODE[i]] = min(dp[CODE[i]],i);\n\t}\n\n\tfor(int state = POW[M]-1; state >= 0; state--){\n\t\tfor(int loop = M-1; loop >= 0; loop--){\n\t\t\tif((state/POW[loop])%3 == 2)continue;\n\n\t\t\tdp[state] = min(dp[state],dp[state+POW[loop]]);\n\t\t}\n\t}\n\n\tfor(int i = 0; i < Q; i++){\n\t\tint tmp = BIG_NUM;\n\t\tfor(int loop = M-1; loop >= 0; loop--){\n\t\t\tif((CODE[i]/POW[loop])%3 == 2)continue;\n\n\t\t\ttmp = min(tmp,dp[CODE[i]+POW[loop]]);\n\t\t}\n\t\tif(tmp < i){\n\n\t\t\tprintf(\"1\");\n\t\t}else{\n\n\t\t\tprintf(\"0\");\n\t\t}\n\t}\n\tprintf(\"\\n\");\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1270, "memory_kb": 96444, "score_of_the_acc": -0.8113, "final_rank": 12 }, { "submission_id": "aoj_3184_4883826", "code_snippet": "// #pragma GCC optimize(\"unroll-loops\", \"omit-frame-pointer\", \"inline\")\n// #pragma GCC option(\"arch=native\", \"tune=native\", \"no-zero-upper\")\n// #pragma GCC\n// target(\"sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native\")\n// #pragma GCC optimize(\"Ofast\")\n// #pragma GCC optimize(\"tree-vectorize\",\"openmp\",\"predictive-commoning\")\n// #pragma GCC option(\"D_GLIBCXX_PARALLEL\",\"openmp\")\n\n// #pragma GCC optimize(\"O3\")\n// #pragma GCC target(\"avx2\")\n\n#include <bits/stdc++.h>\n\nusing namespace std;\n\ntypedef long long ll;\ntypedef pair<int, int> P;\ntypedef vector<int> vi;\ntypedef vector<ll> vll;\n// #define int long long\n#define pb push_back\n#define mp make_pair\n#define eps 1e-9\n#define INF 2000000000 // 2e9\n#define LLINF 2000000000000000000ll // 2e18 (llmax:9e18)\n#define fi first\n#define sec second\n#define all(x) (x).begin(), (x).end()\n#define sq(x) ((x) * (x))\n#define dmp(x) cerr << #x << \": \" << x << endl;\n\ntemplate <class T>\nvoid chmin(T &a, const T &b) {\n if (a > b) a = b;\n}\ntemplate <class T>\nvoid chmax(T &a, const T &b) {\n if (a < b) a = b;\n}\n\ntemplate <class T>\nusing MaxHeap = priority_queue<T>;\ntemplate <class T>\nusing MinHeap = priority_queue<T, vector<T>, greater<T>>;\ntemplate <class T>\nvector<T> vect(int len, T elem) {\n return vector<T>(len, elem);\n}\n\ntemplate <class T, class U>\nostream &operator<<(ostream &os, const pair<T, U> &p) {\n os << p.fi << ',' << p.sec;\n return os;\n}\ntemplate <class T, class U>\nistream &operator>>(istream &is, pair<T, U> &p) {\n is >> p.fi >> p.sec;\n return is;\n}\ntemplate <class T>\nostream &operator<<(ostream &os, const vector<T> &vec) {\n for (int i = 0; i < vec.size(); i++) {\n os << vec[i];\n if (i + 1 < vec.size()) os << ' ';\n }\n return os;\n}\ntemplate <class T>\nistream &operator>>(istream &is, vector<T> &vec) {\n for (int i = 0; i < vec.size(); i++) is >> vec[i];\n return is;\n}\nvoid fastio() {\n cin.tie(0);\n ios::sync_with_stdio(0);\n cout << fixed << setprecision(20);\n}\n\n#define endl \"\\n\"\n\ntemplate <int MOD> // if inv is needed, this shold be prime.\nstruct ModInt {\n ll val;\n ModInt() : val(0ll) {}\n ModInt(const ll &v) : val(((v % MOD) + MOD) % MOD) {}\n bool operator==(const ModInt &x) const { return val == x.val; }\n bool operator!=(const ModInt &x) const { return !(*this == x); }\n bool operator<(const ModInt &x) const { return val < x.val; }\n bool operator>(const ModInt &x) const { return val > x.val; }\n bool operator>=(const ModInt &x) const { return !(*this < x); }\n bool operator<=(const ModInt &x) const { return !(*this > x); }\n ModInt operator-() const { return ModInt(MOD - val); }\n ModInt inv() const { return this->pow(MOD - 2); }\n ModInt &operator+=(const ModInt &x) {\n if ((val += x.val) >= MOD) val -= MOD;\n return *this;\n }\n ModInt &operator-=(const ModInt &x) {\n if ((val += MOD - x.val) >= MOD) val -= MOD;\n return *this;\n }\n ModInt &operator*=(const ModInt &x) {\n (val *= x.val) %= MOD;\n return *this;\n }\n ModInt &operator/=(const ModInt &x) { return *this *= x.inv(); };\n ModInt operator+(const ModInt &x) const { return ModInt(*this) += x; }\n ModInt operator-(const ModInt &x) const { return ModInt(*this) -= x; }\n ModInt operator*(const ModInt &x) const { return ModInt(*this) *= x; }\n ModInt operator/(const ModInt &x) const { return ModInt(*this) /= x; }\n friend istream &operator>>(istream &i, ModInt &x) {\n ll v;\n i >> v;\n x = v;\n return i;\n }\n friend ostream &operator<<(ostream &o, const ModInt &x) {\n o << x.val;\n return o;\n }\n ModInt pow(ll x) const {\n auto res = ModInt(1ll);\n auto b = *this;\n while (x) {\n if (x & 1) res *= b;\n x >>= 1;\n b *= b;\n }\n return res;\n }\n};\n\ntemplate <int MOD>\nModInt<MOD> pow(ModInt<MOD> a, ll x) {\n ModInt<MOD> res = ModInt<MOD>(1ll);\n while (x) {\n if (x & 1) res *= a;\n x >>= 1;\n a *= a;\n }\n return res;\n}\n\nconstexpr int MOD = 1e9 + 7;\n// constexpr int MOD = 998244353;\nusing mint = ModInt<MOD>;\n\nvoid solve() {\n int Q, M;\n cin >> Q >> M;\n vector<int> pow3(M + 1, 1);\n for (int i = 0; i < M; i++) pow3[i + 1] = pow3[i] * 3;\n vector<int> dp(pow3[M], INF);\n auto encode = [](const string &s) -> int {\n int ret = 0;\n for (int i = 0; i < s.size(); i++) { ret = ret * 3 + (s[i] - '1'); }\n return ret;\n };\n vector<int> grade(Q);\n for (int i = 0; i < Q; i++) {\n string s;\n cin >> s;\n int val = encode(s);\n grade[i] = val;\n chmin(dp[val], i);\n }\n // dmp(dp);\n for (int d = 0; d < M; d++) {\n for (int i = pow3[M] - 1; i >= 0; i--) {\n int dig = (i % pow3[d + 1] - i % pow3[d]) / pow3[d];\n if (dig == 2) continue;\n chmin(dp[i], dp[i + pow3[d]]);\n }\n }\n // dmp(dp);\n for (int i = 0; i < Q; i++) {\n int g = grade[i];\n int min_ind = INF;\n for (int d = 0; d < M; d++) {\n int dig = (g % pow3[d + 1] - g % pow3[d]) / pow3[d];\n if (dig == 2) continue;\n chmin(min_ind, dp[g + pow3[d]]);\n }\n if (min_ind < i)\n cout << 1;\n else\n cout << 0;\n }\n cout << endl;\n return;\n}\n\nsigned main() {\n fastio();\n solve();\n // int t;\n // cin >> t;\n // while (t--) solve();\n\n // int t; cin >> t;\n // for(int i=1;i<=t;i++){\n // cout << \"Case #\" << i << \": \";\n // solve();\n // }\n return 0;\n}", "accuracy": 1, "time_ms": 1440, "memory_kb": 61208, "score_of_the_acc": -0.7426, "final_rank": 7 }, { "submission_id": "aoj_3184_4871744", "code_snippet": "#include <bits/stdc++.h>\n#ifdef _DEBUG\n#include \"_DEBUG.hpp\"\n#endif\n#define int long long\nusing namespace std;\nusing P = pair<int, int>;\nconst int inf = 2e18;\nconst int mod = 1e9 + 7;\n\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v) {\n for (T &in : v) is >> in;\n return is;\n}\n\ntemplate <class T>\nvector<T> make_vec(size_t a) {\n return vector<T>(a);\n}\n\ntemplate <class T, class... Ts>\nauto make_vec(size_t a, Ts... ts) {\n return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));\n}\n\ntemplate <class T, class V>\ntypename enable_if<is_class<T>::value == 0>::type fill(T &t, const V &v) {\n t = v;\n}\n\ntemplate <class T, class V>\ntypename enable_if<is_class<T>::value != 0>::type fill(T &t, const V &v) {\n for (auto &e : t) fill(e, v);\n}\n\nint enc(string s) {\n int res = 0;\n for (int i = 0; i < s.size(); i++) {\n res = res * 3 + (s[i] - '1');\n }\n return res;\n}\n\nsigned main() {\n int q, m;\n cin >> q >> m;\n vector<string> s(q);\n cin >> s;\n\n vector<bool> dp(pow(3, m), false);\n\n auto dfs = [&](auto &&dfs, string &s) -> void {\n if (dp[enc(s)]) return;\n dp[enc(s)] = true;\n for (int i = 0; i < m; i++) {\n if (s[i] == '1') continue;\n s[i]--;\n dfs(dfs, s);\n s[i]++;\n }\n };\n\n for (int i = 0; i < q; i++) {\n if (dp[enc(s[i])]) {\n cout << \"1\";\n } else {\n cout << \"0\";\n for (int j = 0; j < m; j++) {\n if (s[i][j] == '1') continue;\n s[i][j]--;\n dfs(dfs, s[i]);\n s[i][j]++;\n }\n }\n }\n cout << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 2530, "memory_kb": 21036, "score_of_the_acc": -1.0663, "final_rank": 15 }, { "submission_id": "aoj_3184_4866090", "code_snippet": "#include<iostream>\n#include<string>\n#include<iomanip>\n#include<cmath>\n#include<vector>\n#include<algorithm>\n#include<utility>\n\nusing namespace std;\n\n#define int long long\n#define endl \"\\n\"\n\nconstexpr long long INF = (long long)1e18;\nconstexpr long long MOD = 1'000'000'007; \n\n// struct fast_io {\n\t// fast_io(){\n\t\t// std::cin.tie(nullptr);\n\t\t// std::ios::sync_with_stdio(false);\n\t// };\n// } fio;\n\nconstexpr int MAX = 15'000'000; // < 3^15 = 14348907\n\nint Q, M;\nvector<int> S;\nvector<int> used(MAX);\nint t[20];\n\nint to_num(string &s){\n\tint res = 0;\n\t\n\tfor(int i = 0; i < s.size(); i++){\n\t\tres = res * 3 + s[i] - '1';\n\t}\n\t\n\treturn res;\n}\n\nvoid check(string &s, int num){\n\t// int num = to_num(s);\n\t\n\t// cout<<\"s = \"<<s<<\" num = \"<<num<<\" <> \"<<to_num(s)<<endl;\n\t\n\tif(used[num]) return ;\n\tused[num] = true;\n\t\n\t\n\tfor(int i = 0, j = 1; i < s.size(); i++){\n\t\t\n\t\ts[i]--;\n\t\t// cout<<\"i \"<<i<<\" s = \"<<s[i]<<endl;\n\t\tif(s[i] <= '0') {\n\t\t\ts[i]++;\n\t\t\tcontinue;\n\t\t}\n\t\tnum -= t[M-i-1];\n\t\tcheck(s, num);\n\t\tnum += t[M-i-1];\n\t\ts[i]++;\n\t}\n}\n\nsigned main(){\n\tcout<<fixed<<setprecision(10);\n\t\n\t// string ans;\n\tvector<int> ans;\n\t\n\tt[0] = 1;\n\tfor(int i = 1; i < 17; i++){\n\t\tt[i] = t[i-1] * 3;\n\t}\n\t\n\tcin>>Q>>M;\n\t\n\tans.resize(Q);\n\t\n\tfor(int i = 0; i < Q; i++){\n\t\tint num = 0;\n\t\tstring s;\n\t\t\n\t\tcin>>s;\n\t\t\n\t\tnum = to_num(s);\n\t\t// cout<<\"s = \"<<s<<\" num = \"<<num<<endl;\n\t\tif(used[num]) {\n\t\t\t// ans += \"1\";\n\t\t\tans[i] = 1;\n\t\t\tcontinue;\n\t\t} else {\n\t\t\t// ans += \"0\";\n\t\t}\n\t\t\n\t\tcheck(s, num);\n\t\t\n\t\tused[num] = false;\n\t}\n\t\n\t// cout<<ans<<endl;\n\t\n\tfor(int i = 0; i < ans.size(); i++){\n\t\tcout<<ans[i];\n\t}\n\tcout<<endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 1600, "memory_kb": 124028, "score_of_the_acc": -1.0727, "final_rank": 17 }, { "submission_id": "aoj_3184_4849984", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << '\\n';\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const T &a) {\n for (auto e : a) cout << e << ' ';\n cout << '\\n';\n}\n\n//------------------------- Libraries -------------------------//\n\ntemplate<class T>\nbool chmin(T& a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n \ntemplate<class T>\nbool chmax(T& a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\n//--------------------------- Solve ---------------------------//\n\nint encode(string s) {\n int res = 0;\n for (int i = s.size()-1; i >= 0; i--) {\n res *= 3;\n res += (int)(s[i] - '1');\n }\n return res;\n}\n\nvoid solve() {\n int Q, M; cin >> Q >> M;\n vector<string> S(Q);\n vector<int> state(Q);\n for (int i = 0; i < Q; i++) {\n cin >> S[i];\n state[i] = encode(S[i]);\n }\n\n vector<int> three(M+1, 1);\n for (int i = 0; i < M; i++) three[i+1] = three[i]*3;\n\n vector<int> dp(three[M], Q);\n for (int q = 0; q < Q; q++) {\n chmin(dp[state[q]], q);\n }\n for (int bit = three[M]-1; bit >= 0; bit--) {\n for (int i = 0; i < M; i++) {\n if (bit / three[i] % 3 != 2) {\n chmin(dp[bit], dp[bit+three[i]]);\n }\n }\n }\n for (int q = 0; q < Q; q++) {\n int res = Q;\n for (int i = 0; i < M; i++) {\n if (S[q][i] == '3') continue;\n chmin(res, dp[state[q]+three[i]]);\n }\n cout << (res < q ? 1 : 0);\n }\n cout << '\\n';\n}\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 1010, "memory_kb": 76856, "score_of_the_acc": -0.6142, "final_rank": 3 }, { "submission_id": "aoj_3184_4849643", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1LL << 29;\nconst ll LONGINF = 1LL << 60;\nconst ll MOD = 1000000007LL;\n\nint bit_stoi(string s) {\n int res = 0;\n for(auto c : s) {\n assert('0' <= c and c <= '2');\n res = res*3 + (c - '0');\n }\n return res;\n}\n\nstring bit_tostring(int v, int len) {\n string res = \"\";\n for(int i=0; i<len; i++) {\n res += (char)('0' + (v % 3));\n v /= 3;\n }\n return string(res.rbegin(), res.rend());\n}\n\nint main() {\n int Q, M; scanf(\"%d%d\", &Q, &M);\n int N = 1;\n for(int i=0; i<M; i++) N *= 3;\n \n vector<string> vs(Q);\n vector<int> values(Q), rec(N, INF), mod(N);\n for(int i=0; i<Q; i++) {\n cin >> vs[i];\n for(auto &c : vs[i]) c--;\n int value = bit_stoi(vs[i]);\n values[i] = value;\n chmin(rec[value], i);\n }\n for(int i=0; i<N; i++) mod[i] = i % 3;\n\n for(int k=0, p=1; k<M; k++, p*=3) {\n for(int i=N-1; i>=0; i--) {\n int d = (i/p) % 3;\n if(d - 1 >= 0) {\n chmin(rec[i-p], rec[i]);\n }\n }\n }\n \n string ans = \"\";\n for(int i=0; i<Q; i++) {\n bool ng = false;\n int v = values[i];\n for(int k=0, p=1; k<M; k++, p*=3) {\n int d = mod[v/p];\n if(d == 3) d = 0;\n if(d + 1 < 3) {\n int nv = v + p;\n ng |= (rec[nv] < i);\n }\n }\n ans += (char)('0' + ng);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 840, "memory_kb": 133892, "score_of_the_acc": -0.7725, "final_rank": 10 }, { "submission_id": "aoj_3184_4849624", "code_snippet": "// #define _GLIBCXX_DEBUG // for STL debug (optional)\n#include <iostream>\n#include <iomanip>\n#include <cstdio>\n#include <string>\n#include <cstring>\n#include <deque>\n#include <list>\n#include <queue>\n#include <stack>\n#include <vector>\n#include <utility>\n#include <algorithm>\n#include <map>\n#include <set>\n#include <complex>\n#include <cmath>\n#include <limits>\n#include <cfloat>\n#include <climits>\n#include <ctime>\n#include <cassert>\n#include <numeric>\n#include <fstream>\n#include <functional>\n#include <bitset>\nusing namespace std;\nusing ll = long long int;\nusing int64 = long long int;\n \ntemplate<typename T> void chmax(T &a, T b) {a = max(a, b);}\ntemplate<typename T> void chmin(T &a, T b) {a = min(a, b);}\ntemplate<typename T> void chadd(T &a, T b) {a = a + b;}\n \nint dx[] = {0, 0, 1, -1};\nint dy[] = {1, -1, 0, 0};\nconst int INF = 1LL << 29;\nconst ll LONGINF = 1LL << 60;\nconst ll MOD = 1000000007LL;\n\nint bit_stoi(string s) {\n int res = 0;\n for(auto c : s) {\n assert('0' <= c and c <= '2');\n res = res*3 + (c - '0');\n }\n return res;\n}\n\nstring bit_tostring(int v, int len) {\n string res = \"\";\n for(int i=0; i<len; i++) {\n res += (char)('0' + (v % 3));\n v /= 3;\n }\n return string(res.rbegin(), res.rend());\n}\n\nint main() {\n int Q, M; scanf(\"%d%d\", &Q, &M);\n int N = 1;\n for(int i=0; i<M; i++) N *= 3;\n \n vector<string> vs(Q);\n vector<int> values(Q), rec(N, INF), mod(N);\n for(int i=0; i<Q; i++) {\n cin >> vs[i];\n for(auto &c : vs[i]) c--;\n int value = bit_stoi(vs[i]);\n values[i] = value;\n chmin(rec[value], i);\n }\n for(int i=0; i<N; i++) mod[i] = i % 3;\n\n vector<bool> checked(N);\n auto dfs = [&](auto &&f, int v) -> void {\n checked[v] = true;\n for(int i=0, p=1; i<M; i++, p*=3) {\n int d = mod[v/p];\n if(d + 1 < 3) {\n int nv = v + p;\n if(!checked[nv]) f(f, nv);\n chmin(rec[v], rec[nv]);\n }\n }\n };\n dfs(dfs, 0);\n\n string ans = \"\";\n for(int i=0; i<Q; i++) {\n bool ng = false;\n int v = values[i];\n for(int k=0, p=1; k<M; k++, p*=3) {\n int d = mod[v/p];\n if(d == 3) d = 0;\n if(d + 1 < 3) {\n int nv = v + p;\n ng |= (rec[nv] < i);\n }\n }\n ans += (char)('0' + ng);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 2180, "memory_kb": 135684, "score_of_the_acc": -1.3807, "final_rank": 20 }, { "submission_id": "aoj_3184_4849307", "code_snippet": "#include <iostream>\n#include <vector>\n#include <string>\n\n// 文字列を3進数でエンコード\nint enc(const std::string& s) {\n int ret = 0;\n for (char c : s) {\n ret = ret * 3 + (c - '1');\n }\n return ret;\n}\n\nvoid solve() {\n int q, m;\n std::cin >> q >> m;\n\n // k = 3^m\n int k = 1;\n for (int i = 0; i < m; ++i) k *= 3;\n\n std::vector<bool> out(k, false); // 既に上位互換が存在するか\n\n // 下位互換を全てtrueに更新する\n auto propagate = [&](auto&& f, std::string& s) -> void {\n if (out[enc(s)]) return; // 枝刈り\n\n out[enc(s)] = true;\n for (int i = 0; i < m; ++i) {\n if (s[i] == '1') continue;\n --s[i];\n f(f, s);\n ++s[i];\n }\n };\n\n while (q--) {\n std::string s;\n std::cin >> s;\n\n if (out[enc(s)]) {\n std::cout << \"1\";\n continue;\n }\n\n std::cout << \"0\";\n\n // 下位互換を更新\n for (int i = 0; i < m; ++i) {\n if (s[i] == '1') continue;\n --s[i];\n propagate(propagate, s);\n ++s[i];\n }\n }\n\n std::cout << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 1860, "memory_kb": 4924, "score_of_the_acc": -0.6996, "final_rank": 5 }, { "submission_id": "aoj_3184_4849249", "code_snippet": "#include <iostream>\n#include <algorithm>\n#include <vector>\n#include <string>\n#include <map>\n\nint enc(const std::string& s) {\n int ret = 0;\n for (char c : s) {\n ret = ret * 3 + (c - '1');\n }\n return ret;\n}\n\nvoid solve() {\n int n, m;\n std::cin >> n >> m;\n\n int k = 1;\n for (int i = 0; i < m; ++i) k *= 3;\n\n std::vector<bool> out(k, false);\n auto propagate = [&](auto&& f, std::string& s) -> void {\n if (out[enc(s)]) return;\n\n out[enc(s)] = true;\n for (int i = 0; i < m; ++i) {\n if (s[i] == '1') continue;\n --s[i];\n f(f, s);\n ++s[i];\n }\n };\n\n while (n--) {\n std::string s;\n std::cin >> s;\n\n if (out[enc(s)]) {\n std::cout << \"1\";\n continue;\n }\n\n std::cout << \"0\";\n\n for (int i = 0; i < m; ++i) {\n if (s[i] == '1') continue;\n --s[i];\n propagate(propagate, s);\n ++s[i];\n }\n }\n\n std::cout << \"\\n\";\n}\n\nint main() {\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 1870, "memory_kb": 4924, "score_of_the_acc": -0.704, "final_rank": 6 }, { "submission_id": "aoj_3184_4848608", "code_snippet": "//#define _GLIBCXX_DEBUG\n\n#include<bits/stdc++.h>\nusing namespace std;\n\n#define endl '\\n'\n#define lfs cout<<fixed<<setprecision(10)\n#define ALL(a) (a).begin(),(a).end()\n#define ALLR(a) (a).rbegin(),(a).rend()\n#define spa << \" \" <<\n#define fi first\n#define se second\n#define MP make_pair\n#define MT make_tuple\n#define PB push_back\n#define EB emplace_back\n#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)\n#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)\nusing ll = int;\nusing ld = long double;\nconst ll MOD1 = 1e9+7;\nconst ll MOD9 = 998244353;\nconst ll INF = 1e9;\nusing P = pair<ll, ll>;\ntemplate<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}\ntemplate<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}\nll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}\nvoid ans1(bool x){if(x) cout<<\"Yes\"<<endl;else cout<<\"No\"<<endl;}\nvoid ans2(bool x){if(x) cout<<\"YES\"<<endl;else cout<<\"NO\"<<endl;}\nvoid ans3(bool x){if(x) cout<<\"Yay!\"<<endl;else cout<<\":(\"<<endl;}\ntemplate<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} \ntemplate<typename T>void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};\nvoid debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++){for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};\ntemplate<typename T>void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};\ntemplate<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}\nll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}\nvector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};\ntemplate<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}\ntemplate<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}\ntemplate<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << \" \" << p.second;}\ntemplate<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << \" \";cout<<\"|\"; return os;}\n//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());\nstring convert(ll n,ll bit){\n string ret(bit,'0');\n for(ll i=0;i<bit;i++)if(n&1LL<<bit-1-i)ret[i]='1';\n return ret;\n}\nstring convert(ll n){\n ll bit=0;\n while(n>=1<<bit)bit++;\n return convert(n,max(1,bit));\n}\nll convert(string s){\n ll ret=0;\n ll n=s.size();\n for(ll i=0;i<n;i++)if(s[i]=='1')ret|=1LL<<n-i-1;\n return ret;\n}\nvector<ll> convert_base(ll n,ll m,ll base){\n\tvector<ll>ret(m,0);\n\tfor(ll i=0;i<m;i++){\n\t\tret[i]=n%base;\n\t\tn/=base;\n\t}\n\treturn ret;\n}\nll convert_base(vector<ll>v,ll base){\n ll tmp=1,ret=0;\n for(ll i=0;i<v.size();i++){\n ret+=v[i]*tmp;\n tmp*=base;\n }\n return ret;\n}\nint main(){\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n ll res=0,buf=0;\n bool judge = true;\n ll q,m;cin>>q>>m;\n ll sz=1;\n rep(i,0,m)sz*=3;\n vector<bool>dp(sz,false);\n string ret;\n while(q--){\n string s;cin>>s;\n ll pos=0;\n rep(i,0,m){\n pos*=3;\n pos+=(s[i]-'1');\n }\n if(dp[pos])ret+='1';\n else{\n ret+='0';\n queue<ll>que;\n que.push(pos);\n while(!que.empty()){\n auto p=que.front();\n que.pop();\n auto sp=convert_base(p,m,3);\n ll to=p;\n ll add=1;\n rep(i,0,m){\n if(sp[i]==0){\n add*=3;\n continue;\n }\n to-=add;\n if(!dp[to]){\n dp[to]=true;\n que.push(to);\n }\n to+=add;\n add*=3;\n }\n }\n }\n //debug(dp,sz);\n }\n cout<<ret<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 2270, "memory_kb": 12424, "score_of_the_acc": -0.9142, "final_rank": 13 }, { "submission_id": "aoj_3184_4848590", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n/*\n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\ntemplate<class T> ostream& operator << (ostream &s, vector<vector<T> > P)\n{ for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; }\ntemplate<class T> ostream& operator << (ostream &s, set<T> P)\n{ for(auto it : P) { s << \"<\" << it << \"> \"; } return s << endl; }\ntemplate<class T1, class T2> ostream& operator << (ostream &s, map<T1,T2> P)\n{ for(auto it : P) { s << \"<\" << it.first << \"->\" << it.second << \"> \"; } return s << endl; }\n#include <sys/time.h>\ndouble getTime() {\n struct timeval s;\n gettimeofday(&s, NULL);\n return s.tv_sec + s.tv_usec * 1e-6;\n}\n*/\n\ninline int conv(const string &s) {\n int res = 0;\n for (int i = s.size()-1; i >= 0; --i) res *= 3, res += (int)(s[i] - '1');\n return res;\n}\n\ninline string decode(int bit, int M) {\n string res = \"\";\n while (bit) res += (char)('1' + (bit%3)), bit /= 3;\n while (res.size() < M) res += \"1\";\n return res;\n}\n\nint main() {\n int N, M;\n cin >> N >> M;\n vector<string> S(N);\n vector<int> bitS(N);\n for (int q = 0; q < N; ++q) cin >> S[q], bitS[q] = conv(S[q]);\n\n vector<int> three(M+1, 1);\n for (int i = 0; i < M; ++i) three[i+1] = three[i] * 3;\n vector<int> dp(three[M], N);\n for (int q = 0; q < N; ++q) chmin(dp[bitS[q]], q);\n for (int bit = three[M]-1; bit >= 0; --bit) {\n for (int i = 0; i < M; ++i) {\n if (bit / three[i] % 3 == 2) continue;\n chmin(dp[bit], dp[bit + three[i]]);\n }\n }\n for (int q = 0; q < N; ++q) {\n int res = N;\n for (int i = 0; i < M; ++i) {\n if (S[q][i] == '3') continue;\n chmin(res, dp[bitS[q] + three[i]]);\n }\n cout << (res < q ? 1 : 0);\n }\n cout << endl;\n}", "accuracy": 1, "time_ms": 1750, "memory_kb": 96160, "score_of_the_acc": -1.0254, "final_rank": 14 }, { "submission_id": "aoj_3184_4848583", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\n#define COUT(x) cout << #x << \" = \" << (x) << \" (L\" << __LINE__ << \")\" << endl\ntemplate<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)\n{ return s << '<' << P.first << \", \" << P.second << '>'; }\ntemplate<class T> ostream& operator << (ostream &s, vector<T> P)\n{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << \" \"; } s << P[i]; } return s; }\ntemplate<class T> ostream& operator << (ostream &s, vector<vector<T> > P)\n{ for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; }\ntemplate<class T> ostream& operator << (ostream &s, set<T> P)\n{ for(auto it : P) { s << \"<\" << it << \"> \"; } return s << endl; }\ntemplate<class T1, class T2> ostream& operator << (ostream &s, map<T1,T2> P)\n{ for(auto it : P) { s << \"<\" << it.first << \"->\" << it.second << \"> \"; } return s << endl; }\n#include <sys/time.h>\ndouble getTime() {\n struct timeval s;\n gettimeofday(&s, NULL);\n return s.tv_sec + s.tv_usec * 1e-6;\n}\n\n\ninline int conv(const string &s) {\n int res = 0;\n for (int i = s.size()-1; i >= 0; --i) res *= 3, res += (int)(s[i] - '1');\n return res;\n}\n\ninline string decode(int bit, int M) {\n string res = \"\";\n while (bit) res += (char)('1' + (bit%3)), bit /= 3;\n while (res.size() < M) res += \"1\";\n return res;\n}\n\nint main() {\n ios::sync_with_stdio(false);\n cin.tie(0); \n\n auto start = getTime();\n\n int N, M;\n cin >> N >> M;\n vector<string> S(N);\n vector<int> bitS(N);\n for (int q = 0; q < N; ++q) cin >> S[q], bitS[q] = conv(S[q]);\n\n //COUT(getTime() - start);\n\n vector<int> three(M+1, 1);\n for (int i = 0; i < M; ++i) three[i+1] = three[i] * 3;\n vector<int> dp(three[M], N);\n for (int q = 0; q < N; ++q) chmin(dp[bitS[q]], q);\n for (int bit = three[M]-1; bit >= 0; --bit) {\n for (int i = 0; i < M; ++i) {\n if (bit / three[i] % 3 == 2) continue;\n chmin(dp[bit], dp[bit + three[i]]);\n }\n }\n\n //COUT(getTime() - start);\n \n for (int q = 0; q < N; ++q) {\n int res = N;\n for (int i = 0; i < M; ++i) {\n if (S[q][i] == '3') continue;\n chmin(res, dp[bitS[q] + three[i]]);\n }\n cout << (res < q ? 1 : 0);\n }\n cout << endl;\n}", "accuracy": 1, "time_ms": 1240, "memory_kb": 88240, "score_of_the_acc": -0.7641, "final_rank": 9 }, { "submission_id": "aoj_3184_4848498", "code_snippet": "/**\n * author: otera \n**/\n#include<iostream>\n#include<string> \n#include<cstdio>\n#include<cstring>\n#include<vector>\n#include<cmath>\n#include<algorithm> \n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<deque>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\nusing namespace std;\n\n//#define int long long\ntypedef long long ll;\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\ntypedef long double ld;\nconst int inf=1e9+7;\nconst ll INF=1LL<<60 ;\nconst ll mod=1e9+7 ;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef complex<ld> Point;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<int, int> P;\ntypedef pair<ld, ld> LDP;\ntypedef pair<ll, ll> LP;\n#define fr first\n#define sc second\n#define all(c) c.begin(),c.end()\n#define pb push_back\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\nint q, m;\nbitset<14348908> used;\nbitset<14348908> sad;\n\nint f(string x) {\n int pw = 1;\n int ret = 0;\n rep(i, m) {\n ret += (x[i] - '1') * pw;\n pw *= 3;\n }\n return ret;\n}\n\nvoid solve() {\n\tcin >> q >> m;\n vector<int> ans(q, 0);\n queue<int> que;\n rep(_, q) {\n string s; cin >> s;\n int cur = f(s);\n // cerr << cur << endl;\n if(sad[cur]) {\n ans[_] = 1;\n }\n if(!used[cur]) {\n used[cur] = 1;\n que.push(cur);\n while(!que.empty()) {\n int t = que.front(); que.pop();\n int pw = 1;\n rep(i, m) {\n int x = (t % (3 * pw)) / pw;\n if(x >= 1) {\n t -= pw;\n if(!used[t]) {\n que.push(t);\n used[t] = 1;\n sad[t] = 1;\n }\n if(!sad[t]) {\n sad[t] = 1;\n }\n t += pw;\n }\n pw *= 3;\n }\n }\n }\n }\n rep(i, q) {\n cout << ans[i];\n }\n cout << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(10);\n\t//int t; cin >> t; rep(i, t)solve();\n\tsolve();\n return 0;\n}", "accuracy": 1, "time_ms": 1860, "memory_kb": 16032, "score_of_the_acc": -0.7452, "final_rank": 8 }, { "submission_id": "aoj_3184_4848447", "code_snippet": "#include <iostream>\n#include <string>\n#include <cstdlib>\n#include <cmath>\n#include <vector>\n#include <unordered_map>\n#include <map>\n#include <set>\n#include <algorithm>\n#include <queue>\n#include <stack>\n#include <functional>\n#include <bitset>\n#include <assert.h>\n#include <unordered_map>\n#include <fstream>\n#include <ctime>\n#include <complex>\nusing namespace std;\ntypedef long long ll;\ntypedef vector<ll> vl;\ntypedef vector<vl> vvl;\ntypedef vector<char> vc;\ntypedef vector<string> vs;\ntypedef vector<bool> vb;\ntypedef vector<double> vd;\ntypedef pair<ll,ll> P;\ntypedef pair<int,int> pii;\ntypedef vector<P> vpl;\ntypedef tuple<ll,ll,ll> tapu;\n#define rep(i,n) for(int i=0; i<(n); i++)\n#define REP(i,a,b) for(int i=(a); i<(b); i++)\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\nconst int inf = 1<<30;\nconst ll linf = 1LL<<62;\nconst int MAX = 1020000;\nll dy[8] = {1,-1,0,0,1,-1,1,-1};\nll dx[8] = {0,0,1,-1,1,-1,-1,1};\nconst double pi = acos(-1);\nconst double eps = 1e-7;\ntemplate<typename T1,typename T2> inline bool chmin(T1 &a,T2 b){\n\tif(a>b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T1,typename T2> inline bool chmax(T1 &a,T2 b){\n\tif(a<b){\n\t\ta = b; return true;\n\t}\n\telse return false;\n}\ntemplate<typename T> inline void print(T &a){\n for(auto itr = a.begin(); itr != a.end(); itr++){\n\t\tcout << *itr << \" \";\n\t}\n cout << \"\\n\";\n}\ntemplate<typename T1,typename T2> inline void print2(T1 a, T2 b){\n\tcout << \"debug: \" << a << \" \" << b << \"\\n\";\n}\ntemplate<typename T1,typename T2,typename T3> inline void print3(T1 a, T2 b, T3 c){\n\tcout << \"debug: \" << a << \" \" << b << \" \" << c << \"\\n\";\n}\nvoid mark() {cout << \"#\" << \"\\n\";}\nll pcount(ll x) {return __builtin_popcountll(x);}\nconst int mod = 1e9 + 7;\n//const int mod = 998244353;\n\nint sad[20202020];\nint cnt[20202020];\nint num[505050];\n\nint main(){\n\tint q,m; cin >> q >> m;\n\tvs s(q); rep(i,q) cin >> s[i];\n\tint p = 1;\n\trep(i,m) p *= 3;\n\tp--;\n\trep(i,p+1){\n\t\tsad[i] = inf;\n\t\tcnt[i] = inf;\n\t}\n\trep(i,q){\n\t\tint tmp = 1;\n\t\trep(j,m){\n\t\t\tnum[i] += (s[i][j] - 1 - '0') * tmp;\n\t\t\ttmp *= 3;\n\t\t}\n\t\tchmin(cnt[num[i]],i);\n\t}\n\tint tmp = 1;\n\trep(i,m){\n\t\tfor(int trit = p; trit > 0; trit--){\n\t\t\tint a = (trit / tmp) % 3;\n\t\t\tfor(int j=1; j<=a; j++){\n\t\t\t\tchmin(sad[trit - tmp * j], min(sad[trit], cnt[trit]));\n\t\t\t}\n\t\t}\n\t\ttmp *= 3;\n\t}\n\tstring ans(q,'@');\n\trep(i,q){\n\t\tans[i] = (char)('0' + (sad[num[i]] < i));\n\t}\n\tcout << ans << \"\\n\";\n}", "accuracy": 1, "time_ms": 1470, "memory_kb": 152508, "score_of_the_acc": -1.1315, "final_rank": 18 }, { "submission_id": "aoj_3184_4848338", "code_snippet": "/**\n * author: otera \n**/\n#include<iostream>\n#include<string> \n#include<cstdio>\n#include<cstring>\n#include<vector>\n#include<cmath>\n#include<algorithm> \n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<deque>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\nusing namespace std;\n\n#define int long long\ntypedef long long ll;\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\ntypedef long double ld;\nconst int inf=1e9+7;\nconst ll INF=1LL<<60 ;\nconst ll mod=1e9+7 ;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef complex<ld> Point;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<int, int> P;\ntypedef pair<ld, ld> LDP;\ntypedef pair<ll, ll> LP;\n#define fr first\n#define sc second\n#define all(c) c.begin(),c.end()\n#define pb push_back\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\nvoid solve() {\n\tint q, m; cin >> q >> m;\n int s = 1;\n rep(_, m) s *= 3;\n vector<int> st(s, inf);\n vector<int> pos(q);\n rep(i, q) {\n string s; cin >> s;\n int w = 0;\n rep(_, m) {\n w *= 3;\n w += s[_] - '1';\n }\n chmin(st[w], i);\n pos[i] = w;\n }\n vector<int> dp(s, inf);\n vector<int> buf(m);\n per(i, s) {\n int now = i;\n per(j, m) {\n buf[j] = now % 3;\n now /= 3; \n }\n int z = 1;\n per(j, m) {\n if(buf[j] < 2) {\n chmin(dp[i], dp[i + z]);\n chmin(dp[i], st[i + z]);\n }\n z *= 3;\n }\n }\n rep(i, q) {\n if(dp[pos[i]] < i) cout << 1;\n else cout << 0;\n }\n cout << \"\\n\";\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(10);\n\t//int t; cin >> t; rep(i, t)solve();\n\tsolve();\n return 0;\n}", "accuracy": 1, "time_ms": 770, "memory_kb": 230988, "score_of_the_acc": -1.1403, "final_rank": 19 } ]
aoj_3187_cpp
C: mod reap 問題 hara 君は、夏休みに農家でアルバイトをすることになりました。 hara 君の仕事は、会津人参の収穫と、パック詰めです。 畑には現在 $N$ 本の会津人参がなっていて、 $i$ ($1 \leq i \leq N$) 番目の会津人参の重さは $A_i$ グラムです。 hara 君は畑から何本かの会津人参を収穫し、 1 パックに ちょうど $K$ グラムずつ入るように分けます。 このとき、会津人参をカットして複数のパックに分けてもかまいません。 また、全部収穫しても、あるいは 1 本も収穫しなくてもよい ものとします。 hara 君は几帳面なので、以下の条件により hara 君の「満足度」が変化します。 出来た $K$ グラム入りのパック 1 つにつき満足度が 1 増加します。 最終的に余った (パックに入らなかった) 会津人参 1 グラムにつき満足度が 1 減少します。 より形式的には、収穫した会津人参の合計量を $S$ グラムとしたとき、 hara 君の満足度 $f(S)$ は以下の式で計算されます。 $$f(S) = \lfloor S / K \rfloor - (S \bmod K)$$ ここで、$\lfloor S / K \rfloor$ とは $S \div K$ の商、 $S \bmod K$ とは $S$ を $K$ で割った余りを意味します。 このとき、 hara 君の満足度の最大値を求めてください。 入力形式 $N$ $K$ $A_1$ … $A_N$ 制約 入力はすべて整数 $1 \leq N \leq 50000$ $1 \leq K \leq 100$ $1 \leq A_i \leq K$ 出力形式 hara 君の満足度の最大値を一行に出力してください。 入力例 1 3 5 2 3 4 出力例 1 1 1 番目と 2 番目の会津人参を収穫すると収穫量が 5 グラムとなり、 5 グラム入りのパックを 1 つ作ることができます。また、余りはないので満足度は 1 となり、これが最大です。 入力例 2 6 7 1 2 3 4 5 6 出力例 2 3 すべての会津人参を収穫すると合計で 21 グラムとなり、このとき満足度を 3 にできます。これが最大値となります。 入力例 3 5 100 1 1 1 1 1 出力例 3 0 この場合、 1 本も収穫しないと満足度は 0 となり、これが最大です。
[ { "submission_id": "aoj_3187_8525842", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing vll = vector<ll>;\nusing vvll = vector<vll>;\n#define all(A) A.begin(),A.end()\n#define rep(i, n) for (ll i = 0; i < (ll) (n); i++)\ntemplate<class T>\nbool chmax(T& p, T q, bool C = 1) {\n if (C == 0 && p == q) {\n return 1;\n }\n if (p < q) {\n p = q;\n return 1;\n }\n else {\n return 0;\n }\n}\ntemplate<class T>\nbool chmin(T& p, T q, bool C = 1) {\n if (C == 0 && p == q) {\n return 1;\n }\n if (p > q) {\n p = q;\n return 1;\n }\n else {\n return 0;\n }\n}\n\nint main() {\n\n cin.tie(nullptr);\n ios::sync_with_stdio(false);\n\n ll N,K;\n cin>>N>>K;\n vvll DP(N+1,vll(K,-1e18));\n DP[0][0]=0;\n rep(i,N){\n ll A;\n cin>>A;\n rep(k,K){\n chmax(DP[i+1][k],DP[i][k]);\n ll nk=k+A;\n chmax(DP[i+1][nk%K],DP[i][k]+nk/K);\n }\n }\n ll an=0;\n rep(i,K)chmax(an,DP[N][i]-i);\n cout<<an<<endl;\n\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 44008, "score_of_the_acc": -0.6298, "final_rank": 16 }, { "submission_id": "aoj_3187_7992963", "code_snippet": "#include<bits/stdc++.h>\n#define rep(i,n) for(int i=0; i<(n); i++)\n\nusing namespace std;\nusing ll = long long ;\nusing P = pair<int,int>;\nconst int mod = 998244353;\nconst int inf = (1<<30);\n\nconst int dy[4] = {-1,0,0,1};\nconst int dx[4] = {0,-1,1,0};\n\nint main(){\n int n,k; cin>>n>>k;\n\n vector<int> a(n);\n rep(i,n) cin>>a[i];\n\n vector<vector<int>> dp(n+1,vector<int>(k,-inf));\n dp[0][0] = 0;\n rep(i,n){\n rep(j,k){\n if(dp[i][j] == -inf) continue;\n dp[i+1][(j+a[i])%k] = max(dp[i+1][(j+a[i])%k], dp[i][j]+a[i]);\n dp[i+1][j] = max(dp[i+1][j],dp[i][j]);\n }\n }\n\n int ans = 0;\n\n rep(i,k){\n ans = max(ans,(dp[n][i]/k) - i);\n }\n cout<<ans<<endl;\n\n\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 24760, "score_of_the_acc": -0.3113, "final_rank": 12 }, { "submission_id": "aoj_3187_7992942", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n\nconst int inf = (int)1e9;\n\nint main() {\n int N, K; cin >> N >> K;\n vector dp(K, -inf);\n dp[0] = 0;\n for (int _ = 0 ; _ < N ; _++) {\n int A; cin >> A;\n vector nxt(K, -inf);\n for (int i = 0 ; i < K ; i++) {\n if (dp[i] == -inf) {\n continue;\n }\n int mod = (i + A) % K;\n bool add = ((i + A) >= K);\n nxt[mod] = max(nxt[mod], dp[i] + (int)add);\n nxt[i] = max(nxt[i], dp[i]);\n }\n dp = move(nxt);\n }\n\n int ans = -inf;\n for (int i = 0 ; i < K ; i++) {\n ans = max(ans, dp[i] - i);\n }\n cout << ans << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3444, "score_of_the_acc": -0.0237, "final_rank": 3 }, { "submission_id": "aoj_3187_7992935", "code_snippet": "#include<bits/stdc++.h>\n\nusing namespace std;\n\nint func(){\n int n;\n int k;\n cin >> n >> k;\n vector<int> dp1(k,-1e9);\n vector<int> dp2(k,-1e9);\n dp1[0] = 0;\n for(int i=0;i<n;++i){\n dp2.clear();\n dp2.assign(k,-1e9);\n int v;\n cin >> v;\n for(int j=0;j<k;++j){\n int j2 = (j + v) % k;\n dp2[j2] = max(dp2[j2], dp1[j] + v);\n dp2[j] = max(dp2[j], dp1[j]);\n }\n swap(dp1,dp2);\n }\n int res = -1e9;\n for(int i=0;i<k;++i){\n res = max(res, dp1[i] / k - dp1[i] % k);\n }\n return res;\n}\nint main(){\n cout << func() << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 3452, "score_of_the_acc": -0.0238, "final_rank": 4 }, { "submission_id": "aoj_3187_7011918", "code_snippet": "/* -*- coding: utf-8 -*-\n *\n * 3187.cc: Mod Reap\n */\n\n#include<cstdio>\n#include<algorithm>\n \nusing namespace std;\n\n/* constant */\n\nconst int MAX_N = 50000;\nconst int MAX_K = 100;\n\n/* typedef */\n\n/* global variables */\n\nint as[MAX_N], dp[2][MAX_K];\n\n/* subroutines */\n\ninline void setmax(int &a, int b) { if (a < b) a = b; }\n\n/* main */\n\nint main() {\n int n, k;\n scanf(\"%d%d\", &n, &k);\n for (int i = 0; i < n; i++) scanf(\"%d\", as + i);\n\n fill(dp[0], dp[0] + k, -1);\n dp[0][0] = 0;\n int cur = 0, nxt = 1;\n\n for (int i = 0; i < n; i++) {\n copy(dp[cur], dp[cur] + k, dp[nxt]);\n\n for (int j = 0; j < k; j++)\n if (dp[cur][j] >= 0) {\n\tint d0 = dp[cur][j], j1 = j + as[i];\n\tif (j1 >= k) j1 -= k, d0++;\n\tsetmax(dp[nxt][j1], d0);\n }\n\n swap(cur, nxt);\n }\n\n int maxd = 0;\n for (int j = 0; j < k; j++) setmax(maxd, dp[cur][j] - j);\n\n printf(\"%d\\n\", maxd);\n\n return 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3140, "score_of_the_acc": 0, "final_rank": 1 }, { "submission_id": "aoj_3187_5895098", "code_snippet": "#pragma region header\n#include <bits/stdc++.h>\nusing namespace std;\n// #include <atcoder/all>\n// using namespace atcoder;\n\n/* alias */\nusing ull = unsigned long long;\nusing ll = long long;\nusing vi = vector<int>;\nusing vl = vector<long>;\nusing vll = vector<long long>;\nusing vf = vector<float>;\nusing vvf = vector<vf>;\nusing vvi = vector<vi>;\nusing vvl = vector<vl>;\nusing vvll = vector<vll>;\nusing vs = vector<string>;\nusing vvs = vector<vs>;\nusing vc = vector<char>;\nusing vb = vector<bool>;\nusing vvb = vector<vb>;\nusing vvc = vector<vc>;\nusing pll = pair<ll, ll>;\nusing vpll = vector<pll>;\nusing qll = queue<ll>;\n//仮想配列map<> https://code-database.com/knowledges/100\n//優先度付きque https://atcoder.jp/contests/apg4b/tasks/APG4b_aa\n\n/* define short */\n#define MOD 1000000007\n#define INF LLONG_MAX/32\n#define elif else if\n#define pb push_back\n#define pf push_front\n#define fi first\n#define se second\n#define mp make_pair\n#define all(obj) (obj).begin(), (obj).end()\n#define YESNO(bool) if(bool){cout<<\"YES\"<<endl;}else{cout<<\"NO\"<<endl;}\n#define yesno(bool) if(bool){cout<<\"yes\"<<endl;}else{cout<<\"no\"<<endl;}\n#define YesNo(bool) if(bool){cout<<\"Yes\"<<endl;}else{cout<<\"No\"<<endl;}\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\n\n/* REP macro */\n#define reps(i, a, n) for (ll i = (a); i < (ll)(n); ++i)\n#define rep(i, n) reps(i, 0, n)\n#define rrep(i, n) reps(i, 1, n + 1)\n#define repd(i,n) for(ll i=n-1;i>=0;i--)\n#define rrepd(i,n) for(ll i=n;i>=1;i--)\n\n//小数点以下出力の時にmainに書く\n// cout << fixed << setprecision(10);\n\n#pragma endregion header\n\nll N;\n\n\nvvll Graph;/*グラフ*/\n// struct edge{ll to, cost;};\n// vector<vector<edge>> Graph;\nll H, W; vs HW;/*HW .#*/\n\n\n\n#pragma region fanction\n#pragma region First Search\n/*幅優先探索 vll dist(N,-1); Graphは隣接リスト*/\nvoid bfs(vll &dist, ll fq, vvll Graph){\n dist[fq] = 0;\n deque<ll> que;que.pb(fq);\n ll v;\n while(!que.empty()){\n v = que.front();que.pop_front();\n\n for(ll nv:Graph[v]){\n if(dist[nv] != -1) continue;\n dist[nv] = dist[v] + 1;\n que.pb(nv);\n }\n }\n}\n\n\n/*distにsysxからの距離が入る 各重み1*/\n/*HW幅優先探索 https://pyteyon.hatenablog.com/entry/2019/03/01/211133#%E6%B7%B1%E3%81%95%E5%84%AA%E5%85%88%E6%8E%A2%E7%B4%A2*/\n/*vvll dist(H vll(W)); rep(h,H) rep(w,W) dist[h][w] = INF;*/\nvoid HW_bfs(vvll &dist, ll sy, ll sx, vs HW){\n dist[sy][sx] = 0;\n deque<vll> que;\n que.pb({sy,sx});\n\n vll v;\n ll nowy, nowx, nexty,nextx;\n vvll dydx = {{1,0},{0,1},{-1,0},{0,-1}};\n\n //重み1ならpbしてd++ 重み0ならpfしてそのままdiseにd入れれば01bfs\n //que.back();que.pop_back()で深さ優先探索\n\n while(!que.empty()){\n v = que.front();que.pop_front();\n nowy = v[0]; nowx = v[1];\n for(vll dyx:dydx){\n nexty = nowy+dyx[0]; nextx = nowx+dyx[1];\n if(!(0 <= nexty && nexty < H && 0 <= nextx && nextx < W)) continue;\n if(HW[nexty][nextx] == '.' && dist[nexty][nextx] == INF){\n que.pb({nexty,nextx});\n dist[nexty][nextx] = dist[nowy][nowx] + 1;\n }\n }\n }\n}\n\n/*深さ優先探索 vll dist(N,-1); Graphは隣接リスト スタートのdistを0にすること!*/\nvoid dfs(vll &dist, ll v, vvll &Graph){\n for(ll nv:Graph[v]){\n if(dist[nv] != -1) continue;\n dist[nv] = dist[v] + 1;\n dfs(dist,nv,Graph);\n }\n}\n\n//単一始点最短経路 ダイクストラ O(MlogN)\n//vector<vector<pll>> //Graph; fi:to se:cost\n// Graph.resize(N);\n// rep(i,M){\n// ll a,b,c; cin >> a >> b >> c;\n// a--;b--;\n// Graph[a].pb(pll(b,c));\n// Graph[b].pb(pll(a,c));\n// }\n\nvll dijkstra(ll start,vector<vector<pll>> &Graph){\n vll dist(N,INF);\n priority_queue<pll,vector<pll>,greater<pll>> que;\n dist[start] = 0;\n que.push(pll(dist[start],start));\n while (!que.empty()){\n pll p = que.top(); que.pop();\n ll v = p.second;\n if(dist[v] < p.first) continue;\n for(auto &e:Graph[v]){\n if(dist[e.first] > dist[v] + e.second){\n dist[e.first] = dist[v] + e.second;\n que.push(pll(dist[e.first],e.first));\n }\n }\n }\n\n return dist;\n}\n\n#pragma endregion First Search\n#pragma region MOD\nconst ll nCkMax = 1e6;\nvll fac(1,0),finv(1,0),inv(1,0);\n\nvoid COMinit(){\n fac.resize(nCkMax);\n finv.resize(nCkMax);\n inv.resize(nCkMax);\n fac[0] = fac[1] = 1;\n finv[0] = finv[1] = 1;\n inv[1] = 1;\n for(ll i=2;i<nCkMax;i++){\n fac[i] = fac[i-1] * i % MOD;\n inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;\n finv[i] = finv[i - 1] * inv[i] % MOD;\n }\n}\n/*a^n % mod p O(log N)*/\nll modpow(ll a, ll n) {\n ll res = 1;\n while (n > 0) {\n if (n & 1) res = res * a % MOD;\n a = a * a % MOD;\n n >>= 1;\n }\n return res;\n}\n/*a! mod p O(N)*/\nll modfac(ll n){\n ll ret = 1;\n rrep(i,n){\n ret *= i;\n ret %= MOD;\n }\n return ret;\n}\n\n/*nCk % mod 前処理O(N) クエリ処理O(1)*/\nll nCk(ll n, ll k){\n if(fac[0] != 1) COMinit();//初期化 O(N)\n if(n<k) return 0;\n if(n<0 || k<0) return 0;\n return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;\n}\n\nll factorial(ll n){\n ll ans = 1;\n for (ll i = 1;i<=n;i++){\n ans = ans * i % MOD;\n }\n return ans;\n}\n\nll nHk(ll n, ll k){\n return nCk(n+k-1,k);\n}\n#pragma endregion MOD\n#pragma region enumeration\nvvll make_n(vll v){\n vvll ret;\n vll tmp;\n ll n = v.size();\n do{\n tmp = {};\n rep(i,n) tmp.pb(v[i]);\n ret.pb(tmp);\n }while(next_permutation(all(v)));\n return ret;\n}\n/*nCk列挙 vvllなのに注意!*/\nvvll make_C(ll n, ll r){\n vvll ret;\n vll tmp;\n vector<bool> v(n);\n fill(v.end() - r, v.end(), true);\n do {\n tmp = {};\n for (int i = 0; i < n; ++i) { \n if (v[i]) tmp.pb(i);\n }\n ret.pb(tmp);\n } while (next_permutation(v.begin(), v.end()));\n //reverse(all(ret));\n return ret;\n}\n/*nPk列挙 nPnでn!列挙 この時順番通りになってる*/\nvvll make_P(ll n, ll r){\n vvll C = make_C(n,r);\n vvll ret;\n vvll tmp;\n vll v;\n rep(i,C.size()){\n v = C[i];\n tmp = make_n(v);\n for(vll t:tmp) ret.pb(t);\n }\n return ret;\n}\n\n#pragma endregion enumeration\n#pragma region array\n\n/*一次元配列最大最小総和*/\nll vmax(vll array){\n ll Max = -INF;\n for(ll a:array) chmax(Max,a);\n return Max;\n}\n\nll vmin(vll array){\n ll Min = INF;\n for(ll a:array) chmin(Min,a);\n return Min;\n}\n\nll sum(vll &array){\n ll Sum = 0;\n for(ll a:array) Sum += a;\n return Sum;\n}\n\n/*累積和 先頭に0が追加されてる lからrまではret[r+1]-ret[l]*/\nvll cumulatice_sum(vll &array){\n vll ret(array.size()+1,0);\n rep(i,array.size()) ret[i+1] = ret[i] + array[i];\n return ret;\n}\n\n/*重複消し*/\nvoid list_set(vll &array){\n sort(all(array));\n array.erase(unique(all(array)),array.end());\n}\n\n/*vvllで格納されてる配列をkey番目の要素でソート*/\nvoid vvllsort(vvll &array, ll key){\n sort(all(array),[&key](vll a,vll b){return a[key] < b[key];});\n}\n\n/*string Sに何個string Kが含まれるか 一文字でもいいけどcharじゃなくてstringにしてね*/\nll stringinstring(string &S,string K){\n ll ret = 0;\n rep(i,S.size()-K.size()+1){\n bool f = true;\n rep(j,K.size()) if(S[i+j] != K[j]) f=false;\n if(f) ret++;\n }\n return ret;\n}\n#pragma endregion array\n#pragma region UnionFind\nclass UnionFind{\npublic:\n vector<ll> parent; //parent[i]はiの親\n vector<ll> siz; //素集合のサイズを表す配列(1で初期化)\n map<ll,vector<ll>> group; //集合ごとに管理する(key:集合の代表元、value:集合の要素の配列)\n ll n; //要素数\n \n //コンストラクタ\n UnionFind(ll n_):n(n_),parent(n_),siz(n_,1){ \n //全ての要素の根が自身であるとして初期化\n for(ll i=0;i<n;i++){parent[i]=i;}\n }\n \n //データxの属する木の根を取得(経路圧縮も行う)\n ll root(ll x){\n if(parent[x]==x) return x;\n return parent[x]=root(parent[x]);//代入式の値は代入した変数の値なので、経路圧縮できる\n }\n \n //xとyの木を併合\n void unite(ll x,ll y){\n ll rx=root(x);//xの根\n ll ry=root(y);//yの根\n if(rx==ry) return;//同じ木にある時\n //小さい集合を大きい集合へと併合(ry→rxへ併合)\n if(siz[rx]<siz[ry]) swap(rx,ry);\n siz[rx]+=siz[ry];\n parent[ry]=rx;//xとyが同じ木にない時はyの根ryをxの根rxにつける\n }\n \n //xとyが属する木が同じかを判定\n bool same(ll x,ll y){\n ll rx=root(x);\n ll ry=root(y);\n return rx==ry;\n }\n \n //xの素集合のサイズを取得\n ll size(ll x){\n return siz[root(x)];\n }\n \n //素集合をそれぞれグループ化\n void grouping(){\n //経路圧縮を先に行う\n rep(i,n)root(i);\n //mapで管理する(デフォルト構築を利用)\n rep(i,n)group[parent[i]].pb(i);\n }\n \n //素集合系を削除して初期化\n void clear(){\n rep(i,n){parent[i]=i;}\n siz=vector<ll>(n,1);\n group.clear();\n }\n};\n#pragma endregion UnionFind\n#pragma region bisect\n/*二分探索*/\nll bisect_left(vll &array, ll key){\n return lower_bound(all(array),key) - array.begin();\n}\n\nll bisect_right(vll &array, ll key){\n return upper_bound(all(array),key) - array.begin();\n}\n\n/*最長増加部分列*/\nll LIS(vll a){\n vll dp(a.size(),INF);\n rep(i,a.size()){\n dp[bisect_right(dp,a[i])] = a[i];\n }\n return bisect_left(dp,INF);\n}\n/*条件を満たす最大のokを返す 最小にしたいならokng逆にする solveを書き換えること!*/\nbool solve(ll n){\n return true;\n}\n\nll meguru_bisect(ll ok, ll ng){\n ll mid;\n while(abs(ok-ng) > 1){\n mid = (ok + ng) / 2;\n if(solve(mid)) ok = mid;\n else ng = mid;\n }\n return ok;\n}\n#pragma endregion bisect\n#pragma region others\n\n/* memo\n\n二次元配列の90度回転\n// i:j \n// j:N - i - 1\n\n\n*/\n\n\n\n/*普通のa^n*/\nll pow(ll a, ll n){\n ll res = 1;\n while (n > 0) {\n if (n & 1) res *= a;\n a *= a;\n n >>= 1;\n }\n return res;\n}\n/*最大公約数*/\nll gcd(ll x,ll y){\n if (x < y) swap(x,y);\n while (y > 0){\n ll r = x % y;\n x = y;\n y = r;\n }\n return x;\n}\n\n/*最小公倍数*/\nll lcm(ll x,ll y){\n return x * y / (gcd(x,y));\n}\n\n/*約数列挙*/\nvll divisor(ll n){\n vll ret;\n for (ll i = 1; i * i <= n; i++){\n if (n % i == 0){\n ret.pb(i);\n if (i * i != n) ret.pb(n / i);\n }\n }\n sort(all(ret));\n return ret;\n}\n\n/*素因数分解*/\nvll factorize(ll n){\n vll ret;\n while (n % 2 == 0){\n ret.pb(2);\n n /= 2;\n }\n ll f = 3;\n while (f * f <= n){\n if (n % f == 0){\n ret.pb(f);\n n /= f;\n }else f += 2;\n }\n if (n != 1) ret.pb(n);\n return ret;\n}\nconst ll Eramax = 1e6+1;\nvll Eratos(1,1);\nvoid Erainit(){\n Eratos.resize(Eramax+1);\n rep(i,Eramax+1) Eratos[i] = i;\n for(ll i=2;i<Eramax;i++){\n if(Eratos[i] != i) continue;\n for(ll j=2*i;j<Eramax;j+=i) Eratos[j] = i;\n }\n Eratos[1] = -1;\n}\n//前処理型素因数分解 1e6以下を複数回やるならこっち\nvll Era_factorize(ll n){\n if(Eratos[0] != 0) Erainit();\n vll ret = {};\n if(n==1) return ret;\n while(n!=1){\n ret.pb(Eratos[n]);\n n /= Eratos[n];\n }\n return ret;\n}\n\n#pragma endregion others\n#pragma endregion fanction\n\n\n\n\nint main() {\n ll K; cin >> N >> K;\n vll cnt(K+1,0);\n rep(i,N){\n ll a; cin >> a;\n cnt[a]++;\n }\n\n // vvll dp(K+1,vll(N*K+1,-1));\n vll dp(N*K+1,-1);\n // vector<vector<bool>> dp(K+1,vector<bool>(N*K+1,false));\n dp[0] = 0;\n rep(i,K){\n \n rep(j,N*K+1){\n ll g = i + 1;\n ll cn = cnt[i+1];\n if(dp[j] >= 0) dp[j] = cn;\n elif(j-g < 0 || dp[j-g] <= 0) dp[j] = -1;\n else dp[j] = dp[j-g] - 1;\n }\n }\n\n vll List;\n rep(j,N*K+1){\n if(dp[j] != -1) List.pb(j);\n }\n\n ll Ans = -INF;\n for(ll S:List){\n ll get = S/K - S%K;\n chmax(Ans,get);\n }\n\n cout << Ans << endl;\n \n}", "accuracy": 1, "time_ms": 520, "memory_kb": 77264, "score_of_the_acc": -2, "final_rank": 20 }, { "submission_id": "aoj_3187_5263095", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\ntypedef long long ll;\n\nint dp[50050][101];\n\nint main(){\n\tint n,k; cin >> n >> k;\n\tvector<int> a(n);\n\tfor(int i=0;i<n;i++){\n\t\tcin >> a[i];\n\t}\n\tfor(int i=0;i<n;i++){\n\t\tfor(int j=0;j<k;j++){\n\t\t\tdp[i][j]=-1;\n\t\t}\n\t}\n\tdp[0][0]=0;\n\tfor(int i=0;i<n;i++){\n\t\tfor(int j=0;j<k;j++){\n\t\t\tif(dp[i][j]<0)continue;\n\t\t\tdp[i+1][j]=max(dp[i+1][j],dp[i][j]);\n\t\t\tdp[i+1][(j+a[i])%k]=max(dp[i+1][(j+a[i])%k],dp[i][j]+(j+a[i])/k);\n\t\t}\n\t}\n\tint res=-1e9;\n\tfor(int i=0;i<k;i++){\n\t\tres=max(res,dp[n][i]-i);\n\t}\n\tcout << res << endl;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 22820, "score_of_the_acc": -0.2851, "final_rank": 10 }, { "submission_id": "aoj_3187_5069382", "code_snippet": "#line 2 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#include <bits/stdc++.h>\n#line 4 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n#include <string_view>\n#line 7 \"/home/yuruhiya/programming/library/template/constants.cpp\"\n\n#define rep(i, n) for (int i = 0; i < (n); ++i)\n#define FOR(i, m, n) for (int i = (m); i < (n); ++i)\n#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)\n#define rfor(i, m, n) for (int i = (m); i >= (n); --i)\n#define unless(c) if (!(c))\n#define all(x) (x).begin(), (x).end()\n#define rall(x) (x).rbegin(), (x).rend()\n#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)\n\nusing namespace std;\nusing ll = long long;\nusing LD = long double;\nusing VB = vector<bool>;\nusing VVB = vector<VB>;\nusing VI = vector<int>;\nusing VVI = vector<VI>;\nusing VL = vector<ll>;\nusing VVL = vector<VL>;\nusing VS = vector<string>;\nusing VD = vector<LD>;\nusing PII = pair<int, int>;\nusing VP = vector<PII>;\nusing PLL = pair<ll, ll>;\nusing VPL = vector<PLL>;\ntemplate <class T> using PQ = priority_queue<T>;\ntemplate <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;\nconstexpr int inf = 1000000000;\nconstexpr long long inf_ll = 1000000000000000000ll, MOD = 1000000007;\nconstexpr long double PI = 3.14159265358979323846, EPS = 1e-12;\nnamespace CharacterClass {\n\tconstexpr string_view\n\t digit = \"0123456789\",\n\t xdigit = \"0123456789ABCDEFabcdef\", lower = \"abcdefghijklmnopqrstuvwxyz\",\n\t upper = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\",\n\t alpha = \"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t alnum = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",\n\t word = \"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz\",\n\t punct = R\"(!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~)\",\n\t graph =\n\t R\"(!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t print =\n\t R\"( !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~)\",\n\t blank = \" \\t\", space = \" \\t\\n\\r\\f\\v\";\n} // namespace CharacterClass\n#line 7 \"/home/yuruhiya/programming/library/template/Input.cpp\"\nusing namespace std;\n\n#ifdef _WIN32\n#define getchar_unlocked _getchar_nolock\n#define putchar_unlocked _putchar_nolock\n#define fwrite_unlocked fwrite\n#define fflush_unlocked fflush\n#endif\nclass Scanner {\n\tstatic int gc() {\n\t\treturn getchar_unlocked();\n\t}\n\tstatic char next_char() {\n\t\tchar c;\n\t\tread(c);\n\t\treturn c;\n\t}\n\ttemplate <class T> static void read(T& v) {\n\t\tcin >> v;\n\t}\n\tstatic void read(char& v) {\n\t\twhile (isspace(v = gc()))\n\t\t\t;\n\t}\n\tstatic void read(bool& v) {\n\t\tv = next_char() != '0';\n\t}\n\tstatic void read(string& v) {\n\t\tv.clear();\n\t\tfor (char c = next_char(); !isspace(c); c = gc()) v += c;\n\t}\n\tstatic void read(int& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long long& v) {\n\t\tv = 0;\n\t\tbool neg = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c); c = gc()) v = v * 10 + (c - '0');\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(double& v) {\n\t\tv = 0;\n\t\tdouble dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\tstatic void read(long double& v) {\n\t\tv = 0;\n\t\tlong double dp = 1;\n\t\tbool neg = false, after_dp = false;\n\t\tchar c = next_char();\n\t\tif (c == '-') {\n\t\t\tneg = true;\n\t\t\tc = gc();\n\t\t}\n\t\tfor (; isdigit(c) || c == '.'; c = gc()) {\n\t\t\tif (c == '.') {\n\t\t\t\tafter_dp = true;\n\t\t\t} else if (after_dp) {\n\t\t\t\tv += (c - '0') * (dp *= 0.1);\n\t\t\t} else {\n\t\t\t\tv = v * 10 + (c - '0');\n\t\t\t}\n\t\t}\n\t\tif (neg) v = -v;\n\t}\n\ttemplate <class T, class U> static void read(pair<T, U>& v) {\n\t\tread(v.first);\n\t\tread(v.second);\n\t}\n\ttemplate <class T> static void read(vector<T>& v) {\n\t\tfor (auto& e : v) read(e);\n\t}\n\ttemplate <size_t N = 0, class T> static void read_tuple_impl(T& v) {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tread(get<N>(v));\n\t\t\tread_tuple_impl<N + 1>(v);\n\t\t}\n\t}\n\ttemplate <class... T> static void read(tuple<T...>& v) {\n\t\tread_tuple_impl(v);\n\t}\n\tstruct ReadVectorHelper {\n\t\tsize_t n;\n\t\tReadVectorHelper(size_t _n) : n(_n) {}\n\t\ttemplate <class T> operator vector<T>() {\n\t\t\tvector<T> v(n);\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\tstruct Read2DVectorHelper {\n\t\tsize_t n, m;\n\t\tRead2DVectorHelper(const pair<size_t, size_t>& nm) : n(nm.first), m(nm.second) {}\n\t\ttemplate <class T> operator vector<vector<T>>() {\n\t\t\tvector<vector<T>> v(n, vector<T>(m));\n\t\t\tread(v);\n\t\t\treturn v;\n\t\t}\n\t};\n\npublic:\n\tstring read_line() const {\n\t\tstring v;\n\t\tfor (char c = gc(); c != '\\n' && c != '\\0'; c = gc()) v += c;\n\t\treturn v;\n\t}\n\ttemplate <class T> T read() const {\n\t\tT v;\n\t\tread(v);\n\t\treturn v;\n\t}\n\ttemplate <class T> vector<T> read_vector(size_t n) const {\n\t\tvector<T> a(n);\n\t\tread(a);\n\t\treturn a;\n\t}\n\ttemplate <class T> operator T() const {\n\t\treturn read<T>();\n\t}\n\tint operator--(int) const {\n\t\treturn read<int>() - 1;\n\t}\n\tReadVectorHelper operator[](size_t n) const {\n\t\treturn ReadVectorHelper(n);\n\t}\n\tRead2DVectorHelper operator[](const pair<size_t, size_t>& nm) const {\n\t\treturn Read2DVectorHelper(nm);\n\t}\n\tvoid operator()() const {}\n\ttemplate <class H, class... T> void operator()(H&& h, T&&... t) const {\n\t\tread(h);\n\t\toperator()(forward<T>(t)...);\n\t}\n\nprivate:\n\ttemplate <template <class...> class, class...> struct Multiple;\n\ttemplate <template <class...> class V, class Head, class... Tail>\n\tstruct Multiple<V, Head, Tail...> {\n\t\ttemplate <class... Args> using vec = V<vector<Head>, Args...>;\n\t\tusing type = typename Multiple<vec, Tail...>::type;\n\t};\n\ttemplate <template <class...> class V> struct Multiple<V> { using type = V<>; };\n\ttemplate <class... T> using multiple_t = typename Multiple<tuple, T...>::type;\n\ttemplate <size_t N = 0, class T> void multiple_impl(T& t) const {\n\t\tif constexpr (N < tuple_size_v<T>) {\n\t\t\tauto& vec = get<N>(t);\n\t\t\tusing V = typename remove_reference_t<decltype(vec)>::value_type;\n\t\t\tvec.push_back(read<V>());\n\t\t\tmultiple_impl<N + 1>(t);\n\t\t}\n\t}\n\npublic:\n\ttemplate <class... T> auto multiple(size_t h) const {\n\t\tmultiple_t<T...> result;\n\t\twhile (h--) multiple_impl(result);\n\t\treturn result;\n\t}\n} in;\n#define inputs(T, ...) \\\n\tT __VA_ARGS__; \\\n\tin(__VA_ARGS__)\n#define ini(...) inputs(int, __VA_ARGS__)\n#define inl(...) inputs(long long, __VA_ARGS__)\n#define ins(...) inputs(string, __VA_ARGS__)\n#line 7 \"/home/yuruhiya/programming/library/template/Output.cpp\"\n#include <charconv>\n#line 10 \"/home/yuruhiya/programming/library/template/Output.cpp\"\nusing namespace std;\n\nstruct BoolStr {\n\tconst char *t, *f;\n\tBoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}\n} Yes(\"Yes\", \"No\"), yes(\"yes\", \"no\"), YES(\"YES\", \"NO\"), Int(\"1\", \"0\");\nstruct DivStr {\n\tconst char *d, *l;\n\tDivStr(const char* _d, const char* _l) : d(_d), l(_l) {}\n} spc(\" \", \"\\n\"), no_spc(\"\", \"\\n\"), end_line(\"\\n\", \"\\n\"), comma(\",\", \"\\n\"),\n no_endl(\" \", \"\");\nclass Printer {\n\tBoolStr B{Yes};\n\tDivStr D{spc};\n\npublic:\n\tvoid print(int v) const {\n\t\tchar buf[12]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(long long v) const {\n\t\tchar buf[21]{};\n\t\tif (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {\n\t\t\tfwrite(buf, sizeof(char), ptr - buf, stdout);\n\t\t} else {\n\t\t\tassert(false);\n\t\t}\n\t}\n\tvoid print(bool v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(vector<bool>::reference v) const {\n\t\tprint(v ? B.t : B.f);\n\t}\n\tvoid print(char v) const {\n\t\tputchar_unlocked(v);\n\t}\n\tvoid print(const char* v) const {\n\t\tfwrite_unlocked(v, 1, strlen(v), stdout);\n\t}\n\tvoid print(double v) const {\n\t\tprintf(\"%.20f\", v);\n\t}\n\tvoid print(long double v) const {\n\t\tprintf(\"%.20Lf\", v);\n\t}\n\ttemplate <class T> void print(const T& v) const {\n\t\tcout << v;\n\t}\n\ttemplate <class T, class U> void print(const pair<T, U>& v) const {\n\t\tprint(v.first);\n\t\tprint(D.d);\n\t\tprint(v.second);\n\t}\n\ttemplate <class InputIterater>\n\tvoid print_range(const InputIterater& begin, const InputIterater& end) const {\n\t\tfor (InputIterater i = begin; i != end; ++i) {\n\t\t\tif (i != begin) print(D.d);\n\t\t\tprint(*i);\n\t\t}\n\t}\n\ttemplate <class T> void print(const vector<T>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T, size_t N> void print(const array<T, N>& v) const {\n\t\tprint_range(v.begin(), v.end());\n\t}\n\ttemplate <class T> void print(const vector<vector<T>>& v) const {\n\t\tfor (size_t i = 0; i < v.size(); ++i) {\n\t\t\tif (i) print(D.l);\n\t\t\tprint(v[i]);\n\t\t}\n\t}\n\n\tPrinter() = default;\n\tPrinter(const BoolStr& _boolstr, const DivStr& _divstr) : B(_boolstr), D(_divstr) {}\n\tPrinter& operator()() {\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H> Printer& operator()(H&& h) {\n\t\tprint(h);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class H, class... T> Printer& operator()(H&& h, T&&... t) {\n\t\tprint(h);\n\t\tprint(D.d);\n\t\treturn operator()(forward<T>(t)...);\n\t}\n\ttemplate <class InputIterator>\n\tPrinter& range(const InputIterator& begin, const InputIterator& end) {\n\t\tprint_range(begin, end);\n\t\tprint(D.l);\n\t\treturn *this;\n\t}\n\ttemplate <class T> Printer& range(const T& a) {\n\t\trange(a.begin(), a.end());\n\t\treturn *this;\n\t}\n\ttemplate <class... T> void exit(T&&... t) {\n\t\toperator()(forward<T>(t)...);\n\t\tstd::exit(EXIT_SUCCESS);\n\t}\n\tPrinter& flush() {\n\t\tfflush_unlocked(stdout);\n\t\treturn *this;\n\t}\n\tPrinter& set(const BoolStr& b) {\n\t\tB = b;\n\t\treturn *this;\n\t}\n\tPrinter& set(const DivStr& d) {\n\t\tD = d;\n\t\treturn *this;\n\t}\n\tPrinter& set(const char* t, const char* f) {\n\t\tB = BoolStr(t, f);\n\t\treturn *this;\n\t}\n} out;\n#line 3 \"/home/yuruhiya/programming/library/template/Step.cpp\"\nusing namespace std;\n\ntemplate <class T> struct Step {\n\tusing value_type = T;\n\n\tclass iterator {\n\t\tvalue_type a, b, c;\n\n\tpublic:\n\t\tconstexpr iterator() : a(value_type()), b(value_type()), c(value_type()) {}\n\t\tconstexpr iterator(value_type _b, value_type _c, value_type _s)\n\t\t : a(_b), b(_c), c(_s) {}\n\t\tconstexpr iterator& operator++() {\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn *this;\n\t\t}\n\t\tconstexpr iterator operator++(int) {\n\t\t\titerator tmp = *this;\n\t\t\t--b;\n\t\t\ta += c;\n\t\t\treturn tmp;\n\t\t}\n\t\tconstexpr const value_type& operator*() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr const value_type* operator->() const {\n\t\t\treturn &a;\n\t\t}\n\t\tconstexpr bool operator==(const iterator& i) const {\n\t\t\treturn b == i.b;\n\t\t}\n\t\tconstexpr bool operator!=(const iterator& i) const {\n\t\t\treturn !(b == i.b);\n\t\t}\n\t\tconstexpr value_type start() const {\n\t\t\treturn a;\n\t\t}\n\t\tconstexpr value_type size() const {\n\t\t\treturn b;\n\t\t}\n\t\tconstexpr value_type step() const {\n\t\t\treturn c;\n\t\t}\n\t};\n\tconstexpr Step(value_type b, value_type c, value_type s) : be(b, c, s) {}\n\tconstexpr iterator begin() const {\n\t\treturn be;\n\t}\n\tconstexpr iterator end() const {\n\t\treturn en;\n\t}\n\tconstexpr value_type start() const {\n\t\treturn be.start();\n\t}\n\tconstexpr value_type size() const {\n\t\treturn be.size();\n\t}\n\tconstexpr value_type step() const {\n\t\treturn be.step();\n\t}\n\tconstexpr value_type sum() const {\n\t\treturn start() * size() + step() * (size() * (size() - 1) / 2);\n\t}\n\toperator vector<value_type>() const {\n\t\treturn to_a();\n\t}\n\tauto to_a() const {\n\t\tvector<value_type> result;\n\t\tresult.reserve(size());\n\t\tfor (auto i : *this) {\n\t\t\tresult.push_back(i);\n\t\t}\n\t\treturn result;\n\t}\n\nprivate:\n\titerator be, en;\n};\ntemplate <class T> constexpr auto step(T a) {\n\treturn Step<T>(0, a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b) {\n\treturn Step<T>(a, b - a, 1);\n}\ntemplate <class T> constexpr auto step(T a, T b, T c) {\n\treturn Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);\n}\n#line 8 \"/home/yuruhiya/programming/library/template/Ruby.cpp\"\nusing namespace std;\n\ntemplate <class F> struct Callable {\n\tF func;\n\tCallable(const F& f) : func(f) {}\n};\ntemplate <class T, class F> auto operator|(const T& v, const Callable<F>& c) {\n\treturn c.func(v);\n}\n\nstruct Sort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\treturn v;\n\t}\n} Sort;\nstruct SortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) < f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} SortBy;\nstruct RSort_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(rbegin(v), rend(v), f);\n\t\t\treturn v;\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {\n\t\tsort(rbegin(v), rend(v));\n\t\treturn v;\n\t}\n} RSort;\nstruct RSortBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tsort(begin(v), end(v),\n\t\t\t [&](const auto& i, const auto& j) { return f(i) > f(j); });\n\t\t\treturn v;\n\t\t});\n\t}\n} RSortBy;\nstruct Reverse_impl {\n\ttemplate <class T> friend auto operator|(T v, const Reverse_impl& c) {\n\t\treverse(begin(v), end(v));\n\t\treturn v;\n\t}\n} Reverse;\nstruct Unique_impl {\n\ttemplate <class T> friend auto operator|(T v, const Unique_impl& c) {\n\t\tv.erase(unique(begin(v), end(v), end(v)));\n\t\treturn v;\n\t}\n} Unique;\nstruct Uniq_impl {\n\ttemplate <class T> friend auto operator|(T v, const Uniq_impl& c) {\n\t\tsort(begin(v), end(v));\n\t\tv.erase(unique(begin(v), end(v)), end(v));\n\t\treturn v;\n\t}\n} Uniq;\nstruct Rotate_impl {\n\tauto operator()(int&& left) {\n\t\treturn Callable([&](auto v) {\n\t\t\tint s = static_cast<int>(size(v));\n\t\t\tassert(-s <= left && left <= s);\n\t\t\tif (0 <= left) {\n\t\t\t\trotate(begin(v), begin(v) + left, end(v));\n\t\t\t} else {\n\t\t\t\trotate(begin(v), end(v) + left, end(v));\n\t\t\t}\n\t\t\treturn v;\n\t\t});\n\t}\n} Rotate;\nstruct Max_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *max_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Max_impl& c) {\n\t\treturn *max_element(begin(v), end(v));\n\t}\n} Max;\nstruct Min_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) { return *min_element(begin(v), end(v), f); });\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Min_impl& c) {\n\t\treturn *min_element(begin(v), end(v));\n\t}\n} Min;\nstruct MaxPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MaxPos_impl& c) {\n\t\treturn max_element(begin(v), end(v)) - begin(v);\n\t}\n} MaxPos;\nstruct MinPos_impl {\n\ttemplate <class T> friend auto operator|(T v, const MinPos_impl& c) {\n\t\treturn min_element(begin(v), end(v)) - begin(v);\n\t}\n} MinPos;\nstruct MaxBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_it = begin(v);\n\t\t\tauto max_val = f(*max_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_it = it;\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *max_it;\n\t\t});\n\t}\n} MaxBy;\nstruct MinBy_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_it = begin(v);\n\t\t\tauto min_val = f(*min_it);\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_it = it;\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn *min_it;\n\t\t});\n\t}\n} MinBy;\nstruct MaxOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto max_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); max_val < val) {\n\t\t\t\t\tmax_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn max_val;\n\t\t});\n\t}\n} MaxOf;\nstruct MinOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tauto min_val = f(*begin(v));\n\t\t\tfor (auto it = next(begin(v)); it != end(v); ++it) {\n\t\t\t\tif (auto val = f(*it); min_val > val) {\n\t\t\t\t\tmin_val = val;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn min_val;\n\t\t});\n\t}\n} MinOf;\nstruct Count_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return count(begin(v), end(v), val); });\n\t}\n} Count;\nstruct CountIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return count_if(begin(v), end(v), f); });\n\t}\n} CountIf;\nstruct Index_impl {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find(begin(v), end(v), val);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} Index;\nstruct IndexIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<int> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(result - begin(v)) : nullopt;\n\t\t});\n\t}\n} IndexIf;\nstruct FindIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) -> optional<typename decltype(v)::value_type> {\n\t\t\tauto result = find_if(begin(v), end(v), f);\n\t\t\treturn result != end(v) ? optional(*result) : nullopt;\n\t\t});\n\t}\n} FindIf;\nstruct Sum_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\treturn accumulate(next(begin(v)), end(v), f(*begin(v)),\n\t\t\t [&](const auto& a, const auto& b) { return a + f(b); });\n\t\t});\n\t}\n\ttemplate <class T> friend auto operator|(T v, const Sum_impl& c) {\n\t\treturn accumulate(begin(v), end(v), typename T::value_type{});\n\t}\n} Sum;\nstruct Includes {\n\ttemplate <class V> auto operator()(const V& val) {\n\t\treturn Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); });\n\t}\n} Includes;\nstruct IncludesIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); });\n\t}\n} IncludesIf;\nstruct RemoveIf_impl {\n\ttemplate <class F> auto operator()(const F& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tv.erase(remove_if(begin(v), end(v), f), end(v));\n\t\t\treturn v;\n\t\t});\n\t}\n} RemoveIf;\nstruct Each_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tf(i);\n\t\t\t}\n\t\t});\n\t}\n} Each;\nstruct Select_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing value_type = typename decltype(v)::value_type;\n\t\t\tvector<value_type> result;\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) result.push_back(i);\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Select;\nstruct Map_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tusing result_type = invoke_result_t<F, typename decltype(v)::value_type>;\n\t\t\tvector<result_type> result;\n\t\t\tresult.reserve(size(v));\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult.push_back(f(i));\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n} Map;\nstruct Indexed_impl {\n\ttemplate <class T> friend auto operator|(const T& v, Indexed_impl& c) {\n\t\tusing value_type = typename T::value_type;\n\t\tvector<pair<value_type, int>> result;\n\t\tresult.reserve(size(v));\n\t\tint index = 0;\n\t\tfor (const auto& i : v) {\n\t\t\tresult.emplace_back(i, index++);\n\t\t}\n\t\treturn result;\n\t}\n} Indexed;\nstruct AllOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (!f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} AllOf;\nstruct AnyOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return true;\n\t\t\t}\n\t\t\treturn false;\n\t\t});\n\t}\n} AnyOf;\nstruct NoneOf_impl {\n\ttemplate <class F> auto operator()(F&& f) {\n\t\treturn Callable([&](auto v) {\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tif (f(i)) return false;\n\t\t\t}\n\t\t\treturn true;\n\t\t});\n\t}\n} NoneOf;\n\nstruct Tally_impl {\n\ttemplate <class F> auto operator()(size_t max_val) {\n\t\treturn Callable([&](auto v) {\n\t\t\tvector<size_t> result(max_val);\n\t\t\tfor (const auto& i : v) {\n\t\t\t\tresult[static_cast<size_t>(i)]++;\n\t\t\t}\n\t\t\treturn result;\n\t\t});\n\t}\n\ttemplate <class T, class value_type = typename T::value_type>\n\tfriend auto operator|(const T& v, Tally_impl& c) {\n\t\tmap<value_type, size_t> result;\n\t\tfor (const auto& i : v) {\n\t\t\tresult[i]++;\n\t\t}\n\t\treturn result;\n\t}\n} Tally;\n\ntemplate <class T> auto operator*(const vector<T>& a, size_t n) {\n\tT result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult.insert(result.end(), a.begin(), a.end());\n\t}\n\treturn result;\n}\nauto operator*(string a, size_t n) {\n\tstring result;\n\tfor (size_t i = 0; i < n; ++i) {\n\t\tresult += a;\n\t}\n\treturn result;\n}\ntemplate <class T, class U> auto& operator<<(vector<T>& a, const U& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T> auto& operator<<(string& a, const T& b) {\n\ta.insert(a.end(), all(b));\n\treturn a;\n}\ntemplate <class T, class U> auto operator+(vector<T> a, const U& b) {\n\ta << b;\n\treturn a;\n}\ntemplate <class T> auto operator+(string a, const T& b) {\n\ta << b;\n\treturn a;\n}\n#line 7 \"/home/yuruhiya/programming/library/template/functions.cpp\"\nusing namespace std;\n\ntemplate <class T = long long> constexpr T TEN(size_t n) {\n\tT result = 1;\n\tfor (size_t i = 0; i < n; ++i) result *= 10;\n\treturn result;\n}\ntemplate <class T, class U,\n enable_if_t<is_integral_v<T> && is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr auto div_ceil(T n, U m) {\n\treturn (n + m - 1) / m;\n}\ntemplate <class T, class U> constexpr auto div_ceil2(T n, U m) {\n\treturn div_ceil(n, m) * m;\n}\ntemplate <class T> constexpr T triangle(T n) {\n\treturn (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);\n}\ntemplate <class T> constexpr T nC2(T n) {\n\treturn (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);\n}\ntemplate <class T, class U> constexpr auto middle(const T& l, const U& r) {\n\treturn l + (r - l) / 2;\n}\ntemplate <class T, class U, class V>\nconstexpr bool in_range(const T& v, const U& lower, const V& upper) {\n\treturn lower <= v && v < upper;\n}\ntemplate <class T, enable_if_t<is_integral_v<T>, nullptr_t> = nullptr>\nconstexpr bool is_square(T n) {\n\tT s = sqrt(n);\n\treturn s * s == n || (s + 1) * (s + 1) == n;\n}\ntemplate <class T = long long> constexpr T BIT(int b) {\n\treturn T(1) << b;\n}\ntemplate <class T> constexpr int BIT(T x, int i) {\n\treturn (x & (1 << i)) ? 1 : 0;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Pow(T a, U n) {\n\tassert(n >= 0);\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult *= a;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta *= a;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T, class U, enable_if_t<is_integral_v<U>, nullptr_t> = nullptr>\nconstexpr T Powmod(T a, U n, T mod) {\n\tassert(n >= 0);\n\tif (a > mod) a %= mod;\n\tT result = 1;\n\twhile (n > 0) {\n\t\tif (n & 1) {\n\t\t\tresult = result * a % mod;\n\t\t\tn--;\n\t\t} else {\n\t\t\ta = a * a % mod;\n\t\t\tn >>= 1;\n\t\t}\n\t}\n\treturn result;\n}\ntemplate <class T> bool chmax(T& a, const T& b) {\n\tif (a < b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> bool chmin(T& a, const T& b) {\n\tif (a > b) {\n\t\ta = b;\n\t\treturn true;\n\t}\n\treturn false;\n}\ntemplate <class T> int sz(const T& v) {\n\treturn v.size();\n}\ntemplate <class T, class U> int lower_index(const T& a, const U& v) {\n\treturn lower_bound(all(a), v) - a.begin();\n}\ntemplate <class T, class U> int upper_index(const T& a, const U& v) {\n\treturn upper_bound(all(a), v) - a.begin();\n}\ntemplate <class T> auto Slice(const T& v, size_t i, size_t len) {\n\treturn i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();\n}\ntemplate <class T, class U = typename T::value_type> U Gcdv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);\n}\ntemplate <class T, class U = typename T::value_type> U Lcmv(const T& v) {\n\treturn accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);\n}\nnamespace internal {\n\ttemplate <class T, size_t N> auto make_vector(vector<int>& sizes, const T& init) {\n\t\tif constexpr (N == 1) {\n\t\t\treturn vector(sizes[0], init);\n\t\t} else {\n\t\t\tint size = sizes[N - 1];\n\t\t\tsizes.pop_back();\n\t\t\treturn vector(size, make_vector<T, N - 1>(sizes, init));\n\t\t}\n\t}\n} // namespace internal\ntemplate <class T, size_t N>\nauto make_vector(const int (&sizes)[N], const T& init = T()) {\n\tvector s(rbegin(sizes), rend(sizes));\n\treturn internal::make_vector<T, N>(s, init);\n}\n#line 9 \"/home/yuruhiya/programming/library/template/template.cpp\"\n#if __has_include(<library/dump.hpp>)\n#include <library/dump.hpp>\n#define LOCAL\n#else\n#define dump(...) ((void)0)\n#endif\n\ntemplate <class T> constexpr T oj_local(const T& oj, const T& local) {\n#ifndef LOCAL\n\treturn oj;\n#else\n\treturn local;\n#endif\n}\n#line 2 \"a.cpp\"\n\nint main() {\n\tini(n, k);\n\tVI a = in[n];\n\n\tVI dp(k, -inf);\n\tdp[0] = 0;\n\trep(i, n) {\n\t\tVI dp2 = dp;\n\t\trep(j, k) {\n\t\t\tchmax(dp2[(j + a[i]) % k], dp[j] + (j + a[i] >= k));\n\t\t}\n\t\tdp = dp2;\n\t}\n\n\tint ans = 0;\n\trep(i, k) {\n\t\tchmax(ans, dp[i] - i);\n\t}\n\tout(ans);\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 3448, "score_of_the_acc": -0.0042, "final_rank": 2 }, { "submission_id": "aoj_3187_5044025", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i,n) for(int i=0;i<(int)n;++i)\n#define irep(i,a,b) for(int i=int(a);i<(int)b;++i)\n#define rrep(i,a,b) for(int i=int(a);i>=(int)b;--i)\n#define vi vector<int>\n#define vvi vector<vector<int>>\n#define vl vector<ll>\n#define vvl vector<vector<ll>>\n#define vvp vector<vector<pair<ll,ll>>>\n#define vpl vector<pair<ll,ll>>\n#define vpi vector<pair<int,int>>\n#define pb push_back\n#define se second\n#define fi first\n#define all(v) v.begin(),v.end()\n#define v(T) vector<T>\n#define vv(T) vector<vector<T>>\n\nusing namespace std;\n\ntemplate<typename T> istream& operator>>(istream&i,v(T)&v){rep(j,v.size())i>>v[j];return i;}\ntemplate<typename T> string join(const v(T)&v){stringstream s;rep(i,v.size())s<<' '<<v[i];return s.str().substr(1);}\ntemplate<typename T> ostream& operator<<(ostream&o,const v(T)&v){if(v.size())o<<join(v);return o;}\n\n\n\nusing ll = long long;\nconst ll INF = 1e18;\nconst double PI = acos(-1);\n\nconst ll mod = 1e9 + 7; //998244353;\n\ntemplate<class T> inline bool chmin(T& a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\ntemplate<class T> inline bool chmax(T& a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\n\nll modpow(ll a,ll b){\n if(b == 0){\n return 1;\n }\n if(b%2 == 0){\n ll tmp = modpow(a,b/2);\n return tmp*tmp%mod;\n }else{\n return modpow(a,b-1)*a%mod;\n }\n\n}\n\n\nint main(void)\n{\n std::cin.tie(nullptr);\n std::ios::sync_with_stdio(false);\n int n,k;\n cin >> n >> k;\n vl a(n),dp(k,-INF);\n dp[0] = 0;\n rep(i,n){\n cin >> a[i];\n auto sub = dp;\n rep(j,k){\n dp[(j+a[i])%k] = max(sub[(j+a[i])%k],sub[j] + a[i]);\n }\n }\n ll ans = 0;\n rep(i,k)ans = max(ans,dp[i]/k-i);\n\n cout << ans << endl;\n\n \n //cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3612, "score_of_the_acc": -0.0456, "final_rank": 6 }, { "submission_id": "aoj_3187_4985697", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std;\n#include <math.h>\n#include <iomanip>\n#include <cstdint>\n#include <string>\n#include <sstream>\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n#define rep(i,n) for (int i = 0; i < (n); ++i)\ntypedef long long ll;\nusing P = pair<int,int>;\nconst int INF=1001001001;\nconst int mod =1e9+7;\n\nint main() {\n int N,K;cin>>N>>K;\n vector<int>A(N);\n for(int i=0;i<N;i++){cin>>A[i];}\n vector<vector<ll>>dp(N+1,vector<ll>(K,-1));\n dp[0][0]=0;\n for(int i=0;i<N;i++){\n for(int j=K-1;j>=0;j--){\n if(dp[i][j]==-1){continue;}\n chmax(dp[i+1][(j+A[i])%K],dp[i][j]+A[i]);\n chmax(dp[i+1][j],dp[i][j]);\n }\n }\n ll ans=0;\n for(int i=0;i<K;i++){chmax(ans,dp[N][i]/K-i);}\n cout<<ans<<endl;\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 44296, "score_of_the_acc": -0.5944, "final_rank": 13 }, { "submission_id": "aoj_3187_4947147", "code_snippet": "#include<bits/stdc++.h>\ntypedef long long int ll;\ntypedef unsigned long long int ull;\n#define BIG_NUM 2000000000\n#define HUGE_NUM 9223372036854775807\n#define MOD 1000000007\n#define EPS 0.000000001\nusing namespace std;\n\n\n#define SIZE 50005\n\nint N,K;\nint A[SIZE];\nint dp[SIZE][105];\n\nint main(){\n\n\tscanf(\"%d %d\",&N,&K);\n\n\tfor(int i = 1; i <= N; i++){\n\n\t\tscanf(\"%d\",&A[i]);\n\t}\n\n\tfor(int i = 0; i <= N; i++){\n\t\tfor(int a = 0; a <= K-1; a++){\n\t\t\tdp[i][a] = -BIG_NUM;\n\t\t}\n\t}\n\n\tdp[0][0] = 0;\n\tfor(int i = 1; i <= N; i++){\n\t\tfor(int a = 0; a <= K-1; a++){\n\t\t\tif(dp[i-1][a] == -BIG_NUM)continue;\n\n\t\t\t//足さない\n\t\t\tdp[i][a] = max(dp[i][a],dp[i-1][a]);\n\n\t\t\t//足す\n\t\t\tint next = a+A[i];\n\t\t\tint add = 0;\n\n\t\t\tif(next >= K){\n\n\t\t\t\tnext -= K;\n\t\t\t\tadd++;\n\t\t\t}\n\t\t\tdp[i][next] = max(dp[i][next],dp[i-1][a]+add);\n\t\t}\n\t}\n\n\tint ans = -BIG_NUM;\n\tfor(int a = 0; a <= K-1; a++){\n\n\t\tans = max(ans,dp[N][a]-a);\n\t}\n\n\tprintf(\"%d\\n\",ans);\n\n\treturn 0;\n}", "accuracy": 1, "time_ms": 10, "memory_kb": 23920, "score_of_the_acc": -0.2803, "final_rank": 9 }, { "submission_id": "aoj_3187_4875823", "code_snippet": "#include <bits/stdc++.h>\n//#include <atcoder/all>\nusing namespace std;\ntypedef long long ll;\ntypedef pair<ll, ll> l_l;\ntypedef pair<int, int> i_i;\ntemplate<class T>\ninline bool chmax(T &a, T b) {\n if(a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\ntemplate<class T>\ninline bool chmin(T &a, T b) {\n if(a > b) {\n a = b;\n return true;\n }\n return false;\n}\n\nconst long long INF = 1e18;\n//const ll mod = 1000000007;\nll dp[50100][105];\nll N, K;\n\nint main() {\n cin.tie(0);\n ios::sync_with_stdio(false);\n cin >> N >> K;\n for(int i = 0; i <= K; i++) {\n dp[0][i] = -INF;\n }\n dp[0][0] = 0;\n for(int i = 0; i < N; i++) {\n ll A;\n cin >> A;\n for(int j = 0; j <= K; j++) {\n dp[i+1][j] = -INF;\n }\n for(int j = 0; j < K; j++) {\n chmax(dp[i+1][j], dp[i][j]);\n ll val = dp[i][j];\n ll nxt = (j + A) % K;\n if(j + A >= K) val++;\n chmax(dp[i+1][nxt], val);\n }\n }\n ll ans = 0;\n for(int i = 0; i <= K; i++) {\n chmax(ans, dp[N][i] - i);\n }\n cout << ans << endl;\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 44460, "score_of_the_acc": -0.6163, "final_rank": 15 }, { "submission_id": "aoj_3187_4874377", "code_snippet": "#include <bits/stdc++.h>\n#define rep(i, n) for(int i=0; i<(n); ++i)\n\nusing namespace std;\ntypedef long long ll;\n\nconst int INTINF = INT_MAX >> 1;\n\nll dp[50100][110];\n\nint main(){\n\n\trep(i, 50010){\n\t\trep(j, 110) dp[i][j] = -INTINF;\n\t}\n\n\tint N, K; cin >> N >> K;\n\tvector<ll> v(N);\n\trep(i, N) cin >> v[i];\n\n\tll ans = 0;\n\tdp[0][0] = 0;\n\trep(i, N){\n\t\trep(j, K){\n\t\t\tif(dp[i][j] == -INTINF) continue;\n\t\t\tdp[i+1][j] = max(dp[i+1][j], dp[i][j]);\n\t\t\tdp[i+1][(j+v[i])%K] = max(dp[i][(j+v[i])%K], dp[i][j] + (j + v[i]) / K);\n\t\t\t// cout << dp[i+1][j] << \" \" << dp[i+1][(j+v[i])%K] << endl;\n\t\t\tans = max(ans, dp[i+1][j] - j);\n\t\t\tans = max(ans, dp[i+1][(j+v[i])%K] - (j+v[i])%K);\n\t\t}\n\t}\n\tcout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 60, "memory_kb": 46148, "score_of_the_acc": -0.6783, "final_rank": 19 }, { "submission_id": "aoj_3187_4864734", "code_snippet": "#pragma GCC optimize (\"O3\")\n#include <iostream>\n#include <iomanip>\n#include <istream>\n#include <ostream>\n#include <sstream>\n#include <iterator>\n#include <vector>\n#include <algorithm>\n#include <queue>\n#include <deque>\n#include <list>\n#include <stack>\n#include <map>\n#include <unordered_map>\n#include <set>\n#include <bitset>\n#include <utility>\n#include <cmath>\n#include <cstdio>\n#include <cstring>\n#include <string>\n#include <ctime>\n#include <cctype>\n#include <cstdlib>\n#include <numeric>\n#define IINF 1000000000\n#define INF 3223372036854775807\n#define MOD 1000000007\n#define mod 1000000007\n#define INT_MAX_ 2147483647\n#define EPS (1e-10)\n#define REP(i, a, n) fo-r (ll i = a; i < (ll)(n); i++)\n#define REPE(i, a, n) for (ll i = a; i <= (ll)(n); i++)\n//#define rep(i,n)for (ll i = 0; i < (ll)(n); i++)\n#define rep(i,l,r)for(ll i=(l);i<(r);i++)\n#define rep1(i,n) for(int i=1;i<=(int)(n);i++)\n#define Endl endl\n#define fi first\n#define se second\n#define pb push_back\n#define mp make_pair\n#define mt make_tuple\n#define eb emplace_back\n#define mmax(x,y)(x>y?x:y)\n#define mmin(x,y)(x<y?x:y)\n#define chmax(x,y) x=mmax(x,y)\n#define chmin(x,y) x=mmin(x,y)\n#define all(x) (x).begin(),(x).end()\n#define siz(x) (ll)(x).size()\n#define PI acos(-1.0)\n#define me memset\n#define bit(n,k) ((n>>k)&1)\n#define lg length()\nusing namespace std;\ntypedef long long int ll;\ntypedef unsigned long long int ull;\ntypedef long double ld;\ntypedef pair<int,int>Pin;\ntypedef pair<ll,ll>Pll;\ntemplate<class T> using V=vector<T>;\ntemplate<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T> >;\nlong long GCD(long long a, long long b) {return b?GCD(b,a%b):a;}\nlong long LCM(long long a, long long b) {return a/GCD(a,b)*b;}\nll pom(ll a,ll n,int m){ll x=1;for(a%=m;n;n/=2)n&1?x=x*a%m:0,a=a*a%m;return x;}\n#define invp(a,p)pom(a,p-2,p)\nint dx[4]={-1,0,1,0};\nint dy[4]={0,-1,0,1};\nint ddx[8]={-1,0,1,0,1,1,-1,-1};\nint ddy[8]={0,-1,0,1,1,-1,1,-1};\nll cmp1(pair<Pll,ll> a,pair<Pll,ll> b){\n return a.fi.se>b.fi.se;\n}\nll cmp2(pair<ll,ll> a,pair<ll,ll> b){\n if(a.fi!=b.fi)\n return a.se<b.se;\n else\n return a.se>b.se;\n}\n//----------------------------------------------------------------------\nll dp[50001][101];;\n//----------------------------------------------------------------------\nint main(int argc, char * argv[]){\n cin.tie(0);\n ios::sync_with_stdio(false);\n //------------------------------- \n //ll begin_t=clock();\n //freopen(\"big.txt\", \"r\", stdin);\n //freopen(\"out3.txt\", \"w\", stdout);\n //------------------------------\n ll n,k;cin>>n>>k;\n V<ll>a(n);\n for(ll i=0;i<n;i++){\n cin>>a[i];\n }\n sort(all(a));\n reverse(all(a));\n\n ll ans=0;\n for(ll i=0;i<=n;i++){\n for(ll j=0;j<=100;j++){\n dp[i][j]=-INF;\n }\n }\n dp[0][0]=0;\n for(ll i=0;i<n;i++){\n for(ll j=0;j<k;j++){\n if(dp[i][j]==-INF)continue;\n chmax(dp[i+1][(j+a[i])%k], dp[i][j] + (j+a[i])/k);\n chmax(dp[i+1][j],dp[i][j]);\n }\n }\n for(ll j=0;j<k;j++){\n chmax(ans, dp[n][j]-j);\n }\n cout<<ans<<endl;\n //------------------------------\n //fclose(stdin);\n //fclose(stdout);\n //ll end_t=clock();cout<<\"time=\"<<end_t-begin_t<<\"ms\"<<endl;\n //------------------------------- \n return 0;\n}\n//----------------------------------------------------------------------", "accuracy": 1, "time_ms": 50, "memory_kb": 42696, "score_of_the_acc": -0.6121, "final_rank": 14 }, { "submission_id": "aoj_3187_4863295", "code_snippet": "#include <iostream>\n#include <string>\n#include <sstream>\n#include <stack>\n#include <algorithm>\n#include <cmath>\n#include <queue>\n#include <bitset>\n#include <iomanip>\n#include <limits>\n#include <chrono>\n#include <random>\n#include <array>\n#include <unordered_map>\n#include <functional>\n#include <complex>\n#include <numeric>\n#include <cctype>\n#include <map>\n#include <set>\n#include <cstdlib>\n#include <bitset>\n#include <tuple>\n#include <assert.h>\n#include <deque>\n#include <utility>\n#include <fstream>\n\nusing namespace std;\ntypedef long long ll;\n\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\ntemplate<typename T> T gcd(T a, T b) { a = abs(a), b = abs(b); while (b > 0) { tie(a, b) = make_pair(b, a % b); } return a; }\n//mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());\n\nconstexpr long long INF = 1LL << 60;\nconstexpr int inf = 1000000007;\n//constexpr long long mod = 1000000007LL;\n//constexpr long long mod = 998244353;\nconstexpr long long mod = 10000019;\nconstexpr int MAX = 5000000;\n\n\nint main()\n{\n\n\tcin.tie(nullptr);\n\tios::sync_with_stdio(false);\n\n\tll n, k; cin >> n >> k;\n\tvector<ll> a(n); for (int i = 0; i < n; i++) cin >> a[i];\n\tvector<vector<ll>> dp(2, vector<ll>(k + 1, -INF));\n\tint cur = 0;\n\tint nxt = 1;\n\tdp[0][0] = 0;\n\tfor (int i = 0; i < n; i++) {\n\t\tfill(dp[nxt].begin(), dp[nxt].end(), -INF);\n\t\tfor (int j = 0; j < k; j++) {\n\t\t\tif (dp[cur][j] == -INF) continue;\n\t\t\tchmax(dp[nxt][j], dp[cur][j]);\n\t\t\tchmax(dp[nxt][(j + a[i]) % k], dp[cur][j] + a[i]);\n\t\t}\n\t\tswap(cur, nxt);\n\t}\n\tll res = 0;\n\tfor (int i = 0; i < k; i++) {\n\t\tchmax(res, dp[cur][i] / k - i);\n\t}\n\tcout << res << endl;\n\treturn 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3604, "score_of_the_acc": -0.0651, "final_rank": 8 }, { "submission_id": "aoj_3187_4863122", "code_snippet": "//#define _GLIBCXX_DEBUG\n#include <bits/stdc++.h>\n\nusing namespace std;\n\n//----------------------- Print Function ----------------------//\n\ninline void print() {\n cout << '\\n';\n}\ntemplate <typename First, typename... Rest>\nvoid print(const First &first, const Rest &... rest) {\n cout << first << ' ';\n print(rest...);\n}\n\ntemplate <typename T>\nvoid print(const T &a) {\n for (auto e : a) cout << e << ' ';\n cout << '\\n';\n}\n\n//------------------------- Libraries -------------------------//\n\ntemplate<class T>\nbool chmin(T& a, T b) {\n if (a > b) {\n a = b;\n return true;\n }\n return false;\n}\n \ntemplate<class T>\nbool chmax(T& a, T b) {\n if (a < b) {\n a = b;\n return true;\n }\n return false;\n}\n\n//--------------------------- Solve ---------------------------//\n\nvoid solve() {\n int N, K; cin >> N >> K;\n vector<int> A(N);\n for (int i = 0; i < N; i++) cin >> A[i];\n\n vector<vector<int> > dp(N+1, vector<int>(K, -1));\n dp[0][0] = 0;\n for (int i = 1; i <= N; i++) {\n for (int j = 0; j < K; j++) {\n if (dp[i-1][j] == -1) continue;\n chmax(dp[i][j], dp[i-1][j]);\n chmax(dp[i][(j+A[i-1])%K], dp[i-1][j] + (j+A[i-1])/K);\n }\n }\n\n int ans = 0;\n for (int i = 0; i < K; i++) {\n chmax(ans, dp[N][i] - i);\n }\n\n cout << ans << '\\n';\n}\n\nint main() {\n cin.tie(nullptr);\n ios_base::sync_with_stdio(false);\n\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 20, "memory_kb": 24724, "score_of_the_acc": -0.3108, "final_rank": 11 }, { "submission_id": "aoj_3187_4862669", "code_snippet": "#include <bits/stdc++.h>\n#ifdef _DEBUG\n#include \"_DEBUG.hpp\"\n#endif\n#define int long long\nusing namespace std;\nusing P = pair<int, int>;\nconst int inf = 2e18;\nconst int mod = 1e9 + 7;\n\ntemplate <typename T>\nistream &operator>>(istream &is, vector<T> &v) {\n for (T &in : v) is >> in;\n return is;\n}\n\ntemplate <class T>\nvector<T> make_vec(size_t a) {\n return vector<T>(a);\n}\n\ntemplate <class T, class... Ts>\nauto make_vec(size_t a, Ts... ts) {\n return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));\n}\n\ntemplate <class T, class V>\ntypename enable_if<is_class<T>::value == 0>::type fill(T &t, const V &v) {\n t = v;\n}\n\ntemplate <class T, class V>\ntypename enable_if<is_class<T>::value != 0>::type fill(T &t, const V &v) {\n for (auto &e : t) fill(e, v);\n}\n\nsigned main() {\n \n int n, k;\n cin >> n >> k;\n vector<int> a(n);\n cin >> a;\n\n vector<int> dp(k, -1);\n dp[0] = 0;\n for (int i = 0; i < n; i++) {\n auto nxt = dp;\n for (int j = 0; j < k; j++) {\n if (dp[j] == -1) continue;\n nxt[(j + a[i]) % k] = max(nxt[(j + a[i]) % k], dp[j] + (j + a[i] >= k));\n }\n swap(dp, nxt);\n }\n int ans = 0;\n for(int i = 0; i < k; i++){\n ans = max(ans, dp[i] - i);\n }\n cout << ans << endl;\n\n return 0;\n}", "accuracy": 1, "time_ms": 30, "memory_kb": 3604, "score_of_the_acc": -0.0455, "final_rank": 5 }, { "submission_id": "aoj_3187_4862428", "code_snippet": "#ifdef LOCAL\n #define _GLIBCXX_DEBUG\n #define __clock__\n#else\n #pragma GCC optimize(\"Ofast\")\n#endif\n#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\nusing ld = long double;\nusing VI = vector<ll>;\nusing VV = vector<VI>;\nusing VS = vector<string>;\nusing PII = pair<ll, ll>;\n\n// tourist set\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p);\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p);\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p);\n\nstring to_string(const string& s) {\n return '\"' + s + '\"';\n}\n\nstring to_string(const char* s) {\n return to_string((string) s);\n}\n\nstring to_string(bool b) {\n return (b ? \"true\" : \"false\");\n}\n\nstring to_string(vector<bool> v) {\n bool first = true;\n string res = \"{\";\n for (int i = 0; i < static_cast<int>(v.size()); i++) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(v[i]);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <size_t N>\nstring to_string(bitset<N> v) {\n string res = \"\";\n for (size_t i = 0; i < N; i++) {\n res += static_cast<char>('0' + v[i]);\n }\n return res;\n}\n\ntemplate <typename A>\nstring to_string(A v) {\n bool first = true;\n string res = \"{\";\n for (const auto &x : v) {\n if (!first) {\n res += \", \";\n }\n first = false;\n res += to_string(x);\n }\n res += \"}\";\n return res;\n}\n\ntemplate <typename A, typename B>\nstring to_string(pair<A, B> p) {\n return \"(\" + to_string(p.first) + \", \" + to_string(p.second) + \")\";\n}\n\ntemplate <typename A, typename B, typename C>\nstring to_string(tuple<A, B, C> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \")\";\n}\n\ntemplate <typename A, typename B, typename C, typename D>\nstring to_string(tuple<A, B, C, D> p) {\n return \"(\" + to_string(get<0>(p)) + \", \" + to_string(get<1>(p)) + \", \" + to_string(get<2>(p)) + \", \" + to_string(get<3>(p)) + \")\";\n}\n\nvoid debug_out() { cerr << '\\n'; }\n\ntemplate <typename Head, typename... Tail>\nvoid debug_out(Head H, Tail... T) {\n cerr << \" \" << to_string(H);\n debug_out(T...);\n}\n\n#ifdef LOCAL\n#define debug(...) cerr << \"[\" << #__VA_ARGS__ << \"]:\", debug_out(__VA_ARGS__)\n#else\n#define debug(...) 42\n#endif\n// tourist set end\n\ntemplate<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }\ntemplate<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }\n\n#define FOR(i,a,b) for(ll i=(a);i<(b);++i)\n#define rep(i,b) FOR(i, 0, b)\n#define ALL(v) (v).begin(), (v).end()\n#define p(s) cout<<(s)<<'\\n'\n#define p2(s, t) cout << (s) << \" \" << (t) << '\\n'\n#define br() p(\"\")\n#define pn(s) cout << (#s) << \" \" << (s) << '\\n'\n#define SZ(x) ((int)(x).size())\n#define SORT(A) sort(ALL(A))\n#define RSORT(A) sort(ALL(A), greater<ll>())\n#define MP make_pair\n#define p_yes() p(\"YES\")\n#define p_no() p(\"NO\")\n#define possible() p(\"Possible\")\n#define impossible() p(\"Impossible\")\n\nll SUM(VI& V){\n return accumulate(ALL(V), 0LL);\n}\n\nll MIN(VI& V){return *min_element(ALL(V));}\nll MAX(VI& V){return *max_element(ALL(V));}\n\nvoid print_vector(VI& V){\n ll n = V.size();\n rep(i, n){\n if(i) cout << ' ';\n cout << V[i];\n }\n cout << endl;\n}\n\nll gcd(ll a,ll b){\n if(b == 0) return a;\n return gcd(b,a%b);\n}\n\nll lcm(ll a,ll b){\n ll g = gcd(a,b);\n return a / g * b;\n}\n\n// long double\nusing ld = long double;\n#define EPS (1e-14)\n#define equals(a,b) (fabs((a)-(b)) < EPS)\n\nvoid no(){p_no(); exit(0);}\nvoid yes(){p_yes(); exit(0);}\n\nconst ll mod = 1e9 + 7;\nconst ll inf = 1e18;\nconst double PI = acos(-1);\n\n// snuke's mint\n// auto mod int\n// https://youtu.be/L8grWxBlIZ4?t=9858\n// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize\n// https://youtu.be/8uowVvQ_-Mo?t=1329 : division\n// const int mod = 1000000007;\nstruct mint {\n ll x; // typedef long long ll;\n mint(ll x=0):x((x%mod+mod)%mod){}\n mint operator-() const { return mint(-x);}\n mint& operator+=(const mint a) {\n if ((x += a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator-=(const mint a) {\n if ((x += mod-a.x) >= mod) x -= mod;\n return *this;\n }\n mint& operator*=(const mint a) {\n (x *= a.x) %= mod;\n return *this;\n }\n mint operator+(const mint a) const {\n mint res(*this);\n return res+=a;\n }\n mint operator-(const mint a) const {\n mint res(*this);\n return res-=a;\n }\n mint operator*(const mint a) const {\n mint res(*this);\n return res*=a;\n }\n mint pow(ll t) const {\n if (!t) return 1;\n mint a = pow(t>>1);\n a *= a;\n if (t&1) a *= *this;\n return a;\n }\n\n // for prime mod\n mint inv() const {\n return pow(mod-2);\n }\n mint& operator/=(const mint a) {\n return (*this) *= a.inv();\n }\n mint operator/(const mint a) const {\n mint res(*this);\n return res/=a;\n }\n};\n\nll dp[55000][200];\n// i個まで見て\n// 余りがjのときの最大箱数\n\nint main(){\n cin.tie(0);\n ios::sync_with_stdio(false);\n\n // input\n ll N,K; \n cin>>N>>K;\n\n VI A(N);\n rep(i,N)cin>>A[i];\n\n VV dp(N+10, VI(K, -1));\n dp[0][0]=0;\n\n rep(i,N){\n ll a = A[i];\n rep(j,K){\n if(dp[i][j]==-1) continue;\n\n // とる\n ll sum = j+a;\n chmax(dp[i+1][sum%K], dp[i][j] + sum/K);\n\n // とらない\n chmax(dp[i+1][j], dp[i][j]);\n }\n }\n ll ans = 0;\n rep(i,K){\n chmax(ans, dp[N][i] - i);\n }\n p(ans);\n\n return 0;\n}", "accuracy": 1, "time_ms": 50, "memory_kb": 44348, "score_of_the_acc": -0.6344, "final_rank": 17 }, { "submission_id": "aoj_3187_4861893", "code_snippet": "/**\n * author: otera \n**/\n#include<iostream>\n#include<string> \n#include<cstdio>\n#include<cstring>\n#include<vector>\n#include<cmath>\n#include<algorithm> \n#include<functional>\n#include<iomanip>\n#include<queue>\n#include<deque>\n#include<ciso646>\n#include<random>\n#include<map>\n#include<set>\n#include<complex>\n#include<bitset>\n#include<stack>\n#include<unordered_map>\n#include<unordered_set>\n#include<utility>\n#include<cassert>\nusing namespace std;\n\n#define int long long\ntypedef long long ll;\ntypedef unsigned long long ul;\ntypedef unsigned int ui;\ntypedef long double ld;\nconst int inf=1e9+7;\nconst ll INF=1LL<<60 ;\nconst ll mod=1e9+7 ;\n#define rep(i,n) for(int i=0;i<n;i++)\n#define per(i,n) for(int i=n-1;i>=0;i--)\n#define Rep(i,sta,n) for(int i=sta;i<n;i++)\n#define rep1(i,n) for(int i=1;i<=n;i++)\n#define per1(i,n) for(int i=n;i>=1;i--)\n#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)\ntypedef complex<ld> Point;\nconst ld eps = 1e-8;\nconst ld pi = acos(-1.0);\ntypedef pair<int, int> P;\ntypedef pair<ld, ld> LDP;\ntypedef pair<ll, ll> LP;\n#define fr first\n#define sc second\n#define all(c) c.begin(),c.end()\n#define pb push_back\n#define debug(x) cerr << #x << \" = \" << (x) << endl;\ntemplate<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }\ntemplate<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }\n\nvoid solve() {\n\tint n, k; cin >> n >> k;\n vector<int> a(n);\n rep(i, n) {\n cin >> a[i];\n }\n vector<int> dp(k, -INF);\n vector<int> ndp(k, -INF);\n dp[0] = 0;\n rep(i, n) {\n ndp.assign(k, -INF);\n rep(j, k) {\n if(dp[j] == -INF) continue;\n chmax(ndp[j], dp[j]);\n int now = k * dp[j] + j;\n now += a[i];\n int r = now % k, t = now / k;\n chmax(ndp[r], t);\n }\n swap(dp, ndp);\n }\n int ans = -INF;\n rep(j, k) {\n chmax(ans, dp[j] - j);\n }\n cout << ans << endl;\n}\n\nsigned main() {\n\tios::sync_with_stdio(false);\n\tcin.tie(0);\n\t//cout << fixed << setprecision(10);\n\t//int t; cin >> t; rep(i, t)solve();\n\tsolve();\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 3304, "score_of_the_acc": -0.061, "final_rank": 7 }, { "submission_id": "aoj_3187_4861711", "code_snippet": "#include <bits/stdc++.h>\nusing namespace std; \n#define rep(i, a, b) for(ll i = a; i < b; i++)\n#define Rep(i, a, b) for(ll i = a; i <= b; i++)\n#define repr(i, a, b) for(ll i = b-1; i >= a; i--)\n// #define _GLIBCXX_DEBUG\ntemplate <class T> using V = vector<T>;\nusing ll = long long;\n#define ALL(v) (v).begin(),(v).end()\n#define endl \"\\n\"\n#define chmin(x, y) x = min(x, y)\n#define chmax(x, y) x = max(x, y)\n#define co(x) cout << x << endl\n#define pb push_back\n#define sz(v) ((ll)(v).size())\nconst double pi = acos(-1.0);\nconst ll MOD = 1000000007LL;\nconst ll INF = 1LL << 60;\n#define pp pair<ll, pair<ll, ll>> \n// #define fi first\n// #define se second\nconst int dy[] = {1, 0, -1, 0};\nconst int dx[] = {0, 1, 0, -1};\n\n/*--------------------------------------------------------------------------------\n ・ω・\n--------------------------------------------------------------------------------*/\n\nvoid solve(){\n ll n, k;\n cin >> n >> k;\n V<ll> A(n);\n rep(i, 0, n) cin >> A[i];\n V<V<ll>> dp(n+5, V<ll>(k+5, -1));\n dp[0][0] = 0;\n rep(i, 0, n){\n rep(j, 0, k){\n if(dp[i][j]==-1) continue;\n chmax(dp[i+1][j], dp[i][j]);\n if(j+A[i] >= k) chmax(dp[i+1][(j+A[i])%k], dp[i][j]+1);\n else chmax(dp[i+1][j+A[i]], dp[i][j]);\n }\n }\n //debug\n // rep(i, 0, k){\n // Rep(j, 0, n) cout << dp[j][i] << \" \\n\"[j==n];\n // }\n //\n ll ans = -INF;\n rep(i, 0, k) chmax(ans, dp[n][i]-i);\n cout << ans << endl;\n\n return;\n}\n\nint main(){\n ios::sync_with_stdio(false);\n cin.tie(nullptr);\n solve();\n\n return 0;\n}", "accuracy": 1, "time_ms": 40, "memory_kb": 46112, "score_of_the_acc": -0.6386, "final_rank": 18 } ]