prithivMLmods's picture
Update README.md
1d1d679 verified
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen3-VL-8B-Instruct
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- text-generation-inference
- document-ai
- node-implementations
- table-extraction
- layouts
- markdown
- html-markdown
- document-retrieval
- visual-grounding
- pdf-ocr
- layout-analysis
- json
- html
---
![1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Z6i1Tpuq80rvooHrCsXJZ.png)
# **proxima-ocr-d.markdown-post3.0.l**
> **proxima-ocr-d.markdown-post3.0.l** is an experimental document AI multimodal model fine-tuned on top of **Qwen3-VL-8B-Instruct**, optimized for high precision OCR and structured document reconstruction. The model converts documents into **Markdown**, **HTML-Markdown**, and hybrid enriched documentation formats capable of embedding inline programming languages and reconstructing complex layouts such as tables, forms, and mathematical content.
# Key Enhancements
* **Dynamic Markdown Reconstruction**
Converts complex documents to structured Markdown or HTML-Markdown while preserving layout hierarchy, formatting consistency, semantic ordering, and section alignment.
* **Inline Code and Language Embedding**
Direct adaptation of Python, JavaScript, LaTeX, and shell syntax into reconstructed documents for technical and research documentation.
* **High Fidelity OCR and Visual Parsing**
Accurate recognition of text across structured and unstructured scanned documents, including multi page layout reasoning.
* **Complex Layout Interpretation**
Interprets tables, grids, equations, graphs, multi column layouts, and forms without structural distortion.
* **Document Retrieval and Semantic Linking**
Efficient multi page chunking with cross reference recognition and content traceability.
* **Multimodal Long Reasoning**
Supports advanced document question answering and reasoning across long input streams such as slides and manuscripts.
---
> 👉 This model is a stage progression model, and it may currently contain artifacts.
---
# Example Preview
### [1] Markdown HTML
| Input Image | Markdown Preview Page 1 | Markdown Preview Page 2 |
|------------|-------------------------|--------------------------|
| ![1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/_Y-OAIttAgeANK7Dv_IGD.jpeg) | ![Page1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/WQlpD6VpMNwhQVzqJutuz.png) | ![Page2](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/fEGekbnM1NvmqIocxuYb7.png) |
### [2] JSON Nodes
| Input Image | Node Preview Page 1 | Node Preview Page 2 |
|------------|----------------------|----------------------|
| ![1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/_jmGwS5ODHNNp1FswE2R7.jpeg) | ![Page1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/NrrCDWMenmxHjrhmGyoKZ.png) | ![Page2](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/NRUOYT_fE90wqTJi-u39q.png) |
### [3] YAML Nodes
| Input Image | Node Preview Page 1 | Node Preview Page 2 |
|------------|----------------------|----------------------|
| ![input](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/tGUTNem7wMUhlZQw7UMAr.png) | ![Page1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/w1AJfqnn7CyWAiJ9Ih4ll.png) | ![Page2](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/pvmhwEJPkdBR9duo-e58G.png) |
---
# Quick Start with Transformers
```python
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen3VLForConditionalGeneration.from_pretrained(
"prithivMLmods/proxima-ocr-d.markdown-post3.0.l", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("prithivMLmods/proxima-ocr-d.markdown-post3.0.l")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Convert to Markdown."},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=2048)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
# Intended Use
* OCR to Markdown or HTML-Markdown conversion
* Complex document reconstruction and formatting regeneration
* Multi page document reasoning and retrieval
* Table extraction and structured output transformation
* Mathematical OCR and LaTeX conversion
* Form extraction and structured entity generation
* Knowledge base indexing and large document QA
* Documentation regeneration for enterprise automation
# Limitations
* Accuracy may drop on extremely damaged or poorly scanned images
* Significant GPU VRAM required for long sequences and multi page documents
* Language accuracy varies for low resource scripts
* Complex objects such as mixed orientation blocks may require secondary post processing
* May occasionally produce formatting misalignment in highly irregular layouts
## Training Details
| Parameter | Value |
| ------------- | ------------------------------------------------- |
| Dataset Size | approx. 544K [ modular combination open source data & synthetic document data entries from Gemini 3 Pro ] |
| Architecture | Qwen3VLForConditionalGeneration |
| Training Time | approx. 17,040 seconds (4 h 44 m) |
| Precision | bfloat16 |
| Hardware | 4x H100 SXM (320 GB VRAM) |
| System Memory | 752 GB RAM |
| CPU | 80 vCPU |
## References
* Qwen2.5 VL
[https://huggingface.co/papers/2502.13923](https://huggingface.co/papers/2502.13923)
* DocVLM Make Your VLM an Efficient Reader
[https://arxiv.org/pdf/2412.08746v1](https://arxiv.org/pdf/2412.08746v1)
* YaRN Efficient Context Window Extension
[https://arxiv.org/pdf/2309.00071](https://arxiv.org/pdf/2309.00071)
* Qwen2 VL High Resolution Perception
[https://arxiv.org/pdf/2409.12191](https://arxiv.org/pdf/2409.12191)
* Qwen VL Vision Language Understanding and OCR
[https://arxiv.org/pdf/2308.12966](https://arxiv.org/pdf/2308.12966)
* OCR Benchmark for Multimodal Models
[https://arxiv.org/pdf/2412.02210](https://arxiv.org/pdf/2412.02210)