AMOP / model_card_template_gguf.md
broadfield-dev's picture
Create model_card_template_gguf.md
ed2832b verified
---
license: mit
tags:
- amop-optimized
- gguf
---
# AMOP-Optimized GGUF Model: {repo_name}
This model was automatically optimized for CPU inference using the **Adaptive Model Optimization Pipeline (AMOP)**.
- **Base Model:** [{model_id}](https://huggingface.co/{model_id})
- **Optimization Date:** {optimization_date}
## Optimization Details
The following AMOP GGUF pipeline stages were applied:
- **GGUF Conversion & Quantization:** Enabled (Strategy: {quant_type})
## How to Use
This model is in GGUF format and can be run with libraries like `llama-cpp-python`.
First, install the necessary libraries:
```bash
pip install llama-cpp-python
```
Then, use the following Python code to run inference:
```python
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
# Download the GGUF model from the Hub
model_path = hf_hub_download(
repo_id="{repo_id}",
filename="model.gguf" # Or the specific GGUF file name
)
# Instantiate the model
llm = Llama(
model_path=model_path,
n_ctx=2048, # Context window
)
# Run inference
prompt = "The future of AI is"
output = llm(
f"Q: {prompt} A: ", # Or your preferred prompt format
max_tokens=50,
stop=["Q:", "\n"],
echo=True
)
print(output)
```
## AMOP Pipeline Log
<details>
<summary>Click to expand</summary>
```
{pipeline_log}
```
</details>