Spaces:
Running
Running
File size: 13,686 Bytes
01449b5 3ed31b1 01449b5 3ed31b1 01449b5 3ed31b1 01449b5 3ed31b1 01449b5 f54a9d1 01449b5 f54a9d1 01449b5 f54a9d1 e1d14d5 7dcd378 e1d14d5 7dcd378 e1d14d5 3ece5ec e1d14d5 7dcd378 e1d14d5 3ece5ec e1d14d5 7dcd378 e1d14d5 6061890 e1d14d5 7dcd378 e1d14d5 7dcd378 3ece5ec 6061890 7dcd378 3ece5ec 7dcd378 3ece5ec 7dcd378 3ece5ec 7dcd378 e1d14d5 8a96280 b6a80c5 8a96280 7dcd378 6061890 7dcd378 e1d14d5 6061890 e1d14d5 6061890 7dcd378 e1d14d5 3ece5ec 7dcd378 e1d14d5 6061890 7dcd378 6061890 7dcd378 e1d14d5 7dcd378 e1d14d5 7dcd378 b6a80c5 7dcd378 b6a80c5 6061890 b6a80c5 e1d14d5 7dcd378 6061890 7dcd378 01449b5 7dcd378 01449b5 7dcd378 e1d14d5 7dcd378 e1d14d5 7dcd378 e1d14d5 7dcd378 01449b5 e1d14d5 7dcd378 01449b5 b6a80c5 7dcd378 f54a9d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
#!/usr/bin/env python3
"""
Affecto - Real MagicFace Emotion Transformation
Made by Gaurav Jha and Raj Shakya
"""
# ============================================
# CRITICAL: Fix huggingface-hub version FIRST
# ============================================
import subprocess
import sys
import os
print("=" * 60)
print("๐ง FIXING DEPENDENCY VERSIONS")
print("=" * 60)
# Check current version
try:
import huggingface_hub
current_version = huggingface_hub.__version__
print(f"๐ฆ Current huggingface-hub version: {current_version}")
if current_version != "0.25.2":
print(f"โ Version {current_version} doesn't match required 0.25.2!")
print("๐ Force installing 0.25.2...")
# Uninstall current version
subprocess.check_call([
sys.executable, "-m", "pip", "uninstall",
"huggingface-hub", "-y"
], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
# Install correct version
subprocess.check_call([
sys.executable, "-m", "pip", "install",
"huggingface-hub==0.25.2", "--no-deps"
], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
print(f"โ
Installed huggingface-hub 0.25.2")
else:
print(f"โ
Version {current_version} is correct!")
except Exception as e:
print(f"โ ๏ธ Error fixing huggingface-hub: {str(e)}")
print("โ ๏ธ Proceeding anyway...")
print("=" * 60)
print()
# ============================================
# HF Hub compatibility shim
# ============================================
import importlib
import importlib.util
hf_spec = importlib.util.find_spec("huggingface_hub")
if hf_spec is not None:
hf = importlib.import_module("huggingface_hub")
if not hasattr(hf, "cached_download") and hasattr(hf, "hf_hub_download"):
def cached_download(*args, **kwargs):
return hf.hf_hub_download(*args, **kwargs)
setattr(hf, "cached_download", cached_download)
print("shim: huggingface_hub cached_download patched:", hasattr(hf, "cached_download"))
else:
print("shim: huggingface_hub not present at import-time")
# ============================================
# NOW SAFE TO IMPORT OTHER MODULES
# ============================================
import gradio as gr
import torch
from PIL import Image
import base64
from io import BytesIO
import json
import traceback
print("๐ Starting Affecto - Real MagicFace Inference Service...")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"๐ฅ๏ธ Device: {device}")
# Initialize preprocessor and model
print("๐ฅ Loading models...")
from preprocessor import FacePreprocessor
from magicface_model import MagicFaceModel
try:
preprocessor = FacePreprocessor(device=device)
model = MagicFaceModel(device=device)
print("โ
All models loaded successfully!")
except Exception as e:
print(f"โ Error loading models: {str(e)}")
traceback.print_exc()
raise
# ============================================
# UTILITY FUNCTIONS
# ============================================
def pil_to_base64(image):
"""Convert PIL to base64"""
buffered = BytesIO()
image.save(buffered, format="JPEG", quality=95)
return base64.b64encode(buffered.getvalue()).decode()
def base64_to_pil(base64_str):
"""Convert base64 to PIL"""
if base64_str.startswith('data:image'):
base64_str = base64_str.split(',')[1]
image_bytes = base64.b64decode(base64_str)
return Image.open(BytesIO(image_bytes)).convert('RGB')
# ============================================
# INFERENCE FUNCTION
# ============================================
def transform_emotion(image, au_params_str, steps, seed):
"""
Main transformation function
Args:
image: PIL Image
au_params_str: JSON string of AU parameters
steps: Number of inference steps
seed: Random seed
Returns:
result_image: Transformed PIL Image
status_msg: Status message
"""
try:
if image is None:
return None, "โ No image provided"
print("\n" + "="*60)
print("๐ญ NEW TRANSFORMATION REQUEST")
print("="*60)
# Parse AU params
try:
au_params = json.loads(au_params_str)
print(f"โ
AU Parameters: {au_params}")
except json.JSONDecodeError as e:
return None, f"โ Invalid JSON: {str(e)}"
# Step 1: Preprocess (detect face, crop, extract background)
print("\n๐ธ STEP 1: Preprocessing...")
try:
source_img, bg_img = preprocessor.preprocess(image)
print("โ
Preprocessing complete")
except Exception as e:
return None, f"โ Preprocessing failed: {str(e)}"
# Step 2: Transform with MagicFace
print("\n๐จ STEP 2: MagicFace Transformation...")
print(f" Inference steps: {steps}")
print(f" Seed: {seed}")
print(f" Expected time: ~{steps * 10} seconds on CPU")
try:
result_img = model.transform(
source_image=source_img,
bg_image=bg_img,
au_params=au_params,
num_inference_steps=steps,
seed=seed
)
print("\nโ
TRANSFORMATION SUCCESSFUL!")
print("="*60 + "\n")
return result_img, "โ
Transformation successful!"
except Exception as e:
print(f"\nโ Transformation failed: {str(e)}")
traceback.print_exc()
return None, f"โ Transformation failed: {str(e)}"
except Exception as e:
print(f"\nโ Unexpected error: {str(e)}")
traceback.print_exc()
return None, f"โ Error: {str(e)}"
# ============================================
# GRADIO INTERFACE
# ============================================
with gr.Blocks(theme=gr.themes.Soft(), title="Affecto - Real MagicFace") as demo:
gr.Markdown("# ๐ญ Affecto - Real MagicFace Emotion Transformation")
gr.Markdown("Transform facial emotions using Action Units with the complete MagicFace diffusion model")
gr.Markdown(f"โก Running on: **{device.upper()}** | โฑ๏ธ Estimated time: ~10-15 minutes per transformation on CPU")
with gr.Tab("๐ผ๏ธ Transform"):
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload Face Image")
gr.Markdown("### ๐๏ธ Action Unit Parameters")
au_params_input = gr.Textbox(
label="AU Parameters (JSON)",
value='{"AU6": 2.0, "AU12": 2.0}',
lines=4,
placeholder='{"AU6": 2.0, "AU12": 2.0}'
)
with gr.Row():
steps_slider = gr.Slider(
minimum=20, maximum=100, value=50, step=10,
label="Inference Steps (20=fast/lower quality, 50=balanced, 100=slow/high quality)"
)
with gr.Row():
seed_input = gr.Number(value=424, label="Seed (for reproducibility)", precision=0)
transform_btn = gr.Button("โจ Transform Emotion", variant="primary", size="lg")
gr.Markdown("โ ๏ธ **Note:** Transformation takes ~10-15 minutes on CPU. Please be patient!")
with gr.Column():
output_image = gr.Image(type="pil", label="Transformed Result")
status_text = gr.Textbox(label="Status", interactive=False, lines=2)
gr.Markdown("### ๐จ Emotion Presets (click to use):")
gr.Examples(
examples=[
['{"AU6": 2.5, "AU12": 3.0}', 50, 424], # Happy
['{"AU1": 2.0, "AU4": 2.5, "AU15": 2.5}', 50, 424], # Sad
['{"AU4": 3.0, "AU5": 2.0, "AU7": 2.5, "AU23": 2.0}', 50, 424], # Angry
['{"AU1": 3.0, "AU2": 2.5, "AU5": 3.0, "AU26": 2.5}', 50, 424], # Surprised
['{"AU6": 1.5, "AU12": 1.5}', 50, 424], # Slight smile
['{"AU4": 1.5, "AU15": 1.5}', 50, 424], # Slight frown
],
inputs=[au_params_input, steps_slider, seed_input],
)
transform_btn.click(
fn=transform_emotion,
inputs=[input_image, au_params_input, steps_slider, seed_input],
outputs=[output_image, status_text]
)
with gr.Tab("๐ก API Documentation"):
gr.Markdown("""
## ๐ API Usage
### Gradio API Endpoint
**POST** `https://gauravvjhaa-affecto-inference.hf.space/api/predict`
```python
import requests
import base64
# Prepare image
with open("face.jpg", "rb") as f:
image_base64 = base64.b64encode(f.read()).decode()
# Call API
response = requests.post(
"https://gauravvjhaa-affecto-inference.hf.space/api/predict",
json={
"data": [
f"data:image/jpeg;base64,{image_base64}",
'{"AU6": 2.0, "AU12": 2.0}',
50, # steps
424 # seed
]
}
)
result = response.json()
# Result image is in result["data"][0]
```
### ๐ญ Available Action Units (AU):
**๐ Happiness:**
- **AU6** (Cheek Raiser): 0-4 โ Raises cheeks, squints eyes
- **AU12** (Lip Corner Puller): 0-4 โ Pulls lip corners up (smile)
**๐ข Sadness:**
- **AU1** (Inner Brow Raiser): 0-4 โ Raises inner brows
- **AU4** (Brow Lowerer): 0-4 โ Lowers brows (frown)
- **AU15** (Lip Corner Depressor): 0-4 โ Pulls lip corners down
**๐ Anger:**
- **AU4** (Brow Lowerer): 0-4
- **AU5** (Upper Lid Raiser): 0-4
- **AU7** (Lid Tightener): 0-4
- **AU23** (Lip Tightener): 0-4
**๐ฎ Surprise:**
- **AU1** (Inner Brow Raiser): 0-4
- **AU2** (Outer Brow Raiser): 0-4
- **AU5** (Upper Lid Raiser): 0-4
- **AU26** (Jaw Drop): 0-4
**๐จ Fear:**
- **AU1** (Inner Brow Raiser): 0-4
- **AU2** (Outer Brow Raiser): 0-4
- **AU4** (Brow Lowerer): 0-4
- **AU5** (Upper Lid Raiser): 0-4
- **AU20** (Lip Stretcher): 0-4
- **AU25** (Lips Part): 0-4
### ๐ Example Combinations:
```json
# Happy (smile)
{"AU6": 2.5, "AU12": 3.0}
# Sad
{"AU1": 2.0, "AU4": 2.5, "AU15": 2.5}
# Angry
{"AU4": 3.0, "AU5": 2.0, "AU7": 2.5, "AU23": 2.0}
# Surprised
{"AU1": 3.0, "AU2": 2.5, "AU5": 3.0, "AU26": 2.5}
# Fear
{"AU1": 2.5, "AU2": 2.5, "AU4": 2.0, "AU5": 3.0, "AU20": 2.0, "AU25": 2.0}
```
### โ๏ธ Pipeline Details:
1. **Face Detection** โ InsightFace detects face
2. **Cropping** โ Crop to 512ร512 with alignment
3. **Background Extraction** โ BiSeNet segments face from background
4. **Diffusion** โ MagicFace transforms expression
5. **Output** โ 512ร512 transformed face
### โฑ๏ธ Performance:
- **CPU**: ~10-15 minutes per image
- **GPU (T4)**: ~15-20 seconds per image
### ๐ Notes:
- Input images should contain at least one face
- If multiple faces, largest face is used
- AU values typically range 0-4 (higher = stronger)
- Seed ensures reproducibility
""")
with gr.Tab("โน๏ธ About"):
gr.Markdown("""
## ๐ญ Affecto - MagicFace Implementation
### Architecture:
This is a complete implementation of the **MagicFace** diffusion model for facial emotion transformation.
**Components:**
- **InsightFace**: Face detection and landmark extraction
- **BiSeNet**: Face segmentation for background extraction
- **Stable Diffusion 1.5**: Base diffusion model
- **Custom UNets**: ID encoder + Denoising UNet from MagicFace
- **Action Units**: FACS-based emotion parameters
### References:
- **MagicFace Paper**: [arxiv.org/abs/2408.00623](https://arxiv.org/abs/2408.00623)
- **MagicFace Code**: [github.com/weimengting/MagicFace](https://github.com/weimengting/MagicFace)
- **HuggingFace Model**: [huggingface.co/mengtingwei/magicface](https://huggingface.co/mengtingwei/magicface)
### Project Info:
- **Project**: Affecto - Facial Emotion Transformation System
- **Implementation**: Complete MagicFace pipeline with preprocessing
- **Hardware**: CPU (free tier) - upgrade to GPU for faster inference
---
**Made by Gaurav Jha and Raj Shakya** ๐
Built using Gradio, PyTorch, and Diffusers
""")
print("โ
Affecto - Real MagicFace API Ready!")
print(f"๐ URL: https://gauravvjhaa-affecto-inference.hf.space/")
if __name__ == "__main__":
demo.queue(max_size=5) # Queue for long-running tasks
demo.launch(server_name="0.0.0.0", server_port=7860)
|